STANDARD ECMA-119

VOLUME AND FILE STRUCTURE OF CDROM FOR INFORMATION INTERCHANGE

December 1986
ECMA
EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-119

VOLUME AND FILE STRUCTURE
OF CDROM
FOR INFORMATION INTERCHANGE

December 1986
BRIEF HISTORY

In the past years compact disks originally developed for recording music have also been used for recording data as they allow recording of large amounts of information in a reliable and economic manner. As a read-only medium they are particularly suitable for use in applications such as auditing and legal documents. It appeared very quickly that there is an urgent need for a stable standard for the structure of such compact disks and of the files recorded thereon.

In October 1985 a number of industrial and software companies in the USA invited experts to participate in the elaboration of a working paper for such a project. The result of this work, in which also expert members of ECMA/TC15 as well as from Japan participated, was a report dated May 1986 and known as the "High Sierra Group" proposal.

This proposal was submitted in Europe to ECMA for their consideration. ECMA TC15, in collaboration with experts from user organizations, invested a considerable amount of work into this proposal in order to clarify and complete its technical contents and to re-edit it in a form suitable for an international standard. Particular attention was given to conformance aspects by applying the same editing principles as for the other standards for labelling, such as ECMA-13 (ISO 1001) and ECMA-107 (ISO 9293). As a result the present standard was produced.

This ECMA Standard has been submitted by ECMA to ISO for further processing as an international standard under the ISO fast-track procedure with a view to issuing an ISO standard possibly as soon as 1988.

TABLE OF CONTENTS

SECTION I : GENERAL

1. SCOPE AND FIELD OF APPLICATION 1
2. CONFORMANCE
 2.1 Conformance of a CDROM 1
 2.2 Conformance of an Information Processing System 1
3. REFERENCES 1
4. DEFINITIONS
 4.1 Application Program 2
 4.2 Byte 2
 4.3 Data Field of a Sector 2
 4.4 Data Preparer 2
 4.5 Descriptor 2
 4.6 Extent 2
 4.7 File 2
 4.8 File Section 2
 4.9 Implementation 2
 4.10 Logical Block 2
 4.11 Originating System 2
 4.12 Record 2
 4.13 Receiving System 2
 4.14 Sector 3
 4.15 Standard for Recording 3
 4.16 User 3
 4.17 Volume 3
 4.18 Volume Set 3
5. NOTATION
 5.1 Decimal and Hexadecimal Notations 3
 5.2 Other Notation 3

SECTION II : REQUIREMENTS FOR THE MEDIUM

6. VOLUME STRUCTURE
 6.1 Arrangement of Data on a CDROM
 6.1.1 Physical Addresses 4
 6.1.2 Logical Sector 4
 6.1.3 Volume Space 4
 6.2 Arrangement of the Volume Space
 6.2.1 System Area and Data Area 4
 6.2.2 Logical Block 4
 6.3 Arrangement of the Data Area 5
 6.4 Arrangement of Extents
 6.4.1 Extent 5
 6.4.2 Mode of Recording a File Section 5
 6.4.3 Interleaved Mode 5
 6.4.4 Non-Interleaved Mode 7
6.4.5 Data Length of a File Section
6.4.6 Relation of Extended Attribute Record to File Section
6.4.7 Recording of a Volume Partition

6.5 File Structure
6.5.1 Relation to File Sections
6.5.2 File Space
6.5.3 Contents of a File
6.5.4 Associated File

6.6 Volume Set
6.7 Volume Descriptors
6.7.1 Volume Descriptor Set

6.8 Directory Structure
6.8.1 Directory
6.8.2 Directory Hierarchy
6.8.3 Relation of Directory Hierarchies

6.9 Path Table
6.9.1 Order of Path Table Records
6.9.2 Path Table Group
6.9.3 Recorded Occurrences of the Path Table
6.9.4 Consistency of Path Tables between Volumes of a Volume Group

6.10 Record Structure
6.10.1 Characteristics
6.10.2 Measured Data Units (MDU)
6.10.3 Fixed-Length Records
6.10.4 Variable-Length Records

7. RECORDING OF DESCRIPTOR FIELDS

7.1 8-Bit Numerical Values
7.1.1 8-Bit Unsigned Numerical Values
7.1.2 8-Bit Signed Numerical Values

7.2 16-Bit Numerical Value
7.2.1 Least Significant Byte First
7.2.2 Most Significant Byte First
7.2.3 Both Byte Orders

7.3 32-Bit Numerical Values
7.3.1 Least Significant Byte First
7.3.2 Most Significant Byte First
7.3.3 Both Byte Orders

7.4 Character Sets and Coding
7.4.1 d-Characters and a-Characters
7.4.2 c-Characters
7.4.2.1 al-Characters
7.4.2.2 dl-Characters

7.4.3 Separators
7.4.4 Use of Characters in Descriptor Fields
7.4.5 Justification of Characters
7.5 File Identifier
7.5.1 File Identifier Format
7.5.2 File Identifier Length
7.6 Directory Identifier
7.6.1 Directory Identifier Format
7.6.2 Reserved Directory Identifiers
7.6.3 Directory Identifier Length
8. VOLUME DESCRIPTORS
8.1 Format of a Volume Descriptor
8.1.1 Volume Descriptor Type
8.1.2 Standard Identifier
8.1.3 Volume Descriptor Version
8.1.4 Depends on Volume Descriptor Type
8.2 Boot Record
8.2.1 Volume Descriptor Type
8.2.2 Standard Identifier
8.2.3 Volume Descriptor Version
8.2.4 Boot System Identifier
8.2.5 Boot Identifier
8.2.6 Boot System Use
8.3 Volume Descriptor Set Terminator
8.3.1 Volume Descriptor Type
8.3.2 Standard Identifier
8.3.3 Volume Descriptor Version
8.3.4 Reserved for Future Standardization
8.4 Primary Volume Descriptor
8.4.1 Volume Descriptor Type
8.4.2 Standard Identifier
8.4.3 Volume Descriptor Version
8.4.4 Unused Field
8.4.5 System Identifier
8.4.6 Volume Identifier
8.4.7 Unused Field
8.4.8 Volume Space Size
8.4.9 Unused Field
8.4.10 Volume Set Size
8.4.11 Volume Sequence Number
8.4.12 Logical Block Size
8.4.13 Path Table Size
8.4.14 Location of Occurrence of Type L Path Table
8.4.15 Location of Optional occurrence of Type L Path Table
8.4.16 Location of Occurrence of Type M Path Table
8.4.17 Location of Optional Occurrence of Type M Path Table
8.4.18 Directory Record for Root Directory
8.4.19 Volume Set Identifier
8.4.20 Publisher Identifier
8.4.21 Data Preparer Identifier
8.4.22 Application Identifier
8.4.23 Copyright File Identifier
8.4.24 Abstract File Identifier
8.4.25 Bibliographic File Identifier
1. SCOPE AND FIELD OF APPLICATION

This Standard specifies the volume and file structure of compact read only optical disks (CDROM) for the interchange of information between users of information processing systems.

This Standard specifies:
- the attributes of the volume and the descriptors recorded on it;
- the relationship among volumes of a volume set;
- the placement of files;
- the attributes of the files;
- record structures intended for use in the input or output data streams of an application program when such data streams are required to be organized as sets of records;
- three nested levels of interchange;
- requirements for the processes which are provided within information processing systems, to enable information to be interchanged between different systems, utilizing recorded CDROM as the medium of interchange; for this purpose it specifies the functions to be provided within systems which are intended to originate or receive CDROM which conform to this Standard.

2. CONFORMANCE

2.1 Conformance of a CDROM

A CDROM conforms to this Standard when all information recorded on it conforms to the specifications of Section II of this Standard. A statement of conformance shall identify the lowest level of interchange to which the contents of the CDROM conform.

A prerequisite to such conformance is conformance of the CDROM to a standard for recording (see 4.15).

2.2 Conformance of an Information Processing System

An information processing system conforms to this Standard if it meets the requirements specified in Section III of this Standard either for an originating system, or for a receiving system, or for both types of system. A statement of conformance shall identify which level of these requirements can be met by the system.

3. REFERENCES

ECMA-6 : 7-Bit Coded Character Set
ECMA-35 : Code Extension Techniques
ECMA-43 : 8-Bit Code - Structure and Rules
ISO 1539 : Programming languages - FORTRAN
ISO 2375 : Data processing - Procedure for registration of escape sequences
International Register of Coded Character Sets to Be Used With Escape Sequences Standards for recording : This Standard assumes the existence of a standard for recording (see 4.15).
4. **DEFINITIONS**

For the purposes of this Standard, the following definitions apply:

4.1 **Application Program**

A program that processes the contents of a file, and may also process selected attribute data relating to the file or to the volume(s) on which the file is recorded.

NOTE 1

An application program is a specific class of user, as defined in this Standard.

4.2 **Byte**

A string of eight binary digits operated upon as a unit.

4.3 **Data Field of a Sector**

A fixed-length field containing the data of a sector.

4.4 **Data Preparer**

A person or other entity which controls the preparation of the data to be recorded on a volume group.

NOTE 2

A data preparer is a specific class of user as defined in this Standard.

4.5 **Descriptor**

A structure containing descriptive information about a volume or a file.

4.6 **Extent**

A set of logical blocks, the logical block numbers of which form a continuous ascending sequence.

4.7 **File**

A named collection of information.

4.8 **File Section**

That part of a file that is recorded in any one extent.

4.9 **Implementation**

A set of processes which enable an information processing system to behave as an originating system, or as a receiving system, or as both types of system.

4.10 **Logical Block**

A group of \(2^n\) bytes treated as a logical unit, where \(n\) equals 0 or a positive integer.

4.11 **Originating System**

An information processing system which can create a set of files on a volume set for the purpose of data interchange with another system.

4.12 **Record**

A sequence of bytes treated as a unit of information.

4.13 **Receiving System**

An information processing system which can read a set of files from a volume set which has been created by another system for the purpose of data interchange.

4.14 **Sector**

The smallest addressable part of the recorded area on a CDROM that can be accessed independently of other addressable parts of the recorded area.

4.15 **Standard for Recording**

A standard that specifies the recording method and the addressing method for the information recorded on a CDROM.

The specifications of the standard for recording that are relevant for this Standard are:
- a unique Physical Address for each recorded sector;
- the location of the Data Field within each sector;
- the length of the Data Field within each sector.

NOTE 3

The standard for recording used in conjunction with this Standard is subject to agreement between the originator and the recipient of the volumes.

4.16 **User**

A person or other entity (for example, an application program) that causes the invocation of the services provided by an implementation.

4.17 **Volume**

A dismountable CDROM.

4.18 **Volume Set**

A collection of one or more volumes, on which a set of files is recorded.

5. **NOTATION**

The following notation is used in this Standard.

5.1 **Decimal and Hexadecimal Notations**

Numbers in decimal notation are represented by decimal digits, viz. 0 to 9.

Numbers in hexadecimal notation are represented by hexadecimal digits, viz. 0 to 9 and A to F, shown in parentheses.

5.2 **Other Notation**

- **BP** Byte position within a descriptor, starting with 1
- **RBP** Byte position within a descriptor field, starting with 1
- **ZERO** A single bit with the value 0
- **ONE** A single bit with the value 1
- **Digit(s)** Any digit from **DIGIT ZERO** to **DIGIT NINE**
SECTION II : REQUIREMENTS FOR THE MEDIUM

VOLUME STRUCTURE
DIRECTORY STRUCTURE
FILE STRUCTURE
RECORD STRUCTURE
RECORDING OF DESCRIPTOR FIELDS
VOLUME DESCRIPTORS
FILE AND DIRECTORY DESCRIPTORS
LEVELS OF INTERCHANGE
6. VOLUME STRUCTURE

6.1 Arrangement of Data on a CDROM

6.1.1 Physical Addresses

Each sector shall be identified by a unique Physical Address as specified in the relevant standard for recording.

