
ECMA/TC39/97/11

1

ECMASCRIPT LANGUAGE SPECIFICATION
ECMA COMMITTEE #39

VERSION 0.9

FEBRUARY 27, 1997

FEEDBACK
Please send feedback regarding this document to Guy Steele (Guy.Steele@east.sun.com).

ECMA/TC39/97/11

2

ECMASCRIPT LANGUAGE SPECIFICATION ECMA COMMITTEE #39 VERSION 0.9...................1

FEBRUARY 27, 1997..1

FEEDBACK..1

NOTATIONAL CONVENTIONS..7

1.1 SYNTACTIC AND LEXICAL GRAMMARS...7
1.1.1 Context-Free Grammars...7
1.1.2 The Lexical Grammar...7
1.1.3 The Numeric String Grammar...7
1.1.4 The Syntactic Grammar..7
1.1.5 Grammar Notation..8

1.2 ALGORITHM CONVENTIONS ..9

SOURCE TEXT..10

2.1 UNICODE..10
2.2 END OF SOURCE...10

LEXICAL CONVENTIONS...11

3.1 WHITE SPACE...11
3.2 COMMENTS..11
3.3 TOKENS ...12

3.3.1 Reserved Words..12
3.3.1.1 Keywords...13
3.3.1.2 Future Reserved Words..13

3.3.2 IDENTIFIERS ..13
3.3.3 PUNCTUATORS...13
3.3.4 LITERALS ..14

3.3.4.1 Null Literals...14
3.3.4.2 Boolean Literals..14
3.3.4.3 Numeric Literals..14
3.3.4.4 String Literals..16

3.4 AUTOMATIC SEMICOLON INSERTION..17

TYPES...21

4.1 THE UNDEFINED TYPE ..21
4.2 THE NULL TYPE ...21
4.3 THE BOOLEAN TYPE ...21
4.4 THE NUMBER TYPE...21
4.5 THE OBJECT TYPE ..22

4.5.1 Property Attributes...22
4.5.2 Property Access..22
4.5.2.1 HasProperty..23
4.5.2.2 Get...23
4.5.2.3 Put...23

4.6 THE STRING TYPE...23
4.7 THE INTERNAL REFERENCE TYPE ..23

4.7.1 GetBase..24
4.7.2 GetPropertyName...24
4.7.3 GetValue...24
4.7.4 PutValue...24

TYPE CONVERSION..25

5.1 TOPRIMITIVE..25

ECMA/TC39/97/11

3

5.2 TOBOOLEAN ..25
5.3 TONUMBER..25

5.3.1 ToNumber Applied to the String Type...26
5.4 TOINTEGER..27
5.5 TOINT32: (SIGNED 32 BIT INTEGER) ..27
5.6 TOUINT32: (UNSIGNED 32 BIT INTEGER)..27
5.7 TOSTRING..28

5.7.1 ToString Applied to the Number Type...28
5.8 TOOBJECT ...29

EXECUTION CONTEXTS..30

6.1 DEFINITIONS ..30
6.1.1 Function Objects..30
6.1.2 Types of Executable Code...30
6.1.3 Variable Instantiation...30
6.1.4 Scope Chain and Identifier Resolution..31
6.1.5 Global Object...31
6.1.6 Activation Object..32
6.1.7 LabelStacks..32
6.1.8 This ..32
6.1.9 Arguments Object...32

6.2 ENTERING AN EXECUTION CONTEXT..33
6.2.1 Global Code...33
6.2.2 EvalCode...33
6.2.3 Function and Anonymous Code...33
6.2.4 Host Code..33

EXPRESSIONS...34
7.1 PRIMARY EXPRESSIONS...34

7.1.1 The this Keyword..34
7.1.2 Identifier Reference..34
7.1.3 Literal Reference..34
7.1.4 The Grouping Operator..34

7.2 POSTFIX EXPRESSIONS..34
7.2.1 Property Accessors...35
7.2.2 Postfix Increment and Decrement Operators...35
7.2.3 The new Operator...36
7.2.4 Function Calls..36

7.3 UNARY OPERATORS..36
7.3.1 The delete Operator..37
7.3.2 The void Operator..37
7.3.3 The typeof Operator...37
7.3.4 Prefix Increment and Decrement Operators..37
7.3.5 Unary + and - Operators..37
7.3.6 The Bitwise NOT Operator (~) ..38
7.3.7 Logical NOT Operator (!)...38

7.4 MULTIPLICATIVE OPERATORS ...38
7.5 ADDITIVE OPERATORS..40

7.5.2 The Subtraction Operator (-)...40
7.6 BITWISE SHIFT OPERATORS...41

7.6.1 The Left Shift Operator (<<)...41
7.6.2 The Signed Right Shift Operator (>>) ...41
7.6.3 The Unsigned Right Shift Operator (>>>) ...42

7.7 RELATIONAL OPERATORS...42
7.8 EQUALITY OPERATORS...43
7.9 BINARY BITWISE OPERATORS..44
7.10 BINARY LOGICAL OPERATORS...44
7.11 CONDITIONAL OPERATOR (?:) ...45
7.12 ASSIGNMENT OPERATORS...45

ECMA/TC39/97/11

4

7.12.1 Simple Assignment (=) ..45
7.12.2 Compound Assignment (op=) ..45

7.13 COMMA OPERATOR (,) ...46

STATEMENTS...47

8.1 VARIABLE STATEMENT..47
8.2 EMPTY STATEMENT...48
8.3 EXPRESSION STATEMENT...48
8.4 THE if STATEMENT..48
8.5 ITERATION STATEMENTS ...49

8.5.1 The while Statement...49
8.5.2 The for Statement ..49
8.5.3 The for..in Statement...50

8.6 THE continue STATEMENT...50
8.7 THE break STATEMENT..51
8.8 THE return STATEMENT...51
8.9 THE with STATEMENT..51

FUNCTION DEFINITION...53

PROGRAM...54

NATIVE ECMASCRIPT OBJECTS..55

ERRORS...59

OPEN ISSUES..61
A.1 Break and continue label stacks..61
A.2 Eval function...61
A.3 Host Supplied members of scope chains vs. Implicit this. ..62

PROPOSED EXTENSIONS...63

B.1 THE CLASS STATEMENT1 ...63
Class Definition...63

B.2 THE TRY AND THROW STATEMENTS1 ..63
B.2.1 THE TRY STATEMENT1..63
B.2.2 THE THROW STATMENT1 ..64
B.3 THE DATE TYPE1 ..64
B.3.1 TODATE1...64

B.3.1.1 ToDate Applied to the String Type...64
B.4 IMPLICIT THIS3..65
B.5 THE switch STATEMENT1, 3 ..65
B.6 CONVERSION FUNCTIONS ..66
B.7 ASSIGNMENT-ONLY OPERATOR (:=)1 ...66
B.8 SEALING OF AN OBJECT2..66
B.9 THE ARGUMENTS KEYWORD3...66
B.10 PREPROCESSOR...67
B.11 THE DO..WHILE STATEMENT..67
B.12 BINARY OBJECT..67

PEOPLE CONTACTS..68

RESOLUTION HISTORY...69

D.1 JANUARY 15, 1997...69

D.1.1 White Space..69
D.1.2 Keywords..69
D.1.3 Future Reserved Words...69
D.1.4 Octal And Hex Escape Sequence Issue..69

ECMA/TC39/97/11

5

D.1.5 ToPrimitive...69
D.1.6 Hex in ToNumber..69
D.1.7 Attributes of Declared Functions and Built-in Objets..69
D.1.8 The Grouping Operator..69
D.1.9 Prefix Increment and Decrement Operators..69
D.1.10 Unary Plus...70
D.1.11 Multiplicative Operators..70
D.1.12 Additive Operators...70
D.1.13 Left Shift Operator...70
D.1.14 Binary Bitwise Operators...70
D.1.15 Conditional Operator (? :) ...70
D.1.16 Simple Assignment...70
D.1.17 The for..in Statement..70
D.1.18 The return Statement ...70
D.1.19 New Proposed Extensions...70

D.2 JANUARY 24, 1997...71

D.2.1 END OF SOURCE ...71
D.2.2 FUTURE RESERVED WORDS ...71
D.2.3 WHITE SPACE...71
D.2.4 COMMENTS ..71
D.2.5 IDENTIFIERS ..71
D.2.6 NUMERIC LITERALS ...71
D.2.7 STRING LITERALS ...71
D.2.8 AUTOMATIC SEMICOLON INSERTION..71
D.2.9 PROPERTY ATTRIBUTES ..71
D.2.10 TOPRIMITIVE..71
D.2.11 TONUMBER...71
D.2.12 WHITE SPACE ..71
D.2.13 TONUMBER APPLIED TO THE STRING TYPE ..71
D.2.14 TOSTRING ...72
D.2.15 POSTFIX INCREMENT AND DECREMENT OPERATORS ..72
D.2.16 THE TYPEOF OPERATOR..72
D.2.17 PREFIX INCREMENT AND DECREMENT OPERATORS..72
D.2.18 MULTIPLICATIVE OPERATORS...72
D.2.19 THE SUBTRACTION OPERATOR ...72
D.2.20 THE SUBTRACTION OPERATOR ..72
D.2.21 APPLYING THE ADDITIVE OPERATORS (+, -) ..72
D.2.22 EQUALITY OPERATORS...72
D.2.23 TOPRIMITIVE USAGE..72
D.2.34 BINARY LOGICAL OPERATORS..72

D.3 JANUARY 31, 1997...72

D.3.1 MULTILINECOMMENT...72
D.3.2 STRING LITERALS ..73
D.3.3 AUTOMATIC SEMICOLON INSERTION...73
D.3.4 THE NUMBER TYPE...73
D.3.5 PUT WITH EXPLICIT ACCESS MODE...73
D.3.6 PUT WITH IMPLICIT ACCESS MODE ...73
D.3.7 THE STRING TYPE ..73
D.3.8 TONUMBER...73
D.3.9 TONUMBER APPLIED TO THE STRING TYPE ..73
D.3.10 TOINT32 ...73
D.3.11 TOUINT32...73
D.3.12 EXECUTION CONTEXTS (VARIABLES)...73
D.3.13 FUNCTION CALLS...73
D.3.14 THE TYPEOF OPERATOR ...73
D.3.15 APPLYING THE % OPERATOR..73

ECMA/TC39/97/11

6

D.3.16 THE ADDITION OPERATOR (+) ..74
D.3.17 RELATIONAL OPERATORS...74
D.3.18 CONDITIONAL OPERATOR (?:)...74
D.3.19 COMPOUND ASSIGNMENT (OP=) ...74

D.4 FEBRUARY 21, 1997...74

D.4.1 UNICODE ESCAPE SEQUENCES...74
D.4.2 FUTURE RESERVED WORDS ...74
D.4.3 AUTOMATIC SEMICOLON INSERTION..74
D.4.4 THE NUMBER TYPE...74
D.4.5 NOTIMPLICIT AND NOTEXPLICIT PROPERTY ATTRIBUTES DELETED ..74
D.4.6 TOINT32 AND TOUINT32..74
D.4.7 GROUPING OPERATOR...74
D.4.8 SHIFT EXPRESSIONS..75
D.4.9 CONVERSION RULES FOR RELATIONAL OPERATORS..75
D.4.10 && AND || SEMANTICS..75
D.4.11 CONDITIONAL OPERATOR..75
D.4.12 ASSIGNMENT OPERATORS ...75
D.4.13 SYNTAX OF CLASS STATEMENT ...75
D.4.14 SYNTAX OF TRY STATEMENT...75

D.5 FEBRUARY 27, 1997...75

D.5.1 END OF MEDIUM CHARACTER IS NO LONGER WHITESPACE..75
D.5.1 AUTOMATIC SEMICOLON INSERTION..76
D.5.1 DELETE OPERATOR...76
D.5.1 && AND || SEMANTICS..76
D.5.1 SEPARATE PRODUCTIONS FOR CONTINUE, BREAK, RETURN ..76

ECMA/TC39/97/11

7

CHAPTER 1

NOTATIONAL CONVENTIONS

1.1 SYNTACTIC AND LEXICAL GRAMMARS

This section describes the context-free grammars used in this specification to define the lexical and
syntactic structure of an ECMAScript program.

1.1.1 Context-Free Grammars
A context-free grammar consists of a number of productions. Each production has an abstract symbol
called a nonterminal as its left-hand side, and a sequence of one or more nonterminal and terminal
symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a
given context-free grammar specifies a language, namely, the (pehaps infinite) set of possible
sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the
sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

1.1.2 The Lexical Grammar
A lexical grammar for ECMAScript is given in Chapter 3. This grammar has as its terminal symbols
the characters of the Unicode character set. It defines a set of productions, starting from the goal
symbol Input, that describe how sequences of Unicode characters are translated into a sequence of
input elements.
These input elements, with white space and comments discarded, form the terminal symbols for the
syntactic grammar for ECMAScript and are called ECMAScript tokens. These tokens are the reserved
words, identifiers, literals, and punctuators of the ECMAScript language.
Productions of the lexical grammar are distinguished by having two colons “::” as separating
punctuation.

1.1.3 The Numeric String Grammar
A second grammar is used for translating strings into numeric values; this grammar is similar to the
part of the lexical grammar having to do with numeric literals. This grammar appears in Chapter 5.
Productions of the numeric string grammar are distinguished by having three colons “:::” as
punctuation.

1.1.4 The Syntactic Grammar
The syntactic grammar for ECMAScript is given in Chapters 7, 8, 9, and 10. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols. It defines a set of
productions, starting from the goal symbol Program, that describe how sequences of tokens can form
syntactically correct ECMAScript programs.
Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.
The syntactic grammar as presented in Chapters 7, 8, 9, and 10 is actually not a complete account of
which token sequences are accepted as correct ECMAScript programs. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons
were added to the sequence in certain places (such as before end-of-line characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if an end-of-
line character appears in certain “awkward” places.
A LALR(1) version of the syntactic grammar is presented in Appendix E. This version provides an
exact account of which token sequences are acceptable ECMAScript programs without needing
special rules about automatically adding semicolons or forbidding end-of-line characters. However, it
is much more complex than the grammar presented in Chapters 7, 8, 9, and 10.

