ECMA/TC39/97/11

ECMASCRIPT LANGUAGE SPECIFICATION

ECMA CoMMITTEE#39
VERSIONO.9

FEBRUARY27, 1997

FEEDBACK
Please send feedback regarding this document t@uy Steele (Guy.Steele@east.sun.com).

ECMA/TC39/97/11

ECMASCRIPT LANGUAGE SPECIFICATIONCMA COMMITTEE #39VERSION 0.9.................. 1
FEBRUARY 27, 1007 ..o 1
FEEDBACK ..o 1
NOTATIONAL CONVENTIONS, 7
1.1 SYNTACTIC AND LEXICAL GRAMMARScttuuiteieeettttttiieeesestesttssssssseesssssieseesessnsesessessssianaesseserees 7
I I R a1 = B S = S T = 1101 1.07= T 7
O I g TSl I (o= T = 11 0107 | P TPRPRTRTRRRR 7
1.1.3 The NUMENIC SIrNG GramMIMAL........coveerteerieeitienteerite st sieesiee st e sieesiee e e stesanesieesseesseesseesaeesseesnes 7
1.1.4 The SYNLACIC GraMITIA.......ciueerieerieeteeteenteestee st ettt sbe et e bt e sbeesabe s e e saeesaeesbeesaeesaeesbeesnbesnteenes 7
R = Ta 00> g N\ (] =1 (o) T PTRRRPRPRRRRRRRR 8

1.2 ALGORITHM CONVENTIONSctttuuuteeeeeettssssssesseressssssssssssesssssassssesssneeeeseesssmeseeeterrinnreeeree. 9
SOUR CE T E X T eetttiitiititietieieeeeteeeeeeeessessesesesseeseesseeseeeeeeeeeesssssasasssesesssssssse s e s s eessessasasssssssssssesesssseseesseeennes 10
P2 T O |1) =S 10
2.2 END OF SOURCEctuuiiieiiiiiiittieee e e e e tettesseeee et e etaaaaaesssaeee s sesseseesssaaasssesrsssaassssessessssnansessseeerees 10
LEXICAL CONVENTIONS . ..o 11
BT VLY T 1 S =X ! 11

B T2 O 0 1LY 1= N 5= 11

G TG T 10 = NN 12
3.3 L RESEIVEO WWOI TS ...t nnnnnn 12
T I I =TV o o 3RO P PR 13

3.3 1.2 FULUIE RESEINVED VOIS s s 13
BTG T [= N = 1= 3 13
BTG = U1 T 107N] =1 N 13
BTG T B I = = N 14
TR T Nt I L0 T (=T 14
3.3.4.2 BOOIEAN LItBIAlS .. e st nnn 14
B34, 3 NUMEI T C LB AIS. . s nnnn 14
O s 1 4] oo [L (= = LTS UR PR 16

3.4 AUTOMATIC SEMICOLON INSERTION....eutuuuuiieeeeeetetttsieeseseesssansssssssessssssssessssessssnnssesssseessssmsseseeesrees 17

B I 21
o T I O) = =[N = 0 127 = =S T 21
I =\ L 7 = TR 21
R I = = T T I =7 N 127 = =SSR 21
L I o AN LY T =] == 2 = T 21
S I 1O =N o R N2 = TR 22
A.5.1 Property ALTTDULEScoiuiiieieeeee ettt sttt sbe e et eaes 22
4.5.2 PrOPEITY ACCESS....ceitetieee et ettt e sttt e sttt e st e s et e s st e sane e e as et e sas e e sa st e sneeaaneeanee s anreenreeereeenne s 22

4.5. 2.1 HASPIOPEITY. ...ttt 23
I <. A 23
B.5.2. 3 PUL.cccceieeeeeeeeeeeeeeeeeeee 23

2.0 THE STRING TY PE.uuuitiiiiiittutiiseseeetttsssssessssessssaseesestssssaaasteseestaaaeeseesrsrastrrerreeesesrssnns 23
4.7 THE INTERNAL REFERENCE TY PE ...cvtttuiieiiiiiititiiieeeeeettttaessessseesssaasasssssessssaassssssesssssssssessssssrnnns 23
A7 L GEIBASE........co e e e 24
4.7.2 GEtPIOPEITYNAIME. ...ttt et e s e e e b e sne e s be e e nre e e n e enee s 24
AT B3 GEIVAIUB. ..o 24
AT APUNVAIUR......ccoo oo 24
TYPE CONVERSION. ...t sssssssssssssss s ssnnnnnnnnn 25
LT T 1) =Y 1 1 V2 = 25

ECMA/TC39/97/11

5.2 TOBOOLEAN ...ttt ettt ettt ettt et se e ae e e s s s e e sa et e s s et e e e s e e e e e e e s e e e seeean e e san e e e neesneeenneennneennn s 25
LR B 1@ AN = = S 25
5.3.1 ToNumber Applied t0 the SIHNG TYPE....coiiiieeeeeee e e 26
L @] N 1= 1= S 27
5.5 TOINT32: (SIGNED 32 BIT INTEGER) ..ecuveeuteeteeteeteeteesessueessessseesseesseessessseessessseessesssesssesssesssesnsesses 27
5.6 TOUINT32: (UNSIGNED 32 BIT INTEGER) .. ccutesteerteeteesteesteesseesssesseesseesseessesssessseesssesssesssesssessnsssesssns 27
L A0 1@ 15) 1 | N SRR 28
5.7.1 ToString Applied to the NUMDEr TYPQ ..o 28
LTS 10 = N = o S 29
EXECUTION CONTEXT S oottt ettt ettt sttt st st sttt ettt e sae e sae e sab e st snte et sees 30
L I T T @ N S 30
6.1.1 FUNCHION ODJECES.....cotiitietieteeieete ettt b bbb et e b et e e b e sbe e beenneennean 30
6.1.2 Types Of EXECULADIE COUE.cuiiiieiiiiieieee ettt 30
6.1.3 Variable INSEANtiatiON.coiiiiieieieee et bbbt sa e 30
6.1.4 Scope Chain and ldentifier RESOIULION........c..coriiiieiiieiieiie et 31
6.1.5 GlODAI ODJECL......coiiitieiieieee bbbttt et bbb nneenean 31
6.1.6 ACHIVALION ODJECL.....c.eiitiiieetieteee ettt bbbttt be e b e sneenneas 32

L A = o 1= S 7= T G TSR 32
L300 T I 0TSSP US PR 32
6.1.9 ArgUIMENES ODJECL....c.veiitiitiitieie ettt ettt b e sb e sb e e s b e b e e b e e beebeesbeesbeesaeenaean 32
6.2 ENTERING AN EXECUTION CONTEXT . .uttiiiiuiireesureeeenueeeeesareeeesasseeesssssesesssseesssnsssesessssensssnsseessnnseneens 33
L I €] o o 7= | o o[33
L - | L oo = PSSR 33
6.2.3 Function and ANONYMOUS COUE.......c..eeiuiriirieiie ittt ettt st bbb b snesane s 33
L o 1S o o [TSR 33
EXPRESSIONS. ...ttt ettt et ettt e s ae e e eas e e e s e e e s e e e Re e e Re e e e b et e R e e ne e e nn e e nn e e nnn e e e anne s 34
7.1 PRIMARY EXPRESSIONSuutteeeitteeeeiteeeeessetreesssseeesaseeeeaasseeesasseesssassesesanssesssnsseessassseesesnsseeessnseneen 34
7.1.1 TRETNIS KEYWOI.....cotiieieieeieete ettt bbb bbb et e esbe e b e saeenneas 34
O I o L= g = g = o SRR 34
A I B L (= = L (= o SR 34
7.1.4 The GroupPiNg OPEIALOL........ccueeiteertietieieeieestee st ste et e stee bt et e bt e sbeesbeesbeesbeesbeenbeenbeenbeesaeesaeas 34
7.2 POSTFIX EXPRESSIONS.....ccuttieittesitie sttt ettt sttt s s e s n e e be e e sse e e snn e e s an e e s snneennneennneennnes 34
7.2. 1 PrOPEITY ACCESSOIS. . e eutteireesireesteeasee e s teesteeaseesasee e seeeaasee e aseeeasseesaseeaaneesneesaneeesreeereeenne s 35
7.2.2 Postfix Increment and Decrement OPEratorS..........eeveereerieerieerieesiee e sieesieesieesseesseesseesaeesaeas 35
7.2.3 TRENEW OPEI L0c.teiteeteeteete ettt et e sttt et e bt e bt e bt e sb e e sbeesbeesbee bt enbeenbeebeesbeesbeenneenaean 36
7 ¥ ox o T O SR 36
7.3 UNARY OPERATORS.....uttieiutieeeiteeeeaasteeeessteeeesastesesaseeesaasseeesssseressassesesanseeesansseesssssensssmsseeessnseneen 36
7.3.1 TREAE B8 OPEI ALON. ... cetietieieeteete ettt ettt bbbt e st e b e e bt e be e e e s beesneenneas 37
7.3.2 TNEVOIA OPEIGLONtietieteeteeteeie ettt ettt ettt ettt e bt e sbeesb e e sbeesbeesbeenbeebeebeesbeesbeesaeenneas 37
7.3.3 TNELYPEOT OPEIALON .. .eotiitietieieete ettt ettt sb bbbt sb et e nbe et e e sbeesaeenneas 37
7.3.4 Prefix Increment and Decrement OPEratorS........ooueeveerieerieerieeiieesiee e sieesieesieesseeseeeieesaeeseeas 37
7.3.5UNaAry+ and - OPEIALOIS.cccueeitieriietieieeieeiee sttt st sbee bt e bt e be e b e sbeesbeesbeesbeesbeesbeebeenneesaeas 37
7.3.6 The BitwiSe NOT OPEIralOr (=) ...covveeitieriieitieieeieeie sttt sttt ettt sbe b e b sae e b e saeennean 38
7.3.7 LOQgical NOT OPEFALON (1) .eeeiveerteerteertiesieeiteeieesteesieesteesteesseesseesseesseesaeesseesbeesseesseesseenseessessaeas 38
7.4 MULTIPLICATIVEOPERATORS. ... uttteeiuttteestteeeassseeesesasseeessseesaansseeesasseessssnssesessseeessssseessnnsseesssnseees 38
7.5 ADDITIVE OPERATORS...c.eiuttteeitteeeaiseeeeeasstereesastesesasseesaasseeesassseessassesesanseeesansseeesassseesssmsseeessnseneen 40
7.5.2 The SUDLraction OPEFALOr €).... . eeieerierieeieeteeie ettt sttt st sbe e bbb e nneeneas 40
7.6 BITWISE SHIFT OPERATORS....ceeitttteeiuteeeesueeeeansnteressasseeesasseeesasseessasssesessnssesssssseeeesssseessnssseeessnseees 41
7.6.1 The Left SNift OPErator (<<)ittt ettt sbe bbbt e nneeneas 41
7.6.2 The Signed Right Shift OPErator £) ...eciieiieiiceeiece e 41
7.6.3 The Unsigned Right Shift Operator £>>)cccciiiieiiciicciee s 42
7.7 RELATIONAL OPERATORScettittteteeiuteeeeaueeeesassterasaaseeesaasseeesaasseesaasssesessnssesesnsseeeeassseessnssseeessnseees 42
7.8 EQUALITY OPERATORS.uutttteeteeaiiiutteeeaeeesssaastraeeeaesaasasssseeessaaasasssseseesesssassssssesesemsnsnsssssseeessannsnes 43
7.9 BINARY BITWISE OPERATORS ... uttttiiutteeesitteeeesseeeeeesasteeesaseeesansseeesaseeesssnssesessseneesssseessnssseesssnssnees 44
7.10 BINARY LOGICAL OPERATORS.....ctetiutteeeeuiereeaueeeeessasteeesaseesesnssesesasssesssasssesesssenessssseesssssseessnsseees 44
7.11 CONDITIONAL OPERATOR ([1) tvettiertieniiestiesteestee it e st sttt sttt e bbb e st st sae e s esaeesaeesbeesaeeenes 45
7.12 ASSIGNMENT OPERATORS....cceitttteeiuteeeesuaeeearsnteresaaseeeeaasseeesansseeesasssesessnssesesssseeessmsseessnssseeessnseees 45

ECMA/TC39/97/11

7.12.1 SIMPIE ASSIGNIMIENT (T) 1eeveetiertietieie ettt ettt ettt sb e bt e sb et e e b e e nbeebeeneesaeas 45
7.12.2 Compound ASSIGNMENT OPT) «.veerreerteerieerteerieerie ettt st ste ettt sb e e e e e be e sbeesbeesaeesbeesbeesaeenaeas 45
7.13 COMMA OPERATOR ()) teeteerteerteerueesseanteasteesteesseesseesseessessseesseesseesssesasesssesssesseessessseessessnsesnsesnsesnns 46
ST AT EM EN T S.eeeiiiiiiiteteieieeeeeeeeeeeeeeeaseeeeeeeeeeeeeeee e e e eeeesee e s s se s e e e aeseesesaeeeesee e e e e e e s s e e e s saeeeeseseseseneseseeeeeseeennnns 47
8.1 NV ARIABLE STATEMENT «.itiittttttieeeeeeeetsaasteeesseesssaaa s essseesesaasaasessesasaaassesssersssssassesssssranssessseesrees 47
ST Y = Y 7L =LY N 48
8.3 EXPRESSION STATEMENT ..ttttttttieeeeeeertsttsseesesresssssssessssesesssnasssssesssanssesseresssssessessersssanseeesseesrres 48
R N Y N 1 =Y 1 S 48
8.5 | TERATION STATEMENTS .iittttutiiieiieetttttttiaesestrstsaaseeeseeresaateeettartetssersssstseeserssranrreesseeernns 49
8.5.1 THEWNIIE SEAEEIMIENL. ... s nnnnn 49
8.5.2 T Or SEALBIMENE ... s nnnn 49
8.5.3 T Or i S A O MO ... nan 50

8.6 THE CONINMUE STATEMENT ettt eeee et e ee e ettt e e ettt e e eee e e e e e e ettt e e e et e et e e eeeeeeeeeeseteees 50
A N = o] (== ST N =Y 1 = N 51
8.8 THE TEIUIN STATEMENT ..tttttttttieeeeeeeeeettateessseesssaaasesessesesaaaanssessstsaaseessseesssssassesssrsssansseesssersens 51
o I N A L B N 1Y 1= N 51
FUNCTION DEFINITION . oo 53
PROGRAM 54
NATIVE ECMASCRIPT OBJIECT S .o, 55
ER R O R S . 59
()= = N SIS 61
A.1 Break and cONtiNUE [ADE] SLACKS.........couiiiiiiiiiiieeeeeeee ettt ettt et eeeeeeeeeeeeees 61

F N Y= 1 U Tt (o o VSRR 61

A.3 Host Supplied members of scope chains vs. IMPlICIthis. ..o 62
PROPOSED EXTENSIONS. ... 63
Bl THE CLASS STATEMENT o etveteeeeeeeteeeeeeseesessessseessesseesseesssssessssesessseessssesssessessesassssessssessssseesssnesssnes 63
(ORI y D L= {1 0] TR 63

B.2 THE TRY AND THROW STATEMENTS oo veteeveeeeteeeeeeeseseesseseesssesesssseessssssssssesssssssssesssssssssssssssssssnes 63
B.2. L THE TRY STATEMENT ettt eteteeeeeeeseeeeeeeeeseseesseeesseesesseesesseeesssesessseessssesssssessesassssesesssesseseesssnesssnes 63
B.2.2 THE THROW STATMENT o veteeeeeeeteeeeeeeeeeesesesseessessssssesssssessssesessssessssesssssssssessssssssssssssssesssesssnes 64
B3 THE DATE TYPED oot eeeeeteeee e eee et e et e et eeeeeseeeesaeeeeesseeeseesesssesseeseeseeesssennssseseasesnnssenssesessssensssnesans 64
B.3.1 TODATE ...ttt ettt ettt ettt et et ee et e e e et e et e enenenenas 64
B.3.1.1 ToDate Applied t0 the SIHNG TYPE.....coiiieeeeee et 64

B IMPLICIT THIS et eeeeeeeee e oo e e e et e e e e e ee et et e e e e e es et e e e e s eseeeeee s s s eseseseeeeees s eseeeee e s esesenennennseees 65
B.5 THE SWItCN STATEMENT Y 2 oottt e e et et e e e e e es e e et e e e e s et eee et eee e eeeseeeeeae e eseseseeenenenenn 65
B.6 CONVERSIONFUNCTIONSiiittttiiieeieeeitttttee e e e e e eesaaeseesseeesssaaaessssessbaaassseessesssssanssssssssrsnansessanes 66
B.7 ASSIGNMENT-ONLY OPERATOR (1=)1 oottt sttt 66
B.8 SEALING OF ANOBIECTZ e eeveeeeeeeeeeeeeeeeeeeeseseee e s e es et eseeee s s eseseeeeeneeseseseeeseesseseseseeeaeeseseeeeennenenenenn 66
B.9 THE ARGUMENTSKEYWORDeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseseseeeesseseseeeeeeseseseseeessssessseseseeseeseseseseneneseeens 66
B.10 PREPROCESSOR.....ccttuuuuttttteetttstuueesssessssnsssssesesssasnssesssssnteeesessssmmeeseteneeeserrr 67
B.11 THE DO..WHILE STATEMENT tettttuiteeeeitttttttieseeseetssassesssssessssssssestsesnsssseseesssnneesseesrssinreeeeee 67
SR 2 = TN TN =2 1= N o TR 67
PEOPLE CONT A CT S, 68
RESOLUTION HISTORY ..o 69
D.1 JANUARY 15, 1007 ..o 69
D.1.1 WWHITE SBCE.....eeeteeteeteeee ettt ettt ettt ettt ettt bt b e et e e bt e bt et e eabeeaee e sbeenbeenbeenbeebeenneens 69
D.1.2 KEYWOI TS ... ettt ettt ettt et b e bt e bt et e e b e et e e ateeabe e sbeesbeenbeenbeebeenteannenas 69
D.1.3 FULUNE RESEIVEU WWOITS......eeeeeeeeieeeieieeeeeeeeeesaaesaassseesssesessseesesseesessssssssssssssssssssssessssssesessssnrnens 69
D.1.4 Octal And Hex ESCape SEqUENCE ISSUE........coiuiiiiieiiiiieie ettt ettt nae e 69