6.1.2 Logical Sector

The sectors of a volume shall be organized into Logical Sectors. Each Logical Sector shall consist of a number of bytes equal to 2048 or 2^n, whichever is larger, where n is the largest integer such that 2^n is less than, or equal to, the number of bytes in the Data Field of any sector recorded on the volume. The number of bytes in a Logical Sector shall be referred to as the Logical Sector Size. Each Logical Sector shall begin in a different sector from any other Logical Sector, and shall begin with the first byte of the Data Field of the sector in which it begins. If the number of bytes of the Data Field of each sector recorded on the volume is less than 2048, a Logical Sector shall comprise more than one sector, and the set of the Physical Addresses of its constituent sectors shall form a consecutive ascending sequence. The data of a Logical Sector shall be recorded in the Data Fields of its constituent sectors.

Each Logical Sector shall be identified by a unique Logical Sector Number. Logical Sector Numbers shall be integers assigned in an ascending sequence, in order of ascending Physical Addresses of the constituent sectors, starting with 0 for the Logical Sector containing the sector having the lowest Physical Address which may contain recorded information. The numbering shall continue through successive Logical Sectors, each of which begins with the sector with the next higher Physical Address than that of the last sector constituting the previous Logical Sector.

6.1.3 Volume Space

The information on a volume shall be recorded in the set of all Logical Sectors on the volume. This set shall be referred to as the Volume Space of the volume.

The bytes in the Volume Space shall be numbered consecutively. The numbering shall start with 1, which shall be assigned to the first byte of the first Logical Sector of the Volume Space. The numbering shall continue through successive bytes of the first Logical Sector, and then through successive bytes of each successive Logical Sector, of the Volume Space.

6.2 Arrangement of the Volume Space

6.2.1 System Area and Data Area

The Volume Space shall be divided into a System Area and a Data Area.

The System Area shall occupy the Logical Sectors with Logical Sector Numbers 0 to 15. The System Area shall be reserved for system use. Its content is not specified by this Standard.

The Data Area shall occupy the remaining Logical Sectors of the Volume Space.

6.2.2 Logical Block

The Volume Space shall be organized into Logical Blocks. Each Logical Block shall consist of 2^n bytes, where n equals 0 or a positive integer. The number of bytes in a Logical Block shall be referred to as the Logical Block Size which shall not be greater than the Logical Sector Size. The
data of a Logical Block shall be recorded in the Data Fields of its constituent Logical Sectors.

Each Logical Block shall be identified by a unique Logical Block Number. Logical Block Numbers shall be integers assigned in ascending order starting with 0. Logical Block Number 0 shall be assigned to the Logical Block which begins with the first byte of the Volume Space. Each successive Logical Block Number shall be assigned to the Logical Block which begins with the byte in the Volume Space immediately following the last byte of the preceding Logical Block.

6.3 Arrangement of the Data Area

File Sections shall be recorded in the Data Area. More than one File Section of a file may be recorded on the same volume.

The following types of descriptors shall be recorded in the Data Area to describe the use of the Data Area:
- Volume Descriptors
- File Descriptors
- Directory Descriptors
- Path Tables

The Volume Descriptors shall be recorded in consecutively numbered Logical Sectors starting with the Logical Sector having Logical Sector Number 16. The Logical Sectors in the Data Area shall be available for the assignment of Volume Partitions and the recording of File Sections, File Descriptors, Directory Descriptors and Path Tables.

Each File Section shall be recorded in an Extent, and shall be identified by a descriptor in a directory. An Extended Attribute Record can be associated with the File Section. If present, it shall be recorded in the same Extent and identified by the same descriptor. Each directory shall be recorded as a file in a single Extent, and shall be identified by a Directory Descriptor either in another directory or in a Volume Descriptor. Each directory shall also be identified by a record in a Path Table. Each Path Table shall be identified in a Volume Descriptor.

Space within the Data Area may be assigned to one or more Volume Partitions. Each Volume Partition shall be recorded in an Extent and shall be identified by a Volume Descriptor.

6.4 Arrangement of Extents

6.4.1 Extent

An Extent shall be a set of Logical Blocks, the Logical Block Numbers of which form a continuous ascending sequence.

6.4.2 Mode of Recording a File Section

A File Section, and its associated Extended Attribute Record if any, shall be recorded in an Extent either in interleaved mode or in non-interleaved mode.

6.4.3 Interleaved Mode

6.4.3.1 File Unit

A File Unit shall comprise a set of Logical Blocks that are within an Extent and the Logical Block Numbers of which form a continuous ascending sequence.

When a File Section is recorded in interleaved mode, one or more File Units, each consisting of the same number of Logical Blocks, shall be assigned to the File Section within the same Extent. The number of Logical Blocks in the File Unit shall be the assigned File Unit Size for the File Section.

The first Logical Block of each File Unit shall have a Logical Block Number which is the lowest Logical Block Number in the Logical Sector that contains that Logical Block. The sequence of the File Units in an Extent shall correspond to the sequence of the Logical Block Numbers of the first Logical Block of each File Unit.

NOTE 4

The Logical Blocks comprising a File Unit assigned to a File Section may:
- also each be assigned to a different File Section, and/or
- comprise part of one or more Volume Partitions.

6.4.3.2 Interleave Gap

The set of Logical Blocks the Logical Block Numbers of which lie between the last Logical Block Number of a File Unit and the first Logical Block Number of the next File Unit, if any, in the sequence, shall be an Interleave Gap. All Interleave Gaps between the File Units assigned to a File Section shall comprise the same number of Logical Blocks. This number shall be the assigned Interleave Gap Size for the File Section.

NOTE 5

The Logical Blocks comprising an Interleave Gap between the File Units assigned to a File Section may:
- also each be assigned to a different File Section, and/or
- comprise part of one or more Volume Partitions.

6.4.3.3 Relation of File Section to File Unit

When a File Section is recorded in interleaved mode, the File Section, and its associated Extended Attribute Record, if any, shall be recorded over the sequence of File Units assigned to the File Section.

6.4.3.4 Recording of an Extended Attribute Record

If an Extended Attribute Record is recorded it shall be recorded in the first File Unit of the sequence. The recording shall begin at the first byte of the first Logical Block of the File Unit. It shall continue through successive bytes of that Logical Block, and then through successive bytes of successive Logical Blocks, if any, of the File Unit, until all of the Extended Attribute Record is recorded.

The assigned Extended Attribute Record length shall be equal to the assigned File Unit Size.

6.4.3.5 Recording of a File Section

The successive parts, if any, of the File Section shall be recorded in successive File Units, starting from the second File Unit in the sequence if an Extended Attribute Record is recorded, and starting from the first File Unit in the sequence if no Extended Attribute Record is recorded.

6.4.3.6 Data Space

The set of File Units in which the successive parts of the File Section are recorded shall be the Data Space of the File Section.
The bytes in the Data Space shall be numbered consecutively. The numbering shall start from 1 which shall be assigned to the first byte of the first Logical Block of the first File Unit, if any, of the Data Space. The numbering shall continue through successive bytes of that Logical Block, then through successive bytes of each successive Logical Block, if any, of the first File Unit, and then through successive bytes of the Logical Block(s) of each successive File Unit, if any, assigned to the File Section.

The numbering shall end with a number equal to the product of the number of bytes in a Logical Block, the number of Logical Blocks in the File Unit, and the number of File Units assigned to the File Section; or shall equal zero if there are no bytes in the Data Space.

6.4.4 Non-Interleaved Mode

When a File Section is recorded in non-interleaved mode the File Section, and its associated Extended Attribute Record, if any, shall be recorded over the sequence of Logical Blocks in an Extent.

6.4.4.1 Recording of an Extended Attribute Record

If an Extended Attribute Record is recorded, it shall be recorded over one or more Logical Blocks, the Logical Block Numbers of which form a continuous ascending sequence. The recording shall begin at the first byte of the first Logical Block of the Extent. It shall continue through successive bytes of that Logical Block, and then through successive bytes of successive Logical Blocks, if any, of the Extent, until all of the Extended Attribute Record is recorded.

The number of Logical Blocks over which the Extended Attribute Record is recorded shall be the assigned Extended Attribute Record length for the File Section.

NOTE 6

The Logical Blocks comprising an Extended Attribute Record assigned to a File Section may:
- also each be assigned to a different File Section, and/or
- comprise part of one or more Volume Partitions.

6.4.4.2 Recording of a File Section

The File Section shall be recorded over zero or more Logical Blocks, the Logical Block Numbers of which form a continuous ascending sequence. If no Extended Attribute Record is recorded, the sequence shall start with the first Logical Block of the Extent. If an Extended Attribute Record is recorded, the sequence shall start with the first Logical Block, if any, immediately following the last Logical Block over which the Extended Attribute Record is recorded.

6.4.4.3 Data Space

The set of Logical Blocks over which the File Section is recorded shall be the Data Space of the File Section.

The bytes in the Data Space shall be numbered consecutively. The numbering shall start from 1 which shall be assigned to the first byte of the first Logical Block, if any, of the Data Space. The numbering shall continue through successive bytes of that Logical Block, and then through successive bytes of each successive Logical Block, if any, of the Data Space.

The numbering shall end with a number equal to the product of the number of bytes in a Logical Block, and the number of Logical Blocks in the Data Space; or shall equal zero if there are no Logical Blocks in the Data Space.

6.4.5 Data Length of a File Section

The data length of a File Section shall be the number of consecutive bytes in the Data Space, starting from the first byte, if any, that are intended for interchange. If this number is less than the number of bytes in the Data Space, then any remaining bytes in the Data Space shall be ignored in interchange.

6.4.6 Relation of Extended Attribute Record to File Section

An Extended Attribute Record may be associated with a File Section. If present, the Extended Attribute Record shall identify certain attributes of the File of which the File Section forms a part.

A subset of those attributes shall apply to all File Sections of a file that contains records according to 6.10. If any of those attributes are assigned to the file, an Extended Attribute Record shall be recorded in association with each of the File Sections of the file.

The other attributes identified in an Extended Attribute Record shall apply to that File Section and all preceding File Sections of the file (see 6.5.1). If no Extended Attribute Record is recorded in association with the last File Section of a file, then these attributes are not specified for the file.

6.4.7 Recording of a Volume Partition

If a Volume Partition is recorded, it shall be recorded over one or more Logical Blocks, the Logical Block Numbers of which form a continuous ascending sequence. The recording shall begin at the first byte of the first Logical Block of the Extent. It shall continue through successive bytes of that Logical Block, and then through successive bytes of successive Logical Blocks, if any, of the Extent, until all of the Volume Partition is recorded. The first Logical Block of each Volume Partition shall have a Logical Block Number which is the lowest Logical Block Number in the Logical Sector that contains that Logical Block.

The number of Logical Blocks over which the Volume Partition is recorded shall be the assigned Volume Partition Size for the Volume Partition.

6.5 File Structure

6.5.1 Relation to File Sections

Each file shall consist of one or more File Sections. Each File Section of a file shall be identified by a record in the same directory. The sequence of the File Sections of a file shall be identified by the order of the corresponding records in the directory.

A File Section may be part of more than one file and may occur more than once in the same file. A File Section may be identified by more than one record in the same or a different directory.

Each File Section of a file may be recorded on a different volume.

6.5.2 File Space

The set of Data Spaces over which a file is recorded shall be the File Space of the file.

The bytes in the File Space shall be numbered consecutively. The numbering shall start from 1 which shall be assigned to the first byte of the first Data Space, if any. The numbering shall continue through successive bytes
of that Data Space, and then through successive bytes of each successive Data Space, if any, of the file.

The numbering shall end with a number equal to the sum of the number of bytes in all Data Spaces of the file.

6.5.3 Contents of a File

The information in a file shall be interpreted according to the relevant standards for the coded representation of information.

NOTE 7

The identification of these standards is the subject of an agreement between the originator and the recipient of the file.

6.5.4 Associated File

An Associated File has a relationship not specified by this Standard to another file that has been assigned the same File Identifier (see 7.5) as that of the Associated File in the same directory.

6.6 Volume Set

A Volume Set shall be the set of volumes on which a set of files is recorded.

A Volume Set shall consist of one or more volumes having a common Volume Set Identifier (see 8.4.19 and 8.5.13). All volumes in a Volume Set shall be numbered consecutively starting from 1.