ECMA/TC39/97/11

8

1.1.5 Grammar Notation
Terminal symbols are shown in fixed width font in the productions of all the grammars, and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to
appear in a program exactly as written.
Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the
name of the nonterminal being defined followed by one or more colons. (The number of colons
indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WithnStatement :
with (Expression) Statement

states that the nonterminal WithStatement represents the token with, followed by a left parenthesis
token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the
syntactic definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an
ArgumentList,†followed by a comma, followed by an AssignmentExpression. This definition of
ArgumentList is recursive, that is to say, it is defined in terms of itself. The result is that an
ArgumentList may contain any positive number of arguments. Such recursive definitions of
nonterminals are common.
The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one
that omits the optional element and one that includes it. This means that:

VariableDeclaration :
Identifier Initializeropt

is a convenient abbreviation for:
VariableDeclaration :

Identifier
Identifier Initializer

and that:
IterationStatement :

for (Expressionopt ; Expressionopt ; Expressionopt) Statement
is a convenient abbreviation for:

IterationStatement :
for (; Expressionopt ; Expressionopt) Statement
for (Expression ; Expressionopt ; Expressionopt) Statement

which in turn is an abbreviation for:
IterationStatement :

for (; ; Expressionopt) Statement
for (; Expression ; Expressionopt) Statement
for (Expression ; ; Expressionopt) Statement
for (Expression ; Expression ; Expressionopt) Statement

which in turn is an abbreviation for:
IterationStatement :

for (; ;) Statement
for (; ; Expression) Statement
for (; Expression ;) Statement
for (; Expression ; Expression) Statement
for (Expression ; ;) Statement
for (Expression ; ; Expression) Statement
for (Expression ; Expression ;) Statement
for (Expression ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

ECMA/TC39/97/11

9

If the phrase “” appears in the right-hand side of a production, it indicates that the production is a
restricted production: it may not be used if a LineTerminator occurs in the input stream at the
indicated position. For example, the production:

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

indicates that the production may not be used if a LineTerminator occurs in the program between the
return token and the Expression.
When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical
grammar for ECMAScript contains the production:

ZeroToThree :: one of
0 1 2 3

which is merely a convenient abbreviation for:
ZeroToThree ::

0
1
2
3

When an alternative in a production of the lexical grammar or the numeric string grammar appears to
be a multicharacter token, it represents the sequence of characters that would make up such a token.
The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could
replace IdentifierName provided that the same sequence of characters could not replace
ReservedWord.
Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases
where it would be impractical to list all the alternatives:

SourceCharacter:
any Unicode character

1.2 ALGORITHM CONVENTIONS

We often use a numbered list to specify steps in an algorithm. When the algorithm is to produce a
value as a result, we use the directive “return x” to indicate that the result of the algorithm is the value
of x and that the algorithm should terminate. We use the notation Result(n) as short hand for “the
result of step n”. We also use Type(x) as short hand for “the type of x”. If an algorithm is defined to
“generate a runtime error”, execution of the algorithm (and any calling algorithms) is terminated and
no result is returned.

These algorithms are used to clarify semantics. In practice, there may be more efficient algorithms
available to implement a given feature.

ECMA/TC39/97/11

10

CHAPTER 2

SOURCE TEXT

2.1 UNICODE

ECMAScript source text is represented as a sequence of characters representable using theUnicode
version 2.0 character encoding. However, it is possible to represent every ECMAScript program
using only ASCII characters (which are equivalent to the first 128 Unicode characters). Non-ASCII
Unicode characters may appear only within comments and string literals; in both of those contents,
any Unicode character may be expressed as a Unicode escape sequence consisting of six ASCII
characters, namely \u plus four hexadecimal digits, and the effect is exactly the same as if the
Unicode character itself had appeared in place of the escape sequence.

SourceCharacter ::
any Unicode character

2.2 END OF SOURCE

For purposes of describing the grammar of ECMAScript, the source text is assumed to be terminated
by a logical “end of source” character. We represent the end-of-source character by <EOS>.

EndOfSource ::
<EOS>

ECMA/TC39/97/11

11

CHAPTER 3

LEXICAL CONVENTIONS
The source text of a ECMAScript program is first converted into a sequence of tokens and white
space. A token is a sequence of characters that comprise a lexical unit. The source text is scanned
from left to right, repeatedly taking the longest possible sequence of characters as the next token.

3.1 WHITE SPACE

White space characters are used to improve source text readability and to separate tokens, indivisible
lexical units, from each other but are otherwise insignificant. White space may occur between any two
tokens, but not within a token. White space may also occur inside a string, where it is significant.

The following characters are considered white space:

Unicode Value Name Formal Name
\u0009 Tab <TAB>
\u000A Line Feed <LF>
\u000B Vertical Tab <VT>
\u000C Form Feed <FF>
\u000D Carriage Return <CR>
\u0020 Space <SP>
Syntax

WhiteSpace ::
SimpleWhiteSpace WhiteSpaceopt

LineTerminator WhiteSpaceopt

Comment WhiteSpaceopt

SimpleWhiteSpace ::
<TAB>
<SP>
<FF>
<VT>

LineTerminator ::
<CR>
<LF>

LineEnd ::
LineTerminator
<EOS>

3.2 COMMENTS

Description
Comments can be either single or multi-line. Multi-line comments cannot nest.

Syntax
Comment ::

MultiLineComment
SingleLineComment

MultiLineComment ::

ECMA/TC39/97/11

12

/* MultiLineCommentCharsopt */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

PostAsteriskCommentChars ::
MultiLineNotFowardSlashChar
MultiLineCommentCharsopt

MultiLineNotAsteriskChar::
SourceCharacter but not asterisk * or <EOS>

MultiLineNotFowardSlashChar::
SourceCharacter but not forward-slash / or <EOS>

SingleLineComment ::
// SingleLineCommentCharsopt LineTerminator
// SingleLineCommentCharsopt EndOfSource

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::

SourceCharacter but not LineEnd

3.3 TOKENS

Syntax
Token ::

ReservedWord
Identifier
Punctuator
Literal
EndOfSource

3.3.1 Reserved Words
Description
Reserved words cannot be used as identifiers.

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

ECMA/TC39/97/11

13

3.3.1.1 Keywords
The following keywords are in use in either the the Borland ECMAScript implementation, the
Netscape 1.1 ECMAScript implementation, the Microsoft JScript implementation or all three.

Syntax
Keyword: one of

break continue delete else
for function if in
new return this typeof
var void while with

3.3.1.2 Future Reserved Words
The following words are used as keywords in proposed extensions and are thus reserved to allow for
the adoption for those extensions.

Syntax
FutureReservedWord : one of

arguments case catch class
default do extends finally
implicit import super switch
throw try

3.3.2 IDENTIFIERS

Description
An identifier is a sequence of letters, digits and special characters that must begin with either a letter,
the underscore (_) character or the dollar sign ($) character. ECMAScript identifiers are case
sensitive: identifiers whose characters differ only in case are considered unique.
Syntax

Identifier ::
IdentifierName but not ReservedWord

IdentifierName ::
IdentifierLetter
IdentifierName IdentifierLetter
IdentifierName DecimalDigit

IdentifierLetter :: one of
a b c d e f g h I j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
$ _

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

3.3.3 PUNCTUATORS

Syntax
Punctuator :: one of

= > < == <= >=
!= , ! ~ ? :
. && || ++ -- _

ECMA/TC39/97/11

14

- * / & | ^
% << >> >>> += -=
*= /= &= |= ^= %=
<<= >>= >>>= () {
} [] ;

3.3.4 LITERALS

Syntax
Literal ::

NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

3.3.4.1 Null Literals
Syntax

NullLiteral ::
null

Semantics
The value of the null literal true is the sole value of the null type, namely null.

3.3.4.2 Boolean Literals
Syntax

BooleanLiteral ::
true
false

Semantics
The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal false is a value of the Boolean type, namely
false.3.3.4.3 Numeric Literals
Syntax

NumericLiteral ::
IntegerLiteral
FloatingPointLiteral

IntegerLiteral ::
DecimalIntegerLiteral
HexIntegerLiteral
OctalIntegerLiteral

DecimalIntegerLiteral ::
0
NonZeroDigit DecimalDigitsopt

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

HexIntegerLiteral ::
0x HexDigit

ECMA/TC39/97/11

15

0X HexDigit
HexIntegerLiteral HexDigit

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

OctalIntegerLiteral ::
0 OctalDigit
OctalLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

FloatingPointLiteral ::
DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalIntegerLiteral ExponentPart

ExponentPart ::
ExponentIndicator SignedInteger

ExponentIndicator :: one of
e E

SignedInteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

Semantics
A numeric literal stands for a value of the number type. This value is determined in two steps: first, a
mathematically accurate value is derived from the literal; second, this mathematical value (MV) is
rounded, using IEEE 754 round-to-nearest mode , to a representable value of the number type.
For any production A :: B with a single nonterminal on its right-hand side, the MV of A is the MV of
B.
The MV of DecimalLiteral :: 0 is positive zero.
The MV of DecimalLiteral :: NonZeroDigit Digits is (the MV of NonZeroDigit times 10n) plus the
MV of Digits, where n is the number of characters in Digits.
The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus
the MV of DecimalDigit.
The MV of DecimalDigit :: 0 or of HexDigit :: 0 or of OctalDigit :: 0 is positive zero.
The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or of OctalDigit :: 1 is 1.
The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 or of OctalDigit :: 2 is 2.
The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.
The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.
The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit :: 5 is 5.
The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.
The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit :: 7 is 7.
The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 or of OctalDigit :: 8 is 8.
The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 or of OctalDigit :: 9 is 9.
The MV of HexDigit :: a or of HexDigit :: A is 10.
The MV of HexDigit :: b or of HexDigit :: B is 11.
The MV of HexDigit :: c or of HexDigit :: C is 12.
The MV of HexDigit :: d or of HexDigit :: D is 13.
The MV of HexDigit :: e or of HexDigit :: E is 14.

ECMA/TC39/97/11

16

The MV of HexDigit :: f or of HexDigit :: F is 15.
The MV of HexIntegerLiteral:: 0x HexDigit is the MV of HexDigit.
The MV of HexIntegerLiteral:: 0X HexDigit is the MV of HexDigit.
The MV of HexIntegerLiteral:: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times
16) plus the MV of HexDigit.
The MV of OctalIntegerLiteral:: 0 OctalDigit is the MV of OctalDigit.
The MV of OctalIntegerLiteral:: OctalIntegerLiteral OctalDigit is (the MV of OctalIntegerLiteral
times 8) plus the MV of OctalDigit.
The MV of FloatingPointLiteral :: DecimalIntegerLiteral . is the MV of DecimalIntegerLiteral.
The MV of FloatingPointLiteral :: DecimalIntegerLiteral . DecimalDigits is the MV of
DecimalIntegerLiteral plus (the MV of DecimalDigits times 10−n), where n is the number of
characters in DecimalDigits.
The MV of FloatingPointLiteral :: DecimalIntegerLiteral . ExponentPart is the MV of
DecimalIntegerLiteral times 10e, where e is the MV of ExponentPart.
The MV of FloatingPointLiteral :: DecimalIntegerLiteral . DecimalDigits ExponentPart is (the MV
of DecimalIntegerLiteral plus (the MV of DecimalDigits times 10−n)) times 10e, where n is the
number of characters in DecimalDigits and e is the MV of ExponentPart.
The MV of FloatingPointLiteral ::. DecimalDigits is the MV of DecimalDigits times 10−n, where n is
the number of characters in DecimalDigits.
The MV of FloatingPointLiteral ::. DecimalDigits ExponentPart DecimalDigits is the MV of
DecimalDigits times 10e−n, where n is the number of characters in DecimalDigits and e is the MV of
ExponentPart.
The MV of FloatingPointLiteral :: DecimalIntegerLiteral ExponentPart is the MV of
DecimalIntegerLiteral times 10e, where e is the MV of ExponentPart.
The MV of ExponentPart :: ExponentIndicator SignedInteger is the MV of SignedInteger.
The MV of SignedInteger :: + DecimalDigits is the MV of DecimalDigits.
The MV of SignedInteger :: - DecimalDigits is the negative of the MV of DecimalDigits.

Issue: this description, as it stands, does not take into account the resolution
that only the first 19 significant digits or so need contribute to the calculated
mathematical value. This still needs to be addressed. (It could be addressed
in the grammar itself, but it would be too messy: a couple of hundred
productions!)3.3.4.4 String Literals
A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence.

Syntax
StringLiteral ::

“ DoubleStringCharactersopt “
‘ SingleStringCharactersopt ‘

DoubleStringCharacter ::
SourceCharacter but not double-quote “or backslash \ or LineEnd
EscapeSequence

SingleStringCharacter ::
SourceCharacter but not single-quote ‘or backslash \ orLineEnd
EscapeSequence

EscapeSequence ::
CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

ECMA/TC39/97/11

17

CharacterEscapeSequence ::
\ SingleEscapeCharacter
\ NonEscapeCharacter

SingleEscapeCharacter :: one of
‘ “ \ b f n r t

NonEscapeCharacter::

SourceCharacter but not SingleEscapeCharacter or OctalDigit or x or u or LineEnd
HexEscapeSequence ::

\x HexDigit HexDigit

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

OctalEscapeSequence ::
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

ZeroToThree :: one of
0 1 2 3

UnicodeEscapeSequence ::
\u HexDigit HexDigit HexDigit HexDigit

Issue: Give a complete account of the interpretation of escape sequences.

The following table describes the set of character escape characters:

Unicode Value Escape Sequence Name Formal Name
\u0008 \b backspace <BS>
\u0009 \t horizontal tab <HT>
\u000A \n line feed (new line) <LF>
\u000C \f form feed <FF>
\u000D \r carriage return <CR>
\u0022 \” double quote “
\u0027 \’ single quote ‘
\u005C \\ backslash \

3.4 AUTOMATIC SEMICOLON INSERTION

Description
Certain ECMAScript statements (empty statement, variable statement, expression statement,
continue statement, break statement, and return statement) must each be terminated with a
semicolon. Such a semicolon may always appear explicitly in the source text. For convenience,
however, such semicolons may be omitted from the source text in certain situations. We describe such
situations by saying that semicolons are automatically inserted into the source code token stream in
those situations:

ECMA/TC39/97/11

18

• When, as the program is parsed from left to right, a token (called the offending token) is
encountered that is not allowed by any production of the grammar and the parser is not currently
parsing the header of a for statement, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

1. The offending token is separated from the previous token by at least one LineTerminator.
2. The offending token is EndOfSource.
3. The offending token is }.

 However, there is an additional overriding condition: a semicolon is never inserted automatically

if the semicolon would then be parsed as an empty statement.

• When, as the program is parsed from left to right, a token (called the restricted token) is
encountered that is allowed by some production of the grammar, but the production is a restricted
production and the restricted token is separated from the previous token by at least one
LineTerminator, then there are two cases:

1. If the parser is not currently parsing the header of a for statement, a semicolon is

automatically inserted before the restricted token.

2. If the parser is currently parsing the header of a for statement, it is a syntax error.

 These are all the restricted productions in the grammar:

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

MemberExpression :

MemberExpression [no LineTerminator here] IncrementOperator

CallExpression :
MemberExpression [no LineTerminator here] Arguments
NewCallExpression [no LineTerminator here] Arguments
CallExpression [no LineTerminator here] Arguments

 The practical effect of these restricted productions is as follows:

1. When the token return is encountered and a LineTerminator is encountered before the next
token is encountered, a semicolon is automatically inserted after the token return.

2. When the token ++ or -- is encountered where the parser would treat it as a postfix operator,

and at least one LineTerminator occurred between the preceding token and the ++ or --
token, then a semicolon is automatically inserted before the ++ or -- token.

3. When the token (is encountered where the parser would treat it as the first token of a

parenthesized Arguments list, and at least one LineTerminator occurred between the
preceding token and the (token, then a semicolon is automatically inserted before the (
token.

 The resulting practical advice to ECMAScript programmers is:

1. An Expression in a return statement should start on the same line as the return token.

2. A postfix ++ or -- operator should appear on the same line as its operand.

ECMA/TC39/97/11

19

3. The (that starts an argument list should be on the same line as the expression that indicates
the function to be called.

