ECMASCRIPT LANGUAGE SPECIFICATION

ECMA CoMMITTEE #39
VERSION 0.11

MARCH 11, 1997

Please send feedback regarding this document to Guy Steele (Guy.Steel e@east.sun.com).

1 NOTATIONAL CONVENTIONS. .. e 1%

1.1 SYNTACTIC AND LEXICAL GRAMMARS. .. 1t itititititttttitit ittt ettt teiata sttt itetitesettatsrsiaisisisiranes 13

1.1 1 CoNtEXt-Free GramIMarS. ettt e e e eaaaas 13

R I I g S I (o= =T 02 11

1.1.3The NUMENIC SITNG GraIMIMIAuueeeeeeeieeiteeree e e eean e e e e e et eean e e e e eeen s eeenaeeneeennns 13

O N TR Y) = Yo ol € = T = P 13

1.5 Grammar NOWALION. ... e e e e e e e e e et e et e e e e e e e e eaeenaes 22

1.2 ALGORITHM CONVENTIONS. .. e uetittiiiteteet ettt e et e e e e e et e e e e et et e e e e et e e aeeeteeeaens 44

2 SOUR CE TEXT ittt ittt e et e e e e e e e e e e e 55

2. L e 55

3 LEXICAL CONVENTIONS. .. e e et 66

I RN = = Y o =P 66

3.2 LINE TERMINATORS .. et uettueetett et eetneeaeenaeenseanseanseaneeaeetaeesseanaeannean et eeeneenseenseanaeaneenneennees 66

G TR 0] Y 1 Y 1= 1 T P 1+

1 N o = N = TP 88

I == Y=o VLY oo 88

30 (= Yo o - 88

B A3 FUUrE RESEIVEA WOIAS ... et e e e e e e e e e e e e e e eaaaeees 88

RSN 0] = R L= 1= 25T 99

BB PUN CTUATORS . ..t ttttttt ettt ettt et et e et e et e e et et e et et e et e e et e e e a e e e e e e et e e eaeeennen 99

T A I = 7 B T PRSPPI 1010

% R N 01 LI (= = | £ P 1040

R A T o <= g T L (= = 1046

AT N\ (V0 0's g Tl I (= = PP 1016

B S 1o T I = - 1242

3.8 AUTOMATIC SEMICOLON INSERTION L1 ttutttutntnetnatetnetnstseneensenssnesnesnessetnssseseensenseneenesnaanns 1515

A T Y PE S . i 1818

4.1 THE UNDEFINED T Y PE .t uituititittiiieieet et e et e et e et e e e e et e e et e e e e et e e et e e e e aanas 1818

T = N[O T 157 = U 1818

R I = = T o I =Y N 1N = =SS 1818

A A THENUMBER T Y PE ot uitiititttite e et e e e e et e et e e e et e e e et e e e e e e et e e e aneanas 1818

I I 11O = =0 17 = =P 1919

4.5.1 Property AIIDULESveeeeei et 1919

4.5.2 PrOPEITY ACCESS. ... eeteeet ettt ettt e et et et e e et e et et e e e 1919

TG A =TS e a0 o Y/ 2020

Y = 2020

TS T U | T 2020

G 8Ty =T N i N PPt 2121

A7 THE INTERNAL REFERENCE TY PE ... titiiiiitiee et etteeet et e e e eae e e e e e e e e e e e s e e eaneenseaneeneens 2121

R 1= T 212%

4.7.2 GEIPTOPEITYNAITIE ... ettt ettt e et e et et et e et e e e n e eans 2121

A T3 GEVAIUE.......uiii e e e e 2121

AT A PUVAIUB.ot e e e e et e et eeans 2121

B TYPE CONVERSION ..o e e e e et et 2222
1187

LT R @] Y T KV =P 2222

I 0] = T lo I =Y N TSP PTPN: 2222
LTS T 10 VLU= = = N 2323
5.3.1 ToNumber Applied to the SIHiNG TYPE...ceuuiie e e 2323
LT @] N 1= = PP 2424
5.5 TOINT32: (SIGNED 32 BIT INTEGER) ..cttueetettaeeettnaeeesttaeeeettaeeestaaeeeett s aeeeatnaeeentnaeeeennaeeens 2424
5.6 TOUINT32: (UNSIGNED 32 BIT INTEGER) .. vvueetueetneeeneeeteretneesnnaesnersneesnnesnnesnnnersnnesnnnees 2525
LI A 1 5 211 N TP 2525
5.7.1 ToString Applied to the NUMDEr TYPE.. ...t 2525
L3 S T 1@ = = o N 2626
EXECUTION CONTEXT S, ittt ittt ettt ettt 2727
L0 I B = N o N 272
L300 I I 0 L T o= £ 2127
6.1.2 Types Of EXECULADIE COUB ceviiiii e aens 272
6.1.3Variable INStantiationouniiiie e anas 2828
6.1.4 Scope Chain and Identifier RESOIULIONc.uuiiieiii i 2828

L N 1o o 1 @ o 1= v PP 2929
LS IS Ao 1AV 1 o L] o = o 2929
B.1.7 LaADE SHACKS. ... ettt e 2929
LS00 T 01PN 2929
6.1.9 ArguMENES ODJECL. ... ceuiiit ettt et e et e e e e e e eaas 2929
6.2 ENTERING AN EXECUTION CONTEXT 1tittiuitititet et eeteee e et et et et et e et e e et e e e ae e e e et eeaeneanens 3036
(ST R 1o o 7= IO o 3036
B.2. 2 EVAICOUB ... ettt e 3030
6.2.3 Function and ANONYMOUS COOE.ciuueiiieii e e e e e e e e e e e e e e e e e e eeaas 3030
B.2.4 HOSE COUE. ... euiieiei ettt e e e e e e et e e et e e et e e et eanesnaanns 3036
EX P RESSI ON . .ottt e e e 3131
7.1 PRIMARY EXPRESSIONS. . .uitiuitititetettet et et e e ee e et e e et e et e e e et eaea e e et e et aaaenataenanaenanns 313%
7.0.1 The thiS KEYWOIT. .. ceuiie ettt e e e e et e et e e et e e eaaaeees 313%

F A A Lo = 0 1L g = = 010 R 3131
A R A I L (< =1 == (= = o= 313%
7.1.4The GroUPIiNG OPEIaLOFciee et ettt ettt et e e e e e e e et e e e e e et e et e e e e aeteeetneeeaneaeneeeen 3131
7.2 POSTFIX EXPRESSIONS ... cuitiiiteite e ee et e e e et et et e e e et e et e e e et e e e s e e et e et e e enataenanaenanns 313%
T.2.0 PrOPEITY ACCESSOIS. ... eeuetuetteetae et et ee et e e et e et e et ettt e aa e e ea e et e et e et e et aen e een e eanaeaneeanaees 3232
7.2.2 Postfix Increment and Decrement OPEratorS cc.u e eeneei e eeee e e e e eeneees 3333
A R 1 oY 1= T @ 1 = (o) 3333
T.2.4 FUNCHON CallS....uiiiiiiiiiieie ettt e e et e e e e e aaeees 3333
7.3 UNARY OPERATORS. .. et tttutttetet e et tet et ettt e e eae et et et et ettt aa et eaataeeteenrtesaenataenanaeanns 3434
7.3.1 The Al @@ OPEIaLOr ... eee et eeee ettt et e e e e e e et e e aa e e et e e eanaaeees 3434
AT 1 o TR (o] To H @ 1= = | o] (P 3434
7.3.3 The tyPEOTf OPEIALOL ...ccevuiieiiiiiie ettt e e 3434
7.3.4 Prefix Increment and Decrement OPEratorS. eveeerereeeeeeiieraseeee e et eeeeeeaeeeeeeees 3535
7.3.5UNary + and - OPEIralOrS. ... ccuuueeeeeiieeieee et e e e e e e e e e e e et e e e e et e e et e e e aanns 3535
7.3.6 The BitwiSE NOT OPEIraLOr (~) evuuieeueeinieit et e et et e e et e e e e e et e e e e eanaeeens 3535
7.3.7 Logical NOT OPEIALOr (1). eeen ettt et et e e e e e e eens 3535
7.4 MULTIPLICATIVE OPERATORS ... euititittt et etet et et et et e et et e et e e et et e e et e e e et e e eaeaaeneneens 3636
7.4.1 ApPIYIiNg the * OPEIralOr ... eeeeeit e e e e e e e e e e e e e e e et e e e eanas 3636
1i8#

7.4.1 ApPIYING the / OPEIALOr. ... ciee i e et e e e e e e e e e e e e aaeeeen 3636

7.4.1 APPIYING the 90 OPEIALOKceneite et ettt et et e e e e aeens 3737
7.5 ADDITIVE OPERATORS. ...ttt ettt et et e et et e et e et e e e et et et et e e et e et e s ee e eeaaeanas 373+
7.5.1 The SUDLraction OPEIALOr (=)ueeeereeeeeii ettt e et e e e et e e 3838
7.6 BITWISE SHIFT OPERATORS. ..ttt ttt it ittt tte e tiete e te et e e et e e e e e e e e e et e e et e e e e e et e e e e anns 3939
7.6.1 The Left SNift OPErator (<<)uuuiuu et e e e e e e e e ean e eens 3939
7.6.2 The Sgned Right Shift Operator (S>>).ceuuiiiiiiiiiii e 3939
7.6.3 The Unsigned Right Shift Operator (>>>) ...cocuiiiiiiiiiicii e e 4040
7.7 RELATIONAL OPERATORS. ... uttutttuetteanetneetneeteeseeneeneenaeeeeseenaeaneeneetneeeneenaeenareneeenaees 4040
7.8 EQUALITY OPERATORS ...ttt itittttttttttttttttttaeseeaet ettt ettt ettt ta st s ettt tttetetetetaratenees 4141
7.9 BINARY BITWISE OPERATORS. ...t ttttitetet et et et e et e et e e e e e et e et e e e et e eneaaenenens 4242
7.10 BINARY LOGICAL OPERATORS ...euuetuttueteeentetnetteeneanseseenaeanaeseeneanaeeneenaeeneeeneenaennaennaes 4242
7.11 CONDITIONAL OPERATOR ([25)etutetutetneeeteeeta ettt e et e et e et e e e et ettt e e e et e e et e e e e eanaas 4343
7.12 ASSIGNMENT OPERATORS ... euittitet ettt et e et ettt e et e et et e et et e e et e e et e et e s eetaeneneenanns 4343
7.12.1 SIMPLE ASSIGNIMENT (S)eeetiiiii ettt e e et et e et eea e e eaa s 4343
7.12.2 Compound ASSIGNMENT (0P)erruerereiinieeiieeieeeeeeet s e et e e et e eat e eaa e eanaeeanaeeanaeranaeeens 4444
7.13 COMMA OPERATOR (4)+t tetuaeeuutetieett ettt e et e et e e et reeaa e ettt s e e et e e et e et ta e ean e e ean e eaeanaeennae 4444
8 ST ATEMENT S . e e e e e e e e 4545
8.1V ARIABLE STATEMEN Tttt uttttttttetttetaetetaeaneteaetsae s e et et et sa et eae i ea st eanetneaneanaanns 4545
8.2 EMPTY STATEMENT ..ttt et e et et e et e et e et e et e e e et e e e e et e e et e e eneaaenaenan 4646
8.3 EXPRESSION STATEMENT ..tutttttuettneetneeteenseenssanaeeneeeeeteeneeneanaeaneeeneeseennaenseenareneenneees 4646
o I I Y 7Ny =Y = N N 4646
B D I TERATION STATEMENT S ..t uititiiit it ettt ettt ettt e et et et et et et e et ea e e e et e et eeaeneraenennnn 474+
8.5.1 The While STAtEMENL.t e e e e e aneanas 4747
R I S (0] G == 1 1= 0L 4848
8.5.3 The fOr..in SAtEMENT...... oot e e e een 4848
8.6 THE CONINUE STATEMENT ...ttt ittt ttett ettt eae et et et et e ea e et et e e s eeeae s easa e sssenste e ansaarnannen 4949
A I 1= o 1= S Y 7N 1 = Y = 4949
8.8 THE FEIUM STATEMENT .tuitittttte et et e e et e e e e e e et e e et e e e e et e e et e e e anaanns 4949
8.0 THE With ST AT EMENT ettt et ettt e et e et e e et et e e et e e et et eae e e e e s s e st e e anstenennn 4949
9 FUNCTION DEFINITION L. e e et 5154
10 PROG RAM L e 5252
11 NATIVE ECMASCRIPT OBJECT S . ittt ittt ettt 5353
0 R = 0 =Y = = ot 5353
11.1.1 Value Properties of the Global Object...........covvviiiiii e 5353
11.1.2 Function Properties of the Global ObJECt............coeviiiiiiiiii e 5353
I 0 R = Y7 0 P PP 5353
11.2.2.2 parselNE(StHNG, TAOIX).ttt et 5353
11.2.2.3 PArSEFIOAL(SITING). « ettt e 5353
11.0.2.4 ©SCAPE(SIIING)- .. e n ettt et ettt et et 5353
11.2.2.5 UNESCAPE(SLIIMNG) .+t eneeentnet et et ettt et et e ettt et e ettt e et et a e 5353

B O N =0 O = = o 1= 5353
11.2.1 The OBJECt CONSLIUCTON ... ettt e e e e et e e e e e e e e e anaeeaneee 5353
11.2.1.1 NEW OBJECL(VAIUE) ee ettt et ettt et 5353
11.2.1.2 NEW OBJECE(): e e evvtereee e e e e e e e ettt e e e e e e et e e e e e e e e e et e e e e e e e e e et eeaaa s 5353
11.2.2 Properties of the ObjeCt CONSLIUCLONc.uuuiiiiieeeii e 5353

7 R @ o 1=Tox Y o 0] (] V4 o = PP 5454

11.2.3 Properties of the Object Prototype OBJeCt........covviiiiiiii e, 5454
11.2.4 Properties of OhJECE INSLANCES.ieuniii ettt e 5454
L1 3 FUNCTION OBIECT S, e ittitit et ettt ettt et e e e et e et et e e et e e et e e e e et e e eeeneanens 5454
11.3.1 The FUNCHON CONSIITUCIO. vuiie it eee e e et e e e e e e e e e e et e e e et e e e seeanns 5454
11.3.2 Properties of the FUNCtION CONSEIUCKONuiieniiiis e ee e e e e e e e eanes 5454
11.3.3 Properties of the Function Prototype ObJECt.couviiviiieiiie e 5454
11.3.4 Properties of FUNCLION INSLANCESieuniit et 5454
N Y N @)= N = o = T PPN 5454
12.4.1 ThE Array CONSITUCLOL ...e.uueeeeeeteieeteeeee et e e e e e e e e et e e e e s e e an e e ean e e ean s eeen s eeaneeeenaeeen 5454
11.4.1.1 new Array(itemO, ItemML, ITBM2, . .) e.iuieii e 5454
L1412 NEW ATTAY (BN .ttt e 5454
L1413 NEW ATTAY() ettt ettt et et ettt et e e e 5454
11.4.2 Properties of the Array CONSITUCIONvvuuriii e e e e e e e e e e e e s e e e e eeanaees 5454
O R N = Y o] (0] (01 = PP 5454
11.4.3 Properties of the Array Prototype ObJECtcovniiiiiii e 5454
L1431 JOIN e 5555
N 1Y 1= = 5555
I TR =0 PP 5555
11.4.4 Properties Of Array INSEANCES.uiiuiiii et ettt e e e e 5555
I A =0T |1 o PP 5555
10,5 STRING OBJIECT S, .ttt tteit et ettt et et ettt ettt e et e et e et e et e et e et e et e ea e eea e eaneeeeeaaaenaeanaaannas 5555
11.5.1 The SING CONSIUCLON ...uueieieete e e et e e e e e e e e e e e et e e e e e et e e e e e e e aenseeaneeeneees 5555
11.5.2 Properties of the SIring CONSITUCIONuiieiiii e e e ee e e e e e e e eanees 5555
Y S g To T o (] €0 14T o 1= TS PP 5555
11.5.3 Properties of the Sring Prototype ObJECtcvvuiiiicii e, 5555
TSR 20 £ 154 1 Vo T 5555
T Y - 111) PP 5656
B.5.3 3 A AT et s 5656
T0.5.3.4 INAEXOS ...t 5656
10.5.3.5 1aStiNdEX O ... e e 5656

I T TR 8 T P 5656
TSR =0 1= 44 oo 5656
R ST 2R ST (o] 0 1LY/ O = T 5656
11.5.3.9 TOUPPEICASE e ettt ettt 5656
11.5.4 Properties of SIriNg INSEANCES.uiiuniiiiee e e e 5656
L1540 TENGEN .o e 5656
10.6 BOOLEAN OBJIECT S .. ctettetu ettt e et eet e e e e et e et e et e et e e ea e et e et e et e ea e en e eanaeaeeaaaenaenaeannas 5656
11.6.1 The BOOIEAN CONSITUCTONvuieeieieieie et e e e e e e e e et e e e e e e e e e e aeeaees 5656
11.6.1.1 NEW BOOIEAN(VAIUE). ... ettt et e 5656
11.6.1.2 NEW BOOIEAN() - ettt et 5656
11.6.2 Properties of the Boolean CONSLIUCLOrvieuniiiiiiei e e e e e e e e e eanes 5656
11.6.2.1 BOOIEaN. PrOtO Y PO .ttt e e 5656
11.6.3 Properties of the Boolean Prototype ObJECE..........ccvuviiiiiiii e 5656
T T 20 (o 15 4 1 Vo [5656
L0.6.3.2 VaAUBOT () vttt et 5757
11.6.4 Properties 0f BOOIEAN INSIANCES.uieeeiiiee et e ea e 5757
T0.7 NUMBER OBJECT S, ..t itititetetee et et e et e et e et e e et et et et et e e e e et e e e e et e e et eeeneanees 575+
0 R 1 4 SN N (W g 0T @0 0 U o (o 5757
11.7.1.1 neW NUMDEN(VAIUE). ...ttt et et 5757
11.7.0.2 NEW NUMDEN() <. ee ettt ettt ettt 5757

11.7.2 Properties of the NUMber CONSITUCIONcuuiiiieiiicee e e e e e e 5754

A I N W40 o 1= g o]] (0] 4V T PO 5757
A VT 0] o =t g N PN 5757
11.7.3 Properties of the Number Prototype ObJECt...........cvuuiiiiiiiiei e 5757
A T A (0151 1 o I TP 5757
11.7.3.2 VAIUEOF() .ottt e 5757
11.7.4 Properties of NUMDEr INSIANCES.cuuiiieiiiie e 575%
L8 THE M ATH OBIECT . .t titititittiet et et e et e e e et e et e et et e et e e ea e e ea e e e et e e eaeeneneenees 575+
11.8.1 Value Properties of the Math ObJECt..........ccoviiiiiiii e 5858

8 0 700 S 5858

5 10 700 1 T S 5858

8 10 700 T T S 5858
L1814 LOG2E. ... ittt et e 5858
0 35 0 T I 13 S 5858

8 00 700 0L S 5858
10,817 SORT L 2 ittt e 5858
10,8108 SORT 2. ittt e 5858
11.8.2 Function Properties of the Math ObjECL...........couniiiiiiiii e 5858
L0822, 1 AS(X) ettt etet et et e et et e e e e 5858
T o 1 1 [P PP 5959
IS T =T 1 o 04 T PP 5959
L1.8.2.4 @EAN(X) .- et et 5959
108,25 @EAN2(Y, X)tutttitttet ettt ettt ettt 5959
L0.8.2.6 COI(K) curiritit ittt et e e 6060
ST A oo T) PP 6060
IR T S = o) P 6161
IS T T oo 4 T PP 6161
IS 07 O I o T [I PP 6161
I T T 41 F= () T PP 6161
I T 1 11 T Y PP 6161

R 20 1 T oo 11 G) TP 6161

I B0 -4 To (o] o () P PP 6262
I T LT o110 To |4 PP 6262
IS 7 T =T 001 T PP 6262
R 2 o | 0 TP 6363
22.8.2.18 BAIN(X) e et 6363

12 ERR O RS . . e 6464
13 REFEREN CES. ..o i et et e et e e e ettt 6565
APPENDIX A: OPEN ISSUES. e 6666
A.1 BREAK AND CONTINUE LABEL STACKS. ...\ttt tietetetaet et eaet et ee s e et e e e et e e ene e enenesaenanaen 6666
A.2 TOSTRING APPLIED TOA NUMBER TY PE ...iuitiiititiiiit ittt et e ettt e e et e e e e e e eeaeanen 6767
A3 H+ AND == OPERATORS cuitiiiittteit et ettt e e e e e e et et e e et ea et eea et eaenetaeneneenenaanees 6767
AL INFINITY AND NAN LITERA LS 1t itititititititititit ittt ettt ettt e ettt ettt ettt tatatarsetetetetetasaraans 6767
APPENDIX B: PROPOSED EXTENSIONS.o e 6868
B THE CLASS STATEMENT L.ttt ettt e ettt 6368
B.2 THE TRY AND THROW STATEMENTS! .. .etiitiiieiitieesiieeeaiieeateeeasieeeasneeeesnteeeanseeeanneeeanneeeens 6969
S N 0 LR VS T=11=1 1 = | RS 6969
B.2.2 TNE TRIOW SEAEMENL ...ttt e e e e e e e et e e e e e e e e ettt s e eeeeeeaenes 6969

<.
®

B3 THE DATE TY PE ettt e 6969

B.3.L TODBIEeiieeeteee ettt et ettt e e e e e e et e e e e e et et e e e e ettt aaaaaaaana 6969
B.3.2 ToDate Applied t0 the SIHNG TYPe.....cuu e 7070
B IMPLIC T THIS oottt et 7070
B.5 THE SWItCN ST ATEMENT Y .ttt eeeeeeneeeeee 7070
B.6 CONVERSION FUNCTIONS ...ttt e e e e e e et e et et e e e e e et e e e e et e e et eeeneenens 717
B.7 ASSIGNMENT-ONLY OPERATOR (1=) L. iitiieiiii ettt ettt e s 71#
B.8 SEALING OF AN OBUECT 2 ... cuitiiiitiit ettt et e e et e e e et e et et e e e et e e e e enet e e e e e eeneanens 174
B.9 THE ARGUMENTS KEYWORDS. iiiiettte et e e ettt e e e e e e e e e e e e e et e e e e e e e e et e s eeeeesaaneas 1272
B .10 PREPROCESSORt tttttttetteaet ettt ettt e et e e e ettt e e e eaea e et e ea e e ea e e eaeaeenererneseeeneenees 1272
B.11 THE DO..WHILE STATEMENT ..ttt ettt et et et et e e e e et e e e et e e e et e e e et e e eaeaaenanaens 1272
ST ST 2O = N = o [N 1272
APPENDIX C: PEOPLE CONTACT S . it 7373
APPENDIX D: RESOLUTION HISTORY ..ttt 7474
D00 IO T N LY 0 L T 1 1 1474
DR I R Y T L= o= Lol PP PPTRPTRN 1474
DI I (= Y] o = PP UPTRPTRN 1474
D.L3FUtUre RESEIVEA WOITS.cvieiieiit ettt e e e e e 1474
D.1.4 Octal And Hex ESCape SEQUENCE ISSUB.iiivtieiiii et e ettt e e e e e 1474

