ECMAScript Language Specification

Report Errors and Issues at: https://bugs.ecmascript.org

Component: choose an appropriate one
Version: July 8, 2012 Draft
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>vii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Conformance</td>
<td>1</td>
</tr>
<tr>
<td>3 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>4 Overview</td>
<td>1</td>
</tr>
<tr>
<td>4.1 Web Scripting</td>
<td>2</td>
</tr>
<tr>
<td>4.2 Language Overview</td>
<td>2</td>
</tr>
<tr>
<td>4.2.1 Objects</td>
<td>3</td>
</tr>
<tr>
<td>4.2.2 The Strict Variant of ECMAScript</td>
<td>4</td>
</tr>
<tr>
<td>4.3 Terms and definitions</td>
<td>4</td>
</tr>
<tr>
<td>5 Notational Conventions</td>
<td>7</td>
</tr>
<tr>
<td>5.1 Syntactic and Lexical Grammars</td>
<td>7</td>
</tr>
<tr>
<td>5.1.1 Context-Free Grammars</td>
<td>7</td>
</tr>
<tr>
<td>5.1.2 The Lexical and RegExp Grammars</td>
<td>8</td>
</tr>
<tr>
<td>5.1.3 The Numeric String Grammar</td>
<td>8</td>
</tr>
<tr>
<td>5.1.4 The Syntactic Grammar</td>
<td>8</td>
</tr>
<tr>
<td>5.1.5 The JSON Grammar</td>
<td>9</td>
</tr>
<tr>
<td>5.1.6 Grammar Notation</td>
<td>9</td>
</tr>
<tr>
<td>5.2 Algorithm Conventions</td>
<td>12</td>
</tr>
<tr>
<td>5.3 Static Semantic Rules</td>
<td>13</td>
</tr>
<tr>
<td>6 Source Text</td>
<td>14</td>
</tr>
<tr>
<td>7 Lexical Conventions</td>
<td>14</td>
</tr>
<tr>
<td>7.1 Unicode Format-Control Characters</td>
<td>15</td>
</tr>
<tr>
<td>7.2 White Space</td>
<td>16</td>
</tr>
<tr>
<td>7.3 Line Terminators</td>
<td>16</td>
</tr>
<tr>
<td>7.4 Comments</td>
<td>17</td>
</tr>
<tr>
<td>7.5 Tokens</td>
<td>18</td>
</tr>
<tr>
<td>7.6 Identifier Names and Identifiers</td>
<td>18</td>
</tr>
<tr>
<td>7.6.1 Reserved Words</td>
<td>19</td>
</tr>
<tr>
<td>7.7 Punctuation</td>
<td>21</td>
</tr>
<tr>
<td>7.8 Literals</td>
<td>21</td>
</tr>
<tr>
<td>7.8.1 Null Literals</td>
<td>21</td>
</tr>
<tr>
<td>7.8.3 Numeric Literals</td>
<td>21</td>
</tr>
<tr>
<td>7.8.4 String Literals</td>
<td>24</td>
</tr>
<tr>
<td>7.8.5 Regular Expression Literals</td>
<td>26</td>
</tr>
<tr>
<td>7.8.6 Quasi Literal Lexical Components</td>
<td>28</td>
</tr>
<tr>
<td>7.8.2 Boolean Literals</td>
<td>29</td>
</tr>
<tr>
<td>7.9 Automatic Semicolon Insertion</td>
<td>30</td>
</tr>
<tr>
<td>7.9.1 Rules of Automatic Semicolon Insertion</td>
<td>30</td>
</tr>
<tr>
<td>7.9.2 Examples of Automatic Semicolon Insertion</td>
<td>31</td>
</tr>
<tr>
<td>8 Types</td>
<td>32</td>
</tr>
<tr>
<td>8.1 The Undefined Type</td>
<td>32</td>
</tr>
<tr>
<td>8.2 The Null Type</td>
<td>32</td>
</tr>
<tr>
<td>8.3 The Boolean Type</td>
<td>32</td>
</tr>
<tr>
<td>8.4 The String Type</td>
<td>32</td>
</tr>
<tr>
<td>8.5 The Number Type</td>
<td>33</td>
</tr>
<tr>
<td>8.6 The Object Type</td>
<td>34</td>
</tr>
<tr>
<td>8.6.1 Property Attributes</td>
<td>34</td>
</tr>
</tbody>
</table>
9 Abstract Operations .. 49

9.1 Type Conversion and Testing ... 50

9.1.1 ToPrimitive .. 50

9.1.2 ToBoolean ... 50

9.1.3 ToNumber ... 51

9.1.4 ToInteger ... 53

9.1.5 ToInt32: (Signed 32 Bit Integer) .. 54

9.1.6 ToUint32: (Unsigned 32 Bit Integer) .. 54

9.1.7 ToUint16: (Unsigned 16 Bit Integer) .. 54

9.1.8 ToString .. 55

9.1.9 ToObject .. 56

9.1.10 ToPropertyDescriptor .. 56

9.2 Testing and Comparision Operations ... 56

9.2.1 CheckObjectCoercible .. 56

9.2.2 IsCallable ... 57

9.2.3 The SameValue Algorithm ... 57

9.3 Operations on Objects ... 57

9.3.1 Invoke .. 57

10 Executable Code and Execution Contexts ... 58

10.1 Types of Executable Code .. 58

10.1.1 Strict Mode Code .. 58

10.1.2 Non-ECMAScript Functions ... 59

10.2 Lexical Environments ... 59

10.2.1 Environment Records ... 59

10.2.2 Lexical Environment Operations .. 66

10.3 Code Realms ... 67

10.4 Execution Contexts ... 67

10.4.1 Identifier Resolution .. 68
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.3</td>
<td>GetThisEnvironment</td>
<td>68</td>
</tr>
<tr>
<td>10.4.4</td>
<td>This Resolution</td>
<td>68</td>
</tr>
<tr>
<td>10.5</td>
<td>Declaration Binding Instantiation</td>
<td>69</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Top-Level Declaration Instantiation</td>
<td>69</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Module Declaration Instantiation</td>
<td>70</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Function Declaration Instantiation</td>
<td>70</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Block Declaration Instantiation</td>
<td>71</td>
</tr>
<tr>
<td>10.6</td>
<td>Arguments Object</td>
<td>72</td>
</tr>
<tr>
<td>11</td>
<td>Expressions</td>
<td>75</td>
</tr>
<tr>
<td>11.1</td>
<td>Primary Expressions</td>
<td>75</td>
</tr>
<tr>
<td>11.1.1</td>
<td>The this Keyword</td>
<td>75</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Identifier Reference</td>
<td>75</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Literals</td>
<td>75</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Array Initialiser</td>
<td>76</td>
</tr>
<tr>
<td>11.1.5</td>
<td>Object Initialiser</td>
<td>79</td>
</tr>
<tr>
<td>11.1.6</td>
<td>Function Defining Expressions</td>
<td>82</td>
</tr>
<tr>
<td>11.1.7</td>
<td>Generator Comprehensions</td>
<td>82</td>
</tr>
<tr>
<td>11.1.8</td>
<td>Regular Expression Literals</td>
<td>82</td>
</tr>
<tr>
<td>11.1.9</td>
<td>Quasi Literals</td>
<td>83</td>
</tr>
<tr>
<td>11.1.10</td>
<td>The Grouping Operator</td>
<td>86</td>
</tr>
<tr>
<td>11.2</td>
<td>Left-Hand-Side Expressions</td>
<td>86</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Property Accessors</td>
<td>87</td>
</tr>
<tr>
<td>11.2.2</td>
<td>The new Operator</td>
<td>88</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Function Calls</td>
<td>89</td>
</tr>
<tr>
<td>11.2.4</td>
<td>The super Keyword</td>
<td>90</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Argument Lists</td>
<td>91</td>
</tr>
<tr>
<td>11.2.6</td>
<td>Tagged Quasis</td>
<td>92</td>
</tr>
<tr>
<td>11.3</td>
<td>Postfix Expressions</td>
<td>92</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Postfix Increment Operator</td>
<td>93</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Postfix Decrement Operator</td>
<td>93</td>
</tr>
<tr>
<td>11.4</td>
<td>Unary Operators</td>
<td>93</td>
</tr>
<tr>
<td>11.4.1</td>
<td>The delete Operator</td>
<td>94</td>
</tr>
<tr>
<td>11.4.2</td>
<td>The void Operator</td>
<td>94</td>
</tr>
<tr>
<td>11.4.3</td>
<td>The typeof Operator</td>
<td>94</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Prefix Increment Operator</td>
<td>95</td>
</tr>
<tr>
<td>11.4.5</td>
<td>Prefix Decrement Operator</td>
<td>95</td>
</tr>
<tr>
<td>11.4.6</td>
<td>Unary + Operator</td>
<td>95</td>
</tr>
<tr>
<td>11.4.7</td>
<td>Unary - Operator</td>
<td>96</td>
</tr>
<tr>
<td>11.4.8</td>
<td>Bitwise NOT Operator (~)</td>
<td>96</td>
</tr>
<tr>
<td>11.4.9</td>
<td>Logical NOT Operator (!)</td>
<td>96</td>
</tr>
<tr>
<td>11.5</td>
<td>Multiplicative Operators</td>
<td>96</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Applying the * Operator</td>
<td>97</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Applying the / Operator</td>
<td>97</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Applying the % Operator</td>
<td>98</td>
</tr>
<tr>
<td>11.6</td>
<td>Additive Operators</td>
<td>98</td>
</tr>
<tr>
<td>11.6.1</td>
<td>The Addition operator (+)</td>
<td>98</td>
</tr>
<tr>
<td>11.6.2</td>
<td>The Subtraction Operator (-)</td>
<td>99</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Applying the Additive Operators to Numbers</td>
<td>99</td>
</tr>
<tr>
<td>11.7</td>
<td>Bitwise Shift Operators</td>
<td>100</td>
</tr>
<tr>
<td>11.7.1</td>
<td>The Left Shift Operator (<<)</td>
<td>100</td>
</tr>
<tr>
<td>11.7.2</td>
<td>The Signed Right Shift Operator (>>)</td>
<td>100</td>
</tr>
<tr>
<td>11.7.3</td>
<td>The Unsigned Right Shift Operator (>>>)</td>
<td>101</td>
</tr>
<tr>
<td>11.8</td>
<td>Relational Operators</td>
<td>101</td>
</tr>
<tr>
<td>11.8.1</td>
<td>Runtime Semantics</td>
<td>102</td>
</tr>
<tr>
<td>11.9</td>
<td>Equality Operators</td>
<td>104</td>
</tr>
<tr>
<td>11.9.1</td>
<td>Runtime Semantics</td>
<td>104</td>
</tr>
<tr>
<td>11.10</td>
<td>Binary Bitwise Operators</td>
<td>107</td>
</tr>
</tbody>
</table>
11.11 Binary Logical Operators ... 107
11.12 Conditional Operator (? :) .. 108
11.13 Assignment Operators ... 109
Static Semantics .. 109
Runtime Semantics .. 110
11.13.1 Destructuring Assignment ... 110
11.14 Comma Operator (,) ... 114

12 Statements and Declarations .. 115
Static Semantics .. 115
Runtime Semantics .. 115
12.1 Block ... 116
12.2 Declarations and the Variable Statement 118
12.2.1 Let and Const Declarations .. 118
12.2.2 Variable Statement ... 121
12.2.4 Destructuring Binding Patterns ... 123
12.3 Empty Statement .. 128
12.4 Expression Statement .. 128
12.5 The if Statement ... 128
12.6 Iteration Statements .. 129
12.6.1 The do-while Statement ... 130
12.6.2 The while Statement .. 130
12.6.3 The for Statement ... 131
12.6.4 The for-in and for-of Statements ... 132
12.7 The continue Statement ... 136
12.8 The break Statement ... 136
12.9 The return Statement ... 137
12.10 The with Statement ... 137
12.11 The switch Statement ... 138
12.12 Labelled Statements .. 142
12.13 The throw Statement ... 143
12.14 The try Statement .. 143
12.15 The debugger statement .. 145

13 Functions and Generators .. 146
13.1 Function Definitions ... 146
13.2 Arrow Function Definitions ... 151
13.3 Method Definitions .. 154
13.4 Generator Definitions .. 157
13.5 Class Definitions ... 158
13.6 Creating Function Objects and Constructors 162
13.7 Tail Position Calls ... 164

14 Program ... 164

15 Standard Built-in ECMAScript Objects ... 165
15.1 The Global Object .. 166
15.1.1 Value Properties of the Global Object 167
15.1.2 Function Properties of the Global Object 167
15.1.3 URI Handling Function Properties .. 169
15.1.4 Constructor Properties of the Global Object 174
15.1.5 Other Properties of the Global Object 175
15.2 Object Objects ... 175
15.2.1 The Object Constructor Called as a Function 175
15.2.2 The Object Constructor .. 175
15.2.3 Properties of the Object Constructor 176
15.2.4 Properties of the Object Prototype Object 179
15.2.5 Properties of Object Instances .. 180
15.3 Function Objects ... 181
16 Errors .. 285
Annex A (informative) Grammar Summary ... 287
A.1 Lexical Grammar ... 287
A.2 Number Conversions ... 293
A.3 Expressions .. 294
A.4 Statements .. 298
A.5 Functions and Programs .. 300
A.6 Universal Resource Identifier Character Classes .. 301
A.7 Regular Expressions ... 301
A.8 JSON ... 303
A.8.1 JSON Lexical Grammar ... 303
A.8.2 JSON Syntactic Grammar ... 304
Annex B (normative) Additional ECMAScript Features for Web Browsers 307
B.1 Additional Syntax .. 307
B.1.1 Numeric Literals ... 307
B.1.2 String Literals .. 307
B.2 Additional Properties ... 308
B.2.1 Additional Properties of the Global Object ... 308
B.2.2 Additional Properties of the String.prototype Object 309
B.2.3 Additional Properties of the Date.prototype Object 312
B.3 Other Additional Features .. 313
B.3.1 The __proto__ pseudo property ... 313
Annex C (informative) The Strict Mode of ECMAScript .. 315
Annex D (informative) Corrections and Clarifications with Possible Compatibility Impact .. 317
In Edition 6 ... 317
In 5.1 Edition 5.1 .. 317
In 5th Edition 5 .. 318
Annex E (informative) Additions and Changes that Introduce Incompatibilities with Prior Editions ... 321
In the 6th Edition .. 321
In the 5th Edition .. 321
Annex F (informative) Static Semantic Rule Cross Reference 325
Scrap Heap ... 327
Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company's Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the World Wide Web where it has become the programming language that is supported by essentially all web browsers. Significant work was done to develop a fourth edition of ECMAScript. Although that work was not completed and not published\(^1\) as the fourth edition of ECMAScript, it informs continuing evolution of the language. The fifth edition of ECMAScript (published as ECMA-262 5th edition) codifies de facto interpretations of the language specification that have become common among browser implementations and adds support for new features that have emerged since the publication of the third edition. Such features include accessor properties, reflective creation and inspection of objects, program control of property attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international standard ISO/IEC 16262:2011.

This present sixth edition of the Standard………

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

\(^1\) Note: Please note that for ECMAScript Edition 4 the Ecma standard number “ECMA-262 Edition 4” was reserved but not used in the Ecma publication process. Therefore “ECMA-262 Edition 4” as an Ecma International publication does not exist.
"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to Ecma International, except as needed for the purpose of developing any document or deliverable produced by Ecma International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."
ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is presumed to be the Unicode set, collection 10646.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects, properties, and functions beyond those described in this specification. In particular, a conforming implementation of ECMAScript is permitted to provide properties not described in this specification, and values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to support program syntax that makes use of the "future reserved words" listed in 7.6.1.2 of this specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages – C, including amendment 1 and technical corrigenda 1 and 2

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or successor.

4 Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating computational objects within a host environment. ECMAScript as defined here is not intended to be computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or output of computed results. Instead, it is expected that the computational environment of an ECMAScript program will provide not only the objects and other facilities described in this specification but also certain environment-specific objects, whose description and behaviour are beyond the scope of this specification except to indicate that they may provide certain properties that can be accessed and certain functions that can be called from an ECMAScript program.
A scripting language is a programming language that is used to manipulate, customise, and automate the facilities of an existing system. In such systems, useful functionality is already available through a user interface, and the scripting language is a mechanism for exposing that functionality to program control. In this way, the existing system is said to provide a host environment of objects and facilities, which completes the capabilities of the scripting language. A scripting language is intended for use by both professional and non-professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web pages in browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular Java™, Self, and Scheme as described in:

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and input/output. Further, the host environment provides a means to attach scripting code to events such as change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of user interface elements and fixed and computed text and images. The scripting code is reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side scripting together, it is possible to distribute computation between the client and server while providing a customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with zero or more attributes that determine how each property can be used—for example, when the Writable attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an object is a member of the remaining built-in type Object; and a function is a callable object. A function that is associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These built-in objects include the global object, the Object object, the Function object, the Array object, the String object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the...
JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError, TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations, multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators, binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are types associated with properties, and defined functions are not required to have their declarations appear textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via a literal notation or via constructors which create objects and then execute code that initialises all or part of them by assigning initial values to their properties. Each constructor is a function that has a property named "prototype" that is used to implement prototype-based inheritance and shared properties. Objects are created by using constructors in new expressions; for example, `new Date(2009, 11)` creates a new Date object. Invoking a constructor without using new has consequences that depend on the constructor. For example, `Date()` produces a string representation of the current date and time rather than an object.

Every object created by a constructor has an implicit reference (called the object’s prototype) to the value of its constructor’s “prototype” property. Furthermore, a prototype may have a non-null implicit reference to its prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object, that reference is to the property of that name in the first object in the prototype chain that contains a property of that name. In other words, first the object mentioned directly is examined for such a property; if that object contains the named property, that is the property to which the reference refers; if that object does not contain the named property, the prototype for that object is examined next; and so on.

![Figure 1 — Object/Prototype Relationships](image)

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried by objects, and structure, behaviour, and state are all inherited.
All objects that do not directly contain a particular property that their prototype contains share that property and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using `new` expressions: `cf1`, `cf2`, `cf3`, `cf4`, and `cf5`. Each of these objects contains properties named `q1` and `q2`. The dashed lines represent the implicit prototype relationship; so, for example, `cf3`’s prototype is `CFp`. The constructor, `CF`, has two properties itself, named `P1` and `P2`, which are not visible to `CFp`, `cf1`, `cf2`, `cf3`, `cf4`, or `cf5`. The property named `CFP1` in `CFp` is shared by `cf1`, `cf2`, `cf3`, `cf4`, and `cf5` (but not by `CF`), as are any properties found in `CFp`’s implicit prototype chain that are not named `q1`, `q2`, or `CFP1`. Notice that there is no implicit prototype link between `CF` and `CFp`.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to them. That is, constructors are not required to name or assign values to all or any of the constructed object’s properties. In the above diagram, one could add a new shared property for `cf1`, `cf2`, `cf3`, `cf4`, and `cf5` by assigning a new value to the property in `CFp`.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict their usage of some features available in the language. They might do so in the interests of security, to avoid what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant of the language excludes some specific syntactic and semantic features of the regular ECMAScript language and modifies the detailed semantics of some features. The strict variant also specifies additional error conditions that must be reported by throwing error exceptions in situations that are not specified as errors by the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the *strict mode* of the language. Strict mode selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code units. In this case, strict mode only applies when actually executing code that is defined within a strict mode code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this specification. In addition, an implementation must support the combination of unrestricted and strict mode code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.3.1 type

set of data values as defined in Clause 8 of this specification

4.3.2 primitive value

member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8

NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.

4.3.3 object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.
4.3.4 constructor
function object that creates and initialises objects

NOTE The value of a constructor’s "prototype" property is a prototype object that is used to implement inheritance and shared properties.

4.3.5 prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor’s "prototype" property for the purpose of resolving property references. The constructor’s "prototype" property can be referenced by the program expression `constructor.prototype`, and properties added to an object’s prototype are shared, through inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified prototype by using the `Object.create` built-in function.

4.3.6 ordinary object
object that has the default behaviour for the internal methods that must be supported by all ECMAScript objects.

4.3.7 built-in object
object supplied by an ECMAScript implementation, independent of the host environment, that is present at the start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and define others. A built-in constructor is a built-in object that is also a constructor.

4.3.8 exotic object
object that has some alternative behaviour for one or more of the internal methods that must be supported by all ECMAScript objects.

NOTE Any object that is not an ordinary object is an exotic object.

4.3.9 undefined value
primitive value used when a variable has not been assigned a value

4.3.10 Undefined type
type whose sole value is the undefined value

4.3.11 null value
primitive value that represents the intentional absence of any object value

4.3.12 Null type
type whose sole value is the null value

4.3.13 Boolean value
member of the Boolean type

NOTE There are only two Boolean values, true and false.
4.3.14 Boolean type

type consisting of the primitive values true and false

4.3.15 Boolean object

member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean value as an argument. The resulting object has an internal property whose value is the Boolean value. A Boolean object can be coerced to a Boolean value.

4.3.16 String value

primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single 16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that they must be 16-bit unsigned integers.

4.3.17 String type

set of all possible String values

4.3.18 String object

member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as an argument. The resulting object has an internal property whose value is the String value. A String object can be coerced to a String value by calling the String constructor as a function (15.5.1).

4.3.19 Number value

primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.20 Number type

set of all possible Number values including the special “Not-a-Number” (NaN) values, positive infinity, and negative infinity

4.3.21 Number object

member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value as an argument. The resulting object has an internal property whose value is the Number value. A Number object can be coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.22 Infinity

number value that is the positive infinite Number value

4.3.23 NaN

number value that is a IEEE 754 “Not-a-Number” value
4.3.24
function
member of the Object type that is an instance of the standard built-in Function constructor and that may be invoked as a subroutine

NOTE In addition to its named properties, a function contains executable code and state that determine how it behaves when invoked. A function’s code may or may not be written in ECMAScript.

4.3.25
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp. An implementation may provide implementation-dependent built-in functions that are not described in this specification.

4.3.26
property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.27
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.28
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify and provide other additional built-in methods.

4.3.29
attribute
internal value that defines some characteristic of a property

4.3.30
own property
property that is directly contained by its object

4.3.31
inherited property
property of an object that is not an own property but is a property (either own or inherited) of the object’s prototype

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet. A chain production is one that has exactly one nonterminal symbol on its right-hand side along with zero or more terminal symbols.
Starting from a sentence consisting of a single distinguished nonterminal, called the **goal symbol**, a given context-free grammar specifies a **language**, namely, the (perhaps infinite) set of possible sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A **lexical grammar** for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters (Unicode code units) that conform to the rules for **SourceCharacter** defined in Clause 6. It defines a set of productions, starting from the goal symbol **InputElementDiv** or **InputElementRegExp**, that describe how sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for ECMAScript and are called **ECMAScript tokens**. These tokens are the reserved words, identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens, also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9). Simple white space and single-line comments are discarded and do not appear in the stream of input elements for the syntactic grammar. A **MultiLineComment** (that is, a comment of the form "/* … */" regardless of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a **MultiLineComment** contains one or more line terminators, then it is replaced by a single line terminator, which becomes part of the stream of input elements for the syntactic grammar.

A ** RegExp grammar** for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the characters as defined by **SourceCharacter**. It defines a set of productions, starting from the goal symbol **Pattern**, that describe how sequences of characters are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons ":::" as separating punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the lexical grammar having to do with numeric literals and has as its terminal symbols **SourceCharacter**. This grammar appears in 9.3.1.

Productions of the numeric string grammar are distinguished by having three colons ":::" as punctuation.

5.1.4 The Syntactic Grammar

The **syntactic grammar** for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting from the goal symbol **Program**, that describe how sequences of tokens can form syntactically correct ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript program, it is first converted to a stream of input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a single application of the syntactic grammar. The program is syntactically in error if the tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal **Program**, with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one colon "::" as punctuation.

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also accepted, namely, those that would be described by the grammar if only semicolons were added to the sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences that are described by the grammar are not considered acceptable if a terminator character appears in certain "awkward" places.
In certain cases in order to avoid ambiguities the syntactic grammar uses productions that permit token sequences that are not valid ECMAScript programs. In such cases a more restrictive supplemental grammar is provided that further restricts the acceptable token sequences. In such situations, when explicitly specific, the input elements corresponding to such a production is parsed again using a goal symbol of a supplemental grammar. The program is syntactically in error if the tokens in the stream of input elements cannot be parsed as a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript objects into actual objects. The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar. The JSON lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical grammar can form syntactically correct JSON object descriptions.

Productions of the JSON lexical grammar are distinguished by having two colons "::" as separating punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The JSON syntactic grammar is similar to parts of the ECMAScript syntactic grammar. Productions of the JSON syntactic grammar are distinguished by using one colon "::" as separating punctuation.

5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of the other grammars, are shown in fixed width font, both in the productions of the grammars and throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear in a program exactly as written. All terminal symbol characters specified in this way are to be understood as the appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a "production") is introduced by the name of the nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on succeeding lines. For example, the syntactic definition:

```
WhileStatement ::
while ( Expression ) Statement
```

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

```
ArgumentList ::
AssignmentExpression
ArgumentList , AssignmentExpression
```

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined in terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated by commas, where each argument expression is an AssignmentExpression. Such recursive definitions of nonterminals are common.

The subscripted suffix "opt", which may appear after a terminal or nonterminal, indicates an optional symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional element and one that includes it. This means that:

```
VariableDeclaration ::
Identifier Initialiser_opt
```
is a convenient abbreviation for:

\[\text{VariableDeclaration} : \]
\[\text{Identifier} \quad \text{Identifier Initialiser}\]

and that:

\[\text{IterationStatement} : \]
\[\text{for (ExpressionNoIn} \text{opt} ; \text{Expression}\text{opt} ; \text{Expression}\text{opt}) \text{Statement}\]

is a convenient abbreviation for:

\[\text{IterationStatement} : \]
\[\text{for (; ExpressionNoIn} \text{opt} ; \text{Expression}\text{opt}) \text{Statement} \]
\[\text{for (ExpressionNoIn} ; \text{Expression}\text{opt} ; \text{Expression}\text{opt}) \text{Statement}\]

which in turn is an abbreviation for:

\[\text{IterationStatement} : \]
\[\text{for (; ; ExpressionNoIn} \text{opt}) \text{Statement} \]
\[\text{for (; Expression ; ExpressionNoIn} \text{opt}) \text{Statement} \]
\[\text{for (ExpressionNoIn} ; ; \text{Expression}\text{opt}) \text{Statement} \]
\[\text{for (ExpressionNoIn} ; \text{Expression} ; \text{ExpressionNoIn} \text{opt}) \text{Statement} \]

which in turn is an abbreviation for:

\[\text{IterationStatement} : \]
\[\text{for (; ;) Statement} \]
\[\text{for (; Expression) Statement} \]
\[\text{for (; Expression ;) Statement} \]
\[\text{for (; Expression ; Expression) Statement} \]
\[\text{for (ExpressionNoIn} ; ; \text{Expression}) \text{Statement} \]
\[\text{for (ExpressionNoIn} ; \text{Expression} ; \text{Expression}) \text{Statement} \]
\[\text{for (ExpressionNoIn} ; \text{Expression ; Expression} \text{opt}) \text{Statement} \]

so the nonterminal \text{IterationStatement} actually has eight alternative right-hand sides.

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal symbols on the following line or lines is an alternative definition. For example, the lexical grammar for ECMAScript contains the production:

\[\text{NonZeroDigit} :: \text{one of} \]
\[1 2 3 4 5 6 7 8 9\]

which is merely a convenient abbreviation for:

\[\text{NonZeroDigit} :: \]
\[1\]
\[2\]
\[3\]
\[4\]
\[5\]
\[6\]
\[7\]
\[8\]
\[9\]
If the phrase "[empty]" appears as the right-hand side of a production, it indicates that the production's right-hand side contains no terminals or nonterminals.

If the phrase "[lookahead \in \text{set}]" appears in the right-hand side of a production, it indicates that the production may not be used if the immediately following input token is a member of the given set. The set can be written as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal, in which case it represents the set of all terminals to which that nonterminal could expand. For example, given the definitions

\[
\text{DecimalDigit} :: \text{one of} \quad 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9
\]
\[
\text{DecimalDigits} :: \\
\text{DecimalDigit} \\
\text{DecimalDigits} \text{ DecimalDigit}
\]

the definition

\[
\text{LookaheadExample} :: \\
\text{n} \ [\text{lookahead} \ \notin \{1, 3, 5, 7, 9\}] \text{ DecimalDigits} \\
\text{DecimalDigit} \ [\text{lookahead} \ \notin \text{DecimalDigit}]
\]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit not followed by another decimal digit.

If the phrase "[no LineTerminator here]" appears in the right-hand side of a production of the syntactic grammar, it indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the input stream at the indicated position. For example, the production:

\[
\text{ThrowStatement} :: \\
\text{throw} \ [\text{no LineTerminator here}] \text{ Expression} ;
\]

indicates that the production may not be used if a LineTerminator occurs in the program between the throw token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input elements without affecting the syntactic acceptability of the program.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the syntactic grammar context. If a phrase of the form "[Lexical goal LexicalGoalSymbol]" appears on the right-hand side of a syntactic production then the next token must be lexically recognized using the indicated goal symbol. In the absence of such a phrase the default lexical goal symbol is used.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase "but not" and then indicating the expansions to be excluded. For example, the production:

\[
\text{Identifier} :: \\
\text{IdentifierName} \text{ but not ReservedWord}
\]

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it would be impractical to list all the alternatives:
SourceCharacter ::= any Unicode code unit

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms available to implement a given feature.

Algorithms may be explicitly parameterized, in which case the names and usage of the parameters must be provided as part of the algorithm's definition. In order to facilitate their use in multiple parts of this specification, some algorithms, called abstract operations, are named and written in parameterised functional form so that they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is associated with a grammar production, it may reference the terminal and non-terminal symbols of the production alternative as if they were parameters of the algorithm. When used in this manner, non-terminal symbols refer to the actual alternative definition that is matched when parsing the program source code.

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every algorithm that is might be applied to that production's left-hand side nonterminal. The implicit simply reapplies the same algorithm name with the same parameters, if any, to the chain production's sole right-hand side nonterminal and then result. For example, assume there is a production

\[
\text{Block} : \{ \text{StatementList} \}
\]

but there is no evaluation algorithm that is explicitly specified for that production. If in some algorithm there is a statement of the form: “Return the result of evaluating Block” it is implicit that the algorithm has an evaluation algorithm of the form:

Runtime Semantics: Evaluation

\[
\text{Block} : \{ \text{StatementList} \}
\]

1. Return the result of evaluating StatementList

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented and may themselves be further divided into indented substeps. Outline numbering conventions are used to identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second level of substeps labelled with lower case roman numerals. If more than three levels are required these rules repeat with the fourth level using numeric labels. For example:

1. Top-level step
 a. Substep.
 b. Substep
 i. Subsubstep.
 ii. Subsubstep.
 1. Subsubsubstep
 a. Subsubsubsubstep

A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the substeps are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is the negation of the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.
A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic requirements and hence need not be checked by an implementation. They are used simply to clarify algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical functions defined later in this clause should always be understood as computing exact mathematical results on mathematical real numbers, which do not include infinities and do not include a negative zero that is distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical operation or function is applied to a floating-point number, it should be understood as being applied to the exact mathematical value represented by that floating-point number; such a floating-point number must be finite, and if it is +0 or −0 then the corresponding mathematical value is simply 0.

The mathematical function \(\text{abs}(x) \) yields the absolute value of \(x \), which is \(-x \) if \(x \) is negative (less than zero) and otherwise is \(x \) itself.

The mathematical function \(\text{sign}(x) \) yields 1 if \(x \) is positive and −1 if \(x \) is negative. The sign function is not used in this standard for cases when \(x \) is zero.

The notation \(x \mod y \) (\(y \) must be finite and nonzero) computes a value \(k \) of the same sign as \(y \) (or zero) such that \(\text{abs}(k) < \text{abs}(y) \) and \(x - k = q \times y \) for some integer \(q \).

The mathematical function \(\text{floor}(x) \) yields the largest integer (closest to positive infinity) that is not larger than \(x \).

NOTE \(\text{floor}(x) = x - (x \mod 1) \).

If an algorithm is defined to “throw an exception”, execution of the algorithm is terminated and no result is returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals with the exception, using terminology such as “If an exception was thrown...". Once such an algorithm step has been encountered the exception is no longer considered to have occurred.

5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of input elements make up a valid ECMAScript program that may be evaluated. In some situations additional rules are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements. Such rules are always associated with a production of a grammar and are called the static semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic Rules are associated with grammar productions and a production that has multiple alternative definitions will typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition for a static semantic rule named Contains which takes an argument named symbol whose value is a terminal or non-terminal of the grammar that includes the associated production. The default definition of Contains is:

1. For each terminal and non-terminal grammar symbol, \(\text{sym} \), in the definition of this production do
 a. If \(\text{sym} \) is the same grammar symbol as \(\text{symbol} \), return true.
 b. If \(\text{sym} \) is a non-terminal, let \(\text{contained} \) be the result of Contains for \(\text{sym} \) with argument \(\text{symbol} \).
 c. If \(\text{contained} \) is true, return true.
2. Return false.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see clause 16) that are associate with specific grammar productions. Evaluation of most early error rules are not explicitly invoked within the algorithms of this specification. A conformed implementation must, prior to the
first evaluation of a Program, validate all of the early error rules of the productions used to parse that Program. If any of the early error rules are violated the Program is invalid and cannot be evaluated.

6 Source Text

Syntax

SourceCharacter ::
 any Unicode character

The ECMAScript code is expressed using Unicode, version 5.1 or later. ECMAScript source text is a sequence of Unicode characters. The phrase “Unicode character” refer to the abstract linguistic or typographical unit represented by a single Unicode scalar value. The actual encodings used to store and interchange ECMAScript source text is not relevant to this specification. Any well defined encoding such as UTF-32 or UTF-16 may be used. Source text might even be externally represented using a non-Unicode character encoding. Regardless of the external source text encoding, a conformed ECMAScript implementation processes the source text as if it was an equivalent sequence of SourceCharacter values. Each source character being an abstract Unicode characters with a corresponding Unicode scalar value. Conformed ECMAScript implementations are not required to perform any normalisation of text, or behave as though they were performing normalisation of text.

The phrase “code point” refers to such a Unicode scalar value. “Unicode character” only refers to entities represented by single Unicode scalar values: the components of a combining character sequence are still individual “Unicode characters,” even though a user might think of the whole sequence as a single character.

In string literals, regular expression literals, quasi literals and identifiers, any Unicode characters may also be expressed as a Unicode escape sequence that explicitly express a code point’s numeric value. Within a comment, such an escape sequence is effectively ignored as part of the comment. Within other contexts, such an escape sequence contextually contributes one Unicode character.

NOTE ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a Java program, if the Unicode escape sequence \u000A, for example, occurs within a single-line comment, it is interpreted as a line terminator (Unicode character 0x000A is line feed) and therefore the next Unicode character is not part of the comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java program, it is likewise interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of \u000A to cause a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript program always contributes a Unicode character to the literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

ECMAScript String values (8.4) are computational sequences of 16-bit integer values called “code units”. ECMAScript language constructs that generate string values from SourceCharacter sequences use UTF-16 encoding to generate the code unit values.

Static Semantics: UTF-16 Encoding

The UTF-16 Encoding of a numeric code point value, cp, is determined as follows:

1. Assert: 0 ≤ cp ≤ 0x10FFFF
2. If cp ≤ 65535, then return cp.
3. Let cu1 be floor((cp – 65536) / 1024). NOTE 55296 is 0xD800.
4. Let cu2 be ((cp – 65536) modulo 1024) + 56320. NOTE 56320 is 0xDC00.
5. Return the code unit sequence consisting of cu1 followed by cu2.

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking the longest possible sequence of characters as the next input element.
There are several situations where the identification of lexical input elements is sensitive to the syntactic grammar context that is consuming the input elements. This requires multiple goal symbols for the lexical grammar. The `InputElementDiv` goal symbol is the default goal symbol and is used in those syntactic grammar contexts where a leading division (/) or division-assignment (/=) operator is permitted. The `InputElementRegExp` goal symbol is used in all syntactic grammar contexts where a `RegularExpressionLiteral` is permitted. The `InputElementQuasiTail` goal is used in syntactic grammar contexts where a `QuasiLiteral` logically continues after a substitution element.

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading `RegularExpressionLiteral` are permitted. This is not affected by semicolon insertion (see 7.9); in examples such as the following:

```javascript
a = b
 /hi/g.exec(c).map(d);
```

where the first non-whitespace, non-comment character after a `LineTerminator` is slash (/) and the syntactic context allows division or division-assignment, no semicolon is inserted at the `LineTerminator`. That is, the above example is interpreted in the same way as:

```javascript
a = b / hi / g.exec(c).map(d);
```

Syntax

`InputElementDiv ::`

WhiteSpace

LineTerminator

Comment

Token

DivPunctuator

RightBracePunctuator

`InputElementRegExp ::`

WhiteSpace

LineTerminator

Comment

Token

RightBracePunctuator

RegularExpressionLiteral

`InputElementQuasiTail ::`

WhiteSpace

LineTerminator

Comment

Token

DivPunctuator

QuasiSubstitutionTail

7.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf” in the Unicode Character Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control characters may be used within comments, and within string literals, quasis, and regular expression literals.

<ZWJ> and <ZWJ> are format-control characters that are used to make necessary distinctions when forming words or phrases in certain languages. In ECMAScript source text, <ZWJ> and <ZWJ> may also be used in an identifier after the first character.
<BOM> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow detection of the text’s encoding and byte order. <BOM> characters intended for this purpose can sometimes also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular expression literals is summarised in Table 1.

<table>
<thead>
<tr>
<th>Code Point</th>
<th>Name</th>
<th>Formal Name</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+200C</td>
<td>Zero width non-joiner</td>
<td><ZWNJ></td>
<td>IdentifierPart</td>
</tr>
<tr>
<td>U+200D</td>
<td>Zero width joiner</td>
<td><ZWJ></td>
<td>IdentifierPart</td>
</tr>
<tr>
<td>U+FEFF</td>
<td>Byte Order Mark</td>
<td><BOM></td>
<td>Whitespace</td>
</tr>
</tbody>
</table>

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical units) from each other, but are otherwise insignificant. White space characters may occur between any two tokens and at the start or end of input. White space characters may also occur within a StringLiteral, a RegularExpressionLiteral, a Quasi, or a QuasiSubstitutionTail (where they are considered significant characters forming part of the literal value) or within a Comment, but cannot appear within any other kind of token.

The ECMAScript white space characters are listed in Table 2.

<table>
<thead>
<tr>
<th>Code Point</th>
<th>Name</th>
<th>Formal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+0009</td>
<td>Tab</td>
<td><TAB></td>
</tr>
<tr>
<td>U+000B</td>
<td>Vertical Tab</td>
<td><VT></td>
</tr>
<tr>
<td>U+000C</td>
<td>Form Feed</td>
<td><FF></td>
</tr>
<tr>
<td>U+0020</td>
<td>Space</td>
<td><SP></td>
</tr>
<tr>
<td>U+00A0</td>
<td>No-break space</td>
<td><NBSP></td>
</tr>
<tr>
<td>U+FEFF</td>
<td>Byte Order Mark</td>
<td><BOM></td>
</tr>
<tr>
<td>Other category “Zs”</td>
<td>Any other Unicode “space separator”</td>
<td><USP></td>
</tr>
</tbody>
</table>

ECMAScript implementations must recognise all of the white space characters defined in Unicode 5.1. Later editions of the Unicode Standard may define other white space characters. ECMAScript implementations may recognise white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace ::=
<TAB>
<VT>
<FF>
<SP>
<NBSP>
<BOM>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). A line terminator cannot occur within any token except a `StringLiteral`, `Quasi`, or `QuasiSubstitutionTail`. Line terminators may only occur within a `StringLiteral` token as part of a `LineContinuation`.

A line terminator can occur within a `MultiLineComment` (7.4) but cannot occur within a `SingleLineComment`.

Line terminators are included in the set of white space characters that are matched by the `\s` class in regular expressions.

The ECMAScript line terminator characters are listed in Table 3.

<table>
<thead>
<tr>
<th>Code Point</th>
<th>Name</th>
<th>Formal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+000A</td>
<td>Line Feed</td>
<td><LF></td>
</tr>
<tr>
<td>U+000D</td>
<td>Carriage Return</td>
<td><CR></td>
</tr>
<tr>
<td>U+2028</td>
<td>Line separator</td>
<td><LS></td>
</tr>
<tr>
<td>U+2029</td>
<td>Paragraph separator</td>
<td><PS></td>
</tr>
</tbody>
</table>

Only the Unicode characters in Table 3 are treated as line terminators. Other new line or line breaking Unicode characters are treated as white space but not as line terminators. The sequence `<CR><LF>` is commonly used as a line terminator. It should be considered a single `SourceCharacter` for the purpose of reporting line numbers.

Syntax

```plaintext
LineTerminator ::=  
  <LF>  
  <CR>  
  <LS>  
  <PS>

LineTerminatorSequence ::=  
  <LF>  
  <CR> [lookahead ≠ <LF>]  
  <LS>  
  <PS>  
  <CR> <LF>
```

7.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode character except a `LineTerminator` character, and because of the general rule that a token is always as long as possible, a single-line comment always consists of all characters from the `//` marker to the end of the line. However, the `LineTerminator` at the end of the line is not considered to be part of the single-line comment; it is recognised separately by the lexical grammar and becomes part of the stream of input elements for the syntactic grammar. This point is very important, because it implies that the presence or absence of single-line comments does not affect the process of automatic semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a `MultiLineComment` contains a line terminator character, then the entire comment is considered to be a `LineTerminator` for purposes of parsing by the syntactic grammar.

Syntax

```plaintext
Comment ::=  
  MultiLineComment  
  SingleLineComment
```
MultiLineComment ::
 /* MultiLineCommentChars_opt */

MultiLineCommentChars ::
 MultiLineNotAsteriskChar MultiLineCommentChars_opt
 PostAsteriskCommentChars_opt

PostAsteriskCommentChars ::
 MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars_opt
 PostAsteriskCommentChars_opt

MultiLineNotAsteriskChar ::
 SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
 SourceCharacter but not one of / or *

SingleLineComment ::
 // SingleLineCommentChars_opt

SingleLineCommentChars ::
 SingleLineCommentChar SingleLineCommentChars_opt

SingleLineCommentChar ::
 SourceCharacter but not LineTerminator

7.5 Tokens

Syntax

Token ::
 IdentifierName
 Punctuator
 NumericLiteral
 StringLiteral
 Quasi

NOTE The DivPunctuator, RegularExpressionLiteral and QuasiSubstitutionTail productions define tokens, but are not included in the Token production.

7.6 Identifier Names and Identifiers

IdentifierName, Identifier, and ReservedWord are tokens that are interpreted according to the DefaultIdentifier Syntax given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications. ReservedWord is is an enumerated subset of IdentifierName and Identifier is an IdentifierName that is not a ReservedWord (see 7.6.1). The Unicode identifier grammar is based on character properties specified by the Unicode Standard. The Unicode characters in the specified categories in version 5.1.0 of the Unicode standard must be treated as in those categories by all conforming ECMAScript implementations.

NOTE This standard specifies specific character additions: The dollar sign (U+0024) and the underscore (U+005f) are permitted anywhere in an IdentifierName, and the characters zero width non-joiner (U+200C) and zero width joiner (U+200D) are permitted anywhere after the first character of an IdentifierName.

Unicode escape sequences are permitted in an IdentifierName, where they contribute a single Unicode character to the IdentifierName. The code point of the contributed character is expressed by the HexDigits of the UnicodeEscapeSequence (see 7.8.4). The \ preceding the UnicodeEscapeSequence and the \ and { } characters, if they appear, do not contribute characters to the IdentifierName. A UnicodeEscapeSequence cannot be used to put a character into an IdentifierName that would otherwise be illegal. In other words, if a \ UnicodeEscapeSequence sequence were replaced by the Unicode character it contributes, the result must
still be a valid IdentifierName that has the exact same sequence of characters as the original IdentifierName. All interpretations of IdentifierName within this specification are based upon their actual characters regardless of whether or not an escape sequence was used to contribute any particular characters.

Two IdentifierName that are canonically equivalent according to the Unicode standard are not equal unless they are represented by the exact same sequence of code units (in other words, conforming ECMAScript implementations are only required to do bitwise comparison on IdentifierName values).

ECMAScript implementations may recognise identifier characters defined in later editions of the Unicode Standard. If portability is a concern, programmers should only employ identifier characters defined in Unicode 3.0.

Syntax

\[
\text{Identifier} :: \\
\quad \text{IdentifierName} \quad \text{but not} \quad \text{ReservedWord}
\]

\[
\text{IdentifierName} :: \\
\quad \text{IdentifierStart} \\
\quad \text{IdentifierName} \quad \text{IdentifierPart}
\]

\[
\text{IdentifierStart} :: \\
\quad \text{UnicodeIDStart} \\
\quad \text{	extbackslash} \quad \text{UnicodeEscapeSequence}
\]

\[
\text{IdentifierPart} :: \\
\quad \text{IdentifierIDContinue} \\
\quad \text{<ZWNJ>} \\
\quad \text{<ZWJ>}
\]

\[
\text{UnicodeIDStart} :: \\
\quad \text{any Unicode character with the Unicode property “ID_Start”}
\]

\[
\text{UnicodeIDStart} :: \\
\quad \text{any Unicode character with the Unicode property “ID_Continue”}
\]

The definitions of the nonterminal UnicodeEscapeSequence is given in 7.8.4

Static Semantics: StringValue

\[
\text{Identifier} :: \text{IdentifierName but not ReservedWord}
\]

1. Return the String Value of IdentifierName.

\[
\text{IdentifierName} :: \\
\quad \text{IdentifierStart} \\
\quad \text{IdentifierName} \quad \text{IdentifierPart}
\]

1. Return the String value consisting of the sequence of code units corresponding to IdentifierName. In determining the sequence any occurrences of \textbackslash UnicodeEscapeSequence are first replaced with the code point represented by the UnicodeEscapeSequence and then the code points of the entire IdentifierName are converted to code units by UTF-16 Encoding each code point.

7.6.1 Reserved Words

A reserved word is an IdentifierName that cannot be used as an Identifier.
Syntax

ReservedWord ::
 Keyword
 FutureReservedWord
 NullLiteral
 BooleanLiteral

The ReservedWord definitions are specified as literal sequences of Unicode characters. However, any Unicode character in a ReservedWord can also be expressed by a \ UnicodeEscapeSequence that expresses that same Unicode character’s code point. Use of such escape sequences does not change the meaning of the ReservedWord.

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiers in ECMAScript programs.

Syntax

Keyword :: one of
 break delete import this
 case do in throw
 catch else instanceof try
 class export let typeof
 continue finally new var
 const for return void
 debugger function super while
 default if switch with

7.6.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the possibility of future adoption of those extensions.

Syntax

FutureReservedWord :: one of
 enum extends

The following tokens are also considered to be FutureReservedWords when they occur within strict mode code (see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the occurrence of a FutureReservedWord would produce an error must also produce an equivalent error:

implements private public yield
interface package protected static
7.7 Punctuators

Syntax

Punctuator :: one of

\{ () [] \\
. ; , < > <=
>= == != === !==
+ - * \% +\+ --
<< >> >>> \& | ^
! ~ && || ? :
== += -= *= %= <<=
>>= >>>= \&= |= ^=

DivPunctuator :: one of

/ /=

RightBracePunctuator ::

}

7.8 Literals

7.8.1 Null Literals

Syntax

NullLiteral ::

null

7.8.3 Numeric Literals

Syntax

NumericLiteral ::

DecimalLiteral
BinaryIntegerLiteral
OctalIntegerLiteral
HexIntegerLiteral

DecimalLiteral ::

DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt
. DecimalDigits ExponentPartopt
DecimalIntegerLiteral ExponentPartopt

DecimalIntegerLiteral ::

0
NonZeroDigit DecimalDigitsopt

DecimalDigits ::

DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of

0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of

1 2 3 4 5 6 7 8 9
ExponentPart ::
 ExponentIndicator SignedInteger

ExponentIndicator :: one of
 e E

SignedInteger ::
 DecimalDigits
 + DecimalDigits
 - DecimalDigits

BinaryIntegerLiteral ::
 0b BinaryDigit
 0B BinaryDigit
 BinaryIntegerLiteral BinaryDigit

BinaryDigit :: one of
 0 1

OctalIntegerLiteral ::
 0o OctalDigit
 0O OctalDigit
 OctalIntegerLiteral OctalDigit

OctalDigit :: one of
 0 1 2 3 4 5 6 7

HexIntegerLiteral ::
 0x HexDigits
 0X HexDigits

HexDigits ::
 HexDigit
 HexDigits HexDigit

HexDigit :: one of
 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

The Source Character immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.

NOTE For example:
 3 in
is an error and not the two input elements 3 and in.

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of NumericLiteral to include OctalIntegerLiteral as described in B.1.1.

Static Semantics: MV’s
A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as described below.

- The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.
- The MV of NumericLiteral :: BinaryIntegerLiteral is the MV of BinaryIntegerLiteral.
- The MV of NumericLiteral :: OctalIntegerLiteral is the MV of OctalIntegerLiteral.
- The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.
- The MV of DecimalLiteral :: DecimalIntegerLiteral . is the MV of DecimalIntegerLiteral.
• The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits is the MV of DecimalIntegerLiteral plus (the MV of DecimalDigits times 10^n), where n is the number of characters in DecimalDigits.

• The MV of DecimalLiteral :: DecimalIntegerLiteral . ExponentPart is the MV of DecimalIntegerLiteral times 10^e, where e is the MV of ExponentPart.

• The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits ExponentPart is (the MV of DecimalIntegerLiteral plus (the MV of DecimalDigits times 10^n)) times 10^e, where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

• The MV of DecimalLiteral :: . DecimalDigits is the MV of DecimalDigits times 10^n, where n is the number of characters in DecimalDigits.

• The MV of DecimalLiteral :: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10^n, where n is the number of characters in DecimalDigits.

• The MV of DecimalLiteral :: DecimalIntegerLiteral is the MV of DecimalIntegerLiteral times 10^n, where e is the MV of ExponentPart.

• The MV of DecimalIntegerLiteral :: 0 is 0.

• The MV of DecimalIntegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

• The MV of DecimalIntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10^n) plus the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

• The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

• The MV of DecimalDigits :: DecimalDigits ExponentPart is the MV of DecimalIntegerLiteral times 10^n plus the MV of DecimalDigit.

• The MV of ExponentPart :: ExponentIndicator SignedInteger is the MV of SignedInteger.

• The MV of SignedInteger :: DecimalDigits is the MV of DecimalDigits.

• The MV of SignedInteger :: + DecimalDigits is the MV of DecimalDigits.

• The MV of SignedInteger :: − DecimalDigits is the negative of the MV of DecimalDigits.

• The MV of DecimalDigits :: 0 or of HexDigit :: 0 or of OctalDigit :: 0 or of BinaryDigit :: 0 is 0.

• The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or of OctalDigit :: 1 or of BinaryDigit :: 1 is 1.

• The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 or of OctalDigit :: 2 is 2.

• The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.

• The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.

• The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit :: 5 is 5.

• The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.

• The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit :: 7 is 7.

• The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

• The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is 9.

• The MV of HexDigit :: a or of HexDigit :: A is 10.

• The MV of HexDigit :: b or of HexDigit :: B is 11.

• The MV of HexDigit :: c or of HexDigit :: C is 12.

• The MV of HexDigit :: d or of HexDigit :: D is 13.

• The MV of HexDigit :: e or of HexDigit :: E is 14.

• The MV of HexDigit :: f or of HexDigit :: F is 15.

• The MV of BinaryIntegerLiteral :: 0b BinaryDigit is the MV of BinaryDigit.

• The MV of BinaryIntegerLiteral :: 0B BinaryDigit is the MV of BinaryDigit.

• The MV of BinaryIntegerLiteral :: BinaryIntegerLiteral BinaryDigit is (the MV of BinaryIntegerLiteral times 2) plus the MV of BinaryDigit.

• The MV of OctalIntegerLiteral :: 0o OctalDigit is the MV of OctalDigit.

• The MV of OctalIntegerLiteral :: 00 OctalDigit is the MV of OctalDigit.

• The MV of OctalIntegerLiteral :: OctalIntegerLiteral OctalDigit is (the MV of OctalIntegerLiteral times 8) plus the MV of OctalDigit.

• The MV of HexIntegerLiteral :: 0x HexDigits is the MV of HexDigits.

• The MV of HexIntegerLiteral :: 0X HexDigits is the MV of HexDigits.
• The MV of HexDigits :: HexDigit is the MV of HexDigit.
• The MV of HexDigits :: HexDigits HexDigit is (the MV of HexDigits times 16) plus the MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type. If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the MV (as specified in 8.5), unless the literal is a DecimalLiteral and the literal has more than 20 significant digits, in which case the Number value may be either the Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th significant digit position. A digit is significant if it is not part of an ExponentPart and
• it is not 0; or
• there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

7.8.4 String Literals

NOTE A string literal is zero or more Unicode characters enclosed in single or double quotes. Unicode characters may also be represented by an escape sequence. All characters may appear literally in a string literal except for the closing quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character may appear in the form of an escape sequence. String literals evaluate to ECAMScript String values. When generating these string values Unicode characters belonging to Basic Multilingual Plane are encoded as a single code unit element of the string. All other Unicode characters are encoded using UTF-16 as two code unit elements of the string.

Syntax

StringLiteral ::
 " DoubleStringCharactersopt "
 ' SingleStringCharactersopt '

DoubleStringCharacters ::
 DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::
 SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::
 SourceCharacter but not one of " \ or LineTerminator
 \ EscapeSequence
 LineContinuation

SingleStringCharacter ::
 SourceCharacter but not one of ' \ or LineTerminator
 \ EscapeSequence
 LineContinuation

LineContinuation ::
 \ LineTerminatorSequence

EscapeSequence ::
 CharacterEscapeSequence
 0 [lookahead ≠ DecimalDigit]
 HexEscapeSequence
 UnicodeEscapeSequence

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of EscapeSequence to include OctalEscapeSequence as described in B.1.2.

CharacterEscapeSequence ::
 SingleEscapeCharacter
 NonEscapeCharacter
SingleEscapeCharacter :: one of
 ' " \ b f n r t v

NonEscapeCharacter ::
 SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
 SingleEscapeCharacter
 DecimalDigit
 u

HexEscapeSequence ::
 x HexDigit HexDigit

UnicodeEscapeSequence ::
 u HexDigit HexDigit HexDigit HexDigit
 u{ HexDigits }

The definition of the nonterminal HexDigit is given in 7.8.3. SourceCharacter is defined in clause 6.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuation to produce the empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string literal is to use an escape sequence such as \n or \u000A.

Static Semantics

Static Semantics: Early Errors

UnicodeEscapeSequence :: u{ HexDigits }
 • It is a Syntax Error if the MV of HexDigits > 1114111.

Static Semantics: SV’s and CV’s

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of code unit values (CV) contributed by the various parts of the string literal. As part of this process, some Unicode characters within the string literal are interpreted as having a mathematical value (MV), as described below or in 7.8.3.

• The SV of StringLiteral :: "" is the empty code unit sequence.
• The SV of StringLiteral :: ' ' is the empty code unit sequence.
• The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.
• The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.
• The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one or two code units that is the CV of DoubleStringCharacter.
• The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of one or two code units that is the CV of DoubleStringCharacter followed by all the code units in the SV of DoubleStringCharacters in order.
• The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one or two code units that is the CV of SingleStringCharacter.
• The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of one or two code units that is the CV of SingleStringCharacter followed by all the code units in the SV of SingleStringCharacters in order.
• The CV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.
• The CV of DoubleStringCharacter :: SourceCharacter but not one of " or \ or LineTerminator is the UTF-16 Encoding (clause 6) of the code point value of SourceCharacter.
• The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.
The CV of DoubleStringCharacter :: LineContinuation is the empty character sequence.

The CV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the UTF-16 Encoding (clause 6) of the code point value of SourceCharacter.

The CV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

The CV of SingleStringCharacter :: LineContinuation is the empty character sequence.

The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

The CV of EscapeSequence :: 0 [lookahead # DecimalDigit] is the code unit value 0.

The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit value is determined by the SingleEscapeCharacter according to Table 4:

Table 4 — String Single Character Escape Sequences

<table>
<thead>
<tr>
<th>Escape Sequence</th>
<th>Code Unit Value</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>\b</td>
<td>0x8</td>
<td>backspace</td>
<td><BS></td>
</tr>
<tr>
<td>\t</td>
<td>0x9</td>
<td>horizontal tab</td>
<td><HT></td>
</tr>
<tr>
<td>\n</td>
<td>0xA</td>
<td>line feed (new line)</td>
<td><LF></td>
</tr>
<tr>
<td>\v</td>
<td>0xB</td>
<td>vertical tab</td>
<td><VT></td>
</tr>
<tr>
<td>\f</td>
<td>0xC</td>
<td>form feed</td>
<td><FF></td>
</tr>
<tr>
<td>\r</td>
<td>0xD</td>
<td>carriage return</td>
<td><CR></td>
</tr>
<tr>
<td>"</td>
<td>0x22</td>
<td>double quote</td>
<td>"</td>
</tr>
<tr>
<td>\'</td>
<td>0x27</td>
<td>single quote</td>
<td>'</td>
</tr>
<tr>
<td>\</td>
<td>0x5C</td>
<td>backslash</td>
<td>\</td>
</tr>
</tbody>
</table>

The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

The CV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the UTF-16 Encoding (clause 6) of the code point value of SourceCharacter.

The CV of HexEscapeSequence :: x HexDigit HexDigit is the code unit value that is (16 times the MV of the first HexDigit) plus the MV of the second HexDigit.

The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the code unit value that is (4096 times the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit.

The CV of UnicodeEscapeSequence :: u{ HexDigits } is the UTF-16 Encoding (clause 6) of the MV of HexDigits.

7.8.5 Regular Expression Literals

NOTE A regular expression literal is an input element that is converted to a RegExp object (see 15.10) each time the literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that never compare as === to each other even if the two literals’ contents are identical. A RegExp object may also be created at runtime by new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element scanner to find the end of the regular expression literal. The source code comprising the RegularExpressionBody and the RegularExpressionFlags are subsequently parsed using the more stringent ECMAScript Regular Expression grammar (15.10.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 15.10.1, but it must not extend the RegularExpressionBody and RegularExpressionFlags productions defined below or the productions used by these productions.
Syntax

RegularExpressionLiteral ::
 / RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
 RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
 [empty]
 RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
 RegularExpressionNonTerminator but not one of * or \ or / or []
 RegularExpressionBackslashSequence
 RegularExpressionClass

RegularExpressionChar ::
 RegularExpressionNonTerminator but not one of \ or / or []
 RegularExpressionBackslashSequence
 RegularExpressionClass

RegularExpressionBackslashSequence ::
 \ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
 SourceCharacter but not LineTerminator

RegularExpressionClass ::
 [RegularExpressionClassChars]

RegularExpressionClassChars ::
 [empty]
 RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
 RegularExpressionNonTerminator but not one of] or \ or]
 RegularExpressionBackslashSequence

RegularExpressionFlags ::
 [empty]
 RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the characters // start a single-line comment. To specify an empty regular expression, use: /(?:)/.

Static Semantics: BodyText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source code that was recognized as RegularExpressionBody.

Static Semantics: FlagText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source code that was recognized as RegularExpressionFlags.
7.8.6 Quasi Literal Lexical Components

7.9 Syntax

Quasi ::
 FullQuasi
 QuasiHead

FullQuasi ::
 ` QuasiCharactersopt '

QuasiHead ::
 ` QuasiCharactersopt $ {

QuasiSubstitutionTail ::
 QuasiMiddle
 QuasiTail

QuasiMiddle ::
 } QuasiCharactersopt $ {

QuasiTail ::
 } QuasiCharactersopt `

QuasiCharacters ::
 QuasiCharacter QuasiCharactersopt

QuasiCharacter ::
 SourceCharacter but not one of ` or \ or $
 $ [lookahead e {]
 \ EscapeSequence
 LineContinuation

Static Semantics: QV's and RQV's

A quasi literal component is interpreted as a sequence of Unicode characters. The Quasi Value (QV) of a literal component is described in terms of code unit values (CV, 7.8.4) contributed by the various parts of the quasi literal component. As part of this process, some Unicode characters within the quasi component are interpreted as having a mathematical value (MV, 7.8.3). In determining a QV, escape sequences are replaced by the code unit of the Unicode characters represented by the escape sequence. The Quasi Raw Value (QRV) is similar to a Quasi Value with the difference that in QRVs escape sequences are interpreted literally.

- The QV and QRV of FullQuasi :: ` ` is the empty code unit sequence.
- The QV and QRV of QuasiHead :: ` $ { is the empty code unit sequence.
- The QV and QRV of QuasiMiddle :: } $ { is the empty code unit sequence.
- The QV of FullQuasi :: ` QuasiCharacters ` is the QV of QuasiCharacters.
- The QV of QuasiHead :: ` QuasiCharacters $ { is the QV of QuasiCharacters.
- The QV of QuasiMiddle :: } QuasiCharacters $ { is the QV of QuasiCharacters.
- The QV of QuasiTail :: } QuasiCharacters ` is the QV of QuasiCharacters.
- The QV of QuasiCharacters :: QuasiCharacter is the QV of QuasiCharacter.
- The QV of QuasiCharacters :: QuasiCharacter QuasiCharacters is a sequence consisting of the code units in the QV of QuasiCharacter followed by all the code units in the QV of QuasiCharacters in order.
- The QV of QuasiCharacter :: SourceCharacter but not one of ` or \ or $ is the UTF-16 Encoding (clause 6) of the code point value of SourceCharacter.
- The QV of QuasiCharacter :: $ [lookahead e {] is the code unit value 0x0024.
- The QV of QuasiCharacter :: \ EscapeSequence is the QV of EscapeSequence.
• The QV of QuasiCharacter :: LineContinuation is the QV of LineContinuation.
• The QV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

• The QRV of FullQuasi :: `QuasiCharacters ` is the QRV of QuasiCharacters.
• The QRV of QuasiHead :: `QuasiCharacters $ is the QRV of QuasiCharacters.
• The QRV of QuasiMiddle :: } QuasiCharacters $ is the QRV of QuasiCharacters.
• The QRV of QuasiTail ::) QuasiCharacters ` is the QRV of QuasiCharacters.
• The QRV of QuasiCharacters:: QuasiCharacter $ is the QRV of QuasiCharacter.
• The QRV of QuasiCharacters:: QuasiCharacter QuasiCharacters is a sequence consisting of the code units in the QRV of QuasiCharacter followed by all the code units in the QRV of QuasiCharacters, in order.
• The QRV of QuasiCharacter :: SourceCharacter but not one of ` or \ or $ is the UTF-16 Encoding (clause 6) of the code point value of SourceCharacter.
• The QRV of QuasiCharacter :: $ \lookahead \ # \ } is the code unit value 0x0024.
• The QRV of QuasiCharacter :: \ EscapeSequence is the sequence consisting of the code unit value 0x005C followed by the code units of QRV of EscapeSequence.
• The QRV of QuasiCharacter:: LineContinuation is the QRV of LineContinuation.
• The QRV of EscapeSequence :: CharacterEscapeSequence is the QRV of the CharacterEscapeSequence.
• The QRV of EscapeSequence :: 0 \lookahead \ # DecimalDigit is the code unit value 0x0030.
• The QRV of EscapeSequence :: HexEscapeSequence is the QRV of the HexEscapeSequence.
• The QRV of EscapeSequence :: UnicodeEscapeSequence is the QRV of the UnicodeEscapeSequence.
• The QRV of CharacterEscapeSequence :: SingleEscapeCharacter is the QRV of the SingleEscapeCharacter.
• The QRV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.
• The QRV of SingleEscapeCharacter :: one \ b f n r t v is the CV of the SourceCharacter that is that single character.
• The QRV of HexEscapeSequence :: x HexDigit HexDigit is the sequence consisting of the code units consisting of code unit value 0x078 followed by QRV of the first HexDigit followed by the QRV of the second HexDigit.
• The QRV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the sequence consisting of code unit value 0x0075 followed by QRV of the first HexDigit followed by the QRV of the second HexDigit followed by the QRV of the third HexDigit followed by the QRV of the fourth HexDigit.
• The QRV of UnicodeEscapeSequence :: u(HexDigits) is the sequence consisting of the code units consisting of code unit value 0x0075 followed by code unit value 0x007B followed by QRV of HexDigit followed by code unit value 0x007D.
• The QRV of HexDigits :: HexDigit is the QRV of HexDigit.
• The QRV of HexDigits :: HexDigits HexDigit is the sequence consisting of QRV of HexDigits followed by QRV of HexDigit.
• The QRV of a HexDigit is CV of the SourceCharacter that is that HexDigit.
• The QRV of LineContinuation :: \ LineTerminatorSequence is the sequence consisting of the code unit value 0x005C followed by the code units of QRV of LineTerminatorSequence.
• The QRV of LineTerminatorSequence :: <LF> is the code unit value 0x000A.
• The QRV of LineTerminatorSequence :: <CR> \lookahead \ # <LF> is the code unit value 0x000D.
• The QRV of LineTerminatorSequence :: <LS> is the code unit value 0x2028.
• The QRV of LineTerminatorSequence :: <PS> is the code unit value 0x2029.
• The QRV of LineTerminatorSequence :: <CR><LF> is the sequence consisting of the code unit value 0x000D followed by the code unit value 0x000A.

NOTE QV excludes the code units of LineContinuation while QRV includes them.

7.8.2 Boolean Literals

Syntax

BooleanLiteral ::

true
false
7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, **do-while** statement, **continue** statement, **break** statement, **return** statement, and **throw** statement) must be terminated with semicolons. Such semicolons may always appear explicitly in the source text. For convenience, however, such semicolons may be omitted from the source text in certain situations. These situations are described by saying that semicolons are automatically inserted into the source code token stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion

There are three basic rules of semicolon insertion:

1. When, as the program is parsed from left to right, a token (called the *offending token*) is encountered that is not allowed by any production of the grammar, then a semicolon is automatically inserted before the offending token if one or more of the following conditions is true:
 - The offending token is separated from the previous token by at least one **LineTerminator**.
 - The offending token is `}`.

2. When, as the program is parsed from left to right, the end of the input stream of tokens is encountered and the parser is unable to parse the input token stream as a single complete ECMAScript **Program**, then a semicolon is automatically inserted at the end of the input stream.

3. When, as the program is parsed from left to right, a token is encountered that is allowed by some production of the grammar, but the production is a **restricted production** and the token would be the first token for a terminal or nonterminal immediately following the annotation “*[no LineTerminator here]*” within the restricted production (and therefore such a token is called a restricted token), and the restricted token is separated from the previous token by at least one **LineTerminator**, then a semicolon is automatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become one of the two semicolons in the header of a **for** statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

- **PostfixExpression**:
 - `LeftHandSideExpression [no LineTerminator here] ++`
 - `LeftHandSideExpression [no LineTerminator here] --`

- **ContinueStatement**:
 - `continue [no LineTerminator here] Identifier ;`

- **BreakStatement**:
 - `break [no LineTerminator here] Identifier ;`

- **ReturnStatement**:
 - `return [no LineTerminator here] Expression ;`

- **ThrowStatement**:
 - `throw [no LineTerminator here] Expression ;`

The practical effect of these restricted productions is as follows:

When a `++` or `--` token is encountered where the parser would treat it as a postfix operator, and at least one **LineTerminator** occurred between the preceding token and the `++` or `--` token, then a semicolon is automatically inserted before the `++` or `--` token.

When a `continue`, `break`, `return`, or `throw` token is encountered and a **LineTerminator** is encountered before the next token, a semicolon is automatically inserted after the `continue`, `break`, `return`, or `throw` token.
The resulting practical advice to ECMAScript programmers is:

A postfix `++` or `--` operator should appear on the same line as its operand.

An Expression in a `return` or `throw` statement should start on the same line as the `return` or `throw` token.

An Identifier in a `break` or `continue` statement should be on the same line as the `break` or `continue` token.

7.9.2 Examples of Automatic Semicolon Insertion

The source
```
{ 1 2 } 3
```
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In contrast, the source
```
{ 1 
  2 } 3
```
is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the following:
```
{ 1 
   ;2 ;} 3;
```
which is a valid ECMAScript sentence.

The source
```
for (a; b
)
```
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the semicolon is needed for the header of a `for` statement. Automatic semicolon insertion never inserts one of the two semicolons in the header of a `for` statement.

The source
```
return
a + b
```
is transformed by automatic semicolon insertion into the following:
```
return;
  a + b;
```
NOTE The expression `a + b` is not treated as a value to be returned by the `return` statement, because a `LineTerminator` separates it from the token `return`.

The source
```
a = b 
++c
```
is transformed by automatic semicolon insertion into the following:
```
a = b;
++c;
```
NOTE The token `++` is not treated as a postfix operator applying to the variable `b`, because a `LineTerminator` occurs between `b` and `++`.

The source
```
if (a > b) 
else c = d
```
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the `else` token, even though no production of the grammar applies at that point, because an automatically inserted semicolon would then be parsed as an empty statement.
The source

\[a = b + c \\
(d + e).print() \]

is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the second line can be interpreted as an argument list for a function call:

\[a = b + c(d + e).print() \]

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on automatic semicolon insertion.

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language types and specification types.

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean, String, Number, and Object.

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of ECMAScript language constructs and ECMAScript language types. The specification types are Reference, List, Completion, Property Descriptor, Property Identifier, Lexical Environment, and Environment Record. Specification type values are specification artefacts that do not necessarily correspond to any specific entity within an ECMAScript implementation. Specification type values may be used to describe intermediate results of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of ECMAScript language variables.

Within this specification, the notation "Type(x)" is used as shorthand for "the type of x" where "type" refers to the ECMAScript language and specification types defined in this clause.

8.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value has the value undefined.

8.2 The Null Type

The Null type has exactly one value, called null.

8.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

8.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values ("elements"). The String type is generally used to represent textual data in a running ECMAScript program, in which case each element in the String is treated as a Unicode code unit value. Each element is regarded as occupying a position within the sequence. These positions are indexed with nonnegative integers. The first element (if any) is at position 0, the next element (if any) at position 1, and so on. The length of a String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16 code unit. However, ECMAScript does not place any restrictions or requirements on the sequence of code units in a String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences. Operations that do
not interpret String contents treat them as sequences of undifferentiated 16-bit unsigned integers. No operations ensure that Strings are in a normalized form. Only operations that are explicitly specified to be language or locale sensitive produce language-sensitive results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as possible. If ECMAScript source code is in Normalised Form C, string literals are guaranteed to also be normalised, as long as they do not contain any Unicode escape sequences.

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the interpretation is:
- A code unit in the range 0 to 0xD7FF or in the range 0xE000 to 0xFFFF is interpreted as a code point with the same value.
- A sequence of two code units, where the first code unit c1 is in the range 0xD800 to 0xDBFF and the second code unit c2 is in the range 0xDC00 to 0xDFFF, is a surrogate pair and is interpreted as a code point with the value (c1 - 0xD800) × 0x400 + (c2 - 0xDC00) + 0x10000.
- A code unit that is in the range 0xD800 to 0xDFFF, but is not part of a surrogate pair, is interpreted as a code point with the same value.

8.5 The Number Type

The Number type has exactly 18437736874454810627 (that is, $2^{64} - 2^{53} + 3$) values, representing the double-precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic, except that the 9007199254740990 (that is, $2^{53} - 2$) distinct “Not-a-Number” values of the IEEE Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the program expression NaN.) In some implementations, external code might be able to detect a difference between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code, all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values are also referred to for expository purposes by the symbols $+\infty$ and $-\infty$, respectively. (Note that these two infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -Infinity.)

The other 18437736874454810624 (that is, $2^{64} - 2^{53}$) values are called the finite numbers. Half of these are positive numbers and half are negative numbers; for every finite positive Number value there is a corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number values are produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, $2^{64} - 2^{53} - 2$) finite nonzero values are of two kinds:

1842872967520000632 (that is, $2^{64} - 2^{54}$) of them are normalised, having the form

$$ s \times m \times 2^e $$

where s is +1 or −1, m is a positive integer less than 2^{53} but not less than 2^{52}, and e is an integer ranging from −1024 to 971, inclusive.

The remaining 9007199254740990 (that is, $2^{53} - 2$) values are denormalised, having the form

$$ s \times m \times 2^e $$

where s is +1 or −1, m is a positive integer less than 2^{52}, and e is −1074.

Note that all the positive and negative integers whose magnitude is no greater than 2^{53} are representable in the Number type (indeed, the integer 0 has two representations, +0 and −0).
A finite number has an *odd significand* if it is nonzero and the integer m used to express it (in one of the two forms shown above) is odd. Otherwise, it has an *even significand*.

In this specification, the phrase “the Number value for x” where x represents an exact nonzero real mathematical quantity (which might even be an irrational number such as π) means a Number value chosen in the following manner. Consider the set of all finite values of the Number type, with -0 removed and with two additional values added to it that are not representable in the Number type, namely 2^{1024} (which is $+1 \times 2^{53} \times 2^{971}$) and -2^{1024} (which is $-1 \times 2^{53} \times 2^{971}$). Choose the member of this set that is closest in value to x. If two values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two extra values 2^{1024} and -2^{1024} are considered to have even significands. Finally, if 2^{1024} was chosen, replace it with $+\infty$; if -2^{1024} was chosen, replace it with $-\infty$; if $+0$ was chosen, replace it with -0 if and only if x is less than zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure corresponds exactly to the behaviour of the IEEE 754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range -2^{31} through $2^{31}-1$, inclusive, or in the range 0 through $2^{32}-1$, inclusive. These operators accept any value of the Number type but first convert each such value to one of 2^{32} integer values. See the descriptions of the ToInt32 and ToUint32 operators in 9.5 and 9.6, respectively.

8.6 The Object Type

An Object is a collection of properties. Each property is either a named data property, a named accessor property, or an internal property:

- A **named data property** associates a name with an ECMAScript language value and a set of Boolean attributes.

- A **named accessor property** associates a name with one or two accessor functions, and a set of Boolean attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is associated with the property.

- An **internal property** has no name and is not directly accessible via ECMAScript language operators. Internal properties exist purely for specification purposes.

There are two kinds of access for named (non-internal) properties: *get* and *put*, corresponding to retrieval and assignment, respectively.

8.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of named properties. A named data property associates a name with the attributes listed in Table 5.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Value Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[Value]]</td>
<td>Any ECMAScript language type</td>
<td>The value retrieved by reading the property.</td>
</tr>
<tr>
<td>[[Writable]]</td>
<td>Boolean</td>
<td>If false, attempts by ECMAScript code to change the property’s [[Value]] attribute using [[Put]] will not succeed.</td>
</tr>
<tr>
<td>[[Enumerable]]</td>
<td>Boolean</td>
<td>If true, the property will be enumerated by a for-in enumeration (see 12.6.4). Otherwise, the property is said to be non-enumerable.</td>
</tr>
<tr>
<td>[[Configurable]]</td>
<td>Boolean</td>
<td>If false, attempts to delete the property, change the property to be an accessor property, or change its attributes (other than [[Value]]) will fail.</td>
</tr>
</tbody>
</table>

A named accessor property associates a name with the attributes listed in Table 6.
Table 6 — Attributes of a Named Accessor Property

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Value Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[Get]]</td>
<td>Object or Undefined</td>
<td>If the value is an Object it must be a function Object. The function’s [[Call]] internal method (8.6.2) is called with an empty arguments list to return the property value each time a get access of the property is performed.</td>
</tr>
<tr>
<td>[[Set]]</td>
<td>Object or Undefined</td>
<td>If the value is an Object it must be a function Object. The function’s [[Call]] internal method (8.6.2) is called with an arguments list containing the assigned value as its sole argument each time a set access of the property is performed. The effect of a property's [[Set]] internal method may, but is not required to, have an effect on the value returned by subsequent calls to the property's [[Get]] internal method.</td>
</tr>
<tr>
<td>[[Enumerable]]</td>
<td>Boolean</td>
<td>If true, the property is to be enumerated by a for-in enumeration (see 12.6.4). Otherwise, the property is said to be non-enumarable.</td>
</tr>
<tr>
<td>[[Configurable]]</td>
<td>Boolean</td>
<td>If false, attempts to delete the property, change the property to be a data property, or change its attributes will fail.</td>
</tr>
</tbody>
</table>

If the value of an attribute is not explicitly specified by this specification for a named property, the default value defined in Table 7 is used.

Table 7 — Default Attribute Values

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[Value]]</td>
<td>undefined</td>
</tr>
<tr>
<td>[[Get]]</td>
<td>undefined</td>
</tr>
<tr>
<td>[[Set]]</td>
<td>undefined</td>
</tr>
<tr>
<td>[[Writable]]</td>
<td>false</td>
</tr>
<tr>
<td>[[Enumerable]]</td>
<td>false</td>
</tr>
<tr>
<td>[[Configurable]]</td>
<td>false</td>
</tr>
</tbody>
</table>

8.6.2 Object Internal Properties and Methods

This specification uses various internal properties to define the semantics of object values. These internal properties are not part of the ECMAScript language. They are defined by this specification purely for expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon internal properties in the manner described here. The names of internal properties are enclosed in double square brackets [[]]. When an algorithm uses an internal property of an object and the object does not implement the indicated internal property, a TypeError exception is thrown.

Table 8 summarises the internal properties used by this specification that are applicable to all ECMAScript objects. Table 9 summarises the internal properties used by this specification that are only applicable to some ECMAScript objects.

Clause 8.12 provides the algorithms that defined the default behaviour for the internal methods in Table 8. An ordinary object is an object that uses all of these default algorithms. An exotic object is an object that uses some other algorithm to provide alternative behaviour for one or more of these internal methods.

The “Value Type Domain” columns of the following tables define the types of values associated with internal properties. The type names refer to the types defined in Clause 8 augmented by the following additional names. "any" means the value may be any ECMAScript language type. "primitive" means Undefined, Null, Boolean, String, or Number. "SpecOp" means the internal property is an internal method, an implementation provided procedure defined by an abstract operation specification. "SpecOp" is followed by a list of descriptive
parameter names. If a parameter name is the same as a type name then the name describes the type of the parameter. If a "SpecOp" returns a value, its parameter list is followed by the symbol "→" and the type of the returned value.

Table 8 — Internal Properties Common to All Objects

<table>
<thead>
<tr>
<th>Internal Property</th>
<th>Value Type</th>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[Prototype]]</td>
<td>Object</td>
<td>or Null</td>
<td>The prototype of this object.</td>
</tr>
<tr>
<td>[[Extensible]]</td>
<td>Boolean</td>
<td></td>
<td>If true, own properties may be added to the object.</td>
</tr>
<tr>
<td>[[Get]]</td>
<td>SpecOp(p)</td>
<td>any</td>
<td>Returns the value of the named property.</td>
</tr>
<tr>
<td>[[GetOwnProperty]]</td>
<td>SpecOp(p)</td>
<td>Undefined or Property</td>
<td>Describes the named property of this object, or undefined if absent.</td>
</tr>
<tr>
<td>[[GetProperty]]</td>
<td>SpecOp(p)</td>
<td></td>
<td>Returns the fully populated Property Descriptor of the named property of this object, or undefined if absent.</td>
</tr>
<tr>
<td>[[Put]]</td>
<td>SpecOp(p,</td>
<td>any, Boolean)</td>
<td>Sets the specified named property to the value of the second parameter. The flag controls failure handling.</td>
</tr>
<tr>
<td>[[CanPut]]</td>
<td>SpecOp(p)</td>
<td>Boolean</td>
<td>Returns a Boolean value indicating whether a [[Put]] operation with PropertyName can be performed.</td>
</tr>
<tr>
<td>[[HasProperty]]</td>
<td>SpecOp(p)</td>
<td>Boolean</td>
<td>Returns a Boolean value indicating whether the object already has a property with the given name.</td>
</tr>
<tr>
<td>[[Delete]]</td>
<td>SpecOp(p,</td>
<td>Boolean</td>
<td>Removes the specified named own property from the object. The flag controls failure handling.</td>
</tr>
<tr>
<td>[[DefaultValue]]</td>
<td>SpecOp(H)</td>
<td>primitive</td>
<td>Hint is a String. Returns a default value for the object.</td>
</tr>
<tr>
<td>[[DefineOwnProperty]]</td>
<td>SpecOp(p,</td>
<td>PropertyDescriptor, Boolean</td>
<td>Creates or alters the named own property to have the state described by a Property Descriptor. The flag controls failure handling.</td>
</tr>
<tr>
<td>[[Enumerate]]</td>
<td>SpecOp()</td>
<td>Object</td>
<td>Returns an object that can enumerate the string values of the keys of the enumerable properties of the object. The returned object is an Iterator object.</td>
</tr>
<tr>
<td>[[Iterate]]</td>
<td>SpecOp()</td>
<td>Object</td>
<td>Returns an object that can enumerate the logical component values of the object. The returned object is an Iterator object.</td>
</tr>
</tbody>
</table>

Every object must implement all of the internal properties listed in Table 8. However, the [[DefaultValue]] internal method may, for some objects, simply throw a TypeError exception.

All objects have an internal property called [[Prototype]]. The value of this property is either null or an object and is used for implementing inheritance. Whether or not an ordinary object can have an exotic object as its [[Prototype]] depends on the implementation. Every [[Prototype]] chain must have finite length (that is, starting from any object, recursively accessing the [[Prototype]] internal property must eventually lead to a null value). Named data properties of the [[Prototype]] object are inherited (are visible as properties of the child object) for the purposes of get access, but not for put access. Named accessor properties are inherited for both get access and put access.

Every ECMAScript object has a Boolean-valued [[Extensible]] internal property that controls whether or not named properties may be added to the object. If the value of the [[Extensible]] internal property is false then additional named properties may not be added to the object. In addition, if [[Extensible]] is false the value of [[Prototype]] internal properties of the object may not be modified. Once the value of an [[Extensible]] internal property has been set to false it may not be subsequently changed to true.
NOTE This specification defines no ECMAScript language operators or built-in functions that permit a program to modify an object’s [[Prototype]] internal properties or to change the value of [[Extensible]] from false to true. Implementation specific extensions that modify [[Prototype]] or [[Extensible]] must not violate the invariants defined in the preceding paragraph.

Unless otherwise specified, the common internal methods of native ECMAScript objects behave as described in 8.12. Array objects have a slightly different implementation of the [[DefineOwnProperty]] internal method (see 15.4.5.1) and String objects have a slightly different implementation of the [[GetOwnProperty]] internal method (see 15.5.5.2). Arguments objects (10.6) have different implementations of [[Get]], [[GetOwnProperty]], [[DefineOwnProperty]], and [[Delete]]. Function objects (15.3) have a different implementation of [[Get]].

Exotic objects may implement these internal methods in any manner unless specified otherwise; for example, one possibility is that [[Get]] and [[Put]] for a particular exotic object indeed fetch and store property values but [[HasOwnProperty]] always generates false. However, if any specified manipulation of an exotic object’s internal properties is not supported by an implementation, that manipulation must throw a TypeError exception when attempted.

The [[GetOwnProperty]] internal method of all objects must conform to the following invariants for each property of the object:

- If a property is described as a data property and it may return different values over time, then either or both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the value is exposed via the other internal methods.

- If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then the SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property on all calls to [[GetOwnProperty]].

- If the attributes other than [[Writable]] may change over time or if the property might disappear, then the [[Configurable]] attribute must be true.

- If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

- If the value of the object’s [[Extensible]] internal property has been observed by ECMAScript code to be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of all objects must not permit the addition of a new property to a that object if the [[Extensible]] internal property of that object has been observed by ECMAScript code to be false.

If the [[Extensible]] internal property of an object has been observed by ECMAScript code to be false then it must not subsequently become true.
Table 9 — Internal Properties Only Defined for Some Objects

<table>
<thead>
<tr>
<th>Internal Property</th>
<th>Value Type</th>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[NativeBrand]]</td>
<td>Members of the NativeBrand enumeration.</td>
<td>A tag value used by this specification to categorize various kinds of native ECMAScript objects defined in this specification. Host objects do not have this internal property.</td>
<td></td>
</tr>
<tr>
<td>[[PrimitiveValue]]</td>
<td>primitive</td>
<td>Internal state information associated with this object. Of the standard built-in ECMAScript objects, only Boolean, Date, Number, and String objects implement [[PrimitiveValue]].</td>
<td></td>
</tr>
<tr>
<td>[[Construct]]</td>
<td>SpecOp(a List of any) → Object</td>
<td>Creates an object. Invoked via the <code>new</code> operator. The arguments to the SpecOp are the arguments passed to the <code>new</code> operator. Objects that implement this internal method are called constructors.</td>
<td></td>
</tr>
<tr>
<td>[[Call]]</td>
<td>SpecOp(any, a List of any) → any or Reference</td>
<td>Executes code associated with the object. Invoked via a function call expression. The arguments to the SpecOp are this object and a list containing the arguments passed to the function call expression. Objects that implement this internal method are callable. Only callable objects that are host objects may return Reference values.</td>
<td></td>
</tr>
<tr>
<td>[[HasInstance]]</td>
<td>SpecOp(any) → Boolean</td>
<td>Returns a Boolean value indicating whether the argument is likely an Object that was constructed by this object. Of the standard built-in ECMAScript objects, only Function objects implement [[HasInstance]].</td>
<td></td>
</tr>
<tr>
<td>[[Scope]]</td>
<td>Lexical Environment</td>
<td>A lexical environment that is the environment in which a Function object is executed. Of the standard built-in ECMAScript objects, only Function objects implement [[Scope]].</td>
<td></td>
</tr>
<tr>
<td>[[FormalParameters]]</td>
<td>Parse Tree</td>
<td>A parse tree for ECMAScript code parsed with <code>FormalParameterList</code> as the goal symbol. Of the standard built-in ECMAScript objects, only Function objects implement [[FormalParameters]].</td>
<td></td>
</tr>
<tr>
<td>[[Code]]</td>
<td>Parse Tree</td>
<td>A parse tree for ECMAScript code parsed with <code>FunctionBody</code> as the goal symbol. Of the standard built-in ECMAScript objects, only Function objects implement [[Code]].</td>
<td></td>
</tr>
<tr>
<td>[[Strict]]</td>
<td>Boolean</td>
<td>True if a Function object is a strict mode function. Of the standard built-in ECMAScript objects, only Function objects implement [[Strict]].</td>
<td></td>
</tr>
<tr>
<td>[[TargetFunction]]</td>
<td>Object</td>
<td>The target function of a function object created using the standard built-in <code>Function.prototype.bind</code> method. Only ECMAScript objects created using <code>Function.prototype.bind</code> have a [[TargetFunction]] internal property.</td>
<td></td>
</tr>
<tr>
<td>[[BoundThis]]</td>
<td>any</td>
<td>The pre-bound this value of a function Object created using the standard built-in <code>Function.prototype.bind</code> method. Only ECMAScript objects created using <code>Function.prototype.bind</code> have a [[BoundThis]] internal property.</td>
<td></td>
</tr>
<tr>
<td>[[BoundArguments]]</td>
<td>List of any</td>
<td>The pre-bound argument values of a function Object created by the standard built-in <code>Function.prototype.bind</code> method. Only objects created by <code>Function.prototype.bind</code> have a [[BoundArguments]] internal property.</td>
<td></td>
</tr>
<tr>
<td>[[Match]]</td>
<td>SpecOp(String, index) → MatchResult</td>
<td>Tests for a regular expression match and returns a <code>MatchResult</code> value (see 15.10.2.1). Of the standard built-in ECMAScript objects, only RegExp objects implement [[Match]].</td>
<td></td>
</tr>
<tr>
<td>[[ParameterMap]]</td>
<td>Object</td>
<td>Provides a mapping between the properties of an arguments object (see 10.6) and the formal parameters of the associated function. Only objects that are arguments objects have a [[ParameterMap]] internal property.</td>
<td></td>
</tr>
</tbody>
</table>
The `[[NativeBrand]]` internal property is used to identify native ECMAScript objects as objects that conform to specific parts of this specification. The value of a `[[NativeBrand]]` property is a single member of this set of enumerated values: NativeFunction, NativeArray, StringWrapper, BooleanWrapper, NumberWrapper, NativeMath, NativeDate, NativeRegExp, NativeError, NativeJSON, NativeArguments, NativePrivateName. The actual value of the `[[NativeBrand]]` internal property is only used to identify specific kinds of native ECMAScript objects. Host objects do not have this internal property.

Table 10 — Values of the `[[NativeBrand]]` Internal Property

<table>
<thead>
<tr>
<th>Value</th>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NativeFunction</td>
<td>Function objects</td>
<td></td>
</tr>
<tr>
<td>NativeArray</td>
<td>Array objects</td>
<td></td>
</tr>
<tr>
<td>StringWrapper</td>
<td>String objects</td>
<td></td>
</tr>
<tr>
<td>BooleanWrapper</td>
<td>Boolean objects</td>
<td></td>
</tr>
<tr>
<td>NumberWrapper</td>
<td>Number objects</td>
<td></td>
</tr>
<tr>
<td>NativeMath</td>
<td>The Math object</td>
<td></td>
</tr>
<tr>
<td>NativeDate</td>
<td>Date objects</td>
<td></td>
</tr>
<tr>
<td>NativeRegExp</td>
<td>RegExp objects</td>
<td></td>
</tr>
<tr>
<td>NativeError</td>
<td>Error objects</td>
<td></td>
</tr>
<tr>
<td>NativeJSON</td>
<td>The JSON object</td>
<td></td>
</tr>
<tr>
<td>NativeArguments</td>
<td>Arguments objects</td>
<td></td>
</tr>
<tr>
<td>NativePrivateName</td>
<td>Private Name objects</td>
<td></td>
</tr>
</tbody>
</table>

8.7 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in `new` expressions, in function calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply ordered sequences of values. These sequences may be of any length.

The Record type is used to describe data aggregations within the algorithms of this specification. A Record type value consists of one or more named fields. The value of each field is either the ECMAScript type value or an abstract value represented by a name associated with the Record type. Field names are always enclosed in double brackets. For example, `[[value]]`

For notational convenience within this specification, an object literal-like syntax can be used to express a Record value. For example, `{{[field1]: 42, [field2]: false, [field3]: empty}}` defines a Record value that has fields three fields each of why is initialized to a specific value. Field name order is not significant. Any fields that are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For example, if `D` is the record shown in the previous paragraph then `D.[[field2]]` is shorthand for “the field of `D` named `[[Field2]]`”.

Schema for commonly used Record field combination may be named and that name may be used as a prefix to a literal Record value to identify the specific kind of aggregations that is being described. For example: Property Descriptor `{{[Value]: 42, [Writable]: false, [Configurable]: true}}`

8.8 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as the behaviour of statements (`break, continue, return and throw`) that perform nonlocal transfers of control.

Values of the Completion type are Record values whole fields are defined as by Table 11.
Table 11 — Completion Record Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[type]]</td>
<td>One of normal, break, continue, return, or throw</td>
<td>The type of completion that occurred.</td>
</tr>
<tr>
<td>[[value]]</td>
<td>any ECMAScript language value or empty</td>
<td>The value that was produced.</td>
</tr>
<tr>
<td>[[target]]</td>
<td>any ECMAScript identifier or empty</td>
<td>The target label for directed control transfers.</td>
</tr>
</tbody>
</table>

The term “abrupt completion” refers to any completion with a [[type]] value other than normal.

8.8.1 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal. Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a Completion Record, such as:

1. Return the String "Infinity".

mean the same things as:

1. Return Completion {[[type]]: normal, [[value]]: String "Infinity", [[target]]:empty}.

Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion Record value unless the Completion Record is an abrupt completion.

8.8.2 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:

1. Return NormalCompletion(argument).

Is a short hand that is defined as follows:

1. Return Completion {[[type]]: normal, [[value]]: argument, [[target]]:empty}.

8.8.3 Throw an Exception

Algorithms steps that say to throw an exception, such as

1. Throw a TypeError exception.

Mean the same things as:

1. Return Completion {[[type]]: throw, [[value]]: a newly created TypeError object, [[target]]:empty}.

8.8.4 ReturnIfAbrupt

Algorithms steps that say

1. ReturnIfAbrupt(argument).

mean the same things as:

1. If argument is an abrupt completion, then return argument.
2. Else if argument is a Completion Record, then let argument be argument.[[value]].
8.9 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as `delete`, `typeof`, the assignment operators, the `super` keyword and other language features. For example, the left-hand operand of an assignment is expected to produce a reference.

A Reference is a resolved name binding. A Reference consists of three components, the base value, the referenced name and the Boolean valued strict reference flag. The base value is either `undefined`, an Object, a Boolean, a String, a Number, or an environment record (10.2.1). A base value of `undefined` indicates that the Reference could not be resolved to a binding. The referenced name is a String.

A Super Reference is a Reference that is used to represent a name binding that was expressed using the `super` keyword. A Super Reference has an additional `thisValue` component and its base value will never be an environment record.

The following abstract operations are used in this specification to access the components of references:

- `GetBase(V)`. Returns the base value component of the reference V.
- `GetReferencedName(V)`. Returns the referenced name component of the reference V.
- `IsStrictReference(V)`. Returns the strict reference component of the reference V.
- `HasPrimitiveBase(V)`. Returns `true` if the base value is a Boolean, String, or Number.
- `IsPropertyReference(V)`. Returns `true` if either the base value is an object or `HasPrimitiveBase(V)` is `true`; otherwise returns `false`.
- `IsUnresolvableReference(V)`. Returns `true` if the base value is `undefined` and `false` otherwise.
- `IsSuperReference(V)`. Returns `true` if this reference has a `thisValue` component.

The following abstract operations are used in this specification to operate on references:

8.9.1 GetValue (V)

1. ReturnIfAbrupt(V).
2. If Type(V) is not Reference, return V.
3. Let base be the result of calling GetBase(V).
4. If `IsUnresolvableReference(V)`, throw a ReferenceError exception.
5. If `IsPropertyReference(V)`, then
 a. If `HasPrimitiveBase(V)` is `false`, then let `get` be the `[[Get]]` internal method of `base`, otherwise let `get` be the special `[[Get]]` internal method defined below.
 b. If `IsSuperReference(V)` is `false`, then
 i. Return the result of calling `get` as an internal method of `base` passing `GetReferencedName(V)` for the argument.
 c. Else,
 i. Return the result of calling `get` as an internal method of `base` passing `GetReferencedName(V)` and `GetThisValue(V)` as the arguments.
6. Else, `base` must be an environment record.
 a. Return the result of calling the GetBindingValue (see 10.2.1) concrete method of `base` passing `GetReferencedName(V)` and `IsStrictReference(V)` as arguments.

The following `[[Get]]([P [, accessorThisValue]])` internal method is used by GetValue when V is a property reference with a primitive base value. base is the value the internal method is called upon with property name `P` as its argument. The following steps are taken:

1. Let `O` be ToObject(`base`).
2. Let `desc` be the result of calling the `[[GetProperty]]` internal method of `O` with property name `P`.
3. If `desc` is `undefined`, return `undefined`.
4. If `IsDataDescriptor(desc)` is `true`, return `desc.[[Value]]`.
5. Otherwise, `IsAccessorDescriptor(desc)` must be `true` so, let `getter` be `desc.[[Get]]` (see 8.10).
6. If `getter` is `undefined`, return `undefined`.
7. If the accessorThisValue argument is not present, let accessorThisValue be `base`
8. Return the result of calling the [[Call]] internal method of `getter` providing `accessorThisValue` as the `this` value and providing no arguments.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation might choose to avoid the actual creation of the object. The only situation where such an actual property access that uses this internal method can have visible effect is when it invokes an accessor function.

