Alphabetical Reference Index to IEC 950

(IEC 950 second edition, including amendments 1 and 2)

ECMA - TR/63

December 1993
Alphabetical Reference Index to IEC 950

(IEC 950 second edition, including amendments 1 and 2)

ECMA - TR/63

December 1993
Brief history

Publication IEC 950, the safety standard for Information Technology equipment, is a large and complex document dealing with subjects as diverse as electrical safety, chemical safety, protection from heat and connection to telecommunication networks. The need and usefulness of an alphabetical reference index has been discussed frequently. It was generally considered that such an index would be useful, in that it could facilitate the use of IEC 950 both for designers and test agencies.

In April 1993, ECMA had the opportunity to organise this work. It was agreed that the document should take the form of a formal ECMA Technical Report, and as such, once approved, it would be made available for free to the any person or organisation requesting it. Incorporation of the Index in other documents is permitted, and subject to quoting the origin of the document. To this effect, a soft version is available from ECMA.

The work on the Index was closely followed by ECMA/TC12, Safety for ITE. During this work it was also agreed that the Index, modified as necessary, would be part of the second edition of Standard ECMA-129, "Information Technology Equipment - Safety". This Standard is under preparation in ECMA/TC12 and should be available in the first quarter of 1994.

Liaison was also maintained with IEC/TC74, and this index could be part of the next edition of IEC 950.

Adopted as an ECMA Technical Report by the General Assembly of December 1993
Introduction

This index relates to IEC 950 - Safety of Information Technology Equipment, and in particular to the second edition (1991), including amendments 1 (1992) and 2 (1993). This index is for information only and the selection of indexed items does not imply any particular importance. This index has been prepared under the auspices of ECMA/TC12 - Safety.

Location references are clause or sub-clause numbers or annex letters
Principal references are printed Bold

References to the Introduction (Principles of Safety) are indicated as (Introduction)

Terms that are defined in IEC 950 are printed in SMALL CAPITALS, both in the standard and in this index. Where such a term appears in the index, its definition is indicated by an asterisk, e.g. 1.2.13.1*

Comments by users of this index on its usefulness and completeness will assist ECMA in the preparation of any future edition, and will be welcomed.

A

abnormal conditions (Introduction), 1.3.1, 5.4
 heating elements 4.3.20
 overload protection 5.4.1, 5.4.3
 simulated 5.4.6
 fan not running 4.4.8
 general 4.4.1
 one at a time 1.4.12
 tests
 electrical components 5.4.6
 electromechanical components 5.4.5
 heating thermoplastic parts 5.4.10
 motors 5.4.2, B.2
 sequence of testing 1.4.3
 thermal cutout operates 1.2.11.4
 thermostats K.6
 within FIRE ENCLOSURES 4.4.6

abnormal operating conditions see abnormal conditions

access

 definitions 1.2.7
 means OPERATOR access (area) 1.2.7.1
 prevention by interlock 1.2.7.6
 restricted see RESTRICTED ACCESS LOCATION
 with a TOOL 1.7.18
 to
 controls 4.3.2
 energized parts 2.1.1
 handles, levers, knobs 2.1.8, 4.3.5
 interlocks 2.8.3, 2.8.5
 lasers 4.3.12, IEC 435
 plugs and sockets 4.3.17
 moving parts 2.8.2, 4.1.2, 4.1.3
 sharp edges 4.1.4
 TELECOMMUNICATION NETWORKS 6.3.1, 6.4.1
 terminals 3.2.8

by OPERATOR see OPERATOR ACCESS AREAS

SERVICE PERSONNEL see SERVICE ACCESS AREAS

accessibility see access

actuators, mechanical, in interlock systems 2.8.7

adjustment

 marking
 for rated voltage 1.7.4
 for thermostats etc 1.7.13
 must not create a hazard 4.3.1, 4.3.2
 worst case conditions for tests 1.4.4, 1.4.9, 2.1.2, annex H

air filters, flammability 4.4.3.1, 4.4.3.6

amplcity of

 protective earthing conductors 2.3.6, 2.5.11
 power supply cords 3.2.4
 terminals 3.3.5, 3.3.6
 wires and cables 3.1.1

apertures see openings

appliance connectors see appliance couplers

appliance couplers annex P (IEC 320)
 as disconnect devices see disconnection for servicing
 fault testing 5.4.6
 in PLUGGABLE EQUIPMENT TYPE A 1.2.5.1
 on detachable power supply cords 1.2.5.4
 reversible (unpolarized) 2.6.6

appliance inlets see also appliance couplers
 as means of connection to power 3.2.1
 that fill aperture in ENCLOSURES 4.4.4

applicability

 of requirements and tests 1.4.1
 of standard 1.1.1

arcing

 as energy hazard (Introduction)
 causing ignition of air filter 4.4.3.6
during tests for THERMAL controls
high current ignition tests
FIRE ENCLOSURE required
asbestos not to be used as insulation

B

baffles in bottoms of FIRE ENCLOSURES
barriers
for electrical separation
for special power connections
in bottoms of FIRE ENCLOSURES
no mechanical strength test within MECHANICAL ENCLOSURES

to avoid energy hazard
to prevent fire

BASIC INSULATION
application
in
internal wiring
LIMITED CURRENT CIRCUITS
ELV CIRCUITS
TNV CIRCUITS
consequences of failure
dimensions
electric strength
failure to be simulated
gap in
integrity after a test
integrity in service
interchanged with SUPPLEMENTARY INSULATION
one element of DOUBLE INSULATION
WORKING VOLTAGE
batteries
lithium and similar, requirements
lithium, marking
battery backup systems, not in Scope of standard
beads, ceramic
OPERATOR access
belts
bibliography
BODY (of equipment)
insulation
body of a transformer
body, current through a human
BOUNDING SURFACES
bridging insulation
building wiring (fixed wiring)
not in Scope of standard
BUILDING-IN,EQUIPMENT FOR
bus-bars
as internal wiring
as protective earth conductors

bushings
in metal
power cord 3.2.5, 3.2.6, 3.2.7
flammability

cables
earth conductors in multicore
earth conductors in ribbon
power
power, FIRE ENCLOSURES not required
signal

CABLES, INTERCONNECTING
calibre of conductors see ampacity

capacitors
casings, isolation
in FIRE ENCLOSURES
connected to IT POWER SYSTEMS
 mains filter
 discharging
motor
not protected by fuse
stored charge
type X (IEC 364-14)
type Y (IEC 364-14)
cathode ray tubes, mechanical strength
CCITT Recommendation K.11
CCITT Recommendation K.17
ceramic insulators, requirements
chemical hazards

circuit characteristics (definitions)
circuits
interconnection
ELV see ELV CIRCUITS
LIMITED CURRENT see LIMITED CURRENT CIRCUITS
PRIMARY see PRIMARY CIRCUITS
SECONDARY see SECONDARY CIRCUITS
SELV see SELV CIRCUITS
TNV see TNV CIRCUITS

CLASS I and CLASS II in same system
CLASS I EQUIPMENT
earthing
marking of earthing terminals
leakage current
CLASS II EQUIPMENT
earthing
leakage current
CLASS III EQUIPMENT
no requirement for electric shock
classification of equipment
CLEARANCES
see also IEC-664, interpolation, separation distances