ECMA/TC39/97/11

[R ST o] 1 01 (Y 69
D.1.6 HEX TN TONUMDEL......eeeiieieeetteeeee e eee ettt e e e e e e et e e e e e e e bbb e e e e e eesssssaseeesssesssssbaseeesesesassnnes 69
D.1.7 Attributes of Declared Functions and Built-in ObjetS..........ccceeviiiiiiiiiieneeneeeeeeeeee 69
D.1.8 The Grouping OPEIALON........coiuteieeieeie ettt ste et sbeebeetesbe bt e sbeesbeesbeesbeenbesaessesaseesreens 69
D.1.9 Prefix Increment and Decrement OPEratorS.......cooveeueeieeiieeriee e sieesieesteeseeessesaesaessreeseeens 69
D.1.10 UNAIY PIUS....cotiiiieieee ettt ettt ettt ettt et e e sbess b e e st e e nbeenbeebeenneens 70
D.1.11 MUItipliCatiVe OPEIAtOrS.eeiveeteeieeieete et ste e sttt ettt ettt e st e st e e sbeesbeenbeeseenesnesnneens 70
D.1.12 AditiVe OPEIALOrS....ccveeieeeeeieeteeee et st ste ettt ettt st sb e e st e et e e sbeebeebessneenbeesbeenaeens 70
D.1.13 LEft SNift OPEIALOL......c..eiitiiiieieeie ettt nb ettt s nesabeesbeeneeen 70
D.1.14 Binary BitWiSE OPEIALOrS......cciueerueeieeieeieeie st stee it este et eteetesee e sbeesbeesbeesbeeseesesnsesneeens 70
D.1.15 Conditional OPErator (2 1) .oeeieeieeieeie et ettt ettt et et s s 70
D.1.16 SimMPIE ASSIONIMIENT .. .eotiitieie ettt ettt ettt ettt s e st e e beesbeebeesbeeabesnneenbeenbeenaeens 70
[A I 0T Fo T T I (=] 1= | A 70

[S I N g 1Y (U [R =101 < | 70
D.1.19 New PropoSed EXLENSIONS.......cc.eiiteiiieieeieeieesteestee st esteeste et ssesae e st e steesbeesseessesaesnsesnneens 70
D.2 JANUARY 24, 1907 ... oottt ee e e e e e e e e e e st e e e e e e e e s ssb b e e eeeseesssrssseeessaesasssbeeneessseennsnees 71
D.2.1 END OF SOURCEuuuuuuuuuuuuurusnssssssssssnnnssssssssssssssssssssssssssssssnssssssssssssssssssssssssssssssnnnsnnssssssssssnsnssnnnn 71
D.2.2 FUTURE RESERVEDWV/ORDS.......uuuuuuuuuuururuuerssssssssnnnnnsnnnssnsssssssssssssssssssssssnssssssssssssssssssssssssssssnnnnnnnnn 71
[G V1Y T = = X o =N 71
D .2.4 COMMENTS . . uuuuuuuuuurunuersssreseserssasesssnsssssrsrssssrssnssssssssssssssnsnssssssnsnnnnnn 71
[I T 0] = N L= 1= 23S RN 71
D.2.6 NUMERICLITERALS ... uuuuuutttutttutuertunrereresneennaaaaanaa.—————————————.—r...n.n.._..nssssssssssssssssssssssnnnnnnsnsnnnsnnsnnn 71
D 2.7 STRING LITERALSuuuuuuuuuuuuuuneuusrsssessssenassnnsnnsssasnssssnssassssssssnnnnssssssssssssssssssssssssssssnsnnnsnsnssnnnnsssnnnnn 71
D.2.8 AUTOMATIC SEMICOLON INSERTION....uuuuuuuuuuununnnnnssssssssssnnnnssssnsssssssssssssssssssssssnssnnnsssssnsnssnsssssnnnnes 71
D.2.9 PROPERTY ATTRIBUTESuuuuuuuuuuuusuusrssnssssssssnsssnnnsssnnnnnnnnnnnnnn 71
[2 L W] = 1Y i AV =SS 71
D 2t R K0 V01V =3 = = RN 71
D.2.12 VVHITE SPACE uuuuuuuuuuunerureeesureessansasaaanaana_——_————_———rssrrssnnnsnsnssssssssssssssssssssssssssnnnsnsnsnsnssnnnsnssnnnnn 71
D.2.13 TONUMBERAPPLIED TO THESTRING TYPE ...uuuuuuuuuuunrnnnnunenssssssssnnnnnnnnnnnsnnsssssssnssssssssssnnnnnnnnnnnnnnns 71
[S 0) = 11 N1 72
D.2.15 POSTFIX INCREMENT ANDDECREMENT OPERATORS. .. .uuuuuuuuununrnnnsnsnsssssssnnnnnnnnnnnnsnssssssssssssssssssns 72
D.2.16 THE TYPEOF OPERATOR......uuuuuuuuuuunnsssssssssssssnnssnnnnnnnnnnnn 72
D.2.17 PREFIX INCREMENT ANDDECREMENT OPERATORS.uuuuuuuuunnnnnsnnnssnnssssnnnnnnsnnnnsnnssssssssssnsssssssnnns 72
D.2.18 MULTIPLICATIVEOPERATORS.....uuuuuuuuuuunrnnesssssssssssnnsnsssssssssssssssssssssssssssssnssssssssssssssssssssssssssssssnnn 72
D.2.19 THE SUBTRACTION OPERATORuuuuuuuuuunrnnssssssssssssssnnsnssnen 72
D.2.20 THE SUBTRACTION OPERATORuuuuuuuuuuenssnsssssssssssssnnssssssssssssssssssssssssssssssnsssssssssssssssssssssssssssssnnnn 72
D.2.21 APPLYING THEADDITIVE OPERATORS(H, =) t.veiiteertierieerteenieenteesteesieesteesieesseesseesseesseenseesseesneeseeas 72
D.2.22 EQUALITY OPERATORS ..ettieeiiitttttteeeeeaiisnserereesesaaaassssseesesaaaassssssesseessamasssseseseessssssssseeseesssannnes 72
D.2.23 TOPRIMITIVEUSAGE.......uuuuuuuuuuuiuunusuesussssnnnnnnnnnasasnnsasssssnssssssss.............ssssssssssssssssssssnnnsnnnssnnnnnnn 72
D.2.34 BINARY LOGICAL OPERATORS. ... uuuuuuuuuunrnurnnesnsssssssnnnsssssssssssssssssssssssssssssnssssssssssssssssssssssssssssssnnn 72
(DRI YN 10N = 3 T S L 72
D.3.1 MULTILINECOMMENT. .. uuuuuuuuuuunnnnrunsnssesssssnnnnnsssnsssnsnsssssssssssssssssnssnssssssssssssssssssssssssssssnnnnnnnnnnnnnnnnn 72
D.3.2 STRING LITERALSuuuuuuuuuuuuureuesuusuensssennseesnsnnnesnannasn—————rrsrsssnnnnnnsnnsssssssssssssssssssssssnnsssnssnsnsssnssnnnnn 73
D.3.3 AUTOMATIC SEMICOLON INSERTION....uuuuuuuuuuuununnnsnnnnssssssnnnsssnsssssnsssssssssssssssssssnsnnnsssnssssssnsnssnnnnnns 73
D.3.4 THENUMBER TY PE....uuuuuuuuuuuuuuuutuuruenrrsesnnennannnnsannssan...a..s....sr..n.........sssssssssssssssssssssnnnsnnnnsnssnssnnsnnn 73
D.3.5 PUTWITHEXPLICIT ACCESSIVMIODE.......uuuuuuuuuuuuurrrsnsesssssnnnnnnnnnnnsssnsssssssssssssssssnnssnnssssnsssnssnsssssnnsnes 73
D.3.6 PUTWITH IMPLICIT ACCESSIMODEuuuuuuuuuuuuuuunrnnunensssennnnnnnnnnnssssnssssssssssssssssnnsssnssssnsssnssssssssnssnes 73
D .37 THE STRING TY PE .. uuuuuuuuuuuuuuuuuusuussnsrsssnnsssnsssssnsnssssssssassssssssssnnnssssssssssssssssssssssssssssnsnnssnnnsnssnssnnnnnn 73
(DI TR S I @) N\ LU 1LY 1= = = RN 73
D.3.9 TONUMBERAPPLIED TO THESTRING TYPEuuuuuuuuuuuuuunnsnssssssssssnnnnnnnnsnnnsnnsnsssssssssssssssnnnnnnnnnnnnnnns 73
[T O] 1 72 73
[0 T 5 A 0 11 e 72 73
D.3.12 EXECUTION CONTEXTS(VARIABLES ..ceuveeteetieiteeteeteeteesieesseesteesseesseesseesseeseesaeesseessessseesseesses 73
D.3.13 FUNCTION CALLS....uuuuuuuuuuuuuuuunuusensrssssnnnnnnennsnasnnsasnssasrssssssrsannnnnnsssssssssssssssssssssssssnnnnnsnnsnnnnnnnnnnnn 73
D.3.14 THE TYPEOFOPERATORuuuuuuuuuruunnsssssssssssssssnnsssssssssssssssssssssssssssssssssnsssssssssssssssssssssssssssnnnnnnnnnnn 73
D.3.15 APPLYING THEYD OPERATOR. ... uuuuuuuuuuuurrrnessssssssssnnnnnsssssssssssssssssssssssssssnssssssssssssnssssssssssssssssssnnnn 73

ECMA/TC39/97/11

D.3.16 THE ADDITION OPERATOR ([T) tuveeiuteesuiesieeseeeesteessteesssessssesensesensesessesesssessnsesessesessesessesessanens 74
D.3.17 RELATIONAL OPERATORS......uuuuuuuuurruernssrrsssssssnnnsnsnnssssssssssssssssssssssssnsssssssssssssssssssssssssssssssnnnnnnnnn 74
D.3.18 CONDITIONAL OPERATOR (2%) veerteerteerteerteeteenieeteesieesteesueesseesseesseesessessaeesseesseessessseessesssesnsens 74
D.3.19 COMPOUNDASSIGNMENT (OPT) ueiitiiitieitiesteenieesteeseesteesteesseesteesseesseesseensessseessesssesssesssesssesnses 74
(D o Y O AN = A T K I/ 74
D.4.1 UNICODE ESCAPE SEQUENCES.uuuttieeeeiiiiuurereeeeeassiaisssseeessesasassssssessssssssasssssssesessssasssssseseseannsnnnes 74
D.4.2 FUTURE RESERVEDWV/ORDS......uuuuuuuuuuuueuussrrsesssssnnnsnsnnnssnssssssssssssssssssssnssnssssssssssssssssssssssssssssnnnnnnnnn 74
D.4.3 AUTOMATIC SEMICOLON INSERTION. .. uuuuuuuuuuununnnnnsssnsssssssnnsnsssssssssssssssssssssssssssnssnnnsssssssnssnsnsssnnnnnn 74
[o O =] = = = N 74
D.4.5 NoTIMPLICIT ANDNOTEXPLICIT PROPERTY ATTRIBUTESDELETEDuuuuuiiieiniinnnneennnnnnnnnnnnnnnnnnnnnns 74
D.4.6 TOINT32 AND TOUINT3Z....cuuuuuuuuuuuuunrierussssuussnnannnsennnnasasssasssaarssssa—.a..n.n.nssnsnsssssssssssssssssssnnnnnnnnnnnn 74
D.4.7 GROUPING OPERATOR. ... uuuuuuuuuuunnnssnssssssssssnnssnnnnsnnnnnnnnnnnn 74
D . 4.8 SHIFT EXPRESSIONS......uuuuuuuuuueuusnnssnsssssssnnsnnsssnnsnnnnsnssnsnnnnnnn 75
D.4.9 CONVERSIONRULES FORRELATIONAL OPERATORS.uuuuuuururrrnnssnsnssssssssnnnnnnnssnnnssnnssssssssssssssssnnnnns 75
D.4.10 & & AND || SEMANTICS. ..eetteteetieiteete et eteesteesteestee s bt e s bt e sbe e bt e bt e sbeesbeesbeesbeesbeebeebeenbeesbeenneenaees 75
D.4.11 CONDITIONAL OPERATOR.....uuuuuuuuunnnennrnssrsssssssnnnssnssssssssssssssssssssssssssnssnssssssssssssssssssssssssssssnnnnnnnnnn 75
D.4.12 ASSIGNMENTOPERATORS. .. .uuuuuuuuuunnrenassrrsssssssnnssnsnnnasnssssssssssssssssssssnnnnssssssssssssssssssssssssssssnnnnnnnnn 75
D.4.13 SYNTAX OF CLASSSTATEMENT ...uuuuuuuuuuuusnnssnsssnsssssssnnnssssnssnen 75
D.4.14 SYNTAX OF TRY STATEMENT....uuuuuuuuuuuuuunesnessssssessnnnnsnssnnnnn 75
DS FEBRUARY 27, 1007 ... 75
D.5.1 END OF MEDIUM CHARACTERISNO LONGERWHITESPACE........uuuuuiuuunninnrennnnesnnsnnnnnnnnnnnnnnnnnnnnnnnnes 75
D.5.1 AUTOMATIC SEMICOLON INSERTION.....uuuuuuuuuununnnnnssssssssssnnnnnnssssssssssssssssssssssssssnnssnnsssnsssnssnsssssnsnnns 76
D.5.1 DELETE OPERATOR.....uuuuuuuuuuuuruusnnsssssssssnsssnnnsnnnssnssnnnnnsnnn 76
D.5.1 & & AND || SEMANTICS. .. .teiitietietieiteete ettt st e st st ettt sbe ettt e e sbeesbe e s b e e bt e beebeebeenbeesbeesaeenaeas 76
D.5.1 SEPARATEPRODUCTIONS FORCONTINUE, BREAK, RETURNuuuuuiuiiiiniiineiiessereesnnnnnnnnnnnnnnnnnnnnnnnnes 76

ECMA/TC39/97/11

CHAPTER 1

NOTATIONAL CONVENTIONS

1.1 SYNTACTIC ANDLEXICALGRAMMARS

This section describes the context-free grammars used in this specification to define the lexical and
syntactic structure of an ECM A Script program.

1.1.1 Context-Free Grammars

A context-free grammar consists of a number ofproductions Each production has an abstract symbol
called anonterminal as itsleft-hand side and a sequence of one or more nonterminal anderminal
symbols as itsright-hand side For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called thgoal symbol, a
given context-free grammar specifies danguage namely, the (pehaps infinite) set of possible
sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the
sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

1.1.2 The Lexical Grammar

A lexical grammarfor ECMAScript is given in Chapter 3. This grammar has as its termina symbols
the characters of the Unicode character set. It defines a set of productions, starting from the goal
symbol Input, that describe how sequences of Unicode characters are translated into a sequence of
input elements.

These input elements, with white space and comments discarded, form the terminal symbolsfor the
syntactic grammar for ECMA Script and are called ECM A Scriptokens These tokens are the reserved
words, identifiers, literals, and punctuators of the ECM A Script language.

Productions of the lexical grammar are distinguished by having two colons“ " as separating
punctuation.

1.1.3 The Numeric String Grammar

A second grammar is used for translating strings into numeric values; this grammar is similar to the
part of the lexical grammar having to do with numeric literals. This grammar appearsin Chapter 5.
Productions of the numeric string grammar are distinguished by having three colons® : ” as
punctuation.

1.1.4 The Syntactic Grammar

The syntactic grammarfor ECMAScript is given in Chapters 7, 8, 9, and 10. This grammar has

ECMA Script tokens defined by the lexical grammar as its terminal symbols. It defines a set of
productions, starting from the goal symboProgram that describe how sequences of tokens can form
syntactically correct ECM A Script programs.

Productions of the syntactic grammar are distinguished by having just one colon “ as punctuation.
The syntactic grammar as presented in Chapters 7, 8, 9, and 10 is actually not a complete account of
which token sequences are accepted as correct ECM A Script programs. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons
were added to the sequence in certain places (such as before end-of-line characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if an end-of -
line character appearsin certain “awkward” places.

A LALR(1) version of the syntactic grammar is presented in Appendix E. Thisversion provides an
exact account of which token sequences are acceptable ECM A Script programs without needing
special rules about automatically adding semicolons or forbidding end-of-line characters. However, it
is much more complex than the grammar presented in Chapters 7, 8, 9, and 10.

ECMA/TC39/97/11

1.1.5 Grammar Notation

Terminal symbols are shown inf i xed wi dt hfont in the productions of all the grammars, and
throughout this specification whenever the text directly refers to such aterminal symbol. These are to
appear in aprogram exactly as written.
Nonterminal symbols are shown intalic type. The definition of a nonterminal isintroduced by the
name of the nonterminal being defined followed by one or more colons. (The number of colons
indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:
WithnStatement:
wi th (Expression) Statement
states that the nonterminal WithStatement represents the tokenwi t h, followed by aleft parenthesis
token, followed by arExpression followed by aright parenthesis token, followed by &atement The
occurrences of Expressionand Statement are themselves nonterminals. As another example, the
syntactic definition:
ArgumentList:
AssignmentExpression
ArgumentList , AssignmentExpression
states that an ArgumentListmay represent either a singleAssignmentExpressionor an
ArgumentList ffollowed by a comma, followed by aAssignmentExpression This definition of
ArgumentListisrecursive that isto say, it is defined in terms of itself. The result isthat an
ArgumentListmay contain any positive number of arguments. Such recursive definitions of
nonterminals are common.
The subscripted suffix ‘opt”, which may appear after aterminal or nonterminal, indicates aroptional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one
that omits the optional element and one that includesit. This means that:
VariableDeclaration:
Identifier Initializeryy
is a convenient abbreviation for:
VariableDeclaration:
Identifier
Identifier Initializer
and that:
IterationStatement:
for (Expression, ; Expression, ; Expression,) Statement
is a convenient abbreviation for:
IterationStatement:
for (; Expressiony ; Expression,) Statement
for (Expression ; Expression, ; Expression,) Statement
which in turn is an abbreviation for:
IterationStatement:

for (; ; Expressiony) Statement
for (; Expression ; Expressiony) Statement
for (Expression ; ; Expressiony) Statement

for (Expression ; Expression ; Expression,) Statement
which in turn is an abbreviation for:
IterationStatement :

for (; ;) Satement

for (; ; Expression) Satement

for (; Expression;) Satement

for (; Expression ; Expression) Statement
for (Expression; ;) Satement

for (Expression; ; Expression) Statement
for (Expression ; Expression ;) Statement

for (Expression ; Expression ; Expression) Statement
so the nonterminal IterationStatementactually has eight alternative right-hand sides.

ECMA/TC39/97/11

wn

If the phrase “” appears in the right-hand side of a production, it indicates that the production ia
restricted production it may not be used if aLineTerminator occursin the input stream at the
indicated position. For example, the production:
ReturnStatement :
r et ur n [noLineTerminator here] EXpI’eSSi Oyt ;
indicates that the production may not be used if &ineTerminator occurs in the program between the
r et ur ntoken and the Expression
When the words “one of’ follow the colon(s) in agrammar definition, they signify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical
grammar for ECM A Script contains the production:
ZeroToThree:: one of
0 1 2 3
which is merely a convenient abbreviation for:
ZeroToThree::
0
1
2
3
When an alternative in a production of the lexical grammar or the numeric string grammar appears to
be a multicharacter token, it represents the sequence of characters that would make up such a token.
The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not’ and then indicating the expansions to be excluded. For example, the production:
Identifier ::
I dentifierNamebut not ReservedWord
means that the nonterminal Identifier may be replaced by any sequence of characters that could
replace I dentifierNameprovided that the same sequence of characters could not replace
ReservedWord
Finaly, afew nonterminal symbols are described by a descriptive phrase in roman type in cases
where it would be impractical to list al the alternatives:
SourceCharacter:
any Unicode character

1.2 ALGORITHMCONVENTIONS

We often use a numbered list to specify stepsin an algorithm. When the algorithm is to produce a
value as aresult, we use the directive “return X" to indicate that the result of the algorithm is the value
of x and that the algorithm should terminate. We use the notation Result(n) as short hand for “the
result of step n”. We also use Type(x) as short hand for “the type of x”. If an algorithm is defined to
“generate aruntime error”, execution of the algorithm (and any calling algorithms) is terminated and
no result is returned.

