Information Interchange on 130 mm Optical Disk Cartridges of the Write Once, Read Multiple (WORM) Type, using the Magneto-Optical Effect
Information Interchange on 130 mm Optical Disk Cartridges of the Write Once, Read Multiple (WORM) Type, using the Magneto-Optical Effect
Brief History

Technical Committee ECMA TC31 for Optical Disk Cartridges was set up in 1984. The Committee made major contributions to ISO/IEC/JTC1/SC23 for the development of 130 mm WORM Optical Disk Cartridges (ISO/IEC 9171) and of 130 mm Rewritable Optical Disk Cartridges using the Magneto-Optical effect. (ISO/IEC 10089). ECMA produced the camera-ready copies for these International Standards. In addition, ECMA published the following Standards:

ECMA-130 Data Interchange on Read-only 120 mm Optical Data Disks (CD-ROM)
ECMA-154 Data Interchange on 90 mm Optical Disk Cartridges, Read Only and Rewritable, M.O.

The former has been adopted by ISO/IEC as International Standard ISO/IEC 10149. ECMA-154 has been adopted as International Standard ISO/IEC 10090.

Whilst the optical disk cartridge according to Standard ECMA-154 contains a disk, which can be either fully pre-recorded, i.e. the data are embossed in the disk, or fully rewritable or may contain zones of either type, the present Standard ECMA-153 specifies an optical disk cartridge of a larger dimension (130 mm instead of 90 mm) which, like that of ISO/IEC 9171, is of the write-once-read-multiple type (WORM). The disk used for this purpose is that specified in ISO/IEC 10089 which is different from that specified in ISO/IEC 9171. ECMA-153 has been adopted by ISO/IEC as International Standard ISO/IEC 11560.
Table of contents

1 Scope 1
2 Conformance 1
3 References 1
4 Definitions 2
 4.1 Case 1
 4.2 Clamping zone 1
 4.3 Control track 1
 4.4 Cyclic Redundancy Check (CRC) ... 1
 4.5 Defect management 1
 4.6 Disk reference plane 1
 4.7 Entrance surface 1
 4.8 Error Correction Code (ECC) 1
 4.9 Format 2
 4.10 Hub 2
 4.11 Interleaving 2
 4.12 Kerr rotation 2
 4.13 Land and groove 2
 4.14 Mark 2
 4.15 Optical disk 2
 4.16 Optical disk cartridge (ODC) ... 2
 4.17 Polarization 2
 4.18 Pre-recorded mark 2
 4.19 Read power 2
 4.20 Recording layer 2
 4.21 Reed-Solomon code 2
 4.22 Spindle 3
 4.23 Substrate 3
 4.24 Track 3
 4.25 Track pitch 3
 4.26 Write-inhibit hole 3
 4.27 Write once optical disk 3
5 Conventions and notations 3
 5.1 Representation of numbers 3
 5.2 Names 3
6 List of acronyms 3
7 General description of the optical disk cartridge 4
8 General requirements 4
 8.1 Environments 4
 8.1.1 Testing environment 4
 8.1.2 Operating environment 4
 8.1.3 Storage environment 5
8.1.4 Transportation

9 Safety requirements

10 Dimensional and mechanical characteristics of the case
10.1 General description of the case
10.2 Case drawings
10.3 Sides, reference axes and reference planes
10.3.1 Relationship of Sides A and B
10.3.2 Reference axes and case reference planes
10.4 Materials
10.5 Mass
10.6 Overall dimensions
10.7 Location hole
10.8 Alignment hole
10.9 Surfaces on reference planes P
10.10 Insertion slots and detent features
10.11 Gripper slots
10.12 Write-inhibit holes
10.13 Media sensor holes
10.14 Head and motor window
10.15 Shutter
10.16 Slot for shutter opener
10.17 Shutter sensor notch
10.18 User label areas

11 Dimensional and physical characteristics of the disk
11.1 Dimensions of the disk
11.1.1 Outer diameter
11.1.2 Thickness
11.1.3 Clamping zone
11.1.4 Clearance zone
11.2 Mass
11.3 Moment of inertia
11.4 Imbalance
11.5 Axial deflection
11.6 Axial acceleration
11.7 Dynamic radial runout
11.8 Radial Acceleration
11.9 Tilt

12 Drop test

13 Interface between disk and drive
13.1 Clamping technique
13.2 Dimensions of the hub
13.2.1 Outer diameter of the hub
13.2.2 Height of the hub
13.2.3 Diameter of the centre hole
13.2.4 Height of the top of the centre hole at diameter D9
13.2.5 Centring length at diameter D9
13.2.6 Chamfer at diameter D9
13.2.7 Chamfer at diameter D8
13.2.8 Outer diameter of the magnetizable ring 14
13.2.9 Inner diameter of the magnetizable ring 14
13.2.10 Thickness of the magnetizable material 14
13.2.11 Position of the top of the magnetizable ring relative to the disk reference plane 14
13.3 Magnetizable material 14
13.4 Clamping force 14
13.5 Capture cylinder for the hub 14
13.6 Disk position in the operating condition 15

14 Characteristics of the substrate 30
14.1 Index of refraction 30
14.2 Thickness 30

15 Characteristics of the recording layer 30
15.1 Test Conditions 30
15.1.1 General 30
15.1.2 Read conditions 30
15.1.3 Write conditions 31
15.1.4 Erase conditions 31
15.2 Baseline reflectance 32
15.2.1 General 32
15.2.2 Actual value 32
15.2.3 Requirement 32
15.3 Magneto-optical recording in the User Zone 32
15.3.1 Resolution 32
15.3.2 Imbalance of magneto-optical signal 32
15.3.3 Figure of merit for magneto-optical signal 33
15.3.4 Narrow-band signal-to-noise ratio 33
15.3.5 Cross-talk ratio 33
15.3.6 Ease of erasure 34

16 Disk format 34
16.1 Track geometry 34
16.1.1 Track shape 34
16.1.2 Direction of rotation 34
16.1.3 Track pitch 34
16.1.4 Track number 34
16.2 Formatted Zone 34
16.3 Control Tracks 35
16.4 Control track PEP Zone 35
16.4.1 Recording in the PEP Zone 36
16.4.2 Cross-track loss 36
16.4.3 Format of the tracks of the PEP Zone 37
16.5 Control Track SFP Zones 40
16.5.1 Duplicate of the PEP information 40
16.5.2 Media information 41
16.5.3 System information 48
16.5.4 Unspecified content 48
16.6 Requirements for interchange of a User-Recorded cartridge 48
16.6.1 Requirements for reading 48
16.6.2 Requirements for writing and erasing 48

17 Track format 48

17.1 Track layout 48
17.1.1 Tracking 48
17.1.2 Characteristics of pre-recorded information 49

17.2 Sector format 51
17.2.1 Sector Mark (SM) 53
17.2.2 VFO areas 53
17.2.3 Address Mark (AM) 53
17.2.4 ID and CRC 53
17.2.5 Postamble (PA) 54
17.2.6 Offset Detection Field (ODF) 54
17.2.7 Gap 54
17.2.8 Flag 54
17.2.9 Auto Laser Power Control (ALPC) 54
17.2.10 Sync 54
17.2.11 Data field 54
17.2.12 Buffer 55

17.3 Recording code 55

17.4 Defect management 55

17.4.1 Media initialization 56
17.4.2 Write and read procedure 56
17.4.3 Layout of the User Zone 57
17.4.4 Summary of the location of the zones on the disk 61

Annex A - Optical system for measuring write, read and erase characteristics 63

Annex B - Definition of write and erase pulse width 65

Annex C - Measurement of figure of merit 67

Annex D - Values to be implemented in existing and future standards 69

Annex E - Guidelines for the use of ODCs 71

Annex F - CRC for ID fields 73

Annex G - Interleave, CRC, ECC, Resync for the Data field 75

Annex H - Sector retirement guidelines 81

Annex J - Office environment 83

Annex K - Transportation 85

Annex L - Requirements for interchange 87
1 Scope
This ECMA Standard specifies
- definitions of the essential concepts;
- the environment in which the characteristics are to be tested;
- the environments in which the cartridge are to be operated and stored;
- the mechanical, physical and dimensional characteristics of the case and of the optical disk;
- the magneto-optical characteristics and the recording characteristics for initializing the disk once, for recording the information once, for reading it many times, so as to provide physical interchangeability between data processing systems;
- the format for the physical disposition of the tracks and sectors, the error correction codes, the modulation method used for recording and the quality of the recorded signals.

2 Conformance
A 130 mm optical disk cartridge is in conformance with this ECMA Standard if it meets all the mandatory requirements specified herein.

3 References
ISO/IEC 9171-1:1990 Information technology - 130 mm optical disk cartridge, write once, for information interchange - Part 1: Unrecorded optical disk cartridge
ECMA-129 Information Technology Equipment - Safety

4 Definitions
For the purposes of this ECMA Standard, the following definitions apply.

4.1 Case
The housing for an optical disk, that protects the disk and facilitates disk interchange.

4.2 Clamping zone
The annular part of the disk within which the clamping force is applied by the clamping device.

4.3 Control track
A track containing the information on media parameters and format necessary for writing, reading and erasing the remaining tracks on the optical disk.

4.4 Cyclic Redundancy Check (CRC)
A method for detecting errors in data.

4.5 Defect management
A method for handling the defective areas on the disk.

4.6 Disk reference plane
A plane defined by the perfectly flat annular surface of an ideal spindle onto which the clamping zone of the disk is clamped, and which is normal to the axis of rotation.

4.7 Entrance surface
The surface of the disk on to which the optical beam first impinges.

4.8 Error Correction Code (ECC)
An error-detecting code designed to correct certain kinds of errors in data.
4.9 Format
The arrangement or layout of the data on the disk.

4.10 Hub
The central feature on the disk which interacts with the spindle of the disk drive to provide radial centring and the clamping force.

4.11 Interleaving
The process of allocating the physical sequence of units of data so as to render the data more immune to burst errors.

4.12 Kerr rotation
The rotation of the plane of polarization of an optical beam upon reflection from the recording layer as caused by the magneto-optical Kerr effect.

4.13 Land and groove
A trench-like feature of the disk, applied before the recording of any information, and used to define the track location. The groove is located nearer to the entrance surface than the land with which it is paired to form a track.

4.14 Mark
A feature of the recording layer which may take the form of a magnetic domain, a pit, or any other type or form that can be sensed by the optical system. The pattern of marks represents the data on the disk.

\textit{NOTE 1}

Subdivisions of a sector which are named 'mark' are not marks in the sense of this definition.

4.15 Optical disk
A disk that will accept and retain information in the form of marks in a recording layer, that can be read with an optical beam.

4.16 Optical disk cartridge (ODC)
A device consisting of a case containing an optical disk.

4.17 Polarization
The direction of polarization of an optical beam is the direction of the electric vector of the beam.

\textit{NOTE 2}

The plane of polarization is the plane containing the electric vector and the direction of propagation of the beam. The polarization is right-handed when to an observer looking in the direction of propagation of the beam the endpoint of the electric vector would appear to describe an ellipse in the clockwise sense.

4.18 Pre-recorded mark
A mark so formed as to be unalterable by magneto-optical means.

4.19 Read power
The read power is the optical power, incident at the entrance surface of the disk, used when reading.

\textit{NOTE 3}

It is specified as a maximum power that may be used without damage to the written data. Lower power may be used providing that the signal-to-noise ratio and other requirements of this ECMA Standard are met.

4.20 Recording layer
A layer of the disk on, or in, which data is written during manufacture and/or use.

4.21 Reed-Solomon code
An error detection and/or correction code which is particularly suited to the correction of errors which occur in bursts or are strongly correlated.
4.22 Spindle
The part of the disk drive which contacts the disk and/or hub.

4.23 Substrate
A transparent layer of the disk, provided for mechanical support of the recording layer, through which the optical beam accesses the recording layer.

4.24 Track
The path which is followed by the focus of the optical beam during one revolution of the disk.

4.25 Track pitch
The distance between adjacent track centrelines, measured in a radial direction.

4.26 Write-inhibit hole
A hole in the case which, when detected by the drive to be open, inhibits both write and erase operations.

4.27 Write once optical disk
An optical disk in which the data in specified areas can be written only once and read many times by an optical beam.

5 Conventions and notations

5.1 Representation of numbers
a) In each field the information is recorded so that the most significant byte (byte 0) is recorded first. Within each byte the least significant bit is numbered bit 0, the most significant bit (i.e. bit 7 in an 8-bit byte) is recorded first. This order of recording applies also to the data input of the error-correcting codes, to the cyclic redundancy code, and to their code output.

b) Unless otherwise stated, numbers are expressed in binary notation. Where hexadecimal notation is used, the hexadecimal digits are shown between parentheses.

c) Bit combinations are shown with the most significant bit to the left.

d) Negative values are expressed in TWO's complement notation.

e) The setting of bits is denoted by ZERO and ONE.

5.2 Names
The name of entities, e.g. specific tracks, fields, etc., is shown with a capital initial.

6 List of acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPC</td>
<td>Auto Laser Power Control</td>
</tr>
<tr>
<td>AM</td>
<td>Address Mark</td>
</tr>
<tr>
<td>CAV</td>
<td>Constant Angular Velocity</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>DDS</td>
<td>Disk Definition Sector</td>
</tr>
<tr>
<td>DMA</td>
<td>Defect Management Area</td>
</tr>
<tr>
<td>DMP</td>
<td>Defect Management Pointer</td>
</tr>
<tr>
<td>DMT</td>
<td>Defect Management Track</td>
</tr>
<tr>
<td>ECC</td>
<td>Error Correction Code</td>
</tr>
<tr>
<td>EDAC</td>
<td>Error Detection and Correction Code</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier</td>
</tr>
<tr>
<td>LBA</td>
<td>Logical Block Address</td>
</tr>
<tr>
<td>ODC</td>
<td>Optical Disk Cartridge</td>
</tr>
<tr>
<td>ODF</td>
<td>Offset Detection Field</td>
</tr>
<tr>
<td>PA</td>
<td>Postamble</td>
</tr>
<tr>
<td>PDL</td>
<td>Primary Defect List</td>
</tr>
<tr>
<td>PEP</td>
<td>Phase-Encoded Part of the Control Tracks</td>
</tr>
</tbody>
</table>
General description of the optical disk cartridge

The optical disk cartridge which is the subject of this ECMA Standard consists of a case containing an optical disk. An optical beam is used to write data to, or to read data from, or to erase data from, the disk using the magneto-optical Kerr effect.

The disk can be recorded either on one side or on both sides.

The disk is intended for use in a drive with optical access from one side only. To gain access to the second side of a disk recordable on both sides, the cartridge must be reversed before insertion into the drive.

Typically a disk recordable on one side consists of a transparent layer acting as a substrate with a recording layer on one side and a hub on the other. The recording layer is accessed by an optical beam through the substrate. A disk recordable on both sides consists of two disks recordable on one side assembled together with the recording layers on the inside.

Other constructions are permitted but must have the same characteristics.

8 General requirements

8.1 Environments

8.1.1 Testing environment

Unless otherwise specified, tests and measurements made on the ODC to check the requirements of this ECMA Standard shall be carried out in an environment where the air immediately surrounding the ODC is within the following conditions.

Temperature : 23 °C ± 2 °C
Relative humidity : 45 % to 55 %
Atmospheric pressure : 75 kPa to 105 kPa

Before testing, the ODC shall be conditioned in this environment for 48 h minimum. No condensation on or in the ODC shall occur.

8.1.2 Operating environment

Optical disk cartridges used for data interchange shall be operated in an environment where the air immediately surrounding the ODC is within the following conditions.

Temperature : 10 °C to 50 °C
Relative humidity : 10 % to 80 %
Wet bulb temperature : 29 °C max.
Atmospheric pressure : 75 kPa to 105 kPa
Temperature gradient : 10 °C/h max.
Relative humidity gradient : 10 %/h max.
Magnetic field : During loading and unloading of the cartridge the magnetic field strength at the recording layer shall not exceed 48 000 A/m.

No condensation on or in the ODC shall be allowed to occur.

If an ODC has been exposed during storage and/or transportation to conditions outside those specified in this clause, it shall be acclimatized in the operating environment for at least 2 h before use. In the operating environment an ODC shall be capable of withstanding a thermal shock of up to 20 °C when inserted into, or removed from, the drive.
See also annex J.