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 kV transients assumed</td>
<td>2.9.2</td>
</tr>
<tr>
<td>adequate</td>
<td>2.2.4</td>
</tr>
<tr>
<td>ageing</td>
<td>4.3.10</td>
</tr>
<tr>
<td>as OPERATIONAL INSULATION</td>
<td>5.4.4</td>
</tr>
<tr>
<td>behind conductive ENCLOSURES</td>
<td>2.1.6</td>
</tr>
<tr>
<td>between uninsulated conductors</td>
<td>3.1.4</td>
</tr>
<tr>
<td>high altitude 5.3.2 (table 18 condition 2)</td>
<td></td>
</tr>
<tr>
<td>in encapsulated parts</td>
<td>2.9.7</td>
</tr>
<tr>
<td>in enclosed parts</td>
<td>2.9.6</td>
</tr>
<tr>
<td>increased by coatings</td>
<td>2.9.8</td>
</tr>
<tr>
<td>integrity in service</td>
<td>C.2</td>
</tr>
<tr>
<td>to tip of test finger if over 1-kV</td>
<td>2.1.2</td>
</tr>
<tr>
<td>WORKING VOLTAGE</td>
<td>2.2.7</td>
</tr>
<tr>
<td>coated printed boards</td>
<td>2.9.5</td>
</tr>
<tr>
<td>colours controls and indicators 1.7.8.2, annex P (IEC 73, ISO 3864)</td>
<td></td>
</tr>
<tr>
<td>protective earthing conductors</td>
<td>2.5.5, 3.1.6</td>
</tr>
<tr>
<td>comparative tracking index see c.t.i.</td>
<td></td>
</tr>
<tr>
<td>components (definitions) 1.2.11*</td>
<td></td>
</tr>
<tr>
<td>electro-magnetic</td>
<td>2.8.4, 5.4.5</td>
</tr>
<tr>
<td>mains 5.2.4, 5.3.2, 5.4.6, G.4.3</td>
<td></td>
</tr>
<tr>
<td>voltage rating 1.6.3, 1.6.4</td>
<td></td>
</tr>
<tr>
<td>selection 1.5, 4.4</td>
<td></td>
</tr>
<tr>
<td>separate testing 1.4.3, 2.2.3</td>
<td></td>
</tr>
<tr>
<td>conductive liquids</td>
<td>1.4.10</td>
</tr>
<tr>
<td>conductor sizes see ampacity</td>
<td></td>
</tr>
<tr>
<td>connection terminals</td>
<td>1.7.7, 3.3</td>
</tr>
<tr>
<td>connections see also disconnection definitions 1.2.5, 1.2.8.1, 1.2.12</td>
<td></td>
</tr>
<tr>
<td>between circuits 2.3.9, 2.4.6, 6.2.1.2, 6.2.1.3</td>
<td></td>
</tr>
<tr>
<td>INTERCONNECTING CABLES 1.2.11.7, 1.5.5, 3.1.1</td>
<td></td>
</tr>
<tr>
<td>to other equipment 1.2.14.5, 2.5.4, 2.10, 6.4.1</td>
<td></td>
</tr>
<tr>
<td>to protective earth</td>
<td>2.5, 3.1.6</td>
</tr>
<tr>
<td>to TELECOMMUNICATION NETWORKS Clause 6, annex P (CENELEC EN-41003, CFR-47, part 68)</td>
<td></td>
</tr>
<tr>
<td>to the supply 1.4.9, 3.1, 3.2, 3.3</td>
<td></td>
</tr>
<tr>
<td>connectors 2.3.8, 3.2.1, 3.2.3, 4.3.17</td>
<td></td>
</tr>
<tr>
<td>contact by test probe 6.2.2, 6.4.1</td>
<td></td>
</tr>
<tr>
<td>construction details</td>
<td>4.3</td>
</tr>
<tr>
<td>contact pressure 3.1.8, 3.1.9, 3.1.10, 3.3.7</td>
<td></td>
</tr>
<tr>
<td>CONTINUOUS OPERATION 1.2.2.3*, 5.1</td>
<td></td>
</tr>
<tr>
<td>control, quality see quality control</td>
<td></td>
</tr>
<tr>
<td>controls mains voltage adjustment 1.7.8</td>
<td></td>
</tr>
<tr>
<td>manual 2.1.7, 2.1.8, 4.3.2, 4.3.5, 5.3.2, G.3.2, G.4.2, annex H</td>
<td></td>
</tr>
<tr>
<td>marking 1.7.8</td>
<td></td>
</tr>
<tr>
<td>thermal 1.2.11.3, 1.2.11.4, 1.4.4, 1.5.2, 5.4.8, annex K 1.2.2.3*</td>
<td></td>
</tr>
<tr>
<td>cord anchorage bushings, flammability</td>
<td>4.4.3.5</td>
</tr>
<tr>
<td>cord anchorages, power cord</td>
<td>3.2.5</td>
</tr>
<tr>
<td>cord guards, power cord</td>
<td>3.2.7</td>
</tr>
<tr>
<td>integral with cord</td>
<td>1.2.5.5</td>
</tr>
<tr>
<td>on CLASS II EQUIPMENT</td>
<td>3.2.6</td>
</tr>
<tr>
<td>cords, power supply see power cords</td>
<td></td>
</tr>
<tr>
<td>corrosion by consumable materials 4.3.4</td>
<td></td>
</tr>
<tr>
<td>of protective earth terminals 2.5.10</td>
<td></td>
</tr>
<tr>
<td>country notes general 3.2.2, 3.2.4, M.1</td>
<td></td>
</tr>
<tr>
<td>Austria 2.3.6, 2.3.7, 2.5.2, 2.7.1, 2.11</td>
<td></td>
</tr>
<tr>
<td>Denmark 2.7.1, 2.11, 6.2.1.4, 6.4.1</td>
<td></td>
</tr>
<tr>
<td>Finland 2.7.1</td>
<td></td>
</tr>
<tr>
<td>France 1.7.2, 2.3.7, 2.7.1, 2.9.1, 2.11, 6.2.1.4</td>
<td></td>
</tr>
<tr>
<td>Norway 1.7.2, 2.3.7, 2.7.1, 2.9.1, 2.11, 6.2.1.4</td>
<td></td>
</tr>
<tr>
<td>Sweden 1.7.2, 2.3.7, 2.7.1</td>
<td></td>
</tr>
<tr>
<td>United Kingdom 2.7.1, 2.8.4</td>
<td></td>
</tr>
<tr>
<td>United States of America 4.4.4</td>
<td></td>
</tr>
<tr>
<td>coverings, protective, in place during tests 5.4.7</td>
<td></td>
</tr>
<tr>
<td>covers see also doors and covers 3.2.8, 4.2.1</td>
<td></td>
</tr>
<tr>
<td>CREEPAGE DISTANCES 1.2.10.1*, 2.2.1, 2.9.1, 2.9.3</td>
<td></td>
</tr>
<tr>
<td>see also IEC-664, interpolation, separation distances 2.2.4</td>
<td></td>
</tr>
<tr>
<td>ageing 4.3.10</td>
<td></td>
</tr>
<tr>
<td>as OPERATIONAL INSULATION 5.4.4</td>
<td></td>
</tr>
<tr>
<td>between uninsulated conductors 3.1.4</td>
<td></td>
</tr>
<tr>
<td>in encapsulated parts 2.9.7</td>
<td></td>
</tr>
<tr>
<td>in enclosed parts 2.9.6</td>
<td></td>
</tr>
<tr>
<td>in SECONDARY CIRCUITS 2.9.2 (table 5)</td>
<td></td>
</tr>
<tr>
<td>increased by coatings 2.9.8</td>
<td></td>
</tr>
<tr>
<td>integrity in service C.2</td>
<td></td>
</tr>
<tr>
<td>WORKING VOLTAGE 2.2.7</td>
<td></td>
</tr>
<tr>
<td>c.t.i. 2.9.3 (table 6), annex P (IEC-112)</td>
<td></td>
</tr>
<tr>
<td>current see also RATED CURRENT in human body (Introduction), annex Q (IEC-479)</td>
<td></td>
</tr>
<tr>
<td>input determination 1.4.9</td>
<td></td>
</tr>
<tr>
<td>input maximum 1.6.1</td>
<td></td>
</tr>
<tr>
<td>leakage (Introduction), 5.2, annex D, annex G high 1.7.12, 5.2.5, G.5</td>
<td></td>
</tr>
<tr>
<td>maximum 5.2.2, G.2</td>
<td></td>
</tr>
<tr>
<td>locked rotor B.1, B.5</td>
<td></td>
</tr>
<tr>
<td>maximum ringing signal M.2, M.3</td>
<td></td>
</tr>
<tr>
<td>r.m.s. value implied unless otherwise specified 1.2</td>
<td></td>
</tr>
<tr>
<td>current-carrying capacity see ampacity</td>
<td></td>
</tr>
<tr>
<td>CUT-OUTS, THERMAL 1.2.11.4*, 4.2.7, 4.3.20, 5.4, B.2, C.1</td>
<td></td>
</tr>
<tr>
<td>AUTOMATIC RESET 1.2.11.5*, 4.1.2</td>
<td></td>
</tr>
<tr>
<td>MANUAL RESET 1.2.11.6*</td>
<td></td>
</tr>
<tr>
<td>CLEARANCES not applicable 2.9.2</td>
<td></td>
</tr>
<tr>
<td>reliability K.5</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>d.c. component of waveform 1.4.11, 5.3.2</td>
<td></td>
</tr>
<tr>
<td>d.c. current for tests 2.5.11</td>
<td></td>
</tr>
<tr>
<td>d.c. motors, testing B.1, B.7, B.10</td>
<td></td>
</tr>
<tr>
<td>D.C. VOLTAGE see also ripple for tests, equal to a.c. peak 5.3.2, 6.4.2.2, 6.2.23</td>
<td></td>
</tr>
</tbody>
</table>
for testing capacitors 5.3.2
supply 1.4.5, 1.7.1, 6.2.1.5

