
 i 87

ECMASCRIPT LANGUAGE SPECIFICATION

ECMA COMMITTEE #39
VERSION 0.11

M ARCH 11, 1997

Please send feedback regarding this document to Guy Steele (Guy.Steele@east.sun.com).

 ii 87

1 NOTATIONAL CONVENTIONS. 1 1

1.1 SYNTACTIC AND LEXICAL GRAMMARS.. 1 1
1.1.1 Context-Free Grammars... 1 1
1.1.2 The Lexical Grammar.. 1 1
1.1.3 The Numeric String Grammar... 1 1
1.1.4 The Syntactic Grammar ... 1 1
1.1.5 Grammar Notation.. 2 2

1.2 ALGORITHM CONVENTIONS.. 4 4

2 SOURCE TEXT . 5 5

2.1 ... 5 5

3 LEXICAL CONVENTIONS. 6 6

3.1 WHITE SPACE .. 6 6

3.2 LINE TERMINATORS .. 6 6

3.3 COMMENTS ... 7 7

3.4 TOKENS.. 8 8
3.4.1 Reserved Words.. 8 8
3.4.2 Keywords.. 8 8
3.4.3 Future Reserved Words .. 8 8

3.5 IDENTIFIERS... 9 9

3.6 PUNCTUATORS... 9 9

3.7 LITERALS... 10 10
3.7.1 Null Literals ... 10 10
3.7.2 Boolean Literals .. 10 10
3.7.3 Numeric Literals.. 10 10
3.7.4 String Literals... 12 12

3.8 AUTOMATIC SEMICOLON INSERTION ... 15 15

4 TYPES . 1 8 1 8

4.1 THE UNDEFINED TYPE.. 18 18

4.2 THE NULL TYPE .. 18 18

4.3 THE BOOLEAN TYPE... 18 18

4.4 THE NUMBER TYPE .. 18 18

4.5 .THE OBJECT TYPE... 19 19
4.5.1 Property Attributes .. 19 19
4.5.2 Property Access... 19 19
4.5.3 HasProperty.. 20 20
4.5.4 Get ... 20 20
4.5.5 Put ... 20 20

4.6 THE STRING TYPE.. 21 21

4.7 THE INTERNAL REFERENCE TYPE.. 21 21
4.7.1 GetBase ... 21 21
4.7.2 GetPropertyName .. 21 21
4.7.3 GetValue.. 21 21
4.7.4 PutValue.. 21 21

5 TYPE CONVERSION . 2 2 2 2

 iii 87

5.1 TOPRIMITIVE.. 22 22

5.2 TOBOOLEAN... 22 22

5.3 TONUMBER .. 23 23
5.3.1 ToNumber Applied to the String Type... 23 23

5.4 TOINTEGER .. 24 24

5.5 TOINT32: (SIGNED 32 BIT INTEGER) .. 24 24

5.6 TOUINT32: (UNSIGNED 32 BIT INTEGER) .. 25 25

5.7 TOSTRING.. 25 25
5.7.1 ToString Applied to the Number Type... 25 25

5.8 TOOBJECT.. 26 26

6 EXECUTION CONTEXTS. 2 7 2 7

6.1 DEFINITIONS... 27 27
6.1.1 Function Objects ... 27 27
6.1.2 Types of Executable Code ... 27 27
6.1.3 Variable Instantiation ... 28 28
6.1.4 Scope Chain and Identifier Resolution ... 28 28
6.1.5 Global Object ... 29 29
6.1.6 Activation Object .. 29 29
6.1.7 LabelStacks .. 29 29
6.1.8 This .. 29 29
6.1.9 Arguments Object.. 29 29

6.2 ENTERING AN EXECUTION CONTEXT .. 30 30
6.2.1 Global Code ... 30 30
6.2.2 EvalCode ... 30 30
6.2.3 Function and Anonymous Code.. 30 30
6.2.4 Host Code.. 30 30

7 EXPRESSIONS. 3 1 3 1

7.1 PRIMARY EXPRESSIONS... 31 31
7.1.1 The this Keyword... 31 31
7.1.2 Identifier Reference... 31 31
7.1.3 Literal Reference.. 31 31
7.1.4 The Grouping Operator... 31 31

7.2 POSTFIX EXPRESSIONS .. 31 31
7.2.1 Property Accessors... 32 32
7.2.2 Postfix Increment and Decrement Operators .. 33 33
7.2.3 The new Operator ... 33 33
7.2.4 Function Calls .. 33 33

7.3 UNARY OPERATORS.. 34 34
7.3.1 The delete Operator .. 34 34
7.3.2 The void Operator... 34 34
7.3.3 The typeof Operator ... 34 34
7.3.4 Prefix Increment and Decrement Operators.. 35 35
7.3.5 Unary + and - Operators... 35 35
7.3.6 The Bitwise NOT Operator (~) ... 35 35
7.3.7 Logical NOT Operator (!).. 35 35

7.4 MULTIPLICATIVE OPERATORS .. 36 36
7.4.1 Applying the * Operator... 36 36

 iv 87

7.4.1 Applying the / Operator.. 36 36
7.4.1 Applying the % Operator.. 37 37

7.5 ADDITIVE OPERATORS.. 37 37
7.5.1 The Subtraction Operator (-) .. 38 38

7.6 BITWISE SHIFT OPERATORS.. 39 39
7.6.1 The Left Shift Operator (<<).. 39 39
7.6.2 The Signed Right Shift Operator (>>)... 39 39
7.6.3 The Unsigned Right Shift Operator (>>>) ... 40 40

7.7 RELATIONAL OPERATORS.. 40 40

7.8 EQUALITY OPERATORS ... 41 41

7.9 BINARY BITWISE OPERATORS... 42 42

7.10 BINARY LOGICAL OPERATORS .. 42 42

7.11 CONDITIONAL OPERATOR (?:)... 43 43

7.12 ASSIGNMENT OPERATORS .. 43 43
7.12.1 Simple Assignment (=)... 43 43
7.12.2 Compound Assignment (op=).. 44 44

7.13 COMMA OPERATOR (,)... 44 44

8 STATEMENTS . 4 5 4 5

8.1 VARIABLE STATEMENT... 45 45

8.2 EMPTY STATEMENT ... 46 46

8.3 EXPRESSION STATEMENT .. 46 46

8.4 THE if STATEMENT.. 46 46

8.5 ITERATION STATEMENTS .. 47 47
8.5.1 The while Statement... 47 47
8.5.2 The for Statement ... 48 48
8.5.3 The for..in Statement... 48 48

8.6 THE continue STATEMENT... 49 49

8.7 THE break STATEMENT... 49 49

8.8 THE return STATEMENT .. 49 49

8.9 THE with STATEMENT .. 49 49

9 FUNCTION DEFINITION . 5 1 5 1

10 PROGRAM . 5 2 5 2

11 NATIVE ECMASCRIPT OBJECTS . 5 3 5 3

11.1 THE GLOBAL OBJECT.. 53 53
11.1.1 Value Properties of the Global Object .. 53 53
11.1.2 Function Properties of the Global Object.. 53 53

11.1.2.1 eval(x).. 53 53
11.1.2.2 parseInt(string, radix).. 53 53
11.1.2.3 parseFloat(string).. 53 53
11.1.2.4 escape(string).. 53 53
11.1.2.5 unescape(string).. 53 53

11.2 OBJECT OBJECTS .. 53 53
11.2.1 The Object Constructor... 53 53

11.2.1.1 new Object(value) .. 53 53
11.2.1.2 new Object(). 53 53

11.2.2 Properties of the Object Constructor .. 53 53

 v 87

11.2.2.1 Object.prototype.. 54 54

11.2.3 Properties of the Object Prototype Object ... 54 54
11.2.4 Properties of Object Instances... 54 54

11.3 FUNCTION OBJECTS.. 54 54
11.3.1 The Function Constructor.. 54 54
11.3.2 Properties of the Function Constructor... 54 54
11.3.3 Properties of the Function Prototype Object.. 54 54
11.3.4 Properties of Function Instances ... 54 54

11.4 ARRAY OBJECTS... 54 54
11.4.1 The Array Constructor .. 54 54

11.4.1.1 new Array(item0, item1, item2, . . .). 54 54
11.4.1.2 new Array(len) .. 54 54
11.4.1.3 new Array() . 54 54

11.4.2 Properties of the Array Constructor ... 54 54
11.4.2.1 Array.prototype.. 54 54

11.4.3 Properties of the Array Prototype Object .. 54 54
11.4.3.1 join .. 55 55
11.4.3.2 reverse.. 55 55
11.4.3.3 sort. 55 55

11.4.4 Properties of Array Instances.. 55 55
11.4.4.1 length .. 55 55

11.5 STRING OBJECTS.. 55 55
11.5.1 The String Constructor ... 55 55
11.5.2 Properties of the String Constructor .. 55 55

11.5.2.1 String.prototype .. 55 55

11.5.3 Properties of the String Prototype Object ... 55 55
11.5.3.1 toString() . 55 55
11.5.3.2 valueOf() . 56 56
11.5.3.3 charAt .. 56 56
11.5.3.4 indexOf.. 56 56
11.5.3.5 lastIndexOf .. 56 56
11.5.3.6 split. 56 56
11.5.3.7 substring.. 56 56
11.5.3.8 toLowerCase .. 56 56
11.5.3.9 toUpperCase .. 56 56

11.5.4 Properties of String Instances... 56 56
11.5.4.1 length .. 56 56

11.6 BOOLEAN OBJECTS... 56 56
11.6.1 The Boolean Constructor ... 56 56

11.6.1.1 new Boolean(value).. 56 56
11.6.1.2 new Boolean() . 56 56

11.6.2 Properties of the Boolean Constructor.. 56 56
11.6.2.1 Boolean.prototype .. 56 56

11.6.3 Properties of the Boolean Prototype Object... 56 56
11.6.3.1 toString() . 56 56
11.6.3.2 valueOf() . 57 57

11.6.4 Properties of Boolean Instances... 57 57

11.7 NUMBER OBJECTS... 57 57
11.7.1 The Number Constructor... 57 57

11.7.1.1 new Number(value).. 57 57
11.7.1.2 new Number() . 57 57

 vi 87

11.7.2 Properties of the Number Constructor .. 57 57
11.7.2.1 Number.prototype .. 57 57
11.7.2.2 Number.NaN... 57 57

11.7.3 Properties of the Number Prototype Object... 57 57
11.7.3.1 toString() . 57 57
11.7.3.2 valueOf() . 57 57

11.7.4 Properties of Number Instances... 57 57

11.8 THE MATH OBJECT... 57 57
11.8.1 Value Properties of the Math Object.. 58 58

11.8.1.1 E .. 58 58
11.8.1.2 LN10... 58 58
11.8.1.3 LN2 ... 58 58
11.8.1.4 LOG2E... 58 58
11.8.1.5 LOG10E... 58 58
11.8.1.6 PI .. 58 58
11.8.1.7 SQRT1_2 ... 58 58
11.8.1.8 SQRT2... 58 58

11.8.2 Function Properties of the Math Object.. 58 58
11.8.2.1 abs(x).. 58 58
11.8.2.2 acos(x) .. 59 59
11.8.2.3 asin(x).. 59 59
11.8.2.4 atan(x).. 59 59
11.8.2.5 atan2(y, x). 59 59
11.8.2.6 ceil(x) .. 60 60
11.8.2.7 cos(x).. 60 60
11.8.2.8 exp(x) .. 61 61
11.8.2.9 floor(x).. 61 61
11.8.2.10 log(x) .. 61 61
11.8.2.11 max(x, y). 61 61
11.8.2.12 min(x, y) . 61 61
11.8.2.13 pow(x, y). 61 61
11.8.2.14 random().. 62 62
11.8.2.15 round(x) .. 62 62
11.8.2.16 sin(x) .. 62 62
11.8.2.17 sqrt(x).. 63 63
11.8.2.18 tan(x) .. 63 63

12 ERRORS . 6 4 6 4

13 REFERENCES . 6 5 6 5

APPENDIX A: OPEN ISSUES. 6 6 6 6

A.1 BREAK AND CONTINUE LABEL STACKS... 66 66

A.2 TOSTRING APPLIED TO A NUMBER TYPE.. 67 67

A.3 ++ AND -- OPERATORS... 67 67

A.4 INFINITY AND NAN LITERALS ... 67 67

APPENDIX B: PROPOSED EXTENSIONS. 6 8 6 8

B.1 THE CLASS STATEMENT1 .. 68 68

B.2 THE TRY AND THROW STATEMENTS1 .. 69 69
B.2.1 The try Statement1... 69 69
B.2.2 The Throw Statment1 ... 69 69

 vii 87

B.3 THE DATE TYPE1 ... 69 69
B.3.1 ToDate1 ... 69 69
B.3.2 ToDate Applied to the String Type... 70 70

B.4 IMPLICIT THIS3 .. 70 70

B.5 THE switch STATEMENT1, 3 .. 70 70

B.6 CONVERSION FUNCTIONS ... 71 71

B.7 ASSIGNMENT-ONLY OPERATOR (:=)1... 71 71

B.8 SEALING OF AN OBJECT2 .. 71 71

B.9 THE ARGUMENTS KEYWORD3... 72 72

B.10 PREPROCESSOR.. 72 72

B.11 THE DO..WHILE STATEMENT ... 72 72

B.12 BINARY OBJECT... 72 72

APPENDIX C: PEOPLE CONTACTS . 7 3 7 3

APPENDIX D: RESOLUTION HISTORY. 7 4 7 4

D.1 JANUARY 15, 1997.. 74 74
D.1.1 White Space... 74 74
D.1.2 Keywords .. 74 74
D.1.3 Future Reserved Words... 74 74
D.1.4 Octal And Hex Escape Sequence Issue... 74 74
D.1.5 ToPrimitive... 74 74
D.1.6 Hex in ToNumber... 74 74
D.1.7 Attributes of Declared Functions and Built-in Objets.. 74 74
D.1.8 The Grouping Operator .. 75 75
D.1.9 Prefix Increment and Decrement Operators ... 75 75
D.1.10 Unary Plus... 75 75
D.1.11 Multiplicative Operators... 75 75
D.1.12 Additive Operators... 75 75
D.1.13 Left Shift Operator .. 75 75
D.1.14 Binary Bitwise Operators .. 75 75
D.1.15 Conditional Operator (? :) .. 75 75
D.1.16 Simple Assignment ... 75 75
D.1.17 The for..in Statement... 75 75
D.1.18 The return Statement.. 76 75
D.1.19 New Proposed Extensions... 76 76

D.2 JANUARY 24, 1997.. 76 76
D.2.1 End Of Source.. 76 76
D.2.2 Future Reserved Words... 76 76
D.2.3 White Space... 76 76
D.2.4 Comments... 76 76
D.2.5 Identifiers .. 76 76
D.2.6 Numeric Literals... 76 76
D.2.7 String Literals .. 76 76
D.2.8 Automatic Semicolon Insertion ... 76 76
D.2.9 Property Attributes.. 76 76
D.2.10 ToPrimitive ... 76 76
D.2.11 ToNumber ... 77 77
D.2.12 White Space... 77 77

 viii 87

D.2.13 ToNumber Applied to the String Type .. 77 77
D.2.14 ToString.. 77 77
D.2.15 Postfix Increment and Decrement Operators .. 77 77
D.2.16 The typeof operator.. 77 77
D.2.17 Prefix Increment and Decrement Operators.. 77 77
D.2.18 Multiplicative Operators... 77 77
D.2.19 The Subtraction Operator.. 77 77
D.2.20 The Subtraction Operator.. 77 77
D.2.21 Applying the Additive Operators (+, -) .. 77 77
D.2.22 Equality Operators ... 77 77
D.2.23 ToPrimitive Usage .. 77 77
D.2.24 Binary Logical Operators .. 78 78

D.3 JANUARY 31, 1997.. 78 78
D.3.1 MultiLineComment .. 78 78
D.3.2 String Literals .. 78 78
D.3.3 Automatic Semicolon Insertion ... 78 78
D.3.4 The Number Type... 78 78
D.3.5 Put with Explicit Access Mode.. 78 78
D.3.6 Put with Implicit Access Mode.. 78 78
D.3.7 The String type .. 78 78
D.3.8 ToNumber... 78 78
D.3.9 ToNumber Applied to the String Type.. 78 78
D.3.10 ToInt32... 78 78
D.3.11 ToUint32... 78 79
D.3.12 Execution Contexts (Variables) .. 79 79
D.3.13 Function Calls.. 79 79
D.3.14 The typeof Operator... 79 79
D.3.15 Applying the % Operator .. 79 79
D.3.16 The Addition Operator (+) ... 79 79
D.3.17 Relational Operators .. 79 79
D.3.18 Conditional Operator (?:)... 79 79
D.3.19 Compound Assignment (op=) ... 79 79

D.4 FEBRUARY 21, 1997.. 79 79
D.4.1 Unicode Escape Sequences .. 79 79
D.4.2 Future Reserved Words... 79 79
D.4.3 Automatic Semicolon Insertion ... 79 79
D.4.4 The Number Type... 79 80
D.4.5 NotImplicit and NotExplicit Property Attributes Deleted .. 80 80
D.4.6 ToInt32 and ToUint32 ... 80 80
D.4.7 Grouping Operator .. 80 80
D.4.8 Shift Expressions.. 80 80
D.4.9 Conversion Rules for Relational Operators .. 80 80
D.4.10 && and || Semantics .. 80 80
D.4.11 Conditional Operator.. 80 80
D.4.12 Assignment Operators .. 80 80
D.4.13 Syntax of Class Statement.. 80 80
D.4.14 Syntax of Try Statement... 80 80

D.5 FEBRUARY 27, 1997.. 81 81
D.5.1 Grammar Notation .. 81 81

 ix 87

D.5.2 End of Medium Character Is No Longer WhiteSpace .. 81 81
D.5.3 Meaning of Null Literal ... 81 81
D.5.4 Meaning of Boolean Literals ... 81 81
D.5.5 Meaning of Numeric Literals... 81 81
D.5.6 Automatic Semicolon Insertion ... 81 81
D.5.7 The Number Type... 81 81
D.5.8 ToString on Numbers.. 82 81
D.5.9 New Operator... 82 82
D.5.10 Delete Operator... 82 82
D.5.11 == Semantics.. 82 82
D.5.12 && and || Semantics .. 82 82
D.5.13 Separate Productions for Continue, Break, Return.. 82 82
D.5.14 Dead Code Is Not Protected from Compile-Time Analysis... 82 82

D.6 MARCH 6, 1997.. 82 82
D.6.1 Reformatted the Entire Document... 82 82
D.6.2 Designed a Section Outline for Chapter 11... 83 83
D.6.3 Defined Math Functions... 83 83

D.7 MARCH 10, 1997 .. 83 83
D.7.1 Added Definition of “The Number Value for x” ... 83 83
D.7.2 atan and atan2 May Use Implementation-Dependent Values for π , etc.............................. 83 83
D.7.3 Improved Discussion of Input Stream for Syntactic Grammar .. 83 83
D.7.4 Improved Treatment of LineTerminator in Lexical Grammar.. 83 83
D.7.5 Clarify Behavior of Unicode Escape Sequences.. 84 83
D.7.6 Add Careful Description of the String Value of a String Literal...................................... 84 84
D.7.7 Description of Identifiers Reworded... 84 84
D.7.8 Table of Punctuators Corrected .. 84 84
D.7.9 Improved Descriptions of ToInt32 and ToUint32... 84 84
D.7.10 Changes to ToString Applied to the Number Type .. 84 84
D.7.11 Revised Syntax for NewExpression and MemberExpression... 84 84
D.7.12 Clarify Multiplicative and Additive Operators ... 84 84
D.7.13 Addition Operator No Longer Gives Hint Number ... 84 84
D.7.14 Correct Description of Relational Operators.. 84 84
D.7.15 Assignment Operator LHS Must Be PostfixExpression .. 85 84
D.7.16 Changes to For-in Loops.. 85 84
D.7.17 Break and Continue Must Occur within While or For Loop... 85 85

APPENDIX E: LALR(1) SYNTACTIC GRAMMAR . 8 6 8 6

 1 87

1 NOTATIONAL CONVENTIONS

1.1 SYNTACTIC AND LEXICAL GRAMMARS

This section describes the context-free grammars used in this specification to define the lexical and syntactic
structure of an ECMAScript program.

1.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called
a nonterminal as its left-hand side, and a sequence of one or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (pehaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-
hand side of a production for which the nonterminal is the left-hand side.

1.1.2 The Lexical Grammar

A lexical grammar for ECMAScript is given in Chapter 3. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symbol Input,
that describe how sequences of Unicode characters are translated into a sequence of input elements.