8.1.3 Storage environment
Storage environment is the ambient condition to which the ODC without any additional protective enclosure is exposed when stored.

8.1.3.1 Short-term storage
For a maximum period of 14 consecutive days the ODC shall not be exposed to environmental conditions outside those given below.

Temperature : -20 °C to 55 °C
Relative humidity : 5 % to 90 %
Wet bulb temperature : 29 °C max.
Atmospheric pressure : 75 kPa to 105 kPa
Temperature gradient : 20 °C /h max.
Relative humidity gradient : 20 % /h max.
Magnetic field : The magnetic field strength in the volume of the cartridge shall nowhere exceed 48 000 A/m

No condensation on or in the ODC shall be allowed to occur.

8.1.3.2 Long-term storage
For a storage period longer than 14 days the optical disk cartridge shall not be exposed to environmental conditions outside those given below.

Temperature : -10 °C to 50 °C
Relative humidity : 10 % to 90 %
Wet bulb temperature : 29 °C max.
Atmospheric pressure : 75 kPa to 105 kPa
Temperature gradient : 15 °C /h max.
Relative humidity gradient : 10 % /h max.
Magnetic field : The magnetic field strength in the volume of the cartridge shall nowhere exceed 48 000 A/m

No condensation on or in the ODC shall be allowed to occur.

8.1.4 Transportation
This ECMA Standard does not specify requirements for transportation; guidance is given in annex K.

9 Safety requirements
The cartridge and its components shall satisfy the safety requirements of ECMA-129, when used in its intended manner or in any foreseeable use in an information processing system.

10 Dimensional and mechanical characteristics of the case
10.1 General description of the case (see figure 2)
The case shall be a rigid, protective enclosure of rectangular shape and include a shutter which uncovers access windows upon insertion into the drive, and automatically covers them upon removal from the drive. The case shall have means for positioning and identifying the cartridge, and write-inhibit holes.
The dimensions of the inside of the case are not specified in this ECMA Standard, but are determined by the movement of the disk inside the case allowed by 13.5 and 13.6.

10.2 Case drawings
The case is represented schematically by the following drawings.
- Figure 1 shows the hub dimensions.
- Figure 2 shows a composite drawing of Side A of the case in isometric form, with the major features identified from Side A.
- Figure 3 shows the envelope of the case with respect to a location hole at the intersection of the X and Y axes and reference plane P.
- Figure 4 shows the surfaces S1, S2, S3 and S4 which establish the reference plane P.
- Figure 4a shows the details of surface S3.
- Figure 5 shows the details of the insertion slot and detent.
- Figure 6 shows the gripper slots, used for automatic handling.
- Figure 7 shows the write-inhibit holes.
- Figure 8 shows the media sensor holes.
- Figure 9 shows the shutter sensor notch.
- Figure 10 shows the head and motor window.
- Figure 11 shows the shutter opening features.
- Figure 12 shows the capture cylinder.
- Figure 13 shows the user label areas.

10.3 Sides, reference axes and reference planes

10.3.1 Relationship of Sides A and B
The features essential for physical interchangeability are represented in figure 2. When Side A of the cartridge faces upwards, Side A of the disk faces downwards. Sides A and B of the case are identical as far as the features given here are concerned. The description is given for one side only. References to Sides A and B can be changed to B or A respectively.

Only the shutter and the slot for the shutter opener, described in 10.14 and 10.15 are not identical for both sides of the case.

10.3.2 Reference axes and case reference planes
There is a reference plane P for each side of the case. Each reference plane P contains two orthogonal axes X and Y to which the dimensions of the case are referred. The intersection of the X and Y axes defines the centre of the location hole. The X axis extends through the centre of the alignment hole.

10.4 Materials
The case shall be constructed from any suitable materials such that it meets the requirements of this ECMA Standard.

10.5 Mass
The mass of the case without the optical disk shall not exceed 150 g.

10.6 Overall dimensions (see figure 3)
The total length of the case shall be

\[L_1 = 153.0 \text{ mm} \pm 0.4 \text{ mm} \]

The distance from the top of the case to the reference axis X shall be

\[L_2 = 127.0 \text{ mm} \pm 0.3 \text{ mm} \]

The distance from the bottom of the case to the reference axis X shall be

\[L_3 = 26.0 \text{ mm} \pm 0.3 \text{ mm} \]

The total width of the case shall be

\[L_4 = 135.0 \text{ mm} \pm 0.0 \text{ mm} \pm 0.6 \text{ mm} \]
The distance from the left-hand side of the cartridge to the reference axis Y shall be

\[L_5 = 128,5 \text{ mm} \pm 0,0 \text{ mm} \]

The distance from the right-hand side of the cartridge to the reference axis Y shall be

\[L_6 = 6,5 \text{ mm} \pm 0,2 \text{ mm} \]

The width shall be reduced on the top by the radius

\[R_1 = L_4 \]

originating from a point defined by \(L_5 \) and

\[L_7 = 101,0 \text{ mm} \pm 0,3 \text{ mm} \]

The two corners of the top shall be rounded with a radius

\[R_2 = 1,5 \text{ mm} \pm 0,5 \text{ mm} \]

and the two corners at the bottom with a radius

\[R_3 = 3,0 \text{ mm} \pm 1,0 \text{ mm} \]

The thickness of the case shall be

\[L_8 = 11,00 \text{ mm} \pm 0,30 \text{ mm} \]

The eight long edges of the case shall be rounded with a radius

\[R_4 = 1,0 \text{ mm} \text{ max.} \]

10.7 Location hole (see figure 3)
The centre of the location hole shall coincide with the intersection of the reference axes X and Y. It shall have a square form with a side length of

\[L_9 = 4,10 \text{ mm} \pm 0,00 \text{ mm} \]

held to a depth of

\[L_{10} = 1,5 \text{ mm} \text{ (i.e. typical wall thickness)} \]

after which a cavity extends through to the alignment hole on the opposite side of the case.

The lead-in edges shall be rounded with a radius

\[R_5 = 0,5 \text{ mm max.} \]

10.8 Alignment hole (see figure 3)
The centre of the alignment hole shall lie on reference axis X at a distance of

\[L_{11} = 122,0 \text{ mm} \pm 0,2 \text{ mm} \]

from the reference axis Y.

The dimensions of the hole shall be

\[L_{12} = 4,10 \text{ mm} \pm 0,00 \text{ mm} \]

and

\[L_{13} = 5,0 \text{ mm} \pm 0,2 \text{ mm} \]

held to a depth of \(L_{10} \), after which a cavity extends through to the location hole on the opposite side of the case.

The lead-in edges shall be rounded with radius \(R_5 \).
10.9 Surfaces on reference planes P (see figures 4 and 4a)
The reference plane P for a side of the case shall contain four surfaces (S₁, S₂, S₃ and S₄) on that side of the case, specified as follows:

- Two circular surfaces S₁ and S₂.

Surface S₁ shall be a circular area centred around the square location hole and have a diameter of

\[D₁ = 9,0 \text{ mm min.} \]

Surface S₂ shall be a circular area centred around the rectangular alignment hole and have a diameter of

\[D₂ = 9,0 \text{ mm min.} \]

- Two elongated surfaces S₃ and S₄, that follow the contour of the cartridge and shutter edges.

Surfaces S₃ and S₄ are shaped symmetrically.

Surface S₃ shall be defined by two circular sections with radii

\[R₆ = 1,5 \text{ mm } ± 0,1 \text{ mm} \]

with an origin given by

\[
L₁₄ = 4,0 \text{ mm } ± 0,1 \text{ mm} \\
L₁₅ = 86,0 \text{ mm } ± 0,3 \text{ mm}
\]

and

\[R₇ = 1,5 \text{ mm } ± 0,1 \text{ mm} \]

with an origin given by

\[
L₁₆ = 1,9 \text{ mm } ± 0,1 \text{ mm} \\
L₁₇ = 124,5 \text{ mm } ± 0,3 \text{ mm}
\]

The arc with radius \(R₇ \) shall continue on the right hand side with radius

\[R₈ = 134,0 \text{ mm } ± 0,2 \text{ mm} \]

\[R₈ = 134,0 \text{ mm } ± 0,2 \text{ mm} \]

which is a dimension resulting from \(L₅ + L₁₄ + R₆ \) with an origin given by \(L₅ \) and \(L₇ \). A straight, vertical line shall smoothly join the arc of \(R₆ \) to the arc of \(R₈ \).

The left-hand side of \(S₃ \) shall be bounded by radius

\[R₉ = 4,5 \text{ mm } ± 0,3 \text{ mm} \]

which is a dimension resulting from \(L₁₈ + L₁₄ + R₆ \) with an origin given by

\[
L₁₈ = 2,0 \text{ mm } ± 0,1 \text{ mm} \\
L₁₉ = 115,5 \text{ mm } ± 0,3 \text{ mm}
\]

The left-hand side of the boundary shall be closed by two straight lines. The first one shall smoothly join the arc of \(R₆ \) to the arc of \(R₉ \). The second one shall run from the left hand tangent of \(R₇ \) to its intersection with \(R₉ \). Along the left hand side of surface \(S₃ \) there shall be a zone to protect \(S₃ \) from being damaged by the shutter. In order to keep this zone at a minimum practical width

\[R₁₀ = 4,1 \text{ mm max.} \]

This radius originates from the same point as \(R₉ \).

10.10 Insertion slots and detent features (see figure 5)
The case shall have two symmetrical insertion slots with embedded detent features. The slots shall have a length of

\[L₂₀ = 26,0 \text{ mm } ± 0,3 \text{ mm} \]

a width of
\[L_{21} = 6.0 \text{ mm} \pm 0.3 \text{ mm} \]

and a depth of
\[L_{22} = 3.0 \text{ mm} \pm 0.1 \text{ mm} \]

located
\[L_{23} = 2.5 \text{ mm} \pm 0.2 \text{ mm} \]

from reference plane P.

The slots shall have a lead-in chamfer given by
\[L_{24} = 0.5 \text{ mm max.} \]
\[L_{25} = 5.0 \text{ mm max.} \]

The detent notch shall be a semi-circle of radius
\[R_{11} = 3.0 \text{ mm} \pm 0.2 \text{ mm} \]

with the origin given by
\[L_{26} = 13.0 \text{ mm} \pm 0.3 \text{ mm} \]
\[L_{27} = 2.0 \text{ mm} \pm 0.1 \text{ mm} \]

10.11 **Gripper slots (see figure 6)**

The case shall have two symmetrical gripper slots with a depth of
\[L_{28} = 5.0 \text{ mm} \pm 0.3 \text{ mm} \]

from the edge of the case and a width of
\[L_{29} = 6.0 \text{ mm} \pm 0.3 \text{ mm} \]

The upper edge of a slot shall be
\[L_{30} = 12.0 \text{ mm} \pm 0.3 \text{ mm} \]

above the bottom of the case.

10.12 **Write-inhibit holes (see figure 7)**

Sides A and B shall each have a write-inhibit hole. The case shall include a device for opening and closing each hole. The hole at the left-hand side of Side A of the case, is the write-inhibit hole for Side A of the disk. The protected side of the disk shall be made clear by inscriptions on the case or by the fact that the device for Side A of the disk can only be operated from Side A of the case.

When writing on Side A of the disk is not allowed, the write-inhibit hole shall be open all through the case. It shall have a diameter
\[D_3 = 4.0 \text{ mm min.} \]

Its centre shall be specified by
\[L_{31} = 8.0 \text{ mm} \pm 0.2 \text{ mm} \]
\[L_{32} = 111.0 \text{ mm} \pm 0.3 \text{ mm} \]

on Side A of the case.

When writing is allowed on Side A of the disk, the write-inhibit hole shall be closed on Side A of the case, at a depth of typically \(L_{10} \), i.e. the wall thickness of the case. In this state, the opposite side of the same hole, at Side B of the case, shall be closed and not recessed from the reference plane P of Side B of the case by more than
\[L_{33} = 0.5 \text{ mm} \]

The opposite side of the write-inhibit hole for protecting Side B of the disk shall have a diameter \(D_3 \). Its centre shall be specified by \(L_{31} \) and
\[L_{34} = 11.0 \text{ mm} \pm 0.2 \text{ mm} \]

on Side A of the case.

10.13 Media sensor holes (see figure 8)

There shall be two sets of four media sensor holes. The set of holes at the lower left hand corner of Side A of the case pertains to Side A of the disk. The holes shall extend through the case, and have a diameter of

\[D_4 = 4.0 \text{ mm} \pm 0.3 \text{ mm} \]

the positions of their centres shall be specified by \(L_{32} \), \(L_{34} \) and

\[L_{35} = 19.5 \text{ mm} \pm 0.2 \text{ mm} \]
\[L_{36} = 17.0 \text{ mm} \pm 0.2 \text{ mm} \]
\[L_{37} = 23.0 \text{ mm} \pm 0.2 \text{ mm} \]
\[L_{38} = 29.0 \text{ mm} \pm 0.2 \text{ mm} \]
\[L_{39} = 93.0 \text{ mm} \pm 0.3 \text{ mm} \]
\[L_{40} = 99.0 \text{ mm} \pm 0.3 \text{ mm} \]
\[L_{41} = 105.0 \text{ mm} \pm 0.3 \text{ mm} \]

A hole is deemed to be open when there is no obstruction in this hole over a diameter \(D_4 \) all through the case.

A hole for Side A of the disk is deemed to be closed, when the hole is closed on both Side A and Side B of the case. The closure shall be recessed from reference plane \(P \) by

\[L_{42} = 0.1 \text{ mm max.} \]

The holes are numbered consecutively from No. 1 to No. 4. Number 1 is the hole closest to the left hand edge of the case. The optical disk cartridge according to this ECMA Standard uses only hole No. 2. The other three holes shall be in the closed state. The function of hole No. 2 is to indicate whether the cartridge as loaded in the drive can be operated. When the hole is closed the cartridge is operable, when it is open the cartridge is not operable.

10.14 Head and motor window (see figure 10)

The case shall have a window on each side to enable the optical head and the motor to access the disk. The dimensions are referenced to a centreline, located at a distance of

\[L_{46} = 61.0 \text{ mm} \pm 0.2 \text{ mm} \]

to the left of reference axis \(Y \).

The width of the head access shall be

\[L_{47} = 20.00 \text{ mm min.} \]
\[L_{48} = 20.00 \text{ mm min.} \]

and its height shall extend from

\[L_{49} = 118.2 \text{ mm min. to} \]
\[L_{50} = 57.0 \text{ mm max.} \]

The four inside corners shall be rounded with a radius of

\[R_{12} = 3.0 \text{ mm max.} \]

The motor access has a diameter of

\[D_5 = 35.0 \text{ mm min.} \]

and its centre shall be defined by \(L_{46} \) and

\[L_{51} = 43.0 \text{ mm} \pm 0.2 \text{ mm} \]
10.15 Shutter (see figure 11)
The case shall have a spring-loaded, unidirectional shutter with an optional latch, designed to completely cover the head and motor windows when closed. A shutter movement of 41.5 mm minimum shall be sufficient to ensure that the head and motor window is opened to the minimum size specified in 10.14. The shutter shall be free to slide in a recessed area of the case in such a way as to ensure that the overall thickness shall not exceed L_8. The spring shall be sufficiently strong to close a free-sliding shutter, irrespective of the orientation of the cartridge.

The shutter opening force shall be 3 N max.

The right-hand side of the top of the shutter shall have a lead-in ramp with an angle

\[A_2 = 25^\circ \text{ max.} \]

The distance from the reference planes P to the nearest side of the ramp shall be

\[L_{52} = 3.0 \text{ mm max.} \]

10.16 Slot for shutter opener (see figure 11)
The shutter shall have only one slot in which the shutter opener of the drive can engage to open the shutter. The slot shall be dimensioned as follows:

When the shutter is closed, the vertical edge used to push the shutter open shall be located at a distance of

\[L_{53} = 34.5 \text{ mm } \pm 0.5 \text{ mm} \]

from reference axis Y on Side B of the case.