DECORATIVE PARTS 1.2.6.5*, 4.4.4
see also ENCLOSURES

definitions 1.2
miscellaneous 1.2.14

DETACHABLE POWER SUPPLY CORDS see power (supply) cords

DIRECT PLUG-IN EQUIPMENT 1.2.3.6*, 3.2.1, 4.2.5, 4.3.18
disconnect devices see disconnection for servicing

disconnect 2.6
automatic 2.7, 4.3.20, 5.4.2
by interlocks 2.8
for servicing (isolation) 2.6
disconnect devices 2.6.2, 2.6.6, 2.6.7
appliances couplers 2.6.10
heating elements 4.3.20
in building installation 2.6.3, 2.6.6, 2.6.7, 2.7.1, 2.7.3
switches 2.6.5, 2.6.8
three-phase 2.6.7
multiple sources, marking 1.7.9

DISTANCES THROUGH INSULATION 2.2.4, 2.2.5, 2.9.4
of wire 2.1.3, 3.1.5

doors and covers 4.2.2, 4.3.15, 4.3.16, 4.4.7
access through 2.1.2, 2.8.2, 2.8.3
marking on 1.7.1
doors, position during stability tests 4.1.1

DOUBLE INSULATION (Introduction), 1.2.4.1, 1.2.4.2, 1.2.9.4*, 1.2.9.5
application 2.1.8, 2.2.6, C.3
in CLASS I EQUIPMENT 1.2.4.1, 2.5.1
in CLASS II EQUIPMENT 1.2.4.2, 2.5.2
in SELV CIRCUITS 2.3.3, 2.3.4, 2.3.9
in TNV CIRCUITS 6.2.1.4
on coated boards 2.9.5
BASIC and SUPPLEMENTARY can be interchanged 2.2.6
care while testing 5.3.2
dimensions 2.9.2 (table 3 condition 3, table 5 condition 2)
integrity after a test 5.4.9
integrity in service 3.3.9
unearthed parts within 2.2.6
WORKING VOLTAGE 2.2.7
duty cycles, marking short-time intermittent 1.7.3

E

earth fault protection 2.7
earth leakage current, see leakage current
electric shock (Introduction)
caused by
contact 2.1.1
heat damage 5.4.4
overload 5.4.1
stored charge 2.1.10
classification 1.2.4, 1.3.3

protection 1.3.1
by insulation 1.2.9
by interlocks 2.8.2
by TNV CIRCUITS 6.2
two levels (Introduction) 1.7.18
warning mark

electric strength tests 5.3, C.3
NOTE - electric strength tests are required in numerous places in the standard

ELECTRICAL ENCLOSURES 1.2.6.4*
see also ENCLOSURES

electrical filters 2.9.2 (table 5 condition 4), 5.2.4, 5.3.2, 5.4.6, G.4
electrochemical potentials 2.5.10, annex J
electromechanical components 2.11, 5.4.5

ELV CIRCUITS 1.2.8.4*
accessibility 2.1.1, 2.1.2, 2.1.3, 2.1.7, 3.2.1
in SERVICE ACCESS AREAS 2.1.4
as interconnection circuits 2.10.2, 2.10.3
insulation 2.2.6
reed switches in 2.8.6.3

ELV winding, meaning of term C.2 (table C.2 condition 1)
emc. see electrical filters

EN-41003 M.2, annex P
eenamel, not adequate safety insulation 2.1.2, 2.9.4
capsulated parts 2.9.7
enclosed parts 2.9.6

ENCLOSURES 4.2, 4.4.4, 5.4.9
see also ELECTRICAL ENCLOSURES, FIRE ENCLOSURES, MECHANICAL ENCLOSURES, DECORATIVE PARTS, IEC-529, IEC-1032
definitions 1.2.6*
conductive 2.1.6, 2.9.2 (table 3 condition 6)
flammability A.1, A.2, A.5
inlet bushings in 3.2.6
openings in 2.1.2, 2.9.1, 4.3.14, 4.3.15, 4.3.16

energy hazards (Introduction), 5.4.9
disconnection 2.6.11
in LIMITED CURRENT CIRCUITS 2.4.5
in OPERATOR ACCESS AREAS 2.1.1, 2.1.5
in SERVICE ACCESS AREAS 2.1.4
multiple sources 1.7.9
reduced by interlock 2.8.2
within ENCLOSURES 2.1.6

ENERGY LEVEL, HAZARDOUS 1.2.8.7*
equipment electrical ratings (definitions) 1.2.1

EQUIPMENT FOR BUILDING-IN 1.2.3.5*, 2.1.2, 5.1
explosion (impllosion) of cathode ray tube 4.2.8
of battery 1.7.17, 4.3.21, 4.4.8
of high pressure lamp 4.1.5
limit see LIMIT, EXPLOSION
F

failure 5.4.1

see also faults

of components (Introduction), 5.4.6
 of in LIMITED CURRENT CIRCUITS 2.4.1, 2.4.6
 of in SELV CIRCUITS 2.3.1, 2.3.9
 of in TNV CIRCUITS 6.2.1.2, 6.2.1.5
 mechanical 5.4.5
 of ENCLOSURES 4.1.2, 4.2.4
 of equipment to operate 4.4.6, 5.4.5
 of motor capacitors B.8
 of screwed connections 4.3.13

fault conditions
 difference between ELV and SELV CIRCUITS 2.3.3
 protection required 2.7.1, 2.7.3, 2.7.4, 4.4.3.3

fault current 2.3.6, 2.7.3, 2.7.4

faults 1.3.1, 5.4

see also abnormal conditions, failure

affecting air filters 4.4.3.6
 consequential (Introduction), 1.4.12, 1.5.3, 2.4.1
 earth 2.7.1
 in capacitors 1.4.12, 4.4.1, 4.4.3.3
 in CLASS I EQUIPMENT 2.5.1
 in LIMITED CURRENT CIRCUITS 1.2.8.6, 2.4.1
 in limited power sources 2.11
 in protective earth connections 5.2, annex G
 in ringing signal circuits M.2
 not covered in 5.4 2.7.2
 simulated 1.4.12, 2.7.4, 5.4.5, 5.4.6
 single (Introduction), 1.2.8.5, 1.2.8.6, 2.3.1, 2.11, 6.2.1.2, M.2

FCC Rules, Part 68 M.3, annex P

filters, air, flammability 4.4.3.1, 4.4.3.6

filters, electrical see electrical filters and capacitors, filter

FIRE ENCLOSURES 1.2.6.2*, 4.4.5, 4.4.6, 4.4.7, A.1, A.2, A.5

see also ENCLOSURES

air filters in 4.4.3.6

fire protection equipment, not in Scope of standard 1.1.3

fire risks (Introduction), 1.3.1, 4.4.2, annex P (IEC-695)

caused by
 batteries 4.3.21
 flammable liquids 4.4.8
 ingress of water annex T
 OPERATIONAL INSULATION 5.4.4
 overloads 5.4.1