 Input These input elements other than , with white space and comments discarded, form the terminal
symbols for the syntactic grammar for ECMAScript and are called ECMAScript tokens. These tokens are
the reserved words, identifiers, literals, and punctuators of the ECMAScript language. Moreover, line
 terminators , although not considered to be tokens, also become part of the stream of input elements and
 guide the process of automatic semicolon insertion. Simple white space and comments are simply discarded
 and do not appear i n the stream of input elements for the syntactic grammar.

Productions of the lexical grammar are distinguished by having two colons “::” as separating punctuation.

1.1.3 The Numeric String Grammar

A second grammar is used for translating strings into numeric values . ; T this grammar is similar to the part
of the lexical grammar having to do with numeric literals and has as its terminal symbols the characters of
 the Unicode character set . This grammar appears in Chapter 5.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

1.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in Chapters 7, 8, 9, and 10. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (see section 1.1.2) . It defines a
set of productions, starting from the goal symbol Program, that describe how sequences of tokens can form
syntactically correct ECMAScript programs.

 When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted to a
 stream of input elements by repeated application of the lexical grammar; this stream of input elements,

 2 87

 with one extra LineTerminator appended, is then parsed by a single application of the syntax grammar. (The
 purpose of the extra appended LineTerminator is to ensure that automatic semicolon insertion be operative
 at the end of the program.) The program is syntactically in error if the tokens in the stream of input
 elements cannot be parsed as a single inst ance of the goal nonterminal program , with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in Chapters 7, 8, 9, and 10 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before end-of-line characters). Furthermore, certain token sequences that
are described by the grammar are not considered acceptable if an end-of-line character appears in certain
“awkward” places.

A LALR(1) version of the syntactic grammar is presented in Appendix E. This version provides an exact
account of which token sequences are acceptable ECMAScript programs without needing special rules about
automatically adding semicolons or forbidding end-of-line characters. However, it is much more complex
than the grammar presented in Chapters 7, 8, 9, and 10.

1.1.5 Grammar Notation

Terminal symbols are shown in fixed width font in the productions of all the grammars, and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to
appear in a program exactly as written.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of
the nonterminal being defined followed by one or more colons. (The number of colons indicates to which
grammar the production belongs.) One or more alternative right-hand sides for the nonterminal then follow
on succeeding lines. For example, the syntactic definition:

WithnStatement :
with (Expression) Statement

states that the nonterminal WithStatement represents the token with, followed by a left parenthesis
token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic
definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList,
†followed by a comma, followed by an AssignmentExpression. This definition of ArgumentList is
recursive, that is to say, it is defined in terms of itself. The result is that an ArgumentList may contain any
positive number of arguments. Such recursive definitions of nonterminals are common.

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration :
Identifier Initializeropt

is a convenient abbreviation for:

VariableDeclaration :
Identifier
Identifier Initializer

and that:

 3 87

IterationStatement :
for (Expressionopt ; Expressionopt ; Expressionopt) Statement

is a convenient abbreviation for:

IterationStatement :
for (; Expressionopt ; Expressionopt) Statement
for (Expression ; Expressionopt ; Expressionopt) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ; Expressionopt) Statement
for (; Expression ; Expressionopt) Statement
for (Expression ; ; Expressionopt) Statement
for (Expression ; Expression ; Expressionopt) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ;) Statement
for (; ; Expression) Statement
for (; Expression ;) Statement
for (; Expression ; Expression) Statement
for (Expression ; ;) Statement
for (Expression ; ; Expression) Statement
for (Expression ; Expression ;) Statement
for (Expression ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

If the phrase “ [no LineTerminator here] ” appears in the right-hand side of a production of the syntactic grammar ,
it indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in
the input stream at the indicated position. For example, the production:

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

indicates that the production may not be used if a LineTerminator occurs in the program between the
return token and the Expression .

 Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences
 of LineTerminator may appear between any two consecutive tokens in the stream of input element s without
 affecting the syntactic acceptability of the program .

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical
grammar for ECMAScript contains the production:

ZeroToThree :: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree ::
0

1

2

 4 87

3

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multicharacter token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where it
would be impractical to list all the alternatives:

SourceCharacter:
any Unicode character

1.2 ALGORITHM CONVENTIONS

We often use a numbered list to specify steps in an algorithm. When the algorithm is to produce a value as
a result, we use the directive “return x” to indicate that the result of the algorithm is the value of x and that
the algorithm should terminate. We use the notation Result(n) as short hand for “the result of step n”. We
also use Type(x) as short hand for “the type of x”. If an algorithm is defined to “generate a runtime error”,
execution of the algorithm (and any calling algorithms) is terminated and no result is returned.

These algorithms are used to clarify semantics. In practice, there may be more efficient algorithms
available to implement a given feature.

 5 87

2 SOURCE TEXT

2.1 UNICODE

ECMAScript source text is represented as a sequence of characters representable using theUnicode version
2.0 character encoding.

 SourceCharacter : :
 any Unicode character

 However, it is possible to represent every ECMAScript program using only ASCII characters (which are
equivalent to the first 128 Unicode characters). Non-ASCII Unicode characters may appear only within
comments and string literals; in both of those contents, any Unicode character may be expressed as a
Unicode escape sequence consisting of six ASCII characters, namely \u plus four hexadecimal digits, and
the effect is exactly the same as if the Unicode character itself had appeared in place of the escape sequence.
 Within a comment, such an escape sequence is effectively ignored as part of the comment; within a string
 literal, the Unicode escape sequence contributes one character to the string value of the literal.

 Note that ECMAScript differs from the Java programming language in the behavior of Unicode escape
 sequences. In a Java program , if the Unicode escape sequence \ u 000A , for example, appears to occu r
 within a single-line comment, it is interpreted as a line terminator (Unicode character 000A is line feed)
 and therefore the next character is not part of the comment. Similarly, if the Unicode escape sequence
 \u000A occurs within a string literal in a Java program , it is likewise interpreted as a line terminator,
 which is not allowed within a string literal—one must write \ n instead of \u000A to cause a line feed
 top be part of the string value of a string literal. In an ECMAScript program, a Unicode esc ape sequence
 occurring within a comment is never interpreted and therefore cannot contrinute to termination of the
 comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript
 program always contributes a character to the string value of the literal and is never interpreted as a line
 terminator or as a quote mark that might terminate the string literal.

SourceCharacter : :
any Unicode character

2.1 END OF S OURCE

For purposes of describing the grammar of ECMAScript, the source text is assumed to be terminated by a
logical “end of source” character. We represent the end-of-source character by <EOS>.

EndOfSource : :
<EOS>

 6 87

3 LEXICAL CONVENTIONS

The source text of a ECMAScript program is first converted into a sequence of tokens and white space. A
token is a sequence of characters that comprise a lexical unit. The source text is scanned from left to right,
repeatedly taking the longest possible sequence of characters as the next token.

3.1 W HITE SPACE

White space characters are used to improve source text readability and to separate tokens, (indivisible lexical
units) , from each other but are otherwise insignificant. White space may occur between any two tokens, and
 may occur within strings (where they are considered significant characters forming part of the literal string
 value), but can not appear within a ny other kind of token. White space may also occur inside a string, where
it is significant.

The following characters are considered to be white space:

Unicode
Value

Name Formal Name

\u0009 Tab <TAB>

\u000B Vertical Tab <VT>

\u000C Form Feed <FF>

\u0020 Space <SP>

Syntax

WhiteSpace ::
SimpleWhiteSpace WhiteSpaceopt

LineTerminator WhiteSpaceopt

Comment WhiteSpaceopt

SimpleWhiteSpace : :
<TAB>
< V T SP>
<FF>
< SP V T>

3.2 L INE T ERMINATORS

 Line terminator characters, like whitespace characters, are used to improve source text readability and to
 separate tokens (indivisible lexical units) from each other. Unlike whitespace characters, line terminators
 have some influence over the behavior of the syn tactic grammar. In general, line terminators may occur
 between any two tokens, but there are a few places where they are forbidden by the syntactic grammar. A
 line terminator cannot occur within a ny token (not even a string. Line terminators also affect the process of
 automatic semicolon insertion (see section 0) .

 7 87

 The following characters are considered to be line terminators :

 Unicode
 Value

 Name Formal Name

 \u000A Line Feed <LF>

 \u000D Carriage Return <CR>

 Syntax

LineTerminator ::
< LF CR>
< CR LF>

LineEnd : :
LineTerminator
<EOS>

3.3 COMMENTS

Description

Comments can be either single or multi-line. Multi-line comments cannot nest.

 Because a single-line comment can contain any character except a LineTerminator character, and because of
 the general rule that a token is always as long as possible, a single-line comment always consists of all
 characters from the / / marker to the end of the line. However, the LineTerminator at the end of the line is
 not considered to be part of the single-l ine comment; it is recognized separately by the lexical grammar and
 becomes part of the stream of input elements for the syntactic grammar. This point is very important,
 because it implies that the presence or absence of single-line comments does not affect the process of
 automatic semicolon insertion (see section 0).

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsopt */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

PostAsteriskCommentChars ::
MultiLineNotFo r wardSlashChar MultiLineCommentCharsopt

MultiLineNotAsteriskChar::
SourceCharacter but not asterisk * or <EOS>

MultiLineNotFowardSlashChar::
SourceCharacter but not forward-slash / or <EOS>

 8 87

SingleLineComment ::
// SingleLineCommentCharsopt LineTerminator
/ / SingleLineCommentCharsopt EndOfSource

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::
SourceCharacter but not Line T erminator End

3.4 TOKENS

Syntax

Token ::
ReservedWord
Identifier
Punctuator
Literal
EndOfSource

3.4.1 Reserved Words

Description

Reserved words cannot be used as identifiers.

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

3.4.2 Keywords

The following keywords are in use in either the the Borland ECMAScript implementation, the Netscape 1.1
ECMAScript implementation, the Microsoft JScript implementation or all three.

Syntax

Keyword: one of
break continue delete else

for function i f i n

new return this typeof

var void while with

3.4.3 Future Reserved Words

The following words are used as keywords in proposed extensions and are thus reserved to allow for the
adoption for those extensions.

Syntax

 9 87

FutureReservedWord : one of
arguments case catch class

default d o extends finally

implicit import super switch

throw try

3.5 IDENTIFIERS

Description

An identifier is a character sequence of unlimited length, where each character in the sequence must be a of
letters, a decimal digits , an and special characters that must begin with either a letter, the underscore (_)
character , or a the dollar sign ($) character , and the first character may not be a decimal digit . ECMAScript
identifiers are case sensitive: identifiers whose characters differ only in case are nevertheless considered to be
 distinct unique.

Syntax

Identifier ::
IdentifierName but not ReservedWord

IdentifierName ::
IdentifierLetter
IdentifierName IdentifierLetter
IdentifierName DecimalDigit

IdentifierLetter :: one of

a b c d e f g h i
I

j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

$ _

DecimalDigit :: one of

0 1 2 3 4 5 6 7 8 9

3.6 PUNCTUATORS

Syntax

Punctuator :: one of

= > < = = < = > =

! = , ! ~ ? :

. & & | | + + - - + _

- * / & | ^

% < < > > >>> + = - =

* = / = & = | = ^ = % =

<<= >>= >>>= () {

} [] ;

 10 87

3.7 LITERALS

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

3.7.1 Null Literals

Syntax

NullLiteral ::
null

Semantics

The value of the null literal null true is the sole value of the N null type, namely null.

3.7.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

Semantics

The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal false is a value of the Boolean type, namely false.

3.7.3 Numeric Literals

Syntax

NumericLiteral ::
IntegerLiteral
FloatingPointLiteral

IntegerLiteral ::
DecimalIntegerLiteral
HexIntegerLiteral
OctalIntegerLiteral

DecimalIntegerLiteral ::
0
NonZeroDigit DecimalDigitsopt

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

 11 87

HexIntegerLiteral ::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

OctalIntegerLiteral ::
0 OctalDigit
OctalLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

FloatingPointLiteral ::
DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalIntegerLiteral ExponentPart

ExponentPart ::
ExponentIndicator SignedInteger

ExponentIndicator :: one of
e E

SignedInteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

Semantics

A numeric literal stands for a value of the number type. This value is determined in two steps: first, a
mathematically accurate value (MV) is derived from the literal; second, this mathematical value (MV) is
rounded, using IEEE 754 round-to-nearest mode , to a representable value of the number type.

For any production A :: B whose with a single nonterminal on its right-hand side is a single nonterminal ,
the MV of A is the MV of B.
• The MV of DecimalLiteral :: 0 is positive zero.
• The MV of DecimalLiteral :: NonZeroDigit Digits is (the MV of NonZeroDigit times 10n) plus the

MV of Digits, where n is the number of characters in Digits.
• The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus

the MV of DecimalDigit.
• The MV of DecimalDigit :: 0 or of HexDigit :: 0 or of OctalDigit :: 0 is positive zero.
• The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or of OctalDigit :: 1 is 1.
• The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 or of OctalDigit :: 2 is 2.
• The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.
• The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.
• The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit :: 5 is 5.
• The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.
• The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit :: 7 is 7.
• The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 or of OctalDigit :: 8 is 8.
• The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 or of OctalDigit :: 9 is 9.

 12 87

• The MV of HexDigit :: a or of HexDigit :: A is 10.
• The MV of HexDigit :: b or of HexDigit :: B is 11.
• The MV of HexDigit :: c or of HexDigit :: C is 12.
• The MV of HexDigit :: d or of HexDigit :: D is 13.
• The MV of HexDigit :: e or of HexDigit :: E is 14.
• The MV of HexDigit :: f or of HexDigit :: F is 15.
• The MV of HexIntegerLiteral:: 0x HexDigit is the MV of HexDigit.
• The MV of HexIntegerLiteral:: 0X HexDigit is the MV of HexDigit.
• The MV of HexIntegerLiteral:: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16)

plus the MV of HexDigit.
• The MV of OctalIntegerLiteral:: 0 OctalDigit is the MV of OctalDigit.
• The MV of OctalIntegerLiteral:: OctalIntegerLiteral OctalDigit is (the MV of OctalIntegerLiteral times

8) plus the MV of OctalDigit.
• The MV of FloatingPointLiteral :: DecimalIntegerLiteral . is the MV of DecimalIntegerLiteral.
• The MV of FloatingPointLiteral :: DecimalIntegerLiteral . DecimalDigits is the MV of

DecimalIntegerLiteral plus (the MV of DecimalDigits times 10−n), where n is the number of characters
in DecimalDigits.

• The MV of FloatingPointLiteral :: DecimalIntegerLiteral . ExponentPart is the MV of
DecimalIntegerLiteral times 10e, where e is the MV of ExponentPart.

• The MV of FloatingPointLiteral :: DecimalIntegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimalIntegerLiteral plus (the MV of DecimalDigits times 10−n)) times 10e, where n is the number of
characters in DecimalDigits and e is the MV of ExponentPart.

• The MV of FloatingPointLiteral ::. DecimalDigits is the MV of DecimalDigits times 10−n, where n is
the number of characters in DecimalDigits.

• The MV of FloatingPointLiteral ::. DecimalDigits ExponentPart DecimalDigits is the MV of
DecimalDigits times 10e−n, where n is the number of characters in DecimalDigits and e is the MV of
ExponentPart.

• The MV of FloatingPointLiteral :: DecimalIntegerLiteral ExponentPart is the MV of
DecimalIntegerLiteral times 10e, where e is the MV of ExponentPart.

• The MV of ExponentPart :: ExponentIndicator SignedInteger is the MV of SignedInteger.
• The MV of SignedInteger :: + DecimalDigits is the MV of DecimalDigits.
• The MV of SignedInteger :: - DecimalDigits is the negative of the MV of DecimalDigits.

Issue: this description, as it stands, does not take into account the resolution that only the first 19
significant digits or so need contribute to the calculated mathematical value. This still needs to be
addressed. (It could be addressed in the grammar itself, but it would be too messy: a couple of hundred
productions!)

3.7.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence.

Syntax

StringLiteral ::
“ DoubleStringCharactersopt “
‘ SingleStringCharactersopt ‘

 Doubl eStringCharacter s : :
 DoubleStringCharacter DoubleStringCharacters opt

 SingleStringCharacter s : :
 SingleStringCharacter SingleStringCharacters opt

 13 87

DoubleStringCharacter ::
SourceCharacter but not double-quote “or backslash \ or Line Terminator End
EscapeSequence

SingleStringCharacter ::
SourceCharacter but not single-quote ‘or backslash \ orLine Terminator End
EscapeSequence

EscapeSequence ::
CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence ::
\ SingleEscapeCharacter
\ NonEscapeCharacter

SingleEscapeCharacter :: one of
‘ “ \ b f n r t

NonEscapeCharacter::
SourceCharacter but not SingleEscapeCharacter or OctalDigit or x or u or
Line Terminator End

HexEscapeSequence ::
\x HexDigit HexDigit

HexDigit : : one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

OctalEscapeSequence ::
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit : : one of
0 1 2 3 4 5 6 7

ZeroToThree :: one of
0 1 2 3

UnicodeEscapeSequence ::
\u HexDigit HexDigit HexDigit HexDigit

 The definitions of the nonterminals HexDigit and OctalDigit are given in section 3.7.3 .

Issue: Give a complete account of the interpretation of escape sequences.

The following table describes the set of character escape characters:

 A string literal stands for a value of the String type. The string value (SV) of the literal is described in
 terms of character values (CV) contributed by the various parts of the string literal. As part of this process,
 some characters within the string literal are interpeted as having a mathematical value (MV), as described
 below or in section 3.7.3

 14 87

 For any production A :: B whose right-hand side is a single nonterminal, the SV of A is the SV of B .

• The SV of StringLiteral : : ” ” is the empty character sequence .

• The SV of StringLiteral : : ’ ’ is the empty character sequence.

• The SV of StringLiteral : : ” DoubleStringCharacters ” is the SV of DoubleStringCharacters .

• The SV of StringLiteral : : ’ SingleStringCharacte rs ’ is the SV of SingleStringCharacters .

• The SV of DoubleStringCharacters : : DoubleStringCharacter is a sequence of one character, the CV of
 DoubleStringCharacter .

• The SV of DoubleStringCharacters : : DoubleStringCharacter DoubleStringCharacte rs is a sequence of
 the CV of DoubleStringCharacter followed by all the characters in the SV of DoubleStringCharacte rs in
 order.

• The SV of Single StringCharacters : : Single StringCharacter is a sequence of one character, the CV of
 Single StringCharacter .

• The SV of Single StringCharacters : : Single StringCharacter Single StringCharacte rs is a sequence of the
 CV of Single StringCharacter followed by all the characters in the SV of Single StringCharacte rs in
 order.

• The CV of DoubleStringCharacter : : SourceCharacter but not double-quote “ or backslash \ or
 LineTerminator is the SourceCharacter character itself.

• The CV of SingleStringCharacter : : SourceCharacter but not double-quote “ or backslash \ or
 LineTerminator is the SourceCharacter character itself.

• The CV of CharacterEscape Sequence : : \ SingleEscapeCharacter is the Unicode character whose
 Unicode value is determined by the SingleEscapeCharacter according to the following table:

Escape Sequence Unicode Value Name Symbol For
mal Name

\ b \u0008 backspace <BS>

\ t \u0009 horizontal tab <HT>

\ n \ u000A line feed (new line) <LF>

\ f \ u00 0 C form feed <FF>

\ r \ u000D carriage return <CR>

\” \u0022 double quote “

\ ’ \u0027 single quote ‘

\ \ \u005C backslash \

• The CV of CharacterEscapeSequence : : \ NonEscapeCharacter is the CV of t he NonEscapeCharacter .

• The CV of NonEscapeCharacter : : SourceCharacter but not SingleEscapeCharacter or OctalDigit or
 x or u or LineTerminator is the SourceCharacter character itself.

• The CV of HexEscapeSequence : : \ x HexDigit HexDigit is the Unicode character whose code is (16
 times the MV of the first HexDigit) plus the MV of the second HexDigit .

• The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code is the MV of the
 OctalDigit .

• The CV of OctalEscapeSequence : : \ OctalDigit Oct alDigit is the Unicode character whose code is (8
 times the MV of the first OctalDigit) plus the MV of the second OctalDigit .

• The CV of OctalEscapeSequence : : \ ZeroToThree OctalDigit OctalDigit is the Unicode character
 whose code is (64 (that is, 8 2) times the MV of the ZeroToThree) plus (8 times the MV of the first
 OctalDigit) plus the MV of the second OctalDigit .

• The MV of ZeroToThree : : 0 is positive zero.

• The MV of ZeroToThree : : 1 is 1.

 15 87

• The MV of ZeroToThree : : 2 is 2.

• The MV of ZeroToThree : : 3 is 3.