These algorithms are used to clarify semantics. In practice, there may be more efficient algorithms
available to implement a given feature.

ECMA/TC39/97/11

CHAPTER 2

SOURCE TEXT

2.1 UNICODE

ECMA Script source text is represented asa sequence of characters representable using thelnicode
version 2.0character encoding However, it is possible to represent every ECM A Script program
using only ASCII characters (which are equivalent to the first 128 Unicode characters). Non-ASCI|
Unicode characters may appear only within comments and string literals; in both of those contents,
any Unicode character may be expressed as a Unicode escape sequence consisting of six ASCI|
characters, namely\ u plus four hexadecimal digits, and the effect is exactly the same asif the
Unicode character itself had appeared in place of the escape sequence.

SourceCharacter::
any Unicode character

2.2 END OF SOURCE

For purposes of describing the grammar of ECM A Script, the source text is assumed to be terminated
by alogical “end of source” character. We represent the enabf-source character by <EOS>.

EndOfSource::
<EOS>

10

ECMA/TC39/97/11

CHAPTER 3

LEXICAL CONVENTIONS

The source text of a ECMA Script program is first converted into a sequence of tokens and white
space. A token is asequence of characters that comprise alexical unit. The source text is scanned
from left to right, repeatedly taking the longest possible sequence of characters as the next token.

3.1 WHITE SPACE

White space characters are used to improve source text readability and to separate tokens, indivisible
lexical units, from each other but are otherwise insignificant. White space may occur between any two
tokens, but not within a token. White space may also occur inside a string, where it is significant.

The following characters are considered white space:

Unicode Value Name Formal Name
\u0009 Tab <TAB>
\uOOOA Line Feed <LF>
\u000B Vertical Tab <VT>
\u00oC Form Feed <FF>
\u000D Carriage Return <CR>
\u0020 Space <SP>
Syntax
WhiteSpace::
SimpleWnhiteSpace WhiteSpacg,
LineTerminator WhiteSpace:
Comment WhiteSpace:
SmpleWhiteSpace::
<TAB>
<SP>
<FF>
<VT>

LineTerminator::
<CR>
<LF>

LineEnd ::
LineTerminator
<EOS>

3.2 COMMENTS

Description
Comments can be either single or multi-line. Multi-line comments cannot nest.

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment::

11

ECMA/TC39/97/11

/ * MultiLineCommentChar g, * /

MultiLineCommentChars:
MultiLineNotAsteriskChar MultiLineCommentCharsg
* PostAsteriskCommentChar s,

PostAsteriskCommentChars:
MultiLineNotFowardSashChar
MultiLineCommentChar gy

MultiLineNotAsteriskChar:
SourceCharacterbut not asterisk* or <EOS>

MultiLineNotFowardSashChar:
SourceCharacterbut not forward-slash/ or <EOS>

SingleLineComment::
I/ SingleLineCommentChar s, LineTerminator
/1 SingleLineCommentChar s, EndOfSource

SingleLineCommentChars :
SingleLineCommentCharSngleLineCommentChar gy

SingleLineCommentChar::

SourceCharacterbut not LineEnd

TOKENS

Syntax

Token ::
ReservedWord
Identifier
Punctuator
Literal
EndOfSource

3.3.1 Reserved Words

Description
Reserved words cannot be used as identifiers.

ReservedWord::

Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

12

3.3.1.1 Keywords

ECMA/TC39/97/11

The following keywords are in use in either the the Borland ECM A Script implementation, the
Netscape 1.1 ECMA Script implementation, the Microsoft JScript implementation or all three.

Syntax
Keyword: one of
br eak conti nue
for function
new return
var voi d

3.3.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are thus reserved to allow for

the adoption for those extensions.

Syntax
FutureReservedWord: one of
argunent s case
def aul t do
inmplicit i mport
t hr ow try

3.3.2 IDENTIFIERS
Description

Anidentifier is a sequence of letters, digits and special characters that must begin with either aletter,

del ete

if

this

whi | e

catch

ext ends
super

el se
in

t ypeof

with

cl ass
finally
switch

the underscore () character or the dollar sign ($) character. ECMA Script identifiers are case
sensitive: identifiers whose characters differ only in case are considered unique.

Syntax
Identifier ::
IdentifierNamebut not ReservedWord

IdentifierName::
I dentifierLetter
I dentifierName I dentifierLetter
| dentifierName Decimal Digit

IdentifierLetter :: one of
abcdef gh 1 j
A B CDETFGHI J
$ _

DecimalDigit:: one of
012345672829

3.3.3 PUNCTUATORS

Syntax
Punctuator :: one of
= > <
I = !

k
K

I
L

m
M

n
N

0
O

p
p

aq
Q

r
R

s
S

t
T

u v
uyv

w
W

13

X
X

y
Y

z
z

ECMA/TC39/97/11

- * / & | A
% << >> >>> += .=
L = = = N= =
<<= >>= >>>= () {

} [] ;

3.3.4 LITERALS
Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

3.3.4.1 Null Literals

Syntax
NullLiteral ::
nul |
Semantics

The value of the null literalt r ue is the sole value of the null type, namelynull.

3.3.4.2 Boolean Literals
Syntax

BooleanLiteral ::
true
fal se
Semantics
The value of the Boolean literalt r ue is avalue of the Boolean type, namelyrue.

The value of the Boolean literal f al se is a value of the Boolean type, namely
false.3.3.4.3 Numeric Literals

Syntax
NumericLiteral ::
IntegerLiteral
FloatingPointLiteral

IntegerLiteral ::
DecimalIntegerLiteral
HexlntegerLiteral
OctallntegerLiteral

DecimalIntegerLiteral ::
0

NonZeroDigitDecimalDigits,
DecimalDigits::

DecimalDigit

DecimalDigits DecimalDigit

NonZeroDigit:: one of
1 2 3 4 5 6 7 8 9

HexIntegerLiteral ::
0x HexDigit

14

0X HexDigit

HexlIntegerLiteral HexDigit

HexDigit :: one of

0 1 2 3 456 7 8 9 a b c

OctallntegerLiteral
0 OctalDigit
OctalLiteral

OctalDigit:: one of
0

OctalDigit

1 2

FloatingPointLiteral::
DecimalIntegerLiteral. DecimalDigits,, ExponentPar
. DecimalDigits ExponentPar f;
DecimalIntegerLiteral ExponentPart

ExponentPart::

Exponentlindicator Signedinteger

Exponentindicator :
e E

Sgnedinteger ::

: one of

DecimalDigits

+ Decimal Di
- DecimalDi

Semantics

gits
gits

ECMA/TC39/97/11

d e f AB CDEF

A numeric literal stands for a value of the number type. This value is determined in two steps: first, a
mathematically accurate value is derived from the literal; second, this mathematical value (MV) is
rounded, using |EEE 754 round-to-nearest mode , to arepresentable value of the number type.
For any productionA :: B with a single nonterminal on its right-hand side, the MV ofA isthe MV of

B.
The MV of DecimalLiteral

. 0 is positive zero.

The MV of DecimalLiteral :: NonZeroDigitDigitsis (the MV of NonZeroDigittimes 10") plus the
MYV of Digits wheren is the number of charactersinDigits
The MV of DecimalDigits:: DecimalDigitsDecimalDigit is (the MV of Decimal Digitstimes 10) plus

the MV of DecimalDigit

The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::

0 or of HexDigit:: 0 or of OctalDigit:: O is positive zero.

1 or of NonZeroDigit
2 or of NonZeroDigit
3 or of NonZeroDigit
4 or of NonZeroDigit
5 or of NonZeroDigit
6 or of NonZeroDigit
7 or of NonZeroDigit
8 or of NonZeroDigit
9 or of NonZeroDigit

.2 1 or of HexDigit ::
.2 2 or of HexDigit ::
.2 3 or of HexDigit ::
.2 4 or of HexDigit ::
.2 5 or of HexDigit ::
.1 6 or of HexDigit ::
.2 7 or of HexDigit ::
. 8 or of HexDigit ::
.2 9 or of HexDigit ::

The MV of HexDigit :: a or of HexDigit:: Ais 10.
The MV of HexDigit :: b or of HexDigit:: Bis11.
The MV of HexDigit :: ¢ or of HexDigit:: Cis12.
The MV of HexDigit :: d or of HexDigit:: Dis 13.
The MV of HexDigit :: e or of HexDigit:: Eis 14.

1 or of OctalDigit ::
2 or of OctalDigit ::
3 or of OctalDigit ::
4 or of OctalDigit ::
5 or of OctalDigit ::
6 or of OctalDigit ::
7 or of OctalDigit ::
8 or of OctalDigit ::
9 or of OctalDigit ::

lisl.
2is2.
3is3.
4is4.
5is5.
6is6.
7is7.
8is8.
9is9.

15

ECMA/TC39/97/11

The MV of HexDigit:: f or of HexDigit:: F is 15.

The MV of HexIntegerLiteral:: O0x HexDigitisthe MV of HexDigit.

The MV of HexIntegerLiteral:: 0X HexDigitisthe MV of HexDigit.

The MV of HexIntegerLiteral:: HexIntegerLiteral HexDigitis (the MV of HexIntegerLiteral times
16) plusthe MV of HexDigit.

The MV of OctallntegerLiteral:: 0 OctalDigitisthe MV of Octal Digit.

The MV of OctallntegerLiteral:: OctallntegerLiteral OctalDigit is (the MV of OctallntegerLiteral
times 8) plusthe MV ofOctalDigit.

The MV of FloatingPointLiteral:: DecimallntegerLiteral. isthe MV of DecimallntegerLiteral
The MV of FloatingPointLiteral:: DecimallntegerLiteral. DecimalDigitsisthe MV of
DecimalIntegerLiteral plus (the MV of DecimalDigitstimes 10 "), wheren is the number of
characters in DecimalDigits.

The MV of FloatingPointLiteral:: DecimallntegerLiteral. ExponentPartisthe MV of
DecimallntegerLiteraltimes 1¢, wheree isthe MV of ExponentPart

The MV of FloatingPointLiteral:: DecimallntegerLiteral. DecimalDigits ExponentPartis (the MV
of DecimallntegerLiteral plus (the MV of DecimalDigitstimes 10 ") times 1&f, wherenis the
number of charactersinDecimalDigits and e isthe MV of ExponentPart

The MV of FloatingPointLiteral::. DecimalDigitsisthe MV of DecimalDigitstimes 10", wherenis
the number of characters inDecimalDigits.

The MV of FloatingPointLiteral::. DecimalDigits ExponentPartDecimalDigitsis the MV of
DecimalDigitstimes 107", wheren is the number of characters inDecimalDigits and e is the MV of
ExponentPart

The MV of FloatingPointLiteral:: DecimallntegerLiteral ExponentPartisthe MV of
DecimallntegerLiteraltimes 1¢, wheree isthe MV of ExponentPart

The MV of ExponentPart:: Exponentlndicator Signedintegeristhe MV of Signedinteger.

The MV of Sgnedinteger :: + DecimalDigitsisthe MV of DecimalDigits

The MV of Sgnedinteger :: - DecimalDigitsisthe negative of the MV ofDecimalDigits

Issue: this description, as it stands, does not take into account the resolution
that only the first 19 significant digits or so need contribute to the calculated
mathematical value. This still needs to be addressed. (It could be addressed
in the grammar itself, but it would be too messy: a couple of hundred
productions!)3.3.4.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence.

Syntax
StringLiteral ::
* DoubleStringCharacter g,
* SingleStringCharacter gy *

DoubleStringCharacter::
SourceCharacterbut not double-quote” or backslash\ or LineEnd
EscapeSequence

SingleStringCharacter::
SourceCharacterbut not single-quote* or backslash\ orLineEnd
EscapeSequence

EscapeSequence::
Character EscapeSeguence
Octal EscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

16

ECMA/TC39/97/11

Character EscapeSequence::
\ SingleEscapeCharacter
\ NonEscapeCharacter

SingleEscapeCharacter :: one of
‘ “ \ b f n r t
NonEscapeCharacter.:
SourceCharacterbut not SingleEscapeCharacteror OctalDigitor x or u or LineEnd
HexEscapeSequence::
\ x HexDigit HexDigit

HexDigit :: one of
01 23 45 6 7 8 9 abocdef ABZCDEF

Octal EscapeSequence::
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit Octal Digit

OctalDigit:: one of
0 1 2 3 4 5 6 7

ZeroToThree:: one of
0 1 2 3

UnicodeEscapeSequence:
\ u HexDigit HexDigit HexDigit HexDigit

Issue: Give a complete account of the interpretation of escape sequences.

The following table describes the set of character escape characters:

Unicode Value Escape Sequence Name Formal Name
\u0008 \b backspace <BS>

\u0009 \t horizontal tab <HT>

\uOOOA \n line feed (new line) <LF>

\u000C \f form feed <FF>

\u000D \r carriage return <CR>

\u0022 \” double quote)

\u0027 \ single quote ‘

\u005C \\ backslash \

3.4 AUTOMATICSEMICOLONINSERTION

Description

Certain ECM A Script statements(empty statement, variable statement, expression statement,

cont i nue statement, br eak statement, andr et ur n statement) must each be terminated with a
semicolon. Such a semicolon may always appear explicitly in the source text. For convenience,
however, such semicolons may be omitted from the source text in certain situations. We describe such
situations by saying that semicolons are automatically inserted into the source code token stream in
those situations:

17

ECMA/TC39/97/11

When, as the program is parsed from left to right,a token (called theoffending token) is
encountered that is not allowed by any production of the grammar and the parser is not currently
parsing the header of af or statement, then a semicolonis automatically insertedbefore the
offending tokenif one or more of the following conditionsis true

1. Theoffending token is separated from the previous token by at least orlé neTer minator.
2. Theoffending token isEndOfSource
3. Theoffending token is} .

However, there is an additional overriding condition: a semicolon is never inserted automatically
if the semicolon would then be parsed as an empty statement.

When, as the program is parsed from |eft to right,a token (called therestricted token) is
encountered that is allowed bysome production of the grammar, but the production is aestricted
productionand the restricted token is separated from the previous token by at least one
LineTerminator, then there are two cases:

1. If the parser is not currently parsing theheader of af or statement, a semicolonis
automatically insertedbefore therestricted token.

2. If the parser iscurrently parsing theheader of af or statement, it is a syntax error.
These are al the restricted productions in the grammar:

ReturnStatement :
r et ur n [noLineTerminator here] EXpI'eSSiOI’bp; ;

Member Expression:
Member Expression [noLineTerminator here] |ncrementOperator

CallExpression:
Member Expression [noLineTerminator here] Arguments
NewCallExpression [noLineTerminator here] Arguments
CallExpression [noLineTerminator here] Arguments

The practical effect of these restricted productionsis as follows:

1. When thetokenr et ur nisencountered anda LineTerminatoris encountered before the next
token is encountered,a semicolonis automatically insertedafter the tokenr et ur n.

2. When thetoken++ or - - is encountered where the parser would treat it as a postfix operator,
and at least oneLineTerminator occurred between the preceding token and the-+ or - -
token, then a semicolon is automatically inserted before the+ or - - token.

3. When the token(is encountered where the parser would treat it as the first token of a
parenthesized Argumentslist, and at least oneLineTer minator occurred between the
preceding token and the(token, then a semicolon is automatically inserted before thé
token.

The resulting practical advice to ECMA Script programmersis:

1. AnExpressioninar et ur n statement should start on the same line as the et ur n token.

2. A postfix++ or - - operator should appear on the same line as its operand.

18

ECMA/TC39/97/11

3. The(that starts an argument list should be on the same line as the expression that indicates
the function to be called.

For example, the source
{ 12} XEOS

isnot avalid sentence in the ECM A Script grammay even with the automatic semicolon insertion
rules. In contrast, the source

isalso not avalid ECMA Script sentence, but is transformed by automatic semicolon insertion into the
following:

{1
72 ;) 3,<EOS>

which isavalid ECM A Script sentence.

The source

for (a; b
) <EOS>

isnot avalid ECMA Script sentence and is not altered by automatic semicolon insertidrecause the
place where a semicolon is needed is within the header of &or statement. Automatic semicolon
insertion never occurs within the header of & or statement.

The source

return
a + b<eEOS>

is transformed by automatic semicolon insertion into the following:

return;
a + b;<EOS>

Note that the expressiona + b isnot treated as avalue to be returned by the et ur n statement,
because aLineTerminator separates it from the tokenr et ur n.

The source
a==>bo
++c<EOS>

is transformed by automatic semicolon insertion into the following:

a = b;
++c; <EOS>

19

ECMA/TC39/97/11

Note that the token++ is not treated as a postfix operator applying to the variablé, because a
LineTerminator occurs betweenb and ++.

The source

if (a > bh)
else ¢ = kKEOS>

isnot avalid ECMA Script sentence and is not altered by automatic semicolon insertidoefore the

el se token, even though no production of the grammar applies at that point, because an
automatically inserted semicolon would then be parsed as an empty statement

20

ECMA/TC39/97/11

CHAPTER 4

TYPES

A value is an entity that takes on one of seven types. There are six standard types and one internal
type calledReference. Values of typeReferenceare only used as intermediate results of expression
evaluation and cannot be stored to properties of objects.

4.1 THE UNDEFINEDTYPE

The Undefined type has exactly one value, calledindefined. Any variable that has not been assigned
avalueis of type undefined

4.2 THENULL TYPE
The Null type has exactly one value, calledhull.

4.3 THE BOOLEANTYPE

The Boolean type represents alogical entity and consists of exactly two unique valu&ne is called
true and the other is calledfalse.

4.4 THENUMBERTYPE

The Number type has exactly 1843773687445481062(that is, 2°- 2°°+3) values, representing the
double-precision 64-bit format |EEE 754 values as specified in the IEEE Standard for Binary
Floating-Point Arithmetic, except that the 900719925474099(that is, 2°- 2) distinct NaN values of
the IEEE Standard are represented in ECM A Script as single specialNaN value.

There are two other special values, calledPositive I nfinityand Negative I nfinity. The other
18437736874454810624that is, 2%- 2°°) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive number thereisa
corresponding negative number having the same magnitude.

Note that there is both a positive zero and a negative zero.