D R T o o 111 1Y TP PPNPPPTN 7474
D.1.6 HEX iN TONUMDES .. eeiieiieit et et e e e e e e e e et e et e et e e s eranas 7474
D.1.7 Attributes of Declared Functions and Built-in Objets.............ccoooiiiiiiiii e, 1474
D.1.8 The Grouping OPEIALOFcieueieeeeee et e e e et e et e et e et a et e et e e et e e et e aeaaeenaeanas 575
D.1.9 Prefix Increment and Decrement OPEratOrSu veueiee e eeei et e e e e e eeaeeenns 7575

D 2000 T 7= TV 7575
D.1.11 MUItipliCatiVE OPEIr ALOFS. ... eetuieeineeee ettt e et e e e e e e e e e e e e e e e et s e e e eanaeennas 575
D.1.12 ACGItiVE OPEIAtOrS. .. eeuueeieeii e eie et e e e e e e e e et e e e e e e et e e et e e et e e ean e etn e eanneeannaaes 757
D.1.13 LEft SNIft OPEIALOLcenieeeeeee ettt e e e et e et e e et e e ea e eanaaes 7575
D.1.14 Binary BitWiSe OPEr@lOrS ceuu et eeetee ettt e e et e e e e e e et e e e et e et e ean e eannas 575
D.1.15 Conditional OPEIrator (2 1) ..eeeueueeeeti ettt et e et e e e e e e 575
D.1.16 SIMPIE ASSIONMENT iiiiti ettt ettt e e e e e e e e et e eeaans 57
D.1.17 The fOr..in SalemMENt....v it et e et e e et e et e aaeeanns 7575
D.1.18 The FEIUIN S EMIENT. .. et tiitiieitee ittt ee e e et ee e e e et e et e e et e et e s e e e et eaneeaneeanss 7675
D.1.19 New PropoSed EXIENSIONS.uuietu ittt e e et e e ettt e e et e e e e e e ean e 1676
D.2 JANUARY 24, 1007 ... o et 7676
T 5 o O S o1 o T 7676
D.2.2 FUtUr€ RESEIVEO WOITS. ...t ittt et e e e e e e e et e e e e et e e e e beeaans 7676
DI ATV o oIS o 7= (ot PP 1676
D 0 110101~ | £ T PPN 1676
BN Lo (= 0101 = = 1676
D2 R\ (010 0= g 1ol T = = £ 71676
DI S (g To I = | 7676
D.2.8 Automatic SEMICOION INSEMTIONu.iiiiiee e e e eans 7676
D.2.9 Property AHTIDULES........u e 1676

D 20 (O I o o 4T 10 (YRS PSPRS 1676

[20 R 0 N[0 1 00T T171F¢
DI T gL (= o Vo PPN T17#
Vii8+#

D.2.13 ToNumber Applied to the SIHiNG TYPE . .cvvniiie e yasss

D AN B oS £ 1o PP UPTRPTRN 11+
D.2.15 Postfix Increment and Decrement OPEratorsS.veuueerueeieei e e et eei e e e eaeeeens T171F¢
D.2.16 THE tyPEOT OPEIALOTt eeeette ettt ettt ettt ettt e et e e e e e e nb e eeaens 17+
D.2.17 Prefix Increment and Decrement OpPeratorsS.........o..uveunieernieeieeeineeeieeeeneeaineeeeneennneeeens 177
D.2.18 MUItipliCAtIVE OPEIr ALOFS. .. . vevieeieeeee et e e e e e e e e e e e e e e e e e et e e e eanaeennas yasss
D.2.19 The SUBLraCtion OPEralorveue e ee e e e e e e e e e e e e e e e e e e aanas yasss
D.2.20 The SUBLraCtion OPEratorieeu ittt e e e e e e e e ean e 11+
D.2.21 Applying the Additive OPErators (F, =) .. eeeueeu et ee e e e e e e eenns 17+
D.2.22 EQUAITLY OB BLOIS.ttt ettt ettt ettt ettt e e et et a e e e e aa e eeaans 17+
D.2.23 TOPTIMItIVE USAQE .. .eetneeeiieeieeei ettt e e e e et e e e e e e e e e e e e et s e ean e ean e e enneeaanaees 177
D.2.24 BiNary LOGICAl OpEralOrS ... vvuueerneeeteeetieeete e e et e e e e e e e e e e e ean e e an e eaneeennaas 1878
D.3 JANUARY 31, 1007 . ittt et ettt et et e e e e e e e e e a e e e e e aas 1878
[Tt Y/ 0 IR 1O 1011011 L N 7878
DS (oo [I (= | PSRN 7878
D.3.3 Automatic SEMICOION TNSEITION ...cviieiie e e ee e e 7878
DGR R 1 g TC N\ 1W 0= Y o= P 1878
D.3.5 Put with EXpliCit ACCESS MOUE.........iiiiiiii e e e e s 1878
D.3.6 Put with ImpliCit ACCESS MOUE.........iiiiiit e e 1878
DRI A o To R (g1 gTo N1 oL PP UPTRPTRN 1878
(DR JE < T o)\ ¢ = 7878
D.3.9 ToNumber Applied t0 the NG TYPE. ... i 1878
D320 TOINES2. ..ttt ettt et et et e e e e e r e e e 1878
D20 30 B I a1 11 1 72 PP 7879
D.3.12 Execution Contexts (Variables)oiiuiiiii e 7979
[RC BC J U o et o o T O | E 7979
D.3.14 The tyPEOf OPEIALONceeete ettt ettt ettt ettt et et e e ea e eeaans 7979
D.3.15 ApPIYING the %0 OPEIALONoeeiieiee ittt et e e e e e eeat e eeens 7979
D.3.16 The Addition OPErator () ...cuueeeuieeieeeii eean s 7979
D.3.17 RAAtiONAl OPErAl0OrS ...vu it eeiiieei et e e e et e e e e e e e e e e e e e e et e e et e e et e e e e e eaaaae 7979
D.3.18 Conditional OPEraLOr (27)e.ueerueeeneetetet et e e e e e e et e e e e e e e eaa s 7979
D.3.19 Compound ASSIGNMENT (0T) oo eeunetnaetn et e et et e e e et e et e et e e e e e et e e et e aanaaenas 7979
D = o U 7 A I R 7979
D.4.1 UNICOOE ESCAPE SEQUENCES ... evvueeteeeeieeete e et e e e et s e e e e e e s e et e e eean s e e an e eaneeenn s 7979
D.4A.2 FULUrE@ RESEIVEA WOITS.ttt et e et e e e e eeees 7979
D.4.3 Automatic SEmiCOlON TNSEITIONuiiei i 7979
D.4.4 The NUMDEE Ty, ... ettt ettt et e e e et e et e e et e e eaeaaanaaes 7980
D.4.5 NotImplicit and NotExplicit Property Attributes Deletedoooovviiiiiiiiiiiiiiie, 8080
D.4.6 TOINt32 ANd TOUINEB2Zieiieii ittt e e e e e e e e e eaeene 8086
DI A € o100 101 @) o = -\ (o] L 8080
D.4.8 SNift EXPrESSIONS. ciiiieiiiee et e et e e e e e e e e e e e e e et e e e e e e e e e aaaaes 8086
D.4.9 Conversion Rules for Relational OperatorS.........ccuuieuiieiiiieieeii e 8080
D.4.10 && aNd || SEMANTICS. ... etevtneeeiii ettt e et e e e e et e e e et e e e et s e e eaa e e e eaae e e eaenns 8086
D.4.11 ConditionNal OPEralOr.......c.uieuieei ettt e et e e e e et e e e e et e e ean e e et e e e e e e 8086
D.4.12 ASSIGNMENE OPEIBLOTS. ... eettneteiti ettt e ettt et e et e et et e e e et e e e eaa e e eaa e eeeees 8080
D.4.13 Syntax Of Class SateMENL........vvuu e i e e e e e e e e e aan s 8080
D.4.14 Syntax Of TrY SHat@MENT.ceun e e e e e e e e e e e et e e e e aanas 8086
D5 FEBRUARY 27, 1007 ittt ettt e e e ettt a e e et e e eaeananas 818%
D.5.1 Grammiar NOWAHIONcvuieiiee et e e e e e e e e et e et eaeaeaeanen 8181
11187

D.5.2 End of Medium Character IsNo Longer WhiteSpace.oevvvieiiiieeie e, 818%

D.5.3 Meaning Of NUIT LITEralcouuiieriii i 818%
D.5.4 Meaning of BOOIEAN LItEralS.......cc.uiiuniiiiiiii et 818%
D.5.5 Meaning of NUMENic LIteralS........c.uviiuiiiiiieee e e 8181
D.5.6 Automatic SEMICOION TNSEITION ...oviieiieee et eee e e 818%
DR 1 L= VLW 0= Y o= T 818%
D.5.8 TOSIFING ON NUMDEIS. ... eitiiii e e e e e e e e e e et e e e e e et e e eaaeaanaees 8281
D.5.9 NEOW OPEIGLON ... eeeeeieetie et ettt ettt et et et et et et e et et e ea e e e et e e eaeea e enaeenaannnas 8282
D.5.10 DE B8 OPErGLOT eeee et e ettt ettt et e et e et e e et e e et e ean e e an e aea e eaa e 8282
DT R 01 PSPPI 8282
D.5.12 && @Nd || SEMANTICS. ... eieetii ettt e 8282
D.5.13 Separate Productions for Continue, Break, REIUMN.............oevvniiiiiiiiiinece e, 8282
D.5.14 Dead Code Is Not Protected from Compile-Time AnalysiS.........cccovevviiiiiiiiiiieiiieeiiee, 8282
DB MARCH B, 1007 .. ittt ettt e e e et et et et e e e e et e et eaaaaananas 8282
D.6.1 Reformatted the Entir@ DOCUMENL.ouniniiiieee et 8282
D.6.2 Designed a Section Outline for Chapter 11..........coovuiiiiiiiiiieiee e 8383
D.6.3 Defined Math FUNCHIONS.uiiiiiiie e e 8383
D A N T 0 T PSP 8383
D.7.1 Added Definition of “ The Number ValUe for Xco.veiiiiiiiie e 8383
D.7.2 atan and atan2 May Use I|mplementation-Dependent Valuesfor 17, etC.............cccevuveevnnnnne. 8383
D.7.3 Improved Discussion of Input Stream for Syntactic Grammarcoveveviveeiiiineecinnnnnn. 8383
D.7.4 Improved Treatment of LineTerminator in Lexical Grammar...........cc.ccuevevvveeinieenneeennnenn. 8383
D.7.5 Clarify Behavior of Unicode ESCape SEOUENCES..........vvvuieiiiieii e e e e e e e e e 8483
D.7.6 Add Careful Description of the Sring Value of a String Literal...........oooevviiiiiiiiiinnnenn. 8484
D.7.7 Description of ldentifierS REWOrded.............oveeiiiiii e 8484
D.7.8 Table of PUNCIUBLOrS COMTECLEAvvieeieeeeee et ae e 8484
D.7.9 Improved Descriptions of Tolnt32 and TOUINE32.........ccoevuiiiiiiiiiieeiiie e 8484
D.7.10 Changes to ToString Applied to the NUmber TYPe......ovvveveviiiiie e, 8484
D.7.11 Revised Syntax for NewExpression and MemberEXpression...........c..vvevveeeineveineennnennn. 8484
D.7.12 Clarify Multiplicative and Additive OpEratorS.........ccuueieueiiiieei e 8484
D.7.13 Addition Operator No Longer Gives Hint NUMDESooiuiiiiiiiiiiecee e, 8484
D.7.14 Correct Description of Relational Operators............uveieiiieeiiiiiieeeii e 8484
D.7.15 Assignment Operator LHS Must Be POSHiXEXPreSSiONcocuvuveiiiinieiiiiieeciineeceiinnen 8584
D.7.16 ChangeS t0 FOr-iN LOOPS. ... ccuuietuieeteeetieeete e e et e e e e e e e e st e e e et eean e eaneeennaas 8584
D.7.17 Break and Continue Must Occur within While or FOr LOOP.........coccvvviiiieiiiiiiiieeiieeann. 8585
APPENDIX E: LALR(1) SYNTACTIC GRAMMAR ..ot 8686

1 NOTATIONAL CONVENTIONS

1.1 SyNTACTIC AND LEXicAL GRAMMARS

This section describes the context-free grammars used in this specification to define the lexical and syntactic
structure of an ECMA Script program.

1.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called
anonterminal asitsleft-hand side, and a sequence of one or more nonterminal and terminal symbols asits
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies alanguage, namely, the (pehapsinfinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with aright-
hand side of a production for which the nonterminal is the left-hand side.

1.1.2 The Lexical Grammar

A lexical grammar for ECMAScript is given in Chapter 3. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symbol Input,
that describe how sequences of Unicode characters are trandated into a sequence of input elements.
InputFheserput elements other than-with white space-and comments diseardedform the terminal
symbols for the syntactic grammar for ECMA Script and are called ECMA Script tokens. These tokens are
the reserved words, identifiers, literals, and punctuators of the ECM A Script language._Moreover, line
terminators, although not considered to be tokens, also become part of the stream of input elements and
guide the process of automatic semicolon insertion. Simple white space and comments are simply discarded
and do not appear in the stream of input elements for the syntactic grammar.

Productions of the lexical grammar are distinguished by having two colons“: : " as separating punctuation.

1.1.3 The Numeric String Grammar

A second grammar is used for translating strings into numeric values.; Tthis grammar is similar to the part
of the lexical grammar having to do with numeric literals and has asits terminal symbols the characters of
the Unicode character set. This grammar appearsin Chapter 5.

Productions of the numeric string grammar are distinguished by having three colons“: : : " as punctuation.

1.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in Chapters 7, 8, 9, and 10. This grammar has

ECMA Script tokens defined by the lexical grammar as its terminal symbols (see section 1.1.2). It definesa
set of productions, starting from the goal symbol Program, that describe how sequences of tokens can form
syntactically correct ECMA Script programs.

When a stream of Unicode charactersisto be parsed as an ECMA Script program, it isfirst converted to a

stream of input elements by repeated application of the lexical grammar; this stream of input elements,

with one extra LineTerminator appended, is then parsed by a single application of the syntax grammar. (The
purpose of the extra appended LineTerminator is to ensure that automatic semicolon insertion be operative
at the end of the program.) The program is syntactically in error if the tokens in the stream of input
elements cannot be parsed as a single instance of the goal nonterminal program, with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one colon “: ” as punctuation.

The syntactic grammar as presented in Chapters 7, 8, 9, and 10 is actually not a complete account of which
token sequences are accepted as correct ECMA Script programs. Certain additional token sequences are aso
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before end-of -line characters). Furthermore, certain token sequences that
are described by the grammar are not considered acceptable if an end-of-line character appearsin certain
“awkward” places.

A LALR(2) version of the syntactic grammar is presented in Appendix E. Thisversion provides an exact
account of which token sequences are acceptable ECMA Script programs without needing special rules about
automatically adding semicolons or forbidding end-of-line characters. However, it is much more complex
than the grammar presented in Chapters 7, 8, 9, and 10.

1.1.5 Grammar Notation

Terminal symbols are shownin fi xed wi dt h font in the productions of all the grammars, and
throughout this specification whenever the text directly refers to such aterminal symbol. These areto
appear in a program exactly as written.

Nonterminal symbols are shown initalic type. The definition of a nonterminal is introduced by the name of
the nonterminal being defined followed by one or more colons. (The number of colons indicates to which
grammar the production belongs.) One or more alternative right-hand sides for the nonterminal then follow
on succeeding lines. For example, the syntactic definition:

WithaStatement :
with (Expression) Statement

states that the nonterminal WithStatement represents the token wi t h, followed by a left parenthesis
token, followed by an Expression, followed by aright parenthesis token, followed by a Satement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic
definition:
ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList,
Ffollowed by a comma, followed by an AssignmentExpression. This definition of ArgumentList is
recursive, that isto say, it is defined in terms of itself. The result isthat an ArgumentList may contain any
positive number of arguments. Such recursive definitions of nonterminals are common.

The subscripted suffix “opt”, which may appear after aterminal or nonterminal, indicates an optional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration :
Identifier Initializer
is aconvenient abbreviation for:

VariableDeclaration :
|dentifier
Identifier Initializer

and that:

[terationStatement :
for (Expression,, ; Expression,, ; Expression,,) Statement

is a convenient abbreviation for:

IterationStatement :
for (; Expression,, ; Expression,,) Statement
for (Expression ; Expression,, ; Expression,,) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ; Expression,,) Statement
for (; Expression ; Expression,,) Statement
for (Expression ; ; Expression,,) Statement

for (Expression ; Expression ; Expression,,) Statement

which in turn is an abbreviation for:

IterationSatement :

for (; ;) Statement

for (; ; Expression) Statement

for (; Expression ;) Statement

for (; Expression ; Expression) Statement

for (Expression ; ;) Statement

for (Expression ; ; Expression) Statement

for (Expression ; Expression ;) Statement

for (Expression ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

If the phrase “[no LineTerminator_here]” appears in the right-hand side of a production of the syntactic grammar,
it indicates that the production is a restricted production: it may not be used if aLineTerminator occursin
the input stream at the indicated position. For example, the production:

ReturnStatement :
return [noLineTerminator here] EXpressi ONgy 5

indicates that the production may not be used if a LineTerminator occurs in the program between the
r et ur n token and the Expression .

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences
of LineTerminator may appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the program.

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical
grammar for ECM A Script contains the production:

ZeroToThree :: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree::
0

1
2

3

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multicharacter token, it represents the sequence of characters that would make up such atoken.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not” and then indicating the expansions to be excluded. For example, the production:
Identifier ::
I dentifierName but not ReservedWord

means that the nonterminal |dentifier may be replaced by any sequence of characters that could replace
| dentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, afew nonterminal symbols are described by a descriptive phrase in roman typein cases where it
would be impractical to list all the alternatives:

SourceCharacter:
any Unicode character

1.2 ALGORITHM CONVENTIONS

We often use a numbered list to specify stepsin an algorithm. When the algorithm isto produce a value as
aresult, we use the directive “return x” to indicate that the result of the algorithm is the value of x and that
the algorithm should terminate. We use the notation Result(n) as short hand for “the result of step n”. We
also use Type(x) as short hand for “the type of x”. If an agorithm is defined to “ generate a runtime error”,
execution of the algorithm (and any calling algorithms) is terminated and no result is returned.

These algorithms are used to clarify semantics. In practice, there may be more efficient algorithms
available to implement a given feature.

2 SOURCE TEXT

2.1 UpntcobE

ECMA Script source text isrepresented as a sequence of characters representable using theUnicode version
2.0 character encoding.

SourceCharacter : :
any Unicode character

-However, it is possible to represent every ECMA Script program using only ASCII characters (which are
equivalent to the first 128 Unicode characters). Non-ASCII Unicode characters may appear only within
comments and string literals; in both of those contents, any Unicode character may be expressed asa
Unicode eﬂ:ape %quence COI”ISlStI ng of S|X ASCII characters namely\ u plusfour hexadem mal digits-and

Within a comment, such an escape sequenceis effectlvely |gnored as part of the comment, W|th| n astring
literal, the Unicode escape sequence contributes one character to the string value of the literal.

Note that ECMA Script differs from the Java programming language in the behavior of Unicode escape
sequences. |n a Java program, if the Unicode escape sequence\ u0 00 A, for example, appears to occur

within asingle-line comment, it isinterpreted as aline terminator (Unicode character 0 0 0 Aisline feed)

and therefore the next character is not part of the comment. Similarly, if the Unicode escape sequence

\ U000 A occurs within astring literal in a Java program. it is likewise interpreted as a line terminator,
which is not allowed within a string literal—one must write\ n instead of \ U000 A to cause aline feed
top be part of the string value of a string literal. In an ECMA Script program, a Unicode escape sequence
occurring within a comment is never interpreted and therefore cannot contrinute to termination of the

comment. Similarly, a Unicode escape sequence occurring within astring literal in an ECM A Script
program always contributes a character to the string value of the literal and is never interpreted asaline
terminator or as a quote mark that might terminate the string literal.

3 LEXICAL CONVENTIONS

The source text of a ECMA Script program isfirst converted into a sequence of tokens and white space. A
token is a sequence of charactersthat comprise alexical unit. The source text is scanned from left to right,
repeatedly taking the longest possible sequence of characters as the next token.

3.1 WHITE SPACE

White space characters are used to improve source text readability and to separate tokens; (indivisible lexical
units); from each other but are otherwise insignificant. White space may occur between any two tokens, ad
may occur within strings (where they are considered significant characters forming part of the literal string
value),but cannot appear within any other kind of token.White-space-may-alse-eecedr-inside-astring,where
e ganificant

The following characters are considered to be white space:

Unicode NELE Formal Name
Value
\u0009 Tab <TAB>
\uO00B Vertical Tab <VT>
\u000C Form Feed <FF>
\u0020 Space <SP>
Syntax
WhiteSpace ::

S.' PreY "I." teasaeel N hieSpace,,

Coemment-WhiteSpaee,,,

<TAB>

<VTSP>

<FF>

<SPVF>

3.2 LINE TERMINATORS

Line terminator characters, like whitespace characters, are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. Unlike whitespace characters, line terminators
have some influence over the behavior of the syntactic grammar. In general, line terminators may occur

between any two tokens, but there are afew places where they are forbidden by the syntactic grammar. A
line terminator cannot occur within any token (not even a string. Line terminators also affect the process of
automatic semicolon insertion (see section 0).

Thefollowing characters are considered to be line terminators:

\uOOOA Line Feed <LF>
\u000D Carriage Return <CR>
Syntax
LineTerminator ::
<LFER>
<CREF>
. .
<EFOS

3.3 COMMENTS

Description
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except aLineTerminator character, and because of
the general rule that atoken is always as long as possible, a single-line comment always consists of all

charactersfrom the/ / _marker to the end of the line. However, the LineTerminator_at the end of thelineis
not considered to be part of the single-line comment; it is recognized separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important,

because it implies that the presence or absence of single-line comments does not affect the process of
automatic semicolon insertion (see section 0).

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/ * MultiLineCommentChars,, * /

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentChars,,
* PostAsteriskCommentChars,,

PostAsteriskCommentChars ::
MultiLineNotForwardSashChar_MultiLineCommentChars,,

MultiLineNotAsteriskChar::
SourceCharacter but not asterisk* or <EOS>

MultiLineNotFowardSashChar::
SourceCharacter but not forward-slash/ or <EOS>

SingleLineComment ::
/' SingleLineCommentChars,, HeFerminater

——SingleineCemmentChars,,,-EndofSadree

SngleLineCommentChars ::
SingleLineCommentChar SingleLineCommentChars,,

SngleLineCommentChar ::
SourceCharacter but not LineTerminatorEnd

3.4 TOKENS
Syntax

Token ::
ReservedWord
| dentifier
Punctuator
Literal
EndOfSource

3.4.1 Reserved Words

Description
Reserved words cannot be used as identifiers.

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

3.4.2 Keywords

The following keywords are in use in either the the Borland ECM A Script implementation, the Netscape 1.1
ECMA Script implementation, the Microsoft JScript implementation or all three.

Syntax
Keyword: one of

break continue del ete el se
for function i f in
new return t his typeof
var void whi | e wi th

3.4.3 Future Reserved Words

The following words are used as keywords in proposed extensions and are thus reserved to allow for the
adoption for those extensions.