• Th e CV of UnicodeEscapeSequence : : \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
 character whose code is (4096 (that is, 16 3) times the MV of the first HexDigit) plus (256 (that is, 16 2)
 times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of
 the fourth HexDigit .

 Note that a LineTerminator character cannot appear in a string literal, even if preceded by a backslash \ .
 The correct way to cause a line terminator character to be part of the string value of a strin g literal is to use
 an escape sequence such as \ n or \u000A .

3.8 AUTOMATIC SEMICOLON INSERTION

Description

Certain ECMAScript statements (empty statement, variable statement, expression statement, continue
statement, break statement, and return statement) must each be terminated with a semicolon. Such a
semicolon may always appear explicitly in the source text. For convenience, however, such semicolons
may be omitted from the source text in certain situations. We describe such situations by saying that
semicolons are automatically inserted into the source code token stream in those situations:

• When, as the program is parsed from left to right, a token (called the offending token) is encountered
that is not allowed by any production of the grammar and the parser is not currently parsing the header
of a for statement, then a semicolon is automatically inserted before the offending token if one or
more of the following conditions is true:

1. The offending token is separated from the previous token by at least one LineTerminator.

2. The offending token is EndOfSource.

3. The offending token is }.

 However, there is an additional overriding condition: a semicolon is never inserted automatically if the
semicolon would then be parsed as an empty statement.

• When, as the program is parsed from left to right, a token (called the restricted token) is encountered
that is allowed by some production of the grammar, but the production is a restricted production and the
restricted token is separated from the previous token by at least one LineTerminator, then there are two
cases:

4. If the parser is not currently parsing the header of a for statement, a semicolon is automatically
inserted before the restricted token.

5. If the parser is currently parsing the header of a for statement, it is a syntax error.

 These are all the restricted productions in the grammar:

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

MemberExpression :
MemberExpression [no LineTerminator here] IncrementOperator

CallExpression :
MemberExpression [no LineTerminator here] Arguments
NewCallExpression [no LineTerminator here] Arguments
CallExpression [no LineTerminator here] Arguments

 The practical effect of these restricted productions is as follows:

1. When the token return is encountered and a LineTerminator is encountered before the next
token is encountered, a semicolon is automatically inserted after the token return.

 16 87

2. When the token ++ or -- is encountered where the parser would treat it as a postfix operator, and
at least one LineTerminator occurred between the preceding token and the ++ or -- token, then a
semicolon is automatically inserted before the ++ or -- token.

3. When the token (is encountered where the parser would treat it as the first token of a
parenthesized Arguments list, and at least one LineTerminator occurred between the preceding
token and the (token, then a semicolon is automatically inserted before the (token.

 The resulting practical advice to ECMAScript programmers is:

4. An Expression in a return statement should start on the same line as the return token.

5. A postfix ++ or -- operator should appear on the same line as its operand.

6. The (that starts an argument list should be on the same line as the expression that indicates the
function to be called.

For example, the source

{ 1 2 } 3<EOS>

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{ 1
2 } 3<EOS>

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{ 1
;2 ;} 3;<EOS>

which is a valid ECMAScript sentence.

The source

for (a; b
)<EOS>

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the place
where a semicolon is needed is within the header of a for statement. Automatic semicolon insertion never
occurs within the header of a for statement.

The source

return
a + b<EOS>

is transformed by automatic semicolon insertion into the following:

return;
a + b;<EOS>

Note that the expression a + b is not treated as a value to be returned by the return statement,
because a LineTerminator separates it from the token return.

The source

a = b
++c<EOS>

is transformed by automatic semicolon insertion into the following:

a = b;
++c;<EOS>

Note that the token ++ is not treated as a postfix operator applying to the variable b, because a
LineTerminator occurs between b and ++.

The source

if (a > b)
else c = d<EOS>

 17 87

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else
token, even though no production of the grammar applies at that point, because an automatically inserted
semicolon would then be parsed as an empty statement.

 18 87

4 TYPES

A value is an entity that takes on one of seven types. There are six standard types and one internal type
called Reference. Values of type Reference are only used as intermediate results of expression
evaluation and cannot be stored to properties of objects.

4.1 THE UNDEFINED TYPE

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a
value is of type undefined

4.2 THE NULL TYPE

The Null type has exactly one value, called null.

4.3 THE BOOLEAN TYPE

The Boolean type represents a logical entity and consists of exactly two unique values. One is called true
and the other is called false.

4.4 THE NUMBER TYPE

The Number type has exactly 18437736874454810627 (that is, 264−253+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point
Arithmetic, except that the 9007199254740990 (that is, 253−2) distinct NaN values of the IEEE Standard
are represented in ECMAScript as single special NaN value.

There are two other special values, called Positive Infinity and Negative Infinity. The other
18437736874454810624 (that is, 264−253) values are called the finite numbers. Half of these are positive
numbers and half are negative numbers; for every finite positive number there is a corresponding negative
number having the same magnitude.

Note that there is both a positive zero and a negative zero.

The 18437736874454810622 (that is, 264−253−2) finite nonzero values are of two kinds:

18428729675200069632 (that is, 264−254) of them are normalized, having the form

s ⋅ m ⋅ 2e

where s is +1 or −1, m is a positive integer less than 253 but not less than 252, and e is an integer ranging
 from between −107 4 3 to 971, inclusive.

The remaining 9007199254740990 (that is, 253−2) values are denormalized, having the form

s ⋅ m ⋅ 2e

where s is +1 or −1, m is a positive integer less than 2523, and e is −1074.

Note that all the positive and negative integers whose magnitude is no greater than 253 are representable in
the Number type (indeed, the integer 0 has two representations, +0 and -0).

 We say that a finite number has an odd significand if it is nonzero and the integer m used to express it (in
 one of the two forms shown above) is odd. Otherwise we say that it has an even significand .

 19 87

 In this specification, the phrase “the number value for x ” where x represents an exact nonzero real
 mathemati cal quantity (which might even be an irrational number such as π) means a number value chosen
 in the following manner. Consider the set of all finite values of the Number type, with two additional
 values added to it that are not representable in the Number type, namely 2 1024 (which is +1 ⋅ 2 53 ⋅ 2 971) and −
 2 1024 (which is − 1 ⋅ 2 53 ⋅ 2 971) . Choose the member of this set that is closest in value to x . If two values of
 the set are equally close , then the one with an even significand is chosen; for this purpose , the two extra
 values 2 1024 and − 2 1024 are considered to have even significands. Finally, if 2 1024 was chosen, replace it with
 positive infinity; if − 2 1024 was chosen, replace it with negative infinity; any other chosen value is used
 unchanged. The result is the number value for x . (This procedure corresponds exactly to the behavior of the
 IEEE 754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range −231 through 231−1, inclusive, or in the
range 0 through 232-1, inclusive. These operators accept any value of the Number type but first converts
each such value to one of 232 integer values. See the descriptions of the ToInt32 and ToUint32 operators in
sections 5.5 and ToUint32: (unsigned 32 bit integer) ToUint32: (unsigned 32 bit integer) respectively.

4.5 .THE OBJECT TYPE

An Object is an unordered collection of properties. Each property consists of a name, a value and a set of
attributes.

4.5.1 Property Attributes

A property can have zero or more attributes from the following set:

Attribute Descption

ReadOnly The property is a read-only property. Attempts to write to the property will be
ignored.

ErrorOnWrite This attribute has precedence over the ReadOnly attribute. Attempts to write to
the property will result in a runtime error and the property will not be changed.

DontEnum The property is not included in the for-in enumeration. See the description of the
for-in statement in section The for..in Statement The for..in Statement

DontDelete Attempts to delete the property will be ignored. See the description of the
delete operator in section The delete Operator The delete Operator.

Internal Internal properties have no name and are not directly accessible via the property
accessor operators. How these properties are accessed is implementation specific.
How and when some of these properties are used is specified by the language
specification.

4.5.2 Property Access

Internal properties and methods are not exposed in the language. For the purposes of this document, we
give them names enclosed in double square brackets[[]]. When an algorithm uses an internal property of an
object and the object does not implement the indicated internal property, a runtime error is generated.

There are two types of access for exposed properties: get and put, corresponding to retrieval and assignment.

Native ECMAScript objects have an internal property called [[Prototype]]. The value of this property is
either null or an object and is used for implementing inheritance. Properties of the [[Prototype]] object
are exposed as properties of the child object for the purposes of get access, but not for put access.

The following table summarizes the internal properties related to property access:

Property Parameters Description

[[Get]] (PropertyName) Returns the value of the property.

 20 87

[[Put]] (PropertyName, Value) Sets the property to value.

[[Prototype]] None Returns the parent object.

[[HasProperty]] (PropertyName) Returns a boolean value indicating whether the object
already has a member with the given name.

[[Construct]] Optional user provided
parameters

(Constructor) Constructs an object. Invoked via the
new operator.

[[Call]] Optional user provided
parameters

(Function) Executes the object..

Assume O is an ECMAScript object and P is a string.

4.5.3 HasProperty

When the [[HasProperty]] method of O is called with property name P, the following steps are taken:
1. If O has a property with name P, return true.
2. If the [[Prototype]] of O is null, return false.
3. Call the [[HasProperty]] method of [[Prototype]] with property name P.
4. Return Result(3).

4.5.4 Get

When the [[Get]] method of O is called with property name P, the following steps are taken:
1. If O doesn’t have a property with name P, go to step 4.
2. Get the value of the property.
3. Return Result(2).
4. If the [[Prototype]] of O is null, return undefined.
5. Call the [[Get]] method of [[Prototype]] with property name P.
6. Return Result(5).

4.5.5 Put

To aid in defining the [[Put]] method, the [[CanPut]] method is first defined. As [[CanPut]] method is only
used here (by the [[Put] method with explicit access mode), it is not included in the table in 4.5.2.

When the [[CanPut]] method of O is called with property P, the following steps are taken:
1. If O doesn’t have a property with name P, go to step 4.
2. If the property has the ErrorOnWrite attribute, generate a runtime error.
3. If the property has the ReadOnly attribute, return false.
4. If the [[Prototype]] of O is null, return true.
5. Call the [[CanPut]] method of [[Prototype]] of O with property Name P.
6. Return Result(5).

When the [[Put]] method of O is called with property P and value V, the following steps are taken:
1. Call the [[CanPut]] method of O with name P.
2. If Result(1) is false, return.
3. If O doesn’t have a property with name P, go to step 6.
4. Set the value of the property to V.
5. Return.
6. Create a property with name P, set its value to V and give it empty attributes.
7. Return.

 21 87

4.6 THE STRING TYPE

The String type consists of the set of all finite sequences of zero or more Unicode characters.

Note: The concatenation operator (+), relational operators (<, >, <=, >=) and equality operators (==,
!=) apply to this type.

4.7 THE INTERNAL REFERENCE TYPE

The Internal Reference Type is not a language data type. Is it only defined here for the
purposes of aiding this specification.

A Reference is a reference to an object’s property. A Reference consists of two parts, the base object
and the property name.

In defining the semantics of ECMAScript, the following methods are defined for internal operations:

• GetBase(). Returns the base object component.

• GetPropertyName(). Returns the propertyName component.

• GetValue(). Returns the value of the indicated property.

• PutValue(). Sets the indicated property to the indicated value.

Values of type Reference are only used as intermediate results of expression evaluation and cannot be
stored to properties of objects.

4.7.1 GetBase

1. If Type(V) is a Reference, return the base object component of V.
2. Generate a runtime error.

4.7.2 GetPropertyName

1. If Type(V) is a Reference, return the propertyName component of V.
2. Generate a runtime error.

4.7.3 GetValue

1. If Type(V) is not a Reference, return V.
2. Call GetBase(V).
3. If Result(2) is null, generate a runtime error.
4. Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.
5. Return Result(4).

4.7.4 PutValue

For values V and W, PutValue(V, W) performs:
1. If type (V) is not a Reference, generate a runtime error.
2. Call GetBase(V).
3. If Result(2) is null, go to step 6.
4. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W for the

value.
5. Return.
6. Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property name and

W for the value.
7. Return.

 22 87

5 TYPE CONVERSION

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics
of certain constructs it is useful to define a set of conversion operators. These operators are not a part of the
language; they are defined here to aid the specification of the semantics of the language. The conversion
operators are polymorphic; that is, they can accept a value of any standard type, but not of type Reference.

5.1 TOPRIMITIVE

The operator ToPrimitive takes a Value argument and an optional PreferredType argument. The operator
ToPrimitive attempts to convert its value argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredType to favor that type.
Conversion occurs according to the following table:

Input Type Result

Undefined Return the input argument (no conversion)

Null Return the input argument (no conversion)

Boolean Return the input argument (no conversion)

Number Return the input argument (no conversion)

String Return the input argument (no conversion)

Object Return the default value of the Object. The default value of an object is retrieved
by calling the interal [[DefaultValue]] method of the object passing an optional
hint preferredType. The behavior of the [[DefaultValue]] method is defined by this
specification for all native ECMAScript objects. If the return value is of type
Object or Reference, a runtime error is generated.

5.2 TOBOOLEAN

The operator ToBoolean attempts to convert its argument to a value of type Boolean according to the
following table:

Input Type Result

Undefined false

Null false

Boolean Return the input argument (no conversion)

Number 0 ‡ false

NaN ‡ false

≠ 0 and ≠ NaN ‡ true

 23 87

String = "" ‡ false (where "" denotes an empty string)

≠ "" ‡ true

Object true

5.3 TONUMBER

The operator ToNumber attempts to convert its argument to a value of type Number according to the
following table:

Input Type Result

Undefined NaN

Null NaN

Boolean true ‡ 1

false ‡ 0

Number Return the input argument (no conversion)

String See grammer and discussion below.

Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

5.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot
interpret the string then the result of ToNumber is NaN.

StringNumericLiteral :::
StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
<TAB>
<SP>
<FF>
<VT>
<CR>
<LF>

StrNumericLiteral :::
StrIntegerLiteral
StrFloatingPointLiteral

StrIntegerLiteral :::
Signopt Digitsopt

HexIntegerLiteral

 24 87

HexIntegerLiteral :::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

StrFloatingPointLiteral :::
Signopt Digits . Digitsopt ExponentPartopt

Signopt. Digits ExponentPartopt

Signopt Digits ExponentPart

ExponentPart :::
ExponentIndicator SignedInteger

ExponentIndicator ::: one of
e E

SignedInteger :::
Signopt Digits

Sign ::: one of
+ -

5.4 TOINTEGER

The operator ToInteger attempts to convert its argument to an integral numeric value. This operator
functions as follows:
1. Call ToNumber on the input argument.
2. If Result(1) is NaN, return 0 (positive zero).
3. If Result(1) is ±Infinity, return Result(1).
4. Compute sign(Result(1)) * floor(abs(Result(1))).
5. Return Result(4).

5.5 TOINT32: (SIGNED 32 BIT INTEGER)

The operator ToInt32 converts its argument to one of 232 integer values in the range -231 through 231-1,
inclusive. This operator functions as follows:
1. Call ToNumber on the input argument.
2. If Result(1) is NaN, Positive Infinity, or Negative Infinity, return 0 (positive zero).
3. Compute sign(Result(1)) * floor(abs(Result(1))).
4. If Result(3) is positive zero or negative zero, return 0 (positive zero).
5. Compute Result(3) modulo 232; that is, a finite value k of Number type with positive sign and less

 than 2 32 in magnitude such the mathematical difference of Result(3) and k is mathematically exactly
 divisible by 2 32if Result(3) is negative, compute the value of the expression 232 - ((1-Result(3)) % 232)
- 1; otherwise compute Result(3) % 232.

6. If Result(5) is greater than or equal to 231, return Result(5)-232; otherwise return Result(5 4).

Discussion:

Note that the ToInt32 operation is idempotent: if applied to a result that it produced, the second application
leaves that value unchanged.

 25 87

Note also that ToInt32(ToUint32(x)) is equal to ToInt32(x) for all values of x.

(It is to preserve this latter property that Positive Infinity and Negative Infinity are mapped to zero.)

5.6 TOUINT32: (UNSIGNED 32 BIT INTEGER)
1. The operator ToUint32 converts its argument to one of 232 integer values in the range 0 through 232-1,

inclusive. This operator functions as follows:Call ToNumber on the input argument.
2. If Result(1) is NaN, Positive Infinity, or Negative Infinity, return 0 (positive zero).
3. Compute sign(Result(1)) * floor(abs(Result(1))).
4. If Result(3) is positive zero or negative zero, return 0 (positive zero).
5. Compute Result(3) modulo 232; that is, a finite value k of Number type with positive sign and less

 than 2 32 in magnitude such the mathematical difference of Result(3) and k is mathematically exactly
 divisible by 2 32if Result(3) is negative, compute the value of the expression 232 - ((1-Result(3)) % 232) -
1; otherwise compute Result(3) % 232.

6. Return Result(5).

Discussion:

Note: Step 6 is the only difference between ToUint32 and ToInt32.

Note that the ToUint32 operation is idempotent: if applied to a result that it produced, the second
application leaves that value unchanged.

Note also that ToUint32(ToInt32(x)) is equal to ToUint32(x) for all values of x.

(It is to preserve this latter property that Positive Infinity and Negative Infinity are mapped to zero.)

5.7 TOSTRING

The operator ToString attempts to convert its argument to a value of type String according to the following
table:

Input Type Result

Undefined "undefined"

Null "null"

Boolean true ‡ "true"

false ‡ "false"

Number See discussion below.

String Return the input argument (no conversion)

Object Apply the following steps:
1. Call ToPrimitive(input argument, hint String).
2. Call ToString(Result(1)).
3. Return Result(2).

5.7.1 ToString Applied to the Number Type

The operator ToString converts a number to string format as follows:

• If the argument is NaN, the result is the string "NaN".

• If the argume nt is positive zero or negative zero, the result is "0" .

 26 87

• Otherwise, the result is a string that represents the sign and magnitude (absolute value) of the
argument. If the sign is negative, the first character of the result is ‘-’; if the sign is positive, no sign
character appears in the result. As for the magnitude m:

• If m is infinity, it is represented by the characters “Infinity”; thus, positive infinity produces
the result "Infinity" and negative infinity produces the result"-Infinity".

• If m is zero, it is represented by the character ‘0 ’; thus, negative zero produces the result "-0"
and positive zero produces the result "0".

• If m is an integer less than 102116, then it is represented as that integer value in decimal form with

no leading zeroes and no decimal point.

• If m is greater than or equal to 10−63 but less than 1021 16, and is not an exact integer value, then it

is represented as the integer part (floor) of m, in decimal form with no leading zeroes, followed by
a decimal point ‘.’, followed by one or more decimal digits (see below) representing the fractional
part of m.

• If m is less than 10−63 or not less than 1021 16, then it is represented in so-called "computerized

scientific notation." Let n be the unique integer such that 10n ≤ m < 10n+1; then let a be the
mathematically exact quotient of m and 10n so that 1 ≤ a < 10. The magnitude is then represented
as the integer part (floor) of a, as a single decimal digit, followed by a decimal point ‘.’, followed
by one or more decimal digits (see below) representing the fractional part of a, followed by the
letter ‘E’, followed by a representation of n as a decimal integer (first a minus sign ‘-’ if n is
negative or nothing of n is not negative, followed by the decimal representation of the magnitude
of n with no leading zeros).

How many digits must be printed for the fractional part of m or a? There must be at least one digit; beyond
that, there must be as many, but only as many, more digits as are needed to uniquely distinguish the
argument value from all other representable numeric values. That is, suppose that x is the exact
mathematical value represented by the decimal representation produced by this method for a finite nonzero
argument ; then d must be the value of number type nearest to x; or if two values of the N number type are
equally close to x, then d must be one of them and the least significant bit of d must be 0. A consequence
of this specification is that ToString never produces trailing zero digits for a fractional part.

Implementors of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-
decimal conversion of floating-point numbers [Gay 1990].

5.8 TOOBJECT

The operator ToObject attempts to convert its argument to a value of type Object according to the
following table:

Input Type Result

Undefined generate a runtime error

Null generate a runtime error

Boolean Create a new Boolean object whose default value is the value of the boolean. See
the Native ECMAScript Objects Native ECMAScript Objects section for a
description of the Boolean object.

Number Create a new Number object whose default value is the value of the number. See
the Native ECMAScript Objects Native ECMAScript Objects section for a
description of the Number object.

String Create a new String object whose default value is the value of the string. See the
 Native ECMAScript Objects Native ECMAScript Objects section for a description
of the String object.

Object Return the input argument (no conversion)

 27 87

6 EXECUTION CONTEXTS

When control is transferred to ECMAScript executable code, we say that control is entering an execution
context. Active execution contexts logically form a stack. The top execution context on this logical stack is
the running execution context.