FIXED EQUIPMENT 1.2.3.4*, 1.7.1, 3.2.2

fixing (securing) of

parts
 insulation 2.5.1, 2.9.6, 3.1.7
 inlet bushings 3.2.6
 cord guards 3.2.7
 conductors 3.3.2, 3.3.4, 3.3.7
 controls 4.3.5
 minor parts 4.3.9
 two fixings not loose at the same time 3.3.4, 4.3.9, C.2

units of equipment 1.2.3.4, 4.1.1

FLAMMABILITY CLASS

5V 1.2.13.5*, A.9
 applications 1.2.13.1, 4.4.1, 4.4.4
HB 1.2.13.8*, A.8
 applications 1.2.13.1, 4.4.3.3, 4.4.3.5, 4.4.3.6,
 4.4.1, 4.4.4
HBF (foamed material) 1.2.13.9*, A.7
 applications 1.2.13.1, 4.4.3.3, 4.4.3.6, 4.4.1
HF-1 (foamed material) 1.2.13.6*, A.7
 applications 1.2.13.1, 4.4.1
HF-2 (foamed material) 1.2.13.7*, A.7
 applications 1.2.13.1, 4.4.1
V-0 1.2.13.2*, A.6
 applications 1.2.13.1, 4.4.1, A.3.6
V-1 1.2.13.3*, A.6
 applications 1.2.13.1, 4.4.1, 4.4.2, 4.4.3.3, 4.4.3.6,
 4.4.4, 4.4.5, 4.4.6, 5.4.4
V-2 1.2.13.4*, A.6
 applications 1.2.13.1, 1.5.4, 4.4.1, 4.4.3.2, 4.4.3.3,
 4.4.3.4, 4.4.3.6

flammability 4.4.3.2

exemptions 4.4.3.3
tests annex A
 for FIRE ENCLOSURES A.1, A.2

floating parts and windings see unearthed parts and windings

foil (conductive)
in definitions 1.2.7.5, 1.2.10.3
in tests 2.9.1, 3.1.5, 5.2.2, 5.3.2, 6.4.2, G.2

frequency
 in LIMITED CURRENT CIRCUITS 2.4.2
 of supply 1.4.11, 1.7.1, 2.6.12, 3.2.1, C.1
 of test voltage 5.3.2, 6.4.2.2, annex R
 of WORKING VOLTAGE 2.2.2, 2.9.1
 ringing signal M.2, M.3
 in TNV CIRCUITS 6.4.2.1

FREQUENCY, RATED 1.2.1.4*, 1.4.6, 1.7.1, 1.7.4

FREQUENCY RANGE, RATED 1.2.1.5*, 1.4.6, 1.7.1, 1.7.4

fuses

breaking capacity 2.7.3
in neutral conductors 2.7.6
location 1.7.11, 2.7.3
marking 1.7.6
minimum number 2.7.4
not allowed in protective earth conductors 2.5.3
operating during motor tests B.2
performance 2.11 (table 9 condition 4)
protecting capacitors 5.4.8
warning to SERVICE PERSONNEL 2.7.6

G

gas discharge tubes 5.3, 6.4.2.3

see also surge arrestors

gas flame for flammability testing annex A
gases	4.3.4, 4.3.12
	1.2.13.10, 1.1.2, 4.3.12
flammable	4.4.3.3
inert	
grease	4.3.11, 4.4.8
grips	see handles
guards, mechanical	2.1.4

HAND-HELD EQUIPMENT	1.2.3.2*
leakage current	5.2.2, G.2
mechanical strength	4.2.1, 4.2.5
power cords	3.2.7, 3.2.8
RATED VOLTAGE	1.6.2
separation from TELECOMMUNICATION NETWORKS	6.4.1 (C)

handles	2.1.8
	4.3.5
	4.2.1
	2.1.7
	5.1

| HAZARDOUS ENERGY LEVEL | 1.2.8.7* |
| see also energy hazards |

HAZARDOUS VOLTAGES	1.2.8.3*
	1.7.9, 2.6.11
not to be accessible	
after tests	5.4.9
at appliance inlets	3.2.3
at connectors	3.2.1
in OPERATOR ACCESS AREAS	2.1
on thermoplastic parts	5.4.10
protection by earthing	2.5.1
separation from SELV CIRCUITS	2.3.3
separation from TNV CIRCUITS	2.6.2.1, 2.6.1.5
warning notices	1.7.9, 2.7.6

hazards	(Introduction)	1.7.18
access using a TOOL	Introduction, 1.3.1	
basis of design	1.3.2	
information to the user	1.3.2	
heat hazards	see also fire hazards	

heating	5.1
heating elements	4.3.20
high current arcing ignition tests	4.4.4, A.3
high voltage components	1.5.4
hot flaming oil tests	4.4.6, A.5
hot wire ignition tests	4.4.4, A.4
humidity	2.2.2
relative (r.h.)	4.2.6, A.6.3, A.7.3, A.8.3, A.9.3
treatment (conditioning)	2.2.3, 2.9.5, 2.9.6
hygroscopic material, not to be used as insulation	2.2.2

ICRP 26	annex H, annex Q
IEC 112	2.9.3, 2.9.5, annex P
IEC 1032	Figure 19 (p. 239), Figure 20 (p. 241), annex Q
IEC 1058	2.6.2, annex Q
IEC 227	3.2.4, annex P
IEC 245	3.2.4, annex P
IEC 320	2.3.8, 3.2.3, 3.2.4, annex P
IEC 364	1.2.8.5, annex P
IEC 364-7-707	1.7.12, annex Q
IEC 384-14	1.5.6, 1.6.4, annex P
IEC 309	1.2.5.2, annex P
IEC 417	1.7.1, 1.7.7, 1.7.8.3, annex P
IEC 410	annex Q, annex R
IEC 479	M.2, annex Q
IEC 529	annex Q
IEC 529, extract	annex T
IEC 65	1.5.4, 4.2.8, annex P
IEC 664	1.1.2, 2.9.1, 2.9.2 table 3, annex P, annex Q
IEC 695-2-2	A.2.7, annex P
IEC 73	1.7.8.2, annex P
IEC 707	1.2.13.5, 1.7.12, annex Q
IEC 825	4.13.12, annex P
IEC 83	1.7.5, 2.1.2, 2.3.8, annex P
IEC 85	1.4.7, 5.1 (table 16 condition 2), annex P
IEC 885-1	3.1.5, annex P

indicators	1.7.8.2, annex P (IEC 73, ISO 3864)
marking	1.7.8
lamps exempt from flammability requirements	4.4.3.3

information technology equipment	1.1.1
Scope of standard	
INTERCONNECTING CABLES	1.2.11.7, 1.5.5
connection to TELECOMMUNICATION NETWORKS	clause 6
interconnection of equipment	2.10

| ingress of water | 1.1.2, 2.9.6, 2.9.7, annex T |

| ink | 4.4.8 |
| ink tubes | 4.4.3.3 |

| inlet bushings, power cord | 3.2 |

| installation categories | see transients (overvoltage categories) |
interconnection see connections

INTERLOCKS see SAFETY INTERLOCKS

INTERRUPTED OPERATION 1.2.2.5*, 5.1, 5.4.8

interpolation
 insulation spacings 2.9.1, 2.9.2 (tables 3 and 5), 2.9.3,
 2.9.5 (table 7)
 electric strength test voltages 5.3.2 (table 18)

ionizing radiation (Introduction), 4.3.12, annex H

ISO 216 1.1.3, annex P
ISO 261 3.3.3, annex P
ISO 262 3.3.3, annex P
ISO 2859 annex Q, annex R
ISO 3864 1.7.18, annex P
ISO 4046 B.7, annex P
ISO 7000 1.7.1, annex P

isolation (from the supply) see disconnection for servicing

IT POWER SYSTEMS 1.2.12.3*
 heating elements 4.3.20
 leakage current annex G
 marking of equipment 1.7.10
 primary power isolation (three phase) 2.6.7
 protective devices 2.7.4
 voltage rating of components 1.6.4