Syntax

FutureReservedWord : one of

arguments case catch cl ass
def aul t do ext ends finally
implicit i mport super switch
throw try

3.5 IDENTIFIERS

Description

An identifier is a character $quence of unlimited Iength, Where each character in the sequence must be aef

letters, adecimal digits, an-a r he underscore ()
character, or athe dollar sign (%) character and theflrst character may not be adecr mal digit- -ECMA Script
identifiers are case sensitive: - dentifiers whose characters differ only in case are nevertheless considered to be
distinctunigue.

Syntax

Identifier ::
I dentifierName but not ReservedWord

IdentifierName ::
Identifier Letter
IdentifierName | dentifierLetter
| dentifierName Decimal Digit

IdentifierLetter :: one of

ab c de f g h j kI mnopgr st uvwxXxy z

L

I

A B CDETFGHI
$

DecimalDigit :: one of
0123456 7289

J KL MNOPQQRSTUVWXYZ

3.6 PUNCTUATORS

Syntax
Punctuator :: one of

= > < == <= >=
1 = , | ~ 2

&& |] ++ - - +—
- * / & N
% << > > >>> += - =
* = | = &= | = N = 0=
<<= >>= >>>= () {
} [] ;

3.7 LITERALS

Syntax
Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
SringLiteral

3.7.1 Null Literals

Syntax

NullLiteral ::
nul |

Semantics
The value of the null literal nul | ++u-e isthe sole value of the Naull type, namely null.

3.7.2 Boolean Literals

Syntax
BooleanLiteral ::
true
false

Semantics
The value of the Boolean literal t r ue is avalue of the Boolean type, namely true.
The value of the Boolean literal f al se isavalue of the Boolean type, namely false.

3.7.3 Numeric Literals
Syntax

NumericLiteral ::
Integer Literal
FloatingPointLiteral

IntegerLiteral ::
DecimalIntegerLiteral
HexintegerLiteral
OctallntegerLiteral

DecimallntegerLiteral ::
0
NonZeroDigit Decimal Digits,,

DecimalDigits ::
Decimal Digit
Decimal Digits Decimal Digit

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

1087

HexintegerLiteral ::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit :: one of
0 1 2 3 456 7 8 9 aboc def ABCDTEF

OctallntegerLiteral ::
0 OctalDigit
OctalLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

FloatingPointLiteral ::
DecimalintegerLiteral . DecimalDigits,, ExponentPart,,
. Decimal Digits ExponentPart,,
DecimalIntegerLiteral ExponentPart

ExponentPart ::
Exponentlndicator Sgnedinteger

Exponentlndicator :: one of
e E

Sgnedinteger ::
Decimal Digits
+ DecimalDigits
- DecimalDigits

Semantics

A numeric literal stands for avalue of the number type. Thisvalue is determined in two steps: first, a
mathemati calty eeeuratevalue (MV) is derived from the literal; second, this mathematical value (MV-is
rounded, using |EEE 754 round-to-nearest mode , to a representable value of the number type.

For any production A :: B whosewith-a-siagle-renterminal-ents right-hand side is a single nonterminal,
the MV of Alisthe MV of B.

The MV of DecimalLiteral :: O is positive zero.

The MV of DecimalLiteral :: NonZeroDigit Digitsis (the MV of NonZeroDigit times 10") plus the
MV of Digits, where n isthe number of characters in Digits.

The MV of DecimalDigits :: Decimal Digits DecimalDigit is (the MV of DecimalDigits times 10) plus
the MV of DecimalDigit.

The MV of DecimalDigit :: 0 or of HexDigit :: 0 or of OctalDigit :: 0 is positive zero.

The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or of OctalDigit :: 1 is 1.
The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 or of OctalDigit :: 2 is 2.
The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.
The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is4.
The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit :: 5 is5.
The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 iS6.
The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit:: 7 is7.
The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 or of OctalDigit :: 8 is 8.
The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 or of OctalDigit :: 9 is9.

The MV of HexDigit :: a or of HexDigit :: Ais 10.

The MV of HexDigit :: b or of HexDigit :: B is 11.

The MV of HexDigit :: ¢ or of HexDigit :: Cis 12.

The MV of HexDigit :: d or of HexDigit :: D is 13.

The MV of HexDigit :: e or of HexDigit :: E is 14.

The MV of HexDigit :: f or of HexDigit:: F is 15.

The MV of HexIntegerLiteral:: Ox HexDigit isthe MV of HexDigit.

The MV of HexIntegerLiteral:: 0X HexDigit isthe MV of HexDigit.

The MV of HexintegerLiteral:: HexintegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16)
plus the MV of HexDigit.

The MV of OctallntegerLiteral:: O OctalDigit isthe MV of OctalDigit.

The MV of OctallntegerLiteral:: OctalIntegerLiteral OctalDigit is (the MV of OctallntegerLiteral times
8) plusthe MV of OctalDigit.

The MV of FloatingPointLiteral :: DecimallntegerLiteral . isthe MV of DecimallntegerLiteral.

The MV of FloatingPointLiteral :: DecimallntegerLiteral . DecimalDigitsisthe MV of
DecimallntegerLiteral plus (the MV of DecimalDigits times 10™), where n is the number of characters
in Decimal Digits.

The MV of FloatingPointLiteral :: DecimalIntegerLiteral . ExponentPart isthe MV of
DecimalIntegerLiteral times 10°%, where eisthe MV of ExponentPart.

The MV of FloatingPointLiteral :: DecimallntegerLiteral . Decimal Digits ExponentPart is (the MV of
DecimallntegerLiteral plus (the MV of Decimal Digitstimes 10™)) times 10° where n is the number of
charactersin DecimalDigits and e isthe MV of ExponentPart.

The MV of FloatingPointLiteral ::. DecimalDigitsisthe MV of DecimalDigitstimes 10™, wherenis
the number of charactersin Decimal Digits.

The MV of FloatingPointLiteral ::. Decimal Digits ExponentPart Decimal Digitsisthe MV of
DecimalDigits times 10°™", where n is the number of charactersin DecimalDigits and e isthe MV of
ExponentPart.

The MV of FloatingPointLiteral :: DecimallntegerLiteral ExponentPart isthe MV of
DecimalIntegerLiteral times 10°, where eisthe MV of ExponentPart.

The MV of ExponentPart :: Exponentlndicator Signedinteger isthe MV of Sgnedinteger.

The MV of Sgnedinteger :: + DecimalDigitsis the MV of DecimalDigits.

The MV of Sgnedinteger :: - DecimalDigitsis the negative of the MV of DecimalDigits.

Issue; this description, asit stands, does not take into account the resolution that only the first 19
significant digits or so need contribute to the calculated mathematical value. Thisstill needsto be
addressed. (It could be addressed in the grammar itself, but it would be too messy: a couple of hundred
productions!)

3.7.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence.

Syntax

StringLiteral ::
“ DoubleSrringCharacters,, “
‘ SngleStringCharacters,,*

DoubleSringCharacters : :
DoubleSringCharacter DoubleSringCharacters,,

SngleSringCharacters : :
SngleSringCharacter SngleSringCharacters;,

DoubleStringCharacter ::
SourceCharacter but not double-quote “ or backslash\ or LineTerminatorEnd

EscapeSequence

SngleStringCharacter ::
SourceCharacter but not single-quote * or backslash\ orLineTerminatorEnrd

EscapeSequence

EscapeSequence ::
Character EscapeSequence
Octal EscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

Character EscapeSequence ::
\ SngleEscapeCharacter

\ NonEscapeCharacter

SngleEscapeCharacter :: one of
‘ “ \ b f n r t

NonEscapeCharacter::

SourceCharacter but not SngleEscapeCharacter or OctalDigit or x or u or
LineTerminatorEnd

HexEscapeSequence ::
\ X HexDigit HexDigit

6+ 2 3 456+ 89 abecdeftABEbEF

Octal EscapeSequence ::
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

o8 1 2 3 4 5 6 +
ZeroToThree :: one of

0 1 2 3
UnicodeEscapeSequence ::

\ u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminals HexDigit and OctalDigit are given in section 3.7.3.

terms of character values (CV) contributed by the various parts of the string literal. As part of this process,
some characters within the string literal are interpeted as having a mathematical value (MV), as described

below or in section 3.7.3

1387

For any production A :: B whose right-hand side is a single nonterminal, the SV of A isthe SV of B.

The SV of SringLiteral :: " " isthe empty character sequence.

The SV of SringLiteral :: '’ isthe empty character sequence.

The SV of SringLiteral :: " DoubleSringCharacters” is the SV of DoubleSringCharacters.

The SV of SringlLiteral ::* SngleSringCharacters’ is the SV of SngleSringCharacters.

The SV of DoubleSringCharacters : : DoubleSringCharacter is a sequence of one character, the CV of
DoubleSringCharacter.

The SV of DoubleSringCharacters : : DoubleSringCharacter DoubleSringCharacters is a sequence of
the CV of DoubleStringCharacter followed by all the characters in the SV of DoubleSringCharacters in

order.

The SV of SingleSringCharacters : : SingleSringCharacter is a sequence of one character, the CV of
SingleStringCharacter.

The SV of SngleSringCharacters : : SingleSringCharacter SingleSringCharacters is a sequence of the
CV of SngleSringCharacter followed by all the charactersin the SV of SngleSringCharacters in
order.

The CV of DoubleSringCharacter : : SourceCharacter but not double-quote “ or_backdash\ or
LineTerminator is the SourceCharacter character itself.

The CV of SngleSringCharacter : : SourceCharacter but not double-quote “ or _backdash\ or
LineTerminator is the SourceCharacter character itself.

The CV of CharacterEscapeSequence : : \ SngleEscapeCharacter is the Unicode character whose
Unicode value is determined by the SngleEscapeCharacter according to the following table:

Escape Sequence Name

\'b \u0008 backspace <BS>

\ t \u0009 horizontal tab <HT>

\'n \WuO00A line feed (new line) <LF>

\ f \Wu000C form feed <FF>

\r \u000D carriage return <CR>

\” \uQ0022 double quote “

\’ \uQ0027 single quote '

VA \u005C backdash \

» The CV of CharacterEscapeSequence : : \ NonEscapeCharacter is the CV of the NonEscapeCharacter.

e The CV of NonEscapeCharacter : : SourceCharacter but not SngleEscapeCharacter or OctalDigit or
x _or_u or_LineTerminator is the SourceCharacter character itself.

e TheCV of Hex uence : : \ x HexDigit HexDigit is the Unicode character whose codeis (16
times the MV of the first HexDigit) plusthe MV of the second HexDiqit.

e The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code isthe MV of the
OctalDigit.

* TheCV of Octal uence : : \ OctalDigit OctalDigit is the Unicode character whose codeis (8
times the MV of the first OctalDigit) plus the MV of the second Octal Digit.

e The CV of OctalEscapeSquence : : \ ZeroToThree OctalDigit OctalDigit is the Unicode character

whose code is (64 (that is, 8?) times the MV of the ZeroToThree) plus (8 times the MV _of the first
OctalDigit) plus the MV of the second Octal Digit.

The MV of ZeroToThree : : 0 is positive zero.
The MV of ZeroToThree: : 1 is 1.

1487

e TheMV of ZeroToThree: : 2 is 2.
e TheMV of ZeroToThree:: 3 is 3.
The CV of Unicod uence :: \ u HexDigit HexDigit HexDigit HexDiqit is the Unicode

character whose code is (4096 (that is, 16°) times the MV of the first HexDigit) plus (256 (that is, 16%)
times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of

the fourth HexDigit.
Note that a LineTerminator character cannot appear in astring literal, even if preceded by abackslash\ .

The correct way to cause aline terminator character to be part of the string value of a string literal is to use
an escape sequencesuchas\ nor\ uOOOA.

3.8 AUTOMATIC SEMICOLON INSERTION

Description

Certain ECMAScript statements (empty statement, variable statement, expression statement, cont i nue
statement, br eak statement, and r et ur n statement) must each be terminated with a semicolon. Such a
semicolon may always appear explicitly in the source text. For convenience, however, such semicolons
may be omitted from the source text in certain situations. We describe such situations by saying that
semicolons are automatically inserted into the source code token stream in those situations:

» When, asthe program is parsed from |eft to right, a token (called the offending token) is encountered
that is not allowed by any production of the grammar and the parser is not currently parsing the header
of af or statement, then a semicolon is automatically inserted before the offending token if one or
more of the following conditionsiis true:

1. Theoffending token is separated from the previous token by at least one LineTerminator.
2. The offending token is EndOfSource.
3. Theoffending tokenis} .

However, there is an additional overriding condition: a semicolon is never inserted automaticaly if the
semicolon would then be parsed as an empty statement.

* When, asthe program is parsed from left to right, atoken (called the restricted token) is encountered
that is allowed by some production of the grammar, but the production is arestricted production and the
restricted token is separated from the previous token by at least one LineTerminator, then there are two
Cases.

4. If the parser is not currently parsing the header of af or statement, a semicolon is automatically
inserted before the restricted token.

5. If the parser is currently parsing the header of af or statement, it isasyntax error.
These are all the restricted productionsin the grammar:

ReturnStatement :
return [noLineTerminator here] EXpressi ONgy 5

Member Expression :
Member Expression [no LineTerminator here] | ncrementOperator

CallExpression :
MemberExpression [no LineTerminator here] Arguments
NewCallExpression [no LineTerminator here] Arguments
CallExpression [no LineTerminator here] Arguments

The practical effect of these restricted productionsis as follows:

1. Whenthetokenr et ur n is encountered and a LineTerminator is encountered before the next
token is encountered, a semicolon is automatically inserted after the tokenr et ur n.

1587

2. Whenthetoken ++ or - - isencountered where the parser would treat it as a postfix operator, and
at least one LineTerminator occurred between the preceding token and the ++ or - - token, then a
semicolon is automatically inserted before the ++ or - - token.

3. When thetoken (isencountered where the parser would treat it as the first token of a
parenthesized Arguments list, and at least one LineTerminator occurred between the preceding
token and the (token, then a semicolon is automatically inserted before the (token.

The resulting practical advice to ECMA Script programmersis.
4. An Expressioninar et ur n statement should start on the same line as the r et ur n token.
5. A postfix ++ or - - operator should appear on the same line as its operand.

6. The(that starts an argument list should be on the same line as the expression that indicates the

function to be called.
For example, the source

{ 1 2} 3<EOGS>
is not a valid sentence in the ECMA Script grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{ 1

2 } 3<EOG6S>
isalso not avalid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{ 1

;2 3} 3, <EOS>
which isavalid ECMA Script sentence.

The source
for (a; b
) <EOS>

isnot avalid ECMA Script sentence and is hot altered by automatic semicolon insertion because the place
where a semicolon is needed is within the header of af or statement. Automatic semicolon insertion never
occurs within the header of af or statement.

The source

return
a + b<EOSS>

is transformed by automatic semicolon insertion into the following:

return;
a + b;<EO6S>

Note that the expression a + b isnot treated as a value to be returned by the r et ur n statement,
because a LineTerminator separates it from the tokenr et ur n.

The source
a ==
++c<EOS>
is transformed by automatic semicolon insertion into the following:
a = b;
t+c; <EOS>

Note that the token ++ is not treated as a postfix operator applying to the variable b, because a
LineTerminator occurs between b and ++.

The source
if (a > b)
else ¢ = d<EG6S>

1687

isnot avalid ECMA Script sentence and is not altered by automatic semicolon insertion before theel se
token, even though no production of the grammar applies at that point, because an automatically inserted
semicolon would then be parsed as an empty statement.

4 TYPES

A vaueis an entity that takes on one of seven types. There are six standard types and one internal type
called Reference. Values of type Reference are only used as intermediate results of expression
evaluation and cannot be stored to properties of objects.

4.1 THE UNDEFINED TYPE

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a
valueis of type undefined

4.2 THE NuLL TYPE
The Null type has exactly one value, called null.

4.3 THE BooOLEAN TYPE

The Boolean type represents alogical entity and consists of exactly two unique values. Oneis called true
and the other is called false.

4.4 THE NUMBER TYPE

The Number type has exactly 18437736874454810627 (that is, 2%*-2%+3) val ues, representing the double-
precision 64-bit format |EEE 754 values as specified in the IEEE Standard for Binary Floating-Point
Arithmetic, except that the 9007199254740990 (that is, 2%*-2) distinct NaN values of the |EEE Standard
are represented in ECMA Script as single special NaN value.

There are two other special values, called Positive Infinity and Negative Infinity. The other
18437736874454810624 (that is, 2%-2%%) values are called the finite numbers. Half of these are positive
numbers and half are negative numbers; for every finite positive number there is a corresponding negative
number having the same magnitude.

Note that there is both a positive zero and a negative zero.
The 18437736874454810622 (that is, 2%*-2%-2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 22*-2%) of them are normalized, having the form
s Om [02¢
where sis+1 or -1, mis a positive integer less than 2* but not less than 2%, and e is an integer ranging
frombetween—10743 to 971, inclusive.
The remaining 9007199254740990 (that is, 2°-2) values are denormalized, having the form
s Om [02¢
where sis+1 or —1, mis a positive integer less than 2°%, and e is -1074.

Note that all the positive and negative integers whose magnitude is no greater than 2% are representable in
the Number type (indeed, the integer O has two representations, +0 and -0).

We say that afinite number has an odd significand if it is nonzero and the integer m used to express it (in

one of the two forms shown above) is odd. Otherwise we say that it has an even significand.

1887

In this specification, the phrase “the number value for x” where x represents an exact nonzero red
mathematical quantity (which might even be an irrational number such as 1) means a number value chosen

in the following manner. Consider the set of al finite values of the Number type, with two additional
values added to it that are not representable in the Number type, namely 2% (which is +1 2% 2°*) and —
29% (which is =1 2% [12°")). Choose the member of this set that is closest in value to x. If two values of

the set are equally close, then the one with an even significand is chosen; for this purpose, the two extra
values 2" and —2'%* are considered to have even significands. Finally, if 2'%* was chosen, replace it with

positive infinity; if —2'%* was chosen, replace it with negative infinity; any other chosen valueis used
unchanged. The result is the number value for x. (This procedure corresponds exactly to the behavior of the

|IEEE 754 “round to nearest” mode.)

Some ECMA Script operators deal only with integers in the range —2* through 2*'-1, inclusive, or in the
range 0 through 2%-1, inclusive. These operators accept any value of the Number type but first converts
each such value to one of 2% integer values. See the descriptions of the Tolnt32 and ToUint32 operatorsin

sections 5.5 and ToUint32: (unsigned 32 bit integer)Felint32-{unsigned-32-bit-iateger) respectively.

4.5 .THE OBJECT TYPE

An Object is an unordered collection of properties. Each property consists of aname, avalue and a set of
attributes.

4.5.1 Property Attributes

A property can have zero or more attributes from the following set:

Attribute Descption
ReadOnly The property is aread-only property. Attempts to write to the property will be
ignored.
ErrorOnWrite This attribute has precedence over the ReadOnly attribute. Attempts to writeto
the property will result in aruntime error and the property will not be changed.
DontEnum The property is not included in the for-in enumeration. See the description of the
for-in statement in section Thefor..in _Statement-Fhefor-ir—Statement
DontDelete Attempts to delete the property will be ignored. See the description of the
del et e operator in section Thedel et e OperatorFhedel-et-e-Operator.
Internal Internal properties have no name and are not directly accessible viathe property

accessor operators. How these properties are accessed is implementation specific.
How and when some of these properties are used is specified by the language
specification.

4.5.2 Property Access

Internal properties and methods are not exposed in the language. For the purposes of this document, we
give them names enclosed in double square brackets[[]]. When an algorithm uses an internal property of an
object and the object does not implement the indicated internal property, aruntime error is generated.

There are two types of access for exposed properties: get and put, corresponding to retrieval and assignment.

Native ECMA Script objects have an internal property called [[Prototype]]. The value of this property is
either nul | or an object and is used for implementing inheritance. Properties of the [[Prototype]] object
are exposed as properties of the child object for the purposes of get access, but not for put access.

The following table summarizes the internal properties related to property access:

Parameters
| [[Ge]] | (PropertyName) Returns the value of the property.

19687

[[Put]] (PropertyName, Vaue) Sets the property to value.

[[Prototype]] None Returns the parent object.
[[HasProperty]] | (PropertyName) Returns a bool ean value indicating whether the object
already has a member with the given name.
[[Construct]] Optional user provided (Constructor) Constructs an object. Invoked viathe
parameters new operator.
[[Calll] Optional user provided (Function) Executes the object..
parameters

Assume O is an ECMA Script object and P isastring.

4.5.3 HasProperty

When the [[HasProperty]] method of O is called with property name P, the following steps are taken:

1. If O hasaproperty with name P, returnt r ue.

2. If the [[Prototype]] of Oisnul | , returnf al se.

3. Cdl the [[HasProperty]] method of [[Prototype]] with property name P.
4. Return Result(3).

454 Get

When the [[Get]] method of O is called with property name P, the following steps are taken:
If O doesn’t have a property with name P, go to step 4.

Get the value of the property.

Return Result(2).

If the [[Prototype]] of Oisnul |, return undefi ned.

Call the [[Get]] method of [[Prototype]] with property name P.

Return Result(5).

ok wWwdE

4.5.5 Put

To aid in defining the [[Put]] method, the [[CanPut]] method isfirst defined. As[[CanPut]] method is only

used here (by the [[Put] method with explicit access mode), it is not included in the table in 4.5.2.

When the [[CanPut]] method of O is called with property P, the following steps are taken:
If O doesn’t have a property with name P, go to step 4.

If the property has the ErrorOnWrite attribute, generate a runtime error.

If the property has the ReadOnly attribute, return false.

If the [[Prototype]] of O isnull, return true.

Call the [[CanPut]] method of [[Prototype]] of O with property Name P.

. Return Result(5).

When the [[Put]] method of O is called with property P and value V, the following steps are taken:
Call the [[CanPut]] method of O with name P.

If Result(1) isfalse, return.

If O doesn't have a property with name P, go to step 6.

Set the value of the property to V.

Return.

Create a property with name P, set its value to V and give it empty attributes.

Return.

oA~ wWDdE

NogkwbdhpE

2087

4.6 THE STRING TYPE

The String type consists of the set of all finite sequences of zero or more Unicode characters.
Note: The concatenation operator (+), relational operators (<, >, <=, >=) and equality operators (==,
I' =) apply to this type.

4.7 THE INTERNAL REFERENCE TYPE

The Internal Reference Type is not a language data type. Is it only defined here for the
purposes of aiding this specification.

A Reference is areference to an object’s property. A Reference consists of two parts, the base object
and the property name.

In defining the semantics of ECMA Script, the following methods are defined for internal operations:

GetBase(). Returns the base object component.
GetPropertyName(). Returns the propertyName component.
GetVaue(). Returnsthe value of the indicated property.
PutValue(). Setstheindicated property to the indicated value.

Values of type Reference are only used as intermediate results of expression evaluation and cannot be
stored to properties of objects.

4.7.1 GetBase

1
2.

If Type(V) is aReference, return the base object component of V.
Generate aruntime error.

4.7.2 GetPropertyName

1
2.

If Type(V) isa Reference, return the propertyName component of V.
Generate aruntime error.

4.7.3 GetValue

1

ok wnN

If Type(V) isnot a Reference, return V.

Call GetBase(V).

If Result(2) is null, generate a runtime error.

Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.
Return Result(4).

4.7.4 PutValue
For values V and W, PutValue(V, W) performs:

1

2.
3.
4

o u

If type (V) is not a Reference, generate aruntime error.

Cal GetBase(V).