6.1 D EFINITIONS

6.1.1 Function Objects

There are four types of function objects:

• Declared functions are defined in source text by a FunctionDeclaration.

• Anonymous functions are created dynamically by using the built-in Function Object as a
constructor which we refer to as instantiating Function.

• Host functions are created at the request of the host with source text supplied by the host. The
mechanism for their creation is implementation dependent. Host functions may have any subset of the
following attributes { ImplicitThis, ImplicitParents }. These attributes are described below.

• Internal functions are built-in objects of the language, such as parseInt and Math.exp. These
functions do not contain executable code defined by the ECMAScript grammar, so are excluded from
this discussion of execution contexts.

6.1.2 Types of Executable Code

There are five types of executable ECMAScript source text:

• Global code is source text that is outside all function declarations. More precisely, the global code of a
particular ECMAScript Program consists of all SourceElements in the Program production which
come from the Statement definition.

• Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter
to the built-in eval function is a string, it is treated as an ECMAScript Program. The eval code for a
particular invocation of eval is the global code portion of the string parameter.

• Function code is source text that is inside a function declaration. More precisely, the function code of a
particular ECMAScript FunctionDeclaration consists of the Block in the definition of
FunctionDeclaration.

• Anonymous code is the source text supplied when instantiating Function. More precisely, the last
parameter provided in an instantiation of Function is converted to a string and treated as the
StatementList of the Block of a FunctionDeclaration. If more than one parameter is provided in an
instantiation of Function, all parameters except the last one are converted to strings and
concatenated together, separated by commas. The resulting string is interpreted as the
FormalParameterList of a FunctionDeclaration for the StatementList defined by the last parameter.

• Host code is the source text supplied by the host when creating a host function. The source text is
treated as the StatementList of the Block of a FunctionDeclaration. Depending on the implementation,
the host may also supply a FormalParameterList.

 28 87

6.1.3 Variable Instantiation

Every execution context has associated with it a variable object. Variables declared in the source text are

added as properties of the variable object. For global and eval code, functions defined in the source text are
added as properties of the variable object. Function declarations in other types of code are not allowed by the
grammar. For function, anonymous and host code, parameters are added as properties of the variable object.

Which object is used as the variable object and what attributes are used for the properties depends on the

type of code, but the remainder of the behavior is generic:

• For each FunctionDeclaration in the code, in source text order, instantiate a declared function from the
FunctionDeclaration and create a property of the variable object whose name is the Identifier in the
FunctionDeclaration, whose value is the declared function and whose attributes are determined by the
type of code. If the variable object already has a property with this name, replace its value and
attributes.

• For each formal parameter, as defined in the FormalParameterList, create a property of the variable
object whose name is the Identifier and whose attributes are determined by the type of code. The values
of the parameters are supplied by the caller. If the caller supplies fewer parameter values than there are
formal parameters, the extra formal parameters have value undefined. If two or more formal
parameters share the same name, hence the same property, the corresponding property is given the
value that was supplied for the last parameter with this name. if the value of this last parameter was
not supplied by the caller, the value of the corresponding property is undefined.

• For each VariableDeclaration in the code, create a property of the variable object whose name is the
Identifier in VariableDeclaration, whose value is undefined and whose attributes are determined
by the type of code. If there is already a property of the variable object with the name of a declared -
variable, the value of the property and its attributes are not changed. Semantically, this step must
follow the creation of the FunctionDeclaration and FormalParameterlist properties. In particular, if a
declared variable has the same name as a declared function or formal parameter, the variable declaration
does not disturb the existing property.

6.1.4 Scope Chain and Identifier Resolution

Every execution context has associated with it its own a scope chain. This is logically a list of objects that
are searched when binding an Identifier. When control enters an execution context, the scope chain is created
and is populated with an initial set of objects, depending on the type of code. When control leaves the
execution context, the scope chain is destroyed.

During execution, the scope chain of the execution context is affected only by WithStatement. When
execution enters a with block, the object specified in the with statement is added to the front of the
scope chain. When execution leaves a with block, whether normally or via a break or continue
statement, the object is removed from the scope chain. The object being removed will always be the first
object in the scope chain.

During execution, the syntactic production PrimaryExpression : Identifier is evaluated using the following
algorithm:

1. Get the next object in the scope chain. If there isn't one, go to step 5.

2. Call the [[HasProperty]] method of Result(l), passing the Identifier as the property.

3. If Result(2) is true, return a value of type Reference whose base object is Result(l), property name
is the identifier.

4. Go to step 1.

5. Return a value of type Reference whose base object is null and whose property name is Identifier.

The result of binding an identifier is always a value of type Reference with its member name component
equal to the identifier string.

 29 87

6.1.5 Global Object

There is a unique global object which is created before control enters any execution context. Initially the
global object has the following properties:

• Built-in objects such as Math, String, Date, parseInt, etc. These have attributes { DontEnum }.

• Additional host defined properties. This may include a property whose value is the global object itself,
for example window in HTML.

As control enters execution contexts, and as ECMAScript code is executed, additional properties may be
added to the global object and the initial properties may be changed.

6.1.6 Activation Object

When control enters an execution context for function code, anonymous code or host code, an object called
the activation object is created and associated with the execution context. The activation object is initialized
with a single property with name arguments and property attributes { DontDelete }. The initial value
of this property is the arguments object described below. The activation object is then used as the variable
object for the purposes of variable instantiation.

The activation object is purely a specification mechanism. It is impossible for an ECMAScript program to
access the activation object. It can access members of the activation object, but not the activation object
itself. When the call operation is applied to a Reference value whose base object is an activation object,
null is used as the this value of the call.

6.1.7 LabelStacks

The definitions of the control flow statements use two 1ogical stacks, the break label stack and the continue
label slack. These are to facilitate the semantic definition of these statements and are not intended to imply a
particular implementation. Each execution context has its own label stacks, which are created and initialized
to empty when control enters the execution context When control leaves the execution context, the label
stacks are destroyed.

6.1.8 This

There is a this value associated with every active execution context. The this value depends on the
caller and the type of code being executed and is determined when control enters the execution context. The
this value associated with an execution context is immutable.

6.1.9 Arguments Object

When control enters an execution context for function, anonymous or host code, an arguments object is
created and initialized as follows:

〈 A property is created with name callee and property attributes { DontEnum }. The initial value of
this property is the function object being executed. This allows anonymous functions to be recursive.

〈 A property is created with name length and property attributes { DontEnum }. The initial value of
this property is the number of actual parameter values supplied by the caller.

〈 For each non-negative integer, iarg, less than the value of the length property, a property is created
with name ToString(iarg) and property attributes { DontEnum }. The initial value of this property is
the value of the corresponding actual parameter supplied by the caller. The first actual parameter value
corresponds to iarg = 0, the second to iarg = 1 and so on. In the case when iarg is less than the number
of formal parameters for the function object, this property shares its value with the corresponding
property of the activation object. This means that changing this property changes the corresponding
property of the activation object and vice versa. The value sharing mechanism depends on the
implementation.

Issue: Should the arguments object have a caller property?

 30 87

6.2 ENTERING AN EXECUTION CONTEXT

When control enters an execution context, the scope chain is created and initialized, variable instantiation is
performed, the break label and continue label stacks are created and initialized to empty, and the this
value is determined.

The initialization of the scope chain, variable instantiation, and the determination of the this value
depend on the type of code being entered.

6.2.1 Global Code

• The scope chain is created and initialized to contain the global object and no others.

• Variable instantiation is performed using the global object as the variable object and using empty
property attributes.

• The this value is the global object.

6.2.2 EvalCode

When control enters an execution context for eval code, the previous active execution context, referred to as
the calling context, is used to determine the scope chain, the variable object, and the this value. If there
is no calling context, theninitializing the scope chain, variable instantiation, and determination of the
this value are performed just as for global code.

• The scope chain is initialized to contain the same objects, in the same order, as the calling context's
scope chain. This includes objects added to the calling context's scope chain by WithStatement.

• Variable instantiation is performed using the calling context's variable object and using empty property
attributes.

• The this value is the same as the this value of the calling context.

6.2.3 Function and Anonymous Code

• The scope chain is initialized to contain the activation object followed by the global object.

• Variable instantiation is performed using the activation object as the variable object and using property
attributes { , DontDelete }.

• The caller provides the this value. If the this value provided by the caller is not an object
(including the case where it is null), then the this value is the global object.

6.2.4 Host Code

• The scope chain is initialized to contain the activation object as its first element.

• If the host function has the ImplicitThis attribute, the this value is placed in the scope chain after the
activation object.

• If the host function has the ImplicitParents attribute, a list of objects determined solely by the this
value, is inserted in the scope chain after the activation object and this object. Note that this list is
determined at runtime by the this value. It is not determined by any form of lexical scoping.

• The global object is placed in the scope chain after all other objects.

• Variable instantiation is performed using the activation object as the variable object and using
attributes { DontEnum, DontDelete}

• The this value is determined just as for function and anonymous code.

 31 87

7 EXPRESSIONS

7.1 PRIMARY EXPRESSIONS

Syntax

PrimaryExpression :
this
Identifier
Literal
(Expression)

7.1.1 The this Keyword

The this keyword evaluates to the this value of the execution context.

7.1.2 Identifier Reference

An Identifier is evaluated using the scoping rules stated in section Scope Chain and Identifier
 Resolution Scope Chain and Identifier Resolution.The result of an Identifier is always a value of type
Reference.

7.1.3 Literal Reference

A Literal is evaluated as described in section Literals Literals.

7.1.4 The Grouping Operator

The production PrimaryExpression : (Expression) is evaluated as follows:
1. Evaluate Expression. This may be of type Reference.
2. Return Result(1).

7.2 POSTFIX EXPRESSIONS

Syntax

MemberExpression :
PrimaryExpression
MemberExpression [Expression]
MemberExpression . Identifier
MemberExpression [no LineTerminator here] IncrementOperator
 new MemberExpression [no LineTerminator here] Arguments

IncrementOperator :
+ +
- -

 32 87

NewExpression :
 MemberExpression
new New MemberExpression

NewCallExpression :
new MemberExpression Arguments

CallExpression :
MemberExpression [no LineTerminator here] Arguments
 NewCallExpression [no LineTerminator here] Arguments
CallExpression [no LineTerminator here] Arguments
CallExpression [Expression]
CallExpression . Identifier
CallExpression [no LineTerminator here] IncrementOperator

Arguments :
()
(ArgumentList)

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

PostfixExpression :
 New MemberExpression
CallExpression
NewExpression

The postfix increment operators and property accessor operators [] and . appear in both the
MemberExpression and CallExpression productions. Generally we will refer to the productions involving
MemberExpression with the understanding that the same remarks apply to CallExpression. Similarly, the
CallExpression production includes three definitions involving the Arguments non-terminal. We will refer
to the definition involving CallExpression.

7.2.1 Property Accessors

Properties are accessed by name, using either the dot notation MemberExpression . Identifier or the bracket
notation MemberExpression [Expression].

The dot notation is transformed using the following syntactic conversion:

MemberExpression . Identifier

is exactly equivalent to:

MemberExpression [<identifier-string>]

where <identifier-string> is a string literal containing the same sequence of characters as the identifier.

The production MemberExpression : MemberExpression [Expression] is evaluated as follows:
1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. Evaluate Expression.
4. Call GetValue(Result(3)).
5. Call ToObject(Result(2)).
6. Call ToString(Result(4)).
7. Return a value of type Reference whose base object is Result(5), member name is Result(6) and access

mode is explicit.

 33 87

7.2.2 Postfix Increment and Decrement Operators

The production MemberExpression : MemberExpression IncrementOperator is evaluated as follows:
1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. For ++, Result(4) is Result(3) increased by one. For --, Result(4) is Result(3) decreased by one. In

either case, if Result(3) is NaN or ±Infinity, Result(4) is the same as Result(3).
5. Call PutValue(Result(1), Result(4)).
6. Return Result(32).

7.2.3 The new Operator

The production NewExpression : new MemberExpression is evaluated as follows:
1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. If Type(Result(2)) is not Object, generate a runtime error.
4. If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
5. Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of

arguments).
6. If Type(Result(5)) is not Object, generate a runtime error.
7. Return Result(5).

The production NewCallExpression : new MemberExpression Arguments is evaluated as follows:
1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. For each AssignmentExpression in ArgumentList, in left to right order, evaluate

AssignmentExpression and call GetValue on the result. Keep all of these values in an internal list.
4. If Type(Result(2)) is not Object, generate a runtime error.
5. If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
6. Call the [[Construct]] method on Result(2), providing the list generated in step 3 as the parameters.
7. If Type(Result(6)) is not Object, generate a runtime error.
8. Return Result(6).

7.2.4 Function Calls

The production CallExpression : CallExpression Arguments is evaluated as follows:
1. Evaluate CallExpression.
2. For each AssignmentExpression in ArgumentList, in left to right order, evaluate

AssignmentExpression and call GetValue on the result. Keep all of these values in an internal list.
3. Call GetValue(Result(1)).
4. If Type(Result(3)) is not Object, generate a runtime error.
5. If Result(3) does not implement the internal [[Call]] method, generate a runtime error.
6. If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Result(6) is null.
7. If Result(6) is an activation object, Result(7) is null. Otherwise, Result(7) is the same as Result(6).
8. Call the [[Call]] method on Result(3), providing Result(7) as the this value and providing the list

generated in step 2 as the parameters.
9. Return Result(8).

Note: Result(8) will never be of type Reference for native ECMAScript objects. Whether an external
object can return a value of type Reference is implementation dependent.

 34 87

7.3 UNARY OPERATORS

Syntax

UnaryExpression :
PostfixExpression

delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
IncrementOperator UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression

! UnaryExpression

7.3.1 The delete Operator

The production UnaryExpression : delete UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetBase(Result(1)).
3. Call GetPropertyName(Result(1)).
4. If Type(Result(2)) is not Object, return true.
5. If Result(2) does not implement the internal [[Delete]] method, go to step 8.
6. Call the [[Delete]] method on Result(2), providing Result(3) as the property name to delete.
7. Return Result(6 7).

8. Call the [[HasProperty]] method on Result(2)), providing Result(3) as the property name to check for.
9. If Result(8) is true, return false.
10. Return true.

7.3.2 The void Operator

The production UnaryExpression : void UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Return undefined.

7.3.3 The typeof Operator

The production UnaryExpression : typeof UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. If Type(Result(1)) is Reference and GetBase(Result(1)) is null, return "undefined".
3. Call GetValue(Result(1)).
4. Return a string determined by Type(Result(3)) according to the following table:

1. Type 1. Result

2. Undefined 2. "undefined"

3. Null 3. "object"

4. Boolean 4. "boolean"

5. Number 5. "number"

6. String 6. "string"

7. Object (native and
doesn’t implement

7. "object"

 35 87

[[Call]])

8. Object (native and
implements
[[Call]])

8. "function"

9. Object (external) 9. unspecified

Issue: What does typeof return for external objects?

7.3.4 Prefix Increment and Decrement Operators

The production UnaryExpression : IncrementOperator UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. For ++, Result(4) is Result(3) increased by one. For --, Result(4) is Result(3) decreased by one. In

either case, if Result(3) is NaN or ±Infinity, Result(4) is the same as Result(3).
5. Call PutValue(Result(1), Result(4)).
6. Return Result(4).

7.3.5 Unary + and - Operators

The production UnaryExpression : + UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. Return Result(3).

The production UnaryExpression : - UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. If Result(3) is NaN, return NaN.
5. Negate Result(3).
6. Return Result(5).

7.3.6 The Bitwise NOT Operator (~)

The production UnaryExpression : ~ UnaryExpression is evaluated as follows:
1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToInt32(Result(2)).
4. Apply bitwise complement to Result(3). The result is a signed 32-bit integer.

5. Return Result(4).

7.3.7 Logical NOT Operator (!)

The production UnaryExpression : ! ~ UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is true, return false.
5. Return true.

 36 87

7.4 MULTIPLICATIVE OPERATORS

Syntax

MultiplicativeExpression :
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

Seman t i i tc s

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands
for one of the operators in the above definitions, is evaluated as follows:
1. Evaluate MultiplicativeExpression.
2. Call GetValue(Result(1)).
3. Evaluate UnaryExpression.
4. Call GetValue(Result(3)).
5. Call ToNumber(Result(2)).
6. Call ToNumber(Result(4)).
7. Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the discussions below

(7.4.1, 7.4.2, 7.4.3).
8. Return Result(7).

7.4.1 7.4.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 double-precision
arithmetic:

• If either operand is NaN, the result is NaN.

• The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by an infinity results in an infinity . The sign is determined by the rule
 already stated above.

• Multiplication of an infinity by a finite non-zero value results in a signed infinity. The sign is
determined by the rule already stated above.

• In the remaining cases, where neither an infinity or NaN is involved, the product is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is
too large to represent, the result is then an infinity of appropriate sign. If the magnitude is too small to
represent, the result is then a zero of appropriate sign. The ECMAScript language requires support of
gradual underflow as defined by IEEE 754.

7.4.1 7.4 2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend
and the right operand is the divisor. ECMAScript does not perform integer division. The operands and
result of all division operations are double-precision floating-point numbers. The result of division is
determined by the specification of IEEE 754 arithmetic:

• If either operand is NaN, the result is NaN.

• The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

 37 87

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a zero results in an infinity . The sign is determined by the rule already stated
 above.

• Division of an infinity by a non-zero finite value results in a signed infinity. The sign is determined by
the rule already stated above.

• Division of a finite value by an infinity results in zero.

• Division of a zero by a zero results in NaN; division of zero by any other finite value results in zero.

• Division of a non-zero finite value by a zero results in a signed infinity. The sign is determined by the
rule already stated above.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is
computed and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, we say the operation overflows; the result is then an infinity of
appropriate sign. If the magnitude is too small to represent, we say the operation underflows and the
result is zero. The ECMAScript language requires support of gradual underflow as defined by IEEE
754.

7.4.1 3 Applying the % Operator

The binary % operator is said to yield the remainder of its operands from an implied division; the left
operand is the dividend and the right operand is the divisor. In C and C++, the remainder operator accepts
only integral operands, but in ECMAScript, it also accepts floating-point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
"remainder" operation defined by IEEE 754. The IEEE 754 "remainder" operation computes the remainder
from a rounding division, not a truncating division, and so its behavior is not analogous to that of the usual
integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to
behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the
C library function fmod.

The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE
arithmetic:

• If either operand is NaN, the result is NaN.

• The sign of the result equals the sign of the dividend.

• If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

• If the dividend is finite and the divisor is an infinity, the result equals the dividend.

• If the dividend is a zero and the divisor is finite, the result is the same as the dividend zero.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point
remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n - (d * q)
where q is an integer that is negative only if n/d is negative and positive only if n/d is positive, and
whose magnitude is as large as possible without exceeding the magnitude of the true mathematical
quotient of n and d.

7.5 ADDITIVE OPERATORS

Syntax

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

 38 87

7.5.1 The Addition Operator (+)

The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as
follows:
1. Evaluate AdditiveExpression.
2. Call GetValue(Result(1)).
3. Evaluate MultiplicativeExpression.
4. Call GetValue(Result(3)).
5. Call ToPrimitive(Result(2), hint Number).
6. Call ToPrimitive(Result(4), hint Number).
7. If Type(Result(5)) is String or Type(Result(6)) is String, go to step 13. (Note that this step differs

 from step 7 in the algorithm for the relational operators in using or instead of and .)

8. Call ToNumber(Result(5)).
9. Call ToNumber(Result(6)).
10. If Result(8) or Result(9) is NaN, return NaN.
11. Apply the addition operation to Result(8) and Result(9). See the discussion below.
12. Return Result(11).
13. Call ToString(Result(5)).
14. Call ToString(Result(6)).
15. Concatenate Result(13) followed by Result(14).
16. Return Result(15).

7.5.1 The Subtraction Operator (-)

The production AdditiveExpression : AdditiveExpression - MultiplicativeExpression is evaluated as
follows:
1. Evaluate AdditiveExpression.
2. Call GetValue(Result(1)).
3. Evaluate MultiplicativeExpression.
4. Call GetValue(Result(3)).
5. Call ToNumber(Result(2)).
6. Call ToNumber(Result(4)).
7. Apply the subtraction operation to Result(5) and Result(6). See the discussion below (7.5.3).
8. Return Result(7).

7.5.3 Applying the Additive Operators (+, -)

The + operator performs addition when applied to two operands of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:

• If either operand is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and a finite value is equal to the infinite operand.

• The sum of two negative zeros is negative zero. The sum of two positive zeros, or of two zeros of
 opposite sign, is positive zero.

• The sum of a zero and a nonzero finite value is equal to the nonzero operand.