K

knobs see handles

L

lamps
 high pressure 4.1.5
 left in place during tests 2.1.2
 no flammability requirement 4.4.3.3

language for instructions and marking 1.7.14

lasers (introduction), 4.3.12, annex P (IEC 825)

leakage current 5.2, annex G
 high 1.7.12, 5.2.5, G.2.5

IT power systems annex G

measuring instrument annex D

levers see handles

LIMIT, EXPLOSION 1.2.13.10*, 4.4.8

limit see maximum

LIMITED CURRENT CIRCUITS 1.2.8.6*, 2.4, 2.10.2
 in OPERATOR ACCESS AREAS 2.1.1
 in SERVICE ACCESS AREAS 2.1.4

limited power sources 2.11, 4.4.5.1, 4.4.5.2

LIMITER, TEMPERATURE 1.2.11.3*, annex K

liquids 4.3.4, 4.3.19, 4.4.3.3
 conductive 1.4.10
 flammable 4.3.12, 4.4.8
 parts in contact 5.1

louvers see also openings 4.3.16

M

mains 5.3.2, C.3 (table C.2 condition 6)
 see also PRIMARY CIRCUITS

as telecommunication transmission medium 1.2.14.5
 capacitors 1.5.6, 2.1.10
 earth 2.5.1
 frequency 1.4.11
 neutral 2.6.6

PRIMARY CIRCUITS 1.2.8.1, 5.4.6
 plugs 1.2.3.6, 3.2.1
 transients 1.1.2
 voltage 1.6.5, 1.7.1, 1.7.4, 2.2.7, 2.9.1, 2.9.2

marking 1.7
 durability 1.7.15
 equipment must be earthed 6.3.3
 high leakage current 1.7.12
 lithium batteries 1.7.17
 mating of plugs and sockets 4.3.17
 multiple sources 2.6.12
 of stabilizing devices 4.1.1
 T-marking 5.1
 unearthed parts in SERVICE ACCESS AREAS 2.5.1

material group (tracking) see c.t.i.

materials to be reliable (Introduction)

maximum
 amount of flammable liquid 4.4.8
 input current 1.6.1
 ionizing radiation 4.3.12, annex H
 leakage current 5.2.2, G.2
 levels in TNV CIRCUITS
 normal 6.2.1.1
 fault conditions 6.2.1.5
 levels in LIMITED CURRENT CIRCUITS 2.4
 levels in limited power source 2.11
 ozone level 1.7.2
 RATED VOLTAGE 1.1.1
 handheld equipment 1.6.2
 ringing signal current M.2, M.3
 ripple, see ripple 1.4.7, 5.1
 conductors 3.1.1
motors B.3
transformers C.1
voltage in SELV CIRCUITS
normal 2.3.2
fault conditions 2.3.3

MECHANICAL ENCLOSURES 1.2.6.3*, 4.1.2, 4.1.5
see also ENCLOSURES

mechanical hazards (Introduction), 2.8.2, 4.1
mechanical shock
affecting CLEARANCE 2.9.2, 2.9.6
affecting interlocks 2.8.3
mechanical strength

cathode ray tubes

4.2

drives 4.2.8

handles 4.2.1

no test in MECHANICAL ENCLOSURES 4.2.1

mobility of equipment (definitions) 1.2.3

moisture see humidity, water ingress

motor overload 5.4.2

motor tests

annex B

motor-generator sets, not in Scope of standard 1.1.3

motors

requirements

tests

annex B

locked rotor B.5

for d.c. motors B.6, B.7

for series motors B.10

for three-phase motors B.9

running overload B.4

for stepper motors B.1

MOVABLE EQUIPMENT 1.2.3.1*, 1.2.3.3

FIRE ENCLOSURES 4.4.4, A.1, A.2

leakage current 5.2.2, G.2

power supply cord flexing test 3.2.4

movable parts of equipment 2.9.1

moving parts of equipment 2.8.2, 4.1.2, 4.1.3

N

neutral conductors

marking of terminals 1.7.7

disconnected by disconnect device 2.6.6, 2.6.7

disconnected by protective device 2.7.4, 4.3.20

fuse in neutral, warning required 2.7.6

nominal mains voltages 2.2.7, 2.9.2, table 3

NON-DETACHABLE POWER SUPPLY CORDS
see power (supply) cords

NORMAL LOAD conditions 1.2.2.1*, 1.6.1, 5.1, annex L

normative references annex P

O

oil see also liquids 4.3.11, 4.4.8

hot flaring oil test A.5

openings

for power cords 3.2.6, 3.2.7

in FIRE ENCLOSURES 4.4.3.3

in OPERATOR ACCESS AREAS 2.1.2

in sides of ENCLOSURES 4.3.16

in tops of ENCLOSURES 4.3.15

measuring through ventilation 2.9.1

operating conditions (definitions) 1.2.2

operating instructions 1.2.2.1, 1.4.4, 1.7.2, 1.7.17

OPERATION, CONTINUOUS 1.2.2.3*, 5.1

OPERATION, INTERMITTENT 1.2.2.5*, 5.1, 5.4.2

OPERATION, SHORT-TIME 1.2.2.4*, 5.1, 5.4.2, 5.4.8

OPERATIONAL INSULATION
application 2.1.1, 2.1.2, 2.2.6

in transformers 2.1.3

dimensions 2.9.2, annex F

smaller spacings permitted 2.9.1, 5.4.4

electric strength 5.3.2

WORKING VOLTAGE 2.2.7

OPERATOR

servicing by OPERATOR 1.2.14.4*

handling insulation 2.9.4

high pressure lamps 4.1.5

stability 4.1.1

OPERATOR ACCESS AREAS (Introduction), 1.2.7.1*, 2.1

access probes 2.1.2, 6.2.2

batteries in 1.7.17

door in FIRE ENCLOSURE 4.4.7

energy hazard in (Introduction), 2.1.5

fuses 1.7.6

insulation of ELV CIRCUIT 2.1.3

ionizing radiation in (Introduction), 4.3.12, annex H

LIMITED CURRENT CIRCUITS 2.4.1

marking for lithium batteries 1.7.17

marking of power outlet 1.7.5

markings to be visible 1.7.1

TOOL required for access 1.2.7.3, 1.7.18

overcurrent and earth fault protection 2.7.1

overcurrent protection device 4.2.7

in limited power source 2.11

overcurrent protection for transformer 5.4.3, C.1

overriding interlocks 2.8.5

overvoltages 1.1.2, 1.2.14.5, 6.4.2.1, annex Q (K.11)

see also transients

overload

mechanical 5.4.1

electrical 3.1.1, 5.4.1, 6.2.1

motor 5.4.2, B.2 (table B.2), B.4, B.5, B.6, B.7

transformer 5.4.3, C.1
overvoltage categories see transients (overvoltage categories) 1.7.2
ozone

P

Part 68, FCC Rules M.3, annex P 1.1.3
passive devices, not in Scope of standard 1.2.14.5, 2.9.2, 6.4.2.5
peak, overvoltage 2.9.2
peak voltage, repetitive 6.3
PERMANENTLY CONNECTED EQUIPMENT 1.2.5.3*
personnel, network service 2.5.10
PERSONNEL, SERVICE see SERVICE PERSONNEL
plating, protective earth components 2.5.10
PLUGGABLE EQUIPMENT 2.3.8, 3.2.1
TYPE A
separation from TELECOMMUNICATION NETWORK 6.3.3
TYPE B 1.2.5.2*, 1.7.11, 5.2.5, G.5
discharging filter capacitors 2.1.10
isolation 2.6.2, 2.6.6
leakage current 5.2.2, G.2
overcurrent protection 2.7.3, 2.7.4
plugs 4.3.19
mismating 2.2.2, 2.9.1, 2.9.3
pollution degree 1 applies 2.9.6, 2.9.7
powder 4.3.4
containers 4.4.3.3
power 1.6
connections to equipment 3.2
distribution (definitions) 1.1.3
see also IT, TT, TN POWER SYSTEMS
factor 1.2.12
for equipment from TELECOMMUNICATION NETWORK 1.1.3
interfaces 1.6
outlets on equipment see socket-outlets on equipment
rating, marking 1.7.1, 1.7.4
sources, multiple 2.6.12
marking 1.7.9
power (supply) cords 3.2.4
DETACHABLE POWER SUPPLY CORDS 1.2.5.4*
NON-DETACHABLE POWER SUPPLY CORDS 1.2.5.5*
special 3.3.2
inside the equipment 3.1.5
screened 3.2.5
POWER SYSTEMS see IT, TN, TT POWER SYSTEMS
PRIMARY CIRCUITS 1.2.8.1*, 1.2.8.2, 2.9.2 (table 5 condition 5)
see also mains
protection 2.7.1
components in 2.8.6.1, 5.4.6
filters in 5.2, annex G
marking of switch 1.7.8.3
marking of terminals 1.7.7