8.9.2 PutValue (V, W)

1. ReturnIfAbrupt(V).
2. ReturnIfAbrupt(W).
3. If Type(V) is not Reference, throw a `ReferenceError` exception.
4. Let `base` be the result of calling GetBase(V).
5. If IsUnresolvableReference(V), then
 a. If IsStrictReference(V) is `true`, then
 i. Throw `ReferenceError` exception.
 b. Return the result of calling the [[Put]] internal method of the global object, passing
 `GetReferencedName(V)` for the property name, `W` for the value, and `false` for the `Throw` flag.
6. Else if IsPropertyReference(V), then
 a. If HasPrimitiveBase(V) is `false`, then let `put` be the [[Put]] internal method of `base`, otherwise let `put` be the special [[Put]] internal method defined below.
 b. If IsSuperReference(V) is `false`, then
 i. Return the result of calling `put` as an internal method of `base` passing
 `GetReferencedName(V)` for the property name, `W` for the value, and IsStrictReference(V) for the `Throw` flag.
 c. Else,
 i. Return the result of calling `put` as an internal method of `base` passing
 `GetReferencedName(V)` for the property name, `W` for the value, IsStrictReference(V) for the `Throw` flag, and GetThisValue(V) as the `accessorThisValue` argument.
7. Else `base` must be a reference whose base is an environment record. So,
 a. Return the result of calling the SetMutableBinding (10.2.1) concrete method of `base`, passing
 `GetReferencedName(V)`, `W`, and IsStrictReference(V) as arguments.
8. Return `undefined`.

The following [[Put]] internal method is used by PutValue when V is a property reference with a primitive base value. `base` is the value the internal method is called upon with property name `P`, value `W`, and Boolean flag `Throw` as required arguments and optional argument `accessorThisValue`. The following steps are taken:

1. Let `O` be ToObject(`base`).
2. If the result of calling the [[CanPut]] internal method of `O` with argument `P` is `false`, then
 a. If `Throw` is `true`, then throw a `TypeError` exception.
 b. Else return `undefined`.
3. Let `ownDesc` be the result of calling the [[GetOwnProperty]] internal method of `O` with argument `P`.
4. If IsDataDescriptor(ownDesc) is `true`, then
 a. If `Throw` is `true`, then throw a `TypeError` exception.
 b. Else return `undefined`.
5. Let `desc` be the result of calling the [[GetProperty]] internal method of `O` with argument `P`. This may be either an own or inherited accessor property descriptor or an inherited data property descriptor.
6. If IsAccessorDescriptor(desc) is `true`, then
 a. Let `setter` be desc.[[Set]] (see 8.10) which cannot be `undefined`.
 b. If accessorThisValue is not present, then let accessorThisValue be base.
 c. Return the result of calling the [[Call]] internal method of `setter` providing accessorThisValue as the `this` value and an argument list containing only `W`.
7. Else, this is a request to create an own property on the transient object `O`
 a. If `Throw` is `true`, then throw a `TypeError` exception.
8. Return `undefined`.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation might choose to avoid the actual creation of that transient object. The only situations where such an actual property assignment that uses this internal method can have visible effect are when it either invokes an accessor function or is in violation of a `Throw` predicated error check. When `Throw` is `true` any property assignment that would create a new property on the transient object throws an error.
8.9.3 GetThisValue (V)

1. ReturnIfAbrupt(V).
2. If Type(V) is not Reference, return V.
3. If IsUnresolvableReference(V), throw a ReferenceError exception.
4. If IsSuperReference(V), then
 a. Return the value of the thisValue component of the reference V.
5. Return GetBase(V).

8.10 The Property Descriptor and Property Identifier Specification Types

The Property Descriptor type is used to explain the manipulation and reification of named property attributes. Values of the Property Descriptor type are records composed of named fields where each field’s name is an attribute name and its value is a corresponding attribute value as specified in 8.6.1. In addition, any field may be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and [[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value that is neither a data property descriptor nor an accessor property descriptor. A fully populated property descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of the fields that correspond to the property attributes defined in either 8.6.1 Table 5 or Table 6.

For notational convenience within this specification, an object literal-like syntax can be used to define a property descriptor value. For example, Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true} defines a data property descriptor. Field name order is not significant. Any fields that are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Property Descriptor. For example, if D is a property descriptor then D.[[Value]] is shorthand for “the field of D named [[Value]].”

The Property Identifier type is used to associate a property name with a Property Descriptor. Values of the Property Identifier type are pairs of the form (name, descriptor), where name is a String and descriptor is a Property Descriptor value.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

8.10.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desc, the following steps are taken:

2. If Desc is undefined, then return false.
3. If both Desc.[[Get]] and Desc.[[Set]] are absent, then return false.
4. Return true.

8.10.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with property descriptor Desc, the following steps are taken:

1. If Desc is undefined, then return false.
2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.
3. Return true.
8.10.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc, the following steps are taken:

1. If Desc is undefined, then return false.
2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.
3. Return false.

8.10.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc, the following steps are taken:

The following algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned from [[GetOwnProperty]] (see 8.12.1).

1. If Desc is undefined, then return undefined.
2. Let obj be the result of the abstract operation ObjectCreate (15.2).
3. If IsDataDescriptor(Desc) is true, then
 a. Call the [[DefineOwnProperty]] internal method of obj with arguments "value", Property Descriptor
 [[Value]]; Desc.[[Value]], [[Writable]]; true, [[Enumerable]]; true, [[Configurable]]; true, and false.
 b. Call the [[DefineOwnProperty]] internal method of obj with arguments "writable", Property Descriptor
 [[Value]]; Desc.[[Writable]], [[Writable]]; true, [[Enumerable]]; true, [[Configurable]]; true, and false.
4. Else, IsAccessorDescriptor(Desc) must be true, so
 a. Call the [[DefineOwnProperty]] internal method of obj with arguments "get", Property Descriptor
 [[Value]]; Desc.[[Get]], [[Writable]]; true, [[Enumerable]]; true, [[Configurable]]; true, and false.
 b. Call the [[DefineOwnProperty]] internal method of obj with arguments "set", Property Descriptor
 [[Value]]; Desc.[[Set]], [[Writable]]; true, [[Enumerable]]; true, [[Configurable]]; true, and false.
5. Call the [[DefineOwnProperty]] internal method of obj with arguments "enumerable", Property Descriptor
 [[Value]]; Desc.[[Enumerable]], [[Writable]]; true, [[Enumerable]]; true, [[Configurable]]; true, and false.
6. Call the [[DefineOwnProperty]] internal method of obj with arguments "configurable", Property Descriptor
 [[Value]]; Desc.[[Configurable]], [[Writable]]; true, [[Enumerable]]; true, [[Configurable]]; true, and false.
7. Return obj.

8.10.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1. ReturnIfAbrupt(Obj).
2. If Type(Obj) is not Object throw a TypeError exception.
3. Let desc be the result of creating a new Property Descriptor that initially has no fields.
4. If the result of calling the [[HasProperty]] internal method of Obj with argument "enumerable" is true, then
 a. Let enum be the result of calling the [[Get]] internal method of Obj with "enumerable".
 b. ReturnIfAbrupt(enum).
 c. Set the [[Enumerable]] field of desc to ToBoolean(enum).
5. If the result of calling the [[HasProperty]] internal method of Obj with argument "configurable" is true, then
 a. Let conf be the result of calling the [[Get]] internal method of Obj with argument "configurable".
 b. ReturnIfAbrupt(conf).
 c. Set the [[Configurable]] field of desc to ToBoolean(conf).
6. If the result of calling the [[HasProperty]] internal method of Obj with argument "value" is true, then
 a. Let value be the result of calling the [[Get]] internal method of Obj with argument "value".
 b. ReturnIfAbrupt(value).
 c. Set the [[Value]] field of desc to value.
7. If the result of calling the [[HasProperty]] internal method of Obj with argument "writable" is true, then
 a. Let writable be the result of calling the [[Get]] internal method of Obj with argument "writable".
 b. ReturnIfAbrupt(writable).
c. Set the [[Writable]] field of `desc` to `ToBoolean(writable)`.

8. If the result of calling the [[HasProperty]] internal method of `Obj` with argument "get" is `true`, then
 a. Let `getter` be the result of calling the [[Get]] internal method of `Obj` with argument "get".
 b. ReturnIfAbrupt(`getter`).
 c. If IsCallable(`getter`) is `false` and `getter` is not `undefined`, then throw a TypeError exception.
 d. Set the [[Get]] field of `desc` to `getter`.

9. If the result of calling the [[HasProperty]] internal method of `Obj` with argument "set" is `true`, then
 a. Let `setter` be the result of calling the [[Get]] internal method of `Obj` with argument "set".
 b. ReturnIfAbrupt(`setter`).
 c. If IsCallable(`setter`) is `false` and `setter` is not `undefined`, then throw a TypeError exception.
 d. Set the [[Set]] field of `desc` to `setter`.

10. If either `desc`.[[Get]] or `desc`.[[Set]] are present, then
 a. If either `desc`.[[Value]] or `desc`.[[Writable]] are present, then throw a TypeError exception.

11. Return `desc`.

8.11 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.12 Algorithms for Object Internal Methods

In the following algorithm descriptions, assume `O` is a native ECMAScript object, `P` is a String, `Desc` is a Property Description record, and `Throw` is a Boolean flag.

8.12.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of `O` is called with property name `P`, the following steps are taken:

1. If `O` doesn’t have an own property with name `P`, return `undefined`.
2. Let `X` be a newly created Property Descriptor with no fields.
3. Let `X` be `O`’s own property named `P`.
4. If `X` is a data property, then
 a. Set `D`.[[Value]] to the value of `X`’s [[Value]] attribute.
 b. Set `D`.[[Writable]] to the value of `X`’s [[Writable]] attribute.
5. Else `X` is an accessor property, so
 a. Set `D`.[[Get]] to the value of `X`’s [[Get]] attribute.
 b. Set `D`.[[Set]] to the value of `X`’s [[Set]] attribute.
6. Set `D`.[[Enumerable]] to the value of `X`’s [[Enumerable]] attribute.
7. Set `D`.[[Configurable]] to the value of `X`’s [[Configurable]] attribute.
8. Return `D`.

However, if `O` is a String object it has a more elaborate [[GetOwnProperty]] internal method defined in 15.5.5.2.

8.12.2 [[GetProperty]] (P)

When the [[GetProperty]] internal method of `O` is called with property name `P`, the following steps are taken:

1. Let `prop` be the result of calling the [[GetOwnProperty]] internal method of `O` with property name `P`.
2. If `prop` is not `undefined`, return `prop`.
3. Let `proto` be the value of the [[Prototype]] internal property of `O`.
4. If `proto` is `null`, return `undefined`.
5. Return the result of calling the [[GetProperty]] internal method of `proto` with argument `P`.

8.12.3 [[Get]] (P [, accessorThisValue]

When the [[Get]] internal method of `O` is called with property name `P`, the following steps are taken:

1. Let `desc` be the result of calling the [[GetProperty]] internal method of `O` with property name `P`.
2. If desc is undefined, return undefined.
3. If IsDataDescriptor(desc) is true, return desc.[[Value]].
4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].
5. If getter is undefined, return undefined.
6. If accessorThisValue is not present, then let accessorThisValue be O.
7. Return the result calling the [[Call]] internal method of getter providing accessorThisValue as the this value and providing no arguments.

8.12.4 [[CanPut]] (P)

When the [[CanPut]] internal method of O is called with property name P, the following steps are taken:

1. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
2. If desc is not undefined, then
 a. If IsAccessorDescriptor(desc) is true, then
 i. If desc.[[Set]] is undefined, then return false.
 ii. Else return true.
 b. Else, desc must be a DataDescriptor so return the value of desc.[[Writable]].
3. Let proto be the [[Prototype]] internal property of O.
4. If proto is null, then return the value of the [[Extensible]] internal property of O.
5. Let inherited be the result of calling the [[GetProperty]] internal method of proto with property name P.
6. If inherited is undefined, return the value of the [[Extensible]] internal property of O.
7. If IsAccessorDescriptor(inherited) is true, then
 a. If inherited.[[Set]] is undefined, then return false.
 b. Else return true.
8. Else, inherited must be a DataDescriptor
 a. If the [[Extensible]] internal property of O is false, return false.
 b. Else return the value of inherited.[[Writable]].

Exotic objects may define additional constraints upon [[Put]] operations. If possible, exotic objects should not allow [[Put]] operations in situations where this definition of [[CanPut]] returns false.

8.12.5 [[Put]] (P, V, Throw[, accessorThisValue])

When the [[Put]] internal method of O is called with property P, value V, and Boolean flag Throw, the following steps are taken:

1. If the result of calling the [[CanPut]] internal method of O with argument P is false, then
 a. If Throw is true, then throw a TypeError exception.
 b. Else return undefined.
2. Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
3. If IsDataDescriptor(ownDesc) is true, then
 a. Let valueDesc be the Property Descriptor {[[Value]]: V}.
 b. Return the result of calling the [[DefineOwnProperty]] internal method of O passing P, valueDesc, and Throw as arguments.
4. Let desc be the result of calling the [[GetProperty]] internal method of O with argument P. This may be either an own or inherited accessor property descriptor or an inherited data property descriptor.
5. If IsAccessorDescriptor(desc) is true, then
 a. Let setter be desc.[[Set]] which cannot be undefined.
 b. If accessorThisValue is not present, then let accessorThisValue be O.
 c. Return the result of calling the [[Call]] internal method of setter providing thisValue as the this value and providing V as the sole argument.
6. Else, create a named data property named P on object O as follows
 a. Let newDesc be the Property Descriptor {[[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
 b. Return the result of calling the [[DefineOwnProperty]] internal method of O passing P, newDesc, and Throw as arguments.

8.12.6 [[HasProperty]] (P)

When the [[HasProperty]] internal method of O is called with property name P, the following steps are taken:
1. Let desc be the result of calling the `[[GetProperty]]` internal method of `O` with property name `P`.
2. If desc is `undefined`, then return `false`.
3. Else return `true`.

8.12.7 `[[Delete]] (P, Throw)

When the `[[Delete]]` internal method of `O` is called with property name `P` and the Boolean flag `Throw`, the following steps are taken:

1. Let desc be the result of calling the `[[GetOwnProperty]]` internal method of `O` with property name `P`.
2. If desc is `undefined`, then return `false`.
3. Else return `true`.
4. Else if `Throw`, then throw a `TypeError` exception.
5. Return `false`.

8.12.8 `[[DefaultValue]] (hint)

When the `[[DefaultValue]]` internal method of `O` is called with hint String, the following steps are taken:

1. Let toString be the result of calling the `[[Get]]` internal method of object `O` with argument "`toString`".
2. ReturnIfAbrupt(toString).
3. If IsCallable(toString) is `true` then,
 a. Let str be the result of calling the `[[Call]]` internal method of toString, with `O` as the this value and an empty argument list.
 b. ReturnIfAbrupt(str).
 c. If str is a primitive value, return str.
4. Let valueOf be the result of calling the `[[Get]]` internal method of object `O` with argument "`valueOf`".
5. ReturnIfAbrupt(valueOf).
6. If IsCallable(valueOf) is `true` then,
 a. Let val be the result of calling the `[[Call]]` internal method of valueOf, with `O` as the this value and an empty argument list.
 b. ReturnIfAbrupt(val).
 c. If val is a primitive value, return val.
7. Throw a `TypeError` exception.

When the `[[DefaultValue]]` internal method of `O` is called with hint Number, the following steps are taken:

1. Let valueOf be the result of calling the `[[Get]]` internal method of object `O` with argument "`valueOf`".
2. ReturnIfAbrupt(valueOf).
3. If IsCallable(valueOf) is `true` then,
 a. Let val be the result of calling the `[[Call]]` internal method of valueOf, with `O` as the this value and an empty argument list.
 b. ReturnIfAbrupt(val).
 c. If val is a primitive value, return val.
4. Let toString be the result of calling the `[[Get]]` internal method of object `O` with argument "`toString`".
5. ReturnIfAbrupt(toString).
6. If IsCallable(toString) is `true` then,
 a. Let str be the result of calling the `[[Call]]` internal method of toString, with `O` as the this value and an empty argument list.
 b. ReturnIfAbrupt(str).
 c. If str is a primitive value, return str.
7. Throw a `TypeError` exception.

When the `[[DefaultValue]]` internal method of `O` is called with no hint, then it behaves as if the hint were Number, unless `O` is a Date object (see 15.9.6), in which case it behaves as if the hint were String.

The above specification of `[[DefaultValue]]` for ordinary objects can return only primitive values. If an exotic object implements its own `[[DefaultValue]]` internal method, it must ensure that its `[[DefaultValue]]` internal method can return only primitive values.
8.12.9 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithm, the term “Reject” means “If Throw is true, then throw a TypeError exception, otherwise return false”. The algorithm contains steps that test various fields of the Property Descriptor Desc for specific values. The fields that are tested in this manner need not actually exist in Desc. If a field is absent then its value is considered to be false.

When the [[DefineOwnProperty]] internal method of O is called with property name P, property descriptor Desc, and Boolean flag Throw, the following steps are taken:

1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
2. Let extensible be the value of the [[Extensible]] internal property of O.
3. If current is undefined and extensible is false, then Reject.
4. If current is undefined and extensible is true, then
 a. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
 i. Create an own data property named P of object O whose [[Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of an attribute field of Desc is absent, the attribute of the newly created property is set to its default value.
 b. Else, Desc must be an accessor Property Descriptor so,
 i. Create an own accessor property named P of object O whose [[Get]], [[Set]], [[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of an attribute field of Desc is absent, the attribute of the newly created property is set to its default value.
 c. Return true.
5. Return true, if every field in Desc is absent.
6. Return true, if every field in Desc also occurs in current and the value of every field in Desc is the same value as the corresponding field in current when compared using the SameValue algorithm (9.12).
7. If the [[Configurable]] field of current is false then
 a. Reject, if the [[Configurable]] field of Desc is true.
 b. Reject, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current and Desc are the Boolean negation of each other.
8. If IsGenericDescriptor(Desc) is true, then no further validation is required.
9. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
 a. Reject, if the [[Configurable]] field of current is false.
 b. If IsDataDescriptor(current) is true, then
 i. Convert the property named P of object O from a data property to an accessor property. Preserve the existing values of the converted property’s [[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s attributes to their default values.
 c. Else,
 i. Convert the property named P of object O from an accessor property to a data property. Preserve the existing values of the converted property’s [[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s attributes to their default values.
10. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
 a. If the [[Configurable]] field of current is false, then
 i. Reject, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is true.
 ii. If the [[Writable]] field of current is false, then
 i. Reject, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]], current.[[Value]]) is false.
 b. else, the [[Configurable]] field of current is true, so any change is acceptable.
11. Else, IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true so,
 a. If the [[Configurable]] field of current is false, then
 i. Reject, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]], current.[[Set]]) is false.
 ii. Reject, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]], current.[[Get]]) is false.
12. For each attribute field of Desc that is present, set the correspondingly named attribute of the property named P of object O to the value of the field.
13. Return true.
However, if \(O \) has an \([\text{NativeBrand}]\) internal property whose value is \(\text{NativeArray} \) \(O \) also has a more elaborate \([\text{DefineOwnProperty}]\) internal method defined in 15.4.5.1.

NOTE Step 10.b allows any field of \(\text{Desc} \) to be different from the corresponding field of \(\text{current} \) if \(\text{current}'s \) \([\text{Configurable}]\) field is \text{true}. This even permits changing the \([\text{Value}]\) of a property whose \([\text{Writable}]\) attribute is \text{false}. This is allowed because a \text{true} \([\text{Configurable}]\) attribute would permit an equivalent sequence of calls where \([\text{Writable}]\) is first set to \text{true}, a new \([\text{Value}]\) is set, and then \([\text{Writable}]\) is set to \text{false}.

8.12.10 \([\text{Enumerate}]\) (includePrototype, onlyEnumerable)

When the \([\text{Enumerate}]\) internal method of \(O \) is called with Boolean arguments \text{includePrototype} and \text{onlyEnumerable}, the following steps are taken:

1. Return an Iterator object (reference xxxx) whose next method iterates over all the keys of enumerable property keys of \(O \). If \text{includePrototype} is \text{false}, then only own properties of \(O \) are included. If \text{onlyEnumerable} is \text{false}, then all properties that do not have private name keys are included. The mechanics and order of enumerating the properties is not specified but must conform to the rules specified below.

Enumerated properties do not include properties whose property key is a private name. Properties of the object being enumerated may be deleted during enumeration. If a property that has not yet been visited during enumeration is deleted, then it will not be visited. If new properties are added to the object being enumerated during enumeration, the newly added properties are not guaranteed to be visited in the active enumeration. A property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is "shadowed" because some previous object in the prototype chain has a property with the same name. The values of \([\text{Enumerable}]\) attributes are not considered when determining if a property of a prototype object is shadowed by a previous object on the prototype chain.

The following is an informative algorithm that conforms to these rules

1. Let \(\text{obj} \) be \(O \).
2. Let \(\text{proto} \) be the value of the \([\text{Prototype}]\) internal property of \(O \).
3. If \text{includePrototype} is \text{false} or \text{proto} is the value \text{null}, then
 a. Let \(\text{propList} \) be a new empty List.
4. Else
 a. Let \(\text{propList} \) be the result of calling the \([\text{Enumerate}]\) internal method of \(\text{proto} \) with arguments \text{true} and \text{onlyEnumerable}.
5. For each string \(\text{name} \) that is the property key of an own property of \(O \)
 a. Let \(\text{desc} \) be the result of calling the \([\text{GetOwnProperty}]\) internal method of \(O \) with argument \(\text{name} \).
 b. If \(\text{name} \) is an element of \(\text{propList} \), then remove \(\text{name} \) as an element of \(\text{propList} \).
 c. If \text{onlyEnumerable} is \text{false} or \(\text{desc}'[\text{Enumerable}] \) is \text{true}, then add \(\text{name} \) as an element of \(\text{propList} \).
6. Order the elements of \(\text{propList} \) in an implementation defined order.
7. Return \(\text{propList} \).

8.12.11 \([\text{Iterate}]\) ()

When the \([\text{Iterate}]\) internal method of \(O \) is called the following steps are taken:

1. Let \(\text{itr} \) be the result of performing \text{Invoke} with arguments \%iterator\%, \(O \) and an empty argument List.
2. Return \(\text{itr} \).

9 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the specification of the semantics of the ECMAScript Language.
9.1 Type Conversion and Testing

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics of certain constructs it is useful to define a set of conversion abstract operations. The conversion abstract operations are polymorphic; that is, they can accept a value of any ECMAScript language type, but not of specification types.

9.1.1 ToPrimitive

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of converting to more than one primitive type, it may use the optional hint PreferredType to favour that type. Conversion occurs according to Table 12:

<table>
<thead>
<tr>
<th>Input Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion Record</td>
<td>If argument is an abrupt completion, return argument. Otherwise return ToPrimitive(argument.[[value]])</td>
</tr>
<tr>
<td>Undefined</td>
<td>Return argument t (no conversion).</td>
</tr>
<tr>
<td>Null</td>
<td>Return argument (no conversion).</td>
</tr>
<tr>
<td>Boolean</td>
<td>Return argument (no conversion).</td>
</tr>
<tr>
<td>Number</td>
<td>Return argument (no conversion).</td>
</tr>
<tr>
<td>String</td>
<td>Return argument (no conversion).</td>
</tr>
<tr>
<td>Object</td>
<td>Perform the following steps:</td>
</tr>
<tr>
<td></td>
<td>1. Let default be the result of calling the [[DefaultValue]] internal method of argument, passing the optional hint PreferredType.</td>
</tr>
<tr>
<td></td>
<td>2. Return ToPrimitive(default).</td>
</tr>
</tbody>
</table>

The behaviour of the [[DefaultValue]] internal method is defined by this specification for all native ECMAScript objects in 8.12.8.

9.1.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 13:

<table>
<thead>
<tr>
<th>Argument Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion Record</td>
<td>If argument is an abrupt completion, return the argument. Otherwise return ToBoolean(argument.[[value]])</td>
</tr>
<tr>
<td>Undefined</td>
<td>Return false</td>
</tr>
<tr>
<td>Null</td>
<td>Return false</td>
</tr>
<tr>
<td>Boolean</td>
<td>Return the input argument (no conversion).</td>
</tr>
<tr>
<td>Number</td>
<td>Return false if the argument is +0, −0, or NaN; otherwise return true.</td>
</tr>
<tr>
<td>String</td>
<td>Return false if the argument is the empty String (its length is zero); otherwise return true.</td>
</tr>
<tr>
<td>Object</td>
<td>Return true</td>
</tr>
</tbody>
</table>
9.1.3 ToNumber

The abstract operation ToNumber converts its argument to a value of type Number according to Table 14:

<table>
<thead>
<tr>
<th>Argument Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion Record</td>
<td>If argument is an abrupt completion, return argument. Otherwise return ToNumber(argument.[[value]])</td>
</tr>
<tr>
<td>Undefined</td>
<td>Return NaN</td>
</tr>
<tr>
<td>Null</td>
<td>Return +0</td>
</tr>
<tr>
<td>Boolean</td>
<td>Return 1 if argument is true. Return +0 if argument is false.</td>
</tr>
<tr>
<td>Number</td>
<td>Return argument (no conversion).</td>
</tr>
<tr>
<td>String</td>
<td>See grammar and note below.</td>
</tr>
<tr>
<td>Object</td>
<td>Apply the following steps:</td>
</tr>
<tr>
<td></td>
<td>1. Let primValue be ToPrimitive(argument, hint Number).</td>
</tr>
<tr>
<td></td>
<td>2. Return ToNumber(primValue)</td>
</tr>
</tbody>
</table>

9.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret the String as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

Syntax

StringNumericLiteral : :
 StrWhiteSpace\opt
 StrWhiteSpace\opt StrNumericLiteral StrWhiteSpace\opt

StrWhiteSpace : :
 StrWhiteSpaceChar StrWhiteSpace\opt

StrWhiteSpaceChar : :
 WhiteSpace
 LineTerminator

StrNumericLiteral : :
 StrDecimalLiteral
 HexIntegerLiteral

StrDecimalLiteral : :
 StrUnsignedDecimalLiteral
 + StrUnsignedDecimalLiteral
 - StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral : :
 Infinity
 DecimalDigits . DecimalDigits\opt ExponentPart\opt
 . DecimalDigits ExponentPart\opt
 DecimalDigits ExponentPart\opt

DecimalDigits : :
 DecimalDigit
 DecimalDigits DecimalDigit

DecimalDigit : :
 one of
 0 1 2 3 4 5 6 7 8 9
ExponentPart ::=
 ExponentIndicator SignedInteger

ExponentIndicator ::: one of
e E

SignedInteger :::
 DecimalDigits
 + DecimalDigits
 - DecimalDigits

HexIntegerLiteral :::
 0x HexDigit
 0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of
 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

NOTE
Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see 7.8.3):
• A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.
• A StringNumericLiteral that is decimal may have any number of leading 0 digits.
• A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.
• A StringNumericLiteral that is empty or contains only white space is converted to +0.

Runtime Semantics
The conversion of a String to a Number value is similar overall to the determination of the Number value for a numeric literal (see 7.8.3), but some of the details are different, so the process for converting a String numeric literal to a value of Number type is given here in full. This value is determined in two steps: first, a mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded as described below.

• The MV of StringNumericLiteral ::: [empty] is 0.
• The MV of StringNumericLiteral ::: StrWhiteSpace is 0.
• The MV of StringNumericLiteral ::: StrWhiteSpaceStrNumericLiteralStrWhiteSpace is the MV of StrNumericLiteral, no matter whether white space is present or not.
• The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.
• The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.
• The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.
• The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.
• The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of this MV is also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a floating-point +0 or -0 as appropriate.)
• The MV of StrUnsignedDecimalLiteral::: Infinity is 10^{10000} (a value so large that it will round to +\infty).
• The MV of StrUnsignedDecimalLiteral::: DecimalDigits . is the MV of DecimalDigits.
• The MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits plus (the MV of the second DecimalDigits times 10^{-n}), where n is the number of characters in the second DecimalDigits.
• The MV of StrUnsignedDecimalLiteral::: DecimalDigits . ExponentPart is the MV of DecimalDigits times 10^e, where e is the MV of ExponentPart.
• The MV of StrUnsignedDecimalLiteral::: DecimalDigits . ExponentPart is (the MV of the first DecimalDigits plus (the MV of the second DecimalDigits times 10^{-n})) times 10^e, where n is the number of characters in the second DecimalDigits and e is the MV of ExponentPart.
• The MV of StrUnsignedDecimalLiteral::: . DecimalDigits is the MV of DecimalDigits times 10^{-n}, where n is the number of characters in DecimalDigits.
The MV of \texttt{StrUnsignedDecimalLiteral} \texttt{:::}. \texttt{DecimalDigits ExponentPart} is the MV of \texttt{DecimalDigits} times 10^{-n}, where \(n \) is the number of characters in \texttt{DecimalDigits} and \(e \) is the MV of \texttt{ExponentPart}.

- The MV of \texttt{StrUnsignedDecimalLiteral} \texttt{:::}. \texttt{DecimalDigits} is the MV of \texttt{DecimalDigits}.
- The MV of \texttt{StrUnsignedDecimalLiteral} \texttt{:::}. \texttt{DecimalDigits ExponentPart} is the MV of \texttt{DecimalDigits} times 10^e, where \(e \) is the MV of \texttt{ExponentPart}.
- The MV of \texttt{DecimalDigits} \texttt{:::}. \texttt{DecimalDigit} is the MV of \texttt{DecimalDigit}.
- The MV of \texttt{DecimalDigits} \texttt{:::}. \texttt{DecimalDigits DecimalDigit} is (the MV of \texttt{DecimalDigits} times 10) plus the MV of \texttt{DecimalDigit}.
- The MV of \texttt{ExponentPart} \texttt{:::}. \texttt{ExponentIndicator SignedInteger} is the MV of \texttt{SignedInteger}.
- The MV of \texttt{SignedInteger} \texttt{:::}. \texttt{DecimalDigits} is the MV of \texttt{DecimalDigits}.
- The MV of \texttt{SignedInteger} \texttt{:::}. \texttt{+ DecimalDigits} is the MV of \texttt{DecimalDigits}.
- The MV of \texttt{SignedInteger} \texttt{:::}. \texttt{– DecimalDigits} is the negative of the MV of \texttt{DecimalDigits}.
- The MV of \texttt{DecimalDigit} \texttt{:::}. \texttt{0 or of HexDigit} \texttt{::: 0} is 0.
- The MV of \texttt{DecimalDigit} \texttt{:::}. \texttt{1 or of HexDigit} \texttt{::: 1} is 1.
- The MV of \texttt{DecimalDigit} \texttt{:::}. \texttt{2 or of HexDigit} \texttt{::: 2} is 2.
- The MV of \texttt{DecimalDigit} \texttt{:::}. \texttt{3 or of HexDigit} \texttt{::: 3} is 3.
- The MV of \texttt{DecimalDigit} \texttt{:::}. \texttt{4 or of HexDigit} \texttt{::: 4} is 4.
- The MV of \texttt{DecimalDigit} \texttt{:::}. \texttt{5 or of HexDigit} \texttt{::: 5} is 5.
- The MV of \texttt{DecimalDigit} \texttt{:::}. \texttt{6 or of HexDigit} \texttt{::: 6} is 6.
- The MV of \texttt{DecimalDigit} \texttt{:::}. \texttt{7 or of HexDigit} \texttt{::: 7} is 7.
- The MV of \texttt{DecimalDigit} \texttt{:::}. \texttt{8 or of HexDigit} \texttt{::: 8} is 8.
- The MV of \texttt{DecimalDigit} \texttt{:::}. \texttt{9 or of HexDigit} \texttt{::: 9} is 9.
- The MV of \texttt{HexDigit} \texttt{:::}. \texttt{a or of HexDigit} \texttt{::: A} is 10.
- The MV of \texttt{HexDigit} \texttt{:::}. \texttt{b or of HexDigit} \texttt{::: B} is 11.
- The MV of \texttt{HexDigit} \texttt{:::}. \texttt{c or of HexDigit} \texttt{::: C} is 12.
- The MV of \texttt{HexDigit} \texttt{:::}. \texttt{d or of HexDigit} \texttt{::: D} is 13.
- The MV of \texttt{HexDigit} \texttt{:::}. \texttt{e or of HexDigit} \texttt{::: E} is 14.
- The MV of \texttt{HexDigit} \texttt{:::}. \texttt{f or of HexDigit} \texttt{::: F} is 15.
- The MV of \texttt{HexIntegerLiteral} \texttt{:::} \texttt{0x HexDigit} is the MV of \texttt{HexDigit}.
- The MV of \texttt{HexIntegerLiteral} \texttt{:::}. \texttt{0X HexDigit} is the MV of \texttt{HexDigit}.
- The MV of \texttt{HexIntegerLiteral} \texttt{:::}. \texttt{HexIntegerLiteral HexDigit} is (the MV of \texttt{HexIntegerLiteral} times 16) plus the MV of \texttt{HexDigit}.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the String numeric literal is ‘-‘, in which case the rounded value is −0. Otherwise, the rounded value must be the Number value for the MV (in the sense defined in 8.5), unless the literal includes a \texttt{StrUnsignedDecimalLiteral} and the literal has more than 20 significant digits, in which case the Number value may be either the Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A digit is \textit{significant} if it is not part of an \texttt{ExponentPart} and

- it is not 0; or
- there is a nonzero digit to its left and there is a nonzero digit, not in the \texttt{ExponentPart}, to its right.

\subsection{9.1.4 ToInteger}

The abstract operation \texttt{ToInteger} converts its argument to an integral numeric value. This abstract operation functions as follows:

1. Let \texttt{number} be the result of calling \texttt{ToNumber} on the input argument.
2. ReturnIfAbrupt(\texttt{number}).
3. If \texttt{number} is \texttt{NaN}, return +0.
4. If \texttt{number} is +0, −0, +\infty, or −\infty, return \texttt{number}.
5. Return the result of computing \(\text{sign}(\text{number}) \times \text{floor}(\text{abs}(\text{number})) \).

9.1.5 `ToInt32`: (Signed 32 Bit Integer)

The abstract operation `ToInt32` converts its argument to one of \(2^{32} \) integer values in the range \(-2^{31} \) through \(2^{31} - 1 \), inclusive. This abstract operation functions as follows:

1. Let `number` be the result of calling `ToNumber` on the input argument.
2. ReturnIfAbrupt(`number`).
3. If `number` is \(\text{NaN}, +0, -0, +\infty, \text{or } -\infty \), return \(+0 \).
4. Let `posInt` be \(\text{sign}(\text{number}) \times \text{floor}(\text{abs}(\text{number})) \).
5. Let `int32bit` be `posInt` modulo \(2^{32} \); that is, a finite integer value \(k \) of Number type with positive sign and less than \(2^{32} \) in magnitude such that the mathematical difference of `posInt` and \(k \) is mathematically an integer multiple of \(2^{32} \).
6. If `int32bit` is greater than or equal to \(2^{31} \), return `int32bit` \(- \) \(2^{32} \), otherwise return `int32bit`.

NOTE

Given the above definition of `ToInt32`:
- The `ToInt32` abstract operation is idempotent: if applied to a result that it produced, the second application leaves that value unchanged.
- `ToInt32(ToInt32(x))` is equal to `ToInt32(x)` for all values of \(x \). (It is to preserve this latter property that \(+\infty \) and \(-\infty \) are mapped to \(+0 \).)
- `ToInt32` maps \(-0\) to \(+0 \).

9.1.6 `ToUint32`: (Unsigned 32 Bit Integer)

The abstract operation `ToUint32` converts its argument to one of \(2^{32} \) integer values in the range \(0 \) through \(2^{32} - 1 \), inclusive. This abstract operation functions as follows:

1. Let `number` be the result of calling `ToNumber` on the input argument.
2. ReturnIfAbrupt(`number`).
3. If `number` is \(\text{NaN}, +0, -0, +\infty, \text{or } -\infty \), return \(+0 \).
4. Let `posInt` be \(\text{sign}(\text{number}) \times \text{floor}(\text{abs}(\text{number})) \).
5. Let `int32bit` be `posInt` modulo \(2^{32} \); that is, a finite integer value \(k \) of Number type with positive sign and less than \(2^{32} \) in magnitude such that the mathematical difference of `posInt` and \(k \) is mathematically an integer multiple of \(2^{32} \).

NOTE

Given the above definition of `ToUint32`:
- Step 5 is the only difference between `ToUint32` and `ToInt32`.
- The `ToUint32` abstract operation is idempotent: if applied to a result that it produced, the second application leaves that value unchanged.
- `ToUint32(ToUint32(x))` is equal to `ToUint32(x)` for all values of \(x \). (It is to preserve this latter property that \(+\infty \) and \(-\infty \) are mapped to \(+0 \).)
- `ToUint32` maps \(-0\) to \(+0 \).

9.1.7 `ToUint16`: (Unsigned 16 Bit Integer)

The abstract operation `ToUint16` converts its argument to one of \(2^{16} \) integer values in the range \(0 \) through \(2^{16} - 1 \), inclusive. This abstract operation functions as follows:

1. Let `number` be the result of calling `ToNumber` on the input argument.
2. ReturnIfAbrupt(`number`).
3. If `number` is \(\text{NaN}, +0, -0, +\infty, \text{or } -\infty \), return \(+0 \).
4. Let `posInt` be \(\text{sign}(\text{number}) \times \text{floor}(\text{abs}(\text{number})) \).
5. Let `int16bit` be `posInt` modulo \(2^{16} \); that is, a finite integer value \(k \) of Number type with positive sign and less than \(2^{16} \) in magnitude such that the mathematical difference of `posInt` and \(k \) is mathematically an integer multiple of \(2^{16} \).
6. Return `int16bit`.
NOTE Given the above definition of ToUint16:

- The substitution of \(2^{16}\) for \(2^{32}\) in step 4 is the only difference between ToUint32 and ToUint16.
- ToUint16 maps \(-0\) to \(+0\).

9.1.8 ToString

The abstract operation ToString converts its *argument* to a value of type String according to Table 15:

<table>
<thead>
<tr>
<th>Argument Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion Record</td>
<td>If argument is an abrupt completion, return argument. Otherwise return ToString(argument.[[value]])</td>
</tr>
<tr>
<td>Undefined</td>
<td>"undefined"</td>
</tr>
<tr>
<td>Null</td>
<td>"null"</td>
</tr>
<tr>
<td>Boolean</td>
<td>If argument is true, then return "true". If argument is false, then return "false".</td>
</tr>
<tr>
<td>Number</td>
<td>See 9.8.1.</td>
</tr>
<tr>
<td>String</td>
<td>Return argument (no conversion)</td>
</tr>
<tr>
<td>Object</td>
<td>Apply the following steps:</td>
</tr>
<tr>
<td></td>
<td>1. Let primValue be ToPrimitive(argument, hint String).</td>
</tr>
<tr>
<td></td>
<td>2. Return ToString(primValue).</td>
</tr>
</tbody>
</table>

Table 15 — ToString Conversions

9.1.8.1 ToString Applied to the Number Type

The abstract operation ToString converts a Number \(m\) to String format as follows:

1. If \(m\) is NaN, return the String "NaN".
2. If \(m\) is +0 or -0, return the String "0".
3. If \(m\) is less than zero, return the String concatenation of the String "-" and ToString(-m).
4. If \(m\) is infinity, return the String "Infinity".
5. Otherwise, let \(n, k, \text{ and } s\) be integers such that \(k \geq 1, 10^{k-1} \leq s < 10^k\), the Number value for \(s \times 10^{n-k}\) is \(m\), and \(k\) is as small as possible. Note that \(k\) is the number of digits in the decimal representation of \(s\), that \(s\) is not divisible by 10, and that the least significant digit of \(s\) is not necessarily uniquely determined by these criteria.
6. If \(k \leq n \leq 21\), return the String consisting of the \(k\) digits of the decimal representation of \(s\) (in order, with no leading zeroes), followed by \(n-k\) occurrences of the character '0'.
7. If \(0 < n \leq 21\), return the String consisting of the most significant \(n\) digits of the decimal representation of \(s\), followed by a decimal point '.', followed by the remaining \(k-n\) digits of the decimal representation of \(s\).
8. If \(-6 < n \leq 0\), return the String consisting of the character '0', followed by a decimal point '.', followed by \(-n\) occurrences of the character '0', followed by the \(k\) digits of the decimal representation of \(s\).
9. Otherwise, if \(k = 1\), return the String consisting of the single digit of \(s\), followed by lowercase character 'e', followed by a plus sign '+' or minus sign '−' according to whether \(n-1\) is positive or negative, followed by the decimal representation of the integer \(abs(n-1)\) (with no leading zeroes).
10. Return the String consisting of the most significant digit of the decimal representation of \(s\), followed by a decimal point '.', followed by the remaining \(k-1\) digits of the decimal representation of \(s\), followed by the lowercase character 'e', followed by a plus sign '+' or minus sign '−' according to whether \(n-1\) is positive or negative, followed by the decimal representation of the integer \(abs(n-1)\) (with no leading zeroes).

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative requirements of this Standard:

- If \(x\) is any Number value other than \(-0\), then ToNumber(ToString(\(x\))) is exactly the same Number value as \(x\).
- The least significant digit of \(s\) is not always uniquely determined by the requirements listed in step 5.
NOTE 2. For implementations that provide more accurate conversions than required by the rules above, it is recommended that the following alternative version of step 5 be used as a guideline:

Otherwise, let \(n, k, \) and \(s \) be integers such that \(k \geq 1, 10^{k-1} \leq s < 10^k \), the Number value for \(s \times 10^{-k} \) is \(m \), and \(k \) is as small as possible. If there are multiple possibilities for \(s \), choose the value of \(s \) for which \(s \times 10^{-k} \) is closest in value to \(m \). If there are two such possible values of \(s \), choose the one that is even. Note that \(k \) is the number of digits in the decimal representation of \(s \) and that \(s \) is not divisible by 10.

NOTE 3. Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal conversion of floating-point numbers:

9.1.9 ToObject

The abstract operation ToObject converts its argument to a value of type Object according to Table 16:

<table>
<thead>
<tr>
<th>Argument Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion Record</td>
<td>If (\text{argument}) is an abrupt completion, return (\text{argument}). Otherwise return ToObject((\text{argument}[[\text{value}]]))</td>
</tr>
<tr>
<td>Undefined</td>
<td>Throw a TypeError exception.</td>
</tr>
<tr>
<td>Null</td>
<td>Throw a TypeError exception.</td>
</tr>
<tr>
<td>Boolean</td>
<td>Return a new Boolean object whose [[PrimitiveValue]] internal property is set to the value of (\text{argument}). See 15.6 for a description of Boolean objects.</td>
</tr>
<tr>
<td>Number</td>
<td>Return a new Number object whose [[PrimitiveValue]] internal property is set to the value of (\text{argument}). See 15.7 for a description of Number objects.</td>
</tr>
<tr>
<td>String</td>
<td>Return a new String object whose [[PrimitiveValue]] internal property is set to the value of (\text{argument}). See 15.5 for a description of String objects.</td>
</tr>
<tr>
<td>Object</td>
<td>Return (\text{argument}) (no conversion).</td>
</tr>
</tbody>
</table>

9.1.10 ToPropertyKey

The abstract operation ToPropertyKey converts its argument to a value that can be used as a property key by performing the following steps:

1. ReturnIfAbrupt(\(\text{argument} \)).
2. If Type(\(\text{argument} \)) is Object, then
 a. If \(\text{argument} \) has a [[NativeBrand]] internal property whose value is NativePrivateName, then
 1. Return \(\text{argument} \).
3. Return ToString(\(\text{argument} \)).

9.2 Testing and Comparision Operations

9.2.1 CheckObjectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument is a value that cannot be converted to an Object using ToObject. It is defined by Table 17:
Table 17 — CheckObjectCoercible Results

<table>
<thead>
<tr>
<th>Argument Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion Record</td>
<td>If argument is an abrupt completion, return argument. Otherwise return CheckObjectCoercible(argument.[[value]])</td>
</tr>
<tr>
<td>Undefined</td>
<td>Throw a TypeError exception.</td>
</tr>
<tr>
<td>Null</td>
<td>Throw a TypeError exception.</td>
</tr>
<tr>
<td>Boolean</td>
<td>Return argument</td>
</tr>
<tr>
<td>Number</td>
<td>Return argument</td>
</tr>
<tr>
<td>String</td>
<td>Return argument</td>
</tr>
<tr>
<td>Object</td>
<td>Return argument</td>
</tr>
</tbody>
</table>

9.2.2 IsCallable

The abstract operation IsCallable determines if its argument, which must be an ECMAScript language value, is a callable function Object according to Table 18:

Table 18 — IsCallable Results

<table>
<thead>
<tr>
<th>Argument Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion Record</td>
<td>If argument is an abrupt completion, return argument. Otherwise return IsCallable(argument.[[value]])</td>
</tr>
<tr>
<td>Undefined</td>
<td>Return false.</td>
</tr>
<tr>
<td>Null</td>
<td>Return false.</td>
</tr>
<tr>
<td>Boolean</td>
<td>Return false.</td>
</tr>
<tr>
<td>Number</td>
<td>Return false.</td>
</tr>
<tr>
<td>String</td>
<td>Return false.</td>
</tr>
<tr>
<td>Object</td>
<td>If argument has a [[Call]] internal method, then return true, otherwise return false.</td>
</tr>
</tbody>
</table>

9.2.3 The SameValue Algorithm

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values, produces true or false. Such a comparison is performed as follows:

1. ReturnIfAbrupt(x).
2. ReturnIfAbrupt(y).
3. If Type(x) is different from Type(y), return false.
4. If Type(x) is Undefined, return true.
5. If Type(x) is Null, return true.
6. If Type(x) is Number, then:
 a. If x is NaN and y is NaN, return true.
 b. If x is +0 and y is -0, return false.
 c. If x is -0 and y is +0, return false.
 d. If x is the same Number value as y, return true.
 e. Return false.
7. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length and same characters in corresponding positions); otherwise, return false.
8. If Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.
9. Return true if x and y are the same Object value. Otherwise, return false.

9.3 Operations on Objects

9.3.1 Invoke

The abstract operation Invoke is used to call a method property of an object. The operation is called with arguments P, O, and args where P is the property key, O serves as both the lookup point for the property and
the this value of the call, and args is the list of arguments values passed to the method. This abstract operation perform, the following steps:

1. Let obj be ToObject(O).
2. ReturnIfAbrupt(obj).
3. Let func be the result of calling the [[Get]] internal method of obj passing P as the argument.
4. ReturnIfAbrupt(func).
5. If IsCallable(func) is false, throw a TypeError exception.
6. Return the result of calling the [[Call]] internal method of func passing O as the this value and argument list args.

10 Executable Code and Execution Contexts

10.1 Types of Executable Code

There are three types of ECMAScript executable code:

- **Global code** is source text that is treated as an ECMAScript Program. The global code of a particular Program does not include any source text that is parsed as part of a FunctionBody.

- **Eval code** is the source text supplied to the built-in eval function. More precisely, if the parameter to the built-in eval function is a String, it is treated as an ECMAScript Program. The eval code for a particular invocation of eval is the global code portion of that Program.

- **Function code** is source text that is parsed to supply the value of the [[Code]] internal property (see 13.5) of function and generator objects. The function code of a particular function or generator does not include any source text that is parsed as the function code of a nested function or generator.

NOTE Function code is generally provided as the bodies of Function Definitions (13.1), Arrow Function Definitions (13.2), Method Definitions (13.3) and Generator Definitions (13.4). Function code is also derived from the last argument to the Function constructor (15.3).

10.1.1 Strict Mode Code

An ECMAScript Program syntactic unit may be processed using either unrestricted or strict mode syntax and semantics. When processed using strict mode the three types of ECMAScript code are referred to as strict global code, strict eval code, and strict function code. Code is interpreted as strict mode code in the following situations:

- Global code is strict global code if it begins with a Directive Prologue that contains a Use Strict Directive (see 14.1).

- Eval code is strict eval code if it begins with a Directive Prologue that contains a Use Strict Directive or if the call to eval is a direct call (see 15.1.2.1.1) to the eval function that is contained in strict mode code.

- Function code that is part of a FunctionDeclaration, FunctionExpression, or accessor PropertyDefinition is strict function code if its FunctionDeclaration, FunctionExpression, or PropertyDefinition is contained in strict mode code or if the function code begins with a Directive Prologue that contains a Use Strict Directive.

- Function code that is supplied as the last argument to the built-in Function constructor is strict function code if the last argument is a String that when processed as a FunctionBody begins with a Directive Prologue that contains a Use Strict Directive.

The term “base code” is used to designate code that is not strict code.
10.1.2 Non-ECMAScript Functions

An ECMAScript implementation may support the evaluation of function objects whose evaluative behaviour is expressed in some implementation defined form of executable code other than via ECMAScript code. Whether a function object is an ECMAScript code function or a non-ECMAScript function is not semantically observable from the perspective of an ECMAScript code function that calls or is called by such a non-ECMAScript function.

10.2 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiers to specific variables and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical Environment is associated with some specific syntactic structure of ECMAScript code such as a FunctionDeclaration, a BlockStatement, or a Catch clause of a TryStatement and a new Lexical Environment is created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then the Lexical Environments of each of the nested functions will have as their outer Lexical Environment the Lexical Environment of the current evaluation of the surrounding function.

A global environment is a Lexical Environment which does not have an outer environment. The global environment’s outer environment reference is null. A global environment’s environment record may be prepopulated with identifier bindings and includes an associated global object whose properties provide some of the global environment’s identifier bindings. This global object is the value of a global environment’s this binding. As ECMAScript code is executed, additional properties may be added to the global object and the initial properties may be modified.

A method environment is a Lexical Environment that corresponds to the invocation of an ECMAScript function object that establishes a new this binding. A method environment also captures the state necessary to support the super method invocations.

Lexical Environments and Environment Record values are purely specification mechanisms and need not correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript program to directly access or manipulate such values.

10.2.1 Environment Records

There are two kinds of Environment Record values used in this specification: declarative environment records and object environment records. Declarative environment records are used to define the effect of ECMAScript language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch clauses that directly associate identifier bindings with ECMAScript language values. Object environment records are used to define the effect of ECMAScript elements such as Program and WithStatement that associate identifier bindings with the properties of some object.

For specification purposes Environment Record values can be thought of as existing in a simple object-oriented hierarchy where Environment Record is an abstract class with two concrete subclasses, declarative environment record and object environment record. The abstract class includes the abstract specification methods defined in Table 19. These abstract methods have distinct concrete algorithms for each of the concrete subclasses.
Table 19 — Abstract Methods of Environment Records

<table>
<thead>
<tr>
<th>Method</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>HasBinding(N)</td>
<td>Determine if an environment record has a binding for an identifier. Return true if it does and false if it does not. The String value N is the text of the identifier.</td>
</tr>
<tr>
<td>CreateMutableBinding(N, D)</td>
<td>Create a new mutable binding in an environment record. The String value N is the text of the bound name. If the optional Boolean argument D is true the binding is may be subsequently deleted.</td>
</tr>
<tr>
<td>SetMutableBinding(N, V, S)</td>
<td>Set the value of an already existing mutable binding in an environment record. The String value N is the text of the bound name. V is the value for the binding and may be a value of any ECMAScript language type. S is a Boolean flag. If S is true and the binding cannot be set throw a TypeError exception. S is used to identify strict mode references.</td>
</tr>
<tr>
<td>GetBindingValue(N, S)</td>
<td>Returns the value of an already existing binding from an environment record. The String value N is the text of the bound name. S is used to identify strict mode references. If S is true and the binding does not exist or is uninitialised throw a ReferenceError exception.</td>
</tr>
<tr>
<td>DeleteBinding(N)</td>
<td>Delete a binding from an environment record. The String value N is the text of the bound name. If a binding for N exists, remove the binding and return true. If the binding exists but cannot be removed return false. If the binding does not exist return true.</td>
</tr>
<tr>
<td>CreateVarBinding(N, D)</td>
<td>Used for global var and function bindings. Create a new mutable binding in an environment record. The String value N is the text of the bound name. If the optional Boolean argument D is true the binding is may be subsequently deleted. This is logically equivalent to CreateMutableBinding but it allows var and function declaration to receive special treatment.</td>
</tr>
<tr>
<td>HasThisBinding()</td>
<td>Determine if an environment record establishes a this binding. Return true if it does and false if it does not.</td>
</tr>
<tr>
<td>HasSuperBinding()</td>
<td>Determine if an environment record establishes a super method binding. Return true if it does and false if it does not.</td>
</tr>
<tr>
<td>WithBaseObject()</td>
<td>If this environment record is associated with a with statement, return the with object. Otherwise, return undefined.</td>
</tr>
</tbody>
</table>

10.2.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable, constant, and/or function declarations. A declarative environment record binds the set of identifiers defined by the declarations contained within its scope.

In addition to the mutable bindings supported by all Environment Records, declarative environment records also provide for immutable bindings. An immutable binding is one where the association between an identifier and a value may not be modified once it has been established. Creation and initialisation of declarative binding are distinct steps so it is possible for such bindings to exist in either an initialised or uninitialised state. Declarative environment records support the methods listed in Table 20 in addition to the Environment Record abstract specification methods:
Table 20 — Additional Methods of Declarative Environment Records

<table>
<thead>
<tr>
<th>Method</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CreateImmutableBinding(N)</td>
<td>Create a new but uninitialised immutable binding in an environment record. The String value (N) is the text of the bound name.</td>
</tr>
<tr>
<td>InitializeBinding(N,V)</td>
<td>Set the value of an already existing but uninitialised binding in an environment record. The String value (N) is the text of the bound name. (V) is the value for the binding and is a value of any ECMAScript language type.</td>
</tr>
</tbody>
</table>

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the following algorithms.

10.2.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines if the argument identifier is one of the identifiers bound by the record:

1. Let \(envRec \) be the declarative environment record for which the method was invoked.
2. If \(envRec \) has a binding for the name that is the value of \(N \), return \(\text{true} \).
3. If it does not have such a binding, return \(\text{false} \).

10.2.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates a new mutable binding for the name \(N \) that is initialised to the value \(\text{undefined} \). A binding must not already exist in this Environment Record for \(N \). If Boolean argument \(D \) is provided and has the value \(\text{true} \) the new binding is marked as being subject to deletion.

1. Let \(envRec \) be the declarative environment record for which the method was invoked.
2. Assert: \(envRec \) does not already have a binding for \(N \).
3. Create a mutable binding in \(envRec \) for \(N \) and record that it is uninitialised. If \(D \) is true record that the newly created binding may be deleted by a subsequent DeleteBinding call.
4. Return NormalCompletion(\(\text{empty} \))

10.2.1.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records attempts to change the bound value of the current binding of the identifier whose name is the value of the argument \(N \) to the value of argument \(V \). A binding for \(N \) must already exist. If the binding is an immutable binding, a \(\text{TypeError} \) is thrown if \(S \) is \(\text{true} \).

1. Let \(envRec \) be the declarative environment record for which the method was invoked.
2. Assert: \(envRec \) must have a binding for \(N \).
3. Assert: The binding for \(N \) in \(envRec \) has already been initialised.
4. If the binding for \(N \) in \(envRec \) is a mutable binding, change its bound value to \(V \).
5. Else if binding for \(N \) in \(envRec \) has not yet been initialized throw a ReferenceError exception.
6. Else this must be an attempt to change the value of an immutable binding so if \(S \) is \(\text{true} \) throw a \(\text{TypeError} \) exception.
7. Return NormalCompletion(\(\text{undefined} \)).

10.2.1.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for declarative environment records simply returns the value of its bound identifier whose name is the value of the argument \(N \). The binding must already exist. If \(S \) is \(\text{true} \) and the binding is an uninitialised immutable binding throw a \(\text{ReferenceError} \) exception.
1. Let \(\text{envRec} \) be the declarative environment record for which the method was invoked.
2. Assert: \(\text{envRec} \) has a binding for \(N \).
3. If the binding for \(N \) in \(\text{envRec} \) is an uninitialised binding, then
 a. If \(S \) is \text{false}, return the value \text{undefined}, otherwise throw a \text{ReferenceError} exception.
4. Else, return the value currently bound to \(N \) in \(\text{envRec} \).

10.2.1.15 DeleteBinding (\(N \))

The concrete Environment Record method DeleteBinding for declarative environment records can only delete bindings that have been explicitly designated as being subject to deletion.

1. Let \(\text{envRec} \) be the declarative environment record for which the method was invoked.
2. If \(\text{envRec} \) does not have a binding for the name that is the value of \(N \), return \text{true}.
3. If the binding for \(N \) in \(\text{envRec} \) is cannot be deleted, return \text{false}.
4. Remove the binding for \(N \) from \(\text{envRec} \).
5. Return \text{true}.

10.2.1.16 CreateVarBinding (\(N, D \))

The concrete Environment Record method CreateVarBinding for declarative environment records performs the same action as the CreateMutableBinding concrete method of the same environment Record.

1. Let \(\text{envRec} \) be the declarative environment record for which the method was invoked.
2. Return the result of calling \(\text{envRec} \)’s CreateMutableBinding concrete method with arguments \(N \) and \(D \).

10.2.1.17 HasThisBinding ()

Regular Declarative Environment Records do not provide a \text{this} binding.

1. Return \text{false}.

10.2.1.18 HasSuperBinding ()

Regular Declarative Environment Records do not provide a \text{super} binding.

1. Return \text{false}.

10.2.1.19 WithBaseObject()

Declarative Environment Records always return \text{undefined} as their WithBaseObject.

1. Return \text{undefined}.

10.2.1.10 CreateImmutableBinding (\(N \))

The concrete Environment Record method CreateImmutableBinding for declarative environment records creates a new immutable binding for the name \(N \) that is initialised to the value \text{undefined}. A binding must not already exist in this environment record for \(N \).

1. Let \(\text{envRec} \) be the declarative environment record for which the method was invoked.
2. Assert: \(\text{envRec} \) does not already have a binding for \(N \).
3. Create an immutable binding in \(\text{envRec} \) for \(N \) and record that it is uninitialised.

10.2.1.11 InitializeBinding (\(N, V \))

The concrete Environment Record method InitializeBinding for declarative environment records is used to set the bound value of the current binding of the identifier whose name is the value of the argument \(N \) to the value of argument \(V \). An uninitialised binding for \(N \) must already exist.

1. Let \(\text{envRec} \) be the declarative environment record for which the method was invoked.
2. Assert: \(\text{envRec} \) must have an uninitialised binding for \(N \).
3. Set the bound value for \(N \) in \(\text{envRec} \) to \(V \).
4. Record that the binding for N in $envRec$ has been initialised.

10.2.1.2 Object Environment Records

Each object environment record is associated with an object called its *binding object*. An object environment record binds the set of identifier names that directly correspond to the property names of its binding object. Property names that are not an `IdentifierName` are not included in the set of bound identifiers. Both own and inherited properties are included in the set regardless of the setting of their `[[Enumerable]]` attribute. Because properties can be dynamically added and deleted from objects, the set of identifiers bound by an object environment record may potentially change as a side-effect of any operation that adds or deletes properties.

Any bindings that are created as a result of such a side-effect are considered to be a mutable binding even if the `Writable` attribute of the corresponding property has the value `false`. Immutable bindings do not exist for object environment records.

Object environment records created for `with` statements (12.10) can provide their binding object as an implicit this value for use in function calls. The capability is controlled by a `withEnvironment` Boolean value that is associated with each object environment record. By default, the value of `withEnvironment` is `false` for any object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the following algorithms.

10.2.1.2.1 HasBinding(N)

The concrete Environment Record method `HasBinding` for object environment records determines if its associated binding object has a property whose name is the value of the argument N:

1. Let $envRec$ be the object environment record for which the method was invoked.
2. Let $bindings$ be the binding object for $envRec$.
3. Return the result of calling the `[[HasProperty]]` internal method of $bindings$, passing N as the property name.

10.2.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method `CreateMutableBinding` for object environment records creates in an environment record's associated binding object a property whose name is the String value and initialises it to the value `undefined`. A property named N must not already exist in the binding object. If Boolean argument D is provided and has the value `true` the new property's `[[Configurable]]` attribute is set to `true`, otherwise it is set to `false`.

1. Let $envRec$ be the object environment record for which the method was invoked.
2. Let $bindings$ be the binding object for $envRec$.
3. Assert: The result of calling the `[[HasProperty]]` internal method of $bindings$, passing N as the property name, is `false`.
4. If D is `true` then let `configValue` be `true` otherwise let `configValue` be `false`.
5. Return the result of calling the `[[DefineOwnProperty]]` internal method of $bindings$, passing N, Property Descriptor `[[Value]]: undefined`, `[[Writable]]: true`, `[[Enumerable]]: true`, `[[Configurable]]: configValue`, and `true` as arguments.

10.2.1.2.3 SetMutableBinding (N,V,S)

The concrete Environment Record method `SetMutableBinding` for object environment records attempts to set the value of the environment record's associated binding object's property whose name is the value of the argument N to the value of argument V. A property named N should already exist but if it does not or is not currently writable, error handling is determined by the value of the Boolean argument S.

1. Let $envRec$ be the object environment record for which the method was invoked.
2. Let $bindings$ be the binding object for $envRec$.
3. Return the result of calling the `[[Put]]` internal method of $bindings$ with arguments N, V, and S.
10.2.1.2.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the value of its associated binding object’s property whose name is the String value of the argument identifier N. The property should already exist but if it does not the result depends upon the value of the S argument:

1. Let envRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Let value be the result of calling the [[HasProperty]] internal method of bindings, passing N as the property name.
4. If value is false, then
 a. If S is false, return the value undefined, otherwise throw a ReferenceError exception.
5. Return the result of calling the [[Get]] internal method of bindings, passing N for the argument.

10.2.1.2.5 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object environment records can only delete bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the value true.

1. Let envRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of calling the [[Delete]] internal method of bindings, passing N and false as arguments.

10.2.1.2.6 CreateVarBinding (N, D)

The concrete Environment Record method CreateVarBinding for object environment records performs the same action as the CreateMutableBinding concrete method of the same environment Record.

1. Let envRec be the declarative environment record for which the method was invoked.
2. Return the result of calling envRec’s CreateMutableBinding concrete method with arguments N and D.

10.2.1.2.7 HasThisBinding ()

Regular Object Environment Records do not provide a this binding.

1. Return false.

10.2.1.2.8 HasSuperBinding ()

Regular Object Environment Records do not provide a super binding.

1. Return false.

10.2.1.2.9 WithBaseObject()

Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag is true.

1. Let envRec be the object environment record for which the method was invoked.
2. If the withEnvironment flag of envRec is true, return the binding object for envRec.
3. Otherwise, return undefined.

10.2.1.3 Method Environment Records

A method environment record is a declarative environment record that is used to represent the outer most scope of a function that provides a this binding. In addition to its identifier bindings, a method environment record contains the this value used within its scope. If such a function references super, its method environment record also contains the state that is used to perform super method invocations from within the function.
Method environment records store their `this` binding as the value of their `thisValue`. If the associated function references `super`, the environment record stores in `HomeObject` the object that the function is bound to as a method and in `MethodName` the property key used for unqualified super invocations from within the function. The default value for `HomeObject` and `MethodName` is `undefined`.

Methods environment records support all of Declarative Environment Record methods listed in Table 19 and Table 20 and share the same specifications for those methods. In addition, declarative environment records support the methods listed in Table 21:

<table>
<thead>
<tr>
<th>Method</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetThisBinding()</td>
<td>Return the value of this environment record’s <code>this</code> binding.</td>
</tr>
<tr>
<td>GetSuperBase()</td>
<td>Return the object that is the base for <code>super</code> property accesses bound in this environment record. The object is derived from this environment record’s <code>HomeObject</code> binding. If the value is Empty, return <code>undefined</code>.</td>
</tr>
<tr>
<td>GetMethodName()</td>
<td>Return the value of this environment record’s <code>MethodName</code> binding.</td>
</tr>
</tbody>
</table>

The behaviour of the additional concrete specification methods for Method Environment Records is defined by the following algorithms:

10.2.1.3.1 HasThisBinding ()

Regular Method Environment Records always provide a `this` binding.

1. Return `true`.

10.2.1.3.2 HasSuperBinding ()

1. If this environment record’s `HomeObject` has the value `Empty`, then return `false`. Otherwise, return `true`.

10.2.1.3.3 GetThisBinding ()

1. Return the value of this environment record’s `thisValue`.

10.2.1.3.4 GetSuperBase ()

1. Let `home` be the value of this environment record’s `HomeObject`.
2. If `home` has the value `Empty`, then return `undefined`.
3. Assert Type(`home`) is Object.
4. Return the value of `home`’s `[[Prototype]]` internal property.

10.2.1.3.5 GetMethodName ()

1. Return the value of this environment record’s `MethodName`.

10.2.1.4 Global Environment Records

A global environment is is used to represent the outer most scope of a ECMAScript `Program`. If such a function references `super`. A global environment provides the bindings for built-in globals (15.1), properties of the global object, and for all declarations that are not function code and that occur within `Program` productions. All ECMAScript `Program` productions that are processed in a specific Realm (10.3) share the same global environment record.

The behaviour of the additional concrete specification methods for Global Environment Records is defined by the following algorithms.
10.2.2 Lexical Environment Operations

The following abstract operations are used in this specification to operate upon lexical environments:

10.2.2.1 GetIdentifierReference (lex, name, strict)

The abstract operation GetIdentifierReference is called with a Lexical Environment lex, a String name, and a Boolean flag strict. The value of lex may be null. When called, the following steps are performed:

1. If lex is the value null, then
 a. Return a value of type Reference whose base value is undefined, whose referenced name is name, and whose strict mode flag is strict.
2. Let envRec be lex’s environment record.
3. Let exists be the result of calling the HasBinding(N) concrete method of envRec passing name as the argument N.
4. If exists is true, then
 a. Return a value of type Reference whose base value is envRec, whose referenced name is name, and whose strict mode flag is strict.
5. Else
 a. Let outer be the value of lex’s outer environment reference.
 b. Return the result of calling GetIdentifierReference passing outer, name, and strict as arguments.

10.2.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or null as argument E the following steps are performed:

1. Let env be a new Lexical Environment.
2. Let envRec be a new declarative environment record containing no bindings.
3. Set env’s environment record to be envRec.
4. Set the outer lexical environment reference of env to E.
5. Return env.

10.2.2.3 NewObjectEnvironment (O, E)

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical Environment E (or null) as arguments, the following steps are performed:

1. Let env be a new Lexical Environment.
2. Let envRec be a new object environment record containing O as the binding object.
3. Set env’s environment record to be envRec.
4. Set the outer lexical environment reference of env to E.
5. Return env.

10.2.2.4 NewMethodEnvironment (F, T)

When the abstract operation NewObjectEnvironment is called with an ECMAScript function Object F and a ECMAScript value T as arguments, the following steps are performed:

1. Let env be a new Lexical Environment.
2. Let envRec be a new method environment record containing containing no bindings.
3. Set envRec’s thisValue to T.
4. If F has a [[Home]] internal property, then
 a. Set envRec’s HomeObject to the value of F’s [[Home]] internal property.
 b. Set envRec’s MethodName to the value of F’s [[MethodName]] internal property.
5. Else, Set envRec’s home to Empty.
6. Set env’s environment record to be envRec.
7. Set the outer lexical environment reference of env to the value of F’s [[Scope]] internal property.
8. Return env.
10.3 Code Realms

Before it is evaluated, all ECMAScript code must be associated with a Realm. Conceptually, a realm consists of an set of intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that is loaded within the scope of that global environment, a Loader object that can associate new ECMAScript code with the realm, and other associated state and resources.

A Realm is specified as a Record with the fields specified in Table 22:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[intrinsics]]</td>
<td>A record whose field names are intrinsic keys and whose values are objects</td>
<td>These are the intrinsic values used by code associated with this Realm</td>
</tr>
<tr>
<td>[[this]]</td>
<td>An ECMAScript object</td>
<td>The global object for this Realm</td>
</tr>
<tr>
<td>[[globalEnv]]</td>
<td>A ECMAScript environment</td>
<td>The global environment for this Realm</td>
</tr>
<tr>
<td>[[loader]]</td>
<td>any ECMAScript identifier or empty</td>
<td>The Loader object that can associate ECMAScript code with this Realm</td>
</tr>
</tbody>
</table>

10.4 Execution Contexts

When control is transferred to code executable by an ECMAScript implementation, control is entering an execution context. At any point in time, there is at most one execution context that is actually executing code. This is known as the running execution context. A new execution context is created whenever control is transferred from the executable code associated with the currently running execution context to executable code that is not associated with that execution context. The newly created execution context records the identity of the current running execution context and then becomes the running execution context.

An execution context contains whatever implementation specific state is necessary to track the execution progress of its associated code. Each execution context has the state components listed in Table 23.

<table>
<thead>
<tr>
<th>Component</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>code evaluation state</td>
<td>Any state needed to perform, suspend, and resume evaluation of the code associated with this execution context.</td>
</tr>
<tr>
<td>PreviousContext</td>
<td>The execution context that was running when this execution context was created. The value Empty indicates that there is no such context.</td>
</tr>
<tr>
<td>Realm</td>
<td>The Realm from which associated code accesses ECMAScript resources.</td>
</tr>
</tbody>
</table>

Evaluation of code by the running execution context may be suspended at various points defined within this specification. Once the running execution context has been suspended a different execution context may become the running execution context and commence evaluating its code. At some latter time a suspended execution context may again become the running execution context and continue evaluating its code at the point where it had previously been suspended. Transition of the running execution context status among execution contexts usually occurs in stack-like last-in/first-out manner. However, some ECMAScript features require non-LIFO transitions of the running execution context.

Execution contexts for ECMAScript code have the additional state components listed in Table 24.
Table 24 — Additional State Components for ECMAScript Code Execution Contexts

<table>
<thead>
<tr>
<th>Component</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>LexicalEnvironment</td>
<td>Identifies the Lexical Environment used to resolve identifier references made by code within this execution context.</td>
</tr>
<tr>
<td>VariableEnvironment</td>
<td>Identifies the Lexical Environment whose environment record holds bindings created by VariableStatements within this execution context.</td>
</tr>
</tbody>
</table>

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical Environments. When an execution context is created its LexicalEnvironment and VariableEnvironment components initially have the same value. The value of the VariableEnvironment component never changes while the value of the LexicalEnvironment component may change during execution of code within an execution context.

In most situations only the running execution context (the top of the execution context stack) is directly manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment”, and “VariableEnvironment” are used without qualification they are in reference to those components of the running execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact of an ECMAScript implementation. It is impossible for an ECMAScript program to directly access or observe an execution context.

10.4.1 Identifier Resolution

Identifier resolution is the process of determining the binding of an IdentifierName using the LexicalEnvironment of the running execution context. During execution of ECMAScript code, Identifier Resolution is performed using the following algorithm:

1. Let env be the running execution context’s LexicalEnvironment.
2. If the syntactic production that is being evaluated is contained in a strict mode code, then let strict be true, else let strict be false.
3. Return the result of calling GetIdentifierReference abstract operation passing env, the StringValue of IdentifierName, and strict as arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced name component equal to the Identifier String.

10.4.3 GetThisEnvironment

The abstract operation GetThisEnvironment finds the lexical environment that currently supplies the binding of the keyword this. GetThisEnvironment performs the following steps:

1. Let lex be the running execution context’s LexicalEnvironment.
2. Repeat
 a. Let envRec be lex’s environment record.
 b. Let exists be the result of calling the HasThisBinding concrete method of envRec.
 c. If exists is true, then return envRec.
 d. Let outer be the value of lex’s outer environment reference.
 e. Let lex be outer.

10.4.4 This Resolution

The abstract operation ThisResolution is the process of determining the binding of the keyword this using the LexicalEnvironment of the running execution context. ThisResolution performs the following steps:

1. Let env be the result of performing the GetThisEnvironment abstract operation.
2. Return the result of calling the GetThisBinding concrete method of env.
10.5 Declaration Binding Instantiation

10.5.1 Top-Level Declaration Instantiation

NOTE When an execution context is established for evaluating non-function code declarations are instantiated in the current VariableEnvironment. Each top-level level variable, constant, or function declared in the code is instantiated.

Top-level Declaration Instantiation for base code is performed as follows:

1. Let \(env \) be the environment record component of the running execution context’s VariableEnvironment.
2. If \(code \) is eval code, then let \(\text{configurableBindings} \) be \(\text{true} \) else let \(\text{configurableBindings} \) be \(\text{false} \).
3. If \(code \) is strict code, then let \(\text{strict} \) be \(\text{true} \) else let \(\text{strict} \) be \(\text{false} \).
4. For each \(\text{FunctionDeclaration} \ f \) in \(code \), in source text order do
 a. Let \(fn \) be the \(\text{Identifier} \) in \(\text{FunctionDeclaration} \ f \).
 b. Let \(fo \) be the result of performing Instantiate Function Declaration for \(f \).
 c. Let \(\text{funcAlreadyDeclared} \) be the result of calling \(env \)’s HasBinding concrete method passing \(fn \) as the argument.
 d. If \(\text{funcAlreadyDeclared} \) is \(\text{false} \), then
 i. Call \(env \)’s CreateVarBinding concrete method passing \(fn \) and \(\text{configurableBindings} \) as the arguments.
 ii. Call \(env \)’s InitializeBinding concrete method passing \(fn \), and \(\text{undefined} \) as the arguments.
 e. Else if \(env \) is the environment record component of the global environment then
 i. Let \(go \) be the global object.
 ii. Let \(\text{existingProp} \) be the result of calling the \([\text{GetOwnProperty}]\) internal method of \(go \) with argument \(fn \).
 iii. If \(\text{existingProp} \) is \(\text{undefined} \) or \(\text{existingProp}.[\text{Configurable}] \) is \(\text{true} \), then
 i. Call the \([\text{DefineOwnProperty}]\) internal method of \(go \), passing \(fn \), Property Descriptor \([\text{Value}]: \text{undefined} \), \([\text{Writable}]: \text{true} \), \([\text{Enumerable}]: \text{true} \), \([\text{Configurable}]: \text{configurableBindings} \), and \(\text{true} \) as arguments.
 iv. Else if IsAccessorDescriptor(\(\text{existingProp} \)) or \(\text{existingProp} \) does not have attribute values \([\text{Writable}]: \text{true} \), \([\text{Enumerable}]: \text{true} \), then
 i. Throw a TypeError exception.
 f. Let \(status \) be the result of calling \(env \)’s SetMutableBinding concrete method passing \(fn, fo, \) and \(\text{strict} \) as the arguments.
 g. ReturnIfAbrupt(\(status \)).
5. For each \(\text{VariableDeclaration} \) and \(\text{VariableDeclarationNoIn} \ d \) in \(code \), in source text order do
 a. Let \(dn \) be the \(\text{Identifier} \) in \(d \).
 b. Let \(\text{varAlreadyDeclared} \) be the result of calling \(env \)’s HasBinding concrete method passing \(dn \) as the argument.
 c. If \(\text{varAlreadyDeclared} \) is \(\text{false} \), then
 i. Let \(status \) be the result of calling \(env \)’s CreateMutableBinding concrete method passing \(dn \) and \(\text{configurableBindings} \) as the arguments.
 ii. ReturnIfAbrupt(\(status \)).
 d. else if \(env \) is the environment record component of the global environment then
 i. Let \(go \) be the global object.
 ii. Let \(\text{existingProp} \) be the result of calling the \([\text{GetOwnProperty}]\) internal method of \(go \) with argument \(dn \).
 iii. If \(\text{existingProp} \) is \(\text{undefined} \), then
 i. Call the \([\text{DefineOwnProperty}]\) internal method of \(go \), passing \(dn \), Property Descriptor \([\text{Value}]: \text{undefined} \), \([\text{Writable}]: \text{true} \), \([\text{Enumerable}]: \text{true} \), \([\text{Configurable}]: \text{configurableBindings} \), and \(\text{true} \) as arguments.
10.5.2 Module Declaration Instantiation

10.5.3 Function Declaration Instantiation

NOTE When an execution context is established for evaluating function code a new Declarative Environment Record is created and bindings for each formal parameter, and each function level variable, constant, or function declared in the function are instantiated in the environment record. Formal parameters and functions are initialized as part of this process. All other bindings are initialized during execution of the function code.

Function Declaration Instantiation is performed as follows using arguments `func`, `argumentsList`, and `env`. `func` is the function object that for which the execution context is being established. `env` is the declarative environment record in which bindings are to be created.

1. Let `code` be the value of the `[[Code]]` internal property of `func`.
2. Let `strict` be the value of the `[[Strict]]` internal property of `func`.
3. Let `formals` be the value of the `[[FormalParameterList]]` internal property of `func`.
4. Let `parameterNames` be the `BoundNames` of `formals`.
5. For each string `argName` in `parameterNames`, in list order do
 a. Let `alreadyDeclared` be the result of calling `env`’s `HasBinding` concrete method passing `argName` as the argument.
 b. NOTE Duplicate parameter names can only occur in non-strict Normal functions.
 c. If `alreadyDeclared` is `false`, then
 i. Let `status` be the result of calling `env`’s `CreateMutableBinding` concrete method passing `argName` as the argument.
 ii. ReturnIfAbrupt(`status`).
 iii. If `strict` is `false`, then
 1. Call `env`’s `InitializeBinding` concrete method passing `argName`, and `undefined` as the arguments.
 6. Let `declarations` be the `LexicalDeclarations` of `code`.
7. If `strict` is `true`, then
 a. Let `ao` be the result of `CreateStrictArgumentsObject` with argument `argumentsList`.
 b. Let `formalStatus` be the result of performing Binding Initialisation for `formals` with `ao` and `env` as arguments.
8. Else,
 a. Let `names` be `BoundNames` of `formals`.
 b. NOTE Because `F` is a non-strict function it is not extended code. Hence `formals` does not contain the names of any destructuring `BindingProperties`, rest parameters, or parameters with default value initialisers.
 c. Let `ao` be the result of performing the abstract operation `CreateMappedArgumentsObject` with arguments `names`, `env`, and `argumentsList`.
 d. Let `formalStatus` be the result of performing Binding Initialisation for `formals` with `ao` and `undefined` as arguments.
9. NOTE Binding Initialisation for `formals` is performed prior to instantiating any non-parameter declarations in order to ensure that any such local declarations are not visible to any parameter initialisation code that may be evaluated.
10. ReturnIfAbrupt(`formalStatus`).
11. For each element `d` in `declarations` do
 a. For each element `dn` of the `BoundNames` of `d` do
 i. Let `alreadyDeclared` be the result of calling `env`’s `HasBinding` concrete method passing `dn` as the argument.
 ii. If `alreadyDeclared` is `false`, then
 1. If `IsConstantDeclaration` of `d` is `true`, then
 a. Call `env`’s `CreateImmutableBinding` concrete method passing `dn` as the argument.
 2. Else,
a Call env’s CreateMutableBinding concrete method passing \(dn \) and \(\text{false} \) as the arguments.

12. Let \(\text{argumentsAlreadyDeclared} \) be the result of calling env’s HasBinding concrete method passing "arguments" as the argument.

13. NOTE If \(\text{argumentsAlreadyDeclared} \) is \(\text{true} \) then the value of \(ao \) is not directly observable to ECMAScript code and need not actually exist. In that case, its use in the above steps is strictly as a device for specifying formal parameter initialisation semantics.

14. If \(\text{argumentsAlreadyDeclared} \) is \(\text{false} \), then
 a. If \(\text{strict} \) is \(\text{true} \), then
 i. Call env’s CreateImmutableBinding concrete method passing the String "arguments" as the argument.
 b. Else,
 i. Call env’s CreateImmutableBinding concrete method passing the String "arguments" as the argument.
 c. Call env’s InitializeBinding concrete method passing "arguments" and \(ao \) as arguments.

15. Let \(\text{varNames} \) be the VarDeclaredNames of code.

16. For each String \(\text{varName} \) in \(\text{varNames} \), in list order do
 a. Let \(\text{alreadyDeclared} \) be the result of calling env’s HasBinding concrete method passing \(\text{varName} \) as the argument.
 b. NOTE A VarDeclaredNames is only instantiated and initialied here if it is not also the name of a formal parameter or a FunctionDeclarations. Such duplicate declarations may only occur in non-extended code.
 c. If \(\text{alreadyDeclared} \) is \(\text{false} \), then
 i. Call env’s CreateMutableBinding concrete method passing \(\text{varName} \) as the argument.
 ii. Call env’s InitializeBinding concrete method passing \(fn \) and \(\text{undefined} \) as the arguments.

17. Let \(\text{initializedFunctions} \) be an empty List.

18. For each FunctionDeclaration \(f \) in declarations, in reverse list order do
 a. NOTE If there are multiple FunctionDeclarations for the same name, the last declaration is used. Multiple FunctionDeclarations for the same name is only valid in non-extended code.
 b. Let \(fn \) be the sole element of the BoundNames of \(f \).
 c. If \(fn \) is not an element of \(\text{initializedFunctions} \), then
 i. Append \(fn \) to \(\text{initializedFunctions} \).
 ii. Let \(fo \) be the result of performing Instantiate Function Declaration for \(f \).
 iii. Call env’s InitializeBinding concrete method passing \(fn \) and \(fo \) as the arguments.

19. Return NormalCompletion(\(\text{empty} \)).

10.5.4 Block Declaration Instantiation

NOTE When a Block or CaseBlock production is evaluated a new Declarative Environment Record is created and bindings for each block scoped variable, constant, or function declared in the block are instantiated in the environment record.

Block Declaration Instantiation is performed as follows using arguments code and env. code is the grammar production corresponding to the body of the block. env is the declarative environment record in which bindings are to be.

1. Let \(\text{declarations} \) be the LexicalDeclarations of code.
2. For each element \(d \) in \(\text{declarations} \) do
 a. For each element \(dn \) of the BoundNames of \(d \) do
 i. If IsConstantDeclaration of \(d \) is \(\text{true} \), then
 1. Call env’s CreateImmutableBinding concrete method passing \(dn \) as the argument.
 ii. Else,
 1. Call env’s CreateMutableBinding concrete method passing \(dn \) and \(\text{false} \) as the arguments.
 b. Let \(fn \) be the sole element of the BoundNames of \(f \).
 c. Let \(fo \) be the result of performing Instantiate Function Declaration for \(f \).
 d. Call env’s InitializeBinding concrete method passing \(fn \) and \(fo \) as the arguments.
10.6 Arguments Object

When function code is evaluated, an arguments object is created unless (as specified in 10.5) the identifier `arguments` occurs as an Identifier in the function’s `FormalParameterList` or occurs as the BindingIdentifier of a Declaration contained in the function code.

The abstract operation `CreateStrictArgumentsObject` called with argument list `args` performs the following steps:

1. Let `len` be the number of elements in `args`.
2. Let `obj` be the result of the abstract operation `InstantiateArgumentsObject` with argument `len`.
3. Let `indx = len - 1`.
4. Repeat while `indx >= 0`.
 a. Let `val` be the element of `args` at 0-origined list position `indx`.
 b. Call the `[[DefineOwnProperty]]` internal method on `obj` passing `ToString(indx)`, the property descriptor `[[Value]]: val, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true`, and `false` as arguments.
 c. Let `indx = indx - 1`.
5. Let `thrower` be the `[[ThrowTypeError]]` function Object (13.2.3).
6. Call the `[[DefineOwnProperty]]` internal method of `obj` with arguments "caller", PropertyDescriptor `[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false`, and `false`.
7. Call the `[[DefineOwnProperty]]` internal method of `obj` with arguments "callee", PropertyDescriptor `[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false`, and `false`.
8. Return `obj`.

The abstract operation `CreateMappedArgumentsObject` called with List `names`, environment record `env`, and argument list `args` performs the following steps:

1. Let `len` be the number of elements in `args`.
2. Let `obj` be the result of the abstract operation `InstantiateArgumentsObject` with argument `len`.
3. Let `map` be the result of creating a new ECMAScript object.
4. Set all the internal methods of `map` as specified in 8.12.
5. Let `mappedNames` be an empty List.
7. Repeat while `indx >= 0`.
 a. Let `val` be the element of `args` at 0-origined list position `indx`.
 b. Call the `[[DefineOwnProperty]]` internal method on `obj` passing `ToString(indx)`, the property descriptor `[[Value]]: val, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true`, and `false` as arguments.
 c. If `indx` is less than the number of elements in `names`, then
 i. Let `name` be the element of `names` at 0-origined list position `indx`.
 ii. If `name` is not an element of `mappedNames`, then
 1. Add `name` as an element of the list `mappedNames`.
 2. Let `g` be the result of calling the MakeArgGetter abstract operation with arguments `name` and `env`.
 3. Let `p` be the result of calling the MakeArgSetter abstract operation with arguments `name` and `env`.
 4. Call the `[[DefineOwnProperty]]` internal method of `map` passing `ToString(indx)`, the Property Descriptor `[[Set]]: p, [[Get]]: g, [[Configurable]]: true`, and `false` as arguments.
 d. Let `indx = indx - 1`.
8. If `mappedNames` is not empty, then
 a. Set the `[[ParameterMap]]` internal property of `obj` to `map`.
 b. Set the `[[Get]]`, `[[GetMethod]]`, `[[DefineOwnProperty]]`, and `[[Delete]]` internal methods of `obj` to the definitions provided below.
9. Call the `[[DefineOwnProperty]]` internal method on `obj` passing "callee", the property descriptor `[[Value]]: func, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true`, and `false` as arguments.
10. Return `obj`.

The abstract operation `InstantiateArgumentsObject` called with an argument `len` performs the following steps:
1. Let \(\text{obj} \) be the result of creating a new ECMAObject object.
2. Set all the internal methods of \(\text{obj} \) as specified in 8.12.
3. Add the [[NativeBrand]] internal propert to \(\text{obj} \) with value NativeArguments.
4. Set the [[Prototype]] internal property of \(\text{obj} \) to the standard built-in Object prototype object (15.2.4).
5. Call the [[DefineOwnProperty]] internal method on \(\text{obj} \) passing "length", the Property Descriptor
[[Value]]: len, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true, and false as arguments.
6. Return obj

The abstract operation MakeArgGetter called with String name and environment record env creates a function object that when executed returns the value bound for name in env. It performs the following steps:

1. Let bodyText be the result of concatenating the Strings "return". name, and ";".
2. Let body be the result of parsing bodyText using FunctionBody as the goal symbol.
3. Let parameters be a FormalParameterList ; [empty] production.
4. Return the result of creating a function object as described in 13.2 using parameters as
FormalParameterList, body for FunctionBody, env as Scope, and true for Strict.

The abstract operation MakeArgSetter called with String name and environment record env creates a function object that when executed sets the value bound for name in env. It performs the following steps:

1. Let paramText be the String name concatenated with the String " _arg".
2. Let parameters be the result of parsing paramText using FormalParameterList as the goal symbol.
3. Let bodyText be the String "<name> = <param>"; " with <name> replaced by the value of name and
<param> replaced by the value of paramText.
4. Let body be the result of parsing bodyText using FunctionBody as the goal symbol.
5. Return the result of creating a function object as described in 13.2 using parameters as
FormalParameterList, body for FunctionBody, env as Scope, and true for Strict.

The [[Get]] internal method of an arguments object for a non-strict mode function with formal parameters when called with a property name P performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the arguments object.
2. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the argument.
3. If the value of isMapped is undefined, then
 a. Let v be the result of calling the default [[Get]] internal method (8.12.3) on the arguments object
 passing P as the argument.
 b. If P is "caller" and v is a strict mode Function object, throw a TypeError exception.
 c. Return v.
4. Else, map contains a formal parameter mapping for P so,
 a. Return the result of calling the [[Get]] internal method of map passing P as the argument.

The [[GetOwnProperty]] internal method of an arguments object for a non-strict mode function with formal parameters when called with a property name P performs the following steps:

1. Let desc be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on the arguments
object passing P as the argument.
2. If desc is undefined then return desc.
3. Let map be the value of the [[ParameterMap]] internal property of the arguments object.
4. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the argument.
5. If the value of isMapped is not undefined, then
 a. Set desc. [[Value]] to the result of calling the [[Get]] internal method of map passing P as the argument.
6. Return desc.

The [[DefineOwnProperty]] internal method of an arguments object for a non-strict mode function with formal parameters when called with a property name P, Property Descriptor Desc, and Boolean flag Throw performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the arguments object.
2. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the argument.
3. Let allowed be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on the arguments object passing P, Desc, and false as the arguments.
4. If allowed is false, then
 a. If Throw is true then throw a TypeError exception, otherwise return false.
5. If the value of isMapped is not undefined, then
 a. If IsAccessorDescriptor(Desc) is true, then
 i. Call the [[Delete]] internal method of map passing P, and false as the arguments.
 b. Else
 i. If Desc.[[Value]] is present, then
 1. Call the [[Put]] internal method of map passing P, Desc.[[Value]], and Throw as the arguments.
 ii. If Desc.[[Writable]] is present and its value is false, then
 1. Call the [[Delete]] internal method of map passing P and false as arguments.
6. Return true.

The [[Delete]] internal method of an arguments object for a non-strict mode function with formal parameters when called with a property name P and Boolean flag Throw performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal property of the arguments object.
2. Let isMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the argument.
3. Let result be the result of calling the default [[Delete]] internal method (8.12.7) on the arguments object passing P and Throw as the arguments.
4. If result is true and the value of isMapped is not undefined, then
 a. Call the [[Delete]] internal method of map passing P, and false as the arguments.
5. Return result.

NOTE 1 For non-strict mode functions the array index (defined in 15.4) named data properties of an arguments object whose numeric name values are less than the number of formal parameters of the corresponding function object initially share their values with the corresponding argument bindings in the function’s execution context. This means that changing the property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if such a property is deleted and then redefined or if the property is changed into an accessor property. For strict mode functions, the values of the arguments object's properties are simply a copy of the arguments passed to the function and there is no dynamic linkage between the property values and the formal parameter values.

NOTE 2 The ParameterMap object and its property values are used as a device for specifying the arguments object correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are not directly accessible from ECMAScript code. An ECMAScript implementation does not need to actually create or use such objects to implement the specified semantics.

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named "caller" and "callee" which throw a TypeError exception on access. The "callee" property has a more specific meaning for non-strict mode functions and a "caller" property has historically been provided as an implementation-defined extension by some ECMAScript implementations. The strict mode definition of these properties exists to ensure that neither of them is defined in any other manner by conforming ECMAScript implementations.
11 Expressions

11.1 Primary Expressions

Syntax

PrimaryExpression : this
Identifier
Literal
ArrayLiteral
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
[Lexical goal InputElementRegExp] RegularExpressionLiteral
QuasiLiteral
(Expression)

11.1.1 The this Keyword

Runtime Semantics: Evaluation

PrimaryExpression : this
1. Let env be the result of performing the GetThisEnvironment abstract operation.
2. Return the result of calling the GetThisBinding concrete method of env.

11.1.2 Identifier Reference

Runtime Semantics: Evaluation

PrimaryExpression : Identifier
1. Let ref be the result of performing Identifier Resolution as specified in 10.3.1 using the IdentifierName corresponding to Identifier.
2. Return ref.

NOTE: The result of evaluating an Identifier is always a value of type Reference.

11.1.3 Literals

Syntax

Literal : NullLiteral
ValueLiteral

ValueLiteral :
BooleanLiteral
NumericLiteral
StringLiteral

Runtime Semantics
Runtime Semantics: Evaluation

Literal : NullLiteral

1. Return null.

ValueLiteral : BooleanLiteral

6. Return false if BooleanLiteral is the token BooleanLiteral :: false
7. Return true if BooleanLiteral is the token BooleanLiteral :: true

ValueLiteral : NumericLiteral

1. Return the number whose value is MV of NumericLiteral as defined in 7.8.3.

ValueLiteral : StringLiteral

1. Return the string whose character are the SV of StringLiteral as defined in 7.8.4.

11.1.4 Array Initialiser

Syntax

ArrayInitialiser :
 ArrayLiteral
 ArrayComprehension

11.1.4.1 Array Literal

NOTE An ArrayLiteral is an expression describing the initialisation of an Array object, using a list, of zero or more expressions each of which represents an array element, enclosed in square brackets. The elements need not be literals; they are evaluated each time the array initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element list is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another comma), the missing array element contributes to the length of the Array and increases the index of subsequent elements. Elided array elements are not defined. If an element is elided at the end of an array, that element does not contribute to the length of the Array.

Syntax

ArrayLiteral :
 [Elisionopt]
 [ElementList]
 [ElementList , Elisionopt]

ElementList :
 Elisionopt AssignmentExpression
 Elisionopt ... AssignmentExpression
 ElementList , Elisionopt AssignmentExpression
 ElementList , Elisionopt SpreadElement

Elision :
 ,
 Elision ,

SpreadElement :
 ... AssignmentExpression
Static Semantics

Static Semantics: Elision Width

\[\text{Elision} : [\text{empty}] \]

1. Return the numeric value 0.

\[\text{Elision} : , \]

2. Return the numeric value 1.

\[\text{Elision} : \text{Elision} , \]

8. Let \(\text{preceding} \) be the Elision Width of \(\text{Elision} \).
9. Return \(\text{preceding}+1 \).

Runtime Semantics

Runtime Semantics: Array Accumulation

With parameters \(\text{array} \) and \(\text{nextIndex} \).

ElementList : Elision_opt AssignmentExpression

1. Let \(\text{padding} \) be the Elision Width of \(\text{Elision}_{\text{opt}} \).
2. Let \(\text{initResult} \) be the result of evaluating \(\text{AssignmentExpression} \).
3. Let \(\text{initValue} \) be \(\text{GetValue}(\text{initResult}) \).
4. If \(\text{initValue} \) is an abrupt completion, return \(\text{initValue} \).
5. Call the \([\text{DefineOwnProperty}]\) internal method of \(\text{array} \) with arguments
 \(\text{ToString}((\text{nextIndex}+\text{padding})) \), the Property Descriptor \{ \[\text{Value}\]: \(\text{initValue} \), \[\text{Writable}\]: \text{true}, \[\text{Enumerable}\]: \text{true}, \[\text{Configurable}\]: \text{true} \}, and \text{false}.
6. Return \(\text{nextIndex}+\text{padding}+1 \).

ElementList : Elision_opt SpreadElement

1. Let \(\text{padding} \) be the Elision Width of \(\text{Elision}_{\text{opt}} \).
2. Return the result of performing Array Accumulation for \(\text{SpreadElement} \) with arguments \(\text{array} \) and \(\text{nextIndex}+\text{padding} \).

ElementList : ElementList , Elision_opt AssignmentExpression

1. Let \(\text{postIndex} \) be the result of performing Array Accumulation for \(\text{ElementList} \) with arguments \(\text{array} \) and \(\text{nextIndex} \).
2. If \(\text{postIndex} \) is an abrupt completion, return \(\text{postIndex} \).
3. Let \(\text{padding} \) be the Elision Width of \(\text{Elision}_{\text{opt}} \).
4. Let \(\text{initResult} \) be the result of evaluating \(\text{AssignmentExpression} \).
5. Let \(\text{initValue} \) be \(\text{GetValue}(\text{initResult}) \).
6. If \(\text{initValue} \) is an abrupt completion, return \(\text{initValue} \).
7. Call the \([\text{DefineOwnProperty}]\) internal method of \(\text{array} \) with arguments
 \(\text{ToString}((\text{postIndex}+\text{padding})) \) and the Property Descriptor \{ \[\text{Value}\]: \(\text{initValue} \), \[\text{Writable}\]: \text{true}, \[\text{Enumerable}\]: \text{true}, \[\text{Configurable}\]: \text{true} \}, and \text{false}.
8. Return \(\text{postIndex}+\text{padding}+1 \).