The length of the slot shall be

\[L_{54} = 4.5 \text{ mm } \pm 0.1 \text{ mm} \]

and the angle of the lead-out ramp shall be

\[A_3 = 52.5^\circ \pm 7.5^\circ. \]

The depth of the slot shall be

\[L_{55} = 3.5 \text{ mm } \pm 0.1 \text{ mm} \]

The width of the slot from the reference plane P of Side B of the case shall be

\[L_{46} = 6.0 \text{ mm } +0.5 \text{ mm} -0.0 \text{ mm} \]

If a shutter latch is employed, the distance between the latch and reference plane P of Side B of the case shall be

\[L_{57} = 3.0 \text{ mm max.} \]

10.17 Shutter sensor notch (see figure 9)
The shutter sensor notch is used to ensure that the shutter is fully open after insertion of the optical disk cartridge into the drive. Therefore, the notch shall be exposed only when the shutter is fully open.

The dimensions shall be

\[L_{43} = 3.5 \text{ mm } \pm 0.2 \text{ mm} \]

\[L_{44} = 71.0 \text{ mm } \pm 0.3 \text{ mm and} \]

\[L_{45} = 9.0 \text{ mm } +0.0 \text{ mm} -2.0 \text{ mm} \]

The notch shall have a lead-out ramp with an angle

\[A_1 = 45^\circ \pm 2^\circ \]

10.18 User label areas (see figure 13)
The case shall have the following minimum areas for user labels:

- on Side A and Side B: 35.0 mm \times 65.0 mm
- on the bottom side: 6.0 mm × 98.0 mm

These areas shall be recessed by 0.2 mm min. Their positions are specified by the following dimensions and relations between dimensions (see figure 13).

\[
\begin{align*}
L_{61} & = 4.5 \text{ mm min.} \\
L_{62} - L_{61} & = 65.0 \text{ mm min.} \\
L_{64} - L_{63} & = 35.0 \text{ mm min.} \\
L_{65} & = 4.5 \text{ mm min.} \\
L_{66} - L_{65} & = 65.0 \text{ mm min.} \\
L_{67} + L_{68} & = 35.0 \text{ mm min.} \\
L_{7} - L_{71} - L_{72} & = 6.0 \text{ mm min.} \\
L_{4} - L_{69} - L_{70} & = 98.0 \text{ mm min.}
\end{align*}
\]

11 Dimensional and physical characteristics of the disk

11.1 Dimensions of the disk

11.1.1 Outer diameter

The outer diameter of the disk shall be 130,0 mm nominal. The tolerance is determined by the movement of the disk inside the case allowed by 13.5 and 13.6.

11.1.2 Thickness

The total thickness of the disk outside the hub area shall be 3,20 mm max.

11.1.3 Clamping zone (see figure 1)

The outer diameter of the zone shall be

\[D_{6} = 35.0 \text{ mm min.} \]

The inner diameter of the zone shall be

\[D_{7} = 27.0 \text{ mm max.} \]

11.1.4 Clearance zone

Within the zone defined by the outer diameter of the clamping zone \((D_{6})\) and the inner diameter of the reflective zone (see 16.2) there shall be no projection from the disk reference plane in the direction of the optical system of more than 0,2 mm.

11.2 Mass

The mass of the disk shall not exceed 120 g.

11.3 Moment of Inertia

The moment of inertia of the disk shall not exceed 0,22 g m².

11.4 Imbalance

The imbalance of the disk shall not exceed 0,01 g m.

11.5 Axial deflection

The deviation of any point of the recording layer from its nominal position, in a direction normal to the disk reference plane, shall not exceed ± 0,30 mm for rotational frequencies of the disk up to 30 Hz. The deviation shall be measured by the optical system defined in 15.1.1 and 15.1.2

The nominal position of the recording layer with respect to the disk reference plane is determined by the nominal thickness of the substrate and its index of refraction.
11.6 Axial acceleration
The acceleration of the recording layer along any fixed line normal to the disk reference plane shall not exceed 20 m/s² in a bandwidth from 30 Hz to 1.5 kHz for a rotational frequency of the disk of 30.0 Hz ± 0.3 Hz. The acceleration shall be measured by the optical system defined in 15.1.1 and 15.1.2.

11.7 Dynamic radial runout
The difference between the maximum and the minimum distance of any track from the axis of rotation, measured along a fixed radial line over one revolution of the disk, shall not exceed 50 μm, as measured by the optical system, for rotational frequencies of the disk up to 30 Hz.

11.8 Radial Acceleration
The acceleration of any track along a fixed radial line shall not exceed 6 m/s² in a bandwidth from 30 Hz to 1.5 kHz, as measured by the optical system, at a rotational frequency of the disk of 30.0 Hz ± 0.3 Hz.

11.9 Tilt
The tilt angle, defined as the angle which the normal to the entrance surface, averaged over a circular area of 1 mm diameter, makes with the normal to the disk reference plane, shall not exceed 5 mrad in the operating environment.

12 Drop test
The optical disk cartridge shall withstand dropping on each surface and on each corner from a height of 760 mm on to a concrete floor covered with a vinyl layer 2 mm thick. The cartridge shall withstand all such impacts without any functional failure.

13 Interface between disk and drive

13.1 Clamping technique
Radial positioning of the optical disk shall be provided by the centring of the axle of the spindle in the centre hole of the hub.

The turntable of the drive spindle shall support the disk in the clamping zone, determining the axial position of the disk in the case.

A clamping force shall be provided by the attraction between magnets in the spindle and a magnetizable ring in the hub.

13.2 Dimensions of the hub (see figure 1)

13.2.1 Outer diameter of the hub
This diameter shall be

\[D_8 = 25.0 \text{ mm} \pm 0.0 \text{ mm} \]

13.2.2 Height of the hub
This height shall be

[\[h_1 = 2.2 \text{ mm} \pm 0.2 \text{ mm} \]

13.2.3 Diameter of the centre hole
The diameter of the centre hole shall be

\[D_9 = 4.004 \text{ mm} \pm 0.012 \text{ mm} \]

13.2.4 Height of the top of the centre hole at diameter \(D_9 \)
The height of the top of the centre hole at diameter \(D_9 \), measured above the disk reference plane, shall be

[\[h_2 = 2.0 \text{ mm} \text{ min.} \]

}
13.2.5 Centring length at diameter D_9
This length shall be

$$h_3 = 0.5 \text{ mm min.}$$

The hole shall have a diameter larger than, or equal to, D_9 between the centring length and the disk reference plane. The hole shall extend through the substrate.

13.2.6 Chamfer at diameter D_9
The height of the outer chamfer of the centre hole of the hub shall be

$$h_4 = 0.2 \text{ mm max.}$$

The angle of the chamfer shall be 45°, or a corresponding full radius shall be used.

13.2.7 Chamfer at diameter D_8
The height of the chamfer at the rim of the hub shall be

$$h_5 = 0.2 \text{ mm} + 0.2 - 0.0 \text{ mm}$$

The angle of the chamfer shall be 45°, or a corresponding full radius shall be used.

13.2.8 Outer diameter of the magnetizable ring
This diameter shall be

$$D_{10} = 19.0 \text{ mm min.}$$

13.2.9 Inner diameter of the magnetizable ring
This diameter shall be

$$D_{11} = 8.0 \text{ mm max.}$$

13.2.10 Thickness of the magnetizable material
This thickness shall be

$$h_6 = 0.5 \text{ mm min.}$$

13.2.11 Position of the top of the magnetizable ring relative to the disk reference plane
This position shall be

$$h_7 = 2.2 \text{ mm} + 0.0 - 0.1 \text{ mm}$$

13.3 Magnetizable material
The magnetizable material shall be ferritic stainless steel (ISO 683-13, Type 8) or any suitable material with similar magnetic characteristics.

13.4 Clamping force
The clamping force exerted by the spindle shall be less than 14 N.

13.5 Capture cylinder for the hub (see figure 12)
The capture cylinder is defined as the volume in which the spindle can expect the centre of the hole of the hub to be at the maximum height of the hub, just prior to capture. The size of the cylinder limits the allowable play of the disk inside its cavity in the case. This cylinder is referred to perfectly located and perfectly sized alignment and location pins in the drive, and includes tolerances of dimensions of the case and the disk between the two pins mentioned and the centre of the hub. The bottom of the cylinder is parallel to the reference plane P, and shall be located at a distance of

$$L_{38} = 0.5 \text{ mm min.}$$

above the reference plane P of Side B of the case when Side A of the disk is to be used. The top of the cylinder shall be located at a distance of
$L_{39} = 4.3$ mm max.

above the same reference plane. The diameter of the cylinder shall be

$D_{12} = 3.0$ mm max.

Its centre shall be defined by the nominal values of L_{46} and L_{51}.

13.6 Disk position in the operating condition (see figure 12)

When the disk is in the operating condition within the drive, the position of the active recording layer shall be

$L_{60} = 5.35$ mm ± 0.15 mm

above reference plane P of that side of the case that faces the optical system. Moreover, the torque to be exerted on the disk in order to maintain a rotational frequency of 30 Hz shall not exceed 0.01 N-m, when the axis of rotation is within a circle with a diameter of

$D_{13} = 0.2$ mm max.

and a centre given by the nominal values of L_{46} and L_{51}.
Figure 1 - Hub dimensions
Figure 2 - Case

- Surface S4 (figure 4)
- User label area (figure 13)
- Disk Side B (figure 1)
- Alignment hole (figure 3)
- Write-inhibit hole for Side A (figure 7)
- Grip slot
- Slot for shutter opener (figure 11)
- Shutter sensor notch (figure 9)
- Insertion direction
- Insertion slot and detent (figure 5)
- Case Side A
- Surface S3 (figures 4 and 4a)
- Head window (figure 10)
- Motor window (figure 10)
- Location hole (figure 3)
- Surface S1 (figure 4)
- Write-inhibit hole for Side B (figure 7)
- Grip slot (figure 6)
- Media sensor holes for Side A (figure 8)
- Media sensor holes for Side B (figure 8)
Figure 3 - Overall dimensions and reference axes
Figure 4 - Surfaces S1, S2, S3 and S4 of the reference plane P
Figure 5 - Insertion slot and detent
Figure 7 - Write-inhibit holes
Figure 8 - Media sensor holes
Figure 9 - Shutter sensor notch viewed from Side A
Figure 11 - Shutter opening feature
Figure 12 - Capture cylinder for the hub
14 Characteristics of the substrate

14.1 Index of refraction
Within the Formatted Zone (see 16.2) the index of refraction of the substrate shall be within the range from 1.46 to 1.60.

14.2 Thickness
The thickness of the substrate within the Formatted Zone shall be

$$0.5093 \frac{n^3}{n^2 - 1} \times \frac{n^2 + 0.2650}{n^2 + 0.5929} \text{ mm ± 0.05 mm}$$

where n is the index of refraction.

15 Characteristics of the recording layer
The requirements of this clause shall be met for the linear polarization of the optical beam, both when parallel and when perpendicular to the tracks. Unless otherwise stated, all tests in this clause shall be carried out under the conditions of 15.1.1, and 15.1.2, 15.1.3, 15.1.4, as appropriate.

15.1 Test Conditions

15.1.1 General

a) Environment: Test environment

b) Wavelength (λ): $825 \text{ nm}^{+15}_{-10}$

c) Wavelength (λ) divided by the numerical aperture (NA) of the objective lens: $\lambda/\text{NA} = 1.56 \text{ µm} \pm 0.04 \text{ µm}$

d) Filling of the lens aperture (D/W) where D is the diameter of the lens aperture and W is the $1/e^2$ beam diameter of the Gaussian beam: 1.0 max.

e) Variance of the wavefront of the optical beam at the recording layer: $\lambda^2/180 \text{ max.}$

f) Detection method: see annex A

g) Extinction ratio: 0.01 max. (see annex A)

h) Rotational frequency of the disk: $30.0 \text{ Hz} \pm 0.3 \text{ Hz}$

i) Direction of rotation of the disk: Counter-clockwise when viewed from the objective lens.

15.1.2 Read conditions
Marks on the disk are read from the disk with a constant optical power.

The read power is the optical power incident at the entrance surface, used when reading, and is specified as follows for the stated zones (see 16.2):

a) PEP Zone
 The read power shall not exceed 0.5 mW.

b) SFP Zone
 The read power shall not exceed the value given in byte 6 of the PEP Zone (see 16.4.3.1.4).

c) User zone
 The read power shall not exceed the value given in byte 21 of the SFP Zone (see 16.5.2).
15.1.3 Write conditions
Marks are written on to the disk by pulses of optical power superimposed upon a specified bias power 1.5 mW ± 10% (see annex B).

The pulse shape shall be as specified in annex B.

The write power is the optical power incident at the entrance surface, used when writing in the user zone.

Testing shall be carried out at either

- a constant pulse width and a write power appropriate to the radius, as given in bytes 22 to 24 or 25 to 27 of the SFP Zone (see 16.5.2), or
- a constant write power given in byte 31 and a pulse width appropriate to the radius, as given in bytes 32 to 34 of the SFP Zone (see 16.5.2).

For radii other than 30 mm, 45 mm or 60 mm the values shall be linearly interpolated from the above.

In all cases the actual power and pulse width used shall be within 5 % of those selected.

The required power shall not exceed

\[
75 \left(\frac{1}{T_p} + \frac{1}{\sqrt{T_p}} \right) \text{ mW}
\]

b) for a pulse width exceeding 70 ns: 10 mW.

The requirements for all tests shall be met for all magnetic field intensities, at the recording layer during writing, in the range from 18 000 A/m to 32 000 A/m.

The write magnetic field shall be normal to the recording surface. The direction of the write magnetic field shall be from the entrance surface to the recording layer.

15.1.4 Erase conditions
The erase power is the optical power required for any given track at the entrance surface to erase marks written according to 15.1.3 to a specified level (see 15.3.6).

The actual erase power shall be within 10% of that specified in the control tracks.

Testing shall be carried out at either

- a d.c. power given in bytes 45 to 47 of the SFP Zone (see 16.5.2),
- or a constant pulse width and an erase power appropriate to the radius, as given in bytes 35 to 37 or 38 to 40 of the SFP Zone (see 16.5.2),
- or a constant erase power given in byte 44 and a pulse width appropriate to the radius, as given in bytes 45 to 47 of the SFP Zone (see 16.5.2).

When d.c. erasing is used the required power shall not exceed

10 mW.

When pulse erasing is used

a) for a pulse width \(T_p \) between 10 ns and 70 ns, the required power shall not exceed

\[
75 \left(\frac{1}{T_p} + \frac{1}{\sqrt{T_p}} \right) \text{ mW}
\]

where \(T_p \) is the pulse width in nanoseconds;

b) for a pulse width \(T_p \) exceeding 70 ns the required power shall not exceed 10 mW.
The requirements for all tests shall be met for all magnetic field intensities, at the recording layer during erasing, in the range from 18 000 A/m to 32 000 A/m.

The erase magnetic field shall be normal to the recording surface. The direction of the magnetic field shall be from the recording layer to the entrance surface.

15.2 Baseline reflectance

15.2.1 General

The baseline reflectance is the value of the reflectance of an unrecorded, ungrooved area of the disk, measured through the substrate and does not include the reflectance of the entrance surface.

The nominal value R of the baseline reflectance shall be specified by the manufacturer:

- in byte 3 of the PEP Zone (see 16.4.3.1.4), and
- in byte 19 of the SFP Zone (see 16.5.2).

15.2.2 Actual value

The actual value R_m of the baseline reflectance shall be measured under the conditions a) to e) of 15.1.1 and those of 15.1.2.

Measurements shall be made in any unrecorded, ungrooved area, e.g. in the ODF (see 17.1.1).

15.2.3 Requirement

At any point in the Formatted Zone, except in the Reflective Zone and in the Lead-out Zone the value R_m shall be within 12% of the value of R, and shall be within the range 0.10 and 0.34.

15.3 Magneto-optical recording in the User Zone

15.3.1 Resolution

I_L is the peak-to-peak value of the signal obtained in Channel 2 (annex A) from marks written under any of the conditions given in 15.1.3 and at a local repetition rate of less than 1.4 MHz, and read under the conditions specified in 15.1.2c.

I_H is the peak-to-peak value of the signal obtained in Channel 2 from marks written under any of the conditions given in 15.1.3 and at a local repetition rate of $3.7 \text{ MHz} \pm 0.1 \text{ MHz}$, and read under the condition specified in 15.1.2c.

The resolution I_H/I_L (see figure 14) shall not be less than 0.4 within any sector. It shall not vary by more than 0.2 over a track.