PRIMARY power connections 3.2
isolation see disconnection 3.1.1
overload
principles of safety Introduction (page 17)
printed boards 2.9.4, 2.9.8
coated 2.9.5, annex F (figure F.13)
quality control 2.9.4
multi-layer 6.3
printed wiring see also printed boards 2.5.5
colour of flexible
protection
against electric shock and energy hazards 2.1
in building installations 1.7.11, 2.7.1, 2.7.3, 2.7.4
of network SERVICE PERSONNEL 6.3
of (telecommunication) equipment users 6.3, 6.4
protective coverings in place during tests 5.4.7
protective devices 1.7.11, 2.7.4
protective earth and TELECOMMUNICATION NETWORKS 6.3.2
protective earthing 2.5.1
colour of insulation 2.5.5, 3.1.6
conductors 2.5.3
materials for conductors 2.5.10
Q

quality control 2.9.2 (table 3 condition 3, table 5 condition 3), 2.9.5, 2.9.8

quality control programmes 1.1.3
R

radiation hazards (Introduction), 4.3.12, annex H
radiation, laser 4.3.12, annex P, annex Q
range of conductor sizes 3.2.8, 3.3.5
current 1.7.1
frequency see RATED FREQUENCY RANGE
voltage, see RATED VOLTAGE RANGE
RATED CURRENT 1.2.1.3*
input current not to exceed 1.6.1
marking 1.7.1
POWER SUPPLY CORD calibres 3.2.5
purpose of marking 1.7.1
range 1.7.1
terminal sizes 3.3.6
rated current of overcurrent devices 1.7.6, 2.11
RATED FREQUENCY 1.2.1.4*, 1.4.6, 1.7.1, 1.7.4
RATED FREQUENCY RANGE 1.2.1.5*, 1.4.6, 1.7.1, 1.7.4
RATED OPERATING TIME 1.2.2.2*, 1.7.3, 5.1, 5.4.8
RATED VOLTAGE 1.2.1.1*
IT EQUIPMENT 1.6.4
marking maximum value 1.7.1
600 V in Scope of standard 1.1.1
250 V for handheld equipment 1.6.2
tolerance 1.6.5
used for tests 1.4.5
when measuring input current 1.6.1
RATED VOLTAGE RANGE 1.2.1.2*
marking 1.7.1
used for tests 1.4.5
when measuring input current 1.6.1
rated voltage of fuses 1.7.6
reed switches, reliability tests 2.8.6.3
REINFORCED INSULATION (Introduction), 1.2.4.1, 1.2.4.2, 1.2.9.5*
application 2.1.8, 2.2.6, C.3
in CLASS I EQUIPMENT 1.2.4.1, 2.5.1
in CLASS II EQUIPMENT 1.2.4.2, 2.5.2
in SELV CIRCUITS 2.3.3, 2.3.4, 2.3.9
in TNV CIRCUITS 6.2.1.4
on coated boards 2.9.5
dimensions 2.9.2, annex R
electric strength 5.3.2
integrity after a test 4.2.7, 5.4.4, 5.4.6, 5.4.9
integrity in service 3.1.8, 4.3.9, 4.3.10
WORKING VOLTAGE 2.2.7
relative humidity see humidity
relays
in FIRE ENCLOSURES 1.5.1, 4.4.5.1
motor starting B.5
repetitive peak voltage 2.9.2
resistance, protective earthing conductors 2.5.11
resistance to fire see fire risk
RESTRICTED ACCESS LOCATION 1.2.7.3*, 4.3.14, 6.2.2
r.f.i. see electrical filters
ripple in D.C. VOLTAGE, definition 1.2.14.2
in WORKING VOLTAGE 2.2.7
for CLEARANCE 2.9.2 (table 5 condition 4)
for electric strength tests 5.3.2
in limited power source 2.11 (tables 8 and 9, condition 1)
r.m.s. values implied unless otherwise specified 1.2
rubber insulation 3.2.4, 4.3.10, 5.1 (table 16), annex P (IEC 245)
natural, not to be used as insulation 2.2.2
rollers 4.4.3.3
running overload tests
a.c. motors B.4
d.c. motors B.6