ElementList : ElementList , Elision_opt SpreadElement

1. Let \(\text{postIndex} \) be the result of performing Array Accumulation for \(\text{ElementList} \) with arguments \(\text{array} \) and \(\text{nextIndex} \).
2. If \(\text{postIndex} \) is an abrupt completion, return \(\text{postIndex} \).
3. Let \(\text{pad} \) be the result of evaluating \(\text{Elision}_{\text{opt}} \); if not present, use the numeric value zero.
4. Return the result of performing Array Accumulation for `SpreadElement` with arguments `array` and `postIndex+padding`.

SpreadElement: ...

1. Let `spreadRef` be the result of evaluating `AssignmentExpression`.
2. Let `spreadValue` be `GetValue(spreadRef)`.
3. Let `spreadObj` be `ToObject(spreadValue)`.
4. If `spreadObj` is an abrupt completion, return `spreadObj`.
5. Let `lenVal` be the result of calling the `[[Get]]` internal method of `spreadObj` with argument `"length"`.
6. Let `spreadLen` be `ToUint32(lenVal)`.
7. ReturnIfAbrupt(spreadLen).
8. Let `n=0`;
9. Repeat, while `n < spreadLen`
 a. Let `exists` be the result of calling the `[[HasProperty]]` internal method of `spreadObj` with `ToString(n)`.
 b. If `exists` is `true` then,
 i. Let `v` be the result of calling the `[[Get]]` internal method of `spreadObj` passing `ToString(n)` as the argument.
 ii. ReturnIfAbrupt(v).
 iii. Call the `[[DefineOwnProperty]]` internal method of `array` with arguments `ToString(ToUint32(nextIndex))`, Property Descriptor `[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true`, and `false`.
 c. Let `n = n+1`.
 d. Let `nextIndex = nextIndex + 1`.
10. Return `nextIndex`.

NOTE

`[[DefineOwnProperty]]` is used to ensure that own properties are defined for the array even if the standard built-in `Array` prototype object has been modified in a manner that would preclude the creation of new own properties using `[[Put]]`.

Runtime Semantics: Evaluation

ArrayLiteral: `[Elision_opt]

1. Let `array` be the result of the abstract operation `ArrayCreate (15.4)` with argument `0`.
2. Let `pad` be the Elision Width of `Elision_opt`.
3. Call the `[[Put]]` internal method of `array` with arguments `"length", pad, and false`.
4. Return `array`.

ArrayLiteral: `[ElementList]

1. Let `array` be the result of the abstract operation `ArrayCreate (15.4)` with argument `0`.
2. Let `len` be result of performing Array Accumulation for `ElementList` with arguments `array` and `0`.
3. If `len` is an abrupt completion, return `len`.
4. Call the `[[Put]]` internal method of `array` with arguments `"length", len, and false`.
5. Return `array`.

ArrayLiteral: `[ElementList, Elision_opt]

1. Let `array` be the result of the abstract operation `ArrayCreate (15.4)` with argument `0`.
2. Let `len` be result of performing Array Accumulation for `ElementList` with arguments `array` and `0`.
3. If `len` is an abrupt completion, return `len`.
4. Let `pad` be the Elision Width of `Elision_opt`.
5. Call the `[[Put]]` internal method of `array` with arguments `"length", ToUint32(pad+len), and false`.
6. Return `array`.
11.1.4.2 Array Comprehension

Syntax

ArrayComprehension :
 [AssignmentExpression ComprehensionForList]
 [AssignmentExpression ComprehensionForList if Expression]

ComprehensionForList :
 ComprehensionFor
 ComprehensionForList ComprehensionFor

ComprehensionFor :
 for ForBinding of Expression

ForBinding :
 BindingIdentifier
 BindingPattern

Runtime Semantics

Runtime Semantics: Evaluation

ArrayLiteral : [ElementList]

1. Let array be the result of the abstract operation ArrayCreate (15.4) with argument 0.
2. Let len be result of performing Array Accumulation for ElementList with arguments array and 0.
3. If len is an abrupt completion, return len.
4. Call the [[Put]] internal method of array with arguments "length", len, and false.
5. Return array.

11.1.5 Object Initialiser

NOTE An object initialiser is an expression describing the initialisation of an Object, written in a form resembling a literal. It is a list of zero or more pairs of property names and associated values, enclosed in curly braces. The values need not be literals; they are evaluated each time the object initialiser is evaluated.

Syntax

ObjectLiteral : :
 { }
 { PropertyDefinitionList }
 { PropertyDefinitionList , }

PropertyDefinitionList :
 PropertyDefinition
 PropertyDefinitionList , PropertyDefinition

PropertyDefinition :
 IdentifierName
 PropertyName : AssignmentExpression
 MethodDefinition

PropertyName :
 IdentifierName
 StringLiteral
 NumericLiteral

NOTE MethodDefinition is defined in 13.3.
Static Semantics

Static Semantics: Early Errors

ObjectLiteral : { PropertyDefinitionList }

and

ObjectLiteral : { PropertyDefinitionList , }

- It is a Syntax Error if PropertyNameList of PropertyDefinitionList contains any duplicate entries, unless one of the following conditions are true for each duplicate entry:
 1. The source code corresponding to PropertyDefinitionList is not strict code and all occurrences in the list of the duplicated entry were obtained from productions of the form PropertyDefinition : PropertyName : AssignmentExpression.
 2. The duplicated entry occurs exactly twice in the list and one occurrence was obtained from a get accessor MethodDefinition and the other occurrence was obtained from a set accessor MethodDefinition.

PropertyDefinition : MethodDefinition

- It is a Syntax Error if ReferencesSuper of MethodDefinition is true.

PropertyDefinition : IdentifierName

- It is a Syntax Error if IdentifierName is a ReservedWord.

Static Semantics: Contains

With parameter symbol.

PropertyDefinition : MethodDefinition

1. If symbol is MethodDefinition, return true.
2. Return false.

NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.

PropertyDefinition : IdentifierName

1. If symbol is a ReservedWord, return false.
2. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return true;
3. Return false.

Static Semantics: PropName

PropertyDefinition : IdentifierName

4. Return StringValue of IdentifierName.

PropertyDefinition : PropertyName : AssignmentExpression

1. Return PropName of PropertyName.

PropertyName : StringLiteral

1. Return the SV of the StringLiteral.

PropertyName : NumericLiteral
1. Let \(nbr \) be the result of forming the value of the \(\text{NumericLiteral} \).
2. Return \(\text{ToString}(nbr) \).

Static Semantics: PropertyNameList

\(\text{PropertyDefinitionList} : \text{PropertyDefinition} \)

1. Return a new List containing PropName of \(\text{PropertyDefinition} \).

\(\text{PropertyDefinitionList} : \text{PropertyDefinitionList} , \text{PropertyDefinition} \)

1. Let \(list \) be PropertyNameList of \(\text{PropertyDefinitionList} \).
2. Append PropName of \(\text{PropertyDefinition} \) to the end of \(list \).
3. Return \(list \).

Runtime Semantics

Runtime Semantics: Evaluation

\(\text{ObjectLiteral} : \{ \} \)

1. Return a new object created as if by the expression \(\text{new Object()} \) where \(\text{Object} \) is the standard built-in constructor with that name.

\(\text{ObjectLiteral} : \{ \text{PropertyDefinitionList} \} \)

1. Let \(obj \) be the result of the abstract operation \(\text{ObjectCreate}(15.2) \).
2. Let \(status \) be the result of performing Property Definition Evaluation of \(\text{PropertyDefinitionList} \) with argument \(obj \).
3. If \(status \) is an abrupt completion, return \(status \).
4. Return \(obj \).

Runtime Semantics: Property Definition Evaluation

With parameter \(object \).

\(\text{PropertyDefinitionList} : \text{PropertyDefinitionList} , \text{PropertyDefinition} \)

1. Let \(status \) be the result of performing Property Definition Evaluation of \(\text{PropertyDefinitionList} \) with argument \(object \).
2. If \(status \) is an abrupt completion, return \(status \).
3. Return the result of performing Property Definition Evaluation of \(\text{PropertyDefinition} \) with argument \(object \).

\(\text{PropertyDefinition} : \text{IdentifierName} \)

1. Let \(propName \) be PropName of \(\text{IdentifierName} \).
2. Let \(exprValue \) be the result of performing Identifier Resolution as specified in 10.3.1 using \(\text{IdentifierName} \).
3. Let \(propValue \) be \(\text{GetValue}(exprValue) \).
4. If \(propValue \) is an abrupt completion, return \(propValue \).
5. Let \(desc \) be the Property Descriptor{[[Value]]: \(propValue \), [[Writable]]: \(\text{true} \), [[Enumerable]]: \(\text{true} \), [[Configurable]]: \(\text{true} \)}
6. Return the result of calling the [[DefineOwnProperty]] internal method of \(object \) with arguments \(propName \), \(desc \), and \(\text{false} \).

\(\text{PropertyDefinition} : \text{PropertyName} : \text{AssignmentExpression} \)

1. Let \(propName \) be PropName of \(\text{PropertyName} \).
2. Let `exprValue` be the result of evaluating `AssignmentExpression`.
3. Let `propValue` be `GetValue(exprValue)`.
4. If `propValue` is an abrupt completion, return `propValue`.
5. Let `desc` be the Property Descriptor{`[[Value]]`: `propValue`, `[[Writable]]`: true, `[[Enumerable]]`: true, `[[Configurable]]`: true}
6. Return the result of calling the [[DefineOwnProperty]] internal method of `object` with arguments `propName`, `desc`, and `false`.

11.1.6 Function Defining Expressions

See 13.1 for `PrimaryExpression : FunctionExpression`.
See 13.4 for `PrimaryExpression : GeneratorExpression`.
See 13.5 for `PrimaryExpression : ClassExpression`.

11.1.7 Generator Comprehensions

Syntax

```
GeneratorComprehension : 
  ( Expression ComprehensionForList )
  ( Expression ComprehensionForList if Expression )
```

11.1.8 Regular Expression Literals

Syntax

See 7.8.5.

Static Semantics

Static Semantics: Early Errors

* `PrimaryExpression : RegularExpressionLiteral`

- It is a Syntax Error if BodyText of `RegularExpressionLiteral` can not be recognized using the goal symbol `Pattern` of the ECMAScript RegExp grammar specified in 15.10.
- It is a Syntax Error if FlagText of `RegularExpressionLiteral` contains any character other than "g", "i", "m", "u", or "y", or if it contains the same character more than once.

Runtime Semantics

Runtime Semantics: Evaluation

* `PrimaryExpression : RegularExpressionLiteral`

1. A regular expression literal evaluates to a value of the Object type that is an instance of the standard built-in constructor RegExp. This value is determined in two steps: first, the characters comprising the regular expression's `RegularExpressionBody` and `RegularExpressionFlags` production expansions are collected uninterpreted into two Strings Pattern and Flags, respectively. Then each time the literal is evaluated, a new object is created as if by the expression `new RegExp(Pattern, Flags)` where RegExp is the standard built-in constructor with that name. The newly constructed object becomes the value of the `RegularExpressionLiteral`.
11.1.9 Quasi Literals

Syntax

QuasiLiteral :
 FullQuasi
 QuasiHead Expression QuasiMiddleListopt [Lexical goal InputElementQuasiTail] QuasiTail

QuasiMiddleList :
 [Lexical goal InputElementQuasiTail] QuasiMiddle Expression
 QuasiMiddleList [Lexical goal InputElementQuasiTail] QuasiMiddle Expression

Static Semantics

With parameter raw.

QuasiLiteral : FullQuasi

1. If raw is false, then
 a. Let string be the QV of FullQuasi.
2. Else, Let string be the QRV of FullQuasi.
3. Return a List containing the single element, string.

QuasiLiteral : QuasiHead Expression [Lexical goal InputElementQuasiTail] QuasiTail

1. If raw is false, then
 a. Let head be the QV of QuasiHead.
 b. Let tail be the QV of QuasiTail.
2. Else,
 a. Let head be the QRV of QuasiHead.
 b. Let tail be the QRV of QuasiTail.
3. Return a List containing head followed by tail.

QuasiLiteral : QuasiHead Expression QuasiMiddleList [Lexical goal InputElementQuasiTail] QuasiTail

1. If raw is false, then
 a. Let head be the QV of QuasiHead.
 b. Let tail be the QV of QuasiTail.
2. Else,
 a. Let head be the QRV of QuasiHead.
 b. Let tail be the QRV of QuasiTail.
3. Let middle be QuasiStrings of QuasiMiddleList with argument raw.
4. Return a List containing head followed by the element, in order, of middle followed by tail.

QuasiMiddleList : [Lexical goal InputElementQuasiTail] QuasiMiddle Expression

1. If raw is false, then
 a. Let string be the QV of QuasiMiddle.
2. Else,
 a. Let string be the QRV of QuasiMiddle.
3. Return a List containing the single element, string.

QuasiMiddleList : QuasiMiddleList [Lexical goal InputElementQuasiTail] QuasiMiddle Expression

1. Let front be QuasiStrings of QuasiMiddleList with argument raw.
2. If raw is false, then
 a. Let last be the QV of QuasiMiddle.
3. Else,
a. Let last be the QRV of QuasiMiddle.
4. Append last as the last element of the List front.
5. Return front.

Runtime Semantics

Runtime Semantics: ArgumentListEvaluation

QuasiLiteral : FullQuasi
1. Let siteObj be the result of the abstraction operation GetQuasiCallSite passing this QuasiLiteral production as the argument.
2. Return a List containing the one element which is siteObj.

QuasiLiteral : QuasiHead Expression [Lexical goal InputElementQuasiTail] QuasiTail
1. Let siteObj be the result of the abstraction operation GetQuasiCallSite passing this QuasiLiteral production as the argument.
2. Let firstSub be the result of evaluating Expression.
3. ReturnIfAbrupt(sub).
4. Return a List whose first element is siteObj, whose second elements sub.

QuasiLiteral : QuasiHead Expression QuasiMiddleList [Lexical goal InputElementQuasiTail] QuasiTail
1. Let siteObj be the result of the abstraction operation GetQuasiCallSite passing this QuasiLiteral production as the argument.
2. Let firstSub be the result of evaluating Expression.
3. ReturnIfAbrupt(firstSub).
4. Let restSub be SubstitutionEvaluation of QuasiMiddleList.
5. ReturnIfAbrupt(restSub).
6. Assert, restSub is a List.
7. Return a List whose first element is siteObj, whose second elements is firstSub, and whose subsequent elements are the elements of restSub, in order. restSub may contain no elements.

The abstract operation GetQuasiCallSite is called with a grammar production, quasiLiteral, as an argument. It performs the following steps:

1. If a call site object for the source code corresponding to quasiLiteral has already been created by a previous call to this abstract operation, then return that call site object.
2. Let cookedStrings be QuasiStrings of quasiLiteral with argument false.
3. Let rawStrings be QuasiStrings of quasiLiteral with argument true.
4. Let count be the number of elements in the List cookedStrings.
5. Let siteObj be the result of the abstraction operation ArrayCreate with argument count.
6. Let rawObj be the result of the abstraction operation ArrayCreate with argument count.
7. Let index be 0.
8. Repeat while index < count
 a. Let prop be ToString(index).
 b. Let cookedValue be the string value at 0-based position index of the List cookedStrings.
 c. Call the [[DefineOwnProperty]] internal method of siteObj with arguments prop, {[[Value]]: cookedValue, [[Writable]]: false, [[Configurable]]: false}, and false.
 d. Let rawValue be the string value value at 0-based position index of the List rawStrings.
 e. Call the [[DefineOwnProperty]] internal method of rawObj with arguments prop, {[[Value]]: rawValue, [[Writable]]: false, [[Configurable]]: false}, and false.
 f. Let index be index+1.
9. Call the FreezeObject abstract operation with argument rawObj.
10. Call the [[DefineOwnProperty]] internal method of siteObj with arguments "raw", Property Descriptor {[[Value]]: rawObj, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}, and false.
11. Call the FreezeObject abstract operation with argument siteObj.
12. Remember an association between the source code corresponding to quasiLiteral and siteObj such that siteObj can be retrieve in subsequent calls to this abstract operation.
13. Return `siteObj`.

NOTE 1 The creation of a call site object can not result in an abrupt completion.

NOTE 2 Each `QuasiLiteral` in the program code is associated with a unique Quasi call site object that is used in the evaluation of tagged Quasis (11.2.6). The same call site object is used each time a specific tagged Quasi is evaluated. Whether call site objects are created lazily upon first evaluation of the `QuasiLiteral` or eagerly prior to first evaluation is an implementation choice that is not observable to ECMAScript code.

Runtime Semantics: SubstitutionEvaluation

`QuasiMiddleList : [Lexical goal `InputElementQuasiTail`] QuasiMiddle Expression`

1. Let `sub` be the result of evaluating `Expression`.
2. ReturnIfAbrupt(`middle`).
3. Return a List containing only `sub`.

`QuasiMiddleList : QuasiMiddleList [Lexical goal `InputElementQuasiTail`] QuasiMiddle Expression`

1. Let `preceeding` be the result of SubstitutionEvaluation of `QuasiMiddleList`.
2. ReturnIfAbrupt(`preceeding`).
3. Let `next` be the result of evaluating `Expression`.
4. ReturnIfAbrupt(`next`).
5. Append `next` as the list element of the List `preceeding`.
6. Return `preceeding`.

Runtime Semantics: Evaluation

`QuasiLiteral : FullQuasi`

1. Return the string value whose elements are the QV of `FullQuasi` as defined in 7.8.6.

`QuasiLiteral : QuasiHead Expression [Lexical goal `InputElementQuasiTail`] QuasiTail`

1. Let `head` be the QV of `QuasiHead` as defined in 7.8.6.
2. Let `sub` be the result of evaluating `Expression`.
3. Let `middle` be `ToString(sub)`.
4. ReturnIfAbrupt(`middle`).
5. Let `tail` be the QV of `QuasiTail` as defined in 7.8.6.
6. Return the string whose elements are the code units of `head` followed by the elements of `middle` followed by the code units of `tail`.

`QuasiLiteral : QuasiHead Expression QuasiMiddleList [Lexical goal `InputElementQuasiTail`] QuasiTail`

1. Let `head` be the QV of `QuasiHead` as defined in 7.8.6.
2. Let `sub` be the result of evaluating `Expression`.
3. Let `first` be `ToString(sub)`.
4. ReturnIfAbrupt(`first`).
5. Let `rest` be the result of evaluating `QuasiMiddleList`.
6. ReturnIfAbrupt(`rest`).
7. Let `tail` be the QV of `QuasiTail` as defined in 7.8.6.
8. Return the string whose elements are the code units of `head` followed by the elements of `first` followed by the code units of `rest` followed by the code units of `tail`.

`QuasiMiddleList : [Lexical goal `InputElementQuasiTail`] QuasiMiddle Expression`

4. Let `head` be the QV of `QuasiMiddle` as defined in 7.8.6.
5. Let `sub` be the result of evaluating `Expression`.
6. Let `middle` be `ToString(sub)`.
7. ReturnIfAbrupt(`middle`).
8. Return the sequence of characters consisting of the code units of head followed by the elements of middle.

\[\text{QuasiMiddleList} : \text{QuasiMiddleList} \left[\text{Lexical goal InputElementQuasiTail} \right] \text{QuasiMiddle Expression} \]

7. Let rest be the result of evaluating QuasiMiddleList.
8. ReturnIfAbrupt(rest).
9. Let middle be the QV of QuasiMiddle as defined in 7.8.6.
10. Let sub be the result of evaluating Expression.
11. Let last be ToString(sub).
12. ReturnIfAbrupt(last).
13. Return the sequence of characters consisting of the elements of rest followed by the code units of middle followed by the elements of last.

11.1.10 The Grouping Operator

Runtime Semantics: Evaluation

\[\text{PrimaryExpression} : \{ \text{Expression} \} \]

9. Return the result of evaluating Expression. This may be of type Reference.

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this is so that operators such as `delete` and `typeof` may be applied to parenthesised expressions.
LeftHandSideExpression :
 NewExpression
 CallExpression

Static Semantics

Static Semantics: Contains

With parameter symbol.

MemberExpression : MemberExpression . IdentifierName

1. If MemberExpression contains symbol is \texttt{true}, return \texttt{true}.
2. If symbol is a ReservedWord, return \texttt{false}.
3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return \texttt{true};
4. Return \texttt{false}.

MemberExpression : super . IdentifierName

1. If symbol is the ReservedWord \texttt{super}, return \texttt{true}.
2. If symbol is a ReservedWord, return \texttt{false}.
3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return \texttt{true};
4. Return \texttt{false}.

CallExpression : CallExpression . IdentifierName

1. If CallExpression contains symbol is \texttt{true}, return \texttt{true}.
2. If symbol is a ReservedWord, return \texttt{false}.
3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return \texttt{true};
4. Return \texttt{false}.

Static Semantics: \texttt{IsValidAssignmentPattern}

LeftHandSideExpression : NewExpression

1. If the source code corresponding to NewExpression cannot be parsed as ArrayLiteral, then
 a. If the source code corresponding to NewExpression cannot be parsed as ObjectLiteral, then return \texttt{false}.
2. If the source code corresponding to NewExpression cannot be parsed using AssignmentPattern (11.13.1) as the goal symbol, return \texttt{true}.
3. Return \texttt{false}.

LeftHandSideExpression : CallExpression

1. Return \texttt{false}.

11.2.1 Property Accessors

Properties are accessed by name, using either the dot notation:

\begin{verbatim}
MemberExpression . IdentifierName
CallExpression . IdentifierName
\end{verbatim}

or the bracket notation:
The dot notation is explained by the following syntactic conversion:

```plaintext
MemberExpression . IdentifierName
```

is identical in its behaviour to

```plaintext
MemberExpression [ <identifier-name-string> ]
```

and similarly

```plaintext
CallExpression . IdentifierName
```

is identical in its behaviour to

```plaintext
CallExpression [ <identifier-name-string> ]
```

where `<identifier-name-string>` is a string literal containing the same sequence of characters after processing of Unicode escape sequences as the `IdentifierName`.

Runtime Semantics: Evaluation

MemberExpression : MemberExpression [Expression]

1. Let `baseReference` be the result of evaluating `MemberExpression`.
2. Let `baseValue` be `GetValue(baseReference)`.
3. If `baseValue` is an abrupt completion, return `baseValue`.
4. Let `propertyNameReference` be the result of evaluating `Expression`.
5. Let `propertyNameValue` be `GetValue(propertyNameReference)`.
6. If `propertyNameValue` is an abrupt completion, return `propertyNameValue`.
7. Return `IfAbrupt(CheckObjectCoercible(baseValue))`.
8. Let `propertyNameString` be `ToString(propertyNameValue)`.
9. If the code matched by the syntactic production that is being evaluated is strict mode code, let `strict` be `true`, else let `strict` be `false`.
10. Return a value of type Reference whose base value is `baseValue` and whose referenced name is `propertyNameString`, and whose strict mode flag is `strict`.

CallExpression : CallExpression [Expression]

Is evaluated in exactly the same manner as `MemberExpression : MemberExpression [Expression]` except that the contained `CallExpression` is evaluated in step 1.

11.2.2 The `new` Operator

Runtime Semantics: Evaluation

NewExpression : new NewExpression

1. Let `ref` be the result of evaluating `NewExpression`.
2. Let `constructor` be `GetValue(ref)`.
3. If `constructor` is an abrupt completion, return `constructor`.
4. If `Type(constructor)` is not `Object`, throw a `TypeError` exception.
5. If `constructor` does not implement the `[[Construct]]` internal method, throw a `TypeError` exception.
6. Return the result of calling the `[[Construct]]` internal method on `constructor`, providing no arguments (that is, an empty list of arguments).

MemberExpression : new MemberExpression Arguments

1. Let `ref` be the result of evaluating `MemberExpression`.
2. Let `constructor` be `GetValue(ref)`.
3. If `constructor` is an abrupt completion, return `constructor`.
4. Let \(\text{argList} \) be the result of evaluating \(\text{Arguments} \), producing an internal list of argument values (11.2.4).
5. If \(\text{argList} \) is an abrupt completion, return \(\text{argList} \).
6. If Type(\(\text{constructor} \)) is not Object, throw a \(\text{TypeError} \) exception.
7. If \(\text{constructor} \) does not implement the \([\text{Construct}]\) internal method, throw a \(\text{TypeError} \) exception.
8. Return the result of calling the \([\text{Construct}]\) internal method on \(\text{constructor} \), providing the list \(\text{argList} \) as the argument values.

11.2.3 Function Calls

Runtime Semantics: Evaluation

\(\text{CallExpression} : \text{MemberExpression} \ \text{Arguments} \)

1. Let \(\text{ref} \) be the result of evaluating \(\text{MemberExpression} \).
2. If this \(\text{CallExpression} \) is in a tail position (13.7) then let \(\text{tailCall} \) be true, otherwise let \(\text{tailCall} \) be false.
3. Return the result of the abstract operation \(\text{EvaluateCall} \) with arguments \(\text{ref}, \text{Arguments}, \) and \(\text{tailCall} \).

\(\text{CallExpression} : \text{CallExpression} \ \text{Arguments} \)

1. Let \(\text{ref} \) be the result of evaluating \(\text{CallExpression} \).
2. If this \(\text{CallExpression} \) is in a tail position (13.7) then let \(\text{tailCall} \) be true, otherwise let \(\text{tailCall} \) be false.
3. Return the result of the abstract operation \(\text{EvaluateCall} \) with arguments \(\text{ref}, \text{Arguments}, \) and \(\text{tailCall} \).

The abstract operation \(\text{EvaluateCall} \) takes as arguments a value \(\text{ref} \), and a syntactic grammar production \(\text{arguments} \), and a Boolean argument \(\text{tailPosition} \). It performs the following steps:

1. Let \(\text{func} \) be \(\text{GetValue}(\text{ref}) \).
2. If \(\text{func} \) is an abrupt completion, return \(\text{func} \).
3. Let \(\text{argList} \) be the result of performing ArgumentListEvaluation of \(\text{Arguments} \).
4. If \(\text{argList} \) is an abrupt completion, return \(\text{argList} \).
5. If Type(\(\text{func} \)) is not Object, throw a \(\text{TypeError} \) exception.
6. If IsCallable(\(\text{func} \)) is false, throw a \(\text{TypeError} \) exception.
7. If Type(\(\text{ref} \)) is Reference, then
 a. If IsPropertyReference(\(\text{ref} \)) is true, then
 i. Let \(\text{thisValue} \) be \(\text{GetThisValue}(\text{ref}) \).
 b. Else, the base of \(\text{ref} \) is an Environment Record
 i. Let \(\text{thisValue} \) be the result of calling the WithBaseObject concrete method of GetBase(\(\text{ref} \)).
8. Else, Type(\(\text{ref} \)) is not Reference.
 a. Let \(\text{thisValue} \) be undefined.
9. If \(\text{tailPosition} \) is true, then
 a. Let \(\text{leafContext} \) be the running execution context.
 b. Let \(\text{leafCallerContext} \) be \(\text{leafContext} \)'s PreviousContext
 c. Suspend \(\text{leafContext} \).
 d. Make \(\text{leafCallerContext} \) the running execution context, however it remains in its suspended state.
 e. Assert: \(\text{leafContext} \) has no further use. It will never be activated as the running execution context.
10. Let \(\text{result} \) be the result of calling the \([\text{Call}]\) internal method on \(\text{func} \), providing \(\text{thisValue} \) as the \text{this} value and providing the list \(\text{argList} \) as the argument values.
11. Assert: If \(\text{tailPosition} \) is true, the above call will not return here, but instead evaluation will continue with the resumption of \(\text{leafCallerContext} \) as the running execution context.
12. Return \(\text{result} \).

A tail position call must either release any transient internal resources associated with the currently executing function execution context before invoking the target function or reuse those resources in support of the target function.

NOTE 1 For example, a tail position call should only grow an implementation's activation record stack by the amount that the size of the target function's activation record exceeds the size of the calling function's activation record. If the target function's activation record is smaller, then the total size of the stack should decrease.
NOTE 2 The returned result will never be of type Reference if func is an ordinary ECMAScript object. Whether calling a
exotic object can return a value of type Reference is implementation-dependent. If a value of type Reference is returned, it
must be a non-strict Property Reference.

11.2.4 The super Keyword

Static Semantics

Static Semantics: Early Errors

MemberExpression:

`super [Expression]`

`super . IdentifierName`

- It is a Syntax Error if the source code parsed with this production is global code that is not eval code.
- It is a Syntax Error if the source code parsed with this production is eval code and the source code is
 not being processed by a direct call to eval that is contained in function code.

CallExpression: `super Arguments`

- It is a Syntax Error if the source code parsed with this production is global code that is not eval code.
- It is a Syntax Error if the source code parsed with this production is eval code and the source code is
 not being processed by a direct call to eval that is contained in function code.

Runtime Semantics: Evaluation

MemberExpression: `super [Expression]`

1. Let \(env \) be the result of performing the GetThisEnvironment abstract operation.
2. If the result of calling the HasSuperBinding concrete method of \(env \) is `false`, then throw ReferenceError.
3. Let `actualThis` be the result of calling the GetThisBinding concrete method of \(env \).
4. Let `baseValue` be the result of calling the GetSuperBase concrete method of \(env \).
5. Let `propertyNameReference` be the result of evaluating \(Expression \).
6. Let `propertyNameValue` be GetValue(`propertyNameReference`).
7. Let `propertyKey` be ToPropertyDescriptor(`propertyNameValue`).
8. If the code matched by the syntactic production that is being evaluated is strict mode code, let `strict` be `true`,
else let `strict` be `false`.
9. Return a value of type Reference that is a Super Reference whose base value is `baseValue`, whose referenced
name is `propertyKey`, whose thisValue is `actualThis`, and whose strict mode flag is `strict`.

MemberExpression: `super . IdentifierName`

1. Let \(env \) be the result of performing the GetThisEnvironment abstract operation.
2. If the result of calling the HasSuperBinding concrete method of \(env \) is `false`, then throw ReferenceError.
3. Let `actualThis` be the result of calling the GetThisBinding concrete method of \(env \).
4. Let `baseValue` be the result of calling the GetSuperBase concrete method of \(env \).
5. ReturnIfAbrupt(CheckObjectCoercible(`baseValue`).
6. Let `propertyKey` be ToString(`IdentifierName`).
7. If the code matched by the syntactic production that is being evaluated is strict mode code, let `strict` be `true`,
else let `strict` be `false`.
8. Return a value of type Reference that is a Super Reference whose base value is `baseValue`, whose referenced
name is `propertyKey`, whose thisValue.

CallExpression: `super Arguments`

1. Let \(env \) be the result of performing the GetThisEnvironment abstract operation.
2. If the result of calling the HasSuperBinding concrete method of \(env \) is `false`, then throw ReferenceError.
3. Let `actualThis` be the result of calling the GetThisBinding concrete method of \(env \).
4. Let baseValue be the result of calling the GetSuperBase concrete method of env.
5. ReturnIfAbrupt(CheckObjectCoercible(baseValue)).
6. Let propertyKey be the result of calling the GetMethodName concrete method of env.
7. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true, else let strict be false.
8. Let ref be a value of type Reference that is a Super Reference whose base value is baseValue, whose referenced name is propertyKey, whose thisValue.
9. If this CallExpression is in a tail position (13.7) then let tailCall be true, otherwise let tailCall be false.
10. Return the result of the abstract operation EvaluateCall with arguments ref, Arguments, and tailCall.

11.2.5 Argument Lists

The evaluation of an argument list produces a List of values (see 8.7).

Runtime Semantics

Runtime Semantics: ArgumentListEvaluation

Arguments : ()
1. Return an empty List.

ArgumentList : AssignmentExpression
1. Let ref be the result of evaluating AssignmentExpression.
2. Let arg be GetValue(ref).
3. If arg is an abrupt completion, return arg.
4. Return a List whose sole item is arg.

ArgumentList : ... AssignmentExpression
1. Let list be an empty List.
2. Let spreadRef be the result of evaluating AssignmentExpression.
3. Let spreadValue be GetValue(spreadRef).
4. Let spreadObj be ToObject(spreadValue).
5. If spreadObj is an abrupt completion, return spreadObj.
6. Let lenVal be the result of calling the [[Get]] internal method of spreadObj with argument “length”.
7. Let spreadLen be ToUint32(lenVal).
8. ReturnIfAbrupt(spreadLen).
9. Let n = 0.
10. Repeat, while n < spreadLen
 a. Let nextArg be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the argument.
 b. ReturnIfAbrupt(nextArg).
 c. Append nextArg as the last element of list.
 d. Let n = n+1.
11. Return list.

ArgumentList : ArgumentList , AssignmentExpression
1. Let precedingArgs be the result of evaluating ArgumentList.
2. If precedingArgs is an abrupt completion, return precedingArgs.
3. Let ref be the result of evaluating AssignmentExpression.
4. Let arg be GetValue(ref).
5. If arg is an abrupt completion, return arg.
6. Return a List whose length is one greater than the length of precedingArgs and whose items are the items of precedingArgs, in order, followed at the end by arg which is the last item of the new list.

ArgumentList : ArgumentList , ... AssignmentExpression
1. Let \(\text{precedingArgs} \) be an empty List.
2. Let \(\text{spreadRef} \) be the result of evaluating \(\text{AssignmentExpression} \).
3. Let \(\text{spreadValue} \) be \(\text{GetValue} (\text{spreadRef}) \).
4. Let \(\text{spreadObj} \) be \(\text{ToObject} (\text{spreadValue}) \).
5. If \(\text{spreadObj} \) is an abrupt completion, return \(\text{spreadObj} \).
6. Let \(\text{lenVal} \) be the result of calling the \([\text{Get}]\) internal method of \(\text{spreadObj} \) with argument “\(\text{length} \).”
7. Let \(\text{spreadLen} \) be \(\text{ToUint32} (\text{lenVal}) \).
8. ReturnIfAbrupt(\(\text{spreadLen} \)).
9. Let \(n = 0 \).
10. Repeat, while \(n < \text{spreadLen} \)
 a. Let \(\text{nextArg} \) be the result of calling the \([\text{Get}]\) internal method of \(\text{spreadObj} \) passing \(\text{ToString} (n) \) as the argument.
 b. ReturnIfAbrupt(\(\text{nextArg} \)).
 c. Append \(\text{nextArg} \) as the last element of \(\text{precedingArgs} \).
 d. Let \(n = n + 1 \).
11. Return \(\text{precedingArgs} \).

11.2.6 Tagged Quasis

Runtime Semantics

The runtime semantics of production:

\[\text{CallExpression : CallExpression QuasiLiteral} \]

is identical to that of

\[\text{MemberExpression : MemberExpression QuasiLiteral} \]

but with evaluation of \(\text{CallExpression} \) substituted for the evaluation of \(\text{MemberExpression} \).

Runtime Semantics: Evaluation

\[\text{MemberExpression : MemberExpression QuasiLiteral} \]

1. Let \(\text{tagRef} \) be the result of evaluating \(\text{MemberExpression} \).
2. If this \(\text{MemberExpression} \) is in a tail position (13.7) then let \(\text{tailCall} \) be \(\text{true} \), otherwise let \(\text{tailCall} \) be \(\text{false} \).
3. Return the result of the abstract operation \(\text{EvaluateCall} \) with arguments \(\text{tagRef}, \text{QuasiLiteral}, \) and \(\text{tailCall} \).

11.3 Postfix Expressions

Syntax

\[\text{PostfixExpression : } \text{LeftHandSideExpression [no LineTerminator here]} \quad \text{++} \]
\[\text{LeftHandSideExpression [no LineTerminator here]} \quad \text{--} \]

Static Semantics

Static Semantics: Early Errors

\[\text{PostfixExpression : } \text{LeftHandSideExpression [no LineTerminator here]} \quad \text{++} \]
\[\text{LeftHandSideExpression [no LineTerminator here]} \quad \text{--} \]

- It is a Syntax Error if the \(\text{PostfixExpression} \) is contained in strict code and \(\text{LeftHandSideExpression} \) is the Identifier \text{eval} or the Identifier \text{arguments}.
- It is a Syntax Error if the \(\text{LeftHandSideExpression} \) is \(\text{PrimaryExpression : (Expression)} \) and \(\text{Expression} \)
derived a production that if used in place of \(\text{LeftHandSideExpression} \) would produce a Syntax Error according to these rules. This rule is recursively applied.
11.3.1 Postfix Increment Operator

Runtime Semantics: Evaluation

PostfixExpression : LeftHandSideExpression [no LineTerminator here] ++

1. Let lhs be the result of evaluating LeftHandSideExpression.
2. Let oldValue be ToNumber(GetValue(lhs)).
3. ReturnIfAbrupt(oldValue).
4. Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see 11.6.3).
5. Let status be PutValue(lhs, newValue).
6. ReturnIfAbrupt(status).
7. Return oldValue.

11.3.2 Postfix Decrement Operator

Runtime Semantics: Evaluation

PostfixExpression : LeftHandSideExpression [no LineTerminator here] --

1. Let lhs be the result of evaluating LeftHandSideExpression.
2. Let oldValue be ToNumber(GetValue(lhs)).
3. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the – operator (11.6.3).
4. Let status be PutValue(lhs, newValue).
5. ReturnIfAbrupt(status).
6. Return oldValue.

11.4 Unary Operators

Syntax

UnaryExpression :
 PostfixExpression
delete UnaryExpression
 void UnaryExpression
typeof UnaryExpression
 ++ UnaryExpression
 -- UnaryExpression
 + UnaryExpression
 – UnaryExpression
 ~ UnaryExpression
 ! UnaryExpression

Static Semantics

Static Semantics: Early Errors

UnaryExpression :
 delete UnaryExpression
 ++ UnaryExpression
 -- UnaryExpression

- It is a Syntax Error if the UnaryExpression is contained in strict code and the derived UnaryExpression is the Identifier eval or the Identifier arguments.
- It is a Syntax Error if the derived UnaryExpression is PrimaryExpression : (Expression) and Expression derived a production that if used in place of LeftHandSideExpression would produce a Syntax Error according to these rules. This rule is recursively applied.
11.4.1 The delete Operator

Static Semantics: Early Errors

UnaryExpression : delete UnaryExpression

- It is a Syntax Error if the UnaryExpression is contained in strict code and the UnaryExpression derives an Identifier that statically resolves to a environment record.

Runtime Semantics: Evaluation

UnaryExpression : delete UnaryExpression

1. Let ref be the result of evaluating UnaryExpression.
2. ReturnIfAbrupt(ref).
3. If Type(ref) is not Reference, return true.
4. If IsUnresolvableReference(ref) is true, then,
 a. If IsStrictReference(ref) is true, throw a SyntaxError exception.
 b. Else, return true.
5. If IsPropertyReference(ref) is true, then
 a. If IsSuperReference(ref), then throw a ReferenceError exception.
 b. Return the result of calling the [[Delete]] internal method on ToObject(GetBase(ref)) providing GetReferencedName(ref) and IsStrictReference(ref) as the arguments.
6. Else, ref is a Reference to an Environment Record binding, so
 a. Let bindings be GetBase(ref).
 b. Return the result of calling the DeleteBinding concrete method of bindings, providing GetReferencedName(ref) as the argument.

NOTE When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its UnaryExpression is a direct reference to a variable, function argument, or function name. In addition, if a delete operator occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError exception is thrown.

11.4.2 The void Operator

Runtime Semantics: Evaluation

UnaryExpression : void UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Call GetValue(expr).
3. ReturnIfAbrupt(ref).
4. Return undefined.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

11.4.3 The typeof Operator

Runtime Semantics: Evaluation

UnaryExpression : typeof UnaryExpression

1. Let val be the result of evaluating UnaryExpression.
2. If Type(val) is Reference, then
 a. If IsUnresolvableReference(val) is true, return "undefined".
 b. Let val be GetValue(val).
3. ReturnIfAbrupt(val).
4. Return a String determined by Type(val) according to Table 25.
Table 25 — typeof Operator Results

<table>
<thead>
<tr>
<th>Type of val</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined</td>
<td>"undefined"</td>
</tr>
<tr>
<td>Null</td>
<td>"object"</td>
</tr>
<tr>
<td>Boolean</td>
<td>"boolean"</td>
</tr>
<tr>
<td>Number</td>
<td>"number"</td>
</tr>
<tr>
<td>String</td>
<td>"string"</td>
</tr>
<tr>
<td>Object (native and does not implement [[Call]])</td>
<td>"object"</td>
</tr>
<tr>
<td>Object (native or host and does implement [[Call]])</td>
<td>"function"</td>
</tr>
<tr>
<td>Object (host and does not implement [[Call]])</td>
<td>Implementation-defined except may not be "undefined", "boolean", "number", or "string".</td>
</tr>
</tbody>
</table>

11.4.4 Prefix Increment Operator

Runtime Semantics: Evaluation

UnaryExpression : ++ UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ToNumber(GetValue(expr)).
3. ReturnIfAbrupt(oldValue).
4. Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see 11.6.3).
5. Let status be PutValue(expr, newValue).
6. ReturnIfAbrupt(status).
7. Return newValue.

11.4.5 Prefix Decrement Operator

Runtime Semantics: Evaluation

UnaryExpression : -- UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ToNumber(GetValue(expr)).
3. ReturnIfAbrupt(oldValue).
4. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the - operator (see 11.6.3).
5. Let status be PutValue(expr, newValue).
6. ReturnIfAbrupt(status).
7. Return newValue.

11.4.6 Unary + Operator

NOTE The unary + operator converts its operand to Number type.

Runtime Semantics: Evaluation

UnaryExpression : + UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Return ToNumber(GetValue(expr)).
11.4.7 Unary – Operator

NOTE The unary – operator converts its operand to Number type and then negates it. Negating +0 produces –0, and negating –0 produces +0.

Runtime Semantics: Evaluation

UnaryExpression : – UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ToNumber(GetValue(expr)).
3. ReturnIfAbrupt(oldValue).
4. If oldValue is NaN, return NaN.
5. Return the result of negating oldValue; that is, compute a Number with the same magnitude but opposite sign.

11.4.8 Bitwise NOT Operator (~)

Runtime Semantics: Evaluation

UnaryExpression : ~ UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ToInt32(GetValue(expr)).
3. ReturnIfAbrupt(oldValue).
4. Return the result of applying bitwise complement to oldValue. The result is a signed 32-bit integer.

11.4.9 Logical NOT Operator (!)

Runtime Semantics: Evaluation

UnaryExpression : ! UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ToBoolean(GetValue(expr)).
3. ReturnIfAbrupt(oldValue).
4. If oldValue is true, return false.
5. Return true.

11.5 Multiplicative Operators

Syntax

MultiplicativeExpression :

 UnaryExpression
 MultiplicativeExpression * UnaryExpression
 MultiplicativeExpression / UnaryExpression
 MultiplicativeExpression % UnaryExpression

Runtime Semantics: Evaluation

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands for one of the operators in the above definitions, is evaluated as follows:

1. Let left be the result of evaluating MultiplicativeExpression.
2. Let leftValue be GetValue(left).
3. ReturnIfAbrupt(lval).
4. Let right be the result of evaluating UnaryExpression.
5. Let rightValue be GetValue(right).
6. Let `lnum` be `ToNumber(leftValue)`.
7. ReturnIfAbrupt(`lnum`).
8. Let `rnum` be `ToNumber(rightValue)`.
9. ReturnIfAbrupt(`rnum`).
10. Return the result of applying the specified operation (*, /, or %) to `lnum` and `rnum`. See the Notes below 11.5.1, 11.5.2, 11.5.3.

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision arithmetic:

- If either operand is `NaN`, the result is `NaN`.
- The sign of the result is positive if both operands have the same sign, negative if the operands have different signs.
- Multiplication of an infinity by a zero results in `NaN`.
- Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule already stated above.
- Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is determined by the rule already stated above.
- In the remaining cases, where neither an infinity or `NaN` is involved, the product is computed and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large to represent, the result is then an infinity of appropriate sign. If the magnitude is too small to represent, the result is then a zero of appropriate sign. The ECMAScript language requires support of gradual underflow as defined by IEEE 754.

11.5.2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all division operations are double-precision floating-point numbers. The result of division is determined by the specification of IEEE 754 arithmetic:

- If either operand is `NaN`, the result is `NaN`.
- The sign of the result is positive if both operands have the same sign, negative if the operands have different signs.
- Division of an infinity by an infinity results in `NaN`.
- Division of an infinity by a zero results in an infinity. The sign is determined by the rule already stated above.
- Division of an infinity by a nonzero finite value results in a signed infinity. The sign is determined by the rule already stated above.
- Division of a finite value by an infinity results in zero. The sign is determined by the rule already stated above.
- Division of a zero by a zero results in `NaN`; division of zero by any other finite value results in zero, with the sign determined by the rule already stated above.
- Division of a nonzero finite value by a zero results in a signed infinity. The sign is determined by the rule already stated above.
- In the remaining cases, where neither an infinity, nor a zero, nor `NaN` is involved, the quotient is computed and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large to represent, the operation overflows; the result is then an infinity of appropriate sign. If the magnitude is too small to represent, the operation underflows and the result is a zero of the appropriate sign. The ECMAScript language requires support of gradual underflow as defined by IEEE 754.
11.5.3 Applying the % Operator

The % operator yields the remainder of its operands from an implied division; the left operand is the dividend and the right operand is the divisor.

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the “remainder” operation defined by IEEE 754. The IEEE 754 “remainder” operation computes the remainder from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the usual integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:

- If either operand is NaN, the result is NaN.
- The sign of the result equals the sign of the dividend.
- If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
- If the dividend is finite and the divisor is an infinity, the result equals the dividend.
- If the dividend is a zero and the divisor is nonzero and finite, the result is the same as the dividend.
- In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n − (d × q) where q is an integer that is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as possible without exceeding the magnitude of the true mathematical quotient of n and d. r is computed and rounded to the nearest representable value using IEEE 754 round-to-nearest mode.

11.6 Additive Operators

Syntax

AdditiveExpression : MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression − MultiplicativeExpression

11.6.1 The Addition operator (+)

NOTE The addition operator either performs string concatenation or numeric addition.

Runtime Semantics: Evaluation

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Let lref be the result of evaluating AdditiveExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating MultiplicativeExpression.
5. Let rval be GetValue(rref).
6. ReturnIfAbrupt(rval).
7. Let lprim be ToPrimitive(lval).
8. ReturnIfAbrupt(lprim).
9. Let rprim be ToPrimitive(rval).
10. ReturnIfAbrupt(rprim).
11. If Type(lprim) is String or Type(rprim) is String, then
 a. Return the String that is the result of concatenating ToString(lprim) followed by ToString(rprim)
12. Return the result of applying the addition operation to \(\text{ToNumber}(lprim) \) and \(\text{ToNumber}(rprim) \). See the Note below 11.6.3.

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except Date objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the hint String were given. Exotic objects may handle the absence of a hint in some other manner.

NOTE 2 Step 7 differs from step 3 of the comparison algorithm for the relational operators (11.8.1), by using the logical-or operation instead of the logical-and operation.

11.6.2 The Subtraction Operator (\(- \))

Runtime Semantics: Evaluation

\[\text{AdditiveExpression} : \text{AdditiveExpression} - \text{MultiplicativeExpression} \]

1. Let \(lref \) be the result of evaluating AdditiveExpression.
2. Let \(lval \) be Get\(\text{Value}(lref) \).
3. ReturnIfAbrupt\((lval) \).
4. Let \(rref \) be the result of evaluating MultiplicativeExpression.
5. Let \(rval \) be Get\(\text{Value}(rref) \).
6. ReturnIfAbrupt\((rval) \).
7. Let \(lnum \) be ToNumber\((lval) \).
8. ReturnIfAbrupt\((lnum) \).
9. Let \(rnum \) be ToNumber\((rval) \).
10. ReturnIfAbrupt\((rnum) \).
11. Return the result of applying the subtraction operation to \(lnum \) and \(rnum \). See the note below 11.6.3.

11.6.3 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of the operands. The – operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:

- If either operand is \(\text{NaN} \), the result is \(\text{NaN} \).
- The sum of two infinities of opposite sign is \(\text{NaN} \).
- The sum of two infinities of the same sign is the infinity of that sign.
- The sum of an infinity and a finite value is equal to the infinite operand.
- The sum of two negative zeroes is \(-0\). The sum of two positive zeroes, or of two zeroes of opposite sign, is \(+0\).
- The sum of a zero and a nonzero finite value is equal to the nonzero operand.
- The sum of two nonzero finite values of the same magnitude and opposite sign is \(+0\).
- In the remaining cases, where neither an infinity, nor a zero, nor \(\text{NaN} \) is involved, and the operands have the same sign or have different magnitudes, the sum is computed and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large to represent, the operation overflows and the result is then an infinity of appropriate sign. The ECMAScript language requires support of gradual underflow as defined by IEEE 754.

The – operator performs subtraction when applied to two operands of numeric type, producing the difference of its operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric operands \(a \) and \(b \), it is always the case that \(a - b \) produces the same result as \(a + (-b) \).
11.7 Bitwise Shift Operators

Syntax

\[
\text{ShiftExpression} : \\
\quad \text{AdditiveExpression} \\
\quad \text{ShiftExpression} \ll \text{AdditiveExpression} \\
\quad \text{ShiftExpression} \gg \text{AdditiveExpression} \\
\quad \text{ShiftExpression} \ggg \text{AdditiveExpression}
\]

11.7.1 The Left Shift Operator (\(<\ll\)\)

NOTE Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

Runtime Semantics: Evaluation

\[
\text{ShiftExpression} : \text{ShiftExpression} \ll \text{AdditiveExpression}
\]

1. Let \(lref\) be the result of evaluating \(\text{ShiftExpression}\).
2. Let \(lval\) be \(\text{GetValue}(lref)\).
3. ReturnIfAbrupt(lval).
4. Let \(rref\) be the result of evaluating \(\text{AdditiveExpression}\).
5. Let \(rval\) be \(\text{GetValue}(rref)\).
6. ReturnIfAbrupt(rval).
7. Let \(lnum\) be \(\text{ToInt32}(lval)\).
8. ReturnIfAbrupt(lnum).
9. Let \(rnum\) be \(\text{ToUint32}(rval)\).
10. ReturnIfAbrupt(rnum).
11. Let \(shiftCount\) be the result of masking out all but the least significant 5 bits of \(rnum\), that is, compute \(rnum \& 0x1F\).
12. Return the result of left shifting \(lnum\) by \(shiftCount\) bits. The result is a signed 32-bit integer.

11.7.2 The Signed Right Shift Operator (\(\gg\))

NOTE Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right operand.

Runtime Semantics: Evaluation

\[
\text{ShiftExpression} : \text{ShiftExpression} \gg \text{AdditiveExpression}
\]

1. Let \(lref\) be the result of evaluating \(\text{ShiftExpression}\).
2. Let \(lval\) be \(\text{GetValue}(lref)\).
3. ReturnIfAbrupt(lval).
4. Let \(rref\) be the result of evaluating \(\text{AdditiveExpression}\).
5. Let \(rval\) be \(\text{GetValue}(rref)\).
6. ReturnIfAbrupt(rval).
7. Let \(lnum\) be \(\text{ToInt32}(lval)\).
8. ReturnIfAbrupt(lnum).
9. Let \(rnum\) be \(\text{ToUint32}(rval)\).
10. ReturnIfAbrupt(rnum).
11. Let \(shiftCount\) be the result of masking out all but the least significant 5 bits of \(rnum\), that is, compute \(rnum \& 0x1F\).
12. Return the result of performing a sign-extending right shift of \(lnum\) by \(shiftCount\) bits. The most significant bit is propagated. The result is a signed 32-bit integer.
11.7.3 The Unsigned Right Shift Operator (\(\gg\gg\))

NOTE Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right operand.

Runtime Semantics: Evaluation

\[\text{ShiftExpression} : \text{ShiftExpression} \gg\gg \text{AdditiveExpression}\]

1. Let \(lref\) be the result of evaluating \(\text{ShiftExpression}\).
2. Let \(lval\) be \(\text{GetValue}(lref)\).
3. ReturnIfAbrupt(lval).
4. Let \(rref\) be the result of evaluating \(\text{AdditiveExpression}\).
5. Let \(rval\) be \(\text{GetValue}(rref)\).
6. ReturnIfAbrupt(rval).
7. Let \(l\text{num}\) be \(\text{ToUint32}(lval)\).
8. ReturnIfAbrupt(lnum).
9. Let \(r\text{num}\) be \(\text{ToUint32}(rval)\).
10. ReturnIfAbrupt(rnum).
11. Let \(\text{shiftCount}\) be the result of masking out all but the least significant 5 bits of \(r\text{num}\), that is, compute \(r\text{num} \& 0x1F\).
12. Return the result of performing a zero-filling right shift of \(l\text{num}\) by \(\text{shiftCount}\) bits. Vacated bits are filled with zero. The result is an unsigned 32-bit integer.

11.8 Relational Operators

NOTE The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship named by the operator holds between its two operands.

Syntax

\[\text{RelationalExpression} : \text{ShiftExpression}\]

\[\text{RelationalExpression} < \text{ShiftExpression}\]

\[\text{RelationalExpression} > \text{ShiftExpression}\]

\[\text{RelationalExpression} \leq \text{ShiftExpression}\]

\[\text{RelationalExpression} \geq \text{ShiftExpression}\]

\[\text{RelationalExpression instanceof ShiftExpression}\]

\[\text{RelationalExpression noIn ShiftExpression}\]

\[\text{RelationalExpression noIn < ShiftExpression}\]

\[\text{RelationalExpression noIn > ShiftExpression}\]

\[\text{RelationalExpression noIn \leq ShiftExpression}\]

\[\text{RelationalExpression noIn \geq ShiftExpression}\]

\[\text{RelationalExpression noIn instanceof ShiftExpression}\]

The semantics of the \(\text{RelationalExpression noIn}\) productions are the same as the \(\text{RelationalExpression}\) productions except that the contained \(\text{RelationalExpression noIn}\) is used in place of the contained \(\text{RelationalExpression}\).

NOTE The “\(\text{NoIn}\)” variants are needed to avoid confusing the \text{in} operator in a relational expression with the \text{in} operator in a for statement.
11.8.1 Runtime Semantics

Runtime Semantics: The Abstract Relational Comparison Algorithm

The comparison \(x < y \), where \(x \) and \(y \) are values, produces true, false, or undefined (which indicates that at least one operand is NaN). In addition to \(x \) and \(y \) the algorithm takes a Boolean flag named LeftFirst as a parameter. The flag is used to control the order in which operations with potentially visible side-effects are performed upon \(x \) and \(y \). It is necessary because ECMAScript specifies left to right evaluation of expressions. The default value of LeftFirst is true and indicates that the \(x \) parameter corresponds to an expression that occurs to the left of the \(y \) parameter’s corresponding expression. If LeftFirst is false, the reverse is the case and operations must be performed upon \(y \) before \(x \). Such a comparison is performed as follows:

1. ReturnIfAbrupt(x).
2. ReturnIfAbrupt(y).
3. If the LeftFirst flag is true, then
 a. Let \(px \) be the result of calling ToPrimitive(\(x \), hint Number).
 b. ReturnIfAbrupt(\(px \)).
 c. Let \(py \) be the result of calling ToPrimitive(\(y \), hint Number).
 d. ReturnIfAbrupt(\(py \)).
4. Else the order of evaluation needs to be reversed to preserve left to right evaluation
 a. Let \(py \) be the result of calling ToPrimitive(\(y \), hint Number).
 b. ReturnIfAbrupt(\(py \)).
 c. Let \(px \) be the result of calling ToPrimitive(\(x \), hint Number).
 d. ReturnIfAbrupt(\(px \)).
5. If it is not the case that both Type(\(px \)) is String and Type(\(py \)) is String, then
 a. Let \(nx \) be the result of calling ToNumber(\(px \)). Because \(px \) and \(py \) are primitive values evaluation order is not important.
 b. Let \(ny \) be the result of calling ToNumber(\(py \)).
 c. If \(nx \) is NaN, return undefined.
 d. If \(ny \) is NaN, return undefined.
 e. If \(nx \) and \(ny \) are the same Number value, return false.
 f. If \(nx \) is +0 and \(ny \) is −0, return false.
 g. If \(nx \) is −0 and \(ny \) is +0, return false.
 h. If \(nx \) is +∞, return false.
 i. If \(nx \) is −∞, return true.
 j. If \(ny \) is −∞, return false.
 k. If \(nx \) is −∞, return true.
 l. If the mathematical value of \(nx \) is less than the mathematical value of \(ny \) —note that these mathematical values are both finite and not both zero—return true. Otherwise, return false.
6. Else, both \(px \) and \(py \) are Strings
 a. If \(py \) is a prefix of \(px \), return false. (A String value \(p \) is a prefix of String value \(q \) if \(q \) can be the result of concatenating \(p \) and some other String \(r \). Note that any String is a prefix of itself, because \(r \) may be the empty String.)
 b. If \(px \) is a prefix of \(py \), return true.
 c. Let \(k \) be the smallest nonnegative integer such that the character at position \(k \) within \(px \) is different from the character at position \(k \) within \(py \). (There must be such a \(k \), for neither String is a prefix of the other.)
 d. Let \(m \) be the integer that is the code unit value for the character at position \(k \) within \(px \).
 e. Let \(n \) be the integer that is the code unit value for the character at position \(k \) within \(py \).
 f. If \(m < n \), return true. Otherwise, return false.

NOTE 1 Step 3 differs from step 7 in the algorithm for the addition operator \(+ \) (11.6.1) in using and instead of or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no attempt to use the more complex, semantically oriented definitions of character or string equality and collating order defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from that on sequences of code point values.
Runtime Semantics: Evaluation

RelationalExpression : RelationalExpression < ShiftExpression

1. Let lref be the result of evaluating RelationalExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating ShiftExpression.
5. Let rval be GetValue(rref).
6. Let r be the result of performing abstract relational comparison lval < rval. (see 11.8.5)
7. ReturnIfAbrupt(r).
8. If r is undefined, return false. Otherwise, return r.

RelationalExpression : RelationalExpression > ShiftExpression

1. Let lref be the result of evaluating RelationalExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating ShiftExpression.
5. Let rval be GetValue(rref).
6. Let r be the result of performing abstract relational comparison rval < lval with LeftFirst equal to false..
7. ReturnIfAbrupt(r).
8. If r is undefined, return false. Otherwise, return r.

RelationalExpression : RelationalExpression <= ShiftExpression

1. Let lref be the result of evaluating RelationalExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating ShiftExpression.
5. Let rval be GetValue(rref).
6. Let r be the result of performing abstract relational comparison rval < lval with LeftFirst equal to false..
7. ReturnIfAbrupt(r).
8. If r is true or undefined, return false. Otherwise, return true.

RelationalExpression : RelationalExpression >= ShiftExpression

1. Let lref be the result of evaluating RelationalExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating ShiftExpression.
5. Let rval be GetValue(rref).
6. Let r be the result of performing abstract relational comparison lval < rval.
7. ReturnIfAbrupt(r).
8. If r is true or undefined, return false. Otherwise, return true.

RelationalExpression: RelationalExpression instanceof ShiftExpression

1. Let lref be the result of evaluating RelationalExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating ShiftExpression.
5. Let rval be GetValue(rref).
6. ReturnIfAbrupt(rval).
7. If Type(rval) is not Object, throw a TypeError exception.
8. If rval does not have a [[HasInstance]] internal method, throw a TypeError exception.
9. Return the result of calling the [[HasInstance]] internal method of rval with argument lval.

RelationalExpression : RelationalExpression in ShiftExpression
1. Let \(lref \) be the result of evaluating \(\text{RelationalExpression} \).
2. Let \(lval \) be GetValue(\(lref \)).
3. ReturnIfAbrupt(\(lval \)).
4. Let \(rref \) be the result of evaluating \(\text{ShiftExpression} \).
5. Let \(rval \) be GetValue(\(rref \)).
6. ReturnIfAbrupt(\(rval \)).
7. If Type(\(rval \)) is not Object, throw a \textbf{TypeError} exception.
8. Return the result of calling the \([\text{HasProperty}]\) internal method of \(rval \) with argument ToString(\(lval \)).

11.9 Equality Operators

NOTE The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship named by the operator holds between its two operands.

Syntax

\[
\text{EqualityExpression} : \quad \text{RelationalExpression} \\
\text{EqualityExpression} \quad == \quad \text{RelationalExpression} \\
\text{EqualityExpression} \quad != \quad \text{RelationalExpression} \\
\text{EqualityExpression} \quad === \quad \text{RelationalExpression} \\
\text{EqualityExpression} \quad !== \quad \text{RelationalExpression} \\
\text{EqualityExpression} \quad \text{[no LineTerminator here]} \quad \text{is} \quad \text{RelationalExpression} \\
\text{EqualityExpression} \quad \text{[no LineTerminator here]} \quad \text{isn't} \quad \text{RelationalExpression}
\]

\[
\text{EqualityExpressionNoIn} : \quad \text{RelationalExpressionNoIn} \\
\text{EqualityExpressionNoIn} \quad == \quad \text{RelationalExpressionNoIn} \\
\text{EqualityExpressionNoIn} \quad != \quad \text{RelationalExpressionNoIn} \\
\text{EqualityExpressionNoIn} \quad === \quad \text{RelationalExpressionNoIn} \\
\text{EqualityExpressionNoIn} \quad !== \quad \text{RelationalExpressionNoIn} \\
\text{EqualityExpressionNoIn} \quad \text{[no LineTerminator here]} \quad \text{is} \quad \text{RelationalExpressionNoIn} \\
\text{EqualityExpressionNoIn} \quad \text{[no LineTerminator here]} \quad \text{isn't} \quad \text{RelationalExpressionNoIn}
\]

The semantics of the \textit{EqualityExpressionNoIn} productions are the same as the \textit{EqualityExpression} productions except that the contained \textit{EqualityExpressionNoIn} and \textit{RelationalExpressionNoIn} are used in place of the contained \textit{EqualityExpression} and \textit{RelationalExpression}, respectively.

11.9.1 Runtime Semantics

Runtime Semantics: The Abstract Equality Comparison Algorithm

The comparison \(x == y \), where \(x \) and \(y \) are values, produces \textit{true} or \textit{false}. Such a comparison is performed as follows:

1. ReturnIfAbrupt(\(x \)).
2. ReturnIfAbrupt(\(y \)).
3. If Type(\(x \)) is the same as Type(\(y \)), then
 a. If Type(\(x \)) is Undefined, return \textit{true}.
 b. If Type(\(x \)) is Null, return \textit{true}.
 c. If Type(\(x \)) is Number, then
 i. If \(x \) is \textit{NaN}, return \textit{false}.
 ii. If \(y \) is \textit{NaN}, return \textit{false}.
 iii. If \(x \) is the same Number value as \(y \), return \textit{true}.
 iv. If \(x \) is +0 and \(y \) is −0, return \textit{true}.
 v. If \(x \) is −0 and \(y \) is +0, return \textit{true}.
 vi. Return \textit{false}.
 d. If Type(\(x \)) is String, then return \textit{true} if \(x \) and \(y \) are exactly the same sequence of characters (same length and same characters in corresponding positions). Otherwise, return \textit{false}.
e. If Type(x) is Boolean, return true if \(x \) and \(y \) are both true or both false. Otherwise, return false.
 f. Return true if \(x \) and \(y \) are the same Object value. Otherwise, return false.
4. If \(x \) is null and \(y \) is undefined, return true.
5. If \(x \) is undefined and \(y \) is null, return true.
6. If Type(\(x \)) is Number and Type(\(y \)) is String, return the result of the comparison \(x \equiv \text{ToNumber}(y) \).
7. If Type(\(x \)) is String and Type(\(y \)) is Number, return the result of the comparison ToNumber(\(x \)) \(\equiv y \).
8. If Type(\(x \)) is Boolean, return the result of the comparison ToNumber(\(x \)) \(\equiv y \).
9. If Type(\(y \)) is Boolean, return the result of the comparison \(x \equiv \text{ToNumber}(y) \).
10. If Type(\(x \)) is either String or Number and Type(\(y \)) is Object, return the result of the comparison \(x \equiv \text{ToPrimitive}(y) \).
11. If Type(\(x \)) is Object and Type(\(y \)) is either String or Number, return the result of the comparison \(\text{ToPrimitive}(x) \equiv y \).
12. Return false.

NOTE 1 Given the above definition of equality:
 - String comparison can be forced by: "" + \(a \) == "" + \(b \).
 - Numeric comparison can be forced by: +\(a \) == +\(b \).
 - Boolean comparison can be forced by: !\(a \) == !\(b \).

NOTE 2 The equality operators maintain the following invariants:
 - \(A \neq B \) is equivalent to !(\(A == B \)).
 - \(A == B \) is equivalent to \(B == A \), except in the order of evaluation of \(A \) and \(B \).

NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String objects, each representing the same String value; each String object would be considered equal to the String value by the == operator, but the two String objects would not be equal to each other. For Example:
 - new String("\(a \)") == "\(a \)" and "\(a \)" == new String("\(a \)") are both true.
 - new String("\(a \)") == new String("\(a \)") is false.

NOTE 4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to use the more complex, semantically oriented definitions of character or string equality and collating order defined in the Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form.

Runtime Semantics: The Strict Equality Comparison Algorithm

The comparison \(x \equiv y \), where \(x \) and \(y \) are values, produces true or false. Such a comparison is performed as follows:
1. ReturnIfAbrupt(\(x \)).
2. ReturnIfAbrupt(\(y \)).
3. If Type(\(x \)) is different from Type(\(y \)), return false.
4. If Type(\(x \)) is Undefined, return true.
5. If Type(\(x \)) is Null, return true.
6. If Type(\(x \)) is Number, then
 a. If \(x \) is NaN, return false.
 b. If \(y \) is NaN, return false.
 c. If \(x \) is the same Number value as \(y \), return true.
 d. If \(x \) is +0 and \(y \) is -0, return true.
 e. If \(x \) is -0 and \(y \) is +0, return true.
 f. Return false.
7. If Type(\(x \)) is String, then return true if \(x \) and \(y \) are exactly the same sequence of characters (same length and same characters in corresponding positions); otherwise, return false.
8. If Type(\(x \)) is Boolean, return true if \(x \) and \(y \) are both true or both false; otherwise, return false.
9. Return true if \(x \) and \(y \) are the same Object value. Otherwise, return false.

NOTE This algorithm differs from the SameValue Algorithm (9.12) in its treatment of signed zeroes and NaNs.
Runtime Semantics: Evaluation

EqualityExpression : EqualityExpression == RelationalExpression

1. Let lref be the result of evaluating EqualityExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating RelationalExpression.
5. Let rval be GetValue(rref).
6. Return the result of performing abstract equality comparison algorithm rval == lval.

EqualityExpression : EqualityExpression != RelationalExpression

1. Let lref be the result of evaluating EqualityExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating RelationalExpression.
5. Let rval be GetValue(rref).
6. ReturnIfAbrupt(rval).
7. Let r be the result of performing abstract equality comparison algorithm rval == lval.
8. If r is true, return false. Otherwise, return true.

EqualityExpression : EqualityExpression === RelationalExpression

1. Let lref be the result of evaluating EqualityExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating RelationalExpression.
5. Let rval be GetValue(rref).
6. Return the result of performing the strict equality comparison algorithm rval === lval.

EqualityExpression : EqualityExpression !== RelationalExpression

1. Let lref be the result of evaluating EqualityExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating RelationalExpression.
5. Let rval be GetValue(rref).
6. ReturnIfAbrupt(rval).
7. Let r be the result of performing strict equality comparison algorithm rval === lval.
8. If r is true, return false. Otherwise, return true.

EqualityExpression : EqualityExpression is RelationalExpression [no LineTerminator here]

1. Let lref be the result of evaluating EqualityExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating RelationalExpression.
5. Let rval be GetValue(rref).
6. Return the result of performing SameValue(rval, lval).

EqualityExpression : EqualityExpression isnt RelationalExpression [no LineTerminator here]

1. Let lref be the result of evaluating EqualityExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating RelationalExpression.
5. Let rval be GetValue(rref).
6. Let r be the result of performing SameValue(rval, lval).
7. ReturnIfAbrupt(r).
8. If r is true, return false. Otherwise, return true.

11.10 Binary Bitwise Operators

Syntax

BitwiseANDExpression :
 EqualityExpression
 BitwiseANDExpression & EqualityExpression

BitwiseANDExpressionNoIn :
 EqualityExpressionNoIn
 BitwiseANDExpressionNoIn & EqualityExpressionNoIn

BitwiseXORExpression :
 BitwiseANDExpression
 BitwiseXORExpression ^ BitwiseANDExpression

BitwiseXORExpressionNoIn :
 BitwiseANDExpressionNoIn
 BitwiseXORExpressionNoIn ^ BitwiseANDExpressionNoIn

BitwiseORExpression :
 BitwiseXORExpression
 BitwiseORExpression | BitwiseXORExpression

BitwiseORExpressionNoIn :
 BitwiseXORExpressionNoIn
 BitwiseORExpressionNoIn | BitwiseXORExpressionNoIn

Runtime Semantics: Evaluation

The production \(A : A \circ B \), where \(\circ \) is one of the bitwise operators in the productions above, is evaluated as follows:

1. Let lref be the result of evaluating \(A \).
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating \(B \).
5. Let rval be GetValue(rref).
6. ReturnIfAbrupt(rval).
7. Let lnum be ToInt32(lval).
8. ReturnIfAbrupt(lnum).
9. Let rnum be ToInt32(rval).
10. ReturnIfAbrupt(rnum).
11. Return the result of applying the bitwise operator \(\circ \) to \(lnum \) and \(rnum \). The result is a signed 32 bit integer.

11.11 Binary Logical Operators

Syntax

LogicalANDExpression :
 BitwiseORExpression
 LogicalANDExpression && BitwiseORExpression

LogicalANDExpressionNoIn :
 BitwiseORExpressionNoIn
 LogicalANDExpressionNoIn && BitwiseORExpressionNoIn
LogicalORExpression :
 LogicalANDExpression
LogicalORExpression || LogicalANDExpression

LogicalORExpressionNoIn :
 LogicalANDExpressionNoIn
LogicalORExpressionNoIn || LogicalANDExpressionNoIn

The semantics of the LogicalANDExpressionNoIn and LogicalORExpressionNoIn productions are the same manner as the LogicalANDExpression and LogicalORExpression productions except that the contained LogicalANDExpressionNoIn, BitwiseORExpressionNoIn and LogicalORExpressionNoIn are used in place of the contained LogicalANDExpression, BitwiseORExpression and LogicalORExpression, respectively.

NOTE The value produced by a && or || operator is not necessarily of type Boolean. The value produced will always be the value of one of the two operand expressions.

Runtime Semantics: Evaluation

LogicalANDExpression : LogicalANDExpression && BitwiseORExpression
 1. Let \text{lref} be the result of evaluating LogicalANDExpression.
 2. Let \text{lval} be ToBoolean(GetValue(lref)).
 3. ReturnIfAbrupt(lval).
 4. If lval is false, return lval.
 5. Let \text{rref} be the result of evaluating BitwiseORExpression.

LogicalORExpression : LogicalORExpression || LogicalANDExpression
 1. Let \text{lref} be the result of evaluating LogicalORExpression.
 2. Let \text{lval} be ToBoolean(GetValue(lref)).
 3. ReturnIfAbrupt(lval).
 4. If \text{lval} is true, return \text{lval}.
 5. Let \text{rref} be the result of evaluating LogicalANDExpression.

11.12 Conditional Operator (? :)

Syntax

ConditionalExpression :
 LogicalORExpression
 LogicalORExpression ? AssignmentExpression : AssignmentExpression

ConditionalExpressionNoIn :
 LogicalORExpressionNoIn
 LogicalORExpressionNoIn ? AssignmentExpression : AssignmentExpressionNoIn

The semantics of the ConditionalExpressionNoIn production is the same as the ConditionalExpression production except that the contained LogicalORExpressionNoIn, AssignmentExpression and AssignmentExpressionNoIn are used in place of the contained LogicalORExpression, first AssignmentExpression and second AssignmentExpression, respectively.

NOTE The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java, which each allow the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.
Runtime Semantics: Evaluation

ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression

1. Let `lref` be the result of evaluating `LogicalORExpression`.
2. Let `lval` be `ToBoolean(GetValue(lref))`.
3. ReturnIfAbrupt(`lval`).
4. If `lval` is `true`, then
 a. Let `trueRef` be the result of evaluating the first `AssignmentExpression`.
 b. Return `GetValue(trueRef)`.
5. Else
 a. Let `falseRef` be the result of evaluating the second `AssignmentExpression`.
 b. Return `GetValue(falseRef)`.

11.13 Assignment Operators

Syntax

AssignmentExpression : ConditionalExpression YieldExpression ArrowFunction LeftHandSideExpression = AssignmentExpression LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoIn : ConditionalExpressionNoIn YieldExpression ArrowFunction LeftHandSideExpression = AssignmentExpressionNoIn LeftHandSideExpression AssignmentOperator AssignmentExpressionNoIn

*AssignmentOperator : one of * /= %= += -= <<= >>= >>>= &= ^= |=*

The semantics of the `AssignmentExpressionNoIn` productions are the same manner as the `AssignmentExpression` productions except that the contained `ConditionalExpressionNoIn` and `AssignmentExpressionNoIn` are used in place of the contained `ConditionalExpression` and `AssignmentExpression`, respectively.

Static Semantics

Static Semantics: Early Errors

AssignmentExpression : LeftHandSideExpression = AssignmentExpression LeftHandSideExpression AssignmentOperator AssignmentExpression

- It is a Syntax Error if the `AssignmentExpression` is contained in strict code and `LeftHandSideExpression` is the Identifier `eval` or the Identifier `arguments`.
- It is a Syntax Error if the `LeftHandSideExpression` is an Identifier that can be statically determined to always resolve to a declarative environment record binding and the resolved binding is an immutable binding.
- It is a Syntax Error if the `LeftHandSideExpression` is `PrimaryExpression : (Expression)` and `Expression` derived a production that would produce a Syntax Error according to these rules. This rule is recursively applied.

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

- It is a Syntax Error if `IsInvalidAssignmentPattern of LeftHandSideExpression` is `true`.
Runtime Semantics

Runtime Semantics: Evaluation

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral then
 a. Let lref be the result of evaluating LeftHandSideExpression.
 b. ReturnIfAbrupt(lref).
 c. Let rref be the result of evaluating AssignmentExpression.
 d. Let rval be GetValue(rref).
 e. Let status be PutValue(lref, rval).
 f. ReturnIfAbrupt(status).
 g. Return rval.
2. Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression using AssignmentPattern as the goal symbol.
3. Let rref be the result of evaluating AssignmentExpression.
4. Let rval be ToObject(GetValue(rref)).
5. ReturnIfAbrupt(rval).
6. Let status be the result of performing Destructuring Assignment Evaluation of AssignmentPattern using rval as the argument.
7. ReturnIfAbrupt(status).
8. Return rval.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating AssignmentExpression.
5. Let rval be GetValue(rref).
6. ReturnIfAbrupt(rval).
7. Let operator be the @ where AssignmentOperator is @=.
8. Let r be the result of applying operator @ to lval and rval.
9. Let status be PutValue(lref, r).
10. ReturnIfAbrupt(status).
11. Return r.

NOTE When an assignment occurs within strict mode code, it is a runtime error if lref in step 1.e of the first algorithm or step 9 of the second algorithm is an unresolvable reference. If it is, a ReferenceError exception is thrown. The LeftHandSide also may not be a reference to a data property with the attribute value {[[Writable]]:false}, to an accessor property with the attribute value {[[Set]]:undefined}, nor to a non-existent property of an object whose [[Extensible]] internal property has the value false. In these cases a TypeError exception is thrown.

11.13.1 Destructuring Assignment

Supplemental Syntax

In certain circumstances when processing the production AssignmentExpression : LeftHandSideExpression = AssignmentExpression the following grammar is used to refine the interpretation of LeftHandSideExpression.

AssignmentPattern :
 ObjectAssignmentPattern
 ArrayAssignmentPattern

ObjectAssignmentPattern :
 { }
 { AssignmentPropertyList }
ArrayAssignmentPattern:
 [Elisionopt AssignmentRestElementopt]
 [AssignmentElementList]
 [AssignmentElementList , Elisionopt AssignmentRestElementopt]

AssignmentPropertyList:
 AssignmentProperty
 AssignmentPropertyList , AssignmentProperty

AssignmentElementList:
 Elisionopt AssignmentElement
 AssignmentElementList , Elisionopt AssignmentElement

AssignmentProperty:
 Identifier Initialiseropt
 (PropertyName : AssignmentElement)

AssignmentElement:
 LeftHandSideExpression Initialiseropt

AssignmentRestElement:
 ... LeftHandSideExpression

Static Semantics

Static Semantics: Early Errors

AssignmentProperty : Identifier Initialiseropt

- It is a Syntax Error if Identifier is the Identifier eval or the Identifier arguments.
- It is a Syntax Error if Identifier is the Identifier this or the Identifier super.
- It is a Syntax Error if Identifier does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding.

AssignmentElement : LeftHandSideExpression Initialiseropt

- It is a Syntax Error if LeftHandSideExpression is the Identifier eval or the Identifier arguments.
- It is a Syntax Error if LeftHandSideExpression is the Identifier this or the Identifier super.
- It is a Syntax Error if the LeftHandSideExpression is a Literal, a FunctionExpression or a ClassExpression.
- It is a Syntax Error if the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding.
- It is a Syntax Error if the LeftHandSideExpression is PrimaryExpression : (Expression) and Expression derived a production that would produce a Syntax Error according to these rules. This rule is recursively applied.

AssignmentRestElement : ... LeftHandSideExpression

- It is a Syntax Error if LeftHandSideExpression is the Identifier eval or the Identifier arguments.
- It is a Syntax Error if LeftHandSideExpression is the Identifier this or the Identifier super.
- It is a Syntax Error if the LeftHandSideExpression is a Literal, an ObjectLiteral, an ArrayLiteral, a FunctionExpression, or a ClassExpression.
- It is a Syntax Error if the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding an immutable binding.
- It is a Syntax Error if the LeftHandSideExpression is PrimaryExpression : (Expression) and Expression derived a production that would produce a Syntax Error according to these rules. This rule is recursively applied.
Runtime Semantics

Runtime Semantics: Destructuring Assignment Evaluation

with parameter *obj*

ObjectAssignmentPattern: `{ }`

ArrayAssignmentPattern:

`[]`

1. Return NormalCompletion(empty).

AssignmentPropertyList: *AssignmentPropertyList*, *AssignmentProperty*

1. Let *status* be the result of performing Destructuring Assignment Evaluation of *AssignmentPropertyList* with *obj* as the argument.
2. If *status* is an abrupt completion, return *status*.
3. Return the result of performing Destructuring Assignment Evaluation of *AssignmentProperty* with *obj* as the argument.

AssignmentProperty: *Identifier Initialiser*opt

1. Let *P* be StringValue of *Identifier*.
2. Let *exists* be the result of calling the `[[HasProperty]]` internal method of *obj* with argument *P*.
3. If *exists* is *true*, then
 a. Let *v* be the result of calling the `[[Get]]` internal method of *obj* with argument *P*.
4. Else
 a. If *Initialiser*opt is present, then
 i. Let *v* be the result of evaluating *Initialiser*.
 b. Else,
 i. Let *v* be `undefined`.
5. ReturnIfAbrupt(*v*).
6. Let *lref* be the result of performing Identifier Resolution(10.3.1) with the *IdentifierName* corresponding to *Identifier*.
7. Return PutValue(*lref*, *v*).

AssignmentProperty: *PropertyName* : *AssignmentElement*

1. Let *name* be PropName of *PropertyName*.
2. Return the result of performing Indexed Destructuring Assignment Evaluation of *AssignmentElement* with *obj* and *name* as the arguments.

ArrayAssignmentPattern: `[Elision*opt AssignmentRestElement]`

1. If *Elision* is present, then let *skip* be the result of evaluating *Elision*, otherwise let *skip* be 0.
2. Return the result of performing Indexed Destructuring Assignment Evaluation of *AssignmentRestElement* with *obj* and *skip* as the arguments.

ArrayAssignmentPattern: `[AssignmentElementList]`

1. Return the result of performing Indexed Destructuring Assignment Evaluation of *AssignmentElementList* using *obj* and 0 as the arguments.

ArrayAssignmentPattern: `[AssignmentElementList *, Elision*opt AssignmentRestElement*opt]`

1. Let *lastIndex* be the result of performing Indexed Destructuring Assignment Evaluation of *AssignmentElementList* using *obj* and 0 as the arguments.
2. If last\(\text{Index}\) is an abrupt completion, return last\(\text{Index}\).
3. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.
4. If Assignment\(\text{RestElement}\) is present, then return the result of performing Indexed Destructuring Assignment Evaluation of Assignment\(\text{RestElement}\) with obj and last\(\text{Index}+\text{skip}\) as the arguments.
5. Return last\(\text{Index}\).

Runtime Semantics: Indexed Destructuring Assignment Evaluation

with parameters \(\text{obj}\) and \(\text{index}\)

Assignment\(\text{ElementList} : \text{Elision}_{\text{opt}}\) Assignment\(\text{Element}\)

1. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.
2. Let \(\text{status}\) be the result of performing Indexed Destructuring Assignment Evaluation of Assignment\(\text{Element}\) with \(\text{obj}\) and \(\text{index}+\text{skip}\) as the arguments.
3. If \(\text{status}\) is an abrupt completion, return \(\text{status}\).
4. Return \(\text{index}+\text{skip}+1\).

Assignment\(\text{ElementList} : \text{AssignmentElementList}_{\text{opt}}\) Assignment\(\text{Element}\)

1. Let list\(\text{Next}\) be the result of performing Indexed Destructuring Assignment Evaluation of Assignment\(\text{ElementList}\) using \(\text{obj}\) as the \(\text{obj}\) parameter and \(\text{index}\) as the \(\text{index}\) parameter
2. If Elision is present, then let skip be the result of evaluating Elision, otherwise let skip be 0.
3. If list\(\text{Next}\) is an abrupt completion, return list\(\text{Next}\).
4. Let \(\text{status}\) be the result of performing Indexed Destructuring Assignment Evaluation of Assignment\(\text{Element}\) with \(\text{list\text{Next}}\) and \(\text{list\text{Next}+\text{skip}}\) as the arguments.
5. If \(\text{status}\) is an abrupt completion, return \(\text{status}\).
6. Return list\(\text{Next}+\text{skip}+1\).

Assignment\(\text{Element} : \text{LeftHandSideExpression} \text{Initialiser}_{\text{opt}}\)

1. Let name be ToString(\(\text{index}\)).
2. Let exists be the result of calling the \[\text{HasProperty}\] internal method of \(\text{obj}\) with argument name.
3. If exists is true, then
 a. Let \(v\) be the result of calling the \[\text{Get}\] internal method of \(\text{obj}\) with argument name.
4. Else
 a. If \(\text{Initialiser}_{\text{opt}}\) is present, then
 i. Let \(v\) be the result of evaluating \(\text{Initialiser}_{\text{opt}}\).
 b. Else,
 i. Let \(v\) be undefined.
5. ReturnIfAbrupt(\(v\)).
6. If LeftHandSideExpression is an \text{ObjectLiteral} or an \text{ArrayLiteral} then
 a. Let Assignment\(\text{Pattern}\) be the parse of the source code corresponding to LeftHandSideExpression using Assignment\(\text{Pattern}\) as the goal symbol
 b. Let \(v\text{Obj}\) be ToObject(\(v\)).
 c. ReturnIfAbrupt(\(v\text{Obj}\)).
 d. Return the result of evaluating Destructuring Assignment Evaluation of Assignment\(\text{Pattern}\) with \(v\text{Obj}\) as the argument.
7. Let lref be the result of evaluating LeftHandSideExpression.
8. Return PutValue(lref,\(v\)).

Assignment\(\text{RestElement} : \ldots\) LeftHandSideExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. If lref is an abrupt completion, return lref.
3. Let len\(\text{Val}\) be the result of calling the \[\text{Get}\] internal method of \(\text{obj}\) with argument \text{"length"}.
4. Let len be ToUint32(len\(\text{Val}\)).
5. ReturnIfAbrupt(len).
6. Let \(A\) be the result of the abstract operation ArrayCreate (15.4) with argument 0.
7. Let \(n = 0; \)
8. Repeat, while \(\text{index} < \text{len} \)
 a. Let \(P \) be \(\text{ToString}(\text{index}) \).
 b. Let \(\text{exists} \) be the result of calling the [[HasProperty]] internal method of \(\text{obj} \) with argument \(P \).
 c. If \(\text{exists} \) is \text{true}, then
 i. Let \(\nu \) be the result of calling the [[Get]] internal method of \(\text{obj} \) passing \(\text{ToString}(\text{index}) \) as the argument.
 ii. \(\text{ReturnIfAbrupt}(\text{len}) \).
 iii. Call the [[DefineOwnProperty]] internal method of \(A \) with arguments \(\text{ToString}(n) \), Property Descriptor \{[[Value]]: \(\nu \), [[Writable]]: \text{true}, [[Enumerable]]: \text{true}, [[Configurable]]: \text{true} \}, and \text{false}.
 d. Let \(n = n + 1 \).
 e. Let \(\text{index} = \text{index} + 1 \).
9. \(\text{Return PutValue}(lref, A) \).

11.14 Comma Operator (,)

Syntax

\[
\text{Expression} : \quad \text{AssignmentExpression} \\
\quad \text{Expression} , \text{AssignmentExpression}
\]

\[
\text{ExpressionNoIn} : \quad \text{AssignmentExpressionNoIn} \\
\quad \text{ExpressionNoIn} , \text{AssignmentExpressionNoIn}
\]

The semantics of the ExpressionNoIn production is the same manner as the Expression production except that the contained ExpressionNoIn and AssignmentExpressionNoIn are used in place of the contained Expression and AssignmentExpression, respectively.

Runtime Semantics: Evaluation

\[
\text{Expression} : \quad \text{Expression} , \text{AssignmentExpression}
\]

1. Let \(lref \) be the result of evaluating \(\text{Expression} \).
2. If the result of GetValue(\(lref \)) is an abrupt completion, return that result
3. Let \(rref \) be the result of evaluating \(\text{AssignmentExpression} \).
4. Return GetValue(\(rref \)).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.
12 Statements and Declarations

Syntax

Statement:
 BlockStatement
 VariableStatement
 EmptyStatement
 ExpressionStatement
 IfStatement
 BreakableStatement
 ContinueStatement
 BreakStatement
 ReturnStatement
 WithStatement
 LabelledStatement
 ThrowStatement
 TryStatement
 DebuggerStatement

Declaration:
 FunctionDeclaration
 GeneratorDeclaration
 ClassDeclaration
 LexicalDeclaration

BreakableStatement:
 IterationStatement
 SwitchStatement

Static Semantics

Static Semantics: VarDeclaredNames

Statement:
 EmptyStatement
 ExpressionStatement
 ContinueStatement
 BreakStatement
 ReturnStatement
 ThrowStatement
 DebuggerStatement

1. Return a new empty List.

Runtime Semantics

Runtime Semantics: Labelled Evaluation

With argument labelSet.

BreakableStatement: IterationStatement

1. Let stmtResult be the result performing Labelled Evaluation of IterationStatement with argument labelSet.
2. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then
 a. Let stmtResult be NormalCompletion(stmtResult.[[value]])
3. Return stmtResult.

BreakableStatement: SwitchStatement
3. Let stmtResult be the result of evaluating SwitchStatement.
4. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then
 a. Let stmtResult be NormalCompletion(stmtResult.[[value]])
5. Return stmtResult.

NOTE A BreakableStatement is one that can be exited via an unlabelled BreakStatement.

Runtime Semantics: Evaluation

BreakableStatement:
 IterationStatement
 SwitchStatement

1. Let newLabelSet be a new empty List.
2. Return the result of performing Labelled Evaluation of this BreakableStatement with argument newLabelSet.

12.1 Block

Syntax

BlockStatement:
 Block
 { StatementListopt }

StatementList:
 StatementListItem
 StatementList StatementListItem

StatementListItem:
 Statement
 Declaration

Static Semantics

Static Semantics: Early Errors

Block : { StatementList }

- It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
- It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the VarDeclaredNames of StatementList.

Static Semantics: LexicalDeclarations

StatementList : StatementList StatementListItem

1. Let declarations be LexicalDeclarations of StatementList.
2. Append to names the elements of the LexicalDeclarations of StatementListItem.
3. Return declarations.

StatementListItem : Statement

1. Return a new empty List.

StatementListItem : Declaration

1. Return a new List containing Declaration.
Static Semantics: LexicallyDeclaredNames

Block : { }

1. Return a new empty List.

StatementList : StatementList StatementListItem

1. Let names be LexicallyDeclaredNames of StatementList.
2. Append to names the elements of the LexicallyDeclaredNames of StatementListItem.
3. Return names.

StatementListItem : Statement

1. Return a new empty List.

StatementListItem : Declaration

1. Return the BoundNames of Declaration.

Static Semantics: VarDeclaredNames

Block : { }

1. Return a new empty List.

StatementList : StatementList StatementListItem

1. Let names be VarDeclaredNames of StatementList.
2. Append to names the elements of the VarDeclaredNames of StatementListItem.
3. Return names.

StatementListItem : Declaration

1. Return a new empty List.

Runtime Semantics

Runtime Semantics: Evaluation

Block : { }

1. Return NormalCompletion(empty).

Block : { StatementList }

1. Let oldEnv be the running execution context’s LexicalEnvironment.
2. Let blockEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
3. Perform Block Declaration Instantiation using StatementList and blockEnv.
4. Set the running execution context’s LexicalEnvironment to blockEnv.
5. Let blockValue be the result of evaluating StatementList.
6. Set the running execution context’s LexicalEnvironment to oldEnv.
7. Return blockValue.

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.

StatementList : StatementList StatementListItem

1. Let sl be the result of evaluating StatementList.
2. If \(s_l \) is an abrupt completion, return \(s_l \).
3. Let \(s \) be the result of evaluating \(\text{Statement} \).
4. If \(s.\text{[[type]]} \) is \(\text{throw} \), return \(s \).
5. If \(s.\text{[[value]]} \) is empty, let \(V = s_l.\text{[[value]]} \), otherwise let \(V = s.\text{[[value]]} \).
6. Return Completion \(\{\text{[[type]]}: s.\text{[[type]]}, \text{[[value]]}: V, \text{[[target]]}: s.\text{[[target]]}\} \).

NOTE Steps 4 and 5 of the above algorithm ensure that the value of a \(\text{StatementList} \) is the value of the last value producing \(\text{Statement} \) in the \(\text{StatementList} \). For example, the following calls to the \(\text{eval} \) function all return the value 1:

\[
\text{eval}("1;;;") \\
\text{eval}("1;\{}\) \\
\text{eval}("1;\text{var a;"})
\]

12.2 Declarations and the Variable Statement

12.2.1 Let and Const Declarations

NOTE A \(\text{let} \) and \(\text{const} \) declarations define variables that are scoped to the running execution context’s LexicalEnvironment. The variables are created when their containing Lexical Environment is instantiated but may not be accessed in any way until the variable’s LexicalBinding is evaluated. A variable defined by a LexicalBinding with an Initialiser is assigned the value of its Initialiser’s AssignmentExpression when the LetBinding is evaluated, not when the variable is created. If a LexicalBinding in a \(\text{let} \) declaration does not have an an Initialiser the variable is assigned the value \(\text{undefined} \) when the LetBinding is executed.

Syntax

\[
\text{LexicalDeclaration} : \\
\quad \text{LetOrConst BindingList} ;
\]

\[
\text{LetOrConst BindingList} ;
\]

\[
\text{LexicalDeclarationNoIn} : \\
\quad \text{LetOrConst BindingListNoIn}
\]

\[
\text{LetOrConst} : \\
\quad \text{let} \\
\quad \text{const}
\]

\[
\text{BindingList} : \\
\quad \text{LexicalBinding} \\
\quad \text{BindingList}, \text{LexicalBinding}
\]

\[
\text{BindingListNoIn} : \\
\quad \text{LexicalBindingNoIn} \\
\quad \text{BindingListNoIn}, \text{LexicalBindingNoIn}
\]

\[
\text{LexicalBinding} : \\
\quad \text{BindingIdentifier Initialiser} opt \\
\quad \text{BindingPattern Initialiser}
\]

\[
\text{LexicalBindingNoIn} : \\
\quad \text{BindingIdentifier InitialiserNoIn} opt \\
\quad \text{BindingPattern InitialiserNoIn}
\]

\[
\text{BindingIdentifier} : \\
\quad \text{Identifier}
\]

\[
\text{Initialiser} : \\
\quad = \text{AssignmentExpression}
\]

\[
\text{InitialiserNoIn} : \\
\quad = \text{AssignmentExpressionNoIn}
\]
The semantics of the `LexicalDeclarationNoIn`, `BindingListNoIn`, `LexicalBindingNoIn` and `InitialiserNoIn` productions are the same as the `LexicalDeclaration`, `BindingList`, `LexicalBinding` and `Initialiser` productions except that the contained `BindingListNoIn`, `LexicalBindingNoIn`, `InitialiserNoIn` and `AssignmentExpressionNoIn` are used in place of the contained `BindingList`, `LexicalBinding`, `Initialiser` and `AssignmentExpression`, respectively.

Static Semantics

Static Semantics: Early Errors

`LexicalBinding : BindingIdentifier`

- It is a Syntax Error if `IsConstantDeclaration` of the `LexicalDeclaration` containing this production is `true`.

`BindingIdentifier : Identifier`

- It is a Syntax Error if the `BindingIdentifier` is contained in strict code and if the `Identifier` is `eval` or arguments.

Static Semantics: BoundNames

`LexicalDeclaration : LetOrConst BindingList ;`

1. Return the BoundNames of `BindingList`.

`BindingList : BindingList , LexicalBinding`

1. Let `names` be the BoundNames of `BindingList`.
2. Append to `names` the elements of the BoundNames of `LexicalBinding`.
3. Return `names`.

`LexicalBinding : BindingIdentifier Initialiseropt`

1. Return the BoundNames of `BindingIdentifier`.

`LexicalBinding : BindingPattern Initialiser`

1. Return the BoundNames of `BindingPattern`.

`BindingIdentifier : Identifier`

1. Return a new List containing the StringValue of `Identifier`.

Static Semantics: IsConstantDeclaration

`LexicalDeclaration : LetOrConst BindingList ;`

1. Return `IsConstantDeclaration` of `LetOrConst`.

`LetOrConst : let`

1. Return `false`.

`LetOrConst : const`

1. Return `false`.
Runtime Semantics

Runtime Semantics: Binding Initialisation

With arguments value and environment.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a lexical binding is hosted and preinitialized prior to evaluation of its initializer.

BindingIdentifier : Identifier

1. If environment is not undefined, then
 a. Let name be StringValue of Identifier.
 b. Let env be the environment record component of environment.
 c. Call the InitializeBinding concrete method of env passing name and value as the arguments.
 d. Return NormalCompletion(undefined).
2. Else
 a. Let lhs be the result of evaluating Identifier as described in 11.1.2.
 b. Return PutValue(lhs, value).

Runtime Semantics: Evaluation

LexicalDeclaration : LetOrConst BindingList ;

1. Let next be the result of evaluating BindingList.
2. If next is an abrupt completion, return next.
3. Return NormalCompletion(empty).

BindingList : BindingList , LexicalBinding

1. Let next be the result of evaluating BindingList.
2. If next is an abrupt completion, return next.
3. Return the result of evaluating LexicalBinding.