The 18437736874454810623that is, 2%*- 2°- 2) finite nonzero values are of two kinds:
1842872967520006963that is, 2°*- 2°%) of them are normalized, having the form

s xm x2°

wheresis+1 or- 1, m isa positive integer less than 2° but not less than 2?, and eiis an integer
between- 1073 to 971, inclusive.

The remaining 900719925474099Q(that is, 2°°- 2) values are denormalized, having the form
sxm x2°
wheresis+1 or- 1, m is a positive integer less than 2%, and eis- 1074.

Note that all the positive and negative integers whose magnitude is no greater than®2 are
representable in the Number type (indeed, the integer O has two representations, +0 and -0).

Some ECMA Script operators deal only with integers in the range 2* through 2*>- 1, inclusive, or in
the range O through 2-1, inclusive. These operators accept any value of the Number type but first
converts each such value to one of # integer values. See the descriptions of the Tolnt32 and
ToUint32 operators in sections 5.5 ancb.6 ToUint32: (unsigned 32 bit integer)respectively.

21

ECMA/TC39/97/11

4.5 THE OBJECTTYPE

An Object is an unordered collection of propertiesEach property consists of a name, avalue and a
set of attributes.

4.5.1 Property Attributes
A property can have zero or more attributes from the following set:

Attribute Descption

ReadOnly The property is aread-only property. Attempts to write to the property will be
ignored.

ErrorOnWrite This attribute has precedence over the ReadOnly attribute. Attempts to write to
the property will result in a runtime error and the property will not be changed.

DontEnum The property is not included in the for-in enumeration. See the description of the
for-in statement in section8.5.3 Thef or . . i n Statement

DontDelete Attempts to delete the property will be ignored. See the description of the
del et e operator in section7.3.1 Thedel et e Operator.

Internal Internal properties have no name and are not directly accessible viathe property
accessor operators. How these properties are accessed is implementation
specific. How and when some of these properties are used is specified by the
language specification.

4.5.2 Property Access

Internal properties and methods are not exposed in the language. For the purposes of this document,
we give them names enclosed in double square bracketd[[]]. When an algorithm uses an internal
property of an object and the object does not implement the indicated internal property, a runtime
error is generated.

There are two types of access for exposed propertieget and put, corresponding to retrieval and
assignment.

Native ECM A Script objects have an internal property called [[Prototype]]. The value of this property
iseither nul | or an object and is used for implementing inheritance. Properties of the [[Prototype]]
object are exposed as properties of the child object for the purposes of get access, but not for put
access.

The following table summarizes the internal properties related to property access.
Propert Parameters Description

[[Get]] (PropertyName) Returns the value of the property.

[[Put]] (PropertyName, Value) Sets the property to value.

[[Prototypel] None Returns the parent object.

[[HasProperty]] | (PropertyName) Returns a boolean value indicating whether the object

already has a member with the given name.

[[Construct]] Optional user provided (Constructor) Constructs an object. Invoked viathe
parameters newoperator.

[[Call] Optional user provided (Function) Executes the object..
parameters

AssumeO isan ECMA Script object andP is a string.

22

ECMA/TC39/97/11

4.5.2.1 HasProperty

When the [[HasProperty]] method ofO is called with property nameP, the following steps are taken:
1. If O hasaproperty with nameP, returnt r ue.

2. If the[[Prototype]] ofOisnul |, returnf al se.

3. Cadl the[[HasProperty]] method of [[Prototype]] with property name.

4. Return Result@).

45.2.2 Get

When the [[Get]] method ofO is called with property nameP, the following steps are taken:
If O doesn’t have a property with nameP, go to step4.

Get the value of the property.

Return Result@).

If the [[Prototype]] ofOisnul |, return undef i ned.

Call the [[Get]] method of [[Prototype]] with property name.

Return Result®).

o krwdhpE

4.5.2.3 Put

To aid in defining the [[Put]] method, the [CanPut]] method is first defined. As [[CanPut]] method
isonly used here (by the [[Put] method with explicit access mode), it is not included in the table in
45.2.

When the [[CanPuft]] method of O is called with propertyP, the following steps are taken:
If O doesn’t have a property with nameP, go to step 4.

If the property has the ErrorOnWrite attribute, generate a runtime error.

If the property has the ReadOnly attribute, returrf al se.

If the [[Prototype]] ofOisnul |, returnt r ue.

Call the [[CanPut]] method of [[Prototype]] ofO with property NameP.

Return Result(5).

ok whE

When the [[Put]] method ofO is called with propertyP and valueV, the following steps are taken:
1. Cadl the[[CanPut]] method of O with nameP.

2. If Result(1) isf al se, return.

3. If O doesn’'t have a property with nameP, go to step6.

4. Set the value of the property tov.

5. Return.

6. Create aproperty with nameP, set its value toV and give it empty attributes.

7. Return.

4.6 THE STRING TYPE

The String type consists of the set of all finite sequences of zero or more Unicode characters.
Note: The concatenation operator), relational operators (<, >, <=, >=) and equality operators E=,

I =) apply to thistype.

4.7 THE INTERNALREFERENCETYPE

The Internal Reference Typeisnot alanguage data type Isit only defined here for the purposes of
aiding this specification.

A Referenceis areference to an object’s property. ARefer ence consists of two parts, the base object
and the property name.

In defining the semantics of ECM A Script, the following methods are defined for internal operations:
GetBase(). Returns the base object component.

23

ECMA/TC39/97/11

GetPropertyName(). Returns the propertyName component.
GetValue(). Returnsthe value of the indicated property.
PutValue(). Setstheindicated property to the indicated value.

Values of typeReference are only used as intermediate results of expression evaluation and cannot be
stored to properties of objects.

4.7.1 GetBase

1. If Type(V) is aReference, return the base object component of.
2. Generate aruntime error.

4.7.2 GetPropertyName

1. If Type(V) isaReference, return the propertyName component o¥.
2. Generate aruntime error.

4.7.3 GetValue

If Type(V) is not a Reference, returnv.

Call GetBase(V).

If Result(2) isnull, generate aruntime error.

Call the [[Get]] method of Result(2), passing GetPropertyNam&() for the property name.
Return Result(4).

gagkrwbdpE

4.7.4 PutValue

For valuesV and W, PutVaue(V, W) performs:

1. If type (V) isnot a Reference, generate a runtime error.

2. Cdl GetBase(V).

3. If Result(2) isnull, go to step 6.

4. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W
for the value.

Return.

Call the [[Put]] method for theglobal object, passing GetPropertyName(V) for the property name
and W for the value.

7. Return.

o o

24

ECMA/TC39/97/11

CHAPTER 5

TYPE CONVERSION

The ECMA Script runtime system performs automatic type conversion as needed. To clarify the
semantics of certain constructsit is useful to define a set of conversion operators. These operators are
not a part of the language; they are defined here to aid the specification of the semantics of the
language. The conversion operators are polymorphic; that is, they can accept a value of any standard
type, but not of type Reference.

51 TOPRIMITIVE

The operator ToPrimitive takes a Vaue argument and an optional PreferredType argument. The
operator ToPrimitive attempts to convert its value argument to a non-Object type. If an object is
capable of converting to more than one primitive type, it may use the optional hiftreferredTypeto
favor that type. Conversion occurs according to the following table:

Input Type Result

Undefined Return the input argument (no conversion)

Null Return the input argument (no conversion)

Boolean Return the input argument (no conversion)

Number Return the input argument (no conversion)

String Return the input argument (no conversion)

Object Return the default value of the Object. The default value of an object is retrieved
by calling the interal [[DefaultValue]] method of the object passing an optional
hint preferredType The behavior of the [[DefaultValue]] method is defined by
this specification for all native ECM A Script objects. If the return value is of type
Object or Reference, a runtime error is generated.

5.2 TOBOOLEAN

The operator ToBoolean attempts to convert its argument to a value of type Boolean according to the
following table:

Input Type Result

Undefined fal se

Null fal se

Boolean Return the input argument (no conversion)
Number 0 -> fal se

NaN - fal se
1 0and ! NaN - true

String "" > false (where "" denotes an enpty string)

1"" > true
t

Object rue

5.3 ToNuMBER

The operator TONumber attempts to convert its argument to a value of type Number according to the
following table:

Input Type Result

Undefined NaN

25

ECMA/TC39/97/11

Null NaN
Boolean true > 1

false > 0
Number Return the input argument (no conversion)
String See grammer and discussion below.
Object Apply the following steps:

1. Cal ToPrimitive(input argument, hint Number).
2. Cal ToNumber(Result(1)).
3. Return Result(2).

5.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar
cannot interpret the string then the result of ToNumber isNaN

SringNumericLiteral:::
SirWhiteSpace,,: StrNumericLiteral StrwhiteSpace:

SrwhiteSpace:::
StrwhiteSpaceChar StrwhiteSpace:

SrwhiteSpaceChar :::
<TAB>
<SP>
<FF>
<VT>
<CR>
<LF>

StrNumericLiteral:::
SrintegerLiteral
SrFloatingPointLiteral

StrintegerLiteral :::
Signop Digitsyy
HexIntegerLiteral

HexlIntegerLiteral :::
0x HexDigit
0X HexDigit
HexlIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 45 6 7 8 9 a b c

SrFloatingPointLiteral:::
Signyy Digits. Digits,, ExponentPart,y
Signyy. Digits ExponentPart,,
Signy: Digits ExponentPart

ExponentPart:::
Exponentindicator Signedinteger

Exponentindicator::: one of
e E

d

e

f

A B C D E F

26

ECMA/TC39/97/11

Sgnedinteger :::
Signyx Digits

Sign::: oneof
+ -

54 TOINTEGER

The operator Tolnteger attempts to convert its argument to an integral numeric value. This operator
functions as follows:

Call ToNumber on the input argument.

If Result(1) isNaN, return O (positive zero)

If Result(1) isxl nfi ni ty, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

gk~ wdpE

5.5 ToINT32: (SIGNED32 BIT INTEGER

The operator Tolnt32 converts its argument to one of % integer valuesin the range -2* through 2°-
1, inclusive. This operator functions as follows:

Call ToNumber on the input argument.

If Result(1) is NaN, Positive Infinity, or Negative Infinity, retur@ (positive zero)
Compute sign(Result(1)) * floor(abs(Result(1))).

If Result(3) is positive zero or negative zero, retur® (positive zero).

Compute Result(3) modulo 232; that is, if Result(3) is negative, computie value of the
expression2* - ((1-Result(3)) % 2?) - 1; otherwise compute Result(3) % Z.

6. If Result(5) is greater than or equal to 2", return Result(5)-2%; otherwise return Result(4).

akrowdpE

Discussion:
Note that the Tolnt32 operation is idempotent: if applied to aresult that it produced, the second
application leaves that value unchanged.

Note also that Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for al values of x.
(It isto preserve this latter property that Positive Infinity and Negative Infinity are mapped to zero.)

5.6 TOUINT32: (UNSIGNED32 BIT INTEGER

The operator ToUint32 converts its argument to one of 2 integer values in the range 0 through
2%-1, inclusive. This operator functions as follows:Call ToNumber on the input argument.

If Result(1) is NaN, Positive Infinity, or Negative Infinity, retur@ (positive zero)

Compute sign(Result(1)) * floor(abs(Result(1))).

If Result(3) is positive zero or negative zero, retur® (positive zero).

Compute Result(3) modulo &; that is, if Result(3) is negative, computehe value of the
expression2* - ((1-Result(3)) % 2?) - 1; otherwise compute Result(3) % Z.

6. Return Result®).

=

akrobd

Discussion:
Note: Step6 isthe only difference between ToUint32 and Tolnt32.

Note that the ToUint32 operation isidempotent: if applied to aresult that it produced, the second
application leaves that value unchanged.

Note also that ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x.

27

ECMA/TC39/97/11

(It isto preserve this latter property that Positive Infinity and Negative Infinity are mapped to zero.)

5.7 TOSTRING

The operator ToString attempts to convert its argument to a value of type String according to the

following table:

Input Type Result
Undefined "undefi ned"
Null "nul 1"
Boolean true -> "true"
false > "fal se"
Number See discussion below.
String Return the input argument (no conversion)
Object Apply the following steps:

1. Call ToPrimitive(input argument, hint String).
2. Cadl TosString(Result(1)).
3. Return Result(2).

5.7.1 ToString Applied to the Number Type

The operator ToStringconverts a number to string format as follows:

If the argument is NaN, the result is the string” NaN".

Otherwise, the result is a string that represents the sign and magnitude (absolute value) of the
argument. If the sign is negative, the first character of theresult is- ’; if the sign is positive, no
sign character appears in the result. Asfor the magnitudem:

If misinfinity, it is represented by the characterst nf i ni t y’; thus, positive infinity
produces theresult" | nf i ni t y" and negative infinity produces theresult- | nfini ty".

If miszero, it is represented by the character 0’; thus, negative zero produces the result' -
0" and positive zero produces the result' 0" .

If misan integer less than 10°, then it is represented as that integer value in decimal form
with no leading zeroes and no decimal point.

If mis greater than or equal to 10° but less than 10, and is not an exact integer value, then
it is represented as the integer part (floor) ofm, in decimal form with no leading zeroes,
followed by adecimal point. ', followed by one or more decimal digits (see below)
representing the fractional part of m.

If mislessthan 10° or not less than 10°, then it is represented in so-called "computerized
scientific notation." Letn be the unique integer such that 10 £ m< 10™?; then let a be the
mathematically exact quotient ofmand 10" so that 1 £ a < 10. The magnitude is then
represented as the integer part (floor) ofa, as a single decimal digit, followed by a decimal
point ‘. ’, followed by one or more decimal digits (see below) representing the fractional part
of a, followed by the letter E', followed by a representation ofh as a decimal integer (first a
minus sign ‘-’ if nis negative or nothing ofn is not negative, followed by the decimal
representation of the magnitude ofn with no leading zeros).

28

ECMA/TC39/97/11

How many digits must be printed for the fractional part ofn or a? There must be at least one digit;
beyond that, there must be as many, but only as many, more digits as are needed to uniquely
distinguish the argument value from all other representable numeric values. That is, suppose thatis
the exact mathematical value represented by the decimal representation produced by this method for a
finite nonzero argument ; thend must be the value of number type nearest te; or if two values of
thenumber type are equally close t, then d must be one of them and the least significant bit ofi

must be 0. A consequence of this specification is that ToString never produces trailing zero digits for
afractional part.

Implementors of ECM A Script may find useful the paper and code written by David M. Gay for
binary-to-decimal conversion of floating-point numbers [Gay 1990].

5.8 ToOBJECT

The operator ToObject attempts to convert its argument to a value of type Object according to the
following table:

Input Type Result

Undefined generate a runtime error

Null generate a runtime error

Boolean Create a Boolean object whose default value is the value of the boolean. See the
Native ECM A Script Objectsection for a description of the Boolean object.

Number Create a Number object whose default value is the value of the number. See the
Native ECM A Script Objectsection for a description of the Number object.

String Create a String object whose default value is the value of the string. See the
Native ECM A Script Objectsection for a description of the String object.

Object Return the input argument (no conversion)

29

ECMA/TC39/97/11

CHAPTER 6

EXECUTION CONTEXTS

When control is transferred to ECM A Script executable code, we say that control is entering an
execution context. Active execution contexts logically form a stack. The top execution context on this
logical stack is the running execution context.

6.1 DEFINITIONS

6.1.1 Function Objects
There are four types of function objects:

Declared functionsare defined in source text by a@unctionDeclaration

Anonymous functionsare created dynamically by using the built-ifFunct i on Object asa
constructor which we refer to asinstantiatingrunct i on.

Host functionsare created at the request of the host with source text supplied by the host. The
mechanism for their creation isimplementation dependent. Host functions may have any subset of
the following attributes { ImplicitThis, ImplicitParents }. These attributes are described below.
Internal functionsare built-in objects of the language, such apar sel nt and Mat h. exp.

These functions do not contain executable code defined by the ECM A Script grammar, so are
excluded from this discussion of execution contexts.

6.1.2 Types of Executable Code
There are five types of executable ECM A Script source text:

Global codeis source text that is outside all function declarations. More precisely, the global code
of a particular ECM A ScriptProgramconsists of all SourceElementsin the Programproduction
which come from theStatement definition.

Eval codeis the source text supplied to the built-ireval function. More precisely, if the
parameter to the built-ineval functionisastring, it istreated as an ECMA ScriptProgram The
eval code for a particular invocation ofeval isthe global code portion of the string parameter.
Function codeis source text that is inside a function declaration. More precisely, the function
code of a particular ECM A ScriptFunctionDeclarationconsists of theBlock in the definition of
FunctionDeclaration

Anonymous codeis the source text supplied when instantiating=unct i on. More precisely, the
last parameter provided in an instantiation ofFunct i onis converted to a string and treated as
the StatementL.ist of the Block of aFunctionDeclaration If more than one parameter is provided

in an instantiation of Funct i on, all parameters except the last one are converted to strings and
concatenated together, separated by commas. The resulting string is interpreted as the

Formal ParameterListof aFunctionDeclarationfor the StatementList defined by the last

parameter.

Host codeis the source text supplied by the host when creating a host function. The source text is
treated as the StatementList of the Block of aFunctionDeclaration Depending on the
implementation, the host may also supply & ormalParameterList

6.1.3 Variable Instantiation

Every execution context has associated with it aariable object Variables declared in the source text
are

added as properties of the variable object. For global and eval code, functions defined in the source
text are added as properties of the variable object. Function declarations in other types of code are not

30

ECMA/TC39/97/11

allowed by the grammar. For function, anonymous and host code, parameters are added as properties
of the variable object.

Which object is used as the variable object and what attributes are used for the properties depends on
the
type of code, but the remainder of the behavior is generic:

For each FunctionDeclarationin the code, in source text order, instantiate a declared function
from the FunctionDeclarationand create a property of the variable object whose hame is the
Identifier in the FunctionDeclaration whose value is the declared function and whose attributes
are determined by the type of code. If the variable object already has a property with this name,
replace its value and attributes.

For each formal parameter, as defined in the=ormal ParameterList create a property of the
variable object whose name is thddentifier and whose attributes are determined by the type of
code. The values of the parameters are supplied by the caller. If the caller supplies fewer
parameter values than there are formal parameters, the extraformal parameters have value
undef i ned If two or more formal parameters share the same name, hence the same property,
the corresponding property is given the value that was supplied for the last parameter with this
name. if the value of this last parameter was not supplied by the caller, the value of the
corresponding property isundef i ned.

For each VariableDeclarationin the code, create a property of the variable object whose name is
the Identifier in VariableDeclaration whose valueisundef i ned and whose attributes are
determined by the type of code. If thereis already a property of the variable object with the name
of adeclared - variable, the value of the property and its attributes are not changed. Semantically,
this step must follow the creation of thd-unctionDeclarationand For malParameterlist

properties. In particular, if a declared variable has the same name as a declared function or formal
parameter, the variable declaration does not disturb the existing property.