![Figure 14 - Definition of I_L and I_H](image)

15.3.2 Imbalance of magneto-optical signal

The imbalance of the magneto-optical signal is the ratio of the amplitude of the signal in Channel 2 over the amplitude of the signal in Channel 1 measured in the Data field of a sector. The effect of Kerr rotation shall be eliminated, e.g. by alternating the magnetized direction of the recording layer. The phase retarder in the optical system shall be in the neutral position (see annex A). Imbalance can be caused by birefringence of the disk.

The imbalance shall not exceed 0.06 in the User Zone, throughout the environmental operating range and in a bandwidth from DC to 50 kHz.
15.3.3 Figure of merit for magneto-optical signal

The figure of merit \(F \) is expressed as the product of \(R \), \(\sin \theta \) and \(\cos 2\theta \), where \(R \) is the reflectance expressed as a decimal fraction, \(\theta \) is the Kerr rotation and \(\beta \) is the ellipticity of the reflected beam. The polarity of the figure of merit is defined to be negative for a written mark in an Fe-rich Fe-Tb alloy layer and with the write magnetic field in the direction specified in 15.1.3. In this case the direction of Kerr rotation is counterclockwise as viewed from the source of the beam.

The polarity and the value of the figure of merit shall be specified in bytes 364 and 365 of the SFP Zone (see 16.5.2). This nominal value shall be

\[0,001 \leq |F| \leq 0,005 \]

The measurement of the actual value \(F_m \) shall be made according to annex C. This actual value \(F_m \) shall be within 12\% of the nominal value.

15.3.4 Narrow-band signal-to-noise ratio

Write a track in the User Zone under the conditions given in 15.1.3 and at a frequency \(f_0 \) of 3,7 MHz ± 0,1 MHz. Read the Data fields in Channel 2 under the condition specified in 15.1.2 using a spectrum analyzer with a centre frequency \(f_0 \) and a bandwidth of 30 kHz. Measure the amplitudes of the signal and the noise at \(f_0 \) (see figure 15). The narrow-band signal-to-noise ratio is

\[20 \log_{10} \frac{\text{signal level}}{\text{noise level}} \]

This ratio shall be greater than 45 dB for all tracks in the User Zone and for all phase differences between -15° and +15° in the optical system as defined in annex A.

NOTE 4

It is permitted to use a spectrum analyzer with a bandwidth of 3 kHz and to convert the measured value to that for a 30 kHz value.

![Figure 15 - Amplitude versus frequency for the magneto-optical signal](image)

15.3.5 Cross-talk ratio

The test shall be carried out on any group of five adjacent unrecorded tracks in the User Zone.

Write on the centre track \(n \) under the conditions given in 15.3.4. Read tracks \((n-1) \), \(n \) and \((n+1) \) under the conditions specified in 15.1.2 c). The cross-talk ratio is
\[20 \log_{10} \left(\frac{\text{signal level of track } n+1}{\text{signal level of track } n} \right) \quad \text{and} \quad 20 \log_{10} \left(\frac{\text{signal level of track } n-1}{\text{signal level of track } n} \right) \]

It shall be lower than -26 dB for a track pitch of 1,6 µm (byte 0, bit 7 set to ZERO (see 16.4.3.1.4)).

15.3.6 Ease of erasure

Procedure

a) Write any track in the User Zone under the conditions given in 15.1.3 and at a frequency \(f_0 \) of 3,7 MHz ± 0,1 MHz.

b) Read under the condition specified in 15.1.2, using the spectrum analyzer with a centre frequency \(f_0 \) and a bandwidth of 30 kHz. Note the amplitude of the written marks.

c) Erase under the conditions of 15.1.4.

d) Repeat a) and c) 1 000 times.

e) Repeat a).

f) Repeat b); note the signal level of the written marks and of the noise at \(f_0 \) (see figure 15).

g) Repeat c); note the residual signal level of the written marks at \(f_0 \).

Requirements

The narrow-band signal-to-noise ratio, calculated from the readings in f), shall be greater than 45 dB.

The residual signal in g) shall be less than -40 dB relative to the signal level of the written marks in b).

16 Disk format

16.1 Track geometry

16.1.1 Track shape

Each track shall form a 360° turn of a continuous spiral.

16.1.2 Direction of rotation

The disk shall rotate counter-clockwise as viewed by the objective lens. The tracks shall spiral outwards.

16.1.3 Track pitch

Except in the Control Track PEP Zone, the track pitch shall be 1,60 µm ± 0,10 µm.

16.1.4 Track number

Each track shall be identified by a track number.

Track 0 shall be located at radius 30,00 mm ± 0,10 mm.

The track numbers of tracks located at radii larger than that of track 0 shall be increased by 1 for each track.

The track numbers of tracks located at radii smaller than that of track 0 shall be negative and decrease by 1 for each track. Track -1 is indicated by (FF)(FF).

16.2 Formatted Zone

The Formatted Zone shall extend from radius 27,00 mm to radius 61,00 mm and shall be divided as follows. Dimensions are given as reference only, and are nominal locations.

- Reflective Zone 27,00 mm to 29,00 mm
- Control Track PEP Zone 29,00 mm to 29,50 mm
- Transition Zone For SFP 29,50 mm to 29,52 mm
- Inner Control Track SFP Zone 29,52 mm to 29,70 mm
- Inner Manufacturer Zone 29,70 mm to 30,00 mm
- Guard Band 29.70 mm to 29.80 mm
- Manufacturer Test Zone 29.80 mm to 29.90 mm
- Guard Band 29.90 mm to 30.00 mm
- User Zone 30.00 mm to 60.00 mm
- Outer Manufacturer Zone 60.00 mm to 60.15 mm
- Outer Control Track SFP Zone 60.15 mm to 60.50 mm
- Lead-Out Zone 60.50 mm to 61.00 mm

This ECMA Standard does not specify the format of the Reflective Zone, except that it shall have the same recording layer as the remainder of the Formatted Zone.

The Transition Zone For SFP is an area in which the format changes from the Control Track PEP Zone without servo information to a zone including servo information.

The Inner Manufacturer Zone is provided to allow the media manufacturer to perform tests on the disk, including write operations, in an area located away from recorded information. In this zone, the information in the tracks from track-1 to track-8 is not specified by this ECMA Standard and shall be ignored in interchange, except that when using Format B track -2 is used for defect management.

The purpose of the Guard Bands is to protect and buffer the areas that contain information from accidental damage when the area between the Guard Bands is used for testing or calibration of the optical system.

The User Zone shall start with track 0 and end with track N.

The Outer Manufacturer Zone shall comprise 95 tracks and shall begin one track after the last user track (track N, see bytes 384, 385 of the SFP Zone). The information in the tracks from track (N+1) to track (N+8) is not specified by this ECMA Standard and shall be ignored in interchange. Tracks (N+9) to (N+95) are reserved for testing by the manufacturer.

The Outer Control Track SFP Zone shall begin at track N+96 (see bytes 8, 9 in the PEP Zone) and shall continue up to radius 60,50 mm.

The Lead-Out Zone shall be used positioning purposes only.

From radius 29,52 mm to radius 61,00 mm the Formatted Zone shall be provided with tracks containing servo and address information.

16.3 Control Tracks

The three zones
- Control Track PEP Zone
- Inner Control Track SFP Zone
- Outer Control Track SFP Zone

shall be used for recording control track information.

The control track information shall be recorded in two different formats, the first format in the Control Track PEP Zone, and the second in the Inner and Outer Control Track SFP Zones.

The Control Track PEP Zone shall be recorded using low frequency phase-encoded modulation.

The Inner and Outer Control Track SFP Zones shall each consist of a band of tracks recorded by the same modulation method and format as is used in the User Zone.

16.4 Control track PEP Zone

This zone shall not contain any servo information. All information in it shall be pre-recorded in phase-encoded modulation. The marks in all tracks of the PEP Zone shall be radially aligned, so as to allow information recovery from this zone without radial tracking being established by the drive.
16.4.1 Recording in the PEP Zone

In the PEP Zone there shall be 561 to 567 PEP bit cells per revolution. A PEP bit cell shall be 656 ± 1 Channel bits long. A PEP bit is recorded by writing marks in either the first or the second half of the cell.

A mark shall be nominally two Channel bits long and shall be separated from adjacent marks by a space of nominally two Channel bits.

A ZERO shall be represented by a change from marks to no marks at the centre of the cell and a ONE by a change from no marks to marks at this centre.

![Diagram showing PEP bit cell with a recorded ZERO and a recorded ONE.](image)

Figure 16 - Example of phase-encoded modulation in the PEP Zone

16.4.2 Cross-track loss

The density of tracks and the shape of marks in the PEP Zone shall be such that the cross-track loss meets the requirement

\[
\frac{I_{m \text{ max}}}{I_{m \text{ min}}} < 2.0
\]

The signal \(I \) is obtained from Channel 1 (see annex A). The signal \(I_{m} \) is the maximum amplitude in a group of three successive marks. \(I_{m \text{ max}} \) is the maximum value and \(I_{m \text{ min}} \) is the minimum value of \(I_{m} \) obtained over one revolution. \(I_{m \text{ max}} \) shall be greater than 0.4 \(I_{0} \), where \(I_{0} \) is the signal obtained from Channel 1 in an ungrooved area. The effect of defects shall be ignored.
Figure 17 - Path of the laser beam when crossing tracks and the resulting PEP signals

16.4.3 Format of the tracks of the PEP Zone

Each track in the PEP Zone shall have three sectors as shown in figure 18. The numbers below the fields indicate the number of PEP bits in each field.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Gap</th>
<th>Sector</th>
<th>Gap</th>
<th>Sector</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td>177</td>
<td></td>
</tr>
</tbody>
</table>

Figure 18 - Track format in the PEP Zone
The gaps between sectors shall be unrecorded areas having a length corresponding to 10 to 12 PEP bits.

16.4.3.1 Format of a sector
Each sector of 177 PEP bits shall have the following layout.

<table>
<thead>
<tr>
<th>One sector (177 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Figure 19 - Sector format in the PEP Zone

16.4.3.1.1 Preamble field
This field shall consist of 16 ZERO bits.

16.4.3.1.2 Sync field
This field shall consist of 1 ONE bit.

16.4.3.1.3 Sector number field
This field shall consist of eight bits specifying in binary notation the sector number from 0 to 2.
16.4.3.1.4 Data field

This field shall comprise 18 8-bit bytes numbered 0 to 17. These bytes shall specify the following.

Byte 0

bit 7 shall be set to ZERO indicating the continuous composite servo tracking method,

bits 6 to 4 shall be set to 000 indicating a constant angular velocity (CAV).

Other settings of these bits are prohibited by this ECMA Standard (see also annex D).

bit 3 shall be set to ZERO

bits 2 to 0 shall be set to 000 indicating RLL (2,7) mark position modulation,

Other settings of these bits are prohibited by this ECMA Standard.

Byte 1

bit 7 shall be set to ZERO

bits 6 to 4 specify the error correction code:

when set to 000 shall indicate R-S LDC degree 16, and 10 interleaves

when set to 001 shall indicate R-S LDC degree 16, and 5 interleaves.

Other settings of these bits are prohibited by this ECMA Standard.

bit 3 shall be set to ZERO

bits 2 to 0 these bits shall specify in binary notation the power \(n \) of 2 in the following formula

which expresses the number of user bytes per sector

\[
256 \times 2^n
\]

Values of \(n \) other than 1 or 2 are prohibited by this ECMA Standard.

Byte 2

This byte shall specify in binary notation the number of sectors in track 0.

Byte 3

This byte shall give the manufacturer’s specification for the baseline reflectance \(R \) of the disk when measured at a nominal wavelength of 825 nm. It is specified as a number \(n \) between 10 and 34 such that

\[
n = 100 R
\]

Byte 4

This byte shall specify that the recording is on-land and it shall indicate the signal amplitude of the pre-recorded marks.

bit 7 shall be set to ZERO to specify on-land recording.

The absolute value of the signal amplitude is given as a number \(n \) between -20 and -50, such that

\[
n = -50 \left(\frac{I_p}{I_o} \right)
\]

where \(I_p \) is the signal from Channel 1 from the low frequency pre-recorded marks and \(I_o \) is the signal from an unrecorded, ungrooved area.

bits 6 to 0 shall express this number \(n \). Bit 6 shall be set to ONE to indicate that this number is negative and expressed by bits 5 to 0 in TWO's complement. Recording is high-to-low.

Byte 5

This byte shall be set either to (00) or to (FF).
Byte 6

This byte shall specify in binary notation a number \(n \) representing 20 times the maximum read power expressed in milliwatts which is permitted for reading the SFP Zone at a rotational frequency of 30 Hz and a wavelength of 825 nm. This number \(n \) shall be between 0 and 40.

Byte 7

The byte shall specify the media type.

0001 0001 shall mean a write once, read multiple optical disk cartridge according to this ECMA Standard.

Other settings of this byte are prohibited by this ECMA Standard (see also annex D).

Byte 8

This byte shall specify the most significant byte of the track number of the track in which the Outer Control Track SFP Zone starts.

Bytes 10 to 13

These bytes shall be set to (FF).

Bytes 14 to 17

The contents of these bytes are not specified by this ECMA Standard, they may be used for manufacturer's identification. They shall be ignored in interchange.

16.4.3.1.5 CRC

The eight bits of the CRC shall be computed over the Sector Number field and the Data field of the PEP sector.

The generator polynomial shall be

\[
G(x) = x^8 + x^4 + x^3 + x^2 + 1
\]

The residual polynomial \(R(x) \) shall be

\[
R(x) = (\sum_{i=1}^{151} a_i x^i + \sum_{i=0}^{143} \bar{a}_i x^i) x^8 \mod G(x)
\]

where \(a_i \) denotes a bit of the input data and \(\bar{a}_i \) an inverted bit. The highest order bit of the Sector Number field is \(a_{151} \).

The eight bits \(C_k \) of the CRC are defined by

\[
R_c(x) = \sum_{k=0}^{k=7} C_k x^k
\]

where \(c_7 \) is recorded as the highest order bit of the CRC byte of the PEP sector.
16.4.3.2 Summary of the format of the Data field of a sector

Table 1 - Format of the Data field of a sector of the PEP Zone

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>Number of user bytes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of sectors in track 0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baseline reflectance at 825 nm</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>Amplitude and polarity of pre-formatted data</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(00) or (FF)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start track of Outer SFP Zone, MSB of track number</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start track of Outer SFP Zone, LSB of track number</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>not specified, ignored in interchange</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>not specified, ignored in interchange</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>not specified, ignored in interchange</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>not specified, ignored in interchange</td>
</tr>
</tbody>
</table>

16.5 Control Track SFP Zones

The two Control Track SFP Zones shall be pre-recorded in the ECMA Standard User Data Format (see 17.2). The pre-recorded data marks shall satisfy the requirements for the VFO and ID signals specified in 17.1.2.2. Each sector of the SFP Zones shall include 512 bytes of information numbered 0 to 511 and grouped in five sections;
- a duplicate of the PEP information (18 bytes),
- media information (366 bytes),
- system information (64 bytes),
- bytes reserved for future standardization (32 bytes),
- contents not specified by this ECMA Standard (32 bytes).

In the case of 1024-byte sectors these first 512 bytes shall be followed by 512 (FF)-bytes.

16.5.1 Duplicate of the PEP information

Bytes 0 to 17 shall be identical with the 18 bytes of the Data field of a sector of the PEP Zone (see 16.4.3.1.4).
16.5.2 Media information

Bytes 18 to 359 specify read and write parameters at three laser wavelengths $L_1 = 825$ nm, $L_2 = 780$ nm and L_3. For each wavelength the baseline reflectance R_1, R_2 or R_3 is specified. The read and write powers are specified for four different rotational frequencies $N_1 = 30$ Hz, $N_2 = 40$ Hz, N_3 and N_4 for each wavelength. For each value of N four sets of write powers are given: three sets for constant pulse width and one set for constant power. Each set contains three values for the inner, middle and outer radius.

Bytes 18 to 27, bytes 31 to 34, bytes 44 to 47 and bytes 360 to 383 are mandatory. They shall specify the conditions for

$$L_1 = 825 \text{ nm and } N_1 = 30 \text{ Hz}.$$

Bytes 35 to 40 are optional, they shall either contain the information specified or be set to (FF).

Bytes 28 to 30, bytes 41 to 43 and bytes 48 to 359 are optional. They shall either specify the information indicated or be set to (FF).

All values specified in bytes 18 to 359 shall be such that the requirements of clauses 14 and 15 are met.