•

•

For example, the source

{ 1 2 } 3<EOS>

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion
rules. In contrast, the source

{ 1
2 } 3<EOS>

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{ 1
;2 ;} 3;<EOS>

which is a valid ECMAScript sentence.

The source

for (a; b
)<EOS>

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
place where a semicolon is needed is within the header of a for statement. Automatic semicolon
insertion never occurs within the header of a for statement.

The source

return
a + b<EOS>

is transformed by automatic semicolon insertion into the following:

return;
a + b;<EOS>

Note that the expression a + b is not treated as a value to be returned by the return statement,
because a LineTerminator separates it from the token return.
The source

a = b
++c<EOS>

is transformed by automatic semicolon insertion into the following:

a = b;
++c;<EOS>

ECMA/TC39/97/11

20

Note that the token ++ is not treated as a postfix operator applying to the variable b, because a
LineTerminator occurs between b and ++.

The source

if (a > b)
else c = d<EOS>

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the
else token, even though no production of the grammar applies at that point, because an
automatically inserted semicolon would then be parsed as an empty statement.

ECMA/TC39/97/11

21

CHAPTER 4

TYPES
A value is an entity that takes on one of seven types. There are six standard types and one internal
type called Reference. Values of type Reference are only used as intermediate results of expression
evaluation and cannot be stored to properties of objects.

4.1 THE UNDEFINED TYPE

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned
a value is of type undefined

4.2 THE NULL TYPE

The Null type has exactly one value, called null.

4.3 THE BOOLEAN TYPE

The Boolean type represents a logical entity and consists of exactly two unique values. One is called
true and the other is called false.

4.4 THE NUMBER TYPE

The Number type has exactly 18437736874454810627 (that is, 264−253+3) values, representing the
double-precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary
Floating-Point Arithmetic, except that the 9007199254740990 (that is, 253−2) distinct NaN values of
the IEEE Standard are represented in ECMAScript as single special NaN value.

There are two other special values, called Positive Infinity and Negative Infinity. The other
18437736874454810624 (that is, 264−253) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive number there is a
corresponding negative number having the same magnitude.

Note that there is both a positive zero and a negative zero.

The 18437736874454810622 (that is, 264−253−2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 264−254) of them are normalized, having the form

s ⋅ m ⋅ 2e

where s is +1 or −1, m is a positive integer less than 253 but not less than 252, and e is an integer
between −1073 to 971, inclusive.

The remaining 9007199254740990 (that is, 253−2) values are denormalized, having the form

s ⋅ m ⋅ 2e

where s is +1 or −1, m is a positive integer less than 253, and e is −1074.

Note that all the positive and negative integers whose magnitude is no greater than 253 are
representable in the Number type (indeed, the integer 0 has two representations, +0 and -0).

Some ECMAScript operators deal only with integers in the range −231 through 231−1, inclusive, or in
the range 0 through 232-1, inclusive. These operators accept any value of the Number type but first
converts each such value to one of 232 integer values. See the descriptions of the ToInt32 and
ToUint32 operators in sections 5.5 and 5.6 ToUint32: (unsigned 32 bit integer) respectively.

ECMA/TC39/97/11

22

.

4.5 THE OBJECT TYPE

An Object is an unordered collection of properties. Each property consists of a name, a value and a
set of attributes.

4.5.1 Property Attributes
A property can have zero or more attributes from the following set:

Attribute Descption
ReadOnly The property is a read-only property. Attempts to write to the property will be

ignored.
ErrorOnWrite This attribute has precedence over the ReadOnly attribute. Attempts to write to

the property will result in a runtime error and the property will not be changed.
DontEnum The property is not included in the for-in enumeration. See the description of the

for-in statement in section 8.5.3 The for..in Statement
DontDelete Attempts to delete the property will be ignored. See the description of the

delete operator in section 7.3.1 The delete Operator.
Internal Internal properties have no name and are not directly accessible via the property

accessor operators. How these properties are accessed is implementation
specific. How and when some of these properties are used is specified by the
language specification.

4.5.2 Property Access
Internal properties and methods are not exposed in the language. For the purposes of this document,
we give them names enclosed in double square brackets[[]]. When an algorithm uses an internal
property of an object and the object does not implement the indicated internal property, a runtime
error is generated.

There are two types of access for exposed properties: get and put, corresponding to retrieval and
assignment.

Native ECMAScript objects have an internal property called [[Prototype]]. The value of this property
is either null or an object and is used for implementing inheritance. Properties of the [[Prototype]]
object are exposed as properties of the child object for the purposes of get access, but not for put
access.

The following table summarizes the internal properties related to property access:
Property Parameters Description
[[Get]] (PropertyName) Returns the value of the property.
[[Put]] (PropertyName, Value) Sets the property to value.
[[Prototype]] None Returns the parent object.
[[HasProperty]] (PropertyName) Returns a boolean value indicating whether the object

already has a member with the given name.
[[Construct]] Optional user provided

parameters
(Constructor) Constructs an object. Invoked via the
new operator.

[[Call]] Optional user provided
parameters

(Function) Executes the object..

Assume O is an ECMAScript object and P is a string.

ECMA/TC39/97/11

23

4.5.2.1 HasProperty
When the [[HasProperty]] method of O is called with property name P, the following steps are taken:
1. If O has a property with name P, return true.
2. If the [[Prototype]] of O is null, return false.
3. Call the [[HasProperty]] method of [[Prototype]] with property name P.
4. Return Result(3).

4.5.2.2 Get
When the [[Get]] method of O is called with property name P, the following steps are taken:
1. If O doesn’t have a property with name P, go to step 4.
2. Get the value of the property.
3. Return Result(2).
4. If the [[Prototype]] of O is null, return undefined.
5. Call the [[Get]] method of [[Prototype]] with property name P.
6. Return Result(5).

4.5.2.3 Put
To aid in defining the [[Put]] method, the [[CanPut]] method is first defined. As [[CanPut]] method
is only used here (by the [[Put] method with explicit access mode), it is not included in the table in
4.5.2.

When the [[CanPut]] method of O is called with property P, the following steps are taken:
1. If O doesn’t have a property with name P, go to step 4.
2. If the property has the ErrorOnWrite attribute, generate a runtime error.
3. If the property has the ReadOnly attribute, return false.
4. If the [[Prototype]] of O is null, return true.
5. Call the [[CanPut]] method of [[Prototype]] of O with property Name P.
6. Return Result(5).

When the [[Put]] method of O is called with property P and value V, the following steps are taken:
1. Call the [[CanPut]] method of O with name P.
2. If Result(1) is false, return.
3. If O doesn’t have a property with name P, go to step 6.
4. Set the value of the property to V.
5. Return.
6. Create a property with name P, set its value to V and give it empty attributes.
7. Return.

4.6 THE STRING TYPE

The String type consists of the set of all finite sequences of zero or more Unicode characters.
Note: The concatenation operator (+), relational operators (<, >, <=, >=) and equality operators (==,
!=) apply to this type.

4.7 THE INTERNAL REFERENCE TYPE

The Internal Reference Type is not a language data type. Is it only defined here for the purposes of
aiding this specification.

A Reference is a reference to an object’s property. A Reference consists of two parts, the base object
and the property name.

In defining the semantics of ECMAScript, the following methods are defined for internal operations:
• GetBase(). Returns the base object component.

ECMA/TC39/97/11

24

• GetPropertyName(). Returns the propertyName component.
• GetValue(). Returns the value of the indicated property.
• PutValue(). Sets the indicated property to the indicated value.

Values of type Reference are only used as intermediate results of expression evaluation and cannot be
stored to properties of objects.

4.7.1 GetBase
1. If Type(V) is a Reference, return the base object component of V.
2. Generate a runtime error.

4.7.2 GetPropertyName
1. If Type(V) is a Reference, return the propertyName component of V.
2. Generate a runtime error.

4.7.3 GetValue
1. If Type(V) is not a Reference, return V.
2. Call GetBase(V).
3. If Result(2) is null, generate a runtime error.
4. Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.
5. Return Result(4).

4.7.4 PutValue
For values V and W, PutValue(V, W) performs:
1. If type (V) is not a Reference, generate a runtime error.
2. Call GetBase(V).
3. If Result(2) is null, go to step 6.
4. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W

for the value.
5. Return.
6. Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property name

and W for the value.
7. Return.

ECMA/TC39/97/11

25

CHAPTER 5

TYPE CONVERSION
The ECMAScript runtime system performs automatic type conversion as needed. To clarify the
semantics of certain constructs it is useful to define a set of conversion operators. These operators are
not a part of the language; they are defined here to aid the specification of the semantics of the
language. The conversion operators are polymorphic; that is, they can accept a value of any standard
type, but not of type Reference.

5.1 TOPRIMITIVE

The operator ToPrimitive takes a Value argument and an optional PreferredType argument. The
operator ToPrimitive attempts to convert its value argument to a non-Object type. If an object is
capable of converting to more than one primitive type, it may use the optional hint PreferredType to
favor that type. Conversion occurs according to the following table:

Input Type Result
Undefined Return the input argument (no conversion)
Null Return the input argument (no conversion)
Boolean Return the input argument (no conversion)
Number Return the input argument (no conversion)
String Return the input argument (no conversion)
Object Return the default value of the Object. The default value of an object is retrieved

by calling the interal [[DefaultValue]] method of the object passing an optional
hint preferredType. The behavior of the [[DefaultValue]] method is defined by
this specification for all native ECMAScript objects. If the return value is of type
Object or Reference, a runtime error is generated.

5.2 TOBOOLEAN

The operator ToBoolean attempts to convert its argument to a value of type Boolean according to the
following table:

Input Type Result
Undefined false
Null false
Boolean Return the input argument (no conversion)
Number 0 false

NaN false
≠≠ 0 and ≠≠ NaN true

String = "" false (where "" denotes an empty string)
≠≠ "" true

Object true

5.3 TONUMBER

The operator ToNumber attempts to convert its argument to a value of type Number according to the
following table:

Input Type Result
Undefined NaN

ECMA/TC39/97/11

26

Null NaN
Boolean true 1

false 0
Number Return the input argument (no conversion)
String See grammer and discussion below.
Object Apply the following steps:

1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

5.3.1 ToNumber Applied to the String Type
ToNumber applied to strings applies the following grammar to the input string. If the grammar
cannot interpret the string then the result of ToNumber is NaN.

StringNumericLiteral :::
StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
<TAB>
<SP>
<FF>
<VT>
<CR>
<LF>

StrNumericLiteral :::
StrIntegerLiteral
StrFloatingPointLiteral

StrIntegerLiteral :::
Signopt Digitsopt

HexIntegerLiteral

HexIntegerLiteral :::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

StrFloatingPointLiteral :::
Signopt Digits . Digitsopt ExponentPartopt

Signopt. Digits ExponentPartopt

Signopt Digits ExponentPart

ExponentPart :::
ExponentIndicator SignedInteger

ExponentIndicator ::: one of
e E

ECMA/TC39/97/11

27

SignedInteger :::
Signopt Digits

Sign ::: one of
+ -

5.4 TOINTEGER

The operator ToInteger attempts to convert its argument to an integral numeric value. This operator
functions as follows:

1. Call ToNumber on the input argument.
2. If Result(1) is NaN, return 0 (positive zero).
3. If Result(1) is ±Infinity, return Result(1).
4. Compute sign(Result(1)) * floor(abs(Result(1))).
5. Return Result(4).

5.5 TOINT32: (SIGNED 32 BIT INTEGER)
The operator ToInt32 converts its argument to one of 232 integer values in the range -231 through 231-
1, inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.
2. If Result(1) is NaN, Positive Infinity, or Negative Infinity, return 0 (positive zero).
3. Compute sign(Result(1)) * floor(abs(Result(1))).
4. If Result(3) is positive zero or negative zero, return 0 (positive zero).
5. Compute Result(3) modulo 232; that is, if Result(3) is negative, compute the value of the

expression 232 - ((1-Result(3)) % 232) - 1; otherwise compute Result(3) % 232.
6. If Result(5) is greater than or equal to 231, return Result(5)-232; otherwise return Result(4).

Discussion:
Note that the ToInt32 operation is idempotent: if applied to a result that it produced, the second
application leaves that value unchanged.

Note also that ToInt32(ToUint32(x)) is equal to ToInt32(x) for all values of x.
(It is to preserve this latter property that Positive Infinity and Negative Infinity are mapped to zero.)

5.6 TOUINT32: (UNSIGNED 32 BIT INTEGER)
1. The operator ToUint32 converts its argument to one of 232 integer values in the range 0 through

232-1, inclusive. This operator functions as follows:Call ToNumber on the input argument.
2. If Result(1) is NaN, Positive Infinity, or Negative Infinity, return 0 (positive zero).
3. Compute sign(Result(1)) * floor(abs(Result(1))).
4. If Result(3) is positive zero or negative zero, return 0 (positive zero).
5. Compute Result(3) modulo 232; that is, if Result(3) is negative, compute the value of the

expression 232 - ((1-Result(3)) % 232) - 1; otherwise compute Result(3) % 232.
6. Return Result(5).

Discussion:
Note: Step 6 is the only difference between ToUint32 and ToInt32.

Note that the ToUint32 operation is idempotent: if applied to a result that it produced, the second
application leaves that value unchanged.

Note also that ToUint32(ToInt32(x)) is equal to ToUint32(x) for all values of x.

ECMA/TC39/97/11

28

(It is to preserve this latter property that Positive Infinity and Negative Infinity are mapped to zero.)

5.7 TOSTRING

The operator ToString attempts to convert its argument to a value of type String according to the
following table:

Input Type Result
Undefined "undefined"
Null "null"
Boolean true "true"

false "false"
Number See discussion below.
String Return the input argument (no conversion)
Object Apply the following steps:

1. Call ToPrimitive(input argument, hint String).
2. Call ToString(Result(1)).
3. Return Result(2).

5.7.1 ToString Applied to the Number Type

The operator ToString converts a number to string format as follows:

• If the argument is NaN, the result is the string "NaN".

• Otherwise, the result is a string that represents the sign and magnitude (absolute value) of the
argument. If the sign is negative, the first character of the result is ‘-’; if the sign is positive, no
sign character appears in the result. As for the magnitude m:

• If m is infinity, it is represented by the characters “Infinity”; thus, positive infinity
produces the result "Infinity" and negative infinity produces the result"-Infinity".

• If m is zero, it is represented by the character ‘0’; thus, negative zero produces the result "-

0" and positive zero produces the result "0".

• If m is an integer less than 1016, then it is represented as that integer value in decimal form
with no leading zeroes and no decimal point.

• If m is greater than or equal to 10−3 but less than 1016, and is not an exact integer value, then

it is represented as the integer part (floor) of m, in decimal form with no leading zeroes,
followed by a decimal point ‘.’, followed by one or more decimal digits (see below)
representing the fractional part of m.

• If m is less than 10−3 or not less than 1016, then it is represented in so-called "computerized

scientific notation." Let n be the unique integer such that 10n ≤ m < 10n+1; then let a be the
mathematically exact quotient of m and 10n so that 1 ≤ a < 10. The magnitude is then
represented as the integer part (floor) of a, as a single decimal digit, followed by a decimal
point ‘.’, followed by one or more decimal digits (see below) representing the fractional part
of a, followed by the letter ‘E’, followed by a representation of n as a decimal integer (first a
minus sign ‘-’ if n is negative or nothing of n is not negative, followed by the decimal
representation of the magnitude of n with no leading zeros).