If Result(2) is null, go to step 6.

Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W for the
vaue.

Return.

Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property name and
W for the value.
Return.

5 Type CONVERSION

The ECMA Script runtime system performs automatic type conversion as needed. To clarify the semantics
of certain constructsit is useful to define a set of conversion operators. These operators are not a part of the
language; they are defined here to aid the specification of the semantics of the language. The conversion
operators are polymorphic; that is, they can accept avalue of any standard type, but not of type Reference.

5.1 ToPRIMITIVE

The operator ToPrimitive takes a Value argument and an optional PreferredType argument. The operator
ToPrimitive attempts to convert its value argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredType to favor that type.
Conversion occurs according to the following table:

Input Type Result

Undefined Return the input argument (no conversion)

Null Return the input argument (no conversion)

Boolean Return the input argument (no conversion)

Number Return the input argument (no conversion)

String Return the input argument (No conversion)

Object Return the default value of the Object. The default value of an object isretrieved

by calling theinteral [[DefaultValue]] method of the object passing an optional
hint preferredType. The behavior of the [[DefaultVaue]] method is defined by this
specification for al native ECMAScript objects. If the return value is of type
Object or Reference, aruntime error is generated.

5.2 ToBOOLEAN

The operator ToBoolean attempts to convert its argument to a value of type Boolean according to the

following table:

Input Type Result

Undefined fal se

Null fal se

Boolean Return the input argument (no conversion)
Number 0 t fal se

NaN 1 false
0 and # NaN £ true

String = "" f false (where "" denotes an enpty string)
Z"" ¥ true

Object true

5.3 ToNUMBER

The operator ToONumber attempts to convert its argument to a value of type Number according to the
following table:

Input Type Result
Undefined NaN
Null NaN
Boolean true t1
false ¥ 0
Number Return the input argument (no conversion)
String See grammer and discussion below.
Object Apply the following steps:
1. Cdl ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

5.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot
interpret the string then the result of ToNumber is NaN.

SringNumericLiteral :::
SrWhiteSpace,,, SrNumericLiteral StrwhiteSpace,,

SrWwhiteSpace :::
SrWhiteSpaceChar StrwhiteSpace,,

SrWwhiteSpaceChar :::
<TAB>
<S>
<FF>
<VT>
<CR>
<LF>

SrNumericLiteral :::
SrintegerLiteral
SrFloatingPointLiteral

SrintegerLiteral :::

SigN,y Digits,y
HexintegerLiteral

2387

HexintegerLiteral :::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 456 7 8 9 aboc def ABCDTEF

SrFloatingPointLiteral :::
Sign,, Digits . Digits,, ExponentPart,,
Sgn,,. Digits ExponentPart,,
Sign,,, Digits ExponentPart

ExponentPart :::
Exponentlndicator Sgnedinteger

ExponentIndicator ::: one of
e E

Sgnedinteger :::
Sign,, Digits

Sgn ::: one of
+ -

5.4 TOINTEGER

The operator Tolnteger attempts to convert its argument to an integral numeric value. This operator
functions as follows:

1

ok wnN

Call ToNumber on the input argument.

If Result(1) is NaN, return O (positive zero).

If Result(1) is xInfinity, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

5.5 ToINT32: (SIGNED 32 BIT INTEGER)

The operator Tolnt32 converts its argument to one of 22 integer values in the range -2** through 2%'-1,
inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, Positive Infinity, or Negative Infinity, return O (positive zero).

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. If Result(3) is positive zero or negative zero, return O (positive zero).

5. Compute Result(3) modulo 2% that is, afinite value k of Number type with positive sign and less
than 2% in magnitude such the mathematical difference of Result(3) and k is mathematically exactly
divisible by 2*%fRes i ity i Y Resuht{3)) %232}

6. If Result(5) is greater than or equal to 2%, return Result(5)-2%%; otherwise return Result(54).

Discussion:

Note that the Tolnt32 operation isidempotent: if applied to aresult that it produced, the second application

leaves that value unchanged.

2487

Note also that Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for al values of x.
(It isto preserve this latter property that Positive Infinity and Negative Infinity are mapped to zero.)

5.6 ToUINT32: (UNSIGNED 32 BIT INTEGER)

1. The operator ToUint32 converts its argument to one of 2% integer values in the range 0 through 2%>-1,
inclusive. This operator functions as follows:Call ToNumber on the input argument.

If Result(1) is NaN, Positive Infinity, or Negative Infinity, return O (positive zero).

Compute sign(Result(1)) * floor(abs(Result(1))).

If Result(3) is positive zero or negative zero, return O (positive zero).

Compute Result(3) modulo 2% that is, afinite value k of Number type with positive sign and less
than 2*2 in magnitude such the mathematical difference of Result(3) and k is mathematically exactly
divisible by 2%%fRes i tiv ' —((1-Result(3)) % 2%) -
Jsthemweseompsta ool 0 000
6. Return Result(5).

ok wnN

Discussion:
Note: Step 6 isthe only difference between ToUint32 and Tolnt32.

Note that the ToUint32 operation is idempotent: if applied to a result that it produced, the second
application leaves that val ue unchanged.

Note also that ToUint32(Tolnt32(x)) is equal to ToUint32(x) for al values of x.
(Itisto preservethislatter property that Positive Infinity and Negative Infinity are mapped to zero.)

5.7 TOSTRING

The operator ToString attempts to convert its argument to a value of type String according to the following
table:

Input Type Result
Undefined "undefined"
Null "nul "
Boolean true 1 "true"
false ¥ "false"
Number See discussion below.
String Return the input argument (no conversion)
Object Apply the following steps:
1. Cal ToPrimitive(input argument, hint String).
2. Cdl ToString(Result(1)).
3. Return Result(2).

5.7.1 ToString Applied to the Number Type

The operator ToString converts a number to string format as follows:
» |If the argument is NaN, the result is the string " NaN" .
» |f theargument is positive zero or negative zero, theresult is" 0".

2587

e Otherwise, theresult is a string that represents the sign and magnitude (absolute value) of the
argument. If the sign is negative, the first character of theresult is ‘- ’; if the sign is positive, no sign
character appearsin the result. As for the magnitude m:

If misinfinity, it is represented by the characters “I nf i ni t y”; thus, positive infinity produces
theresult "I nfi ni ty" and negative infinity produces the result" - I nfinity".

If mis an integer lessthan 10?1, then it is represented as that integer value in decimal form with
no leading zeroes and no decimal point.

If mis greater than or equal to 107 but less than 102*°, and is not an exact integer value, then it
isrepresented as the integer part (floor) of m, in decimal form with no leading zeroes, followed by
adecimal point ‘. ', followed by one or more decimal digits (see below) representing the fractional
part of m.

If mislessthan 107 or not less than 102, then it is represented in so-called " computerized
scientific notation." Let n be the unique integer such that 10" < m< 10™; then let a be the
mathematically exact quotient of mand 10" so that 1 < a < 10. The magnitude is then represented
asthe integer part (floor) of a, asasingle decimal digit, followed by adecimal point ‘. ’, followed
by one or more decimal digits (see below) representing the fractional part of a, followed by the
letter ‘E’, followed by arepresentation of n as adecimal integer (first aminussign ‘-’ if nis
negative or nothing of nis not negative, followed by the decimal representation of the magnitude
of nwith no leading zeros).

How many digits must be printed for the fractional part of mor a? There must be at least one digit; beyond
that, there must be as many, but only as many, more digits as are needed to uniquely distinguish the

argument value from all other representable numeric values. That is, suppose that x is the exact

mathematical value represented by the decimal representation produced by this method for afinite nonzero
argument ; then d must be the value of number type nearest to x; or if two values of the Naumber type are |
equally closeto x, then d must be one of them and the least significant bit of d must be 0. A consequence

of this specification is that ToString never produces trailing zero digits for afractional part.

Implementors of ECMA Script may find useful the paper and code written by David M. Gay for binary-to-
decimal conversion of floating-point numbers [Gay 1990].

5.8 ToOBJECT

The operator ToObject attempts to convert its argument to a value of type Object according to the

following table:

Input Type Result

Undefined generate aruntime error

Null generate a runtime error

Boolean Create a new Boolean object whose default value is the value of the boolean. See
the Native ECMA Script ObjectsNative- ECMASeript-Obteets section for a
description of the Boolean object.

Number Create anew Number object whose default value is the value of the number. See
the Native ECMA Script ObjectsNative- ECMASeript-Obteets section for a
description of the Number object.

String Create a new _String object whose default value is the value of the string. See the
Native ECMA Script Obj ectsNative- ECMASeript-Objeets section for adescription
of the String object.

Object Return the input argument (no conversion)

2687

6 EXECUTION CONTEXTS

When control istransferred to ECM A Script executable code, we say that control is entering an execution
context. Active execution contexts logically form a stack. The top execution context on this logical stack is
the running execution context.

6.1 DEFINITIONS

6.1.1 Function Objects

There are four types of function objects:
» Declared functions are defined in source text by a FunctionDeclaration.

* Anonymous functions are created dynamically by using the built-in Funct i on Object asa
constructor which we refer to as instantiating Funct i on.

» Host functions are created at the request of the host with source text supplied by the host. The
mechanism for their creation isimplementation dependent. Host functions may have any subset of the
following attributes { ImplicitThis, ImplicitParents} . These attributes are described below.

* Internal functions are built-in objects of the language, such as par sel nt and Mat h. exp. These
functions do not contain executable code defined by the ECM A Script grammar, so are excluded from
this discussion of execution contexts.

6.1.2 Types of Executable Code

There are five types of executable ECMA Script source text:

» Global codeissourcetext that is outside al function declarations. More precisely, the global code of a
particular ECM A Script Program consists of all SourceElementsin the Program production which
come from the Statement definition.

e Eval codeisthe source text supplied to the built-ineval function. More precisaly, if the parameter
to the built-in eval function isastring, it istreated as an ECMA Script Program. The eval code for a
particular invocation of eval isthe globa code portion of the string parameter.

* Function code is source text that is inside a function declaration. More precisely, the function code of a
particular ECM A Script FunctionDeclaration consists of the Block in the definition of
FunctionDeclaration.

e Anonymous code is the source text supplied when instantiating Funct i on. More precisely, the last
parameter provided in an instantiation of Funct i on is converted to a string and treated as the
SatementList of the Block of a FunctionDeclaration. If more than one parameter is provided in an
instantiation of Funct i on, all parameters except the last one are converted to strings and
concatenated together, separated by commas. The resulting string is interpreted as the
FormalParameterList of a FunctionDeclaration for the SatementList defined by the last parameter.

» Host code is the source text supplied by the host when creating a host function. The source text is
treated as the StatementList of the Block of a FunctionDeclaration. Depending on the implementation,
the host may also supply a FormalParameterList.

6.1.3 Variable Instantiation

Every execution context has associated with it a variable object. Variables declared in the source text are

added as properties of the variable object. For global and eval code, functions defined in the source text are
added as properties of the variable object. Function declarations in other types of code are not allowed by the
grammar. For function, anonymous and host code, parameters are added as properties of the variable object.

Which object is used as the variable object and what attributes are used for the properties depends on the
type of code, but the remainder of the behavior is generic:

» For each FunctionDeclaration in the code, in source text order, instantiate a declared function from the
FunctionDeclaration and create a property of the variable object whose name is the Identifier in the
FunctionDeclaration, whose value is the declared function and whose attributes are determined by the
type of code. If the variable object already has a property with this name, replace its value and
attributes.

» For each formal parameter, as defined in the Formal ParameterList, create a property of the variable
object whose name is the Identifier and whose attributes are determined by the type of code. The values
of the parameters are supplied by the caller. If the caller supplies fewer parameter values than there are
formal parameters, the extraformal parameters have value undef i ned. If two or more formal
parameters share the same hame, hence the same property, the corresponding property is given the
value that was supplied for the last parameter with this name. if the value of this last parameter was
not supplied by the caller, the value of the corresponding property isundef i ned.

» For each VariableDeclaration in the code, create a property of the variable object whose nameisthe
Identifier in VariableDeclaration, whose valueisundef i ned and whose attributes are determined
by the type of code. If there isaready a property of the variable object with the name of a declared -
variable, the value of the property and its attributes are not changed. Semantically, this step must
follow the creation of the FunctionDeclaration and Formal Parameterlist properties. In particular, if a
declared variable has the same name as a declared function or formal parameter, the variable declaration
does not disturb the existing property.

6.1.4 Scope Chain and Identifier Resolution

Every execution context has associated with it its own a scope chain. Thisislogically alist of objects that
are searched when binding an Identifier. When control enters an execution context, the scope chain is created
and is populated with aninitial set of objects, depending on the type of code. When control leaves the
execution context, the scope chain is destroyed.

During execution, the scope chain of the execution context is affected only by WithSatement. When
execution entersawi t h block, the object specified inthewi t h statement is added to the front of the
scope chain. When execution leaves a with block, whether normally or viaabr eak or conti nue
statement, the object is removed from the scope chain. The object being removed will always be the first
object in the scope chain.

During execution, the syntactic production PrimaryExpression : Identifier is evaluated using the following
algorithm:

1. Get the next object in the scope chain. If there isn't one, go to step 5.

2. Cdl the [[HasProperty]] method of Result(l), passing the Identifier as the property.

3. If Result(2) ist r ue, return avalue of type Reference whose base object is Result(l), property name
istheidentifier.

4, Goto step 1.
5. Return avalue of type Reference whose base object isnul | and whose property name is Identifier.

Theresult of binding an identifier is always a value of type Reference with its member name component
equal to the identifier string.

2887

6.1.5 Global Object

Thereisaunique global object which is created before control enters any execution context. Initially the
global object has the following properties:

» Built-in objects such as Math, String, Date, parselnt, etc. These have attributes { DontEnum }.

e Additional host defined properties. This may include a property whose value is the global object itself,
for example window in HTML.

As control enters execution contexts, and as ECMA Script code is executed, additional properties may be
added to the global object and theinitial properties may be changed.

6.1.6 Activation Object

When control enters an execution context for function code, anonymous code or host code, an object called
the activation object is created and associated with the execution context. The activation object isinitialized
with a single property with name ar gunment s and property attributes { DontDelete }. The initial value
of this property is the arguments object described below. The activation object is then used as the variable
object for the purposes of variable instantiation.

The activation object is purely a specification mechanism. It isimpossible for an ECMA Script program to
access the activation object. It can access members of the activation object, but not the activation object
itself. When the call operation is applied to a Reference value whose base object is an activation object,
nul | isused asthet hi s value of the call.

6.1.7 LabelStacks

The definitions of the control flow statements use two logical stacks, the break label stack and the continue
label slack. These are to facilitate the semantic definition of these statements and are not intended to imply a
particular implementation. Each execution context hasits own label stacks, which are created and initialized
to empty when control enters the execution context When control leaves the execution context, the label
stacks are destroyed.

6.1.8 This

Thereisat hi s value associated with every active execution context. Thet hi s value depends on the
caller and the type of code being executed and is determined when control enters the execution context. The
t hi s value associated with an execution context is immutable.

6.1.9 Arguments Object

When control enters an execution context for function, anonymous or host code, an arguments object is
created and initialized as follows:

O A property is created with name cal | ee and property attributes { DontEnum }. The initia value of
this property is the function object being executed. This allows anonymous functions to be recursive.

O A property is created with name | engt h and property attributes { DontEnum }. The initial value of
this property is the number of actual parameter values supplied by the caller.

0 For each non-negative integer, iarg, less than the value of thel engt h property, a property is created
with name ToString(iarg) and property attributes { DontEnum }. The initial value of this property is
the value of the corresponding actual parameter supplied by the caller. Thefirst actual parameter value
corresponds to iarg = 0, the second to iarg = 1 and so on. In the case when iarg is less than the number
of formal parameters for the function object, this property sharesits value with the corresponding
property of the activation object. This means that changing this property changes the corresponding
property of the activation object and vice versa. The value sharing mechanism depends on the
implementation.

Issue: Should the arguments object have a caller property?

2987

6.2 ENTERING AN ExeEcuTioN CONTEXT

When control enters an execution context, the scope chain is created and initialized, variable instantiation is
performed, the break label and continue label stacks are created and initialized to empty, and thet hi s
value is determined.

The initialization of the scope chain, variable instantiation, and the determination of thet hi s value
depend on the type of code being entered.

6.2.1 Global Code

» Thescope chainis created and initialized to contain the global object and no others.

» Variableinstantiation is performed using the global object as the variable object and using empty
property attributes.

 Thet hi s valueisthe global object.

6.2.2 EvalCode

When control enters an execution context for eval code, the previous active execution context, referred to as
the calling context, is used to determine the scope chain, the variable object, and the t hi s value. If there
is no calling context, theninitializing the scope chain, variable instantiation, and determination of the

t hi s value are performed just as for global code.

¢ Thescope chainisinitialized to contain the same objects, in the same order, as the calling context's
scope chain. Thisincludes objects added to the calling context's scope chain by WithSatement.

» Variableinstantiation is performed using the calling context's variable object and using empty property
attributes.

e Thet hi s valueisthe same asthet hi s value of the caling context.

6.2.3 Function and Anonymous Code

» Thescope chainisinitialized to contain the activation object followed by the global object.

* Variableinstantiation is performed using the activation object as the variable object and using property
attributes{ , DontDelete }.

e Thecaler providesthet hi s value. If thet hi s value provided by the caler is not an object
(including the case where it isnul |), then thet hi s value is the global object.

6.2.4 Host Code

* Thescope chainisinitialized to contain the activation object asits first element.

» If the host function has the ImplicitThis attribute, the this value is placed in the scope chain after the
activation object.

» |f the host function has the ImplicitParents attribute, alist of objects determined solely by thet hi s
value, isinserted in the scope chain after the activation object and t hi s object. Note that thislist is
determined at runtime by thet hi s value. It isnot determined by any form of lexical scoping.

» Theglobal object is placed in the scope chain after all other objects.

» Variableingtantiation is performed using the activation object as the variable object and using
attributes { DontEnum, DontDel ete}

* Thet hi s valueisdetermined just as for function and anonymous code.

3087

/ EXPRESSIONS

7.1 PRIMARY EXPRESSIONS

Syntax
PrimaryExpression :
this
Identifier
Literal

(Expression)

7.1.1 Thet hi s Keyword

Thet hi s keyword evaluates to thet hi s value of the execution context.

7.1.2 Identifier Reference

An ldentifier is evaluated using the scoping rules stated in section Scope Chain and Identifier
Resol uti onSeepe-Chain-and-Hdentifier-Resalution. The result of an Identifier is always avalue of type

Reference.

7.1.3 Literal Reference
A Literal isevauated as described in section Literalskiterals.

7.1.4 The Grouping Operator

The production PrimaryExpression : (Expression) isevaluated asfollows:
1. Evauate Expression. This may be of type Reference.
2. Return Result(1).

7.2 PosTFIX EXPRESSIONS

Syntax
MemberExpression :
PrimaryExpression
MemberExpression [Expression]
MemberExpression . Identifier
Member Expression [no LineTerminator here] | ncrementOperator
n e wMemberEXxpression [no LineTerminator_here] Arguments
IncrementOperator :

++

NewExpression ;
Member Expression
new NewMember Expression

Ae-w-MemberExpression-Argaments

CallExpression :
Member Expression [no LineTerminator here] Arguments
_NewCalExpression—{no-LineTerminatorherel —AFgUERtS
CallExpression [no LineTerminator here] Arguments
CallExpression [Expression]
CallExpression . Identifier
CallExpression-_[no LineTerminator_here] _|ncrementOper ator

Arguments :

()
(ArgumentList)

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

PostfixExpression :

NewMerberExpression
CallExpression
Newbxpressien

The postfix increment operators and property accessor operators[| and . appear in both the

Member Expression and Call Expression productions. Generally we will refer to the productions involving
Member Expression with the understanding that the same remarks apply to CallExpression. Similarly, the
CallExpression production includes three definitions involving the Arguments non-terminal. We will refer
to the definition involving Call Expression.

7.2.1 Property Accessors

Properties are accessed by name, using either the dot notation MemberExpression . Identifier or the bracket
notation Member Expression [Expression] .
The dot notation is transformed using the following syntactic conversion:
MemberExpression . Identifier

is exactly equivalent to:

MemberExpression [<identifier-string>]
where <identifier-string> isastring literal containing the same sequence of characters as the identifier.
The production MemberExpression : MemberExpression [Expression] isevaluated as follows:
Evaluate MemberExpression.
Call GetVaue(Result(1)).
Evaluate Expression.
Call GetVaue(Result(3)).
Call ToObject(Result(2)).
Call ToString(Result(4)).

Return avalue of type Reference whose base object is Result(5), member name is Result(6) and access
mode is explicit.

Noak~kwdpE

7.2.2 Postfix Increment and Decrement Operators

The production Member Expression : Member Expression |ncrementOperator is evaluated as follows:

1

2.
3.
4

ol

6.

Evaluate MemberExpression.

Call GetVaue(Result(1)).

Call ToNumber(Result(2)).

For ++, Result(4) is Result(3) increased by one. For --, Result(4) is Result(3) decreased by one. In
either case, if Result(3) is NaN or xInfinity, Result(4) is the same as Result(3).

Call PutValue(Result(1), Result(4)).

Return Result(32).

7.2.3 The new Operator

The production NewExpression : new MemberExpression is evaluated as follows:

apsrwbdPE

6.
7.

Evaluate MemberExpression.

Call GetVaue(Result(1)).

If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of
arguments).

If Type(Result(5)) is not Object, generate a runtime error.

Return Result(5).

The production NewCallExpression : new MemberExpression Arguments is evaluated as follows:

1
2.
3.

No gk~

8.

Evaluate MemberExpression.

Call GetVaue(Result(1)).

For each AssignmentExpression in ArgumentList, in left to right order, evaluate
AssignmentExpression and call GetValue on the result. Keep all of these valuesin an internal list.
If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.

Call the [[Construct]] method on Result(2), providing the list generated in step 3 as the parameters.
If Type(Result(6)) is not Object, generate a runtime error.

Return Result(6).

7.2.4 Function Calls

The production CallExpression : CallExpression Arguments is evaluated as follows:

1
2.

©o N O~ W

9.

Evaluate CallExpression.

For each AssignmentExpression in ArgumentL.ist, in left to right order, evaluate
AssignmentExpression and call GetValue on the result. Keep all of these valuesin an internal list.
Call GetVaue(Result(1)).

If Type(Result(3)) is not Object, generate aruntime error.

If Result(3) does not implement the internal [[Call]] method, generate a runtime error.

If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Result(6) isnull.

If Result(6) is an activation object, Result(7) is null. Otherwise, Result(7) is the same as Result(6).
Call the [[Call]] method on Result(3), providing Result(7) as the this value and providing the list
generated in step 2 as the parameters.

Return Result(8).

Note: Result(8) will never be of type Reference for native ECMA Script objects. Whether an external
object can return avalue of type Reference isimplementation dependent.

3387

7.3 UNARY OPERATORS

Syntax

UnaryExpression :

PostfixExpression

del et e UnaryExpression
voi d UnaryExpression
typeof UnaryExpression

IncrementOperator UnaryExpression

+ UnaryExpression
- UnaryExpression
~ UnaryExpression

! UnaryExpression

7.3.1 The del et e Operator

The production UnaryExpression : del et e UnaryExpression is evaluated as follows:

© Nk WDNRE

Evaluate UnaryExpression.
Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

If Type(Result(2)) is not Object, return true.