• The sum of two nonzero finite values of the same magnitude and opposite sign is positive zero.

 39 87

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands
have the same sign or have different magnitudes, the sum is computed and rounded to the nearest
representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large to represent,
the operation overflows and the result is then an infinity of appropriate sign. If the magnitude is too
small to represent, the operation underflows and the result is zero. The ECMAScript language requires
support of gradual underflow as defined by IEEE 754.

• The - operator performs subtraction when applied to two operands of numeric type producing the
difference of its operands; the left operand is the minuend and the right operand is the subtrahend. Given
numeric operands a and b, it is always the case that a - b produces the same result as a + (-b).

7.6 BITWISE SHIFT OPERATORS

Syntax

ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Discussion

The result of evaluating ShiftExpression is always truncated to 32 bits. If the result of evaluating
ShiftExpression produces a fractional component, the factional component is discarded. The result of
evaluating AdditiveExpresion is always truncated to five bits.

7.6.1 The Left Shift Operator (<<)

Performs a bitwise left shift operation on the left argument by the amount specified by the right argument.

The production ShiftExpression : ShiftExpression << AdditiveExpression is evaluated as follows:
1. Evaluate ShiftExpression.
2. Call GetValue(Result(1)).
3. Evaluate AdditiveExpression.
4. Call GetValue(Result(3)).
5. Call ToInt32(Result(2)).
6. Call ToInt32(Result(4)).
7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.
8. Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.
9. Return Result(8).

7.6.2 The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left argument by the amount specified by the
right argument.

The production ShiftExpression : ShiftExpression >> AdditiveExpression is evaluated as follows:
1. Evaluate ShiftExpression.
2. Call GetValue(Result(1)).
3. Evaluate AdditiveExpression.
4. Call GetValue(Result(3)).
5. Call ToInt32(Result(2)).
6. Call ToInt32(Result(4)).
7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.
8. Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is

propagated. The result is a signed 32 bit integer.

 40 87

9. Return Result(8).

7.6.3 The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left argument by the amount specified by the
right argument.

The production ShiftExpression : ShiftExpression >>> AdditiveExpression is evaluated as follows:
1. Evaluate ShiftExpression.
2. Call GetValue(Result(1)).
3. Evaluate AdditiveExpression.
4. Call GetValue(Result(3)).
5. Call ToUint32(Result(2)).
6. Call ToInt32(Result(4)).
7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.
8. Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The

result is an unsigned 32 bit integer.
9. Return Result(8).

7.7 RELATIONAL OPERATORS

Syntax

RelationalExpression :
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression

Semantics

In the discussion below, the following special operators will be used:

Operator Meaning

Numeric@ Where @ represents one of the relational operators. The operands are of type
Number. This is the standard IEEE operator with the provision that if either
operand is NaN, the result is false.

Character@ Where @ represents one of the relational operators. The operands are of type
String. The operands are compared character by character lexicographically in the
unicode character set. If the operands are of different length and all corresponding
characters up to the length of the shorter operand are the same, the longer string is
considered to be greater.

The production RelationalExpression : RelationalExpression @ ShiftExpression, where @ represents one
of the relational operators, is evaluated as follows:
1. Evaluate RelationalExpression.
2. Call GetValue(Result(1)).
3. Evaluate ShiftExpression.
4. Call GetValue(Result(3)).
5. Call ToPrimitive(Result(2), hint Number).
6. Call ToPrimitive(Result(4), hint Number).
7. If Type(Result(5)) is String and Type(Result(6)) is String, go to step 12 13. (Note that this step differs

 from step 7 in the algorithm for the addition operator + in using and instead of or .)

8. Call ToNumber(Result(5)).

 41 87

9. Call ToNumber(Result(6)).
10. Apply Numeric@ to Result(8) and Result(9).
11. Return Result(10).
12. Call ToString(Result(5)).
12. Call ToString(Result(6)).
12. Apply Character@ to Result(5 12) and Result(6 13).

13. Return Result(12 14).

7.8 EQUALITY OPERATORS

Syntax

EqualityExpression :
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

The production EqualityExpression : EqualityExpression == RelationalExpression is evaluated as follows:
1. Evaluate EqualityExpression.
2. Call GetValue(Result(1)).
3. Evaluate RelationalExpression.
4. Call GetValue(Result(3)).
5. If Type(Result(2)) is different from Type(Result(4)), go to step 12.
6. If Type(Result(2)) is Undefined, return true.
7. If Type(Result(2)) is Null, return true.
8. If Type(Result(2)) is Number, apply Numeric== to Result(2) and Result(4) and return the result.
9. If Type(Result(2)) is String, apply Character== to Result(2) and Result(4) and return the result.
10. If Type(Result(2)) is Boolean, return true when Result(2) and Result(4) are both true or both false.

Otherwise, return false.
11. Return true if Result(2) and Result(4) refer to the same object. Otherwise, return false.
12. If Result(2) is null and Result(4) is undefined, return true.
13. If Result(2) is undefined and Result(4) is null, return true.
14. If Type(Result(2)) is Number and Type(Result(4)) is String, return the result of the comparison

ToString(Result(2)) == Result(4).
15. If Type(Result(2)) is String and Type(Result(4)) is Number, return the result of the comparison

Result(2) == ToString(Result(4)).
16. Return false.

The production EqualityExpression : EqualityExpression != RelationalExpression is evaluated as follows:
1. Evaluate the production EqualityExpression == RelationalExpression.
2. If Result(1) is true, return false.
3. Return true.

Discussion

String comparison can be forced by: "" + a == "" + b.

Numeric comparison can be forced by: a – 0 == b – 0.

Boolean comparison can be forced by: !a == !b.

The equality operators maintain the following invariants:

1. A != B is equivalent to !(A == B).

2. A == B is equivalent to B == A, except in the order of evaluation of A and B.

3. if A == B and B == C , => A == C, assuming no side effects.

 42 87

As no conversions are applied to the operands, equality is always transitive.

7.9 BINARY BITWISE OPERATORS

Syntax

BitwiseANDExpression :
EqualityExpression
BitwiseANDExpression & EqualityExpression

BitwiseXORExpression :
BitwiseANDExpression
BitwiseXORExpression ^ BitwiseANDExpression

BitwiseORExpression :
BitwiseXORExpression
BitwiseORExpression | BitwiseXORExpression

Semantics

The production A : A @ B, where @ is one of the bitwise operators in the productions above, is evaluated
as follows:
1. Evaluate A.
2. Call GetValue(Result(1)).
3. Evaluate B.
4. Call GetValue(Result(3)).
5. Call ToInt32(Result(2)).
6. Call ToInt32(Result(4)).
7. Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
8. Return Result(7).

7.10 BINARY LOGICAL OPERATORS

Syntax

LogicalANDExpression :
BitwiseORExpression
LogicalANDExpression && BitwiseORExpression

LogicalORExpression :
LogicalANDExpression
LogicalORExpression || LogicalANDExpression

Semantics

The production LogicalANDExpression : LogicalANDExpression && BitwiseORExpression is evaluated as
follows:
1. Evaluate LogicalANDExpression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, return Result(2).
5. Evaluate BitwiseORExpression.
6. Call GetValue((Result(5)).
7. Return Result(6).

 43 87

The production LogicalORExpression : LogicalORExpression || LogicalANDExpression is evaluated as
follows:
1. Evaluate LogicalORExpression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is true, return Result(2).
5. Evaluate LogicalANDExpression.
6. Call GetValue(Result(5)).
7. Return Result(6).

7.11 CONDITIONAL OPERATOR (?:)

Syntax

ConditionalExpression :
LogicalORExpression
LogicalORExpression ? AssignmentExpression : AssignmentExpression

Semantics

The production ConditionalExpression : LogicalORExpression ? AssignmentExpression :
AssignmentExpression is evaluated as follows:
1. Evaluate LogicalORExpression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, go to step 8.
5. Evaluate the first AssignmentExpression.
6. Call GetValue(Result(5)).
7. Return Result(6).
8. Evaluate the second AssignmentExpression.
9. Call GetValue(Result(8)).
10. Return Result(9).

Issue: Add an explanation of how the grammar differs slightly from that of C and Java here.

7.12 ASSIGNMENT OPERATORS

Syntax

AssignmentExpression :
ConditionalExpression
PostfixExpression AssignmentOperator AssignmentExpression

AssignmentOperator :: one of
= *= /= %= += -= <<= >>= >>>= &= ^= |=

7.12.1 Simple Assignment (=)

The production AssignmentExpression : Postfix UnaryExpression = AssignmentExpression is evaluated as
follows:
1. Evaluate Postfix UnaryExpression.

2. Evaluate AssignmentExpression.
3. Call GetValue(Result(2)).
4. Call PutValue(Result(1), Result(3)).
5. Return Result(3).

 44 87

7.12.2 Compound Assignment (op=)

The production AssignmentExpression : Postfix UnaryExpression @= AssignmentExpression, where @
represents one of operators indicated above, is evaluated as follows:
1. Evaluate Postfix UnaryExpression.

2. Call GetValue(Result(1)).
3. Evaluate AssignmentExpression.
4. Call GetValue(Result(2)).
5. Apply operator @ to Result(3) and Result(4).
6. Call PutValue(Result(1), Result(5)).
7. Return Result(5).

7.13 COMMA OPERATOR (,)

Syntax

Expression :
AssignmentExpression
Expression , AssignmentExpression

Semantics

The production Expression : Expression , AssignmentExpression is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Evaluate AssignmentExpression.
4. Call GetValue(Result(3)).
5. Return Result(4).

 45 87

8 STATEMENTS

Syntax

Statement :
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement

Block :
{ StatementListopt }

StatementList :
Statement
StatementList Statement

Semantics

The production StatementList : StatementList Statement is evaluated as follows:
1. Evaluate StatementList.
2. Evaluate Statement.

8.1 VARIABLE STATEMENT

Syntax

VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclaration :
Identifier Initializeropt

Initializer :
= AssignmentExpression

Description

 46 87

If the variable statement occurs inside a FunctionDeclaration, the variables are defined with function-local
scope in that function. Otherwise, they are defined with global scope, that is, they are created as members
of the global object as described in section Error! Reference source not found. Error! Reference
source not found.. Variables are created when the execution scope is entered. A Block does not define a
new execution scope. Only Program and FunctionDeclaration produce a new scope. Eval code and
anonymous code also define a new execution scope, but these are not an explicit part of the grammer of
ECMAScript. Variables are initialized to the undefined value when created. A variable with an
Initializer is assigned the value of its AssignmentExpression when the VariableStatement is executed.

Semantics

The production VariableStatement : var VariableDeclarationList ; is evaluated as follows:
1. Evaluate VariableDeclarationList.
2. Return.

The production VariableDeclaractionList : VariableDeclarationList , VariableDeclaration is evaluated as
follows:
1. Evaluate VariableDeclarationList.
2. Evaluate VariableDeclaration.
3. Return.

The production VariableDeclaration : Identifier = AssignmentExpression is evaluated as follows:
1. Evaluate Identifier.
2. Evaluate AssignmentExpression.
3. Call GetValue(Result(2)).
4. Call PutValue(Result(1), Result(3)).
5. Return.

8.2 EMPTY STATEMENT

Syntax

EmptyStatement :
;

Semantics

The production EmptyStatement : ; is evaluated by taking no action.

8.3 EXPRESSION STATEMENT

Syntax

ExpressionStatement :
Expression ;

Semantics

The production ExpressionStatement : Expression ; is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).

8.4 THE if STATEMENT

Syntax

IfStatement :
if (Expression) Statement else Statement
if (Expression) Statement

 47 87

Semantics

The production IfStatement : if (Expression) Statement1 else Statement2 is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, go to step 7.
5. Evaluate Statement1.
6. Return.
7. Evaluate Statement2.
8. Return.

The production IfStatement : if (Expression) Statement is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, return.
5. Evaluate Statement.
6. Return.

8.5 ITERATION STATEMENTS

Syntax

IterationStatement :
while (Expression) Statement
for (Expressionopt ; Expressionopt ; Expressionopt) Statement
for (var VariableDeclarationList ; Expressionopt ; Expressionopt) Statement
for (Expression in Expression) Statement
for (var opt Identifier Initializer opt in Expression) Statement

Description

These statements all define a “continue label” and a “break label” for use by an enclosed continue or
break statement. For the purposes of this specification, a label is a step number in an algorithm.
Continue labels are held in a continue label stack and break labels are held in a break label stack. These
stacks are local to the current execution scope. To execute a continue or break statement, execution
control is transferred to the label specified by the top value of the corresponding label stack. If an
implementation of ECMAScript has distinct compile and execute phases, the label stacks need only be
maintained during compilation as the label that a continue or break statement jumps to is not
dependent on any runtime state.

The WithStatement affects both stacks for the purposes of clean up: to remove its object from the scope
chain.

In algorithms, we use “PushBreak(n)” as short hand for “Push Step(n) on the break label stack”. Similarly
we use “PushContinue(n)”, “PopBreak(n)” and “PopContinue(n)” as short hand for the obvious phrases. We
use “JumpBreak” as short hand for “Transfer execution control to the position indicated by the top label of
the break label stack” and similarly for “JumpContinue”.

8.5.1 The while Statement

The production IterationStatement : while (Expression) Statement is evaluated as follows:
1. PushContinue(3).
2. PushBreak(9).
3. Evaluate Expression.
4. Call GetValue(Result(3)).

 48 87

5. Call ToBoolean(Result(4)).
6. If Result(5) is false, go to 9.
7. Evaluate Statement.
8. Go to step 3.
9. PopBreak(9).
10. PopContinue(3).
11. Return.

8.5.2 The for Statement

The production IterationStatement : for (Expression1 ; Expression2 ; Expression3) Statement is
evaluated as follows:
1. PushContinue(10).
2. PushBreak(13).
3. Evaluate Expression1.
4. Call GetValue(Result(3)).
5. Evaluate Expression2.
6. Call GetValue(Result(5)).
7. Call ToBoolean(Result(6)).
8. If Result(7) is false, go to step 13.
9. Evaluate Statement.
10. Evaluate Expression3.
11. Call GetValue(Result(10)).
12. Go to step 5.
13. PopBreak(13).
14. PopContinue(10).
15. Return.

If Expression1 is omitted from the source text, steps 3 and 4 are omitted from execution. If Expression2 is
omitted from the source text, step 5 is omitted from execution and the result of step 5 is true. If
Expression3 is omitted from the source text, steps 10 and 11 are omitted from execution.

Issue: define the var version.

8.5.3 The for..in Statement

The production IterationStatement : for (Expression1 in Expression2) Statement is evaluated as
follows:
1. PushContinue(6).
2. PushBreak(11).
3. Evaluate Expression2.
4. Call GetValue(Result(3)).
5. Call ToObject(Result(4)).
6. Get the name of the next property of Result(5) which doesn’t have the DontEnum attribute. If there is

no such property, go to step 11.
7. Evaluate Expression1.
8. Call PutValue(Result(7), Result(6)).
9. Evaluate Statement.
10. Go to step 6.
11. PopBreak(11).
12. PopContinue(6).
13. Return.

 49 87

The mechanics of enumerating the properties (step 6) is implementation dependent. The order of
enumeration is defined by the object. Properties of the object being enumerated may be deleted during
enumeration. If a property that has not yet been visited during enumeration is deleted, then it will not be
visited. If new properties are added to the object being enumerated during enumeration, the newly added
properties are not guaranteed to be visited in the active enumeration.

Issue: define the var version.

 Issue: Need to talk about enumerating properties of the prototype, and so on, recursively. Are shadowed
 properties of the prototype(s) enumerate d? (I hope not!)

8.6 THE continue STATEMENT

Syntax

ContinueStatement :
continue ;

 An ECMAScript program is considered syntactically incorrect and may not be executed at all if it contains a
 continue statement that is not within at least one while or for statement. The continue
statement can only be used when the continue label stack contains at least one label. This is only the case
inside a while, for, or for. . in loop. The continue statement is evaluated as:
1. JumpContinue.

See section Iteration Statements Iteration Statements for a description of the continue label stack and the
JumpContinue directive.

8.7 THE break STATEMENT

Syntax

BreakStatement :
break ;

 An ECMAScript program is considered syntactically incorrect and may not be executed at all if it contains a
 break statement that is not within at least one while or for statement. The break statement can
only be used when the break label stack contains at least one label. This is only the case inside a while,
for or for. . in loop. The break statement is evaluated as:
1. JumpBreak

See section Iteration Statements Iteration Statements for a description of the break label stack and the
JumpBreak directive.

8.8 THE return STATEMENT

Syntax

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

The return statement can only be used inside the Block of a FunctionDeclaration. It causes a function
to cease execution and return a value to the caller. If Expression is omitted, the return value is the
undefined value. Otherwise, the return value is the value of Expression.

8.9 THE with STATEMENT

Syntax

WithStatement :
with (Expression) Statement

 50 87

Description

The WithStatement affects the break label stack and continue label stack for clean up purposes only.

Semantics

The production WithStatement : with (Expression) Statement is evaluated as follows:
1. If the continue label stack is not empty, PushContinue(12).
2. If the break label stack is not empty, PushBreak(16).
3. Evaluate Expression.
4. Call GetValue(Result(3)).
5. Call ToObject(Result(4)).
6. Add Result(5) to the front of the scope chain.
7. Evaluate Statement.
8. Remove Result(5) from the front of the scope chain.
9. If the break label stack is not empty, PopBreak(16).
10. If the continue label stack is not empty, PopContinue(12).
11. Return.
12. Remove Result(5) from the front of the scope chain.
13. If the break label stack is not empty, PopBreak(16).
14. PopContinue(12).
15. JumpContinue.
16. Remove Result(5) from the front of the scope chain.
17. PopBreak(16).
18. If the continue label stack is not empty, PopContinue(12).
19. JumpBreak.

Discussion

Most of the complexity of this algorithm is to handle jumps out of the WithStatement. Any jumps out of
the WithStatement must be trapped to remove the object from the scope chain.

 51 87

9 FUNCTION DEFINITION

Syntax

FunctionDeclaration :
function Identifier (FormalParameterListopt) Block

FormalParameterList :
Identifier
FormalParameterList , Identifier

Semantics

Defines a property of the global object whose name is the Identifier and whose value is a function object
with the given parameter list and statements. If the function definition is supplied text to the eval
function and the calling context has an activation object then the declared function is added to the activation
object.

 52 87

10 PROGRAM

Syntax

Program :
SourceElements EndOfSource

SourceElements :
SourceElement
SourceElements SourceElement

SourceElement :
Statement
FunctionDefinition

 53 87

11 NATIVE ECMASCRIPT OBJECTS

There are certain built-in objects available whenever an ECMAScript program begin execution. One, the
global object, is in the scope chain of the executing program. Others are accessible as permanent properties
of the global object.

Some objects are constructors: they are functions intended for use with the new operator. For each built-in
constructor, this specification describes the arguments required by that constructor function, properties of
the constructor object, properties of the prototype object of that constructor, and properties of specific
object instances returned by a new expression that invokes that constructor.

11.1 THE GLOBAL OBJECT

The global object does not have a [[Construct]] property; it is not possible to use the global object as a
constructor with the new operator.

11.1.1 Value Properties of the Global Object

11.1.2 Function Properties of the Global Object

11.1.2.1 eval(x)

11.1.2.2 parseInt(string, radix)

11.1.2.3 parseFloat(string)

11.1.2.4 escape(string)

11.1.2.5 unescape(string)

11.2 OBJECT OBJECTS

11.2.1 The Object Constructor

11.2.1.1 new Object(value)

11.2.1.2 new Object()

11.2.2 Properties of the Object Constructor

The value of the internal [[Prototype]] property of the Object constructor is the Function prototype object.

Besides the internal [[Call]] and [[Constructor]] properties, the Object constructor has the following
property:

 54 87

11.2.2.1 Object.prototype

The value of Object.prototype is the built-in Object prototype object.

11.2.3 Properties of the Object Prototype Object

11.2.4 Properties of Object Instances

Constructor

[[Get]]

[[Put]]

[[CanPut]]

[[Prototype]]

[[HasProperty]]

[[Construct]]

11.3 FUNCTION OBJECTS

11.3.1 The Function Constructor

11.3.2 Properties of the Function Constructor

11.3.3 Properties of the Function Prototype Object

11.3.4 Properties of Function Instances

11.4 ARRAY OBJECTS

11.4.1 The Array Constructor

11.4.1.1 new Array(item0, item1, item2, . . .)

11.4.1.2 new Array(len)

11.4.1.3 new Array()

11.4.2 Properties of the Array Constructor

The value of the internal [[Prototype]] property of the Array constructor is the Function prototype object.

Besides the internal [[Call]] and [[Constructor]] properties, the Array constructor has the following property:

11.4.2.1 Array.prototype

The value of Array.prototype is the built-in Array prototype object.