ECMA/TC39/97/11

29

How many digits must be printed for the fractional part of m or a? There must be at least one digit;
beyond that, there must be as many, but only as many, more digits as are needed to uniquely
distinguish the argument value from all other representable numeric values. That is, suppose that x is
the exact mathematical value represented by the decimal representation produced by this method for a
finite nonzero argument ; then d must be the value of number type nearest to x; or if two values of
thenumber type are equally close to x, then d must be one of them and the least significant bit of d
must be 0. A consequence of this specification is that ToString never produces trailing zero digits for
a fractional part.

Implementors of ECMAScript may find useful the paper and code written by David M. Gay for
binary-to-decimal conversion of floating-point numbers [Gay 1990].

5.8 TOOBJECT

The operator ToObject attempts to convert its argument to a value of type Object according to the
following table:

Input Type Result
Undefined generate a runtime error
Null generate a runtime error
Boolean Create a Boolean object whose default value is the value of the boolean. See the

Native ECMAScript Objectssection for a description of the Boolean object.
Number Create a Number object whose default value is the value of the number. See the

Native ECMAScript Objectssection for a description of the Number object.
String Create a String object whose default value is the value of the string. See the

Native ECMAScript Objectssection for a description of the String object.
Object Return the input argument (no conversion)

ECMA/TC39/97/11

30

CHAPTER 6

EXECUTION CONTEXTS
When control is transferred to ECMAScript executable code, we say that control is entering an
execution context. Active execution contexts logically form a stack. The top execution context on this
logical stack is the running execution context.

6.1 DEFINITIONS

6.1.1 Function Objects
There are four types of function objects:

• Declared functions are defined in source text by a FunctionDeclaration.
• Anonymous functions are created dynamically by using the built-in Function Object as a

constructor which we refer to as instantiating Function.
• Host functions are created at the request of the host with source text supplied by the host. The

mechanism for their creation is implementation dependent. Host functions may have any subset of
the following attributes { ImplicitThis, ImplicitParents }. These attributes are described below.

• Internal functions are built-in objects of the language, such as parseInt and Math.exp.
These functions do not contain executable code defined by the ECMAScript grammar, so are
excluded from this discussion of execution contexts.

6.1.2 Types of Executable Code
There are five types of executable ECMAScript source text:

• Global code is source text that is outside all function declarations. More precisely, the global code
of a particular ECMAScript Program consists of all SourceElements in the Program production
which come from the Statement definition.

• Eval code is the source text supplied to the built-in eval function. More precisely, if the
parameter to the built-in eval function is a string, it is treated as an ECMAScript Program. The
eval code for a particular invocation of eval is the global code portion of the string parameter.

• Function code is source text that is inside a function declaration. More precisely, the function
code of a particular ECMAScript FunctionDeclaration consists of the Block in the definition of
FunctionDeclaration.

• Anonymous code is the source text supplied when instantiating Function. More precisely, the
last parameter provided in an instantiation of Function is converted to a string and treated as
the StatementList of the Block of a FunctionDeclaration. If more than one parameter is provided
in an instantiation of Function, all parameters except the last one are converted to strings and
concatenated together, separated by commas. The resulting string is interpreted as the
FormalParameterList of a FunctionDeclaration for the StatementList defined by the last
parameter.

• Host code is the source text supplied by the host when creating a host function. The source text is
treated as the StatementList of the Block of a FunctionDeclaration. Depending on the
implementation, the host may also supply a FormalParameterList.

6.1.3 Variable Instantiation
Every execution context has associated with it a variable object. Variables declared in the source text
are
added as properties of the variable object. For global and eval code, functions defined in the source
text are added as properties of the variable object. Function declarations in other types of code are not

ECMA/TC39/97/11

31

allowed by the grammar. For function, anonymous and host code, parameters are added as properties
of the variable object.

Which object is used as the variable object and what attributes are used for the properties depends on
the
type of code, but the remainder of the behavior is generic:

• For each FunctionDeclaration in the code, in source text order, instantiate a declared function
from the FunctionDeclaration and create a property of the variable object whose name is the
Identifier in the FunctionDeclaration, whose value is the declared function and whose attributes
are determined by the type of code. If the variable object already has a property with this name,
replace its value and attributes.

• For each formal parameter, as defined in the FormalParameterList, create a property of the
variable object whose name is the Identifier and whose attributes are determined by the type of
code. The values of the parameters are supplied by the caller. If the caller supplies fewer
parameter values than there are formal parameters, the extra formal parameters have value
undefined. If two or more formal parameters share the same name, hence the same property,
the corresponding property is given the value that was supplied for the last parameter with this
name. if the value of this last parameter was not supplied by the caller, the value of the
corresponding property is undefined.

• For each VariableDeclaration in the code, create a property of the variable object whose name is
the Identifier in VariableDeclaration, whose value is undefined and whose attributes are
determined by the type of code. If there is already a property of the variable object with the name
of a declared - variable, the value of the property and its attributes are not changed. Semantically,
this step must follow the creation of the FunctionDeclaration and FormalParameterlist
properties. In particular, if a declared variable has the same name as a declared function or formal
parameter, the variable declaration does not disturb the existing property.

6.1.4 Scope Chain and Identifier Resolution
Every execution context has associated with it its own a scope chain. This is logically a list of objects
that are searched when binding an Identifier. When control enters an execution context, the scope
chain is created and is populated with an initial set of objects, depending on the type of code. When
control leaves the execution context, the scope chain is destroyed.

During execution, the scope chain of the execution context is affected only by WithStatement. When
execution enters a with block, the object specified in the with statement is added to the front of the
scope chain. When execution leaves a with block, whether normally or via a break or continue
statement, the object is removed from the scope chain. The object being removed will always be the
first object in the scope chain.

During execution, the syntactic production PrimaryExpression : Identifier is evaluated using the
following algorithm:
1. Get the next object in the scope chain. If there isn't one, go to step 5.
2. Call the [[HasProperty]] method of Result(l), passing the Identifier as the property.
3. If Result(2) is true, return a value of type Reference whose base object is Result(l), property

name is the identifier.
4. Go to step 1.
5. Return a value of type Reference whose base object is null and whose property name is

Identifier.

The result of binding an identifier is always a value of type Reference with its member name
component equal to the identifier string.

6.1.5 Global Object
There is a unique global object which is created before control enters any execution context. Initially
the global object has the following properties:

ECMA/TC39/97/11

32

• Built-in objects such as Math, String, Date, parseInt, etc. These have attributes { DontEnum }.
• Additional host defined properties. This may include a property whose value is the global object

itself, for example window in HTML.

As control enters execution contexts, and as ECMAScript code is executed, additional properties may
be added to the global object and the initial properties may be changed.

6.1.6 Activation Object
When control enters an execution context for function code, anonymous code or host code, an object
called the activation object is created and associated with the execution context. The activation object
is initialized with a single property with name arguments and property attributes { DontDelete }.
The initial value of this property is the arguments object described below. The activation object is then
used as the variable object for the purposes of variable instantiation.

The activation object is purely a specification mechanism. It is impossible for an ECMAScript
program to access the activation object. It can access members of the activation object, but not the
activation object itself. When the call operation is applied to a Reference value whose base object is an
activation object, null is used as the this value of the call.

6.1.7 LabelStacks
The definitions of the control flow statements use two 1ogical stacks, the break label stack and the
continue label slack. These are to facilitate the semantic definition of these statements and are not
intended to imply a particular implementation. Each execution context has its own label stacks, which
are created and initialized to empty when control enters the execution context When control leaves the
execution context, the label stacks are destroyed.

6.1.8 This
There is a this value associated with every active execution context. The this value depends on the
caller and the type of code being executed and is determined when control enters the execution
context. The this value associated with an execution context is immutable.

6.1.9 Arguments Object
When control enters an execution context for function, anonymous or host code, an arguments object
is created and initialized as follows:
〈 A property is created with name callee and property attributes { DontEnum }. The initial value

of this property is the function object being executed. This allows anonymous functions to be
recursive.

〈 A property is created with name length and property attributes { DontEnum }. The initial value
of this property is the number of actual parameter values supplied by the caller.

〈 For each non-negative integer, iarg, less than the value of the length property, a property is
created with name ToString(iarg) and property attributes { DontEnum }. The initial value of this
property is the value of the corresponding actual parameter supplied by the caller. The first actual
parameter value corresponds to iarg = 0, the second to iarg = 1 and so on. In the case when iarg is
less than the number of formal parameters for the function object, this property shares its value
with the corresponding property of the activation object. This means that changing this property
changes the corresponding property of the activation object and vice versa. The value sharing
mechanism depends on the implementation.

Issue: Should the arguments object have a caller property?

ECMA/TC39/97/11

33

6.2 ENTERING AN EXECUTION CONTEXT

When control enters an execution context, the scope chain is created and initialized, variable
instantiation is performed, the break label and continue label stacks are created and initialized to
empty, and the this value is determined.

The initialization of the scope chain, variable instantiation, and the determination of the this value
depend on the type of code being entered.

6.2.1 Global Code
• The scope chain is created and initialized to contain the global object and no others.
• Variable instantiation is performed using the global object as the variable object and using empty

property attributes.
• The this value is the global object.

6.2.2 EvalCode
When control enters an execution context for eval code, the previous active execution context, referred
to as the calling context, is used to determine the scope chain, the variable object, and the this
value. If there is no calling context, theninitializing the scope chain, variable instantiation, and
determination of the this value are performed just as for global code.
• The scope chain is initialized to contain the same objects, in the same order, as the calling

context's scope chain. This includes objects added to the calling context's scope chain by
WithStatement.

• Variable instantiation is performed using the calling context's variable object and using empty
property attributes.

• The this value is the same as the this value of the calling context.

6.2.3 Function and Anonymous Code
• The scope chain is initialized to contain the activation object followed by the global object.
• Variable instantiation is performed using the activation object as the variable object and using

property attributes { , DontDelete }.
• The caller provides the this value. If the this value provided by the caller is not an object

(including the case where it is null), then the this value is the global object.

6.2.4 Host Code
• The scope chain is initialized to contain the activation object as its first element.
• If the host function has the ImplicitThis attribute, the this value is placed in the scope chain after

the activation object.
• If the host function has the ImplicitParents attribute, a list of objects determined solely by the

this value, is inserted in the scope chain after the activation object and this object. Note that
this list is determined at runtime by the this value. It is not determined by any form of lexical
scoping.

• The global object is placed in the scope chain after all other objects.
• Variable instantiation is performed using the activation object as the variable object and using

attributes { DontEnum, DontDelete}
• The this value is determined just as for function and anonymous code.

ECMA/TC39/97/11

34

CHAPTER 7

EXPRESSIONS

7.1 PRIMARY EXPRESSIONS

Syntax
PrimaryExpression :

this
Identifier
Literal
(Expression)

7.1.1 The this Keyword
The this keyword evaluates to the this value of the execution context.

7.1.2 Identifier Reference
An Identifier is evaluated using the scoping rules stated in section 6.1.4 Scope Chain and Identifier
Resolution.The result of an Identifier is always a value of type Reference.

7.1.3 Literal Reference
A Literal is evaluated as described in section 3.3.4 Literals.

7.1.4 The Grouping Operator
The production PrimaryExpression : (Expression) is evaluated as follows:
1. Evaluate Expression. This may be of type Reference.
2. Return Result(1).

7.2 POSTFIX EXPRESSIONS

Syntax
MemberExpression :

PrimaryExpression
MemberExpression [Expression]
MemberExpression . Identifier
MemberExpression [no LineTerminator here] IncrementOperator

IncrementOperator :
++
--

NewExpression :
new MemberExpression

NewCallExpression :
new MemberExpression Arguments

CallExpression :
MemberExpression [no LineTerminator here] Arguments
NewCallExpression [no LineTerminator here] Arguments
CallExpression [no LineTerminator here] Arguments
CallExpression [Expression]
CallExpression . Identifier

ECMA/TC39/97/11

35

CallExpression IncrementOperator

Arguments :
()
(ArgumentList)

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

PostfixExpression :
MemberExpression
CallExpression
NewExpression

The postfix increment operators and property accessor operators [] and . appear in both the
MemberExpression and CallExpression productions. Generally we will refer to the productions
involving MemberExpression with the understanding that the same remarks apply to CallExpression.
Similarly, the CallExpression production includes three definitions involving the Arguments non-
terminal. We will refer to the definition involving CallExpression.

7.2.1 Property Accessors
Properties are accessed by name, using either the dot notation MemberExpression . Identifier or the
bracket notation MemberExpression [Expression].

The dot notation is transformed using the following syntactic conversion:

MemberExpression . Identifier

is exactly equivalent to:

MemberExpression [<identifier-string>]

where <identifier-string> is a string literal containing the same sequence of characters as the
identifier.

The production MemberExpression : MemberExpression [Expression] is evaluated as follows:
1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. Evaluate Expression.
4. Call GetValue(Result(3)).
5. Call ToObject(Result(2)).
6. Call ToString(Result(4)).
7. Return a value of type Reference whose base object is Result(5), member name is Result(6) and

access mode is explicit.

7.2.2 Postfix Increment and Decrement Operators
The production MemberExpression : MemberExpression IncrementOperator is evaluated as follows:
1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. For ++, Result(4) is Result(3) increased by one. For --, Result(4) is Result(3) decreased by one.

In either case, if Result(3) is NaN or ±Infinity, Result(4) is the same as Result(3).
5. Call PutValue(Result(1), Result(4)).
6. Return Result(32).

ECMA/TC39/97/11

36

7.2.3 The new Operator
The production NewExpression : new MemberExpression is evaluated as follows:
1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. If Type(Result(2)) is not Object, generate a runtime error.
4. If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
5. Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of

arguments).
6. If Type(Result(5)) is not Object, generate a runtime error.
7. Return Result(5).

The production NewCallExpression : new MemberExpression Arguments is evaluated as follows:
1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. For each AssignmentExpression in ArgumentList, in left to right order, evaluate

AssignmentExpression and call GetValue on the result. Keep all of these values in an internal list.
4. If Type(Result(2)) is not Object, generate a runtime error.
5. If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
6. Call the [[Construct]] method on Result(2), providing the list generated in step 3 as the

parameters.
7. If Type(Result(6)) is not Object, generate a runtime error.
8. Return Result(6).

7.2.4 Function Calls
The production CallExpression : CallExpression Arguments is evaluated as follows:
1. Evaluate CallExpression.
2. For each AssignmentExpression in ArgumentList, in left to right order, evaluate

AssignmentExpression and call GetValue on the result. Keep all of these values in an internal list.
3. Call GetValue(Result(1)).
4. If Type(Result(3)) is not Object, generate a runtime error.
5. If Result(3) does not implement the internal [[Call]] method, generate a runtime error.
6. If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Result(6) is null.
7. If Result(6) is an activation object, Result(7) is null. Otherwise, Result(7) is the same as

Result(6).
8. Call the [[Call]] method on Result(3), providing Result(7) as the this value and providing the

list generated in step 2 as the parameters.
9. Return Result(8).

Note: Result(8) will never be of type Reference for native ECMAScript objects. Whether an external
object can return a value of type Reference is implementation dependent.