If Result(2) does not implement the internal [[Delete]] method, go to step 8.
Call the [[Delete]] method on Result(2), providing Result(3) as the property name to delete.

Return Result(64).
Call the [[HasProperty]] method on Result(2)), providing Result(3) as the property name to check for.

If Result(8) istrue, return false.

10. Return true.

7.3.2 The voi d Operator

The production UnaryExpression : voi d UnaryExpression is evaluated as follows:

1. Evauate UnaryExpression.
2. Cadl GetVaue(Result(1)).
3. Return undefined.

7.3.3 The t ypeof Operator

The production UnaryExpression : t ypeof UnaryExpression is evaluated as follows:

1

2.
3.
4

Evaluate UnaryExpression.

If Type(Result(1)) is Reference and GetBase(Result(1)) is null, return "undefined".

Call GetValue(Result(1)).

Return a string determined by Type(Result(3)) according to the following table:

1. Type 1. Result

2. Unddfined 2. "undefined"

3. Null 3. "object"

4. Boolean 4. "boolean"

5. Number 5. "number"

6. String 6. "string"

7. Object (native and 7. "object"
doesn’t implement

[[Call]])
8. Object (native and 8. "function"

implements

[[Call]])
9. Object (external) 9. unspecified

Issue: What does typeof return for externa objects?

7.3.4 Prefix Increment and Decrement Operators

The production UnaryExpression : IncrementOperator UnaryExpression is evaluated as follows:

1. Evauate UnaryExpression.

2. Cadl GetVaue(Result(1)).

3. Cdl ToNumber(Result(2)).

4. For ++, Result(4) is Result(3) increased by one. For --, Result(4) is Result(3) decreased by one. In
either case, if Result(3) is NaN or xInfinity, Result(4) is the same as Result(3).

Call PutValue(Result(1), Result(4)).

6. Return Result(4).

o

7.3.5 Unary + and - Operators

The production UnaryExpression : + UnaryExpression is evaluated as follows:
1. Evauate UnaryExpression.

2. Call GetVaue(Result(1)).

3. Cdl ToNumber(Result(2)).

4. Return Result(3).

The production UnaryExpression : - UnaryExpression is evaluated as follows:
Evaluate UnaryExpression.

Call GetVaue(Result(1)).

Call ToNumber(Result(2)).

If Result(3) is NaN, return NaN.

Negate Result(3).

6. Return Result(5).

agkrwbdpE

7.3.6 The Bitwise NOT Operator (~)

The production UnaryExpression : ~ UnaryExpression is evaluated as follows:
Evaluate UnaryExpression.

Call GetValue(Result(1)).

Call Tolnt32(Result(2)).

Apply bitwise complement to Result(3)._The result is a signed 32-bit integer.
Return Result(4).

akrwbdpE

7.3.7 Logical NOT Operator (!)

The production UnaryExpression : | — UnaryExpression is evaluated as follows:
Evaluate UnaryExpression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, return false.

Return true.

s wbdPE

3587

7.4 MULTIPLICATIVE OPERATORS
Syntax

MultiplicativeExpression :
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression/ UnaryExpression
MultiplicativeExpression %UnaryExpression

SemantiHcs

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands
for one of the operators in the above definitions, is evaluated as follows:

1. Evaluate MultiplicativeExpression.

Call GetVaue(Result(1)).

Evaluate UnaryExpression.

Call GetVaue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the discussions below
(7.4.1, 7.4.2, 7.4.3).

8. Return Result(7).

Noaks~wDdD

7.4.1 7.41 Applying the * Operator

The* operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECM A Script, because of finite precision.

Theresult of afloating-point multiplication is governed by the rules of IEEE 754 double-precision
arithmetic:

» If either operand is NaN, the result is NaN.

» Thesign of theresult is positive if both operands have the same sign, negative if the operands have
different signs.

* Multiplication of an infinity by a zero resultsin NaN.

» Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule
already stated above.

e Multiplication of an infinity by afinite non-zero value results in asigned infinity. The sign is
determined by the rule already stated above.

* Intheremaining cases, where neither an infinity or NaN isinvolved, the product is computed and
rounded to the nearest representable value using |EEE 754 round-to-nearest mode. If the magnitudeis
too large to represent, the result is then an infinity of appropriate sign. If the magnitude is too small to
represent, the result is then a zero of appropriate sign. The ECMA Script language requires support of
gradual underflow as defined by IEEE 754.

7.4.1 742 Applying the / Operator

The/ operator performs division, producing the quotient of its operands. The left operand is the dividend
and the right operand is the divisor. ECMA Script does not perform integer division. The operands and
result of al division operations are double-precision floating-point numbers. The result of division is
determined by the specification of IEEE 754 arithmetic:

e |f either operand is NaN, the result is NaN.

» Thesign of theresult is positive if both operands have the same sign, negative if the operands have
different signs.

3687

e Division of an infinity by an infinity resultsin NaN.
o Division of an infinity by azero resultsin an infinity. The sign is determined by the rule aready stated
above.

» Division of an infinity by a non-zero finite value results in a signed infinity. The sign is determined by
therule already stated above.

» Division of afinite value by an infinity resultsin zero.
» Division of azero by azero resultsin NaN; division of zero by any other finite value resultsin zero.

» Division of anon-zero finite value by a zero resultsin asigned infinity. The sign is determined by the
rule dready stated above.

* Intheremaining cases, where neither an infinity, nor azero, nor NaN isinvolved, the quotient is
computed and rounded to the nearest representable value using | EEE 754 round-to-nearest mode. If the
magnitude is too large to represent, we say the operation overflows; the result is then an infinity of
appropriate sign. If the magnitude istoo small to represent, we say the operation underflows and the
result is zero. The ECM A Script language requires support of gradual underflow as defined by |EEE
754.

7.4.1 33— Applying the % Operator

The binary %operator is said to yield the remainder of its operands from an implied division; the left
operand is the dividend and the right operand isthe divisor. In C and C++, the remainder operator accepts
only integral operands, but in ECMA Script, it also accepts floating-point operands.

The result of afloating-point remainder operation as computed by the %operator is not the same as the
"remainder" operation defined by |EEE 754. The |[EEE 754 "remainder" operation computes the remainder
from arounding division, not a truncating division, and so its behavior is not analogous to that of the usual
integer remainder operator. Instead the ECM A Script language defines %on floating-point operations to
behave in amanner analogous to that of the Javainteger remainder operator; this may be compared with the
C library function fmod.

Theresult of a ECMA Script floating-point remainder operation is determined by the rules of IEEE
arithmetic:

o If either operand is NaN, the result is NaN.

» Thesign of the result equalsthe sign of the dividend.

» If thedividend isaninfinity, or the divisor is a zero, or both, the result is NaN.

» If thedividend isfinite and the divisor is an infinity, the result equals the dividend.

» If thedividend is azero and the divisor isfinite, the result is the same as the dividendzere.

* Intheremaining cases, where neither an infinity, nor azero, nor NaN isinvolved, the floating-point
remainder r from adividend n and adivisor d is defined by the mathematical relationr =n- (d * q)
where q is an integer that is negative only if n/d is negative and positive only if n/d is positive, and
whose magnitude is as large as possible without exceeding the magnitude of the true mathematical
quotient of nand d.

7.5 ApDITIVE OPERATORS

Syntax

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

7.5.1 The Addition Operator (+)

The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as
follows:

1

No koD

®©

9.

10.
11.
12.
13.
14.
15.
16.

Evaluate AdditiveExpression.

Call GetVaue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetVaue(Result(3)).

Call ToPrimitive(Result(2)-hirt-Nurmber).
Call ToPrimitive(Result(4);-hiat-Number).

If Type(Result(5)) is String or Type(Result(6)) is String, go to step 13. (Note that this step differs

from step 7 in the algorithm for the relational operators in using o instead of ad.)

Call ToNumber(Result(5)).

Call ToNumber(Result(6)).

If Result(8) or Result(9) is NaN, return NaN.

Apply the addition operation to Result(8) and Result(9). See the discussion below.
Return Result(11).

Call ToString(Result(5)).

Call ToString(Result(6)).

Concatenate Result(13) followed by Result(14).

Return Result(15).

7.5.1 The Subtraction Operator (-)

The production AdditiveExpression : AdditiveExpression - MultiplicativeExpression is evaluated as
follows:

1

No Ok ODN

8.

Evaluate AdditiveExpression.

Call GetValue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the subtraction operation to Result(5) and Result(6). See the discussion below (7.5.3).
Return Result(7).

7.5.3 Applying the Additive Operators (+, -)

The + operator performs addition when applied to two operands of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.
Theresult of an addition is determined using the rules of |EEE 754 double-precision arithmetic:

If either operand is NaN, the result is NaN.

The sum of two infinities of opposite sign is NaN.

The sum of two infinities of the same sign is the infinity of that sign.
The sum of an infinity and afinite value is equal to the infinite operand.

The sum of two negative zeros is negative zero._The sum of two positive zeros, or of two zeros of
opposite sign, is positive zero.

The sum of a zero and a nonzero finite value is equal to the nonzero operand.
The sum of two nonzero finite values of the same magnitude and opposite sign is positive zero.

3887

e Intheremaining cases, where neither an infinity, nor a zero, nor NaN isinvolved, and the operands
have the same sign or have different magnitudes, the sum is computed and rounded to the nearest
representable value using | EEE 754 round-to-nearest mode. If the magnitude is too large to represent,
the operation overflows and the result is then an infinity of appropriate sign. If the magnitude is too
small to represent, the operation underflows and the result is zero. The ECM A Script language requires
support of gradual underflow as defined by IEEE 754.

» The- operator performs subtraction when applied to two operands of numeric type producing the
difference of its operands; the left operand is the minuend and the right operand is the subtrahend. Given
numeric operandsaand b, it is always the case that a- b producesthe sameresult asa+ (- b).

7.6 BITwisSE SHIFT OPERATORS

Syntax

ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Discussion
The result of evaluating ShiftExpression is always truncated to 32 bits. If the result of evaluating

ShiftExpression produces afractional component, the factional component is discarded. The result of
evaluating AdditiveExpresion is always truncated to five bits.

7.6.1 The Left Shift Operator (<<)

Performs a bitwise | eft shift operation on the left argument by the amount specified by the right argument.
The production ShiftExpression : ShiftExpression << AdditiveExpression is evaluated as follows:
Evaluate ShiftExpression.

Call GetVaue(Result(1)).

Evaluate AdditiveExpression.

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call ToInt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
L eft shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

N GA~AWDNE

©

7.6.2 The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left argument by the amount specified by the
right argument.

The production ShiftExpression : ShiftExpression >> AdditiveExpression is evaluated as follows:
Evaluate ShiftExpression.

Call GetVaue(Result(1)).

Evaluate AdditiveExpression.

Call GetVaue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is
propagated. The result is asigned 32 bit integer.

© N~ WDNE

3987

9. Return Result(8).

7.6.3 The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left argument by the amount specified by the
right argument.

The production ShiftExpression : ShiftExpression >>> AdditiveExpression is evaluated as follows:
Evaluate ShiftExpression.

Call GetVaue(Result(1)).

Evauate AdditiveExpression.

Call GetVaue(Result(3)).

Call ToUint32(Result(2)).

Call ToInt32(Result(4)).

Mask out al but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The
result is an unsigned 32 hit integer.

Return Result(8).

©ONo A WDNE

©

7.7 RELATIONAL OPERATORS

Syntax

Relational Expression :
ShiftExpression
Relational Expression < ShiftExpression
Relational Expression > ShiftExpression
Relational Expression <= ShiftExpression
Relational Expression >= ShiftExpression

Semantics
In the discussion below, the following special operators will be used:

Operator Meaning

Numeric@ Where @ represents one of the relational operators. The operands are of type
Number. Thisis the standard | EEE operator with the provision that if either
operand is NaN, the result isf al se.

Character@ Where @ represents one of the relational operators. The operands are of type
String. The operands are compared character by character lexicographically in the
unicode character set. If the operands are of different length and al corresponding
characters up to the length of the shorter operand are the same, the longer string is
considered to be greater.

The production Relational Expression : Relational Expression @ ShiftExpression, where @ represents one
of the relational operators, is evaluated as follows:

Evaluate Relationa Expression.

Call GetVaue(Result(1)).

Evaluate ShiftExpression.

Call GetVaue(Result(3)).

Call ToPrimitive(Result(2), hint Number).

Call ToPrimitive(Result(4), hint Number).

If Type(Result(5)) is String and Type(Result(6)) is String, go to step 1243. (Note that this step differs
from step 7 in the algorithm for the addition operator + in using ad instead of or.)

8. Cdl ToNumber(Result(5)).

No gk wdNpRE

4087

9. Cdl ToNumber(Result(6)).

10. Apply Numeric@ to Result(8) and Result(9).

11. Return Result(10).

12. Apply Character@ to Result(532) and Result(613).
13. Return Result(1234).

7.8 EQUALITY OPERATORS
Syntax

EqualityExpression :
Relational Expression
EqualityExpression == Relational Expression
EqualityExpression ! = Relational Expression

The production EqualityExpression : EqualityExpression == Relational Expression is evaluated as follows:

Evaluate EqualityExpression.

Call GetVaue(Result(1)).

Evaluate Relationa Expression.

Call GetVaue(Result(3)).

If Type(Result(2)) is different from Type(Result(4)),_go to step 12.

If Type(Result(2)) is Undefined, return true.

If Type(Result(2)) is Null, return true.

If Type(Result(2)) is Number, apply Numeric==to Result(2) and Result(4) and return the result.

If Type(Result(2)) is String, apply Character==to Result(2) and Result(4) and return the result.

If Type(Result(2)) is Boolean, return true when Result(2) and Result(4) are both true or both false.

Otherwise, return false.

11. Returntrueif Result(2) and Result(4) refer to the same object. Otherwise, return false.

12. If Result(2) isnull and Result(4) is undefined, return true.

13. If Result(2) is undefined and Result(4) is null, return true.

14. If Type(Result(2)) is Number and Type(Result(4)) is String, return the result of the comparison
ToString(Result(2)) == Result(4).

15. If Type(Result(2)) is String and Type(Result(4)) is Number, return the result of the comparison
Result(2) == ToString(Result(4)).

16. Returnfalse.

© 0N WNE

=
©

The production EqualityExpression : EqualityExpression | = Relational Expression is evaluated as follows:
1. Evaluate the production EqualityExpression == Relational Expression.

2. If Result(1) istrue, return f al se.

3. Returntrue.

Discussion

String comparison can be forced by: ""* + a == "" + b.
Numeric comparison can be forced by:a — 0 == b — 0.
Boolean comparison can be forced by: 'a == ! b.

The equality operators maintain the following invariants:

1. Al=Bisequivadentto! (A==B).

2. A==Biseqguivalent to B== A, except in the order of evaluation of A and B.
3. if A==BandB==C,=>A==C, assuming no side effects.

Asno conversions are applied to the operands, equality is always transitive.

7.9 BINARY BITwisSE OPERATORS

Syntax
BitwiseANDEXxpression :
EqualityExpression
Bitwi seANDExpression & EqualityExpression
BitwiseXOREXxpression :
BitwiseANDEXxpression
BitwiseXORExpression ~ BitwiseANDEXxpression
BitwiseORExpression :
Bitwi seXORExpression
BitwiseORExpression | BitwiseXORExpression
Semantics

The production A: A @ B, where @ is one of the bitwise operators in the productions above, is evaluated
asfollows:

1. EvauateA.

Call GetVaue(Result(1)).

Evaluate B.

Call GetVaue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.

Return Result(7).

©ONO A WD

7.10 BINARY LocicaL OPERATORS

Syntax
Logical ANDExpression :
Bitwi seOREXxpression
Logical ANDExpression && BitwiseOREXpression
Logical ORExpression :
Logical ANDEXpression
Logical ORExpression | | Logical ANDExpression
Semantics

The production Logical ANDExpression : Logical ANDExpression && BitwiseORExpression is evaluated as
follows:

1. Evauate Logica ANDExpression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return Result(2).

Evaluate BitwiseOREXxpression.

Call GetValue((Result(5)).

Return Result(6).

No koD

4287

The production Logical ORExpression : Logical ORExpression | | Logical ANDExpression is evaluated as
follows:

1. Evauate Logical ORExpression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, return Result(2).

Evaluate L ogica ANDExpression.

Call GetVaue(Result(5)).

Return Result(6).

No kDN

7.11 CoNDITIONAL OPERATOR (?:)
Syntax

Conditional Expression :
Logical ORExpression
Logical ORExpression ? AssignmentExpression : AssignmentExpression

Semantics

The production Conditional Expression : Logical ORExpression ? AssignmentExpression :
AssignmentExpression is evaluated as follows:
Evaluate Logical ORExpression.

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is false, go to step 8.

Evaluate the first AssignmentExpression.
Call GetVaue(Result(5)).

Return Result(6).

Evaluate the second AssignmentExpression.
. Cdl GetVaue(Result(8)).

10. Return Result(9).

Issue: Add an explanation of how the grammar differs slightly from that of C and Java here.

©oNoO A WNE

7.12 ASSIGNMENT OPERATORS
Syntax

AssignmentExpression :
Conditional Expression
PostfixExpression AssignmentOperator AssignmentExpression

AssignmentOperator :: one of
= *= [= Y 4= -= <<= >>= >>>= &= "= | =

7.12.1 Simple Assignment (=)

The production AssignmentExpression : PostfixJraryExpression = AssignmentExpression is evaluated as
follows:

Evaluate PostfixYnaryExpression.

Evaluate AssignmentExpression.

Call GetVaue(Result(2)).

Call PutValue(Result(1), Result(3)).

Return Result(3).

a0

4387

7.12.2 Compound Assignment (op=)

The production AssignmentExpression : PostfixdraryExpression @= AssignmentExpression, where @

represents one of operatorsindicated above, is evaluated as follows:
Evaluate PostfixYnaryExpression.

Call GetValue(Result(1)).

Evaluate AssignmentExpression.

Call GetVaue(Result(2)).

Apply operator @ to Result(3) and Result(4).

Call PutVaue(Result(1), Result(5)).

Return Result(5).

No gk~ WDNPRE

7.13 ComMA OPERATOR (,)
Syntax
Expression :

AssignmentExpression
Expression , AssignmentExpression

Semantics

The production Expression : Expression, AssignmentExpression is evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(1)).

Evaluate AssignmentExpression.

Call GetVaue(Result(3)).

Return Result(4).

s wbdE

8 STATEMENTS

Syntax

Satement :
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfSatement
IterationSatement
ContinueStatement
BreakSatement
ReturnSatement
WithSatement

Block :
{ SatementList,, }

SatementList :
Satement
SatementList Satement
Semantics
The production SatementList : SatementList Statement is evaluated as follows:
1. Evauate StatementList.
2. Evauate Statement.
8.1 VARIABLE STATEMENT
Syntax
VariableSatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList, VariableDeclaration

VariableDeclaration :
Identifier Initializer

Initializer :
= AssignmentExpression

Description

4587

If the variable statement occurs inside a FunctionDeclaration, the variables are defined with function-local
scope in that function. Otherwise, they are defined with global scope, that is, they are created as members
of the global object as described in section Error! Reference source not found.E+r+er—Refereree
seuree—not—feund-. Variables are created when the execution scope is entered. A Block does not define a
new execution scope. Only Program and FunctionDeclaration produce a new scope. Eva code and
anonymous code also define a new execution scope, but these are not an explicit part of the grammer of
ECMAScript. Variables are initialized to the undef i ned value when created. A variable with an
Initializer is assigned the value of its AssignmentExpression when the VariableStatement is executed.
Semantics

The production VariableStatement : var VariableDeclarationList ; isevaluated asfollows:
1. Evauate VariableDeclarationList.
2. Return.

The production VariableDeclaractionList : VariableDeclarationList, VariableDeclaration is evaluated as
follows:

1. Evaluate VariableDeclarationList.
2. Evauate VariableDeclaration.
3. Return.

The production VariableDeclaration : Identifier = AssignmentExpression is evaluated as follows:
Evauate |dentifier.

Evaluate AssignmentExpression.

Call GetVaue(Result(2)).

Call PutValue(Result(1), Result(3)).

Return.

s wdE

8.2 EMPTY STATEMENT
Syntax
EmptyStatement :

3

Semantics
The production EmptyStatement : ; is evaluated by taking no action.

8.3 EXPRESSION STATEMENT
Syntax

ExpressionStatement :
Expression ;

Semantics

The production ExpressionSatement : Expression ; isevaluated as follows:
1. Evaluate Expression.
2. Cal GetVaue(Result(1)).

8.4 THE i f STATEMENT

Syntax

IfStatement :
i f (Expression) Statement el se Statement
i f (Expression) Statement

4687

Semantics

The production IfStatement : i f (Expression) Statement, el se Statement, is evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 7.

Evaluate Statement1.

Return.

Evaluate Statement?2.

Return.

The production IfSatement : i f (Expression) Statement is evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return.

Evaluate Statement.

Return.

©ON A WDNPE

o0k wWdE

8.5 ITERATION STATEMENTS
Syntax

IterationStatement :
whi | e (Expression) Statement
for (Expression,,; Expression,,; Expression,,) Satement
for (var VariableDeclarationList ; Expression,, ; Expression,,) Statement
for (Expressioni n Expression) Statement
for (var g, ldentifier Initializer,, i n Expression) Satement

Description

These statements all define a“continue label” and a“break label” for use by an enclosed cont i nue or
br eak statement. For the purposes of this specification, a label is a step number in an algorithm.
Continue labels are held in a continue label stack and break labels are held in a break label stack. These
stacks are local to the current execution scope. To execute acont i nue or br eak statement, execution
control istransferred to the label specified by the top value of the corresponding label stack. If an
implementation of ECMA Script has distinct compile and execute phases, the label stacks need only be
maintained during compilation as the label that acont i nue or br eak statement jumps to is not
dependent on any runtime state.

The WithSatement affects both stacks for the purposes of clean up: to remove its object from the scope
chain.

In algorithms, we use “PushBreak(n)” as short hand for “Push Step(n) on the break label stack”. Similarly
we use “PushContinue(n)”, “PopBreak(n)” and “PopContinue(n)” as short hand for the obvious phrases. We
use “JumpBreak” as short hand for “ Transfer execution control to the position indicated by the top label of
the break label stack” and similarly for “ JumpContinue”.

8.5.1 The whi | e Statement

The production IterationStatement : whi | e (Expression) Satement is evaluated as follows:
1. PushContinue(3).

2. PushBresk(9).

3. Evaluate Expression.

4. Cal GetVaue(Result(3)).

4787

©®No W

10.
11.

Call ToBoolean(Result(4)).
If Result(5) isfalse, goto 9.
Evaluate Statement.

Go to step 3.

PopBreak(9).
PopContinue(3).

Return.

8.5.2 The f or Statement

The production IterationSatement : f or (Expression, ; Expression,; Expression,) Satementis
evaluated asfollows:

©ooNoGAWDNE

el
AwWwbdhpEFo

15.

PushContinue(10).

PushBreak(13).

Evaluate Expressionl.

Call GetVaue(Result(3)).
Evaluate Expression2.

Call GetValue(Result(5)).

Call ToBoolean(Result(6)).

If Result(7) is false, go to step 13.
Evaluate Statement.

Evaluate Expression3.

. Cdll GetVaue(Result(10)).

Go to step 5.
PopBreak(13).
PopContinue(10).
Return.