A Volume Group within a Volume Set shall consist of one or more consecutively numbered volumes the contents of which are established at the same time. The sequence number of the volume that has the highest sequence number within the Volume Group shall be the assigned Volume Set Size.

Each volume of a Volume Set shall contain a description of all the directories and files that are recorded on those volumes. The sequence number of which is less than, or equal to, the assigned Volume Set Size of the volume.

NOTE 8

Such description recorded on a volume shall supersede the description recorded on any volume of the Volume Set having a lower assigned Volume Set Size.

The Logical Block Size shall be the same for all volumes of a Volume Set.

6.7 Volume Descriptors

A Volume Descriptor shall be one of the following types:
- Primary Volume Descriptor
- Supplementary Volume Descriptor
- Volume Partition Descriptor
- Boot Record
- Volume Descriptor Set Terminator

6.7.1 Volume Descriptor Set

A Volume Descriptor Set shall be a sequence of volume descriptors recorded in consecutively numbered Logical Sectors starting with the Logical Sector with Logical Sector Number 16. Each successive Volume Descriptor shall be recorded in the Logical Sector with the next higher Logical Sector Number than that of the Logical Sector in which the previous Volume Descriptor is recorded. The sequence shall consist of two or more volume descriptors consecutively recorded as follows.

6.7.1.1 The sequence shall contain one Primary Volume Descriptor (see 8.4) recorded at least once.

The Primary Volume Descriptor shall describe the Volume Space, and identify the attributes of the volume, the locations of a Root Directory and of a group of Path Tables, and the number of volumes in the Volume Set.

6.7.1.2 The sequence may contain zero or more Supplementary Volume Descriptors (see 8.5) each recorded at least once.

A Supplementary Volume Descriptor shall describe the Volume Space, and identify the attributes of the volume, the locations of a Root Directory and of a group of Path Tables, and the number of volumes in the Volume Set. It shall also identify the coded graphic character set used within selected fields of this descriptor, and of the records in associated File Descriptors, Directory Descriptors and Path Tables.

6.7.1.3 The sequence may contain zero or more Volume Partition Descriptors (see 8.6).

A Volume Partition Descriptor shall identify a Volume Partition within the Volume Space, its position and size, and its attributes.

6.7.1.4 The sequence may contain zero or more Boot Records (see 8.2).

A Boot Record shall contain information which may be used to achieve a specific state in a receiving system or an application program.

6.7.1.5 The sequence shall be terminated by the recording of one or more Volume Descriptor Set Terminators (see 8.3).

6.8 Directory Structure

6.8.1 Directory

A directory shall be recorded as a file containing a set of records each of which identifies a File Section or another directory. A directory shall not be recorded as an Associated File, shall not be recorded in interleaved mode and shall consist of only one File Section.

The identification of a file shall be different from the identification of any other file, unless the file is an Associated File (see 6.5.3), or of any directory identified in the same directory. The identification of a directory shall be different from the identification of any file or of any other directory identified in the same directory.

The first Logical Block of the Extent in which a directory is recorded shall have a Logical Block Number which is the lowest Logical Block Number in the Logical Sector that contains that Logical Block.

6.8.1.1 Directory Record

A Directory Record shall contain:
- information to locate a File Section,
- information to locate any Extended Attribute Record associated with the File Section,
- the identification of the file,
- certain attributes of the file,
- certain attributes of the File Section.

The first or only Directory Record recorded in a Logical Sector shall begin at the first byte of the first Data Field of that Logical Sector. Each subsequent Directory Record recorded in that Logical Sector shall begin at the byte immediately following the last byte of the preceding Directory Record in that Logical Sector. Each Directory Record shall end
in the Logical Sector in which it begins. Unused positions after the last Directory Record in a Logical Sector shall be set to (00).

6.8.1.2 Order of Directory Records
The records in a Directory shall be ordered according to 9.3.
The order of the directory records for a file in a directory shall specify the order of the File Sections in the File Space of the file.

6.8.1.3 Directory Length
The length of a directory shall be the sum of:
- the lengths of all Directory Records in the directory;
- the number of unused positions after the last Directory Record in all Logical Sectors in which the directory is recorded.

6.8.2 Directory Hierarchy
A Directory Hierarchy shall be a set of directories related to each other as follows.

The Root of the hierarchy, called the Root Directory, shall be a directory identified either in a Primary Volume Descriptor or in a Supplementary Volume Descriptor.

Each directory, other than the Root Directory, shall be identified by a record in another directory.

A directory identifying another directory shall be called the Parent Directory of the identified directory. Each directory shall contain a record which identifies its Parent Directory. Different directories may have the same Parent Directory.

A hierarchical relationship shall exist between the Root Directory and all other directories:

```
ROOT
 /\ SUB1
 | \ SUB2
 |  \ SUB3
```

The hierarchy shall consist of a number of levels (i.e. for n levels: level 1, level 2, ..., level n). The Root Directory shall be the one and only directory at level 1 of the hierarchy.

If a Directory is at level m of the hierarchy, its Parent Directory shall be at level (m-1). The Parent Directory of the Root Directory shall be the Root Directory.

6.8.2.1 Depth of Directory Hierarchy
The number of levels in the hierarchy shall not exceed eight. In addition, for each file recorded, the sum of the following shall not exceed 255:
- the length of the File Identifier (see 7.5.2),
- the length of the Directory Identifiers (see 7.6) of all relevant directories.

6.8.2.2 Identification of Directories
For a Root Directory:
- the first Directory Record of the Root Directory shall describe the Root Directory and shall have a Directory Identifier consisting of a single (00) byte;
- the second Directory Record of the Root Directory shall describe the Root Directory itself and shall have a Directory Identifier consisting of a single (01) byte;
- a Directory Record describing the Root Directory shall be contained in the Root Directory Field of the volume descriptor that identifies the directory hierarchy.

For each directory other than the Root Directory:
- the first Directory Record of the directory shall describe that directory and shall have a Directory Identifier consisting of a single (00) byte;
- the second Directory Record of the directory shall describe the Parent Directory for that directory and shall have a Directory Identifier consisting of a single (01) byte;
- a Directory Record in its Parent Directory shall describe the directory.

6.8.3 Relation of Directory Hierarchies
One or more Directory Hierarchies shall be recorded on a volume.
A Directory Hierarchy shall be identified in the Primary Volume Descriptor.
Each additional Directory Hierarchy shall be identified in a Supplementary Volume Descriptor.
The directories within each hierarchy shall identify zero or more of the files that are recorded in those volumes, the sequence numbers of which are less than, or equal to, the assigned Volume Set Size of the volume.
A directory shall not be a part of more than one Directory Hierarchy.

6.9 Path Table
A Path Table recorded on a volume of a Volume Set shall contain a set of records describing a directory hierarchy for those volumes of the Volume Set the sequence numbers of which are less than, or equal to, the assigned Volume Set Size of the volume.

For each directory in the directory hierarchy other than the Root Directory, the Path Table shall contain a record which identifies the directory, its Parent Directory and its location. The records in a Path Table shall be numbered starting from 1. The first record in the Path Table shall identify the Root Directory and its location.

The directory number of a directory shall be the ordinal number of the Path Table Record that identifies the directory.

6.9.1 Order of Path Table Records
The records in a Path Table shall be ordered by the following criteria in descending order of significance:
- in ascending order according to level in the directory hierarchy;
6.9.2 Path Table Group

A Path Table shall be either a Type L Path Table or a Type M Path Table.

In a Type L Path Table, a numerical value shall be recorded according to 7.2.1 if represented as a 16-bit number and according to 7.3.1 if represented as a 32-bit number.

In a Type M Path Table, a numerical value shall be recorded according to 7.2.2 if represented as a 16-bit number and according to 7.3.2 if represented as a 32-bit number.

A Path Table Group shall comprise one or two identical Type L Path Tables and one or two identical Type M Path Tables.

6.9.3 Recorded Occurrences of the Path Table

One or more Path Table Groups shall be recorded on a volume. The Primary Volume Descriptor shall identify the size and locations of the constituent Path Tables of a Path Table Group. These Path Tables shall identify the directories in the Directory Hierarchy which is identified by the Primary Volume Descriptor.

Corresponding to each additional Directory Hierarchy recorded on a volume an additional Path Table Group shall be recorded on the volume. For each such Path Table Group the corresponding Supplementary Volume Descriptor shall identify the size and locations of its constituent Path Tables. These Path Tables shall identify the directories in the corresponding Directory Hierarchy.

6.9.4 Consistency of Path Tables between Volumes of a Volume Group

6.9.4.1 The contents of a Type L Path Table identified in a Primary Volume Descriptor shall be identical with the contents of any other Type L Path Table identified in a Primary Volume Descriptor on a volume of the same Volume Group.

The contents of a Type M Path Table identified in a Primary Volume Descriptor shall be identical with the contents of any other Type M Path Table identified in a Primary Volume Descriptor on a volume of the same Volume Group.

6.9.4.2 The contents of a Type L Path Table identified in a Supplementary Volume Descriptor shall be identical with the contents of any other Type L Path Table identified in a Supplementary Volume Descriptor, having the same volume set identification and identifying the same coded graphic character set for use within selected descriptor fields (see 7.4), on a volume of the same Volume Group.

The contents of a Type M Path Table identified in a Supplementary Volume Descriptor shall be identical with the contents of any other Type M Path Table identified in a Supplementary Volume Descriptor, having the same volume set identification and identifying the same coded graphic character set for use within selected descriptor fields (see 7.4), on a volume of the same Volume Group.

6.10 Record Structure

The information in a file may be organized as a set of records according to this clause of this Standard.

6.10.1 Characteristics

A record shall be a sequence of bytes treated as a unit of information.

The length of a record shall be the number of bytes in the record.

A record shall be either a fixed-length record, or a variable-length record.

All records in a file shall be either fixed-length records or variable-length record.

6.10.2 Measured Data Unit (MDU)

A Measured Data Unit shall contain either a fixed-length record or a variable-length record. An MDU shall comprise an even number of bytes.

6.10.2.1 Relationship to File Space

Each MDU shall be recorded in successive bytes of the File Space. The first or only MDU shall begin at the first byte of the File Space. Each successive MDU shall begin at the byte in the File Space immediately following the last byte of the preceding MDU.

6.10.3 Fixed-Length Records

A fixed-length record shall be a record contained in a file that is assigned to contain records that all must have the same length.

A fixed-length record shall be contained in an MDU. The MDU shall consist of the fixed-length record, immediately followed by a (00) byte if necessary to give the MDU an even length.

The minimum assigned length of a fixed-length record shall be 1.

6.10.4 Variable-Length Records

A variable-length record shall be a record contained in a file that is assigned to contain records that may have different lengths. The value recorded in the Record Format field of an Extended Attribute Record for a file containing variable-length records shall contain the same value as that recorded in the Record Format field of any other Extended Attribute Record of that same file.

A variable-length record shall be contained in an MDU. The MDU shall consist of a Record Control Word (RCW) immediately followed by the variable-length record, immediately followed by a (00) byte if necessary to give the MDU an even length.
The RCW shall specify as a 16-bit number the length of the record. The RCW shall be recorded according to:
- 7.2.1, if the value in the Record Format field of the Extended Attribute Record describing the Extent is 2, or
- 7.2.2, if the value in the Record Format field of the Extended Attribute Record describing the Extent is 3.
A maximum record length shall be assigned for a file. The length of any record in the file shall not exceed this value. The assigned maximum record length shall be in the range 1 to 32767.
The minimum length of a variable-length record shall be 0.

7. RECORDING OF DESCRIPTOR FIELDS

7.1 8-Bit Numerical Values
A numerical value represented in binary notation by an 8-bit number shall be recorded in a field of a descriptor in one of the following two formats. The applicable format is specified in the description of the descriptor fields.

7.1.1 8-Bit Unsigned Numerical Values
An unsigned numerical value shall be represented in binary notation by an 8-bit number recorded in a one-byte field.

7.1.2 8-Bit Signed Numerical Values
A signed numerical value shall be represented in binary notation by an 8-bit two's complement number recorded in a one-byte field.