6.1.4 Scope Chain and Identifier Resolution

Every execution context has associated with it its own scope chain Thisislogically alist of objects
that are searched whenbinding an Identifier. When control enters an execution context, the scope
chain is created and is populated with an initial set of objects, depending on the type of code. When
control leaves the execution context, the scope chain is destroyed.

During execution, the scope chain of the execution context is affected only WithStatement When
execution enters awi t h block, the object specified in theni t h statement is added to the front of the
scope chain. When execution leaves a with block, whether normally or vialar eak orconti nue
statement, the object is removed from the scope chain. The object being removed will always be the
first object in the scope chain.

During execution, the syntactic productiorPrimaryExpression: Identifier is evaluated using the

following algorithm:

1. Get the next object in the scope chain. If there isn't one, go to step 5.

2. Cadl the [[HasProperty]] method of Result(l), passing thédentifier as the property.

3. If Result(2) ist r ue, return avalue of type Reference whose base object is Result(l), property
name isthe identifier.

4. Gotostep 1.
5. Return avalue of type Reference whose base object isul | and whoseproperty nameis
Identifier.

The result of binding an identifier is aways a value of type Reference with its member name
component equal to the identifier string.

6.1.5 Global Object

Thereisauniqueglobal objectwhich is created before control enters any execution context. Initially
the global object has the following properties:

31

ECMA/TC39/97/11

Built-in objects such as Math, String, Date, parselnt, etc. These have attributes{ DontEnum }.
Additional host defined properties. This may include a property whose value is the global object
itself, for example window in HTML.

As control enters execution contexts, and as ECM A Script code is executed, additional properties may
be added to the global object and the initial properties may be changed.

6.1.6 Activation Object

When control enters an execution context for function code, anonymous code or host code, an object
called the activation object is created and associated with the execution context.he activation object
isinitialized with a single property with namear gunent s and property attributes{ DontDelete }.
Theinitial value of this property is the arguments object described bel ovil.he activation object ishen
used as the variable object for the purposes of variable instantiation.

The activation object is purely a specification mechanism. It isimpossible for an ECMA Script
program to access the activation object. It can access members of the activation object, but not the
activation object itself. When the call operation is applied to a Reference value whose base object is an
activation object,nul | isused asthet hi s value of the call.

6.1.7 LabelStacks

The definitions of the control flow statements use two logical stacks, tHaeak label stackand the
continue label slack These are to facilitate the semantic definition of these statements and are not
intended to imply a particular implementation. Each execution context has its own label stacks, which
are created and initialized to empty when control enters the execution context When control leaves the
execution context, the label stacks are destroyed.

6.1.8 This

Thereisat hi s value associated with every active execution context. Thehi s value depends on the
caller and the type of code being executed and is determined when control enters the execution
context. Thet hi s value associated with an execution context isimmutable.

6.1.9 Arguments Object

When control enters an execution context for function, anonymous or host code, an arguments object

is created and initialized as follows:

a A property is created with namecal | ee and property attributes{ DontEnum }. Theinitial value
of this property is the function object being executed. This allows anonymous functions to be
recursive.

a A property is created with namd engt h and property attributes{ DontEnum }. Theinitial value
of this property is the number of actual parameter values supplied by the caller.

a For each non-negative integer, iarg, less than the value of thé engt h property, a property is
created with name ToString(iarg) and property attributes { DontEnum }. The initial value of this
property isthe value of the corresponding actual parameter supplied by the caller. The first actual
parameter value corresponds to iarg = 0, the second to iarg = 1 and so on. In the case when iarg is
less than the number of formal parameters for the function object, this property sharesits value
with the corresponding property of the activation object. This means that changing this property
changes the corresponding property of the activation object and vice versa. The value sharing
mechanism depends on the implementation.

I ssue: Should the arguments object have a caller property?

32

ECMA/TC39/97/11

6.2 ENTERINGAN EXECUTIONCONTEXT

When control enters an execution context, the scope chain is created and initialized, variable
instantiation is performed, the break label and continue label stacks are created and initialized to
empty, and thet hi s valueis determined

Theinitialization of the scope chain variable instantiation and the determination of thet hi s value
depend on the type of code being entered.

6.2.1 Global Code

The scope chain is created and initialized to contain the global object and no others.

Variable instantiation is performed using the global object as the variable object and using empty
property attributes.

Thet hi s valueisthe global object.

6.2.2 EvalCode

When control enters an execution context for eval code, the previous active execution context, referred
to asthecalling context, is used to determine the scope chainthe variable object and thet hi s
value If there is no calling context,theninitializing the scope chain variable instantiation and
determination of thet hi s valueare performed just as for global code.
The scope chain isinitialized to contain the same objects, in the same order, as the calling
context's scope chain. This includes objects added to the calling context's scope chain by
WithSatement.
Variable instantiation is performed using the calling context's variable object and using empty
property attributes.
Thet hi s valueisthe same asthet hi s value of the calling context.

6.2.3 Function and Anonymous Code

The scope chain isinitialized to contain the activation object followed by the global object.
Variable instantiation is performed using the activation object as the variable object and using
property attributes {, DontDelete} .

The caller provides thet hi s value. If thet hi s value provided by the caller is not an object
(including the case whereit isnul 1), then thet hi s valueis the global object.

6.2.4 Host Code

The scope chain isinitialized to contain the activation object asits first element.

If the host function has the ImplicitThis attribute, the this value is placed in the scope chain after
the activation object.

If the host function has the ImplicitParents attribute, alist of objects determined solely by the

t hi s value, isinserted in the scope chain after the activation object andl hi s object. Note that
thislist is determined at runtime by thet hi s value. It isnot determined by any form of lexical
scoping.

The global object is placed in the scope chain after al other objects.

Variable instantiation is performed using the activation object as the variable object and using
attributes { DontEnum, DontDelete}

Thet hi s valueis determined just as for function and anonymous code.

33

ECMA/TC39/97/11

CHAPTER 7

EXPRESSIONS

7.1 PRIMARYEXPRESSIONS

Syntax
PrimaryExpression:
this
Identifier
Literal

(Expression)

7.1.1 Thet hi s Keyword
Thet hi s keywordevaluates to thet hi s value of the execution context.

7.1.2 ldentifier Reference

An Identifier is evaluated using the scoping rules statedn section6.1.4 Scope Chain and Identifier
ResolutionThe result of anldentifier is always a value of type Reference.

7.1.3 Literal Reference
A Literal is evaluated as described in sectior8.3.4 Literals

7.1.4 The Grouping Operator

The productionPrimaryExpression: (Expression) isevaluated as follows:
1. EvauateExpression This may be of type Reference.
2. Return Result().

7.2 POSTFIXEXPRESSIONS
Syntax

Member Expression:
PrimaryExpression
Member Expression] Expression]
Member Expression. ldentifier
Member Expression [noLineTerminator here] |ncrementOper ator

IncrementOperator :
++

NewEXpression:
newMemberExpression

NewCallExpression:
newMember Expression Arguments

CallExpression:
Member Expression [noLineTerminator here] Arguments
NewCallExpression [noLineTerminator here] Arguments
CallExpression [noLineTerminator here] Arguments
CallExpression[Expression]
CallExpression. ldentifier

34

ECMA/TC39/97/11

CallExpression IncrementOper ator

Arguments:

()
(ArgumentList)

ArgumentList:
AssignmentExpression
ArgumentList, AssignmentExpression

PostfixExpression:
Member Expression
CallExpression
NewExpression

The postfix increment operators and property accessor operators | and . appear in both the
Member Expressionand CallExpressionproductions. Generally we will refer to the productions
involving Member Expressionwith the understanding that the same remarks apply taCallExpression
Similarly, the CallExpressionproduction includes three definitions involving thé\rgumentsnon-
terminal. We will refer to the definition involvingCall Expression

7.2.1 Property Accessors

Properties are accessed by name, using either the dot notatioiMember Expression. |dentifier or the
bracket notationMember Expression][Expression] .

The dot notation is transformed using the following syntactic conversion:
Member Expression. ldentifier
is exactly equivalent to:
Member Expression[<identifier-string>]

where <identifier-string> is a string literal containing the same sequence of characters as the
identifier.

The productionMember Expression: Member Expression] Expression] is evaluated as follows:
Evaluate Member Expression

Call GetValue(Result(1)).

Evaluate Expression

Call GetValue(Result(3)).

Call ToObject(Result(2)).

Call ToString(Result(4)).

Return avalue of type Reference whose base object is Result(5), member name is Result(6) and
access mode is explicit.

Noar~wdE

7.2.2 Postfix Increment and Decrement Operators

The productionMember Expression: Member Expression IncrementOperatolis evaluated as follows:
1. Evauate MemberExpression

2. Cdl GetVaue(Result(1)).

3. Cal ToNumber(Result(2)).

4. For ++, Result(4) is Result(3) increased by one. For - , Result(4) is Result(3) decreased by one.
In either case, if Result(3) isNaNor 1 nf i ni ty, Result(4) isthe same as Result(3).

Call PutValue(Result(1), Result(4)).

Return Result(32).

o o

35

ECMA/TC39/97/11

7.2.3 The newOperator
The productionNewExpression: newMember Expressionis evaluated as follows:

ghrowpdpE

No

Evaluate Member Expression

Call GetValue(Result(1)).

If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
Call the [[Construct]] method on Result(2), providingno arguments (that is, an empty list of
arguments).

If Type(Result(5) is not Object, generate a runtime error.

Return Result(5.

The productionNewCallExpression: newMember Expression Argumentds evaluated as follows:

7.
8.

Evaluate Member Expression

Call GetValue(Result(1)).

For each AssignmentExpressionin ArgumentList in left to right order, evaluate
AssignmentExpressionand call GetValue on the result. Keep all of these valuesin an internal list.
If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.

Call the [[Construct]] method on Result(2), providing the list generated in step 3 as the
parameters.

If Type(Result(6)) is not Object, generate a runtime error.

Return Result(6).

7.2.4 Function Calls
The productionCallExpression: CallExpression Argumentds evaluated as follows:

1.
2.

Nouokw

8.

0.

Evaluate CallExpression

For each AssignmentExpressionin ArgumentList in left to right order, evaluate
AssignmentExpressionand call GetValue on the result. Keep all of these valuesin an internal list.
Call GetValue(Result(1)).

If Type(Result(3)) is not Object, generate a runtime error.

If Result(3) does not implement the internal [[Call]] method, generate a runtime error.

If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). OtherwisResult(6) isnul | .
If Result(6) is an activation object, Result(7) isul | . Otherwise, Result(7) is the same as
Result(6).

Call the [[Call]] method on Result(3), providing Resul{) asthet hi s value and providing the
list generated in step 2 as the parameters.

Return Result@®).

Note: Result(8) will never be of type Reference for native ECM A Script objects. Whether an external
object can return a value of type Reference is implementation dependent.

7.3

UNARYOPERATORS

Syntax

UnaryExpression:
PostfixExpression
del et e UnaryExpression
voi d UnaryExpression
t ypeof UnaryExpression
IncrementOperator UnaryEXxpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

36

ECMA/TC39/97/11

7.3.1 The del et e Operator

The productionUnaryExpression: del et e UnaryExpressionis evaluated as follows:

Evaluate UnaryExpression

Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

If Type(Result(2)) is not Objectreturnt r ue.

If Result(2) does not implement the internal [[Delete]] methodgo to step 8

Call the [[Delete]] method on Result(2), providing Result(3) as the property name to delete.
Return Result(7).

Call the [[HasProperty]] method on Result(2), providing Result(3 as the property name to check
for.

9. If Result(8)istrue, returnf al se.

10. Returnt r ue.

N ~WNE

7.3.2 The voi d Operator

The productionUnaryExpression: voi d UnaryExpressionis evaluated as follows:
1. EvauateUnaryExpression

2. Call GetValue(Result(1)).

3. Returnundefi ned.

7.3.3 Thet ypeof Operator

The productionUnaryExpression: t ypeof UnaryExpressionis evaluated as follows:

1. EvauateUnaryExpression

2. If Type(Result(1)) is Reference and GetBase(Result(1)) isul |, return " undef i ned".
3. Cdl GetVaue(Result(1)).

4. Return astring determined by Type(Result(3)) according to the following table:

Type Result
Undefined "undefi ned"
Null "obj ect”
Boolean "bool ean"
Number "numnber "
String "string"
Object (native and "obj ect”
doesn’t implement

[[Call]])

Object (native and "function"
implements [[Call]])

Object (external) unspecified

Issue: What does typeof return for external objects?

7.3.4 Prefix Increment and Decrement Operators

The productionUnaryExpression: IncrementOperator UnaryExpressionis evaluated as follows:

1. EvauateUnaryExpression

2. Cdl GetVaue(Result(1)).

3. Cal ToNumber(Result(2)).

4. For ++, Result(4) is Result(3) increased by one. For -, Result(4) is Result(3) decreased by one.
In either case, if Result(3) isNaNor =1 nf i ni ty, Result(4) isthe same as Result(3).

Call PutValue(Result(1), Result(4)).

Return Result(4).

o u

7.3.5 Unary + and - Operators

The productionUnaryExpression: + UnaryExpressionis evaluated as follows:
1. EvauateUnaryExpression

37

ECMA/TC39/97/11

2. Cdl GetVaue(Result(1)).
3. Cal ToNumber(Result(2)).
4. Return Result(3).

The productionUnaryExpression: - UnaryExpressionis evaluated as follows:
Evaluate UnaryExpression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

If Result(3) isNaN, return NaN

Negate Result(3).

Return Result(5).

o kkwdhpE

7.3.6 The Bitwise NOT Operator (~)

The productionUnaryExpression: ~ UnaryExpressionis evaluated as follows:
Evaluate UnaryExpression

Call GetValue(Result(1)).

Call Tolnt32(Result(2)).

Apply bitwise complement to Result(3).

Return Result(4).

ghrowpdpE

7.3.7 Logical NOT Operator (!)

The productionUnaryExpression: ~ UnaryExpressionis evaluated as follows:
Evaluate UnaryExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) ist r ue, returnf al se.

Returnt r ue.

agkrowpdr

7.4 MULTIPLICATIVEOPERATORS
Syntax

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression* UnaryExpression
MultiplicativeExpression/ UnaryExpression
MultiplicativeExpression%UnaryExpression

Semanitcs

The productionMultiplicativeExpression: MultiplicativeExpression @ UnaryExpressionwhere @
stands for one of the operatorsin the above definitions, is evaluated as follows:

Evaluate MultiplicativeExpression

Call GetValue(Result(1)).

Evaluate UnaryExpression

Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the specified operationt, /, or % to Result(5) and Result(6). See the discussions
below (7.4.1, 7.4.2, 7.4.3).

8. Return Result(7).

Noar~wDdDE

7.4.1 Applying the * Operator

The* operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECM A Script, because of finite precision.
The result of afloating-point multiplication is governed by the rules of IEEE 754 double-precision
arithmetic:

38

ECMA/TC39/97/11

If either operand is NaN, the result is NaN.

The sign of theresult is positive if both operands have the same sign, negative if the operands
have different signs.

Multiplication of an infinity by a zero resultsin NaN.

Multiplication of an infinity by afinite non-zero value resultsin a signed infinity. The signis
determined by the rule already stated above.

In the remaining cases, where neither an infinity or NaN isinvolved, the product is computed and
rounded to the nearest representable value using |EEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, the result is then a zero of appropriate sign. The

ECMA Script language requires support of gradual underflow as defined by IEEE 754.

7.4 2 Applying the / Operator

The/ operator performs division, producing the quotient of its operands. The left operand is the
dividend and the right operand is the divisor. ECMA Script does not perform integer division. The
operands and result of all division operations are double-precision floating-point numbers. The result
of division is determined by the specification of IEEE 754 arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands
have different signs.

Division of an infinity by an infinity resultsin NaN.

Division of an infinity by a non-zero finite value resultsin a signed infinity. Thesignis
determined by the rule already stated above.

Division of afinite value by an infinity resultsin zero.

Division of a zero by a zero resultsin NaN; division of zero by any other finite value resultsin
zero.

Division of anon-zero finite value by a zero resultsin a signed infinity. The sign is determined by
the rule already stated above.

In the remaining cases, where neither an infinity, nor a zero, nor NaN isinvolved, the quotient is
computed and rounded to the nearest representable value using | EEE 754 round-to-nearest mode.
If the magnitude is too large to represent, we say the operation overflows; the result is then an
infinity of appropriate sign. If the magnitude istoo small to represent, we say the operation
underflows and the result is zero. The ECM A Script language requires support of gradual
underflow as defined by |EEE 754.

7.4 3 Applying the %Operator

The binary %operator is said to yield the remainder of its operands from an implied division; the left
operand is the dividend and the right operand is the divisor. In C and C++, the remainder operator
accepts only integral operands, but in ECMA Script, it also accepts floating-point operands.

The result of afloating-point remainder operation as computed by th&operator is not the same as

the "remainder” operation defined by IEEE 754. The |IEEE 754 "remainder" operation computes the
remainder from arounding division, not a truncating division, and so its behavior is not analogous to
that of the usual integer remainder operator. Instead the ECM A Script language define®oon floating-
point operations to behave in a manner analogous to that of the Java integer remainder operator; this
may be compared with the C library function fmod.

The result of a ECMA Script floating-point remainder operation is determined by the rules of IEEE
arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.
If the dividend is a zero and the divisor is finite, the result is zero.

39

ECMA/TC39/97/11

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-
point remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n
- (d* g) where g is an integer that is hegative only if n/d is negative and positive only if n/d is
positive, and whose magnitude is as large as possible without exceeding the magnitude of the true
mathematical quotient of n and d.

7.5 ADDITIVEOPERATORS
Syntax

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression+ MultiplicativeExpression
AdditiveExpression- MultiplicativeExpression

7.5.1 The Addition Operator (+)
The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression: AdditiveExpression+ MultiplicativeExpressionis evaluated as
follows:

1. Evauate AdditiveExpression

2. Cdl GetVaue(Result(1)).

3. Evaluate MultiplicativeExpression

4. Call GetVaue(Result(3)).

5. Cadll ToPrimitive(Result(2), hint Number).

6. Call ToPrimitive(Result(4), hint Number).

7. 1If Type(Result(5)) is String or Type(Result(6)) is String, go to step 13.

8. Cal ToNumber(Result(5)).

9. Cal ToNumber(Result(6)).

10. If Result(8) or Result(9) isNaN, return NaN

11. Apply the addition operation to Result(8) and Result(9). See the discussion below.
12. Return Result(11).

13. Call ToString(Result(5)).

14. Call ToString(Result(6)).

15. Concatenate Result(13) followed by Result(14).

16. Return Result(15).

7.5.2 The Subtraction Operator (-)

The production AdditiveExpression: AdditiveExpression- MultiplicativeExpressionis evaluated as
follows:

Evaluate AdditiveExpression

Call GetValue(Result(1)).