11.4.3 Properties of the Array Prototype Object

The value of the internal [[Prototype]] property of the Array prototype object is the Object prototype object.
As a result, the Array prototype object inherits the internal [[Get]], [[CanPut]], and [[HasProperty]] methods
from the Object prototype object.

The Array prototype object has its own internal [[Put]] method that keeps the length property of an
array instance up to date.

 55 87

In following descriptions of functions that are properties of the Array prototype object, the phrase “this
Array object” refers to the object that is the this value for the invocation of the function; it is an error if
this does not refer to an object for which the Array prototype object is not either directly or indirectly a
prototype.

11.4.3.1 join

11.4.3.2 reverse

11.4.3.3 sort

11.4.4 Properties of Array Instances

String instances inherit properties from the String prototype object and also have the following property.

11.4.4.1 length

11.5 STRING OBJECTS

11.5.1 The String Constructor

11.5.2 Properties of the String Constructor

The value of the internal [[Prototype]] property of the Object constructor is the Function prototype object.

Besides the internal [[Call]] and [[Constructor]] properties, the String constructor has the following
property:

11.5.2.1 String.prototype

The value of String.prototype is the built-in String prototype object.

11.5.3 Properties of the String Prototype Object

In following descriptions of functions that are properties of the String prototype object, the phrase “this
String object” refers to the object that is the this value for the invocation of the function; it is an error if
this does not refer to an object for which the String prototype object is not either directly or indirectly a
prototype.

11.5.3.1 toString()

The String value represented by this String object is returned.

 56 87

11.5.3.2 valueOf()

11.5.3.3 charAt

11.5.3.4 indexOf

11.5.3.5 lastIndexOf

11.5.3.6 split

11.5.3.7 substring

11.5.3.8 toLowerCase

11.5.3.9 toUpperCase

11.5.4 Properties of String Instances

String instances inherit properties from the String prototype object and also have the following property.

11.5.4.1 length

The number of characters inthe String value represented by this String object.

Once a String object is created, this property is unchanging.

11.6 BOOLEAN OBJECTS

11.6.1 The Boolean Constructor

11.6.1.1 new Boolean(value)

11.6.1.2 new Boolean()

11.6.2 Properties of the Boolean Constructor

The value of the internal [[Prototype]] property of the Boolean constructor is the Function prototype object.

Besides the internal [[Call]] and [[Constructor]] properties, the Number constructor has the following
property:

11.6.2.1 Boolean.prototype

The value of Boolean.prototype is the built-in Boolean prototype object.

11.6.3 Properties of the Boolean Prototype Object

In following descriptions of functions that are properties of the Boolean prototype object, the phrase “this
Boolean object” refers to the object that is the this value for the invocation of the function; it is an error
if this does not refer to an object for which the Boolean prototype object is not either directly or indirectly a
prototype.

11.6.3.1 toString()

If this Boolean object represents true, then the string “true” is returned. Otherwise, this Boolean object
must reresent false, and the string “false” is returned.

 57 87

11.6.3.2 valueOf()

11.6.4 Properties of Boolean Instances

Boolean instances have no special properties beyond those inherited from the Boolean prototype object.

11.7 NUMBER OBJECTS

11.7.1 The Number Constructor

11.7.1.1 new Number(value)

11.7.1.2 new Number()

11.7.2 Properties of the Number Constructor

The value of the internal [[Prototype]] property of the Number constructor is the Function prototype object.

Besides the internal [[Call]] and [[Constructor]] properties, the Number constructor has the following
property:

11.7.2.1 Number.prototype

The value of Number.prototype is the built-in Number prototype object.

11.7.2.2 Number.NaN

The value of Number.NaN is NaN.

11.7.3 Properties of the Number Prototype Object

In following descriptions of functions that are properties of the Number prototype object, the phrase “this
Number object” refers to the object that is the this value for the invocation of the function; it is an error
if this does not refer to an object for which the Number prototype object is not either directly or indirectly a
prototype.

11.7.3.1 toString()

11.7.3.2 valueOf()

11.7.4 Properties of Number Instances

Number instances have no special properties beyond those inherited from the Number prototype object.

11.8 THE MATH OBJECT

The Math object is merely a single object that has some named properties, some of which are functions.

The Math object does not have a [[Construct]] property; it is not possible to use the Math object as a
constructor with the new operator.

Recall that, in this specification, the phrase “the number value for x” means “the value of number type, not
NaN but possibly infinite, that is closer than any other value of number type to the mathematical value x,
but if x lies exactly halfway between two such values then the number value whose least significant bit is 0
is chosen”.

 58 87

11.8.1 Value Properties of the Math Object

11.8.1.1 E

The number value for e, the base of the natural logarithms, which is approximately
2.7182818284590452354 .

11.8.1.2 LN10

The number value for the natural logarithm of 10, which is approximately 2.302585092994046.

11.8.1.3 LN2

The number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

11.8.1.4 LOG2E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 1.4426950408889634. (Note that the value of Math.LOG2E is approximately
the reciprocal of the value of Math.LN2.)

11.8.1.5 LOG10E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518. (Note that the value of Math.LOG2E is approximately
the reciprocal of the value of Math.LN2.)

11.8.1.6 PI

The number value for π, the ratio of the circumference of a circle to its diameter, which is approximately
3.14159265358979323846 .

11.8.1.7 SQRT1_2

The number value for the square root of 1/2, which is approximately 0.7071067811865476. (Note
that the value of Math.SQRT1_2 is approximately the reciprocal of the value of Math.SQRT2.)

11.8.1.8 SQRT2

The number value for the square root of 2, which is approximately 1.4142135623730951.

11.8.2 Function Properties of the Math Object

Every function listed in this section applies the ToNumber operator to each of its arguments (in left-to-right
order if there is more than one) and then performs a computation on the resulting number value(s).

The behavior of the functions acos, asin, atan, atan2, cos, exp, log, pow, sin, and sqrt is not precisely
specified here. They are intended to compute approximations to the results of familiar mathematical
functions, but some latitude is allowed in the choice of approximation algorithms. The general intent is
that an implementor should be able to use the same mathematical library for ECMAScript on a given
hardware platform that is available to C programmers on that platform. Nevertheless, this specification
recommends (though it does not require) the approximation algorithms for IEEE 754 arithmetic contained in
fdlibm, the freely distributable mathematical library [XXXREF]. This specification also requires
specific results for certain argument values that represent boundary cases of interest.

11.8.2.1 abs(x)

Returns the absolute value of its argument; in general, the result has the same magnitude as the argument
but has positive sign.
• If the argument is NaN, the result is NaN.

 59 87

• If the argument is -0, the result is +0.
• If the argument is -Infinity, the result is +Infinity.

11.8.2.2 acos(x)

Returns an implementation-dependent approximation to the arc cosine of the argument. The result is
expressed in radians and ranges from +0 to +π.
• If the argument is NaN, the result is NaN.
• If the argument is greater than 1, the result is NaN.
• If the argument is less than -1, the result is NaN.
• If the argument is exactly 1, the result is +0.

11.8.2.3 asin(x)

Returns an implementation-dependent approximation to the arc sine of the argument. The result is expressed
in radians and ranges from −π/2 to +π/2.
• If the argument is NaN, the result is NaN.
• If the argument is greater than 1, the result is NaN.
• If the argument is less than -1, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is -0, the result is -0.

11.8.2.4 atan(x)

Returns an implementation-dependent approximation to the arc tangent of the argument. The result is
expressed in radians and ranges from −π/2 to +π/2.
• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is -0, the result is -0.
• If the argument is +Infinity, the result is an implementation-dependent approximation to the

number value for +π/2.
• If the argument is -Infinity, the result is an implementation-dependent approximation to the

number value for −π/2.

11.8.2.5 atan2(y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/x of the
arguments y and x, where the signs of the arguments are used to determine the quadrant of the result. Note
that it is intentional and traditional for the two-argument arc tangent function that the argument named y be
first and the argument named x be second. The result is expressed in radians and ranges from −π to +π.
• If either argument is NaN, the result is NaN.
• If y>0 and x is +0, the result is an implementation-dependent approximation to the number value for

+π/2.
• If y>0 and x is -0, the result is an implementation-depend ent approximation to the number value for

+π/2.
• If y is +0 and x>0, the result is +0.
• If y is +0 and x is +0, the result is +0.
• If y is +0 and x is -0, the result is an implementation-dependent approximation to the number value

for +π.
• If y is +0 and x<0, the result is an implementation-dependent approximation to the number value for

+π..
• If y is -0 and x>0, the result is -0.
• If y is -0 and x is +0, the result is -0.

 60 87

• If y is -0 and x is -0, the result is an implementation-dependent approximation to the number value
for −π.

• If y is -0 and x<0, the result is an implementation-dependent approximation to the number value for
−π..

• If y<0 and x is +0, the result is an implementation-dependent approximation to the number value for
−π/2.

• If y<0 and x is -0, the result is an implementation-dependent approximation to the number value for
−π/2.

• If y>0 and y is finite and x is +Infinity, the result is +0.
• If y>0 and y is finite and x is -Infinity, the result if an implementation-dependent

 approximation to the number value for +π.

• If y<0 and y is finite and x is +Infinity, the result is -0.
• If y<0 and y is finite and x is -Infinity, the result is an implementation-dependent

 approximation to the number value for −π.

• If y is +Infinity and x is finite, the result is an implementation-dependent approximation to the
number value for +π/2.

• If y is -Infinity and x is finite, the result is an implementation-dependent approximation to the
number value for −π/2.

• If y is +Infinity and x is +Infinity, the result is an implementation-de pendent
 approximation to the number value for +π/4.

• If y is +Infinity and x is -Infinity, the result is an implementation-dependent
 approximation to the number value for +3π/4.

• If y is -Infinity and x is +Infinity, the result is an implementation-dependent
 approximation to the number value for −π/4.

• If y is -Infinity and x is -Infinity, the result is an implementation-dependent
 approximation to the number value for −3π/4.

11.8.2.6 ceil(x)

Returns the smallest (closest to negative infinity) number value that is not less than the argument and is
equal to a mathematical integer. If the argument is already an integer, the result is the argument itself.
• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is -0, the result is -0.
• If the argument is +Infinity, the result is +Infinity.
• If the argument is -Infinity, the result is -Infinity.
• If the argument is less than 0 but greater than -1, the result is -0.

The value of Math.ceil(x) is the same as the value of -Math.floor(-x).

11.8.2.7 cos(x)

Returns an implementation-dependent approximation to the cosine of the argument. The argument is
expressed in radians.
• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is 1.
• If the argument is -0, the result is 1.
• If the argument is +Infinity, the result is NaN.
• If the argument is -Infinity, the result is NaN.

 61 87

11.8.2.8 exp(x)

Returns an implementation-dependent approximation to the exponential function of the argument (e raised
to the power of the argument, where e is the base of the natural logarithms).
• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is 1.
• If the argument is -0, the result is 1.
• If the argument is +Infinity, the result is +Infinity.
• If the argument is -Infinity, the result is +0.

11.8.2.9 floor(x)

Returns the smallest (closest to negative infinity) number value that is not less than the argument and is
equal to a mathematical integer. If the argument is already an integer, the result is the argument itself.
• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is -0, the result is -0.
• If the argument is +Infinity, the result is +Infinity.
• If the argument is -Infinity, the result is -Infinity.
• If the argument is greater than 0 but less than 1, the result is +0.

11.8.2.10 log(x)

Returns an implementation-dependent approximation to natural logarithm of the argument.
• If the argument is NaN, the result is NaN.
• If the argument is less than 0, the result is NaN.
• If the argument is +0 or -0, the result is -Infinity.
• If the argument is 1, the result is +0.
• If the argument is +Infinity, the result is +Infinity.

11.8.2.11 max(x, y)

Returns the larger of the two arguments.
• If either argument is NaN, the result is NaN.
• If x>y, the result is x.
• If y>x, the result is y.
• If x is +0 and y is +0, the result is +0.
• If x is +0 and y is -0, the result is +0.
• If x is -0 and y is +0, the result is +0.
• If x is -0 and y is -0, the result is -0.

11.8.2.12 min(x, y)

Returns the smaller of the two arguments.
• If either argument is NaN, the result is NaN.
• If x<y, the result is x.
• If y<x, the result is y.
• If x is +0 and y is +0, the result is +0.
• If x is +0 and y is -0, the result is -0.
• If x is -0 and y is +0, the result is -0.
• If x is -0 and y is -0, the result is -0.

11.8.2.13 pow(x, y)

Returns an implementation-dependent approximation to the result of raising x to the power y.

 62 87

• If y is NaN, the result is NaN.
• If y is +0, the result is 1, even if x is NaN.
• If y is -0, the result is 1, even if x is NaN.
• If x is NaN and y is nonzero, the result is NaN.
• If abs(x)>1 and y is +Infinity, the result is +Infinity .
• If abs(x)>1 and y is -Infinity, the result is +0.
• If abs(x)==1 and y is +Infinity, the result is NaN.
• If abs(x)==1 and y is -Infinity, the result is NaN.
• If abs(x)<1 and y is +Infinity, the result is +0.
• If abs(x)<1 and y is -Infinity, the result is +Infinity .
• If x is +Infinity and y>0, the result is +Infinity.
• If x is +Infinity and y<0, the result is +0.
• If x is -Infinity and y>0 and y is an odd integer, the result is -Infinity.
• If x is -Infinity and y>0 and y is not an odd integer, the result is +Infinity.
• If x is -Infinity and y<0 and y is an odd integer, the result is -0.
• If x is -Infinity and y<0 and y is not an odd integer, the result is +0.
• If x is +0 and y>0, the result is +0.
• If x is +0 and y<0, the result is +Infinity.
• If x is -0 and y>0 and y is an odd integer, the result is -0.
• If x is -0 and y>0 and y is not an odd integer, the result is +0.
• If x is -0 and y<0 and y is an odd integer, the result is -Infinity.
• If x is -0 and y<0 and y is not an odd integer, the result is +Infinity.
• If x<0 and x is finite and y is finite and y is not an integer, the result is NaN.

11.8.2.14 random()

Returns a number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly or
pseudorandomly with approximately uniform distribution over that range, using an implementation-
dependent algorithm or strategy. This function takes no arguments.

11.8.2.15 round(x)

Returns the number value that is closest to the argument and is equal to a mathematical integer. If two
integer number values are equally close to the argument, then the result is the number value that is closer to
positive infinity. If the argument is already an integer, the result is the argument itself.
• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is -0, the result is -0.
• If the argument is +Infinity, the result is +Infinity.
• If the argument is -Infinity, the result is -Infinity.
• If the argument is greater than 0 but less than 0.5, the result is +0.
• If the argument is less than 0 but greater than or equal to -0.5, the result is -0.

The value of Math.round(x) is the same as the value of Math.floor(x+0.5). Note that
Math.round(3.5) returns 4, but Math.round(-3.5) returns -3 .

11.8.2.16 sin(x)

Returns an implementation-dependent approximation to the sine of the argument. The argument is
expressed in radians.
• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is -0, the result is -0.

 63 87

• If the argument is +Infinity or -Infinity, the result is NaN.

11.8.2.17 sqrt(x)

Returns an implementation-dependent approximation to the square root of the argument.
• If the argument is NaN, the result is NaN.
• If the argument less than 0, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is -0, the result is -0.
• If the argument is +Infinity, the result is +Infinity.

11.8.2.18 tan(x)

Returns an implementation-dependent approximation to the tangent of the argument. The argument is
expressed in radians.
• If the argument is NaN, the result is NaN.
• If the argument is +0, the result is +0.
• If the argument is -0, the result is -0.
• If the argument is +Infinity or -Infinity, the result is NaN.

 64 87

12 ERRORS

This specification specifies the last possible moment an error occurs. A given implementation may
generate errors sooner (e.g. at compile-time). Doing so may cause differences in behavior among
implementations. Notably, if runtime errors become catchable in future versions, a given error would not
be catchable if an implementation generates the error at compile-time rather than runtime.

An ECMAScript compiler should detect errors at compile time in all code presented to it, even code that
detailed analysis might prove to be “dead” (never executed). A programmer should not rely on the trick of
placing code within an if (false) statement, for example, to try to suppress compile-time error
detection.

Issue: If a compiler can prove that a construct cannot execute without error under any circumstances, then it
may issue a compile-time error even though the construct might not be executed at all?

 65 87

13 REFERENCES

ANSI X3.159-1989: American National Standard for Information Systems - Programming Language - C,
American National Standards Institute (1989).

Gay, David M. Correctly Rounded Binary-Decimal and Decimal -Binary Conversions. Numerical Analysis
Manucript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz . Associated code
available as http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as
http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the
various netlib mirror sites.

Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing
Company 1996.

David Ungar and Randall B. Smith. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings,
pp. 227-241, Orlando, FL, October, 1987.

 66 87

APPENDIX A: OPEN ISSUES

A.1 BREAK AND CONTINUE LABEL STACKS

The break and continue label stacks and their associated machinery complicate the description of control
flow in ECMAScript. Moreover, the current description does not give a clear account of how
JumpContinue discards the implicit control stacks that support the execution of the pseudocode procedures
in this document.

I would like to propose the rewriting of the behavior of statements into the style used in the Java Language
Specification, wherein one speaks of a statement as completing “normally” or “abruptly (for a reason)”. The
advantage of this descriptive strategy is that then there are no nonlocal transfers within the pseudocode and
all descriptions of control flow behavior are local.

As examples, here are accounts of the break, continue, if, and while statements in this style,
which should illustrate all the relevant concepts:

The production BreakStatement : break ; is evaluated as follows:
1. Return “abrupt completion because of break”.

The production ContinueStatement : continue ; is evaluated as follows:
1. Return “abrupt completion because of continue”.

The production IfStatement : if (Expression) Statement1 else Statement2 is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, go to step 7.
5. Evaluate Statement1.
6. Return Result(5).
7. Evaluate Statement2.
8. Return Result(7).

The production IterationStatement : while (Expression) Statement is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Call ToBoolean(Result(2)).
4. If Result(3) is false, go to step 10.
5. Evaluate Statement.
6. If Result(5) is “abrupt completion because of break”, go to step 10.
7. If Result(5) is “abrupt completion because of continue”, go to step 1.
8. If Result(5) is “abrupt completion because of return of value V”, return Result(5).
9. Go to step 3.
10. Return “normal completion”.

Note that the only change to the description of if is to return the results of substatement evaluation. On
the other hand, the description of while has to take the various kinds of abrupt completion into account.
A break causes the while statement to complete normally; a continue is treated as if the substatement

 67 87

had completed normally; and a return causes the while statement to terminate immediately and to
propagate the return action.

 THIS WAS AGREED TO ON FEBRUARY 28 BUT STILL NEEDS TO BE DONE.

A.2 EVAL FUNCTION

Define object scoping within Eval block.

A.3 HOST S UPPLIED MEMBERS OF SCOPE CHAINS VS. IMPLICIT THIS.

A.4 ESCAPE S EQUENCES IN S TRING LITERALS

It was agreed at a previous meeting that any character could be preceded by a backslash in a string literal.
Question: was it intended to allow <CR> or <LF> in a string literal if preceded by abackslash? I assumed
not and wrote the grammar accordingly, but would like to have this point discussed.

A.5 BREAK, CONTINUE, RETURN IN WRONG PLACE

What is the behavior of an ECMAScript program if it executes a break or continue not textually contained
within a loop, or a return not textually within a function body? Are such errors guaranteed to be caught at
compile time, or may they be detected at run time? (JavaScript document says it mustbe a compile-time
error, Jscript document is less clear.)

A.6 MATH FUNCTIONS

Are the math functions intended to be completely, guaranteed portable, or are they intended to be “whatever
the host machine C library provides”? Should the boundary cases (infinites, zero, NaNs) be tied down in
the manner now customary for IEEE arithmetic (I believe Java and C9X agree on these boundary cases)?

 A.2 T O S TRING A PPLIED TO A N UMBER T Y P E

 Should the following additional constraint be added to ToString applied to a number type?

 Th e decimal string produced must be as close in its mathematical value to the mathematical value of the
 original number as any other decimal string with the same number of digits; and if two decimal strings of
 the same minimal length would be equally close in value to the original number, then the decimal string
 whose last digit is even should be chosen.

 A.3 ++ AND -- O PERATORS

 The increment operators need to be described more carefully in terms of IEEE 754 addition and subtraction
 operations.

 A.4 I NFINITY AND N A N L ITERALS

 I (Guy Steele) recommend that literals NaN and Infinity be added to the language, and that
 Infinity be recognized when ToNumber is applied to a string (right now it produces NaN!). For
 backward compatibility, the construction Number.NaN would have to continue to work.