If Expression; is omitted from the source text, steps 3 and 4 are omitted from execution. If Expression, is
omitted from the source text, step 5 is omitted from execution and the result of step 5ist r ue. If
Expression, is omitted from the source text, steps 10 and 11 are omitted from execution.

I ssue: define the var version.

8.5.3 Thefor..in Statement

The production IterationStatement : f or (Expression, i n Expression,) Statement is evaluated as

follows:

1. PushContinue(6).

2. PushBresk(11).

3. Bvauate Expression2.

4. Call GetVaue(Result(3)).

5. Call ToObject(Result(4)).

6. Get the name of the next property of Result(5) which doesn’'t have the DontEnum attribute. If thereis
no such property, go to step 11.

7. Evaluate Expressionl.

8. Cadl PutValue(Result(7), Result(6)).

9. Evduate Statement.

10. Go to step 6.

11. PopBreak(11).

12. PopContinue(6).

13. Return.

The mechanics of enumerating the properties (step 6) isimplementation dependent. The order of
enumeration is defined by the object. Properties of the object being enumerated may be deleted during
enumeration. If aproperty that has not yet been visited during enumeration is deleted, then it will not be
visited. If new properties are added to the object being enumerated during enumeration, the newly added
properties are not guaranteed to be visited in the active enumeration.

I ssue: define the var version.
Issue: Need to talk about enumerating properties of the prototype, and so on, recursively. Are shadowed

properties of the prototype(s) enumerated? (1 hope not!)
8.6 THEconti nue STATEMENT
Syntax

ContinueStatement :
continue ;

An ECMA Script program is considered syntactically incorrect and may not be executed at all if it contains a
cont i nue statement that is not Wlthln a least onewhi | e orf or_statement. Zliheee-ﬂ—t—t—n-ae

madeawh#e—#eker—tet—m—leeeThe cont i nue statement is evaluated as:

1. JumpContinue.

See section teration StatementsHeration—Statements for a description of the continue label stack and the
JumpContinue directive.

8.7 THE break STATEMENT
Syntax

BreakStatement :
break ;

An ECMA Script program is considered syntactically incorrect and may not be executed at all if it containsa
br eak statement that is not within at least onewh| |l eorfor statement Zlihe-le-r—e-a-k—statement—eaﬂ

#er—e#er—m—leep—The br eak statement is evaluated as:
1. JumpBreak

See section _teration StatementsHeration—Statements for a description of the break label stack and the
JumpBreak directive.

8.8 THEreturn STATEMENT
Syntax

ReturnStatement :
return [noLineTerminator here] EXpressi ONgy 5

Ther et ur n statement can only be used inside the Block of a FunctionDeclaration. It causes a function
to cease execution and return avalue to the caller. If Expression is omitted, the return value is the

undef i ned value. Otherwise, the return value is the value of Expression.

8.9 THE Wi t h STATEMENT

Syntax

WithStatement :
wi t h (Expression) Statement

4987

Description
The WithStatement affects the break label stack and continue label stack for clean up purposes only.
Semantics

The production WithStatement : wi t h (Expression) Statement is evaluated as follows:
If the continue label stack is not empty, PushContinue(12).
If the break label stack is not empty, PushBreak(16).
Evaluate Expression.

Call GetVaue(Result(3)).

Call ToObject(Result(4)).

Add Result(5) to the front of the scope chain.

Evaluate Statement.

Remove Result(5) from the front of the scope chain.

If the break label stack is not empty, PopBreak(16).

If the continue label stack is not empty, PopContinue(12).
. Return.

Remove Result(5) from the front of the scope chain.

If the break label stack is not empty, PopBreak(16).
PopContinue(12).

JumpContinue.

Remove Result(5) from the front of the scope chain.
PopBreak(16).

If the continue label stack is not empty, PopContinue(12).
19. JumpBresk.

Discussion

©ooNOO A WNE

B R R R R R R R
0N O~ WDNREO

Most of the complexity of this algorithm is to handle jumps out of the WithSatement. Any jumps out of

the WithStatement must be trapped to remove the object from the scope chain.

5087

9 FUNCTION DEFINITION

Syntax

FunctionDeclaration :
functi on Identifier (FormalParameterList,,) Block

Formal ParameterList :
|dentifier
FormalParameterList, Identifier

Semantics

Defines a property of the global object whose name is the Identifier and whose value is a function object
with the given parameter list and statements. If the function definition is supplied text to the eval
function and the calling context has an activation object then the declared function is added to the activation
object.

10 PROGRAM

Syntax

Program:
Sour ceElements EndOfSource

SourceElements :
SourceElement
Sour ceElements Sour ceElement

SourceElement :
Satement
FunctionDefinition

11 NATIVE ECMASCRIPT OBJECTS

There are certain built-in objects available whenever an ECM A Script program begin execution. One, the
global object, isin the scope chain of the executing program. Others are accessible as permanent properties
of the global object.

Some objects are constructors: they are functions intended for use with the new operator. For each built-in
constructor, this specification describes the arguments required by that constructor function, properties of
the constructor object, properties of the prototype object of that constructor, and properties of specific
object instances returned by a new expression that invokes that constructor.

11.1 THeE GLoBAL OBJECT

The global object does not have a [[Construct]] property; it is not possible to use the global object asa
constructor with the new operator.

11.1.1 Value Properties of the Global Object
11.1.2 Function Properties of the Global Object
11.1.2.1 eval(x)

11.1.2.2 parselnt(string, radix)

11.1.2.3 parseFloat(string)

11.1.2.4 escape(string)

11.1.2.5 unescape(string)

11.2 OBJECT OBJECTS
11.2.1 The Object Constructor
11.2.12.1 new Object(value)
11.2.1.2 new Object()

11.2.2 Properties of the Object Constructor

The value of the internal [[Prototype]] property of the Object constructor isthe Function prototype object.

Besidestheinterna [[Call]] and [[Constructor]] properties, the Object constructor has the following
property:

5387

11.2.2.1 Object.prototype
The value of Obj ect . pr ot ot ype is the built-in Object prototype object.

11.2.3 Properties of the Object Prototype Object

11.2.4 Properties of Object Instances

Constructor
[[Getl]
[[Put]]
[[CanPut]]
[[Prototype]]

[[HasProperty]]
[[Construct]]

11.3 FuncTioN OBJECTS

11.3.1 The Function Constructor

11.3.2 Properties of the Function Constructor
11.3.3 Properties of the Function Prototype Object

11.3.4 Properties of Function Instances

11.4 ARRAY OBJECTS

11.4.1 The Array Constructor

11.4.1.1 new Array(item0, item1, item2, ...)
11.4.1.2 new Array(len)

11.4.1.3 new Array()

11.4.2 Properties of the Array Constructor

The value of theinternal [[Prototype]] property of the Array constructor is the Function prototype object.
Besides theinterna [[Call]] and [[Constructor]] properties, the Array constructor has the following property:

11.4.2.1 Array.prototype
The value of Array. pr ot ot ype is the built-in Array prototype object.

11.4.3 Properties of the Array Prototype Object

The value of theinternal [[Prototype]] property of the Array prototype object is the Object prototype object.
Asaresult, the Array prototype object inherits the internal [[Get]], [[CanPut]], and [[HasProperty]] methods

from the Object prototype object.

The Array prototype object has its own interna [[Put]] method that keepsthe | engt h property of an

array instance up to date.

In following descriptions of functions that are properties of the Array prototype object, the phrase “this
Array object” refers to the object that isthe t hi s value for the invocation of the function; it is an error if
this does not refer to an object for which the Array prototype object is not either directly or indirectly a
prototype.

11.4.3.1 join
11.4.3.2 reverse
11.4.3.3 sort

11.4.4 Properties of Array Instances

String instances inherit properties from the String prototype object and also have the following property.

11.4.4.1 length

11.5 STRING OBJECTS
11.5.1 The String Constructor

11.5.2 Properties of the String Constructor

The value of the internal [[Prototype]] property of the Object constructor is the Function prototype object.
Besidesthe internal [[Call]] and [[Constructor]] properties, the String constructor has the following
property:

11.5.2.1 String.prototype
The value of St ri ng. pr ot ot ype is the built-in String prototype object.
11.5.3 Properties of the String Prototype Object

In following descriptions of functions that are properties of the String prototype object, the phrase “this
String object” refers to the object that isthet hi s value for the invocation of the function; it is an error if
this does not refer to an object for which the String prototype object is not either directly or indirectly a
prototype.

11.5.3.1 toString()
The String value represented by this String object is returned.

5587

11.5.3.2 valueOf()
11.5.3.3 charAt
11.5.3.4 indexOf
11.5.3.5 lastindexOf
11.5.3.6 split

11.5.3.7 substring
11.5.3.8 toLowerCase
11.5.3.9 toUpperCase

11.5.4 Properties of String Instances

String instances inherit properties from the String prototype object and also have the following property.
11.5.4.1 length

The number of characters inthe String value represented by this String object.

Once a String object is created, this property is unchanging.

11.6 BooLeaN OBJECTS

11.6.1 The Boolean Constructor

11.6.1.1 new Boolean(value)

11.6.1.2 new Boolean()

11.6.2 Properties of the Boolean Constructor

The value of theinternal [[Prototype]] property of the Boolean constructor is the Function prototype object.
Besides theinternal [[Call]] and [[Constructor]] properties, the Number constructor has the following
property:

11.6.2.1 Boolean.prototype

The value of Bool ean. pr ot ot ype is the built-in Boolean prototype object.

11.6.3 Properties of the Boolean Prototype Object

In following descriptions of functions that are properties of the Boolean prototype object, the phrase “this
Boolean object” refers to the object that isthet hi s value for the invocation of the function; it is an error
if this does not refer to an object for which the Boolean prototype object is not either directly or indirectly a
prototype.

11.6.3.1 toString()

If this Boolean object represents true, then the string “ t r ue” is returned. Otherwise, this Boolean object
must reresent false, and the string “ f al se” is returned.

5687

11.6.3.2 valueOf()

11.6.4 Properties of Boolean Instances

Boolean instances have no special properties beyond those inherited from the Boolean prototype object.
11.7 NumBER OBJECTS

11.7.1 The Number Constructor

11.7.1.1 new Number(value)

11.7.1.2 new Number()

11.7.2 Properties of the Number Constructor

The value of theinternal [[Prototype]] property of the Number constructor is the Function prototype object.

Besidestheinternal [[Call]] and [[Constructor]] properties, the Number constructor has the following
property:

11.7.2.1 Number.prototype
The value of Nunber . pr ot ot ype is the built-in Number prototype object.

11.7.2.2 Number.NaN
The value of Number . NaN is NaN.

11.7.3 Properties of the Number Prototype Object

In following descriptions of functions that are properties of the Number prototype object, the phrase “this
Number object” refers to the object that isthe t hi s value for the invocation of the function; it is an error
if this does not refer to an object for which the Number prototype object is not either directly or indirectly a
prototype.

11.7.3.1 toString()
11.7.3.2 valueOf()

11.7.4 Properties of Number Instances

Number instances have no special properties beyond those inherited from the Number prototype object.

11.8 THE MATH OBJECT

The Math object is merely a single object that has some named properties, some of which are functions.

The Math object does not have a[[Construct]] property; it is not possible to use the Math object asa
constructor with the new operator.

Recall that, in this specification, the phrase “the number value for X’ means “the value of number type, not
NaN but possibly infinite, that is closer than any other value of number type to the mathematical value X,
but if x lies exactly halfway between two such values then the number value whose least significant bit is 0
is chosen”.

11.8.1 Value Properties of the Math Object

11.811 E

The number value for e, the base of the natural logarithms, which is approximately
2.7182818284590452354.

11.8.1.2 LN10O
The number value for the natural logarithm of 10, which is approximately 2. 302585092994046.

11.8.1.3 LN2
The number value for the natural logarithm of 2, which is approximately 0. 6931471805599453.

11.8.1.4 LOG2E

The number value for the base-2 logarithm of e, the base of the natural logarithms; thisvalueis
approximately 1. 4426950408889634. (Note that the value of Mat h. LOG2E is approximately
the reciprocal of the value of Mat h. LN2.)

11.8.1.5 LOGI10E

The number value for the base-2 logarithm of e, the base of the natural logarithms; thisvalueis
approximately 0. 4342944819032518. (Note that the value of Mat h. LOG2E is approximately
the reciprocal of the value of Mat h. LN2.)

11.8.1.6 PI

The number value for 11, the ratio of the circumference of acircle to its diameter, which is approximately
3.14159265358979323846.

11.8.1.7 SQRT1_2

The number value for the square root of 1/2, which is approximately 0. 7071067811865476. (Note
that the value of Mat h. SQRT1_2 is approximately the reciprocal of the value of Mat h. SQRT2.)

11.8.1.8 SQRT2
The number value for the square root of 2, which is approximately 1. 4142135623730951.

11.8.2 Function Properties of the Math Object

Every function listed in this section applies the ToNumber operator to each of its arguments (in left-to-right
order if there is more than one) and then performs a computation on the resulting number value(s).

The behavior of the functions acos, asin, atan, atan2, cos, exp, log, pow, sin, and sgrt is not precisely
specified here. They are intended to compute approximations to the results of familiar mathematical
functions, but some latitude is allowed in the choice of approximation algorithms. The general intent is
that an implementor should be able to use the same mathematical library for ECMA Script on a given
hardware platform that is available to C programmers on that platform. Nevertheless, this specification
recommends (though it does not require) the approximation algorithms for IEEE 754 arithmetic contained in
f dl i bm the freely distributable mathematical library [XXXREF]. This specification also requires
specific_results for certain argument values that represent boundary cases of interest.

11.8.2.1 abs(x)

Returns the absolute value of its argument; in general, the result has the same magnitude as the argument
but has positive sign.
» If the argument is NaN, the result is NaN.

5887

e If the argument is - 0, the result is +0.
e If theargumentis-Infinity,theresultis+lnfinity.

11.8.2.2 acos(x)

Returns an implementati on-dependent approximation to the arc cosine of the argument. Theresult is
expressed in radians and ranges from +0 to +7t

» If the argument is NaN, the result is NaN.

» If the argument is greater than 1, the result is NaN.

o If the argument is less than - 1, the result is NaN.

* If the argument is exactly 1, the result is +0.

11.8.2.3 asin(x)

Returns an implementation-dependent approximation to the arc sine of the argument. The result is expressed
in radians and ranges from —1v2 to +172.

o If the argument is NaN, the result is NaN.

» If the argument is greater than 1, the result is NaN.

e If the argument is less than - 1, the result is NaN.

» If the argument is +0, the result is +0.

» If the argument is - 0, the result is - 0.

11.8.2.4 atan(x)

Returns an implementati on-dependent approximation to the arc tangent of the argument. The result is

expressed in radians and ranges from —1v2 to +172.

» If the argument is NaN, the result is NaN.

* If the argument is +0, the result is +0.

o If the argument is - O, theresult is- O.

» If the argument is +1 nf i ni t y, the result is an implementati on-dependent approximation to the
nAumbervaluefor+1U2.

» If the argument is- I nf i ni ty, the result is an implementation-dependent approximation to the
Aumber-vatdefer—T172.

11.8.2.5 atan2(y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/ x of the

argumentsy and x, where the signs of the arguments are used to determine the quadrant of the result. Note

that it isintentional and traditional for the two-argument arc tangent function that the argument named y be

first and the argument named x be second. The result is expressed in radians and ranges from —1tto +1t

» If either argument is NaN, the result is NaN.

o If y>0 and x is+0, the result is an implementation-dependent approximation to the-prumbervaluefor
+102.

e If y>0 and x is- 0, the result is an implementation-dependent approximation to the-rurmber-valuefor
+102.

e Ifyis+0 and x>0, the result is +0.

e Ifyis+0 and x is+0, the result is +0.

o Ifyis+0 and x is- 0, the result is an implementation-dependent approximation to the-rurmbervalue
for +Tt.

e If y is+0 and x<0, the result is an implementation-dependent approximation to the-rurmber-valuefor
+TT..

* Ifyis-0 and x>0, theresult is - 0.

e Ifyis-0 andx is+0, theresult is- 0.

5987

e Ifyis-0 andx is- 0, the result is an implementation-dependent approximation to the-rurmbervalde
fer —TL

e Ifyis-0 and x<0, the result is an implementation-dependent approximation to the-rumber-valdefor
—TL.

» If y<0 and x is+0, the result is an implementation-dependent approximation to the-rumber-valuefor |
-TU2.

» Ify<0 and x is- 0, the result is an implementation-dependent approximation to the-rumber-valuefor |
-T72.

 Ify>0 andy isfiniteand x is+I nfi ni ty, theresult is +0.

 Ify>0andy isfiniteand x is- | nfi ni ty, the result if animplementation-dependent
approximation to the-rumbervatuefer +Tt.

e Ify<Oandy isfiniteand x is+I nfinity,theresultis-O0.

 Ify<O andy isfiniteand x is- | nfi ni ty, the result is an implementation-dependent
approximation to the-number-valuefor — Tt

o Ifyis+Infinity andx isfinite, the result is animplementation-dependent approximation to the
Aumbervaluefer +172.

« Ifyis-Infinity andx isfinite the result is an implementati on-dependent approximation to the
Aumbervaluefer —T72.

e Ifyis+Infinity andx is+l nfinity, theresult is animplementation-dependent
approximation to the-rumber-valuefor +174.

e Ifyis+Infinity andx is- I nfinity, theresult is animplementation-dependent
approximation to the-rumbervaluefor +310/4.

e Ifyis-Infinity andx is+Infinity, theresult is animplementation-dependent
approximation to the-rumber-valuefor —174.

e Ifyis-Infinity andx is- I nfinity, theresultis animplementation-dependent
approximation to the-rumbervaluefor —3174.

11.8.2.6 ceil(x)

Returns the smallest (closest to negative infinity) number value that is not less than the argument and is
equal to amathematical integer. If the argument is already an integer, the result is the argument itself.

» If the argument is NaN, the result is NaN.

» If the argument is +0, the result is +0.

* If the argument is - O, theresult is- 0.

o If theargumentis+I nfinity,theresultis+Infinity.

e If theargumentis-Infinity,theresultis-Infinity.

e If the argument is less than O but greater than - 1, theresult is- 0.

The value of Mat h. cei | (x) isthe same as the value of - Mat h. f | oor (- x) .

11.8.2.7 cos(x)

Returns an implementati on-dependent approximation to the cosine of the argument. The argument is
expressed in radians.

o If the argument is NaN, the result is NaN.

o If the argument is +0, the result is 1.

e If theargument is- 0O, theresult is1.

e If the argument is +1 nfi ni ty, theresult is NaN.

e If the argument is- I nfi nity, theresultis NaN.

6087

11.8.2.8 exp(x)

Returns an implementation-dependent approximation to the exponential function of the argument (e raised
to the power of the argument, where e is the base of the natural logarithms).

e If the argument is NaN, the result is NaN.

* If the argument is +0, theresult is 1.

» If theargument is- O, theresult is1.

o If theargumentis+I nfinity,theresultis+lnfinity.

o |If theargument is- | nfi nity, theresultis+0.

11.8.2.9 floor(x)

Returns the smallest (closest to negative infinity) number value that is not less than the argument and is
equal to amathematical integer. If the argument is already an integer, the result is the argument itself.

o If the argument is NaN, the result is NaN.

» If the argument is +0, the result is +0.

e If the argument is - 0, the result is - 0.

e If theargument is+I nfinity,theresultis+lnfinity.

o If theargumentis-Infinity,theresultis-Infinity.

* If the argument is greater than O but less than 1, the result is +0.

11.8.2.10 log(x)

Returns an implementation-dependent approximation to natural logarithm of the argument.
o If the argument is NaN, the result is NaN.

o If the argument is less than 0, the result is NaN.

e If the argument is +0 or - O, theresultis- I nfinity.

e If the argument is 1, the result is +0.

e If theargument is+I nfinity,theresultis+lnfinity.

11.8.2.11 max(x, y)

Returns the larger of the two arguments.

» If either argument is NaN, the result is NaN.
* If x>y, the result is x.

o Ify>x, theresultisy.

 If xis+0 andy is+0, the result is +0.

e If xis+0 andy is- 0, theresult is +0.

e If xis-0andy is+0, the result is +0.

e Ifxis-0andy is- 0, theresult is- 0.

11.8.2.12 min(x, y)

Returns the smaller of the two arguments.

» If either argument is NaN, the result is NaN.
* If x<y, the result is x.

o Ify<x,theresultisy.

 If xis+0 andy is+0, the result is +0.

e If xis+0 andy is- 0, theresult is- 0.

e If xis-0andy is+0, theresult is- 0.

e Ifxis-0andy is- 0, theresult is- 0.

11.8.2.13 pow(X, Y)

Returns an implementati on-dependent approximation to the result of raising x to the power y.

6187

If y isNaN, the result is NaN.

If y is+0, theresult is 1, even if x isNaN.

If y is- 0, theresult is 1, even if x isNaN.

If x isNaN and vy is nonzero, the result is NaN.

If abs(x)>1 and yis+Infinity,theresultis+lnfinity.
If abs(x)>1 and yis- I nfinity, theresultis+0.

If abs(x)==1 and y is+I nfinity, theresultisNaN.

If abs(x)==1 and yis-Infinity, theresultisNaN.

If abs(x) <1 and y is+Il nfinity, theresultis+0.

If abs(x)<1 and yis-Infinity,theresultis+lnfinity.
If x is+Infinity and y>0, theresultis+Infinity.

If x is+I nfinity and y<O0, the result is +0.
Ifxis-Infinity and y>0 andy isan odd integer, theresult is- I nfinity.

Ifxis-Infinity and y>0 andy isnot an odd integer, the result is+I nfinity.

If xis-Infinity and y<0 andy isan odd integer, the result is - 0.
Ifxis-Infinity and y<O andy isnot an odd integer, the result is +0.
If x is+0 and y>0, the result is +0.

If X is+0 and y<O0, theresultis+Infinity.

If X is-0 and y>0 andy isan odd integer, the result is - 0.

If x is-0 and y>0 andy is not an odd integer, the result is +0.

If x is-0 and y<0 andy isan odd integer, theresult is- I nfinity.

If x is-0 and y<0 andy isnot an odd integer, the result is+I nfinity.
If x<0 and x isfiniteand y isfiniteand y is not an integer, the result is NaN.

11.8.2.14 random()

Returns a number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly or

pseudorandomly with approximately uniform distribution over that range, using an implementation-

dependent algorithm or strategy. This function takes no arguments.

11.8.2.15 round(x)

Returns the number value that is closest to the argument and is equal to a mathematical integer. If two

integer number values are equally close to the argument, then the result is the number value that is closer to
positive infinity. If the argument is already an integer, the result is the argument itself.

If the argument is NaN, the result is NaN.

If the argument is +0, the result is +0.

If the argument is - O, the result is - 0.

If the argument is +1 nfi ni ty, theresultis+I nfinity.

If the argument is- 1 nfi nity,theresultis-I nfinity.

If the argument is greater than O but less than 0. 5, the result is +0.

If the argument is less than O but greater than or equal to - 0. 5, theresult is - 0.

The value of Mat h. round(x) isthe same as the value of Mat h. f | oor (x+0. 5) . Note that
Mat h. round(3. 5) returns 4, but Mat h. round(- 3. 5) returns - 3.

11.8.2.16 sin(x)

Returns an implementati on-dependent approximation to the sine of the argument. The argument is

expressed in radians.