Evaluate MultiplicativeExpression

Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the subtraction operation to Result(5) and Result(6). See the discussion below (7.5.3).
Return Result(7).

N~ WDNE

7.5.3 Applying the Additive Operators (+, -)

The + operator performs addition when applied to two operands of numeric type, producing the sum
of the operands. The- operator performs subtraction, producing the difference of two numeric
operands.

Addition is a commutative operation, but hot always associative.

The result of an addition is determined using the rules of |IEEE 754 double-precision arithmetic:

40

ECMA/TC39/97/11

If either operand is NaN, the result is NaN.

The sum of two infinities of opposite sign is NaN.

The sum of two infinities of the same sign is the infinity of that sign.

The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two zerosis zero.

The sum of a zero and a honzero finite value is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite sign is zero.

In the remaining cases, where neither an infinity, nor a zero, nor NaN isinvolved, and the
operands have the same sign or have different magnitudes, the sum is computed and rounded to
the nearest representable value using | EEE 754 round-to-nearest mode. If the magnitude is too
large to represent, the operation overflows and the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, the operation underflows and the result is zero. The
ECMA Script language requires support of gradual underflow as defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type producing the
difference of its operands; the left operand is the minuend and the right operand is the
subtrahend. Given numeric operands aand b, it is aways the case that a b produces the same
resultasa+ (- b).

7.6 BITWISE SHIFTOPERATORS

Syntax
ShiftExpression:
AdditiveExpression
ShiftExpression<< AdditiveExpression
ShiftExpression>> AdditiveExpression
ShiftExpression>>> AdditiveExpression

Discussion

The result of evaluating ShiftExpression is always truncated to 32 bits. If the result of evaluating
ShiftExpression produces a fractional component, the factional component is discarded. The result of
evaluating AdditiveExpresion is always truncated to five bits.

7.6.1 The Left Shift Operator (<<))

Performs a bitwise left shift operation on the left argument by the amount specified by the right
argument.

The production ShiftExpression: ShiftExpression<< AdditiveExpressionis evaluated as follows:
Evaluate ShiftExpression

Call GetValue(Result(1)).

Evaluate AdditiveExpression

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
L eft shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

CoNoU~WDNE

7.6.2 The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left argument by the amount specified by
the right argument.

The productionShiftExpression: ShiftExpression>> AdditiveExpressionis evaluated as follows:
1. Evauate ShiftExpression

41

ECMA/TC39/97/11

Call GetValue(Result(1)).

Evaluate AdditiveExpression

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is
propagated. The result is a signed 32 bit integer.

9. Return Result(8).

N O~ WN

7.6.3 The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left argument by the amount specified by
the right argument.

The productionShiftExpression: ShiftExpression>>> AdditiveExpressionis evaluated as follows:
Evaluate ShiftExpression

Call GetValue(Result(1)).

Evaluate AdditiveExpression

Call GetValue(Result(3)).

Call ToUint32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero.
The result is an unsigned 32 bit integer.

Return Result(8).

N~ WDNE

©

7.7 RELATIONALOPERATORS
Syntax

Relational Expression:
ShiftExpression
Relational Expression< ShiftExpression
Relational Expression> ShiftExpression
Relational Expression<= ShiftExpression
Relational Expression>= ShiftExpression

Semantics
In the discussion below, the following special operators will be used:

Operator M eaning

Numeric@ Where @ represents one of the relational operators. The operands are of type
Number. Thisis the standard |EEE operator with the provision that if either
operand isNaN, theresult isf al se.

Character@ Where @ represents one of the relational operators. The operands are of type
String. The operands are compared character by character lexicographically in
the unicode character set. If the operands are of different length and all
corresponding characters up to the length of the shorter operand are the same,
the longer string is considered to be greater.

The productionRelational Expression: Relational Expression @ ShiftExpressionwhere @ represents
one of the relational operators, is evaluated as follows:

Evaluate Relational Expression

Call GetVaue(Result(1)).

Evaluate ShiftExpression

Call GetVaue(Result(3)).

Call ToPrimitive(Result(2), hint Number).

Call ToPrimitive(Result(4), hint Number).

If Type(Result(5)) is Stringand Type(Result(6)) is String, go to step 13.

Noas~wdE

42

ECMA/TC39/97/11

8. Cal ToNumber(Result(5)).

9. Cal ToNumber(Result(6)).

10. Apply Numeric@ to Result(8) and Result(9).
11. Return Result(10).

12. Call ToString(Result(5)).

13. Call ToString(Result(6)).

14. Apply Character@ to Result(12) and Result(13).
15. Return Result(14).

7.8 EQUALITYOPERATORS
Syntax

EqualityExpression:
Relational Expression
EqualityExpression== Relational Expression
EqualityExpression! = Relational Expression

The productionEqualityExpression: EqualityExpression== Relational Expressionis evaluated as

follows:

Evaluate EqualityExpression

Call GetValue(Result(1)).

Evaluate Relational Expression

Call GetValue(Result(3)).

If Type(Result(2)) is differentfrom Type(Result(4))go to step 12

If Type(Result(2)) is Undefined, returrt r ue.

If Type(Result(2)) is Null, returnt r ue.

If Type(Result(2)) is Number, apply Numeric== to Result(2) and Result(4) and return the result.

If Type(Result(2)) is String, apply Character== to Result(2) and Result(4) and return the result.

0. If Type(Result(2)) is Boolean, returrt r ue when Result(2) and Result(4) are botht r ue or both

f al se. Otherwise returnf al se.

11. Returnt r ue if Result(2) and Result(4)refer to the same object.Otherwise, returnf al se.

12. If Result(2) isnul | and Result(4) isundef i ned, returnt r ue.

13. If Result(2) isundef i nedand Result(4) isnul |, returnt r ue.

14. If Type(Result(2)) is Number and Type(Result(4)) is String, return the result of the comparison
ToString(Result(2)) == Result(4).

15. If Type(Result(2)) is String and Type(Result(4)) is Number, return the result of the comparison
Result(2) == ToString(Result(4)).

16. Returnf al se.

BoOooo~Noogk~wNE

The productionEqualityExpression: EqualityExpression! = Relational Expressionis evaluated as
follows:

1. Evaluate the productionEqualityExpression== Relational Expression

2. If Result(1)ist rue, returnf al se.

3. Returntrue.

Discussion

String comparison can beforced by " + a == "" + b
Numeric comparison can beforcedbya — 0 == b — Q
Boolean comparison can be forced byta == ! b.

The equality operators maintain the following invariants:

1. Al=Bisequivalentto! (A==B).

2. A==Bisequivalent toB == A, except in the order of evaluation of A and B.
3. if A==BandB==C, =>A==C, assuming no side effects.

43

ECMA/TC39/97/11

As no conversions are applied to the operands, equality is aways transitive.

7.9 BINARYBITWISE OPERATORS

Syntax
BitwiseANDExpr ession:
EqualityExpression
BitwiseANDExpression& EqualityExpression
BitwiseXOREXxpression:
BitwiseANDEXpression
BitwiseXORExpression™ BitwiseANDEXpression
BitwiseOREXxpression:
BitwiseXOREXxpression
BitwiseORExpression| BitwiseXOREXxpression
Semantics

The productionA : A @ B, where @ is one of the bitwise operators in the productions above, is
evaluated as follows:

Evaluate A.

Call GetValue(Result(1)).

EvaluateB.

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
Return Result(7).

N~ WDNE

7.10 BINARYLOGICALOPERATORS
Syntax

Logical ANDExpression:
BitwiseOREXpression
Logical ANDExpression&& BitwiseOREXxpression

Logical ORExpression:
Logical ANDExpression
Logical ORExpression| | Logical ANDEXxpression

Semantics

The productionLogical ANDExpression: Logical ANDEXxpression&& BitwiseOREXxpressionis
evaluated as follows:

Evaluate Logical ANDEXpression

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isf al se, return Result(2).

Evaluate BitwiseOREXxpression

Call GetValue((Result(5)).

Return Result).

NoukrwbdpE

The productionLogical ORExpression: Logical ORExpression| | Logical ANDEXxpressionis evaluated
asfollows:

1. EvaluateLogical ORExpression

2. Cdl GetVaue(Result(1)).

44

ECMA/TC39/97/11

Call ToBoolean(Result(2)).

If Result(3) ist r ue, return Result(2).
Evaluate Logical ANDEXpression
Call GetValue(Result(5)).

Return Result).

No o kw

7.11 CONDITIONALOPERATOR(?:)
Syntax

Conditional Expression:
Logical ORExpression
Logical ORExpression ? AssignmentExpression: AssignmentExpression

Semantics

The productionConditional Expression: Logical ORExpression? AssignmentExpression:
AssignmentExpressionis evaluated as follows:
1. EvaluateLogical ORExpression

2. Cdl GetVaue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) isf al se, goto step 8.

5. Evaluatethe first AssignmentExpression

6. Cadl GetVaue(Result(5)).

7. Return Result(6).

8. Evaluatethe second AssignmentExpression
9. Cdl GetVaue(Result(8)).

10. Return Result(9).

Issue: Add an explanation of how the grammar differs slightly from that of C and Java here.

7.12 ASSIGNMENTOPERATORS
Syntax

AssignmentExpression:
Conditional Expression
PostfixExpression AssignmentOperator AssignmentExpression

AssignmentOperator:: one of
= *= [= U += -= <<= >>= >>>= &= = |:

7.12.1 Simple Assignment (=)

The production AssignmentExpression: UnaryExpression= AssignmentExpressionis evaluated as
follows:

Evaluate UnaryExpression

Evaluate AssignmentExpression

Call GetValue(Result(2)).

Call PutValugResult(1), Result(3)).

Return Result(3).

agkrwpdpE

7.12.2 Compound Assignment (op=)

The productionAssignmentExpression: UnaryExpression @= AssignmentExpression where @
represents one of operators indicated above, is evaluated as follows:

1. EvauateUnaryExpression

2. Cdl GetVaue(Result(1)).

3. Evauate AssignmentExpression

45

No A

Call GetValue(Result(2)).

Apply operator @ to Result(3) and Result(4).
Call PutValugResult(1), Result(5)).

Return Result(5).

7.13 COMMAOPERATOR(,)
Syntax

Expression:
AssignmentExpression

Expression, AssignmentExpression

Semantics
The productionExpression: Expression, AssignmentExpressionis evaluated as follows:

1

2
3.
4.
5

Evaluate Expression

Call GetValue(Result(1)).

Evaluate AssignmentExpression
Call GetValue(Result(3)).
Return Result(4).

ECMA/TC39/97/11

46

ECMA/TC39/97/11

CHAPTER 8

STATEMENTS

Syntax

Satement :

Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement

IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithSatement

Block :
{ StatementListy: }

SatementList:
Satement
StatementList Statement

Semantics

The productionStatementList: StatementList Statementis evaluated as follows:
1. Evauate SatementList

2. Evauate Satement.

8.1 VARIABLESTATEMENT
Syntax

VariableStatement:
var VariableDeclarationList;

VariableDeclarationList:
VariableDeclaration
VariableDeclarationList, VariableDeclaration

VariableDeclaration:
Identifier Initializeryy

Initializer :
= AssignmentExpression

Description

If the variable statement occurs inside & unctionDeclaration the variables are defined with function-
local scopein that function. Otherwise, they are defined with global scope, that is, they are created as
members of the global object as described in sectio&rror! Reference source not found.Variables
are created when the execution scope is entered. ABlock does not define a new execution scope. Only
Programand FunctionDeclarationproduce a new scope. Eval code and anonymous code also define a
new execution scope, but these are not an explicit part of the grammer of ECMAScript. Variables are

47

ECMA/TC39/97/11

initialized to theundef i nedvalue when created. A variable with anlnitializer is assigned the value
of its AssignmentExpressionwhen the VariableStatementis executed.

Semantics

The productionVariableStatement: var VariableDeclarationList; isevaluated as follows:
1. EvaluateVariableDeclarationList

2. Return.

The productionVariableDeclaractionList: VariableDeclarationList, VariableDeclarationis
evaluated as follows:

1. EvaluateVariableDeclarationList

2. EvaluateVariableDeclaration

3. Return.

The productionVariableDeclaration: Identifier = AssignmentExpressionis evaluated as follows:
Evaluate Identifier.

Evaluate AssignmentExpression

Call GetValue(Result(2)).

Call PutValue(Result(1), Result(3)).

Return.

agkrowpdpE

8.2 EMPTY STATEMENT

Syntax
EmptyStatement :

Semantics
The production EmptyStatement : ; is evaluatedby taking no action.

8.3 EXPRESSIONSTATEMENT

Syntax
ExpressionStatement:
Expression;
Semantics

The productionExpressionStatement: Expression; isevaluated as follows:
1. EvauateExpression
2. Call GetValue(Result(1)).

8.4 THE i f STATEMENT
Syntax

IfStatement :
i f (Expression) Statementel se Statement
i f (Expression) Statement

Semantics

The productionlfStatement : i f (Expression) Statement; el se Statement; is evaluated as follows:
Evaluate Expression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isf al se, gotostep 7.

Evaluate Satement.

Return.

Evaluate Satement,.

Nouokrwbdp

48

ECMA/TC39/97/11

8. Return.

The productionlfStatement : i f (Expression) Statementis evaluated as follows:
Evaluate Expression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isf al se, return.

Evaluate Statement.

Return.

o krwdhpE

8.5 ITERATION STATEMENTS
Syntax

IterationStatement :
whi | e (Expression) Statement
for (Expression, ; Expression, ; Expression,) Statement
for (var VariableDeclarationList; Expression,; Expression,) Statement
f or (Expressioni n Expression) Statement
for (varqy Identifier i n Expression) Statement

Description

These statements all define a*“ continue label” and a “break label” for use by an enclosabnt i nue

or br eak statement. For the purposes of this specification, alabel is a step number in an algorithm.
Continue labels are held in acontinue label stackand break |abels are held in abreak label stack

These stacks are local to the current execution scope. To executeaont i nue or br eak statement,
execution control is transferred to the label specified by the top value of the corresponding label stack.
If an implementation of ECM A Script has distinct compile and execute phases, the label stacks need
only be maintained during compilation as the label that @ont i nueor br eak statement jumpsto is
not dependent on any runtime state.

The WithStatement affects both stacks for the purposes of clean up: to remove its object from the scope
chain.

In algorithms, we use “PushBreak(n)” as short hand for *Push Step(n) on the break label stack”.
Similarly we use “PushContinue(n)”, “PopBreak(n)” and “PopContinue(n)” as short hand for the
obvious phrases. We use “JumpBreak” as short hand for “ Transfer execution control to the position
indicated by the top label of the break label stack” and similarly for “ JumpContinue”.

8.5.1 The whi | e Statement

The productionlterationStatement: whi | e (Expression) Statementis evaluated as follows:
PushContinue(3).
PushBreak(9).

Evaluate Expression

Call GetValue(Result(3)).
Call ToBoolean(Result(4)).

If Result(5) isf al se, goto9.
Evaluate Statement.

Go to step 3.

9. PopBreak(9).

10. PopContinue(3).

11. Return.

N~ WONE

8.5.2 The f or Statement

The productionlterationStatement: f or (Expression, ; Expressiory ; Expressiony) Statementis
evaluated as follows:
1. PushContinue(10).

49

ECMA/TC39/97/11

2. PushBreak(13).

3. Evauate Expression.

4. Call GetVaue(Result(3)).
5. Evauate Expressior.

6. Cadl GetVaue(Result(5)).
7. Cadl ToBoolean(Result(6)).
8. If Result(7) isf al se, goto step 13.
9. Evaluate Statement.

10. Evaluate Expressiorg.

11. Call GetValue(Result(10)).
12. Gotostep 5.

13. PopBreak(13).

14. PopContinue(10).

15. Return.

If Expression, is omitted from the source text, steps 3 and 4 are omitted from execution. If
Expression, is omitted from the source text, step 5 is omitted from execution and the result of step 5is
t r ue. If Expressiory is omitted from the source text, steps 10 and 11 are omitted from execution.

| ssue: define the var version.

8.5.3 Thefor..inStatement

The productionlterationStatement: f or (Expressiory i n Expression,) Statementis evaluated as
follows:

PushContinue(6).

PushBreak(11).

Evaluate Expressior.

Call GetValue(Result(3)).

Call ToObject(Result(4)).

Get the name of the next property of Result(5) which doesn’t have the DontEnum attribute. If
there is no such property, go to step 11.

7. Evaluate Expression.

8. Cadl PutVaue(Result(7), Result(6)).

9. Evaluate Statement.

10. Goto step 6.

11. PopBreak(11).

12. PopContinue(6).

13. Return.

ouh~wdhpE

The mechanics of enumerating the properties (step 6) isimplementation dependent. The order of
enumeration is defined by the object. Properties of the object being enumerated may be deleted
during enumeration. If a property that has not yet been visited during enumeration is deleted, then it
will not be visited. If new properties are added to the object being enumerated during enumeration, the
newly added properties are not guaranteed to be visited in the active enumeration.

| ssue: define the var version.

8.6 THEconti nue STATEMENT
Syntax

ContinueStatement :
conti nue;

Thecont i nue statement can only be used when the continue label stack contains at least one label.

Thisis only the case inside awhile, for, or for..in loop. Thecont i nue statement is evaluated as:
1. JumpContinue.

50

ECMA/TC39/97/11

See section8.5 Iteration Statementsfor a description of the continue label stack and the
JumpContinue directive.

8.7 THEbr eak STATEMENT
Syntax

BreakStatement :
br eak;

The br eak statement can only be used when the break label stack contains at least one label. Thisis
only the case inside awhile, for or for..in loop. Thebr eak statement is evaluated as:
1. JumpBreak

See section8.5 Iteration Statementsfor a description of the break label stack and the JumpBreak
directive.

8.8 THEreturn STATEMENT

Syntax
ReturnSatement :

r et ur n [noLineTerminator here] EXpI'eSSiOI’bp; ;

Ther et ur n statement can only be used inside théBlock of aFunctionDeclaration It causes a
function to cease execution and return a value to the caller. IExpressionis omitted, the return value
istheundef i nedvalue. Otherwise, the return value is the value ofExpression

8.9 THEW t h STATEMENT

Syntax
WithSatement:

wi t h (Expression) Statement

Description
The WithStatement affects the break label stack and continue label stack for clean up purposes only.

Semantics

The productionWithStatement: wi t h (Expression) Statementis evaluated as follows:
1. If the continue label stack is not empty, PushContinue(12).
2. If the break label stack isnot empty, PushBreak(16).

3. Evaluate Expression

4. Call GetVaue(Result(3)).

5. Cadl ToObject(Result(4)).

6. Add Result(5) to the front of the scope chain.

7. Evaluate Statement.

8. Remove Result(5) from the front of the scope chain.

9. If the break label stack is not empty, PopBreak(16).

10. If the continue label stack is not empty, PopContinue(12).
11. Return.

12. Remove Result(5) from the front of the scope chain.

13. If the break label stack is not empty, PopBreak(16).

14. PopContinue(12).

15. JumpContinue.

16. Remove Result(5) from the front of the scope chain.

17. PopBreak(16).

18. If the continue label stack is not empty, PopContinue(12).
19. JumpBreak.

Discussion

51

ECMA/TC39/97/11

Most of the complexity of this algorithm is to handle jumps out of th&ithSatement Any jumps out
of the WithSatement must be trapped to remove the object from the scope chain.