LexicalBinding : BindingIdentifier

1. Let env be the running execution context’s LexicalEnvironment.
2. Return the result of performing Binding Initialisation for BindingIdentifier passing undefined and env as the arguments.

NOTE A static semantic rule ensures that this form of LexicalBinding never occurs in a const declaration.

LexicalBinding : BindingIdentifier Initialiser

1. Let rhs be the result of evaluating Initialiser.
2. Let value be GetValue(rhs).
3. If value is an abrupt completion, return rval.
4. Let env be the running execution context’s LexicalEnvironment.
5. Return the result of performing Binding Initialisation for BindingIdentifier passing value and env as the arguments.

LexicalBinding: BindingPattern Initialiser

1. Let rhs be the result of evaluating Initialiser.
2. Let rval be GetValue(rhs).
3. If rval is an abrupt completion, return rval.
4. Let env be the running execution context’s LexicalEnvironment.
5. Return the result of performing Binding Initialisation for BindingPattern using rval as the obj parameter and env as the environment parameter.

12.2.2 Variable Statement

NOTE A var statement declares variables that are scoped to the running execution context’s VariableEnvironment. Var variables are created when their containing Lexical Environment is instantiated and are initialised to undefined when created. Within the scope of any VariableEnvironment a common Identifier may appear in more than one VariableDeclaration but those declarations collective define only one variable. A variable defined by a VariableDeclaration with an Initialiser is assigned the value of its Initialiser’s AssignmentExpression when the VariableDeclaration is executed, not when the variable is created.

Syntax

VariableStatement : var VariableDeclarationList ;

VariableDeclarationList : VariableDeclaration VariableDeclarationList , VariableDeclaration

VariableDeclarationListNoIn : VariableDeclarationNoIn VariableDeclarationListNoIn , VariableDeclarationNoIn

VariableDeclaration : BindingIdentifier Initialiser opt BindingPattern Initialiser

VariableDeclarationNoIn : BindingIdentifier InitialiserNoIn opt BindingPattern InitialiserNoIn

The semantics of the VariableDeclarationListNoIn, VariableDeclarationNoIn and InitialiserNoIn productions are the same as the VariableDeclarationList, VariableDeclaration and Initialiser productions except that the contained VariableDeclarationListNoIn, VariableDeclarationNoIn, InitialiserNoIn and AssignmentExpressionNoIn are used in of the contained VariableDeclarationList, VariableDeclaration, Initialiser and AssignmentExpression, respectively.

Static Semantics

Static Semantics: BoundNames

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of BoundNames of VariableDeclaration.
3. Return names.

VariableDeclaration : BindingIdentifier Initialiser opt

1. Return the BoundNames of BindingIdentifier.

VariableDeclaration : BindingPattern Initialiser

1. Return the BoundNames of BindingPattern.
Runtime Semantics

Runtime Semantics: Binding Initialisation

With arguments value and environment.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a lexical binding is hosted and preinitialized prior to evaluation of its initializer.

VariableDeclaration : BindingIdentifier
1. Return the result of performing Binding Initialisation for BindingIdentifier passing value and undefined as the arguments.

VariableDeclaration : BindingIdentifier Initialiser
1. Return the result of performing Binding Initialisation for BindingIdentifier passing value and undefined as the arguments.

VariableDeclaration : BindingPattern Initialiser
1. Return the result of performing Binding Initialisation for BindingPattern passing value and undefined as the arguments.

Runtime Semantics: Evaluation

VariableStatement : var VariableDeclarationList ;
1. Let next be the result of evaluating VariableDeclarationList.
2. If next is an abrupt completion, return next.
3. Return NormalCompletion(empty).

VariableDeclarationList : VariableDeclarationList , VariableDeclaration
1. Let next be the result of evaluating VariableDeclarationList.
2. If next is an abrupt completion, return next.
3. Return the result of evaluating VariableDeclaration.

VariableDeclaration : BindingIdentifier
1. Return NormalCompletion(empty).

VariableDeclaration : BindingIdentifier Initialiser
1. Let rhs be the result of evaluating Initialiser.
2. Let value be GetValue(rhs).
3. If value is an abrupt completion, return value.
4. Return the result of performing Binding Initialisation for BindingIdentifier passing value and undefined as the arguments.

NOTE If a VariableDeclaration is nested within a with statement and the Identifier in the VariableDeclaration is the same as a property name of the binding object of the with statement's object environment record, then step 3 will assign value to the property instead of to the VariableEnvironment binding of the Identifier.

VariableDeclaration : BindingPattern Initialiser
2. Let rhs be the result of evaluating Initialiser.
3. Let rval be GetValue(rhs).
4. If rval is an abrupt completion, return rval.
5. Return the result of performing Binding Initialisation for BindingPattern passing rval and undefined as arguments.

12.2.4 Destructuring Binding Patterns

Syntax

BindingPattern :
 ObjectBindingPattern
 ArrayBindingPattern

ObjectBindingPattern :
 { }
 { BindingPropertyList } { BindingPropertyList },

ArrayBindingPattern :
 [Elisionopt BindingRestElementopt]
 [BindingElementList]
 [BindingElementList, Elisionopt BindingRestElementopt]

BindingPropertyList :
 BindingProperty
 BindingPropertyList BindingProperty

BindingElementList :
 Elisionopt BindingElement
 BindingElementList, Elisionopt BindingElement

BindingProperty :
 SimpleNameBinding
 PropertyName : BindingElement

BindingElement :
 SimpleNameBinding
 BindingPattern Initialiseropt

SimpleNameBinding :
 BindingIdentifier Initialiseropt

BindingRestElement :
 ... BindingIdentifier

Static Semantics

Static Semantics: Early Errors

BindingPattern : ObjectBindingPattern

- It is a Syntax Error if the BoundNames of ObjectBindingPattern contains the string “eval” or the string “arguments”.

BindingPattern : ObjectBindingPattern

- It is a Syntax Error if the BoundNames of ArrayBindingPattern contains the string “eval” or the string “arguments”.

Static Semantics: BoundNames
ObjectBindingPattern: { }
1. Return an empty List.

ArrayBindingPattern: [Elisionopt]
1. Return an empty List.

ArrayBindingPattern: [Elisionopt BindingRestElement]
1. Return the BoundNames of BindingElementList.

ArrayBindingPattern: [BindingElementList , Elisionopt]
1. Return the BoundNames of BindingElementList.

ArrayBindingPattern: [BindingElementList , Elisionopt BindingRestElement]
1. Let names be BoundNames of BindingElementList.
2. Append to names the elements of BoundNames of BindingRestElement.
3. Return names.

BindingPropertyList : BindingPropertyList , BindingProperty
1. Let names be BoundNames of BindingPropertyList.
2. Append to names the elements of BoundNames of BindingProperty.
3. Return names.

BindingElementList : Elisionopt BindingElement
1. Return BoundNames of BindingElement.

BindingElementList : BindingElementList , Elisionopt BindingElement
1. Let names be BoundNames of BindingElementList.
2. Append to names the elements of BoundNames of BindingElement.
3. Return names.

BindingProperty : PropertyName : BindingElement
1. Return the BoundNames of BindingElement.

SingleNameBinding : BindingIdentifier Initialiseropt
1. Return the BoundNames of BindingIdentifier.

BindingElement : BindingPattern Initialiseropt
1. Return the BoundNames of BindingPattern.

Static Semantics: HasInitialiser

BindingElement : BindingPattern
1. Return false.

BindingElement : BindingPattern Initialiser
1. Return true.
Runtime Semantics

Runtime Semantics: Binding Initialisation

With parameters `value` and `environment`.

NOTE When `undefined` is passed for `environment` it indicates that a PutValue operation should be used to assign the initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

BindingPattern: `ObjectBindingPattern`

1. If `value` is neither of `null` or `undefined`, then
 a. Let `obj` be `ToObject(value)`.
2. Else, let `obj` be `undefined`.
3. Return the result of performing Binding Initialisation for `ObjectBindingPattern` using `obj` and `environment` as arguments.

BindingPattern: `ArrayBindingPattern`

1. If `value` is neither of `null` or `undefined`, then
 a. Let `array` be `ToObject(value)`.
2. Else,
 a. Let `array` be `undefined`.
3. Return the result of performing Indexed Binding Initialisation for `ArrayBindingPattern` using `array`, `0`, and `environment` as arguments.

ObjectBindingPattern: `{ }`

1. Return.

BindingPropertyList: `BindingPropertyList`, `BindingProperty`

1. Let `next` be the result of performing Binding Initialisation for `BindingPropertyList` using `value` and `environment` as arguments.
2. ReturnIfAbrupt(`next`).
3. Return the result of performing Binding Initialisation for `BindingProperty` using `value` and `environment` as arguments.

BindingProperty: `SingleNameBinding`

1. Let `name` be the string that is the only element of BoundNames of `SingleNameBinding`.
2. Return the result of performing Keyed Binding Initialisation for `SingleNameBinding` using `value`, `environment`, and `name` as the arguments.

BindingProperty: `PropertyName`, `BindingElement`

1. Let `P` be the `PropName` of `PropertyName`
2. Return the result of performing Keyed Binding Initialisation for `BindingElement` using `value`, `environment`, and `P` as arguments.
Runtime Semantics: Indexed Binding Initialisation

With parameters \(\text{array}, \text{nextIndex}, \) and \(\text{environment}. \)

NOTE When \text{undefined} is passed for \(\text{environment} \) it indicates that a PutValue operation should be used to assign the initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

\[
\text{ArrayBindingPattern} : \left[\text{Elision}_{\text{opt}} \right]
\]

1. \ Return.

\[
\text{ArrayBindingPattern} : \left[\text{Elision}_{\text{opt}} \text{BindingRestElement} \right]
\]

1. If \(\text{Elision} \) is present, then let \(\text{nextIndex} \) be the result of evaluating \(\text{Elision} \), otherwise let \(\text{nextIndex} \) be 0.
2. Return the result of performing Indexed Binding Initialisation for \(\text{BindingRestElement} \) using \(\text{array}, \text{nextIndex}, \) and \(\text{environment} \) as arguments.

\[
\text{ArrayBindingPattern} : \left[\text{BindingElementList} \right]
\]

1. Return the result of performing Indexed Binding Initialisation for \(\text{BindingElementList} \) using \(\text{array}, \text{nextIndex}, \) and \(\text{environment} \) as arguments.

\[
\text{ArrayBindingPattern} : \left[\text{BindingElementList}, \text{Elision}_{\text{opt}} \right]
\]

1. Return the result of performing Indexed Binding Initialisation for \(\text{BindingElementList} \) using \(\text{array}, \text{nextIndex}, \) and \(\text{environment} \) as arguments.

\[
\text{ArrayBindingPattern} : \left[\text{BindingElementList}, \text{Elision}_{\text{opt}} \text{BindingRestElement} \right]
\]

1. Let \(\text{index} \) be the result of performing Indexed Binding Initialisation for \(\text{BindingElementList} \) using \(\text{array}, \text{nextIndex}, \) and \(\text{environment} \) as arguments.
2. ReturnIfAbrupt(\(\text{index} \)).
3. If \(\text{Elision} \) is present, then let \(\text{skip} \) be the result of evaluating \(\text{Elision} \), otherwise let \(\text{skip} \) be 0.
4. Return the result of performing Indexed Binding Initialisation for \(\text{BindingRestElement} \) using \(\text{array}, \text{index}+\text{skip}, \) and \(\text{environment} \) as arguments.

\[
\text{BindingElementList} : \text{Elision}_{\text{opt}} \text{BindingElement}
\]

1. If \(\text{Elision} \) is present, then let \(\text{skip} \) be the result of evaluating \(\text{Elision} \), otherwise let \(\text{skip} \) be 0.
2. Let \(\text{next} \) be the result of performing Indexed Binding Initialisation for \(\text{BindingElement} \) using \(\text{array}, \text{nextIndex}+\text{skip}, \) and \(\text{environment} \) as arguments.
3. ReturnIfAbrupt(\(\text{next} \)).
4. Return \(\text{index}+\text{skip}+1 \).

\[
\text{BindingElementList} : \text{BindingElementList}, \text{Elision}_{\text{opt}} \text{BindingElement}
\]

1. Let \(\text{listNext} \) be the result of performing Indexed Binding Initialisation for \(\text{BindingElementList} \) using \(\text{array}, \text{nextIndex}, \) and \(\text{environment} \) as arguments.
2. ReturnIfAbrupt(\(\text{next} \)).
3. If \(\text{Elision} \) is present, then let \(\text{skip} \) be the result of evaluating \(\text{Elision} \), otherwise let \(\text{skip} \) be 0.
4. Let \(\text{next} \) be the result of performing Indexed Binding Initialisation for \(\text{BindingElement} \) using \(\text{array}, \text{listNext}+\text{skip}, \) and \(\text{environment} \) as arguments.
5. ReturnIfAbrupt(\(\text{listNext} \)).
6. Return \(\text{listNext}+\text{skip}+1 \).

\[
\text{BindingElement} : \text{SingleNameBinding}
\]
1. Return the result of performing Keyed Binding Initialisation for SingleNameBinding using `array`, `environment`, and `ToString(nextIndex)` as the arguments.

BindingElement: `BindingPattern Initialiser_opt`

1. Let `P` be `ToString(nextIndex)`.
2. Let `exists` be the result of calling the `[[HasProperty]]` internal method of `array` with argument `P`.
3. If `exists` is `true`, then
 a. Let `v` be the result of calling the `[[Get]]` internal method of `array` with argument `P`.
4. Else
 a. If `Initialiser_opt` is present, then
 i. Let `v` be the result of evaluating `Initialiser`.
 b. Else,
 i. Let `v` be `undefined`.
5. ReturnIfAbrupt(`v`).
6. Return the result of performing Binding Initialisation for `BindingPattern` passing `v` and `environment` as arguments.

BindingRestElement: `... BindingIdentifier`

1. Let `A` be the result of the abstract operation `ArrayCreate (15.4)` with argument `0`.
2. Let `lenVal` be the result of calling the `[[Get]]` internal method of `array` with argument `"length"`.
3. Let `arrayLength` be `ToUint32(lenVal)`.
4. ReturnIfAbrupt(`arrayLength`).
5. Let `n=0`.
6. Let `index = nextIndex`.
7. Repeat, while `index < arrayLength`
 a. Let `P` be `ToString(index)`.
 b. Let `exists` be the result of calling the `[[HasProperty]]` internal method of `array` with argument `P`.
 c. If `exists` is `true`, then
 i. Let `v` be the result of calling the `[[Get]]` internal method of `array` passing `P` as the argument.
 ii. ReturnIfAbrupt(`v`).
 iii. Call the `[[DefineOwnProperty]]` internal method of `A` with arguments `ToString(n)`, Property Descriptor `[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true`, and `false`.
 d. Let `n = n+1`.
 e. Let `index = index+1`.
8. Return the result of performing Binding Initialisation for `BindingIdentifier` using `A` and `environment` as arguments.

Runtime Semantics: Keyed Binding Initialisation

With parameters `obj`, `environment`, and `propertyName`.

NOTE When `undefined` is passed for `environment` it indicates that a PutValue operation should be used to assign the initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

BindingElement: `BindingPattern Initialiser_opt`

1. Let `exists` be the result of calling the `[[HasProperty]]` internal method of `obj` with argument `propertyName`.
2. If `exists` is `true`, then
 a. Let `v` be the result of calling the `[[Get]]` internal method of `obj` with argument `propertyName`.
3. Else
 a. If `Initialiser_opt` is present, then
 i. Let `v` be the result of evaluating `Initialiser`.
 b. Else,
 i. Let `v` be `undefined`.
4. ReturnIfAbrupt(`v`).
5. Return the result of performing Binding Initialisation for `BindingPattern` passing `v` and `environment` as arguments.
SingleNameBinding : BindingIdentifier Initialiser_opt

1. Let `exists` be the result of calling the `[[HasProperty]]` internal method of `obj` with argument `propertyName`.
2. If `exists` is `true`, then
 a. Let `v` be the result of calling the `[[Get]]` internal method of `obj` passing `propertyName` as the argument.
3. Else
 a. If `Initialiser_opt` is present, then
 i. Let `v` be the result of evaluating `Initialiser`.
 b. Else,
 i. Let `v` be `undefined`.
4. ReturnIfAbrupt(`v`).
5. Return the result of performing Binding Initialisation for `BindingIdentifier` passing `v` and `environment` as arguments.

12.3 Empty Statement

Syntax

```
EmptyStatement :
  ;
```

Runtime Semantics

Runtime Semantics: Evaluation

```
EmptyStatement : ;
```

1. Return NormalCompletion(`empty`).

12.4 Expression Statement

Syntax

```
ExpressionStatement :
  [lookahead \!∈ \{, function, class\}] Expression ;
```

NOTE An `ExpressionStatement` cannot start with an opening curly brace because that might make it ambiguous with a `Block`. Also, an `ExpressionStatement` cannot start with the `function` or `class` keywords because that would make it ambiguous with a `FunctionDeclaration`, a `GeneratorDeclaration`, or a `ClassDeclaration`.

Runtime Semantics

Runtime Semantics: Evaluation

```
ExpressionStatement : [lookahead \!∈ \{, function, class\}] Expression ;
```

1. Let `exprRef` be the result of evaluating `Expression`.
2. Let `value` be `GetValue(exprRef)`.
3. If `value` is an abrupt completion, return `value`.
4. Return NormalCompletion(`value`).

12.5 The if Statement

Syntax

```
IfStatement :
  if ( Expression ) Statement else Statement
  if ( Expression ) Statement
```

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible if that would otherwise have no corresponding else.

Static Semantics: VarDeclaredNames

```plaintext
IfStatement : if ( Expression ) Statement else Statement
```

1. Let names be VarDeclaredNames of the first Statement.
2. Append to names the elements of the VarDeclaredNames of the second Statement.
3. Return names.

```plaintext
IfStatement : if ( Expression ) Statement
```

1. Return the VarDeclaredNames of Statement.

Runtime Semantics

Runtime Semantics: Evaluation

```plaintext
IfStatement : if ( Expression ) Statement else Statement
```

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be ToBoolean(GetValue(exprRef)).
3. If exprValue is an abrupt completion, return exprValue.
4. If exprValue is true, then
 a. Return the result of evaluating the first Statement.
5. Else,
 a. Return the result of evaluating the second Statement.

```plaintext
IfStatement : if ( Expression ) Statement
```

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be ToBoolean(GetValue(exprRef)).
3. If exprValue is an abrupt completion, return exprValue.
4. If exprValue is false, return NormalCompletion(undefined).
5. Return the result of evaluating Statement.

12.6 Iteration Statements

Syntax

```plaintext
IterationStatement :
   do Statement while ( Expression )
   while ( Expression ) Statement
   for ( ExpressionNoInopt ; Expressionopt ; Expressionopt ) Statement
   for ( var VariableDeclarationListNoIn ; Expressionopt ; Expressionopt ) Statement
   for ( LexicalDeclarationNoIn ; Expressionopt ; Expressionopt ) Statement
   for ( LeftHandSideExpression in Expression ) Statement
   for ( var ForBinding in Expression ) Statement
   for ( ForDeclaration in Expression ) Statement
   for ( LeftHandSideExpression of Expression ) Statement
   for ( var ForBinding of Expression ) Statement
   for ( ForDeclaration of Expression ) Statement
```

ForDeclaration

```plaintext
   LetOrConst ForBinding
```

NOTE 1 ForBinding is defined in 11.1.4.2.
NOTE 2 A semicolon is not required after a **do-while** statement.

Runtime Semantics

The abstract operation `LoopContinues` with arguments `completion` and `labelSet` is defined by the following step:

1. If `completion`.[[type]] is `normal`, then return **true**.
2. If `completion`.[[type]] is not `continue`, then return **false**.
3. If `completion`.[[target]] is `empty`, then return **true**.
4. If `completion`.[[target]] is an element of `labelSet`, then return **true**.
5. Return **false**.

NOTE Within the **Statement** part of an **IterationStatement** a **ContinueStatement** may be used be begin a new iterations.

12.6.1 The **do-while Statement**

Static Semantics: **VarDeclaredNames**

IterationStatement : do Statement while (Expression);

1. Return the **VarDeclaredNames** of **Statement**.

Runtime Semantics

Runtime Semantics: Labelled Evaluation

With argument `labelSet`.

IterationStatement : do Statement while (Expression);

1. Let `V = undefined`.
2. Repeat
 a. Let `stmt` be the result of evaluating **Statement**.
 b. If `stmt`.[[value]] is not `empty`, let `V = stmt`.[[value]].
 c. If `stmt` is an abrupt completion and `LoopContinues (stmt,labelSet)` is **false**, return `stmt`.
 d. Let `exprRef` be the result of evaluating **Expression**.
 e. Let `exprValue` be `ToBoolean(GetValue(exprRef))`.
 f. If `exprValue` is **false**, Return **NormalCompletion(V)**.
 g. Else if `exprValue` is a Completion Record, then
 i. Assert: `exprValue` is an abrupt completion.
 ii. If `LoopContinues (exprValue,labelSet)` is **false**, return `exprValue`.

12.6.2 The **while Statement**

Static Semantics: **VarDeclaredNames**

IterationStatement : while (Expression) Statement

1. Return the **VarDeclaredNames** of **Statement**.

Runtime Semantics

Runtime Semantics: Labelled Evaluation

With argument `labelSet`.

IterationStatement : while (Expression) Statement

1. Let `V = undefined`.
2. Repeat
 a. Let exprRef be the result of evaluating Expression.
 b. Let exprValue be ToBoolean(GetValue(exprRef)).
 c. If exprValue is false, return NormalCompletion(V).
 d. Else if exprValue is a Completion Record, then
 i. Assert: exprValue is an abrupt completion.
 ii. If LoopContinues(exprValue, labelSet) is false, return exprValue.
 e. Let stmt be the result of evaluating Statement.
 f. If stmt.[[value]] is not empty, let V = stmt.[[value]].
 g. If LoopContinues(stmt, labelSet) is false, return stmt.

12.6.3 The for Statement

Static Semantics

Static Semantics: VarDeclaredNames

IterationStatement : for (ExpressionNoInopt; Expressionopt; Expressionopt) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : for (var VariableDeclarationListNoIn; Expressionopt; Expressionopt) Statement

1. Let names be BoundNames of VariableDeclarationListNoIn.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

IterationStatement : for (LexicalDeclarationNoIn; Expressionopt; Expressionopt) Statement

1. Return the VarDeclaredNames of Statement.

Runtime Semantics

Runtime Semantics: Labelled Evaluation

 With argument labelSet.

IterationStatement : for (ExpressionNoInopt; Expressionopt; Expressionopt) Statement

1. If ExpressionNoIn is present, then.
 a. Let exprRef be the result of evaluating ExpressionNoIn.
 b. Let exprValue be GetValue(exprRef). (This value is not used but the call may have side-effects.)
 c. If LoopContinues(exprValue, labelSet) is false, return exprValue.
2. Return the result of performing For Body Evaluation with the first Expression as the incrementExpr argument, the second Expression as the testExpr argument and with labelSet.

The abstract operation For Body Evaluation with arguments testExpr, incrementExpr, and labelSet is performed as follows:

1. Let V = undefined.
2. Repeat
 a. If testExpr is not [empty], then
 i. Let testExprRef be the result of evaluating testExpr.
 ii. Let testExprValue be ToBoolean(GetValue(testExprRef))
 iii. If testExprValue is false, return NormalCompletion(V).
 iv. Else LoopContinues(testExprValue, labelSet) is false, return testExprValue.
 b. Let stmt be the result of evaluating Statement.
 c. If stmt.[[value]] is not empty, let V = stmt.[[value]].
 d. If LoopContinues(stmt, labelSet) is false, return stmt.
e. If `incrementExpr` is not [empty], then
 i. Let `incExprRef` be the result of evaluating `incrementExpr`.
 ii. Let `incExprValue` be `GetValue(incExprRef)`.
 iii. If `LoopContinues(incExprValue, labelSet)` is `false`, return `incExprValue`.

IterationStatement : `for (var VariableDeclarationListNoIn ; Expression opt ; Expression opt)` Statement

1. Let `varDcl` be the result of evaluating `VariableDeclarationListNoIn`.
2. If `LoopContinues(varDcl, labelSet)` is `false`, return `varDcl`.
3. Return the result of performing For Body Evaluation with the first `Expression` as the `incrementExpr` argument, the second `Expression` as the `testExpr` argument and with `labelSet`.

IterationStatement : `for (LexicalDeclarationNoIn ; Expression opt ; Expression opt)` Statement

1. Let `oldEnv` be the running execution context’s `LexicalEnvironment`.
2. Let `loopEnv` be the result of calling `NewDeclarativeEnvironment` passing `oldEnv` as the argument.
3. Let `isConst` be the result of performing `IsConstantDeclaration` of `d`.
4. For each element `dn` of the `BoundNames` of `LexicalDeclarationNoIn` do
 a. If `isConst` is `true`, then
 i. Call `loopEnv`’s `CreateImmutableBinding` concrete method passing `dn` as the argument.
 b. Else,
 i. Call `loopEnv`’s `CreateMutableBinding` concrete method passing `dn` and `false` as the arguments.
5. Set the running execution context’s `LexicalEnvironment` to `loopEnv`.
6. Let `forDcl` be the result of evaluating `LexicalDeclarationNoIn`.
7. If `LoopContinues(varDcl, labelSet)` is `false`, then
 a. Set the running execution context’s `LexicalEnvironment` to `oldEnv`.
 b. Return `varDcl`.
8. Let `bodyResult` be the result of performing For Body Evaluation with the first `Expression` as the `incrementExpr` argument, the second `Expression` as the `testExpr` argument and with `labelSet`.
9. Set the running execution context’s `LexicalEnvironment` to `oldEnv`.
10. Return `bodyResult`.

12.6.4 The `for-in` and `for-of` Statements

Static Semantics

Static Semantics: Early Errors

IterationStatement :

• It is a Syntax Error if the `IterationStatement` is contained in strict code and `LeftHandSideExpression` is the Identifier `eval` or the Identifier `arguments`.
• It is a Syntax Error if the `LeftHandSideExpression` is an Identifier that statically resolves to a declarative environment record binding and the resolved binding is an immutable binding.
• It is a Syntax Error if the `LeftHandSideExpression` is `PrimaryExpression : (Expression)` and `Expression` derived a production that would produce a Syntax Error according to these rules. This rule is recursively applied.
• It is a Syntax Error if `IsInvalidAssignmentPattern` of `LeftHandSideExpression` is `true`.

IterationStatement :

• It is a Syntax Error if any element of the LexicallyDeclaredNames of `ForDeclaration` also occurs in the VarDeclaredNames of `Statement`.

© Ecma International 2012
Static Semantics: BoundNames

ForDeclaration : LetOrConst ForBinding
1. Return the BoundNames of ForBinding.

Static Semantics: VarDeclaredNames

IterationStatement : for (LeftHandSideExpression in Expression) Statement
1. Return the VarDeclaredNames of Statement.

IterationStatement : for (var ForBinding in Expression) Statement
1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names

IterationStatement : for (ForDeclaration in Expression) Statement
1. Return the VarDeclaredNames of Statement.

IterationStatement : for (LeftHandSideExpression of Expression) Statement
1. Return the VarDeclaredNames of Statement.

IterationStatement : for (var ForBinding of Expression) Statement
1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names

IterationStatement : for (ForDeclaration of Expression) Statement
1. Return the VarDeclaredNames of Statement.

Runtime Semantics

Runtime Semantics: Binding Instantiation

With arguments value and environment.

ForDeclaration : LetOrConst ForBinding
1. For each element name of the BoundNames of ForBinding do
 a. If IsConstantDeclaration of LetOrConst is false, then
 i. Call environment’s CreateMutableBinding concrete method with argument name.
 b. Else,
 i. Call environment’s CreateImmutableBinding concrete method with argument name.
2. Return the result of performing Binding Initialisation for ForBinding passing value and environment as the arguments.

Runtime Semantics: Labelled Evaluation

With argument labelSet.

IterationStatement : for (LeftHandSideExpression in Expression) Statement
1. Let keyResult be the result of performing For In/Of Expression Evaluation with Statement, enumerate, and labelSet.
2. ReturnIfAbrupt(keyResult).
3. Return the result of performing For In/Of Body Evaluation with LeftHandSideExpression, Statement, keyResult, assignment, and labelSet.

IterationStatement : for (var ForBinding in Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Statement, enumerate, and labelSet.
2. ReturnIfAbrupt(keyResult).
3. Return the result of performing For In/Of Body Evaluation with ForBinding, Statement, keyResult, varBinding, and labelSet.

IterationStatement : for (ForDeclaration in Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Statement, enumerate, and labelSet.
2. ReturnIfAbrupt(keyResult).
3. Return the result of performing For In/Of Body Evaluation with ForDeclaration, Statement, keyResult, lexicalBinding, and labelSet.

IterationStatement : for (LeftHandSideExpression of Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Statement, iterate, and labelSet.
2. ReturnIfAbrupt(keyResult).
3. Return the result of performing For In/Of Body Evaluation with LeftHandSideExpression, Statement, keyResult, varBinding, and labelSet.

IterationStatement : for (var ForBinding of Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Expression, iterate, and labelSet.
2. ReturnIfAbrupt(keyResult).
3. Return the result of performing For In/Of Body Evaluation with ForBinding, Statement, keyResult, varBinding, and labelSet.

IterationStatement : for (ForDeclaration of Expression) Statement

1. Let keyResult be the result of performing For In/Of Expression Evaluation with Expression, iterate, and labelSet.
2. ReturnIfAbrupt(keyResult).
3. Return the result of performing For In/Of Body Evaluation with ForDeclaration, Statement, keyResult, lexicalBinding, and labelSet.

The abstract operation For In/Of Expression Evaluation with arguments expr, iterationKind, and labelSet. The value of iterationKind is either enumerate or iterate.

1. Let exprRef be the result of evaluating the production that is expr.
2. Let expervalue be GetValue(exprRef).
3. If expervalue is an abrupt completion, a. If LoopContinues(expervalue,labelSet) is false, then return expervalue.
 b. Else, return Completion { [[type]]: break, [[value]]: empty [[target]]: empty }.
4. If expervalue.[value] is null or undefined, return Completion { [[type]]: break, [[value]]: empty [[target]]: empty }.
5. Let obj be ToObject(expervalue).
6. If \(\text{iterationKind} \) is \text{enumerate}, then
 a. Let \(\text{keys} \) be the result of calling the [[Enumerate]] internal method of \(\text{obj} \) with arguments \text{true} and \text{true}.
7. Else,
 a. Assert \(\text{iterationKind} \) is \text{iterate}.
 b. Let \(\text{keys} \) be the result of calling the [[Iterate]] internal method of \(\text{obj} \).
8. If \(\text{keys} \) is an abrupt completion, then
 a. If \(\text{LoopContinues}(\text{experValue}, \text{labelSet}) \) is \text{false}, then return \(\text{experValue} \).
 b. Assert: \(\text{keys}.[[\text{type}]] \) is \text{continue}
 c. Return Completion \{ [[\text{type}]]: \text{break}, [[\text{value}]]: \text{empty}, [[\text{target}]]: \text{empty} \}.
9. Return \text{keys}.

The abstract operation For In/Of Body Evaluation with arguments \(\text{lhs}, \text{stmt}, \text{keys}, \text{lhsKind} \), and \(\text{labelSet} \). The value of \(\text{lhsKind} \) is either \text{assignment}, \text{varBinding} or \text{lexicalBinding}.

1. Let \(\text{oldEnv} \) be the running execution context’s LexicalEnvironment.
2. Let \(\text{V} = \text{undefined} \).
3. Repeat
 a. Let \(\text{next} \) be the result of performing Invoke with arguments "\text{next}", \(\text{keys} \), and an empty arguments List.
 b. If \(\text{IteratorComplete}(\text{next}) \) is \text{true}, then return NormalCompletion(\(\text{V} \)).
 c. If \(\text{LoopContinues}(\text{next}, \text{labelSet}) \) is \text{false}, then return \(\text{next} \).
 d. If \(\text{next} \) is an abrupt completion, then let \(\text{status} \) be next.
 e. Else,
 i. Assert \(\text{next}.[[\text{type}]] \) is \text{normal}.
 ii. Let \(\text{nextValue} \) be \(\text{next}.[[\text{value}]] \).
 iii. If \(\text{lhsKind} \) is \text{assignment}, then
 1. Assert: \(\text{lhs} \) is a LeftHandSideExpression.
 2. If \(\text{lhs} \) is neither an \text{ObjectLiteral} nor an \text{ArrayLiteral} then
 a. Let \(\text{lhsRef} \) be the result of evaluating \(\text{lhs} \) (it may be evaluated repeatedly).
 b. Let \(\text{status} \) be the result of performing \text{PutValue}(\(\text{lhsRef}, \text{nextValue} \)).
 3. Else
 a. Let \(\text{AssignmentPattern} \) be the parse of the source code corresponding to \(\text{lhs} \) using \text{AssignmentPattern} as the goal symbol.
 b. Let \(\text{rval} \) be ToObject(\(\text{nextValue} \)).
 c. If \(\text{rval} \) is an abrupt completion, then let \(\text{status} \) be \(\text{rval} \).
 d. Else, let \(\text{status} \) be the result of performing Destructuring Assignment Evaluation of \text{AssignmentPattern} using \(\text{rval} \) as the argument.
 iv. Else if \(\text{lhsKind} \) is \text{varBinding}, then
 1. Assert: \(\text{lhs} \) is a \text{ForBinding}.
 2. Let \(\text{status} \) be the result of performing Binding Initialisation for \(\text{lhs} \) passing \(\text{nextValue} \) and \text{undefined} as the arguments.
 v. Else,
 1. Assert \(\text{lhsKind} \) is \text{lexicalBinding}.
 2. Assert: \(\text{lhs} \) is a \text{ForDeclaration}.
 3. Let \(\text{iterationEnv} \) be the result of calling NewDeclarativeEnvironment passing \(\text{oldEnv} \) as the argument.
 4. Perform Binding Instantiation for \(\text{lhs} \) passing \(\text{nextValue} \) and \(\text{iterationEnv} \) as arguments.
 5. Let \(\text{status} \) be NormalCompletion(\text{empty}.
 6. Set the running execution context’s LexicalEnvironment to \(\text{iterationEnv} \).
 vi. If \(\text{status}.[[\text{type}]] \) is \text{normal}, then
 1. Let \(\text{status} \) be the result of evaluating \(\text{stmt} \).
 2. If \(\text{status}.[[\text{type}]] \) is \text{normal} and \(\text{status}.[[\text{value}]] \) not \text{empty}, then
 a. Let \(\text{V} = \text{status}.[[\text{value}]] \).
 vii. Set the running execution context’s LexicalEnvironment to \(\text{oldEnv} \).
 viii. If \(\text{status} \) is an abrupt completion and \(\text{LoopContinues}(\text{status}, \text{labelSet}) \) is \text{false}, then return \(\text{status} \).
12.7 The continue Statement

Syntax

```
ContinueStatement : continue ;
continue [no LineTerminator here] Identifier ;
```

Static Semantics

Static Semantics: Early Errors

```
ContinueStatement : continue ;

• It is a Syntax Error if this production is not nested, directly or indirectly (but not crossing function boundaries), within an IterationStatement.

ContinueStatement : continue [no LineTerminator here] Identifier ;

• It is a Syntax Error if Identifier does not appear in the CurrentLabelSet of an enclosing (but not crossing function boundaries) IterationStatement.
```

Runtime Semantics

Runtime Semantics: Evaluation

```
ContinueStatement : continue ;

1. Return Completion {{type}: continue, {value}: empty, {target}: empty}.

ContinueStatement : continue [no LineTerminator here] Identifier ;

1. Return Completion {{type}: continue, {value}: empty, {target}: Identifier}.
```

12.8 The break Statement

Syntax

```
BreakStatement : break ;
break [no LineTerminator here] Identifier ;
```

Static Semantics

Static Semantics: Early Errors

```
BreakStatement : break ;

• It is a Syntax Error if this production not nested, directly or indirectly (but not crossing function boundaries), within an IterationStatement or a SwitchStatement.

BreakStatement : break [no LineTerminator here] Identifier ;

• It is a Syntax Error if Identifier does not appear in the CurrentLabelSet of an enclosing (but not crossing function boundaries) Statement.
```

Runtime Semantics

Runtime Semantics: Evaluation

```
BreakStatement : break ;
```
1. Return Completion \{[type]: break, [value]: empty, [target]: empty\}.

\textit{BreakStatement : \texttt{break}} [no \texttt{LineTerminator here}] \texttt{Identifier ;}

1. Return Completion \{[type]: break, [value]: empty, [target]: \texttt{Identifier}\}.

\textbf{12.9 The return Statement}

\textbf{Syntax}

\texttt{ReturnStatement : return ;
return \[no \texttt{LineTerminator here}\] Expression ;}

\textbf{NOTE} A return statement causes a function to cease execution and return a value to the caller. If \texttt{Expression} is omitted, the return value is \texttt{undefined}. Otherwise, the return value is the value of \texttt{Expression}.

\textbf{Static Semantics}

\textbf{Static Semantics: Early Errors}

- It is a Syntax Error if a \texttt{return} statement is not within a \texttt{FunctionBody}.

\textbf{Runtime Semantics}

\textbf{Runtime Semantics: Evaluation}

\texttt{ReturnStatement : return ;

1. Return Completion \{[type]: return, [value]: \texttt{undefined}, [target]: empty\}.}

\texttt{ReturnStatement : return \[no \texttt{LineTerminator here}\] Expression ;

1. Let exprRef be the result of evaluating \texttt{Expression}.
2. Let exprValue be \text{GetValue(exprRef)}.
3. If exprValue is an abrupt completion, return exprValue.
4. Return Completion \{[type]: return, [value]: exprValue, [target]: empty\}.

\textbf{12.10 The with Statement}

\textbf{Syntax}

\texttt{WithStatement : with (Expression) Statement}

\textbf{NOTE} The \texttt{with} statement adds an object environment record for a computed object to the lexical environment of the running execution context. It then executes a statement using this augmented lexical environment. Finally, it restores the original lexical environment.

\textbf{Static Semantics}

\textbf{Static Semantics: Early Errors}

\texttt{WithStatement : with (Expression) Statement}

- It is a Syntax Error if the code that matches this production is contained in strict code.

\textbf{Static Semantics: VarDeclaredNames}
WithStatement : with (Expression) Statement

1. Return the VarDeclaredNames of Statement.

Runtime Semantics

Runtime Semantics: Evaluation

WithStatement : with (Expression) Statement

1. Let val be the result of evaluating Expression.
2. Let obj be ToObject(GetValue(val)).
3. If obj is an abrupt completion, return obj.
4. Let oldEnv be the running execution context’s LexicalEnvironment.
5. Let newEnv be the result of calling NewObjectEnvironment passing obj and oldEnv as the arguments.
6. Set the withEnvironment flag of newEnv to true.
7. Set the running execution context’s LexicalEnvironment to newEnv.
8. Let C be the result of evaluating Statement.
9. Set the running execution context’s Lexical Environment to oldEnv.
10. Return C.

NOTE No matter how control leaves the embedded Statement, whether normally or by some form of abrupt completion or exception, the LexicalEnvironment is always restored to its former state.

12.11 The switch Statement

Syntax

SwitchStatement : switch (Expression) CaseBlock

CaseBlock : { CaseClausesopt }

CaseClauses : CaseClause CaseClauses CaseClause

CaseClause : case Expression : StatementListopt

DefaultClause : default : StatementListopt

Static Semantics

Static Semantics: Early Errors

CaseBlock : { CaseClauses }

- It is a Syntax Error if the LexicallyDeclaredNames of CaseClauses contains any duplicate entries.
- It is a Syntax Error if any element of the LexicallyDeclaredNames of CaseClauses also occurs in the VarDeclaredNames of CaseClauses.

Static Semantics: LexicalDeclarations

CaseBlock : { }
1. Return a new empty List.

CaseBlock : \{ CaseClauses_opt DefaultClause CaseClauses_opt \}

1. If the first CaseClauses is present, let declarations be the LexicalDeclarations of the first CaseClauses.
2. Else let declarations be a new empty List.
3. Append to declarations the elements of the LexicallyDeclaredNames of the DefaultClause.
4. If the second CaseClauses is not present, return names.
5. Else return the result of appending to names the elements of the LexicallyDeclaredNames of the second CaseClauses.

CaseClauses : CaseClauses CaseClause

1. Let declarations be LexicalDeclarations of CaseClauses.
2. Append to names the elements of the LexicalDeclarations of CaseClause.
3. Return declarations.

CaseClause : case Expression : StatementList_opt

1. If the StatementList is present, return the LexicalDeclarations of StatementList.
2. Else return a new empty List.

DefaultClause : default : StatementList_opt

1. If the StatementList is present, return the LexicalDeclarations of StatementList.
2. Else return a new empty List.

Static Semantics: LexicallyDeclaredNames

CaseBlock : \{ \}

1. Return a new empty List.

CaseBlock : \{ CaseClauses_opt DefaultClause CaseClauses_opt \}

1. If the first CaseClauses is present, let names be the LexicallyDeclaredNames of the first CaseClauses.
2. Else let names be a new empty List.
3. Append to names the elements of the LexicallyDeclaredNames of the DefaultClause.
4. If the second CaseClauses is not present, return names.
5. Else return the result of appending to names the elements of the LexicallyDeclaredNames of the second CaseClauses.

CaseClauses : CaseClauses CaseClause

1. Let names be LexicallyDeclaredNames of CaseClauses.
2. Append to names the elements of the LexicallyDeclaredNames of CaseClause.
3. Return names.

CaseClause : case Expression : StatementList_opt

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
2. Else return a new empty List.

DefaultClause : default : StatementList_opt

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
2. Else return a new empty List.

Static Semantics: VarDeclaredNames
SwitchStatement: `switch (Expression) CaseBlock`

1. Return the VarDeclaredNames of `CaseBlock`.

CaseBlock: `{}`

1. Return a new empty List.

CaseBlock: `{ CaseClausesopt DefaultClause CaseClausesopt }`

1. If the first `CaseClauses` is present, let `names` be the VarDeclaredNames of the first `CaseClauses`.
2. Else let `names` be a new empty List.
3. Append to `names` the elements of the VarDeclaredNames of the `DefaultClause`.
4. If the second `CaseClauses` is not present, return `names`.
5. Else return the result of appending to `names` the elements of the VarDeclaredNames of the second `CaseClauses`.

CaseClauses: `CaseClauses CaseClause`

1. Let `names` be VarDeclaredNames of `CaseClauses`.
2. Append to `names` the elements of the VarDeclaredNames of `CaseClause`.
3. Return `names`.

CaseClause: `case Expression : StatementListopt`

1. If the `StatementList` is present, return the VarDeclaredNames of `StatementList`.
2. Else return a new empty List.

DefaultClause: `default : StatementListopt`

1. If the `StatementList` is present, return the VarDeclaredNames of `StatementList`.
2. Else return a new empty List.

Runtime Semantics

Runtime Semantics: Case Block Evaluation

With argument `input`.

CaseBlock: `{ CaseClausesopt }`

1. Let `V = undefined`.
2. Let `A` be the list of `CaseClause` items in source text order.
3. Let `searching` be `true`.
4. Repeat, while `searching` is `true`
 a. Let `C` be the next `CaseClause` in `A`. If there is no such `CaseClause`, return `NormalCompletion(V)`.
 b. Let `clauseSelector` be the result of evaluating `C`.
 c. If `clauseSelector` is an abrupt completion, return `clauseSelector`.
 d. If `input` is equal to `clauseSelector` as defined by the Strict Equality Comparision Algorithm (11.9.1), then
 i. Set `searching` to `false`.
 ii. If `C` has a `StatementList`, then
 1. Evaluate `C`'s `StatementList` and let `R` be the result.
 2. If `R` is an abrupt completion, then return `R`.
5. Repeat
 a. Let `C` be the next `CaseClause` in `A`. If there is no such `CaseClause`, return `NormalCompletion(V)`.
 b. If `C` has a `StatementList`, then
 i. Evaluate `C`'s `StatementList` and let `R` be the result.
 ii. If `R.[[value]]` is not empty, then let `V = R.[[value]]`.
iii. If \(R \) is an abrupt completion, then return Completion \([[[type]]]: R.[[type]], [[value]]: \(V \), [[target]]: \(R.[[target]] \).

\[\text{CaseBlock} : \{ \text{CaseClauses}_{\text{opt}} \text{ DefaultClause} \text{ CaseClauses}_{\text{opt}} \} \]

1. Let \(V = \text{undefined} \).
2. Let \(A \) be the list of \(\text{CaseClause} \) items in the first \(\text{CaseClauses} \), in source text order.
3. Let \(\text{found} \) be \(\text{false} \).
4. Repeat letting \(C \) be in order each \(\text{CaseClause} \) in \(A \)
 a. If \(\text{found} \) is \(\text{false} \), then
 i. Let \(\text{clauseSelector} \) be the result of Case Selector Evaluation of \(C \).
 ii. If \(\text{clauseSelector} \) is an abrupt completion, then
 1. If \(\text{clauseSelector}([[value]]) \) is \(\text{empty} \), then return Completion \([[[type]]]: \text{clauseSelector}([[type]], [[value]]: \text{undefined}, [[target]]: \text{clauseSelector}([[target]]) \).
 2. Else, return \(\text{clauseSelector} \).
 iii. If \(\text{input} \) is equal to \(\text{clauseSelector} \) as defined by the Strict Equality Comparison Algorithm (11.9.1), then set \(\text{found} \) to \(\text{true} \).
 b. If \(\text{found} \) is \(\text{true} \), then
 i. Evaluate \(\text{CaseClause} \) \(C \) and let \(R \) be the result.
 ii. If \(R.([[value]]) \) is not \(\text{empty} \), then let \(V = R.([[value]]) \).
 iii. If \(R \) is an abrupt completion, then return Completion \([[[type]]]: R.[[type]], [[value]]: \(V \), [[target]]: \(R.[[target]] \).
5. Let \(\text{foundInB} \) be \(\text{false} \).
6. If \(\text{found} \) is \(\text{false} \), then
 a. Let \(B \) be a new list of the \(\text{CaseClause} \) items in the second \(\text{CaseClauses} \), in source text order.
 b. Repeat, letting \(C \) be in order each \(\text{CaseClause} \) in \(B \)
 i. If \(\text{foundInB} \) is \(\text{false} \), then
 1. Let \(\text{clauseSelector} \) be the result of Case Selector Evaluation of \(C \).
 2. If \(\text{clauseSelector} \) is an abrupt completion, then
 a. If \(\text{clauseSelector}([[value]]) \) is \(\text{empty} \), then return Completion \([[[type]]]: \text{clauseSelector}([[type]], [[value]]: \text{undefined}, [[target]]: \text{clauseSelector}([[target]]) \).
 b. Else, return \(\text{clauseSelector} \).
 3. If \(\text{input} \) is equal to \(\text{clauseSelector} \) as defined by the Strict Equality Comparison Algorithm (11.9.1), then set \(\text{foundInB} \) to \(\text{true} \).
 ii. If \(\text{foundInB} \) is \(\text{true} \), then return NormalCompletion\((V) \).
7. Evaluate \(\text{DefaultClause} \) and let \(R \) be the result.
8. If \(R.([[value]]) \) is not \(\text{empty} \), then let \(V = R.([[value]]) \).
9. If \(R \) is an abrupt completion, then return Completion \([[[type]]]: R.[[type]], [[value]]: \(V \), [[target]]: \(R.[[target]] \).
10. Let \(B \) be a new list of the \(\text{CaseClause} \) items in the second \(\text{CaseClauses} \), in source text order.
12. Repeat, letting \(C \) be in order each \(\text{CaseClause} \) in \(B \) (NOTE this is another complete iteration of the second \(\text{CaseClauses} \))
 b. Evaluate \(\text{CaseClause} \) \(C \) and let \(R \) be the result.
 c. If \(R.([[value]]) \) is not \(\text{empty} \), then let \(V = R.([[value]]) \).
 d. If \(R \) is an abrupt completion, then return Completion \([[[type]]]: R.[[type]], [[value]]: \(V \), [[target]]: \(R.[[target]] \).
13. Return NormalCompletion\((V) \).

Runtime Semantics: Case Selector Evaluation

\[\text{CaseClause} : \text{case} \ \text{Expression} : \text{StatementList}_{\text{opt}} \]

1. Let \(\text{exprRef} \) be the result of evaluating \(\text{Expression} \).
2. Return GetValue\((\text{exprRef}) \).
NOTE Case Selector Evaluation does not execute the associated StatementList. It simply evaluates the Expression and returns the value, which the CaseBlock algorithm uses to determine which StatementList to start executing.

Runtime Semantics: Evaluation

SwitchStatement: \texttt{switch} (Expression) CaseBlock

1. Let \texttt{exprRef} be the result of evaluating Expression.
2. Let \texttt{switchValue} be \texttt{GetValue(exprRef)}.
3. If \texttt{switchValue} is an abrupt completion, return \texttt{switchValue}.
4. Let \texttt{oldEnv} be the running execution context’s LexicalEnvironment.
5. Let \texttt{blockEnv} be the result of calling \texttt{NewDeclarativeEnvironment} passing \texttt{oldEnv} as the argument.
6. Perform Block Declaration Instantiation using CaseBlock and \texttt{blockEnv}.
7. Let \texttt{R} be the result of performing Case Block Evaluation of CaseBlock with argument \texttt{switchValue}.
8. Set the running execution context’s LexicalEnvironment to \texttt{oldEnv}.
9. Return \texttt{R}.

NOTE No matter how control leaves the SwitchStatement the LexicalEnvironment is always restored to its former state.

CaseClause: \texttt{case} Expression : [empty]

1. Return NormalCompletion(\texttt{empty}).

CaseClause: \texttt{case} Expression : StatementList

1. Return the result of evaluating StatementList.

DefaultClause: \texttt{default}: [empty]

1. Return NormalCompletion(\texttt{empty}).

DefaultClause: \texttt{default}: StatementList

1. Return the result of evaluating StatementList.

12.12 Labelled Statements

Syntax

LabelledStatement :

\hspace{1em} Identifier : Statement

NOTE A Statement may be prefixed by a label. Labelled statements are only used in conjunction with labelled break and continue statements. ECMAScript has no goto statement. A Statement can be part of a LabelledStatement, which itself can be part of a LabelledStatement, and so on. The labels introduced this way are collectively referred to as the "current label set" when describing the semantics of individual statements. A LabelledStatement has no semantic meaning other than the introduction of a label to a label set. The label set of an IterationStatement or a SwitchStatement initially contains the single element \texttt{empty}. The label set of any other statement is initially empty.

Static Semantics

Static Semantics: Early Errors

- It is a Syntax Error if a LabelledStatement is enclosed by a LabelledStatement with the same Identifier as label. This does not apply to labels appearing within the body of a FunctionDeclaration that is nested, directly or indirectly, within a labelled statement.

Static Semantics: VarDeclaredNames
LabelledStatement : Identifier : Statement

1. Return the VarDeclaredNames of Statement.

Runtime Semantics

Runtime Semantics: Labelled Evaluation

With argument labelSet.

LabelledStatement : Identifier : Statement

1. Let label be the StringValue of Identifier.
2. Let newLabelSet be a new List containing label and the elements of labelSet.
3. If Statement is either LabelledStatement or BreakableStatement, then
 a. Let stmtResult be the result of performing Labelled Evaluation of Statement with argument newLabelSet.
4. Else,
 a. Let stmtResult be the result of evaluating Statement.
5. If stmtResult.[[type]] is break and stmtResult.[[target]] is the same value as label, then
 a. Let result be NormalCompletion(stmtResult.[[value]])
6. Else, let result be stmtResult.
7. Return result.

Runtime Semantics: Evaluation

LabelledStatement : Identifier : Statement

3. Let newLabelSet be a new empty List.
4. Return the result of performing Labelled Evaluation of this LabelledStatement with argument newLabelSet.

12.13 The throw Statement

Syntax

ThrowStatement :
 throw [no LineTerminator here] Expression ;

Runtime Semantics: Evaluation

The production ThrowStatement : throw [no LineTerminator here] Expression ; is evaluated as follows:

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be GetValue(exprRef).
3. ReturnIfAbrupt(exprValue).
4. Return Completion {[[[type]]]: throw, [[value]]: GetValue(exprRef), [[target]]: empty}.

12.14 The try Statement

Syntax

TryStatement :
 try Block Catch
 try Block Finally
 try Block Catch Finally

Catch :
 catch (CatchParameter) Block
Finally:
 finally Block

CatchParameter:
 BindingIdentifier
 BindingPattern

NOTE The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime error or a throw statement. The catch clause provides the exception-handling code. When a catch clause catches an exception, its Identifier is bound to that exception.

Static Semantics

Static Semantics: Early Errors

Catch: catch (CatchParameter) Block
 • It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the LexicallyDeclaredNames of Block.
 • It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the VarDeclaredNames of Block.

Static Semantics: VarDeclaredNames

TryStatement: try Block Catch
1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Catch.
3. Return names.

TryStatement: try Block Finally
1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Finally.
3. Return names.

TryStatement: try Block Catch Finally
1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Catch.
3. Append to names the elements of the VarDeclaredNames of Finally.
4. Return names.

Catch: catch (CatchParameter) Block
1. Return the VarDeclaredNames of Block.

Runtime Semantics

Runtime Semantics: Binding Initialisation

 With arguments value and environment.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a lexical binding is hosted and preinitialized prior to evaluation of its initializer.

CatchParameter: BindingPattern
1. Let \(\text{exceptionObj} \) be ToObject(value).
2. Return the result of performing Binding Initialisation for BindingPattern passing exceptionObj and environment as the arguments.

Runtime Semantics: Catch Clause Evaluation

with parameter \(\text{thrownValue} \)

\(\text{Catch} : \text{catch} (\text{CatchParameter}) \) Block

1. Let \(\text{oldEnv} \) be the running execution context’s LexicalEnvironment.
2. Let \(\text{catchEnv} \) be the result of calling NewDeclarativeEnvironment passing \(\text{oldEnv} \) as the argument.
3. For each element \(\text{argName} \) of the BoundNames of CatchParameter, do
 a. Call the CreateMutableBinding concrete method of \(\text{catchEnv} \) passing \(\text{argName} \) as the argument.
4. Let \(\text{status} \) be the result of performing Binding Initialisation for CatchParameter passing \(\text{thrownValue} \) and catchEnv as arguments.
5. If \(\text{status} \) is an abrupt completion, then return \(\text{status} \).
6. Set the running execution context’s LexicalEnvironment to \(\text{catchEnv} \).
7. Let \(\text{B} \) be the result of evaluating Block.
8. Set the running execution context’s LexicalEnvironment to \(\text{oldEnv} \).
9. Return \(\text{B} \).

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.

Runtime Semantics: Evaluation

\(\text{TryStatement} : \text{try} \) Block Catch

1. Let \(\text{B} \) be the result of evaluating Block.
2. If \(\text{B}.[[\text{type}]] \) is not throw, return \(\text{B} \).
3. Return the result of performing Catch Clause Evaluation of Catch with parameter \(\text{B}.[[\text{value}]] \).

\(\text{TryStatement} : \text{try} \) Block Finally

1. Let \(\text{B} \) be the result of evaluating Block.
2. Let \(\text{F} \) be the result of evaluating Finally.
3. If \(\text{F}.[[\text{type}]] \) is normal, return \(\text{B} \).
4. Return \(\text{F} \).

\(\text{TryStatement} : \text{try} \) Block Catch Finally

1. Let \(\text{B} \) be the result of evaluating Block.
2. If \(\text{B}.[[\text{type}]] \) is throw, then
 a. Let \(\text{C} \) be the result of performing Catch Clause Evaluation of Catch with parameter \(\text{B}.\text{value} \).
3. Else, \(\text{B}.[[\text{type}]] \) is not throw,
 a. Let \(\text{C} \) be \(\text{B} \).
4. Let \(\text{F} \) be the result of evaluating Finally.
5. If \(\text{F}.[[\text{type}]] \) is normal, return \(\text{C} \).
6. Return \(\text{F} \).

12.15 The debugger statement

Syntax

\[\text{DebuggerStatement} : \]

\[\text{debugger} ; \]
Runtime Semantics: Evaluation

NOTE Evaluating the DebuggerStatement production may allow an implementation to cause a breakpoint when run under a debugger. If a debugger is not present or active this statement has no observable effect.

The production DebuggerStatement: debugger ; is evaluated as follows:

1. If an implementation defined debugging facility is available and enabled, then
 a. Perform an implementation defined debugging action.
 b. Let result be an implementation defined Completion value.
2. Else
 a. Let result be NormalCompletion(empty).
3. Return result.

13 Functions and Generators

13.1 Function Definitions

Syntax

FunctionDeclaration :
 function BindingIdentifier (FormalParameterList) { FunctionBody }

FunctionExpression :
 function BindingIdentifier_opt (FormalParameterList) { FunctionBody }

FormalParameterList :
 [empty]
 FunctionRestParameter
 FormalsList
 FormalsList , FunctionRestParameter

FormalsList :
 FormalParameter
 FormalsList , FormalParameter

FunctionRestParameter :
 ... BindingIdentifier

FormalParameter :
 BindingElement

FunctionBody :
 StatementList_opt

Static Semantics

Static Semantics: Early Errors

FunctionDeclaration : function BindingIdentifier (FormalParameterList) { FunctionBody }
and
FunctionExpression : function BindingIdentifier_opt (FormalParameterList) { FunctionBody }

- It is a Syntax Error if any element of the BoundNames of FormalParameterList also occurs in the LexicallyDeclaredNames of FunctionBody.
- It is a Syntax Error if FunctionBody Contains YieldExpression.

FunctionBody : StatementList
• It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
• It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the VarDeclaredNames of StatementList.

FormalParameterList : FormalsList

• It is a Syntax Error if FormalParameterList Contains YieldExpression.
• It is a Syntax Error if BoundNames of FormalsList contains any duplicate elements and either FormalsList Contains BindingPattern or FormalsList Contains Initialiser.
• It is a Syntax Error if BoundNames of FormalsList contains either “eval” or “arguments” and either FormalsList Contains BindingPattern or FormalsList Contains Initialiser.

FormalParameterList : FormalsList , FunctionRestParameter

• It is a Syntax Error if BoundNames of FormalsList contains any duplicate elements.
• It is a Syntax Error if BoundNames of FormalsList contains any element of the BoundNames of FunctionRestParameter.

FormalsList : FormalsList , FormalParameter

• It is a Syntax Error if the source code matching this production is strict code and BoundNames of FormalsList contains any element which is also contained in BoundNames of FormalParameter.

FunctionRestParameter : . . . BindingIdentifier

• It is a Syntax Error if the StringValue of the sole element of the BoundNames of BindingIdentifier is eval or arguments.

FormalParameter : BindingElement

• It is a Syntax Error if BoundNames of BindingElement contains any duplicate elements.

Static Semantics: BoundNames

FunctionDeclaration : function BindingIdentifier (FormalParameterList) { FunctionBody }

1. Return the BoundNames of BindingIdentifier.

FormalParameterList : [empty]

1. Return an empty List.

FormalParameterList : FormalsList , FunctionRestParameter

1. Let names be BoundNames of FormalsList.
2. Append to names the BoundNames of FunctionRestParameter.
3. Return names.

FormalsList : FormalParameterList , FormalParameter

1. Let names be BoundNames of FormalsList.
2. Append to names the elements of BoundNames of FormalParameter.
3. Return names.

Static Semantics: Contains

With parameter symbol.
FunctionDeclaration: \texttt{function BindingIdentifier (FormalParameterList) } \{ FunctionBody \}

1. Return \texttt{false}.

FunctionExpression: \texttt{function BindingIdentifier_opt (FormalParameterList) } \{ FunctionBody \}

3. Return \texttt{false}.

\textbf{NOTE} Static semantic rules that depend upon substructure generally do not look into function definitions.

\textbf{Static Semantics: ExpectedArgumentCount}

\begin{itemize}
 \item \texttt{FormalParameterList}:
 \begin{itemize}
 \item \texttt{[empty]}
 \quad \texttt{FunctionRestParameter}
 \end{itemize}
 \item Return 0.
 \item \texttt{FormalParameterList}:
 \begin{itemize}
 \item \texttt{FormalsList, FunctionRestParameter}
 \end{itemize}
 \item Return the ExpectedArgumentCount of \texttt{FormalsList}.
\end{itemize}

\textbf{NOTE} The ExpectedArgumentCount of a \texttt{FormalParameterList} is the number of \texttt{FormalParameters} to the left of either the rest parameter or the first \texttt{FormalParameter} with an Initialiser. A \texttt{FormalParameter} without an initializer are allowed after the first parameter with an initializer but such parameters are considered to be optional with \texttt{undefined} as their default value.

\texttt{FormalsList} : FormalParameter

1. If HasInitialiser of \texttt{FormalParameter} is \texttt{false} return 0
2. Return 1.

\texttt{FormalsList} : FormalsList, FormalParameter

1. Let \texttt{count} be the ExpectedArgumentCount of \texttt{FormalsList}.
2. If HasInitialiser of \texttt{FormalsList} is \texttt{true} or HasInitialiser of \texttt{FormalParameter} is \texttt{true}, then return \texttt{count}.
3. Return \texttt{count}+1.

\textbf{Static Semantics: HasInitialiser}

\texttt{FormalsList} : FormalsList, FormalParameter

1. If HasInitialiser of \texttt{FormalsList} is \texttt{true}, then return \texttt{true}.
2. Return HasInitialiser of \texttt{FormalParameter}.

\textbf{Static Semantics: IsConstantDeclaration}

FunctionDeclaration: \texttt{function BindingIdentifier (FormalParameterList) } \{ FunctionBody \}

1. Return \texttt{false}.

\textbf{Static Semantics: LexicallyDeclaredNames}

FunctionDeclaration: \texttt{function BindingIdentifier (FormalParameterList) } \{ FunctionBody \}

1. Return the BoundNames of \texttt{BindingIdentifier}.

FunctionBody : [empty]

1. Return an empty List.
Static Semantics: VarDeclaredNames

FunctionDeclaration : function BindingIdentifier (FormalParameterList) { FunctionBody }

1. Return an empty List.

FunctionBody : [empty]

1. Return an empty List.

Runtime Semantics

Runtime Semantics: Binding Initialisation

With parameters value and environment and optional parameter index.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

FormalParameterList : [empty]

1. Return NormalCompletion(empty).

FormalParameterList : FunctionRestParameter

1. Return the result of performing Indexed Binding Initialisation for FunctionRestParameter using value, 0, and environment as the arguments.

FormalParameterList : FormalsList

1. Return the result of performing Indexed Binding Initialisation for FormalsList using value, 0, and environment as the arguments.

FormalParameterList : FormalsList , FunctionRestParameter

1. Let restIndex be the result of performing Indexed Binding Initialisation for FormalsList using value, 0, and environment as the arguments.
2. ReturnIfAbrupt(restIndex).
3. Return the result of performing Indexed Binding Initialisation for FunctionRestParameter using value, restIndex, and environment as the arguments.

Runtime Semantics: Indexed Binding Initialisation

With parameters array, nextIndex, and environment.

FormalsList : FormalParameter

1. Let status be the result of performing Indexed Binding Initialisation for FormalParameter using array, env, nextIndex as the arguments.
2. ReturnIfAbrupt(status).
3. Return nextIndex + 1.

FormalsList : FormalsList , FormalParameter

1. Let lastIndex be the result of performing Indexed Binding Initialisation for FormalsList using array, nextIndex, and environment as the arguments.
2. ReturnIfAbrupt(lastIndex).
1. Let \(status \) be the result of performing Indexed Binding Initialisation for \(\text{FormalParameter} \) using \(\text{array}, \ lastIndex, \) and \(\text{environment} \) as the arguments.

2. ReturnIfAbrupt(\(status \)).

3. Return \(lastIndex + 1 \).

FunctionRestParameter: . . . BindingIdentifier

4. Assert: \(\text{array} \) is a well formed arguments object and hence it has a valid integer valued "\(\text{length} \)" property.

5. Let \(\text{argumentsLength} \) be the result of calling the \([\text{Get}]\) internal method of \(\text{value} \) with argument "\(\text{length} \)."

6. Let \(\text{argumentsLength} \) be \(\text{argumentsLength}.[\text{value}] \).

7. Let \(A \) be the result of the abstract operation ArrayCreate (15.4) with argument 0.

8. Let \(n=0; \)

9. Repeat, while \(\text{nextIndex} < \text{argumentsLength} \)

 a. Let \(P \) be ToString(\(\text{nextIndex} \)).

 b. Assert: \(\text{array} \) is a well formed arguments object, hence it must have a property \(P \).

 c. Let \(v \) be the result of calling the \([\text{Get}]\) internal method of \(\text{array} \) passing \(P \) as the argument.

 d. Call the \([\text{DefineOwnProperty}]\) internal method of \(A \) with arguments ToString(\(n \)), Property Descriptor \(\{[\text{Value}]: v, [\text{Value}], [\text{Writable}]: \text{true}, [\text{Enumerable}]: \text{true}, [\text{Configurable}]: \text{true} \}, \) and \(\text{false} \).

 e. Let \(n = n+1 \).

 f. Let \(\text{nextIndex} = \text{nextIndex} + 1 \).

10. Return the result of performing Binding Initialisation for \(\text{BindingIdentifier} \) using \(A \) and \(\text{environment} \) as arguments.

Runtime Semantics: Instantiate Function Declaration

FunctionDeclaration: function BindingIdentifier (FormalParameterList) { FunctionBody }

1. If the \(\text{FunctionDeclaration} \) is contained in strict code or if its \(\text{FunctionBody} \) is strict code, then let \(\text{strict} \) be \text{true}. Otherwise let \(\text{strict} \) be \text{false}.

2. Let \(\text{scope} \) be the LexicalEnvironment of the running execution context.

3. Let \(F \) be the result of performing the FunctionCreate abstract operation with arguments \(\text{Normal}, \)\(\text{FormalParameterList}, \text{FunctionBody}, \text{scope}, \) and \(\text{strict} \).

4. Perform the abstract operation MakeConstructor with argument \(F \).

5. Return \(F \).

Runtime Semantics: Evaluation

FunctionDeclaration: function BindingIdentifier (FormalParameterList) { FunctionBody }

1. Return (\(\text{normal}, \text{empty}, \text{empty} \)).

FunctionExpression: function (FormalParameterList) { FunctionBody }

1. If the \(\text{FunctionExpression} \) is contained in strict code or if its \(\text{FunctionBody} \) is strict code, then let \(\text{strict} \) be \text{true}. Otherwise let \(\text{strict} \) be \text{false}.

2. Let \(\text{scope} \) be the LexicalEnvironment of the running execution context.

3. Let \(\text{closure} \) be the result of performing the FunctionCreate abstract operation with arguments \(\text{Normal}, \)\(\text{FormalParameterList}, \text{FunctionBody}, \text{scope}, \) and \(\text{strict} \).

4. Perform the abstract operation MakeConstructor with argument \(\text{closure} \).

5. Return \(\text{closure} \).

FunctionExpression: function BindingIdentifier (FormalParameterList) { FunctionBody }

1. If the \(\text{FunctionExpression} \) is contained in strict code or if its \(\text{FunctionBody} \) is strict code, then let \(\text{strict} \) be \text{true}. Otherwise let \(\text{strict} \) be \text{false}.

2. Let \(\text{funcEnv} \) be the result of calling NewDeclarativeEnvironment passing the running execution context’s Lexical Environment as the argument

3. Let \(\text{envRec} \) be \(\text{funcEnv} \)’s environment record.
4. Let name be StringValue of BindingIdentifier.
5. Call the CreateImmutableBinding concrete method of envRec passing name as the argument.
6. Let closure be the result of performing the FunctionCreate abstract operation with arguments Normal, FormalParameterList, FunctionBody, funcEnv, and strict.
7. Perform the abstract operation MakeConstructor with argument closure.
8. Call the InitializeBinding concrete method of envRec passing name and closure as the arguments.
9. Return NormalCompletion(closure).

NOTE 1 The BindingIdentifier in a FunctionExpression can be referenced from inside the FunctionExpression's FunctionBody to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the BindingIdentifier in a FunctionExpression cannot be referenced from and does not affect the scope enclosing the FunctionExpression.

NOTE 2 A prototype property is automatically created for every function defined using a FunctionDeclaration or FunctionExpression, to allow for the possibility that the function will be used as a constructor.

FunctionBody : StatementListopt

1. The code of this FunctionBody is strict mode code if it is contained in strict mode code or if the Directive Prologue (14.1) of its StatementList contains a Use Strict Directive or if any of the conditions in 10.1.1 apply. If the code of this FunctionBody is strict mode code, StatementList is evaluated in the following steps as strict mode code. Otherwise, StatementList is evaluated in the following steps as non-strict mode code.
2. If StatementList is present return the result of evaluating StatementList.
3. Else return NormalCompletion(undefined).

13.2 Arrow Function Definitions

Syntax

ArrowFunction : ArrowParameters => ConciseBody

ArrowParameters : BindingIdentifier (ArrowFormalParameterList)

ArrowFormalParameterList : [empty]
 FunctionRestParameter
 CoverFormalsList
 CoverFormalsList , FunctionRestParameter

ConciseBody : [lookahead ≠ { []} AssignmentExpression
 { FunctionBody }]

CoverFormalsList : Expression

Supplemental Syntax

When processing the production CoverFormalsList : Expression the FormalsList production is used to further restrict the source code that matches Expression.

ArrowFormalParameterList : FormalParameterList

Static Semantics

Static Semantics: Early Errors

ArrowFunction : ArrowParameters => ConciseBody
• It is a Syntax Error if any element of the LexicallyDeclaredNames of `ConciseBody` also occurs in the VarDeclaredNames of `ConciseBody`.
• It is a Syntax Error if any element of the BoundNames of `ArrowParameters` also occurs in the LexicallyDeclaredNames of `ConciseBody`.
• It is a Syntax Error if `ConciseBody` Contains `YieldExpression`.

`ArrowParameters : BindingIdentifier`

• It is a Syntax Error if the StringValue of the sole element of the BoundNames of `BindingIdentifier` is `eval` or `arguments`.

`ArrowFormalParameterList : CoverFormalsList , FunctionRestParameter`

• It is a Syntax Error if BoundNames of `CoverFormalsList` contains any element which is also contained in BoundNames of `FunctionRestParameter`.

`CoverFormalsList : Expression`

• It is a Syntax Error if the source code corresponding to `Expression` cannot be parsed using `FormalsList` as the goal symbol.
• All Early Errors rules for `FormalsList` also apply to the CoveredFormalsList of `Expression`.

Static Semantics: BoundNames

`ArrowFormalParameterList : [empty]`

1. Return an empty List.

`ArrowFormalParameterList : CoverFormalsList , FunctionRestParameter`

1. Let names be BoundNames of `CoverFormalsList`.
2. Append to names the BoundNames of `FunctionRestParameter`.
3. Return names.

`CoverFormalsList : Expression`

1. Return the BoundNames of CoveredFormalsList of `Expression`.

Static Semantics: Contains

With parameter `symbol`.

`ArrowFunction : ArrowParameters => ConciseBody`

1. If `ArrowParameters` Contains `symbol` is `true`, return `true`;
2. Return `ConciseBody` Contains `symbol`.

NOTE This is used to detect `yield` and `super` usage within an `ArrowFunction`.

Static Semantics: CoveredFormalsList

`CoverFormalsList : Expression`

1. Return the result of parsing the source code corresponding to `Expression` using `FormalsList` as the goal symbol.

Static Semantics: ExpectedArgumentCount
ArrowParameters : BindingIdentifier

1. Return 1.

ArrowFormalParameterList : [empty]
 FunctionRestParameter

1. Return 0.

ArrowFormalParameterList : CoverFormalsList
 CoverFormalsList , FunctionRestParameter

1. Return the ExpectedArgumentCount of CoveredFormalsList of CoverFormalsList.

Static Semantics: LexicallyDeclaredNames

ConciseBody : [lookahead ≠ { }] AssignmentExpression

1. Return an empty List.

Runtime Semantics

Runtime Semantics: Binding Initialisation

With parameters value and environment and optional parameter index.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

ArrowParameters : BindingIdentifier

1. Return the result of performing Indexed Binding Initialisation for BindingIdentifier using value, 0, and environment as the arguments.

ArrowFormalParameterList : [empty]

1. Return NormalCompletion(empty).

ArrowFormalParameterList : FunctionRestParameter

1. Return the result of performing Indexed Binding Initialisation for FunctionRestParameter using value, 0, and environment as the arguments.

ArrowFormalParameterList : CoverFormalsList

1. Return the result of performing Indexed Binding Initialisation for CoveredFormalsList of CoverFormalsList using value, 0, and environment as the arguments.

ArrowFormalParameterList : CoverFormalsList , FunctionRestParameter

1. Let restIndex be the result of performing Indexed Binding Initialisation for CoveredFormalsList of CoverFormalsList using value, 0, and environment as the arguments.
2. ReturnIfAbrupt(restIndex).
3. Return the result of performing Indexed Binding Initialisation for FunctionRestParameter using value, restIndex, and environment as the arguments.
Runtime Semantics: Evaluation

ArrowFunction : ArrowParameters => ConciseBody

1. Let strict be true.
2. Let scope be the LexicalEnvironment of the running execution context.
3. Let closure be the result of performing the FunctionCreate abstract operation with arguments Arrow, ArrowParameterList, ConciseBody, scope, and strict.
4. Return closure.

ConciseBody : [lookahead ≠ { }] AssignmentExpression

1. The code of this ConciseBody is strict mode code if it is contained in strict mode code or if any of the conditions in 10.1.1 apply. If the code of this ConciseBody is strict mode code, AssignmentExpression is evaluated in the following steps as strict mode code. Otherwise, AssignmentExpression is evaluated in the following steps as non-strict mode code.
2. Let exprRef be the result of evaluating AssignmentExpression.
3. Let exprValue be GetValue(exprRef).
4. If exprValue is an abrupt completion, return exprValue.
5. Return Completion { [[type]]: return, [[value]]: exprValue, [[target]]: empty }.

13.3 Method Definitions

Syntax

MethodDefinition :

```
PropertyName ( FormalParameterList ) { FunctionBody } 
*PropertyName ( FormalParameterList ) { FunctionBody } 
get PropertyName () { FunctionBody } 
set PropertyName ( PropertySetParameterList ) { FunctionBody }
```

PropertySetParameterList :

```
BindingIdentifier 
BindingPattern
```

Static Semantics

Early Errors

MethodDefinition : PropertyName (FormalParameterList) { FunctionBody }

and

MethodDefinition : * PropertyName (FormalParameterList) { FunctionBody }

- It is a Syntax Error if any element of the LexicallyDeclaredNames of FormalParameterList also occurs in the VarDeclaredNames of FunctionBody.
- It is a Syntax Error if any element of the BoundNames of FormalParameterList also occurs in the LexicallyDeclaredNames of FunctionBody.

MethodDefinition : PropertyName (FormalParameterList) { FunctionBody }

- It is a Syntax Error if FunctionBody Contains YieldExpression.

MethodDefinition : * PropertyName (FormalParameterList) { FunctionBody }

- It is a Syntax Error if FunctionBody Contains YieldExpression is false.

MethodDefinition : get PropertyName () { FunctionBody }

- It is a Syntax Error if FunctionBody Contains YieldExpression.

© Ecma International 2012
• It is a Syntax Error if `FunctionBody` Contains `YieldExpression`.

`MethodDefinition : set PropertyName (PropertySetParameterList) { FunctionBody }`

• It is a Syntax Error if any element of the `BoundNames` of `PropertySetParameterList` also occurs in the `LexicallyDeclaredNames` of `FunctionBody`.

• It is a Syntax Error if `PropertySetParameterList` Contains `YieldExpression`.

• It is a Syntax Error if `FunctionBody` Contains `YieldExpression`.

`PropertySetParameterList : BindingPattern`

• It is a Syntax Error if `BoundNames` of `BindingPattern` contains any duplicate elements.

Static Semantics: ExpectedArgumentCount

`PropertySetParameterList : BindingIdentifier`

1. Return 1.

`PropertySetParameterList : BindingPattern`

1. Return 1.

Static Semantics: PropName

`MethodDefinition :`

```
PropertyName ( FormalParameterList ) { FunctionBody }
* PropertyName ( FormalParameterList ) { FunctionBody }
get PropertyName ( ) { FunctionBody }
set PropertyName ( PropertySetParameterList ) { FunctionBody }
```

1. Return `PropName` of `PropertyName`.

Static Semantics: ReferencesSuper

`MethodDefinition :`

```
PropertyName ( FormalParameterList ) { FunctionBody }
* PropertyName ( FormalParameterList ) { FunctionBody }
get PropertyName ( ) { FunctionBody }
set PropertyName ( PropertySetParameterList ) { FunctionBody }
```

1. Return `FunctionBody` Contains `super`.

Static Semantics: SpecialMethod

`MethodDefinition : PropertyName (FormalParameterList) { FunctionBody }`

1. Return `false`.

`MethodDefinition :`

```
* PropertyName ( FormalParameterList ) { FunctionBody }
get PropertyName ( ) { FunctionBody }
set PropertyName ( PropertySetParameterList ) { FunctionBody }
```

1. Return `true`.
Runtime Semantics

Runtime Semantics: Property Definition Evaluation

With parameter object.

```
MethodDefinition : PropertyName ( FormalParameterList ) { FunctionBody }
```

1. Let propName be PropName of PropertyName.
2. Let strict be true.
3. Let scope be the running execution context’s LexicalEnvironment.
4. Let needsSuperBinding be the result of FunctionBody Contains super.
5. If needsSuperBinding is false, then let needsSuperBinding be the result of FormalParameterList Contains super.
6. If needsSuperBinding, then
 a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method, FormalParameterList, FunctionBody, scope, and strict and with object as the homeObject optional argument and propName as the methodName optional argument.
7. Else
 a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method, FormalParameterList, FunctionBody, scope, and strict.
8. Let desc be the Property Descriptor[[Value]]: closure, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true.
9. Let status be the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName, desc, and false.
10. ReturnIfAbrupt(status).
11. NormalCompletion(closure).

```
MethodDefinition : * PropertyName ( FormalParameterList ) { FunctionBody }
```

1. Let propName be PropName of PropertyName.
2. Let strict be true.
3. Let scope be the running execution context’s LexicalEnvironment.
4. Let needsSuperBinding be the result of FunctionBody Contains super.
5. If needsSuperBinding is false, then let needsSuperBinding be the result of FormalParameterList Contains super.
6. If needsSuperBinding, then
 a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method, FormalParameterList, FunctionBody, scope, and strict and with object as the homeObject optional argument and propName as the methodName optional argument.
7. Else
 a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method, FormalParameterList, FunctionBody, scope, and strict.
8. Let desc be the Property Descriptor[[Value]]: closure, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true.
9. Let status be the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName, desc, and false.
10. ReturnIfAbrupt(status).
11. NormalCompletion(closure).

```
MethodDefinition : get PropertyName () { FunctionBody }
```

1. Let propName be PropName of PropertyName.
2. If this MethodDefinition is contained in strict code or if FunctionBody is strict code, then let strict be true. Otherwise, let strict be false.
3. Let scope be the running execution context’s LexicalEnvironment.
4. Let formalParameterList be the production FormalParameterList : [empty]
5. Let needsSuperBinding be the result of FunctionBody Contains super.
6. If needsSuperBinding, then
a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method, formalParameterList, FunctionBody, scope, and strict and with object as the homeObject optional argument and propName as the methodName optional argument.

7. Else
 a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method, formalParameterList, FunctionBody, scope, and strict.

8. TODO: Make closure a constructor, for ES5 compat
9. Let desc be the Property Descriptor([[Get]]: closure, [[Enumerable]]: true, [[Configurable]]: true)
10. Let status be the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName, desc, and false.
11. ReturnIfAbrupt(status).
12. NormalCompletion(closure).

MethodDefinition : set PropertyName (PropertySetParameterList) { FunctionBody }

1. Let propName be PropName of PropertyName.
2. If this MethodDefinition is contained in strict code or if FunctionBody is strict code, then let strict be true. Otherwise, let strict be false.
3. Let scope be the running execution context’s LexicalEnvironment.
4. Let needsSuperBinding be the result of FunctionBody Contains super.
5. If needsSuperBinding is false, then let needsSuperBinding be the result of PropertySetParameterList owns super.
6. If needsSuperBinding, then
 a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method, PropertySetParameterList, FunctionBody, scope, and strict and with object as the methodName optional argument.
7. Else
 a. Let closure be the result of performing the FunctionCreate abstract operation with arguments Method, PropertySetParameterList, FunctionBody, scope, and strict.
8. TODO: Make closure a constructor, for ES5 compat
9. Let desc be the Property Descriptor([[Set]]: closure, [[Enumerable]]: true, [[Configurable]]: true)
10. Let status be the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName, desc, and false.
11. ReturnIfAbrupt(status).
12. NormalCompletion(closure).

NOTE The strictness and property attributes for set and get MethodDefinition productions differ from the other MethodDefinition productions in order to maintain compatibility with previous editions of this specification.

13.4 Generator Definitions

Syntax

GeneratorDeclaration:
 function * BindingIdentifier (FormalParameterList) { FunctionBody }

GeneratorExpression:
 function * BindingIdentifieropt (FormalParameterList) { FunctionBody }

YieldExpression:
 yield YieldDelegatoropt AssignmentExpression

YieldDelegator:
 *

Static Semantics

Static Semantics: Early Errors
FunctionDeclaration: `function * BindingIdentifier (FormalParameterList) { FunctionBody }`

and

FunctionExpression: `function * BindingIdentifier_opt (FormalParameterList) { FunctionBody }`

- It is a Syntax Error if any element of the BoundNames of `FormalParameterList` also occurs in the LexicallyDeclaredNames of `FunctionBody`.
- It is a Syntax Error if `FunctionBody` Contains `YieldExpression` is false.

YieldExpression: `yield YieldDelegator_opt AssignmentExpression`

- It is a Syntax Error if any `AssignmentExpression` Contains `YieldExpression`.

Static Semantics: BoundNames

GeneratorDeclaration: `function * BindingIdentifier (FormalParameterList) { FunctionBody }`
1. Return the BoundNames of `BindingIdentifier`.

Static Semantics: Contains

With parameter symbol.

GeneratorDeclaration: `function * BindingIdentifier (FormalParameterList) { FunctionBody }`
1. Return false.

GeneratorExpression: `function * BindingIdentifier_opt (FormalParameterList) { FunctionBody }`
1. Return false.

NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.

Static Semantics: IsConstantDeclaration

GeneratorDeclaration: `function * BindingIdentifier (FormalParameterList) { FunctionBody }`
1. Return false.

Static Semantics: LexicallyDeclaredNames

GeneratorDeclaration: `function * BindingIdentifier (FormalParameterList) { FunctionBody }`
1. Return the BoundNames of `BindingIdentifier`.

Static Semantics: VarDeclaredNames

GeneratorDeclaration: `function * BindingIdentifier (FormalParameterList) { FunctionBody }`
1. Return an empty List.

Runtime Semantics

13.5 Class Definitions

Syntax

ClassDeclaration:

```
class BindingIdentifier ClassTail
```
ClassExpression :
 class BindingIdentifieropt ClassTail

ClassTail :
 ClassHeritageopt { ClassBodyopt }

ClassHeritage :
 extends AssignmentExpression

ClassBody :
 ClassElementList

ClassElementList :
 ClassElement
 ClassElementList ClassElement

ClassElement :
 MethodDefinition ;

Static Semantics

Static Semantics: Early Errors

ClassDeclaration : class BindingIdentifier ClassTail
and
ClassExpression : class BindingIdentifier ClassTail

- It is a Syntax Error if BoundNames of BindingIdentifier contains either “eval” or “arguments”

ClassBody : { ClassElementList }

- It is a Syntax Error if MethodNameList of ClassElementList contains any duplicate entries, unless the following condition is true for each duplicate entry: The duplicated entry occurs exactly twice in the list and one occurrence was obtained from a get accessor MethodDefinition and the other occurrence was obtained from a set accessor MethodDefinition.

ClassHeritage : extends AssignmentExpression

- It is a Syntax Error if AssignmentExpression Contains YieldExpression.

ClassElement : MethodDefinition

- It is a Syntax Error if PropName of MethodDefinition is “constructor” and SpecialMethod of MethodDefinition is true.

Static Semantics: BoundNames

ClassDeclaration: class BindingIdentifier ClassTail

1. Return the BoundNames of BindingIdentifier.

Static Semantics: ConstructorMethod

ClassBody : ClassElementList

1. Let list be MethodDefinitions of ClassElementList.
2. For each MethodDefinition m in list, do
 a. If PropName of m is “constructor”, return m.
3. Return empty.

NOTE Early Error rules ensure that there is only one method definition named “constructor” and that it isn’t an accessor property or generator definition.

Static Semantics: Contains

With parameter symbol.

ClassTail : ClassHeritage? { ClassBody }

1. If symbol is ClassBody, return true.
2. If ClassHeritage is not present, return false.
3. If symbol is ClassHeritage, return true.
4. Return the result of Contains for ClassHeritage with argument symbol.

NOTE Static semantic rules that depend upon substructure generally do not look into class bodies.

Static Semantics: IsConstantDeclaration

ClassDeclaration: class BindingIdentifier ClassTail

1. Return true.

Static Semantics: LexicallyDeclaredNames

ClassDeclaration: class BindingIdentifier ClassTail

1. Return the BoundNames of BindingIdentifier.

Static Semantics: MethodDefinitions

ClassElementList : ClassElement

1. If PropName of ClassElement is empty, return a new empty List.
2. Return a List containing ClassElement.

ClassElementList : ClassElementList ClassElement

5. Let list be MethodDefinitions of ClassElementList.
6. If PropName of ClassElement is empty, return list.
7. Append ClassElement to the end of list.
8. Return list.

Static Semantics: PropName

ClassElement : ;

1. Return empty.

Static Semantics: PropertyNameList

ClassElementList : ClassElement

1. If PropName of ClassElement is empty, return a new empty List.
2. Return a List containing PropName of ClassElement.

ClassElementList : ClassElementList ClassElement
1. Let list be PropertyNameList of ClassElementList.
2. If PropName of ClassElement is empty, return list.
3. Append PropName of ClassElement to the end of list.
4. Return list.

Static Semantics: VarDeclaredNames

ClassDeclaration: class BindingIdentifier ClassTail

1. Return an empty List.

Runtime Semantics

Runtime Semantics: ClassDefinitionEvaluation

With parameter className.

ClassTail : ClassHeritageopt { ClassBody }

1. If ClassHeritageopt is not present, then
 a. let protoParent be the intrinsic object %ObjectPrototype%.
 b. Let constructorParent be the intrinsic object %FunctionPrototype%.
2. Else
 a. Let superclass be the result of evaluating ClassHeritage.
 b. ReturnIfAbrupt(superclass).
 c. If superclass is null, then
 i. Let protoParent be null.
 ii. Let constructorParent be the intrinsic object %FunctionPrototype%.
 d. Else if Type(superclass) is not Object, throw a TypeError exception.
 e. Else if superclass does not have a [[Construct]] internal property, then
 i. Let protoParent be superclass.
 ii. Let constructorParent be the intrinsic object %FunctionPrototype%.
 f. Else
 i. Let protoParent be the result of calling the [[Get]] internal method of superclass passing "prototype" as the argument.
 ii. ReturnIfAbrupt(protoParent).
 iii. If Type(protoParent) neither Object or Null, throw a TypeError exception.
 iv. Let constructorParent be superclass.
3. Let proto be the result of the abstract operation ObjectCreate with argument proto.
4. If the ClassTail is contained in strict code or if its FunctionBody is strict code, then let strict be true. Otherwise let strict be false.
5. Let lex be the LexicalEnvironment of the running execution context.
6. If className is not undefined, then
 a. Let scope be the result of calling NewDeclarativeEnvironment passing lex as the argument.
 b. Let envRec be scope’s environment record.
 c. Call the CreateImmutableBinding concrete method of envRec passing className as the argument.
 d. Set the running execution context’s LexicalEnvironment to scope.
7. Let constructor be ConstructorMethod of ClassBody.
8. If constructor is empty, then
 a. Let constructor be the result of parsing the String "constructor() {}" using the syntactic grammar with the goal symbol MethodDefinition.
9. Let F be the result of performing Property Definition Evaluation for constructor with argument proto.
10. Perform the abstract operation MakeConstructor with argument F and false as the optional writablePrototype argument and proto as the optional prototype argument.
11. Let desc be the Property Descriptor{ [[Writable]]: false, [[Configurable]]: false}.
12. Call the [[DefineOwnProperty]] internal method of object with arguments "constructor", desc, and false.
13. Let methods be MethodDefinitions of ClassBody.
14. For each MethodDefinition m in order from methods
 a. Perform Property Definition Evaluation for m with argument proto.
Runtime Semantics: Evaluation

ClassDeclaration: `class BindingIdentifieropt ClassTail`

1. Let `className` be `StringValue` of `BindingIdentifieropt`
2. Let `value` be the result of `ClassDefinitionEvaluation` of `ClassTail` with argument `className`
3. If `value` is an abrupt completion, return `value`
4. Let `env` be the running execution context’s LexicalEnvironment.
5. Let `status` be the result of performing BindingInitialisation for `BindingIdentifieropt` passing `value` and `env` as the arguments.
6. Return `IfAbrupt(status)`
7. Return NormalCompletion(`empty`).

ClassExpression: `class BindingIdentifieropt ClassTail`

1. If `BindingIdentifieropt` is not present, then let `className` be `undefined`
2. Else, let `className` be `StringValue` of `BindingIdentifieropt`
3. Let `value` be the result of `ClassDefinitionEvaluation` of `ClassTail` with argument `className`
4. Return `IfAbrupt(value)`
5. Return NormalCompletion(`value`).

13.6 Creating Function Objects and Constructors

The abstract operation `FunctionCreate` requires the arguments: `kind` which is one of (Normal, Method, Arrow), an parameter list specified by `FormalParameterList`, a body specified by `FunctionBody`, a Lexical Environment specified by `Scope`, a Boolean flag `Strict`, and optionally, an object `functionPrototype`, an object `homeObject` and a string `methodName`. `FunctionCreate` performs the following steps:

1. Create a new native ECMAScript object and let `F` be that object.
2. Set all the internal methods, except for `[[GetProperty]]`, of `F` as described in 8.12.
3. Add the `[[NativeBrand]]` internal property with value `NativeFunction` to `F`
4. If the `functionPrototype` argument was not provided then
 a. Let `functionPrototype` be the intrinsic object `%FunctionPrototype%`
5. Set the `[[Prototype]]` internal property of `F` to `functionPrototype`.
6. Set the `[[GetProperty]]` internal property of `F` as described in 15.3.5.4.
7. Set the `[[Call]]` internal property of `F` as described in 13.5.1.
8. Set the `[[Scope]]` internal property of `F` to the value of `Scope`.
9. Set the `[[FormalParameterList]]` internal property of `F` to `FormalParameterList`.
10. Set the `[[Code]]` internal property of `F` to `FunctionBody`.
11. Set the `[[Extensible]]` internal property of `F` to `true`.
12. Set the `[[Realm]]` internal property of `F` to the running execution context’s Realm.
13. If the `homeObject` argument was provided, set the `[[Home]]` internal property of `F` to `homeObject`.
14. If the `methodName` argument was provided, set the `[[MethodName]]` internal property of `F` to `methodName`.
15. If `kind` is `Arrow`, then set the `[[ThisMode]]` internal property of `F` to `lexical`.
16. Else if `Strict` is `true`, then set the `[[ThisMode]]` internal property of `F` to `strict`.
17. Else set the `[[ThisMode]]` internal property of `F` to `global`.
18. Let `len` be the `ExpectedArgumentCount of FormalParameterList`.
19. Call the `[[DefineOwnProperty]]` internal method of `F` with arguments `"length"`, PropertyDescriptor `[[Value]]: len, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false`, and `false`.
20. If `kind` is `Normal` and `Strict` is `true`, then
 a. Let `thrower` be the `[[ThrowTypeError]]` function Object (13.5.3).
 b. Call the `[[DefineOwnProperty]]` internal method of `F` with arguments `"caller"`, PropertyDescriptor `[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false`, and `false`.
 c. Call the `[[DefineOwnProperty]]` internal method of `F` with arguments `"arguments"`, PropertyDescriptor `[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false`, and `false`.
21. Set the `[[Strict]]` internal property of `F` to `Strict`.

© Ecma International 2012
22. Return F.

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean writablePrototype and an object prototype. If prototype is provided it is assume to already contain a "constructor" whose value is F. It converts F into a constructor by performs the following steps:

1. Let installNeeded be false.
2. If the prototype argument was not provided, then
 a. Let installNeeded be true.
 b. Let prototype be the result of the abstract operation ObjectCreate (15.2).
3. If the writablePrototype argument was not provided, then
 a. Let writablePrototype be true.
4. Set the [[Construct]] internal property of F as described in 13.5.2.
5. Set the [[HasInstance]] internal property of F as described in 15.3.5.3.
6. If installNeeded, then
 a. Call the [[DefineOwnProperty]] internal method of prototype with arguments "constructor", Property Descriptor {[[Value]]: F, [[Writable]]: writablePrototype, [[Enumerable]]: false, [[Configurable]]: writablePrototype}, and false.
7. Call the [[DefineOwnProperty]] internal method of F with arguments "prototype", Property Descriptor {[[Value]]: prototype, [[Writable]]: writablePrototype, [[Enumerable]]: false, [[Configurable]]: false}, and false.
8. Return.

13.5.1 [[Call]]

When the [[Call]] internal method for a Function object F is called with a thisArgument and a list of arguments, the following steps are taken:

1. Let calleeContext be the running execution context.
2. If calleeContext is not already suspended, then Suspend calleeContext.
3. Let calleeContext be a new execution context.
4. Set calleeContext's PreviousContext to calleeContext.
5. Set calleeContext's Realm to the value of F's [[Realm]] internal property.
6. Let thisMode be the value of F's [[ThisMode]] internal property.
7. If thisMode is lexical, then
 a. Let localEnv be the result of calling NewDeclarativeEnvironment passing the value of the [[Scope]] internal property of F as the argument.
8. Else,
 a. If thisMode is strict, set thisValue to thisArgument.
 b. Else
 i. If thisArgument is null or undefined, set thisValue to %GlobalObject%.
 ii. Else if Type(thisArg) is not Object, set the thisValue to ToObject(thisArgument).
 iii. Else set the thisValue to thisArgument.
 c. Let localEnv be the result of calling NewMethodEnvironment passing F and thisValue as the arguments.
9. Set the LexicalEnvironment of calleeContext to localEnv.
10. Set the VariableEnvironment of calleeContext to localEnv.
11. Make calleeContext the running execution context.
12. Let status be the result of performing Function Declaration Binding Instantiation using the function F, argumentsList, and localEnv as described in 10.5.3.
13. If status is an abrupt completion, then
 a. Restore calleeContext as the running execution context.
 b. Return status.
14. Let result be the result of evaluating the FunctionBody that is the value of F's [[Code]] internal property.
15. Restore calleeContext as the running execution context.
16. If result.type is return then return NormalCompletion(result.[[value]]).
17. Return result.
13.5.2 [[Construct]]

When the [[Construct]] internal method for a Function object \(F \) is called with a possibly empty list of arguments, the following steps are taken:

1. Let \(\text{proto} \) be the value of calling the [[Get]] internal property of \(F \) with argument "prototype".
2. ReturnIfAbrupt(\(\text{proto} \)).
3. If Type(\(\text{proto} \)) is Object, let \(\text{obj} \) be the result of the abstract operation ObjectCreate with argument \(\text{proto} \).
4. If Type(\(\text{proto} \)) is not Object, let \(\text{obj} \) be the result of the abstract operation ObjectCreate.
5. Let \(\text{result} \) be the result of calling the [[Call]] internal property of \(F \), providing \(\text{obj} \) as the this value and providing the argument list passed into [[Construct]] as \(\text{args} \).
6. ReturnIfAbrupt(\(\text{result} \)).
7. If Type(\(\text{result} \)) is Object then return \(\text{result} \).
8. Return NormalCompletion(\(\text{obj} \)).