7.3 UNARY OPERATORS

Syntax
UnaryExpression :

PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
IncrementOperator UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

ECMA/TC39/97/11

37

7.3.1 The delete Operator
The production UnaryExpression : delete UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetBase(Result(1)).
3. Call GetPropertyName(Result(1)).
4. If Type(Result(2)) is not Object, return true.
5. If Result(2) does not implement the internal [[Delete]] method, go to step 8.
6. Call the [[Delete]] method on Result(2), providing Result(3) as the property name to delete.
7. Return Result(7).
8. Call the [[HasProperty]] method on Result(2)), providing Result(3) as the property name to check

for.
9. If Result(8) is true, return false.
10. Return true.

7.3.2 The void Operator
The production UnaryExpression : void UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Return undefined.

7.3.3 The typeof Operator
The production UnaryExpression : typeof UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. If Type(Result(1)) is Reference and GetBase(Result(1)) is null, return "undefined".
3. Call GetValue(Result(1)).
4. Return a string determined by Type(Result(3)) according to the following table:

Type Result
Undefined "undefined"
Null "object"
Boolean "boolean"
Number "number"
String "string"
Object (native and
doesn’t implement
[[Call]])

"object"

Object (native and
implements [[Call]])

"function"

Object (external) unspecified

Issue: What does typeof return for external objects?

7.3.4 Prefix Increment and Decrement Operators
The production UnaryExpression : IncrementOperator UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. For ++, Result(4) is Result(3) increased by one. For --, Result(4) is Result(3) decreased by one.

In either case, if Result(3) is NaN or ±Infinity, Result(4) is the same as Result(3).
5. Call PutValue(Result(1), Result(4)).
6. Return Result(4).

7.3.5 Unary + and - Operators
The production UnaryExpression : + UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.

ECMA/TC39/97/11

38

2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. Return Result(3).

The production UnaryExpression : - UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. If Result(3) is NaN, return NaN.
5. Negate Result(3).
6. Return Result(5).

7.3.6 The Bitwise NOT Operator (~)
The production UnaryExpression : ~ UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToInt32(Result(2)).
4. Apply bitwise complement to Result(3).
5. Return Result(4).

7.3.7 Logical NOT Operator (!)
The production UnaryExpression : ~ UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is true, return false.
5. Return true.

7.4 MULTIPLICATIVE OPERATORS

Syntax
MultiplicativeExpression :

UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

Semanitcs
The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @
stands for one of the operators in the above definitions, is evaluated as follows:
1. Evaluate MultiplicativeExpression.
2. Call GetValue(Result(1)).
3. Evaluate UnaryExpression.
4. Call GetValue(Result(3)).
5. Call ToNumber(Result(2)).
6. Call ToNumber(Result(4)).
7. Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the discussions

below (7.4.1, 7.4.2, 7.4.3).
8. Return Result(7).

7.4.1 Applying the * Operator
The * operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECMAScript, because of finite precision.
The result of a floating-point multiplication is governed by the rules of IEEE 754 double-precision
arithmetic:

ECMA/TC39/97/11

39

• If either operand is NaN, the result is NaN.
• The sign of the result is positive if both operands have the same sign, negative if the operands

have different signs.
• Multiplication of an infinity by a zero results in NaN.
• Multiplication of an infinity by a finite non-zero value results in a signed infinity. The sign is

determined by the rule already stated above.
• In the remaining cases, where neither an infinity or NaN is involved, the product is computed and

rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

7.4 2 Applying the / Operator
The / operator performs division, producing the quotient of its operands. The left operand is the
dividend and the right operand is the divisor. ECMAScript does not perform integer division. The
operands and result of all division operations are double-precision floating-point numbers. The result
of division is determined by the specification of IEEE 754 arithmetic:

• If either operand is NaN, the result is NaN.
• The sign of the result is positive if both operands have the same sign, negative if the operands

have different signs.
• Division of an infinity by an infinity results in NaN.
• Division of an infinity by a non-zero finite value results in a signed infinity. The sign is

determined by the rule already stated above.
• Division of a finite value by an infinity results in zero.
• Division of a zero by a zero results in NaN; division of zero by any other finite value results in

zero.
• Division of a non-zero finite value by a zero results in a signed infinity. The sign is determined by

the rule already stated above.
• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is

computed and rounded to the nearest representable value using IEEE 754 round-to-nearest mode.
If the magnitude is too large to represent, we say the operation overflows; the result is then an
infinity of appropriate sign. If the magnitude is too small to represent, we say the operation
underflows and the result is zero. The ECMAScript language requires support of gradual
underflow as defined by IEEE 754.

7.4 3 Applying the % Operator
The binary % operator is said to yield the remainder of its operands from an implied division; the left
operand is the dividend and the right operand is the divisor. In C and C++, the remainder operator
accepts only integral operands, but in ECMAScript, it also accepts floating-point operands.
The result of a floating-point remainder operation as computed by the % operator is not the same as
the "remainder" operation defined by IEEE 754. The IEEE 754 "remainder" operation computes the
remainder from a rounding division, not a truncating division, and so its behavior is not analogous to
that of the usual integer remainder operator. Instead the ECMAScript language defines % on floating-
point operations to behave in a manner analogous to that of the Java integer remainder operator; this
may be compared with the C library function fmod.

The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE
arithmetic:

• If either operand is NaN, the result is NaN.
• The sign of the result equals the sign of the dividend.
• If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
• If the dividend is finite and the divisor is an infinity, the result equals the dividend.
• If the dividend is a zero and the divisor is finite, the result is zero.

ECMA/TC39/97/11

40

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-
point remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n
- (d * q) where q is an integer that is negative only if n/d is negative and positive only if n/d is
positive, and whose magnitude is as large as possible without exceeding the magnitude of the true
mathematical quotient of n and d.

7.5 ADDITIVE OPERATORS

Syntax
AdditiveExpression :

MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

7.5.1 The Addition Operator (+)
The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as
follows:
1. Evaluate AdditiveExpression.
2. Call GetValue(Result(1)).
3. Evaluate MultiplicativeExpression.
4. Call GetValue(Result(3)).
5. Call ToPrimitive(Result(2), hint Number).
6. Call ToPrimitive(Result(4), hint Number).
7. If Type(Result(5)) is String or Type(Result(6)) is String, go to step 13.
8. Call ToNumber(Result(5)).
9. Call ToNumber(Result(6)).
10. If Result(8) or Result(9) is NaN, return NaN.
11. Apply the addition operation to Result(8) and Result(9). See the discussion below.
12. Return Result(11).
13. Call ToString(Result(5)).
14. Call ToString(Result(6)).
15. Concatenate Result(13) followed by Result(14).
16. Return Result(15).

7.5.2 The Subtraction Operator (-)
The production AdditiveExpression : AdditiveExpression - MultiplicativeExpression is evaluated as
follows:
1. Evaluate AdditiveExpression.
2. Call GetValue(Result(1)).
3. Evaluate MultiplicativeExpression.
4. Call GetValue(Result(3)).
5. Call ToNumber(Result(2)).
6. Call ToNumber(Result(4)).
7. Apply the subtraction operation to Result(5) and Result(6). See the discussion below (7.5.3).
8. Return Result(7).

7.5.3 Applying the Additive Operators (+, -)
The + operator performs addition when applied to two operands of numeric type, producing the sum
of the operands. The - operator performs subtraction, producing the difference of two numeric
operands.
Addition is a commutative operation, but not always associative.
The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:

ECMA/TC39/97/11

41

• If either operand is NaN, the result is NaN.
• The sum of two infinities of opposite sign is NaN.
• The sum of two infinities of the same sign is the infinity of that sign.
• The sum of an infinity and a finite value is equal to the infinite operand.
• The sum of two zeros is zero.
• The sum of a zero and a nonzero finite value is equal to the nonzero operand.
• The sum of two nonzero finite values of the same magnitude and opposite sign is zero.
• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the

operands have the same sign or have different magnitudes, the sum is computed and rounded to
the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is too
large to represent, the operation overflows and the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, the operation underflows and the result is zero. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

• The - operator performs subtraction when applied to two operands of numeric type producing the
difference of its operands; the left operand is the minuend and the right operand is the
subtrahend. Given numeric operands a and b, it is always the case that a - b produces the same
result as a + (-b).

7.6 BITWISE SHIFT OPERATORS

Syntax
ShiftExpression :

AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Discussion
The result of evaluating ShiftExpression is always truncated to 32 bits. If the result of evaluating
ShiftExpression produces a fractional component, the factional component is discarded. The result of
evaluating AdditiveExpresion is always truncated to five bits.

7.6.1 The Left Shift Operator (<<)
Performs a bitwise left shift operation on the left argument by the amount specified by the right
argument.

The production ShiftExpression : ShiftExpression << AdditiveExpression is evaluated as follows:
1. Evaluate ShiftExpression.
2. Call GetValue(Result(1)).
3. Evaluate AdditiveExpression.
4. Call GetValue(Result(3)).
5. Call ToInt32(Result(2)).
6. Call ToInt32(Result(4)).
7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.
8. Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.
9. Return Result(8).

7.6.2 The Signed Right Shift Operator (>>)
Performs a sign-filling bitwise right shift operation on the left argument by the amount specified by
the right argument.

The production ShiftExpression : ShiftExpression >> AdditiveExpression is evaluated as follows:
1. Evaluate ShiftExpression.

ECMA/TC39/97/11

42

2. Call GetValue(Result(1)).
3. Evaluate AdditiveExpression.
4. Call GetValue(Result(3)).
5. Call ToInt32(Result(2)).
6. Call ToInt32(Result(4)).
7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.
8. Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is

propagated. The result is a signed 32 bit integer.
9. Return Result(8).

7.6.3 The Unsigned Right Shift Operator (>>>)
Performs a zero-filling bitwise right shift operation on the left argument by the amount specified by
the right argument.

The production ShiftExpression : ShiftExpression >>> AdditiveExpression is evaluated as follows:
1. Evaluate ShiftExpression.
2. Call GetValue(Result(1)).
3. Evaluate AdditiveExpression.
4. Call GetValue(Result(3)).
5. Call ToUint32(Result(2)).
6. Call ToInt32(Result(4)).
7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.
8. Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero.

The result is an unsigned 32 bit integer.
9. Return Result(8).

7.7 RELATIONAL OPERATORS

Syntax
RelationalExpression :

ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression

Semantics
In the discussion below, the following special operators will be used:

Operator Meaning
Numeric@ Where @ represents one of the relational operators. The operands are of type

Number. This is the standard IEEE operator with the provision that if either
operand is NaN, the result is false.

Character@ Where @ represents one of the relational operators. The operands are of type
String. The operands are compared character by character lexicographically in
the unicode character set. If the operands are of different length and all
corresponding characters up to the length of the shorter operand are the same,
the longer string is considered to be greater.

The production RelationalExpression : RelationalExpression @ ShiftExpression, where @ represents
one of the relational operators, is evaluated as follows:
1. Evaluate RelationalExpression.
2. Call GetValue(Result(1)).
3. Evaluate ShiftExpression.
4. Call GetValue(Result(3)).
5. Call ToPrimitive(Result(2), hint Number).
6. Call ToPrimitive(Result(4), hint Number).
7. If Type(Result(5)) is String and Type(Result(6)) is String, go to step 13.

ECMA/TC39/97/11

43

8. Call ToNumber(Result(5)).
9. Call ToNumber(Result(6)).
10. Apply Numeric@ to Result(8) and Result(9).
11. Return Result(10).
12. Call ToString(Result(5)).
13. Call ToString(Result(6)).
14. Apply Character@ to Result(12) and Result(13).
15. Return Result(14).

7.8 EQUALITY OPERATORS

Syntax
EqualityExpression :

RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

The production EqualityExpression : EqualityExpression == RelationalExpression is evaluated as
follows:
1. Evaluate EqualityExpression.
2. Call GetValue(Result(1)).
3. Evaluate RelationalExpression.
4. Call GetValue(Result(3)).
5. If Type(Result(2)) is different from Type(Result(4)),go to step 12.
6. If Type(Result(2)) is Undefined, return true.
7. If Type(Result(2)) is Null, return true.
8. If Type(Result(2)) is Number, apply Numeric== to Result(2) and Result(4) and return the result.
9. If Type(Result(2)) is String, apply Character== to Result(2) and Result(4) and return the result.
10. If Type(Result(2)) is Boolean, return true when Result(2) and Result(4) are both true or both

false. Otherwise, return false.
11. Return true if Result(2) and Result(4) refer to the same object. Otherwise, return false.
12. If Result(2) is null and Result(4) is undefined, return true.
13. If Result(2) is undefined and Result(4) is null, return true.
14. If Type(Result(2)) is Number and Type(Result(4)) is String, return the result of the comparison

ToString(Result(2)) == Result(4).
15. If Type(Result(2)) is String and Type(Result(4)) is Number, return the result of the comparison

Result(2) == ToString(Result(4)).
16. Return false.

The production EqualityExpression : EqualityExpression != RelationalExpression is evaluated as
follows:
1. Evaluate the production EqualityExpression == RelationalExpression.
2. If Result(1) is true, return false.
3. Return true.

Discussion
String comparison can be forced by: "" + a == "" + b.
Numeric comparison can be forced by: a – 0 == b – 0.
Boolean comparison can be forced by: !a == !b.

The equality operators maintain the following invariants:
1. A != B is equivalent to !(A == B).
2. A == B is equivalent to B == A, except in the order of evaluation of A and B.
3. if A == B and B == C , => A == C, assuming no side effects.

ECMA/TC39/97/11

44

As no conversions are applied to the operands, equality is always transitive.

7.9 BINARY BITWISE OPERATORS

Syntax
BitwiseANDExpression :

EqualityExpression
BitwiseANDExpression & EqualityExpression

BitwiseXORExpression :
BitwiseANDExpression
BitwiseXORExpression ̂ BitwiseANDExpression

BitwiseORExpression :
BitwiseXORExpression
BitwiseORExpression | BitwiseXORExpression

Semantics
The production A : A @ B, where @ is one of the bitwise operators in the productions above, is
evaluated as follows:
1. Evaluate A.
2. Call GetValue(Result(1)).
3. Evaluate B.
4. Call GetValue(Result(3)).
5. Call ToInt32(Result(2)).
6. Call ToInt32(Result(4)).
7. Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
8. Return Result(7).

7.10 BINARY LOGICAL OPERATORS

Syntax
LogicalANDExpression :

BitwiseORExpression
LogicalANDExpression && BitwiseORExpression

LogicalORExpression :
LogicalANDExpression
LogicalORExpression || LogicalANDExpression

Semantics
The production LogicalANDExpression : LogicalANDExpression && BitwiseORExpression is
evaluated as follows:
1. Evaluate LogicalANDExpression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, return Result(2).
5. Evaluate BitwiseORExpression.
6. Call GetValue((Result(5)).
7. Return Result(6).

The production LogicalORExpression : LogicalORExpression || LogicalANDExpression is evaluated
as follows:
1. Evaluate LogicalORExpression.
2. Call GetValue(Result(1)).

ECMA/TC39/97/11

45

3. Call ToBoolean(Result(2)).
4. If Result(3) is true, return Result(2).
5. Evaluate LogicalANDExpression.
6. Call GetValue(Result(5)).
7. Return Result(6).