52

ECMA/TC39/97/11

CHAPTER 9

FUNCTION DEFINITION

Syntax

FunctionDeclaration:
functi onldentifier (FormalParameterList,) Block

Formal ParameterList:
Identifier
FormalParameterList, Identifier

Semantics

Defines a property of the global object whose name is thidentifier and whose value is a function
object with the given parameter list and statements. |If the function definition is supplied text to the
eval function and the calling context has an activation object then the declared function is added to
the activation object.

53

CHAPTER 10

PROGRAM
Syntax

Program:
Sour ceElements EndOfSource

Sour ceElements:
Sour ceElement
Sour ceElements Sour ceElement

SourceElement :
Satement
FunctionDefinition

ECMA/TC39/97/11

54

ECMA/TC39/97/11

CHAPTER 11

NATIVE ECMASCRIPT OBJECTS

There are certain built-in objects available whenever an ECM A Script program begin execution. One,
the global object, isin the scope chain of the executing program. Others are accessible as permanent
properties of the global object.

Issue: What is a class? What can be used as the operand of theew operator?

Theory 1: A classis an object with a [[Construct]] method and a prototype property?

Theory 2: A classis an object with a [[Construct]] method, and the [[Construct]] method creates a
prototype property if necessary?

Theory 3: Every function object created by the user automatically has a [[Construct]] method, but
other kinds of objects may also have [[Construct]] methods?

For now, | assume that a class is an object that can be given to theewoperator. | also assume that
each built-in class, such as String, has a prototype property (ErrorOnWrite?) that becomes the
[[Prototype]] property of every constructed instance of the class. Then, for each class, we have to
describe properties of the class, properties of the prototytpe, and properties of each created instance.

How isthe [[Prototype]] property of a user-defined class established?

Issue: may also be implementation-dependent objects lying around?

11.1 THE GLOBALOBJECT

The global object does not have a [[Construct]] property; it is not possible to make instances of the
global object using thenewoperator.

11.1 THE OBJECTPROTOTYPEOBJECT

Constructor
[[Get]]

[[Put]
[[CanPut]]
[[Prototype]]
[[HasProperty]]
[[Construct]]

55

ECMA/TC39/97/11

11.2 THE STRINGCLASS

11.2.1 The String Constructor

11.2.2 Properties of the String Class

11.2.3 Properties of the String Prototype Object
11.2.4 Properties of String Instances

11.3 THE NUMBERCLASS

11.3.1 The Number Constructor

11.3.2 Properties of the Number Class

11.3.3 Properties of the Number Prototype Object

11.3.4 Properties of Number Instances

11.4 THE BOOLEANCLASS
11.5 THE FUNCTIONCLASS
11.6 The Array Class
11.7 THE DATECLASS

11.8 THE MATHOBJECT

The Math object isnot aclass. It is merely a single object that has some named properties, some of
which are functions.

56

ECMA/TC39/97/11

11.8.1 Value Properties of the Math Object
E

LN10

LN2

LOG2E

LOG10E

Pl

SQRT1_ 2

SQRT2

11.8.2 Function Properties of the Math Object
abs(x)

acos(x)

asin(x)

atan(x)

atan2(y, x)

ceil(x)

cos(x)

exp(x)

floor(x)

log(x)

max(x, y)

min(x, y)

pow(base, exponent)

random()

57

round(x)
sin(x)
sqrt(x)

TAN(X)

ECMA/TC39/97/11

58

ECMA/TC39/97/11

CHAPTER 12

ERRORS

This specification specifies the last possible moment an error occurs. A given implementation may
generate errors sooner (e.g. at compile-time). Doing so may cause differences in behavior among
implementations. Notably, if runtime errors become catchable in future versions, a given error would
not be catchable if an implementation generates the error at compile-time rather than runtime.

An ECMAScript compiler should detect errors at compiletimein al code presented to it, even code
that detailed analysis might prove to be “dead” (never executed). A programmer should not rely on the
trick of placing codewithinani f (f al se) statement, for example, to try to suppress compile-time
error detection.

Issue: If acompiler can prove that a construct cannot execute without error under any circumstances,
then it may issue a compile-time error even though the construct might not be executed at all?

59

ECMA/TC39/97/11

REFERENCES

ANSI X3.159-1989:American National Standard for Information Systems - Programming Language -
C, American National Standards Institute (1989)

Gay, David M. Correctly Rounded Binary-Decimal and Decimal -Binary Conversions. Numerical
Analysis Manucript 90-10. AT& T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990.
Availableashtt p: //cm bel | -1 abs. com cm cs/ doc/ 90/ 4- 10. ps. gAssociated code
availableashttp://cm bel | -1 abs. com netli b/ fp/ dtoa. c. gand as
http://cmbell-1labs.conm netlib/fp/g _fm.c.gand may alsobefound at the various
net | i bmirror sites.

Gosling, James, Bill Joy and Guy Steele.The Java Language Specification Addison Wesley
Publishing Company 1996.

David Ungar and Randall B. Smith.Self: The Power of Smplicity OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October, 1987.

60

ECMA/TC39/97/11

APPENDIX A

OPEN ISSUES

A.1 Break and continue label stacks

The break and continue label stacks and their associated machinery complicate the description of
control flow in ECM A Script Moreover, the current description does not give a clear account of how
JumpContinue discards the implicit control stacks that support the execution of the pseudocode
procedures in this document.

| would like to propose the rewriting of the behavior of statementsinto the style used in the Java
Language Specification, wherein one speaks of a statement as completing “normally” or “abruptly (for
areason)”. The advantage of this descriptive strategy is that then there are no nonlocal transfers
within the pseudocode and all descriptions of control flow behavior are local.

As examples, here are accounts of thébr eak, cont i nue, i f, and whi | e statementsin this style,
which should illustrate all the relevant concepts:

The productionBreakSatement : br eak ; isevaluated as follows:
1. Return“abrupt completion because of break”.

The productionContinueSatement: cont i nue ; isevaluated as follows:
1. Return“abrupt completion because of continue”.

The productionlfStatement : i f (Expression) Statement; el se Statement; is evaluated as follows:
Evaluate Expression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isf al se, gotostep 7.

Evaluate Statement,.

Return Result(5).

Evaluate Statement,.

Return Result(7).

ONoOO~WNE

The productionlterationStatement: whi | e (Expression) Statementis evaluated as follows:
1. EvauateExpression

2. Cdl GetVaue(Result(D).

3. Call ToBoolean(Result(2).

4. If Result(3 isf al se, gotostep 10.

5. Evaluate Statement.

6. If Result(5) is“abrupt completion because of break”, go to step 10.

7. 1f Result(5) is“abrupt completion because of continue”, go to step 1.

8. If Result(5) is"abrupt completion because of return of value’, return Result(5).
9. Gotostep 3.

10. Return “normal completion”.

Note that the only change to the description of f isto return the results of substatement evaluation.
On the other hand, the description ofwhi | e has to take the various kinds of abrupt completion into
account. A break causes thewhi | e statement to complete normally; a continue is treated as if the
substatement had completed normally; and a return causes thahi | e statement to terminate
immediately and to propagate the return action.

A.2 Eval function
Define object scoping within Eval block.

61

ECMA/TC39/97/11

A.3 Host Supplied members of scope chains vs. Implict t hi s.

A.4 Escape Sequences in String Literals

It was agreed at a previous meeting that any character could be preceded by a backslash in a string
literal. Question: was it intended to allow <CR> or <LF> in a string literal if preceded by abackslash?
| assumed not and wrote the grammar accordingly, but would like to have this point discussed.

A.5 Break, Continue, Return in Wrong Place

What is the behavior of an ECM A Script program if it executes a break or continue not textually
contained within aloop, or areturn not textually within afunction body? Are such errors guaranteed
to be caught at compile time, or may they be detected at run time? (JavaScript document says it
mustbe a compile-time error, Jscript document is less clear.)

A.6 Math Functions

Are the math functions intended to be completely, guaranteed portable, or are they intended to be
“whatever the host machine C library provides’? Should the boundary cases (infinites, zero, NaNs) be
tied down in the manner now customary for IEEE arithmetic (I believe Javaand C9X agree on these
boundary cases)?

62

ECMA/TC39/97/11

APPENDIX B

PROPOSED EXTENSIONS
B.1 THE CLASSSTATEMENT

Class Definition
Syntax

ClassDeclaration:
cl ass IdentifierFormal Parameter s, ExtendsClausgy, { ClassBody}

FormalParametes:

(FormalParameterLisgy)
Formal Parameter List:

Identifier

FormalParameterList, |dentifier

ExtendsClause:
ext ends ldentifier Actual Arguments,

Actual Arguments:

(ExpressiorListyy)
ClassBody:

Constructory, Methods,,

Constructor:
StatementList

Methods:
FunctionDefinition
Methods FunctionDefinition

Semantics

Similar to afunction except:

- The class hame space is global but distinct from the global function name space.
The functions (methods) defined within a class definition are in a name space private to the class.
The inclusion of methods automatically creates one property in the constructed object for each
method defined.
Classes may not be called directly but rather can only be used via theew operator.

B.2 THE TRY AND THROWSTATEMENTS

B.2.1 THE TRY STATEMENT

At ry statement executes ablock. If avalueisthrown and thér y statement has one or more
cat ch clausesthat can catch it, then control will be transfered to the first sucttat ch clause. If the
t ry statement hasaf i nal | y clause, then thef i nal | y block of code is executed no matter
whether thet r y block completes normally or abruptly and regardless of whether @at ch clauseis
first given control.
TryStatement :
t r y Block Catches

63

ECMA/TC39/97/11

t ry Block Catchesopt FinallyClause

Catches:
CatchClause
Catches CatchClause

CatchClause:
cat ch (FormalParameter)Block

FinallyClause:
final | yBlock

B.2.2 THE THRONWSTATMENT

A throw statement causes an exception to be thrown. The result is an immediate transfer of control
that may exit multiple statements and method invocations until atry statement is found that catches
the thrown value. If no such try statement is found, then a runtime error is generated.

ThrowStatement:
t hr owExpression

B.3 THE DATETYPE'

The Date Type is used to represent date and time. It is a Julian value on which certain operations
such as date arithmetic are defined.Arithmetic operators, relational operators and equality operators
apply to this type

Note 1: Of the three current ECM A Script implementations, only the Borland implementation
currently supports date operators. This feature isreally just a convenience that can be implemented
with Date Object methods. However, the same argument can be made for the String type.

Note 2 Of the three current ECM A Script implementations, only the Borland implementation
currently implements dates as Julian dates and thus dates before (January 1970). Without this
representation, dates are very limited in their usage (i.e. you cannot otherwise, represent arbitrary
dates, for example from existing databases)

B.3.1 TODATE

The operator ToDate attempts to convert its argument to a value of subtype Date Object according to
the following table:

Input Type Result
Undefined Blank date value.
Null Blank date value.
Boolean Blank date value.
Number Blank date value.
String See discussion below.
Date Return the input argument (no conversion)
Object Apply the following steps:
1. Cal ToPrimitive(input argument, hint Date).
2. Cdl ToDate(Result(1)).
Return Result(2).

B.3.1.1 ToDate Applied to the String Type

I ssue: define this.

64

ECMA/TC39/97/11

B.4 MPLICITTHIS®

In function code where the function definition specifiesthenpl i ci t keyword, thet hi s object is
placed in the scope chain immediately before the global object.

B.5 THEsWi t ch STATEMENT"®

Syntax
SwitchStatement:

swi t ch(Expression) CaseBlock

CaseBlock:
{ CaseClausesy: }
{ CaseClauses,: DefaultClause CaseClauses, }

CaseClauses:
CaseClause
CaseClauses CaseClause

CaseClause:
case Expression: StatementList:

DefaultClause:
def aul t : StatementList,y

Semantics
The SwitchStatementadds a label to the break label stack, which is described in sectioB.5 Iteration
Statements It also adds alabel to the continue label stack for clean up purposes only.

The productionSwvitchStatement: swi t ch (Expression) CaseBlockis evaluated as follows:
If the continue label stack is not empty, PushContinue(9).
PushBreak(6).

Evaluate Expression

Call GetValue(Result(3)).

Evaluate CaseBlock, passing it Result(4) as a parameter.
PopBreak(6).

If the continue label stack is not empty, PopContinue(9).
Return.

. PopBreak(6).

10. PopContinue(9).

11. JumpContinue.

CoNoU~WDNE

The productionCaseBlock: { CaseClauses DefaultClause CaseClauses } is given an input
parameter, input, and is evaluated as follows:

1. For the next CaseClausein CaseClauses, in source text order, evaluateCaseClause If thereis
no such CaseClauseg go to step 6.

If inputis not equal to Result(1) (as defined by thé = operator), go to step 1.

Execute the StatementList of this CaseClause

Execute the StatementList of each subsequentCaseClausein CaseClauses.

Go to step 11.

For the next CaseClausein CaseClauses , in source text order, evaluateCaseClause If thereis
no such CaseClause go to step 11.

7. Ifinputisnot equal to Result(6) (as defined by thé = operator), go to step 6.

8. [Execute theSatementListof thisCaseClause

9. Execute theSatementListof each subsequentCaseClausein CaseClauses.

10. Return.

11. Execute the SatementListof DefaultClause

12. Execute the StatementListof each CaseClausein CaseClauses.

ok wWN

65

ECMA/TC39/97/11

13. Return.

If CaseClauses is omitted, steps 1 through 5 are omitted from execution. IDefaultClauseis omitted
(in which caseCaseClauses is also omitted), steps 11 and 12 are omitted from execution. If
CaseClauses isomitted, steps 6 through 10 and 12 are omitted from execution.

Typically there will be abr eak statement in one or moreStatementList, which will transfer
execution back to the break label for thSwitchStatement

The productionCaseClause: case Expression: StatementListy is evaluated as follows:
1. EvauateExpression

2. Cdl GetVaue(Result(1)).

3. Return Result(2).

Note that evaluatingCaseClausedoes not execute the associatedstatementList It simply evaluates the
Expressionand returns the value, which theCaseBlock algorithm uses to determine which
StatementListto start executing.

B.6 CONVERSIONFUNCTIONS

The conversion functions, ToBoolean, ToNumber, Tolnteger, Tolnt32, ToUint32, ToString and
ToObject are global functions that operate as described in this document.

B.7 ASSIGNMENTONLY OPERATOR(: =)*

The assignment-only operator operates identically to the assignment operator£) except that if the
given Ivalue doesn't already exist, prior to the statements execution, a runtime error is generated.

B.8 SEALING OF ANOBJECT

A facility to prevent an object from being further expanded may be invoked at any time after an object
has been constructed. Thisis semantically the dynamic equivalent to the static Javafinal class
modifier. Thisfacility may be implemented as a method of the object, a global function, or, if the

cl ass statement is adopted, as a class modifier tal ass. Once an object has been sealed or
finalized, any attempt to add a new property to the object resultsin aruntime error.

B.9 THE ARGUVENTS KEYWORD®

Thear gunent s keyword refers to the arguments object. Within global codagr gunent s returns
nul | . Within eval code,ar gunment s returns the same value as in the calling context.

Discussion:

This interpretation of the "arguments" within afunction body differs from existing practice but has

two important advantages over the current mechanism:

1. It can be much more efficiently implemented, especially in the case of recursive functions.

2. It eliminates some complex and confusing semantic issues that arise as a result of the arguments
to an activation frame being accessible from a function object.

It solves scope resolution issues related to using arguments within a with block on an object that has

an arguments member, such as Math.

66

ECMA/TC39/97/11

B.10 PREPROCESSOR

B.11 THE DO..WHILE STATEMENT

B.12 BINARYOBJECT

67

APPENDIX C

PEOPLE CONTACTS

Brendan Eich (brendan@netscape.com)

C. Rand McKinney (rand@netscape.com)
Donna Converse (converse@netscape.com)
Clayton Lewis (clayton@netscape.com)
Randy T. Solton (rsolton@wpo.borland.com)
Mike Gardner (mgardner@wpo.borland.com)
Shon Katzenberger (shonk@microsoft.com)
Robert Welland (robwell @microsoft.com)
Guy Steele (guy.steele@east.sun.com)

ECMA/TC39/97/11

68

ECMA/TC39/97/11

APPENDIX D

RESOLUTION HISTORY
D.1 JANUARY 15, 1997

D.1.1 White Space
Updated the3.1 White Spacesection to include form feed and vertical tab as white space.

D.1.2 Keywords

Updated the3.3.1.1 Keywordssection to exclude those keywords related to proposed extensions. Also
updated this section to include thedel et e keyword which was missing.

D.1.3 Future Reserved Words

Update the3.3.1.2 Future Reserved Wordgo only include keywords related to proposed extensions.
We decided to remove words that had been only included as future reserved for Java compatibility
purposes.

D.1.4 Octal And Hex Escape Sequence Issue

Decided to support octal and hex notation. Since only two hex digits are used with hex notation, many
unicode characters cannot be represented thisway. Furthermore, we were not sure if the high 128
characters match up with unicode. (Removed open issue at bottom of sectidh3.4.4 String Literalg

The argument against was that these notations are redundant since any character can be represented
using the unicode escape sequence. The arguments for were that hex and octal notation are convenient
and simple and also that there is a language tradition to be upheld.

D.1.5 ToPrimitive

Removed the erroneous note stating that errors are never generated as aresult of calling ToPrimitive
inthe5.1 ToPrimitivesection.

D.1.6 Hex in ToNumber

We decided to allow hex in ToNumber but not octal. Looking at it from the user input source point of
view, we decided that it was reasonabl e to use hex but not octal since it might be common to include
leading zerosin a user input field. Furthermore we did not believe that the ability to use octal in data
entry was desirable. (Removed open issue at the bottom of 5.3.1 ToNumber Applied to the String

Type)

D.1.7 Attributes of Declared Functions and Built-in Objets

We decided that built-in objects will have attributes { DontEnum } and that variables declared in
global code will have empty attributes. (Updated the 6.1.1 Global Object section)

D.1.8 The Grouping Operator

We decided that the grouping operator would return the result of GetValue() so that the result is
never of type reference. (Updated the’.1.4 The Grouping Operatorand removed the open issue at
the bottom of this section)

D.1.9 Prefix Increment and Decrement Operators

We decided to not to perform GetValue to the return value and thus leave the algorithm asis.
(removed the open issue at the bottom of th&.3.4 Prefix Increment and Decrement Operator$

69

ECMA/TC39/97/11

D.1.10 Unary Plus

We decided to leave the algorithm for unary plus alone and continue to call GetValue() and

ToNumber() after evaluating the unary expression which guarantees a numeric result as opposed to

only evaluating the unary expression which would not guarantee a numeric result. (Updated the3.5
Unary + and - Operatorssection)

D.1.11 Multiplicative Operators

Updated step ninein the7.4 Multiplicative Operatorssection to refer to three new sections
7.41, 7.42 and 7.43 which define the behavior of , / and %

D.1.12 Additive Operators

Updated step 11 in 7.5.1 and step 10 in 7.5.2 to refer to a new section 7.5.3 which define the behavior
of +and - .