 68 87

APPENDIX B: PROPOSED EXTENSIONS

B.1 THE CLASS STATEMENT1

Syntax

ClassDeclaration :
class IdentifierFormalParameters opt ExtendsClauseopt { ClassBody }

FormalParameters :
(FormalParameterListopt)

FormalParameterList :
Identifier
FormalParameterList , Identifier

ExtendsClause :
extends Identifier ActualArgumentsopt

ActualArguments :
(ExpressionListopt)

ClassBody :
Constructoropt Methodsopt

Constructor :
StatementList

Methods :
FunctionDefinition
Methods FunctionDefinition

Semantics

Similar to a function except:

• The class name space is global but distinct from the global function name space.

• The functions (methods) defined within a class definition are in a name space private to the class.

• The inclusion of methods automatically creates one property in the constructed object for each method
defined.

• Classes may not be called directly but rather can only be used via the new operator.

 69 87

B.2 THE TRY AND THROW STATEMENTS1

B.2.1 The try Statement1

A try statement executes a block. If a value is thrown and the try statement has one or more catch
clauses that can catch it, then control will be transfered to the first such catch clause. If the try
statement has a finally clause, then the finally block of code is executed no matter whether the
try block completes normally or abruptly and regardless of whether a catch clause is first given
control.

TryStatement :
try Block Catches

try Block Catchesopt FinallyClause

Catches:
CatchClause

Catches CatchClause

CatchClause:
catch (FormalParameter) Block

FinallyClause:
finally Block

B.2.2 The Throw Statment1

A throw statement causes an exception to be thrown. The result is an immediate transfer of control that
may exit multiple statements and method invocations until a try statement is found that catches the thrown
value. If no such try statement is found, then a runtime error is generated.

ThrowStatement:
throw Expression

 B.3 THE DATE TYPE1

The Date Type is used to represent date and time. It is a Julian value on which certain operations such as
date arithmetic are defined. Arithmetic operators, relational operators and equality operators apply to this
type1

Note 1: Of the three current ECMAScript implementations, only the Borland implementation currently
supports date operators. This feature is really just a convenience that can be implemented with Date Object
methods. However, the same argument can be made for the String type.

Note 2: Of the three current ECMAScript implementations, only the Borland implementation currently
implements dates as Julian dates and thus dates before (January 1970). Without this representation, dates
are very limited in their usage (i.e. you cannot otherwise, represent arbitrary dates, for example from
existing databases)

B.3.1 ToDate1

The operator ToDate attempts to convert its argument to a value of subtype Date Object according to the
following table:

Input Type Result

Undefined Blank date value.

 70 87

Null Blank date value.

Boolean Blank date value.

Number Blank date value.

String See discussion below.

Date Return the input argument (no conversion)

Object Apply the following steps:

1. Call ToPrimitive(input argument, hint Date).

2. Call ToDate(Result(1)).

Return Result(2).

B.3.2 ToDate Applied to the String Type

Issue: define this.

B.4 IMPLICIT THIS3

In function code where the function definition specifies the implicit keyword, the this object is
placed in the scope chain immediately before the global object.

 B.5 THE switch STATEMENT1, 3

Syntax

SwitchStatement :
switch (Expression) CaseBlock

CaseBlock :
{ CaseClausesopt }

{ CaseClausesopt DefaultClause CaseClausesopt }

CaseClauses :
CaseClause

CaseClauses CaseClause

CaseClause :
case Expression : StatementListopt

DefaultClause :
default : StatementListopt

Semantics

The SwitchStatement adds a label to the break label stack, which is described in section Iteration
 Statements Iteration Statements. It also adds a label to the continue label stack for clean up purposes only.

The production SwitchStatement : switch (Expression) CaseBlock is evaluated as follows:
1. If the continue label stack is not empty, PushContinue(9).
2. PushBreak(6).
3. Evaluate Expression.
4. Call GetValue(Result(3)).
5. Evaluate CaseBlock, passing it Result(4) as a parameter.
6. PopBreak(6).

 71 87

7. If the continue label stack is not empty, PopContinue(9).
8. Return.
9. PopBreak(6).
10. PopContinue(9).
11. JumpContinue.

The production CaseBlock : { CaseClauses1 DefaultClause CaseClauses2 } is given an input parameter,
input, and is evaluated as follows:
1. For the next CaseClause in CaseClauses1, in source text order, evaluate CaseClause. If there is no such

CaseClause, go to step 6.
2. If input is not equal to Result(1) (as defined by the != operator), go to step 1.
3. Execute the StatementList of this CaseClause.
4. Execute the StatementList of each subsequent CaseClause in CaseClauses1.
5. Go to step 11.
6. For the next CaseClause in CaseClauses2 , in source text order, evaluate CaseClause. If there is no

such CaseClause, go to step 11.
7. If input is not equal to Result(6) (as defined by the != operator), go to step 6.
8. Execute the StatementList of this CaseClause.
9. Execute the StatementList of each subsequent CaseClause in CaseClauses2.
10. Return.
11. Execute the StatementList of DefaultClause.
12. Execute the StatementList of each CaseClause in CaseClauses2.
13. Return.

If CaseClauses1 is omitted, steps 1 through 5 are omitted from execution. If DefaultClause is omitted (in
which case CaseClauses2 is also omitted), steps 11 and 12 are omitted from execution. If CaseClauses2 is
omitted, steps 6 through 10 and 12 are omitted from execution.

Typically there will be a break statement in one or more StatementList, which will transfer execution
back to the break label for the SwitchStatement.

The production CaseClause : case Expression : StatementListopt is evaluated as follows:
1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Return Result(2).

Note that evaluating CaseClause does not execute the associated StatementList. It simply evaluates the
Expression and returns the value, which the CaseBlock algorithm uses to determine which StatementList to
start executing.

 B.6 CONVERSION FUNCTIONS

The conversion functions, ToBoolean, ToNumber, ToInteger, ToInt32, ToUint32, ToString and ToObject
are global functions that operate as described in this document.

 B.7 ASSIGNMENT-ONLY OPERATOR (:=)1

The assignment-only operator operates identically to the assignment operator (=) except that if the given
lvalue doesn’t already exist, prior to the statements execution, a runtime error is generated.

 B.8 SEALING OF AN OBJECT2

A facility to prevent an object from being further expanded may be invoked at any time after an object has
been constructed. This is semantically the dynamic equivalent to the static Java final class modifier. This
facility may be implemented as a method of the object, a global function, or, if the class statement is
adopted, as a class modifier to class. Once an object has been sealed or finalized, any attempt to add a
new property to the object results in a runtime error.

 72 87

 B.9 THE ARGUMENTS KEYWORD3

The arguments keyword refers to the arguments object. Within global code, arguments returns
null. Within eval code, arguments returns the same value as in the calling context.

Discussion:

This interpretation of the "arguments" within a function body differs from existing practice but has two
important advantages over the current mechanism:

1. It can be much more efficiently implemented, especially in the case of recursive functions.

2. It eliminates some complex and confusing semantic issues that arise as a result of the arguments to an
activation frame being accessible from a function object.

It solves scope resolution issues related to using arguments within a with block on an object that has an
arguments member, such as Math.

 B.10 PREPROCESSOR

 B.11 THE DO..WHILE STATEMENT

B.12 BINARY OBJECT

 73 87

APPENDIX C: PEOPLE CONTACTS

Brendan Eich (brendan@netscape.com)
C. Rand McKinney (rand@netscape.com)

Donna Converse (converse@netscape.com)

Clayton Lewis (clayton@netscape.com)
Randy T. Solton (rsolton@wpo.borland.com)

Mike Gardner (mgardner@wpo.borland.com)

Shon Katzenberger (shonk@microsoft.com)

Robert Welland (robwell@microsoft.com)

Guy Steele (guy.steele@east.sun.com)

 74 87

APPENDIX D: RESOLUTION HISTORY

 D.1 JANUARY 15, 1997

D.1.1 White Space

Updated the White Space White Space section to include form feed and vertical tab as white space.

D.1.2 Keywords

Updated the Keywords Keywords section to exclude those keywords related to proposed extensions. Also
updated this section to include the delete keyword which was missing.

D.1.3 Future Reserved Words

Update the Future Reserved Words Future Reserved Words to only include keywords related to proposed
extensions. We decided to remove words that had been only included as future reserved for Java
compatibility purposes.

D.1.4 Octal And Hex Escape Sequence Issue

Decided to support octal and hex notation. Since only two hex digits are used with hex notation, many
unicode characters cannot be represented this way. Furthermore, we were not sure if the high 128 characters
match up with unicode. (Removed open issue at bottom of section

 String Literals

String Literals)

The argument against was that these notations are redundant since any character can be represented using the
unicode escape sequence. The arguments for were that hex and octal notation are convenient and simple and
also that there is a language tradition to be upheld.

D.1.5 ToPrimitive

Removed the erroneous note stating that errors are never generated as a result of calling ToPrimitive in the
 ToPrimitive ToPrimitive section.

D.1.6 Hex in ToNumber

We decided to allow hex in ToNumber but not octal. Looking at it from the user input source point of
view, we decided that it was reasonable to use hex but not octal since it might be common to include
leading zeros in a user input field. Furthermore we did not believe that the ability to use octal in data entry
was desirable. (Removed open issue at the bottom of 5.3.1 ToNumber Applied to the String Type)

D.1.7 Attributes of Declared Functions and Built-in Objets

We decided that built-in objects will have attributes { DontEnum } and that variables declared in global code
will have empty attributes. (Updated the 6.1.1 Global Object section)

 75 87

D.1.8 The Grouping Operator

We decided that the grouping operator would return the result of GetValue() so that the result is never of
type reference. (Updated the The Grouping Operator The Grouping Operator and removed the open issue at
the bottom of this section)

D.1.9 Prefix Increment and Decrement Operators

We decided to not to perform GetValue to the return value and thus leave the algorithm as is. (removed the
open issue at the bottom of the Prefix Increment and Decrement Operators Prefix Increment and Decrement
Operators)

D.1.10 Unary Plus

We decided to leave the algorithm for unary plus alone and continue to call GetValue() and ToNumber() after
evaluating the unary expression which guarantees a numeric result as opposed to only evaluating the unary
expression which would not guarantee a numeric result. (Updated the Unary + and -
 Operators Unary + and - Operators section)

D.1.11 Multiplicative Operators

Updated step nine in the Multiplicative Operators Multiplicative Operators section to refer to three new
sections 7.41, 7.42 and 7.43 which define the behavior of *, / and %.

D.1.12 Additive Operators

Updated step 11 in 7.5.1 and step 10 in 7.5.2 to refer to a new section 7.5.3 which define the behavior of +
and -.

D.1.13 Left Shift Operator

We decided to leave the algorithm for left shift as is, which converts the left operand using ToInt32 rather
than ToUint32. Although an unsigned conversion might be arguably preferred, we decided to continue to
convert to signed, as we can always add a new operator (<<<) to accomplish an unsigned shift. (Removed
the open issue at the bottom of The Left Shift Operator (<<) The Left Shift Operator (<<))

D.1.14 Binary Bitwise Operators

We decided to leave the algorithm for the binary bitwise operators as is, which uses signed conversion on
the GetValue of its operands. (Removed the open issue at the bottom of Binary Bitwise Operators Binary
Bitwise Operators)

D.1.15 Conditional Operator (? :)

We decided to leave the algorithm for the conditional operator as is, which performs a GetValue on the
result before returning. Current implementations do not do this. (Removed the open issue at the bottom of
 Conditional Operator (?:) Conditional Operator (?:))

D.1.16 Simple Assignment

We decided to leave the algorithm for simple assignment as is. (Removed the open issue at the bottom of
 Simple Assignment (=) Simple Assignment (=))

D.1.17 The for..in Statement

We decided to impose no restrictions on Expression1. (Removed the first open issue at the bottom of The
 for..in Statement The for..in Statement)

 76 87

D.1.18 The return Statement

We decided to not generate an error if one return statement in a function returns a value and another return in
the same function does not return a value. (Removed the first open issue at the bottom of the The return
 Statement The return Statement The second issue at the bottom of this section has been moved to The
 CV of CharacterEscapeSequence : : \ NonEscapeCharacter is the CV of t he NonEscapeCharacter .

• The CV of NonEscapeCharacter : : SourceCharacter but not SingleEscapeCharacter or OctalDigit or
 x or u or LineTerminator is the SourceCharacter character itself.

• The CV of HexEscapeSequence : : \ x HexDigit HexDigit is the Unicode character whose code is (16
 times the MV of the first HexDigit) plus the MV of the second HexDigit .

• The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code is the MV of the
 OctalDigit .

• The CV of OctalEscapeSequence : : \ OctalDigit Oct alDigit is the Unicode character whose code is (8
 times the MV of the first OctalDigit) plus the MV of the second OctalDigit .

• The CV of OctalEscapeSequence : : \ ZeroToThree OctalDigit OctalDigit is the Unicode character
 whose code is (64 (that is, 8 2) times the MV of the ZeroToThree) plus (8 times the MV of the first
 OctalDigit) plus the MV of the second OctalDigit .

• The MV of ZeroToThree : : 0 is positive zero.

• The MV of ZeroToThree : : 1 is 1.

• The MV of ZeroToThree : : 2 is 2.

• The MV of ZeroToThree : : 3 is 3.

• Th e CV of UnicodeEscapeSequence : : \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
 character whose code is (4096 (that is, 16 3) times the MV of the first HexDigit) plus (256 (that is, 16 2)
 times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of
 the fourth HexDigit .

 Note that a LineTerminator character cannot appear in a string literal, even if preceded by a backslash \ .
 The correct way to cause a line terminator character to be part of the string value of a strin g literal is to use
 an escape sequence such as \ n or \u000A .

 Automatic Semicolon Insertion Automatic Semicolon Insertion)

D.1.19 New Proposed Extensions

Sections B.10 Preprocessor B.10 Preprocessor, B.11 The do..while Statement B.11 The do..while
Statement and B.12 Binary Object B.12 Binary Object were added.

D.2 JANUARY 24, 1997

D.2.1 End Of Source

Updated SourceCharacter ::

 any Unicode character

 End Of Source SourceCharacter ::

any Unicode character

End Of Source section to describe the end of source token as logical rather than physical \u0000 since
strings may contain embedded \u0000 characters.

D.2.2 Future Reserved Words

Updated Future Reserved Words Future Reserved Words section to include the word do and removed the
footnotes indicating the origin of the proposed keywords.

 77 87

D.2.3 White Space

Updated White Space White Space section. Updated the lexical production for SimpleWhiteSpace to include
<VT> and <FF> (already mentioned in the white table above).

D.2.4 Comments

Added new issue to 3.2 regarding nested comments.

D.2.5 Identifiers

Updated section 3.3.2 to correctly state what is an allowable first character in an identifier.

D.2.6 Numeric Literals

Updated section 3.3.4.3 Numeric Literals to disallow leading zeros in floating point literals.

D.2.7 String Literals

Updated the table describing the set of character escape characters in section

 String Literals

String Literals, to include a new column indicating the unicode value. Also added a new issue to the end of
this section.

D.2.8 Automatic Semicolon Insertion

Added two new issues to the end of The CV of CharacterEscapeSequence : : \ NonEscapeCharacter is the
 CV of t he NonEscapeCharacter .

• The CV of NonEscapeCharacter : : SourceCharacter but not SingleEscapeCharacter or OctalDigit or
 x or u or LineTerminator is the SourceCharacter character itself.

• The CV of HexEscapeSequence : : \ x HexDigit HexDigit is the Unicode character whose code is (16
 times the MV of the first HexDigit) plus the MV of the second HexDigit .

• The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code is the MV of the
 OctalDigit .

• The CV of OctalEscapeSequence : : \ OctalDigit Oct alDigit is the Unicode character whose code is (8
 times the MV of the first OctalDigit) plus the MV of the second OctalDigit .

• The CV of OctalEscapeSequence : : \ ZeroToThree OctalDigit OctalDigit is the Unicode character
 whose code is (64 (that is, 8 2) times the MV of the ZeroToThree) plus (8 times the MV of the first
 OctalDigit) plus the MV of the second OctalDigit .

• The MV of ZeroToThree : : 0 is positive zero.

• The MV of ZeroToThree : : 1 is 1.

• The MV of ZeroToThree : : 2 is 2.

• The MV of ZeroToThree : : 3 is 3.

• Th e CV of UnicodeEscapeSequence : : \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
 character whose code is (4096 (that is, 16 3) times the MV of the first HexDigit) plus (256 (that is, 16 2)
 times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of
 the fourth HexDigit .

 Note that a LineTerminator character cannot appear in a string literal, even if preceded by a backslash \ .
 The correct way to cause a line terminator character to be part of the string value of a strin g literal is to use
 an escape sequence such as \ n or \u000A .

 Automatic Semicolon Insertion Automatic Semicolon Insertion.

 78 87

D.2.9 Property Attributes

Renamed Permanent to DontDelete in the property attributes table in the Property Attributes Property
Attributes section.

D.2.10 ToPrimitive

Reworded section ToPrimitive ToPrimitive to better describe the optional hint PreferredType.

D.2.11 ToNumber

Updated section ToNumber ToNumber. Added Hint Number in call to ToPrimitive. Also added new issue to
the end of this section.

D.2.12 White Space

Updated section ToNumber Applied to the String Type ToNumber Applied to the String Type Updated the
lexical production for SimpleWhiteSpace to include <VT> and <FF>.

D.2.13 ToNumber Applied to the String Type

Updated section 5.3.1, ToNumber Applied to the String Type. Reworked lexical productions to be similar
to those used in section,

 Numeric Literals

Numeric Literals. The difference between string numeric literals and numeric literals is that string numeric
literals do not allow octal notation and do allow leading zeros.

D.2.14 ToString

Updated section ToString ToString. Added Hint String in call to ToPrimitive.

D.2.15 Postfix Increment and Decrement Operators

Updated section Postfix Increment and Decrement Operators Postfix Increment and Decrement Operators.
Updated the algorithm to return Result(3) (the result of converting ToNumber), rather than (Result(2).

D.2.16 The typeof operator

Added a new issue at the end of section The typeof Operator The typeof Operator.

D.2.17 Prefix Increment and Decrement Operators

Removed extraneous calls to ToPrimitive from the algorithm in section Prefix Increment and Decrement
 Operators Prefix Increment and Decrement Operators.

D.2.18 Multiplicative Operators

Remove step 7 in the algorithm in section 7.4 (either operand NaN) and added a new rule to 7.4.1 and 7.4.2
to reiterate what was in the old step.

D.2.19 The Subtraction Operator

Removed extraneous calls to ToPrimitive from the algorithm in section 7.5.2.

D.2.20 The Subtraction Operator

Remove the old step 9 in the algorithm in section 7.5.2 (either operand NaN) and added a new rule to
section 7.5.3 to reiterate what was in the old step.

 79 87

D.2.21 Applying the Additive Operators (+, -)

Update the last rule in section 7.5.3 to clearly state that operands mentioned in the final sentence must be
numeric.

D.2.22 Equality Operators

Moved the Semantic discussion at the beginning of 7.8 to the discussion section at the end of 7.8

D.2.23 ToPrimitive Usage

Added issue at the end of sections 7.5.1 and 7,7.

D.2.24 Binary Logical Operators

Added issue at the end of 7.10.

D.3 JANUARY 31, 1997

D.3.1 MultiLineComment

Updated the lexical production MultiLineComment in section Line End ::
 LineTerminator
 <EOS >

 Comments LineEnd ::
LineTerminator
<EOS>

Comments, to allow empty multi-line comments. Also removed the issue at the end of this section
regarding nested mutli-line comments. The MultiLineComment production continues to disallow multi-line
comments.

D.3.2 String Literals

Removed open issue at the end of section

 String Literals

String Literals which stated that the maximum string constant supported must be at least 32000 characters
long.

D.3.3 Automatic Semicolon Insertion

Updated section The CV of CharacterEscapeSequence : : \ NonEscapeCharacter is the CV of t he
 NonEscapeCharacter .

• The CV of NonEscapeCharacter : : SourceCharacter but not SingleEscapeCharacter or OctalDigit or
 x or u or LineTerminator is the SourceCharacter character itself.

• The CV of HexEscapeSequence : : \ x HexDigit HexDigit is the Unicode character whose code is (16
 times the MV of the first HexDigit) plus the MV of the second HexDigit .

• The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code is the MV of the
 OctalDigit .

• The CV of OctalEscapeSequence : : \ OctalDigit Oct alDigit is the Unicode character whose code is (8
 times the MV of the first OctalDigit) plus the MV of the second OctalDigit .