13.5.3 The [[ThrowTypeError]] Function Object

The [[ThrowTypeError]] object is a unique function object that is defined once as follows:

1. Create a new native ECMAScript object and let \(F \) be that object.
2. Set all the internal methods of \(F \) as described in 8.12.
3. Add the [[NativeBrand]] internal property with value NativeFunction to \(F \).
4. Set the [[Prototype]] internal property of \(F \) to the standard built-in Function prototype object as specified in 15.3.3.1.
5. Set the [[Call]] internal property of \(F \) as described in 13.2.1.
6. Set the [[Scope]] internal property of \(F \) to the Global Environment.
7. Set the [[FormalParameters]] internal property of \(F \) to the FormalParameterList : [empty] production.
8. Set the [[Code]] internal property of \(F \) to be a FunctionBody that unconditionally throws a TypeError exception and performs no other action.
9. Call the [[DefineOwnProperty]] internal method of \(F \) with arguments "length", Property Descriptor \(\{[[\text{Value}]]: 0, [[\text{Writable}]]: \text{false}, [[\text{Enumerable}]]: \text{false}, [[\text{Configurable}]]: \text{false} \} \), and \(\text{false} \).
10. Set the [[Extensible]] internal property of \(F \) to \(\text{false} \).
11. Let [[ThrowTypeError]] be \(F \).

13.7 Tail Position Calls

14 Program

Syntax

\[
\text{Program} : \begin{align*}
\text{ProgramBody}_{\text{opt}}
\end{align*}
\]

\[
\text{ProgramBody} : \begin{align*}
\text{StatementList}
\end{align*}
\]

Static Semantics: Early Errors

\[
\text{ProgramBody} : \text{StatementList}
\]

- It is a Syntax Error if \(\text{StatementList} \) Contains super.
- It is a Syntax Error if \(\text{StatementList} \) Contains YieldExpression.

Runtime Semantics

Runtime Semantics: Program Evaluation

With argument realm.

\[
\text{Program} : \text{ProgramBody}_{\text{opt}}
\]
1. The code of this Program is strict mode code if the Directive Prologue (14.1) of its ProgramBody contains a Use Strict Directive or if any of the conditions of 10.1.1 apply. If the code of this Program is strict mode code, ProgramBody is evaluated in the following steps as strict mode code. Otherwise ProgramBody is evaluated in the following steps as non-strict mode code.

2. If ProgramBody is not present, return NormalCompletion(empty).

3. Let progCtx be a new execution context.

4. Set the progCtx’s PreviousContext to empty.

5. Set the progCtx’s Realm to realm.

6. Set the progCtx’s VariableEnvironment to realm.[[globalEnv]].

7. Set the progCtx’s LexicalEnvironment to realm.[[globalEnv]].

8. If ProgramBody is present, then
 a. Perform Global Binding Instantiation as described in 10.5.x using the global code.

9. Let result be the result of evaluating ProgramBody.

10. The running execution context to empty.

11. Return result.

NOTE The processes for initiating the evaluation of a Program and for dealing with the result of such an evaluation are defined by an ECMAScript implementation and not by this specification.

A Directive Prologue is the longest sequence of ExpressionStatement productions occurring as the initial StatementListItem productions of a ProgramBody or FunctionBody and where each ExpressionStatement in the sequence consists entirely of a StringLiteral token followed a semicolon. The semicolon may appear explicitly or may be inserted by automatic semicolon insertion. A Directive Prologue may be an empty sequence.

A Use Strict Directive is an ExpressionStatement in a Directive Prologue whose StringLiteral is either the exact character sequences "use strict" or 'use strict'. A Use Strict Directive may not contain an EscapeSequence or LineContinuation.

A Directive Prologue may contain more than one Use Strict Directive. However, an implementation may issue a warning if this occurs.

NOTE The ExpressionStatement productions of a Directive Prologue are evaluated normally during evaluation of the containing production. Implementations may define implementation specific meanings for ExpressionStatement productions which are not a Use Strict Directive and which occur in a Directive Prologue. If an appropriate notification mechanism exists, an implementation should issue a warning if it encounters in a Directive Prologue an ExpressionStatement that is not a Use Strict Directive or which does not have a meaning defined by the implementation.

15 Standard Built-in ECMAScript Objects

There are certain built-in objects available whenever an ECMAScript program begins execution. One, the global object, is part of the lexical environment of the executing program. Others are accessible as initial properties of the global object.

Unless specified otherwise, a built-in object has the [[NativeBrand]] internal property with value NativeFunction if that built-in object has a [[Call]] internal property. Unless specified otherwise, the [[Extensible]] internal property of a built-in object initially has the value true.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are constructors: they are functions intended for use with the new operator. For each built-in function, this specification describes the arguments required by that function and properties of the Function object. For each built-in constructor, this specification furthermore describes properties of the prototype object of that constructor and properties of specific object instances returned by a new expression that invokes that constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described in this clause is given fewer arguments than the function is specified to require, the function or constructor shall
behave exactly as if it had been given sufficient additional arguments, each such argument being the
`undefined` value.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this clause is given more arguments than the function is specified to allow, the extra arguments are evaluated
by the call and then ignored by the function. However, an implementation may define implementation specific
behaviour relating to such arguments as long as the behaviour is not the throwing of a `TypeError`
exception that is predicated simply on the presence of an extra argument.

NOTE Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by
adding new functions rather than adding new parameters to existing functions.

Every built-in function and every built-in constructor has the Function prototype object, which is the initial value
of the expression `Function.prototype` (15.3.4), as the value of its `[[Prototype]]` internal property.

Unless otherwise specified every built-in prototype object has the Object prototype object, which is the initial
value of the expression `Object.prototype` (15.2.4), as the value of its `[[Prototype]]` internal property,
except the Object prototype object itself.

None of the built-in functions described in this clause that are not constructors shall implement the
`[[Construct]]` internal method unless otherwise specified in the description of a particular function. The
behavior specified in this clause for each built-in function is the specification of the `[[Call]]` internal method
behavior for that function. None of the built-in functions described in this clause shall have a `prototype`
property unless otherwise specified in the description of a particular function.

This clause generally describes distinct behaviours for when a constructor is “called as a function” and for
when it is “called as part of a new expression”. The “called as a function” behaviour corresponds to the
invocation of the constructor’s `[[Call]]` internal method and the “called as part of a new expression” behaviour
corresponds to the invocation of the constructor’s `[[Construct]]` internal method.

Every built-in Function object described in this clause—whether as a constructor, an ordinary function, or
both—has a `length` property whose value is an integer. Unless otherwise specified, this value is equal to the
largest number of named arguments shown in the subclause headings for the function description, including
optional parameters.

NOTE For example, the Function object that is the initial value of the `slice` property of the String prototype object is
described under the subclause heading “String.prototype.slice (start, end)” which shows the two named arguments start
and end; therefore the value of the `length` property of that Function object is 2.

In every case, the `length` property of a built-in Function object described in this clause has the attributes
{ `[[Writable]]`: false, `[[Enumerable]]`: false, `[[Configurable]]`: false }. Every other property described in this
clause has the attributes { `[[Writable]]`: true, `[[Enumerable]]`: false, `[[Configurable]]`: true } unless otherwise
specified.

15.1 The Global Object

The unique `global object` is created before control enters any execution context.

Unless otherwise specified, the standard built-in properties of the global object have attributes `{{[Writable]]: true, `[[Enumerable]]`: false, `[[Configurable]]`: true}`.

The global object does not have a `[[Construct]]` internal property; it is not possible to use the global object as a
constructor with the `new` operator.

The global object does not have a `[[Call]]` internal property; it is not possible to invoke the global object as a
function.

The value of the `[[Prototype]]` internal property of the global object is implementation-dependent.
In addition to the properties defined in this specification the global object may have additional host defined properties. This may include a property whose value is the global object itself; for example, in the HTML document object model the `window` property of the global object is the global object itself.

15.1.1 Value Properties of the Global Object

15.1.1.1 NaN

The value of `NaN` is `NaN` (see 8.5). This property has the attributes { `[[Writable]]`: `false`, `[[Enumerable]]`: `false`, `[[Configurable]]`: `false` }.

15.1.1.2 Infinity

The value of `Infinity` is `+∞` (see 8.5). This property has the attributes { `[[Writable]]`: `false`, `[[Enumerable]]`: `false`, `[[Configurable]]`: `false` }.

15.1.1.3 undefined

The value of `undefined` is `undefined` (see 8.1). This property has the attributes { `[[Writable]]`: `false`, `[[Enumerable]]`: `false`, `[[Configurable]]`: `false` }.

15.1.2 Function Properties of the Global Object

15.1.2.1 eval (x)

When the `eval` function is called with one argument `x`, the following steps are taken:

1. If `Type(x)` is not `String`, return `x`.
2. Let `prog` be the ECMAScript code that is the result of parsing `x, interpreted as UTF-16 encoded Unicode text`, for the goal symbol `Program`. If the parse fails or any early errors are detected, throw a `SyntaxError` exception (but see also clause 16).
3. Let `evalCtx` be the result of establishing a new execution context (10.4.2) for the eval code `prog`.
4. If there is no calling context or if the eval code is not being evaluated by a direct call (15.1.2.1.1) to the eval function then,
 a. Initialise the execution context as if it was a global execution context using the eval code as `C` as described in 10.4.1.1.
5. Else,
 a. Set the `ThisBinding` to the same value as the `ThisBinding` of the calling execution context.
 b. Set the `LexicalEnvironment` to the same value as the `LexicalEnvironment` of the calling execution context.
 c. Set the `VariableEnvironment` to the same value as the `VariableEnvironment` of the calling execution context.
6. If the eval code is strict code, then
 a. Let `strictVarEnv` be the result of calling `NewDeclarativeEnvironment` passing the `LexicalEnvironment` as the argument.
 b. Set the `LexicalEnvironment` to `strictVarEnv`.
 c. Set the `VariableEnvironment` to `strictVarEnv`.
7. Perform Declaration Binding Instantiation as described in 10.5 using the eval code.
8. Let `result` be the result of evaluating the program `prog`.
9. Exit the running execution context `evalCtx`, restoring the previous execution context.
10. If `result.type` is `normal` and its completion value is a value `V`, then return the value `V`.
11. If `result.type` is `normal` and its completion value is `empty`, then return the value `undefined`.
12. Otherwise, `result.type` must be `throw`. Throw `result.value` as an exception.

NOTE The eval code cannot instantiate variable or function bindings in the variable environment of the calling context that invoked the eval if either the code of the calling context or the eval code is strict code. Instead such bindings are instantiated in a new VariableEnvironment that is only accessible to the eval code.
15.1.2.1 Direct Call to Eval

A direct call to the eval function is one that is expressed as a CallExpression that meets the following two conditions:

The Reference that is the result of evaluating the MemberExpression in the CallExpression has an environment record as its base value and its reference name is "eval".

The result of calling the abstract operation GetValue with that Reference as the argument is the standard built-in function defined in 15.1.2.1.

15.1.2.2 parseInt (string , radix)

The parseInt function produces an integer value dictated by interpretation of the contents of the string argument according to the specified radix. Leading white space in string is ignored. If radix is undefined or 0, it is assumed to be 10 except when the number begins with the character pairs 0x or 0X, in which case a radix of 16 is assumed. If radix is 16, the number may also optionally begin with the character pairs 0x or 0X.

When the parseInt function is called, the following steps are taken:

1. Let inputString be ToString(string).
2. ReturnIfAbrupt(string).
3. Let S be a newly created substring of inputString consisting of the first character that is not a StrWhiteSpaceChar and all characters following that character. (In other words, remove leading white space.) If inputString does not contain any such characters, let S be the empty string.
4. Let sign be 1.
5. If S is not empty and the first character of S is a minus sign -, let sign be -1.
6. If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character from S.
7. Let R = ToInt32(radix).
8. ReturnIfAbrupt(R).
9. Let stripPrefix be true.
10. If R ≠ 0, then
 a. If R < 2 or R > 36, then return NaN.
 b. If R ≠ 16, let stripPrefix be false.
11. Else, R = 0
 a. Let R = 10.
12. If stripPrefix is true, then
 a. If the length of S is at least 2 and the first two characters of S are either “0x” or “0X”, then remove the first two characters from S and let R = 16.
13. If S contains any character that is not a radix-R digit, then let Z be the substring of S consisting of all characters before the first such character; otherwise, let Z be S.
14. If Z is empty, return NaN.
15. Let mathInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation; and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-dependent approximation to the mathematical integer value that is represented by Z in radix-R notation.)
16. Let number be the Number value for mathInt.
17. Return sign × number.

NOTE parseInt may interpret only a leading portion of string as an integer value; it ignores any characters that cannot be interpreted as part of the notation of an integer, and no indication is given that any such characters were ignored.

15.1.2.3 parseFloat (string)

The parseFloat function produces a Number value dictated by interpretation of the contents of the string argument as a decimal literal.
When the `parseFloat` function is called, the following steps are taken:

1. Let `inputString` be `ToString(string)`.
2. ReturnIfAbrupt(`string`).
3. Let `trimmedString` be a substring of `inputString` consisting of the leftmost character that is not a `StrWhiteSpaceChar` and all characters to the right of that character. (In other words, remove leading white space.) If `inputString` does not contain any such characters, let `trimmedString` be the empty string.
4. If neither `trimmedString` nor any prefix of `trimmedString` satisfies the syntax of a `StrDecimalLiteral` (see 9.3.1), return `NaN`.
5. Let `numberString` be the longest prefix of `trimmedString`, which might be `trimmedString` itself, that satisfies the syntax of a `StrDecimalLiteral`.
6. Return the Number value for the MV of `numberString`.

NOTE `parseFloat` may interpret only a leading portion of `string` as a Number value; it ignores any characters that cannot be interpreted as part of the notation of an decimal literal, and no indication is given that any such characters were ignored.

15.1.2.4 `isNaN (number)`

Returns `true` if the argument coerces to `NaN`, and otherwise returns `false`.

1. Let `num` be `ToNumber(number)`.
2. ReturnIfAbrupt(`num`).
3. If `num` is `NaN`, return `true`.
4. Otherwise, return `false`.

NOTE A reliable way for ECMAScript code to test if a value `x` is a `NaN` is an expression of the form `x !== x`. The result will be `true` if and only if `x` is a `NaN`.

15.1.2.5 `isFinite (number)`

Returns `false` if the argument coerces to `NaN`, `+∞`, or `−∞`, and otherwise returns `true`.

1. Let `num` be `ToNumber(number)`.
2. ReturnIfAbrupt(`num`).
3. If `ToNumber(num)` is `NaN`, `+∞`, or `−∞`, return `false`.
4. Otherwise, return `true`.

15.1.3 URI Handling Function Properties

Uniform Resource Identifiers, or URIs, are Strings that identify resources (e.g. web pages or files) and transport protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language itself does not provide any support for using URIs except for functions that encode and decode URIs as described in 15.1.3.1, 15.1.3.2, 15.1.3.3 and 15.1.3.4.

NOTE Many implementations of ECMAScript provide additional functions and methods that manipulate web pages; these functions are beyond the scope of this standard.

A URI is composed of a sequence of components separated by component separators. The general form is:

```
Scheme : First / Second ; Third ? Fourth
```

where the italicised names represent components and `", ", ";" and ""` are reserved characters used as separators. The `encodeURI` and `decodeURI` functions are intended to work with complete URIs; they assume that any reserved characters in the URI are intended to have special meaning and so are not encoded. The `encodeURIComponent` and `decodeURIComponent` functions are intended to work with the individual component parts of a URI; they assume that any reserved characters represent text and so must be encoded so that they are not interpreted as reserved characters when the component is part of a complete URI.

The following lexical grammar specifies the form of encoded URIs.
Syntax

```plaintext
uri ::= uriCharactersopt

uriCharacters ::= uriCharacter uriCharactersopt

uriCharacter ::= uriReserved
               uriUnescaped
               uriEscaped

uriReserved ::= one of
               ; / ? : @ & = + $ ,

uriUnescaped ::= uriAlpha
               DecimalDigit
               uriMark

uriEscaped ::= % HexDigit HexDigit

uriAlpha ::= one of
            a b c d e f g h i j k l m n o p q r s t u v w x y z
            A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

uriMark ::= one of
           - _ . ! ~ * ' ( )
```

NOTE The above syntax is based upon RFC 2396 and does not reflect changes introduced by the more recent RFC 3986.

Runtime Semantics

When a character to be included in a URI is not listed above or is not intended to have the special meaning sometimes given to the reserved characters, that character must be encoded. The character is transformed into its UTF-8 encoding, with surrogate pairs first converted from UTF-16 to the corresponding code point value. (Note that for code units in the range [0,127] this results in a single octet with the same value.) The resulting sequence of octets is then transformed into a String with each octet represented by an escape sequence of the form "%xx".

The encoding and escaping process is described by the abstract operation Encode taking two String arguments `string` and `unescapedSet`.

1. Let `strLen` be the number of characters in `string`.
2. Let `R` be the empty String.
3. Let `k` be 0.
4. Repeat
 a. If `k` equals `strLen`, return `R`.
 b. Let `C` be the character at position `k` within `string`.
 c. If `C` is in `unescapedSet`, then
 i. Let `S` be a String containing only the character `C`.
 ii. Let `R` be a new String value computed by concatenating the previous value of `R` and `S`.
 d. Else, `C` is not in `unescapedSet`
 i. If the code unit value of `C` is not less than 0xDC00 and not greater than 0xDFFF, throw a `URIError` exception.
 ii. If the code unit value of `C` is less than 0xD800 or greater than 0xDBFF, then
 1. Let `V` be the code unit value of `C`.
 iii. Else,
1. Increase k by 1.
2. If k equals $strLen$, throw a URIError exception.
3. Let $kChar$ be the code unit value of the character at position k within $string$.
4. If $kChar$ is less than 0xDC00 or greater than 0xDFFF, throw a URIError exception.
5. Let V be $((\text{the code unit value of } C) - 0xD800) \times 0x400 + (kChar - 0xDC00) + 0x10000)$.

 iv. Let $Octets$ be the array of octets resulting by applying the UTF-8 transformation to V, and let L be the array size.
 v. Let j be 0.
 vi. Repeat, while $j < L$
 1. Let $jOctet$ be the value at position j within $Octets$.
 2. Let S be a String containing three characters “%XY” where XY are two uppercase hexadecimal digits encoding the value of $jOctet$.
 3. Let R be a new String value computed by concatenating the previous value of R and S.
 4. Increase j by 1.
 e. Increase k by 1.

The unescaping and decoding process is described by the abstract operation Decode taking two String arguments $string$ and $reservedSet$.

1. Let $strLen$ be the number of characters in $string$.
2. Let R be the empty String.
3. Let k be 0.
4. Repeat
 a. If k equals $strLen$, return R.
 b. Let C be the character at position k within $string$.
 c. If C is not ‘%’, then
 i. Let S be the String containing only the character C.
 d. Else, C is ‘%’
 i. Let $start$ be k.
 ii. If $k + 2$ is greater than or equal to $strLen$, throw a URIError exception.
 iii. If the characters at position ($k+1$) and ($k + 2$) within $string$ do not represent hexadecimal digits, throw a URIError exception.
 iv. Let B be the 8-bit value represented by the two hexadecimal digits at position ($k + 1$) and ($k + 2$).
 v. Increment k by 2.
 vi. If the most significant bit in B is 0, then
 1. Let C be the character with code unit value B.
 2. If C is not in $reservedSet$, then
 a. Let S be the String containing only the character C.
 3. Else, C is in $reservedSet$
 a. Let S be the substring of $string$ from position $start$ to position k included.
 vii. Else, the most significant bit in B is 1
 1. Let n be the smallest non-negative number such that ($B \ll n$) & 0x80 is equal to 0.
 2. If n equals 1 or n is greater than 4, throw a URIError exception.
 3. Let $Octets$ be an array of 8-bit integers of size n.
 4. Put B into $Octets$ at position 0.
 5. If $k + (3 \times (n - 1))$ is greater than or equal to $strLen$, throw a URIError exception.
 7. Repeat, while $j < n$
 a. Increment k by 1.
 b. If the character at position k is not ‘%’, throw a URIError exception.
 c. If the characters at position ($k+1$) and ($k + 2$) within $string$ do not represent hexadecimal digits, throw a URIError exception.
 d. Let B be the 8-bit value represented by the two hexadecimal digits at position ($k + 1$) and ($k + 2$).
 e. If the two most significant bits in B are not 10, throw a URIError exception.
8. Let V be the value obtained by applying the UTF-8 transformation to Octets, that is, from an array of octets into a 21-bit value. If Octets does not contain a valid UTF-8 encoding of a Unicode code point throw an **URIError** exception.

9. If V is less than 0x10000, then
 a. Let C be the character with code unit value V.
 b. If C is not in reservedSet, then
 i. Let S be the String containing only the character C.
 c. Else, C is in reservedSet
 i. Let S be the substring of string from position start to position k included.

10. Else, V is ≥ 0x10000
 a. Let L be (((V – 0x10000) & 0x3FF) + 0xDC00).
 b. Let H be (((V – 0x10000) >> 10) & 0x3FF) + 0xD800).
 c. Let S be the String containing the two characters with code unit values H and L.

 e. Let R be a new String value computed by concatenating the previous value of R and S.
 f. Increase k by 1.

NOTE
This syntax of Uniform Resource Identifiers is based upon RFC 2396 and does not reflect the more recent RFC 3986 which replaces RFC 2396. A formal description and implementation of UTF-8 is given in RFC 3629.

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence" of one has the higher-order bit set to 0, the remaining 7 bits being used to encode the character value. In a sequence of n octets, n>1, the initial octet has the n higher-order bits set to 1, followed by a bit set to 0. The remaining bits of that octet contain bits from the value of the character to be encoded. The following octets all have the higher-order bit set to 1 and the following bit set to 0, leaving 6 bits in each to contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript characters are specified in Table 26.

Table 26 — UTF-8 Encodings

<table>
<thead>
<tr>
<th>Code Unit Value</th>
<th>Representation</th>
<th>1st Octet</th>
<th>2nd Octet</th>
<th>3rd Octet</th>
<th>4th Octet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 - 0x007F</td>
<td>00000000 0zzzzzz</td>
<td>0zzzzzz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0080 - 0x07FF</td>
<td>0000 yyy yyyyzzzz</td>
<td>110yyyyy 10zzzzzz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0800 - 0xD7FF</td>
<td>xxxxyyyy yyyyzzzz</td>
<td>1110xxx 10yyyyy 10zzzzzz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xD800 - 0xDBFF</td>
<td>110110vv vvvvwwwxxx</td>
<td>11011uuu 10uwwww 10xyyyy 10zzzzzz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xDC00 - 0xDFFF</td>
<td>110111yy yyyyzzzz</td>
<td>11110uuu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xD800 - 0xDBFF</td>
<td>causes URIError</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xDC00 - 0xDFFF</td>
<td>causes URIError</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xE000 - 0xFFFF</td>
<td>xxxxyyyyy yyyyyyyzzzzzz</td>
<td>1110xxx 10yyyyy 10zzzzzz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where

\[uuuuu = vvvv + 1 \]

to account for the addition of 0x10000 as in Surrogates, section 3.7, of the Unicode Standard.

The range of code unit values 0xD800-0xDFFF is used to encode surrogate pairs; the above transformation combines a UTF-16 surrogate pair into a UTF-32 representation and encodes the resulting 21-bit value in UTF-8. Decoding reconstructs the surrogate pair.

RFC 3629 prohibits the decoding of invalid UTF-8 octet sequences. For example, the invalid sequence C0 80 must not decode into the character U+0000. Implementations of the Decode algorithm are required to throw a **URIError** when encountering such invalid sequences.
15.1.3.1 decodeURI (encodedURI)

The decodeURI function computes a new version of a URI in which each escape sequence and UTF-8 encoding of the sort that might be introduced by the encodeURI function is replaced with the character that it represents. Escape sequences that could not have been introduced by encodeURI are not replaced.

When the decodeURI function is called with one argument encodedURI, the following steps are taken:

1. Let uriString be ToString(encodedURI).
2. ReturnIfAbrupt(uriString).
3. Let reservedURISet be a String containing one instance of each character valid in uriReserved plus “#”.
4. Return the result of calling Decode(uriString, reservedURISet)

NOTE The character “#” is not decoded from escape sequences even though it is not a reserved URI character.

15.1.3.2 decodeURIComponent (encodedURIComponent)

The decodeURIComponent function computes a new version of a URI in which each escape sequence and UTF-8 encoding of the sort that might be introduced by the encodeURIComponent function is replaced with the character that it represents.

When the decodeURIComponent function is called with one argument encodedURIComponent, the following steps are taken:

1. Let componentString be ToString(encodedURIComponent).
2. ReturnIfAbrupt(componentString).
3. Let reservedURIComponentSet be the empty String.
4. Return the result of calling Decode(componentString, reservedURIComponentSet)

15.1.3.3 encodeURI (uri)

The encodeURI function computes a new version of a URI in which each instance of certain characters is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the character.

When the encodeURI function is called with one argument uri, the following steps are taken:

1. Let uriString be ToString(uri).
2. ReturnIfAbrupt(uriString).
3. Let unescapedURISet be a String containing one instance of each character valid in uriReserved and uriUnescaped plus “#”.
4. Return the result of calling Encode(uriString, unescapedURISet)

NOTE The character “#” is not encoded to an escape sequence even though it is not a reserved or unescaped URI character.

15.1.3.4 encodeURIComponent (uriComponent)

The encodeURIComponent function computes a new version of a URI in which each instance of certain characters is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the character.

When the encodeURIComponent function is called with one argument uriComponent, the following steps are taken:

1. Let componentString be ToString(uriComponent).
2. ReturnIfAbrupt(componentString).
3. Let unescapedURIComponentSet be a String containing one instance of each character valid in uriUnescaped.
4. Return the result of calling Encode(componentString, unescapedURIComponentSet)
15.1.4 Constructor Properties of the Global Object

15.1.4.1 Object (. . .)
See 15.2.1 and 15.2.2.

15.1.4.2 Function (. . .)
See 15.3.1 and 15.3.2.

15.1.4.3 Array (. . .)
See 15.4.1 and 15.4.2.

15.1.4.4 String (. . .)
See 15.5.1 and 15.5.2.

15.1.4.5 Boolean (. . .)
See 15.6.1 and 15.6.2.

15.1.4.6 Number (. . .)
See 15.7.1 and 15.7.2.

15.1.4.7 Date (. . .)
See 15.9.2.

15.1.4.8 RegExp (. . .)
See 15.10.3 and 15.10.4.

15.1.4.9 Error (. . .)
See 15.11.1 and 15.11.2.

15.1.4.10 EvalError (. . .)
See 15.11.6.1.

15.1.4.11 RangeError (. . .)
See 15.11.6.2.

15.1.4.12 ReferenceError (. . .)
See 15.11.6.3.

15.1.4.13 SyntaxError (. . .)
See 15.11.6.4.

15.1.4.14 TypeError (. . .)
See 15.11.6.5.
15.1.4.15 URIError (. . .)

See 15.11.6.6.

15.1.5 Other Properties of the Global Object

15.1.5.1 Math

See 15.8.

15.1.5.2 JSON

See 15.12.

15.2 Object Objects

The abstract operation ObjectCreate with optional argument proto (an object or null) is used to specify the creation of new Object objects. It performs the following steps:

1. If proto was not provided, let proto be the intrinsic %ObjectPrototype%.
2. Let obj be a newly created ECMAScript object.
3. Set the [[Prototype]] internal property of obj to proto.
4. Set obj’s common internal methods to the default definitions specified in 8.12.
5. Set the [[Extensible]] internal property of obj to true.
6. Return obj.

15.2.1 The Object Constructor Called as a Function

When Object is called as a function rather than as a constructor, it performs a type conversion.

15.2.1.1 Object ([value])

When the Object function is called with no arguments or with one argument value, the following steps are taken:

1. If value is null, undefined or not supplied, return the result of the abstract operation ObjectCreate.
2. Return ToObject(value).

15.2.2 The Object Constructor

When Object is called as part of a new expression, it is a constructor that may create an object.

15.2.2.1 new Object ([value])

When the Object constructor is called with no arguments or with one argument value, the following steps are taken:

1. If value is supplied, then
 a. If Type(value) is Object, then return value.
 b. If Type(value) is String, return ToObject(value).
 c. If Type(value) is Boolean, return ToObject(value).
 d. If Type(value) is Number, return ToObject(value).
2. Assert: The argument value was not supplied or its type was Null or Undefined.
3. Return the result of the abstract operation ObjectCreate.
15.2.3 Properties of the Object Constructor

The value of the [[Prototype]] internal property of the Object constructor is the standard built-in Function prototype object.

Besides the internal properties and the length property (whose value is 1), the Object constructor has the following properties:

15.2.3.1 Object.prototype

The initial value of Object.prototype is the standard built-in Object prototype object (15.2.4).

This property has the attributes {[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false}.

15.2.3.2 Object.getPrototypeOf (O)

When the getPrototypeOf function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. Return the value of the [[Prototype]] internal property of O.

15.2.3.3 Object.getOwnPropertyDescriptor (O, P)

When the getOwnPropertyDescriptor function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. Let name be ToString(P).
3. ReturnIfAbrupt(name).
4. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument name.
5. Return the result of calling FromPropertyDescriptor(desc) (8.10.4).

15.2.3.4 Object.getOwnPropertyNames (O)

When the getOwnPropertyNames function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.
2. Let array be the result of the abstract operation ArrayCreate (15.4) with argument 0.
3. Let n be 0.
4. For each named own property P of O
 a. Let name be the String value that is the name of P.
 b. Call the [[DefineOwnProperty]] internal method of array with arguments ToString(n), the PropertyDescriptor { [[Value]]: name, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
 c. Increment n by 1.
5. Return array.

NOTE: If O is a String instance, the set of own properties processed in step 4 includes the implicit properties defined in 15.5.5.2 that correspond to character positions within the object's [[PrimitiveValue]] String.

15.2.3.5 Object.create (O [, Properties])

The create function creates a new object with a specified prototype. When the create function is called, the following steps are taken:

1. If Type(O) is not Object or Null throw a TypeError exception.
2. Let obj be the result of the abstract operation ObjectCreate with argument O.
3. If the argument Properties is present and not undefined, then
 a. Return the result of the abstract operation ObjectDefineProperties with arguments obj and Properties.
4. Return obj.
15.2.3.6 Object.defineProperty (O, P, Attributes)

The **defineProperty** function is used to add an own property and/or update the attributes of an existing own property of an object. When the **defineProperty** function is called, the following steps are taken:

1. If Type(O) is not Object throw a **TypeError** exception.
2. Let name be ToString(P).
3. ReturnIfAbrupt(name).
4. Let desc be the result of calling ToPropertyDescriptor with Attributes as the argument.
5. Call the [[DefineOwnProperty]] internal method of O with arguments name, desc, and **true**.
6. Return O.

15.2.3.7 Object.defineProperties (O, Properties)

The **defineProperties** function is used to add own properties and/or update the attributes of existing own properties of an object. When the **defineProperties** function is called, the following steps are taken:

1. Return the result of the abstract operation **ObjectDefineProperties** with arguments O and Properties.

The abstract operation **ObjectDefineProperties** with arguments O and Properties performs the following steps:

1. If Type(O) is not Object throw a **TypeError** exception.
2. Let props be ToObject(Properties).
3. Let names be an internal list containing the names of each enumerable own property of props.
4. Let descriptors be an empty internal List.
5. For each element P of names in list order,
 a. Let descObj be the result of calling the [[Get]] internal method of props with P as the argument.
 b. ReturnIfAbrupt(descObj).
 c. Let desc be the result of calling ToPropertyDescriptor with descObj as the argument.
 d. ReturnIfAbrupt(desc).
 e. Append the pair (a two element List) consisting of P and desc to the end of descriptors.
6. For each pair from descriptors in list order,
 a. Let P be the first element of pair.
 b. Let desc be the second element of pair.
 c. Let status be the result of calling the [[DefineOwnProperty]] internal method of O with arguments P, desc, and **true**.
 d. ReturnIfAbrupt(status).
7. Return O.

If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration order must be used to order the list elements in step 3 of this algorithm.

15.2.3.8 Object.seal (O)

When the **seal** function is called, the following steps are taken:

1. If Type(O) is not Object throw a **TypeError** exception.
2. For each named own property name P of O,
 a. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with P.
 b. If desc.[[Configurable]] is **true**, set desc.[[Configurable]] to **false**.
 c. Let status be the result of calling the [[DefineOwnProperty]] internal method of O with arguments P, desc, and **true** as arguments.
 d. ReturnIfAbrupt(status).
3. Set the [[Extensible]] internal property of O to **false**.
4. Return O.

15.2.3.9 Object.freeze (O)

When the **freeze** function is called, the following steps are taken:
1. If Type(\(O\)) is not Object throw a **TypeError** exception.

2. For each named own property name \(P\) of \(O\),
 a. Let \(desc\) be the result of calling the \([[\text{GetOwnProperty}]]\) internal method of \(O\) with \(P\).
 b. If IsDataDescriptor(\(desc\)) is \(\text{true}\), then
 i. If \(desc.[[\text{Writable}]]\) is \(\text{true}\), set \(desc.[[\text{Writable}]]\) to \(\text{false}\).
 c. If \(desc.[[\text{Configurable}]]\) is \(\text{true}\), set \(desc.[[\text{Configurable}]]\) to \(\text{false}\).
 d. Call the \([[\text{DefineOwnProperty}]]\) internal method of \(O\) with \(P, desc, \text{true}\) as arguments.
 c. ReturnIfAbrupt(\(status\)).

3. Set the \([[\text{Extensible}]]\) internal property of \(O\) to \(\text{false}\).

4. Return \(O\).

15.2.3.10 Object.preventExtensions (\(O\))

When the `preventExtensions` function is called, the following steps are taken:

1. If Type(\(O\)) is not Object throw a **TypeError** exception.

2. Set the \([[\text{Extensible}]]\) internal property of \(O\) to \(\text{false}\).

3. Return \(O\).

15.2.3.11 Object.isSealed (\(O\))

When the `isSealed` function is called with argument \(O\), the following steps are taken:

1. If Type(\(O\)) is not Object throw a **TypeError** exception.

2. For each named own property name \(P\) of \(O\),
 a. Let \(desc\) be the result of calling the \([[\text{GetOwnProperty}]]\) internal method of \(O\) with \(P\).
 b. If IsDataDescriptor(\(desc\)) is \(\text{true}\), then return \(\text{false}\).

3. If the \([[\text{Extensible}]]\) internal property of \(O\) is \(\text{false}\), then return \(\text{true}\).

4. Otherwise, return \(\text{false}\).

15.2.3.12 Object.isFrozen (\(O\))

When the `isFrozen` function is called with argument \(O\), the following steps are taken:

1. If Type(\(O\)) is not Object throw a **TypeError** exception.

2. For each named own property name \(P\) of \(O\),
 a. Let \(desc\) be the result of calling the \([[\text{GetOwnProperty}]]\) internal method of \(O\) with \(P\).
 b. If IsDataDescriptor(\(desc\)) is \(\text{true}\), then
 i. If \(desc.[[\text{Writable}]]\) is \(\text{true}\), return \(\text{false}\).
 c. If \(desc.[[\text{Configurable}]]\) is \(\text{true}\), then return \(\text{false}\).

3. If the \([[\text{Extensible}]]\) internal property of \(O\) is \(\text{false}\), then return \(\text{true}\).

4. Otherwise, return \(\text{false}\).

15.2.3.13 Object.isExtensible (\(O\))

When the `isExtensible` function is called with argument \(O\), the following steps are taken:

1. If Type(\(O\)) is not Object throw a **TypeError** exception.

2. Return the Boolean value of the \([[\text{Extensible}]]\) internal property of \(O\).

15.2.3.14 Object.keys (\(O\))

When the `keys` function is called with argument \(O\), the following steps are taken:

1. If the Type(\(O\)) is not Object, throw a **TypeError** exception.

2. Let \(n\) be the number of own enumerable properties of \(O\).

3. Let \(array\) be the result of the abstract operation `ArrayCreate (15.4)` with argument \(n\).

4. Let \(index\) be \(0\).

5. For each own enumerable property of \(O\) whose name String is \(P\)
 a. Call the \([[\text{DefineOwnProperty}]]\) internal method of \(array\) with arguments `ToString(index)`, the PropertyDescriptor `[[Value]]: \(P\), [[Writable]]: \(\text{true}\), [[Enumerable]]: \(\text{true}\), [[Configurable]]: \(\text{true}\), and \(\text{false}\).
b. Increment index by 1.

6. Return array.

If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration order must be used in step 5 of this algorithm.

15.2.4 Properties of the Object Prototype Object

The value of the [[Prototype]] internal property of the Object prototype object is null and the initial value of the [[Extensible]] internal property is true.

15.2.4.1 Object.prototype.constructor

The initial value of Object.prototype.constructor is the standard built-in Object constructor.

15.2.4.2 Object.prototype.toString ()

When the toString method is called, the following steps are taken:

1. If the this value is undefined, return "[object Undefined]".
2. If the this value is null, return "[object Null]".
3. Let O be the result of calling ToObject passing the this value as the argument.
4. If O has a [[NativeBrand]] internal property, let tag be the corresponding value from the Table 27.
5. Else if O is a host object, let tag be an implementation defined string value. This value may not be "Array", "Boolean", "Date", "Error", "Function", "JSON", "Math", "Number", "Object", "RegExp", or "String".
6. Else, let tag be the string value "Object".
7. Return the String value that is the result of concatenating the three Strings "[object ", tag, and "]".

Table 27 — Tags for Classified Standard Objects

<table>
<thead>
<tr>
<th>[[NativeBrand]] Value</th>
<th>tag Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NativeFunction</td>
<td>"Function"</td>
</tr>
<tr>
<td>NativeArray</td>
<td>"Array"</td>
</tr>
<tr>
<td>StringWrapper</td>
<td>"String"</td>
</tr>
<tr>
<td>BooleanWrapper</td>
<td>"Boolean"</td>
</tr>
<tr>
<td>NumberWrapper</td>
<td>"Number"</td>
</tr>
<tr>
<td>NativeMath</td>
<td>"Math"</td>
</tr>
<tr>
<td>NativeDate</td>
<td>"Date"</td>
</tr>
<tr>
<td>NativeRegExp</td>
<td>"RegExp"</td>
</tr>
<tr>
<td>NativeError</td>
<td>"Error"</td>
</tr>
<tr>
<td>NativeJSON</td>
<td>"JSON"</td>
</tr>
<tr>
<td>NativeArguments</td>
<td>"Arguments"</td>
</tr>
</tbody>
</table>

15.2.4.3 Object.prototype.toLocaleString ()

When the toLocaleString method is called, the following steps are taken:

1. Let O be the this value.
2. ReturnIfAbrupt(O).
3. Return the result of the abstract operation Invoke with arguments "toString", O, and an empty arguments List.

NOTE 1 This function is provided to give all Objects a generic toLocaleString interface, even though not all may use it. Currently, Array, Number, and Date provide their own locale-sensitive toLocaleString methods.

NOTE 2 The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this parameter position for anything else.
15.2.4.4 Object.prototype.valueOf ()

When the `valueOf` method is called, the following steps are taken:

1. Let `O` be the result of calling `ToObject` passing the `this` value as the argument.
2. Return `O`.

15.2.4.5 Object.prototype.hasOwnProperty (V)

When the `hasOwnProperty` method is called with argument `V`, the following steps are taken:

1. Let `P` be `ToString(V)`.
2. ReturnIfAbrupt(`P`).
3. Let `O` be the result of calling `ToObject` passing the `this` value as the argument.
4. ReturnIfAbrupt(`O`).
5. Let `desc` be the result of calling the `[[GetOwnProperty]]` internal method of `O` passing `P` as the argument.
6. If `desc` is `undefined`, return `false`.
7. Return `true`.

NOTE 1 Unlike `[[HasProperty]]` (8.12.6), this method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1 in previous editions of this specification will continue to be thrown even if the `this` value is `undefined` or `null`.

15.2.4.6 Object.prototype.isPrototypeOf (V)

When the `isPrototypeOf` method is called with argument `V`, the following steps are taken:

1. If `V` is not an object, return `false`.
2. Let `O` be the result of calling `ToObject` passing the `this` value as the argument.
3. ReturnIfAbrupt(`O`).
4. Repeat
 a. Let `V` be the value of the `[[Prototype]]` internal property of `V`.
 b. if `V` is `null`, return `false`
 c. If `O` and `V` refer to the same object, return `true`.

NOTE The ordering of steps 1 and 2 is chosen to preserve the behaviour specified by previous editions of this specification for the case where `V` is not an object and the this value is `undefined` or `null`.

15.2.4.7 Object.prototype.propertyIsEnumerable (V)

When the `propertyIsEnumerable` method is called with argument `V`, the following steps are taken:

1. Let `P` be `ToString(V)`.
2. ReturnIfAbrupt(`P`).
3. Let `O` be the result of calling `ToObject` passing the `this` value as the argument.
4. ReturnIfAbrupt(`O`).
5. Let `desc` be the result of calling the `[[GetOwnProperty]]` internal method of `O` passing `P` as the argument.
6. If `desc` is `undefined`, return `false`.

NOTE 1 This method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1 in previous editions of this specification will continue to be thrown even if the `this` value is `undefined` or `null`.

15.2.5 Properties of Object Instances

Object instances have no special properties beyond those inherited from the Object prototype object.
15.3 Function Objects

15.3.1 The Function Constructor Called as a Function

When `Function` is called as a function rather than as a constructor, it creates and initialises a new Function object. Thus the function call `Function(...)` is equivalent to the object creation expression `new Function(...)` with the same arguments.

15.3.1.1 `Function(p1, p2, ..., pn, body)`

When the `Function` function is called with some arguments `p1, p2, ..., pn, body` (where `n` might be 0, that is, there are no "p" arguments, and where `body` might also not be provided), the following steps are taken:

1. Create and return a new Function object as if the standard built-in constructor `Function` was used in a `new` expression with the same arguments (15.3.2.1).

15.3.2 The Function Constructor

When `Function` is called as part of a `new` expression, it is a constructor: it initialises the newly created object.

15.3.2.1 `new Function(p1, p2, ..., pn, body)`

The last argument specifies the body (executable code) of a function; any preceding arguments specify formal parameters.

When the `Function` constructor is called with some arguments `p1, p2, ..., pn, body` (where `n` might be 0, that is, there are no "p" arguments, and where `body` might also not be provided), the following steps are taken:

1. Let `argCount` be the total number of arguments passed to this function invocation.
2. Let `P` be the empty String.
3. If `argCount` = 0, let `bodyText` be the empty String.
4. Else if `argCount` = 1, let `bodyText` be that argument.
5. Else, `argCount` > 1
 a. Let `firstArg` be the first argument.
 b. Let `P` be `ToString(firstArg)`.
 c. ReturnIfAbrupt(`P`).
 d. Let `k` be 2.
 e. Repeat, while `k` < `argCount`
 i. Let `nextArg` be the `k`'th argument.
 ii. Let `nextArgString` be `ToString(nextArg)`.
 iii. ReturnIfAbrupt(`nextArgString`).
 iv. Let `P` be the result of concatenating the previous value of `P`, the String "," (a comma), and `nextArgString`.
 v. Increase `k` by 1.
 f. Let `bodyText` be the `k`'th argument.
6. Let `bodyText` be `ToString(bodyText)`.
7. ReturnIfAbrupt(`bodyText`).
8. Let `parameters` be the result of parsing `P` using `FormalParameterList` as the goal symbol. Throw a `SyntaxError` exception if the parse fails.
9. Let `body` be the result of parsing `bodyText` using `FunctionBody` as the goal symbol. Throw a `SyntaxError` exception if the parse fails or if any static semantics errors are detected.
10. If `bodyText` is strict mode code (see 10.1.1) then let `strict` be `true`, else let `strict` be `false`.
11. Return a new Function object created as specified in 13.2 passing `parameters` as the `FormalParameterList` and `body` as the `FunctionBody`. Pass in the Global Environment as the `Scope` parameter and `strict` as the `Strict` flag.

A `prototype` property is automatically created for every function, to provide for the possibility that the function will be used as a constructor.
NOTE It is permissible but not necessary to have one argument for each formal parameter to be specified. For example, all three of the following expressions produce the same result:

\[
\begin{align*}
 & \text{new Function("a", "b", "c", "return a+b+c")} \\
 & \text{new Function("a, b, c", "return a+b+c")} \\
 & \text{new Function("a,b", "c", "return a+b+c")}
\end{align*}
\]

15.3.3 Properties of the Function Constructor

The Function constructor is itself a Function object and has a [[NativeBrand]] internal property whose value is NativeFunction. The value of the [[Prototype]] internal property of the Function constructor is the standard built-in Function prototype object (15.3.4).

The value of the [[Extensible]] internal property of the Function constructor is true.

The Function constructor has the following properties:

15.3.3.1 Function.prototype

The initial value of Function.prototype is the standard built-in Function prototype object (15.3.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.3.3.2 Function.length

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.3.4 Properties of the Function Prototype Object

The Function prototype object is itself a Function object and has a [[NativeBrand]] internal property whose value is NativeFunction. When invoked, it accepts any arguments and returns undefined.

The value of the [[Prototype]] internal property of the Function prototype object is the standard built-in Object prototype object (15.2.4). The initial value of the [[Extensible]] internal property of the Function prototype object is true.

The Function prototype object does not have a valueOf property of its own; however, it inherits the valueOf property from the Object prototype Object.

The length property of the Function prototype object is 0.

15.3.4.1 Function.prototype.constructor

The initial value of Function.prototype.constructor is the built-in Function constructor.

15.3.4.2 Function.prototype.toString ()

An implementation-dependent representation of the function is returned. This representation has the syntax of a FunctionDeclaration. Note in particular that the use and placement of white space, line terminators, and semicolons within the representation String is implementation-dependent.

The toString function is not generic; it throws a TypeError exception if its this value is not a Function object. Therefore, it cannot be transferred to other kinds of objects for use as a method.
15.3.4.3 Function.prototype.apply (thisArg, argArray)

When the apply method is called on an object func with arguments thisArg and argArray, the following steps are taken:

1. If IsCallable(func) is false, then throw a TypeError exception.
2. If argArray is null or undefined, then
 a. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this value and an empty list of arguments.
3. If Type(argArray) is not Object, then throw a TypeError exception.
4. Let len be the result of calling the [[Get]] internal method of argArray with argument "length".
5. Let n be ToUint32(len).
6. ReturnIfAbrupt(n).
7. Let argList be an empty List.
8. Let index be 0.
9. Repeat while index < n
 a. Let indexName be ToString(index).
 b. Let nextArg be the result of calling the [[Get]] internal method of argArray with indexName as the argument.
 c. ReturnIfAbrupt(nextArg).
 d. Append nextArg as the last element of argList.
 e. Set index to index + 1.
10. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this value and argList as the list of arguments.

The length property of the apply method is 2.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where a undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is passed as the this value.

15.3.4.4 Function.prototype.call (thisArg [, arg1 [, arg2, …]])

When the call method is called on an object func with argument thisArg and optional arguments arg1, arg2 etc, the following steps are taken:

1. If IsCallable(func) is false, then throw a TypeError exception.
2. Let argList be an empty List.
3. If this method was called with more than one argument then in left to right order starting with arg1 append each argument as the last element of argList.
4. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this value and argList as the list of arguments.

The length property of the call method is 1.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where a undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is passed as the this value.

15.3.4.5 Function.prototype.bind (thisArg [, arg1 [, arg2, …]])

The bind method takes one or more arguments, thisArg and (optionally) arg1, arg2 etc, and returns a new function object by performing the following steps:

1. Let Target be the this value.
2. If IsCallable(Target) is false, throw a TypeError exception.
3. Let A be a new (possibly empty) internal list of all of the argument values provided after thisArg (arg1, arg2 etc), in order.
4. Let F be a new native ECMAScript object.
5. Set all the internal methods of F as specified in 8.12.
6. Set the [[Extensible]] internal property of F to true.
7. Set the [[TargetFunction]] internal property of F to $Target$.
8. Set the [[BoundThis]] internal property of F to the value of $thisArg$.
9. Set the [[BoundArgs]] internal property of F to A.
10. Add the [[NativeBrand]] internal property with value NativeFunction to F.
11. Set the [[Prototype]] internal property of F to the intrinsic %FunctionPrototype%.
12. Set the [[Call]] internal property of F as described in 15.3.4.5.1.
13. Set the [[Construct]] internal property of F as described in 15.3.4.5.2.
14. Set the [[HasInstance]] internal property of F as described in 15.3.4.5.3.
15. If $Target$ has the [[NativeBrand]] internal property with value NativeFunction, then
 a. Let $targetLen$ be the result of calling the [[Get]] internal method of $Target$ with argument
 "length".
 b. ReturnIfAbrupt($targetLen$).
 c. Let L be the larger of 0 and the result of $targetLen$ minus the number of element of A.
16. Else let L be 0.
17. Call the [[DefineOwnProperty]] internal method of F with arguments "length", PropertyDescriptor
 {
 [[value]]: L,
 [[Writable]]: false,
 [[Enumerable]]: false,
 [[Configurable]]: false,
 }, and false.
18. Let $thrower$ be the [[ThrowTypeError]] function Object (13.5.3).
19. Call the [[DefineOwnProperty]] internal method of F with arguments "caller", PropertyDescriptor
 {
 [[Get]]: $thrower$,
 [[Set]]: $thrower$,
 [[Enumerable]]: false,
 [[Configurable]]: false,
 }, and false.
20. Call the [[DefineOwnProperty]] internal method of F with arguments "arguments", PropertyDescriptor
 {
 [[Get]]: $thrower$,
 [[Set]]: $thrower$,
 [[Enumerable]]: false,
 [[Configurable]]: false,
 }, and false.

The length property of the bind method is 1.

NOTE Function objects created using Function.prototype.bind do not have a prototype property or the
[[Code]], [[FormalParameters]], and [[Scope]] internal properties.

15.3.4.5.1 [[Call]]

When the [[Call]] internal method of a function object, F, which was created using the bind function is called
with a this value and a list of arguments ExtraArgs, the following steps are taken:

1. Let boundArgs be the value of F’s [[BoundArgs]] internal property.
2. Let boundThis be the value of F’s [[BoundThis]] internal property.
3. Let target be the value of F’s [[TargetFunction]] internal property.
4. Let args be a new list containing the same values as the list boundArgs in the same order followed by the
 same values as the list ExtraArgs in the same order.
5. Return the result of calling the [[Call]] internal method of target providing boundThis as the this value and
 providing args as the arguments.

15.3.4.5.2 [[Construct]]

When the [[Construct]] internal method of a function object, F that was created using the bind function is called
with a list of arguments ExtraArgs, the following steps are taken:

1. Let target be the value of F’s [[TargetFunction]] internal property.
2. If target has no [[Construct]] internal method, a TypeError exception is thrown.
3. Let boundArgs be the value of F’s [[BoundArgs]] internal property.
4. Let args be a new list containing the same values as the list boundArgs in the same order followed by the
 same values as the list ExtraArgs in the same order.
5. Return the result of calling the [[Construct]] internal method of target providing args as the arguments.

15.3.4.5.3 [[HasInstance]] (V)

When the [[HasInstance]] internal method of a function object F, that was created using the bind function is
called with argument V, the following steps are taken:

1. Let target be the value of F’s [[TargetFunction]] internal property.
2. If target has no [[HasInstance]] internal method, a TypeError exception is thrown.
3. Return the result of calling the [[HasInstance]] internal method of `target` providing `V` as the argument.

15.3.5 Properties of Function Instances

In addition to the required internal properties, every function instance has a [[Call]] internal property and in most cases uses a different version of the [[Get]] internal property. Depending on how they are created (see 8.6.2, 13.2, 15, and 15.3.4.5), function instances may have a [[HasInstance]] internal property, a [[Scope]] internal property, a [[Construct]] internal property, a [[FormalParameters]] internal property, a [[Code]] internal property, a [[TargetFunction]] internal property, a [[BoundThis]] internal property, and a [[BoundArgs]] internal property.

Every function instance has a [[NativeBrand]] internal property whose value is NativeFunction.

Function instances that correspond to strict mode functions (13.2) and function instances created using the `Function.prototype.bind` method (15.3.4.5) have properties named “caller” and “arguments” that throw a `TypeError` exception. An ECMAScript implementation must not associate any implementation specific behaviour with accesses of these properties from strict mode function code.

15.3.5.1 length

The value of the `length` property is an integer that indicates the “typical” number of arguments expected by the function. However, the language permits the function to be invoked with some other number of arguments. The behaviour of a function when invoked on a number of arguments other than the number specified by its `length` property depends on the function. This property has the attributes `{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.3.5.2 prototype

The value of the `prototype` property is used to initialise the [[Prototype]] internal property of a newly created object before the Function object is invoked as a constructor for that newly created object. This property has the attribute `{ [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE Function objects created using `Function.prototype.bind` do not have a `prototype` property.

15.3.5.3 [[HasInstance]] (V)

Assume `F` is a Function object.

When the [[HasInstance]] internal method of `F` is called with value `V`, the following steps are taken:

1. If `V` is not an object, return `false`.
2. Let `O` be the result of calling the [[Get]] internal method of `F` with property name "prototype".
3. ReturnIfAbrupt(`O`).
4. If `Type(O)` is not Object, throw a `TypeError` exception.
5. Repeat
 a. Let `V` be the value of the [[Prototype]] internal property of `V`.
 b. If `V` is `null`, return `false`.
 c. If `O` and `V` refer to the same object, return `true`.

NOTE Function objects created using `Function.prototype.bind` have a different implementation of [[HasInstance]] defined in 15.3.4.5.3.

15.3.5.4 [[Get]] (P)

Function objects use a variation of the [[Get]] internal method used for other native ECMAScript objects (8.12.3).

Assume `F` is a Function object. When the [[Get]] internal method of `F` is called with property name `P`, the following steps are taken:
1. Let \(v \) be the result of calling the default \([\text{Get}]\) internal method (8.12.3) on \(F \) passing \(P \) as the property name argument.
2. If \(P \) is "caller" and \(v \) is a strict mode Function object, throw a TypeError exception.
3. Return \(v \).

NOTE Function objects created using `Function.prototype.bind` use the default \([\text{Get}]\) internal method.

15.4 Array Objects

Array objects give special treatment to a certain class of property names. A property name \(P \) (in the form of a String value) is an array index if and only if `ToString(ToUint32(P))` is equal to \(P \) and `ToUint32(P)` is not equal to \(2^{32} - 1 \). A property whose property name is an array index is also called an element. Every Array object has a length property whose value is always a nonnegative integer less than \(2^{32} \). The value of the length property is numerically greater than the name of every property whose name is an array index; whenever a property of an Array object is created or changed, other properties are adjusted as necessary to maintain this invariant. Specifically, whenever a property is added whose name is an array index, the length property is changed, if necessary, to be one more than the numeric value of that array index; and whenever the length property is changed, every property whose name is an array index whose value is not smaller than the new length is automatically deleted. This constraint applies only to own properties of an Array object and is unaffected by length or array index properties that may be inherited from its prototypes.

An object, \(O \), is said to be sparse if the following algorithm returns `true`:

1. Let \(\text{len} \) be the result of calling the \([\text{Get}]\) internal method of \(O \) with argument "length".
2. For each integer \(i \) in the range \(0 \leq i < \text{ToUint32}(\text{len}) \)
 a. Let \(\text{elem} \) be the result of calling the \([\text{GetOwnProperty}]\) internal method of \(O \) with argument `ToString(i)`.
 b. If \(\text{elem} \) is `undefined`, return `true`.
3. Return `false`.

The abstract operation `ArrayCreate` with argument `length` (a positive integer) is used to specify the creation of new Array objects. It performs the following steps:

1. Let \(A \) be a newly created ECMAScript object.
2. Set the \([\text{Prototype}]\) internal property of \(A \) to the intrinsic object `%ArrayPrototype%`.
3. Set \(A \)'s common internal methods except for \([\text{DefineOwnProperty}]\) to the default definitions specified in 8.12.
4. Set \(A \)'s \([\text{DefineOwnProperty}]\) internal method to the definition given in 15.4.5.1.
5. Set the \([\text{NativeBrand}]\) internal property of \(A \) to the value `NativeArray`.
6. Set the \([\text{Extensible}]\) internal property of \(A \) to `true`.
7. Call the default \([\text{DefineOwnProperty}]\) internal method (8.12.9) on \(A \) with arguments "length", Property Descriptor \([\text{Value}]\): `length`, \([\text{Writable}]\): `true`, \([\text{Enumerable}]\): `false`, \([\text{Configurable}]\): `false`, and `false`.
8. Return \(A \).

15.4.1 The Array Constructor Called as a Function

NOTE When `Array` is called as a function rather than as a constructor, it creates and initialises a new Array object. Thus the function call `Array(...)` is equivalent to the object creation expression `new Array(...)` with the same arguments.

15.4.1.1 `Array ([item1 [, item2 [,...]]])`

When the `Array` function is called the following steps are taken:

1. Return the result that would be obtained if this functions had been called with the same arguments, as constructor. This result is defined by 15.4.2.1 or 15.4.2.2 depending upon the actual number of arguments.

15.4.2 The Array Constructor

NOTE When `Array` is called as part of a `new` expression, it is a constructor: it initialised the newly created object.
15.4.2.1 new Array ([item0 [, item1 [, …]]])

This description applies if and only if the Array constructor is given no arguments or at least two arguments.

1. Let \(len \) be the number of arguments passed to this constructor call.
2. Let \(array \) be the result of the abstract operation ArrayCreate (15.4) with argument \(len \).
3. ReturnIfAbrupt(array).
4. Let \(k \) be 0.
5. Let \(items \) be a zero-origined List contain the argument items in order.
6. Repeat, while \(k < len \)
 a. Let \(Pk \) be ToString(\(k \)).
 b. Let \(itemK \) be \(k \)th element of \(items \).
 c. Let defineStatus be the result of calling the [[DefineOwnProperty]] internal method of \(array \) with arguments \(Pk \), Property Descriptor \{ [[Value]]: itemK, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true \}, and true.
 d. ReturnIfAbrupt(defineStatus).
 e. Increase \(k \) by 1.
7. Let putStatus be the result of calling the [[Put]] internal method of \(array \) with arguments "length", \(len \), and true.
8. ReturnIfAbrupt(putStatus).
9. Return \(array \).

15.4.2.2 new Array (len)

This description applies if and only if the Array constructor is given exactly one argument.

1. If Type(len) is not Number, then
 a. Let \(array \) be the result of the abstract operation ArrayCreate (15.4) with argument 1.
 b. ReturnIfAbrupt(array).
 c. Let defineStatus be the result of calling the [[DefineOwnProperty]] internal method of \(array \) with arguments "0", Property Descriptor \{ [[Value]]: \(len \), [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true \}, and true.
 d. ReturnIfAbrupt(defineStatus).
 e. Return \(array \).
2. Let \(intLen \) be ToUint32(len).
3. If \(intLen \neq len \), then throw a RangeError exception.
4. Let \(array \) be the result of the abstract operation ArrayCreate (15.4) with argument \(intLen \).
5. Return \(array \).

15.4.3 Properties of the Array Constructor

The value of the [[Prototype]] internal property of the Array constructor is the Function prototype object (15.3.4).

Besides the internal properties and the length property (whose value is 1), the Array constructor has the following properties:

15.4.3.1 Array.prototype

The initial value of Array.prototype is the Array prototype object (15.4.4).

This property has the attributes \{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false \}.

15.4.3.2 Array.isArray (arg)

The isArray function takes one argument arg, and returns the Boolean value true if the argument is an object whose class internal property is "Array"; otherwise it returns false. The following steps are taken:

1. If Type(arg) is not Object, return false.
2. If `arg` has the `[[NativeBrand]]` internal property with value `NativeArray`, then return `true`.
3. Return `false`.

15.4.3.3 Array.of (...items)

When the `of` method is called with any number of arguments, the following steps are taken:

1. Let `lenValue` be the result of calling the `[[Get]]` internal method of `items` with the argument "`length`".
2. Let `len` be `ToInteger(lenValue)`.
3. Let `C` be the `this` value.
4. If `isConstructor(C)` is `true`, then
 a. Let `newObj` be the result of calling the `[[Construct]]` internal method of `C` with an argument list containing the single item `len`.
 b. Let `A` be `ToObject(newObj)`.
5. Else,
 a. Let `A` be the result of the abstract operation `ArrayCreate (15.4)` with argument `len`.
6. ReturnIfAbrupt(`A`).
7. Let `k` be `0`.
8. Repeat, while `k < len`
 a. Let `Pk` be `ToString(k)`.
 b. Let `kPresent` be the result of calling the `[[HasProperty]]` internal method of `items` with argument `Pk`.
 c. Let `defineStatus` be the result of calling the `[[DefineOwnProperty]]` internal method of `A` with arguments `Pk`, Property Descriptor `[[Value]]: kValue, [[value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true, and `true`.
 d. ReturnIfAbrupt(`defineStatus`).
 e. Increase `k` by `1`.
9. Let `putStatus` be the result of calling the `[[Put]]` internal method of `A` with arguments "`length`, `len`, and `true`.
10. ReturnIfAbrupt(`putStatus`).
11. Return `A`.

The `length` property of the `of` method is 0.

NOTE 1 The `items` argument is assume to be a well-formed rest argument value.

NOTE 2 The `of` function is an intentionally generic factory method; it does not require that its `this` value be the Array constructor. Therefore it can be transferred to or inherited by other constructors that may be called with a single numeric argument.

15.4.3.4 Array.from (arrayLike)

When the `from` method is called with argument `arrayLike`, the following steps are taken:

1. Let `items` be `ToObject(arrayLike)`.
2. ReturnIfAbrupt(`items`).
3. Let `lenValue` be the result of calling the `[[Get]]` internal method of `items` with the argument "`length`".
4. Let `len` be `ToInteger(lenValue)`.
5. ReturnIfAbrupt(`len`).
6. Let `C` be the `this` value.
7. If `isConstructor(C)` is `true`, then
 a. Let `newObj` be the result of calling the `[[Construct]]` internal method of `C` with an argument list containing the single item `len`.
 b. Let `A` be `ToObject(newObj)`.
8. Else,
 a. Let `A` be the result of the abstract operation `ArrayCreate (15.4)` with argument `len`.
9. ReturnIfAbrupt(`A`).
10. Let `k` be `0`.
11. Repeat, while `k < len`
 a. Let `Pk` be `ToString(k)`.
 b. Let `kPresent` be the result of calling the `[[HasProperty]]` internal method of `items` with argument `Pk`.

c. If \(k_{Present} \) is true, then
 i. Let \(k_{Value} \) be the result of calling the [[Get]] internal method of \(\text{items} \) with argument \(Pk \).
 ii. ReturnIfAbrupt(\(k_{Value} \)).
 iii. Let \(\text{defineStatus} \) be the result of calling the [[DefineOwnProperty]] internal method of \(A \) with arguments \(Pk \), Property Descriptor \([[[\text{Value}]]]: k_{Value}.[[\text{value}]], [[\text{Writable}]]: \text{true}, [[\text{Enumerable}]]: \text{true}, [[\text{Configurable}]]: \text{true} \), and \(\text{true} \).
 iv. ReturnIfAbrupt(\(\text{defineStatus} \)).

d. Increase \(k \) by 1.

12. Let \(\text{putStatus} \) be the result of calling the [[Put]] internal method of \(A \) with arguments "\text{length}”, \(\text{len} \), and true.
13. ReturnIfAbrupt(\(\text{putStatus} \)).
14. Return \(A \).

NOTE The from function is an intentionally generic factory method; it does not require that its this value be the Array constructor. Therefore it can be transferred to or inherited by any other constructors that may be called with a single numeric argument.

15.4.4 Properties of the Array Prototype Object

The value of the [[Prototype]] internal property of the Array prototype object is the standard built-in Object prototype object (15.2.4).

The Array prototype object is itself an array; it has an [[NativeBrand]] internal property with value NativeArray, and it has a length property (whose initial value is +0) and the special [[DefineOwnProperty]] internal method described in 15.4.5.1.

In following descriptions of functions that are properties of the Array prototype object, the phrase “this object” refers to the object that is the this value for the invocation of the function. It is permitted for the this to be an object which does not have an [[NativeBrand]] internal property with value NativeArray.

NOTE The Array prototype object does not have a valueOf property of its own; however, it inherits the valueOf property from the standard built-in Object prototype Object.

15.4.4.1 Array.prototype.constructor

The initial value of Array.prototype.constructor is the standard built-in Array constructor.

15.4.4.2 Array.prototype.toString ()

When the toString method is called, the following steps are taken:

6. Let \(array \) be the result of calling ToObject on the this value.
7. ReturnIfAbrupt(\(array \)).
8. Let \(func \) be the result of calling the [[Get]] internal method of \(array \) with argument "join".
9. ReturnIfAbrupt(\(func \)).
10. If IsCallable(\(func \)) is false, then let \(func \) be the standard built-in method Object.prototype.toString (15.2.4.2).
11. Return the result of calling the [[Call]] internal method of \(func \) providing \(array \) as the this value and an empty arguments list.

NOTE The toString function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the toString function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.3 Array.prototype.toLocaleString ()

The elements of the array are converted to Strings using their toLocaleString methods, and these Strings are then concatenated, separated by occurrences of a separator String that has been derived in an implementation-defined locale-specific way. The result of calling this function is intended to be analogous to the result of toString, except that the result of this function is intended to be locale-specific.
The result is calculated as follows:

1. Let array be the result of calling ToObject passing the this value as the argument.
2. ReturnIfAbrupt(array).
3. Let arrayLen be the result of calling the [[Get]] internal method of array with argument "length".
4. Let len be ToUint32(arrayLen).
5. ReturnIfAbrupt(len).
6. Let separator be the String value for the list-separator String appropriate for the host environment’s current locale (this is derived in an implementation-defined way).
7. If len is zero, return the empty String.
8. Let firstElement be the result of calling the [[Get]] internal method of array with argument "0".
9. ReturnIfAbrupt(firstElement).
10. If firstElement is undefined or null, then
 a. Let R be the empty String.
 Else
 a. Let R be the result of calling Invoke with arguments "toLocaleString", firstElement, and an empty arguments List.
 b. Let R be ToString(R).
 c. ReturnIfAbrupt(R).
12. Let k be 1.
13. Repeat, while k < len
 a. Let S be a String value produced by concatenating R and separator.
 b. Let nextElement be the result of calling the [[Get]] internal method of array with argument ToString(k).
 c. ReturnIfAbrupt(nextElement).
 d. If nextElement is undefined or null, then
 i. Let R be the empty String.
 Else
 i. Let R be the result of calling Invoke with arguments "toLocaleString", nextElement, and an empty arguments List.
 ii. Let R be ToString(R).
 iii. ReturnIfAbrupt(R).
 f. Let R be a String value produced by concatenating S and R.
 g. Increase k by 1.
14. Return R.

NOTE 1 The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleString function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the toLocaleString function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.4 Array.prototype.concat ([item1 [, item2 [, …]]])

When the concat method is called with zero or more arguments item1, item2, etc., it returns an array containing the array elements of the object followed by the array elements of each argument in order.

The following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnIfAbrupt(O).
3. Let A be the result of the abstract operation ArrayCreate (15.4) with argument 0.
4. Let n be 0.
5. Let items be an internal List whose first element is O and whose subsequent elements are, in left to right order, the arguments that were passed to this function invocation.
6. Repeat, while items is not empty
 a. Remove the first element from items and let E be the value of the element.
 b. If E has the [[NativeBrand]] internal property with value NativeArray, then
i. Let \(k \) be 0.

ii. Let \(\text{len} \) be the result of calling the \([[\text{Get}]\text{]}\) internal method of \(E \) with argument "\textbf{length}".

iii. ReturnIfAbrupt(\(\text{len} \)).

iv. Repeat, while \(k < \text{len} \)
 1. Let \(P \) be \(\text{To}\text{String}(k) \).
 2. Let \(\text{exists} \) be the result of calling the \([[\text{HasProperty}]\text{]}\) internal method of \(E \) with \(P \).
 3. If \(\text{exists} \) is \textbf{true}, then
 a. Let \(\text{subElement} \) be the result of calling the \([[\text{Get}]\text{]}\) internal method of \(E \) with \(P \).
 b. Call the \([[\text{DefineOwnProperty}]\text{]}\) internal method of \(A \) with arguments \(\text{ToString}(n) \), Property Descriptor \{[[\text{Value}]]: \text{subElement}, [[\text{Writable}]]: \textbf{true}, [[\text{Enumerable}]]: \textbf{true}, [[\text{Configurable}]]: \textbf{true} \}, and \textbf{false}.
 4. Increase \(n \) by 1.
 5. Increase \(k \) by 1.
 c. Else, \(E \) is not an Array
 i. Call the \([[\text{DefineOwnProperty}]\text{]}\) internal method of \(A \) with arguments \(\text{ToString}(n) \), Property Descriptor \{[[\text{Value}]]: \(E \), [[\text{Writable}]]: \textbf{true}, [[\text{Enumerable}]]: \textbf{true}, [[\text{Configurable}]]: \textbf{true} \}, and \textbf{false}.
 7. Let \(\text{putStatus} \) be the result of calling the \([[\text{Put}]\text{]}\) internal method of \(A \) with arguments "\textbf{length}". \(n \), and \textbf{true}.
 8. ReturnIfAbrupt(\(\text{putStatus} \)).
 9. Return \(A \).

The \textbf{length} property of the \textbf{concat} method is 1.

NOTE 1 The explicit setting of the \textbf{length} property in step 7 is necessary to ensure that its value is correct in situations where the trailing elements of the result Array are not present.

NOTE 2 The \textbf{concat} function is intentionally generic; it does not require that its \textbf{this} value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the \textbf{concat} function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.5 \texttt{Array.prototype.join (separator)}

The elements of the array are converted to Strings, and these Strings are then concatenated, separated by occurrences of the \textit{separator}. If no separator is provided, a single comma is used as the separator.

The \texttt{join} method takes one argument, \textit{separator}, and performs the following steps:

1. Let \(O \) be the result of calling \texttt{ToObject} passing the \textit{this} value as the argument.
2. ReturnIfAbrupt(\(O \)).
3. Let \(\text{lenVal} \) be the result of calling the \([[\text{Get}]\text{]}\) internal method of \(O \) with argument "\textbf{length}".
4. Let \(\text{len} \) be \texttt{ToUint32}(\(\text{lenVal} \)).
5. ReturnIfAbrupt(\(\text{len} \)).
6. If \textit{separator} is \textbf{undefined}, let \textit{separator} be the single-character String ", ".
7. Let \(\text{sep} \) be \texttt{ToString}(\(\textit{separator} \)).
8. If \(\text{len} \) is zero, return the empty String.
9. Let \(\text{element0} \) be the result of calling the \([[\text{Get}]\text{]}\) internal method of \(O \) with argument "0".
10. If \(\text{element0} \) is \textbf{undefined} or \textbf{null}, let \(R \) be the empty String; otherwise, Let \(R \) be \texttt{ToString}(\(\text{element0} \)).
11. If \(R \) is an abrupt completion, return \(R \).
12. Let \(k \) be 1.
13. Repeat, while \(k < \text{len} \)
 a. Let \(S \) be the String value produced by concatenating \(R \) and \(\text{sep} \).
 b. Let \textit{element} be the result of calling the \([[\text{Get}]\text{]}\) internal method of \(O \) with argument \texttt{To}\text{String}(k).
 c. If \textit{element} is \textbf{undefined} or \textbf{null}, let \(\text{next} \) be the empty String; otherwise, let \(\text{next} \) be \texttt{To}\text{String}(\(\text{element} \)).
 d. ReturnIfAbrupt(\(\text{next} \)).
 e. Let \(R \) be a String value produced by concatenating \(S \) and \(\text{next} \).
f. Increase \(k \) by 1.

14. Return \(R \).

The **length** property of the **join** method is 1.

NOTE

The **join** function is intentionally generic; it does not require that its **this** value be an Array object. Therefore, it can be transferred to other kinds of objects for use as a method. Whether the **join** function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.6 Array.prototype.pop()

The last element of the array is removed from the array and returned.

1. Let \(O \) be the result of calling **ToObject** passing the **this** value as the argument.
2. ReturnIfAbrupt\((O)\).
3. Let \(lenVal \) be the result of calling the [[Get]] internal method of \(O \) with argument "**length**".
4. Let \(len \) be ToUint32\((lenVal)\).
5. ReturnIfAbrupt\((len)\).
6. If \(len \) is zero,
 a. Let **putStatus** be the result of calling the [[Put]] internal method of \(O \) with arguments "**length**", 0, and true.
 b. ReturnIfAbrupt\((putStatus)\).
 c. Return **undefined**.
7. Else, \(len > 0 \)
 a. Let **newLen** be \(len - 1 \).
 b. Let **indx** be ToString\((newLen)\).
 c. Let **element** be the result of calling the [[Get]] internal method of \(O \) with argument **indx**.
 d. ReturnIfAbrupt\((element)\).
 e. Let **deleteStatus** be the result of calling the [[Delete]] internal method of \(O \) with arguments **indx** and true.
 f. ReturnIfAbrupt\((deleteStatus)\).
 g. Let **putStatus** be the result of calling the [[Put]] internal method of \(O \) with arguments "**length**", **newLen**, and true.
 h. ReturnIfAbrupt\((putStatus)\).
 i. Return **element**.

NOTE

The **pop** function is intentionally generic; it does not require that its **this** value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the **pop** function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.7 Array.prototype.push([item1 [, item2 [, ...]]])

The arguments are appended to the end of the array, in the order in which they appear. The new length of the array is returned as the result of the call.

When the **push** method is called with zero or more arguments **item1**, **item2**, etc., the following steps are taken:

1. Let \(O \) be the result of calling **ToObject** passing the **this** value as the argument.
2. ReturnIfAbrupt\((O)\).
3. Let \(lenVal \) be the result of calling the [[Get]] internal method of \(O \) with argument "**length**".
4. Let \(n \) be ToUint32\((lenVal)\).
5. ReturnIfAbrupt\((n)\).
6. Let **items** be an internal List whose elements are, in left to right order, the arguments that were passed to this function invocation.
7. Repeat, while **items** is not empty
 a. Remove the first element from **items** and let \(E \) be the value of the element.
 b. Let **putStatus** be the result of calling the [[Put]] internal method of \(O \) with arguments ToString\((n)\), \(E \), and true.
 c. ReturnIfAbrupt\((putStatus)\).
d. Increase \(n \) by 1.

8. Let \(\text{putStatus} \) be the result of calling the \([\text{Put}]\) internal method of \(O \) with arguments "\(\text{length} \)", \(n \), and \true.\)

9. ReturnIfAbrupt(\(\text{putStatus} \)).

10. Return \(n \).

The \(\text{length} \) property of the \text{push} method is 1.

NOTE The \text{push} function is intentionally generic; it does not require that its \this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the \text{push} function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.8 \text{Array.prototype.reverse} ()

The elements of the array are rearranged so as to reverse their order. The object is returned as the result of the call.

1. Let \(O \) be the result of calling \text{ToObject} passing the \this value as the argument.
2. ReturnIfAbrupt(\(O \)).
3. Let \(\text{lenVal} \) be the result of calling the \([\text{Get}]\) internal method of \(O \) with argument "\(\text{length} \)."
4. Let \(\text{len} \) be \text{ToUint32}(\(\text{lenVal} \)).
5. ReturnIfAbrupt(\(\text{len} \)).
6. Let \(\text{middle} \) be \(\text{floor}(\text{len}/2) \).
7. Let \(\text{lower} \) be \(0 \).
8. Repeat, while \(\text{lower} \neq \text{middle} \)
 a. Let \(\text{upper} \) be \(\text{len} – \text{lower} – 1 \).
 b. Let \(\text{upperP} \) be \text{ToString}(\(\text{upper} \)).
 c. Let \(\text{lowerP} \) be \text{ToString}(\(\text{lower} \)).
 d. Let \(\text{lowerValue} \) be the result of calling the \([\text{Get}]\) internal method of \(O \) with argument \(\text{lowerP} \).
 e. ReturnIfAbrupt(\(\text{lowerValue} \)).
 f. Let \(\text{upperValue} \) be the result of calling the \([\text{Get}]\) internal method of \(O \) with argument \(\text{upperP} \).
 g. ReturnIfAbrupt(\(\text{upperValue} \)).
 h. Let \(\text{lowerExists} \) be the result of calling the \([\text{HasProperty}]\) internal method of \(O \) with argument \(\text{lowerP} \).
 i. Let \(\text{upperExists} \) be the result of calling the \([\text{HasProperty}]\) internal method of \(O \) with argument \(\text{upperP} \).
 j. If \(\text{lowerExists} \) is \true and \(\text{upperExists} \) is \true, then
 i. Let \(\text{putStatus} \) be the result of calling the \([\text{Put}]\) internal method of \(O \) with arguments \(\text{lowerP}, \text{upperValue}, \text{and true} \).
 ii. ReturnIfAbrupt(\(\text{putStatus} \)).
 iii. Let \(\text{putStatus} \) be the result of calling the \([\text{Put}]\) internal method of \(O \) with arguments \(\text{upperP}, \text{lowerValue}, \text{and true} \).
 iv. ReturnIfAbrupt(\(\text{putStatus} \)).
 k. Else if \(\text{lowerExists} \) is \false and \(\text{upperExists} \) is \true, then
 i. Let \(\text{putStatus} \) be the result of calling the \([\text{Put}]\) internal method of \(O \) with arguments \(\text{lowerP}, \text{upperValue}, \text{and true} \).
 ii. ReturnIfAbrupt(\(\text{putStatus} \)).
 iii. Let \(\text{deleteStatus} \) be the result of calling the \([\text{Delete}]\) internal method of \(O \), with arguments \(\text{upperP and true} \).
 iv. ReturnIfAbrupt(\(\text{deleteStatus} \)).
 l. Else if \(\text{lowerExists} \) is \true and \(\text{upperExists} \) is \false, then
 i. Let \(\text{deleteStatus} \) be the result of calling the \([\text{Delete}]\) internal method of \(O \), with arguments \(\text{lowerP and true} \).
 ii. ReturnIfAbrupt(\(\text{deleteStatus} \)).
 iii. Let \(\text{putStatus} \) be the result of calling the \([\text{Put}]\) internal method of \(O \) with arguments \(\text{upperP, lowerValue, and true} \).
 iv. ReturnIfAbrupt(\(\text{putStatus} \)).
 m. Else, both \(\text{lowerExists} \) and \(\text{upperExists} \) are \false
 i. No action is required.
n. Increase lower by 1.
9. Return O.

NOTE The reverse function is intentionally generic; it does not require that its this value be an Array object. Therefore, it can be transferred to other kinds of objects for use as a method. Whether the reverse function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.9 Array.prototype.shift ()

The first element of the array is removed from the array and returned.

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnIfAbrupt(O).
3. Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".
4. Let len be ToUint32(lenVal).
5. ReturnIfAbrupt(len).
6. If len is zero, then
 a. Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length", 0, and true.
 b. ReturnIfAbrupt(putStatus).
 c. Return undefined.
7. Let first be the result of calling the [[Get]] internal method of O with argument "0".
8. ReturnIfAbrupt(first).
9. Let k be 1.
10. Repeat, while k < len
 a. Let from be ToString(k).
 b. Let to be ToString(k–1).
 c. Let fromPresent be the result of calling the [[HasProperty]] internal method of O with argument from.
 d. If fromPresent is true, then
 i. Let fromVal be the result of calling the [[Get]] internal method of O with argument from.
 ii. ReturnIfAbrupt(fromVal).
 iii. Let putStatus be the result of calling the [[Put]] internal method of O with arguments to, fromVal, and true.
 iv. ReturnIfAbrupt(putStatus).
 e. Else, fromPresent is false
 i. Let deleteStatus be the result of calling the [[Delete]] internal method of O with arguments to and true.
 ii. ReturnIfAbrupt(deleteStatus).
 f. Increase k by 1.
11. Let deleteStatus be the result of calling the [[Delete]] internal method of O with arguments ToString(len–1) and true.
12. ReturnIfAbrupt(deleteStatus).
13. Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length", (len–1), and true.
14. ReturnIfAbrupt(putStatus).
15. Return first.

NOTE The shift function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the shift function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.10 Array.prototype.slice (start, end)

The slice method takes two arguments, start and end, and returns an array containing the elements of the array from element start up to, but not including, element end (or through the end of the array if end is undefined). If start is negative, it is treated as length+start where length is the length of the array. If end is negative, it is treated as length+end where length is the length of the array. The following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnIfAbrupt(\(O\)).
3. Let \(A\) be the result of the abstract operation ArrayCreate (15.4) with argument 0.
4. Let \(lenVal\) be the result of calling the \([\text{Get}]\) internal method of \(O\) with argument "\(\text{length}\)".
5. Let \(len\) be ToUint32(\(lenVal\)).
6. ReturnIfAbrupt(\(len\)).
7. Let relativeStart be ToInteger(start).
8. ReturnIfAbrupt(\(relativeStart\)).
9. If relativeStart is negative, let \(k\) be max((\(len + relativeStart\)),0); else let \(k\) be min(relativeStart, \(len\)).
10. If \(end\) is \(\text{undefined}\), let relativeEnd be \(len\); else let relativeEnd be ToInteger(end).
11. ReturnIfAbrupt(\(relativeEnd\)).
12. If relativeEnd is negative, let final be max((\(len + relativeEnd\)),0); else let final be min(relativeEnd, \(len\)).
13. Let \(n\) be 0.
14. Repeat, while \(k < final\)
 a. Let \(Pk\) be ToString(\(k\)).
 b. Let \(kPresent\) be the result of calling the \([\text{HasProperty}]\) internal method of \(O\) with argument \(Pk\).
 c. If \(kPresent\) is \(\text{true}\), then
 i. Let \(kValue\) be the result of calling the \([\text{Get}]\) internal method of \(O\) with argument \(Pk\).
 ii. ReturnIfAbrupt(\(kValue\)).
 iii. Call the \([\text{DefineOwnProperty}]\) internal method of \(A\) with arguments ToString(\(n\)), Property Descriptor [{\([\text{Value}]\): \(kValue\), \([\text{Writable}]\): \(\text{true}\), \([\text{Enumerable}]\): \(\text{true}\), \([\text{Configurable}]\): \(\text{true}\)}, and \(\text{false}\).
 d. Increase \(k\) by 1.
 e. Increase \(n\) by 1.
15. Let putStatus be the result of calling the \([\text{Put}]\) internal method of \(A\) with arguments "\(\text{length}\)", \(final\), and \(\text{true}\).
16. ReturnIfAbrupt(\(putStatus\)).
17. Return \(A\).

The \(\text{length}\) property of the \(\text{slice}\) method is \(2\).

NOTE 1 The explicit setting of the \(\text{length}\) property of the result \(\text{Array}\) in step 15 is necessary to ensure that its value is correct in situations where the trailing elements of the result \(\text{Array}\) are not present.

NOTE 2 The \(\text{slice}\) function is intentionally generic; it does not require that its \(\text{this}\) value be an \(\text{Array}\) object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the \(\text{slice}\) function can be applied successfully to an exotic object that is not an \(\text{Array}\) is implementation-dependent.

15.4.4.11 \(\text{Array.prototype.sort (comparefn)}\)

The elements of this array are sorted. The sort is not necessarily stable (that is, elements that compare equal do not necessarily remain in their original order). If comparefn is not \(\text{undefined}\), it should be a function that accepts two arguments \(x\) and \(y\) and returns a negative value if \(x < y\), zero if \(x = y\), or a positive value if \(x > y\).

Let \(obj\) be the result of calling ToObject passing the \(\text{this}\) value as the argument.

Let \(len\) be the result of applying Uint32 to the result of calling the \([\text{Get}]\) internal method of \(obj\) with argument "\(\text{length}\)".

If comparefn is not \(\text{undefined}\) and is not a consistent comparison function for the elements of this array (see below), the behaviour of \(\text{sort}\) is implementation-defined.

Let \(proto\) be the value of the \([\text{Prototype}]\) internal property of \(obj\). If \(proto\) is not \(\text{null}\) and there exists an integer \(j\) such that all of the conditions below are satisfied then the behaviour of \(\text{sort}\) is implementation-defined:

- \(obj\) is sparse (15.4)
- \(0 \leq j < len\)
- The result of calling the \([\text{HasProperty}]\) internal method of \(proto\) with argument ToString(\(j\)) is \(\text{true}\).
The behaviour of \texttt{sort} is also implementation defined if \texttt{obj} is sparse and any of the following conditions are true:

- The \texttt{[[Extensible]]} internal property of \texttt{obj} is \texttt{false}.
- Any array index property of \texttt{obj} whose name is a nonnegative integer less than \texttt{len} is a data property whose \texttt{[[Configurable]]} attribute is \texttt{false}.

The behaviour of \texttt{sort} is also implementation defined if any array index property of \texttt{obj} whose name is a nonnegative integer less than \texttt{len} is an accessor property or is a data property whose \texttt{[[Writable]]} attribute is \texttt{false}.

Otherwise, the following steps are taken.

1. Perform an implementation-dependent sequence of calls to the \texttt{[[Get]]}, \texttt{[[Put]]}, and \texttt{[[Delete]]} internal methods of \texttt{obj} and to \texttt{SortCompare} (described below), where the first argument for each call to \texttt{[[Get]]}, \texttt{[[Put]]}, or \texttt{[[Delete]]} is a nonnegative integer less than \texttt{len} and where the arguments for calls to \texttt{SortCompare} are results of previous calls to the \texttt{[[Get]]} internal method. The throw argument to the \texttt{[[Put]]} and \texttt{[[Delete]]} internal methods will be the value \texttt{true}. If \texttt{obj} is not sparse then \texttt{[[Delete]]} must not be called. If an abrupt completion is returned from any of these operations, it is immediately returned as the value of this function.

2. Return \texttt{obj}.

The returned object must have the following two properties:

- There must be some mathematical permutation \(\pi \) of the nonnegative integers less than \texttt{len}, such that for every nonnegative integer \(j \) less than \texttt{len}, if property \texttt{old[j]} existed, then \texttt{new[\pi(j)]} is exactly the same value as \texttt{old[j]}, but if property \texttt{old[j]} did not exist, then \texttt{new[\pi(j)]} does not exist.

- Then for all nonnegative integers \(j \) and \(k \), each less than \texttt{len}, if \texttt{SortCompare(j,k)<0} (see \texttt{SortCompare} below), then \(\pi(j) < \pi(k) \).

Here the notation \texttt{old[j]} is used to refer to the hypothetical result of calling the \texttt{[[Get]]} internal method of \texttt{obj} with argument \texttt{j} before this function is executed, and the notation \texttt{new[j]} to refer to the hypothetical result of calling the \texttt{[[Get]]} internal method of \texttt{obj} with argument \texttt{j} after this function has been executed.

A function \texttt{comparefn} is a consistent comparison function for a set of values \(S \) if all of the requirements below are met for all values \(a \), \(b \), and \(c \) (possibly the same value) in the set \(S \): The notation \(a \prec_{CF} b \) means \texttt{comparefn(a,b)<0}; \(a =_{CF} b \) means \texttt{comparefn(a,b)=0} (of either sign); and \(a >_{CF} b \) means \texttt{comparefn(a,b)>0}.

- Calling \texttt{comparefn(a,b)} always returns the same value \(v \) when given a specific pair of values \(a \) and \(b \) as its two arguments. Furthermore, \texttt{Type(v)} is \texttt{Number}, and \(v \) is not \texttt{NaN}. Note that this implies that exactly one of \(a \prec_{CF} b \), \(a =_{CF} b \), and \(a >_{CF} b \) will be true for a given pair of \(a \) and \(b \).
- Calling \texttt{comparefn(a,b)} does not modify the \texttt{this} object.
- \(a =_{CF} a \) (reflexivity)
- If \(a =_{CF} b \), then \(b =_{CF} a \) (symmetry)
- If \(a <_{CF} b \) and \(b =_{CF} c \), then \(a =_{CF} c \) (transitivity of \(=_{CF} \))
- If \(a <_{CF} b \) and \(b <_{CF} c \), then \(a <_{CF} c \) (transitivity of \(<_{CF} \))
- If \(a >_{CF} b \) and \(b >_{CF} c \), then \(a >_{CF} c \) (transitivity of \(>_{CF} \))

NOTE The above conditions are necessary and sufficient to ensure that \texttt{comparefn} divides the set \(S \) into equivalence classes and that these equivalence classes are totally ordered.

When the \texttt{SortCompare} abstract operation is called with two arguments \texttt{j} and \texttt{k}, the following steps are taken:

1. Let \texttt{jString} be \texttt{ToString(j)}.
2. Let \texttt{kString} be \texttt{ToString(k)}.
3. Let \texttt{hasj} be the result of calling the \texttt{[[HasProperty]]} internal method of \texttt{obj} with argument \texttt{jString}.
4. Let \texttt{hash} be the result of calling the \texttt{[[HasProperty]]} internal method of \texttt{obj} with argument \texttt{kString}.
5. If \texttt{hasj} and \texttt{hash} are both \texttt{false}, then return \texttt{+0}.
6. If \texttt{hasj} is \texttt{false}, then return 1.
7. If \texttt{hash} is \texttt{false}, then return \texttt{–1}.
8. Let \(x \) be the result of calling the \([\text{Get}]\) internal method of \(\text{obj} \) with argument \(\text{jString} \).
9. ReturnIfAbrupt(\(x \)).
10. Let \(y \) be the result of calling the \([\text{Get}]\) internal method of \(\text{obj} \) with argument \(\text{kString} \).
11. ReturnIfAbrupt(\(y \)).
12. If \(x \) and \(y \) are both \text{undefined}, return +0.
13. If \(x \) is \text{undefined}, return 1.
14. If \(y \) is \text{undefined}, return −1.
15. If the argument \(\text{comparefn} \) is not \text{undefined}, then
 a. If IsCallable(\(\text{comparefn} \)) is \text{false}, throw a \text{TypeError} exception.
 b. Return the result of calling the \([\text{Call}]\) internal method of \(\text{comparefn} \) passing \text{undefined} as the \(\text{this} \) value and with arguments \(x \) and \(y \).
16. Let \(\text{xString} \) be ToString(\(x \)).
17. ReturnIfAbrupt(\(\text{xString} \)).
18. Let \(\text{yString} \) be ToString(\(y \)).
19. ReturnIfAbrupt(\(\text{yString} \)).
20. If \(\text{xString} \) < \(\text{yString} \), return −1.
21. If \(\text{xString} \) > \(\text{yString} \), return 1.
22. Return +0.

\text{NOTE 1} Because non-existent property values always compare greater than \text{undefined} property values, and \text{undefined} always compares greater than any other value, \text{undefined} property values always sort to the end of the result, followed by non-existent property values.

\text{NOTE 2} The \text{sort} function is intentionally generic; it does not require that its \(\text{this} \) value be an Array object. Therefore, it can be transferred to other kinds of objects for use as a method. Whether the \text{sort} function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.12 \text{Array.prototype.splice (start, deleteCount [, item1 [, item2 [, ...]]])}

When the \text{splice} method is called with two or more arguments \(\text{start}, \text{deleteCount} \) and (optionally) \(\text{item1}, \text{item2}, \) etc., the \text{deleteCount} elements of the array starting at array index \(\text{start} \) are replaced by the arguments \(\text{item1}, \text{item2}, \) etc. An Array object containing the deleted elements (if any) is returned. The following steps are taken:

1. Let \(O \) be the result of calling ToObject passing the \(\text{this} \) value as the argument.
2. ReturnIfAbrupt(\(O \)).
3. Let \(A \) be the result of the abstract operation ArrayCreate (15.4) with argument 0.
4. Let \(\text{lenVal} \) be the result of calling the \([\text{Get}]\) internal method of \(O \) with argument "length".
5. Let \(\text{len} \) be ToUint32(\(\text{lenVal} \)).
6. ReturnIfAbrupt(\(\text{len} \)).
7. Let \(\text{relativeStart} \) be ToInteger(\(\text{start} \)).
8. ReturnIfAbrupt(\(\text{relativeStart} \)).
9. If \(\text{relativeStart} \) is negative, let \(\text{actualStart} \) be \(\max(\text{len} + \text{relativeStart}, 0) \); else let \(\text{actualStart} \) be \(\min(\text{relativeStart}, \text{len}) \).
10. Let \(\text{actualDeleteCount} \) be \(\min(\text{max}(\text{ToInteger}(\text{deleteCount}, 0), \text{len} – \text{actualStart}) \).
11. Let \(k \) be 0.
12. Repeat, while \(k < \text{actualDeleteCount} \)
 a. Let \(\text{from} \) be ToString(\(\text{actualStart}+k \)).
 b. Let \(\text{fromPresent} \) be the result of calling the \([\text{HasProperty}]\) internal method of \(O \) with argument \(\text{from} \).
 c. If \(\text{fromPresent} \) is \text{true}, then
 i. Let \(\text{fromValue} \) be the result of calling the \([\text{Get}]\) internal method of \(O \) with argument \(\text{from} \).
 ii. ReturnIfAbrupt(\(\text{fromValue} \)).
 iii. Call the \([\text{DefineOwnProperty}]\) internal method of \(A \) with arguments ToString(\(k \)), Property Descriptor \([\{\text{Value}\}: \text{fromValue}, \text{[[Writable]]}: \text{true}, \text{[[Enumerable]]}: \text{true}, \text{[[Configurable]]}: \text{true}]\), and \text{false}.
 d. Increment \(k \) by 1.
13. Let \(\text{putStatus} \) be the result of calling the \([\text{Put}]\) internal method of \(A \) with arguments "length", \(\text{actualDeleteCount} \), and \text{true}.
14. ReturnIfAbrupt(\(\text{putStatus} \)).
Let \(\textit{items} \) be an internal List whose elements are, in left to right order, the portion of the actual argument list starting with \(\textit{item1} \). The list will be empty if no such items are present.

Let \(\textit{itemCount} \) be the number of elements in \(\textit{items} \).