Byte 18

This byte shall specify the wavelength L_1, in nanometres, as a number n between 0 and 255 such that

$$n = 1/5 \times L_1$$

This byte shall be set to $n = 165$ for ODCs according to this ECMA Standard.

Byte 19

This byte shall specify the baseline reflectance R_1 at wavelength L_1 as a number n between 10 and 34 such that

$$n = 100 \times R_1$$

Byte 20

This byte shall specify the rotational frequency N_1, in hertz, as a number n such that

$$n = N_1$$

This byte shall be set to $n = 30$ for ODCs according to this ECMA Standard.

Byte 21

This byte shall specify the maximum read power P_1, in milliwatts, for the user zone as a number n between 0 and 40 such that

$$n = 20 \times P_1$$

The following bytes 22 to 30 specify, at constant pulse width, the write power P_w, in milliwatts, indicated by the manufacturer of the disk. P_w is expressed as a number n between 0 and 255 such that

$$n = 5 \times P_w$$

In these bytes T' stands for the constant pulse width, T for the time length of one Channel bit and r for the radius considered.

Byte 22

This byte shall specify P_w for

$$T' = T \times 1.00$$

$$r = 30 \text{ mm}$$

Byte 23

This byte shall specify P_w for
\[T' = T \times 1.00 \]
\[r = 45 \text{ mm} \]

Byte 24

This byte shall specify \(P_w \) for

\[T' = T \times 0.50 \]
\[r = 30 \text{ mm} \]

Byte 25

This byte shall specify \(P_w \) for

\[T' = T \times 0.50 \]
\[r = 45 \text{ mm} \]

Byte 26

This byte shall specify \(P_w \) for

\[T' = T \times 0.25 \]
\[r = 60 \text{ mm} \]

Byte 27

This byte shall specify \(P_w \) for

\[T' = T \times 0.25 \]
\[r = 30 \text{ mm} \]

Byte 28

This byte shall specify \(P_w \) for

\[T' = T \times 0.25 \]
\[r = 45 \text{ mm} \]

Byte 30

This byte shall specify \(P_w \) for

\[T' = T \times 0.25 \]
\[r = 60 \text{ mm} \]

Byte 31

This byte shall specify a constant write power \(P_w \), in milliwatts, as a number \(n \) between 0 and 255 such that

\[n = 5P_w \]

Byte 32

This byte shall specify the write pulse width \(T_p \), in nanoseconds, expressed by a number \(n \) between 0 and 255 such that

\[n = T_p \]

for the constant write power specified by byte 31 and at a radius \(r = 30 \text{ mm} \).
Byte 33
This byte shall specify the write pulse width T_p, in nanoseconds, expressed by a number n between 0 and 255 such that

$$n = T_p$$

for the constant write power specified by byte 31 and at a radius $r = 45$ mm.

Byte 34
This byte shall specify the write pulse width T_p, in nanoseconds, expressed by a number n between 0 and 255 such that

$$n = T_p$$

for the constant write power specified by byte 31 and at a radius $r = 60$ mm.

The following bytes 35 to 43 specify, at constant pulse width, the erase power P_E, in milliwatts, indicated by the manufacturer of the disk. P_E is expressed as a number n between 0 and 255 such that

$$n = 5 \cdot P_E$$

Byte 35
This byte shall specify P_E for

$$T' = T \times 1.00$$

$r = 30$ mm

Byte 36
This byte shall specify P_E for

$$T' = T \times 1.00$$

$r = 45$ mm

Byte 37
This byte shall specify P_E for

$$T' = T \times 0.50$$

$r = 60$ mm

Byte 38
This byte shall specify P_E for

$$T' = T \times 0.50$$

$r = 30$ mm

Byte 40
This byte shall specify P_E for:

$$T' = T \times 0.50$$

$r = 60$ mm

Byte 41
This byte shall specify P_E for

$$T' = T \times 0.25$$
\[r = 30 \text{ mm} \]

Byte 42

This byte shall specify \(P_E \) for

\[T' = T \times 0.25 \]
\[r = 45 \text{ mm} \]

Byte 43

This byte shall specify \(P_E \) for

\[T' = T \times 0.25 \]
\[r = 60 \text{ mm} \]

Byte 44

This byte shall specify the erase power expressed as a number \(n \) equal to 5 times its value in milliwatts. If the value of byte 44 equals 0, then bytes 45 to 47 below specify in the same manner the erase power for a d.c. erase instead of the erase pulse width. The erase pulse width is an absolute unsigned number expressed in nanoseconds.

Byte 45

Erase pulse width/power

\[EP, \ r = 30 \text{ mm} \]

Byte 46

Erase pulse width/power

\[EP, \ r = 45 \text{ mm} \]

Byte 47

Erase pulse width/power

\[EP, \ r = 60 \text{ mm} \]

Byte 48

This byte shall specify, at wavelength \(L_1 \), the rotational frequency \(N_2 \), in hertz, as a number \(n \) between 0 and 255 such that

\[n = N_2 \]

If this byte is not set to (FF), \(n \) shall be set to 40 for ODCs according to this ECMA Standard.

Byte 49

This byte shall specify the maximum read power \(P_2 \), in milliwatts, for the User Zone as a number \(n \) between 0 and 255 such that

\[n = 20 \cdot P_2 \]

Bytes 50 to 62

For the values specified in bytes 18, 19, 48 and 49, bytes 50 to 62 shall specify the parameters indicated in bytes 22 to 34.

Bytes 63 to 75

For the values specified in bytes 18, 19, 48 and 49, bytes 63 to 75 shall specify the parameters indicated in bytes 35 to 47.
Byte 76
This byte shall specify, at wavelength L_1, rotational frequency N_3, in hertz, expressed as a number n between 0 and 255 such that

$$n = N_3$$

Byte 77
This byte shall specify the maximum read power P_3, in milliwatts, for the User Zone, as a number n between 0 and 255 such that

$$n = 20 \times P_3$$

Bytes 78 to 90
For the values specified in bytes 18, 19, 76 and 77, bytes 78 to 90 shall specify the parameters indicated in bytes 22 to 34.

Bytes 91 to 103
For the values specified in bytes 18, 19, 76 and 77, bytes 91 to 103 shall specify the parameters indicated in bytes 35 to 47.

Byte 104
This byte shall specify, at wavelength L_1, rotational frequency N_4, in hertz, as a number n between 0 and 255 such that

$$n = N_4$$

Byte 105
This byte shall specify the maximum read power P_4, in milliwatts, for the User Zone as a number n between 0 and 255 such that

$$n = 20 \times P_4$$

Bytes 106 to 118
For the values specified in bytes 18, 19, 104 and 105, bytes 106 to 118 shall specify the parameters indicated in bytes 22 to 34.

Bytes 119 to 131
For the values specified in bytes 18, 19, 104 and 105, bytes 119 to 131 shall specify the parameters indicated in bytes 35 to 47.

Byte 132
This byte shall specify wavelength L_2, in nanometres, as a number n between 0 and 255 such that

$$n = \frac{1}{5} L_2$$

If this byte is not set to (FF), n shall be set to 156 for ODCs according to this ECMA Standard. This value indicates that the actual wavelength equals 780 nm \pm 15 nm.

Byte 133
This byte shall specify the baseline reflectance R_2 at wavelength L_2 as a number n between 0 and 100 such that

$$n = 100 \times R_2$$

Bytes 134 to 245
The allocation of information to, or the setting of, these bytes shall correspond to those of bytes 20 to 131. The values specified shall be for L_2 (byte 132) and R_2 (byte 133).
Byte 246
This byte shall specify wavelength L_3, in nanometres, as a number n between 0 and 255 such that

$$n = \frac{1}{5} L_3$$

Byte 247
This byte shall specify the baseline reflectance R_3 at wavelength L_3 as a number n between 0 and 100 such that

$$n = 100 \times R_3$$

Bytes 248 to 359
The allocation of information to, or the setting of, these bytes shall correspond to those of bytes 20 to 131. The values specified shall be for L_3 (byte 246) and R_3 (byte 247).

Bytes 360 to 363
These bytes shall be set to (FF). (See also annex D).

Byte 364
This byte shall specify the polarity of the figure of merit. When set to (00) it shall mean that this polarity is positive (the direction of Kerr rotation due to the written mark is clockwise).

When set to (01) it shall mean that this polarity is negative.

Byte 365
This byte shall specify the figure of merit F as a number n between 17 and 52, such that

$$n = 10 \times 000 \times F$$

Bytes 366 to 383
These bytes shall be set to (FF). (See also annex D).
Table 2 - Summary of media information

<table>
<thead>
<tr>
<th>Media Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>R_{W1}</td>
<td>(22) to (36)</td>
</tr>
<tr>
<td>R_{W2}</td>
<td>(25) to (39)</td>
</tr>
<tr>
<td>R_{W3}</td>
<td>(28) to (32)</td>
</tr>
<tr>
<td>Const. R_W</td>
<td>(31)</td>
</tr>
<tr>
<td>P_1</td>
<td>(21)</td>
</tr>
<tr>
<td>N_1</td>
<td>(20)</td>
</tr>
<tr>
<td>L_1</td>
<td>(18)</td>
</tr>
<tr>
<td>N_2</td>
<td>(48)</td>
</tr>
<tr>
<td>N_3</td>
<td>(76)</td>
</tr>
<tr>
<td>N_4</td>
<td>(104)</td>
</tr>
<tr>
<td>P_2</td>
<td>(49)</td>
</tr>
<tr>
<td>P_3</td>
<td>(77)</td>
</tr>
<tr>
<td>P_4</td>
<td>(105)</td>
</tr>
<tr>
<td>N_1</td>
<td>(134)</td>
</tr>
<tr>
<td>N_2</td>
<td>(162)</td>
</tr>
<tr>
<td>N_3</td>
<td>(190)</td>
</tr>
<tr>
<td>N_4</td>
<td>(218)</td>
</tr>
<tr>
<td>P_1</td>
<td>(135)</td>
</tr>
<tr>
<td>P_2</td>
<td>(163)</td>
</tr>
<tr>
<td>P_3</td>
<td>(191)</td>
</tr>
<tr>
<td>P_4</td>
<td>(219)</td>
</tr>
<tr>
<td>N_1</td>
<td>(248)</td>
</tr>
<tr>
<td>N_2</td>
<td>(276)</td>
</tr>
<tr>
<td>N_3</td>
<td>(304)</td>
</tr>
<tr>
<td>N_4</td>
<td>(332)</td>
</tr>
</tbody>
</table>

- P_1 to P_4:
 - P_1 to (50) to (62)
 - P_2 to (78) to (90)
 - P_3 to (106) to (118)
 - P_4 (105)

- N_1 to N_4:
 - N_1 (134)
 - N_2 (162)
 - N_3 (190)
 - N_4 (218)

- Const. R_E:
 - (44) (360) to (363)
 - T_p (33)
 - F_p (33)

- L_1:
 - (18)
16.5.3 System information
Bytes 384 and 385 are mandatory, they shall specify in binary notation the track number \(N\) of the last track of the User Zone. The total number of tracks in this zone is \((N+1)\).

Byte 384
This byte shall specify the most significant byte of this number.

Byte 385
This byte shall specify the least significant byte of this number.

Bytes 386 to 393
These bytes shall be set to (FF).
(See also annex D).

Bytes 394 to 447
These bytes shall be set to (FF).

16.5.4 Unspecified content
The contents of bytes 448 to 511 are not specified by this ECMA Standard. They shall be ignored in interchange.

16.6 Requirements for interchange of a User-Recorded cartridge
An interchanged optical disk cartridge according to this ECMA Standard shall satisfy the following requirements on all tracks in the User Zone (see annex L).

16.6.1 Requirements for reading
The data recorded on the disk shall be readable under the read conditions specified in bytes 18 to 21 of the SFP Zone.

16.6.2 Requirements for writing and erasing
Data may be recorded on the disk under the write and erase conditions specified in bytes 18 to 47 of the SFP Zone or under the write conditions specified in some or all of the bytes 48 to 346 if provided. In either case the so recorded data shall satisfy the requirement of 16.6.1.

17 Track format
17.1 Track layout
17.1.1 Tracking
The format is characterized by continuous tracking centred between adjacent grooves that are preformed on the disk.

All tracks shall have grooves which shall be continuous, except for ODF marks. Recording shall be on-land.
Figure 20 - Example of a sector with Offset Detection Field for on-land recording (schematic)

17.1.2 Characteristics of pre-recorded information

The characteristics of the signals read shall refer to signals obtained at the optical head. Each of these characteristics shall be measured with beams linearly polarized both perpendicular and parallel to the grooves under the conditions specified in 15.1.1 and 15.1.2.

17.1.2.1 Groove-related signals

The following requirements shall be met (see figure 21):

- **Cross-track maximum signal ratio**

 \[0.70 \leq \frac{(I_1 + I_2)_{\text{max}}}{(I_1 + I_2)_a} \leq 1.00 \]

 where \(I_1 \) and \(I_2 \) are the outputs of the two halves of the split photo diode detector in the tracking channel (see annex A). \((I_1 + I_2)_{\text{max}}\) indicates the maximum signal when the beam crosses tracks, and \((I_1 + I_2)_a\) is the signal obtained from an unrecorded, ungrooved area.

- **Push-pull ratio**

 \[0.40 \leq \frac{(I_1 - I_2)}{(I_1 + I_2)_a} \leq 0.65 \]

 where \((I_1 - I_2)\) is the peak-to-peak amplitude of the differential output of the two halves of the split photo diode detector in the tracking channel.

- **Cross-track signal modulation ratio**

 \[0.20 \leq \frac{[(I_1+I_2)_{\text{max}} - (I_1+I_2)_{\text{min}}]}{(I_1 + I_2)_a} \leq 0.60 \]

 Over the whole disk this ratio shall not vary by more than 3 dB.

- **Phase depth**

 The phase depth of the grooves equals
where n is the index of refraction of the substrate

d is the groove depth

λ is the wavelength.

The phase depth shall be less than 180°.

- **Track location**

 The tracks are located at those places on the disk where $(I_1 - I_2)$ equals zero and $(I_1 + I_2)$ has its maximum value.

- **On-track signal ratio**

 $0.7 \leq I_{ot}/I_o \leq 1.0$

 where I_{ot} is the signal in Channel 1 (see annex A) when the beam is on track. I_o is the signal in the same Channel 1 obtained from an ungrooved, unrecorded area.

17.1.2.2 Properties of pre-recorded marks

The signals specified below are obtained from Channel 1 (see annex A), and shown in figure 21.

- **Sector Mark signal** (see 17.2.1)

 The Sector Mark signal shall meet the requirement

 $I_{sm}/I_o \geq 0.50$

 where I_{sm} is the peak-to-peak amplitude of the read signal from the Sector Mark.

- **VFO signals** (see 17.2.2)

 The signals from the VFO1 and VFO2 fields shall meet the requirement

 $I_{vfo}/I_o \geq 0.25$

 where I_{vfo} is the peak-to-peak amplitude of the read signal from the VFO area.

 In addition the condition

 $I_{vfo}/I_{pmax} \geq 0.50$

 shall be satisfied within each sector, where I_p is the signal in that sector from pre-recorded marks which are not Sector Marks.

- **Address Mark, ID and PA signals** (see 17.2.3, 17.2.4 and 17.2.5)

 The signals from these fields shall meet the requirements

 $1.00 > I_p/I_o > 0.40$

 $(I_{pmax} - I_{pmin})/I_o < 0.20$ over any one track.

 These requirements apply only to such marks having a repetition rate of less than 1.4 MHz.

17.1.2.3 Parameters of the read characteristics

Figure 21 shows the various parameters for the read characteristics.
Figure 21 - Illustration of the various parameters for read characteristics

17.2 Sector format

Sectors shall have one of the two layouts shown in figure 22 and figure 23 depending on the number of user bytes in the Data field (see 17.2.11). When the sectors contain 1024 user bytes, there shall be 17 sectors per track, numbered from 0 to 16; when the sectors contain 512 user bytes, there shall be 31 sectors per track numbered from 0 to 30. The number of user bytes per sector is specified by byte 1 of the PEP and the SFP Zones. The pre-formatted area of 52 bytes, the Header, is the same for both sector formats.

On the disk 8-bit bytes shall be represented by Channel bits (see 17.3).