7.2 16-Bit Numerical Value
A numerical value represented in binary notation by a 16-bit number shall be recorded in a field of a descriptor in one of the following three formats. The applicable format is specified in the description of the descriptor fields.

7.2.1 Least Significant Byte First
A numerical value represented by the hexadecimal representation (wx yz) shall be recorded in a two-byte field as (yz wx).

NOTE 9
For example, the decimal number 4660 has (12 34) as its hexadecimal representation and shall be recorded as (34 12).

7.2.2 Most Significant Byte First
A numerical value represented by the hexadecimal representation (wx yz) shall be recorded in a two-byte field as (wx yz).

NOTE 10
For example, the decimal number 4660 has (12 34) as its hexadecimal representation and shall be recorded as (12 34).

7.2.3 Both Byte Orders
A numerical value represented by the hexadecimal representation (wx yz) shall be recorded in a four-byte field as (yz wx wx yz).

NOTE 11
For example, the decimal number 4660 has (12 34) as its hexadecimal representation and shall be recorded as (34 12 12 34).

7.3 32-Bit Numerical Values
A numerical value represented in binary notation by a 32-bit number shall be recorded in a field of a descriptor in one of the following three formats. The applicable format is specified in the description of the descriptor fields.

7.3.1 Least Significant Byte First
A numerical value represented by the hexadecimal representation (st uv wx yz) shall be recorded in a four-byte field as (yz wx uv st).

NOTE 12
For example, the decimal number 305490996 has (12 34 56 78) as its hexadecimal representation and shall be recorded as (78 56 34 12).

7.3.2 Most Significant Byte First
A numerical value represented by the hexadecimal representation (st uv wx yz) shall be recorded in a four-byte field as (st uv wx yz).

NOTE 13
For example, the decimal number 305490996 has (12 34 56 78) as its hexadecimal representation and shall be recorded as (12 34 56 78).

7.3.3 Both Byte Orders
A numerical value represented by the hexadecimal representation (st uv wx yz) shall be recorded in an eight-byte field as (yz wx uv st uv wx yz).

NOTE 14
For example, the decimal number 305490996 has (12 34 56 78) as its hexadecimal representation and shall be recorded as (78 56 34 12 12 34 56 78).

7.4 Character Sets and Coding

7.4.1 d-Characters and a-Characters
The characters in the descriptors shall be coded according to ECMA-6 (see Appendix A), except as specified in 7.4.4.
The 37 characters in the following positions of the International Reference Version are referred to as d-characters:
- 3/0 to 3/9
- 4/1 to 5/10
- 5/15

The 57 characters in the following positions of the International Reference Version are referred to as a-characters:
- 2/0 to 2/2
- 2/5 to 2/15
- 3/0 to 3/15
- 4/1 to 4/15
- 5/0 to 5/10
- 5/15

The applicable set of characters is specified in the description of the descriptor fields.

7.4.2 c-Characters
The characters of the coded graphic character sets identified by the escape sequences in a Supplementary Volume Descriptor are referred to as c-characters.
7.4.2.1 al-Characters
A subset of the c-characters will be referred to as al-characters. This subset shall be subject of agreement between the originator and the recipient of the volume.

7.4.2.2 dl-Characters
A subset of the al-characters will be referred to as dl-characters. This subset shall be the subject of agreement between the originator and the recipient of the volume.

7.4.3 Separators
The characters separating the components of a File Identifier shall be:
- SEPARATOR 1 represented by the bit combination (2E)
- SEPARATOR 2 represented by the bit combination (3B)

7.4.4 Use of Characters in Descriptor Fields
The characters in the fields of the following descriptors shall be a-characters or d-characters as specified in 9.
- Directory records within a Directory Hierarchy that is identified in a Primary Volume Descriptor,
- Path Table records within a Path Table Group identified in a Primary Volume Descriptor,
- Extended Attribute records identified in a directory of a Directory Hierarchy that is identified in a Primary Volume Descriptor.

The characters in the fields in the following descriptors shall be al or dl-characters as specified in 9:
- Directory records within a Directory Hierarchy that is identified in a Supplementary Volume Descriptor,
- Path Table records within a Path Table Group identified in a Supplementary Volume Descriptor,
- Extended Attribute records identified in a directory of a Directory Hierarchy that is identified in a Supplementary Volume Descriptor.

7.4.5 Justification of Characters
In each fixed-length field the content of which is specified by this Standard to be characters, the characters shall be left-justified and any remaining positions on the right shall be set to (20).

7.5 File Identifier
7.5.1 File Identifier Format
A File Identifier shall consist of the following sequence:
- File Name: A sequence of zero or more d-characters or dl-characters;
- zero or one SEPARATOR 1;
- File Name Extension: A sequence of zero or more d-characters or dl-characters;
- zero or one SEPARATOR 2;
- File Version Number: Digits representing a number from 1 to 32767.

This sequence shall meet the following requirements:
- If no characters are specified for the File Name then the File Name Extension shall consist of at least one character.
- If no characters are specified for the File Name Extension then the File Name shall consist of at least one character.
- If the File Version Number is not specified then it shall be assumed to be 1.
- If the File Name Extension is specified then the SEPARATOR 1 shall be present.
- If the File Version Number is specified then the SEPARATOR 2 shall be present.
- The sum of the following shall not exceed 31:
 - if there is a File Name, the length of the File Name,
 - if there is a File Name Extension, the length of the File Name Extension,
 - if there is a SEPARATOR 1, + 1.

NOTE 15
If the File Name Extension is not specified, the SEPARATOR 1 may be present. If the File Version Number is not specified, the SEPARATOR 2 may be present.

7.5.2 File Identifier Length
The length of the File Identifier shall be the sum of the following:
- if there is a File Name, the length of the File Name,
- if there is a File Name Extension, the length of the File Name Extension,
- if there is a File Version Number, the number of digits in the File Version Number,
- the number of SEPARATORs.

7.6 Directory Identifier
7.6.1 Directory Identifier Format
A Directory Identifier shall consist of a sequence of one or more d-characters or dl-characters (see 7.4.4), except as specified in 7.6.2.

7.6.2 Reserved Directory Identifiers
- The Directory Identifier of a Directory Record describing the Root Directory shall consist of a single (00) byte.
- The Directory Identifier of the Directory Record of each directory shall consist of a single (00) byte.
- The Directory Identifier of the second Directory Record of each directory shall consist of a single (01) byte.

7.6.3 Directory Identifier Length
The length of a Directory Identifier shall not exceed 31.
8. VOLUME DESCRIPTORS

The Volume Descriptors shall identify the volume, the partitions recorded on the volume, the volume creator(s), certain attributes of the volume, the location of other recorded descriptors and the version of the standard which applies to the volume descriptor.

8.1 Format of a Volume Descriptor

<table>
<thead>
<tr>
<th>BP</th>
<th>Field Name</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volume Descriptor Type</td>
<td>numerical value</td>
</tr>
<tr>
<td>2-6</td>
<td>Standard Identifier</td>
<td>CD001</td>
</tr>
<tr>
<td>7</td>
<td>Volume Descriptor Version</td>
<td>numerical value</td>
</tr>
<tr>
<td>8-2048</td>
<td>(Depends on Volume Descriptor Type)</td>
<td>(Depends on Volume Descriptor Type)</td>
</tr>
</tbody>
</table>

8.1.1 Volume Descriptor Type (BP 1)

This field shall specify as an 8-bit number the Volume Descriptor Type.

Number 0 shall mean that the Volume Descriptor is a Boot Record.

Number 1 shall mean that the Volume Descriptor is a Primary Volume Descriptor.

Number 2 shall mean that the Volume Descriptor is a Supplementary Volume Descriptor.

Number 3 shall mean that the Volume Descriptor is a Volume Partition Descriptor.

Numbers 4-254 are reserved for future standardisation.

Number 255 shall mean that the Volume Descriptor is a Volume Descriptor Set Terminator.

This field shall be recorded according to 7.1.1.

8.1.2 Standard Identifier (BP 2-6)

This field shall specify an identification of this Standard.

The characters in this field shall be CD001.

8.1.3 Volume Descriptor Version (BP 7)

This field shall specify as an 8-bit number the version of the specification for the Volume Descriptor.

The content and the interpretation of this field shall depend on the content of the Volume Descriptor Type field.

This field shall be recorded according to 7.1.1.

8.1.4 Depends on Volume Descriptor Type (BP 8-2048)

The content and the interpretation of this field shall depend on the Volume Descriptor Type field.

8.2 Boot Record

The Boot Record shall identify a system which can recognize and act upon the content of the field reserved for boot system use in the Boot Record, and shall contain information which is used to achieve a specific state for a system or for an application.

8.2.1 Volume Descriptor Type (BP 1)

This field shall specify an 8-bit number indicating that the Volume Descriptor is a Boot Record.

The number in this field shall be 0.

This field shall be recorded according to 7.1.1.

8.2.2 Standard Identifier (BP 2-6)

This field shall specify an identification of this Standard.

The characters in this field shall be CD001.

8.2.3 Volume Descriptor Version (BP 7)

This field shall specify as an 8-bit number the version of the specification for the Boot Record structure.

1 shall indicate the structure of the present Standard.

This field shall be recorded according to 7.1.1.

8.2.4 Boot System Identifier (BP 8-39)

This field shall specify an identification of a system which can recognize and act upon the content of the Boot Identifier and Boot System Use fields in the Boot Record.

The characters in this field shall be a-characters.

8.2.5 Boot Identifier (BP 40-71)

This field shall specify an identification of the boot system specified in the Boot System Use field of the Boot Record.

The characters in this field shall be a-characters.

8.2.6 Boot System Use (BP 72-2048)

This field shall be reserved for boot system use. Its content is not specified by this Standard and shall be ignored in interchange.

8.3 Volume Descriptor Set Terminator

The recorded set of Volume Descriptors shall be terminated by a sequence of one or more Volume Descriptor Set Terminators.
8.3.1 Volume Descriptor Type (BP 1)

This field shall specify an 8-bit number indicating that the Volume Descriptor is a Volume Descriptor Set Terminator. The number in this field shall be 255. This field shall be recorded according to 7.1.1.

8.3.2 Standard Identifier (BP 2-6)

This field shall specify an identification of this Standard. The characters in this field shall be CDD01.

8.3.3 Volume Descriptor Version (BP 7)

This field shall specify as an 8-bit number the version of the specification for the Volume Descriptor Set Terminator. 1 shall indicate the structure of the present Standard. This field shall be recorded according to 7.1.1.

8.3.4 Reserved for Future Standardization (BP 8-2048)

This field shall be set to (00).

8.4 Primary Volume Descriptor

The Primary Volume Descriptor shall identify the volume, the system specifying the content of the Logical Sectors with Logical Sector Numbers 0 to 15, the size of the Volume Space, the version of the standard which applies to the Volume Descriptor, the version of the specification which applies to the directory records and the Path Table records and certain attributes of the volume.

<table>
<thead>
<tr>
<th>BP</th>
<th>Field Name</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volume Descriptor Type</td>
<td>numerical value</td>
</tr>
<tr>
<td>2-6</td>
<td>Standard Identifier</td>
<td>CDD01</td>
</tr>
<tr>
<td>7</td>
<td>Volume Descriptor Version</td>
<td>(00) bytes</td>
</tr>
<tr>
<td>8</td>
<td>Unused Field</td>
<td>a-characters</td>
</tr>
<tr>
<td>9-40</td>
<td>System Identifier</td>
<td>d-characters</td>
</tr>
<tr>
<td>41-72</td>
<td>Volume Identifier</td>
<td></td>
</tr>
<tr>
<td>73-80</td>
<td>Unused Field</td>
<td>(00) bytes</td>
</tr>
<tr>
<td>81-88</td>
<td>Volume Space Size</td>
<td>numerical value</td>
</tr>
<tr>
<td>89-120</td>
<td>Unused Field</td>
<td>(00) bytes</td>
</tr>
<tr>
<td>121-124</td>
<td>Volume Set Size</td>
<td>numerical value</td>
</tr>
</tbody>
</table>

8.4.1 Volume Descriptor Type (BP 1)

This field shall specify an 8-bit number indicating that the volume descriptor is a Primary Volume Descriptor. The number in this field shall be 1. This field shall be recorded according to 7.1.1.