If the argument is NaN, the result is NaN.
If the argument is +0, the result is +0.
If the argument is - O, the result is - 0.

e If theargument is+I nfinity or-1nfinity,theresultisNaN.

11.8.2.17 sqrt(x)

Returns an implementation-dependent approximation to the square root of the argument.
e If the argument is NaN, the result is NaN.

» If the argument less than 0O, the result is NaN.

» If the argument is +0, the result is +0.

o If the argument is - O, theresult is- O.

o If theargumentis+Infinity,theresultis+lnfinity.

11.8.2.18 tan(x)

Returns an implementati on-dependent approximation to the tangent of the argument. The argument is
expressed in radians.

o If the argument is NaN, the result is NaN.

» If the argument is +0, the result is +0.

e If the argument is - 0, the result is - 0.

o If theargument is+I nfinity or-1nfinity,theresultisNaN.

6387

12 ERRORS

This specification specifies the last possible moment an error occurs. A given implementation may
generate errors sooner (e.g. at compile-time). Doing so may cause differences in behavior among
implementations. Notably, if runtime errors become catchable in future versions, a given error would not
be catchable if an implementation generates the error at compile-time rather than runtime.

An ECMA Script compiler should detect errors at compiletimein all code presented to it, even code that
detailed analysis might prove to be “dead” (never executed). A programmer should not rely on the trick of
placing code withinani f (fal se) statement, for example, to try to suppress compile-time error
detection.

Issue: If acompiler can prove that a construct cannot execute without error under any circumstances, then it
may issue a compile-time error even though the construct might not be executed at all?

13 REFERENCES

ANSI X3.159-1989: American National Sandard for Information Systems - Programming Language - C,
American Nationa Standards Institute (1989).

Gay, David M. Correctly Rounded Binary-Decimal and Decimal -Binary Conversions. Numerical Analysis
Manucript 90-10. AT& T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as

http://cm bell-labs.com cnYcs/doc/ 90/ 4-10. ps. gz. Associated code
available as http://cm bell -1 abs.com netlib/fp/dtoa.c.gz and as
http://cmbell-labs.comnetlib/fp/g fm.c.gz and may also be found at the

various net | i b mirror sites.

Godling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing
Company 1996.

David Ungar and Randall B. Smith. Self: The Power of Smplicity. OOPSLA '87 Conference Proceedings,
pp. 227-241, Orlando, FL, October, 1987.

6587

APPENDIX A: OPEN ISSUES

A.1 BREAK AND CONTINUE LABEL STACKS

The break and continue label stacks and their associated machinery complicate the description of control
flow in ECMAScript. Moreover, the current description does not give a clear account of how
JumpContinue discards the implicit control stacks that support the execution of the pseudocode procedures
in this document.

| would like to propose the rewriting of the behavior of statements into the style used in the Java Language
Specification, wherein one speaks of a statement as completing “normally” or “abruptly (for areason)”. The
advantage of this descriptive strategy is that then there are no nonlocal transfers within the pseudocode and
all descriptions of control flow behavior arelocal.

As examples, here are accounts of the br eak, conti nue,i f, and whi | e statements in this style,
which should illustrate all the relevant concepts:

The production BreakStatement : br eak ; isevaluated as follows:

1. Return“abrupt completion because of break”.

The production ContinueStatement : cont i nue ; is evaluated as follows:
1. Return“abrupt completion because of continue’.

The production IfStatement : i f (Expression) Statement, el se Statement, is evaluated as follows:
Evaluate Expression.

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 7.

Evaluate Statement1.

Return Result(5).

Evaluate Statement?2.

. Return Result(7).

The production IterationSatement : whi | e (Expression) Satement is evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is false, go to step 10.

Evaluate Statement.

If Result(5) is“abrupt completion because of break”, go to step 10.

If Result(5) is“abrupt completion because of continue’, go to step 1.

If Result(5) is“abrupt completion because of return of value V", return Result(5).

. Gotostep 3.

10. Return “normal completion”.

Note that the only change to the description of i f isto return the results of substatement evaluation. On
the other hand, the description of whi | e has to take the various kinds of abrupt completion into account.
A break causes the whi | e statement to complete normally; a continue is treated as if the substatement

N GA®WDNPE

©ooNOO Ok WDNRE

6687

had completed normally; and areturn causes thewhi | e statement to terminate immediately and to
propagate the return action.

THISWAS AGREED TO ON FEBRUARY 28 BUT STILL NEEDS TO BE DONE.

A2-EvAL - FUNCTION

A.2 TOSTRING APPLIED TO A NUMBER TYPE

Should the following additional constraint be added to ToString applied to a number type?

The decimal string produced must be as close in its mathematical value to the mathematical value of the
original number as any other decimal string with the same number of digits; and if two decimal strings of

the same minimal length would be equally close in value to the original number, then the decimal string
whose last digit is even should be chosen.

A.3 ++ AND -- OPERATORS

The increment operators need to be described more carefully in terms of |EEE 754 addition and subtraction
operations.

A.4 INFINITY AND NAN LITERALS

| (Guy Steele) recommend that literalsNaNand | nf i ni t y be added to the language, and that

I nfinity berecognized when ToNumber is applied to a string (right now it produces NaN!). For
backward compatibility, the construction Numb er . Na N would have to continue to work.

APPENDIX B: PROPOSED EXTENSIONS

B.1 THE CLASS STATEMENT!
Syntax

ClassDeclaration :
cl ass IdentifierFormal Parameters,,, ExtendsClause,, { ClassBody }

FormalParameters :
(FormalParameterListy,)

Formal ParameterList :
|dentifier
FormalParameterList, Identifier

ExtendsClause :
ext ends Identifier ActualArguments,,

Actual Arguments :
(ExpressionList,,)

ClassBody :
Constructor ,, Methods,

Constructor :
StatementList

Methods :
FunctionDefinition
Methods FunctionDefinition

Semantics

Similar to afunction except:

» Theclass name space is global but distinct from the global function name space.

» Thefunctions (methods) defined within a class definition are in a name space private to the class.

e Theinclusion of methods automatically creates one property in the constructed object for each method
defined.

» Classes may not be called directly but rather can only be used via the new operator.

6887

B.2 THE TRY AND THROWSTATEMENTS?!

B.2.1 Thetry Statement'

At ry statement executes ablock. If avalueisthrown and thet ry statement has one or more cat ch
clauses that can catch it, then control will be transfered to the first such cat ch clause. If thetry
statement has af i nal | y clause, thenthefi nal | y block of code is executed no matter whether the
t ry block completes normally or abruptly and regardiess of whether acat ch clauseisfirst given
control.

TryStatement :
t ry Block Catches

t ry Block Catchesopt FinallyClause

Catches:
CatchClause

Catches CatchClause

CatchClause;
cat ch (FormalParameter) Block

FinallyClause:
finally Block

B.2.2 The Thr ow Statment*

A throw statement causes an exception to be thrown. The result is an immediate transfer of control that
may exit multiple statements and method invocations until atry statement isfound that catches the thrown
value. If no such try statement is found, then a runtime error is generated.

ThrowStatement:
t hr ow Expression

B.3 THE DATE TypE!?

The Date Type is used to represent date and time. It isaJulian value on which certain operations such as
date arithmetic are defined. Arithmetic operators, relational operators and equality operators apply to this
type'

Note 1: Of the three current ECMA Script implementations, only the Borland implementation currently
supports date operators. Thisfeatureisreally just a convenience that can be implemented with Date Object
methods. However, the same argument can be made for the String type.

Note 2: Of the three current ECMA Script implementations, only the Borland implementation currently
implements dates as Julian dates and thus dates before (January 1970). Without this representation, dates
arevery limited in their usage (i.e. you cannot otherwise, represent arbitrary dates, for example from
existing databases)

B.3.1 ToDate'

The operator ToDate attempts to convert its argument to a value of subtype Date Object according to the
following table:

Input Type Result

Undefined Blank date value.

6987

Null Blank date value.

Boolean Blank date value.

Number Blank date value.

String See discussion below.

Dae Return the input argument (No conversion)
Object Apply the following steps:

1. Cdl ToPrimitive(input argument, hint Date).
2. Cadll ToDate(Result(1)).
Return Result(2).

B.3.2 ToDate Applied to the String Type

I ssue: define this.

B.4 ImpLICIT THIS®

In function code where the function definition specifiesthei npl i ci t keyword, thet hi s object is
placed in the scope chain immediately before the global object.

B.5 THE swi t ch STATEMENTY 3

Syntax
SwitchStatement :
swi t ch (Expression) CaseBlock
CaseBlock :
{ CaseClauses,, }
{ CaseClauses,, DefaultClause CaseClauses,, }
CaseClauses:
CaseClause
CaseClauses CaseClause
CaseClause:
case Expression : SatementList,,
DefaultClause:
default : SatementlList,,
Semantics

The SwitchSatement adds a label to the break label stack, which is described in section _teration

Statements-Heration—Statements. It also adds a label to the continue label stack for clean up purposes only.
The production SwitchSatement : swi t ch (Expression) CaseBlock is evaluated as follows:

ok~ wdE

If the continue label stack is not empty, PushContinue(9).
PushBreak(6).

Evaluate Expression.

Call GetVaue(Result(3)).

Evaluate CaseBlock, passing it Result(4) as a parameter.
PopBreak(6).

7087

7. If the continue label stack is not empty, PopContinue(9).

8. Return.

9. PopBresk(6).

10. PopContinue(9).

11. JumpContinue.

The production CaseBlock : { CaseClauses, DefaultClause CaseClauses, } is given an input parameter,

input, and is evaluated as follows:

1. For the next CaseClause in CaseClausesl, in source text order, evaluate CaseClause. If there is no such
CaseClause, go to step 6.

2. If inputisnot equal to Result(1) (as defined by the != operator), go to step 1.

3. Execute the StatementList of this CaseClause.

4. Execute the StatementList of each subsequent CaseClause in CaseClausesl.

5. Goto step 11.

6. For the next CaseClause in CaseClauses? , in source text order, evaluate CaseClause. If thereis no
such CaseClause, go to step 11.

7. If input is not equal to Result(6) (as defined by the != operator), go to step 6.

8. Execute the StatementL.ist of this CaseClause.

9. Execute the StatementList of each subsequent CaseClause in CaseClauses2.

10. Return.

11. Executethe StatementList of DefaultClause.

12. Execute the StatementL ist of each CaseClause in CaseClauses?.

13. Return.

If CaseClauses, isomitted, steps 1 through 5 are omitted from execution. If DefaultClause is omitted (in

which case CaseClauses, is also omitted), steps 11 and 12 are omitted from execution. If CaseClauses, is

omitted, steps 6 through 10 and 12 are omitted from execution.

Typically there will be abr eak statement in one or more StatementList, which will transfer execution

back to the break label for the SwitchSatement.

The production CaseClause : case Expression: SatementList,, is evaluated as follows:

1. Evauate Expression.

2. Cal GetVaue(Result(1)).

3. Return Result(2).

Note that evaluating CaseClause does not execute the associated StatementList. It simply evaluates the

Expression and returns the value, which the CaseBlock algorithm uses to determine which SatementList to

start executing.

B.6 CONVERSION FUNCTIONS

The conversion functions, ToBoolean, ToNumber, Tolnteger, Tolnt32, ToUint32, ToString and ToObject
are global functions that operate as described in this document.

B.7 ASSIGNMENT-ONLY OPERATOR (:=)1

The assignment-only operator operates identically to the assignment operator (=) except that if the given
Ivalue doesn’t already exist, prior to the statements execution, aruntime error is generated.

B.8 SEALING OF AN OBJECT?2

A facility to prevent an object from being further expanded may be invoked at any time after an object has
been constructed. Thisis semantically the dynamic equivalent to the static Javafinal class modifier. This
facility may be implemented as a method of the object, a global function, or, if thecl ass statement is
adopted, as a class modifier to cl ass. Once an object has been sealed or finalized, any attempt to add a
new property to the object resultsin aruntime error.

B.9 THE ARGUMENTS KEYWORD?®
The ar gunment s keyword refers to the arguments object. Within global code, ar gument s returns

nul | . Within eval code, ar gument s returns the same value as in the calling context.
Discussion:

Thisinterpretation of the "arguments" within afunction body differs from existing practice but has two
important advantages over the current mechanism:

1. It can be much more efficiently implemented, especialy in the case of recursive functions.

2. It eliminates some complex and confusing semantic issues that arise as aresult of the argumentsto an
activation frame being accessible from a function object.

It solves scope resolution issues related to using arguments within awith block on an object that has an
arguments member, such as Math.

B.10 PREPROCESSOR
B.11 THE DO..WHILE STATEMENT

B.12 BiNARY OBJECT

APPENDIX C: PEOPLE CONTACTS

Brendan Eich (brendan@netscape.com)
C. Rand McKinney (rand@netscape.com)

Donna Converse (converse@netscape.com)

Clayton Lewis (clayton@netscape.com)
Randy T. Solton (rsolton@wpo.borland.com)

Mike Gardner (mgardner @wpo.borland.com)
Shon Katzenberger (shonk@microsoft.com)
Raobert Welland (robwell @mi crosoft.com)
Guy Steele (guy.steel e@east.sun.com)

7387

APPENDIX D: RESOLUTION HISTORY

D.1 JaNuAary 15, 1997

D.1.1 White Space
Updated the White SpaceWhite-Spaece section to include form feed and vertical tab as white space.

D.1.2 Keywords

Updated the Keywordskeywerds section to exclude those keywords related to proposed extensions. Also
updated this section to include the del et e keyword which was missing.

D.1.3 Future Reserved Words

Update the Future Reserved WordsFuture-Reserved Werds to only include keywords related to proposed
extensions. We decided to remove words that had been only included as future reserved for Java
compatibility purposes.

D.1.4 Octal And Hex Escape Sequence Issue

Decided to support octal and hex notation. Since only two hex digits are used with hex notation, many
unicode characters cannot be represented thisway. Furthermore, we were not sure if the high 128 characters
match up with unicode. (Removed open issue at bottom of section

String Literals
: .)
The argument against was that these notations are redundant since any character can be represented using the

unicode escape sequence. The arguments for were that hex and octal notation are convenient and simple and
also that there is alanguage tradition to be upheld.

D.1.5 ToPrimitive

Removed the erroneous note stating that errors are never generated as aresult of calling ToPrimitive in the
ToPrimitiveFePrimithve section.

D.1.6 Hex in ToNumber

We decided to allow hex in ToNumber but not octal. Looking at it from the user input source point of
view, we decided that it was reasonable to use hex but not octal since it might be common to include
leading zerosin a user input field. Furthermore we did not believe that the ability to use octal in data entry
was desirable. (Removed open issue at the bottom of 5.3.1 ToNumber Applied to the String Type)

D.1.7 Attributes of Declared Functions and Built-in Objets

We decided that built-in objects will have attributes { DontEnum } and that variables declared in global code
will have empty attributes. (Updated the 6.1.1 Global Object section)

7487

D.1.8 The Grouping Operator

We decided that the grouping operator would return the result of GetValue() so that the result is never of

type reference. (Updated the The Grouping OperatorFhe-Grouping-Operater and removed the open issue at
the bottom of this section)

D.1.9 Prefix Increment and Decrement Operators

We decided to not to perform GetValue to the return value and thus leave the algorithm asis. (removed the
open issue at the bottom of the Prefix Increment and Decrement OperatorsPrefixtierement-and-Decrerment

Operaters)
D.1.10 Unary Plus

We decided to leave the algorithm for unary plus alone and continue to call GetValue() and ToNumber() after
evaluating the unary expression which guarantees a numeric result as opposed to only evaluating the unary
expression which would not guarantee a numeric result. (Updated the Unary + and -

Oper at or sYnary+anrd—Operat-e+s section)
D.1.11 Multiplicative Operators

Updated step nine in the M ultiplicative Operatorshuttipheative-Operaters section to refer to three new
sections 7.41, 7.42 and 7.43 which define the behavior of *,/ and %

D.1.12 Additive Operators

Updated step 11 in 7.5.1 and step 10 in 7.5.2 to refer to anew section 7.5.3 which define the behavior of +
and - .

D.1.13 Left Shift Operator

We decided to leave the algorithm for |€eft shift asis, which converts the left operand using Tolnt32 rather
than ToUint32. Although an unsigned conversion might be arguably preferred, we decided to continue to
convert to signed, as we can aways add a new operator (<<<) to accomplish an unsigned shift. (Removed

the open issue at the bottom of The Left Shift Operator (<<) FheLeft-Shift-Operator{<<))

D.1.14 Binary Bitwise Operators

We decided to leave the algorithm for the binary bitwise operators asis, which uses signed conversion on
the GetValue of its operands. (Removed the open issue at the bottom of Binary Bitwise OperatorsBirary

o)
D.1.15 Conditional Operator (? :)

We decided to leave the algorithm for the conditional operator asis, which performs a GetValue on the
result before returning. Current implementations do not do this. (Removed the open issue at the bottom of

Conditional Operator (_?:) Cenditional-Operater{—2+—))
D.1.16 Simple Assignment

We decided to leave the algorithm for simple assignment asis. (Removed the open issue at the bottom of

Simple Assignment (=) Simple-Assighment{=)-)
D.1.17 The for. . i n Statement

We decided to impose no restrictions on Expressionl. (Removed the first open issue at the bottom of _The
for..in Statement-Fhe-for-ir—Statement)

7587

D.1.18 The return Statement

We decided to not generate an error if one return statement in a function returns a value and another returnin
the same function does not return a value. (Removed the first open issue at the bottom of the _The return
Statement-Fhereturn—Statement The second issue at the bottom of this section has been moved to The
CV of CharacterEscapeSeguence : : \ NonEscapeCharacter is the CV of the NonEscapeCharacter.

» The CV of NonEscapeCharacter : : SourceCharacter but not SngleEscapeCharacter or OctalDigit or
Xx_or_u_or_LineTerminator_is the SourceCharacter character itself.

e TheCV of Hex uence :: \ x HexDigit HexDigit is the Unicode character whose codeis (16
times the MV of the first HexDigit) plusthe MV of the second HexDigit.

» The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code isthe MV of the
OctalDigit.

e TheCV of Octal uence :: \ OctalDigit OctalDigit is the Unicode character whose codeis (8
times the MV of the first OctalDigit) plus the MV of the second OctalDigit.

» The CV of OctalEscapeSequence : : \ ZeroToThree OctalDigit OctalDigit is the Unicode character
whose codeis (64 (that is, 8%) times the MV of the ZeroToThree) plus (8 times the MV of the first

OctalDigit) plus the MV of the second OctalDigit.
e TheMV of ZeroToThree : : O is positive zero.
e TheMV of ZeroToThree:: 1 is 1.
 TheMV of ZeroToThree:: 2 is 2.
e TheMV of ZeroToThree:: 3 is 3.
The CV of Unicod uence : : \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 16%) times the MV of the first HexDigit) plus (256 (that is, 16%)
times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of
the fourth HexDigit.
Note that a LineTerminator character cannot appear in astring literal, even if preceded by abackslash\ .
The correct way to cause aline terminator character to be part of the string value of a string literal is to use
an escape sequencesuchas\ nor\ uOO0A.
Automatic Semicolon InsertionAutematie-Semicolon-Hsertion)

D.1.19 New Proposed Extensions

Sections _B.10 Preprocessor-B-30-Preprocesser, B.11 The do..while Statement-B-33-Fhe-do-while
Statement and B.12 Binary ObjectB-A2Binary-Object were added.

D.2 JANUARY 24, 1997

D.2.1 End Of Source

Updated SourceCharacter ::

any Unicode character

End Of SourceSedreeCharacter—+

any-Unicode-eharacter

End-Of-Sedree section to describe the end of source token aslogical rather than physical \uO00O since
strings may contain embedded \uO0QO characters.

D.2.2 Future Reserved Words

Updated Future Reserved WordsFutare-ReservedWerds section to include the word do and removed the
footnotes indicating the origin of the proposed keywords.

7687

D.2.3 White Space

Updated White SpaceWhite-Spaee section. Updated the lexical production for SimpleWhiteSpace to include
<VT> and <FF> (already mentioned in the white table above).

D.2.4 Comments

Added new issueto 3.2 regarding nested comments.

D.2.5 Identifiers
Updated section 3.3.2 to correctly state what is an allowable first character in an identifier.

D.2.6 Numeric Literals
Updated section 3.3.4.3 Numeric Literals to disallow leading zeros in floating point literals.

D.2.7 String Literals

Updated the table describing the set of character escape charactersin section

String Literals

String-Literals, to include a new column indicating the unicode value. Also added a new issue to the end of
this section.

D.2.8 Automatic Semicolon Insertion

Added two new issues to the end of The CV of CharacterEscapeSequence : : \ NonEscapeCharacter is the
CV of the NonEscapeCharacter.
e The CV of NonEscapeCharacter : : SourceCharacter but not SngleEscapeCharacter or OctalDigit or

X _or u or_LineTerminator is the SourceCharacter character itself.

e TheCV of Hex uence :: \ x HexDigit HexDigit is the Unicode character whose codeis (16
times the MV of the first HexDigit) plus the MV of the second HexDigit.

e The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code isthe MV of the
OctalDigit.

* TheCV of Octal uence : : \ OctalDigit OctalDigit is the Unicode character whose codeis (8
times the MV of the first OctalDigit) plus the MV of the second OctalDigit.

e The CV of OctalEscapeSquence : : \ ZeroToThree OctalDigit OctalDigit is the Unicode character
whose code is (64 (that is, 8?) times the MV of the ZeroToThree) plus (8 times the MV of the first
OctalDigit) plus the MV of the second OctalDigit.

 TheMV of ZeroToThree:: O is positive zero.

 TheMV of ZeroToThree:: 1 is 1.

e TheMV of ZeroToThree:: 2 is 2.

 TheMV of ZeroToThree:: 3 is 3.

The CV of Unicod .\ u HexDigit HexDigit HexDigit HexDiqit is the Unicode

timesthe MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of
the fourth HexDigit.

Note that a LineTerminator character cannot appear in astring literal, even if preceded by abackslash\ .
The correct way to cause aline terminator character to be part of the string value of a string literal is to use
an escape sequencesuchas\ nor\ uOOOQA.

Automatic Semicolon I nsertionAutematie-Semicolontnsertion.

D.2.9 Property Attributes

Renamed Permanent to DontDel ete in the property attributes table in the Property AttributesPreperty |
Attributes section.

D.2.10 ToPrimitive
Reworded section ToPrimitiveFePrimmitive to better describe the optional hint PreferredType. |

D.2.11 ToNumber

Updated section ToNumberFoNumber. Added Hint Number in call to ToPrimitive. Also added new issue to |
the end of this section.

D.2.12 White Space

Updated section ToNumber Applied to the String TypeFeNumberApphed-to-the-StringFype Updated the |
lexical production for SimpleWhiteSpace to include <VT> and <FF>.

D.2.13 ToNumber Applied to the String Type

Updated section 5.3.1, ToNumber Applied to the String Type. Reworked lexical productionsto be similar
to those used in section,

Numeric Literals

Nurrerie Literals. The difference between string numeric literals and numeric literals is that string numeric
literals do not alow octal notation and do allow leading zeros.

D.2.14 ToString
Updated section ToStringFeString. Added Hint String in call to ToPrimitive. |
D.2.15 Postfix Increment and Decrement Operators

Updated section Postfix Increment and Decrement OperatorsPestfixtHrererment-and-Decrerment-Operators. |
Updated the algorithm to return Result(3) (the result of converting ToNumber), rather than (Result(2).