17. If \(\textit{itemCount} < \textit{actualDeleteCount} \), then
 a. Let \(k \) be \(\textit{actualStart} \).
 b. Repeat, while \(k < (\text{len} – \textit{actualDeleteCount}) \)
 i. Let \(\textit{from} \) be \(\text{ToString}(k+\textit{actualDeleteCount}) \).
 ii. Let \(\textit{to} \) be \(\text{ToString}(k+\textit{itemCount}) \).
 iii. Let \(\textit{fromPresent} \) be the result of calling the [[HasProperty]] internal method of \(O \) with argument \(\textit{from} \).
 iv. If \(\textit{fromPresent} \) is true, then
 1. Let \(\textit{fromValue} \) be the result of calling the [[Get]] internal method of \(O \) with argument \(\textit{from} \).
 2. ReturnIfAbrupt(\(\textit{fromValue} \)).
 3. Let \(\textit{putStatus} \) be the result of calling the [[Put]] internal method of \(O \) with arguments \(\textit{to}, \textit{fromValue}, \) and \(\textbf{true} \).
 4. ReturnIfAbrupt(\(\textit{putStatus} \)).
 v. Else, \(\textit{fromPresent} \) is false
 1. Let \(\textit{deleteStatus} \) be the result of calling the [[Delete]] internal method of \(O \) with arguments \(\textit{to}, \textbf{true} \).
 2. ReturnIfAbrupt(\(\textit{deleteStatus} \)).
 vi. Increase \(k \) by 1.
 c. Let \(k \) be \(\text{len} \).
 d. Repeat, while \(k > (\text{len} – \textit{actualDeleteCount} + \textit{itemCount}) \)
 i. Let \(\textit{deleteStatus} \) be the result of calling the [[Delete]] internal method of \(O \) with arguments \(\text{ToString}(k-1), \textbf{true} \).
 ii. ReturnIfAbrupt(\(\textit{deleteStatus} \)).
 iii. Decrease \(k \) by 1.
18. Else if \(\textit{itemCount} > \textit{actualDeleteCount} \), then
 a. Let \(k \) be \((\text{len} – \textit{actualDeleteCount}) \).
 b. Repeat, while \(k > \textit{actualStart} \)
 i. Let \(\textit{from} \) be \(\text{ToString}(k+\textit{actualDeleteCount} – 1) \).
 ii. Let \(\textit{to} \) be \(\text{ToString}(k+\textit{itemCount} – 1) \).
 iii. Let \(\textit{fromPresent} \) be the result of calling the [[HasProperty]] internal method of \(O \) with argument \(\textit{from} \).
 iv. If \(\textit{fromPresent} \) is true, then
 1. Let \(\textit{fromValue} \) be the result of calling the [[Get]] internal method of \(O \) with argument \(\textit{from} \).
 2. ReturnIfAbrupt(\(\textit{fromValue} \)).
 3. Let \(\textit{putStatus} \) be the result of calling the [[Put]] internal method of \(O \) with arguments \(\textit{to}, \textit{fromValue}, \) and \(\textbf{true} \).
 4. ReturnIfAbrupt(\(\textit{putStatus} \)).
 v. Else, \(\textit{fromPresent} \) is false
 1. Let \(\textit{deleteStatus} \) be the result of calling the [[Delete]] internal method of \(O \) with argument \(\textit{to}, \textbf{true} \).
 2. ReturnIfAbrupt(\(\textit{deleteStatus} \)).
 vi. Decrease \(k \) by 1.
19. Let \(k \) be \(\textit{actualStart} \).
20. Repeat, while \(\textit{items} \) is not empty
 a. Remove the first element from \(\textit{items} \) and let \(E \) be the value of that element.
 b. Let \(\textit{putStatus} \) be the result of calling the [[Put]] internal method of \(O \) with arguments \(\text{ToString}(k), E, \) and \(\textbf{true} \).
 c. ReturnIfAbrupt(\(\textit{putStatus} \)).
 d. Increase \(k \) by 1.
21. Let \(\textit{putStatus} \) be the result of calling the [[Put]] internal method of \(O \) with arguments \"length\", \((\text{len} – \textit{actualDeleteCount} + \textit{itemCount}) \), and \(\textbf{true} \).
22. ReturnIfAbrupt(\(\textit{putStatus} \)).
23. Return \(A \).

The \textbf{length} property of the \textit{splice} method is \(2 \).
NOTE 1 The explicit setting of the length property of the result Array in step 13 is necessary to ensure that its value is correct in situations where its trailing elements are not present.

NOTE 2 The splice function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the splice function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.13 Array.prototype.unshift ([item1 [, item2 [, ...]]])

The arguments are prepended to the start of the array, such that their order within the array is the same as the order in which they appear in the argument list.

When the unshift method is called with zero or more arguments item1, item2, etc., the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnIfAbrupt(O).
3. Let lenVal be the result of calling the [[Get]] internal method of O with argument "length".
4. Let len be ToUint32(lenVal).
5. ReturnIfAbrupt(len).
6. Let argCount be the number of actual arguments.
7. Let k be len.
8. Repeat, while k > 0,
 a. Let from be ToString(k–1).
 b. Let to be ToString(k+argCount – 1).
 c. Let fromPresent be the result of calling the [[HasProperty]] internal method of O with argument from.
 d. If fromPresent is true, then
 i. Let fromValue be the result of calling the [[Get]] internal method of O with argument from.
 ii. ReturnIfAbrupt(fromValue).
 iii. Let putStatus be the result of calling the [[Put]] internal method of O with arguments to, fromValue, and true.
 iv. ReturnIfAbrupt(putStatus).
 e. Else, fromPresent is false
 i. Let deleteStatus be the result of calling the [[Delete]] internal method of O with arguments to, and true.
 ii. ReturnIfAbrupt(deleteStatus).
 f. Decrease k by 1.
9. Let j be 0.
10. Let items be an internal List whose elements are, in left to right order, the arguments that were passed to this function invocation.
11. Repeat, while items is not empty
 a. Remove the first element from items and let E be the value of that element.
 b. Let putStatus be the result of calling the [[Put]] internal method of O with arguments ToString(j), E, and true.
 c. ReturnIfAbrupt(putStatus).
 d. Increase j by 1.
12. Let putStatus be the result of calling the [[Put]] internal method of O with arguments "length", len+argCount, and true.
13. ReturnIfAbrupt(putStatus).

The length property of the unshift method is 1.

NOTE The unshift function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the unshift function can be applied successfully to an exotic object that is not an Array is implementation-dependent.
15.4.4.14 Array.prototype.indexOf (searchElement [, fromIndex])

indexOf compares searchElement to the elements of the array, in ascending order, using the internal Strict Equality Comparison Algorithm (11.9.1), and if found at one or more positions, returns the index of the first such position; otherwise, -1 is returned.

The optional second argument fromIndex defaults to 0 (i.e. the whole array is searched). If it is greater than or equal to the length of the array, -1 is returned, i.e. the array will not be searched. If it is negative, it is used as the offset from the end of the array to compute fromIndex. If the computed index is less than 0, the whole array will be searched.

When the indexOf method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnIfAbrupt(O).
3. Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
4. Let len be ToUint32(lenValue).
5. ReturnIfAbrupt(len).
6. If len is 0, return -1.
7. If argument fromIndex was passed let n be ToInteger(fromIndex); else let n be 0.
8. ReturnIfAbrupt(n).
9. If n ≥ len, return -1.
10. If n ≥ 0, then
 a. Let k be n.
11. Else, n<0
 a. Let k be len - abs(n).
 b. If k < 0, then let k be 0.
12. Repeat, while k<len
 a. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument ToString(k).
 b. If kPresent is true, then
 i. Let elementK be the result of calling the [[Get]] internal method of O with the argument ToString(k).
 ii. ReturnIfAbrupt(elementK).
 iii. Let same be the result of applying the Strict Equality Comparison Algorithm to searchElement and elementK.
 iv. If same is true, return k.
 c. Increase k by 1.

The length property of the indexOf method is 1.

NOTE The indexOf function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the indexOf function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.15 Array.prototype.lastIndexOf (searchElement [, fromIndex])

lastIndexOf compares searchElement to the elements of the array in descending order using the internal Strict Equality Comparison Algorithm (11.9.1), and if found at one or more positions, returns the index of the last such position; otherwise, -1 is returned.

The optional second argument fromIndex defaults to the array's length minus one (i.e. the whole array is searched). If it is greater than or equal to the length of the array, the whole array will be searched. If it is negative, it is used as the offset from the end of the array to compute fromIndex. If the computed index is less than 0, the whole array will be searched.

When the lastIndexOf method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnIfAbrupt(O).
3. Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
4. Let len be ToUint32(lenValue).
5. ReturnIfAbrupt(len).
6. If len is 0, return -1.
7. If argument fromIndex was passed let n be ToInteger(fromIndex); else let n be len-1.
8. ReturnIfAbrupt(n).
9. If $n \geq 0$, then let k be min(n, len – 1).
10. Else, $n < 0$
 a. Let k be len - abs(n).
11. Repeat, while $k \geq 0$
 a. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument ToString(k).
 b. If kPresent is true, then
 i. Let elementK be the result of calling the [[Get]] internal method of O with the argument ToString(k).
 ii. ReturnIfAbrupt(elementK).
 iii. Let same be the result of applying the Strict Equality Comparison Algorithm to searchElement and elementK.
 iv. If same is true, return k.
 c. Decrease k by 1.
12. Return -1.

The length property of the lastIndexOf method is 1.

NOTE The lastIndexOf function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the lastIndexOf function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.16 Array.prototype.every (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns a value that is coercible to the Boolean value true or false. every calls callbackfn once for each element present in the array, in ascending order, until it finds one where callbackfn returns false. If such an element is found, every immediately returns false. Otherwise, if callbackfn returned true for all elements, every will return true. callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

every does not directly mutate the object on which it is called but the object may be mutated by the calls to callbackfn.

The range of elements processed by every is set before the first call to callbackfn. Elements which are appended to the array after the call to every begins will not be visited by callbackfn. If existing elements of the array are changed, their value as passed to callbackfn will be the value at the time every visits them; elements that are deleted after the call to every begins and before being visited are not visited. every acts like the "for all" quantifier in mathematics. In particular, for an empty array, it returns true.

When the every method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnIfAbrupt(O).
3. Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
4. Let len be ToUint32(lenValue).
5. ReturnIfAbrupt(len).
6. If IsCallable(callbackfn) is false, throw a TypeError exception.
7. If thisArg was supplied, let T be thisArg; else let T be undefined.
8. Let k be 0.
9. Repeat, while k < len
 a. Let Pk be ToString(k).
 b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
 c. If kPresent is true, then
 i. Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
 ii. ReturnIfAbrupt(kValue).
 iii. Let testResult be the result of calling the [[Call]] internal method of callbackfn with T as the this value and argument list containing kValue, k, and O.
 iv. ReturnIfAbrupt(testResult).
 v. If ToBoolean(testResult) is false, return false.
 d. Increase k by 1.
10. Return true.

The length property of the every method is 1.

NOTE The every function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the every function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.17 Array.prototype.some (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns a value that is coercible to the Boolean value true or false. some calls callbackfn once for each element present in the array, in ascending order, until it finds one where callbackfn returns true. If such an element is found, some immediately returns true. Otherwise, some returns false. callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

some does not directly mutate the object on which it is called but the object may be mutated by the calls to callbackfn.

The range of elements processed by some is set before the first call to callbackfn. Elements that are appended to the array after the call to some begins will not be visited by callbackfn. If existing elements of the array are changed, their value as passed to callbackfn will be the value at the time that some visits them; elements that are deleted after the call to some begins and before being visited are not visited. some acts like the "exists" quantifier in mathematics. In particular, for an empty array, it returns false.

When the some method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnIfAbrupt(O).
3. Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
4. Let len be ToUint32(lenValue).
5. ReturnIfAbrupt(len).
6. If IsCallable(callbackfn) is false, throw a TypeError exception.
7. If thisArg was supplied, let T be thisArg; else let T be undefined.
8. Let k be 0.
9. Repeat, while k < len
 a. Let Pk be ToString(k).
 b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
 c. If kPresent is true, then
 i. Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
 ii. ReturnIfAbrupt(kValue).
iii. Let testResult be the result of calling the [[Call]] internal method of callbackfn with T as the this value and argument list containing kValue, k, and O.

iv. ReturnIfAbrupt(testResult).

v. If ToBoolean(testResult) is true, return true.

d. Increase k by 1.

10. Return false.

The length property of the some method is 1.

NOTE The some function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the some function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.18 Array.prototype.forEach (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments. forEach calls callbackfn once for each element present in the array, in ascending order. callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not provided, undefined is used instead.

forEach is called with three arguments: the value of the element, the index of the element, and the object being traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls to callbackfn.

The range of elements processed by forEach is set before the first call to callbackfn. Elements which are appended to the array after the call to forEach begins will not be visited by callbackfn. If existing elements of the array are changed, their value as passed to callback will be the value at the time forEach visits them; elements that are deleted after the call to forEach begins and before being visited are not visited.

When the forEach method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnIfAbrupt(O).
3. Let lenValue be the result of calling the [[Get]] internal method of O with the argument "length".
4. Let len be ToUint32(lenValue).
5. ReturnIfAbrupt(len).
6. If IsCallable(callbackfn) is false, throw a TypeError exception.
7. If thisArg was supplied, let T be thisArg; else let T be undefined.
8. Let k be 0.
9. Repeat, while k < len
 a. Let Pk be ToString(k).
 b. Let kPresent be the result of calling the [[HasProperty]] internal method of O with argument Pk.
 c. If kPresent is true, then
 i. Let kValue be the result of calling the [[Get]] internal method of O with argument Pk.
 ii. ReturnIfAbrupt(kValue).
 iii. Let funcResult be the result of calling [[Call]] internal method of callbackfn with T as the this value and argument list containing kValue, k, and O.
 iv. ReturnIfAbrupt(funcResult).
 d. Increase k by 1.
10. Return undefined.

The length property of the forEach method is 1.

NOTE The forEach function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the forEach function can be applied successfully to an exotic object that is not an Array is implementation-dependent.
15.4.4.19 Array.prototype.map (callbackfn [, thisArg])

`callbackfn` should be a function that accepts three arguments. `map` calls `callbackfn` once for each element in the array, in ascending order, and constructs a new Array from the results. `callbackfn` is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If a `thisArg` parameter is provided, it will be used as the `this` value for each invocation of `callbackfn`. If it is not provided, `undefined` is used instead.

`callbackfn` is called with three arguments: the value of the element, the index of the element, and the object being traversed.

`map` does not directly mutate the object on which it is called but the object may be mutated by the calls to `callbackfn`.

The range of elements processed by `map` is set before the first call to `callbackfn`. Elements which are appended to the array after the call to `map` begins will not be visited by `callbackfn`. If existing elements of the array are changed, their value as passed to `callbackfn` will be the value at the time `map` visits them; elements that are deleted after the call to `map` begins and before being visited are not visited.

When the `map` method is called with one or two arguments, the following steps are taken:

1. Let `O` be the result of calling ToObject passing the `this` value as the argument.
2. ReturnIfAbrupt(O).
3. Let `lenValue` be the result of calling the `[[Get]]` internal method of `O` with the argument "length".
4. Let `len` be ToUint32(lenValue).
5. ReturnIfAbrupt(len).
6. If IsCallable(callbackfn) is `false`, throw a TypeError exception.
7. If `thisArg` was supplied, let `T` be `thisArg`; else let `T` be `undefined`.
8. Let `A` be the result of the abstract operation ArrayCreate (15.4) with argument `len`.
9. Let `k` be 0.
10. Repeat, while `k < len`
 a. Let `Pk` be ToString(`k`).
 b. Let `kPresent` be the result of calling the `[[HasProperty]]` internal method of `O` with argument `Pk`.
 c. If `kPresent` is `true`, then
 i. Let `kValue` be the result of calling the `[[Get]]` internal method of `O` with argument `Pk`.
 ii. ReturnIfAbrupt(kValue).
 iii. Let `mappedValue` be the result of calling the `[[Call]]` internal method of `callbackfn` with `T` as
 the `this` value and argument List containing `kValue`, `k`, and `O`.
 iv. ReturnIfAbrupt(mappedValue).
 v. Let `defineStatus` be the result of calling the `[[DefineOwnProperty]]` internal method of `A`
 with arguments `Pk`, Property Descriptor `{{[[Value]]]: mappedValue, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.`
 vi. ReturnIfAbrupt(defineStatus).
 d. Increase `k` by 1.
11. Return `A`.

The `length` property of the `map` method is 1.

NOTE The `map` function is intentionally generic; it does not require that its `this` value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the `map` function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.20 Array.prototype.filter (callbackfn [, thisArg])

`callbackfn` should be a function that accepts three arguments and returns a value that is coercible to the Boolean value `true` or `false`. `filter` calls `callbackfn` once for each element in the array, in ascending order, and constructs a new array of all the values for which `callbackfn` returns `true`. `callbackfn` is called only for elements of the array which actually exist; it is not called for missing elements of the array.
If a \textit{thisArg} parameter is provided, it will be used as the \textit{this} value for each invocation of \textit{callbackfn}. If it is not provided, \textit{undefined} is used instead.

\textit{callbackfn} is called with three arguments: the value of the element, the index of the element, and the object being traversed.

\textit{filter} does not directly mutate the object on which it is called but the object may be mutated by the calls to \textit{callbackfn}.

The range of elements processed by \textit{filter} is set before the first call to \textit{callbackfn}. Elements which are appended to the array after the call to \textit{filter} begins will not be visited by \textit{callbackfn}. If existing elements of the array are changed their value as passed to \textit{callbackfn} will be the value at the time \textit{filter} visits them; elements that are deleted after the call to \textit{filter} begins and before being visited are not visited.

When the \textit{filter} method is called with one or two arguments, the following steps are taken:

1. Let \(O \) be the result of calling \textit{ToObject} passing the \textit{this} value as the argument.
2. ReturnIfAbrupt(\(O \)).
3. Let \(\text{lenValue} \) be the result of calling the \[\text{[Get]}\] internal method of \(O \) with the argument "\text{length}".
4. Let \(\text{len} \) be \text{ToUint32}(\(\text{lenValue} \)).
5. ReturnIfAbrupt(\(\text{len} \)).
6. If \text{IsCallable}(\textit{callbackfn}) is \textit{false}, throw a \textit{TypeError} exception.
7. If \textit{thisArg} was supplied, let \(T \) be \textit{thisArg}; else let \(T \) be \textit{undefined}.
8. Let \(A \) be the result of the abstract operation ArrayCreate (15.4) with argument 0.
9. Let \(k \) be 0.
10. Let \(to \) be 0.
11. Repeat, while \(k < \text{len} \)
 a. Let \(Pk \) be \text{ ToString}(k).
 b. Let \(k\text{Present} \) be the result of calling the \[\text{[HasProperty]}\] internal method of \(O \) with argument \(Pk \).
 c. If \(k\text{Present} \) is \textit{true}, then
 i. Let \(k\text{Value} \) be the result of calling the \[\text{[Get]}\] internal method of \(O \) with argument \(Pk \).
 ii. If \(k\text{Value} \) is an abrupt completion, return \(k\text{Value} \).
 iii. Let \(\text{selected} \) be the result of calling the \[\text{[Call]}\] internal method of \(\text{callbackfn} \) with \(T \) as the \textit{this} value and argument list containing \(k\text{Value} \), \(k \), and \(O \).
 iv. ReturnIfAbrupt(\(\text{selected} \)).
 v. If \text{ToBoolean}(\(\text{selected} \)) is \textit{true}, then
 1. Let \(\text{defineStatus} \) be the result of calling the \[\text{[DefineOwnProperty]}\] internal method of \(A \) with arguments \(\text{ToString}(to) \), Property Descriptor \([\text{[[Value]}]: k\text{Value}, \text{[[Writable]]}: \textit{true}, \text{[[Enumerable]]}: \textit{true}, \text{[[Configurable]]}: \textit{true}], \text{false} \).
 2. ReturnIfAbrupt(\(\text{defineStatus} \)).
 3. Increase \(to \) by 1.
 d. Increase \(k \) by 1.
12. Return \(A \).

The \textit{length} property of the \textit{filter} method is 1.

NOTE The \textit{filter} function is intentionally generic; it does not require that its \textit{this} value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the \textit{filter} function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.21 \text{Array.prototype.reduce\,(\textit{callbackfn} [\, \textit{initialValue}]\,)}

\textit{callbackfn} should be a function that takes four arguments. \textit{reduce} calls the callback, as a function, once for each element present in the array, in ascending order.

\textit{callbackfn} is called with four arguments: the \textit{previousValue} (or value from the previous call to \textit{callbackfn}), the \textit{currentValue} (value of the current element), the \textit{currentIndex}, and the object being traversed. The first time that callback is called, the \textit{previousValue} and \textit{currentValue} can be one of two values. If an \textit{initialValue} was provided in the call to \textit{reduce}, then \textit{previousValue} will be equal to \textit{initialValue} and \textit{currentValue} will be equal to the first value in the array. If no \textit{initialValue} was provided, then \textit{previousValue} will be equal to the first value
in the array and `currentValue` will be equal to the second. It is a `TypeError` if the array contains no elements and `initialValue` is not provided.

`reduce` does not directly mutate the object on which it is called but the object may be mutated by the calls to `callbackfn`.

The range of elements processed by `reduce` is set before the first call to `callbackfn`. Elements that are appended to the array after the call to `reduce` begins will not be visited by `callbackfn`. If existing elements of the array are changed, their value as passed to `callbackfn` will be the value at the time `reduce` visits them; elements that are deleted after the call to `reduce` begins and before being visited are not visited.

When the `reduce` method is called with one or two arguments, the following steps are taken:

1. Let `O` be the result of calling `ToObject` passing the `this` value as the argument.
2. ReturnIfAbrupt(`O`).
3. Let `lenValue` be the result of calling the `[[Get]]` internal method of `O` with the argument "length".
4. Let `len` be `ToUint32(lenValue)`.
5. ReturnIfAbrupt(`len`).
6. If `IsCallable(callbackfn)` is `false`, throw a `TypeError` exception.
7. If `len` is `0` and `initialValue` is not present, throw a `TypeError` exception.
8. Let `k` be `0`.
9. If `initialValue` is present, then
 a. Set `accumulator` to `initialValue`.
10. Else, `initialValue` is not present
 a. Let `kPresent` be `false`.
 b. Repeat, while `kPresent` is `false` and `k < len`
 i. Let `Pk` be `ToString(k)`.
 ii. Let `kPresent` be the result of calling the `[[HasProperty]]` internal method of `O` with argument `Pk`.
 iii. If `kPresent` is `true`, then
 1. Let `accumulator` be the result of calling the `[[Get]]` internal method of `O` with argument `Pk`.
 2. ReturnIfAbrupt(`accumulator`).
 iv. Increase `k` by `1`.
 c. If `kPresent` is `false`, throw a `TypeError` exception.
11. Repeat, while `k < len`
 a. Let `Pk` be `ToString(k)`.
 b. Let `kPresent` be the result of calling the `[[HasProperty]]` internal method of `O` with argument `Pk`.
 c. If `kPresent` is `true`, then
 i. Let `kValue` be the result of calling the `[[Get]]` internal method of `O` with argument `Pk`.
 ii. ReturnIfAbrupt(`kValue`).
 iii. Let `accumulator` be the result of calling the `[[Call]]` internal method of `callbackfn` with `undefined` as the `this` value and argument list containing `accumulator`, `kValue`, `k`, and `O`.
 iv. ReturnIfAbrupt(`accumulator`).
 d. Increase `k` by `1`.
12. Return `accumulator`.

The `length` property of the `reduce` method is `1`.

NOTE The `reduce` function is intentionally generic; it does not require that its `this` value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the `reduce` function can be applied successfully to an exotic object that is not an Array is implementation-dependent.

15.4.4.22 Array.prototype.reduceRight (callbackfn [, initialValue])

`callbackfn` should be a function that takes four arguments. `reduceRight` calls the callback, as a function, once for each element present in the array, in descending order.

`callbackfn` is called with four arguments: the `previousValue` (or value from the previous call to `callbackfn`), the `currentValue` (value of the current element), the `currentIndex`, and the object being traversed. The first time the
function is called, the `previousValue` and `currentValue` can be one of two values. If an `initialValue` was provided in the call to `reduceRight`, then `previousValue` will be equal to `initialValue` and `currentValue` will be equal to the last value in the array. If no `initialValue` was provided, then `previousValue` will be equal to the last value in the array and `currentValue` will be equal to the second-to-last value. It is a `TypeError` if the array contains no elements and `initialValue` is not provided.

`reduceRight` does not directly mutate the object on which it is called but the object may be mutated by the calls to `callbackfn`.

The range of elements processed by `reduceRight` is set before the first call to `callbackfn`. Elements that are appended to the array after the call to `reduceRight` begins will not be visited by `callbackfn`. If existing elements of the array are changed by `callbackfn`, their value as passed to `callbackfn` will be the value at the time `reduceRight` visits them; elements that are deleted after the call to `reduceRight` begins and before being visited are not visited.

When the `reduceRight` method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing the this value as the argument.
2. ReturnIfAbrupt(O).
3. Let lenValue be the result of calling the `[[Get]]` internal method of O with the argument "length".
4. Let len be ToUint32(lenValue).
5. ReturnIfAbrupt(len).
6. If IsCallable(callbackfn) is `false`, throw a `TypeError` exception.
7. If len is 0 and `initialValue` is not present, throw a `TypeError` exception.
8. Let k be len-1.
9. If `initialValue` is present, then
 a. Set accumulator to `initialValue`.
10. Else, `initialValue` is not present
 a. Let kPresent be `false`.
 b. Repeat, while kPresent is `false` and k ≥ 0
 i. Let Pk be ToString(k).
 ii. Let kPresent be the result of calling the `[[HasProperty]]` internal method of O with argument Pk.
 iii. If kPresent is `true`, then
 i. Let accumulator be the result of calling the `[[Get]]` internal method of O with argument Pk.
 ii. ReturnIfAbrupt(accumulator).
 iii. Decrease k by 1.
 c. If kPresent is `false`, throw a `TypeError` exception.
11. Repeat, while k ≥ 0
 a. Let Pk be ToString(k).
 b. Let kPresent be the result of calling the `[[HasProperty]]` internal method of O with argument Pk.
 c. If kPresent is `true`, then
 i. Let kValue be the result of calling the `[[Get]]` internal method of O with argument Pk.
 ii. ReturnIfAbrupt(kValue).
 iii. Let accumulator be the result of calling the `[[Call]]` internal method of callbackfn with `undefined` as the this value and argument list containing accumulator, kValue, k, and O.
 iv. ReturnIfAbrupt(accumulator).
 d. Decrease k by 1.
12. Return accumulator.

The `length` property of the `reduceRight` method is 1.

NOTE The `reduceRight` function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the `reduceRight` function can be applied successfully to an exotic object that is not an Array is implementation-dependent.
15.4.5 Properties of Array Instances

Array instances inherit properties from the Array prototype object and have the [[NativeBrand]] internal property with value NativeArray. Array instances also have the following properties.

15.4.5.1 [[DefineOwnProperty]] (P, Desc, Throw)

Array objects use a variation of the [[DefineOwnProperty]] internal method used for other native ECMAScript objects (8.12.9).

Assume A is an Array object, Desc is a Property Descriptor, and Throw is a Boolean flag.

In the following algorithm, the term "Reject" means "If Throw is true, then throw a TypeError exception, otherwise return false."

When the [[DefineOwnProperty]] internal method of A is called with property P, Property Descriptor Desc, and Boolean flag Throw, the following steps are taken:

1. Let oldLenDesc be the result of calling the [[GetProperty]] internal method of A passing "length" as the argument. The result will never be undefined or an accessor descriptor because Array objects are created with a length data property that cannot be deleted or reconfigured.
2. Let oldLen be oldLenDesc.[[Value]].
3. If P is "length", then
 a. If the [[Value]] field of Desc is absent, then
 i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", Desc, and Throw as arguments.
 b. Let newLenDesc be a copy of Desc.
 c. Let newLen be ToUint32(Desc.[[Value]]).
 d. If newLen is not equal to ToNumber(Desc.[[Value]]), throw a RangeError exception.
 e. Set newLenDesc.[[Value]] to newLen.
 f. If newLen ≥ oldLen, then
 i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
 g. Reject if oldLenDesc.[[Writable]] is false.
 h. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
 i. Else,
 i. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
 ii. Let newWritable be false.
 iii. Set newLenDesc.[[Writable]] to true.
 j. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
 k. If succeeded is false, return false.
 l. While newLen < oldLen repeat,
 i. Set oldLen to oldLen – 1.
 ii. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing ToString(oldLen) and false as arguments.
 iii. If deleteSucceeded is false, then
 1. Set newLenDesc.[[Value]] to oldLen+1.
 2. If newWritable is false, set newLenDesc.[[Writable]] to false.
 3. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and false as arguments.
 4. Reject.
 m. If newWritable is false, then
 i. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", Property Descriptor{[[Writable]]: false}, and false as arguments. This call will always return true.
 n. Return true.
4. Else if P is an array index (15.4), then
a. Let index be ToUint32\(P\).

b. ReturnIfAbrupt(index).

c. Reject if index \(\geq\) oldLen and oldLenDesc.[[Writable]] is false.

d. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing \(P, Desc,\) and false as arguments.

e. Reject if succeeded is false.

f. If \(\text{index} \geq \text{oldLen}\)
 i. Set oldLenDesc.[[Value]] to \(\text{index} + 1\).
 ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", oldLenDesc, and false as arguments. This call will always return true.

g. Return true.

5. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing \(P, Desc,\) and Throw as arguments.

15.4.5.2 length

The length property of this Array object is a data property whose value is always numerically greater than the name of every deletable property whose name is an array index.

The length property initially has the attributes \{ [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false \}.

NOTE Attempting to set the length property of an Array object to a value that is numerically less than or equal to the largest numeric property name of an existing array indexed non-deletable property of the array will result in the length being set to a numeric value that is one greater than that largest numeric property name. See 15.4.5.1.

15.5 String Objects

15.5.1 The String Constructor Called as a Function

When String is called as a function rather than as a constructor, it performs a type conversion.

15.5.1.1 String ([value])

Returns a String value (not a String object) computed by ToString\(value\). If value is not supplied, the empty String "" is returned.

15.5.2 The String Constructor

When String is called as part of a new expression, it is a constructor: it initialises the newly created object.

15.5.2.1 new String ([value])

The [[Prototype]] internal property of the newly constructed object is set to the standard built-in String prototype object that is the initial value of String.prototype (15.5.3.1).

The newly constructed object has the [[NativeBrand]] internal property with value StringWrapper.

The [[Extensible]] internal property of the newly constructed object is set to true.

The [[PrimitiveValue]] internal property of the newly constructed object is set to ToString\(value\), or to the empty String if value is not supplied.

15.5.3 Properties of the String Constructor

The value of the [[Prototype]] internal property of the String constructor is the standard built-in Function prototype object (15.3.4).

Besides the internal properties and the length property (whose value is 1), the String constructor has the following properties:
15.5.3.1 String.prototype

The initial value of String.prototype is the standard built-in String prototype object (15.5.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.5.3.2 String.fromCharCode(...codeUnits)

The String.fromCharCode function may be called with a variable number of arguments which form the rest parameter codeUnits. The following steps are taken:

1. Assert: codeUnits is a well-formed rest parameter object.
2. Let length be the resulting of calling the [[Get]] internal method of codeUnits with argument "length".
3. Let elements be a new List.
4. Let nextIndex be 0.
5. Repeat while nextIndex < length
 a. Let next be the result of calling the [[Get]] internal method of codeUnits with argument ToString(nextIndex).
 b. Let nextCU be ToUint16(next).
 c. ReturnIfAbrupt(nextCU).
 d. Append nextCU to the end of elements.
 e. Let nextIndex be nextIndex + 1.
6. Return the string value whose elements are, in order, the elements in the List elements. If length is 0, the empty string is returned.

The length property of the fromCharCode function is 1.

15.5.3.3 String.fromCharCodePoint(...codePoints)

The String.fromCharCodePoint function may be called with a variable number of arguments which form the rest parameter codePoints. The following steps are taken:

1. Assert: codeUnits is a well-formed rest parameter object.
2. Let length be the resulting of calling the [[Get]] internal method of codeUnits with argument "length".
3. Let elements be a new List.
4. Let nextIndex be 0.
5. Repeat while nextIndex < length
 a. Let next be the result of calling the [[Get]] internal method of codeUnits with argument ToString(nextIndex).
 b. Let nextCP be ToNumber(next).
 c. ReturnIfAbrupt(nextCP).
 d. If SaveValue(nextCP, ToInteger(nextCP)) is false, then throw a RangeError exception.
 e. If nextCP < 0 or nextCP > 0x10FFFF, then throw a RangeError exception.
 f. Append the elements of the UTF-16 Encoding of nextCP to the end of elements.
 g. Let nextIndex be nextIndex + 1.
6. Return the string value whose elements are, in order, the elements in the List elements. If length is 0, the empty string is returned.

The length property of the fromCharCode function is 0.

15.5.3.4 String.raw(callSite, ...substitutions)

The String.raw function may be called with a variable number of arguments. The first argument is callSite and the remainder of the arguments form the rest parameter substitutions. The following steps are taken:

1. Assert: substitutions is a well-formed rest parameter object.
2. Let cooked be ToObject(callSite).
3. ReturnIfAbrupt(cooked).
4. Let rawValue be the resulting of calling the [[Get]] internal method of cooked with argument "raw".
5. Let raw be ToObject(rawValue).
6. ReturnIfAbrupt(raw).
7. Let len be the resulting of calling the [[Get]] internal method of raw with argument "length".
8. Let literalSegments be ToUint(len).
9. ReturnIfAbrupt(literalSegments).
10. If literalSegments = 0, then return the empty string.
11. Let stringElements be a new List.
12. Let nextIndex be 0.
13. Repeat while nextIndex < literalSegments
 a. Let nextKey be ToString(nextIndex).
 b. Let next be the result of calling the [[Get]] internal method of raw with argument nextKey.
 c. Let nextSeg be ToString(next).
 d. ReturnIfAbrupt(nextSeg).
 e. Append in order the code unit elements of nextSeg to the end of elements.
 f. If nextIndex + 1 = literalSegments, then
 i. Return the string value whose elements are, in order, the elements in the List elements. If length is 0, the empty string is returned.
 g. Let next be the result of calling the [[Get]] internal method of substitutions with argument nextKey.
 h. Let nextSub be ToString(next).
 i. ReturnIfAbrupt(nextSub).
 j. Append in order the code unit elements of nextSub to the end of elements.
 k. Let nextIndex be nextIndex + 1.

The length property of the raw function is 1.

NOTE String.raw is intended for use as a tag function of a Tagged Quasi (11.2.6). When called as such the first argument will be a well formed quasi call site object and the rest parameter will contain the substitution values.

15.5.4 Properties of the String Prototype Object

The String prototype object is itself a String object whose value is an empty String. The String prototype object has the [[NativeBrand]] internal property with value StringWrapper.

The value of the [[Prototype]] internal property of the String prototype object is the standard built-in Object prototype object (15.2.4).

15.5.4.1 String.prototype.constructor

The initial value of String.prototype.constructor is the built-in String constructor.

15.5.4.2 String.prototype.toString ()

Returns this String value. (Note that, for a String object, the toString method happens to return the same thing as the valueOf method.)

The toString function is not generic; it throws a TypeError exception if its this value is not a String or a String object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.5.4.3 String.prototype.valueOf ()

Returns this String value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a String or String object. Therefore, it cannot be transferred to other kinds of objects for use as a method.
15.5.4.4 `String.prototype.charAt(pos)`

NOTE

Returns a single element String containing the code unit at element position `pos` in the String value resulting from converting this object to a String. If there is no element at that position, the result is the empty String. The result is a String value, not a String object.

If `pos` is a value of Number type that is an integer, then the result of `x.charAt(pos)` is equal to the result of `x.substring(pos, pos+1)`.

When the `charAt` method is called with one argument `pos`, the following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let `S` be the result of calling `ToString`, giving it the `this` value as its argument.
3. ReturnIfAbrupt(S).
4. Let `position` be `ToInteger(pos)`.
5. ReturnIfAbrupt(position).
6. Let `size` be the number of elements in `S`.
7. If `position < 0` or `position ≥ size`, return the empty String.
8. Return a String of length 1, containing one code unit from `S`, namely the code unit at position `position`, where the first (leftmost) code unit in `S` is considered to be at position 0, the next one at position 1, and so on.

NOTE

The `charAt` function is intentionally generic; it does not require that its `this` value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.5 `String.prototype.charCodeAt(pos)`

NOTE

Returns a Number (a nonnegative integer less than 2^{16}) that is the code unit value of the string element at position `pos` in the String resulting from converting this object to a String. If there is no element at that position, the result is `NaN`.

When the `charCodeAt` method is called with one argument `pos`, the following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let `S` be the result of calling `ToString`, giving it the `this` value as its argument.
3. ReturnIfAbrupt(S).
4. Let `position` be `ToInteger(pos)`.
5. ReturnIfAbrupt(position).
6. Let `size` be the number of elements in `S`.
7. If `position < 0` or `position ≥ size`, return `NaN`.
8. Return a value of Number type, whose value is the code unit value of the element at position `position` in the String `S`, where the first (leftmost) element in `S` is considered to be at position 0, the next one at position 1, and so on.

NOTE

The `charCodeAt` function is intentionally generic; it does not require that its `this` value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.6 `String.prototype.concat(...args)`

When the `concat` method is called with zero or more arguments `string1, string2, etc.,` it returns a String consisting of the string elements of this object (converted to a String) followed by the string elements of each of `string1, string2, etc.,` (where each argument is converted to a String). The result is a String value, not a String object. The following steps are taken:

1. Assert: `strings` is a well-formed rest parameter object.
2. ReturnIfAbrupt(CheckObjectCoercible(this value)).
3. Let `S` be the result of calling `ToString`, giving it the array elements properties of `strings`.
4. ReturnIfAbrupt(S).
5. Let `args` be an internal list that is a copy of the argument list passed to this function.
7. Repeat, while args is not empty
 a. Remove the first element from args and let next be the value of that element.
 b. Let nextString be ToString(next)
 c. ReturnIfAbrupt(nextString).
 d. Let R be the String value consisting of the string elements in the previous value of R followed by the string elements of nextString.
8. Return R.

The **length** property of the **concat** method is 1.

NOTE The **concat** function is intentionally generic; it does not require that its **this** value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.7 **String.prototype.indexOf (searchString, position)**

If searchString appears as a substring of the result of converting this object to a String, at one or more positions that are greater than or equal to position, then the index of the smallest such position is returned; otherwise, -1 is returned. If position is **undefined**, 0 is assumed, so as to search all of the String.

The **indexOf** method takes two arguments, **searchString** and **position**, and performs the following steps:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the **this** value as its argument.
3. ReturnIfAbrupt(S).
4. Let searchStr be ToString(searchString).
5. ReturnIfAbrupt(searchString).
6. Let pos be ToInteger(position). (If position is **undefined**, this step produces the value 0).
7. ReturnIfAbrupt(pos).
8. Let len be the number of elements in S.
9. Let start be min(max(pos, 0), len).
10. Let searchLen be the number of elements in searchStr.
11. Return the smallest possible integer k not smaller than start such that k+searchLen is not greater than len, and for all nonnegative integers j less than searchLen, the code unit at position k+j of S is the same as the code unit at position j of searchStr; but if there is no such integer k, then return the value -1.

The **length** property of the **indexOf** method is 1.

NOTE The **indexOf** function is intentionally generic; it does not require that its **this** value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.8 **String.prototype.lastIndexOf (searchString, position)**

If searchString appears as a substring of the result of converting this object to a String at one or more positions that are smaller than or equal to position, then the index of the greatest such position is returned; otherwise, -1 is returned. If position is **undefined**, the length of the String value is assumed, so as to search all of the String.

The **lastIndexOf** method takes two arguments, **searchString** and **position**, and performs the following steps:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the **this** value as its argument.
3. ReturnIfAbrupt(S).
4. Let searchStr be ToString(searchString).
5. ReturnIfAbrupt(searchString).
6. Let numPos be ToNumber(position). (If position is **undefined**, this step produces the value **NaN**).
7. ReturnIfAbrupt(numPos).
8. If numPos is **NaN**, let pos be +∞; otherwise, let pos be ToInteger(numPos).
9. Let len be the number of elements in S.
10. Let start min(max(pos, 0), len).
11. Let `searchLen` be the number of elements in `searchStr`.
12. Return the largest possible nonnegative integer `k` not larger than `start` such that `k + searchLen` is not greater than `len`, and for all nonnegative integers `j` less than `searchLen`, the code unit at position `k+j` of `S` is the same as the code unit at position `j` of `searchStr`; but if there is no such integer `k`, then return the value `-1`.

The `length` property of the `lastIndexOf` method is `1`.

NOTE The `lastIndexOf` function is intentionally generic; it does not require that its `this` value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.9 `String.prototype.localeCompare (that)`

When the `localeCompare` method is called with one argument `that`, it returns a Number other than NaN that represents the result of a locale-sensitive String comparison of the this value (converted to a String) with `that` (converted to a String). The two Strings are `S` and `That`. The two Strings are compared in an implementation-defined fashion. The result is intended to order String values in the sort order specified by the system default locale, and will be negative, zero, or positive, depending on whether `S` comes before `That` in the sort order, the Strings are equal, or `S` comes after `That` in the sort order, respectively.

Before perform the comparisons the following steps are performed to prepare the Strings:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let `S` be the result of calling `toString`, giving it the `this` value as its argument.
3. ReturnIfAbrupt(S).
4. Let `That` be `toString`(that).
5. ReturnIfAbrupt(That).

The `localeCompare` method, if considered as a function of two arguments `this` and `that`, is a consistent comparison function (as defined in 15.4.4.11) on the set of all Strings.

The actual return values are implementation-defined to permit implementers to encode additional information in the value, but the function is required to define a total ordering on all Strings and to return 0 when comparing Strings that are considered canonically equivalent by the Unicode standard.

If no language-sensitive comparison at all is available from the host environment, this function may perform a bitwise comparison.

NOTE 1 The `localeCompare` method itself is not directly suitable as an argument to `Array.prototype.sort` because the latter requires a function of two arguments.

NOTE 2 This function is intended to rely on whatever language-sensitive comparison functionality is available to the ECMAScript environment from the host environment, and to compare according to the rules of the host environment's current locale. It is strongly recommended that this function treat Strings that are canonically equivalent according to the Unicode standard as identical (in other words, compare the Strings as if they had both been converted to Normalised Form C or D first). It is also recommended that this function not honour Unicode compatibility equivalences or decompositions.

NOTE 3 The second parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this parameter position for anything else.

NOTE 4 The `localeCompare` function is intentionally generic; it does not require that its `this` value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.10 `String.prototype.match (regexp)`

When the `match` method is called with argument `regex`, the following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let `S` be the result of calling `toString`, giving it the `this` value as its argument.
3. ReturnIfAbrupt(S).
4. If Type(\textit{regexp}) is \textit{Object} and \textit{regexp} has a \texttt{[[NativeBrand]]} internal property whose value is \texttt{NativeRegExp}, then let \textit{rx} be \textit{regexp};
5. Else, let \textit{rx} be the result of the abstract operation \texttt{RegExpCreate} (15.10.4.1) with arguments \textit{regexp} and \texttt{undefined}.
6. \texttt{ReturnIfAbrupt(rx)}.
7. Let \textit{global} be the result of calling the \texttt{[[Get]]} internal method of \textit{rx} with argument "\textit{global}".
8. \texttt{ReturnIfAbrupt(global)}.
9. If \textit{global} is not \texttt{true}, then
 a. Return the result of calling the abstract operation \texttt{RegExpExec} (see 15.10.6.2) with arguments \textit{rx} and \textit{S}.
10. Else, \textit{global} is \texttt{true}
 a. Let \textit{putStatus} be the result of calling the \texttt{[[Put]]} internal method of \textit{rx} with arguments "\textit{lastIndex}" and \texttt{0}.
 b. \texttt{ReturnIfAbrupt(putStatus)}.
 c. Let \textit{A} be the result of the abstract operation \texttt{ArrayCreate} (15.4) with argument \texttt{0}.
 d. Let \textit{n} be \texttt{0}.
 e. Let \textit{lastMatch} be \texttt{true}.
 g. Repeat, while \textit{lastMatch} is \texttt{true}
 i. Let \textit{result} be the result of calling the abstract operation \texttt{RegExpExec} (see 15.10.6.2) with arguments \textit{rx} and \textit{S}.
 ii. \texttt{ReturnIfAbrupt(result)}.
 iii. If \textit{result} is \texttt{null}, then set \textit{lastMatch} to \texttt{false}.
 iv. Else, \textit{result} is not \texttt{null}
 1. Let \textit{thisIndex} be the result of calling the \texttt{[[Get]]} internal method of \textit{rx} with argument "\textit{lastIndex}".
 2. \texttt{ReturnIfAbrupt(thisIndex)}.
 3. If \textit{thisIndex} = \textit{previousLastIndex} then
 a. Let \textit{putStatus} be the result of calling the \texttt{[[Put]]} internal method of \textit{rx} with arguments "\textit{lastIndex}" and \textit{thisIndex}+1.
 b. \texttt{ReturnIfAbrupt(putStatus)}.
 c. Set \textit{previousLastIndex} to \textit{thisIndex}+1.
 4. Else, \textit{result} is not \texttt{null}
 i. If \textit{n} = \texttt{0}, then return \texttt{null}.
 i. Return \textit{A}.

\textbf{NOTE} The \textit{match} function is intentionally generic; it does not require that its \textit{this} value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

\textbf{15.5.4.11 String.prototype.replace (searchValue, replaceValue)}

First set \textit{string} according to the following steps:

1. \texttt{ReturnIfAbrupt(CheckObjectCoercible(this value))}.
2. Let \textit{string} be the result of calling \texttt{ToString}, giving it the \textit{this} value as its argument.
3. \texttt{ReturnIfAbrupt(string)}.

If \textit{searchValue} is a regular expression (an object that has a \texttt{[[NativeBrand]]} internal property whose value is \texttt{NativeRegExp}), do the following: If \textit{searchValue}.\texttt{global} is \texttt{false}, then search \textit{string} for the first match of the regular expression \textit{searchValue}. If \textit{searchValue}.\texttt{global} is \texttt{true}, then search \textit{string} for all matches of the regular expression \textit{searchValue}. Do the search in the same manner as in \textbf{String.prototype.match}, including the
update of searchValue.lastIndex. Let m be the number of left capturing parentheses in searchValue (using NcNcaptureParens as specified in 15.10.2.1).

If searchValue is not a regular expression, let searchString be ToString(searchValue) and search string for the first occurrence of searchString. Let m be 0.

If replaceValue is a function, then for each matched substring, call the function with the following m + 3 arguments. Argument 1 is the substring that matched. If searchValue is a regular expression, the next m arguments are all of the captures in the MatchResult (see 15.10.2.1). Argument m + 2 is the offset within string where the match occurred, and argument m + 3 is string. The result is a String value derived from the original input by replacing each matched substring with the corresponding return value of the function call, converted to a String if need be.

Otherwise, let newstring denote the result of converting replaceValue to a String. The result is a String value derived from the original input String by replacing each matched substring with a String derived from newstring by replacing elements in newstring by replacement text as specified in Table 28. These $ replacements are done left-to-right, and, once such a replacement is performed, the new replacement text is not subject to further replacements. For example, "$1,$2.replace(/((\$\{d\})/g, "$$1$1$2$2") returns "$1-$11,$1-$22". A $ in newstring that does not match any of the forms below is left as is.

Table 28 — Replacement Text Symbol Substitutions

<table>
<thead>
<tr>
<th>Code unit</th>
<th>Unicode Characters</th>
<th>Replacement text</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0024, 0x0024</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>0x0024, 0x0026</td>
<td>$a</td>
<td>The matched substring.</td>
</tr>
<tr>
<td>0x0024, 0x0060</td>
<td>$</td>
<td>The portion of string that precedes the matched substring.</td>
</tr>
<tr>
<td>0x0024, 0x0027</td>
<td>$'</td>
<td>The portion of string that follows the matched substring.</td>
</tr>
<tr>
<td>0x0024, N where 0x0030 ≤ N ≤ 0x0039</td>
<td>$n where n is one of 0 1 2 3 4 5 6 7 8 9</td>
<td>The nth capture, where n is a single digit in the range 1 to 9 and $n is not followed by a decimal digit. If n≤m and the nth capture is undefined, use the empty String instead. If n>m, the result is implementation-defined.</td>
</tr>
<tr>
<td>0x0024, N, N where 0x0030 ≤ N ≤ 0x0039</td>
<td>$nn where n is one of 0 1 2 3 4 5 6 7 8 9</td>
<td>The nth capture, where n is a two-digit decimal number in the range 01 to 99. If nn≤m and the nth capture is undefined, use the empty String instead. If nn>m, the result is implementation-defined.</td>
</tr>
</tbody>
</table>

NOTE The replace function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.12 String.prototype.search (regexp)

When the search method is called with argument regexp, the following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let string be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. If Type(regexp) is Object and regexp has a [[NativeBrand]] internal property whose value is NativeRegExp, then let rx be regexp;
5. Else, let rx be the result of the abstract operation RegExpCreate (15.10.4.1) with arguments regexp and undefined.
6. ReturnIfAbrupt(rx).
7. Search the value string from its beginning for an occurrence of the regular expression pattern rx. Let result be a Number indicating the offset within string where the pattern matched, or −1 if there was no match. If an abrupt completion occurs during the search, result is that Completion Record. The lastIndex and global properties of regexp are ignored when performing the search. The lastIndex property of regexp is left unchanged.
8. Return result.
NOTE The search function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.13 String.prototype.slice (start, end)

The slice method takes two arguments, start and end, and returns a substring of the result of converting this object to a String, starting from element position start and running to, but not including, element position end (or through the end of the String if end is undefined). If start is negative, it is treated as sourceLength+start where sourceLength is the length of the String. If end is negative, it is treated as sourceLength+end where sourceLength is the length of the String. The result is a String value, not a String object. The following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. Let len be the number of elements in S.
5. Let intStart be ToInteger(start).
6. If end is undefined, let intEnd be len; else let intEnd be ToInteger(end).
7. If intStart is negative, let from be max(len + intStart,0); else let from be min(intStart, len).
8. If intEnd is negative, let to be max(len + intEnd,0); else let to be min(intEnd, len).
9. Let span be max(to – from,0).
10. Return a String value containing span consecutive elements from S beginning with the element at position from.

The length property of the slice method is 2.

NOTE The slice function is intentionally generic; it does not require that its this value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.14 String.prototype.split (separator, limit)

Returns an Array object into which substrings of the result of converting this object to a String have been stored. The substrings are determined by searching from left to right for occurrences of separator; these occurrences are not part of any substring in the returned array, but serve to divide up the String value. The value of separator may be a String of any length or it may be a RegExp object (i.e., an object with a [[NativeBrand]] internal property whose value is NativeRegExp; see 15.10).

The value of separator may be an empty String, an empty regular expression, or a regular expression that can match an empty String. In this case, separator does not match the empty substring at the beginning or end of the input String, nor does it match the empty substring at the end of the previous separator match. (For example, if separator is the empty String, the String is split up into individual code unit elements; the length of the result array equals the length of the String, and each substring contains one code unit.) If separator is a regular expression, only the first match at a given position of the this String is considered, even if backtracking could yield a non-empty-substring match at that position. (For example, "ab".split(/a*/?) evaluates to the array ["a","b"], while "ab".split(/a*/) evaluates to the array["","b"].)

If the this object is (or converts to) the empty String, the result depends on whether separator can match the empty String. If it can, the result array contains no elements. Otherwise, the result array contains one element, which is the empty String.

If separator is a regular expression that contains capturing parentheses, then each time separator is matched the results (including any undefined results) of the capturing parentheses are spliced into the output array. For example,

"A<\B>bold</\B>and<CODE>coded</CODE>".split(/<(\/)?([^<>]+)>/?

evaluates to the array

The length property of the split method is 1.

NOTE The split function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.
If separator is undefined, then the result array contains just one String, which is the this value (converted to a String). If limit is not undefined, then the output array is truncated so that it contains no more than limit elements.

When the split method is called, the following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. Let A be the result of the abstract operation ArrayCreate with argument 0.
5. Let lengthA be 0.
6. If limit is undefined, let lim = 2^{32}–1; else let lim = ToUint32(limit).
7. Let s be the number of elements in S.
8. Let p = 0.
9. If separator has a [[NativeBrand]] internal property whose value is NativeRegExp, let R be separator; otherwise let R be ToString(separator).
10. ReturnIfAbrupt(separator).
11. If lim = 0, return A.
12. If separator is undefined, then
 a. Call the [[DefineOwnProperty]] internal method of A with arguments "0", Property Descriptor
 {{[Value]: S, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
 b. Assert: the previous step will never result in an abrupt completion.
 c. Return A.
13. If s = 0, then
 a. Call SplitMatch(S, 0, R) and let z be its MatchResult result.
 b. If z is not failure, return A.
 c. Call the [[DefineOwnProperty]] internal method of A with arguments "0", Property Descriptor
 {{[Value]: S, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
 d. Assert: the previous step will never result in an abrupt completion.
 e. Return A.
15. Repeat, while q ≠ s
 a. Call SplitMatch(S, q, R) and let z be its MatchResult result.
 b. If z is failure, then let q = q+1.
 c. Else, z is not failure
 i. z must be a State. Let e be z’s endIndex and let cap be z’s captures array.
 ii. If e = p, then let q = q+1.
 iii. Else, e ≠ p
 1. Let T be a String value equal to the substring of S consisting of the elements at positions p (inclusive) through q (exclusive).
 2. Call the [[DefineOwnProperty]] internal method of A with arguments
 ToString(lengthA), Property Descriptor {{[Value]: T, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
 3. Assert: the previous step will never result in an abrupt completion.
 4. Increment lengthA by 1.
 5. If lengthA = lim, return A.
 7. Let i = 0.
 8. Repeat, while i is not equal to the number of elements in cap.
 a. Let i = i+1.
 b. Call the [[DefineOwnProperty]] internal method of A with arguments
 ToString(lengthA), Property Descriptor {{[Value]: cap[i], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
 c. Assert: the previous step will never result in an abrupt completion.
 d. Increment lengthA by 1.
 e. If lengthA = lim, return A.
16. Let T be a String value equal to the substring of S consisting of the elements at positions p (inclusive) through s (exclusive).
17. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(lengthA), Property Descriptor
 · [[Value]]: T, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true, and false.
18. Assert: the previous step will never result in an abrupt completion.
19. Return A.

The abstract operation SplitMatch takes three parameters, a String S, an integer q, and a String or RegExp R, and performs the following in order to return a MatchResult (see 15.10.2.1):

1. If R has a [[NativeBrand]] internal property whose value is NativeRegExp, then
 a. Call the [[Match]] internal method of R giving it the arguments S and q, and return the MatchResult result.
2. Type(R) must be String. Let r be the number of elements in R.
3. Let s be the number of elements in S.
4. If q+r > s then return the MatchResult failure.
5. If there exists an integer i between 0 (inclusive) and r (exclusive) such that the code unit at position q+i of S is different from the code unit at position i of R, then return failure.
6. Let cap be an empty array of captures (see 15.10.2.1).
7. Return the State (q+r, cap). (see 15.10.2.1)

The length property of the split method is 2.

NOTE 1 The split method ignores the value of separator. global for separators that are RegExp objects.

NOTE 2 The split function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.15 String.prototype.substring (start, end)

The substring method takes two arguments, start and end, and returns a substring of the result of converting this object to a String, starting from element position start and running to, but not including, element position end of the String (or through the end of the String if end is undefined). The result is a String value, not a String object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the length of the String, it is replaced with the length of the String.

If start is larger than end, they are swapped.

The following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. Let len be the number of elements in S.
5. Let intStart be ToInteger(start).
6. If end is undefined, let intEnd be len; else let intEnd be ToInteger(end).
7. Let finalStart be min(max(intStart, 0), len).
8. Let finalEnd be min(max(intEnd, 0), len).
9. Let from be min(finalStart, finalEnd).
10. Let to be max(finalStart, finalEnd).
11. Return a String whose length is to - from, containing code units from S, namely the code units with indices from through to −1, in ascending order.

The length property of the substring method is 2.

NOTE The substring function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.
15.5.4.16 String.prototype.toLowerCase ()

This function interprets a string value as a sequence of code points, as described in 8.4. The following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. Let cpList be a List containing in order the code points as defined in 8.4 of S, starting at the first element of S.
5. For each code point c in cpList, if the Unicode Character Database provides a language insensitive lower case equivalent of c then replace c in cpList with that equivalent code point(s).
6. Let cuList be a new List.
7. For each code point c in cpList, in order, replace append to cuList the UTF-16 Encoding of c.
8. Let L be a String whose elements are, in order, the elements of cuList.
9. Return L.

The result must be derived according to the case mappings in the Unicode character database (this explicitly includes not only the UnicodeData.txt file, but also the SpecialCasings.txt file that accompanies it).

NOTE 1 The case mapping of some code points may produce multiple code points. In this case the result String may not be the same length as the source String. Because both toUpperCase and toLowerCase have context-sensitive behaviour, the functions are not symmetrical. In other words, s.toUpperCase().toLowerCase() is not necessarily equal to s.toLowerCase().

NOTE 2 The toLowerCase function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.17 String.prototype.toLocaleLowerCase ()

This function interprets a string value as a sequence of code points, as described in 8.4.

This function works exactly the same as toLowerCase except that its result is intended to yield the correct result for the host environment’s current locale, rather than a locale-independent result. There will only be a difference in the few cases (such as Turkish) where the rules for that language conflict with the regular Unicode case mappings.

NOTE 1 The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleLowerCase function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.18 String.prototype.toUpperCase ()

This function interprets a string value as a sequence of code points, as described in 8.4.

This function behaves in exactly the same way as String.prototype.toLowerCase, except that code points are mapped to their uppercase equivalents as specified in the Unicode Character Database.

NOTE The toUpperCase function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.19 String.prototype.toLocaleUpperCase ()

This function interprets a string value as a sequence of code points, as described in 8.4.

This function works exactly the same as toUpperCase except that its result is intended to yield the correct result for the host environment’s current locale, rather than a locale-independent result. There will only be a
difference in the few cases (such as Turkish) where the rules for that language conflict with the regular Unicode case mappings.

NOTE 1 The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleUpperCase function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.20 String.prototype.trim ()

This function interprets a string value as a sequence of code points, as described in 8.4.

The following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. Let T be a String value that is a copy of S with both leading and trailing white space removed. The definition of white space is the union of WhiteSpace and LineTerminator. When determining whether a Unicode character is in Unicode general category “Zs”, code unit sequences are interpreted as UTF-16 encoded code point sequences as specified in 8.4.
5. Return T.

NOTE The trim function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.21 String.prototype.repeat (count)

The following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. Let n be the result of calling ToInteger(count).
5. ReturnIfAbrupt(n).
6. If n ≤ 0, then throw a RangeError exception.
7. Let T be a String value that is made from n copies of S appended together.
8. Return T.

NOTE 1 This method creates a String consisting of the string elements of this object (converted to String) repeated count time.

NOTE 2 The repeat function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.22 String.prototype.startsWith (searchString [, position])

The following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. Let searchStr be ToString(searchString).
5. ReturnIfAbrupt(searchStr).
6. Let pos be ToInteger(position). (If position is undefined, this step produces the value 0).
7. ReturnIfAbrupt(pos).
8. Let len be the number of elements in S.
9. Let start be min(max(pos, 0), len).
10. Let searchLength be the number of elements in searchString.
11. If searchLength + start is greater than len, return false.
12. If the searchLength sequence of elements of S starting at start is the same as the full element sequence of searchString, return true.
13. Otherwise, return false.

The length property of the startsWith method is 1.

NOTE 1 This method returns true if the sequence of elements of searchString converted to a String is the same as the corresponding elements of this object (converted to a String) starting at position. Otherwise returns false.

NOTE 2 The startsWith function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.23 String.prototype.endsWith (searchString [, endPosition])

The following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. Let searchString be ToString(searchString).
5. ReturnIfAbrupt(searchString).
6. Let len be the number of elements in S.
7. If endPosition is undefined, let pos be len, else let pos be ToInteger(endPosition).
8. ReturnIfAbrupt(pos).
9. Let end be min(max(pos, 0), len).
10. Let searchLength be the number of elements in searchString.
11. Let start be end - searchLength.
12. If start is less than 0, return false.
13. If the searchLength sequence of elements of S starting at start is the same as the full element sequence of searchString, return true.
14. Otherwise, return false.

The length property of the endsWith method is 1.

NOTE 1 Returns true if the sequence of elements of searchString converted to a String is the same as the corresponding elements of this object (converted to a String) starting at endPosition - length(this). Otherwise returns false.

NOTE 2 The endsWith function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.24 String.prototype.contains (searchString [, position])

The contains method takes two arguments, searchString and position, and performs the following steps:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. Let searchString be ToString(searchString).
5. ReturnIfAbrupt(searchString).
6. Let pos be ToInteger(position). (If position is undefined, this step produces the value 0).
7. ReturnIfAbrupt(pos).
8. Let len be the number of elements in S.
9. Let start be min(max(pos, 0), len).
10. Let searchLen be the number of characters in searchString.
11. If there exists any integer k not smaller than start such that k + searchLen is not greater than len, and for all nonnegative integers j less than searchLen, the character at position k+j of S is the same as the character at position j of searchString, return true; but if there is no such integer k, return false.
The length property of the contains method is 1.

NOTE 1 If searchString appears as a substring of the result of converting this object to a String, at one or more positions that are greater than or equal to position, then return true; otherwise, returns false. If position is undefined, 0 is assumed, so as to search all of the String.

NOTE 2 The contains function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.5 String.prototype.codePointAt (pos)

NOTE Returns a Number (a nonnegative integer less than 1114112) that is the UTF-16 encode code point value starting at the string element at position pos in the String resulting from converting this object to a String. If there is no element at that position, the result is NaN. If a valid UTF-16 sudsarrogate pair does not begin at pos, the result is the code unit at pos.

When the codePointAt method is called with one argument pos, the following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. Let position be ToInteger(pos).
5. ReturnIfAbrupt(position).
6. Let size be the number of elements in S.
7. If position < 0 or position ≥ size, return NaN.
8. Let first be the code unit value of the element at position position in the String S, where the first (leftmost) element in S is considered to be at position 0, the next one at position 1, and so on.
9. If first < 0xD800 or first > 0xDBFF or position+1 = size, then return first.
10. Let second be the code unit value of the element at position position+1 in the String S.
11. If second < 0xDC00 or first > 0xDFFF, then return first.
12. Return ((first – 0xD800) × 1024) + (second – 0xDC00) + 0x10000.

NOTE The charCodeAt function is intentionally generic; it does not require that its this value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and have a [[NativeBrand]] internal property with value StringWrapper. String instances also have a [[PrimitiveValue]] internal property, a length property, and a set of enumerable properties with array index names.

The [[PrimitiveValue]] internal property is the String value represented by this String object. The array index named properties correspond to the individual elements of the String value. A special [[GetOwnProperty]] internal method is used to specify the number, values, and attributes of the array index named properties.

15.5.5.1 length

The number of elements in the String value represented by this String object.

Once a String object is created, this property is unchanging. It has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.5.5.2 [[GetOwnProperty]] (P)

String objects use a variation of the [[GetOwnProperty]] internal method used for other native ECMAScript objects (8.12.1). This special internal method provides access to named properties corresponding to the individual elements of String objects.

Assume S is a String object and P is a String.
When the [[GetOwnProperty]] internal method of \(S \) is called with property name \(P \), the following steps are taken:

1. Let \(\text{desc} \) be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on \(S \) with argument \(P \).
2. If \(\text{desc} \) is not undefined return \(\text{desc} \).
3. If ToString(abs(ToInteger(\(P \)))) is not the same value as \(P \), return undefined.
4. Let \(\text{str} \) be the String value of the [[PrimitiveValue]] internal property of \(S \).
5. Let \(\text{index} \) be ToInteger(\(P \)).
6. Let \(\text{len} \) be the number of elements in \(\text{str} \).
7. If \(\text{len} \leq \text{index} \), return undefined.
8. Let \(\text{resultStr} \) be a String of length 1, containing one code unit from \(\text{str} \), specifically the code unit at position \(\text{index} \), where the first (leftmost) element in \(\text{str} \) is considered to be at position 0, the next one at position 1, and so on.
9. Return a Property Descriptor { [[Value]]: \(\text{resultStr} \), [[Enumerable]]: true, [[Writable]]: false, [[Configurable]]: false }

15.6 Boolean Objects

15.6.1 The Boolean Constructor Called as a Function

When \(\text{Boolean} \) is called as a function rather than as a constructor, it performs a type conversion.

15.6.1.1 \(\text{Boolean} \) (value)

Returns a Boolean value (not a Boolean object) computed by ToBoolean(\(\text{value} \)).

15.6.2 The Boolean Constructor

When \(\text{Boolean} \) is called as part of a new expression it is a constructor; it initialises the newly created object.

15.6.2.1 new \(\text{Boolean} \) (value)

The [[Prototype]] internal property of the newly constructed object is set to the original Boolean prototype object, the one that is the initial value of \(\text{Boolean.prototype} \) (15.6.3.1).

The newly constructed Boolean object has a [[NativeBrand]] internal property with value BooleanWrapper.

The [[PrimitiveValue]] internal property of the newly constructed Boolean object is set to ToBoolean(\(\text{value} \)).

The [[Extensible]] internal property of the newly constructed object is set to \(\text{true} \).

15.6.3 Properties of the Boolean Constructor

The value of the [[Prototype]] internal property of the Boolean constructor is the Function prototype object (15.3.4).

Besides the internal properties and the \text{length} property (whose value is 1), the Boolean constructor has the following property:

15.6.3.1 \(\text{Boolean.prototype} \)

The initial value of \(\text{Boolean.prototype} \) is the Boolean prototype object (15.6.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.6.4 Properties of the Boolean Prototype Object

The Boolean prototype object is itself a Boolean object whose value is `false`. The Boolean prototype object has a `[[NativeBrand]]` internal property whose value is BooleanWrapper.

The value of the `[[Prototype]]` internal property of the Boolean prototype object is the standard built-in Object prototype object (15.2.4).

15.6.4.1 `Boolean.prototype.constructor`

The initial value of `Boolean.prototype.constructor` is the built-in `Boolean` constructor.

15.6.4.2 `Boolean.prototype.toString()`

The following steps are taken:

1. Let `B` be the `this` value.
2. If `Type(B)` is Boolean, then let `b` be `B`.
3. Else if `Type(B)` is Object and `B` has a `[[NativeWrapper]]` internal property whose value is BooleanWrapper, then let `b` be the value of the `[[PrimitiveValue]]` internal property of `B`.
4. Else throw a `TypeError` exception.
5. If `b` is `true`, then return "true"; else return "false".

15.6.4.3 `Boolean.prototype.valueOf()`

The following steps are taken:

1. Let `B` be the `this` value.
2. If `Type(B)` is Boolean, then let `b` be `B`.
3. Else if `Type(B)` is Object and `B` has a `[[NativeWrapper]]` internal property whose value is BooleanWrapper, then let `b` be the value of the `[[PrimitiveValue]]` internal property of `B`.
4. Else throw a `TypeError` exception.
5. Return `b`.

15.6.5 Properties of Boolean Instances

Boolean instances inherit properties from the Boolean prototype object and have a `[[NativeBrand]]` internal property whose value is BooleanWrapper. Boolean instances also have a `[[PrimitiveValue]]` internal property.

The `[[PrimitiveValue]]` internal property is the Boolean value represented by this Boolean object.

15.7 Number Objects

15.7.1 The Number Constructor Called as a Function

When `Number` is called as a function rather than as a constructor, it performs a type conversion.

15.7.1.1 `Number([value])`

Returns a Number value (not a Number object) computed by `ToNumber(value)` if `value` was supplied, else returns `+0`.

15.7.2 The Number Constructor

When `Number` is called as part of a `new` expression it is a constructor: it initialises the newly created object.
15.7.2.1 new Number ([value])

The [[Prototype]] internal property of the newly constructed object is set to the original Number prototype object, the one that is the initial value of \texttt{Number.prototype} (15.7.3.1).

The newly constructed object is has a [[NativeBrand]] internal property whose value is NumberWrapper.

The [[Prototype]] internal property of the newly constructed object is set to ToNumber\(\text{value}\) if \text{value} was supplied, else to +0.

The [[Extensible]] internal property of the newly constructed object is set to \texttt{true}.

15.7.3 Properties of the Number Constructor

The value of the [[Prototype]] internal property of the Number constructor is the Function prototype object (15.3.4).

Besides the internal properties and the \texttt{length} property (whose value is 1), the Number constructor has the following properties:

15.7.3.1 Number.prototype

The initial value of \texttt{Number.prototype} is the Number prototype object (15.7.4).

This property has the attributes \{ [[Writable]]: \texttt{false}, [[Enumerable]]: \texttt{false}, [[Configurable]]: \texttt{false} \}.

15.7.3.2 Number.MAX_VALUE

The value of \texttt{Number.MAX_VALUE} is the largest positive finite value of the Number type, which is approximately \(1.7976931348623157 \times 10^{308}\).

This property has the attributes \{ [[Writable]]: \texttt{false}, [[Enumerable]]: \texttt{false}, [[Configurable]]: \texttt{false} \}.

15.7.3.3 Number.MIN_VALUE

The value of \texttt{Number.MIN_VALUE} is the smallest positive value of the Number type, which is approximately \(5 \times 10^{-324}\).

In the IEEE-754 double precision binary representation, the smallest possible value is a denormalized number. If an implementation does not support denormalized values, the value of \texttt{Number.MIN_VALUE} must be the smallest non-zero positive value that can actually be represented by the implementation.

This property has the attributes \{ [[Writable]]: \texttt{false}, [[Enumerable]]: \texttt{false}, [[Configurable]]: \texttt{false} \}.

15.7.3.4 Number.NaN

The value of \texttt{Number.NaN} is \texttt{NaN}.

This property has the attributes \{ [[Writable]]: \texttt{false}, [[Enumerable]]: \texttt{false}, [[Configurable]]: \texttt{false} \}.

15.7.3.5 Number.NEGATIVE_INFINITY

The value of Number.NEGATIVE_INFINITY is \(-\infty\).

This property has the attributes \{ [[Writable]]: \texttt{false}, [[Enumerable]]: \texttt{false}, [[Configurable]]: \texttt{false} \}.
15.7.3.6 Number.POSITIVE_INFINITY

The value of Number.POSITIVE_INFINITY is $+\infty$.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.7.3.7 Number.EPSILON

The value of Number.EPSILON is the difference between 1 and the smallest value greater than 1 that is representable as a Number value, which is approximately $2.22044604925031308472633361816 \times 10^{-16}$.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.7.3.8 Number.MAX_INTEGER

The value of Number.MAX_INTEGER is the largest integer value that can be represented as a Number value without losing precision, which is 9007199254740991.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.7.3.9 Number.parseInt (string, radix)

Same as 15.1.2.2.

15.7.3.10 Number.parseFloat (string)

Same as 15.1.2.3.

15.7.3.11 Number.isNaN (number)

When the Number.isNaN is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. If number is NaN, return true.
3. Otherwise, return false.

NOTE This function differs from the global isNaN function (15.1.2.4) is that it does not convert its argument to a Number before determining whether it is NaN.

15.7.3.12 Number.isFinite (number)

When the Number.isFinite is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. If number is NaN, $+\infty$, or $-\infty$, return false.
3. Otherwise, return true.

15.7.3.13 Number.isInteger (number)

When the Number.isInteger is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. Let integer be ToInteger(number).
3. If integer is not equal to number, return false.
4. Otherwise, return true.

15.7.3.14 Number.parseInt (number)

When the Number.parseInt is called with one argument number, the following steps are taken:
1. Return ToInteger(number).

15.7.4 Properties of the Number Prototype Object

The Number prototype object is itself a Number object with a [[NativeBrand]] internal property whose value is NumberWrapper. Its value is +0.

The value of the [[Prototype]] internal property of the Number prototype object is the standard built-in Object prototype object (15.2.4).

Unless explicitly stated otherwise, the methods of the Number prototype object defined below are not generic and the this value passed to them must be either a Number value or an object that has a [[NativeBrand]] internal property whose value is NumberWrapper.

In the following descriptions of functions that are properties of the Number prototype object, the phrase “this Number object” refers to either the object that is the this value for the invocation of the function or, if Type(this value) is Number, an object that is created as if by the expression new Number(this value) where Number is the standard built-in constructor with that name. Also, the phrase “this Number value” refers to either the Number value represented by this Number object, that is, the value of the [[PrimitiveValue]] internal property of this Number object or the this value if its type is Number. A TypeError exception is thrown if the this value is neither an object that has a [[NativeBrand]] internal property whose value is NumberWrapper or a value whose type is Number.

15.7.4.1 Number.prototype.constructor

The initial value of Number.prototype.constructor is the built-in Number constructor.

15.7.4.2 Number.prototype.toString ([radix])

The optional radix should be an integer value in the inclusive range 2 to 36. If radix not present or is undefined the Number 10 is used as the value of radix. If ToInteger(radix) is the Number 10 then this Number value is given as an argument to the ToString abstract operation; the resulting String value is returned.

If ToInteger(radix) is not an integer between 2 and 36 inclusive throw a RangeError exception. If ToInteger(radix) is an integer from 2 to 36, but not 10, the result is a String representation of this Number value using the specified radix. Letters a-z are used for digits with values 10 through 35. The precise algorithm is implementation-dependent if the radix is not 10, however the algorithm should be a generalisation of that specified in 9.8.1.

The toString function is not generic; it throws a TypeError exception if its this value is not a Number or a Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.7.4.3 Number.prototype.toLocaleString()

Produces a String value that represents this Number value formatted according to the conventions of the host environment’s current locale. This function is implementation-dependent, and it is permissible, but not encouraged, for it to return the same thing as toString.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this parameter position for anything else.

15.7.4.4 Number.prototype.valueOf ()

1. Let x be this Number value.
2. Return x.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a Number or a Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.
15.7.4.5 Number.prototype.toFixed (fractionDigits)

Return a String containing this Number value represented in decimal fixed-point notation with \(fractionDigits \) digits after the decimal point. If \(fractionDigits \) is undefined, 0 is assumed. Specifically, perform the following steps:

3. Let \(f \) be ToInteger(\(fractionDigits \)). (If \(fractionDigits \) is undefined, this step produces the value 0).
4. ReturnIfAbrupt(\(f \)).
5. If \(f < 0 \) or \(f > 20 \), throw a RangeError exception.
6. Let \(x \) be this Number value.
7. ReturnIfAbrupt(\(x \)).
8. If \(x \) is NaN, return the String "NaN".
9. Let \(s \) be the empty String.
10. If \(x < 0 \), then
 a. Let \(s \) be "-".
 b. Let \(x = -x \).
11. If \(x \geq 10^{21} \), then
 a. Let \(m \) be ToString(\(x \)).
12. Else, \(x < 10^{21} \)
 a. Let \(n \) be an integer for which the exact mathematical value of \(n \times 10^f - x \) is as close to zero as possible. If there are two such \(n \), pick the larger \(n \).
 b. If \(n = 0 \), let \(m \) be the String "0". Otherwise, let \(m \) be the String consisting of the digits of the decimal representation of \(n \) (in order, with no leading zeroes).
 c. If \(f \neq 0 \), then
 i. Let \(k \) be the number of elements in \(m \).
 ii. If \(k \leq f \), then
 1. Let \(z \) be the String consisting of \(f+1-k \) occurrences of the code unit 0x0030.
 2. Let \(m \) be the concatenation of Strings \(z \) and \(m \).
 3. Let \(k = f + 1 \).
 iii. Let \(a \) be the first \(k-f \) elements of \(m \), and let \(b \) be the remaining \(f \) elements of \(m \).
 iv. Let \(m \) be the concatenation of the three Strings \(a \), ".", and \(b \).
13. Return the concatenation of the Strings \(s \) and \(m \).

The length property of the toFixed method is 1.

If the toFixed method is called with more than one argument, then the behaviour is undefined (see clause 15).

An implementation is permitted to extend the behaviour of toFixed for values of \(fractionDigits \) less than 0 or greater than 20. In this case toFixed would not necessarily throw RangeError for such values.

NOTE The output of toFixed may be more precise than toString for some values because toString only prints enough significant digits to distinguish the number from adjacent number values. For example, (100000000000000128).toString() returns "1000000000000000100", while (100000000000000128).toFixed(0) returns "1000000000000000128".

15.7.4.6 Number.prototype.toExponential (fractionDigits)

Return a String containing this Number value represented in decimal exponential notation with one digit before the significand's decimal point and \(fractionDigits \) digits after the significand's decimal point. If \(fractionDigits \) is undefined, include as many significand digits as necessary to uniquely specify the Number (just like in ToString except that in this case the Number is always output in exponential notation). Specifically, perform the following steps:

1. Let \(x \) be this Number value.
2. ReturnIfAbrupt(\(x \)).
3. Let \(f \) be ToInteger(\(fractionDigits \)).
4. ReturnIfAbrupt(\(f \)).
5. If \(x \) is NaN, return the String "NaN".
6. Let \(s \) be the empty String.
7. If \(x < 0 \), then
 a. Let \(s \) be "-".
 b. Let \(x = -x \).
8. If \(x = +\infty \), then
 a. Return the concatenation of the Strings \(s \) and "Infinity".
9. If \(\text{fractionDigits} \) is not \(\text{undefined} \) and \((f < 0 \text{ or } f > 20) \), throw a \(\text{RangeError} \) exception.
10. If \(x = 0 \), then
 a. If \(\text{fractionalDigits} \) is \(\text{undefined} \), then let \(f = 0 \).
 b. Let \(m \) be the String consisting of \(f+1 \) occurrences of the code unit 0x30.
 c. Let \(e = 0 \).
11. Else, \(x \neq 0 \)
 a. If \(\text{fractionDigits} \) is \(\text{undefined} \), then
 i. Let \(e \) and \(n \) be integers such that \(10^f \leq n < 10^{e+1} \) and for which the exact mathematical value
 of \(n \times 10^{-f} - x \) is as close to zero as possible. If there are two such sets of \(e \) and \(n \), pick the
 \(e \) and \(n \) for which \(n \times 10^{-f} \) is larger.
 b. Else, \(\text{fractionDigits} \) is \(\text{undefined} \)
 i. Let \(e \), \(n \), and \(f \) be integers such that \(f \geq 0 \), \(10^f \leq n < 10^{e+1} \), the number value for \(n \times 10^{-f} \) is \(x \),
 and \(f \) is as small as possible. Note that the decimal representation of \(n \) has \(f+1 \) digits, \(n \) is
 not divisible by 10, and the least significant digit of \(n \) is not necessarily uniquely
 determined by these criteria.
 c. Let \(m \) be the String consisting of the digits of the decimal representation of \(n \) (in order, with no
 leading zeroes).
12. If \(f \neq 0 \), then
 a. Let \(a \) be the first element of \(m \), and let \(b \) be the remaining \(f \) elements of \(m \).
 b. Let \(m \) be the concatenation of the three Strings \(a \), ".", and \(b \).
13. If \(e = 0 \), then
 a. Let \(c = "+" \).
 b. Let \(d = "0" \).
14. Else
 a. If \(e > 0 \), then let \(c = "+" \).
 b. Else, \(e \leq 0 \)
 i. Let \(c = "-" \).
 ii. Let \(e = -e \).
 c. Let \(d \) be the String consisting of the digits of the decimal representation of \(e \) (in order, with no
 leading zeroes).
15. Let \(m \) be the concatenation of the four Strings \(m \), ".", \(c \), and \(d \).
16. Return the concatenation of the Strings \(s \) and \(m \).

The \texttt{length} property of the \texttt{toExponential} method is \(1 \).

If the \texttt{toExponential} method is called with more than one argument, then the behaviour is undefined (see
clause 15).

An implementation is permitted to extend the behaviour of \texttt{toExponential} for values of \texttt{fractionDigits} less
than \(0 \) or greater than \(20 \). In this case \texttt{toExponential} would not necessarily throw \texttt{RangeError} for such
values.

\textbf{NOTE} For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 9.b.i be used as a guideline:

i. Let \(e \), \(n \), and \(f \) be integers such that \(f \geq 0 \), \(10^f \leq n < 10^{e+1} \), the number value for \(n \times 10^{-f} \) is \(x \), and \(f \) is as small
 as possible. If there are multiple possibilities for \(n \), choose the value of \(n \) for which \(n \times 10^{-f} \) is closest in value
to \(x \). If there are two such possible values of \(n \), choose the one that is even.

\textbf{15.7.4.7} \texttt{Number.prototype.toPrecision (precision)}

Return a String containing this Number value represented either in decimal exponential notation with one digit
before the significand's decimal point and \texttt{precision}-1 digits after the significand's decimal point or in decimal
fixed notation with `precision` significant digits. If `precision` is undefined, call `ToString` (9.8.1) instead. Specifically, perform the following steps:

1. Let `x` be this Number value.
2. ReturnIfAbrupt(`x`).
3. If `precision` is undefined, return `ToString(x)`.
4. Let `p` be `ToInteger(precision)`.
5. ReturnIfAbrupt(`p`).
6. If `x` is `NaN`, return the String "NaN".
7. Let `s` be the empty String.
8. If `x` < 0, then
 a. Let `s` be "-".
 b. Let `x` = `-x`.
9. If `x` = `+∞`, then
 a. Return the concatenation of the Strings `s` and "Infinity".
10. If `p` < 1 or `p` > 21, throw a `RangeError` exception.
11. If `x` = 0, then
 a. Let `m` be the String consisting of `p` occurrences of the code unit 0x0030 (the Unicode character ‘0’).
 b. Let `e` = 0.
12. Else `x` ≠ 0,
 a. Let `e` and `n` be integers such that `10^p-1` ≤ `n` < `10^p` and for which the exact mathematical value of `n` × `10^p-1` – `x` is as close to zero as possible. If there are two such sets of `e` and `n`, pick the `e` and `n` for which `n` × `10^p` is larger.
 b. Let `m` be the String consisting of the digits of the decimal representation of `n` (in order, with no leading zeroes).
 c. If `e` ≤ –6 or `e` ≥ `p`, then
 i. Let `a` be the first element of `m`, and let `b` be the remaining `p`–`1` elements of `m`.
 ii. Let `m` be the concatenation of the three Strings `a`, “.”, and `b`.
 iii. If `e` = 0, then
 1. Let `c` = “+” and `d` = “0”.
 iv. Else `e` ≠ 0,
 1. If `e` > 0, then
 a. Let `c` = “+”.
 2. Else `e` < 0,
 a. Let `c` = “-”.
 b. Let `e` = `e`.
 3. Let `d` be the String consisting of the digits of the decimal representation of `e` (in order, with no leading zeroes).
 v. Let `m` be the concatenation of the five Strings `s`, `m`, “e”, `c`, and `d`.
13. If `e` = `p`–`1`, then return the concatenation of the Strings `s` and `m`.
14. If `e` ≥ 0, then
 a. Let `m` be the concatenation of the first `e`+1 elements of `m`, the code unit 0x002E (Unicode character ‘.’), and the remaining `p`–`(e`+1) elements of `m`.
15. Else `e` < 0,
 a. Let `m` be the concatenation of the String “0.”, –`(e`+1) occurrences of code unit 0c0030 (the Unicode character ‘0’), and the String `m`.
16. Return the concatenation of the Strings `s` and `m`.

The `length` property of the `toPrecision` method is 1.

If the `toPrecision` method is called with more than one argument, then the behaviour is undefined (see clause 15).

An implementation is permitted to extend the behaviour of `toPrecision` for values of `precision` less than 1 or greater than 21. In this case `toPrecision` would not necessarily throw `RangeError` for such values.
15.7.3.14 Number.prototype.clz ()

When the `Number.prototype.clz` is called with one argument `number`, the following steps are taken:

1. Let `x` be this Number value.
2. Let `n` be ToUint32(`x`).
3. ReturnIfAbrupt(`n`).
4. Let `p` be the number of leading zero bits in the 32-bit binary representation of `n`.
5. Return `p`.

NOTE If `n` is 0, `p` will be 32. If the most significant bit of the 32-bit binary encoding of `n` is 1, `p` will be 0.

15.7.5 Properties of Number Instances

Number instances inherit properties from the Number prototype object and have a `[[NativeBrand]]` internal property whose value is NumberWrapper. Number instances also have a `[[PrimitiveValue]]` internal property.

The `[[PrimitiveValue]]` internal property is the Number value represented by this Number object.

15.8 The Math Object

The Math object is a single object that has some named properties, some of which are functions.

The value of the `[[Prototype]]` internal property of the Math object is the standard built-in Object prototype object (15.2.4). The Math object has a `[[NativeBrand]]` internal property whose value is NativeMath.

The Math object does not have a `[[Construct]]` internal property; it is not possible to use the Math object as a constructor with the `new` operator.

The Math object does not have a `[[Call]]` internal property; it is not possible to invoke the Math object as a function.

NOTE In this specification, the phrase “the Number value for `x`” has a technical meaning defined in 8.5.

15.8.1 Value Properties of the Math Object

15.8.1.1 E

The Number value for `e`, the base of the natural logarithms, which is approximately 2.7182818284590452354.

This property has the attributes `{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.8.1.2 LN10

The Number value for the natural logarithm of 10, which is approximately 2.302585092994046.

This property has the attributes `{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.8.1.3 LN2

The Number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

This property has the attributes `{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.8.1.4 LOG2E

The Number value for the base-2 logarithm of `e`, the base of the natural logarithms; this value is approximately 1.4426950408889634.
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE The value of Math.LOG2E is approximately the reciprocal of the value of Math.LN2.

15.8.1.5 LOG10E

The Number value for the base-10 logarithm of e, the base of the natural logarithms; this value is approximately 0.4342944819032518.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE The value of Math.LOG10E is approximately the reciprocal of the value of Math.LN10.

15.8.1.6 PI

The Number value for π, the ratio of the circumference of a circle to its diameter, which is approximately 3.1415926535897932.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.8.1.7 SQRT1_2

The Number value for the square root of ½, which is approximately 0.7071067811865476.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE The value of Math.SQRT1_2 is approximately the reciprocal of the value of Math.SQRT2.

15.8.1.8 SQRT2

The Number value for the square root of 2, which is approximately 1.4142135623730951.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.8.2 Function Properties of the Math Object

Each of the following Math object functions applies the ToNumber abstract operator to each of its arguments (in left-to-right order if there is more than one). If ToNumber returns an abrupt completion, that completion record is immediately returned. Otherwise, function performs a computation on the resulting Number value(s).

In the function descriptions below, the symbols NaN, −0, +0, −∞ and +∞ refer to the Number values described in 8.5.

NOTE The behaviour of the functions acos, asin, atan, atan2, cos, exp, log, pow, sin, sqrt, and tan is not precisely specified here except to require specific results for certain argument values that represent boundary cases of interest. For other argument values, these functions are intended to compute approximations to the results of familiar mathematical functions, but some latitude is allowed in the choice of approximation algorithms. The general intent is that an implementer should be able to use the same mathematical library for ECMAScript on a given hardware platform that is available to C programmers on that platform.

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by this standard) that implementations use the approximation algorithms for IEEE 754 arithmetic contained in fdlibm, the freely distributable mathematical library from Sun Microsystems (http://www.netlib.org/fdlibm).

15.8.2.1 abs (x)

Returns the absolute value of x; the result has the same magnitude as x but has positive sign.
• If x is NaN, the result is NaN.
• If x is -0, the result is +0.
• If x is $-\infty$, the result is $+\infty$.

15.8.2.2 $\text{acos } (x)$

Returns an implementation-dependent approximation to the arc cosine of x. The result is expressed in radians and ranges from +0 to $+\pi$.

• If x is NaN, the result is NaN.
• If x is greater than 1, the result is NaN.
• If x is less than -1, the result is NaN.
• If x is exactly 1, the result is +0.

15.8.2.3 $\text{asin } (x)$

Returns an implementation-dependent approximation to the arc sine of x. The result is expressed in radians and ranges from $-\pi/2$ to $+\pi/2$.

• If x is NaN, the result is NaN.
• If x is greater than 1, the result is NaN.
• If x is less than -1, the result is NaN.
• If x is +0, the result is +0.
• If x is -0, the result is -0.

15.8.2.4 $\text{atan } (x)$

Returns an implementation-dependent approximation to the arc tangent of x. The result is expressed in radians and ranges from $-\pi/2$ to $+\pi/2$.

• If x is NaN, the result is NaN.
• If x is +0, the result is +0.
• If x is -0, the result is -0.
• If x is $+\infty$, the result is an implementation-dependent approximation to $+\pi/2$.
• If x is $-\infty$, the result is an implementation-dependent approximation to $-\pi/2$.

15.8.2.5 $\text{atan2 } (y, x)$

Returns an implementation-dependent approximation to the arc tangent of the quotient y/x of the arguments y and x, where the signs of y and x are used to determine the quadrant of the result. Note that it is intentional and traditional for the two-argument arc tangent function that the argument named y be first and the argument named x be second. The result is expressed in radians and ranges from $-\pi$ to $+\pi$.

• If either x or y is NaN, the result is NaN.
• If $y>0$ and x is $+0$, the result is an implementation-dependent approximation to $+\pi/2$.
• If $y>0$ and x is -0, the result is an implementation-dependent approximation to $-\pi/2$.
• If y is $+0$ and $x>0$, the result is $+0$.
• If y is $+0$ and x is $+0$, the result is $+0$.
• If y is $+0$ and x is -0, the result is an implementation-dependent approximation to $+\pi$.
• If y is $+0$ and $x<0$, the result is an implementation-dependent approximation to $+\pi$.
• If y is -0 and $x>0$, the result is -0.
• If y is -0 and x is $+0$, the result is -0.
• If y is -0 and x is -0, the result is an implementation-dependent approximation to $-\pi$.
• If y is -0 and $x<0$, the result is an implementation-dependent approximation to $-\pi$.
• If $y<0$ and x is $+0$, the result is an implementation-dependent approximation to $-\pi/2$.
• If $y<0$ and x is -0, the result is an implementation-dependent approximation to $-\pi/2$.
• If $y>0$ and y is finite and x is $+\infty$, the result is $+0$.
• If \(y > 0 \) and \(y \) is finite and \(x \) is \(-\infty\), the result is an implementation-dependent approximation to \(+\pi\).
• If \(y < 0 \) and \(y \) is finite and \(x \) is \(+\infty\), the result is \(-0\).
• If \(y < 0 \) and \(y \) is finite and \(x \) is \(-\infty\), the result is an implementation-dependent approximation to \(-\pi\).
• If \(y \) is \(+\infty\) and \(x \) is finite, the result is an implementation-dependent approximation to \(+\pi/2\).
• If \(y \) is \(-\infty\) and \(x \) is finite, the result is an implementation-dependent approximation to \(-\pi/2\).
• If \(y \) is \(+\infty\) and \(x \) is \(+\infty\), the result is an implementation-dependent approximation to \(+\pi/4\).
• If \(y \) is \(+\infty\) and \(x \) is \(-\infty\), the result is an implementation-dependent approximation to \(-\pi/4\).
• If \(y \) is \(-\infty\) and \(x \) is \(+\infty\), the result is an implementation-dependent approximation to \(+\pi/4\).
• If \(y \) is \(-\infty\) and \(x \) is \(-\infty\), the result is an implementation-dependent approximation to \(-3\pi/4\).

15.8.2.6 \(\text{ceil}(x) \)

Returns the smallest (closest to \(-\infty\)) Number value that is not less than \(x \) and is equal to a mathematical integer. If \(x \) is already an integer, the result is \(x \).

• If \(x \) is NaN, the result is NaN.
• If \(x \) is \(+0\), the result is \(+0\).
• If \(x \) is \(-0\), the result is \(-0\).
• If \(x \) is \(+\infty\), the result is \(+\infty\).
• If \(x \) is \(-\infty\), the result is \(-\infty\).
• If \(x \) is less than 0 but greater than -1, the result is \(-0\).

The value of \(\text{Math.ceil}(x) \) is the same as the value of \(-\text{Math.floor}(-x) \).

15.8.2.7 \(\cos(x) \)

Returns an implementation-dependent approximation to the cosine of \(x \). The argument is expressed in radians.

• If \(x \) is NaN, the result is NaN.
• If \(x \) is \(+0\), the result is 1.
• If \(x \) is \(-0\), the result is 1.
• If \(x \) is \(+\infty\), the result is NaN.
• If \(x \) is \(-\infty\), the result is NaN.

15.8.2.8 \(\exp(x) \)

Returns an implementation-dependent approximation to the exponential function of \(x \) (\(e \) raised to the power of \(x \), where \(e \) is the base of the natural logarithms).

• If \(x \) is NaN, the result is NaN.
• If \(x \) is \(+0\), the result is 1.
• If \(x \) is \(-0\), the result is 1.
• If \(x \) is \(+\infty\), the result is \(+\infty\).
• If \(x \) is \(-\infty\), the result is \(+0\).

15.8.2.9 \(\text{floor}(x) \)

Returns the greatest (closest to \(+\infty\)) Number value that is not greater than \(x \) and is equal to a mathematical integer. If \(x \) is already an integer, the result is \(x \).

• If \(x \) is NaN, the result is NaN.
• If \(x \) is \(+0\), the result is \(+0\).
• If \(x \) is \(-0\), the result is \(-0\).
• If \(x \) is \(+\infty\), the result is \(+\infty\).
• If \(x \) is \(-\infty\), the result is \(-\infty\).
• If \(x \) is greater than 0 but less than 1, the result is \(+0\).
NOTE The value of `Math.floor(x)` is the same as the value of `Math.ceil(-x)`.

15.8.2.10 **log (x)**

- Returns an implementation-dependent approximation to the natural logarithm of `x`.
- If `x` is NaN, the result is NaN.
- If `x` is less than 0, the result is NaN.
- If `x` is +0 or −0, the result is −∞.
- If `x` is 1, the result is +0.
- If `x` is +∞, the result is +∞.

15.8.2.11 **max ([value1 [, value2 [, ...]]])**

Given zero or more arguments, calls ToNumber on each of the arguments and returns the largest of the resulting values.

- If no arguments are given, the result is −∞.
- If any value is NaN, the result is NaN.
- The comparison of values to determine the largest value is done using the Abstract Relational Comparision Algorithm (11.8.1) except that +0 is considered to be larger than −0.

The length property of the max method is 2.

15.8.2.12 **min ([value1 [, value2 [, ...]]])**

Given zero or more arguments, calls ToNumber on each of the arguments and returns the smallest of the resulting values.

- If no arguments are given, the result is +∞.
- If any value is NaN, the result is NaN.
- The comparison of values to determine the smallest value is done using the Abstract Relational Comparision Algorithm (11.8.1) except that +0 is considered to be larger than −0.

The length property of the min method is 2.

15.8.2.13 **pow (x, y)**

Returns an implementation-dependent approximation to the result of raising `x` to the power `y`.

- If `y` is NaN, the result is NaN.
- If `y` is +0, the result is 1, even if `x` is NaN.
- If `y` is −0, the result is 1, even if `x` is NaN.
- If `x` is NaN and `y` is nonzero, the result is NaN.
- If `abs(x) > 1` and `y` is +∞, the result is +∞.
- If `abs(x) > 1` and `y` is −∞, the result is 0.
- If `abs(x) == 1` and `y` is +∞, the result is NaN.
- If `abs(x) == 1` and `y` is −∞, the result is NaN.
- If `abs(x) < 1` and `y` is +∞, the result is 0.
- If `abs(x) < 1` and `y` is −∞, the result is +∞.
- If `x` is +∞ and `y` > 0, the result is +∞.
- If `x` is +∞ and `y` < 0, the result is +0.
- If `x` is −∞ and `y` > 0 and `y` is an odd integer, the result is −∞.
- If `x` is −∞ and `y` > 0 and `y` is not an odd integer, the result is +∞.
- If `x` is −∞ and `y` < 0 and `y` is an odd integer, the result is −0.
- If `x` is −∞ and `y` < 0 and `y` is not an odd integer, the result is +0.
- If `x` is +0 and `y` > 0, the result is +0.
- If `x` is +0 and `y` < 0, the result is +∞.
If \(x \) is \(-0 \) and \(y > 0 \) and \(y \) is an odd integer, the result is \(-0 \).

If \(x \) is \(-0 \) and \(y > 0 \) and \(y \) is not an odd integer, the result is \(+0 \).

If \(x \) is \(-0 \) and \(y < 0 \) and \(y \) is an odd integer, the result is \(-\infty \).

If \(x < 0 \) and \(x \) is finite and \(y \) is finite and \(y \) is not an integer, the result is \(\text{NaN} \).

15.8.2.14 random()

Returns a Number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly or pseudo randomly with approximately uniform distribution over that range, using an implementation-dependent algorithm or strategy. This function takes no arguments.