8.4.2 Standard Identifier (BP 2-6)

This field shall specify an identification of this Standard. The characters in this field shall be CDD01.

8.4.3 Volume Descriptor Version (BP 7)

This field shall specify as an 8-bit number an identification of the version of the specification for the Primary Volume Descriptor.
I shall indicate the structure of the present Standard.
This field shall be recorded according to 7.1.1.

8.4.4 Unused Field (BP 8)
This field shall be set to (00).

8.4.5 System Identifier (BP 9-40)
This field shall specify an identification of a system which can recognize
and act upon the content of the Logical Sectors with Logical Sector Numbers
0 to 15 of the volume.
The characters in this field shall be a-characters.

8.4.6 Volume Identifier (BP 41-72)
This field shall specify an identification of the volume.
The characters in this field shall be d-characters.

8.4.7 Unused Field (BP 73-80)
This field shall be set to (00).

8.4.8 Volume Space Size (BP 81-88)
This field shall specify as a 32-bit number the number of Logical Blocks in
which the Volume Space of the volume is recorded.
This field shall be recorded according to 7.3.3.

8.4.9 Unused Field (BP 89-120)
This field shall be set to (00).

8.4.10 Volume Set Size (BP 121-124)
This field shall specify as a 16-bit number the assigned Volume Set Size of
the volume.
This field shall be recorded according to 7.2.3.

8.4.11 Volume Sequence Number (BP 125-128)
This field shall specify as a 16-bit number the ordinal number of the vol-
ume in the Volume Set of which the volume is a member.
This field shall be recorded according to 7.2.3.

8.4.12 Logical Block Size (BP 129-132)
This field shall specify as a 16-bit number the size, in bytes, of a Logical
Block.
This field shall be recorded according to 7.2.3.

8.4.13 Path Table Size (BP 133-140)
This field shall specify as a 32-bit number the length in bytes of a
recorded occurrence of the Path Table identified by this Volume Descriptor.
This field shall be recorded according to 7.3.3.

8.4.14 Location of Occurrence of Type L Path Table (BP 141-144)
This field shall specify as a 32-bit number the Logical Block Number of the
first Logical Block allocated to the Extent which contains an occurrence of
the Path Table. Multiple-byte numerical values in a record of this
occurrence of the Path Table shall be recorded with the least significant
byte first.
This field shall be recorded according to 7.3.1.

8.4.15 Location of Optional Occurrence of Type L Path Table (BP 145-148)
This field shall specify as a 32-bit number the Logical Block Number of the
first Logical Block allocated to the Extent which contains an optional oc-
currence of the Path Table. If the value is 0, it shall mean that the Ex-
ten shall not be expected to have been recorded. Multiple-byte numerical
values in a record of this occurrence of the Path Table shall be recorded
with the least significant byte first.
This field shall be recorded according to 7.3.1.

8.4.16 Location of Occurrence of Type M Path Table (BP 149-152)
This field shall specify as a 32-bit number the Logical Block Number of the
first Logical Block allocated to the Extent which contains an occurrence of
the Path Table. Multiple-byte numerical values in a record of this occur-
cence of the Path Table shall be recorded with the most significant byte
first.
This field shall be recorded according to 7.3.2.

8.4.17 Location of Optional Occurrence of Type M Path Table (BP 153-156)
This field shall specify as a 32-bit number the Logical Block Number of the
first Logical Block allocated to the Extent which contains an optional oc-
currence of the Path Table. If the value is 0, it shall mean that the Ex-
ten shall not be expected to have been recorded. Multiple-byte numerical
values in a record of this occurrence of the Path Table shall be recorded
with the most significant byte first.
This field shall be recorded according to 7.3.2.

8.4.18 Directory Record for Root Directory (BP 157-190)
This field shall contain an occurrence of the Directory Record for the Root
directory.
This field shall be recorded according to 9.1.

8.4.19 Volume Set Identifier (BP 191-318)
This field shall specify an identification of the Volume Set of which the
volume is a member.
The characters in this field shall be d-characters.

8.4.20 Publisher Identifier (BP 319-446)
This field shall specify an identification of the user who specified what
shall be recorded on the Volume Group of which the volume is a member.
If the first byte is set to (5F), the remaining bytes of this field shall
specify an identifier for a file containing the identification of the user.
This file shall be described in the Root Directory. The File Name shall not
contain more than eight d-characters and the File Name Extension shall not
contain more than three d-characters.
If all bytes of this field are set to (20), it shall mean that no such user
is identified.
The characters in this field shall be a-characters.
8.4.21 Data Preparer Identifier (BP 447-574)

This field shall specify an identification of the person or other entity which controls the preparation of the data to be recorded on the Volume Group of which the volume is a member.

If the first byte is set to (5F), the remaining bytes of this field shall specify an identifier for a file containing the identification of the data preparer. This file shall be described in the Root Directory. The File Name shall not contain more than eight d-characters and the File Name Extension shall not contain more than three d-characters.

If all bytes of this field are set to (20), it shall mean that no such data preparer is identified.

The characters in this field shall be a-characters.

8.4.22 Application Identifier (BP 575-702)

This field shall specify an identification of the specification of how the data are recorded on the Volume Group of which the volume is a member.

If the first byte is set to (5F), the remaining bytes of this field shall specify an identifier for a file containing the identification of the application. This file shall be described in the Root Directory. The File Name shall not contain more than eight d-characters and the File Name Extension shall not contain more than three d-characters.

If all bytes of this field are set to (20), it shall mean that no such application is identified.

The characters in this field shall be a-characters.

8.4.23 Copyright File Identifier (BP 703-739)

This field shall specify an identification for a file described by the Root Directory and containing a copyright statement for the Volume Set. If all bytes of this field are set to (20), it shall mean that no such file is identified.

The File Name of a Copyright File Identifier shall not contain more than 8 d-characters. The File Name Extension of a Copyright Identifier shall not contain more than 3 d-characters.

The characters in this field shall be d-characters, SEPARATOR 1 and SEPARATOR 2.

This field shall be recorded as specified in 7.5.

8.4.24 Abstract File identifier (BP 740-776)

This field shall specify an identification for a file described by the Root Directory and containing an abstract statement for the Volume Set. If all bytes of this field are set to (20), it shall mean that no such file is identified.

The File Name of an Abstract File Identifier shall not contain more than 8 d-characters. The File Name Extension of an Abstract File Identifier shall not contain more than 3 d-characters.

The characters in this field shall be d-characters, SEPARATOR 1 and SEPARATOR 2.

The field shall be recorded as specified in 7.5.

8.4.25 Bibliographic File identifier (BP 777-813)

This field shall specify an identification for a file described by the Root Directory and containing bibliographic records interpreted according to standards that are the subject of an agreement between the originator and the recipient of the volume. If all bytes of this field are set to (20), it shall mean that no such file is identified.

The File Name of a Bibliographic File Identifier shall not contain more than eight d-characters. The File Name Extension of a Bibliographic File Identifier shall not contain more than three d-characters.

The characters in this field shall be d-characters, SEPARATOR 1 and SEPARATOR 2.

The field shall be recorded as specified in 7.5.

8.4.26 Volume Creation Date and Time (BP 814-830)

This field shall specify the date and the time of the day at which the information in the volume was created. It shall be recorded according to 8.4.26.1.

8.4.26.1 Date and Time Format

The date and time shall be represented by a 17-byte field recorded as follows:

<table>
<thead>
<tr>
<th>RBP</th>
<th>Interpretation</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>Year from 1 to 9999</td>
<td>Digits</td>
</tr>
<tr>
<td>5-6</td>
<td>Month of the year from 1 to 12</td>
<td>Digits</td>
</tr>
<tr>
<td>7-8</td>
<td>Day of the month from 1 to 31</td>
<td>Digits</td>
</tr>
<tr>
<td>9-10</td>
<td>Hour of the day from 0 to 23</td>
<td>Digits</td>
</tr>
<tr>
<td>11-12</td>
<td>Minute of the hour from 0 to 59</td>
<td>Digits</td>
</tr>
<tr>
<td>13-14</td>
<td>Second of the minute from 0 to 59</td>
<td>Digits</td>
</tr>
<tr>
<td>15-16</td>
<td>Hundredths of a second</td>
<td>Digits</td>
</tr>
<tr>
<td>17</td>
<td>Offset from Greenwich Mean Time in number of 30 minute intervals from -24 (West) to +24 (East) recorded according to 7.1.2</td>
<td>numerical value</td>
</tr>
</tbody>
</table>

If all characters in RBP 1-16 of this field are the digit ZERO and the number in RBP 17 is zero, it shall mean that the date and time are not specified.

8.4.27 Volume Modification Date and Time (BP 831-847)

This field shall specify the date and the time of the day at which the information in the volume was last modified.

This field shall be recorded according to 8.4.26.1.

8.4.28 Volume Expiration Date and Time (BP 848-864)

This field shall specify the date and the time of the day at which the information in the volume may be regarded as obsolete. If the date and time are not specified then the information shall not be regarded as obsolete.

This field shall be recorded according to 8.4.26.1.
8.4.29 **Volume Effective Date and Time (BP 865-881)**

This field shall specify the date and the time of the day at which the information in the volume may be used. If the date and time are not specified then the information may be used at once.

This field shall be recorded according to 8.4.26.1.

8.4.30 **File Structure Version (BP 882)**

This field shall specify as an 8-bit number the version of the specification for the records of a directory and of a Path Table.

I shall indicate the structure of the present Standard.

This field shall be recorded according to 7.1.1.

8.4.31 **Reserved for future standardization (BP 883)**

This field shall be set to (00).

8.4.32 **Application Use (BP 884-1395)**

This field shall be reserved for application use. Its content is not specified by this Standard.

8.4.33 **Reserved for future standardization (BP 1396-2048)**

This field shall be set to (00).

8.5 **Supplementary Volume Descriptor**

The Supplementary Volume Descriptor shall identify the volume, the system specifying the content of the Logical Sectors with Logical Sector Numbers 0 to 15, the size of the Volume Space, the version of the standard which applies to the Volume Descriptor, the version of the specification which applies to the directory records and the Path Table records, certain attributes of the volume and the coded graphic character set used to interpret descriptor fields that contain characters.

<table>
<thead>
<tr>
<th>BP</th>
<th>Field Name</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volume Descriptor Type</td>
<td>numerical value</td>
</tr>
<tr>
<td>2-6</td>
<td>Standard Identifier</td>
<td>CD001</td>
</tr>
<tr>
<td>7</td>
<td>Volume Descriptor Version</td>
<td>numerical value</td>
</tr>
<tr>
<td>8</td>
<td>Volume Flags</td>
<td>8 bits</td>
</tr>
<tr>
<td>9-40</td>
<td>System Identifier</td>
<td>al-characters</td>
</tr>
<tr>
<td>41-72</td>
<td>Volume Identifier</td>
<td>dl-characters</td>
</tr>
<tr>
<td>73-80</td>
<td>Unused Field</td>
<td>(00) bytes</td>
</tr>
<tr>
<td>81-88</td>
<td>Volume Space Size</td>
<td>numerical value</td>
</tr>
<tr>
<td>89-120</td>
<td>Escape Sequences</td>
<td>32 bytes</td>
</tr>
<tr>
<td>121-124</td>
<td>Volume Set Size</td>
<td>numerical value</td>
</tr>
<tr>
<td>125-128</td>
<td>Volume Sequence Number</td>
<td>numerical value</td>
</tr>
<tr>
<td>129-132</td>
<td>Logical Block Size</td>
<td>numerical value</td>
</tr>
<tr>
<td>133-140</td>
<td>Path Table Size</td>
<td>numerical value</td>
</tr>
<tr>
<td>141-144</td>
<td>Location of Occurrence of Type L Path Table</td>
<td>numerical value</td>
</tr>
</tbody>
</table>

Within a Volume Descriptor Set the contents of the fields of this descriptor shall be identical with the contents of the corresponding fields in a Primary Volume Descriptor except for the following fields.