D.2.16 The t ypeof operator
Added anew issue at the end of section The typeof Oper at or FhetypestOperator. |

D.2.17 Prefix Increment and Decrement Operators

Removed extraneous calls to ToPrimitive from the algorithm in section Prefix Increment and Decrement

OperatorsPrefxtrerernent-and-Decrement-Operaters.
D.2.18 Multiplicative Operators

Remove step 7 in the algorithm in section 7.4 (either operand NaN) and added anew ruleto 7.4.1 and 7.4.2
to reiterate what was in the old step.

D.2.19 The Subtraction Operator

Removed extraneous calls to ToPrimitive from the algorithm in section 7.5.2.

D.2.20 The Subtraction Operator

Remove the old step 9 in the algorithm in section 7.5.2 (either operand NaN) and added anew rule to
section 7.5.3 to reiterate what was in the old step.

7887

D.2.21 Applying the Additive Operators (+, -)

Update the last rule in section 7.5.3 to clearly state that operands mentioned in the final sentence must be
numeric.

D.2.22 Equality Operators
Moved the Semantic discussion at the beginning of 7.8 to the discussion section at the end of 7.8

D.2.23 ToPrimitive Usage
Added issue at the end of sections 7.5.1 and 7,7.

D.2.24 Binary Logical Operators
Added issue at the end of 7.10.

D.3 January 31, 1997

D.3.1 MultiLineComment

Updated the lexical production MultiLineComment in section LineEnd ::
LineTerminator
<EOS

CommentskineEnd-—:+
. .
<EOS>

Cemments, to allow empty multi-line comments. Also removed the issue at the end of this section
regarding nested mutli-line comments. The MultiLineComment production continues to disallow multi-line
comments.

D.3.2 String Literals

Removed open issue at the end of section

String Literals

String-Literals which stated that the maximum string constant supported must be at least 32000 characters
long.

D.3.3 Automatic Semicolon Insertion

Updated section The CV of CharacterEscapeSequence : : \ NonEscapeCharacter is the CV of the
NonEscapeCharacter.
e The CV of NonEscapeCharacter : : SourceCharacter but not SngleEscapeCharacter or OctalDigit or

x _or_u or_LineTerminator is the SourceCharacter character itself.
e TheCV of Hex uence :: \ x HexDiqit HexDigit is the Unicode character whose code is (16
times the MV of the first HexDigit) plusthe MV of the second HexDiqit.

e The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code isthe MV of the
OctalDigit.

* TheCV of Octal uence : : \ OctalDigit OctalDigit is the Unicode character whose codeis (8
times the MV of the first OctalDigit) plus the MV of the second Octal Digit.

e The CV of OctalEscapeSquence : : \ ZeroToThree OctalDigit OctalDigit is the Unicode character

whose code is (64 (that is, 8?) times the MV of the ZeroToThree) plus (8 times the MV _of the first
OctalDigit) plus the MV of the second Octal Digit.

7987

e TheMV of ZeroToThree : : O is positive zero.

 TheMV of ZeroToThree:: 1 is 1.

e TheMV of ZeroToThree:: 2 is 2.

e TheMV of ZeroToThree: : 3 is 3.

The CV of Unicod uence : : \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 16°) times the MV of the first HexDigit) plus (256 (that is, 16%)
times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of
the fourth HexDigit.

Note that a LineTerminator character cannot appear in astring literal, even if preceded by a backslash\ .
The correct way to cause aline terminator character to be part of the string value of a string literal is to use
an escape sequencesuchas\ nor\ UOOOA.

Automatic Semicolon | nsertionAutematie-Semieolon-Hasertion, to include rules governing parsing the

f or statement and dealing with postfix ++ and postfix —— tokens.

D.3.4 The Number Type
Updated the description in section The Number TypeFhe-NumberTFype.

D.3.5 Put with Explicit Access Mode

Update section 4.5.2.3, Put with Explicit Access Mode to include looking in the prototype object for access
violations.

D.3.6 Put with Implicit Access Mode

Update section 4.5.2.4, Put with Implicit Access Maode to include looking in the prototype object for access
violations.

D.3.7 The String type

Updated the description in section 4.6, The String Type.

D.3.8 ToNumber

Updated section 5.3, ToNumber to return a NaN for an input type of Nul | .

D.3.9 ToNumber Applied to the String Type

Updated the lexical production for SimpleWhiteSpace in section 5.3.1 to include <CR> and <LF>. Also
updated the lexical productions StrFloatingPointLiteral and StrintegerLiteral to allow signs.

D.3.10 TolInt32

Updated description in section 5.5, Tolnt32: (signed 32 bit integer) to tentatively use Guy’s Conversion
modulo 2732 algorithm.

D.3.11 ToUint32

Updated description in section ToUint32: (unsigned 32 bit integer) Febint32:{unsighed-32-bitinrteger) to
tentatively use Guy’s Conversion modulo 2°32 algorithm.

D.3.12 Execution Contexts (Variables)

Section 6 (Variables) replaced by new section (Execution Contexts).

8087

D.3.13 Function Calls
Swapped steps 2 and 3 in section 7.2.4, Function Calls.

D.3.14 The t ypeof Operator

Updated the table in section The typeof Oper at or Fhetypest-Ope+at-oe+ to specify the result when
the input type is an external object. Removed related open issue at the end of this section.

D.3.15 Applying the %Operator

Removed step 7 in the algorithm in section 7.4.(either operand NaN) and added anew ruleto 7.4.3 to
reiterate what was in the old step.

D.3.16 The Addition Operator (+)

Added the hint Number in the callsto ToPrimitive in section 7.5.1, The Addition Operator (+). Removed
related open issue at the end of this section.

D.3.17 Relational Operators

Added the hint Number in the callsto ToPrimitive in section 7.7, Relational Operators. Removed related
open issue at the end of this section.

D.3.18 Conditional Operator (?:)

Updated the syntactic production, Conditional Expression, in section Conditional Operator (2.) Cenditional
Operater{2—)-

D.3.19 Compound Assignment (op=)

Swapped steps 2 and 3 in section 7.12.2, Compound Assignment (op=)

D.4 FEBRUARY 21, 1997

D.4.1 Unicode Escape Sequences

Rewrote section Unicodebnieade to reflect the restriction that non-ASCII Unicode characters may appear
only within comments and string literals. Moved the description of Unicode escape sequencesto

String Literals

S .

D.4.2 Future Reserved Words

Added i nport and super to table in Future Reserved WordsFuture-Reserved Werds.

D.4.3 Automatic Semicolon Insertion

Rewrote the rules for semicolon insertion in section The CV of CharacterEscapeSequence : @ \
NonEscapeCharacter is the CV of the NonEscapeCharacter.
e The CV of NonEscapeCharacter : : SourceCharacter but not SngleEscapeCharacter or OctalDigit or

X _or u or_LineTerminator is the SourceCharacter character itself.

* TheCV of Hex uence : : \ x HexDigit HexDiqit is the Unicode character whose codeis (16
times the MV of the first HexDigit) plusthe MV of the second HexDigit.

e The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code isthe MV of the
OctalDigit.

* TheCV of Octal uence : : \ OctalDigit OctalDigit is the Unicode character whose code is (8
times the MV of the first OctalDigit) plus the MV of the second OctalDigit.

» The CV of OctalEscapeSequence : : \ ZeroToThree OctalDigit OctalDigit is the Unicode character
whose codeis (64 (that is, 8%) times the MV of the ZeroToThree) plus (8 times the MV of the first

OctalDigit) plus the MV of the second OctalDigit.
e TheMV of ZeroToThree : : O is positive zero.
 TheMV of ZeroToThree:: 1 is 1.
 TheMV of ZeroToThree:: 2 is 2.
e TheMV of ZeroToThree:: 3 is 3.
The CV of Unicod uence : : \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 16°) times the MV of the first HexDigit) plus (256 (that is, 16%)
times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of
the fourth HexDigit.
Note that a LineTerminator character cannot appear in astring literal, even if preceded by abackslash\ .
The correct way to cause aline terminator character to be part of the string value of a string literal is to use
an escape sequencesuchas\ nor\ UOOOA.
Automatic Semicolon I nsertionAutematie-Semieolontasertion to incorporate the rule that a semicolon is
not inserted if it would be treated as an empty statement. Also, broke out the empty statement as a separate
kind of statement for expository purposes in section _Empty Statement-Empty-Statement.

D.4.4 The Number Type
Corrected formatting of formulae in section The Number TypeFheNurmberTFype.

D.4.5 NotIimplicit and NotExplicit Property Attributes Deleted

The NotImplicit and NotExplicit property attributes were deleted from the table in section Property
AttributesPreperty-Attributes. Many changes throughout the rest of chapter 4 to reflect this deletion. Also,
the [[TestPutExplicit]] helper method was renamed [[CanPut]].

D.4.6 Tolnt32 and ToUint32

Corrected formatting of formulae in sectionTolnt32: (signed 32 bit integer)Fetnt32:{(signed-32-bitHteger)
and section ToUint32: (unsigned 32 bit integer)Febint32:{unsighed-32-bitinteger). Also, change the

discarding of the fractional part to truncate toward zero rather than using a simple floor operation.

Correct an error in the descriptions by adding a new step 4 to each one, which makes
sure that if the input is negative zero, the output is positive zero.

D.4.7 Grouping Operator

Delete step 2 from section The Grouping OperatorFhe-Grouping-Operater. Parentheses no longer force
dereferencing.

D.4.8 Shift Expressions

Correct the grammar for ShiftExpression by adding AdditiveExpression as an aternative in section Bitwise

Shift OperatorsBitwise-Shift-Operators.
D.4.9 Conversion Rules for Relational Operators

Updated description in section _Relational Operators-Relational-Operators so that lexicographic string

ordering is used only if both operands become strings when converted to primitive type; if oneisastring
and one is anumber, then numeric ordering isused. Thus relational operators differ from the + operator,
which, if one operand is a string and one is a number, performs string concatenation rather than addition.

8287

D.4.10 && and || Semantics

Updated description in section Binary Logical OperatorsBinary-Logica-Operators so that && and | | have
PERL-like semantics; that is, the result of 1| | 2 is 1, not true, and the result of O| | " Hel | 0” is
“Hell 0”.

D.4.11 Conditional Operator

Updated section Conditional Operator (2) Cenditional-Operater-(2—)- to reflect the change that the second
and third subexpressions should each be AssignmentExpression.

D.4.12 Assignment Operators

Updated section Assignment OperatorsAssigrment-Operators to reflect the change that the left-hand side of
an assignment should be a PostfixExpression. Also change two occurrences in subsections of SetVal to
PutValue.

D.4.13 Syntax of Class Statement

Updated section B.1 The Class Statement1B-+Fhe-Class-Statementt to allow the parenthesesin a class
declaration to be optional.

D.4.14 Syntax of Try Statement

Updated section B.2.1 Thet ry Statement1B-23Fhet+y—Statementt to require the body of acat ch
or final |y clauseto be aBlock.

D.5 FEBRUARY 27, 1997

D.5.1 Grammar Notation

Big rewrite of section Syntactic and L exical GrammarsSyntactic-and-H-exica-Grammars to make the
description of grammar notation more detailed and rigorous. Isthis okay? (Much of the text was borrowed,
in form at least, from the Java Language Specification.) The notation is still a bit inconsistent throughout
the document (example: “except” versus “but not”), and should be made consistent within itself and with

section Syntactic and L exical GrammarsSyrtaetic-ane--exical-Grammars.

Also decided to call out the grammar in Chapter 5 as a separate grammar and use triple colons on its
productions.

Restructured some of the grammar in Chapter 3 to make it a bit more readable. Isthis okay?

D.5.2 End of Medium Character Is No Longer WhiteSpace

Deleted character \u0019 (End of Medium) from the table in section White SpaceWhite-Spaee, and deleted
<EOM> as an alternative for SimpleWhiteSpace in that same section. Also deleted <EOM> as an

alternative for StrwhiteSpaceChar in section ToNumber Applied to the String TypeFeNumberAppHedto
the-StringFype. These changes reflect the decision that neither \u0019 (End of Medium, mistakenly also
referred to in previous drafts of this document as”Z) nor \uOO1A (Substitute, which really is”~Z) shall be
considered whitespace in an ECMA Script program. It is expected that host environments will filter any ~Z
character that might occur at the end of the host environment’ s representation of an ECM A SCript program.

D.5.3 Meaning of Null Literal
Added to section Null LiteralsNuH-Hiterals a discussion of the meaning of anull literal.

D.5.4 Meaning of Boolean Literals

Added to section Semantics

8387

Thevalue of the null literal nul 1t r ue isthe sole value of the Nnull type, namely null.
Boolean LiteralsSemanties

Beeleantiterals a discussion of the meaning of a boolean literal.

D.5.5 Meaning of Numeric Literals

Added to section
Numeric Literals

Nurrerie Literals a discussion of the meaning of anumeric literal. It does not yet address the restriction to
19 significant digits. Is this the style of description we want?

D.5.6 Automatic Semicolon Insertion

Updated description of automatic semicolon insertion in section The CV of CharacterEscapeSequence : : \
NonEscapeCharacter is the CV of the NonEscapeCharacter.
» The CV of NonEscapeCharacter : : SourceCharacter but not SngleEscapeCharacter or OctalDigit or

X _or u or_LineTerminator is the SourceCharacter character itself.

e TheCV of Hex uence :: \ x HexDigit HexDigit is the Unicode character whose codeis (16
times the MV of the first HexDigit) plus the MV of the second HexDigit.

» The CV of OctalEscapeSequence : : \ OctalDigit is the Unicode character whose code isthe MV of the
OctalDigit.

e TheCV of Octal uence : : \ OctalDigit OctalDigit isthe Unicode character whose code is (8
times the MV of the first OctalDigit) plusthe MV of the second OctalDigit.

» The CV of OctalEscapeSequence : : \ ZeroToThree OctalDigit OctalDigit isthe Unicode character
whose code is (64 (that is, 8?) times the MV of the ZeroToThree) plus (8 times the MV of the first
OctalDigit) plus the MV of the second OctalDigit.

 TheMV of ZeroToThree : : O is positive zero.

e TheMV of ZeroToThree:: 1 is 1.

 TheMV of ZeroToThree:: 2 is 2.

 TheMV of ZeroToThree:: 3 is 3.

The CV of Unicod ..\ u HexDigit HexDigit HexDigit HexDigit is the Unicode

times the MV of the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of
the fourth HexDigit.

Note that a LineTerminator character cannot appear in astring literal, even if preceded by a backdash\ .
The correct way to cause aline terminator character to be part of the string value of a string literal is to use
an escape sequencesuchas\ nor\ uOOOA.

Automatic Semicolon | nsertionAutematie-Semieolontasertion. Systematically replaced the word “injected”
with “inserted”. Invented a new theory of “restricted productions’ to explain in a general way why the parser
inserts semicolons in places where there would otherwise be avalid parse without a semicolon. Added more
examples and advice. Also modified productions in sections Postfix ExpressionsPestfix-Expressiens and
The return STATEMENT-Fhereturr—STATEMENT to indicate the restrictions explicitly.

D.5.7 The Number Type

Updated section The Number TypeFhe-NurmberFype to provide explanations of those large numbers as
sums and differences of powers of two.

D.5.8 ToString on Numbers
Updated section ToString Applied to the Number TypeFeString-Appted-te-the- NumberFype have a draft

specification of how this conversion ought to be done. This needsto be reviewed. Thisversion requires
that, when the number has a nonzero fractional part, the output must be correctly rounded and produce no
more digits than necessary for the fractional part. Added abibliographic reference to the paper and code of
David M. Gay on this subject.

D.5.9 New Operator

Updated description in section Thenew Oper at or Fherew-Operat-o+ to describe the case where no
argument list is provided. This needs to be reviewed.

D.5.10 Delete Operator

Updated description in section The delete Oper at or Fhedeete Op-erat—o+ to reflect decision that this
operator shall return a boolean value; the valuet r ue indicates that, after the operation, the object is
guaranteed not to have the specified property.

D.5.11 == Semantics

Updated section Equality OperatorsEquality-Operaters so that (a) nul | and undef i ned are considered
equal, and (b) when a number meets a string, the number is converted to a string and then string equality is
used.

D.5.12 && and || Semantics

Updated description in section Binary Logical OperatorsBinary--ogica-Operaters to delete step 7 for
eachoperator (the result of this step was no longer used).

D.5.13 Separate Productions for Continue, Break, Return

To make certain kinds of cross-reference in the document simpler, | broke out the continue, break, and
return statements into separate grammatical productions, eliminating the production for

Control FlowStatement (which was something of a misnomer anyway, and other statements also result in
(structured) control flow.

D.5.14 Dead Code Is Not Protected from Compile-Time Analysis
Added text to chapter 12 (Errors).

D.6 MARcH 6, 1997

D.6.1 Reformatted the Entire Document

| order to make future revisions easier and to take better advantage of the desktop-publishing capabilities of
Word, the entire document was reformatted using some newly defined Word styles. Heading numbering was
turned on to facilitate automatic numbering of headingsin the main text (sections of the appendices are still
numbered manually, using new styles Appendix Heading 1, Appendix Heading 2, and Appendix Heading 3).
A new style Algorithm is used for algorithmic steps; in some cases, the last step should be styled with
AlgorithmLast to provide extra vertical space after the last step.

Added a style called MathSpecial Case (generates bullet lists for now).

Thetitle page now uses styles Title and Subtitle, which were modified to use apropriate fonts and paragraph
spacing.

Extraneous tab characters and multiple spaces were deleted from all headings.

8587

The paragraph spacing of Normal, the various headings, Algorithm, AlgorithmLast, SyntaxRule, and
SyntaxDefinition were adjusted so that the correct vertical spaceisinserted automatically. All blank
paragraphs in the document were del eted.

Theindex and al index entries were deleted. Sorry, but they were somehow interfering with other
formatting, and the index entries were terribly incomplete anyway. If we have timeto do agood index,
entries can be added semi-systematically.

The document was divided into three of what Word calls“ sections’ so that the pages of the Table of
Contents could be numbered with the customary roman numerals, with the main text starting on page 1.

All therevisions listed in thisitem were accepted and the change bars reset before the following items were
entered, so that all the changes of thisitem would not clutter the manuscript.

D.6.2 Designed a Section Outline for Chapter 11

Filled in nearly all necessary section headings for Chapter 1 for describing Object, Function, Array, String,
Boolean, Number, and Math and all their properties and methods. Added afair amount of boilerplate text.

D.6.3 Defined Math Functions

Added complete definitions for all propertiesin the Math object, following the example of C9X for the
treatment of 1EEE 754 speecia cases.

D.7 MarcH 10, 1997

D.7.1 Added Definition of “The Number Value for x”

In section 4.4, the phrase “the number value for x” is now defined. It encapsulates the entire |IEEE 754
process for converting any nonzero mathematical value to a representable value by using round-to-nearest
mode. This phrase is of great usein Chapter 11 and elsewhere.

Also corrected two typos in this section: —1073 replaced by —1074, and 2% replaced by 2%,

D.7.2 atan and atan2 May Use Implementation-Dependent Values for 11, etc.

It was decided at the phone meeting that when Mat h. at an, for example, is supposed to return 10/2, it
need not return exactly one-half theinitial value of Mat h. pi , but may produce an approximation. The

motivation is to allow implementors the use of whatever C math library is present on the hardware
platform at hand, whether or not it conforms to the high quality standards of, for example, the C9X

proposal.

D.7.3 Improved Discussion of Input Stream for Syntactic Grammar

Text added to section 1.1 to better explain the handling of whitespace, comments, and line terminators, and
the fact that line terminators become part of the input stream for the syntatic grammar. Also corrected a

type in section 1.1.5 where the phrase “[no LineTerminator_here]” had been inadvertently omitted.

D.7.4 Improved Treatment of LineTerminator in Lexical Grammar

Eliminated the mythical <EOS> character. As aresult, LineEnd is not needed either. The trick is not to
include LineEnd (or LineTerminator) as part of the grammar of a single-line comment. This works out
better, because a single-line comment still runs to the end of the line (as dictated by the |ongest-token-

possible rule), but it doesn’'t swallow the LineTerminator, so it doesn’t affect automatic semicolon
insertion. (That the previous production did swallow the LineTerminator was thus a bug.)

The section on whitespace has been divided into two sections, one on WhiteSpace (formerly caled
S mpleWhiteSpace) and one on Line Terminators.

8687

THIS CHANGE REQUIRES REVIEW.
D.7.5 Clarify Behavior of Unicode Escape Sequences

In Chapter 2, clarify that a Unicode escape sequence such as \u000D does not produce a carriage return that
could end a single-line comment, for example.

D.7.6 Add Careful Description of the String Value of a String Literal

In imitation of the text already present describing the value of a numeric literal, text was added to section
3.7.4 to describe carefully the exact sequence of characters represented by astring literal. In the process,

missing productions for DoubleSringCharacters and SngleStringChar acters were added, and the redundant
defintions of HexDigit and Octal Digit were removed. Also dealt with an open issue by emphasizing that a

LineTerminator may not appear within a string literal.

D.7.7 Description of Identifiers Reworded

Improvements to the wording in section 3.5. Also repaired atypo (capital | replaced by lowercase|).

D.7.8 Table of Punctuators Corrected

Underscore replaced by + operator in tablein section 3.6.

D.7.9 Improved Descriptions of Tolnt32 and ToUint32

Step 5 of the algorithms in sections 5.5 and 5.6 have been clarified to use a mathematical description rather
than fragments of code.

D.7.10 Changes to ToString Applied to the Number Type

See section 5.7.1. Negative zero now produces™ 0" .. not " - 0" .. Integers less than 10%° shall print
without decimal points. Values less than 1 but not less than 107° will not require scientific notation.

D.7.11 Revised Syntax for NewExpression and MemberExpression

Made the changes to section 7.2 as suggested by Shon, eliminating NewCallExpression and providing a
pleasing symmetry in which the number of n e w operators can exceed or fall short of the number of

argument lists.

D.7.12 Clarify Multiplicative and Additive Operators

In section 7.4.1, describe the multiplication of infinity by infinity.

In section 7.4.1, describe the division of infinity by zero.

In section 7.4.1, better describe the remainder of azero by afinite number.
In section 7.5, better describe the sum of two zeros and the sum of finite numbers of same magnitude and

D.7.13 Addition Operator No Longer Gives Hint Number

When the addition operator + calls ToPrimitive, it no longer gives hint Number. Note that all built-in

objects respond to ToPrimitive without a hint as if hint Number were given, so thius change affects only
external objects.

D.7.14 Correct Description of Relational Operators

Miscellaneous small corrections.

D.7.15 Assignment Operator LHS Must Be PostfixExpression
Change four occurrences of UnaryExpression to PostfixExpression in section 7.12.
D.7.16 Changes to For-in Loops

Without v ar , the expression beforei n must be a PostfixExpression (as for an assignment),

With v ar , an optional Initializer is permitted after the |dentifier.

A For-In loop enumerates not only properties of the given object itself, but also properties of its prototype,

and so on, recursively.

| SSUE: Are shadowed properties of the prototype enumerated?
D.7.17 Break and Continue Must Occur within While or For Loop

Added text to sections 8.6 and 8.7 to requirebr eak andcont i nue to appear within loop statements.

8887

APPENDIX E: LALR(1) SYNTACTIC GRAMMAR

Issue: To be supplied?

8987

9087