7.11 CONDITIONAL OPERATOR (?:)
Syntax

ConditionalExpression :
LogicalORExpression
LogicalORExpression ? AssignmentExpression : AssignmentExpression

Semantics
The production ConditionalExpression : LogicalORExpression ? AssignmentExpression :
AssignmentExpression is evaluated as follows:
1. Evaluate LogicalORExpression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, go to step 8.
5. Evaluate the first AssignmentExpression.
6. Call GetValue(Result(5)).
7. Return Result(6).
8. Evaluate the second AssignmentExpression.
9. Call GetValue(Result(8)).
10. Return Result(9).

Issue: Add an explanation of how the grammar differs slightly from that of C and Java here.

7.12 ASSIGNMENT OPERATORS

Syntax
AssignmentExpression :

ConditionalExpression
PostfixExpression AssignmentOperator AssignmentExpression

AssignmentOperator :: one of
= *= /= %= += -= <<= >>= >>>= &= ^= |=

7.12.1 Simple Assignment (=)
The production AssignmentExpression : UnaryExpression = AssignmentExpression is evaluated as
follows:
1. Evaluate UnaryExpression.
2. Evaluate AssignmentExpression.
3. Call GetValue(Result(2)).
4. Call PutValue(Result(1), Result(3)).
5. Return Result(3).

7.12.2 Compound Assignment (op=)
The production AssignmentExpression : UnaryExpression @= AssignmentExpression, where @
represents one of operators indicated above, is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Evaluate AssignmentExpression.

ECMA/TC39/97/11

46

4. Call GetValue(Result(2)).
5. Apply operator @ to Result(3) and Result(4).
6. Call PutValue(Result(1), Result(5)).
7. Return Result(5).

7.13 COMMA OPERATOR (,)
Syntax

Expression :
AssignmentExpression
Expression , AssignmentExpression

Semantics
The production Expression : Expression , AssignmentExpression is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Evaluate AssignmentExpression.
4. Call GetValue(Result(3)).
5. Return Result(4).

ECMA/TC39/97/11

47

CHAPTER 8

STATEMENTS

Syntax
Statement :

Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement

Block :
{ StatementListopt }

StatementList :
Statement
StatementList Statement

Semantics
The production StatementList : StatementList Statement is evaluated as follows:
1. Evaluate StatementList.
2. Evaluate Statement.

8.1 VARIABLE STATEMENT

Syntax
VariableStatement :

var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclaration :
Identifier Initializeropt

Initializer :
= AssignmentExpression

Description
If the variable statement occurs inside a FunctionDeclaration, the variables are defined with function-
local scope in that function. Otherwise, they are defined with global scope, that is, they are created as
members of the global object as described in section Error! Reference source not found.. Variables
are created when the execution scope is entered. A Block does not define a new execution scope. Only
Program and FunctionDeclaration produce a new scope. Eval code and anonymous code also define a
new execution scope, but these are not an explicit part of the grammer of ECMAScript. Variables are

ECMA/TC39/97/11

48

initialized to the undefined value when created. A variable with an Initializer is assigned the value
of its AssignmentExpression when the VariableStatement is executed.

Semantics
The production VariableStatement : var VariableDeclarationList ; is evaluated as follows:
1. Evaluate VariableDeclarationList.
2. Return.

The production VariableDeclaractionList : VariableDeclarationList , VariableDeclaration is
evaluated as follows:
1. Evaluate VariableDeclarationList.
2. Evaluate VariableDeclaration.
3. Return.

The production VariableDeclaration : Identifier = AssignmentExpression is evaluated as follows:
1. Evaluate Identifier.
2. Evaluate AssignmentExpression.
3. Call GetValue(Result(2)).
4. Call PutValue(Result(1), Result(3)).
5. Return.

8.2 EMPTY STATEMENT

Syntax
EmptyStatement :

;

Semantics
The production EmptyStatement : ; is evaluated by taking no action.

8.3 EXPRESSION STATEMENT

Syntax
ExpressionStatement :

Expression ;

Semantics
The production ExpressionStatement : Expression ; is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).

8.4 THE if STATEMENT

Syntax
IfStatement :

if (Expression) Statement else Statement
if (Expression) Statement

Semantics
The production IfStatement : if (Expression) Statement1 else Statement2 is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, go to step 7.
5. Evaluate Statement1.
6. Return.
7. Evaluate Statement2.

ECMA/TC39/97/11

49

8. Return.

The production IfStatement : if (Expression) Statement is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, return.
5. Evaluate Statement.
6. Return.

8.5 ITERATION STATEMENTS

Syntax
IterationStatement :

while (Expression) Statement
for (Expressionopt ; Expressionopt ; Expressionopt) Statement
for (var VariableDeclarationList ; Expressionopt ; Expressionopt) Statement
for (Expression in Expression) Statement
for (varopt Identifier in Expression) Statement

Description
These statements all define a “continue label” and a “break label” for use by an enclosed continue
or break statement. For the purposes of this specification, a label is a step number in an algorithm.
Continue labels are held in a continue label stack and break labels are held in a break label stack.
These stacks are local to the current execution scope. To execute a continue or break statement,
execution control is transferred to the label specified by the top value of the corresponding label stack.
If an implementation of ECMAScript has distinct compile and execute phases, the label stacks need
only be maintained during compilation as the label that a continue or break statement jumps to is
not dependent on any runtime state.

The WithStatement affects both stacks for the purposes of clean up: to remove its object from the scope
chain.

In algorithms, we use “PushBreak(n)” as short hand for “Push Step(n) on the break label stack”.
Similarly we use “PushContinue(n)”, “PopBreak(n)” and “PopContinue(n)” as short hand for the
obvious phrases. We use “JumpBreak” as short hand for “Transfer execution control to the position
indicated by the top label of the break label stack” and similarly for “JumpContinue”.

8.5.1 The while Statement
The production IterationStatement : while (Expression) Statement is evaluated as follows:
1. PushContinue(3).
2. PushBreak(9).
3. Evaluate Expression.
4. Call GetValue(Result(3)).
5. Call ToBoolean(Result(4)).
6. If Result(5) is false, go to 9.
7. Evaluate Statement.
8. Go to step 3.
9. PopBreak(9).
10. PopContinue(3).
11. Return.

8.5.2 The for Statement
The production IterationStatement : for (Expression1 ; Expression2 ; Expression3) Statement is
evaluated as follows:
1. PushContinue(10).

ECMA/TC39/97/11

50

2. PushBreak(13).
3. Evaluate Expression1.
4. Call GetValue(Result(3)).
5. Evaluate Expression2.
6. Call GetValue(Result(5)).
7. Call ToBoolean(Result(6)).
8. If Result(7) is false, go to step 13.
9. Evaluate Statement.
10. Evaluate Expression3.
11. Call GetValue(Result(10)).
12. Go to step 5.
13. PopBreak(13).
14. PopContinue(10).
15. Return.

If Expression1 is omitted from the source text, steps 3 and 4 are omitted from execution. If
Expression2 is omitted from the source text, step 5 is omitted from execution and the result of step 5 is
true. If Expression3 is omitted from the source text, steps 10 and 11 are omitted from execution.

Issue: define the var version.

8.5.3 The for..in Statement
The production IterationStatement : for (Expression1 in Expression2) Statement is evaluated as
follows:
1. PushContinue(6).
2. PushBreak(11).
3. Evaluate Expression2.
4. Call GetValue(Result(3)).
5. Call ToObject(Result(4)).
6. Get the name of the next property of Result(5) which doesn’t have the DontEnum attribute. If

there is no such property, go to step 11.
7. Evaluate Expression1.
8. Call PutValue(Result(7), Result(6)).
9. Evaluate Statement.
10. Go to step 6.
11. PopBreak(11).
12. PopContinue(6).
13. Return.

The mechanics of enumerating the properties (step 6) is implementation dependent. The order of
enumeration is defined by the object. Properties of the object being enumerated may be deleted
during enumeration. If a property that has not yet been visited during enumeration is deleted, then it
will not be visited. If new properties are added to the object being enumerated during enumeration, the
newly added properties are not guaranteed to be visited in the active enumeration.

Issue: define the var version.

8.6 THE continue STATEMENT

Syntax
ContinueStatement :

continue ;

The continue statement can only be used when the continue label stack contains at least one label.
This is only the case inside a while, for, or for..in loop. The continue statement is evaluated as:
1. JumpContinue.

ECMA/TC39/97/11

51

See section 8.5 Iteration Statements for a description of the continue label stack and the
JumpContinue directive.

8.7 THE break STATEMENT

Syntax
BreakStatement :

break ;

The break statement can only be used when the break label stack contains at least one label. This is
only the case inside a while, for or for..in loop. The break statement is evaluated as:
1. JumpBreak

See section 8.5 Iteration Statements for a description of the break label stack and the JumpBreak
directive.

8.8 THE return STATEMENT

Syntax
ReturnStatement :

return [no LineTerminator here] Expressionopt ;

The return statement can only be used inside the Block of a FunctionDeclaration. It causes a
function to cease execution and return a value to the caller. If Expression is omitted, the return value
is the undefined value. Otherwise, the return value is the value of Expression.

8.9 THE with STATEMENT

Syntax
WithStatement :

with (Expression) Statement

Description
The WithStatement affects the break label stack and continue label stack for clean up purposes only.

Semantics
The production WithStatement : with (Expression) Statement is evaluated as follows:
1. If the continue label stack is not empty, PushContinue(12).
2. If the break label stack is not empty, PushBreak(16).
3. Evaluate Expression.
4. Call GetValue(Result(3)).
5. Call ToObject(Result(4)).
6. Add Result(5) to the front of the scope chain.
7. Evaluate Statement.
8. Remove Result(5) from the front of the scope chain.
9. If the break label stack is not empty, PopBreak(16).
10. If the continue label stack is not empty, PopContinue(12).
11. Return.
12. Remove Result(5) from the front of the scope chain.
13. If the break label stack is not empty, PopBreak(16).
14. PopContinue(12).
15. JumpContinue.
16. Remove Result(5) from the front of the scope chain.
17. PopBreak(16).
18. If the continue label stack is not empty, PopContinue(12).
19. JumpBreak.

Discussion

ECMA/TC39/97/11

52

Most of the complexity of this algorithm is to handle jumps out of the WithStatement. Any jumps out
of the WithStatement must be trapped to remove the object from the scope chain.

ECMA/TC39/97/11

53

CHAPTER 9

FUNCTION DEFINITION

Syntax
FunctionDeclaration :

function Identifier (FormalParameterListopt) Block

FormalParameterList :
Identifier
FormalParameterList , Identifier

Semantics
Defines a property of the global object whose name is the Identifier and whose value is a function
object with the given parameter list and statements. If the function definition is supplied text to the
eval function and the calling context has an activation object then the declared function is added to
the activation object.

ECMA/TC39/97/11

54

CHAPTER 10

PROGRAM
Syntax

Program :
SourceElements EndOfSource

SourceElements :
SourceElement
SourceElements SourceElement

SourceElement :
Statement
FunctionDefinition

ECMA/TC39/97/11

55

CHAPTER 11

NATIVE ECMASCRIPT OBJECTS
There are certain built-in objects available whenever an ECMAScript program begin execution. One,
the global object, is in the scope chain of the executing program. Others are accessible as permanent
properties of the global object.

Issue: What is a class? What can be used as the operand of the new operator?
Theory 1: A class is an object with a [[Construct]] method and a prototype property?
Theory 2: A class is an object with a [[Construct]] method, and the [[Construct]] method creates a
prototype property if necessary?
Theory 3: Every function object created by the user automatically has a [[Construct]] method, but
other kinds of objects may also have [[Construct]] methods?

For now, I assume that a class is an object that can be given to the new operator. I also assume that
each built-in class, such as String, has a prototype property (ErrorOnWrite?) that becomes the
[[Prototype]] property of every constructed instance of the class. Then, for each class, we have to
describe properties of the class, properties of the prototytpe, and properties of each created instance.

How is the [[Prototype]] property of a user-defined class established?

Issue: may also be implementation-dependent objects lying around?

11.1 THE GLOBAL OBJECT

The global object does not have a [[Construct]] property; it is not possible to make instances of the
global object using the new operator.

11.1 THE OBJECT PROTOTYPE OBJECT

Constructor
[[Get]]
[[Put]]
[[CanPut]]
[[Prototype]]
[[HasProperty]]
[[Construct]]

ECMA/TC39/97/11

56

11.2 THE STRING CLASS

11.2.1 The String Constructor

11.2.2 Properties of the String Class

11.2.3 Properties of the String Prototype Object

11.2.4 Properties of String Instances

11.3 THE NUMBER CLASS

11.3.1 The Number Constructor

11.3.2 Properties of the Number Class

11.3.3 Properties of the Number Prototype Object

11.3.4 Properties of Number Instances

11.4 THE BOOLEAN CLASS

11.5 THE FUNCTION CLASS

11.6 The Array Class

11.7 THE DATE CLASS

11.8 THE MATH OBJECT

The Math object is not a class. It is merely a single object that has some named properties, some of
which are functions.

ECMA/TC39/97/11

57

11.8.1 Value Properties of the Math Object

E

LN10

LN2

LOG2E

LOG10E

PI

SQRT1_2

SQRT2

11.8.2 Function Properties of the Math Object

abs(x)

acos(x)

asin(x)

atan(x)

atan2(y, x)

ceil(x)

cos(x)

exp(x)

floor(x)

log(x)

max(x, y)

min(x, y)

pow(base, exponent)

random()

ECMA/TC39/97/11

58

round(x)

sin(x)

sqrt(x)

TAN(X)

ECMA/TC39/97/11

59

CHAPTER 12

ERRORS
This specification specifies the last possible moment an error occurs. A given implementation may
generate errors sooner (e.g. at compile-time). Doing so may cause differences in behavior among
implementations. Notably, if runtime errors become catchable in future versions, a given error would
not be catchable if an implementation generates the error at compile-time rather than runtime.

An ECMAScript compiler should detect errors at compile time in all code presented to it, even code
that detailed analysis might prove to be “dead” (never executed). A programmer should not rely on the
trick of placing code within an if (false) statement, for example, to try to suppress compile-time
error detection.

Issue: If a compiler can prove that a construct cannot execute without error under any circumstances,
then it may issue a compile-time error even though the construct might not be executed at all?

ECMA/TC39/97/11

60

REFERENCES

ANSI X3.159-1989: American National Standard for Information Systems - Programming Language -
C, American National Standards Institute (1989).
Gay, David M. Correctly Rounded Binary-Decimal and Decimal -Binary Conversions. Numerical
Analysis Manucript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990.
Available as http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code
available as http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as
http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various
netlib mirror sites.
Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley
Publishing Company 1996.
David Ungar and Randall B. Smith. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October, 1987.

ECMA/TC39/97/11

61

APPENDIX A

OPEN ISSUES

A.1 Break and continue label stacks
The break and continue label stacks and their associated machinery complicate the description of
control flow in ECMAScript. Moreover, the current description does not give a clear account of how
JumpContinue discards the implicit control stacks that support the execution of the pseudocode
procedures in this document.
I would like to propose the rewriting of the behavior of statements into the style used in the Java
Language Specification, wherein one speaks of a statement as completing “normally” or “abruptly (for
a reason)”. The advantage of this descriptive strategy is that then there are no nonlocal transfers
within the pseudocode and all descriptions of control flow behavior are local.
As examples, here are accounts of the break, continue, if, and while statements in this style,
which should illustrate all the relevant concepts:

The production BreakStatement : break ; is evaluated as follows:
1. Return “abrupt completion because of break”.