In figure 22 and figure 23 the numbers above and below the fields indicate the number of bytes in each field.
Figure 22 - Sector format for 1024 user byte

<table>
<thead>
<tr>
<th>SM</th>
<th>VFO<sub>1</sub></th>
<th>AM</th>
<th>ID<sub>1</sub></th>
<th>VFO<sub>2</sub></th>
<th>AM</th>
<th>ID<sub>2</sub></th>
<th>VFO<sub>3</sub></th>
<th>AM</th>
<th>ID<sub>3</sub></th>
<th>PA</th>
<th>ODF Flag and Gaps</th>
<th>Sync</th>
<th>VFO<sub>3</sub></th>
<th>Data Field</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>14</td>
<td></td>
<td>12</td>
<td>User Data, DMP, CRC, ECC and Resync</td>
<td>20</td>
</tr>
</tbody>
</table>

Pre-formatted Header: 52

Figure 23 - Sector format for 512 user bytes

<table>
<thead>
<tr>
<th>SM</th>
<th>VFO<sub>1</sub></th>
<th>AM</th>
<th>ID<sub>1</sub></th>
<th>VFO<sub>2</sub></th>
<th>AM</th>
<th>ID<sub>2</sub></th>
<th>VFO<sub>3</sub></th>
<th>AM</th>
<th>ID<sub>3</sub></th>
<th>PA</th>
<th>ODF Flag and Gaps</th>
<th>Sync</th>
<th>VFO<sub>3</sub></th>
<th>Data Field</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>14</td>
<td></td>
<td>12</td>
<td>User Data, DMP, CRC, ECC and Resync</td>
<td>15</td>
</tr>
</tbody>
</table>

Pre-formatted Header: 52

746
17.2.1 Sector Mark (SM)

The Sector Mark shall have a length of 5 bytes and shall consist of pre-recorded, continuous, long marks of different Channel bits length followed by a lead-in to the VFO₁ field. This pattern does not exist in data.

The Sector Mark pattern shall be as shown in figure 24, where T corresponds to the time length of one Channel bit. The signal obtained from a mark is less than a signal obtained from no mark. The long mark pattern shall be followed by the Channel bit pattern: 00X0010010 where X can be ZERO or ONE.

![Figure 24 - Sector Mark pattern](image)

17.2.2 VFO areas

There shall be four areas designated VFO₁, VFO₂ and VFO₃ to lock up the VFO. The recorded information for VFO₁ and VFO₃ is identical in length and pattern. VFO₂ shall be recorded with one of two patterns differing only in the first bit and shall be 4 bytes shorter than VFO₁ and VFO₃.

Since there are three ID fields, and RLL (2,7) modulation coding is used, the pattern chosen for each VFO₂ will depend on the last byte of the CRC recorded in the preceding ID field (see 17.3).

The continuous Channel bit pattern for VFO areas shall be:

VFO₁ : 192 Channel bits = 01001001001 ... 010010
VFO₂ : 128 Channel bits = 10010010010 ... 010010
VFO₂ : 128 Channel bits = 00010010010 ... 010010
VFO₃ : 192 Channel bits = 01001001001 ... 010010

17.2.3 Address Mark (AM)

The AM is a Channel bit pattern not used in RLL (2,7) and is a run-length violation for RLL (2,7). This 16-bit Channel bit pattern shall be:

0100 1000 0000 0100

17.2.4 ID and CRC

This field shall consist of five bytes.

1st Byte
This byte shall specify the most significant byte of the track number.

2nd Byte
This byte shall specify the least significant byte of the track number.

3rd Byte
bits 7 and 6 shall specify the ID number.
when set to 00 shall mean the ID₁ field.
when set to 01 shall mean the ID₃ field.
when set to 10 shall mean the ID₃ field.

bit 5 shall be set to ZERO.

bits 4 to 0 shall specify the sector number in binary notation.

4th and 5th Bytes

These two bytes shall specify a 16-bit CRC computed over the first three bytes of this field (see annex F).

17.2.5 Postamble (PA)

This field shall be an area equal in length to 16 Channel bits following the ID₃ field. Due to the use of the RLL (2,7) encoding scheme (see 17.3), the framing of the last byte of the CRC in the ID₃ field is uncertain within a few bit times. The Postamble allows the last byte of the CRC to achieve closure and permits the ID field to end always in a predictable manner. This is necessary in order to locate the following field (ODF) in a consistent manner.

17.2.6 Offset Detection Field (ODF)

This field shall be an area equal in length to 16 Channel bits with neither grooves nor pre-formatted data.

17.2.7 Gap

This field shall consist of an unrecorded area equal in length to 48 Channel bits.

17.2.8 Flag

The content of this field is not specified by this ECMA Standard, it shall be ignored in interchange. This field is included in the sector format only for compatibility with the sector format of ISO 9171-2 where its content is specified.

17.2.9 Auto Laser Power Control (ALPC)

This field shall consist of an unrecorded area of two bytes equal in length to 32 Channel bits. It is intended for testing the laser power level.

17.2.10 Sync

This field shall have a length equal to 48 Channel bits. It shall be recorded with the Channel bit pattern:

0100 0010 0100 0010 0010 0100 0100 0100 0100 0100 0100

17.2.11 Data field

This field shall consist of either:

- 1259 bytes comprising
 - 1024 user bytes
 - 223 bytes for CRC, ECC and Resync
 - 12 bytes for control information (DMP)

or

- 650 bytes comprising
 - 512 user bytes
 - 124 bytes for CRC, ECC and Resync
 - 12 bytes for control information (DMP)
 - 2 (FF)-bytes.

The disposition of these bytes in the Data field is specified in annex G.

17.2.11.1 User bytes

These bytes are at the disposal of the user for recording information. There are 1024 or 512 such bytes depending on the sector format.
17.2.11.2 CRC and ECC
The computation of the check bytes of the CRC and ECC shall be as specified in annex G.

17.2.11.3 Bytes for control information (DMP)
This 12-byte field is intended to prevent inadvertent write operations over previously written data. When the sector does not contain user data, this field shall be unrecorded. When the sector does contain user data, the bytes of this field shall be set to (FF).

17.2.11.4 Last bytes of the Data field of the 512-byte sector format
The last two bytes of the Data field of the 512-byte sector format shall be set to (FF).

17.2.11.5 Resync
The Resync fields shall be inserted between the bytes of the Data field as specified in annex G.

17.2.12 Buffer
This field shall have a nominal length equal to 320 Channel bits (see figure 22) or of 240 Channel bits (see figure 23). Up to 16 additional Channel bits may be written in this field to allow completion of the RLL (2,7) coding scheme (see 17.3). The remaining length is to allow for motor speed tolerances and other electrical and/or mechanical tolerances.

17.3 Recording code
The 8-bit bytes in the three ID fields and in the Data field, except for the Resync bytes, shall be converted to Channel bits on the disk according to table 3. All other fields in a sector have already been defined in terms of Channel bits. Each ONE Channel bit shall be recorded as a mark produced by a write pulse of the appropriate power and width.

The recording code used to record all data in the formatted areas of the disk shall be the run-length limited code known as RLL (2,7).

<table>
<thead>
<tr>
<th>Input bits</th>
<th>Channel bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0100</td>
</tr>
<tr>
<td>010</td>
<td>100100</td>
</tr>
<tr>
<td>0010</td>
<td>00100100</td>
</tr>
<tr>
<td>11</td>
<td>1000</td>
</tr>
<tr>
<td>011</td>
<td>001000</td>
</tr>
<tr>
<td>0011</td>
<td>00001000</td>
</tr>
<tr>
<td>000</td>
<td>000100</td>
</tr>
</tbody>
</table>

The coding shall start at the first bit of the first byte of the field to be converted. After a Resync field the RLL (2,7) coding shall start again with the first bit of the next byte of input data.

The RLL (2,7) coding can seldom be stopped at the end of the last input in a field, because of leftover bits which cannot be converted on their own. To achieve closure of the recording code, three pad bits are added at the end of the field before converting the data to Channel bits. Table 4 defines the closure for all possible combinations of leftover bits.

The ID₁ and ID₂ fields shall lead to one of the two patterns for the VFO₂.

The ID₃ field shall lead to one of two possible patterns in the PA field.

The bytes in the Data field preceding a Resync field shall lead to the Resync pattern.

17.4 Defect management
Defective sectors on the disk shall be replaced by good sectors according to the defect management scheme described below. Each side of the disk shall be initialized once before use. This ECMA Standard allows media initialization with or without certification. Defective sectors found during certification are handled by a sector
slipping algorithm. Defective sectors found after initialization are handled by a linear replacement algorithm. The maximum number of defective sectors on a side of the disk that can be replaced shall be 2048.

The User Zone on each side of the disk shall contain two Defect Management Areas (DMA) at the beginning of the zone and two DMAs at the end of the zone. Each DMA shall contain a Disk Definition Sector (DDS) with information on the structure of the disk, a Primary Defect List (PDL) and a Secondary Defect List (SDL). The user area is the area between the two groups of DMAs; it is available for user data.

17.4.1 Media initialization

The media shall be initialized once only. Once the DMAs are recorded, it indicates that the disk is initialized and that no further initialization of the disk is permitted. During media initialization four DMAs are recorded. The User Area is divided into groups, each containing data sectors and spare sectors. Media initialization can include a certification of the User Area. All sectors in the User Area shall be in the erased (unrecorded) condition at the end of initialization.

17.4.1.1 Media initialization with certification

The media certification consists of erasing, writing and reading all sectors from track 3 to track N-3, where N is the track number of the last track in the User Zone.

If there is no defective sector, an empty PDL or no PDL shall be recorded. In either case an empty SDL shall be recorded.

If defective sectors are found during this procedure, their addresses shall be written in ascending order in the PDL. Defective sectors shall not be used for reading or writing. If defective, a sector shall be retired, and the reference to it shall be re-directed (slipped) to the next good sector. This algorithm causes the reference to all subsequent sectors to be re-directed by one sector towards the end of the user area. This ECMA Standard does not specify criteria for declaring a sector to be defective (see annex H).

Of the total number of sectors available, 2048 sectors are allocated to provide space for the maximum possible number of defective sectors that could be detected during certification. After certification the good sectors in the user area from track 3 to track N-3 shall be divided into g groups of equal size. Each group shall comprise n data sectors followed by m spare sectors. The values of g, m and n are selected by the user and shall satisfy the following condition:

\[1 \leq g \leq 2048 \]

- for 1024-byte sectors: \[g \times (m+n) \leq 17 \times (N-5) - 2048 \]
- for 512-byte sectors: \[g \times (m+n) \leq 31 \times (N-5) - 2048 \]

The remaining sectors not included in the g groups shall be located after the last group. The values of g, n and m shall be recorded in the DDS. The PDL and the SDL shall be recorded as specified in 17.4.3.2 and 17.4.3.3.

17.4.1.2 Media initialization without certification

The user area from track 3 to track N-3 shall be divided in g groups of equal size. N is the track number of the last track in the User Zone. Each group shall comprise n data sectors followed by m spare sectors. The values of g, m and n are selected by the user and shall satisfy the following condition:

\[1 \leq g \leq 2048 \]

- for 1024-byte sectors: \[g \times (m+n) \leq 17 \times (N-5) - 2048 \]
- for 512-byte sectors: \[g \times (m+n) \leq 31 \times (N-5) - 2048 \]

The remaining sectors not included in the g groups shall be located after the last group.

The values of g, n and m shall be recorded in the DDS. An empty PDL or no PDL shall be recorded. If an empty PDL is recorded, byte 3 of the DDS shall be set to (01). If no PDL is recorded, byte 3 of the DDS shall be set to (02). An empty SDL shall be recorded.

17.4.2 Write and read procedure

After media initialization, all sectors in the User Area shall be in the erased state. Erasing of sectors in the User Area after initialization is not permitted. Before writing a sector in the User Area, it shall be determined whether or not the sector has been written. If the sector has been written, a write operation is not permitted. During write
operations, sectors shall always be recorded with DMP, CRC, and ECC bytes as specified by this ECMA Standard (see annex E).

When writing or reading data in the sectors of a group, all defective sectors listed in the PDL shall be skipped and those listed in the SDL shall be replaced. If during or after writing, a data sector is found to be defective, it shall be rewritten in the first available spare sector of the group. If there are no spare sectors left in that group, the defective sector shall be rewritten in the first available spare sector in one of the nearest groups. If the replacement sector is found to be defective, the sector shall be rewritten in the next available spare sector. The address of the defective sector and the address of the replacement sector shall be written in the SDL. A replacement sector listed in the SDL shall contain the user data of the sector it replaces. There shall be no entries in the SDL pointing to a defective replacement sector. The total number of defective sectors that are identified in the PDL and SDL shall not exceed 2048.

17.4.3 Layout of the User Zone

The User Zone shall contain four DMAs in tracks 0, 1, 2, N-2, N-1 and N, and a user area from track 3 to track N-3. N is the track number of the last track in the User Zone. The division of the user area into groups is specified in 17.4.1.1 or 17.4.1.2.

The length of each DMA is 25 sectors for 1024-byte sectors and 46 for 512-byte sectors. The address of the first sector of each DMA is given by

<table>
<thead>
<tr>
<th>DMA</th>
<th>Track No</th>
<th>Sector No</th>
<th>1024-byte sector</th>
<th>Track No</th>
<th>Sector No</th>
<th>512-byte sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DMA2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>DMA3</td>
<td>N-2</td>
<td>0</td>
<td>N-2</td>
<td>0</td>
<td>N-1</td>
<td>15</td>
</tr>
<tr>
<td>DMA4</td>
<td>N-1</td>
<td>8</td>
<td></td>
<td>N-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The last sector of track 2 and of track N shall not be used.

Each DMA shall contain a DDS and an SDL, and may contain a PDL. If recorded, all four PDLs shall be identical. The SDLS shall be identical.

After initialization, each DMA shall have the following content. The first sector shall contain the DDS. The second sector shall be the first sector of the PDL if it has been recorded. The length of a PDL is determined by the number of entries in it. The SDL shall begin in the sector following the last sector of the PDL. If there is no PDL, it shall begin in the second sector of the DMA. The length of the SDL is determined by the number of entries in it. The contents of the remaining sectors of the DMAs after the SDL shall be ignored on interchange.

The start address of a PDL and that of the SDL within each DDS shall reference the PDL and the SDL in the same DMA.
17.4.3.1 Disk Definition Sector (DDS)

The Disk Definition Sector (DDS) shall be contained in the first sector of each DMA as shown in table 4.
Table 4 - Byte assignment of the Disk Definition Sector

<table>
<thead>
<tr>
<th>Byte No.</th>
<th>DDS Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(05) (DDS identifier MSB)</td>
</tr>
<tr>
<td>1</td>
<td>(05) (DDS identifier LSB)</td>
</tr>
<tr>
<td>2</td>
<td>(00)</td>
</tr>
<tr>
<td>3</td>
<td>(01) A PDL has been recorded</td>
</tr>
<tr>
<td></td>
<td>(02) No PDL has been recorded</td>
</tr>
<tr>
<td>4</td>
<td>g, Number of groups (MSB)</td>
</tr>
<tr>
<td>5</td>
<td>g, Number of groups (LSB) (g ≤ 2048)</td>
</tr>
<tr>
<td>6</td>
<td>n, Number of data sectors per group (MSB)</td>
</tr>
<tr>
<td>7</td>
<td>n, Number of data sectors per group</td>
</tr>
<tr>
<td>8</td>
<td>n, Number of data sectors per group</td>
</tr>
<tr>
<td>9</td>
<td>n, Number of data sectors per group (LSB)</td>
</tr>
<tr>
<td>10</td>
<td>m, Number of spare sectors per group (MSB)</td>
</tr>
<tr>
<td>11</td>
<td>m, Number of spare sectors per group</td>
</tr>
<tr>
<td>12</td>
<td>m, Number of spare sectors per group</td>
</tr>
<tr>
<td>13</td>
<td>m, Number of spare sectors per group (LSB)</td>
</tr>
<tr>
<td>14</td>
<td>Start of PDL, track number (MSB)</td>
</tr>
<tr>
<td>15</td>
<td>Start of PDL, track number</td>
</tr>
<tr>
<td>16</td>
<td>Start of PDL, track number (LSB)</td>
</tr>
<tr>
<td>17</td>
<td>Start of PDL, sector number</td>
</tr>
<tr>
<td>18</td>
<td>Start of SDL, track number (MSB)</td>
</tr>
<tr>
<td>19</td>
<td>Start of SDL, track number</td>
</tr>
<tr>
<td>20</td>
<td>Start of SDL, track number (LSB)</td>
</tr>
<tr>
<td>21</td>
<td>Start of SDL, sector number</td>
</tr>
</tbody>
</table>

All remaining bytes in this sector shall be set to (00).