8.5.1 **Volume Descriptor Type (BP 1)**

This field shall specify an 8-bit number indicating that the Volume Descriptor is a Supplementary Volume Descriptor.

The number in this field shall be 2.

This field shall be recorded according to 7.1.1.

8.5.2 **Volume Descriptor Version (BP 7)**

This field shall specify as an 8-bit number an identification of the version of the specification for the Supplementary Volume Descriptor.

1 shall indicate the structure of the present Standard.

This field shall be recorded according to 7.1.1.

8.5.3 **Volume Flags (BP 8)**

The bits of this field shall be numbered from 0 to 7 starting with the least significant bit.
This field shall specify certain characteristics of the volume as follows.

Bit 0 if set to ZERO, shall mean that the Escape Sequences field specifies only escape sequences registered according to ISO 2375;
if set to ONE, shall mean that the Escape Sequences field specifies at least one escape sequence not registered according to ISO 2375.

Bits 1-7 These bits are reserved for future standardization and shall all be set to ZERO.

8.5.4 System Identifier (BP 9-40)
This field shall specify an identification of a system which can recognize and act upon the content of the Logical Sectors with Logical Sector Numbers 0 to 15 of the volume.
The characters in this field shall be al-characters.

8.5.5 Volume Identifier (BP 41-72)
This field shall specify an identification of the volume.
The characters in this field shall be di-characters.

8.5.6 Escape Sequences (BP 89-120)
This field shall specify one or more escape sequences according to ECMA-35 that designate the GO graphic character set and, optionally, the GI graphic character set to be used in an 8-bit environment according to ECMA-35 to interpret descriptor fields related to the Directory Hierarchy identified by this Volume Descriptor (see 7.4.4). If the GI set is designated, it is implicitly invoked into columns 10 to 15 or the code table.

These escape sequences shall conform to ECMA-35, except that the ESCAPE character shall be omitted from each designating escape sequence when recorded in this field. The first or only escape sequence shall begin at the first byte of the field. Each successive escape sequence shall begin at the byte in the field immediately following the last byte of the preceding escape sequence. Any unused positions following the last sequence shall be set to (00).

If Bit 0 of the Volume Flags field is set to ZERO, it shall mean that this field specifies only escape sequences registered according to ISO 2375.
If all the bytes of this field are set to (00), it shall mean that the set of al-characters is identical with the set of a-characters and that the set of di-characters is identical with the set of d-characters. In this case both sets are coded according to ECMA-6.

8.5.7 Path Table Size (BP 133-140)
This field shall specify as a 32-bit number the length in bytes of a recorded occurrence of the Path Table identified by this Volume Descriptor.
This field shall be recorded according to 7.3.3.

8.5.8 Location of Occurrence of Type L Path Table (BP 141-144)
This field shall specify as a 32-bit number the Logical Block Number of the first Logical Block allocated to the Extent which contains an occurrence of the Path Table. Multiple-byte numerical values in a record of this occurrence of the Path Table shall be recorded with the least significant byte first.
This field shall be recorded according to 7.3.1.

8.5.9 Location of Optional Occurrence of Type L Path Table (BP 145-148)
This field shall specify as a 32-bit number the Logical Block Number of the first Logical Block allocated to the Extent which contains an optional occurrence of the Path Table. If the value is 0, it shall mean that the Extent shall not be expected to have been recorded. Multiple-byte numerical values in a record of this occurrence of the Path Table shall be recorded with the least significant byte first.
This field shall be recorded according to 7.3.1.

8.5.10 Location of Occurrence of Type M Path Table (BP 149-152)
This field shall specify as a 32-bit number the Logical Block Number of the first Logical Block allocated to the Extent which contains an occurrence of the Path Table. Multiple-byte numerical values in a record of this occurrence of the Path Table shall be recorded with the most significant byte first.
This field shall be recorded according to 7.3.2.

8.5.11 Location of Optional Occurrence of Type M Path Table (BP 153-156)
This field shall specify as a 32-bit number the Logical Block Number of the first Logical Block allocated to the Extent which contains an occurrence of the Path Table. If the value is 0, it shall mean that the Extent shall not be expected to have been recorded. Multiple-byte numerical values in a record of this occurrence of the Path Table shall be recorded with the most significant byte first.
This field shall be recorded according to 7.3.2.

8.5.12 Directory Record for Root Directory (BP 157-190)
This field shall contain an occurrence of the Directory Record for the Root Directory.
This field shall be recorded according to 9.1.

8.5.13 Volume Set Identifier (BP 191-318)
This field shall specify an identification of the Volume Set of which the volume is a member.
The characters in this field shall be dl-characters.

8.5.14 Publisher Identifier (BP 319-446)
This field shall specify an identification of the user who specified what shall be recorded on the Volume Group of which the volume is a member.
If the first byte is set to (5F), the remaining bytes of this field shall specify an identifier for a file containing the identification of the user. This file shall be described in the Root Directory.
If all bytes of this field are set to (20), it shall mean that no such user is identified.
The characters in this field shall be al-characters.

8.5.15 Data Preparer Identifier (BP 447-574)
This field shall specify an identification of the person or other entity which controls the preparation of the data to be recorded on the Volume Group of which the volume is a member.
If the first byte is set to (5F), the remaining bytes of this field shall specify an identifier for a file containing the identification of the data preparer. This file shall be described in the Root Directory.
If all bytes of this field are set to (20), it shall mean that no such data preparer is identified.

The characters in this field shall be al-characters.

8.5.16 Application Identifier (BP 574-702)
This field shall specify an identification of the specification of how the data are recorded on the Volume Group of which the volume is a member.
If the first byte is set to (5F), the remaining bytes of this field shall specify an identifier for a file containing the identification of the application. This file shall be described in the Root Directory.
If all bytes of this field are set to (20), it shall mean that no such application is identified.
The characters in this field shall be al-characters.

8.5.17 Copyright File Identifier (BP 703-739)
This field shall specify an identification for a file described by the Root Directory and contain a copyright statement for the Volume Set. If all bytes of this field are set to (20), it shall mean that no such file is identified.
The characters in this field shall be dl-characters, SEPARATOR 1 and SEPARATOR 2.
The field shall be recorded as specified in 7.5.

8.5.18 Abstract File Identifier (BP 740-776)
This field shall specify an identification for a file described by the Root Directory and contain an abstract statement for the Volume Set. If all bytes of this field are set to (20), it shall mean that no such file is identified.
The characters in this field shall be dl-characters, SEPARATOR 1 and SEPARATOR 2.
The field shall be recorded as specified in 7.5.

8.5.19 Bibliographic File Identifier (BP 777-813)
This field shall specify an identification for a file described by the Root Directory and contain bibliographic records interpreted according to standards that are the subject of an agreement between the originator and the recipient of the volume. If all bytes of this field are set to (20), it shall mean that no such file is identified.
The characters in this field shall be dl-characters, SEPARATOR 1 and SEPARATOR 2.
The field shall be recorded as specified in 7.5.

8.5.20 Application Use (BP 884-1395)
This field shall be reserved for application use. Its content is not specified by this Standard.

8.6 Volume Partition Descriptor
The Volume Partition Descriptor shall identify a volume partition within the Volume Space, the system specifying the content of fields reserved for system use in the Volume Descriptor, the position and size of the volume partition, and the version of the standard which applies to the Volume Descriptor. The contents of the volume partition are not specified by this Standard.

<table>
<thead>
<tr>
<th>BP</th>
<th>Field Name</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volume Descriptor Type</td>
<td>numerical value</td>
</tr>
<tr>
<td>2-6</td>
<td>Standard Identifier</td>
<td>CDD001</td>
</tr>
<tr>
<td>7</td>
<td>Volume Descriptor Version</td>
<td>numerical value</td>
</tr>
<tr>
<td>8</td>
<td>Unused Field</td>
<td>(00) byte</td>
</tr>
<tr>
<td>9-40</td>
<td>System Identifier</td>
<td>a-characters</td>
</tr>
<tr>
<td>41-72</td>
<td>Volume Partition Identifier</td>
<td>d-characters</td>
</tr>
<tr>
<td>73-80</td>
<td>Volume Partition Location</td>
<td>numerical value</td>
</tr>
<tr>
<td>81-88</td>
<td>Volume Partition Size</td>
<td>numerical value</td>
</tr>
<tr>
<td>89-2048</td>
<td>System Use</td>
<td>not specified</td>
</tr>
</tbody>
</table>

8.6.1 Volume Descriptor Type (BP 1)
This field shall specify an 8-bit number indicating that the Volume Descriptor is a Volume Partition Descriptor.
The number in this field shall be 3.
This field shall be recorded according to 7.1.1.

8.6.2 Standard Identifier (BP 2-6)
This field shall specify an identification of this Standard.
The characters in this field shall be CDD001.

8.6.3 Volume Descriptor Version (BP 7)
This field shall specify an 8-bit number an identification of the version of the specification for the Volume Partition Descriptor.
1 shall indicate the structure of the present Standard.
This field shall be recorded according to 7.1.1.

8.6.4 Unused Field (BP 8)
This field shall be set to (00).

8.6.5 System Identifier (BP 9-40)
This field shall specify an identification of a system which can recognize and act upon the content of the System Use field in the Volume Descriptor.
The characters in this field shall be a-characters.

8.6.6 Volume Partition Identifier (BP 41-72)
This field shall specify an identification of the Volume Partition.
The characters in this field shall be d-characters.

8.6.7 Volume Partition Location (BP 73-80)
This field shall specify as a 32-bit number the Logical Block Number of the first Logical Block allocated to the Volume Partition.
This field shall be recorded according to 7.3.3.

8.6.8 Volume Partition Size (BP 81-88)
This field shall specify as a 32-bit number the number of Logical Blocks in which the Volume Partition is recorded.
This field shall be recorded according to 7.3.3.

9.6.9 System Use (BP 89-20A8)

This field shall be reserved for system use. Its content is not specified by this Standard.

9. FILE AND DIRECTORY DESCRIPTORS

9.1 Format of a Directory Record

<table>
<thead>
<tr>
<th>BP</th>
<th>Field Name</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Length of Directory Record (LEN_DR)</td>
<td>numerical value</td>
</tr>
<tr>
<td>2</td>
<td>Extended Attribute Record Length</td>
<td>numerical value</td>
</tr>
<tr>
<td>3-10</td>
<td>Location of Extent</td>
<td>numerical value</td>
</tr>
<tr>
<td>11-18</td>
<td>Data Length</td>
<td>numerical value</td>
</tr>
<tr>
<td>19-25</td>
<td>Recording Date and Time</td>
<td>8 bits</td>
</tr>
<tr>
<td>26</td>
<td>File Flags</td>
<td>numerical value</td>
</tr>
<tr>
<td>27</td>
<td>File Unit Size</td>
<td>numerical value</td>
</tr>
<tr>
<td>28</td>
<td>Interleave Gap Size</td>
<td>8 bits</td>
</tr>
<tr>
<td>29-12</td>
<td>Volume Sequence Number</td>
<td>numerical value</td>
</tr>
<tr>
<td>33</td>
<td>Length of File Identifier (LEN_FILE)</td>
<td>d-characters,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dl-characters,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEPARATOR 1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEPARATOR 2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(00), (01)</td>
</tr>
<tr>
<td>34-(33+LEN_FILE)</td>
<td>File Identifier</td>
<td>numerical value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(00) byte</td>
</tr>
<tr>
<td>(34+LEN_FILE)</td>
<td>Padding Field</td>
<td>LEN_SU bytes</td>
</tr>
<tr>
<td>(LEN_DR-LEN_SU+1)</td>
<td>System Use</td>
<td></td>
</tr>
<tr>
<td>- (LEN_DR)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 16

LEN_SU denotes the length of the System Use field.

9.1.1 Length of Directory Record (LEN_DR) (BP 1)

This field shall specify as an 8-bit number the length in bytes of the Directory Record.

This field shall be recorded according to 7.1.1.