• The CV of OctalEscapeSequence : : \ ZeroToThree OctalDigit OctalDigit is the Unicode character
 whose code is (64 (that is, 8 2) times the MV of the ZeroToThree) plus (8 times the MV of the first
 OctalDigit) plus the MV of the second OctalDigit .

 80 87

• The MV of ZeroToThree : : 0 is positive zero.

• The MV of ZeroToThree : : 1 is 1.

• The MV of ZeroToThree : : 2 is 2.

• The MV of ZeroToThree : : 3 is 3.

• Th e CV of UnicodeEscapeSequence : : \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
 character whose code is (4096 (that is, 16 3) times the MV of the first HexDigit) plus (256 (that is, 16 2)
 times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of
 the fourth HexDigit .

 Note that a LineTerminator character cannot appear in a string literal, even if preceded by a backslash \ .
 The correct way to cause a line terminator character to be part of the string value of a strin g literal is to use
 an escape sequence such as \ n or \u000A .

 Automatic Semicolon Insertion Automatic Semicolon Insertion, to include rules governing parsing the
for statement and dealing with postfix ++ and postfix –– tokens.

D.3.4 The Number Type

Updated the description in section The Number Type The Number Type.

D.3.5 Put with Explicit Access Mode

Update section 4.5.2.3, Put with Explicit Access Mode to include looking in the prototype object for access
violations.

D.3.6 Put with Implicit Access Mode

Update section 4.5.2.4, Put with Implicit Access Mode to include looking in the prototype object for access
violations.

D.3.7 The String type

Updated the description in section 4.6, The String Type.

D.3.8 ToNumber

Updated section 5.3, ToNumber to return a NaN for an input type of Null.

D.3.9 ToNumber Applied to the String Type

Updated the lexical production for SimpleWhiteSpace in section 5.3.1 to include <CR> and <LF>. Also
updated the lexical productions StrFloatingPointLiteral and StrIntegerLiteral to allow signs.

D.3.10 ToInt32

Updated description in section 5.5, ToInt32: (signed 32 bit integer) to tentatively use Guy’s Conversion
modulo 2^32 algorithm.

D.3.11 ToUint32

Updated description in section ToUint32: (unsigned 32 bit integer) ToUint32: (unsigned 32 bit integer) to
tentatively use Guy’s Conversion modulo 2^32 algorithm.

D.3.12 Execution Contexts (Variables)

Section 6 (Variables) replaced by new section (Execution Contexts).

 81 87

D.3.13 Function Calls

Swapped steps 2 and 3 in section 7.2.4, Function Calls.

D.3.14 The typeof Operator

Updated the table in section The typeof Operator The typeof Operator to specify the result when
the input type is an external object. Removed related open issue at the end of this section.

D.3.15 Applying the % Operator

Removed step 7 in the algorithm in section 7.4.(either operand NaN) and added a new rule to 7.4.3 to
reiterate what was in the old step.

D.3.16 The Addition Operator (+)

Added the hint Number in the calls to ToPrimitive in section 7.5.1, The Addition Operator (+). Removed
related open issue at the end of this section.

D.3.17 Relational Operators

Added the hint Number in the calls to ToPrimitive in section 7.7, Relational Operators. Removed related
open issue at the end of this section.

D.3.18 Conditional Operator (?:)

Updated the syntactic production, ConditionalExpression, in section Conditional Operator (?:) Conditional
Operator (?:)

D.3.19 Compound Assignment (op=)

Swapped steps 2 and 3 in section 7.12.2, Compound Assignment (op=)

D.4 FEBRUARY 21, 1997

D.4.1 Unicode Escape Sequences

Rewrote section Unicode Unicode to reflect the restriction that non-ASCII Unicode characters may appear
only within comments and string literals. Moved the description of Unicode escape sequences to

 String Literals

String Literals.

D.4.2 Future Reserved Words

Added import and super to table in Future Reserved Words Future Reserved Words.

D.4.3 Automatic Semicolon Insertion

Rewrote the rules for semicolon insertion in section The CV of CharacterEscapeSequence : : \
 NonEscapeCharacter is the CV of t he NonEscapeCharacter .

• The CV of NonEscapeCharacter : : SourceCharacter but not SingleEscapeCharacter or OctalDigit or
 x or u or LineTerminator is the SourceCharacter character itself.

• The CV of HexEscapeSequence : : \ x HexDigit HexDigit is the Unicode character whose code is (16
 times the MV of the first HexDigit) plus the MV of the second HexDigit .

• The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code is the MV of the
 OctalDigit .

 82 87

• The CV of OctalEscapeSequence : : \ OctalDigit Oct alDigit is the Unicode character whose code is (8
 times the MV of the first OctalDigit) plus the MV of the second OctalDigit .

• The CV of OctalEscapeSequence : : \ ZeroToThree OctalDigit OctalDigit is the Unicode character
 whose code is (64 (that is, 8 2) times the MV of the ZeroToThree) plus (8 times the MV of the first
 OctalDigit) plus the MV of the second OctalDigit .

• The MV of ZeroToThree : : 0 is positive zero.

• The MV of ZeroToThree : : 1 is 1.

• The MV of ZeroToThree : : 2 is 2.

• The MV of ZeroToThree : : 3 is 3.

• Th e CV of UnicodeEscapeSequence : : \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
 character whose code is (4096 (that is, 16 3) times the MV of the first HexDigit) plus (256 (that is, 16 2)
 times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of
 the fourth HexDigit .

 Note that a LineTerminator character cannot appear in a string literal, even if preceded by a backslash \ .
 The correct way to cause a line terminator character to be part of the string value of a strin g literal is to use
 an escape sequence such as \ n or \u000A .

 Automatic Semicolon Insertion Automatic Semicolon Insertion to incorporate the rule that a semicolon is
not inserted if it would be treated as an empty statement. Also, broke out the empty statement as a separate
kind of statement for expository purposes in section E mpty Statement Empty Statement.

D.4.4 The Number Type

Corrected formatting of formulae in section The Number Type The Number Type.

D.4.5 NotImplicit and NotExplicit Property Attributes Deleted

The NotImplicit and NotExplicit property attributes were deleted from the table in section Property
 Attributes Property Attributes. Many changes throughout the rest of chapter 4 to reflect this deletion. Also,
the [[TestPutExplicit]] helper method was renamed [[CanPut]].

D.4.6 ToInt32 and ToUint32

Corrected formatting of formulae in section ToInt32: (signed 32 bit integer) ToInt32: (signed 32 bit integer)
and section ToUint32: (unsigned 32 bit integer) ToUint32: (unsigned 32 bit integer). Also, change the
discarding of the fractional part to truncate toward zero rather than using a simple floor operation.

Correct an error in the descriptions by adding a new step 4 to each one, which makes
sure that if the input is negative zero, the output is positive zero.

D.4.7 Grouping Operator

Delete step 2 from section The Grouping Operator The Grouping Operator. Parentheses no longer force
dereferencing.

D.4.8 Shift Expressions

Correct the grammar for ShiftExpression by adding AdditiveExpression as an alternative in section Bitwise
 Shift Operators Bitwise Shift Operators.

D.4.9 Conversion Rules for Relational Operators

Updated description in section Rela tional Operators Relational Operators so that lexicographic string
ordering is used only if both operands become strings when converted to primitive type; if one is a string
and one is a number, then numeric ordering is used. Thus relational operators differ from the + operator,
which, if one operand is a string and one is a number, performs string concatenation rather than addition.

 83 87

D.4.10 && and || Semantics

Updated description in section Binary Logical Operators Binary Logical Operators so that && and || have
PERL-like semantics; that is, the result of 1||2 is 1, not true, and the result of 0||”Hello” is
“Hello” .

D.4.11 Conditional Operator

Updated section Conditional Operator (?:) Conditional Operator (?:) to reflect the change that the second
and third subexpressions should each be AssignmentExpression.

D.4.12 Assignment Operators

Updated section Assignment Operators Assignment Operators to reflect the change that the left-hand side of
an assignment should be a PostfixExpression. Also change two occurrences in subsections of SetVal to
PutValue.

D.4.13 Syntax of Class Statement

Updated section B.1 The Class Statement 1 B.1 The Class Statement1 to allow the parentheses in a class
declaration to be optional.

D.4.14 Syntax of Try Statement

Updated section B.2.1 The try Statement 1 B.2.1 The try Statement1 to require the body of a catch
or finally clause to be a Block.

D.5 FEBRUARY 27, 1997

D.5.1 Grammar Notation

Big rewrite of section Syntactic and Lexical Grammar s Syntactic and Lexical Grammars to make the
description of grammar notation more detailed and rigorous. Is this okay? (Much of the text was borrowed,
in form at least, from the Java Language Specification.) The notation is still a bit inconsistent throughout
the document (example: “except” versus “but not”), and should be made consistent within itself and with
section Syntactic and Lexical Grammar s Syntactic and Lexical Grammars.

Also decided to call out the grammar in Chapter 5 as a separate grammar and use triple colons on its
productions.

Restructured some of the grammar in Chapter 3 to make it a bit more readable. Is this okay?

D.5.2 End of Medium Character Is No Longer WhiteSpace

Deleted character \u0019 (End of Medium) from the table in section White Space White Space, and deleted
<EOM> as an alternative for SimpleWhiteSpace in that same section. Also deleted <EOM> as an
alternative for StrWhiteSpaceChar in section ToNumber Applied to the String Type ToNumber Applied to
the String Type. These changes reflect the decision that neither \u0019 (End of Medium, mistakenly also
referred to in previous drafts of this document as ^Z) nor \u001A (Substitute, which really is ^Z) shall be
considered whitespace in an ECMAScript program. It is expected that host environments will filter any ^Z
character that might occur at the end of the host environment’s representation of an ECMASCript program.

D.5.3 Meaning of Null Literal

Added to section Null Literals Null Literals a discussion of the meaning of a null literal.

D.5.4 Meaning of Boolean Literals

Added to section Semantics

 84 87

 The value of the null literal null true is the sole value of the N n ull type, namely nul l .

 Boolean Literals Semantics

The value of the null literal true is the sole value of the null type, namely nul l .

Boolean Literals a discussion of the meaning of a boolean literal.

D.5.5 Meaning of Numeric Literals

Added to section

 Numeric Literals

Numeric Literals a discussion of the meaning of a numeric literal. It does not yet address the restriction to
19 significant digits. Is this the style of description we want?

D.5.6 Automatic Semicolon Insertion

Updated description of automatic semicolon insertion in section The CV of CharacterEscapeSequence : : \
 NonEscapeCharacter is the CV of t he NonEscapeCharacter .

• The CV of NonEscapeCharacter : : SourceCharacter but not SingleEscapeCharacter or OctalDigit or
 x or u or LineTerminator is the SourceCharacter character itself.

• The CV of HexEscapeSequence : : \ x HexDigit HexDigit is the Unicode character whose code is (16
 times the MV of the first HexDigit) plus the MV of the second HexDigit .

• The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code is the MV of the
 OctalDigit .

• The CV of OctalEscapeSequence : : \ OctalDigit Oct alDigit is the Unicode character whose code is (8
 times the MV of the first OctalDigit) plus the MV of the second OctalDigit .

• The CV of OctalEscapeSequence : : \ ZeroToThree OctalDigit OctalDigit is the Unicode character
 whose code is (64 (that is, 8 2) times the MV of the ZeroToThree) plus (8 times the MV of the first
 OctalDigit) plus the MV of the second OctalDigit .

• The MV of ZeroToThree : : 0 is positive zero.

• The MV of ZeroToThree : : 1 is 1.

• The MV of ZeroToThree : : 2 is 2.

• The MV of ZeroToThree : : 3 is 3.

• Th e CV of UnicodeEscapeSequence : : \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
 character whose code is (4096 (that is, 16 3) times the MV of the first HexDigit) plus (256 (that is, 16 2)
 times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of
 the fourth HexDigit .

 Note that a LineTerminator character cannot appear in a string literal, even if preceded by a backslash \ .
 The correct way to cause a line terminator character to be part of the string value of a strin g literal is to use
 an escape sequence such as \ n or \u000A .

 Automatic Semicolon Insertion Automatic Semicolon Insertion. Systematically replaced the word “injected”
with “inserted”. Invented a new theory of “restricted productions” to explain in a general way why the parser
inserts semicolons in places where there would otherwise be a valid parse without a semicolon. Added more
examples and advice. Also modified productions in sections Postfix Expressions Postfix Expressions and
 The return S TATEMENT The return STATEMENT to indicate the restrictions explicitly.

D.5.7 The Number Type

Updated section The Number Type The Number Type to provide explanations of those large numbers as
sums and differences of powers of two.

 85 87

D.5.8 ToString on Numbers

Updated section ToString Applied to the Number Type ToString Applied to the Number Type have a draft
specification of how this conversion ought to be done. This needs to be reviewed. This version requires
that, when the number has a nonzero fractional part, the output must be correctly rounded and produce no
more digits than necessary for the fractional part. Added a bibliographic reference to the paper and code of
David M. Gay on this subject.

D.5.9 New Operator

Updated description in section The new Operator The new Operator to describe the case where no
argument list is provided. This needs to be reviewed.

D.5.10 Delete Operator

Updated description in section The delete Operator The delete Operator to reflect decision that this
operator shall return a boolean value; the value true indicates that, after the operation, the object is
guaranteed not to have the specified property.

D.5.11 == Semantics

Updated section Equality Operators Equality Operators so that (a) null and undefined are considered
equal, and (b) when a number meets a string, the number is converted to a string and then string equality is
used.

D.5.12 && and || Semantics

Updated description in section Binary Logical Operators Binary Logical Operators to delete step 7 for
eachoperator (the result of this step was no longer used).

D.5.13 Separate Productions for Continue, Break, Return

To make certain kinds of cross-reference in the document simpler, I broke out the continue, break, and
return statements into separate grammatical productions, eliminating the production for
ControlFlowStatement (which was something of a misnomer anyway, and other statements also result in
(structured) control flow.

D.5.14 Dead Code Is Not Protected from Compile-Time Analysis

Added text to chapter 12 (Errors).

D.6 MARCH 6, 1997

D.6.1 Reformatted the Entire Document

I order to make future revisions easier and to take better advantage of the desktop-publishing capabilities of
Word, the entire document was reformatted using some newly defined Word styles. Heading numbering was
turned on to facilitate automatic numbering of headings in the main text (sections of the appendices are still
numbered manually, using new styles Appendix Heading 1, Appendix Heading 2, and Appendix Heading 3).
A new style Algorithm is used for algorithmic steps; in some cases, the last step should be styled with
AlgorithmLast to provide extra vertical space after the last step.

Added a style called MathSpecialCase (generates bullet lists for now).

The title page now uses styles Title and Subtitle, which were modified to use apropriate fonts and paragraph
spacing.

Extraneous tab characters and multiple spaces were deleted from all headings.

 86 87

The paragraph spacing of Normal, the various headings, Algorithm, AlgorithmLast, SyntaxRule, and
SyntaxDefinition were adjusted so that the correct vertical space is inserted automatically. All blank
paragraphs in the document were deleted.

The index and all index entries were deleted. Sorry, but they were somehow interfering with other
formatting, and the index entries were terribly incomplete anyway. If we have time to do a good index,
entries can be added semi-systematically.

The document was divided into three of what Word calls “sections” so that the pages of the Table of
Contents could be numbered with the customary roman numerals, with the main text starting on page 1.

All the revisions listed in this item were accepted and the change bars reset before the following items were
entered, so that all the changes of this item would not clutter the manuscript.

D.6.2 Designed a Section Outline for Chapter 11

Filled in nearly all necessary section headings for Chapter 1 for describing Object, Function, Array, String,
Boolean, Number, and Math and all their properties and methods. Added a fair amount of boilerplate text.

D.6.3 Defined Math Functions

Added complete definitions for all properties in the Math object, following the example of C9X for the
treatment of IEEE 754 spoecial cases.

 D.7 M ARCH 10, 1997

D.7.1 Added Definition of “The Number Value for x”

 In section 4.4 , the phrase “the number value for x ” is now defined. It encapsulates the entire IEEE 754
 process for converting any nonzero mathematical value to a representable value by using round-to-nearest
 mode. This phrase is of great use in Chapter 11 and elsewhere.

 Also corrected two typos in this section: − 1073 replaced by − 1074, and 2 53 replaced by 2 52 .

D.7.2 atan and atan2 May Use Implementation-Dependent Values for π, etc.

 It was decided at the phone meeting th at when Math. atan , for example, is supposed to return π /2, it
 need not return exactly one-half the initial value of Math.pi , but may produce an approximation. The
 motivation is to allow implementors the use of whatever C math library is present on the hardware
 platform at hand, whether or not it conforms to the high quality standards of, for example, the C9X
 proposal.

D.7.3 Improved Discussion of Input Stream for Syntactic Grammar

 Text added to section 1.1 to better explain the hand ling of whitespace, comments, and line terminators, and
 the fact that line terminators become part of the input stream for the syntatic grammar. Also corrected a
 type in section 1.1.5 where the phrase “ [no LineTerminator here] ” had been inadvertently omitted.

D.7.4 Improved Treatment of LineTerminator in Lexical Grammar

 Eliminated the mythical <EOS> character. As a result, LineEnd is not needed either. The trick is not to
 include LineEnd (or LineTerminator) as part of the grammar of a single-line comment. This works out
 better, because a single-line comment still runs to the end of the line (as dictated by the longest-token-
 possible rule), but it doesn’ t swallow the LineTerminator , so it doesn’t affect automatic semicolon
 insertion. (That the previous production did swallow the LineTerminator was thus a bug.)

 The section on whitespace has been divided into two sections, one on WhiteSpace (formerly called
 SimpleWhiteSpace) and one on Line Terminators.

 87 87

 THIS CHANGE REQUIRES REVIEW.

D.7.5 Clarify Behavior of Unicode Escape Sequences

 In Chapter 2 , clarify that a Unicode escape sequence such as \u000D does not produce a carriage return that
 could end a single-line comment, for example.

D.7.6 Add Careful Description of the String Value of a String Literal

 In imitation of the text already present describing the value of a numeric literal, text was added to section
 3.7.4 to describe carefully the exact sequence of characters represented by a stri ng literal. In the process,
 missing productions for DoubleStringCharacters and SingleStringCharacters were added, and the redundant
 defintions of HexDigit and OctalDigit were removed. Also dealt with an open issue by emphasizing that a
 LineTerminator may not appear within a string literal.

D.7.7 Description of Identifiers Reworded

 Improvements to the wording in section 3.5 . Also repaired a typo (capital I replaced by lowercase I).

D.7.8 Table of Punctuators Corrected

 Underscore repl aced by + operator in table in section 3.6 .

D.7.9 Improved Descriptions of ToInt32 and ToUint32

 Step 5 of the algorithms in sections 5.5 and 5.6 have been clarified to use a mathematical description rather
 than fragments of code .

D.7.10 Changes to ToString Applied to the Number Type

 See section 5.7.1 . Negative zero now produces "0" . , not "-0" . . Integers less than 10 20 shall print
 without decimal points. Valu es less than 1 but not less than 10 −6 will not require scientific notation.

D.7.11 Revised Syntax for NewExpression and MemberExpression

 Made the changes to section 7.2 as suggested by Shon, eliminating NewCallExpression and providing a
 pleasing symmetry in which the number of new operators can exceed or fall short of the number of
 argument lists.

D.7.12 Clarify Multiplicative and Additive Operators

 In section 7.4.1 , describe the multiplication of infinity b y infinity.

 In section 7.4.1 , describe the division of infinity by zero .

 In section 7.4.1 , better describe the remainder of a zero by a finite number .

 In section 7.5 , better describe the sum of two zeros and the sum of finite numbers of same magnitude and
 opposite sign.

D.7.13 Addition Operator No Longer Gives Hint Number

 When the addition operator + calls ToPrimitive, it no longer gives hint Number. Note that all built-in
 objects re spond to ToPrimitive without a hint as if hint Number were given, so thius change affects only
 external objects.

D.7.14 Correct Description of Relational Operators

 Miscellaneous small corrections.

 88 87

D.7.15 Assignment Operator LHS Must Be PostfixExpression

 Change four occurrences of UnaryExpression to PostfixExpression in section 7.12 .

D.7.16 Changes to For-in Loops

 Without var , the expression before i n must be a PostfixExpression (as for an assignment),

 With var , an optional Initializ er is permitted after the Identifier .

 A For-In loop enumerates not only properties of the given object itself, but also properties of its prototype,
 and so on, recursively.

 ISSUE: Are shadowed properties of the prototype enumerated?

D.7.17 Break and Continue Must Occur within While or For Loop

 Added text to sections 8.6 and 8.7 to require break and continue to appear within loop statements.

 89 87

APPENDIX E: LALR(1) SYNTACTIC GRAMMAR

Issue: To be supplied?

 90 87