15.8.2.15 round(\(x \))

Returns the Number value that is closest to \(x \) and is equal to a mathematical integer. If two integer Number values are equally close to \(x \), then the result is the Number value that is closer to \(+\infty \). If \(x \) is already an integer, the result is \(x \).

• If \(x \) is \(\text{NaN} \), the result is \(\text{NaN} \).
• If \(x \) is \(+0 \), the result is \(+0 \).
• If \(x \) is \(-0 \), the result is \(-0 \).
• If \(x \) is \(+\infty \), the result is \(+\infty \).
• If \(x \) is \(-\infty \), the result is \(-\infty \).
• If \(x \) is greater than 0 but less than 0.5, the result is \(+0 \).
• If \(x \) is less than 0 but greater than or equal to -0.5, the result is \(-0 \).

NOTE 1 Math.round(3.5) returns 4, but Math.round(-3.5) returns -3.

NOTE 2 The value of Math.round(\(x \)) is the same as the value of Math.floor(\(x+0.5 \)), except when \(x \) is \(-0 \) or is less than 0 but greater than or equal to -0.5; for these cases Math.round(\(x \)) returns -0, but Math.floor(\(x+0.5 \)) returns +0.

15.8.2.16 sin(\(x \))

Returns an implementation-dependent approximation to the sine of \(x \). The argument is expressed in radians.

• If \(x \) is \(\text{NaN} \), the result is \(\text{NaN} \).
• If \(x \) is \(+0 \), the result is \(+0 \).
• If \(x \) is \(-0 \), the result is \(-0 \).
• If \(x \) is \(+\infty \) or \(-\infty \), the result is \(\text{NaN} \).

15.8.2.17 sqrt(\(x \))

Returns an implementation-dependent approximation to the square root of \(x \).

• If \(x \) is \(\text{NaN} \), the result is \(\text{NaN} \).
• If \(x \) is less than 0, the result is \(\text{NaN} \).
• If \(x \) is \(+0 \), the result is \(+0 \).
• If \(x \) is \(-0 \), the result is \(-0 \).
• If \(x \) is \(+\infty \), the result is \(+\infty \).

15.8.2.18 tan(\(x \))

Returns an implementation-dependent approximation to the tangent of \(x \). The argument is expressed in radians.

• If \(x \) is \(\text{NaN} \), the result is \(\text{NaN} \).
• If \(x \) is \(+0 \), the result is \(+0 \).
• If x is -0, the result is -0.
• If x is $+\infty$ or $-\infty$, the result is NaN.

15.8.2.19 log10 (x)
Returns an implementation-dependent approximation to the base 10 logarithm of x.

• If x is NaN, the result is NaN.
• If x is less than 0, the result is NaN.
• If x is $+0$, the result is $-\infty$.
• If x is -0, the result is $-\infty$.
• If x is 1, the result is $+0$.
• If x is $+\infty$, the result is $+\infty$.

15.8.2.20 log2 (x)
Returns an implementation-dependent approximation to the base 2 logarithm of x.

• If x is NaN, the result is NaN.
• If x is less than 0, the result is NaN.
• If x is $+0$, the result is $-\infty$.
• If x is -0, the result is $-\infty$.
• If x is 1, the result is $+0$.
• If x is $+\infty$, the result is $+\infty$.

15.8.2.21 log1p (x)
Returns an implementation-dependent approximation to the natural logarithm of $1 + x$. The result is computed in a way that is accurate even when the value of x is close to zero.

• If x is NaN, the result is NaN.
• If x is less than -1, the result is NaN.
• If x is -1, the result is $-\infty$.
• If x is $+0$, the result is $+0$.
• If x is -0, the result is -0.
• If x is $+\infty$, the result is $+\infty$.

15.8.2.22 expm1 (x)
Returns an implementation-dependent approximation to subtracting 1 from the exponential function of x (e raised to the power of x, where e is the base of the natural logarithms). The result is computed in a way that is accurate even when the value of x is close 0.

• If x is NaN, the result is NaN.
• If x is $+0$, the result is $+0$.
• If x is -0, the result is -0.
• If x is $+\infty$, the result is $+\infty$.
• If x is $-\infty$, the result is -1.

15.8.2.23 cosh(x)
Returns an implementation-dependent approximation to the hyperbolic cosine of x.

• If x is NaN, the result is NaN.
• If \(x \) is +0, the result is 1.
• If \(x \) is −0, the result is 1.
• If \(x \) is +∞, the result is +∞.
• If \(x \) is −∞, the result is +∞.

NOTE The value of \(\cosh(x) \) is the same as \((\exp(x) + \exp(-x))/2 \).

15.8.2.24 sinh(x)
Returns an implementation-dependent approximation to the hyperbolic sine of \(x \).

• If \(x \) is NaN, the result is NaN.
• If \(x \) is +0, the result is +0.
• If \(x \) is −0, the result is −0.
• If \(x \) is +∞, the result is +∞.
• If \(x \) is −∞, the result is −∞.

NOTE The value of \(\cosh(x) \) is the same as \((\exp(x) - \exp(-x))/2 \).

15.8.2.25 tanh(x)
Returns an implementation-dependent approximation to the hyperbolic tangent of \(x \).

• If \(x \) is NaN, the result is NaN.
• If \(x \) is +0, the result is +0.
• If \(x \) is −0, the result is −0.
• If \(x \) is +∞, the result is +1.
• If \(x \) is −∞, the result is −1.

NOTE The value of \(\tanh(x) \) is the same as \((\exp(x) - \exp(-x))/(\exp(x) + \exp(-x)) \).

15.8.2.26 acosh(x)
Returns an implementation-dependent approximation to the inverse hyperbolic cosine of \(x \).

• If \(x \) is NaN, the result is NaN.
• If \(x \) is less than 1, the result is NaN.
• If \(x \) is 1, the result is +0.
• If \(x \) is +∞, the result is +∞.

15.8.2.27 asinh(x)
Returns an implementation-dependent approximation to the inverse hyperbolic sine of \(x \).

• If \(x \) is NaN, the result is NaN.
• If \(x \) is +0, the result is +0.
• If \(x \) is −0, the result is −0.
• If \(x \) is +∞, the result is +∞.
• If \(x \) is −∞, the result is −∞.

15.8.2.28 atanh(x)
Returns an implementation-dependent approximation to the inverse hyperbolic tangent of \(x \).

• If \(x \) is NaN, the result is NaN.
• If \(x \) is less than −1, the result is NaN.
• If \(x \) is greater than 1, the result is NaN.
• If \(x = -1 \), the result is \(-\infty\).
• If \(x = +1 \), the result is \(+\infty\).
• If \(x = +0 \), the result is \(+0\).
• If \(x = -0 \), the result is \(-0\).

15.8.2.29 hypot(value1 , value2 [, value3])

Given two or three arguments, hypot returns an implementation-dependent approximation of the square root of the sum of squares of its arguments.

• If any argument is \(+\infty\), the result is \(+\infty\).
• If any argument is \(-\infty\), the result is \(+\infty\).
• If no argument is \(+\infty\) or \(-\infty\), and any argument is NaN, the result is NaN.
• If all arguments are either \(+0\) or \(-0\), the result is \(+0\).

15.8.2.30 hypot2(value1 , value2 [, value3])

Given two or three arguments, hypot2 returns an implementation-dependent approximation of the sum of squares of its arguments.

• If no arguments are given, the result is \(+0\).
• If any argument is \(+\infty\), the result is \(+\infty\).
• If any argument is \(-\infty\), the result is \(+\infty\).
• If no argument is \(+\infty\) or \(-\infty\), and any argument is NaN, the result is NaN.
• If all arguments are either \(+0\) or \(-0\), the result is \(+0\).

15.8.2.30 trunc(x)

Returns the integral part of the number \(x \), removing any fractional digits. If \(x \) is already an integer, the result is \(x \).

• If \(x \) is NaN, the result is NaN.
• If \(x = -0 \), the result is \(-0\).
• If \(x = +0 \), the result is \(+0\).
• If \(x = +\infty \), the result is \(+\infty\).
• If \(x = -\infty \), the result is \(-\infty\).

15.8.2.31 sign(x)

Returns the sign of the \(x \), indicating whether \(x \) is positive, negative or zero.

• If \(x \) is NaN, the result is NaN.
• If \(x = -0 \), the result is \(-0\).
• If \(x = +0 \), the result is \(+0\).
• If \(x \) is negative and not \(-0\), the result is \(-1\).
• If \(x \) is positive and not \(+0\), the result is \(+1\).

15.8.2.32 cbrt(x)

Returns an implementation-dependent approximation to the cube root of \(x \).

• If \(x \) is NaN, the result is NaN.
• If \(x = +0 \), the result is \(+0\).
• If \(x = -0 \), the result is \(-0\).
• If \(x = +\infty \), the result is \(+\infty\).
• If \(x = -\infty \), the result is \(-\infty\).
15.9 Date Objects

15.9.1 Overview of Date Objects and Definitions of Abstract Operators

The following functions are abstract operations that operate on time values (defined in 15.9.1.1). Note that, in every case, if any argument to one of these functions is \(\text{NaN} \), the result will be \(\text{NaN} \).

15.9.1.1 Time Values and Time Range

A Date object contains a Number indicating a particular instant in time to within a millisecond. Such a Number is called a time value. A time value may also be \(\text{NaN} \), indicating that the Date object does not represent a specific instant of time.

Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC. In time values leap seconds are ignored. It is assumed that there are exactly 86,400,000 milliseconds per day. ECMAScript Number values can represent all integers from \(-9,007,199,254,740,992\) to \(9,007,199,254,740,992\); this range suffices to measure times to millisecond precision for any instant that is within approximately 285,616 years, either forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly \(-100,000,000\) days to \(100,000,000\) days measured relative to midnight at the beginning of 01 January, 1970 UTC. This gives a range of \(8,640,000,000,000,000\) milliseconds to either side of 01 January, 1970 UTC.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the value \(+0\).

15.9.1.2 Day Number and Time within Day

A given time value \(t \) belongs to day number
\[
\text{Day}(t) = \text{floor}(t / \text{msPerDay})
\]
where the number of milliseconds per day is
\[
\text{msPerDay} = 86400000
\]
The remainder is called the time within the day:
\[
\text{TimeWithinDay}(t) = t \mod \text{msPerDay}
\]

15.9.1.3 Year Number

ECMAScript uses an extrapolated Gregorian system to map a day number to a year number and to determine the month and date within that year. In this system, leap years are precisely those which are \((\text{divisible by 4})\) and \((\not\text{divisible by 100})\) or \((\text{divisible by 400})\). The number of days in year number \(y \) is therefore defined by
\[
\text{DaysInYear}(y) = \begin{cases}
365 & \text{if } (y \mod 4) \neq 0 \\
366 & \text{if } (y \mod 4) = 0 \text{ and } (y \mod 100) \neq 0 \\
365 & \text{if } (y \mod 100) = 0 \text{ and } (y \mod 400) \neq 0 \\
366 & \text{if } (y \mod 400) = 0
\end{cases}
\]
All non-leap years have 365 days with the usual number of days per month and leap years have an extra day in February. The day number of the first day of year \(y \) is given by:
\[
\text{DayFromYear}(y) = 365 \times (y-1970) + \text{floor}(y-1969)/4 - \text{floor}(y-1901)/100 + \text{floor}(y-1601)/400
\]
The time value of the start of a year is:
\[
\text{TimeFromYear}(y) = \text{msPerDay} \times \text{DayFromYear}(y)
\]
A time value determines a year by:
\[
\text{YearFromTime}(t) = \text{the largest integer } y \text{ (closest to positive infinity) such that } \text{TimeFromYear}(y) \leq t
\]
The leap-year function is 1 for a time within a leap year and otherwise is zero:
15.9.1.4 Month Number

Months are identified by an integer in the range 0 to 11, inclusive. The mapping MonthFromTime(t) from a time value t to a month number is defined by:

\[
\text{MonthFromTime}(t) = \begin{cases}
0 & \text{if } 0 \leq \text{DayWithinYear}(t) < 31 \\
1 & \text{if } 31 \leq \text{DayWithinYear}(t) < 59 + \text{InLeapYear}(t) \\
2 & \text{if } 59 + \text{InLeapYear}(t) \leq \text{DayWithinYear}(t) < 90 + \text{InLeapYear}(t) \\
3 & \text{if } 90 + \text{InLeapYear}(t) \leq \text{DayWithinYear}(t) < 120 + \text{InLeapYear}(t) \\
4 & \text{if } 120 + \text{InLeapYear}(t) \leq \text{DayWithinYear}(t) < 151 + \text{InLeapYear}(t) \\
5 & \text{if } 151 + \text{InLeapYear}(t) \leq \text{DayWithinYear}(t) < 181 + \text{InLeapYear}(t) \\
6 & \text{if } 181 + \text{InLeapYear}(t) \leq \text{DayWithinYear}(t) < 212 + \text{InLeapYear}(t) \\
7 & \text{if } 212 + \text{InLeapYear}(t) \leq \text{DayWithinYear}(t) < 243 + \text{InLeapYear}(t) \\
8 & \text{if } 243 + \text{InLeapYear}(t) \leq \text{DayWithinYear}(t) < 273 + \text{InLeapYear}(t) \\
9 & \text{if } 273 + \text{InLeapYear}(t) \leq \text{DayWithinYear}(t) < 304 + \text{InLeapYear}(t) \\
10 & \text{if } 304 + \text{InLeapYear}(t) \leq \text{DayWithinYear}(t) < 334 + \text{InLeapYear}(t) \\
11 & \text{if } 334 + \text{InLeapYear}(t) \leq \text{DayWithinYear}(t) < 365 + \text{InLeapYear}(t)
\end{cases}
\]

where

\[
\text{DayWithinYear}(t) = \text{Day}(t) - \text{DayFromYear}(ext{YearFromTime}(t))
\]

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April; 4 specifies May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9 specifies October; 10 specifies November; and 11 specifies December. Note that MonthFromTime(0) = 0, corresponding to Thursday, 01 January, 1970.

15.9.1.5 Date Number

A date number is identified by an integer in the range 1 through 31, inclusive. The mapping DateFromTime(t) from a time value t to a month number is defined by:

\[
\text{DateFromTime}(t) = \begin{cases}
\text{DayWithinYear}(t) + 1 & \text{if } \text{MonthFromTime}(t) = 0 \\
\text{DayWithinYear}(t) - 30 & \text{if } \text{MonthFromTime}(t) = 1 \\
\text{DayWithinYear}(t) - 58 - \text{InLeapYear}(t) & \text{if } \text{MonthFromTime}(t) = 2 \\
\text{DayWithinYear}(t) - 89 - \text{InLeapYear}(t) & \text{if } \text{MonthFromTime}(t) = 3 \\
\text{DayWithinYear}(t) - 119 - \text{InLeapYear}(t) & \text{if } \text{MonthFromTime}(t) = 4 \\
\text{DayWithinYear}(t) - 150 - \text{InLeapYear}(t) & \text{if } \text{MonthFromTime}(t) = 5 \\
\text{DayWithinYear}(t) - 180 - \text{InLeapYear}(t) & \text{if } \text{MonthFromTime}(t) = 6 \\
\text{DayWithinYear}(t) - 211 - \text{InLeapYear}(t) & \text{if } \text{MonthFromTime}(t) = 7 \\
\text{DayWithinYear}(t) - 242 - \text{InLeapYear}(t) & \text{if } \text{MonthFromTime}(t) = 8 \\
\text{DayWithinYear}(t) - 272 - \text{InLeapYear}(t) & \text{if } \text{MonthFromTime}(t) = 9 \\
\text{DayWithinYear}(t) - 303 - \text{InLeapYear}(t) & \text{if } \text{MonthFromTime}(t) = 10 \\
\text{DayWithinYear}(t) - 333 - \text{InLeapYear}(t) & \text{if } \text{MonthFromTime}(t) = 11
\end{cases}
\]

15.9.1.6 Week Day

The weekday for a particular time value t is defined as

\[
\text{WeekDay}(t) = (\text{Day}(t) + 4) \mod 7
\]

A weekday value of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies Wednesday; 4 specifies Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0) = 4, corresponding to Thursday, 01 January, 1970.
15.9.1.7 Local Time Zone Adjustment

An implementation of ECMAScript is expected to determine the local time zone adjustment. The local time zone adjustment is a value LocalTZA measured in milliseconds which when added to UTC represents the local standard time. Daylight saving time is not reflected by LocalTZA.

NOTE It is recommended that implementations use the time zone information of the IANA Time Zone Database.

15.9.1.8 Daylight Saving Time Adjustment

An implementation of ECMAScript is expected to make its best effort to determine the local daylight saving time adjustment. An implementation dependent algorithm using best available information on time zones to determine the local daylight saving time adjustment DaylightSavingTA(t), measured in milliseconds.

15.9.1.9 Local Time

Conversion from UTC to local time is defined by

\[\text{LocalTime}(t) = t + \text{LocalTZA} + \text{DaylightSavingTA}(t) \]

Conversion from local time to UTC is defined by

\[\text{UTC}(t) = t - \text{LocalTZA} - \text{DaylightSavingTA}(t - \text{LocalTZA}) \]

Note that UTC(LocalTime(t)) is not necessarily always equal to t.

15.9.1.10 Hours, Minutes, Second, and Milliseconds

The following functions are useful in decomposing time values:

\[\begin{align*}
\text{HourFromTime}(t) &= \text{floor}(t / \text{msPerHour}) \mod \text{HoursPerDay} \\
\text{MinFromTime}(t) &= \text{floor}(t / \text{msPerMinute}) \mod \text{MinutesPerHour} \\
\text{SecFromTime}(t) &= \text{floor}(t / \text{msPerSecond}) \mod \text{SecondsPerMinute} \\
\text{msFromTime}(t) &= t \mod \text{msPerSecond}
\end{align*} \]

where

\[\begin{align*}
\text{HoursPerDay} &= 24 \\
\text{MinutesPerHour} &= 60 \\
\text{SecondsPerMinute} &= 60 \\
\text{msPerSecond} &= 1000 \\
\text{msPerMinute} &= 60000 = \text{msPerSecond} \times \text{SecondsPerMinute} \\
\text{msPerHour} &= 3600000 = \text{msPerMinute} \times \text{MinutesPerHour}
\end{align*} \]

15.9.1.11 MakeTime (hour, min, sec, ms)

The operator MakeTime calculates a number of milliseconds from its four arguments, which must be ECMAScript Number values. This operator functions as follows:

1. If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.
2. Let h be ToInteger(hour).
3. Let m be ToInteger(min).
4. Let s be ToInteger(sec).
5. Let milli be ToInteger(ms).
6. Let t be \(h \times \text{msPerHour} + m \times \text{msPerMinute} + s \times \text{msPerSecond} + \text{milli} \), performing the arithmetic according to IEEE 754 rules (that is, as if using the ECMAScript operators + and *).
7. Return t.
15.9.1.12 MakeDay (year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be ECMAScript Number values. This operator functions as follows:

1. If year is not finite or month is not finite or date is not finite, return NaN.
2. Let y be ToInteger(year).
3. Let m be ToInteger(month).
4. Let dt be ToInteger(date).
5. Let ym be y + floor(m / 12).
6. Let mn be m modulo 12.
7. Find a value t such that YearFromTime(t) == ym and MonthFromTime(t) == mn and DateFromTime(t) == 1; but if this is not possible (because some argument is out of range), return NaN.
8. Return Day(t) + dt − 1.

15.9.1.13 MakeDate (day, time)

The operator MakeDate calculates a number of milliseconds from its two arguments, which must be ECMAScript Number values. This operator functions as follows:

1. If day is not finite or time is not finite, return NaN.
2. Return day × msPerDay + time.

15.9.1.14 TimeClip (time)

The operator TimeClip calculates a number of milliseconds from its argument, which must be an ECMAScript Number value. This operator functions as follows:

1. If time is not finite, return NaN.
2. If abs(time) > 8.64 x 10^15, return NaN.
3. Return an implementation-dependent choice of either ToInteger(time) or ToInteger(time) + (+0). (Adding a positive zero converts −0 to +0.)

NOTE The point of step 3 is that an implementation is permitted a choice of internal representations of time values, for example as a 64-bit signed integer or as a 64-bit floating-point value. Depending on the implementation, this internal representation may or may not distinguish −0 and +0.

15.9.1.15 Date Time String Format

ECMAScript defines a string interchange format for date-times based upon a simplification of the ISO 8601 Extended Format. The format is as follows: YYYY-MM-DDTHH:mm:ss.sssZ

Where the fields are as follows:

- **YYYY** is the decimal digits of the year 0000 to 9999 in the Gregorian calendar.
- **MM** is the month of the year from 01 (January) to 12 (December).
- **DD** is the day of the month from 01 to 31.
- **T** appears literally in the string, to indicate the beginning of the time element.
- **HH** is the number of complete hours that have passed since midnight as two decimal digits from 00 to 24.
- **mm** is the number of complete minutes since the start of the hour as two decimal digits from 00 to 59.
- **ss** is the number of complete seconds since the start of the minute as two decimal digits from 00 to 59.
- **."** (dot) appears literally in the string.
sss is the number of complete milliseconds since the start of the second as three decimal digits.
Z is the time zone offset specified as “Z” (for UTC) or either “+” or “-” followed by a time expression HH:mm

This format includes date-only forms:

YYYY
YYYY-MM
YYYY-MM-DD

It also includes “date-time” forms that consist of one of the above date-only forms immediately followed by one of the following time forms with an optional time zone offset appended:

THH:mm
THH:mm:ss
THH:mm:ss.sss

All numbers must be base 10. If the MM or DD fields are absent “01” is used as the value. If the HH, mm, or ss fields are absent “00” is used as the value and the value of an absent sss field is “000”. If the time zone offset is absent, the date-time is in interpreted as a local time.

Illegal values (out-of-bounds as well as syntax errors) in a format string means that the format string is not a valid instance of this format.

NOTE 1 As every day both starts and ends with midnight, the two notations 00:00 and 24:00 are available to distinguish the two midnights that can be associated with one date. This means that the following two notations refer to exactly the same point in time: 1995-02-04T24:00 and 1995-02-05T00:00

NOTE 2 There exists no international standard that specifies abbreviations for civil time zones like CET, EST, etc. and sometimes the same abbreviation is even used for two very different time zones. For this reason, ISO 8601 and this format specifies numeric representations of date and time.

15.9.1.15.1 Extended years

ECMAScript requires the ability to specify 6 digit years (extended years); approximately 285,426 years, either forward or backward, from 01 January, 1970 UTC. To represent years before 0 or after 9999, ISO 8601 permits the expansion of the year representation, but only by prior agreement between the sender and the receiver. In the simplified ECMAScript format such an expanded year representation shall have 2 extra year digits and is always prefixed with a + or – sign. The year 0 is considered positive and hence prefixed with a + sign.

NOTE Examples of extended years:

-283457-03-21T15:00:59.008Z 283458 B.C.
-000001-01-01T00:00:00Z 2 B.C.
+000000-01-01T00:00:00Z 1 B.C.
+000001-01-01T00:00:00Z 1 A.D.
+001970-01-01T00:00:00Z 1970 A.D.
+002009-12-15T00:00:00Z 2009 A.D.
+287396-10-12T08:59:00.992Z 287396 A.D.

15.9.2 The Date Constructor Called as a Function

When Date is called as a function rather than as a constructor, it returns a String representing the current time (UTC).

NOTE The function call Date(...) is not equivalent to the object creation expression new Date(...) with the same arguments.
15.9.2.1 Date ([year [, month [, date [, hours [, minutes [, seconds [, ms]]]]]]])

All of the arguments are optional; any arguments supplied are accepted but are completely ignored. A String is created and returned as if by the expression (new Date()).toString() where Date is the standard built-in constructor with that name and toString is the standard built-in method Date.prototype.toString.

15.9.3 The Date Constructor

When Date is called as part of a new expression, it is a constructor: it initialises the newly created object.

15.9.3.1 new Date (year, month [, date [, hours [, minutes [, seconds [, ms]]]]]])

When Date is called with two to seven arguments, it computes the date from year, month, and (optionally) date, hours, minutes, seconds and ms.

The [[Prototype]] internal property of the newly constructed object is set to the original Date prototype object, the one that is the initial value of Date.prototype (15.9.4.1).

The newly constructed object has a [[NativeBrand]] internal property whose value is NativeDate.

The [[Extensible]] internal property of the newly constructed object is set to true.

The [[PrimitiveValue]] internal property of the newly constructed object is set as follows:

1. Let y be ToNumber(year).
2. ReturnIfAbrupt(y).
3. Let m be ToNumber(month).
4. ReturnIfAbrupt(m).
5. If date is supplied then let dt be ToNumber(date); else let dt be 1.
6. ReturnIfAbrupt(dt).
7. If hours is supplied then let h be ToNumber(hours); else let h be 0.
8. ReturnIfAbrupt(h).
9. If minutes is supplied then let min be ToNumber(minutes); else let min be 0.
10. ReturnIfAbrupt(min).
11. If seconds is supplied then let s be ToNumber(seconds); else let s be 0.
12. ReturnIfAbrupt(s).
13. If ms is supplied then let milli be ToNumber(ms); else let milli be 0.
14. ReturnIfAbrupt(milli).
15. If y is not NaN and 0 ≤ ToInteger(y) ≤ 99, then let yr be 1900+ToInteger(y); otherwise, let yr be y.
16. Let finalDate be MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli)).
17. Set the [[PrimitiveValue]] internal property of the newly constructed object to TimeClip(UTC(finalDate)).

15.9.3.2 new Date (value)

The [[Prototype]] internal property of the newly constructed object is set to the original Date prototype object, the one that is the initial value of Date.prototype (15.9.4.1).

The newly constructed object has a [[NativeBrand]] internal property whose value is NativeDate.

The [[Extensible]] internal property of the newly constructed object is set to true.

The [[PrimitiveValue]] internal property of the newly constructed object is set as follows:

1. Let v be ToPrimitive(value).
2. If Type(v) is String, then
 a. Parse v as a date, in exactly the same manner as for the parse method (15.9.4.2); let V be the time value for this date. If the parse resulted in an abrupt completion, return the Completion Record.
3. Else, let V be ToNumber(v).
4. ReturnIfAbrupt(V).
5. Set the [[PrimitiveValue]] internal property of the newly constructed object to TimeClip(V).
6. Return the newly constructed object.

15.9.3.3 new Date ()

The [[Prototype]] internal property of the newly constructed object is set to the original Date prototype object, the one that is the initial value of Date.prototype (15.9.4.1).

The newly constructed object has a [[NativeBrand]] internal property whose value is NativeDate.

The [[Extensible]] internal property of the newly constructed object is set to true.

The [[PrimitiveValue]] internal property of the newly constructed object is set to the time value (UTC) identifying the current time.

15.9.4 Properties of the Date Constructor

The value of the [[Prototype]] internal property of the Date constructor is the Function prototype object (15.3.4).

Besides the internal properties and the length property (whose value is 7), the Date constructor has the following properties:

15.9.4.1 Date.prototype

The initial value of Date.prototype is the built-in Date prototype object (15.9.5).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.9.4.2 Date.parse (string)

The parse function applies the ToString operator to its argument. If ToString results in an abrupt completion the Completion Record is immediately returned. Otherwise, parse interprets the resulting String as a date and time; it returns a Number, the UTC time value corresponding to the date and time. The String may be interpreted as a local time, a UTC time, or a time in some other time zone, depending on the contents of the String. The function first attempts to parse the format of the String according to the rules called out in Date Time String Format (15.9.1.15). If the String does not conform to that format the function may fall back to any implementation-specific heuristics or implementation-specific date formats. Unrecognisable Strings or dates containing illegal element values in the format String shall cause Date.parse to return NaN.

If x is any Date object whose milliseconds amount is zero within a particular implementation of ECMAScript, then all of the following expressions should produce the same numeric value in that implementation, if all the properties referenced have their initial values:

\[
\begin{align*}
&x\text{.valueOf()} \\
&\text{Date.parse(x.toString())} \\
&\text{Date.parse(x.toUTCString())} \\
&\text{Date.parse(x.toISOString())}
\end{align*}
\]

However, the expression

\[
\text{Date.parse(x.toLocaleString())}
\]

is not required to produce the same Number value as the preceding three expressions and, in general, the value produced by Date.parse is implementation-dependent when given any String value that does not conform to the Date Time String Format (15.9.1.15) and that could not be produced in that implementation by the toString or toUTCString method.
15.9.4.3 Date.UTC (year, month [, date [, hours [, minutes [, seconds [, ms]]]]])

When the `Date.UTC` function is called with fewer than two arguments, the behaviour is implementation-dependent. When the `Date.UTC` function is called with two to seven arguments, it computes the date from `year`, `month` and (optionally) `date`, `hours`, `minutes`, `seconds` and `ms`. The following steps are taken:

1. Let `y` be `ToNumber(year)`.
2. ReturnIfAbrupt(`y`).
3. Let `m` be `ToNumber(month)`.
4. ReturnIfAbrupt(`m`).
5. If `date` is supplied then let `dt` be `ToNumber(date)`; else let `dt` be 1.
6. ReturnIfAbrupt(`dt`).
7. If `hours` is supplied then let `h` be `ToNumber(hours)`; else let `h` be 0.
8. ReturnIfAbrupt(`h`).
9. If `minutes` is supplied then let `min` be `ToNumber(minutes)`; else let `min` be 0.
10. ReturnIfAbrupt(`min`).
11. If `seconds` is supplied then let `s` be `ToNumber(seconds)`; else let `s` be 0.
12. ReturnIfAbrupt(`s`).
13. If `ms` is supplied then let `milli` be `ToNumber(ms)`; else let `milli` be 0.
14. ReturnIfAbrupt(`milli`).
15. If `y` is not `NaN` and `0 ≤ ToInteger(y) ≤ 99`, then let `yr` be `1900+ToInteger(y)`; otherwise, let `yr` be `y`.
16. Return TimeClip(MakeDate(MakeDay(`yr`, `m`, `dt`), MakeTime(`h`, `min`, `s`, `milli`))).

The `length` property of the `UTC` function is 7.

NOTE The `UTC` function differs from the `Date` constructor in two ways: it returns a time value as a Number, rather than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.9.4.4 Date.now ()

The `now` function return a Number value that is the time value designating the UTC date and time of the occurrence of the call to `now`.

15.9.5 Properties of the Date Prototype Object

The Date prototype object is itself a Date object and has a `[[NativeBrand]]` internal property whose value is `NativeDate`. Its `[[PrimitiveValue]]` is `NaN`.

The value of the `[[Prototype]]` internal property of the Date prototype object is the standard built-in Object prototype object (15.2.4).

In following descriptions of functions that are properties of the Date prototype object, the phrase “this Date object” refers to the object that is the `this` value for the invocation of the function. Unless explicitly noted otherwise, none of these functions are generic; a `TypeError` exception is thrown if the `this` value is not an object with a `[[NativeBrand]]` internal property whose value is `NativeDate`. Also, the phrase “this time value” refers to the Number value for the time represented by this Date object, that is, the value of the `[[PrimitiveValue]]` internal property of this Date object.

15.9.5.1 Date.prototype.constructor

The initial value of `Date.prototype.constructor` is the built-in `Date` constructor.

15.9.5.2 Date.prototype.toString ()

This function returns a String value. If this time value is `NaN`, the String value is "Invalid Date", otherwise the contents of the String are implementation-dependent, but are intended to represent the Date in the current time zone in a convenient, human-readable form.
NOTE For any Date value \(d \) whose milliseconds amount is zero, the result of `Date.parse(d.toString())` is equal to \(d.valueOf() \). See 15.9.4.2.

15.9.5.3 `Date.prototype.toDateString()`

This function returns a String value. The contents of the String are implementation-dependent, but are intended to represent the “date” portion of the Date in the current time zone in a convenient, human-readable form.

15.9.5.4 `Date.prototype.toTimeString()`

This function returns a String value. The contents of the String are implementation-dependent, but are intended to represent the “time” portion of the Date in the current time zone in a convenient, human-readable form.

15.9.5.5 `Date.prototype.toLocaleString()`

This function returns a String value. The contents of the String are implementation-dependent, but are intended to represent the Date in the current time zone in a convenient, human-readable form that corresponds to the conventions of the host environment’s current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this parameter position for anything else.

15.9.5.6 `Date.prototype.toLocaleDateString()`

This function returns a String value. The contents of the String are implementation-dependent, but are intended to represent the “date” portion of the Date in the current time zone in a convenient, human-readable form that corresponds to the conventions of the host environment’s current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this parameter position for anything else.

15.9.5.7 `Date.prototype.toLocaleTimeString()`

This function returns a String value. The contents of the String are implementation-dependent, but are intended to represent the “time” portion of the Date in the current time zone in a convenient, human-readable form that corresponds to the conventions of the host environment’s current locale.

NOTE The first parameter to this function is likely to be used in a future version of this standard; it is recommended that implementations do not use this parameter position for anything else.

15.9.5.8 `Date.prototype.valueOf()`

The `valueOf` function returns a Number, which is this time value.

15.9.5.9 `Date.prototype.getTime()`

1. Return this time value.

15.9.5.10 `Date.prototype.getFullYear()`

1. Let \(t \) be this time value.
2. ReturnIfAbrupt(t).
3. If \(t \) is `NaN`, return `NaN`.
4. Return YearFromTime(LocalTime(t)).
15.9.5.11 Date.prototype.getUTCFullYear ()
1. Let t be this time value.
2. ReturnIfAbrupt(t).
3. If t is NaN, return NaN.
4. Return YearFromTime(t).

15.9.5.12 Date.prototype.getMonth ()
1. Let t be this time value.
2. ReturnIfAbrupt(t).
3. If t is NaN, return NaN.
4. Return MonthFromTime(LocalTime(t)).

15.9.5.13 Date.prototype.getUTCMonth ()
1. Let t be this time value.
2. ReturnIfAbrupt(t).
3. If t is NaN, return NaN.
4. Return MonthFromTime(t).

15.9.5.14 Date.prototype.getDate ()
1. Let t be this time value.
2. ReturnIfAbrupt(t).
3. If t is NaN, return NaN.
4. Return DateFromTime(LocalTime(t)).

15.9.5.15 Date.prototype.getUTCDate ()
1. Let t be this time value.
2. ReturnIfAbrupt(t).
3. If t is NaN, return NaN.
4. Return DateFromTime(t).

15.9.5.16 Date.prototype.getDay ()
1. Let t be this time value.
2. ReturnIfAbrupt(t).
3. If t is NaN, return NaN.
4. Return WeekDay(LocalTime(t)).

15.9.5.17 Date.prototype.getUTCDay ()
1. Let t be this time value.
2. ReturnIfAbrupt(t).
3. If t is NaN, return NaN.
4. Return WeekDay(t).

15.9.5.18 Date.prototype.getHours ()
1. Let t be this time value.
2. ReturnIfAbrupt(t).
3. If t is NaN, return NaN.
4. Return HourFromTime(LocalTime(t)).

15.9.5.19 Date.prototype.getUTCHours ()
1. Let t be this time value.
2. ReturnIfAbrupt(t).
3. If \(t \) is \(\text{NaN} \), return \(\text{NaN} \).
4. Return HourFromTime\((t)\).

15.9.5.20 Date.prototype.getMinutes ()

1. Let \(t \) be this time value.
2. ReturnIfAbrupt\((t)\).
3. If \(t \) is \(\text{NaN} \), return \(\text{NaN} \).
4. Return MinFromTime\((\text{LocalTime}(t))\).

15.9.5.21 Date.prototype.getUTCMinutes ()

1. Let \(t \) be this time value.
2. ReturnIfAbrupt\((t)\).
3. If \(t \) is \(\text{NaN} \), return \(\text{NaN} \).
4. Return MinFromTime\((t)\).

15.9.5.22 Date.prototype.getSeconds ()

1. Let \(t \) be this time value.
2. ReturnIfAbrupt\((t)\).
3. If \(t \) is \(\text{NaN} \), return \(\text{NaN} \).
4. Return SecFromTime\((\text{LocalTime}(t))\).

15.9.5.23 Date.prototype.getUTCSeconds ()

1. Let \(t \) be this time value.
2. ReturnIfAbrupt\((t)\).
3. If \(t \) is \(\text{NaN} \), return \(\text{NaN} \).
4. Return SecFromTime\((t)\).

15.9.5.24 Date.prototype.getMilliseconds ()

1. Let \(t \) be this time value.
2. ReturnIfAbrupt\((t)\).
3. If \(t \) is \(\text{NaN} \), return \(\text{NaN} \).
4. Return msFromTime\((\text{LocalTime}(t))\).

15.9.5.25 Date.prototype.getUTCMilliseconds ()

1. Let \(t \) be this time value.
2. ReturnIfAbrupt\((t)\).
3. If \(t \) is \(\text{NaN} \), return \(\text{NaN} \).
4. Return msFromTime\((t)\).

15.9.5.26 Date.prototype.getTimezoneOffset ()

Returns the difference between local time and UTC time in minutes.

1. Let \(t \) be this time value.
2. ReturnIfAbrupt\((t)\).
3. If \(t \) is \(\text{NaN} \), return \(\text{NaN} \).
4. Return \((t - \text{LocalTime}(t)) / \text{msPerMinute} \).

15.9.5.27 Date.prototype.setTime (time)

1. Let \(v \) be TimeClip(ToNumber\((\text{time}))\).
2. ReturnIfAbrupt\((v)\).
3. Set the [[PrimitiveValue]] internal property of this Date object to \(v \).
4. Return \(v \).
15.9.5.28 Date.prototype.setMilliseconds (ms)

1. Let \(t \) be the result of LocalTime(this time value).
2. Let \(time \) be `MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), ToNumber(ms))`.
3. Let \(u \) be `TimeClip(UTC(MakeDate(Day(t), time)))`.
4. Set the `[[PrimitiveValue]]` internal property of this Date object to \(u \).
5. Return \(u \).

15.9.5.29 Date.prototype.setUTCMilliseconds (ms)

1. Let \(t \) be this time value.
2. ReturnIfAbrupt(\(t \)).
3. Let \(time \) be `MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), ToNumber(ms))`.
4. Let \(v \) be `TimeClip(MakeDate(Day(t), time))`.
5. Set the `[[PrimitiveValue]]` internal property of this Date object to \(v \).
6. Return \(v \).

15.9.5.30 Date.prototype.setSeconds (sec [, ms])

If \(ms \) is not specified, this behaves as if \(ms \) were specified with the value `getMilliseconds()`.

1. Let \(t \) be the result of LocalTime(this time value).
2. Let \(s \) be `ToNumber(sec)`.
3. If \(ms \) is not specified, then let \(milli \) be `msFromTime(t)`; otherwise, let \(milli \) be `ToNumber(ms)`.
4. Let \(date \) be `MakeDate(Day(t), MakeTime(HourFromTime(t), MinFromTime(t), s, milli))`.
5. Let \(u \) be `TimeClip(UTC(date))`.
6. Set the `[[PrimitiveValue]]` internal property of this Date object to \(u \).
7. Return \(u \).

The `length` property of the `setSeconds` method is 2.

15.9.5.31 Date.prototype.setUTCSeconds (sec [, ms])

If \(ms \) is not specified, this behaves as if \(ms \) were specified with the value `getUTCMilliseconds()`.

1. Let \(t \) be this time value.
2. ReturnIfAbrupt(\(t \)).
3. Let \(s \) be `ToNumber(sec)`.
4. If \(ms \) is not specified, then let \(milli \) be `msFromTime(t)`; otherwise, let \(milli \) be `ToNumber(ms)`.
5. Let \(date \) be `MakeDate(Day(t), MakeTime(HourFromTime(t), MinFromTime(t), s, milli))`.
6. Let \(v \) be `TimeClip(date)`.
7. Set the `[[PrimitiveValue]]` internal property of this Date object to \(v \).
8. Return \(v \).

The `length` property of the `setUTCSeconds` method is 2.

15.9.5.32 Date.prototype.setMinutes (min [, sec [, ms]])

If \(sec \) is not specified, this behaves as if \(sec \) were specified with the value `getSeconds()`.

If \(ms \) is not specified, this behaves as if \(ms \) were specified with the value `getMilliseconds()`.

1. Let \(t \) be the result of LocalTime(this time value).
2. Let \(m \) be `ToNumber(min)`.
3. If \(sec \) is not specified, then let \(s \) be `SecFromTime(t)`; otherwise, let \(s \) be `ToNumber(sec)`.
4. If \(ms \) is not specified, then let \(milli \) be `msFromTime(t)`; otherwise, let \(milli \) be `ToNumber(ms)`.
5. Let \(date \) be `MakeDate(Day(t), MakeTime(HourFromTime(t), m, s, milli))`.
6. Let \(u \) be `TimeClip(UTC(date))`.
7. Set the `[[PrimitiveValue]]` internal property of this Date object to \(u \).
8. Return u.

The length property of the setMinutes method is 3.

15.9.5.33 Date.prototype.setUTCMinutes (min [, sec [, ms]])

If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds().

If ms is not specified, this function behaves as if ms were specified with the value return by getUTCMilliseconds().

1. Let t be this time value.
2. ReturnIfAbrupt(t).
3. Let m be ToNumber(min).
4. If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).
5. If ms is not specified, then let $milli$ be msFromTime(t); otherwise, let $milli$ be ToNumber(ms).
6. Let $date$ be MakeDate(Day(t), MakeTime(HourFromTime(t), m, s, $milli$)).
7. Let v be TimeClip(UTC($date$)).
8. Set the [[PrimitiveValue]] internal property of this Date object to v.

The length property of the setUTCMinutes method is 3.

15.9.5.34 Date.prototype.setHours (hour [, min [, sec [, ms]]])

If min is not specified, this behaves as if min were specified with the value getMinutes().

If sec is not specified, this behaves as if sec were specified with the value getSeconds().

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds().

1. Let t be the result of LocalTime(this time value).
2. Let h be ToNumber(hour).
3. If min is not specified, then let m be MinFromTime(t); otherwise, let m be ToNumber(min).
4. If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).
5. If ms is not specified, then let $milli$ be msFromTime(t); otherwise, let $milli$ be ToNumber(ms).
6. Let $date$ be MakeDate(Day(t), MakeTime(h, m, s, $milli$)).
7. Let u be TimeClip(UTC($date$)).
8. Set the [[PrimitiveValue]] internal property of this Date object to u.
9. Return u.

The length property of the setHours method is 4.

15.9.5.35 Date.prototype.setUTCHours (hour [, min [, sec [, ms]]])

If min is not specified, this behaves as if min were specified with the value getUTCMinutes().

If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds().

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds().

1. Let t be this time value.
2. ReturnIfAbrupt(t).
3. Let h be ToNumber(hour).
4. If min is not specified, then let m be MinFromTime(t); otherwise, let m be ToNumber(min).
5. If sec is not specified, then let s be SecFromTime(t); otherwise, let s be ToNumber(sec).
6. If ms is not specified, then let $milli$ be msFromTime(t); otherwise, let $milli$ be ToNumber(ms).
7. Let $newDate$ be MakeDate(Day(t), MakeTime(h, m, s, $milli$)).
Let \(v \) be TimeClip(newDate).

Set the [[PrimitiveValue]] internal property of this Date object to \(v \).

Return \(v \).

The `length` property of the `setUTCHours` method is 4.

15.9.5.36 Date.prototype.setDate (date)

1. Let \(t \) be the result of LocalTime(this time value).
2. Let \(dt \) be ToNumber(date).
3. Let newDate be MakeDate(MakeDay(YearFromTime(t), MonthFromTime(t), dt), TimeWithinDay(t)).
4. Let \(u \) be TimeClip(UTC(newDate)).
5. Set the [[PrimitiveValue]] internal property of this Date object to \(u \).
6. Return \(u \).

15.9.5.37 Date.prototype.setUTCDate (date)

1. Let \(t \) be this time value.
2. ReturnIfAbrupt(t).
3. Let \(dt \) be ToNumber(date).
4. Let newDate be MakeDate(MakeDay(YearFromTime(t), MonthFromTime(t), dt), TimeWithinDay(t)).
5. Let \(v \) be TimeClip(newDate).
6. Set the [[PrimitiveValue]] internal property of this Date object to \(v \).
7. Return \(v \).

15.9.5.38 Date.prototype.setMonth (month [, date])

If date is not specified, this behaves as if date were specified with the value `getDay()`.

1. Let \(t \) be the result of LocalTime(this time value).
2. Let \(m \) be ToNumber(month).
3. If date is not specified, then let \(dt \) be DateFromTime(t); otherwise, let \(dt \) be ToNumber(date).
4. Let newDate be MakeDate(MakeDay(YearFromTime(t), m, dt), TimeWithinDay(t)).
5. Let \(u \) be TimeClip(UTC(newDate)).
6. Set the [[PrimitiveValue]] internal property of this Date object to \(u \).
7. Return \(u \).

The `length` property of the `setMonth` method is 2.

15.9.5.39 Date.prototype.setUTCMonth (month [, date])

If date is not specified, this behaves as if date were specified with the value `getUTCDate()`.

1. Let \(t \) be this time value.
2. ReturnIfAbrupt(t).
3. Let \(m \) be ToNumber(month).
4. If date is not specified, then let \(dt \) be DateFromTime(t); otherwise, let \(dt \) be ToNumber(date).
5. Let newDate be MakeDate(MakeDay(YearFromTime(t), m, dt), TimeWithinDay(t)).
6. Let \(v \) be TimeClip(newDate).
7. Set the [[PrimitiveValue]] internal property of this Date object to \(v \).
8. Return \(v \).

The `length` property of the `setUTCMonth` method is 2.

15.9.5.40 Date.prototype.setFullYear (year [, month [, date]])

If month is not specified, this behaves as if month were specified with the value `getMonth()`.

If date is not specified, this behaves as if date were specified with the value `getDate()`.
1. Let t be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.
2. Let y be ToNumber(year).
3. If month is not specified, then let m be MonthFromTime(t); otherwise, let m be ToNumber(month).
4. If date is not specified, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).
5. Let newDate be MakeDate(MakeDay(y, m, dt), TimeWithinDay(t)).
6. Let u be TimeClip(UTC(newDate)).
7. Set the [[PrimitiveValue]] internal property of this Date object to u.
8. Return u.

The length property of the setFullYear method is 3.

15.9.5.41 Date.prototype.setUTCFullYear (year [, month [, date]])
If month is not specified, this behaves as if month were specified with the value getUTCMonth().
If date is not specified, this behaves as if date were specified with the value getUTCDate().

1. Let t be this time value; but if this time value is NaN, let t be +0.
2. ReturnIfAbrupt(t).
3. Let y be ToNumber(year).
4. If month is not specified, then let m be MonthFromTime(t); otherwise, let m be ToNumber(month).
5. If date is not specified, then let dt be DateFromTime(t); otherwise, let dt be ToNumber(date).
6. Let newDate be MakeDate(MakeDay(y, m, dt), TimeWithinDay(t)).
7. Let v be TimeClip(newDate).
8. Set the [[PrimitiveValue]] internal property of this Date object to v.

The length property of the setUTCFullYear method is 3.

15.9.5.42 Date.prototype.toUTCString ()
This function returns a String value. The contents of the String are implementation-dependent, but are intended to represent the Date in a convenient, human-readable form in UTC.

NOTE The intent is to produce a String representation of a date that is more readable than the format specified in 15.9.1.15. It is not essential that the chosen format be unambiguous or easily machine parsable. If an implementation does not have a preferred human-readable format it is recommended to use the format defined in 15.9.1.15 but with a space rather than a “T” used to separate the date and time elements.

15.9.5.43 Date.prototype.toISOString ()
This function returns a String value represent the instance in time represented by this Date object. The format of the String is the Date Time string format defined in 15.9.1.15. All fields are present in the String. The time zone is always UTC, denoted by the suffix Z. If the time value of this object is not a finite Number a RangeException exception is thrown.

15.9.5.44 Date.prototype.toJSON (key)
This function provides a String representation of a Date object for use by JSON.stringify (15.12.3).
When the toJSON method is called with argument key, the following steps are taken:
1. Let O be the result of calling ToObject, giving it the this value as its argument.
2. Let tv be ToPrimitive(O, hint Number).
3. If tv is a Number and is not finite, return null.
4. Let toISO be the result of calling the [[Get]] internal method of O with argument "toISOString".
5. ReturnIfAbrupt(toISO).
6. If IsCallable(toISO) is false, throw a TypeError exception.
7. Return the result of calling the [[Call]] internal method of toISO with O as the this value and an empty argument list.

NOTE 1 The argument is ignored.

NOTE 2 The toJSON function is intentionally generic; it does not require that its this value be a Date object. Therefore, it can be transferred to other kinds of objects for use as a method. However, it does require that any such object have a toISOString method. An object is free to use the argument key to filter its stringification.

15.9.6 Properties of Date Instances

Date instances inherit properties from the Date prototype object and have a [[NativeBrand]] internal whose value is NativeDate. Date instances also have a [[PrimitiveValue]] internal property.

The [[PrimitiveValue]] internal property is time value represented by this Date object.

15.10 RegExp (Regular Expression) Objects

A RegExp object contains a regular expression and the associated flags.

NOTE The form and functionality of regular expressions is modelled after the regular expression facility in the Perl 5 programming language.

15.10.1 Patterns

The RegExp constructor applies the following grammar to the input pattern String. An error occurs if the grammar cannot interpret the String as an expansion of Pattern.

Syntax

```
Pattern ::= Disjunction

Disjunction ::= Alternative Alternative | Disjunction

Alternative ::= [empty] Alternative Term

Term ::= Assertion Atom Atom Quantifier

Assertion ::= ^ $ \ b \ B ( ? = Disjunction ) ( ? ! Disjunction )

Quantifier ::= QuantifierPrefix QuantifierPrefix ?
```
QuantifierPrefix ::
 *
 +
 ?
 { DecimalDigits }
 { DecimalDigits , }
 { DecimalDigits , DecimalDigits }

Atom ::
 PatternCharacter
 .
 \ AtomEscape
 CharacterClass
 (Disjunction)
 (? : Disjunction)

PatternCharacter ::
 SourceCharacter but not one of
 ^ $ \ . * + ? () [] { } |

AtomEscape ::
 DecimalEscape
 CharacterEscape
 CharacterClassEscape

CharacterEscape ::
 ControlEscape
c ControlLetter
 HexEscapeSequence
 UnicodeEscapeSequence
 IdentityEscape

ControlEscape :: one of
 f n r t v

ControlLetter :: one of
 a b c d e f g h i j k l m n o p q r s t u v w x y z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

IdentityEscape ::
 SourceCharacter but not IdentifierPart
 <ZWJ>
 <ZWNJ>

DecimalEscape ::
 DecimalIntegerLiteral [lookahead \ DecimalDigit]

CharacterClassEscape :: one of
 d D s S w W

CharacterClass ::
 [[lookahead \ ^] ClassRanges]
 [^ ClassRanges]

ClassRanges ::
 [empty]
 NonemptyClassRanges
NonemptyClassRanges ::
 ClassAtom
 ClassAtom NonemptyClassRangesNoDash
 ClassAtom - ClassAtom ClassRanges

NonemptyClassRangesNoDash ::
 ClassAtom
 ClassAtomNoDash NonemptyClassRangesNoDash
 ClassAtomNoDash - ClassAtom ClassRanges

ClassAtom ::
 -
 ClassAtomNoDash

ClassAtomNoDash ::
 SourceCharacter but not one of \ or] or -
 \ ClassEscape

ClassEscape ::
 DecimalEscape
 b
 CharacterEscape
 CharacterClassEscape

15.10.2 Pattern Semantics

A regular expression pattern is converted into an internal procedure using the process described below. An implementation is encouraged to use more efficient algorithms than the ones listed below, as long as the results are the same. The internal procedure is used as the value of a RegExp object's [[Match]] internal property.

15.10.2.1 Notation

The descriptions below use the following variables:

- Input is the String being matched by the regular expression pattern. The notation input[n] means the nth character of input, where n can range between 0 (inclusive) and InputLength (exclusive).
- InputLength is the number of characters in the Input String.
- NcapturingParens is the total number of left capturing parentheses (i.e. the total number of times the Atom :: (Disjunction) production is expanded) in the pattern. A left capturing parenthesis is any pattern character that is matched by the (terminal of the Atom :: (Disjunction) production.
- IgnoreCase is the setting of the RegExp object's ignoreCase property.
- Multiline is the setting of the RegExp object's multiline property.

Furthermore, the descriptions below use the following internal data structures:

- A CharSet is a mathematical set of characters.
- A State is an ordered pair (endIndex, captures) where endIndex is an integer and captures is an internal array of NcapturingParens values. States are used to represent partial match states in the regular expression matching algorithms. The endIndex is one plus the index of the last input character matched so far by the pattern, while captures holds the results of capturing parentheses. The nth element of captures is either a String that represents the value obtained by the nth set of capturing parentheses or undefined if the nth set of capturing parentheses hasn't been reached yet. Due to backtracking, many States may be in use at any time during the matching process.
- A MatchResult is either a State or the special token failure that indicates that the match failed.
- A Continuation procedure is an internal closure (i.e. an internal procedure with some arguments already bound to values) that takes one State argument and returns a MatchResult result.
internal closure references variables bound in the function that creates the closure, the closure uses the values that these variables had at the time the closure was created. The `Continuation` attempts to match the remaining portion (specified by the closure's already-bound arguments) of the pattern against the input String, starting at the intermediate state given by its `State` argument. If the match succeeds, the `Continuation` returns the final `State` that it reached; if the match fails, the `Continuation` returns `failure`.

- A Matcher procedure is an internal closure that takes two arguments -- a `State` and a `Continuation` -- and returns a `MatchResult` result. A Matcher attempts to match a middle subpattern (specified by the closure's already-bound arguments) of the pattern against the input String, starting at the intermediate state given by its `State` argument. The `Continuation` argument should be a closure that matches the rest of the pattern. After matching the subpattern of a pattern to obtain a new `State`, the Matcher then calls `Continuation` on that new `State` to test if the rest of the pattern can match as well. If it can, the Matcher returns the `State` returned by `Continuation`; if not, the Matcher may try different choices at its choice points, repeatedly calling `Continuation` until it either succeeds or all possibilities have been exhausted.

- An AssertionTester procedure is an internal closure that takes a `State` argument and returns a Boolean result. The assertion tester tests a specific condition (specified by the closure's already-bound arguments) against the current place in the input String and returns `true` if the condition matched or `false` if not.

- An EscapeValue is either a character or an integer. An EscapeValue is used to denote the interpretation of a DecimalEscape escape sequence: a character `ch` means that the escape sequence is interpreted as the character `ch`, while an integer `n` means that the escape sequence is interpreted as a backreference to the `n`th set of capturing parentheses.

15.10.2.2 Pattern

The production `Pattern :: Disjunction` evaluates as follows:

1. Evaluate `Disjunction` to obtain a Matcher `m`.
2. Return an internal closure that takes two arguments, a String `str` and an integer `index`, and performs the following:
 1. Let `Input` be the given String `str`. This variable will be used throughout the algorithms in 15.10.2.
 2. Let `InputLength` be the length of `Input`. This variable will be used throughout the algorithms in 15.10.2.
 3. Let `c` be a Continuation that always returns its `State` argument as a successful `MatchResult`.
 4. Let `cap` be an internal array of `NcapturingParens` `undefined` values, indexed 1 through `NcapturingParens`.
 5. Let `x` be the `State` (`index`, `cap`).
 6. Call `m(x, c)` and return its result.

NOTE: A Pattern evaluates ("compiles") to an internal procedure value. `RegExp.prototype.exec` can then apply this procedure to a String and an offset within the String to determine whether the pattern would match starting at exactly that offset within the String, and, if it does match, what the values of the capturing parentheses would be. The algorithms in 15.10.2 are designed so that compiling a pattern may throw a `SyntaxError` exception; on the other hand, once the pattern is successfully compiled, applying its result internal procedure to find a match in a String cannot throw an exception (except for any host-defined exceptions that can occur anywhere such as out-of-memory).

15.10.2.3 Disjunction

The production `Disjunction :: Alternative` evaluates by evaluating `Alternative` to obtain a Matcher and returning that Matcher.

The production `Disjunction :: Alternative | Disjunction` evaluates as follows:

1. Evaluate `Alternative` to obtain a Matcher `m1`.
2. Evaluate `Disjunction` to obtain a Matcher `m2`.
3. Return an internal Matcher closure that takes two arguments, a `State` `x` and a `Continuation` `c`, and performs the following:
1. Call \(m_1(x, c) \) and let \(r \) be its result.
2. If \(r \) isn’t \textit{failure}, return \(r \).
3. Call \(m_2(x, c) \) and return its result.

NOTE The | regular expression operator separates two alternatives. The pattern first tries to match the left \textit{Alternative} (followed by the sequel of the regular expression); if it fails, it tries to match the right \textit{Disjunction} (followed by the sequel of the regular expression). If the left \textit{Alternative}, the right \textit{Disjunction}, and the sequel all have choice points, all choices in the sequel are tried before moving on to the next choice in the left \textit{Alternative}. If choices in the left \textit{Alternative} are exhausted, the right \textit{Disjunction} is tried instead of the left \textit{Alternative}. Any capturing parentheses inside a portion of the pattern skipped by | produce \textit{undefined} values instead of Strings. Thus, for example,

```javascript
/a|ab/.exec("abc")
```
returns the result "a" and not "ab". Moreover,

```javascript
/( (a) | (ab) ) ( (c) | (bc) ) /.exec("abc")
```
returns the array

```javascript
[ "abc", "a", "a", undefined, "bc", undefined, "bc" ]
```
and not

```javascript
[ "abc", "ab", undefined, "ab", "c", "c", undefined ]
```

15.10.2.4 Alternative

The production \textit{Alternative} :: [empty] evaluates by returning a Matcher that takes two arguments, a State \(x \) and a Continuation \(c \), and returns the result of calling \(c(x) \).

The production \textit{Alternative} :: \textit{Alternative} \textit{Term} evaluates as follows:

1. Evaluate \textit{Alternative} to obtain a Matcher \(m_1 \).
2. Evaluate \textit{Term} to obtain a Matcher \(m_2 \).
3. Return an internal Matcher closure that takes two arguments, a State \(x \) and a Continuation \(c \), and performs the following:
 - 1. Create a Continuation \(d \) that takes a State argument \(y \) and returns the result of calling \(m_2(y, c) \).
 - 2. Call \(m_1(x, d) \) and return its result.

NOTE Consecutive \textit{Terms} try to simultaneously match consecutive portions of the input String. If the left \textit{Alternative}, the right \textit{Term}, and the sequel of the regular expression all have choice points, all choices in the sequel are tried before moving on to the next choice in the right \textit{Term}, and all choices in the right \textit{Term} are tried before moving on to the next choice in the left \textit{Alternative}.

15.10.2.5 Term

The production \textit{Term} :: \textit{Assertion} evaluates by returning an internal Matcher closure that takes two arguments, a State \(x \) and a Continuation \(c \), and performs the following:

1. Evaluate \textit{Assertion} to obtain an AssertionTester \(t \).
2. Call \(t(x) \) and let \(r \) be the resulting Boolean value.
3. If \(r \) is \textit{false}, return \textit{failure}.
4. Call \(c(x) \) and return its result.

The production \textit{Term} :: \textit{Atom} evaluates by evaluating \textit{Atom} to obtain a Matcher and returning that Matcher.

The production \textit{Term} :: \textit{Atom} \textit{Quantifier} evaluates as follows:

1. Evaluate \textit{Atom} to obtain a Matcher \(m \).
2. Evaluate \textit{Quantifier} to obtain the three results: an integer \(min \), an integer (or \(\infty \)) \(max \), and Boolean \textit{greedy}.
3. If \(max \) is finite and less than \(min \), then throw a \textit{SyntaxError} exception.
4. Let \textit{parenIndex} be the number of left capturing parentheses in the entire regular expression that occur to the left of this production expansion’s \textit{Term}. This is the total number of times the \textit{Atom} :: (\textit{Disjunction}) production is expanded prior to this production’s \textit{Term} plus the total number of \textit{Atom} :: (\textit{Disjunction}) productions enclosing this \textit{Term}.
5. Let parenCount be the number of left capturing parentheses in the expansion of this production's Atom. This is the total number of Atom :: (Disjunction) productions enclosed by this production's Atom.
6. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the following:

 1. Call RepeatMatcher(m, min, max, greedy, x, c, parenIndex, parenCount) and return its result.

The abstract operation RepeatMatcher takes eight parameters, a Matcher m, an integer min, an integer (or ∞) max, a Boolean greedy, a State x, a Continuation c, an integer parenIndex, and an integer parenCount, and performs the following:

1. If max is zero, then call c(x) and return its result.
2. Create an internal Continuation closure d that takes one State argument y and performs the following:

 1. If min is zero and y's endIndex is equal to x's endIndex, then return failure.
 2. If min is zero then let min2 be zero; otherwise let min2 be min – 1.
 3. If max is ∞, then let max2 be ∞; otherwise let max2 be max – 1.
 4. Call RepeatMatcher(m, min2, max2, greedy, y, c, parenIndex, parenCount) and return its result.
3. Let cap be a fresh copy of x's captures internal array.
4. For every integer k that satisfies parenIndex < k and k ≤ parenIndex+parenCount, set cap[k] to undefined.
5. Let e be x's endIndex.
6. Let xr be the State (e, cap).
7. If min is not zero, then call m(xr, d) and return its result.
8. If greedy is false, then
 a. Call c(x) and let z be its result.
 b. If z is not failure, return z.
 c. Call m(xr, d) and return its result.
9. Call m(xr, d) and let z be its result.
10. If z is not failure, return z.
11. Call c(x) and return its result.

NOTE 1 An Atom followed by a Quantifier is repeated the number of times specified by the Quantifier. A Quantifier can be non-greedy, in which case the Atom pattern is repeated as few times as possible while still matching the sequel, or it can be greedy, in which case the Atom pattern is repeated as many times as possible while still matching the sequel. The Atom pattern is repeated rather than the input String that it matches, so different repetitions of the Atom can match different input substrings.

NOTE 2 If the Atom and the sequel of the regular expression all have choice points, the Atom is first matched as many (or as few, if non-greedy) times as possible. All choices in the sequel are tried before moving on to the next choice in the last repetition of Atom. All choices in the last (n)th repetition of Atom are tried before moving on to the next choice in the next-to-last (n-1)th repetition of Atom; at which point it may turn out that more or fewer repetitions of Atom are now possible; these are exhausted (again, starting with either as few or as many as possible) before moving on to the next choice in the (n-1)th repetition of Atom and so on.

Compare

/a[a-z][2,4]/.exec("abcdefghi")
which returns "abedefg" with

/a[a-z][2,4]?/.exec("abcdefghi")
which returns "abc".

Consider also

/(aa|aaba|b|c)*/.exec("aabaac")
which, by the choice point ordering above, returns the array

["aaba", "ba"]
and not any of:

["aabaac", "aabaac"]
["aabaac", "c"]

The above ordering of choice points can be used to write a regular expression that calculates the greatest common divisor of two numbers (represented in unary notation). The following example calculates the gcd of 10 and 15:

"aaaaaaaaaa,aaaaaaaaaa".replace(/\^\+(a+) \1*, \1+$/,"\1")
which returns the gcd in unary notation "aaaaa".

NOTE 3

Step 4 of the RepeatMatcher clears Atom’s captures each time Atom is repeated. We can see its behaviour in the regular expression

```
/(z) ((a+)?(b+)?(c))*/.exec("zaacbbbcac")
```

which returns the array

```
["zaacbbbcac", "z", "ac", "a", undefined, "c"]
```
and not

```
["zaacbbbcac", "z", "ac", "a", "bbb", "c"]
```
because each iteration of the outermost * clears all captured Strings contained in the quantified Atom, which in this case includes capture Strings numbered 2, 3, 4, and 5.

NOTE 4

Step 1 of the RepeatMatcher’s d closure states that, once the minimum number of repetitions has been satisfied, any more expansions of Atom that match the empty String are not considered for further repetitions. This prevents the regular expression engine from falling into an infinite loop on patterns such as:

```
/(a*)*/.exec("b")
```
or the slightly more complicated:

```
/(a*)b\1+/.exec("baaaac")
```
which returns the array

```
["b", "]
```

15.10.2.6 **Assertion**

The production **Assertion** :: ^ evaluates by returning an internal AssertionTester closure that takes a State argument x and performs the following:

1. Let e be x’s endIndex.
2. If e is zero, return true.
3. If Multiline is false, return false.
4. If the character Input[e–1] is one of LineTerminator, return true.
5. Return false.

The production **Assertion** :: $ evaluates by returning an internal AssertionTester closure that takes a State argument x and performs the following:

1. Let e be x’s endIndex.
2. If e is equal to InputLength, return true.
3. If multiline is false, return false.
4. If the character Input[e] is one of LineTerminator, return true.
5. Return false.

The production **Assertion** :: _b evaluates by returning an internal AssertionTester closure that takes a State argument x and performs the following:

1. Let e be x’s endIndex.
2. Call IsWordChar(e–1) and let a be the Boolean result.
3. Call IsWordChar(e) and let b be the Boolean result.
4. If a is true and b is false, return true.
5. If a is false and b is true, return true.
6. Return false.

The production **Assertion** :: _b evaluates by returning an internal AssertionTester closure that takes a State argument x and performs the following:

1. Let e be x’s endIndex.
2. Call IsWordChar(e–1) and let a be the Boolean result.
3. Call IsWordChar(e) and let b be the Boolean result.
4. If a is true and b is false, return true.
5. If \(a \) is \texttt{false} and \(b \) is \texttt{true}, return \texttt{false}.
6. Return \texttt{true}.

The production \texttt{Assertion :: (\ ? = Disjunction \)} evaluates as follows:

1. Evaluate \texttt{Disjunction} to obtain a Matcher \(m \).
2. Return an internal Matcher closure that takes two arguments, a State \(x \) and a Continuation \(c \), and performs the following steps:
 1. Let \(d \) be a Continuation that always returns its State argument as a successful MatchResult.
 2. Call \(m(x, d) \) and let \(r \) be its result.
 3. If \(r \) is \texttt{failure}, return \texttt{failure}.
 4. Let \(y \) be \(r \)'s State.
 5. Let \(cap \) be \(y \)'s \texttt{captures} internal array.
 6. Let \(xe \) be \(x \)'s \texttt{endIndex}.
 7. Let \(z \) be the State \((xe, cap)\).
 8. Call \(c(z) \) and return its result.

The production \texttt{Assertion :: (\ ? ! Disjunction \)} evaluates as follows:

1. Evaluate \texttt{Disjunction} to obtain a Matcher \(m \).
2. Return an internal Matcher closure that takes two arguments, a State \(x \) and a Continuation \(c \), and performs the following steps:
 1. Let \(d \) be a Continuation that always returns its State argument as a successful MatchResult.
 2. Call \(m(x, d) \) and let \(r \) be its result.
 3. If \(r \) isn't \texttt{failure}, return \texttt{failure}.
 4. Call \(c(x) \) and return its result.

The abstract operation \texttt{IsWordChar} takes an integer parameter \(e \) and performs the following:

1. If \(e == -1 \) or \(e == InputLength \), return \texttt{false}.
2. Let \(c \) be the character \(Input[e] \).
3. If \(c \) is one of the sixty-three characters below, return \texttt{true}.
 \[
 \texttt{abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_}
 \]
4. Return \texttt{false}.

15.10.2.7 Quantifier

The production \texttt{Quantifier :: QuantifierPrefix} evaluates as follows:

1. Evaluate \texttt{QuantifierPrefix} to obtain the two results: an integer \(min \) and an integer (or \(\infty \)) \(max \).
2. Return the three results \(min \), \(max \), and \texttt{true}.

The production \texttt{Quantifier :: QuantifierPrefix ?} evaluates as follows:

1. Evaluate \texttt{QuantifierPrefix} to obtain the two results: an integer \(min \) and an integer (or \(\infty \)) \(max \).
2. Return the three results \(min \), \(max \), and \texttt{false}.

The production \texttt{QuantifierPrefix :: *} evaluates by returning the two results 0 and \(\infty \).

The production \texttt{QuantifierPrefix :: +} evaluates by returning the two results 1 and \(\infty \).

The production \texttt{QuantifierPrefix :: ?} evaluates by returning the two results 0 and 1.

The production \texttt{QuantifierPrefix :: \{ DecimalDigits \}} evaluates as follows:
1. Let \(i \) be the MV of \(\text{DecimalDigits} \) (see 7.8.3).
2. Return the two results \(i \) and \(i \).

The production \(\text{QuantifierPrefix} :: \{ \text{DecimalDigits} , \} \) evaluates as follows:

1. Let \(i \) be the MV of \(\text{DecimalDigits} \).
2. Return the two results \(i \) and \(\infty \).

The production \(\text{QuantifierPrefix} :: \{ \text{DecimalDigits} , \text{DecimalDigits} \} \) evaluates as follows:

1. Let \(i \) be the MV of the first \(\text{DecimalDigits} \).
2. Let \(j \) be the MV of the second \(\text{DecimalDigits} \).
3. Return the two results \(i \) and \(j \).

15.10.2.8 Atom

The production \(\text{Atom} :: \text{PatternCharacter} \) evaluates as follows:

1. Let \(ch \) be the character represented by \(\text{PatternCharacter} \).
2. Let \(A \) be a one-element CharSet containing the character \(ch \).
3. Call \(\text{CharacterSetMatcher}(A, \text{false}) \) and return its Matcher result.

The production \(\text{Atom} :: . \) evaluates as follows:

1. Let \(A \) be the set of all characters except \(\text{LineTerminator} \).
2. Call \(\text{CharacterSetMatcher}(A, \text{false}) \) and return its Matcher result.

The production \(\text{Atom} :: \backslash \text{AtomEscape} \) evaluates by evaluating \(\text{AtomEscape} \) to obtain a Matcher and returning that Matcher.

The production \(\text{Atom} :: \text{CharacterClass} \) evaluates as follows:

1. Evaluate \(\text{CharacterClass} \) to obtain a CharSet \(A \) and a Boolean \(\text{invert} \).
2. Call \(\text{CharacterSetMatcher}(A, \text{invert}) \) and return its Matcher result.

The production \(\text{Atom} :: (\text{Disjunction}) \) evaluates as follows:

1. Evaluate \(\text{Disjunction} \) to obtain a Matcher \(m \).
2. Let \(\text{parenIndex} \) be the number of left capturing parentheses in the entire regular expression that occur to the left of this production expansion's initial left parenthesis. This is the total number of times the \(\text{Atom} :: (\text{Disjunction}) \) production is expanded prior to this production's \(\text{Atom} \) plus the total number of \(\text{Atom} :: (\text{Disjunction}) \) productions enclosing this \(\text{Atom} \).
3. Return an internal Matcher closure that takes two arguments, a State \(x \) and a Continuation \(c \), and performs the following steps:
 1. Create an internal Continuation closure \(d \) that takes one State argument \(y \) and performs the following steps:
 1. Let \(\text{cap} \) be a fresh copy of \(y \)'s \(\text{captures} \) internal array.
 2. Let \(xe \) be \(x \)'s \(\text{endIndex} \).
 3. Let \(ye \) be \(y \)'s \(\text{endIndex} \).
 4. Let \(s \) be a fresh String whose characters are the characters of \(\text{Input} \) at positions \(xe \) (inclusive) through \(ye \) (exclusive).
 5. Set \(\text{cap}[\text{parenIndex}+1] \) to \(s \).
 6. Let \(\text{z} \) be the State (\(ye, \text{cap} \)).
 7. Call \(c(\text{z}) \) and return its result.
 2. Call \(m(x, d) \) and return its result.

The production \(\text{Atom} :: (? : \text{Disjunction}) \) evaluates by evaluating \(\text{Disjunction} \) to obtain a Matcher and returning that Matcher.
The abstract operation `CharacterSetMatcher` takes two arguments, a CharSet `A` and a Boolean flag `invert`, and performs the following:

1. Return an internal Matcher closure that takes two arguments, a State `x` and a Continuation `c`, and performs the following steps:
 1. Let `e` be `x`'s endIndex.
 2. If `e` == `InputLength`, return `failure`.
 3. Let `ch` be the character `Input[e]`.
 4. Let `cc` be the result of `Canonicalize(ch)`.
 5. If `invert` is `false`, then
 a. If there does not exist a member `a` of set `A` such that `Canonicalize(a) == cc`, return `failure`.
 6. Else `invert` is `true`, then
 a. If there exists a member `a` of set `A` such that `Canonicalize(a) == cc`, return `failure`.
 7. Let `cap` be `x`'s captures internal array.
 8. Let `y` be the State (`e+1`, `cap`).
 9. Call `c(y)` and return its result.

The abstract operation `Canonicalize` takes a character parameter `ch` and performs the following steps:

1. If `IgnoreCase` is `false`, return `ch`.
2. Let `u` be `ch` converted to upper case as if by calling the standard built-in method `String.prototype.toUpperCase` on the one-character String `ch`.
3. If `u` does not consist of a single character, return `ch`.
4. Let `cu` be `u`'s character.
5. If `ch`'s code unit value is greater than or equal to decimal 128 and `cu`'s code unit value is less than decimal 128, then return `ch`.
6. Return `cu`.

NOTE 1 Parentheses of the form `{ Disjunction }` serve both to group the components of the `Disjunction` pattern together and to save the result of the match. The result can be used either in a backreference (`\` followed by a nonzero decimal number), referenced in a replace String, or returned as part of an array from the regular expression matching internal procedure. To inhibit the capturing behaviour of parentheses, use the form `{? Disjunction }` instead.

NOTE 2 The form `{?= Disjunction }` specifies a zero-width positive lookahead. In order for it to succeed, the pattern inside `Disjunction` must match at the current position, but the current position is not advanced before matching the sequel. `Disjunction` can match at the current position in several ways, only the first one is tried. Unlike other regular expression operators, there is no backtracking into a `{?=` form (this unusual behaviour is inherited from Perl). This only matters when the `Disjunction` contains capturing parentheses and the sequel of the pattern contains backreferences to those captures.

For example,

```
/(?=\(a\+\))/.exec("baaabac")
```

matches the empty String immediately after the first `b` and therefore returns the array:

```
["", "aaa"]
```

To illustrate the lack of backtracking into the lookahead, consider:

```
/(?=\(a\+\))a*b\1/.exec("baaabac")
```

This expression returns

```
["aba", "a"]
```

and not:

```
["aaaba", "a"]
```

NOTE 3 The form `{?! Disjunction }` specifies a zero-width negative lookahead. In order for it to succeed, the pattern inside `Disjunction` must fail to match at the current position. The current position is not advanced before matching the sequel. `Disjunction` can contain capturing parentheses, but backreferences to them only make sense from within `Disjunction` itself. Backreferences to these capturing parentheses from elsewhere in the pattern always return `undefined` because the negative lookahead must fail for the pattern to succeed. For example,

```
/(.*?\(?!\(a\+\)b\2c)\2 (.*)/.exec("baaabac")
```

© Ecma International 2012 265
looks for an a not immediately followed by some positive number n of a’s, a b, another n a’s (specified by the first \2) and a c. The second \2 is outside the negative lookahead, so it matches against undefined and therefore always succeeds. The whole expression returns the array:

`["baaabac", "ba", undefined, "abaac"]`

In case-insensitive matches all characters are implicitly converted to upper case immediately before they are compared. However, if converting a character to upper case would expand that character into more than one character (such as converting “ß” (\u00DF) into “SS”), then the character is left as-is instead. The character is also left as-is if it is not an ASCII character but converting it to upper case would make it into an ASCII character. This prevents Unicode characters such as \u0131 and \u017F from matching regular expressions such as /[a-z]/i, which are only intended to match ASCII letters. Furthermore, if these conversions were allowed, then /[^\W]/i would match each of a, b, …, h, but not i or s.

15.10.2.9 AtomEscape

The production `AtomEscape :: DecimalEscape` evaluates as follows:

1. Evaluate `DecimalEscape` to obtain an EscapeValue E.
2. If E is a character, then
 a. Let ch be E’s character.
 b. Let A be a one-element CharSet containing the character ch.
 c. Call `CharacterSetMatcher(A, false)` and return its Matcher result.
3. E must be an integer. Let n be that integer.
4. If n=0 or n>NCapturingParens then throw a SyntaxError exception.
5. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the following:

 1. Let cap be x’s captures internal array.
 2. Let s be cap[n].
 3. If s is undefined, then call c(x) and return its result.
 4. Let e be x’s endIndex.
 5. Let len be s’s length.
 6. Let f be e+len.
 7. If f>InputLength, return failure.
 8. If there exists an integer i between 0 (inclusive) and len (exclusive) such that
 Canonicalize(s[i]) is not the same character as Canonicalize(Input [e+i]), then return failure.
 9. Let y be the State (f, cap).
 10. Call c(y) and return its result.

The production `AtomEscape :: CharacterEscape` evaluates as follows:

1. Evaluate `CharacterEscape` to obtain a character ch.
2. Let A be a one-element CharSet containing the character ch.
3. Call `CharacterSetMatcher(A, false)` and return its Matcher result.

The production `AtomEscape :: CharacterClassEscape` evaluates as follows:

1. Evaluate `CharacterClassEscape` to obtain a CharSet A.
2. Call `CharacterSetMatcher(A, false)` and return its Matcher result.

NOTE An escape sequence of the form \ followed by a nonzero decimal number n matches the result of the nth set of capturing parentheses (see 15.10.2.11). It is an error if the regular expression has fewer than n capturing parentheses. If the regular expression has n or more capturing parentheses but the nth one is undefined because it has not captured anything, then the backreference always succeeds.

15.10.2.10 CharacterEscape

The production `CharacterEscape :: ControlEscape` evaluates by returning the character according to Table 29.
Table 29 — ControlEscape Character Values

<table>
<thead>
<tr>
<th>ControlEscape</th>
<th>Code Unit</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>\u0009</td>
<td>horizontal tab</td>
<td><HT></td>
</tr>
<tr>
<td>n</td>
<td>\u000A</td>
<td>line feed (new line)</td>
<td><LF></td>
</tr>
<tr>
<td>v</td>
<td>\u000B</td>
<td>vertical tab</td>
<td><VT></td>
</tr>
<tr>
<td>f</td>
<td>\u000C</td>
<td>form feed</td>
<td><FF></td>
</tr>
<tr>
<td>r</td>
<td>\u000D</td>
<td>carriage return</td>
<td><CR></td>
</tr>
</tbody>
</table>

The production `CharacterEscape :: c ControlLetter` evaluates as follows:

1. Let `ch` be the character represented by `ControlLetter`.
2. Let `i` be `ch`'s code unit value.
3. Let `j` be the remainder of dividing `i` by 32.
4. Return the character whose code unit value is `j`.

The production `CharacterEscape :: HexEscapeSequence` evaluates by evaluating the CV of the `HexEscapeSequence` (see 7.8.4) and returning its character result.

The production `CharacterEscape :: UnicodeEscapeSequence` evaluates by evaluating the CV of the `UnicodeEscapeSequence` (see 7.8.4) and returning its character result.

The production `CharacterEscape :: IdentityEscape` evaluates by returning the character represented by `IdentityEscape`.

15.10.2.11 DecimalEscape

The production `DecimalEscape :: DecimalIntegerLiteral [lookahead ≠ DecimalDigit]` evaluates as follows:

1. Let `i` be the MV of `DecimalIntegerLiteral`.
2. If `i` is zero, return the EscapeValue consisting of a <NUL> character (Unicode value 0000).
3. Return the EscapeValue consisting of the integer `i`.

The definition of "the MV of `DecimalIntegerLiteral`" is in 7.8.3.

NOTE If `\` is followed by a decimal number `n` whose first digit is not 0, then the escape sequence is considered to be a backreference. It is an error if `n` is greater than the total number of left capturing parentheses in the entire regular expression. `\0` represents the <NUL> character and cannot be followed by a decimal digit.

15.10.2.12 CharacterClassEscape

The production `CharacterClassEscape :: d` evaluates by returning the ten-element set of characters containing the characters 0 through 9 inclusive.

The production `CharacterClassEscape :: D` evaluates by returning the set of all characters not included in the set returned by `CharacterClassEscape :: d`.

The production `CharacterClassEscape :: s` evaluates by returning the set of characters containing the characters that are on the right-hand side of the `WhiteSpace` (7.2) or `LineTerminator` (7.3) productions.

The production `CharacterClassEscape :: S` evaluates by returning the set of all characters not included in the set returned by `CharacterClassEscape :: s`.

The production `CharacterClassEscape :: w` evaluates by returning the set of characters containing the sixty-three characters:
The production `CharacterClassEscape :: w` evaluates by returning the set of all characters not included in the set returned by `CharacterClassEscape :: w`.

15.10.2.13 CharacterClass

The production `CharacterClass :: [^ ClassRanges]` evaluates by evaluating `ClassRanges` to obtain a CharSet and returning that CharSet and the Boolean `false`.

The production `CharacterClass :: [^ ClassRanges]` evaluates by evaluating `ClassRanges` to obtain a CharSet and returning that CharSet and the Boolean `true`.

15.10.2.14 ClassRanges

The production `ClassRanges :: [empty]` evaluates by returning the empty CharSet.

The production `ClassRanges :: NonemptyClassRanges` evaluates by evaluating `NonemptyClassRanges` to obtain a CharSet and returning that CharSet.

15.10.2.15 NonemptyClassRanges

The production `NonemptyClassRanges :: ClassAtom` evaluates by evaluating `ClassAtom` to obtain a CharSet and returning that CharSet.

The production `NonemptyClassRanges :: ClassAtom NonemptyClassRangesNoDash` evaluates as follows:

1. Evaluate `ClassAtom` to obtain a CharSet `A`.
2. Evaluate `NonemptyClassRangesNoDash` to obtain a CharSet `B`.
3. Return the union of CharSets `A` and `B`.

The production `NonemptyClassRanges :: ClassAtom ~ ClassAtom ClassRanges` evaluates as follows:

1. Evaluate the first `ClassAtom` to obtain a CharSet `A`.
2. Evaluate the second `ClassAtom` to obtain a CharSet `B`.
3. Evaluate `ClassRanges` to obtain a CharSet `C`.
4. Call `CharacterRange(A, B)` and let `D` be the resulting CharSet.
5. Return the union of CharSets `D` and `C`.

The abstract operation `CharacterRange` takes two CharSet parameters `A` and `B` and performs the following:

1. If `A` does not contain exactly one character or `B` does not contain exactly one character then throw a `SyntaxError` exception.
2. Let `a` be the one character in CharSet `A`.
3. Let `b` be the one character in CharSet `B`.
4. Let `i` be the code unit value of character `a`.
5. Let `j` be the code unit value of character `b`.
6. If `i > j` then throw a `SyntaxError` exception.
7. Return the set containing all characters numbered `i` through `j`, inclusive.

15.10.2.16 NonemptyClassRangesNoDash

The production `NonemptyClassRangesNoDash :: ClassAtom` evaluates by evaluating `ClassAtom` to obtain a CharSet and returning that CharSet.
The production `NonemptyClassRangesNoDash :: ClassAtomNoDash NonemptyClassRangesNoDash` evaluates as follows:

1. Evaluate `ClassAtomNoDash` to obtain a CharSet `A`.
2. Evaluate `NonemptyClassRangesNoDash` to obtain a CharSet `B`.
3. Return the union of CharSets `A` and `B`.

The production `NonemptyClassRangesNoDash :: ClassAtomNoDash - ClassAtom ClassRanges` evaluates as follows:

1. Evaluate `ClassAtomNoDash` to obtain a CharSet `A`.
2. Evaluate `ClassAtom` to obtain a CharSet `B`.
3. Evaluate `ClassRanges` to obtain a CharSet `C`.
4. Call `CharacterRange(A, B)` and let `D` be the resulting CharSet.
5. Return the union of CharSets `D` and `C`.

NOTE 1 `ClassRanges` can expand into single `ClassAtoms` and/or ranges of two `ClassAtoms` separated by dashes. In the latter case the `ClassRanges` includes all characters between the first `ClassAtom` and the second `ClassAtom`, inclusive; an error occurs if either `ClassAtom` does not represent a single character (for example, if one is `\w`) or if the first `ClassAtom`'s code unit value is greater than the second `ClassAtom`'s code unit value.

NOTE 2 Even if the pattern ignores case, the case of the two ends of a range is significant in determining which characters belong to the range. Thus, for example, the pattern `/[E-F]/i` matches only the letters `E`, `F`, `e`, and `f`, while the pattern `/[E-f]/i` matches all upper and lower-case ASCII letters as well as the symbols `[, \], ^, _e, and `.`.

NOTE 3 A `=` character can be treated literally or it can denote a range. It is treated literally if it is the first or last character of `ClassRanges`, the beginning or end limit of a range specification, or immediately follows a range specification.

15.10.2.17 `ClassAtom`

The production `ClassAtom :: -` evaluates by returning the CharSet containing the one character `–`.

The production `ClassAtom :: ClassAtomNoDash` evaluates by evaluating `ClassAtomNoDash` to obtain a CharSet and returning that CharSet.

15.10.2.18 `ClassAtomNoDash`

The production `ClassAtomNoDash :: SourceCharacter but not one of \ or] or -` evaluates by returning a one-element CharSet containing the character represented by `SourceCharacter`.

The production `ClassAtomNoDash :: \ ClassEscape` evaluates by evaluating `ClassEscape` to obtain a CharSet and returning that CharSet.

15.10.2.19 `ClassEscape`

The production `ClassEscape :: DecimalEscape` evaluates as follows:

1. Evaluate `DecimalEscape` to obtain an EscapeValue `E`.
2. If `E` is not a character then throw a `SyntaxError` exception.
3. Let `ch` be `E`'s character.
4. Return the one-element CharSet containing the character `ch`.

The production `ClassEscape :: b` evaluates by returning the CharSet containing the one character `<BS>` (Unicode value 0008).

The production `ClassEscape :: CharacterEscape` evaluates by evaluating `CharacterEscape` to obtain a character and returning a one-element CharSet containing that character.
The production `ClassEscape :: CharacterClassEscape` evaluates by evaluating `CharacterClassEscape` to obtain a CharSet and returning that CharSet.

NOTE A `ClassAtom` can use any of the escape sequences that are allowed in the rest of the regular expression except for `\b`, `\B`, and backreferences. Inside a `CharacterClass`, `\b` means the backspace character, while `\B` and backreferences raise errors. Using a backreference inside a `ClassAtom` causes an error.

15.10.3 The RegExp Constructor Called as a Function

15.10.3.1 RegExp(pattern, flags)

The following steps are taken:

1. If `Type(pattern)` is object and `pattern` has a `[[NativeBrand]]` internal property whose value is `NativeRegExp` and `flags` is `undefined`, then return `pattern`.
2. Return the result of the abstract operation `RegExpCreate` with arguments `pattern` and `flags`.

15.10.4 The RegExp Constructor

When `RegExp` is called as part of a `new` expression, it is a constructor: it initialises the newly created object.

15.10.4.1 new RegExp(pattern, flags)

The following steps are taken:

1. Return the result of the abstract operation `RegExpCreate` with arguments `pattern` and `flags`.

The abstract operation `RegExpCreate` with arguments `pattern` and `flags` does the following:

- If `pattern` is an object `R` that has a `[[NativeBrand]]` internal property whose value is `NativeRegExp` and `flags` is `undefined`, then let `P` be the `pattern` used to construct `R` and let `F` be the flags used to construct `R`. If `pattern` is an object `R` that has a `[[NativeBrand]]` internal property whose value is `NativeRegExp` and `flags` is not `undefined`, then throw a `TypeError` exception. Otherwise, let `P` be the empty String if `pattern` is `undefined` and `ToString(pattern)` otherwise, and let `F` be the empty String if `flags` is `undefined` and `ToString(flags)` otherwise.

- If the characters of `P` do not have the syntactic form `Pattern`, then throw a `SyntaxError` exception. Otherwise let the newly constructed object have a `[[Match]]` internal property obtained by evaluating ("compiling") the characters of `P` as described in 15.10.2.

- If `F` contains any character other than "g", "i", or "m", or if it contains the same character more than once, then throw a `SyntaxError` exception.

- If a `SyntaxError` exception is not thrown, then:

 - Let `S` be a String in the form of a `Pattern` equivalent to `P`, in which certain characters are escaped as described below. `S` may or may not be identical to `P` or `pattern`; however, the internal procedure that would result from evaluating `S` as a `Pattern` must behave identically to the internal procedure given by the constructed object's `[[Match]]` internal property.

 - The characters `/` occurring in the pattern shall be escaped in `S` as necessary to ensure that the String value formed by concatenating the Strings "/", `S`, "/", and `F` can be parsed (in an appropriate lexical context) as a `RegularExpressionLiteral` that behaves identically to the constructed regular expression. For example, if `P` is "/", then `S` could be "\" or "\u002F", among other possibilities, but not "/", because `///` followed by `F` would be parsed as a `SingleLineComment` rather than a `RegularExpressionLiteral`. If `P` is the empty String, this specification can be met by letting `S` be " (? :) ".

- The following properties of the newly constructed object are data properties with the attributes that are specified in 15.10.7. The `[[Value]]` of each property is set as follows:
The `source` property of the newly constructed object is set to S.

The `global` property of the newly constructed object is set to a Boolean value that is `true` if F contains the character "g" and `false` otherwise.

The `ignoreCase` property of the newly constructed object is set to a Boolean value that is `true` if F contains the character "i" and `false` otherwise.

The `multiline` property of the newly constructed object is set to a Boolean value that is `true` if F contains the character "m" and `false` otherwise.

The `lastIndex` property of the newly constructed object is set to 0.

The `[[Prototype]]` internal property of the newly constructed object is set to the standard built-in RegExp prototype object as specified in 15.10.6.

The newly constructed object has a `[[NativeBrand]]` internal property whose value is `NativeRegExp`.

NOTE: If pattern is a `StringLiteral`, the usual escape sequence substitutions are performed before the String is processed by RegExp. If pattern must contain an escape sequence to be recognised by RegExp, any backslash \ characters must be escaped within the `StringLiteral` to prevent them being removed when the contents of the `StringLiteral` are formed.

15.10.5 Properties of the RegExp Constructor

The value of the `[[Prototype]]` internal property of the RegExp constructor is the standard built-in Function prototype object (15.3.4).

Besides the internal properties and the `length` property (whose value is 2), the RegExp constructor has the following properties:

15.10.5.1 `RegExp.prototype`

The initial value of `RegExp.prototype` is the RegExp prototype object (15.10.6).

This property shall have the attributes (`[[Writable]]`: `false`, `[[Enumerable]]`: `false`, `[[Configurable]]`: `false`).

15.10.6 Properties of the RegExp Prototype Object

The value of the `[[Prototype]]` internal property of the RegExp prototype object is the standard built-in Object prototype object (15.2.4). The RegExp prototype object is itself a regular expression object; it has a `[[NativeBrand]]` internal property whose value is `NativeRegExp`. The initial values of the RegExp prototype object’s data properties (15.10.7) are set as if the object was created by the expression `new RegExp()` where `RegExp` is that standard built-in constructor with that name.

The RegExp prototype object does not have a `valueOf` property of its own; however, it inherits the `valueOf` property from the Object prototype object.

In the following descriptions of functions that are properties of the RegExp prototype object, the phrase “this RegExp object” refers to the object that is the `this` value for the invocation of the function; a `TypeError` exception is thrown if the `this` value is not an object that has a `[[NativeBrand]]` internal property whose value is `NativeRegExp`.

15.10.6.1 `RegExp.prototype.constructor`

The initial value of `RegExp.prototype.constructor` is the standard built-in `RegExp` constructor.
15.10.6.2 RegExp.prototype.exec(string)

Performs a regular expression match of string against the regular expression and returns an Array object containing the results of the match, or null if string did not match.

The String ToString(string) is searched for an occurrence of the regular expression pattern as follows:

1. Let R be this RegExp object.
2. ReturnIfAbrupt(R).
3. Let s be the value of ToString(string).
4. ReturnIfAbrupt(s).
5. Return the result of the RegExpExec abstract operation with arguments R and s.

The abstract operation RegExpExec with arguments R (an object) and s (a string) performs the following steps:

1. Let length be the length of s.
2. Let lastIndex be the result of calling the [[Get]] internal method of R with argument "lastIndex".
3. Let i be the value of ToInteger(lastIndex).
4. ReturnIfAbrupt(i).
5. Let global be the result of calling the [[Get]] internal method of R with argument "global".
6. ReturnIfAbrupt(global).
7. If global is false, then let i = 0.
8. Let matchSucceeded be false.
9. Repeat, while matchSucceeded is false
 a. If i < 0 or i > length, then
 i. Let putStatus be the result of calling the [[Put]] internal method of R with arguments "lastIndex", 0, and true.
 ii. ReturnIfAbrupt(putStatus).
 iii. Return null.
 b. Let r be the result of calling the [[Match]] internal method of R with arguments s and i.
 c. If r is failure, then
 i. Let i = i + 1.
 d. else
 i. Assert: r is a State.
 ii. Set matchSucceeded to true.
10. Let e be r's endIndex value.
11. If global is true,
 a. Let putStatus be the result of calling the [[Put]] internal method of R with arguments "lastIndex", e, and true.
 b. ReturnIfAbrupt(putStatus).
12. Let n be the length of r's captures array. (This is the same value as 15.10.2.1's NCapturingParen.)
13. Let A be the result of the abstract operation ArrayCreate with argument 0.
14. Let matchIndex be i.
15. Assert: The following [[DefineOwnProperty]] calls will not result in an abrupt completion.
16. Call the [[DefineOwnProperty]] internal method of A with arguments "index", Property Descriptor {
 [[Value]]: matchIndex, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and true.
17. Call the [[DefineOwnProperty]] internal method of A with arguments "input", Property Descriptor {
 [[Value]]: s, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and true.
18. Call the [[DefineOwnProperty]] internal method of A with arguments "length", Property Descriptor {
 [[Value]]: n + 1}, and true.
19. Let matchedSubstr be the matched substring (i.e. the portion of s between offset i inclusive and offset e exclusive).
20. Call the [[DefineOwnProperty]] internal method of A with arguments "0", Property Descriptor {
 [[Value]]: matchedSubstr, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and true.
21. For each integer i such that i > 0 and i ≤ n
 a. Let captureI be i

© Ecma International 2012
b. Call the \[[DefineOwnProperty]\] internal method of \(A\) with arguments To\(string\)(\(i\)), Property Descriptor \([[Value]]: \text{captureI}, [[Writable]]: \text{true}, [[Enumerable]]: \text{true}, [[Configurable]]: \text{true}\)}, and \text{true}.

22. Return \(A\).

15.10.6.3 \text{RegExp.prototype.test(string)}

The following steps are taken:

1. Let \(R\) be this RegExp object.
2. ReturnIfAbrupt\((R)\).
3. Let \(S\) be the value of To\(string\)(\(string\)).
4. ReturnIfAbrupt\((S)\).
5. Let \(match\) be the result of the \text{RegExpExec} abstract operation with arguments \(R\) and \(S\).
6. ReturnIfAbrupt\((match)\).
7. If \(match\) is not null, then return \text{true}; else return \text{false}.

15.10.6.4 \text{RegExp.prototype.toString()}

Return the String value formed by concatenating the Strings
"/", the String value of the source property of this RegExp object, and "/"; plus "g" if the global property is \text{true}, "i" if the ignoreCase property is \text{true}, and "m" if the multiline property is \text{true}.

NOTE The returned String has the form of a RegularExpressionLiteral that evaluates to another RegExp object with the same behaviour as this object.

15.10.7 Properties of RegExp Instances

RegExp instances inherit properties from the RegExp prototype object and have a [[NativeBrand]] internal property whose value is NativeRegExp. RegExp instances also have a [[Match]] internal property and a length property.

The value of the [[Match]] internal property is an implementation dependent representation of the Pattern of the RegExp object.