The production ContinueStatement : continue ; is evaluated as follows:
1. Return “abrupt completion because of continue”.

The production IfStatement : if (Expression) Statement1 else Statement2 is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, go to step 7.
5. Evaluate Statement1.
6. Return Result(5).
7. Evaluate Statement2.
8. Return Result(7).

The production IterationStatement : while (Expression) Statement is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, go to step 10.
5. Evaluate Statement.
6. If Result(5) is “abrupt completion because of break”, go to step 10.
7. If Result(5) is “abrupt completion because of continue”, go to step 1.
8. If Result(5) is “abrupt completion because of return of value V”, return Result(5).
9. Go to step 3.
10. Return “normal completion”.

Note that the only change to the description of if is to return the results of substatement evaluation.
On the other hand, the description of while has to take the various kinds of abrupt completion into
account. A break causes the while statement to complete normally; a continue is treated as if the
substatement had completed normally; and a return causes the while statement to terminate
immediately and to propagate the return action.

A.2 Eval function
Define object scoping within Eval block.

ECMA/TC39/97/11

62

A.3 Host Supplied members of scope chains vs. Implicit this.

A.4 Escape Sequences in String Literals
It was agreed at a previous meeting that any character could be preceded by a backslash in a string
literal. Question: was it intended to allow <CR> or <LF> in a string literal if preceded by abackslash?
I assumed not and wrote the grammar accordingly, but would like to have this point discussed.

A.5 Break, Continue, Return in Wrong Place
What is the behavior of an ECMAScript program if it executes a break or continue not textually
contained within a loop, or a return not textually within a function body? Are such errors guaranteed
to be caught at compile time, or may they be detected at run time? (JavaScript document says it
mustbe a compile-time error, Jscript document is less clear.)

A.6 Math Functions
Are the math functions intended to be completely, guaranteed portable, or are they intended to be
“whatever the host machine C library provides”? Should the boundary cases (infinites, zero, NaNs) be
tied down in the manner now customary for IEEE arithmetic (I believe Java and C9X agree on these
boundary cases)?

ECMA/TC39/97/11

63

APPENDIX B

PROPOSED EXTENSIONS

B.1 THE CLASS STATEMENT1

Class Definition
Syntax

ClassDeclaration :
class IdentifierFormalParameters opt ExtendsClauseopt { ClassBody }

FormalParameters :
(FormalParameterListopt)

FormalParameterList :
Identifier
FormalParameterList , Identifier

ExtendsClause :
extends Identifier ActualArgumentsopt

ActualArguments :
(ExpressionListopt)

ClassBody :
Constructoropt Methodsopt

Constructor :
StatementList

Methods :
FunctionDefinition
Methods FunctionDefinition

Semantics
Similar to a function except:
• The class name space is global but distinct from the global function name space.
• The functions (methods) defined within a class definition are in a name space private to the class.
• The inclusion of methods automatically creates one property in the constructed object for each

method defined.
• Classes may not be called directly but rather can only be used via the new operator.

B.2 THE TRY AND THROW STATEMENTS1

B.2.1 THE TRY STATEMENT1

A try statement executes a block. If a value is thrown and the try statement has one or more
catch clauses that can catch it, then control will be transfered to the first such catch clause. If the
try statement has a finally clause, then the finally block of code is executed no matter
whether the try block completes normally or abruptly and regardless of whether a catch clause is
first given control.

TryStatement :
try Block Catches

ECMA/TC39/97/11

64

try Block Catchesopt FinallyClause

Catches:
CatchClause
Catches CatchClause

CatchClause:
catch (FormalParameter) Block

FinallyClause:
finally Block

B.2.2 THE THROW STATMENT1

A throw statement causes an exception to be thrown. The result is an immediate transfer of control
that may exit multiple statements and method invocations until a try statement is found that catches
the thrown value. If no such try statement is found, then a runtime error is generated.

ThrowStatement:
throw Expression

B.3 THE DATE TYPE1

The Date Type is used to represent date and time. It is a Julian value on which certain operations
such as date arithmetic are defined. Arithmetic operators, relational operators and equality operators
apply to this type1

Note 1: Of the three current ECMAScript implementations, only the Borland implementation
currently supports date operators. This feature is really just a convenience that can be implemented
with Date Object methods. However, the same argument can be made for the String type.
Note 2: Of the three current ECMAScript implementations, only the Borland implementation
currently implements dates as Julian dates and thus dates before (January 1970). Without this
representation, dates are very limited in their usage (i.e. you cannot otherwise, represent arbitrary
dates, for example from existing databases)

B.3.1 TODATE1

The operator ToDate attempts to convert its argument to a value of subtype Date Object according to
the following table:

Input Type Result
Undefined Blank date value.
Null Blank date value.
Boolean Blank date value.
Number Blank date value.
String See discussion below.
Date Return the input argument (no conversion)
Object Apply the following steps:

1. Call ToPrimitive(input argument, hint Date).
2. Call ToDate(Result(1)).
Return Result(2).

B.3.1.1 ToDate Applied to the String Type

Issue: define this.

ECMA/TC39/97/11

65

B.4 IMPLICIT THIS3

In function code where the function definition specifies the implicit keyword, the this object is
placed in the scope chain immediately before the global object.

B.5 THE switch STATEMENT1, 3

Syntax
SwitchStatement :

switch (Expression) CaseBlock

CaseBlock :
{ CaseClausesopt }
{ CaseClausesopt DefaultClause CaseClausesopt }

CaseClauses :
CaseClause
CaseClauses CaseClause

CaseClause :
case Expression : StatementListopt

DefaultClause :
default : StatementListopt

Semantics
The SwitchStatement adds a label to the break label stack, which is described in section 8.5 Iteration
Statements. It also adds a label to the continue label stack for clean up purposes only.

The production SwitchStatement : switch (Expression) CaseBlock is evaluated as follows:
1. If the continue label stack is not empty, PushContinue(9).
2. PushBreak(6).
3. Evaluate Expression.
4. Call GetValue(Result(3)).
5. Evaluate CaseBlock, passing it Result(4) as a parameter.
6. PopBreak(6).
7. If the continue label stack is not empty, PopContinue(9).
8. Return.
9. PopBreak(6).
10. PopContinue(9).
11. JumpContinue.

The production CaseBlock : { CaseClauses1 DefaultClause CaseClauses2 } is given an input
parameter, input, and is evaluated as follows:
1. For the next CaseClause in CaseClauses1, in source text order, evaluate CaseClause. If there is

no such CaseClause, go to step 6.
2. If input is not equal to Result(1) (as defined by the != operator), go to step 1.
3. Execute the StatementList of this CaseClause.
4. Execute the StatementList of each subsequent CaseClause in CaseClauses1.
5. Go to step 11.
6. For the next CaseClause in CaseClauses2 , in source text order, evaluate CaseClause. If there is

no such CaseClause, go to step 11.
7. If input is not equal to Result(6) (as defined by the != operator), go to step 6.
8. Execute the StatementList of this CaseClause.
9. Execute the StatementList of each subsequent CaseClause in CaseClauses2.
10. Return.
11. Execute the StatementList of DefaultClause.
12. Execute the StatementList of each CaseClause in CaseClauses2.

ECMA/TC39/97/11

66

13. Return.

If CaseClauses1 is omitted, steps 1 through 5 are omitted from execution. If DefaultClause is omitted
(in which case CaseClauses2 is also omitted), steps 11 and 12 are omitted from execution. If
CaseClauses2 is omitted, steps 6 through 10 and 12 are omitted from execution.

Typically there will be a break statement in one or more StatementList, which will transfer
execution back to the break label for the SwitchStatement.

The production CaseClause : case Expression : StatementListopt is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Return Result(2).

Note that evaluating CaseClause does not execute the associated StatementList. It simply evaluates the
Expression and returns the value, which the CaseBlock algorithm uses to determine which
StatementList to start executing.

B.6 CONVERSION FUNCTIONS

The conversion functions, ToBoolean, ToNumber, ToInteger, ToInt32, ToUint32, ToString and
ToObject are global functions that operate as described in this document.

B.7 ASSIGNMENT-ONLY OPERATOR (:=)1

The assignment-only operator operates identically to the assignment operator (=) except that if the
given lvalue doesn’t already exist, prior to the statements execution, a runtime error is generated.

B.8 SEALING OF AN OBJECT2

A facility to prevent an object from being further expanded may be invoked at any time after an object
has been constructed. This is semantically the dynamic equivalent to the static Java final class
modifier. This facility may be implemented as a method of the object, a global function, or, if the
class statement is adopted, as a class modifier to class. Once an object has been sealed or
finalized, any attempt to add a new property to the object results in a runtime error.

B.9 THE ARGUMENTS KEYWORD3

The arguments keyword refers to the arguments object. Within global code, arguments returns
null. Within eval code, arguments returns the same value as in the calling context.

Discussion:
This interpretation of the "arguments" within a function body differs from existing practice but has
two important advantages over the current mechanism:
1. It can be much more efficiently implemented, especially in the case of recursive functions.
2. It eliminates some complex and confusing semantic issues that arise as a result of the arguments

to an activation frame being accessible from a function object.
It solves scope resolution issues related to using arguments within a with block on an object that has
an arguments member, such as Math.

ECMA/TC39/97/11

67

B.10 PREPROCESSOR

B.11 THE DO..WHILE STATEMENT

B.12 BINARY OBJECT

ECMA/TC39/97/11

68

APPENDIX C

PEOPLE CONTACTS
Brendan Eich (brendan@netscape.com)
C. Rand McKinney (rand@netscape.com)
Donna Converse (converse@netscape.com)
Clayton Lewis (clayton@netscape.com)
Randy T. Solton (rsolton@wpo.borland.com)
Mike Gardner (mgardner@wpo.borland.com)
Shon Katzenberger (shonk@microsoft.com)
Robert Welland (robwell@microsoft.com)
Guy Steele (guy.steele@east.sun.com)

ECMA/TC39/97/11

69

APPENDIX D

RESOLUTION HISTORY

D.1 JANUARY 15, 1997

D.1.1 White Space
Updated the 3.1 White Space section to include form feed and vertical tab as white space.

D.1.2 Keywords
Updated the 3.3.1.1 Keywords section to exclude those keywords related to proposed extensions. Also
updated this section to include the delete keyword which was missing.

D.1.3 Future Reserved Words
Update the 3.3.1.2 Future Reserved Words to only include keywords related to proposed extensions.
We decided to remove words that had been only included as future reserved for Java compatibility
purposes.

D.1.4 Octal And Hex Escape Sequence Issue
Decided to support octal and hex notation. Since only two hex digits are used with hex notation, many
unicode characters cannot be represented this way. Furthermore, we were not sure if the high 128
characters match up with unicode. (Removed open issue at bottom of section 3.3.4.4 String Literals)

The argument against was that these notations are redundant since any character can be represented
using the unicode escape sequence. The arguments for were that hex and octal notation are convenient
and simple and also that there is a language tradition to be upheld.

D.1.5 ToPrimitive
Removed the erroneous note stating that errors are never generated as a result of calling ToPrimitive
in the 5.1 ToPrimitive section.

D.1.6 Hex in ToNumber
We decided to allow hex in ToNumber but not octal. Looking at it from the user input source point of
view, we decided that it was reasonable to use hex but not octal since it might be common to include
leading zeros in a user input field. Furthermore we did not believe that the ability to use octal in data
entry was desirable. (Removed open issue at the bottom of 5.3.1 ToNumber Applied to the String
Type)

D.1.7 Attributes of Declared Functions and Built-in Objets
We decided that built-in objects will have attributes { DontEnum } and that variables declared in
global code will have empty attributes. (Updated the 6.1.1 Global Object section)

D.1.8 The Grouping Operator
We decided that the grouping operator would return the result of GetValue() so that the result is
never of type reference. (Updated the 7.1.4 The Grouping Operator and removed the open issue at
the bottom of this section)

D.1.9 Prefix Increment and Decrement Operators
We decided to not to perform GetValue to the return value and thus leave the algorithm as is.
(removed the open issue at the bottom of the 7.3.4 Prefix Increment and Decrement Operators)

ECMA/TC39/97/11

70

D.1.10 Unary Plus
We decided to leave the algorithm for unary plus alone and continue to call GetValue() and
ToNumber() after evaluating the unary expression which guarantees a numeric result as opposed to
only evaluating the unary expression which would not guarantee a numeric result. (Updated the 7.3.5

Unary + and - Operators section)

D.1.11 Multiplicative Operators
Updated step nine in the 7.4 Multiplicative Operators section to refer to three new sections
7.41, 7.42 and 7.43 which define the behavior of *, / and %.

D.1.12 Additive Operators
Updated step 11 in 7.5.1 and step 10 in 7.5.2 to refer to a new section 7.5.3 which define the behavior
of + and -.

D.1.13 Left Shift Operator
We decided to leave the algorithm for left shift as is, which converts the left operand using ToInt32
rather than ToUint32. Although an unsigned conversion might be arguably preferred, we decided to
continue to convert to signed, as we can always add a new operator (<<<) to accomplish an unsigned
shift. (Removed the open issue at the bottom of 7.6.1 The Left Shift Operator (<<))

D.1.14 Binary Bitwise Operators
We decided to leave the algorithm for the binary bitwise operators as is, which uses signed conversion
on the GetValue of its operands. (Removed the open issue at the bottom of 7.9 Binary Bitwise
Operators)

D.1.15 Conditional Operator (? :)
We decided to leave the algorithm for the conditional operator as is, which performs a GetValue on
the result before returning. Current implementations do not do this. (Removed the open issue at the
bottom of
7.11 Conditional Operator (?:))

D.1.16 Simple Assignment
We decided to leave the algorithm for simple assignment as is. (Removed the open issue at the
bottom of 7.12.1 Simple Assignment (=))

D.1.17 The for..in Statement
We decided to impose no restrictions on Expression1. (Removed the first open issue at the bottom of
8.5.3 The for..in Statement)

D.1.18 The return Statement
We decided to not generate an error if one return statement in a function returns a value and another
return in the same function does not return a value. (Removed the first open issue at the bottom of the
8.8 The return Statement The second issue at the bottom of this section has been moved to 3.4

Automatic Semicolon Insertion)

D.1.19 New Proposed Extensions
Sections B.10 Preprocessor, B.11 The do..while Statement and B.12 Binary Object were added.

ECMA/TC39/97/11

71

D.2 JANUARY 24, 1997

D.2.1 END OF SOURCE

Updated SourceCharacter ::
any Unicode character
2.2 End Of Source section to describe the end of source token as logical rather than physical
\u0000 since strings may contain embedded \u0000 characters.

D.2.2 FUTURE RESERVED WORDS

Updated 3.3.1.2 Future Reserved Words section to include the word do and removed the footnotes
indicating the origin of the proposed keywords.

D.2.3 WHITE SPACE

Updated 3.1 White Space section. Updated the lexical production for SimpleWhiteSpace to
include <VT> and <FF> (already mentioned in the white table above).

D.2.4 COMMENTS

Added new issue to 3.2 regarding nested comments.