D.1.13 Left Shift Operator

We decided to leave the algorithm for left shift asis, which converts the left operand using Tolnt32
rather than ToUint32. Although an unsigned conversion might be arguably preferred, we decided to
continue to convert to sighed, as we can always add a new operator (<<<) to accomplish an unsigned
shift. (Removed the open issue at the bottom of.6.1 The Left Shift Operator (<<))

D.1.14 Binary Bitwise Operators

We decided to leave the algorithm for the binary bitwise operators as is, which uses signed conversion
on the GetValue of its operands. (Removed the open issue at the bottom 6f.9 Binary Bitwise
Operatorg)

D.1.15 Conditional Operator (? :)

We decided to leave the algorithm for the conditional operator asis, which performs a GetValue on
the result before returning. Current implementations do not do this. (Removed the open issue at the
bottom of

7.11 Conditional Operator (?:))

D.1.16 Simple Assignment

We decided to leave the algorithm for simple assignment asis. (Removed the open issue at the
bottom of 7.12.1 Simple Assignment (=))

D.1.17 Thefor. . i nStatement

We decided to impose no restrictions on Expressionl. (Removed the first open issue at the bottom of
8.5.3 Thef or. . i nStatement)

D.1.18 The return Statement

We decided to not generate an error if one return statement in a function returns a value and another

return in the same function does not return a value. (Removed the first open issue at the bottom of the

8.8 Ther et ur n Statement The second issue at the bottom of this section has been moved &4
Automatic Semicolon Insertion

D.1.19 New Proposed Extensions
SectionsB.10 Preprocessor B.11 The do..while Statementand B.12 Binary Object were added.

70

ECMA/TC39/97/11

D.2 JANUARY 24, 1997

D.2.1 END OF SOURCE

Updated SourceCharacter ::

any Unicodecharacter

2.2 End Of Sourcesection to describe the end of source token aslogical rather than physical
\u0000 since strings may contain embedded \u000O characters.

D.2.2 FUTURERESERVEDWORDS

Updated 3.3.1.2 Future Reserved Wordsection to include the worddo and removed the footnotes
indicating the origin of the proposed keywords.

D.2.3 WHITE SPACE

Updated 3.1 White Spacesection. Updated the lexical production for SimpleWhiteSpace to
include <VT> and <FF> (already mentioned in the white table above).

D.2.4 COMMENTS
Added new issue to 3.2 regarding nested comments.

D.2.5 DENTIFIERS
Updated section 3.3.2 to correctly state what is an allowable first character in an identifier.

D.2.6 NUMERICLITERALS
Updated section 3.3.4.3 Numeric Literals to disallow leading zeros in floating point literals.

D.2.7 STRINGLITERALS

Updated the table describing the set of character escape charactersin sectioB.3.4.4 String Literals to
include a new column indicating the unicode value. Also added a new issue to the end of this section.

D.2.8 AUTOMATICSEMICOLONINSERTION
Added two new issues to the end o88.4 Automatic Semicolon Insertion

D.2.9 PROPERTYATTRIBUTES

Renamed Permanentto DontDeletein the property attributes table in the4.5.1 Property Attributes
section.

D.2.10 TOPRIMITIVE
Reworded section5.1 ToPrimitiveto better describe the optional hintPreferredType

D.2.11 ToNUMBER

Updated section5.3 ToNumber. Added Hint Number in call to ToPrimitive. Also added new
issue to the end of this section.

D.2.12 WHITE SPACE

Updated section5.3.1 ToNumber Applied to the String TypedJpdated the lexical production for
SimpleWhiteSpace to include <VT> and <FF>.

D.2.13 TONUMBERAPPLIED TO THESTRING TYPE

Updated section 5.3.1, ToNumber Applied to the String Type. Reworked lexical productions to be
similar to those used in section,3.3.4.3 Numeric Literals The difference between string numeric

71

ECMA/TC39/97/11

literals and numeric literalsis that string numeric literals do not allow octal notation and do allow
leading zeros.

D.2.14 TOSTRING
Updated section5.7 ToString. Added Hint String in call to ToPrimitive.

D.2.15 POSTFIXINCREMENT ANDDECREMENTOPERATORS

Updated section7.2.2 Postfix Increment and Decrement Operators Updated the algorithm to
return Result(3) (the result of converting ToNumber), rather than (Result(2).

D.2.16 THE TYPEOFOPERATOR
Added a new issue at the end of sectiory.3.3 Thet ypeof Operator.

D.2.17 PREFIXINCREMENT ANDDECREMENTOPERATORS

Removed extraneous calls to ToPrimitive from the algorithm in section.3.4 Prefix Increment and
Decrement Operators

D.2.18 MULTIPLICATIVEOPERATORS

Remove step 7 in the algorithm in section 7.4 (either operand NaN) and added anew ruleto 7.4.1 and
7.4.2 to reiterate what was in the old step.

D.2.19 THE SUBTRACTIONOPERATOR
Removed extraneous calls to ToPrimitive from the algorithm in section 7.5.2.

D.2.20 THE SUBTRACTIONOPERATOR

Remove the old step 9 in the algorithm in section 7.5.2 (either operand NaN) and added a new rule to
section 7.5.3 to reiterate what was in the old step.

D.2.21 APPLYING THEADDITIVEOPERATORS(+, -)

Update the last rule in section 7.5.3 to clearly state that operands mentioned in the final sentence must
be numeric.

D.2.22 EQUALITYOPERATORS
Moved the Semantic discussion at the beginning of 7.8 to the discussion section at the end of 7.8

D.2.23 ToOPRIMITIVEUSAGE
Added issue at the end of sections 7.5.1 and 7,7.

D.2.34 BINARYLOGICALOPERATORS
Added issue at the end of 7.10.

D.3 JANUARY 31, 1997

D.3.1 MULTILINECOMMENT
Updated the lexical productionMultiLineCommentin section

LineEnd ::
LineTerminator
<EOS>
3.2 Comments to allow empty multi-line comments. Also removed the issue at the end of this

section regarding nested mutli-line comments. ThéMultiLineCommentproduction continues to
disallow multi-line comments.

72

ECMA/TC39/97/11

D.3.2 STRINGLITERALS

Removed open issue at the end of sectiol.3.4.4 String Literalswhich stated that the maximum string
constant supported must be at least 32000 characters long.

D.3.3 AUTOMATICSEMICOLONINSERTION

Updated section3.4 Automatic Semicolon Insertion to include rules governing parsing thef or
statement and dealing with postfix++ and postfix—— tokens.

D.3.4 THE NUMBERTYPE
Updated the description in sectiord.4 The Number Type

D.3.5 PUTWITHEXPLICITACCESS MODE

Update section 4.5.2.3, Put with Explicit Access Mode to include looking in the prototype object for
access violations.

D.3.6 PUTWITHIMPLICITACCESS MODE

Update section 4.5.2.4, Put with Implicit Access Mode to include looking in the prototype object for
access violations.

D.3.7 THE STRING TYPE
Updated the description in section 4.6, The String Type.

D.3.8 TONUMBER
Updated section 5.3, ToNumber to return dNaNfor an input type ofNul | .

D.3.9 TONUMBERAPPLIED TO THESTRING TYPE

Updated the lexical production for SimpleWhiteSpace in section 5.3.1 to include <CR> and <LF>.
Also updated the lexical productions StrFloatingPointLiteral anétrintegerLiteral to allow signs.

D.3.10 ToINT32

Updated description in section 5.5, Tolnt32: (signed 32 bit integer) to tentatively use Guy’s
Conversion modulo 2”32 algorithm.

D.3.11 ToUINT32

Updated description in sections.6 ToUint32: (unsigned 32 bit integer)to tentatively use Guy’s
Conversion modulo 2”32 algorithm.

D.3.12 EXECUTIONCONTEXTS(VARIABLES
Section 6 (Variables) replaced by new section (Execution Contexts).

D.3.13 FUNCTIONCALLS
Swapped steps 2 and 3 in section 7.2.4, Function Calls.

D.3.14 THE TYPEOF OPERATOR

Updated the table in section7.3.3 Thet ypeof Operator to specify the result when the input type is
an external object. Removed related open issue at the end of this section.

D.3.15 APPLYING THE%OPERATOR

Removed step 7 in the algorithm in section 7.4.(either operand NaN) and added a new ruleto 7.4.3 to
reiterate what was in the old step.

73

ECMA/TC39/97/11

D.3.16 THE ADDITIONOPERATOR(+)

Added the hint Number in the calls to ToPrimitive in section 7.5.1, The Addition Operator<).
Removed related open issue at the end of this section.

D.3.17 RELATIONALOPERATORS

Added the hint Number in the calls to ToPrimitive in section 7.7, Relational Operators. Removed
related open issue at the end of this section.

D.3.18 CONDITIONALOPERATOR(?:)

Updated the syntactic production, Conditional Expression, in sectiof.11 Conditional Operator
(?2:)

D.3.19 COMPOUNDASSIGNMENT(cr=)
Swapped steps 2 and 3 in section 7.12.2, Compound Assignmentdp=)

D.4 FEBRUARY 21, 1997

D.4.1 UNICODEESCAPE SEQUENCES

Rewrote section2.1 Unicodeto reflect the restriction that non-ASCI1 Unicode characters may
appear only within comments and string literals. Moved the description of Unicode escape sequences
t0 3.3.4.4 String Literals

D.4.2 FUTURERESERVED WORDS
Addedi nport and super totablein3.3.1.2 Future Reserved Words

D.4.3 AUTOMATICSEMICOLONINSERTION

Rewrote the rules for semicolon insertion in sectior3.4 Automatic Semicolon Insertionto
incorporate the rule that a semicolon is not inserted if it would be treated as an empty statement. Also,
broke out the empty statement as a separate kind of statement for expository purposes in secti8r2
Empty Statement.

D.4.4 THE NUMBERTYPE
Corrected formatting of formulae in sectiot.4 The Number Type

D.4.5 NOTIMPLICIT ANDNOTEXPLICITPROPERTYATTRIBUTESDELETED

The NotImplicit and NotExplicit property attributes were deleted from the table in sectiod.5.1
Property Attributes Many changes throughout the rest of chapter 4 to reflect this deletion.
Also, the [[TestPutExplicit]] helper method was renamed [[CanPut]].

D.4.6 TOINT32 ANDTOUINT32

Corrected formatting of formulae in sectioB.5 Tolnt32: (signed 32 bit integer)and section5.6
ToUint32: (unsigned 32 bit integer) Also, change the discarding of the fractional part to
truncate toward zero rather than using a simple floor operation.

Correct an error in the descriptions by adding a new step 4 to each one, which makes sure that
if theinput is negative zero, the output is positive zero.

D.4.7 GROUPINGOPERATOR

Delete step 2 from section7.1.4 The Grouping Operator. Parentheses no longer force
dereferencing.

74

ECMA/TC39/97/11

D.4.8 SHIFTEXPRESSIONS

Correct the grammar for ShiftExpressionby adding AdditiveExpressionas an alternative in section
7.6 Bitwise Shift Operators

D.4.9 CONVERSIONRULES FORRELATIONALOPERATORS

Updated description in section7.7 Relational Operatorsso that lexicographic string ordering is used
only if both operands become strings when converted to primitive type; if oneisastring and oneis a
number, then numeric ordering is used. Thusrelational operators differ from the operator, which, if
one operand is a string and one is a number, performs string concatenation rather than addition.

D.4.10 && AND|| SEMANTICS

Updated description in section7.10Binary Logical Operatorsso that && and | | have PERL-like
semantics; that is, theresult of1| | 2is1, not true, and theresult of 0| | "Hel | 0" is“ Hel | 0”.

D.4.11 CONDITIONALOPERATOR

Updated section7.11 Conditional Operator (?:) to reflect the change that the second and
third subexpressions should each beAssignmentExpression

D.4.12 ASSIGNMENTOPERATORS

Updated section7.12 Assignment QOperatorsto reflect the change that the left-hand side of an
assignment should be aPostfixExpression Also change two occurrences in subsections of SetVal to
PutValue.

D.4.13 SYNTAX OFCLASS STATEMENT

Updated sectionB.1 The Class Statement1to allow the parentheses in a class declaration to be
optional.

D.4.14 SYNTAX OFTRY STATEMENT

Updated sectionB.2.1 Thetry Statementlto require the body of acat chorfi nal | y clauseto
be aBlock.

D.5 FEBRUARY 27, 1997

D.5.1 GRAMMARNOTATION

Big rewrite of sectionl.1 Syntactic and Lexical Grammarsto make the description of grammar
notation more detailed and rigorous. Is this okay? (Much of the text was borrowed, in form at least,
from the Java L anguage Specification.) The notation is still a bit inconsistent throughout the
document (example: “except” versus “but not”), and should be made consistent within itself and with
section1.1 Syntactic and Lexical Grammars.

Also decided to call out the grammar in Chapter 5 as a separate grammar and use triple colons on its
productions.

Restructured some of the grammar in Chapter 3 to make it a bit more readable. |sthis okay?

D.5.2 END OF MEDIUM CHARACTERIS NO LONGERWHITESPACE

Deleted character \u0019 (End of Medium) from the table in sectio8.1 White Space and
deleted <EOM> as an alternative for SimpleWhiteSpace in that same section. Also deleted <EOM> as
an aternative for StrwhiteSpaceChar in section5.3.1 ToNumber Applied to the String Type
These changes reflect the decision that neither \u0019 (End of Medium, mistakenly also referred to in
previous drafts of this document as ~Z) nor \UOO1A (Substitute, which really is”~Z) shall be considered
whitespace in an ECMA Script program. It is expected that host environments will filter any ~Z
character that might occur at the end of the host environment’ s representation of an ECM A SCript
program.

75

ECMA/TC39/97/11

D.5.3 MEANING OFNULL LITERAL
Added to section3.3.4.1 Null Literalsa discussion of the meaning of anull literal.

D.5.4 MEANING OFBOOLEANLITERALS

Added to sectionSemantics
The value of the null literalt r ue is the sole value of the null type, namelynull.
3.3.4.2 Boolean Literalsa discussion of the meaning of a boolean literal.

D.5.5 MEANING OFNUMERICLITERALS

Added to section3.3.4.3 Numeric Literalsa discussion of the meaning of a numeric literal. It does not
yet address the restriction to 19 significant digits. Is this the style of description we want?

D.5.6 AUTOMATICSEMICOLONINSERTION

Updated description of automatic semicolon insertion in sectioB.4 Automatic Semicolon

Insertion. Systematically replaced the word “injected” with “inserted”. Invented a new theory of
“restricted productions” to explain in a general way why the parser inserts semicolons in places where
there would otherwise be avalid parse without a semicolon. Added more examples and advice. Also
modified productions in sections.2 Postfix Expressionsand 8.8 The ReTURN St at enent to
indicate the restrictions explicitly.

D.5.7 THENUMBERTYPE

Updated section4.4 The Number Typeto provide explanations of those large numbers as sums and
differences of powers of two.

D.5.8 TOSTRING ONNUMBERS

Updated section5.7.1 ToString Applied to the Number Typédave a draft specification of how this
conversion ought to be done. This needsto be reviewed. This version requires that, when the number
has a nonzero fractional part, the output must be correctly rounded and produce no more digits than
necessary for the fractional part. Added a bibliographic reference to the paper and code of David M.
Gay on this subject.

D.5.9 NEw OPERATOR

Updated descriptionin section7.2.3 The new Operator to describe the case where no
argument list is provided. This needs to be reviewed.

D.5.10 DELETEOPERATOR

Updated descriptionin section7.3.1 Thedel et e Operator to reflect decision that this
operator shall return a boolean value; the valué r ue indicates that, after the operation, the object is
guaranteed not to have the specified property.

D.5.11 == SEMANTICS

Updated section7.8 Equality Operatorsso that (@) nul | and undef i nedare considered
equal, and (b) when a number meets a string, the number is converted to a string and then string
equality is used.

D.5.12 && AND|| SEMANTICS

Updated description in section7.10Binary Logica Operatorsto delete step 7 for eachoperator (the
result of this step was no longer used).

D.5.13 SEPARATEPRODUCTIONS FORCONTINUE, BREAK, RETURN

To make certain kinds of cross-reference in the document simpler, | broke out the continue, break, and
return statements into separate grammatical productions, eliminating the production for

76

ECMA/TC39/97/11

Control FlowStatement(which was something of a misnomer anyway, and other statements also result
in (structured) control flow.

D.5.14 DEaAD CODE IS NOT PROTECTED FROMCOMPILETIME ANALYSIS
Added text to chapter 12 (Errors).

77

ECMA/TC39/97/11

APPENDIX E

LALR(1) SYNTACTIC GRAMMAR
Issue: To be supplied?

78

INDEX
- 31
SUBLFACiON ... 36
!
!
Logical NOT.....occeviiniinieieneee e 33
&
&
DiItWiSE AND ..o 39
&&
logical AND......ccoevcivereeeee e 40, 63
COMMA OPETELO........ceeeeerreeeerreeeeireee e 41
?
?
conditional expression............ccceceeveenne. 40
conditional expression............ccceceeveenne. 65
Bitwise NOT....oooiiiiiiiieeeeeee e 33
+
o s 31
<
<<
left SNift.......coveeieee 37
ASSIONMENT....coviiieeie e 41
>
>>
FIght Shift.....cooeii 37
>>>
unsigned right shift.........cccoccoviiniininnnnn 37
A
ATQUMENTS.....ceiiiiec e 29

ECMA/TC39/97/11

AITAYS .ot 30
B
Break ..o 47
C
(o0 011 (0] I [0 R 46
E
expression
PrMEAIY . ..eoeieiieieeieeieeeee e 29
|
if 44
(L= = (0] o TR 45
o
op=
compound assignment...........c.cceceeeenee. 41, 65
operators
additive, SemanticS.........occvvveeeeeeeeecveeeeeenn. 35
EQUAlTEY. ..o 38
POSEFIX. v 29
relationalccceeeeeeieeeiiieeeeee e, 38, 65
UNBIY ..o 32
R
(< (0T 0 OO URIOS 47
S
LS 11 1 36
SOUMCE tEXL. .. 50, 51, 52
SEALEMENES ... 43
EXPIESSION...eeeeeeeeeeeeeeeeeneeeneeeeeneeeeneees 43, 44
U
L8 1 [To7o o [T 8
\%
AV T 32
W
WHIlE e 45
White Space......cccocoveveeerieeeinnens 14, 61, 62, 64
WIth e 47,55, 56

79