RegExp instances also have the following properties.

15.10.7.1 source

The value of the source property is a String in the form of a Pattern representing the current regular expression. This property shall have the attributes \{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false \}.

15.10.7.2 global

The value of the global property is a Boolean value indicating whether the flags contained the character “g”. This property shall have the attributes \{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false \}.

15.10.7.3 ignoreCase

The value of the ignoreCase property is a Boolean value indicating whether the flags contained the character “i”. This property shall have the attributes \{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false \}.

15.10.7.4 multiline

The value of the multiline property is a Boolean value indicating whether the flags contained the character “m”. This property shall have the attributes \{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false \}.
15.10.7.5 lastIndex

The value of the `lastIndex` property specifies the String position at which to start the next match. It is coerced to an integer when used (see 15.10.6.2). This property shall have the attributes `{ [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE Unlike the other standard built-in properties of RegExp instances, `lastIndex` is writable.

15.11 Error Objects

Instances of Error objects are thrown as exceptions when runtime errors occur. The Error objects may also serve as base objects for user-defined exception classes.

15.11.1 The Error Constructor Called as a Function

When `Error` is called as a function rather than as a constructor, it creates and initialises a new Error object. Thus the function call `Error(...)` is equivalent to the object creation expression `new Error(...)` with the same arguments.

15.11.1.1 Error (message)

The `[[Prototype]]` internal property of the newly constructed object is set to the original Error prototype object, the one that is the initial value of `Error.prototype` (15.11.3.1).

The newly constructed object has a `[[NativeBrand]]` internal property whose value is `NativeError`.

The `[[Extensible]]` internal property of the newly constructed object is set to `true`.

If the argument `message` is not `undefined`, the `message` own property of the newly constructed object is set to `ToString(message)`.

15.11.2 The Error Constructor

When `Error` is called as part of a `new` expression, it is a constructor: it initialises the newly created object.

15.11.2.1 new Error (message)

The `[[Prototype]]` internal property of the newly constructed object is set to the original Error prototype object, the one that is the initial value of `Error.prototype` (15.11.3.1).

The newly constructed object has a `[[NativeBrand]]` internal property whose value is `NativeError`.

The `[[Extensible]]` internal property of the newly constructed object is set to `true`.

If the argument `message` is not `undefined`, the `message` own property of the newly constructed object is set to `ToString(message)`.

15.11.3 Properties of the Error Constructor

The value of the `[[Prototype]]` internal property of the Error constructor is the Function prototype object (15.3.4).

Besides the internal properties and the `length` property (whose value is 1), the Error constructor has the following property:

15.11.3.1 Error.prototype

The initial value of `Error.prototype` is the Error prototype object (15.11.4).
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.11.4 Properties of the Error Prototype Object

The Error prototype object is itself an Error object and has a [[NativeBrand]] internal property whose value is NativeError.

The value of the [[Prototype]] internal property of the Error prototype object is the standard built-in Object prototype object (15.2.4).

15.11.4.1 Error.prototype.constructor

The initial value of Error.prototype.constructor is the built-in Error constructor.

15.11.4.2 Error.prototype.name

The initial value of Error.prototype.name is "Error".

15.11.4.3 Error.prototype.message

The initial value of Error.prototype.message is the empty String.

15.11.4.4 Error.prototype.toString ()

The following steps are taken:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. Let name be the result of calling the [[Get]] internal method of O with argument "name".
4. ReturnIfAbrupt(name).
5. If name is undefined, then let name be "Error"; else let name be ToString(name).
6. Let msg be the result of calling the [[Get]] internal method of O with argument "message".
7. ReturnIfAbrupt(msg).
8. If msg is undefined, then let msg be the empty String; else let msg be ToString(msg).
9. If name is the empty String, return msg.
10. If msg is the empty String, return name.
11. Return the result of concatenating name, " "; a single space character, and msg.

15.11.5 Properties of Error Instances

Error instances inherit properties from the Error prototype object and have a [[NativeBrand]] internal property whose value is NativeError. Error instances have no special properties.

15.11.6 Native Error Types Used in This Standard

One of the NativeError objects below is thrown when a runtime error is detected. All of these objects share the same structure, as described in 15.11.7.

15.11.6.1 EvalError

This exception is not currently used within this specification. This object remains for compatibility with previous editions of this specification.

15.11.6.2 RangeError

Indicates a numeric value has exceeded the allowable range. See 15.4.2.2, 15.4.5.1, 15.7.4.2, 15.7.4.5, 15.7.4.6, 15.7.4.7, and 15.9.5.43.
15.11.6.3 ReferenceError

Indicate that an invalid reference value has been detected. See 8.9.1, 8.9.2, 10.2.1, 10.2.1.1.4, 10.2.1.2.4, and 11.13.1.

15.11.6.4 SyntaxError

Indicates that a parsing error has occurred. See 11.1.5, 11.3.1, 11.3.2, 11.4.1, 11.4.4, 11.4.5, 11.13.1, 11.13.2, 12.2.1, 12.10.1, 12.14.1, 13.1, 15.1.2, 15.3.2.1, 15.10.2.2, 15.10.2.5, 15.10.2.9, 15.10.2.15, 15.10.2.19, 15.10.4.1, and 15.12.2.

15.11.6.5 TypeError

Indicates the actual type of an operand is different than the expected type. See 8.6.2, 8.9.2, 8.10.5, 8.12.5, 8.12.7, 8.12.8, 8.12.9, 9.9, 9.10, 10.2.1, 10.2.1.1.3, 10.6, 11.2.2, 11.2.3, 11.4.1, 11.8.6, 11.8.7, 11.3.1, 13.2, 13.2.3, 15, 15.2.3.2, 15.2.3.3, 15.2.3.4, 15.2.3.5, 15.2.3.6, 15.2.3.7, 15.2.3.8, 15.2.3.9, 15.2.3.10, 15.2.3.11, 15.2.3.12, 15.2.3.13, 15.2.3.14, 15.2.4.3, 15.3.4.3, 15.3.4.4, 15.3.4.5, 15.3.4.5.2, 15.3.4.5.3, 15.3.5, 15.3.5.3, 15.3.5.4, 15.4.4.3, 15.4.4.11, 15.4.4.16, 15.4.4.17, 15.4.4.18, 15.4.4.19, 15.4.4.20, 15.4.4.21, 15.4.4.22, 15.4.5.1, 15.5.4.2, 15.5.4.3, 15.6.4.2, 15.6.4.3, 15.7.4, 15.7.4.2, 15.7.4.4, 15.9.5, 15.9.5.44, 15.10.4.1, 15.10.6, 15.11.4.4 and 15.12.3.

15.11.6.6 URIError

Indicates that one of the global URI handling functions was used in a way that is incompatible with its definition. See 15.1.3.

15.11.7 NativeError Object Structure

When an ECMAScript implementation detects a runtime error, it throws an instance of one of the NativeError objects defined in 15.11.6. Each of these objects has the structure described below, differing only in the name used as the constructor name instead of NativeError, in the name property of the prototype object, and in the implementation-defined message property of the prototype object.

For each error object, references to NativeError in the definition should be replaced with the appropriate error object name from 15.11.6.

15.11.7.1 NativeError Constructors Called as Functions

When a NativeError constructor is called as a function rather than as a constructor, it creates and initialises a new object. A call of the object as a function is equivalent to calling it as a constructor with the same arguments.

15.11.7.2 NativeError (message)

The [[Prototype]] internal property of the newly constructed object is set to the prototype object for this error constructor. The newly constructed object has a [[NativeBrand]] internal property whose value is NativeError. The [[Extensible]] internal property of the newly constructed object is set to true.

If the argument message is not undefined, the message own property of the newly constructed object is set to ToString(message).

15.11.7.3 The NativeError Constructors

When a NativeError constructor is called as part of a new expression, it is a constructor: it initialises the newly created object.
15.11.7.4 `new NativeError(message)`

The `[[Prototype]]` internal property of the newly constructed object is set to the prototype object for this `NativeError` constructor. The newly constructed object has a `[[NativeBrand]]` internal property whose value is `NativeError`. The `[[Extensible]]` internal property of the newly constructed object is set to `true`.

If the argument `message` is not `undefined`, the `message` own property of the newly constructed object is set to `ToString(message)`.

15.11.7.5 Properties of the `NativeError` Constructors

The value of the `[[Prototype]]` internal property of a `NativeError` constructor is the `Function` prototype object (15.3.4).

Besides the internal properties and the `length` property (whose value is 1), each `NativeError` constructor has the following property:

15.11.7.6 `NativeError.prototype`

The initial value of `NativeError.prototype` is a `NativeError` prototype object (15.11.7.7). Each `NativeError` constructor has a separate prototype object.

This property has the attributes `{ [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.11.7.7 Properties of the `NativeError` Prototype Objects

Each `NativeError` prototype object is an `Error` object and has a `[[NativeBrand]]` internal property whose value is `NativeError`.

The value of the `[[Prototype]]` internal property of each `NativeError` prototype object is the standard built-in `Error` prototype object (15.11.4).

15.11.7.8 `NativeError.prototype.constructor`

The initial value of the `constructor` property of the prototype for a given `NativeError` constructor is the `NativeError` constructor function itself (15.11.7).

15.11.7.9 `NativeError.prototype.name`

The initial value of the `name` property of the prototype for a given `NativeError` constructor is the name of the constructor (the name used instead of `NativeError`).

15.11.7.10 `NativeError.prototype.message`

The initial value of the `message` property of the prototype for a given `NativeError` constructor is the empty String.

NOTE The prototypes for the `NativeError` constructors do not themselves provide a `toString` function, but instances of errors will inherit it from the `Error` prototype object.

15.11.7.11 Properties of `NativeError` Instances

`NativeError` instances inherit properties from their `NativeError` prototype object and have a `[[NativeBrand]]` internal property whose value is `NativeError`. `NativeError` instances have no special properties.
15.12 The JSON Object

The JSON object is a single object that contains two functions, `parse` and `stringify`, that are used to parse and construct JSON texts. The JSON Data Interchange Format is described in RFC 4627 <http://www.ietf.org/rfc/rfc4627.txt>. The JSON interchange format used in this specification is exactly that described by RFC 4627 with two exceptions:

- The top level `JSONText` production of the ECMAScript JSON grammar may consist of any `JSONValue` rather than being restricted to being a `JSONObject` or a `JSONArray` as specified by RFC 4627.
- Conforming implementations of `JSON.parse` and `JSON.stringify` must support the exact interchange format described in this specification without any deletions or extensions to the format. This differs from RFC 4627 which permits a JSON parser to accept non-JSON forms and extensions.

The value of the `[[Prototype]]` internal property of the JSON object is the standard built-in Object prototype object (15.2.4). The JSON object has a `[[NativeBrand]]` internal property whose value is NativeJSON. The value of the `[[Extensible]]` internal property of the JSON object is set to `true`.

The JSON object does not have a `[[Construct]]` internal property; it is not possible to use the JSON object as a constructor with the `new` operator.

The JSON object does not have a `[[Call]]` internal property; it is not possible to invoke the JSON object as a function.

15.12.1 The JSON Grammar

`JSON.stringify` produces a String that conforms to the following JSON grammar. `JSON.parse` accepts a String that conforms to the JSON grammar.

15.12.1.1 The JSON Lexical Grammar

JSON is similar to ECMAScript source text in that it consists of a sequence of Unicode characters conforming to the rules of `SourceCharacter`. The JSON Lexical Grammar defines the tokens that make up a JSON text similar to the manner that the ECMAScript lexical grammar defines the tokens of an ECMAScript source text. The JSON Lexical grammar only recognizes the white space character specified by the production `JSONWhiteSpace`. The JSON lexical grammar shares some productions with the ECMAScript lexical grammar. All nonterminal symbols of the grammar that do not begin with the characters “JSON” are defined by productions of the ECMAScript lexical grammar.

Syntax

```
JSONWhiteSpace ::
   <TAB>
   <CR>
   <LF>
   <SP>

JSONString ::
   " JSONStringCharactersOpt "

JSONStringCharacters ::
   JSONStringCharacter JSONStringCharactersOpt

JSONStringCharacter ::
   SourceCharacter but not one of " or \ or U+0000 through U+001F
   \ JSONEscapeSequence
```
JSONEscapeSequence ::
 JSONEscapeCharacter
 u HexDigit HexDigit HexDigit HexDigit

JSONEscapeCharacter :: one of
 " / \ b f n r t

JSONNumber ::
 ~opt DecimalIntegerLiteral JSONFractionopt ExponentPartopt

JSONFraction ::
 . DecimalDigits

JSONNullLiteral ::
 NullLiteral

JSONBooleanLiteral ::
 BooleanLiteral

15.12.1.2 The JSON Syntactic Grammar

The JSON Syntactic Grammar defines a valid JSON text in terms of tokens defined by the JSON lexical grammar. The goal symbol of the grammar is JSONText.

Syntax

JSONText :
 JSONValue

JSONArray :
 []

JSONObject :
 { }

JSONValue :
 JSONNullLiteral
 JSONBooleanLiteral
 JSONObject
 JSONArray
 JSONString
 JSONNumber

JSONObject :
 { } { JSONMemberList }

JSONMember :
 JSONString : JSONValue

JSONMemberList :
 JSONMember
 JSONMemberList , JSONMember

JSONArray :
 []
 [JSONElementList]

JSONElementList :
 JSONValue
 JSONElementList , JSONValue

15.12.2 parse (text [, reviver])

The parse function parses a JSON text (a JSON-formatted String) and produces an ECMAScript value. The JSON format is a restricted form of ECMAScript literal. JSON objects are realized as ECMAScript objects. JSON arrays are realized as ECMAScript arrays. JSON strings, numbers, booleans, and null are realized as ECMAScript Strings, Numbers, Booleans, and null. JSON uses a more limited set of white space characters
than WhiteSpace and allows Unicode code points U+2028 and U+2029 to directly appear in JSONString literals without using an escape sequence. The process of parsing is similar to 11.1.4 and 11.1.5 as constrained by the JSON grammar.

The optional reviver parameter is a function that takes two parameters, (key and value). It can filter and transform the results. It is called with each of the key/value pairs produced by the parse, and its return value is used instead of the original value. If it returns what it received, the structure is not modified. If it returns undefined then the property is deleted from the result.

1. Let JText be ToString(text).
2. ReturnIfAbrupt(text).
3. Parse JText interpreted as UTF-16 encoded Unicode characters using the grammars in 15.12.1. Throw a SyntaxError exception if JText did not conform to the JSON grammar for the goal symbol JSONText.
4. Let unfiltered be the result of parsing and evaluating JText as if it was the source text of an ECMAScript Program but using JSONString in place of StringLiteral. Note that since JText conforms to the JSON grammar this result will be either a primitive value or an object that is defined by either an ArrayLiteral or an ObjectLiteral.
5. If IsCallable(reviver) is true, then
 a. Let root be the result of the abstract operation ObjectCreate (15.2).
 b. Call the [[DefineOwnProperty]] internal method of root with the empty String, the Property Descriptor {[[Value]]: unfiltered, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false as arguments.
 c. Return the result of calling the abstract operation Walk, passing root and the empty String. The abstract operation Walk is described below.
6. Else
 a. Return unfiltered.

The abstract operation Walk is a recursive abstract operation that takes two parameters: a holder object and the String name of a property in that object. Walk uses the value of reviver that was originally passed to the above parse function.

1. Let val be the result of calling the [[Get]] internal method of holder with argument name.
2. ReturnIfAbrupt(val).
3. If val is an object, then
 a. If val has a [[NativeBrand]] internal property with value NativeArray, then
 i. Set I to 0.
 ii. Let len be the result of calling the [[Get]] internal method of val with argument "length".
 iii. Assert: len is not an abrupt completion and its value is a positive integer.
 iv. Repeat while I < len,
 1. Let newElement be the result of calling the abstract operation Walk, passing val and ToString(I).
 2. If newElement is undefined, then
 a. Let status be the result of calling the [[Delete]] internal method of val with ToString(I) and false as arguments.
 Else
 a. Let status be the result of calling the [[DefineOwnProperty]] internal method of val with arguments ToString(I), the Property Descriptor {[[Value]]: newElement, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
 4. ReturnIfAbrupt(status).
 5. Add 1 to I.
 b. Else
 i. Let keys be an internal List of String values consisting of the names of all the own properties of val whose [[Enumerable]] attribute is true. The ordering of the Strings is the same as that used by the Object.keys standard built-in function.
 ii. For each String P in keys do,
 1. Let newElement be the result of calling the abstract operation Walk, passing val and P.
 2. If newElement is undefined, then
Let \(\text{status} \) be the result of calling the [[Delete]] internal method of \(\text{val} \) with \(P \) and \text{false} as arguments.

3. Else
 a. Let \(\text{status} \) be the result of calling the [[DefineOwnProperty]] internal method of \(\text{val} \) with arguments \(P \), the Property Descriptor \(\{ [[Value]]: \text{newElement}, [[Writable]]: \text{true}, [[Enumerable]]: \text{true}, [[Configurable]]: \text{true} \} \), and \text{false}.

4. ReturnIfAbrupt(\(\text{status} \)).

4. Return the result of calling the [[Call]] internal method of \(\text{reviver} \) passing \(\text{holder} \) as the this value and with an argument list consisting of \text{name} and \(\text{val} \).

It is not permitted for a conforming implementation of \text{JSON.parse} to extend the JSON grammars. If an implementation wishes to support a modified or extended JSON interchange format it must do so by defining a different parse function.

NOTE In the case where there are duplicate name Strings within an object, lexically preceding values for the same key shall be overwritten.

15.12.3 \text{stringify} (\text{value} [, \text{replacer} [, \text{space}]])

The \text{stringify} function returns a String in UTF-16 encoded JSON format representing an ECMAScript value. It can take three parameters. The \text{value} parameter is an ECMAScript value, which is usually an object or array, although it can also be a String, Boolean, Number or \text{null}. The optional \text{replacer} parameter is either a function that alters the way objects and arrays are stringified, or an array of Strings and Numbers that acts as a white list for selecting the object properties that will be stringified. The optional \text{space} parameter is a String or Number that allows the result to have white space injected into it to improve human readability.

These are the steps in stringifying an object:

1. Let \(\text{stack} \) be an empty List.
2. Let \(\text{indent} \) be the empty String.
3. Let \(\text{PropertyList} \) and \(\text{ReplacerFunction} \) be undefined.
4. If Type(\(\text{replacer} \)) is Object, then
 a. If IsCallable(\(\text{replacer} \)) is \text{true}, then
 i. Let \(\text{ReplacerFunction} \) be \(\text{replacer} \).
 b. Else if \(\text{replacer} \) has a [[NativeBrand]] internal property with value NativeArray, then
 i. Let \(\text{PropertyList} \) be an empty internal List
 ii. For each value \(\text{v} \) of a property of \(\text{replacer} \) that has an array index property name. The properties are enumerated in the ascending array index order of their names.
 1. Let \(\text{item} \) be undefined.
 2. If Type(\(\text{v} \)) is String then let \(\text{item} \) be \(\text{v} \).
 3. Else if Type(\(\text{v} \)) is Number then let \(\text{item} \) be ToString(\(\text{v} \)).
 4. Else if Type(\(\text{v} \)) is Object then,
 a. If \(\text{v} \) has a [[NativeBrand]] internal property whose value is either StringWrapper or NumberWrapper then let \(\text{item} \) be ToString(\(\text{v} \)).
 5. If \(\text{item} \) is not undefined and \(\text{item} \) is not currently an element of \(\text{PropertyList} \) then,
 a. Append \(\text{item} \) to the end of \(\text{PropertyList} \).
 5. If Type(\(\text{space} \)) is Object then,
 a. If \(\text{space} \) has a [[NativeBrand]] internal property whose value is NumberWrapper then,
 i. Let \(\text{space} \) be ToNumber(\(\text{space} \)).
 b. Else if \(\text{space} \) has a [[NativeBrand]] internal property with value StringWrapper then,
 i. Let \(\text{space} \) be ToString(\(\text{space} \)).
 6. If Type(\(\text{space} \)) is Number
 a. Let \(\text{space} \) be min(10, ToInteger(\(\text{space} \))).
 b. Set \(\text{gap} \) to a String containing \(\text{space} \) occurrences of code unit 0x0020 (the Unicode space character). This will be the empty String if \(\text{space} \) is less than 1.
 7. Else if Type(\(\text{space} \)) is String
 a. If the number of elements in \(\text{space} \) is 10 or less, set \(\text{gap} \) to \(\text{space} \) otherwise set \(\text{gap} \) to a String consisting of the first 10 elements of \(\text{space} \).
 8. Else
a. Set \(\text{gap} \) to the empty String.

9. Let \(\text{wrapper} \) be the result of the abstract operation \(\text{ObjectCreate}(15.2) \).

10. Call the \([[\text{DefineOwnProperty}]]\) internal method of \(\text{wrapper} \) with arguments the empty String, the Property Descriptor \([[\text{Value}]]: \text{value}, [[\text{Writable}]]: \text{true}, [[\text{Enumerable}]]: \text{true}, [[\text{Configurable}]]: \text{true} \), and \text{false}.

11. Return the result of calling the abstract operation \(\text{Str} \) with the empty String and \(\text{wrapper} \).

The abstract operation \(\text{Str(key, holder)} \) has access to \(\text{ReplacerFunction} \) from the invocation of the \text{stringify} method. Its algorithm is as follows:

1. Let \(\text{value} \) be the result of calling the \([[\text{Get}]]\) internal method of \(\text{holder} \) with argument \(\text{key} \).

2. ReturnIfAbrupt(\(\text{value} \)).

3. If Type(\(\text{value} \)) is Object, then
 a. Let \(\text{toJSON} \) be the result of calling the \([[\text{Get}]]\) internal method of \(\text{value} \) with argument \"\text{toJSON}\".
 b. If IsCallable(\(\text{toJSON} \)) is \text{true}
 i. Let \(\text{value} \) be the result of calling the \([[\text{Call}]]\) internal method of \(\text{toJSON} \) passing \(\text{value} \) as the \(\text{this} \) value and with an argument list consisting of \(\text{key} \).
 ii. ReturnIfAbrupt(\(\text{value} \)).

4. If \(\text{ReplacerFunction} \) is not undefined, then
 a. Let \(\text{value} \) be the result of calling the \([[\text{Call}]]\) internal method of \(\text{ReplacerFunction} \) passing \(\text{holder} \) as the \(\text{this} \) value and with an argument list consisting of \(\text{key} \) and \(\text{value} \).
 b. ReturnIfAbrupt(\(\text{value} \)).

5. If Type(\(\text{value} \)) is Object then,
 a. If \(\text{value} \) has an [[\text{NativeBrand}]] internal property with value NumberWrapper then,
 i. Let \(\text{value} \) be ToNumber(\(\text{value} \)).
 b. Else if \(\text{value} \) has an [[\text{NativeBrand}]] internal property with value StringWrapper then,
 i. Let \(\text{value} \) be ToString(\(\text{value} \)).
 c. Else if \(\text{value} \) has an [[\text{NativeBrand}]] internal property with value BooleanWrapper then,
 i. Let \(\text{value} \) be the value of the [[\text{PrimitiveValue}]] internal property of \(\text{value} \).

6. If \(\text{value} \) is \text{null} then return \"\text{null}\".

7. If \(\text{value} \) is \text{true} then return \"\text{true}\".

8. If \(\text{value} \) is \text{false} then return \"\text{false}\".

9. If Type(\(\text{value} \)) is String, then return the result of calling the abstract operation \text{Quote} with argument \(\text{value} \).

10. If Type(\(\text{value} \)) is Number
 a. If \(\text{value} \) is finite then return ToString(\(\text{value} \)).
 b. Else, return \"\text{null}\".

11. If Type(\(\text{value} \)) is Object, and IsCallable(\(\text{value} \)) is \text{false}
 a. If \(\text{value} \) has an [[\text{NativeBrand}]] internal property with value NativeArray then
 i. Return the result of calling the abstract operation \(\text{JA} \) with argument \(\text{value} \).
 b. Else, return the result of calling the abstract operation \(\text{JO} \) with argument \(\text{value} \).

12. Return undefined.

The abstract operation \text{Quote(\(\text{value} \))} wraps a String value in double quotes and escapes characters within it.

1. Let \(\text{product} \) be code unit \text{0x0022} (the Unicode double quote character).

2. For each code unit \(\text{C} \) in \(\text{value} \)
 a. If \(\text{C} \) is \text{0x0022} or \text{0x005C} (the Unicode reverse solidus character)
 i. Let \(\text{product} \) be the concatenation of \(\text{product} \) and code unit \text{0x005C} (the Unicode backslash character).
 ii. Let \(\text{product} \) be the concatenation of \(\text{product} \) and code unit \text{0x005C}.
 b. Else if \(\text{C} \) is backspace, formfeed, newline, carriage return, or tab
 i. Let \(\text{product} \) be the concatenation of \(\text{product} \) and code unit \text{0x005C} (the Unicode backslash character).
 ii. Let \(\text{abbrev} \) be the string value corresponding to the value of \(\text{C} \) as follows:
 backspace \(\text{"b"} \)
 formfeed \(\text{"f"} \)
 newline \(\text{"n"} \)
 carriage return \(\text{"r"} \)
 tab \(\text{"t"} \)
 iii. Let \(\text{product} \) be the concatenation of \(\text{product} \) and \(\text{abbrev} \).
c. Else if C has a code unit value less than 0x0020 (the Unicode space character)
 i. Let product be the concatenation of product and code unit 0x005C (the Unicode backslash character).
 ii. Let product be the concatenation of product and ".u".
 iii. Let hex be the string result of converting the numeric code unit value of C to a String of four hexadecimal digits. Alphabetic hexadecimal digits are presented as lowercase characters.
 iv. Let product be the concatenation of product and hex.
 d. Else
 i. Let product be the concatenation of product and C.
3. Let product be the concatenation of product and code unit 0x0022 (the Unicode double quote character).
4. Return product.

The abstract operation JO(value) serializes an object. It has access to the stack, indent, gap, and PropertyList of the invocation of the stringify method.

1. If stack contains value then throw a TypeError exception because the structure is cyclical.
2. Append value to stack.
3. Let stepback be indent.
4. Let indent be the concatenation of indent and gap.
5. If PropertyList is not undefined, then
 a. Let K be PropertyList.
6. Else
 a. Let K be an internal List of Strings consisting of the names of all the own properties of value whose [[Enumerable]] attribute is true. The ordering of the Strings is the same as that used by the Object.keys standard built-in function.
7. Let partial be an empty List.
8. For each element P of K
 a. Let strP be the result of calling the abstract operation Str with arguments P and value.
 b. ReturnIfAbrupt(strP).
 c. If strP is not undefined
 i. Let member be the result of calling the abstract operation Quote with argument P.
 ii. Let member be the concatenation of member and the string ":".
 iii. If gap is not the empty String
 1. Let member be the concatenation of member and code unit 0x0020 (the Unicode space character).
 2. Let member be the concatenation of member and strP.
 iv. Append member to partial.
9. If partial is empty, then
 a. Let final be "{}".
10. Else
 a. If gap is the empty String
 i. Let properties be a String formed by concatenating all the element Strings of partial with each adjacent pair of Strings separated with code unit 0x002C (the Unicode comma character). A comma is not inserted either before the first String or after the last String.
 ii. Let final be the result of concatenating "{, properties, and }".
 b. Else gap is not the empty String
 i. Let separator be the result of concatenating code unit 0x002C (the comma character), code unit 0x000A (the line feed character), and indent.
 ii. Let properties be a String formed by concatenating all the element Strings of partial with each adjacent pair of Strings separated with separator. The separator String is not inserted either before the first String or after the last String.
 iii. Let final be the result of concatenating "{, code unit 0x000A (the line feed character), indent, properties, code unit 0x000A, stepback, and }".
11. Remove the last element of stack.
12. Let indent be stepback.

The abstract operation JA(value) serializes an array. It has access to the stack, indent, and gap of the invocation of the stringify method. The representation of arrays includes only the elements between zero and
array.length – 1 inclusive. Named properties are excluded from the stringification. An array is stringified as an open left bracket, elements separated by comma, and a closing right bracket.

1. If stack contains value then throw a TypeError exception because the structure is cyclical.
2. Append value to stack.
3. Let stepback be indent.
4. Let indent be the concatenation of indent and gap.
5. Let partial be an empty List.
6. Assert: value is a native array and hence its "length" property is a non-negative integer.
7. Let len be the result of calling the [[Get]] internal method of value with argument "length".
8. Let index be 0.
9. Repeat while index < len
 a. Let strP be the result of calling the abstract operation Str with arguments ToString(index) and value.
 b. ReturnIfAbrupt(strP).
 c. If strP is undefined
 i. Append "null" to partial.
 d. Else
 i. Append strP to partial.
 e. Increment index by 1.
10. If partial is empty ,then
 a. Let final be "["].
11. Else
 a. If gap is the empty String
 i. Let properties be a String formed by concatenating all the element Strings of partial with each adjacent pair of Strings separated with code unit 0x002C (the comma character). A comma is not inserted either before the first String or after the last String.
 ii. Let final be the result of concatenating "[", properties, and "]".
 b. Else
 i. Let separator be the result of concatenating code unit 0x002C (the comma character), code unit 0x000A (the line feed character), and indent.
 ii. Let properties be a String formed by concatenating all the element Strings of partial with each adjacent pair of Strings separated with separator. The separator String is not inserted either before the first String or after the last String.
 iii. Let final be the result of concatenating "[", code unit 0x000A (the line feed character), indent, properties, code unit 0x000A, stepback, and "]".
12. Remove the last element of stack.
13. Let indent be stepback.

NOTE 1 JSON structures are allowed to be nested to any depth, but they must be acyclic. If value is or contains a cyclic structure, then the stringify function must throw a TypeError exception. This is an example of a value that cannot be stringified:

```
a = [];  
a[0] = a;  
my_text = JSON.stringify(a); // This must throw an TypeError.
```

NOTE 2 Symbolic primitive values are rendered as follows:

- The null value is rendered in JSON text as the String null.
- The undefined value is not rendered.
- The true value is rendered in JSON text as the String true.
- The false value is rendered in JSON text as the String false.

NOTE 3 String values are wrapped in double quotes. The characters " and \ are escaped with \ prefixes. Control characters are replaced with escape sequences \uHHHH, or with the shorter forms, \b (backspace), \f (formfeed), \n (newline), \r (carriage return), \t (tab).

NOTE 4 Finite numbers are stringified as if by calling ToString(number). NaN and Infinity regardless of sign are represented as the String null.
NOTE 5 Values that do not have a JSON representation (such as `undefined` and functions) do not produce a String. Instead they produce the `undefined` value. In arrays these values are represented as the String `null`. In objects an unrepresentable value causes the property to be excluded from stringification.

NOTE 6 An object is rendered as an opening left brace followed by zero or more properties, separated with commas, closed with a right brace. A property is a quoted String representing the key or property name, a colon, and then the stringified property value. An array is rendered as an opening left bracket followed by zero or more values, separated with commas, closed with a right bracket.

16 Errors

An implementation must report most errors at the time the relevant ECMAScript language construct is evaluated. An early error is an error that can be detected and reported prior to the evaluation of any construct in the `Program` containing the error. An implementation must report early errors in a `Program` prior to the first evaluation of that `Program`. Early errors in `eval` code are reported at the time `eval` is called but prior to evaluation of any construct within the `eval` code. All errors that are not early errors are runtime errors.

An implementation must treat any instance of the following kinds of errors as an early error:

- Any syntax error.
- Attempts to define an `ObjectLiteral` that has multiple `get` property assignments with the same name or multiple `set` property assignments with the same name.
- Attempts to define an `ObjectLiteral` that has both a data property assignment and a `get` or `set` property assignment with the same name.
- Errors in regular expression literals that are not implementation-defined syntax extensions.
- Attempts in strict mode code to define an `ObjectLiteral` that has multiple data property assignments with the same name.
- The occurrence of a `WithStatement` in strict mode code.
- The occurrence of an `Identifier` value appearing more than once within a `FormalParameterList` of an individual strict mode `FunctionDeclaration` or `FunctionExpression`.
- Improper uses of `return`, `break`, and `continue`.
- Attempts to call `PutValue` on any value for which an early determination can be made that the value is not a Reference (for example, executing the assignment statement `3=4`).

An implementation shall not treat other kinds of errors as early errors even if the compiler can prove that a construct cannot execute without error under any circumstances. An implementation may issue an early warning in such a case, but it should not report the error until the relevant construct is actually executed.

An implementation shall report all errors as specified, except for the following:

- An implementation may extend program syntax and regular expression pattern or flag syntax. To permit this, all operations (such as calling `eval`, using a regular expression literal, or using the `Function` or `RegExp` constructor) that are allowed to throw `SyntaxError` are permitted to exhibit implementation-defined behaviour instead of throwing `SyntaxError` when they encounter an implementation-defined extension to the program syntax or regular expression pattern or flag syntax.
- An implementation may provide additional types, values, objects, properties, and functions beyond those described in this specification. This may cause constructs (such as looking up a variable in the global scope) to have implementation-defined behaviour instead of throwing an error (such as `ReferenceError`).
- An implementation may define behaviour other than throwing `RangeError` for `toFixed`, `toExponential`, and `toPrecision` when the `fractionDigits` or `precision` argument is outside the specified range.
Annex A
(informative)

Grammar Summary

A.1 Lexical Grammar

SourceCharacter ::
 any Unicode code unit See clause 6

InputElementDiv ::
 WhiteSpace See clause 7
 LineTerminator
 Comment
 Token
 DivPunctuator

InputElementRegExp ::
 WhiteSpace See clause 7
 LineTerminator
 Comment
 Token
 RegularExpressionLiteral

WhiteSpace ::
 <TAB>
 <VT>
 <FF>
 <SP>
 <NBSP>
 <BOM>
 <USP>

LineTerminator ::
 <LF>
 <CR>
 <LS>
 <PS>

LineTerminatorSequence ::
 <LF>
 <CR> [lookahead ≠ <LF>]
 <LS>
 <PS>
 <CR> <LF>

Comment ::
 MultiLineComment
 SingleLineComment

See 7.2

See 7.3

See 7.4
MultiLineComment ::
 /* MultiLineCommentChars_opt */

MultiLineCommentChars ::
 MultiLineNotAsteriskChar MultiLineCommentChars_opt
 * PostAsteriskCommentChars_opt

PostAsteriskCommentChars ::
 MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars_opt
 * PostAsteriskCommentChars_opt

MultiLineNotAsteriskChar ::
 SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
 SourceCharacter but not one of / or *

SingleLineComment ::
 // SingleLineCommentChars_opt

SingleLineCommentChars ::
 SingleLineCommentChar SingleLineCommentChars_opt

SingleLineCommentChar ::
 SourceCharacter but not LineTerminator

Token ::
 IdentifierName
 Punctuator
 NumericLiteral
 StringLiteral

Identifier ::
 IdentifierName but not ReservedWord

IdentifierName ::
 IdentifierStart
 IdentifierName IdentifierPart

IdentifierStart ::
 UnicodeLetter
 $
 \ UnicodeEscapeSequence

 See 7.4
 See 7.4
 See 7.4
 See 7.4
 See 7.4
 See 7.4
 See 7.5
 See 7.6
 See 7.6
 See 7.6
IdentifierPart ::
 IdentifierStart
 UnicodeCombiningMark
 UnicodeDigit
 UnicodeConnectorPunctuation
 <ZWNJ>
 <ZWJ>

UnicodeLetter ::
 any character in the Unicode categories “Uppercase letter (Lu),” “Lowercase letter (Ll),” “Titlecase letter (Lt),” “Modifier letter (Lm),” “Other letter (Lo),” or “Letter number (Nl).”

UnicodeCombiningMark ::
 any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining spacing mark (Mc)”

UnicodeDigit ::
 any character in the Unicode category “Decimal number (Nd)”

UnicodeConnectorPunctuation ::
 any character in the Unicode category “Connector punctuation (Pc)”

ReservedWord ::
 Keyword
 FutureReservedWord
 NullLiteral
 BooleanLiteral

Keyword :: one of
 break
do
instanceof
typeof
case
else
new
var
catch
finally
return
void
continue
for
switch
while
default
if
throw
debugger
function
this
with
delete
in
try

FutureReservedWord :: one of
 class
denum
extends
super
const
export
import

The following tokens are also considered to be FutureReservedWords when parsing strict mode code (see 10.1.1).

implements
let
private
public
interface
package
protected
static
yield
Punctuator :: one of
 { } () []
 . ; , < > <=
 >= == != === !==
 + - * % ++ --
 << >> >>> & | ^
 ! ~ && || ? :
 >= += -= *= %= <<=

DivPunctuator :: one of
 / /=

Literal ::
 NullLiteral
 BooleanLiteral
 NumericLiteral
 StringLiteral
 RegularExpressionLiteral

NullLiteral ::
 null

BooleanLiteral ::
 true
 false

NumericLiteral ::
 DecimalLiteral
 HexIntegerLiteral

DecimalLiteral ::
 DecimalIntegerLiteral . DecimalDigits opt ExponentPart opt
 . DecimalDigits ExponentPart opt
 DecimalIntegerLiteral ExponentPart opt

DecimalIntegerLiteral ::
 0
 NonZeroDigit DecimalDigits opt

DecimalDigits ::
 DecimalDigit
 DecimalDigits DecimalDigit

DecimalDigit :: one of
 0 1 2 3 4 5 6 7 8 9
NonZeroDigit :: one of
 1 2 3 4 5 6 7 8 9

ExponentPart ::
 ExponentIndicator SignedInteger

ExponentIndicator :: one of
 e E

SignedInteger ::
 DecimalDigits
 + DecimalDigits
 ~ DecimalDigits

HexIntegerLiteral ::
 0x HexDigit
 0X HexDigit
 HexIntegerLiteral HexDigit

HexDigit :: one of
 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

StringLiteral ::
 " DoubleStringCharactersopt "
 ' SingleStringCharactersopt '

DoubleStringCharacters ::
 DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::
 SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::
 SourceCharacter but not one of " or \ or LineTerminator
 \ EscapeSequence
 LineContinuation

SingleStringCharacter ::
 SourceCharacter but not one of " or \ or LineTerminator
 \ EscapeSequence
 LineContinuation

LineContinuation ::
 \ LineTerminatorSequence

EscapeSequence ::
 CharacterEscapeSequence
 0 [lookahead != DecimalDigit]
 HexEscapeSequence
 UnicodeEscapeSequence

CharacterEscapeSequence ::
 SingleEscapeCharacter
 NonEscapeCharacter

SingleEscapeCharacter :: one of
 ' " \ b f n r t v
NonEscapeCharacter ::
 SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
 SingleEscapeCharacter
 DecimalDigit x
 u

HexEscapeSequence ::
 x HexDigit HexDigit

UnicodeEscapeSequence ::
 u HexDigit HexDigit HexDigit HexDigit

RegularExpressionLiteral ::
 / RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
 RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
 [empty]
 RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
 RegularExpressionNonTerminator but not one of * or \ or / or [
 RegularExpressionBackslashSequence
 RegularExpressionClass

RegularExpressionChar ::
 RegularExpressionNonTerminator but not \ or / or [
 RegularExpressionBackslashSequence
 RegularExpressionClass

RegularExpressionBackslashSequence ::
 \ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
 SourceCharacter but not LineTerminator

RegularExpressionClass ::
 [RegularExpressionClassChars]

RegularExpressionClassChars ::
 [empty]
 RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
 RegularExpressionNonTerminator but not] or \
RegularExpressionFlags ::
 [empty]
 RegularExpressionFlags IdentifierPart

A.2 Number Conversions

StringNumericLiteral :::
 StrWhiteSpaceopt
 StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace :::
 StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
 WhiteSpace
 LineTerminator

StrNumericLiteral :::
 StrDecimalLiteral
 HexIntegerLiteral

StrDecimalLiteral :::
 StrUnsignedDecimalLiteral
 + StrUnsignedDecimalLiteral
 - StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
 Infinity
 DecimalDigits . DecimalDigitsopt ExponentPartopt
 . DecimalDigits ExponentPartopt
 DecimalDigits ExponentPartopt

DecimalDigits :::
 DecimalDigit
 DecimalDigits DecimalDigit

DecimalDigit ::: one of
 0 1 2 3 4 5 6 7 8 9

ExponentPart :::
 ExponentIndicator SignedInteger

ExponentIndicator ::: one of
 e E

SignedInteger :::
 DecimalDigits
 + DecimalDigits
 - DecimalDigits
HexIntegerLiteral ::=
 0x HexDigit
 0X HexDigit
 HexIntegerLiteral HexDigit

HexDigit :::= one of
 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

A.3 Expressions

PrimaryExpression :
 this
 Identifier
 Literal
 ArrayLiteral
 ObjectLiteral
 (Expression)

ArrayLiteral :
 [Elision\opt]
 [ElementList]
 [ElementList \ Elision\opt]

ElementList :
 Elision\opt AssignmentExpression
 ElementList \ Elision\opt AssignmentExpression

Elision :
 ,
 Elision ,

ObjectLiteral :
 { }
 { PropertyDefinitionList } { PropertyDefinitionList , }

PropertyDefinitionList :
 PropertyDefinition
 PropertyDefinitionList , PropertyDefinition

PropertyDefinition :
 PropertyName : AssignmentExpression
 get PropertyName () { FunctionBody }
 set PropertyName (PropertySetParameterList) { FunctionBody }

PropertyName :
 IdentifierName
 StringLiteral
 NumericLiteral

PropertySetParameterList :
 Identifier
MemberExpression :
 PrimaryExpression
 FunctionExpression
 MemberExpression [Expression]
 MemberExpression . IdentifierName
 new MemberExpression Arguments

See 11.2

NewExpression :
 MemberExpression
 new NewExpression

See 11.2

CallExpression :
 MemberExpression Arguments
 CallExpression Arguments
 CallExpression [Expression]
 CallExpression . IdentifierName

See 11.2

Arguments :

See 11.2

Arguments :

See 11.2

AssignmentExpression

See 11.2

ArgumentList :
 AssignmentExpression
 ArgumentList , AssignmentExpression

See 11.2

LeftHandSideExpression :
 NewExpression
 CallExpression

See 11.2

PostfixExpression :
 LeftHandSideExpression
 LeftHandSideExpression [no LineTerminator here] ++
 LeftHandSideExpression [no LineTerminator here] --

See 11.3

UnaryExpression :
 PostfixExpression
 delete UnaryExpression
 void UnaryExpression
 typeof UnaryExpression
 ++ UnaryExpression
 -- UnaryExpression
 + UnaryExpression
 - UnaryExpression
 ~ UnaryExpression
 ! UnaryExpression

See 11.4

MultiplicativeExpression :
 UnaryExpression
 MultiplicativeExpression * UnaryExpression
 MultiplicativeExpression / UnaryExpression
 MultiplicativeExpression % UnaryExpression

See 11.5
AdditiveExpression :
 MultiplicativeExpression
 AdditiveExpression + MultiplicativeExpression
 AdditiveExpression - MultiplicativeExpression

ShiftExpression :
 AdditiveExpression
 ShiftExpression << AdditiveExpression
 ShiftExpression >> AdditiveExpression
 ShiftExpression >>> AdditiveExpression

RelationalExpression :
 ShiftExpression
 RelationalExpression < ShiftExpression
 RelationalExpression > ShiftExpression
 RelationalExpression <= ShiftExpression
 RelationalExpression >= ShiftExpression
 RelationalExpression instanceof ShiftExpression
 RelationalExpression in ShiftExpression

RelationalExpressionNoIn :
 ShiftExpression
 RelationalExpressionNoIn < ShiftExpression
 RelationalExpressionNoIn > ShiftExpression
 RelationalExpressionNoIn <= ShiftExpression
 RelationalExpressionNoIn >= ShiftExpression
 RelationalExpressionNoIn instanceof ShiftExpression

EqualityExpression :
 RelationalExpression
 EqualityExpression == RelationalExpression
 EqualityExpression != RelationalExpression
 EqualityExpression === RelationalExpression
 EqualityExpression !== RelationalExpression

EqualityExpressionNoIn :
 RelationalExpressionNoIn
 EqualityExpressionNoIn == RelationalExpressionNoIn
 EqualityExpressionNoIn != RelationalExpressionNoIn
 EqualityExpressionNoIn === RelationalExpressionNoIn
 EqualityExpressionNoIn !== RelationalExpressionNoIn

BitwiseANDExpression :
 EqualityExpression
 BitwiseANDExpression & EqualityExpression

BitwiseANDExpressionNoIn :
 EqualityExpressionNoIn
 BitwiseANDExpressionNoIn & EqualityExpressionNoIn
BitwiseXORExpression :
 BitwiseANDEExpression
 BitwiseXORExpression ^ BitwiseANDEExpression

BitwiseXORExpressionNoIn :
 BitwiseANDEExpressionNoIn
 BitwiseXORExpressionNoIn ^ BitwiseANDEExpressionNoIn

BitwiseORExpression :
 BitwiseXORExpression
 BitwiseORExpression | BitwiseXORExpression

BitwiseORExpressionNoIn :
 BitwiseXORExpressionNoIn
 BitwiseORExpressionNoIn | BitwiseXORExpressionNoIn

LogicalANDEExpression :
 BitwiseORExpression
 LogicalANDEExpression && BitwiseORExpression

LogicalANDExpressionNoIn :
 BitwiseORExpressionNoIn
 LogicalANDExpressionNoIn && BitwiseORExpressionNoIn

LogicalORExpression :
 LogicalANDExpression
 LogicalORExpression || LogicalANDExpression

LogicalORExpressionNoIn :
 LogicalANDExpressionNoIn
 LogicalORExpressionNoIn || LogicalANDExpressionNoIn

ConditionalExpression :
 LogicalORExpression
 LogicalORExpression ? AssignmentExpression : AssignmentExpression

ConditionalExpressionNoIn :
 LogicalORExpressionNoIn
 LogicalORExpressionNoIn ? AssignmentExpression : AssignmentExpressionNoIn

AssignmentExpression :
 ConditionalExpression
 LeftHandSideExpression = AssignmentExpression
 LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoIn :
 ConditionalExpressionNoIn
 LeftHandSideExpression = AssignmentExpressionNoIn
 LeftHandSideExpression AssignmentOperator AssignmentExpressionNoIn
AssignmentOperator : one of
 *= /= %= += -= <<= >>= >>>= &= ^= |=

Expression :
 AssignmentExpression
 Expression , AssignmentExpression

ExpressionNoIn :
 AssignmentExpressionNoIn
 ExpressionNoIn , AssignmentExpressionNoIn

A.4 Statements

Statement :
 Block
 VariableStatement
 EmptyStatement
 ExpressionStatement
 IfStatement
 IterationStatement
 ContinueStatement
 BreakStatement
 ReturnStatement
 WithStatement
 LabelledStatement
 SwitchStatement
 ThrowStatement
 TryStatement
 DebuggerStatement

Block :
 { StatementListopt }

StatementList :
 Statement
 StatementList Statement

VariableStatement :
 var VariableDeclarationList ;

VariableDeclarationList :
 VariableDeclaration
 VariableDeclarationList , VariableDeclaration

VariableDeclarationListNoIn :
 VariableDeclarationNoIn
 VariableDeclarationListNoIn , VariableDeclarationNoIn

VariableDeclaration :
 Identifier Initialiseropt

VariableDeclarationNoIn :
 Identifier InitialiserNoInopt
Initialiser:
 = AssignmentExpression

InitialiserNoIn:
 = AssignmentExpressionNoIn

EmptyStatement:
 ;

ExpressionStatement:
 [lookahead ≠ {, function}] Expression ;

IfStatement:
 if (Expression) Statement else Statement
 if (Expression) Statement

IterationStatement:
 do Statement while (Expression);
 while (Expression) Statement
 for (ExpressionNoIn_opt; Expression_opt; Expression_opt) Statement
 for (var VariableDeclarationListNoIn; Expression_opt; Expression_opt) Statement
 for (LeftHandSideExpression in Expression) Statement
 for (var VariableDeclarationNoIn in Expression) Statement

ContinueStatement:
 continue;
 continue [no LineTerminator here] Identifier;

BreakStatement:
 break;
 break [no LineTerminator here] Identifier;

ReturnStatement:
 return;
 return [no LineTerminator here] Expression;

WithStatement:
 with (Expression) Statement

SwitchStatement:
 switch (Expression) CaseBlock

CaseBlock:
 { CaseClauses_opt }
 { CaseClauses_opt DefaultClause CaseClauses_opt }

CaseClauses:
 CaseClause
 CaseClauses CaseClause

See 12.2
See 12.2
See 12.3
See 12.4
See 12.5
See 12.6
See 12.7
See 12.8
See 12.9
See 12.10
See 12.11
See 12.11
See 12.11
CaseClause:
 case Expression : StatementListopt

DefaultClause:
 default : StatementListopt

LabelledStatement:
 Identifier : Statement

ThrowStatement:
 throw [no LineTerminator here] Expression ;

TryStatement:
 try Block Catch
 try Block Finally
 try Block Catch Finally

Catch:
 catch (Identifier) Block

Finally:
 finally Block

DebuggerStatement:
 debugger ;

A.5 Functions and Programs

FunctionDeclaration:
 function Identifier (FormalParameterListopt) { FunctionBody }

FunctionExpression:
 function Identifieropt (FormalParameterListopt) { FunctionBody }

FormalParameterList:
 Identifier
 FormalParameterList , Identifier

FunctionBody:
 SourceElementsopt

Program:
 SourceElementsopt

SourceElements:
 SourceElement
 SourceElements SourceElement
SourceElement :
 Statement
 FunctionDeclaration

A.6 Universal Resource Identifier Character Classes

uri ::=
 uriCharacters_opt

uriCharacters ::=
 uriCharacter uriCharacters_opt

uriCharacter ::=
 uriReserved
 uriUnescaped
 uriEscaped

uriReserved ::= one of
 ; / ? : @ & = + $,

uriUnescaped ::=
 uriAlpha
 DecimalDigit
 uriMark

uriEscaped ::=
 % HexDigit HexDigit

uriAlpha ::= one of
 a b c d e f g h i j k l m n o p q r s t u v w x y z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

uriMark ::= one of
 - _ . ! ~ * ' ()

A.7 Regular Expressions

Pattern ::=
 Disjunction

Disjunction ::=
 Alternative
 Alternative | Disjunction

Alternative ::=
 [empty]
 Alternative Term

Term ::=
 Assertion
 Atom
 Atom Quantifier
Assertion ::
^ $ \backslash b \backslash B (? = \text{Disjunction}) (? ! \text{Disjunction})

Quantifier ::
QuantifierPrefix
QuantifierPrefix ?

QuantifierPrefix ::
* + ?
{ DecimalDigits }
{ DecimalDigits , }
{ DecimalDigits , DecimalDigits }

Atom ::
PatternCharacter
. \ AtomEscape
CharacterClass
(Disjunction) (? : Disjunction)

PatternCharacter ::
SourceCharacter \text{but not one of-}
^ $ \backslash . * + ? () [] { } |

AtomEscape ::
DecimalEscape
CharacterEscape
CharacterClassEscape

CharacterEscape ::
ControlEscape \c ControlLetter
HexEscapeSequence
UnicodeEscapeSequence
IdentityEscape

ControlEscape :: one of
f n r t v

ControlLetter :: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

See 15.10.1
IdentityEscape ::
 SourceCharacter but not IdentifierPart
 <ZWJ>
 <ZWNJ>

DecimalEscape ::
 DecimalIntegerLiteral [lookahead ≠ DecimalDigit]

CharacterClassEscape :: one of
 d D s S w W

CharacterClass ::
 [[lookahead ≠ (^)] ClassRanges]
 [^ ClassRanges]

ClassRanges ::
 [empty]
 NonemptyClassRanges

NonemptyClassRanges ::
 ClassAtom
 ClassAtom NonemptyClassRangesNoDash
 ClassAtom – ClassAtom ClassRanges

NonemptyClassRangesNoDash ::
 ClassAtom
 ClassAtomNoDash NonemptyClassRangesNoDash
 ClassAtomNoDash – ClassAtom ClassRanges

ClassAtom ::
 –
 ClassAtomNoDash

ClassAtomNoDash ::
 SourceCharacter but not one of \ or] or –
 \ ClassEscape

ClassEscape ::
 DecimalEscape
 b
 CharacterEscape
 CharacterClassEscape

A.8 JSON

A.8.1 JSON Lexical Grammar

JSONWhiteSpace ::
 <TAB>
 <CR>
JSONString ::
 " JSONStringCharactersopt "

See 15.12.1.1

JSONStringCharacters ::
 JSONStringCharacter JSONStringCharactersopt

See 15.12.1.1

JSONStringCharacter ::
 SourceCharacter but not one of " or \ or U+0000 through U+001F
 \ JSONEscapeSequence

See 15.12.1.1

JSONEscapeSequence ::
 JSONEscapeCharacter UnicodeEscapeSequence

See 15.12.1.1

JSONEscapeCharacter ::
 one of
 " / \ b f n r t

See 15.12.1.1

JSONNumber ::
 -opt DecimalIntegerLiteral JSONFractionopt ExponentPartopt

See 15.12.1.1

JSONFraction ::
 . DecimalDigits

See 15.12.1.1

JSONNullLiteral ::
 NullLiteral

See 15.12.1.1

JSONBooleanLiteral ::
 BooleanLiteral

See 15.12.1.1

A.8.2 JSON Syntactic Grammar

JSONText :
 JSONValue

See 15.12.1.2

JSONValue :
 JSONNullLiteral
 JSONBooleanLiteral
 JSONObject
 JSONArray
 JSONString
 JSONNumber

See 15.12.1.2

JSONObject :
 { }
 { JSONMemberList }

See 15.12.1.2

JSONMember :
 JSONString : JSONValue

See 15.12.1.2

JSONMemberList :
 JSONMember
 JSONMemberList , JSONMember

See 15.12.1.2

JSONArray :
 []
 [JSONElementList]

See 15.12.1.2
JSONElementList:
 JSONValue
 JSONElementList, JSONValue
Annex B
(normative)

Additional ECMAScript Features for Web Browsers

The ECMAScript language syntax and semantics defined in this annex are required when the ECMAScript host is a web browser. The content of this annex is normative but optional if the ECMAScript host is not a web browser.

B.1 Additional Syntax

B.1.1 Numeric Literals

The syntax and semantics of 7.8.3 is extended as follows except that this extension is not allowed for strict mode code:

Syntax

\[
\text{NumericLiteral} ::\]

\[
\text{DecimalLiteral} \\
\text{BinaryIntegerLiteral} \\
\text{OctalIntegerLiteral} \\
\text{HexIntegerLiteral} \\
\text{LegacyOctalIntegerLiteral}
\]

\[
\text{LegacyOctalIntegerLiteral} ::\]

\[
0 \text{ OctalDigit} \\
\text{LegacyOctalIntegerLiteral OctalDigit}
\]

Static Semantics

- The MV of \(\text{LegacyOctalIntegerLiteral} :: 0 \text{ OctalDigit}\) is the MV of \(\text{OctalDigit}\).
- The MV of \(\text{LegacyOctalIntegerLiteral} :: \text{LegacyOctalIntegerLiteral OctalDigit}\) is (the MV of \(\text{LegacyOctalIntegerLiteral}\) times 8) plus the MV of \(\text{OctalDigit}\).

B.1.2 String Literals

The syntax and semantics of 7.8.4 is extended as follows except that this extension is not allowed for strict mode code:

Syntax

\[
\text{EscapeSequence} ::\]

\[
\text{CharacterEscapeSequence} \\
\text{OctalEscapeSequence} \\
\text{HexEscapeSequence} \\
\text{UnicodeEscapeSequence}
\]

\[
\text{OctalEscapeSequence} ::\]

\[
\text{OctalDigit} \ [\text{lookahead} \neq \text{DecimalDigit}] \\
\text{ZeroToThree OctalDigit} \ [\text{lookahead} \neq \text{DecimalDigit}] \\
\text{FourToSeven OctalDigit} \\
\text{ZeroToThree OctalDigit OctalDigit}
\]

\[
\text{ZeroToThree} :: \text{one of}\]

\[
0 \ 1 \ 2 \ 3
\]
FourToSeven :: one of 4 5 6 7

Static Semantics

- The CV of EscapeSequence :: OctalEscapeSequence is the CV of the OctalEscapeSequence.
- The CV of OctalEscapeSequence :: OctalDigit [lookahead ≠ DecimalDigit] is the character whose code unit value is the MV of the OctalDigit.
- The CV of OctalEscapeSequence :: ZeroToThree OctalDigit [lookahead ≠ DecimalDigit] is the character whose code unit value is (8 times the MV of the ZeroToThree) plus the MV of the OctalDigit.
- The CV of OctalEscapeSequence :: FourToSeven OctalDigit is the character whose code unit value is (8 times the MV of the FourToSeven) plus the MV of the OctalDigit.
- The CV of OctalEscapeSequence :: ZeroToThree OctalDigit OctalDigit is the character whose code unit value is (64 (that is, 8²) times the MV of the ZeroToThree) plus (8 times the MV of the first OctalDigit) plus the MV of the second OctalDigit.
- The MV of ZeroToThree :: 0 is 0.
- The MV of ZeroToThree :: 1 is 1.
- The MV of ZeroToThree :: 2 is 2.
- The MV of ZeroToThree :: 3 is 3.
- The MV of FourToSeven :: 4 is 4.
- The MV of FourToSeven :: 5 is 5.
- The MV of FourToSeven :: 6 is 6.
- The MV of FourToSeven :: 7 is 7.

B.2 Additional Properties

When the ECMAScript host is a web browser the following additional properties of the standard built-in objects are defined.

B.2.1 Additional Properties of the Global Object

B.2.1.1 escape (string)

The escape function is a property of the global object. It computes a new version of a String value in which certain characters have been replaced by a hexadecimal escape sequence.

For those characters being replaced whose code unit value is 0xFF or less, a two-digit escape sequence of the form \%xx is used. For those characters being replaced whose code unit value is greater than 0xFF, a four-digit escape sequence of the form \%uxxxx is used.

When the escape function is called with one argument string, the following steps are taken:

1. Call ToString(string).
2. Compute the number of characters in Result(1).
3. Let R be the empty string.
4. Let k be 0.
5. If k equals Result(2), return R.
6. Get the character (represented as a 16-bit unsigned integer) at position k within Result(1).
7. If Result(6) is one of the 69 nonblank characters "ABCDEFHJKLNMOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789@*_+-./" then go to step 13.
8. If Result(6), is less than 256, go to step 11.
9. Let S be a String containing six characters "%uvwxyz" where xyz are four hexadecimal digits encoding the value of Result(6).
11. Let S be a String containing three characters "%xy" where xy are two hexadecimal digits encoding the value of Result(6).
Go to step 14.

Let \(S \) be a String containing the single character Result(6).

Let \(R \) be a new String value computed by concatenating the previous value of \(R \) and \(S \).

Increase \(k \) by 1.

Go to step 5.

NOTE

The encoding is partly based on the encoding described in RFC 1738, but the entire encoding specified in this standard is described above without regard to the contents of RFC 1738. This encoding does not reflect changes to RFC 1738 made by RFC 3986.

B.2.1.2 unescape (string)

The \texttt{unescape} function is a property of the global object. It computes a new version of a String value in which each escape sequence of the sort that might be introduced by the \texttt{escape} function is replaced with the character that it represents.

When the \texttt{unescape} function is called with one argument \texttt{string}, the following steps are taken:

1. Call \texttt{ToString(string)}.
2. Compute the number of characters in \texttt{Result(1)}.
3. Let \(k \) be 0.
4. If \(k \) equals \texttt{Result(2)}, return \(R \).
5. Let \(c \) be the character at position \(k \) within \texttt{Result(1)}.
6. If \(c \) is not \%, go to step 18.
7. If \(k \) is greater than \texttt{Result(2)−6}, go to step 14.
8. If the character at position \(k+1 \) within \texttt{Result(1)} is not \u, go to step 14.
9. If the four characters at positions \(k+2, k+3, k+4, \) and \(k+5 \) within \texttt{Result(1)} are not all hexadecimal digits, go to step 14.
10. Let \(c \) be the character whose code unit value is the integer represented by the four hexadecimal digits at positions \(k+2, k+3, k+4, \) and \(k+5 \) within \texttt{Result(1)}.
11. Increase \(k \) by 5.
13. If \(k \) is greater than \texttt{Result(2)−3}, go to step 18.
14. If the two characters at positions \(k+1 \) and \(k+2 \) within \texttt{Result(1)} are not both hexadecimal digits, go to step 18.
16. Let \(c \) be the character whose code unit value is the integer represented by two zeroes plus the two hexadecimal digits at positions \(k+1 \) and \(k+2 \) within \texttt{Result(1)}.
17. Increase \(k \) by 2.
18. Let \(R \) be a new String value computed by concatenating the previous value of \(R \) and \(c \).
19. Increase \(k \) by 1.
20. Go to step 5.

B.2.2 Additional Properties of the String.prototype Object

B.2.2.1 String.prototype.substr (start, length)

The \texttt{substr} method takes two arguments, \texttt{start} and \texttt{length}, and returns a substring of the result of converting the this object to a String, starting from character position \texttt{start} and running for \texttt{length} characters (or through the end of the String if \texttt{length} is \texttt{undefined}). If \texttt{start} is negative, it is treated as \texttt{(sourceLength+start)} where \texttt{sourceLength} is the length of the String. The result is a String value, not a String object. The following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let \(S \) be the result of performing \texttt{ToString, giving it the this value as its argument.}
3. Let \(intStart \) be \texttt{ToInteger(start)}.
4. ReturnIfAbrupt(intStart).
5. If \texttt{length} is \texttt{undefined}, let \texttt{end} be \(+\infty\); otherwise let \texttt{end} be \texttt{ToInteger(length)}.
6. ReturnIfAbrupt(end).
7. Let \(\text{size} \) be the number of characters in \(S \).
8. If \(\text{intStart} \) is negative, then let \(\text{intStart} \) be \(\max(\text{size} + \text{intStart}, 0) \).
9. Let \(\text{resultLength} \) be \(\min(\max(\text{end}, 0), \text{size} - \text{intStart}) \).
10. If \(\text{resultLength} \leq 0 \), return the empty String "".
11. Return a String containing \(\text{resultLength} \) consecutive characters from \(S \) beginning with the character at position \(\text{intStart} \).

The \text{length} property of the \text{substr} method is 2.

NOTE The \text{substr} function is intentionally generic; it does not require that its \this value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

\textbf{B.2.2.2} \text{String.prototype.anchor (name)}

When the \text{anchor} method is called with argument \text{name}, the following steps are taken:

1. Let \(S \) be the \this value.
2. Return the result of performing the abstract operation \text{CreateHTML} with arguments \(S \), "a", "name" and \text{name}.

The abstract operation \text{CreateHTML} is called with arguments \text{string}, \text{tag}, \text{attribute}, and \text{value}. The arguments \text{tag} and \text{attribute} must be string values. The following steps are taken:

1. \ReturnIfAbrupt(\text{CheckObjectCoercible(string)}).
2. Let \(S \) be the result of performing \text{ToString}(\text{string}).
3. \ReturnIfAbrupt(\(S \)).
4. If \text{attribute} is not the empty String, then
 a. Let \(V \) be the result of performing \text{ToString}(\text{value}).
5. \ReturnIfAbrupt(\(V \)).
6. Let \(p1 \) be the string value that is the concatenation of "<" and \text{tag}.
7. If \text{attribute} is not the empty String, then
 a. Let \(p1 \) be the string value that is the concatenation of the following string values:
 - \(p1 \)
 - a single space code unit \(0x0020 \)
 - \text{attribute}
 - "=
 - '\'
 - \(V \)
 - '\'
8. Let \(p2 \) be the string value that is the concatenation of \(p1 \) and "]".
9. Let \(p3 \) be the string value that is the concatenation of \(p2 \), "]/", \text{tag}, and "]".
10. Return \(p3 \).

\textbf{B.2.2.3} \text{String.prototype.big ()}

When the \text{big} method is called with no arguments, the following steps are taken:

1. Let \(S \) be the \this value.
2. Return the result of performing the abstract operation \text{CreateHTML} with arguments \(S \), "big", "" and "".

\textbf{B.2.2.4} \text{String.prototype.blink ()}

When the \text{blink} method is called with no arguments, the following steps are taken:

1. Let \(S \) be the \this value.
2. Return the result of performing the abstract operation \text{CreateHTML} with arguments \(S \), "blink", "" and "".
B.2.2.5 String.prototype.bold ()

When the bold method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "b", "" and "".

B.2.2.6 String.prototype.fixed ()

When the fixed method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "tt", "" and "".

B.2.2.7 String.prototype.fontcolor (color)

When the fontcolor method is called with argument color, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "font", "color" and color.

B.2.2.8 String.prototype.fontsize (size)

When the fontsize method is called with argument size, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "font", "size" and size.

B.2.2.9 String.prototype.italics ()

When the italics method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "i", "" and "".

B.2.2.10 String.prototype.link (url)

When the link method is called with argument url, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "a", "href" and url.

B.2.2.11 String.prototype.small ()

When the small method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation CreateHTML with arguments S, "small", "" and "".

B.2.2.12 String.prototype.strike ()

When the strike method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return the result of performing the abstract operation `CreateHTML` with arguments \(S, \text{"strike"}, \text{""}, \text{""} \).

B.2.2.13 String.prototype.sub ()

When the `sub` method is called with no arguments, the following steps are taken:

1. Let \(S \) be the `this` value.
2. Return the result of performing the abstract operation `CreateHTML` with arguments \(S, \text{"sub"}, \text{""}, \text{""} \).

B.2.2.14 String.prototype.sup ()

When the `sup` method is called with no arguments, the following steps are taken:

1. Let \(S \) be the `this` value.
2. Return the result of performing the abstract operation `CreateHTML` with arguments \(S, \text{"sup"}, \text{""}, \text{""} \).

B.2.3 Additional Properties of the Date.prototype Object

B.2.3.1 Date.prototype.getYear ()

NOTE The `getFullYear` method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”

When the `getYear` method is called with no arguments, the following steps are taken:

1. Let \(t \) be the `this` time value.
2. Return\(\text{ReturnIfAbrupt}(t) \).
3. If \(t \) is `NaN`, return `NaN`.
4. Return \(\text{YearFromTime}(\text{LocalTime}(t)) - 1900 \).

B.2.3.2 Date.prototype.setYear (year)

NOTE The `setFullYear` method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”

When the `setYear` method is called with one argument `year`, the following steps are taken:

1. Let \(t \) be the result of `LocalTime(this time value)`; but if this time value is `NaN`, let \(t \) be `+0`.
2. Let \(y \) be `ToNumber(year)`.
3. If \(y \) is `NaN`, set the `[PrimitiveValue]` internal property of the `this` value to `NaN` and return `NaN`.
4. If \(y \) is not `NaN` and \(0 \leq \text{ToInteger}(y) \leq 99 \) then let \(yyyy \) be \(\text{ToInteger}(y) + 1900 \). Otherwise, \(yyyy \) is \(y \).
5. Let \(d \) be `MakeDay(yyyy, \text{MonthFromTime}(t), \text{DateFromTime}(t))`.
6. Let \(date \) be `UTC(MakeDate(d, \text{TimeWithinDay}(t)))`.
7. Set the `[PrimitiveValue]` internal property of the `this` value to `TimeClip(date)`.
8. Return the value of the `[PrimitiveValue]` internal property of the `this` value.

B.2.3.3 Date.prototype.toGMTString ()

NOTE The property `toUTCString` is preferred. The `toGMTString` property is provided principally for compatibility with old code. It is recommended that the `toUTCString` property be used in new ECMAScript code.

The Function object that is the initial value of `Date.prototype.toGMTString` is the same Function object that is the initial value of `Date.prototype.toUTCString`.
B.3 Other Additional Features

B.3.1 The __proto__ pseudo property.

B.3.1.1 Object.prototype.__proto__

The initial value of the __proto__ property of the Object prototype object is a data property whose initial value is null. This property initially has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }.

Manipulations of this property as tracked by the Boolean valued primordial internal variable UnderscoreProtoEnabled. The default initial value of UnderscoreProtoEnabled is true only if this property is initially present on the primordial Object prototype object.

NOTE Any modification of this property or its attributes causes UnderscoreProtoEnabled to be set to false.

B.3.1.2 Changes To Internal Methods

The definition of the [[Get]] internal method given in 8.12.3 is replaced with the following:

1. If P is the string value "__proto__" and UnderscoreProtoEnabled is true, then
 a. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.
 b. If desc is not undefined and was created by step 1.a to describe the property defined in B.3.1.1 then,
 i. Return the value of the [[Prototype]] internal property of O.
2. Continue by executing the steps of 8.12.3 starting with step 1.

The definition of the [[Put]] internal method given in 8.12.5 is replaced with the following:

1. If P is the string value "__proto__" and UnderscoreProtoEnabled is true and O is not the standard built-in Object prototype object, then
 a. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.
 b. If desc is not undefined and was created by step 1.a to describe the property defined in B.3.1.1 then,
 i. If the type of V is neither Object or Null, return
 ii. Set the value of the [[Prototype]] internal property of O to V.
 iii. Return.
2. Continue by executing the steps of 8.12.5 starting with step 1.

The definition of the [[Delete]] internal method given in 8.12.7 is replaced with the following:

1. If UnderscoreProtoEnabled is true and P is the string value "__proto__" and O is the standard built-in Object prototype object, then
 a. Set UnderscoreProtoEnabled to false.
2. Continue by executing the steps of 8.12.7 starting with step 1.

The definition of the [[DefineOwnProperty]] internal method given in 8.12.9 is replaced with the following:

1. If UnderscoreProtoEnabled is true and P is the string value "__proto__" and O is the standard built-in Object prototype object, then
 a. If any attribute contained in Desc is not present or has a different value from the corresponding attribute in { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true } then,
 i. Set UnderscoreProtoEnabled to false.
2. Continue by executing the steps of 8.12.9 starting with step 1.
B.3.1.3 __proto__ Object Initialisers

Definitions of two algorithms in 11.1.5 are replaced with the following:

The production `PropertyDefinitionList : PropertyDefinition` is evaluated as follows:

1. Let `obj` be the result of creating a new object as if by the expression `new Object()` where `Object` is the standard built-in constructor with that name.
2. Let `propId` be the result of evaluating `PropertyDefinition`.
3. If `propId.name` is the string value "__proto__" and UnderscoreProtoEnabled is `true` and `IsDataDescriptor(propId.descriptor)` is `true`, then
 a. Let `v` be `propId.descriptor.value`.
 b. If `desc be propId.descriptor`
 c. If the type of `v` is either `Object` or `Null`,
 i. Set the value of the `[[Prototype]]` internal property of `obj` to `v`.
 ii. Return `obj`.
4. Call the `[[DefineOwnProperty]]` internal method of `obj` with arguments `propId.name`, `propId.descriptor`, and `false`.
5. Return `obj`.

The production

`PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition`

is evaluated as follows:

1. Let `obj` be the result of evaluating `PropertyDefinitionList`.
2. Let `propId` be the result of evaluating `PropertyDefinition`.
3. Let `previous` be the result of calling the `[[GetOwnProperty]]` internal method of `obj` with argument `propId.name`.
4. If `previous` is not `undefined` then throw a `SyntaxError` exception if any of the following conditions are true
 a. This production is contained in strict code and `IsDataDescriptor(previous)` is `true` and `IsDataDescriptor(propId.descriptor)` is `true`.
 b. `IsDataDescriptor(previous)` is `true` and `IsAccessorDescriptor(propId.descriptor)` is `true`.
 c. `IsAccessorDescriptor(previous)` is `true` and `IsDataDescriptor(propId.descriptor)` is `true`.
 d. `IsAccessorDescriptor(previous)` is `true` and `IsAccessorDescriptor(propId.descriptor)` is `true` and either both `previous` and `propId.descriptor` have `[[Get]]` fields or both `previous` and `propId.descriptor` have `[[Set]]` fields
5. If `propId.name` is the string value "__proto__" and UnderscoreProtoEnabled is `true` and `IsDataDescriptor(propId.descriptor)` is `true`, then
 a. Let `v` be `propId.descriptor.value`.
 b. If `desc be propId.descriptor`
 c. If the type of `v` is either `Object` or `Null`,
 i. Set the value of the `[[Prototype]]` internal property of `obj` to `v`.
 ii. Return `obj`.
5. Call the `[[DefineOwnProperty]]` internal method of `obj` with arguments `propId.name`, `propId.descriptor`, and `false`.
6. Return `obj`.
The strict mode restriction and exceptions

- A conforming implementation, when processing strict mode code, may not extend the syntax of NumericLiteral (7.8.3) to include OctalIntegerLiteral as described in B.1.1.
- A conforming implementation, when processing strict mode code (see 10.1.1), may not extend the syntax of EscapeSequence to include OctalEscapeSequence as described in B.1.2.
- Assignment to an undeclared identifier or otherwise unresolvable reference does not create a property in the global object. When a simple assignment occurs within strict mode code, its LeftHandSide must not evaluate to an unresolvable Reference. If it does a ReferenceError exception is thrown (8.9.2). The LeftHandSide also may not be a reference to a data property with the attribute value {[[Writable]]: false}, to an accessor property with the attribute value {[[Set]]: undefined}, nor to a non-existent property of an object whose [[Extensible]] internal property has the value false. In these cases a TypeError exception is thrown (11.13.1).
- The identifier eval or arguments may not appear as the LeftHandSideExpression of an Assignment operator (11.13) or of a PostfixExpression (11.3) or as the UnaryExpression operated upon by a Prefix Increment (11.4.4) or a Prefix Decrement (11.4.5) operator.
- Arguments objects for strict mode functions define non-configurable accessor properties named "caller" and "callee" which throw a TypeError exception on access (10.6).
- Arguments objects for strict mode functions do not dynamically share their array indexed property values with the corresponding formal parameter bindings of their functions. (10.6).
- For strict mode functions, if an arguments object is created the binding of the local identifier arguments to the arguments object is immutable and hence may not be the target of an assignment expression. (10.5).
- It is a SyntaxError if strict mode code contains an ObjectLiteral with more than one definition of any data property (11.1.5).
- It is a SyntaxError if the Identifier "eval" or the Identifier "arguments" occurs as the Identifier in a PropertySetParameterList of a PropertyDefinition that is contained in strict code or if its FunctionBody is strict code (11.1.5).
- Strict mode eval code cannot instantiate variables or functions in the variable environment of the caller to eval. Instead, a new variable environment is created and that environment is used for declaration binding instantiation for the eval code (10.4.2).
- If this is evaluated within strict mode code, then the this value is not coerced to an object. A this value of null or undefined is not converted to the global object and primitive values are not converted to wrapper objects. The this value passed via a function call (including calls made using Function.prototype.apply and Function.prototype.call) do not coerce the passed this value to an object (10.4.3, 11.1.1, 15.3.4.3, 15.3.4.4).
- When a delete operator occurs within strict mode code, a SyntaxError is thrown if its UnaryExpression is a direct reference to a variable, function argument, or function name(11.4.1).
When a `delete` operator occurs within strict mode code, a `TypeError` is thrown if the property to be deleted has the attribute `{ [[Configurable]]: false }` (11.4.1).

It is a `SyntaxError` if a `VariableDeclaration` or `VariableDeclarationNoIn` occurs within strict code and its `Identifier` is `eval` or `arguments` (12.2.1).

Strict mode code may not include a `WithStatement`. The occurrence of a `WithStatement` in such a context is an `SyntaxError` (12.10).

It is a `SyntaxError` if a `TryStatement` with a `Catch` occurs within strict code and the `Identifier` of the `Catch` production is `eval` or `arguments` (12.14.1).

It is a `SyntaxError` if the identifier `eval` or `arguments` appears within a `FormalParameterList` of a strict mode `FunctionDeclaration` or `FunctionExpression` (13.1).

A strict mode function may not have two or more formal parameters that have the same name. An attempt to create such a function using a `FunctionDeclaration`, `FunctionExpression`, or `Function` constructor is a `SyntaxError` (13.1, 15.3.2).

An implementation may not extend, beyond that defined in this specification, the meanings within strict mode functions of properties named `caller` or `arguments` of function instances. ECMAScript code may not create or modify properties with these names on function objects that correspond to strict mode functions (10.6, 13.2, 15.3.4.5.3).

It is a `SyntaxError` to use within strict mode code the identifiers `eval` or `arguments` as the `Identifier` of a `FunctionDeclaration` or `FunctionExpression` or as a formal parameter name (13.1). Attempting to dynamically define such a strict mode function using the `Function` constructor (15.3.2) will throw a `SyntaxError` exception.
Annex D
(informative)
Corrections and Clarifications with Possible Compatibility Impact

In Edition 6

15.9.1.15: If a time zone offset is not present, the local time zone is used. Edition 5.1 incorrectly stated that a missing time zone should be interpreted as “z”.

15.9.5.2: Previous editions did not specify the value returned by Date.prototype.toString when this time value is NaN. The 6th Edition specifies the result to be the String value is "Invalid Date".

In 5.1 Edition 5.1

7.8.4: CV definitions added for DoubleStringCharacter :: LineContinuation and SingleStringCharacter :: LineContinuation.

10.2.1.1.3: The argument S is not ignored. It controls whether an exception is thrown when attempting to set an immutable binding.

10.2.1.2.2: In algorithm step 5, true is passed as the last argument to [[DefineOwnProperty]].

10.5: Former algorithm step 5.e is now 5.f and a new step 5.e was added to restore compatibility with 3rd Edition when redefining global functions.

11.5.3: In the final bullet item, use of IEEE 754 round-to-nearest mode is specified.

12.6.3: Missing ToBoolean restored in step 3.a.ii of both algorithms.

12.6.4: Additional final sentences in each of the last two paragraphs clarify certain property enumeration requirements.

12.7, 12.8, 12.9: BNF modified to clarify that a continue or break statement without an Identifier or a return statement without an Expression may have a LineTerminator before the semi-colon.

12.14: Step 3 of algorithm 1 and step 2.a of algorithm 3 are corrected such that the value field of B is passed as a parameter rather than B itself.

15.1.2.2: In step 2 of algorithm, clarify that S may be the empty string.

15.1.2.3: In step 2 of algorithm clarify that trimmedString may be the empty string.

15.1.3: Added notes clarifying that ECMAScript’s URI syntax is based upon RFC 2396 and not the newer RFC 3986. In the algorithm for Decode, a step was removed that immediately preceded the current step 4.d.vii.10.a because it tested for a condition that cannot occur.

15.2.3.7: Corrected use of variable P in steps 5 and 6 of algorithm.

15.2.4.2: Edition 5 handling of undefined and null as this value caused existing code to fail. Specification modified to maintain compatibility with such code. New steps 1 and 2 added to the algorithm.

15.3.4.3: Steps 5 and 7 of Edition 5 algorithm have been deleted because they imposed requirements upon the argArray argument that are inconsistent with other uses of generic array-like objects.
15.4.4.12: In step 9.a, incorrect reference to `relativeStart` was replaced with a reference to `actualStart`.

15.4.4.15: Clarified that the default value for `fromIndex` is the length minus 1 of the array.

15.4.4.18: In step 9 of the algorithm, `undefined` is now the specified return value.

15.4.4.22: In step 9.c.ii the first argument to the `[[Call]]` internal method has been changed to `undefined` for consistency with the definition of `Array.prototype.reduce`.

15.4.5.1: In Algorithm steps 3.l.ii and 3.l.iii the variable name was inverted resulting in an incorrectly inverted test.

15.5.4.9: Normative requirement concerning canonically equivalent strings deleted from paragraph following algorithm because it is listed as a recommendation in NOTE 2.

15.5.4.14: In `split` algorithm step 11.a and 13.a, the positional order of the arguments to `SplitMatch` was corrected to match the actual parameter signature of `SplitMatch`. In step 13.a.iii.7.d, `lengthA` replaces `A.length`.

15.5.5.2: In first paragraph, removed the implication that the individual character property access had “array index” semantics. Modified algorithm steps 3 and 5 such that they do not enforce “array index” requirement.

15.9.1.15: Specified legal value ranges for fields that lacked them. Eliminated “time-only” formats. Specified default values for all optional fields.

15.10.2.2: The step numbers of the algorithm for the internal closure produced by step 2 were incorrectly numbered in a manner that implied that they were steps of the outer algorithm.

15.10.2.6: In the abstract operation `IsWordChar` the first character in the list in step 3 is “a” rather than “A”.

15.10.2.8: In the algorithm for the closure returned by the abstract operation `CharacterSetMatcher`, the variable defined by step 3 and passed as an argument in step 4 was renamed to `ch` in order to avoid a name conflict with a formal parameter of the closure.

15.10.6.2: Step 9.e was deleted because it performed an extra increment of `i`.

15.11.1.1: Removed requirement that the `message` own property is set to the empty String when the `message` argument is `undefined`.

15.11.1.2: Removed requirement that the `message` own property is set to the empty String when the `message` argument is `undefined`.

15.11.4.4: Steps 6-10 modified/added to correctly deal with missing or empty `message` property value.

15.11.1.2: Removed requirement that the `message` own property is set to the empty String when the `message` argument is `undefined`.

15.12.3: In step 10.b.iii of the `JA` internal operation, the last element of the concatenation is “

B.2.1: Added to NOTE that the encoding is based upon RFC 1738 rather than the newer RFC 3986.

Annex C: An item was added corresponding to 7.6.12 regarding `FutureReservedWords` in strict mode.

In 5th Edition 5

Throughout: In the Edition 3 specification the meaning of phrases such as “as if by the expression `new Array()`” are subject to misinterpretation. In the Edition 5 specification text for all internal references and invocations of standard built-in objects and methods has been clarified by making it explicit that the intent is
that the actual built-in object is to be used rather than the current dynamic value of the correspondingly named property.

11.8.1: ECMAScript generally uses a left to right evaluation order, however the Edition 3 specification language for the > and <= operators resulted in a partial right to left order. The specification has been corrected for these operators such that it now specifies a full left to right evaluation order. However, this change of order is potentially observable if side-effects occur during the evaluation process.

11.1.4: Edition 5 clarifies the fact that a trailing comma at the end of an ArrayInitialiser does not add to the length of the array. This is not a semantic change from Edition 3 but some implementations may have previously misinterpreted this.

11.2.3: Edition 5 reverses the order of steps 2 and 3 of the algorithm. The original order as specified in Editions 1 through 3 was incorrectly specified such that side-effects of evaluating Arguments could affect the result of evaluating MemberExpression.

12.4: In Edition 3, an object is created, as if by new Object() to serve as the scope for resolving the name of the exception parameter passed to a catch clause of a try statement. If the actual exception object is a function and it is called from within the catch clause, the scope object will be passed as the this value of the call. The body of the function can then define new properties on its this value and those property names become visible identifiers bindings within the scope of the catch clause after the function returns. In Edition 5, when an exception parameter is called as a function, undefined is passed as the this value.

13: In Edition 3, the algorithm for the production FunctionExpression with an Identifier adds an object created as if by new Object() to the scope chain to serve as a scope for looking up the name of the function. The identifier resolution rules (10.1.4 in Edition 3) when applied to such an object will, if necessary, follow the object’s prototype chain when attempting to resolve an identifier. This means all the properties of Object.prototype are visible as identifiers within that scope. In practice most implementations of Edition 3 have not implemented this semantics. Edition 5 changes the specified semantics by using a Declarative Environment Record to bind the name of the function.

14: In Edition 3, the algorithm for the production SourceElements : SourceElements SourceElement did not correctly propagate statement result values in the same manner as Block. This could result in the eval function producing an incorrect result when evaluating a Program text. In practice most implementations of Edition 3 have implemented the correct propagation rather than what was specified in Edition 5.

15.10.6: RegExp.prototype is now a RegExp object rather than an instance of Object. The value of its [[Class]] internal property which is observable using Object.prototype.toString is now “RegExp” rather than “Object”.
Annex E
(informative)

Additions and Changes that Introduce Incompatibilities with Prior Editions

In the 6th Edition

12.6: In Edition 6, a terminating semi-colon is no longer required at the end of a do-while statement.

12.14: In Edition 6, it is an early error for a Catch clause to contained a var declaration for the same Identifier that appears as the Catch clause parameter. In previous editions, such a variable declaration would be instantiated in the enclosing variable environment but the declaration’s Initializer value would be assigned to the Catch parameter.

In the 5th Edition

7.1: Unicode format control characters are no longer stripped from ECMAScript source text before processing. In Edition 5, if such a character appears in a StringLiteral or RegularExpressionLiteral the character will be incorporated into the literal where in Edition 3 the character would not be incorporated into the literal.

7.2: Unicode character <BOM> is now treated as whitespace and its presence in the middle of what appears to be an identifier could result in a syntax error which would not have occurred in Edition 3.

7.3: Line terminator characters that are preceded by an escape sequence are now allowed within a string literal token. In Edition 3 a syntax error would have been produced.

7.8.5: Regular expression literals now return a unique object each time the literal is evaluated. This change is detectable by any programs that test the object identity of such literal values or that are sensitive to the shared side effects.

7.8.5: Edition 5 requires early reporting of any possible RegExp constructor errors that would be produced when converting a RegularExpressionLiteral to a RegExp object. Prior to Edition 5 implementations were permitted to defer the reporting of such errors until the actual execution time creation of the object.

7.8.5: In Edition 5 unescaped "\" characters may appear as a CharacterClass in a regular expression literal. In Edition 3 such a character would have been interpreted as the final character of the literal.

10.4.2: In Edition 5, indirect calls to the eval function use the global environment as both the variable environment and lexical environment for the eval code. In Edition 3, the variable and lexical environments of the caller of an indirect eval was used as the environments for the eval code.

15.4.4: In Edition 5 all methods of Array.prototype are intentionally generic. In Edition 3 toString and toLocaleString were not generic and would throw a TypeError exception if applied to objects that were not instances of Array.

10.6: In Edition 5 the array indexed properties of argument objects that correspond to actual formal parameters are enumerable. In Edition 3, such properties were not enumerable.

10.6: In Edition 5 the value of the [[Class]] internal property of an arguments object is "Arguments". In Edition 3, it was "Object". This is observable if toString is called as a method of an arguments object.

12.6.4: for-in statements no longer throw a TypeError if the in expression evaluates to null or undefined. Instead, the statement behaves as if the value of the expression was an object with no enumerable properties.
15: In Edition 5, the following new properties are defined on built-in objects that exist in Edition 3:

* `Object.getPrototypeOf`, `Object.getOwnPropertyDescriptor`, `Object.getOwnPropertyNames`, `Object.create`, `Object.defineProperty`, `Object.defineProperties`, `Object.seal`, `Object.freeze`, `Object.preventExtensions`, `Object.isSealed`, `Object.isFrozen`, `Object.isExtensible`, `Object.keys`, `Function.prototype.bind`, `Array.prototype.indexOf`, `Array.prototype.lastIndexOf`, `Array.prototype.every`, `Array.prototype.some`, `Array.prototype.forEach`, `Array.prototype.map`, `Array.prototype.filter`, `Array.prototype.reduce`, `Array.prototype.reduceRight`, `String.prototype.trim`, `Date.now`, `Date.prototype.toISOString`, `Date.prototype.toJSON`.

15: Implementations are now required to ignore extra arguments to standard built-in methods unless otherwise explicitly specified. In Edition 3 the handling of extra arguments was unspecified and implementations were explicitly allowed to throw a `TypeError` exception.

15.1.1: The value properties `NaN`, `Infinity`, and `undefined` of the Global Object have been changed to be read-only properties.

15.1.2.1. Implementations are no longer permitted to restrict the use of `eval` in ways that are not a direct call. In addition, any invocation of `eval` that is not a direct call uses the global environment as its variable environment rather than the caller's variable environment.

15.1.2.2: The specification of the function `parseInt` no longer allows implementations to treat Strings beginning with a `0` character as octal values.

15.3.4.3: In Edition 3, a `TypeError` is thrown if the second argument passed to `Function.prototype.apply` is neither an array object nor an arguments object. In Edition 5, the second argument may be any kind of generic array-like object that has a valid `length` property.

15.3.4.3, 15.3.4.4: In Edition 3 passing `undefined` or `null` as the first argument to either `Function.prototype.apply` or `Function.prototype.call` causes the global object to be passed to the indirectly invoked target function as the `this` value. If the first argument is a primitive value the result of calling `ToObject` on the primitive value is passed as the `this` value. In Edition 5, these transformations are not performed and the actual first argument value is passed as the `this` value. This difference will normally be unobservable to existing ECMAScript Edition 3 code because a corresponding transformation takes place upon activation of the target function. However, depending upon the implementation, this difference may be observable by host object functions called using `apply` or `call`. In addition, invoking a standard built-in function in this manner with `null` or `undefined` passed as the this value will in many cases cause behaviour in Edition 5 implementations that differ from Edition 3 behaviour. In particular, in Edition 5 built-in functions that are specified to actually use the passed `this` value as an object typically throw a `TypeError` exception if passed `null` or `undefined` as the `this` value.

15.3.5.2: In Edition 5, the `prototype` property of Function instances is not enumerable. In Edition 3, this property was enumerable.

15.5.5.2: In Edition 5, the individual characters of a String object's `[[PrimitiveValue]` may be accessed as array indexed properties of the String object. These properties are non-writable and non-configurable and shadow any inherited properties with the same names. In Edition 3, these properties did not exist and ECMAScript code could dynamically add and remove writable properties with such names and could access inherited properties with such names.

15.9.4.2: `Date.parse` is now required to first attempt to parse its argument as an ISO format string. Programs that use this format but depended upon implementation specific behaviour (including failure) may behave differently.

15.10.2.12: In Edition 5, \s now additionally matches `<BOM>`.
15.10.4.1: In Edition 3, the exact form of the String value of the `source` property of an object created by the `RegExp` constructor is implementation defined. In Edition 5, the String must conform to certain specified requirements and hence may be different from that produced by an Edition 3 implementation.

15.10.6.4: In Edition 3, the result of `RegExp.prototype.toString` need not be derived from the value of the `RegExp` object's `source` property. In Edition 5 the result must be derived from the `source` property in a specified manner and hence may be different from the result produced by an Edition 3 implementation.

15.11.2.1, 15.11.4.3: In Edition 5, if an initial value for the `message` property of an `Error` object is not specified via the `Error` constructor the initial value of the property is the empty String. In Edition 3, such an initial value is implementation defined.

15.11.4.4: In Edition 3, the result of `Error.prototype.toString` is implementation defined. In Edition 5, the result is fully specified and hence may differ from some Edition 3 implementations.

15.12: In Edition 5, the name `JSON` is defined in the global environment. In Edition 3, testing for the presence of that name will show it to be undefined unless it is defined by the program or implementation.
Annex F
((informative))

Static Semantic Rule Cross Reference

<table>
<thead>
<tr>
<th>Routine Name</th>
<th>Purpose</th>
<th>Definitions</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoundNames</td>
<td>Produces a list of the identifiers bound by a production. Does not include identifiers that are bound within inner environments associated with the production.</td>
<td>12.2.1, 12.2.2, 12.2.4, 12.6.4, 13.1, 13.2, 13.5</td>
<td></td>
</tr>
<tr>
<td>ConstructorMethod</td>
<td>From a <code>ClassBody</code> return the first <code>ClassElement</code> whose <code>PropName</code> is "constructor". Returns empty if the <code>ClassBody</code> does not contain one.</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>Contains</td>
<td>Determine if a grammar production either directly or indirectly includes a grammar symbol.</td>
<td>5.3, 13.1, 13.2, 13.5</td>
<td></td>
</tr>
<tr>
<td>CoveredFormalsList</td>
<td>Reparse a covered <code>Expression</code> using <code>FormalsList</code> as the goal symbol.</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>Determines the "character value" of a component of a <code>StringLiteral</code>.</td>
<td>7.8.4</td>
<td></td>
</tr>
<tr>
<td>Elision Width</td>
<td>Determine the number of commas in an <code>Elision</code>.</td>
<td>11.1.4.1</td>
<td></td>
</tr>
<tr>
<td>ExpectedArgumentCount</td>
<td>Determine the "length" of an argument list for the purpose of initializing the "length" property of a function object.</td>
<td>13.1, 13.2, 13.3</td>
<td></td>
</tr>
<tr>
<td>HasInitialiser</td>
<td>Determines whether the production contains an <code>Initialiser</code> production.</td>
<td>12.2.4, 13.1</td>
<td></td>
</tr>
<tr>
<td>IsConstantDeclaration</td>
<td>Determines whether the production introduces an immutable environment record binding</td>
<td>12.2, 13.1, 13.5</td>
<td></td>
</tr>
<tr>
<td>IsInvalidAssignmentPattern</td>
<td>Determines if a <code>LeftHandSideExpression</code> is a valid assignment target. Primarily for dealing with destructuring assignment targets.</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>LexicalDeclarations</td>
<td>Return a List containing the components of a production that are processed as lexical declarations</td>
<td>12.1, 12.11, 12.5</td>
<td></td>
</tr>
<tr>
<td>LexicallyDeclaredNames</td>
<td>Returns a list of the lexically scoped identifiers declared by a production.</td>
<td>12.1, 13.1, 13.2, 13.5</td>
<td></td>
</tr>
<tr>
<td>MethodDefinitions</td>
<td>Return a list of the <code>MethodDefinition</code> productions that are part of a <code>ClassElementList</code>.</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>MV</td>
<td>Determines the "mathematical value" of a numeric</td>
<td>7.8.3</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>PropName</td>
<td>Determines the string value of the property name referenced by a production.</td>
<td>11.1.5.1, 13.3, 13.5</td>
<td></td>
</tr>
<tr>
<td>PropNameList</td>
<td>Returns a List of the string values of the property names referenced by a production. The list reflects the order of the references in the source text. The list may contain duplicate elements.</td>
<td>11.5.1, 13.5</td>
<td></td>
</tr>
<tr>
<td>ReferencesSuper</td>
<td>Determine if a MethodDefinition contains any references to the ReservedWord super.</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>SpecialMethod</td>
<td>Determine if a MethodDefinition defines a generator method or an accessor property.</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>SV</td>
<td>Determines the “string value” of a StringLiteral or component of a StringLiteral.</td>
<td>7.8.4</td>
<td></td>
</tr>
<tr>
<td>VarDeclaredNames</td>
<td>Returns a list of the local top-level scoped identifiers declared by a production. These are identifiers that are scoped as if by a var statement.</td>
<td>12.1, 12.5, 12.6.1, 12.6.2, 12.6.3, 12.6.4, 12.12, 13.1, 13.5</td>
<td></td>
</tr>
</tbody>
</table>
Scrap Heap

A place to temporarily hand on to stuff that’s been delete

MemberExpression:
 MemberExpression <| TriangleLiteral

TriangleLiteral:
 SealedArrayLiteral
 SealedObjectLiteral
 FunctionExpression
 ArrowFunction
 ValueLiteral

CallExpression:
 CallExpression <| TriangleLiteral

15.2.3.15 Object.isObject (O)

When the isObject function is called with argument O, the following steps are taken:

1. If Type(O) is Object return true.
2. Return false.

15.5.4.25 String.prototype.toArray()

The following steps are taken:

1. ReturnIfAbrupt(CheckObjectCoercible(this value)).
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. ReturnIfAbrupt(S).
4. Let len be the number of characters in S.
5. Let array be the result of the abstract operation ArrayCreate (15.4) with argument len.
6. Let n be 0
7. Repeat, while n < len:
 a. Let c be the character at position n in S.
 b. Call the [[DefineOwnProperty]] internal method of array with arguments ToString(n), the PropertyDescriptor [[Value]]: c, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true, and false.
 c. Increment n by 1.
8. Return array.

The length property of the toArray method is 0.

NOTE 1 Returns an Array object with elements corresponding to the characters of this object (converted to a String).

NOTE 2 The toArray function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.
Bibliography