If byte 3 is set to (02), bytes 14 to 17 shall be set to (FF).

17.4.3.2 Primary Defect List (PDL)

The PDL shall consist of bytes specifying

- a defect list identifier set to (01) for the PDL,
- the length of the PDL,
- the sector addresses of defective sectors in ascending order of sector addresses.

Table 5 shows the PDL byte layout. All remaining bytes of the last sector in which the Primary Defect List is recorded, shall be set to (FF). If no defective sectors are detected, then the first defective sector address is set to (FF) and the list length bytes are set to (00).
Table 5 - Primary Defect List

<table>
<thead>
<tr>
<th>Byte No.</th>
<th>PDL Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(00)</td>
</tr>
<tr>
<td>1</td>
<td>(01) (Defect List identifier)</td>
</tr>
<tr>
<td>2</td>
<td>Number of entries MSB (each entry is 4 bytes long)</td>
</tr>
<tr>
<td>3</td>
<td>Number of entries LSB</td>
</tr>
<tr>
<td>4</td>
<td>Address of the first defective sector (track number MSB)</td>
</tr>
<tr>
<td>5</td>
<td>Address of the first defective sector (track number)</td>
</tr>
<tr>
<td>6</td>
<td>Address of the first defective sector (track number LSB)</td>
</tr>
<tr>
<td>7</td>
<td>Address of the first defective sector (sector number)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n-3</td>
<td>Address of the nth defective sector (track number MSB)</td>
</tr>
<tr>
<td>n-2</td>
<td>Address of the nth defective sector (track number)</td>
</tr>
<tr>
<td>n-1</td>
<td>Address of the nth defective sector (track number LSB)</td>
</tr>
<tr>
<td>n</td>
<td>Address of the nth defective sector (sector number)</td>
</tr>
</tbody>
</table>

17.4.3.3 Secondary Defect List (SDL)

The SDL is used to record the addresses of sectors which have become defective after initialization and those of their respective replacements. Eight bytes are used for each entry. The first 4 bytes specify the address of the defective sector and the next 4 bytes specify the address of the replacement sector.

The SDL shall consist of bytes identifying the SDL, specifying the length of the SDL, and of a list containing the addresses of defective sectors and those of their replacement sectors. The addresses of the defective sectors shall be in ascending order. Table 7 shows the SDL layout. All remaining bytes of the last sector in which the SDL is recorded shall be set to (FF). An empty SDL shall consist of bytes 0 to 9 as shown in table 6; bytes 8 and 9 shall be set to (00).
Table 6 - Secondary Defect List

<table>
<thead>
<tr>
<th>Byte No.</th>
<th>SDL Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(00)</td>
</tr>
<tr>
<td>1</td>
<td>(02) (Defect List identifier)</td>
</tr>
<tr>
<td>2</td>
<td>(00)</td>
</tr>
<tr>
<td>3</td>
<td>(01)</td>
</tr>
<tr>
<td>4</td>
<td>MSB of the list length specified in number of bytes from byte 6 to byte x-1</td>
</tr>
<tr>
<td>5</td>
<td>LSB of the list length</td>
</tr>
<tr>
<td>6</td>
<td>(02) (SDL)</td>
</tr>
<tr>
<td>7</td>
<td>(01)</td>
</tr>
<tr>
<td>8</td>
<td>MSB of the list length specified in number of bytes from byte 10 to byte x-1</td>
</tr>
<tr>
<td>9</td>
<td>LSB of the list length</td>
</tr>
<tr>
<td>10</td>
<td>Address of the first defective sector (track number, MSB)</td>
</tr>
<tr>
<td>11</td>
<td>Address of the first defective sector (track number)</td>
</tr>
<tr>
<td>12</td>
<td>Address of the first defective sector (track number, LSB)</td>
</tr>
<tr>
<td>13</td>
<td>Address of the first defective sector (sector number)</td>
</tr>
<tr>
<td>14</td>
<td>Address of the first replacement sector (track number, MSB)</td>
</tr>
<tr>
<td>15</td>
<td>Address of the first replacement sector (track number)</td>
</tr>
<tr>
<td>16</td>
<td>Address of the first replacement sector (track number, LSB)</td>
</tr>
<tr>
<td>17</td>
<td>Address of the first replacement sector (sector number)</td>
</tr>
<tr>
<td>x-8</td>
<td>Address of the last defective sector (track number, MSB)</td>
</tr>
<tr>
<td>x-7</td>
<td>Address of the last defective sector (track number)</td>
</tr>
<tr>
<td>x-6</td>
<td>Address of the last defective sector (track number, LSB)</td>
</tr>
<tr>
<td>x-5</td>
<td>Address of the last defective sector (sector number)</td>
</tr>
<tr>
<td>x-4</td>
<td>Address of the last replacement sector (track number, MSB)</td>
</tr>
<tr>
<td>x-3</td>
<td>Address of the last replacement sector (track number)</td>
</tr>
<tr>
<td>x-2</td>
<td>Address of the last replacement sector (track number, LSB)</td>
</tr>
<tr>
<td>x-1</td>
<td>Address of the last replacement sector (sector number)</td>
</tr>
</tbody>
</table>

17.4.4 Summary of the location of the zones on the disk

Figure 27 summarizes the location of the zones.
<table>
<thead>
<tr>
<th>Radius (mm)</th>
<th>Physical trk #</th>
<th>Zone Name</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>27,00</td>
<td></td>
<td>Reflective zone</td>
<td>One revolution (17 or 31 sectors) layout</td>
</tr>
<tr>
<td>29,50</td>
<td></td>
<td>PEP zone</td>
<td>PEP</td>
</tr>
<tr>
<td>29,52</td>
<td></td>
<td>Transition</td>
<td></td>
</tr>
<tr>
<td>29,70</td>
<td>-0008-0001</td>
<td>SFP zone</td>
<td>SFP1, SFP2, SFP3, SFP4</td>
</tr>
<tr>
<td></td>
<td>000</td>
<td></td>
<td>SFP17 or 31</td>
</tr>
<tr>
<td></td>
<td>002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30,00</td>
<td></td>
<td>Manufacturer's</td>
<td></td>
</tr>
<tr>
<td>60,00</td>
<td>N-3 N-2 N</td>
<td>User Zone</td>
<td></td>
</tr>
<tr>
<td>60,15</td>
<td>N+1 N+8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61,00</td>
<td>max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 27 - Location of the defined zones
Annex A
(normative)

Optical system for measuring write, read and erase characteristics

Figure A.1 shows the basic set-up of the optical system. Different components and locations of components are permitted, as long as the required performance is not changed. The optical system shall be such that the detected light reflected from the entrance surface is minimized so as not to influence the accuracy of measurement. The splitter D for the tracking servo signals depends on the system and can be located anywhere along the beam.

The linearly polarized beam entering beamsplitter E shall have an extinction ratio of less than 0.01.

The extinction ratio of an optical beam is defined as the ratio of the minimum power over the maximum power observed behind a linear polarizer in the beam which is rotated over at least 180°.

In the absence of polarization changes in the disk, the polarizing beamsplitter J shall be aligned to make the signal of K_1 equal to that of K_2. The direction of polarization in this case is called the neutral direction. The phase retarder I shall be adjusted such that the optical system between F and J does not show more than 2.5° phase retardation between the neutral polarization and the polarization perpendicular to it. This position of the retarder is called the neutral position.

The phase retarder can be used for the measurement of 15.3.4.

The intensity reflectance R_p of the beamsplitter E from F to H for the neutral polarization direction shall be nominally 0.30. The reflectance R_s for the polarization perpendicular to the neutral direction shall be nominally 0.95. The actual value of R_s shall not be smaller than 0.90.

If the imbalance of the magneto-optical signal is measured on a test drive with reflectances R_p' and R_s' for beamsplitter E, then the measured imbalance shall be multiplied by

$$\frac{R_s' R_p}{R_p' R_s}$$

to make it correspond to the nominal beamsplitter E.

Channel 1 is the sum of the photodiode signals, and is used for reading prerecorded marks. Channel 2 is the difference of the photodiode signals, and is used for reading user-written marks with the magneto-optical effect of Kerr rotation.
Figure A.1 - Measuring set-up for write, read and erase characteristics
Annex B
(normative)

Definition of write and erase pulse width

The rise and fall times, T_r and T_f, shall each be less than 10 ns, when the write pulse width T_p exceeds 50 ns. When T_p is less than 50 ns, T_r and T_f shall each be less than $(0.2 \times T_p)$ ns.

![Diagram of Pulse Shape]

P_w: write power
T_r: rise time
T_p: write pulse width
P_b: bias power
T_f: fall time
P: $P_w - P_b$

Figure B.1 - Definition of the pulse shape
Annex C
(normative)

Measurement of figure of merit

C.1 The figure of merit is, in practice, equal to the amplitude of the read signal from a recording at low frequency (in two dimensions). The written domains shall be substantially larger than the focal spot, so as to work in the low frequency region where the modulation transfer function of the optical system is one.

This implies that for a preformatted disk, rotating at 30 Hz, a signal with a frequency between 10 kHz and 100 kHz has to be written on several consecutive tracks and in between those tracks maintaining a fixed phase relationship between successive write passes. The disk shall be read with the read power specified in byte 21 of the SFP Zone (see 16.5.2).

Determination of the figure of merit using an optical system as shown in annex A and with characteristics as specified in 15.1.1 will not measure media properties only but also the optical retardation of the optical system. Therefore a calibration of the optical system is needed with a conventional determination of the figure of merit by measuring the reflectance, Kerr rotation and ellipticity. This calibration can only be executed reliably on media with low coercivity.

C.2 The optical test head shall be calibrated as follows. A test disk with negligible birefringence (glass) and low coercivity magneto-optical layer is used for conventional determination of reflectance \(R \), Kerr rotation \(\theta \) and ellipticity \(\beta \). The product \(F_L = R \sin \theta \cos 2\beta \) is determined. On the same disk a test pattern as described above is written and read back with the optical head resulting in signal amplitude \(V_L \). Any other disk (high or low coercivity) can now be measured with the optical head using a similar test pattern, resulting in a signal amplitude \(V \). The figure of merit \(F_m \) of this disk is

\[
F_m = F_L \times \frac{V}{V_L}
\]
Annex D
(informative)

Values to be implemented in existing and future standards

This ECMA Standard specifies one value only for bytes which identify optical disk cartridges which conform to this ECMA Standard. It is expected that further types of optical disk cartridges will be developed in future. It is therefore recommended that the following values be used for these other cartridges.

D.1 Byte 0 of the Control Track PEP Zone
Setting of bits 6 to 4:
001 should mean Constant Linear Velocity (CLV)
010 should mean Modified Constant Angular Velocity (MCAV)
011 should mean Modified Constant Linear Velocity (MCLV)

D.2 Byte 7 of the Control Track PEP Zone
The following bit patterns should have the indicated meanings.
0000 0000 Read-only ODCs (ROM)
0001 0000 Write once ODCs according to ISO/IEC 9171-1
0010 0000 Rewritable ODCs using MO according to ISO/IEC 10089\(^2\)
0011 0000 Rewritable ODCs using phase change
1001 0000 Partial ROM of Write once ODCs
1010 0000 Partial ROM using MO
1011 0000 Partial ROM using phase change.
Note that when the most significant bit is set to ONE, this indicates a partial ROM.

D.3 Bytes 35 to 47 of the SFP Zone
These bytes (and the corresponding bytes between byte 50 to byte 359) express erase power and erase pulse width under different conditions.

D.4 Bytes 360 to 383 of the SFP Zone
These bytes should be used to express magnetic field parameters.

D.5 Bytes 386 to 389 of the SFP Zone
These bytes should be used for the specification of speed stepping parameters for the MCAV recording mode.
Byte 386 should be used for the most significant byte of the number of tracks per band.
Byte 387 should be used for the least significant byte of the number of tracks per band.
Byte 388 should be used for the number of clock steps per band.
Byte 389 should be used for the number of added sectors per band.

\(^2\) ISO/IEC 10089:1991 Information technology - 130 mm rewritable optical disk cartridge for information interchange.
D.6 Bytes 390 to 393 of the SFP zone
These bytes should be used for variable track pitch information.

D.7 Bytes 472 to 479 of the SFP Zone
These bytes should be used to specify a write strategy.
Annex E

(informative)

Guidelines for the use of ODCs

This annex lists some important points to be observed when using the ODC specified by this ECMA Standard.

a) Read the PEP and/or the SFP when the ODC is inserted into the drive to ascertain the media type, so as to enable and/or disable the appropriate host commands.

b) Read the DDS when the disk is inserted into the drive to ascertain if the disk has been initialized. If it has, disallow re-initialization. If it has not been initialized, disallow access to the User Area.

c) Erase the User Area before initialization is complete. Record the DDSs only at the end of initialization to allow incomplete initializations to be detected.

d) Before writing a sector, first determine whether or not it has been already written. This can be ascertained, for example, by inspecting the contents of the DMP bytes. If these are set to (FF), disallow writing the sector.

e) Disallow commands that can directly or indirectly alter written data such as: SCSI Erase, SCSI Reassign Blocks, SCSI Update Block.

f) Disallow the SCSI Write Long command. Always write user data with DMP, CRC, and ECC fields as specified by this ECMA Standard.
Annex F
(normative)

CRC for ID fields

The sixteen bits of the CRC shall be computed over the first three bytes of the ID field. The generator polynomial shall be

\[G(x) = x^{16} + x^{12} + x^5 + 1 \]

The residual polynomial shall be

\[R(x) = \left(\sum_{i=8}^{i=23} \bar{a}_i x^i + \sum_{i=0}^{i=7} a_i x^i \right) x^{16} \mod G(x) \]

where \(a_i \) denotes a bit of the first three bytes and \(\bar{a}_i \) an inverted bit. The highest order bit of the first byte is \(a_{23} \).

The sixteen bits \(C_k \) of the CRC are defined by

\[R_c(x) = \sum_{k=0}^{k=15} C_k x^k \]

where \(c_{15} \) is recorded as the highest order bit of the fourth byte in the ID field.
Annex G

(normative)

Interleave, CRC, ECC, Resync for the Data field

G.1 Interleave

G.1.1 Interleave for 1024-byte sectors

The different bytes shall be designated as follows.

\(D_n \) are user data bytes

\(P_{h,m} \) are DMP bytes

\(C_k \) are CRC check bytes

\(E_{s,t} \) are ECC check bytes

These bytes shall be ordered in a sequence \(A_n \) in the order in which they shall be recorded on the disk. This order is the same as that in which they are input into the controller. Depending on the value of \(n \), these elements are:

- for \(1 \leq n \leq 1024 \) : \(A_n = D_n \)
- for \(1025 \leq n \leq 1036 \) : \(A_n = P_{h,m} \)
- for \(1037 \leq n \leq 1040 \) : \(A_n = C_k \)
- for \(1041 \leq n \leq 1200 \) : \(A_n = E_{s,t} \)

where

\[
\begin{align*}
 h &= \text{int} \left(\frac{n-1025}{4} \right) + 1 \\
 m &= \left(n - 1025 \right) \mod 4 + 1 \\
 k &= n - 1036 \\
 s &= \left(n - 1041 \right) \mod 10 + 1 \\
 t &= \text{int} \left(\frac{n-1041}{10} \right) + 1
\end{align*}
\]

The notation \(\text{int} [x] \) denotes the largest integer not greater than \(x \); \(x \mod y \) denotes the remainder of the integer division \(x/y \).

The first three parts of \(A_n \) are 10-way interleaved by mapping them onto a two-dimensional matrix \(B_{ij} \) with 104 rows and 10 columns. Thus

- for \(1 \leq n \leq 1040 \) : \(B_{ij} = A_n \)

where
\[i = 103 \cdot \text{int} \left[\frac{n-1}{10} \right] \]

\[j = (n - 1) \mod 10 \]

G.1.2 Interleave for 512-byte sectors

For 512-byte sectors the sequence of bytes shall be denoted by \(A'_{n} \), the other notations shall be as specified in C.1.1. In addition the two (FF) bytes are shown as (FF).