9.1.2 Extended Attribute Record Length (BP 2)

This field shall contain an 8-bit number. This number shall specify the assigned Extended Attribute Record Length if an Extended Attribute Record is recorded. Otherwise this number shall be zero.

This field shall be recorded according to 7.1.1.

9.1.3 Location of Extent (BP 3-10)

This field shall specify as a 32-bit number the Logical Block Number of the first Logical Block allocated to the Extent.

This field shall be recorded according to 7.3.3.

9.1.4 Data Length (BP 11-18)

This field shall specify as a 32-bit number the data length of the File Section.

This field shall be recorded according to 7.3.3.

NOTE 17

This number does not include the length of any Extended Attribute Record.

9.1.5 Recording Date and Time (BP 19-25)

This field shall indicate the date and the time of the day at which the information in the Extent described by the Directory Record was recorded.

The date and time shall be represented by seven 8-bit numbers each of which shall be recorded according to 7.1.1 as follows.

<table>
<thead>
<tr>
<th>RBP</th>
<th>Interpretation</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of years since 1900</td>
<td>numerical value</td>
</tr>
<tr>
<td>2</td>
<td>Month of the year from 1 to 12</td>
<td>numerical value</td>
</tr>
<tr>
<td>3</td>
<td>Day of the month from 1 to 31</td>
<td>numerical value</td>
</tr>
<tr>
<td>4</td>
<td>Hour of the day from 0 to 23</td>
<td>numerical value</td>
</tr>
<tr>
<td>5</td>
<td>Minute of the hour from 0 to 59</td>
<td>numerical value</td>
</tr>
<tr>
<td>6</td>
<td>Second of the minute from 0 to 59</td>
<td>numerical value</td>
</tr>
<tr>
<td>7</td>
<td>Offset to Greenwich Mean Time in number of 30 minute intervals from -24 (West) to +24 (East) recorded according to 7.1.2.</td>
<td>numerical value</td>
</tr>
</tbody>
</table>

If all seven numbers are zero, it shall mean that the date and time are not specified.

9.1.6 File Flags (BP 26)

The bits of this field shall be numbered from 0 to 7 starting with the least significant bit.

If this Directory Record identifies a directory then bit positions 2, 3 and 7 shall be set to ZERO.

If no Extended Attribute Record is associated with the File Section identified by this Directory Record then bit positions 3 and 4 shall be set to ZERO.

This field shall specify certain characteristics of the file as follows.

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Bit Name</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Existence</td>
<td>If set to ZERO, shall mean that the existence of the file shall be made known to the user upon an inquiry by the user; if set to ONE, shall mean that the existence of the file need not be made known to the user.</td>
</tr>
<tr>
<td>1</td>
<td>Directory</td>
<td>if set to ZERO, shall mean that the Directory Record does not identify a directory; if set to ONE, shall mean that the Directory Record identifies a directory.</td>
</tr>
<tr>
<td>2</td>
<td>Associated File</td>
<td>if set to ZERO, shall mean that the file is not an Associated File; if set to ONE, shall mean that the file is an Associated File.</td>
</tr>
<tr>
<td>3</td>
<td>Record</td>
<td>if set to ZERO, shall mean that the structure of the information in the file is not specified by the Record Format Field of any associated Extended Attribute Record (see 9.5.8); if set to ONE, shall mean that the structure of the information in the file has a record format specified by a number other than zero in the Record Format Field of the Extended Attribute Record (see 9.5.8).</td>
</tr>
<tr>
<td>4</td>
<td>Protection</td>
<td>if set to ZERO, shall mean that: an Owner Identification and a Group Identification are not specified for the file (see 9.5.1 and 9.5.2), any user may read or execute the file (see 9.5.3). if set to ONE, shall mean that: an Owner Identification and a Group Identification are specified for the file (see 9.5.1 and 9.5.2), at least one of the even-numbered bits or bit 0 in the Permissions field of the associated Extended Attribute Record is set to ONE (see 9.5.3).</td>
</tr>
<tr>
<td>5-6</td>
<td>Reserved</td>
<td>these bits are reserved for future standardization and shall be set to ZERO.</td>
</tr>
<tr>
<td>7</td>
<td>Multi-Extent</td>
<td>if set to ZERO, shall mean that this is the final Directory Record for the file; if set to ONE, shall mean that this is not the final Directory Record for the file.</td>
</tr>
</tbody>
</table>

9.1.7 File Unit Size (BP 27)
This field shall contain an 8-bit number. This number shall specify the File Unit Size for the File Section if the File Section is recorded in interleaved mode. Otherwise this number shall be zero. This field shall be recorded according to 7.1.1.

9.1.8 Interleave Gap Size (BP 28)
This field shall contain an 8-bit number. This number shall specify the Interleave Gap Size for the File Section if the File Section is recorded in interleaved mode. Otherwise this number shall be zero. This field shall be recorded according to 7.1.1.

9.1.9 Volume Sequence Number (BP 29-32)
This field shall specify as a 16-bit number the ordinal number of the volume in the Volume Set on which the Extent described by this Directory Record is recorded.

9.1.10 Length of File Identifier (LEN FI) (BP 33)
This field shall specify as an 8-bit number the length in bytes of the File Identifier field of the Directory Record. This field shall be recorded according to 7.1.1.

9.1.11 File Identifier (BP 34-(34+LEN FI))
The interpretation of this field depends as follows on the setting of the Directory bit of the File Flags field:
If set to ZERO, shall mean: The field shall specify an identification for the file.
The characters in this field shall be d-characters or dl-characters, SEPARATOR 1, SEPARATOR 2.
The field shall be recorded as specified in 7.5.
If set to ONE, shall mean: The field shall specify an identification for the directory.
The characters in this field shall be d-characters or dl-characters or only a (00) byte, or only a (01) byte.
The field shall be recorded as specified in 7.6.

9.1.12 Padding Field (BP (34+LEN FI))
This field shall be present in the Directory Record only if the number in the Length of the File Identifier field is an even number. If present, this field shall be set to (00).

9.1.13 System Use (BP (LEN DR-LEN SUH)-LEN DR)
This field shall be optional. If present, this field shall be reserved for system use. Its content is not specified by this Standard. If necessary to cause the Directory Record to comprise an even number of bytes, a (00) byte shall be added to terminate this field.

9.2 Consistency of File Attributes between Directory Records of a File
The following fields of each Directory Record for the same file shall contain the same values:
- Existence bit of the File Flags field
- Directory bit of the File Flags field
- Associated File bit of the File Flags field
- Record bit of the File Flags field
- Reserved bits of the File Flags field
- Length of File Identifier field
- File Identifier field
- Padding field

9.3 Order of Directory Records
The records of a Directory shall be ordered according to the relative value of the File Identifier Field by the following criteria in descending order of significance:
9.4 Format of a Path Table Record

<table>
<thead>
<tr>
<th>BP</th>
<th>Field Name</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Length of Directory Identifier (LEN_DI)</td>
<td>numerical value</td>
</tr>
<tr>
<td>2</td>
<td>Extended Attribute Record Length</td>
<td>numerical value</td>
</tr>
<tr>
<td>3-6</td>
<td>Location of Extent</td>
<td>numerical value</td>
</tr>
<tr>
<td>7-8</td>
<td>Parent Directory Number</td>
<td>d-characters, dl-characters, (00) byte</td>
</tr>
<tr>
<td>9-(8+LEN_DI)</td>
<td>Directory Identifier</td>
<td>(00) byte</td>
</tr>
<tr>
<td>(9+LEN_DI)</td>
<td>Padding field</td>
<td></td>
</tr>
</tbody>
</table>

9.4.1 Length of Directory Identifier (LEN_DI) (BP 1)

This field shall specify as an 8-bit number the length in bytes of the Directory Identifier field of the Path Table Record. This field shall be recorded according to 7.1.1.

9.4.2 Extended Attribute Record Length (BP 2)

This field shall contain an 8-bit number. This number shall specify the assigned Extended Attribute Record Length if an Extended Attribute Record is recorded. Otherwise this number shall be zero. This field shall be recorded according to 7.1.1.

9.4.3 Location of Extent (BP 3-6)

This field shall specify as a 32-bit number the Logical Block Number of the first Logical Block allocated to the Extent in which the directory is recorded. This field shall be recorded according to 7.3.

9.4.4 Parent Directory Number (BP 7-8)

This field shall specify as a 16-bit number the record number in the Path Table for the parent directory of the directory. This field shall be recorded according to 7.2.

9.4.5 Directory Identifier (BP 9-(8+LEN_DI))

This field shall specify an identification for a directory. The characters in this field shall be d-characters or dl-characters or only a (00) byte. This field shall be recorded as specified in 7.6.

9.4.6 Padding field (BP (9+LEN_DI))

This field shall be present in the Path Table Record only if the number in the Length of Directory Identifier field is an odd number. If present, this field shall be set to (00).

9.5 Format of an Extended Attribute Record

If present, an Extended Attribute Record shall be recorded over at least one Logical Block. It shall have the following contents.
<table>
<thead>
<tr>
<th>BP</th>
<th>Field Name</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>Owner Identification</td>
<td>numerical value</td>
</tr>
<tr>
<td>5-8</td>
<td>Group Identification</td>
<td>numerical value</td>
</tr>
<tr>
<td>9-10</td>
<td>Permissions</td>
<td>16 bits</td>
</tr>
<tr>
<td>11-27</td>
<td>File Creation Date and Time</td>
<td>Digit(s), numerical value</td>
</tr>
<tr>
<td>28-44</td>
<td>File Modification Date and Time</td>
<td>Digit(s), numerical value</td>
</tr>
<tr>
<td>45-61</td>
<td>File Expiration Date and Time</td>
<td>Digit(s), numerical value</td>
</tr>
<tr>
<td>62-78</td>
<td>File Effective Date and Time</td>
<td>Digit(s), numerical value</td>
</tr>
<tr>
<td>79</td>
<td>Record Format</td>
<td>8 bits</td>
</tr>
<tr>
<td>80</td>
<td>Record Attributes</td>
<td>8 bits</td>
</tr>
<tr>
<td>81-84</td>
<td>Record Length</td>
<td>numerical value</td>
</tr>
<tr>
<td>85-116</td>
<td>System Identifier</td>
<td>a-characters,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>al-characters,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not specified</td>
</tr>
<tr>
<td>117-180</td>
<td>System Use</td>
<td>numerical value</td>
</tr>
<tr>
<td>181</td>
<td>Extended Attribute Record Version</td>
<td>numerical value</td>
</tr>
<tr>
<td>182</td>
<td>(Reserved for future standardization)</td>
<td>numerical value</td>
</tr>
<tr>
<td>183-246</td>
<td>Length of Escape Sequences (LEN_ESC)</td>
<td>(00) bytes</td>
</tr>
<tr>
<td>247-250</td>
<td>Length of Application Use (LEN_AU)</td>
<td>numerical value</td>
</tr>
<tr>
<td>251-(250+LEN_AU)</td>
<td>Application Use</td>
<td>LEN_AU bytes</td>
</tr>
<tr>
<td></td>
<td>(250+LEN_ESC+</td>
<td>LEN_ESC bytes</td>
</tr>
</tbody>
</table>

9.5.1 Owner Identification (BP 1-4)

This field shall specify as a 16-bit number an identification of the file owner who is a member of the group identified by the Group Identification field of the Extended Attribute Record.

If the number in this field is 0, this shall indicate that there is no owner identification specified for the file. In this case, the Owner Identification field shall contain zero.

This field shall be recorded according to 7.2.3.

9.5.2 Group Identification (BP 5-8)

This field shall specify as a 16-bit number an identification of the group of which the file owner is a member.

The values for this number from 1 to a number subject to agreement between the data preparer and receiving system shall identify the group as belonging to the class of user referred to as System.

9.5.3 Permissions (BP 9-10)

The bits of this 16-bit field shall be numbered from 0 to 15 starting with the least significant bit of the byte recorded in byte position 10.

If requested by the owner, bits 4 to 7 may be ignored in interchange.