D.2.5 IDENTIFIERS

Updated section 3.3.2 to correctly state what is an allowable first character in an identifier.

D.2.6 NUMERIC LITERALS

Updated section 3.3.4.3 Numeric Literals to disallow leading zeros in floating point literals.

D.2.7 STRING LITERALS

Updated the table describing the set of character escape characters in section 3.3.4.4 String Literals, to
include a new column indicating the unicode value. Also added a new issue to the end of this section.

D.2.8 AUTOMATIC SEMICOLON INSERTION

Added two new issues to the end of 3.4 Automatic Semicolon Insertion.

D.2.9 PROPERTY ATTRIBUTES

Renamed Permanent to DontDelete in the property attributes table in the 4.5.1 Property Attributes
section.

D.2.10 TOPRIMITIVE

Reworded section 5.1 ToPrimitive to better describe the optional hint PreferredType.

D.2.11 TONUMBER

Updated section 5.3 ToNumber. Added Hint Number in call to ToPrimitive. Also added new
issue to the end of this section.

D.2.12 WHITE SPACE

Updated section 5.3.1 ToNumber Applied to the String Type Updated the lexical production for
SimpleWhiteSpace to include <VT> and <FF>.

D.2.13 TONUMBER APPLIED TO THE STRING TYPE

Updated section 5.3.1, ToNumber Applied to the String Type. Reworked lexical productions to be
similar to those used in section, 3.3.4.3 Numeric Literals. The difference between string numeric

ECMA/TC39/97/11

72

literals and numeric literals is that string numeric literals do not allow octal notation and do allow
leading zeros.

D.2.14 TOSTRING

Updated section 5.7 ToString. Added Hint String in call to ToPrimitive.

D.2.15 POSTFIX INCREMENT AND DECREMENT OPERATORS

Updated section 7.2.2 Postfix Increment and Decrement Operators. Updated the algorithm to
return Result(3) (the result of converting ToNumber), rather than (Result(2).

D.2.16 THE TYPEOF OPERATOR

Added a new issue at the end of section 7.3.3 The typeof Operator.

D.2.17 PREFIX INCREMENT AND DECREMENT OPERATORS

Removed extraneous calls to ToPrimitive from the algorithm in section 7.3.4 Prefix Increment and
Decrement Operators.

D.2.18 MULTIPLICATIVE OPERATORS

Remove step 7 in the algorithm in section 7.4 (either operand NaN) and added a new rule to 7.4.1 and
7.4.2 to reiterate what was in the old step.

D.2.19 THE SUBTRACTION OPERATOR

Removed extraneous calls to ToPrimitive from the algorithm in section 7.5.2.

D.2.20 THE SUBTRACTION OPERATOR

Remove the old step 9 in the algorithm in section 7.5.2 (either operand NaN) and added a new rule to
section 7.5.3 to reiterate what was in the old step.

D.2.21 APPLYING THE ADDITIVE OPERATORS (+, -)
Update the last rule in section 7.5.3 to clearly state that operands mentioned in the final sentence must
be numeric.

D.2.22 EQUALITY OPERATORS

Moved the Semantic discussion at the beginning of 7.8 to the discussion section at the end of 7.8

D.2.23 TOPRIMITIVE USAGE

Added issue at the end of sections 7.5.1 and 7,7.

D.2.34 BINARY LOGICAL OPERATORS

Added issue at the end of 7.10.

D.3 JANUARY 31, 1997

D.3.1 MULTILINECOMMENT

Updated the lexical production MultiLineComment in section
LineEnd ::

LineTerminator
<EOS>

3.2 Comments, to allow empty multi-line comments. Also removed the issue at the end of this
section regarding nested mutli-line comments. The MultiLineComment production continues to
disallow multi-line comments.

ECMA/TC39/97/11

73

D.3.2 STRING LITERALS

Removed open issue at the end of section 3.3.4.4 String Literals which stated that the maximum string
constant supported must be at least 32000 characters long.

D.3.3 AUTOMATIC SEMICOLON INSERTION

Updated section 3.4 Automatic Semicolon Insertion, to include rules governing parsing the for
statement and dealing with postfix ++ and postfix –– tokens.

D.3.4 THE NUMBER TYPE

Updated the description in section 4.4 The Number Type.

D.3.5 PUT WITH EXPLICIT ACCESS MODE

Update section 4.5.2.3, Put with Explicit Access Mode to include looking in the prototype object for
access violations.

D.3.6 PUT WITH IMPLICIT ACCESS MODE

Update section 4.5.2.4, Put with Implicit Access Mode to include looking in the prototype object for
access violations.

D.3.7 THE STRING TYPE

Updated the description in section 4.6, The String Type.

D.3.8 TONUMBER

Updated section 5.3, ToNumber to return a NaN for an input type of Null.

D.3.9 TONUMBER APPLIED TO THE STRING TYPE

Updated the lexical production for SimpleWhiteSpace in section 5.3.1 to include <CR> and <LF>.
Also updated the lexical productions StrFloatingPointLiteral and StrIntegerLiteral to allow signs.

D.3.10 TOINT32
Updated description in section 5.5, ToInt32: (signed 32 bit integer) to tentatively use Guy’s
Conversion modulo 2^32 algorithm.

D.3.11 TOUINT32
Updated description in section 5.6 ToUint32: (unsigned 32 bit integer) to tentatively use Guy’s
Conversion modulo 2^32 algorithm.

D.3.12 EXECUTION CONTEXTS (VARIABLES)
Section 6 (Variables) replaced by new section (Execution Contexts).

D.3.13 FUNCTION CALLS

Swapped steps 2 and 3 in section 7.2.4, Function Calls.

D.3.14 THE TYPEOF OPERATOR

Updated the table in section 7.3.3 The typeof Operator to specify the result when the input type is
an external object. Removed related open issue at the end of this section.

D.3.15 APPLYING THE % OPERATOR

Removed step 7 in the algorithm in section 7.4.(either operand NaN) and added a new rule to 7.4.3 to
reiterate what was in the old step.

ECMA/TC39/97/11

74

D.3.16 THE ADDITION OPERATOR (+)
Added the hint Number in the calls to ToPrimitive in section 7.5.1, The Addition Operator (+).
Removed related open issue at the end of this section.

D.3.17 RELATIONAL OPERATORS

Added the hint Number in the calls to ToPrimitive in section 7.7, Relational Operators. Removed
related open issue at the end of this section.

D.3.18 CONDITIONAL OPERATOR (?:)
Updated the syntactic production, ConditionalExpression, in section 7.11 Conditional Operator
(?:)

D.3.19 COMPOUND ASSIGNMENT (OP=)
Swapped steps 2 and 3 in section 7.12.2, Compound Assignment (op=)

D.4 FEBRUARY 21, 1997

D.4.1 UNICODE ESCAPE SEQUENCES

Rewrote section 2.1 Unicode to reflect the restriction that non-ASCII Unicode characters may
appear only within comments and string literals. Moved the description of Unicode escape sequences
to 3.3.4.4 String Literals.

D.4.2 FUTURE RESERVED WORDS

Added import and super to table in 3.3.1.2 Future Reserved Words.

D.4.3 AUTOMATIC SEMICOLON INSERTION

Rewrote the rules for semicolon insertion in section 3.4 Automatic Semicolon Insertion to
incorporate the rule that a semicolon is not inserted if it would be treated as an empty statement. Also,
broke out the empty statement as a separate kind of statement for expository purposes in section 8.2
Empty Statement.

D.4.4 THE NUMBER TYPE

Corrected formatting of formulae in section 4.4 The Number Type.

D.4.5 NOTIMPLICIT AND NOTEXPLICIT PROPERTY ATTRIBUTES DELETED

The NotImplicit and NotExplicit property attributes were deleted from the table in section 4.5.1
Property Attributes. Many changes throughout the rest of chapter 4 to reflect this deletion.

Also, the [[TestPutExplicit]] helper method was renamed [[CanPut]].

D.4.6 TOINT32 AND TOUINT32
Corrected formatting of formulae in section5.5 ToInt32: (signed 32 bit integer) and section 5.6

ToUint32: (unsigned 32 bit integer). Also, change the discarding of the fractional part to
truncate toward zero rather than using a simple floor operation.

Correct an error in the descriptions by adding a new step 4 to each one, which makes sure that
if the input is negative zero, the output is positive zero.

D.4.7 GROUPING OPERATOR

Delete step 2 from section 7.1.4 The Grouping Operator. Parentheses no longer force
dereferencing.

ECMA/TC39/97/11

75

D.4.8 SHIFT EXPRESSIONS

Correct the grammar for ShiftExpression by adding AdditiveExpression as an alternative in section
7.6 Bitwise Shift Operators.

D.4.9 CONVERSION RULES FOR RELATIONAL OPERATORS

Updated description in section 7.7 Relational Operators so that lexicographic string ordering is used
only if both operands become strings when converted to primitive type; if one is a string and one is a
number, then numeric ordering is used. Thus relational operators differ from the + operator, which, if
one operand is a string and one is a number, performs string concatenation rather than addition.

D.4.10 && AND || SEMANTICS

Updated description in section 7.10Binary Logical Operators so that && and || have PERL-like
semantics; that is, the result of 1||2 is 1, not true, and the result of 0||”Hello” is “Hello”.

D.4.11 CONDITIONAL OPERATOR

Updated section 7.11 Conditional Operator (?:) to reflect the change that the second and
third subexpressions should each be AssignmentExpression.

D.4.12 ASSIGNMENT OPERATORS

Updated section 7.12 Assignment Operators to reflect the change that the left-hand side of an
assignment should be a PostfixExpression. Also change two occurrences in subsections of SetVal to
PutValue.

D.4.13 SYNTAX OF CLASS STATEMENT

Updated section B.1 The Class Statement1 to allow the parentheses in a class declaration to be
optional.

D.4.14 SYNTAX OF TRY STATEMENT

Updated section B.2.1 The try Statement1 to require the body of a catch or finally clause to
be a Block.

D.5 FEBRUARY 27, 1997

D.5.1 GRAMMAR NOTATION

Big rewrite of section 1.1 Syntactic and Lexical Grammars to make the description of grammar
notation more detailed and rigorous. Is this okay? (Much of the text was borrowed, in form at least,
from the Java Language Specification.) The notation is still a bit inconsistent throughout the
document (example: “except” versus “but not”), and should be made consistent within itself and with
section 1.1 Syntactic and Lexical Grammars.
Also decided to call out the grammar in Chapter 5 as a separate grammar and use triple colons on its
productions.
Restructured some of the grammar in Chapter 3 to make it a bit more readable. Is this okay?

D.5.2 END OF MEDIUM CHARACTER IS NO LONGER WHITESPACE

Deleted character \u0019 (End of Medium) from the table in section 3.1 White Space, and
deleted <EOM> as an alternative for SimpleWhiteSpace in that same section. Also deleted <EOM> as
an alternative for StrWhiteSpaceChar in section 5.3.1 ToNumber Applied to the String Type.
These changes reflect the decision that neither \u0019 (End of Medium, mistakenly also referred to in
previous drafts of this document as ^Z) nor \u001A (Substitute, which really is ^Z) shall be considered
whitespace in an ECMAScript program. It is expected that host environments will filter any ^Z
character that might occur at the end of the host environment’s representation of an ECMASCript
program.

ECMA/TC39/97/11

76

D.5.3 MEANING OF NULL LITERAL

Added to section 3.3.4.1 Null Literals a discussion of the meaning of a null literal.

D.5.4 MEANING OF BOOLEAN LITERALS

Added to section Semantics
The value of the null literal true is the sole value of the null type, namely null.
3.3.4.2 Boolean Literals a discussion of the meaning of a boolean literal.

D.5.5 MEANING OF NUMERIC LITERALS

Added to section 3.3.4.3 Numeric Literals a discussion of the meaning of a numeric literal. It does not
yet address the restriction to 19 significant digits. Is this the style of description we want?

D.5.6 AUTOMATIC SEMICOLON INSERTION

Updated description of automatic semicolon insertion in section 3.4 Automatic Semicolon
Insertion. Systematically replaced the word “injected” with “inserted”. Invented a new theory of
“restricted productions” to explain in a general way why the parser inserts semicolons in places where
there would otherwise be a valid parse without a semicolon. Added more examples and advice. Also
modified productions in sections 7.2 Postfix Expressions and 8.8 The RETURN Statement to
indicate the restrictions explicitly.

D.5.7 THE NUMBER TYPE

Updated section 4.4 The Number Type to provide explanations of those large numbers as sums and
differences of powers of two.

D.5.8 TOSTRING ON NUMBERS

Updated section 5.7.1 ToString Applied to the Number Type have a draft specification of how this
conversion ought to be done. This needs to be reviewed. This version requires that, when the number
has a nonzero fractional part, the output must be correctly rounded and produce no more digits than
necessary for the fractional part. Added a bibliographic reference to the paper and code of David M.
Gay on this subject.

D.5.9 NEW OPERATOR

Updated description in section 7.2.3 The new Operator to describe the case where no
argument list is provided. This needs to be reviewed.

D.5.10 DELETE OPERATOR

Updated description in section 7.3.1 The delete Operator to reflect decision that this
operator shall return a boolean value; the value true indicates that, after the operation, the object is
guaranteed not to have the specified property.

D.5.11 == SEMANTICS

Updated section 7.8 Equality Operators so that (a) null and undefined are considered
equal, and (b) when a number meets a string, the number is converted to a string and then string
equality is used.

D.5.12 && AND || SEMANTICS

Updated description in section 7.10Binary Logical Operators to delete step 7 for eachoperator (the
result of this step was no longer used).

D.5.13 SEPARATE PRODUCTIONS FOR CONTINUE, BREAK, RETURN

To make certain kinds of cross-reference in the document simpler, I broke out the continue, break, and
return statements into separate grammatical productions, eliminating the production for

ECMA/TC39/97/11

77

ControlFlowStatement (which was something of a misnomer anyway, and other statements also result
in (structured) control flow.

D.5.14 DEAD CODE IS NOT PROTECTED FROM COMPILE-TIME ANALYSIS

Added text to chapter 12 (Errors).

ECMA/TC39/97/11

78

APPENDIX E

LALR(1) SYNTACTIC GRAMMAR
Issue: To be supplied?

ECMA/TC39/97/11

79

INDEX

-- 31
-

subtraction... 36

!

!
Logical NOT.. 33

&

&
bitwise AND.. 39

&&
logical AND... 40, 63

,

,
comma operator.. 41

?

?
conditional expression............................ 40
conditional expression............................ 65

~

~
Bitwise NOT.. 33

+

++.. 31

<

<<
left shift.. 37

=

=
assignment... 41

>

>>
right shift ... 37

>>>
unsigned right shift.................................... 37

A

arguments.. 29

arrays .. 30

B

break ... 47

C

control flow... 46

E

expression
primary.. 29

I

if 44
iteration... 45

O

op=
compound assignment...........................41, 65

operators
additive, semantics..................................... 35
equality.. 38
postfix.. 29
relational ..38, 65
unary ... 32

R

return .. 47

S

shift... 36
source text..50, 51, 52
statements.. 43

expression...43, 44

U

Unicode... 8

V

void... 32

W

while ... 45
White Space................................. 14, 61, 62, 64
with..47, 55, 56