S
SAFETY INTERLOCKS 2.8
fail-safe operation 2.8.4
mechanical actuators 2.8.6, 2.8.7
protection 2.8.1, 2.8.2, 2.8.3
overriding interlocks
by SERVICE PERSONNEL 2.8.5
TOOLS required 2.8.5
mechanical shock affecting switches 2.8.3
switches 2.8.2, 2.9.2
SAFETY ISOLATING TRANSFORMERS
see also transformers 1.2.11.1*, 5.3.1
requirements and testing C.2
samples for test components equipment 1.5.2
1.2.14.1, 1.4.3
scope of standard 1.1
screens
earthed (Introduction), 1.4.12
for SELV CIRCUITS 2.3.5, 2.3.9
for TNV CIRCUITS 6.2.1.4
electromagnetic 2.2.6, 2.9.2 (table 5 condition 5)
mechanical 4.2.1, 4.4.3, 4.4.6
screw connections 3.1.8, 3.3.3, 4.3.13
screws
in insulating material thread cutting 3.1.9
3.1.11
sealed parts 2.9.6
SECONDARY CIRCUITS
(Introduction), 1.2.8.2*, 1.2.8.4, 1.2.8.5
CLEARANCES in 2.9.2 (table 5)
electromagnetic components in 5.4.5
where FIRE ENCLOSURE is not required 4.4.5.2
floating 2.9.2 (table 5 conditions 5 and 6)
in SERVICE ACCESS AREAS 2.1.4
WORKING VOLTAGE 5.3.2 (table 18 condition 3)
SECONDARY windings C.1
securing see fixing
SELV CIRCUITS
(Introduction), 1.2.8.5*, 2.3
accessibility 2.1.1
as interconnection circuits 2.10.2
barriers in 2.3.4
connected to earthed TNV CIRCUITS 6.2.1.3
connections to other circuits 2.3.9
connections to other equipment connectors 2.10.1
2.3.8
earthing 2.5.11
faults 1.2.8.5*, 2.3.1, 2.3.3
in transformers C.2
insulation 2.2.6
maximum voltages
normal conditions 2.3.2
fault conditions 2.3.3, 6.2.1.3
methods of protecting separation from unearthed TNV CIRCUITS 2.3.3 to 2.3.7
WORKING VOLTAGE 6.2.1.2
SEC. 2.2.7
SELV winding, meaning of term C.2 (table C.2 condition 1)
semiconductor devices see also components as surge arrestors (S.3)
faults 1.4.12, 5.4.6
in FIRE ENCLOSURES 4.4.5.1
separation distances 2.9.5, 2.9.8
under coating 2.9.5, annex R
SERVICE ACCESS AREAS 1.2.7.2*
see also SERVICE PERSONNEL
SERVICE PERSONNEL 1.2.14.3*
connectors accessible to 4.3.17
of TELECOMMUNICATION NETWORK 6.3
overriding interlocks 2.8.5
protection
by earthing 2.5.1
from unexpected hazards 2.1.4, 2.6.4
mechanical hazards 4.1.2
stability 4.1.1
warning notices 1.7.9, 2.7.6
servicing controls
servicing instructions see also SERVICE PERSONNEL
fuse ratings 1.7.6
language 1.7.14
lithium batteries 1.7.17
mains voltage adjustment 1.7.4
maintenance 1.7.2
sheaths (of power supply cords) 3.1.5, 3.2.4, 3.2.6
shields, see screens, electromagnetic
shock, electric see electric shock
shock, mechanical see mechanical shock
short-circuits 2.7
of limited power sources 2.11
of batteries 4.3.21
of insulation 2.2.7, 2.3.7, 5.4.4
of motor capacitors B.8
of parts with HAZARDOUS ENERGY LEVEL (Introduction), 2.1.4, 2.1.5
of temperature limiters in unattended equipment 5.4.8
of transformers C.1
protection against 1.7.11, 2.7, 3.1.1, 5.4.1
SHORT-TIME OPERATION 1.2.2.4*, 5.1, 5.4.8
simulated
conditions for test 1.4.9, 5.1, 5.4.7, B.2.
interference
sleeving as SUPPLEMENTARY INSULATION 3.1.5, 4.3.7
sleeving round insulating beads 3.1.7
small parts, flammability 4.4.3.3
socket-outlets
in building wiring annex P (IEC83, IEC 309)
in building wiring for DIRECT PLUG-IN EQUIPMENT 1.2.3.6, 4.3.18
for PLUGGABLE EQUIPMENT 1.2.5.1, 1.2.5.2, 1.7.2
reversible 2.6.6, 4.3.20, 6.3.3
on equipment 1.7.5
accessibility 2.1.2
loads to be taken into account 1.4.9, 5.4.6
sockets, multiway 2.3.8
mismating 4.3.17
solenoids 5.4.5
in FIRE ENCLOSURE 4.4.5.1
solid insulation 2.2.1, 2.5.1, 2.9.1
see also DISTANCES THROUGH INSULATION
electric strength 5.3.2 (table 18 condition 2)
stability 4.1
stand-by condition, marking 1.7.8.3
STATIONARY EQUIPMENT 1.2.3.3*, 1.2.3.4, 4.4.4
ENCLOSURES 4.4.4, A.1, A.2, A.5
leakage current 5.2.2, 5.2.5, G.2, G.5
temperature of earth terminal 5.1 (table 16 part 1)
strain relief
on fluid containers 4.4.8
on power cords 3.2.5
stranded conductors 1.2.5.5, 3.1.10, 3.3.4, 3.3.9, 4.3.9
stress relief on plastic materials 4.2.6, 4.2.7
sub-assembly testing 1.4.3, 5.4.6
SUPPLEMENTARY INSULATION (Introduction), 1.2.9.3*, 1.2.9.4, 1.2.9.5
application 2.1.1, 2.1.2, 2.1.9, 2.2.6, C.3
as sleeving
in cord anchorages 3.2.5
in internal wiring 2.1.3
in SELV CIRCUITS 2.3.3
on power supply cords 3.1.5
to capacitor casings 2.1.9
to isolate TELECOMMUNICATION NETWORKS 6.3.3
consequences of failure 2.3.3
dimensions 2.9.2, 2.9.3, 2.9.4, annex F, annex R
electric strength 5.3.2
gaps in 4.3.8
integrity after a test 4.2.7, 5.4.4, 5.4.6, 5.4.9
integrity in service 3.1.8, 3.3.9, 4.3.9, 4.3.10
one element of DOUBLE INSULATION 2.2.7
interchanged with BASIC INSULATION 2.2.6
WORKING VOLTAGE 2.2.7
surge arrestors 5.3, 6.3.3, 6.4.1, 6.4.23, annex S
surge protection 6.1 (table 13 condition 1)
surge suppressors see surge arrestors
switches see also IEC-1058-1
arcing 4.4.4
as disconnect devices see disconnection for servicing
forbidden in protective earth conductors 2.5.3
functional 2.6.2
in FIRE ENCLOSURES 4.4.5
in PRIMARY CIRCUITS 5.4.6
isolating 2.6.2, 2.6.5, 2.6.8
marking 1.7.8, 4.3.5
microgap 2.9.2
reed 2.8.6.3
safety interlock 2.8, 2.9.2
terminals of 3.3.3
thermal control annex K
<table>
<thead>
<tr>
<th>Section</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1.7.1, 1.7.7, 1.7.8.3</td>
</tr>
<tr>
<td>TELECOMMUNICATION NETWORKS</td>
<td>1.2.14.5*</td>
</tr>
<tr>
<td>connections to</td>
<td>1.2.11.7</td>
</tr>
<tr>
<td>equipment powered from</td>
<td>6.3.1</td>
</tr>
<tr>
<td>protection by earthing</td>
<td>6.3.2</td>
</tr>
<tr>
<td>ringing signals</td>
<td>6.2.1.1, annex M</td>
</tr>
<tr>
<td>separation from</td>
<td>6.3.3, 6.4.1</td>
</tr>
<tr>
<td>surge protection</td>
<td>6.1</td>
</tr>
<tr>
<td>TELECOMMUNICATION SIGNALS</td>
<td>1.2.14.6*</td>
</tr>
<tr>
<td>telephone ringing signals</td>
<td>6.2.1.1, annex M</td>
</tr>
<tr>
<td>temperature</td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td>B.3</td>
</tr>
<tr>
<td>motors</td>
<td>C.1</td>
</tr>
<tr>
<td>transformers</td>
<td></td>
</tr>
<tr>
<td>measurement</td>
<td>1.4.7, 1.4.8</td>
</tr>
<tr>
<td>TEMPERATURE LIMITERS</td>
<td>1.2.11.3, annex K</td>
</tr>
<tr>
<td>temperature rise</td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td>5.1</td>
</tr>
<tr>
<td>in OPERATOR ACCESS AREAS</td>
<td>5.1</td>
</tr>
<tr>
<td>of materials and components</td>
<td></td>
</tr>
<tr>
<td>of windings</td>
<td>1.4.8, annex E</td>
</tr>
<tr>
<td>measurement</td>
<td>1.4.7</td>
</tr>
<tr>
<td>temperature sensing devices</td>
<td>4.3.20</td>
</tr>
<tr>
<td>terminals</td>
<td>3.3</td>
</tr>
<tr>
<td>access</td>
<td>3.2.8</td>
</tr>
<tr>
<td>ampacity</td>
<td>3.3.5, 3.3.6</td>
</tr>
<tr>
<td>corrosion</td>
<td>2.5.10</td>
</tr>
<tr>
<td>marking</td>
<td>1.7.7</td>
</tr>
<tr>
<td>temperature</td>
<td>5.1</td>
</tr>
<tr>
<td>test</td>
<td>2.1.2, figure 19 (page 239)</td>
</tr>
<tr>
<td>pins</td>
<td>2.1.2, figure 20 (page 241)</td>
</tr>
<tr>
<td>probes</td>
<td>6.2.2</td>
</tr>
<tr>
<td>tests</td>
<td></td>
</tr>
<tr>
<td>abrasion resistance</td>
<td>2.9.5</td>
</tr>
<tr>
<td>ball-pressure</td>
<td>5.4.10, figure 21 (page 241)</td>
</tr>
<tr>
<td>drop</td>
<td>4.2.5</td>
</tr>
<tr>
<td>flammability</td>
<td>annex A</td>
</tr>
<tr>
<td>electric strength</td>
<td>5.3.2</td>
</tr>
<tr>
<td>impact</td>
<td>4.2.4</td>
</tr>
<tr>
<td>impulse voltage</td>
<td>annex S</td>
</tr>
<tr>
<td>leakage current</td>
<td>5.2, annex G</td>
</tr>
<tr>
<td>motors</td>
<td>annex A</td>
</tr>
<tr>
<td>resistance to heat and fire</td>
<td></td>
</tr>
<tr>
<td>steady force (250 N)</td>
<td>4.2.3</td>
</tr>
<tr>
<td>steady force (30 N)</td>
<td>4.2.2</td>
</tr>
<tr>
<td>steel ball</td>
<td>4.2.4</td>
</tr>
<tr>
<td>stress relief</td>
<td>4.2.6</td>
</tr>
<tr>
<td>thermal ageing</td>
<td>2.9.5</td>
</tr>
<tr>
<td>thermal cycling</td>
<td>2.9.5</td>
</tr>
<tr>
<td>transformers</td>
<td>annex C</td>
</tr>
<tr>
<td>TESTS, TYPE</td>
<td>1.2.14.1*, 1.4.2</td>
</tr>
<tr>
<td>thermal controls</td>
<td>annex K</td>
</tr>
<tr>
<td>THERMAL CUTOUTS</td>
<td>1.2.11.4*, annex K</td>
</tr>
<tr>
<td>not to operate during heating tests</td>
<td>5.1</td>
</tr>
<tr>
<td>thermoplastic parts</td>
<td>5.4.10</td>
</tr>
<tr>
<td>THERMOSTATS</td>
<td>1.2.11.2*, 5.4.8</td>
</tr>
<tr>
<td>thickness (of insulation), see DISTANCE THROUGH INSULATION</td>
<td></td>
</tr>
<tr>
<td>thin sheet material (insulation)</td>
<td>2.9.4, C.2</td>
</tr>
<tr>
<td>three-phase</td>
<td>2.6.7</td>
</tr>
<tr>
<td>disconnect devices</td>
<td>5.2.4, 5.2.5, G.4, G.5</td>
</tr>
<tr>
<td>equipment</td>
<td>2.7.4</td>
</tr>
<tr>
<td>leakage current</td>
<td>B.9</td>
</tr>
<tr>
<td>protection</td>
<td>1.7.7</td>
</tr>
<tr>
<td>motors</td>
<td></td>
</tr>
<tr>
<td>rotation, marking if critical</td>
<td></td>
</tr>
<tr>
<td>TIME, RATED OPERATING</td>
<td>1.2.2.2*, 1.7.3, 5.1, 5.4.8</td>
</tr>
<tr>
<td>TN POWER SYSTEMS</td>
<td>1.2.12.1*</td>
</tr>
<tr>
<td>leakage current</td>
<td>5.2.1</td>
</tr>
<tr>
<td>protective devices</td>
<td>2.7.4</td>
</tr>
<tr>
<td>T NV CIRCUITS</td>
<td>1.2.8.3, 1.2.8.8*, 6.2</td>
</tr>
<tr>
<td>accessibility</td>
<td>6.2.12.2</td>
</tr>
<tr>
<td>as interconnection circuits</td>
<td>2.10.2</td>
</tr>
<tr>
<td>connected to SELV CIRCUITS</td>
<td>6.2.1.3</td>
</tr>
<tr>
<td>connections to other equipment</td>
<td>2.10.1</td>
</tr>
<tr>
<td>faults</td>
<td>6.2.1.2, 6.2.1.5</td>
</tr>
<tr>
<td>insulation</td>
<td>2.2.6, 6.2.1.2</td>
</tr>
<tr>
<td>maximum limits</td>
<td>6.2.1.1</td>
</tr>
<tr>
<td>permitted as interconnection circuits</td>
<td>2.10.2</td>
</tr>
<tr>
<td>separation</td>
<td></td>
</tr>
<tr>
<td>from accessible parts</td>
<td>6.2.1.2</td>
</tr>
<tr>
<td>from HAZARDOUS VOLTAGES</td>
<td>6.2.1.4</td>
</tr>
<tr>
<td>from SELV CIRCUITS</td>
<td>6.2.1.2</td>
</tr>
<tr>
<td>tolerance</td>
<td>1.4.6</td>
</tr>
<tr>
<td>frequency</td>
<td>2.9.2</td>
</tr>
<tr>
<td>manufacturing, effect on CLEARANCE</td>
<td></td>
</tr>
<tr>
<td>voltage</td>
<td>1.4.5, 1.6.5</td>
</tr>
<tr>
<td>during tests</td>
<td>5.2.2, G.2</td>
</tr>
<tr>
<td>TOOLS</td>
<td>1.2.7.4*</td>
</tr>
<tr>
<td>not required, OPERATOR ACCESS AREAS</td>
<td>1.2.7.1</td>
</tr>
<tr>
<td>required</td>
<td></td>
</tr>
<tr>
<td>for access</td>
<td>1.2.7.3, 1.7.18, 3.2.8, annex T</td>
</tr>
<tr>
<td>for adjustment</td>
<td>1.4.4, 4.3.1, 4.3.2</td>
</tr>
<tr>
<td>for replacement of special cords</td>
<td>1.2.5.5</td>
</tr>
<tr>
<td>to override interlocks</td>
<td>2.8.5</td>
</tr>
<tr>
<td>to remove bushings</td>
<td>3.2.6</td>
</tr>
<tr>
<td>to remove guard against water ingress</td>
<td>annex T</td>
</tr>
<tr>
<td>risk of short-circuits during servicing</td>
<td>2.3.8</td>
</tr>
<tr>
<td>touch current, see leakage current</td>
<td></td>
</tr>
<tr>
<td>TRACKING</td>
<td>1.2.9.7*, 2.9.3</td>
</tr>
<tr>
<td>see also c.t.i.</td>
<td></td>
</tr>
<tr>
<td>transformers</td>
<td>1.5.3</td>
</tr>
<tr>
<td>see also SAFETY ISOLATING TRANSFORMERS</td>
<td></td>
</tr>
<tr>
<td>BODIES of</td>
<td>C.2 (table C.2 condition 7)</td>
</tr>
<tr>
<td>conductive foil as screens</td>
<td>C.2</td>
</tr>
<tr>
<td>enclosed</td>
<td>2.9.6</td>
</tr>
<tr>
<td>in FIRE ENCLOSURE</td>
<td>4.4.5.1</td>
</tr>
<tr>
<td>insulation</td>
<td>2.2.6, C.3</td>
</tr>
</tbody>
</table>
isolating 2.3.3, 2.11, 5.2.2, 6.2
maximum temperature C.1
not in Scope of standard 1.1.3
overcurrent protection 5.4.3, C.1
overload 5.4.3
protection 5.4.3
SECONDARY CIRCUIT 1.2.8.2
testing 5.4.6, C.1
WORKING VOLTAGE 2.2.7
transient voltage ratings 2.9.2 (table 3)
transients 2.9.2, 6.1
affecting WORKING VOLTAGE 2.2.7
overvoltage categories 1.1.2, (2.9.1), 2.9.2
transport
casters 4.1.1
conditions during 2.5.10, 2.9.2
precautions during 1.7.2
TT POWER SYSTEMS 1.2.12.2*
leakage current 5.2.1
protective devices 2.7.4
TYPE TESTS 1.2.14.1*, 1.4.2