- for \(1 \leq n \leq 512 \) : \(A'_n = D_n \)
- for \(513 \leq n \leq 524 \) : \(A'_n = P_{h,m} \)
- for \(525 \leq n \leq 526 \) : \(A'_n = (\text{FF}) \)
- for \(527 \leq n \leq 530 \) : \(A'_n = C_k \)
- for \(531 \leq n \leq 610 \) : \(A'_n = E_{s,t} \)

where

\[h = \text{int} \left[\frac{n-513}{4} \right] + 1 \]

\[m = \left\lfloor \frac{1}{4} \right\rfloor + 1 \]

\[k = n - 526 \]

\[s = \frac{1}{5} \mod 5 \]

\[t = \text{int} \left[\frac{n-531}{5} \right] + 1 \]

The first four parts of \(A'_n \) are 5-way interleaved by mapping them onto a two-dimensional matrix \(B'_{ij} \) with 106 rows and 5 columns. Thus:

- for \(1 \leq n \leq 530 \) : \(B'_{ij} = A'_n \)

where

\[i = 105 \cdot \text{int} \left[\frac{n-1}{5} \right] \]

\[j = (n - 1) \mod 5 \]

G.2 CRC

G.2.1 General

The CRC and the ECC shall be computed over the Galois field based on the primitive polynomial

\[G_p(x) = x^8 + x^5 + x^3 + x^2 + 1 \]

The generator polynomial for the CRC bytes shall be
\[G_c (x) = \prod_{i=136}^{i=139} (x + \alpha^i) \]

where the element \(\alpha^i = (\beta^i)^{88} \), with \(\beta \) being a primitive root of \(G_p(x) \). The value of the \(n \)-th bit in a byte is the coefficient of the \(n \)-th power of \(\beta \), where \(0 \leq n \leq 7 \), when \(\beta \) is expressed on a polynomial basis.

G.2.2 CRC for 1,024-byte sectors

The four check bytes of the CRC shall be computed over the user data and the DMP bytes. The information polynomial shall be

\[I_c (x) = \left[\sum_{i=1}^{i=103} (\sum_{j=0}^{j=9} (B_{i,j}) x^i) \right] + \sum_{j=0}^{j=5} (B_{O,j}) x^j \]

The contents of the four check bytes \(C_k \) of the CRC are defined by the residual polynomial

\[R_c (x) = I_c (x) x^4 \mod G_c (x) \]

\[R_c (x) = \sum_{k=1}^{k=4} C_k x^{4-k} \]

The last equation specifies the storage locations for the coefficients of the polynomial.

G.2.3 CRC for 512-byte sectors

The four check bytes of the CRC shall be computed over the user data, the DMP bytes and the two (FF) bytes. The information polynomial shall be

\[I'_c (x) = \left[\sum_{i=1}^{i=105} (\sum_{j=0}^{j=4} (B'_{i,j}) x^i) \right] + (B'_{0,0}) x^0 \]

The contents of the four CRC check bytes shall be calculated as specified in G.2.2, however using polynomial \(I'_c(x) \).

G.3 ECC

The primitive polynomial \(G_p(x) \) and the elements \(\alpha^i \) and \(\beta \) shall be as specified in G.2.1. The generator polynomial for the check bytes of the ECC shall be

\[G_e (x) = \prod_{i=120}^{i=135} (x + \alpha^i) \]

This polynomial is self-reciprocal. This property can be used to reduce the hardware size. The initial setting of the ECC register shall be all ZEROS. The bits of the computed check bytes shall be inverted before they are encoded into Channel bits.

G.3.1 ECC for 1,024-byte sectors

The 160 check bytes of the ECC shall be computed over the user bytes, the DMP bytes and the CRC bytes. The corresponding 10 information polynomials shall be:

\[I_{cj} (x) = \sum_{i=0}^{i=103} (B_{i,j}) x^i \]

where \(0 \leq j \leq 9 \).

The contents of the 16 check bytes \(E_{cj} \) for each polynomial \(I_{cj}(x) \) are defined by the residual polynomial
\[R_{ej} (x) = I_{ej} (x) \cdot x^{16} \mod G_e (x) \]

\[R_{ej} (x) = \sum_{t=1}^{16} E_{j+1,t} \cdot x^{16-t} \]

The last equation specifies the storage locations for the coefficients of the polynomials.

G.3.2 ECC for 512-byte sectors

The 80 check bytes of the ECC shall be computed over the user data bytes, the DMP bytes, the two (FF) bytes and the CRC bytes. The corresponding 5 information polynomials shall be

\[I_{ej} (x) = \sum_{i=0}^{i=105} (B_{i,j}) \cdot x^i \]

where \(0 \leq j \leq 4 \).

The calculation of the 16 check bytes for each of the information polynomials \(I_{ej}(x) \) shall be carried out as specified in G.3.1.

G.4 Resync

The Resync fields shall be inserted in the Data field to prevent loss of synchronization and to limit the propagation of errors in the user data. Whilst they are numbered consecutively all Resync fields are identical; they contain the following pattern of Channel bits

0010 0000 0010 0100

For 1 024-byte sectors, a field RSn shall be inserted between bytes \(A_{20n} \) and \(A_{20n+1} \), where \(1 \leq n \leq 59 \).

For 512-byte sectors, a field RSn shall be inserted between bytes \(A_{15n} \) and \(A_{15n+1} \), where \(1 \leq n \leq 40 \).

G.5 Recording sequence for the Data field

The elements of the Data field shall be recorded on the disk according to sequence \(A_n \) or \(A'_n \), as applicable, immediately following the Sync bytes and with the Resync bytes inserted as specified in G.4.

Figure G.1 and figure G.2 show in matrix form the arrangement of these elements. The sequence of recording is from left-to-right and top-to-bottom.

- **SB**: designates a Sync byte
- **D**: designates a user byte
- **RS**: designates a Resync byte
- **P**: designates a DMP byte
- **C**: designates a check byte for CRC
- **E**: designates a check byte for ECC
- **(FF)**: designates a (FF) byte

For 1 024-byte sectors (see figure G.1) the first 104 rows contain in columns 0 to 9 the user bytes, the DMP bytes and the CRC check bytes. The next 16 rows contain only the ECC check bytes.

For 512-byte sectors (see figure G.2) the first 106 rows contain in columns 0 to 4 the user bytes, the DMP bytes, the two (FF) bytes and the CRC check bytes. The next 16 rows contain only the ECC check bytes.
<table>
<thead>
<tr>
<th>Column No. j</th>
<th>Row No. i</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB1</td>
<td>0</td>
</tr>
<tr>
<td>SB2</td>
<td>1</td>
</tr>
<tr>
<td>SB3</td>
<td>2</td>
</tr>
<tr>
<td>D1</td>
<td>3</td>
</tr>
<tr>
<td>D2</td>
<td>4</td>
</tr>
<tr>
<td>D3</td>
<td>5</td>
</tr>
<tr>
<td>D4</td>
<td>6</td>
</tr>
<tr>
<td>D5</td>
<td>7</td>
</tr>
<tr>
<td>D6</td>
<td>8</td>
</tr>
<tr>
<td>D7</td>
<td>9</td>
</tr>
<tr>
<td>D8</td>
<td>10</td>
</tr>
<tr>
<td>D9</td>
<td>11</td>
</tr>
<tr>
<td>D10</td>
<td>12</td>
</tr>
<tr>
<td>D11</td>
<td>13</td>
</tr>
<tr>
<td>D12</td>
<td>14</td>
</tr>
<tr>
<td>D13</td>
<td>15</td>
</tr>
<tr>
<td>D14</td>
<td>16</td>
</tr>
<tr>
<td>D15</td>
<td>17</td>
</tr>
<tr>
<td>D16</td>
<td>18</td>
</tr>
<tr>
<td>D17</td>
<td>19</td>
</tr>
<tr>
<td>D18</td>
<td>20</td>
</tr>
<tr>
<td>D19</td>
<td>21</td>
</tr>
<tr>
<td>D20</td>
<td>22</td>
</tr>
<tr>
<td>RS1</td>
<td>23</td>
</tr>
<tr>
<td>D21</td>
<td>24</td>
</tr>
<tr>
<td>D22</td>
<td>25</td>
</tr>
<tr>
<td>D23</td>
<td>26</td>
</tr>
<tr>
<td>D24</td>
<td>27</td>
</tr>
<tr>
<td>D25</td>
<td>28</td>
</tr>
<tr>
<td>D26</td>
<td>29</td>
</tr>
<tr>
<td>D27</td>
<td>30</td>
</tr>
<tr>
<td>D28</td>
<td>31</td>
</tr>
<tr>
<td>D29</td>
<td>32</td>
</tr>
<tr>
<td>D30</td>
<td>33</td>
</tr>
<tr>
<td>D31</td>
<td>34</td>
</tr>
<tr>
<td>D32</td>
<td>35</td>
</tr>
<tr>
<td>D33</td>
<td>36</td>
</tr>
<tr>
<td>D34</td>
<td>37</td>
</tr>
<tr>
<td>D35</td>
<td>38</td>
</tr>
<tr>
<td>D36</td>
<td>39</td>
</tr>
<tr>
<td>D37</td>
<td>40</td>
</tr>
<tr>
<td>D38</td>
<td>41</td>
</tr>
<tr>
<td>D39</td>
<td>42</td>
</tr>
<tr>
<td>D40</td>
<td>43</td>
</tr>
<tr>
<td>RS2</td>
<td>44</td>
</tr>
<tr>
<td>D41</td>
<td>45</td>
</tr>
<tr>
<td>D42</td>
<td>46</td>
</tr>
<tr>
<td>D43</td>
<td>47</td>
</tr>
<tr>
<td>D44</td>
<td>48</td>
</tr>
<tr>
<td>D45</td>
<td>49</td>
</tr>
<tr>
<td>D46</td>
<td>50</td>
</tr>
<tr>
<td>D47</td>
<td>51</td>
</tr>
<tr>
<td>D48</td>
<td>52</td>
</tr>
<tr>
<td>D49</td>
<td>53</td>
</tr>
<tr>
<td>D50</td>
<td>54</td>
</tr>
<tr>
<td>RS3</td>
<td>55</td>
</tr>
<tr>
<td>104 rows</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Row No. i</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RS49</td>
<td>0</td>
</tr>
<tr>
<td>RS50</td>
<td>1</td>
</tr>
<tr>
<td>RS51</td>
<td>2</td>
</tr>
<tr>
<td>RS52</td>
<td>3</td>
</tr>
<tr>
<td>RS53</td>
<td>4</td>
</tr>
<tr>
<td>RS54</td>
<td>5</td>
</tr>
<tr>
<td>RS55</td>
<td>6</td>
</tr>
<tr>
<td>RS56</td>
<td>7</td>
</tr>
<tr>
<td>RS57</td>
<td>8</td>
</tr>
<tr>
<td>RS58</td>
<td>9</td>
</tr>
<tr>
<td>RS59</td>
<td>10</td>
</tr>
<tr>
<td>16 rows</td>
<td></td>
</tr>
</tbody>
</table>

Figure G.1 - Data field configuration, 1 024-byte sectors, ECC with 10-way interleave
Figure G.2 - Data field configuration, 512-byte sectors, ECC with 5-way interleaving
Annex H
(informative)

Sector retirement guidelines

This ECMA Standard assumes that up to 2048 sectors may be replaced in any of the following cases:

- A sector does not have at least two reliable Headers.
- The Sector Mark is not readable.
- A single defect of more than 30 bytes on a 1024-byte per sectors is detected. (15 bytes on a 512-byte sector)
- The total number of defective bytes exceeds 40 bytes in 1024-byte sectors (15 bytes in a 512-byte sector), or 5 bytes in one ECC interleave of a 1024-byte sector, (3 bytes in a 512-byte sector).
- The total number of defective bytes in the DMP field of a sector exceeds 2.
Annex J
(informative)

Office environment

Due to their construction and mode of operation optical disk cartridges have considerable resistance to the effects of dust particles around and inside the disk drive. Consequently it is not generally necessary to take special precautions to maintain a sufficiently low concentration of dust particles.

Operation in heavy concentrations of dust should be avoided e.g. in a machine shop or on a building site.

Office environment implies an environment in which personnel may spend a full working day without protection and without suffering temporary or permanent discomfort.
Annex K
(informative)

Transportation

K.1 As transportation occurs under a wide range of temperature and humidity variations, for differing periods, by many methods of transport and in all parts of the world it is not possible to specify conditions for transportation or for packaging.

K.2 The form of packaging should be agreed between sender and recipient or, in the absence of such agreement, is the responsibility of the sender. It should take account of the following hazards.

K.2.1 Temperature and humidity
Insulation and wrapping should be designed to maintain the conditions for storage over the estimated period of transportation.

K.2.2 Impact loads and vibration
Avoid mechanical loads that would distort the shape of the cartridge,
Avoid dropping the cartridge,
Cartridges should be packed in a rigid box containing adequate shock absorbent material,
The final box should have a clean interior and a construction that provide sealing to prevent the ingress of dirt and moisture.
Annex L
(normative)

Requirements for interchange

L.1 Equipment for writing
The disk under test shall have been written with arbitrary data by a disk drive for data interchange use in the operating environment.

L.2 Test equipment for reading
L.2.1 General
The read test shall be performed on a test drive in the test environment. The rotational frequency of the disk when reading shall be 30,0 Hz ± 0,3 Hz.
The direction of rotation shall be counter-clockwise when viewed from the objective lens.

L.2.2 Read channel
L.2.2.1 Characteristics of the optical beam
The optical beam used for reading shall comply with the requirements specified in 15.1.1 b), c), d), e) and g).
Two polarizations of the optical beam shall be used
- with the polarization linear and parallel to the tracks;
- with the polarization linear and perpendicular to the tracks.

L.2.2.2 Read power
The read power shall comply with the requirements specified in 15.1.2 a), b) and c).

L.2.2.3 Optics
The optical head used for reading shall comply with the requirements of annex A.

L.2.2.4 Read amplifier
The read amplifier after the photo detector in both channel 1 and 2 shall have a flat response from 100 kHz to 14,8 MHz within ± 1 dB.

L.2.2.5 Analog to binary conversion
The signals from the read amplifier shall be converted from analog to binary. The converter for channel 1 shall work properly for signals from pre-recorded marks with properties as defined in 17.1.2.2.
The converter for channel 2 shall work properly for signals from user-written marks with properties as defined in 15.3.

L.2.2.6 Binary-to-digital conversion
The binary signal shall be converted to a digital signal according to the rules of the recording code.

L.2.3 Tracking
The open-loop transfer function for the axial and radial tracking servo shall be

\[H = \left(\frac{2\pi f_0}{c} \right)^2 \left(\frac{1 + \frac{sc}{2\pi f_0}}{1 + \frac{s}{2\pi f_0 c}} \right) \]
where \(s = i2\pi f \), within such an accuracy that \(|1+H| \) does not deviate more than \(\pm 20\% \) from its nominal value in a bandwidth from 30 Hz to 10 kHz.

The constant \(c \) shall be 3. The open-loop 0-dB frequency \(f_o \) shall be 1 250 Hz for the axial servo and 1 740 Hz for the radial servo. The open-loop d.c. gain of the axial servo shall be at least 80 dB.

L.3 Requirements for the digital read signals

A byte error is defined by a byte in which one or more bits have a wrong setting, as detected by the error detection and correction circuit.

L.3.1 Any sector accepted as valid during the writing process shall not contain byte errors in channel 2 after the error correction circuit.

L.3.2 Any sector not accepted as valid during the writing process shall have been rewritten according to the rules for defect management.

NOTE

The rewrite criterion for a sector is given in annex H for the signals in Channel 1 and Channel 2. The rewrite percentage (limited by 17.4.2), which reflects the quality of the disk, shall be a matter of agreement between purchaser and supplier.

L.4 Requirements for the digital servo signals

The focus of the optical beam shall not jump tracks voluntarily.

L.5 Requirement for interchange

An interchanged optical disk cartridge meets the requirements for interchangeability if it meets the requirements of L.3 and L.4 when it is written on an interchange drive according to L.1 and read on a test drive according to L.2.
This Standard ECMA-153 is available free of charge from:

ECMA
114 Rue du Rhône
CH-1204 Geneva (Switzerland)

Fax: +41 22 786 52 31
Internet: helpdesk@ecma.ch
X.400: C=ch, A=arcom, P=ecma, O=genevanet, OU1=ecma, S=helpdesk