This field shall specify access permissions for certain classes of users as follows.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>if set to ZERO, shall mean that an owner who is a member of a group of the System class of user may read the file;</td>
</tr>
<tr>
<td></td>
<td>if set to ONE, shall mean that an owner who is a member of a group of the System class of user may not read the file.</td>
</tr>
<tr>
<td>1</td>
<td>shall be set to ONE.</td>
</tr>
<tr>
<td>2</td>
<td>if set to ZERO, shall mean that an owner who is a member of a group of the System class of user may execute the file;</td>
</tr>
<tr>
<td></td>
<td>if set to ONE, shall mean that an owner who is a member of a group of the System class of user may not execute the file.</td>
</tr>
<tr>
<td>3</td>
<td>shall be set to ONE.</td>
</tr>
<tr>
<td>4</td>
<td>if set to ZERO, shall mean that the owner may read the file;</td>
</tr>
<tr>
<td></td>
<td>if set to ONE, shall mean that the owner may not read the file.</td>
</tr>
<tr>
<td>5</td>
<td>shall be set to ONE.</td>
</tr>
<tr>
<td>6</td>
<td>if set to ZERO, shall mean that the owner may execute the file;</td>
</tr>
<tr>
<td></td>
<td>if set to ONE, shall mean that the owner may not execute the file.</td>
</tr>
<tr>
<td>7</td>
<td>shall be set to ONE.</td>
</tr>
<tr>
<td>8</td>
<td>if set to ZERO, shall mean that any user who is a member of the group specified by the Group Identification field may read the file;</td>
</tr>
<tr>
<td></td>
<td>if set to ONE, shall mean that of the users who are members of the group specified by the Group Identification field, only the owner may read the file.</td>
</tr>
<tr>
<td>9</td>
<td>shall be set to ONE.</td>
</tr>
<tr>
<td>10</td>
<td>if set to ZERO shall mean that any user who is a member of the group specified by the Group Identification field may execute the file;</td>
</tr>
<tr>
<td></td>
<td>if set to ONE, shall mean that of the users who are members of the group specified by the Group Identification field, only the owner may execute the file.</td>
</tr>
<tr>
<td>11</td>
<td>shall be set to ONE.</td>
</tr>
</tbody>
</table>
This field shall be recorded according to 7.1.1.

9.5.9 Record Attributes (BP 80)
This field shall contain an 8-bit number specifying certain processing of the records in a file when they are displayed on a character-imaging device.

Number 0 shall mean that each record shall be preceded by a LINE FEED character and followed by a CARRIAGE RETURN character.

Number 1 shall mean that the first byte of a record shall be interpreted as specified in ISO 1539 for vertical spacing.

Numbers 2 shall mean that the record contains the necessary control information.

Numbers 3-255 are reserved for future standardization.

If the Record Format field contains zero then the Record Attribute field shall be ignored in interchange.

This field shall be recorded according to 7.1.1.

9.5.10 Record Length (BP 81-84)
This field shall specify a 16-bit number as follows.

If the Record Format field contains the number 0, the Record Length field shall contain zero.

If the Record Format field contains the number 1, the Record Length field shall specify the length in bytes of each record in the file.

If the Record Format field contains the number 2 or 3, the Record Length field shall specify the maximum length in bytes of a record in the file.

This field shall be recorded according to 7.2.3.

9.5.11 System identifier (BP 85-116)
This field shall specify an identification of a system which can recognize and act upon the content of the System Use fields in the Extended Attribute Record and associated Directory Record.

The characters in this field shall be a-characters or al-characters.

9.5.12 System Use (BP 117-180)
This field shall be reserved for system use. Its content is not specified by this Standard.

9.5.13 Extended Attribute Record Version (BP 181)
This field shall specify as an 8-bit number the version of the specification for the Extended Attribute Record.

1 shall indicate the structure of the present Standard.

This field shall be recorded according to 7.1.1.

9.5.14 Length of Escape Sequences (BP 182)
This field shall specify as an 8-bit number the length in bytes of the Escape Sequences field in this Extended Attribute Record.

This field shall be recorded according to 7.1.1.

9.5.15 Reserved for future standardization (BP 183-246)
This field shall be set to (00).
9.5.16 **Length of Application Use (BP 247-250)**

This field shall specify as a 16-bit number the length in bytes of the Application Use field in the Extended Attribute Record.

This field shall be recorded according to 7.2.3.

9.5.17 **Application Use (BP 251-BP(250+LEN_AU))**

This field shall be reserved for application use. Its content is not specified by this Standard.

9.5.18 **Escape Sequences (BP(251+LEN_AU)-BP(250+LEN_ESC+LEN_AU))**

This field shall be optional. If present, it shall contain escape sequences that designate the coded character set to be used to interpret the contents of the file. These escape sequences shall conform to ECMA-35, except that the ESCAPE character shall be omitted from each escape sequence.

The first or only escape sequence shall begin at the first byte of the field. Each successive escape sequence shall begin at the byte in the field immediately following the last byte of the preceding escape sequence. Any unused positions following the last escape sequence shall be set to (00).

9.6 **Consistency of File Attributes between Extended Attribute Records of a File**

The following fields of the Extended Attribute Record associated with the File Sections of a file shall contain the same values:

- Record Format field
- Record Attributes field
- Record Length field, if the records are fixed-length records (see 6.10.3).

10. **LEVELS OF INTERCHANGE**

This Standard specifies three nested levels of interchange.

10.1 **Level 1**

At Level 1 the following restrictions shall apply:

- each file shall consist of only one File Section;
- a File Name shall not contain more than 8 d-characters or 8 dl-characters;
- a File Name Extension shall not contain more than 3 d-characters or 3 dl-characters;
- a Directory Identifier shall not contain more than 8 d-characters or 8 dl-characters.

10.2 **Level 2**

At Level 2 the following restriction shall apply:

- each file shall consist of only one File Section.

10.3 **Level 3**

At Level 3 no restrictions apply.
REQUIREMENT FOR DESCRIPTION OF SYSTEMS

This Standard specifies that certain information shall be communicated between a user and an implementation (see clauses 12 and 13).

An information processing system that conforms to this Standard shall be the subject of a description which identifies the means by which the user may supply such information, or may obtain it when it is made available, as specified in this Standard.

REQUIREMENTS FOR AN ORIGINATING SYSTEM

1 General

The implementation shall be capable of recording a set of files, and all descriptors that are specified in this Standard, on a Volume Set in accordance with one of the interchange levels specified in this Standard.

2 Files

The implementation shall obtain from the data preparer the information that constitute the set of files to be recorded.

3 Descriptors

3.1 The implementation shall allow the data preparer to supply the information that is to be recorded in each of the descriptor fields below, and shall supply the information for a field if the data preparer does not supply it.

For the Primary Volume Descriptor:
- System Identifier
- Volume Identifier
- Logical Block Size
- Location of Occurrence of Type L Path Table
- Location of Optional Occurrence of Type L Path Table
- Location of Occurrence of Type M Path Table
- Location of Optional Occurrence of Type M Path Table
- Volume Set Identifier
- Publisher Identifier
- Data Preparer Identifier
- Application Identifier
- Copyright File Identifier
- Abstract File Identifier
- Bibliographic File Identifier
- Volume Creation Date and Time
- Volume Modification Date and Time
- Volume Expiration Date and Time
- Volume Effective Data and Time
- Application Use

For each Path Table Record:
- Extended Attribute Record Length
- Location of Extent
- Parent Directory Number
- Directory identifier

For each Directory Record:
- Extended Attribute Record Length
- Location of Extent
- Data Length
- Recording Date and Time
- The Existence bit of the File Flags field
- The Directory bit of the File Flags field
- The Associated File bit of the File Flags field
- The Record bit of the File Flags field
- The Protection bit of the File Flags field
- File Unit Size
- Interleave Gap Size
- Volume Sequence Number
- File Name of a File Identifier
- File Name Extension of a File Identifier
- File Version Number of a File Identifier
- System Use

12.3.2 The implementation shall allow the data preparer to supply the information that is to be recorded in the descriptor fields listed below, and shall not record the Supplementary Volume Descriptor if the data preparer does not supply the information.

For each Supplementary Volume Descriptor:
- System Identifier
- Volume Identifier
- Logical Block Size
- Location of Occurrence of Type A Path Table
- Location of Optional Occurrence of Type B Path Table
- Location of Occurrence of Type M Path Table
- Location of Optional Occurrence of Type M Path Table
- Bit 0 of the File Flags field
- Escape Sequences
- Volume Set Identifier
- Publisher Identifier
- Data Preparer Identifier
- Application Identifier
- Copyright File Identifier
- Abstract File Identifier
- Bibliographic File Identifier
- Volume Creation Date and Time
- Volume Modification Date and Time
- Volume Expiration Date and Time
- Volume Effective Date and Time
- Application Use

12.3.3 The implementation shall allow the data preparer to supply the information that is to be recorded in the descriptor fields listed below, and shall not record the Volume Partition Descriptor if the data preparer does not supply the information.

For each Volume Partition Descriptor:
- System Identifier
- Volume Partition Identifier
- Volume Partition Location
- Volume Partition Size
- System Use

12.3.4 The implementation shall allow the data preparer to supply the information that is to be recorded in the descriptor fields listed below, and shall not record the Boot Record if the data preparer does not supply the information.

For each Boot Record:
- Boot System Identifier
- Boot Identifier
- Boot System Use

12.3.5 The implementation shall allow the data preparer to supply the information that is to be recorded in the descriptor fields listed below, and need not record the Extended Attribute Record if the data preparer does not supply the information for any of the descriptor fields listed below. If the Extended Attribute Record is recorded, the implementation shall supply the information for a field if the data preparer does not supply it.

For each Extended Attribute Record:
- Owner Identification
- Group Identification
- Permissions
- File Creation Date and Time
- File Modification Date and Time
- File Expiration Date and Time
- Record Format
- Record Attributes
- Record Length
- System Identifier
- System Use
- Length of Escape Sequences
- Length of Application Use
- Application Use
- Escape Sequences

12.3.6 The implementation shall allow the data preparer to supply the information that is to be recorded on the Logical Sectors with Logical Sector Numbers 0 to 15.

13. REQUIREMENTS FOR A RECEIVING SYSTEM

13.1 General
The implementation shall be capable of reading the files and the recorded descriptors from a Volume Set that has been recorded in accordance with one of the interchange levels specified in this Standard, except Associated Files.

13.2 Files
The implementation shall make available to the user the information that constitutes the recorded files, except any Associated File.

If the implementation allows the user to specify that the information constituting a file is to be interpreted according to 6.10, the implementation shall make available to the user the length of each record in the file.

13.3 Descriptors

13.3.1 The implementation shall allow the user to supply information sufficient to enable the implementation to locate the files required by the user, and to locate the volumes on which these files are recorded.

13.3.2 The implementation shall make available to the user the information that is recorded in each of the descriptor fields listed below.
For the Primary Volume Descriptor:
- Volume Identifier
- Volume Set Identifier
- Copyright File Identifier
- Abstract File Identifier
- Bibliographic File Identifier

For each Supplementary Volume Descriptor:
- Volume Identifier
- Bit 0 of the Volume Flags field
- Escape Sequences
- Volume Set Identifier
- Copyright File Identifier
- Abstract File Identifier
- Bibliographic File Identifier

For each Path Table Record:
- Parent Directory Number
- Directory Identifier
- File Name of a File Identifier
- File Name Extension of a File Identifier
- The Directory bit of the File Flags field

13.4 Restrictions
The implementation may impose a limit on the length of a record that is to be made available to the user. The implementation is not required to make available to the user any byte beyond the first n bytes of a record, where n is the value of the imposed limit.

13.5 Levels of Implementation
This standard specifies two nested levels of implementation.

13.5.1 Level 1
At Level 1 the implementation need not make available to the user:
- the information that constitutes the files identified in a Directory Hierarchy that is identified in a Supplementary Volume Descriptor,
- the information that is recorded in the descriptor fields of a Supplementary Volume Descriptor and of the associated Path Table records, of associated directory records, and of Extended Attribute Records identified by the associated directory record.

13.5.2 Level 2
At Level 2 no such restrictions apply.

The d-characters are those which are not shaded in the above table.
<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

The a-characters are those which are not shaded in the above table.