V
vertical burning tests 1.2.13, 4.4.1, A.6, A.9

VOLTAGE, RATED see RATED VOLTAGE
voltage selectors 4.3.1, 5.3.2, G.3

W
water, ingress 1.1.2, 2.9.6, 2.9.7, annex T
see also IEC 529
wiring see also building wiring
ELV CIRCUITS, access 2.1.3
to be fixed securely 3.1.3
heating 5.1
insulation
flammability 4.4.3.4, A.6.2
in FIRE ENCLOSURES 4.4.5.1, 4.4.5.2
resistance to oil 4.3.11
over-current protection 2.7.2, 3.1.1
printed 2.5.5, annex F (figure F.13)
with sleeving 4.3.7
terminals
marking 1.7.7
power supply conductors 3.3
WORKING VOLTAGE 1.2.9.6*, 2.2.5, 2.2.7, 2.9, 5.3.2
affected by transients of components 2.2.7
1.6.3, 1.6.4

X
x-rays see ionizing radiation

U
ultra-violet radiation (Introduction), 4.3.12
unattended equipment, testing 5.4.8
unearted
meaning of term C.2 (table C.2 condition 3)
ENCLOSURES 2.1.6
neutral in 3-phase systems 2.7.4 (table 2)
parts and windings
accessibility 2.1.1, 2.1.2, 2.1.3
and TELECOMMUNICATION NETWORKS 6.4.1
and TNV CIRCUITS 6.2.1.2
not to be connected to capacitors 2.1.9
electric strength 5.3.2, C.3
in determination of WORKING VOLTAGE 2.2.7
separation 2.1.1, 2.1.2
from stranded wire 3.3.9
within DOUBLE INSULATION 2.2.6
SECONDARY CIRCUITS, treated as PRIMARY CIRCUITS
2.9.2, (table 5 condition 5)
SELV CIRCUITS 2.2.6
uninsulated conductors 3.1.4, 3.2.8
see also bus-bars
parts 2.3.8
users see OPERATOR
user information 1.3.2, 1.7.2
users of telecommunication equipment, protection OF 6.3, 6.4
see also OPERATOR