ECMA/TC39/97/21

ECMASCRIPT LANGUAGE SPECIFICATION

ECMA COMMITTEE#39
VERSIONO.14

MARCH?27, 1997

Please send feedback regarding this document t&uy Steele (Guy.Steel e@east.sun.com).

L OVERVIEW.. ..ottt ettt ettt e s e e st e st e e s s a bt e s b e e e n e e e an e e eaneeeneeereeennes 1

S oT0] =T 1
1.2 CONFORMANCE.......uuuuuuuuruuerssnsnnns 1
1.3 NORMATIVEREFERENGCES........uuuuuuuuuuuuusssrussrssssnnnnsnsssssnssnnnnnnnnnsnsnnnnn 1
D2 DEFINITIONS . .. uuuuuuuuunsunsssnsesssssssssnnssssssssssssssssssssssssssssssnsssssssssssssssssssssssssssssssnnsnnnssnnsnsnsssnssnssssnssssnnnnnn 1
2BUILT-IN OBJECTNOTATIONAL CONVENTIONS.ottt 3
2.1 SYNTACTIC AND LEXICAL GRAMMARSciiiiiiieeiee e e e e e e e e eeeee e et e aeeeeeeeeeeeeeeeeeeeaeeeeeaaaeens 3
N N R O g1 = o = T T =0 107> PRSP 3

2 N N o oY I (o= I € = 10 3
2.1.3 The NUMEIiC SING GIramMIMAar........coieirieeriieniientieriiesieesieesiee st sieesiee e stesasesaeesieesseesseesaeesseesnns 3
2.1.4 The SYNLACTIC GIraMIMAL.......coueerieeieerteeteertee sttt sttt sbe e sabe st e st e st e saeesbeesaeesbeesntesnteenes 3

N RSN = 1001007V o] =1 1o] 4

2.2 ALGORITHM CONVENTIONSciiiiiiiieeieeeeeeeeeeeeeee e e e et eeeeeeeeaseeeeeeeeeeeeeeeeeeeeeeeeeeaaaaaaaeaeaeeaes 6

RS @ U] = T O I G [7
A LEXICAL CONVENTIONS ettt et e e e e e e e et e e s e e e s saar s e e e e s s eessnnbraeeeeeeeans 8
AL WWHITE SPACE. ..o 8
4.2 LINETERMINATORS......cetiieieeeeeeeeee e, 8
4.3 COMMENTS. ..ttt 9
BA TOKENS....ccieeeeeeeeee e 9
e S Y (<o VLY 0T o 9
4.2 KEYWOETS......teeteeneeete ettt ettt ettt ettt et e s a e sb e e st e et e e sbe et e eabeeaseeabeesbeenbeenbeenbeenbeennesaneas 10

4. 4.3 FULUrE RESEIVEA WO TS.....cciiiiicieeeieee ettt e e e ettt e e e e s e e et e e e e e s e e s snsaaaeeeesseesssesnsneeeeeenan 10

A5 IDENTIFIERS. ...ccceeeeeeeeeee e 10

L G = B N [og MU 7N K =S T 11
A7 LITERALS. oo 11
N 10 = = N 11
oy = 1o T 1= T W = = N 11
oy N N\ (U010 = g Lo I (= =N 11
S 1 T ool L (= = LSO PUUP PP 14

4.8 AUTOMATICSEMICOLONINSERTION....ccitiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeereeeeeeeeeeeeeeeeeereeeeeeeeees 16
LTI A = T 19
LT R N = BN = TN = o I = =S 19
LI] = O T T 17 = = 19
R] = =T o I = N I = = 19
N N o 1] TR I = = 19
T 2 =0 N0V 23 = = I =S 19
N N L =L O = o i I = = 20
5.6.1 Property AFIDULESc..oo ettt r e 20
5.6.2 Internal Properties and MEthOUS...........cooueiiiriiiieiiieeereeeee et 20
oI A | T {1 T PSSP 21

X A = VL (22T) OO 22

NI I | (0= a1 V1 () P PRPSPRR 22

5.6.2.4 [[HASPIOPEIYTT(P) .. e euveeteereeie ettt ettt ettt ettt ettt ettt ettt sb e b e bt e sreeebe e sreesbeenneenneenbeens 22

I A N = = = = = N Lol = 7 = = 22
A T {7 1= USSR 23
5.7.2 GEtPrOPENTYNAIME(V)...cv ettt ettt ettt ettt ettt et e be et e e nbesnne e sbeenbeenaeens 23
T T - 11N TS SSRR 23
B.7.4 PUIVAIUB(V, W)ttt e st e s snteesnteesnteesnseeenneeensenennteeaseeenneeennenenns 23

LR T I = I 17 = =S 23
SR R N = 0] Y 1= I =y o) N 7 =S 23

B TYPE CONVERSION....coiiiiiiitii ettt e e e ettt e e e e s e e e aaa e e ee e e e s e e ssaaaaeeeeeseesssasseeeseeeessassraeneeeseanns 24

(ST 1) =Y 1 1 V2= 24

6.2 TOBOOLEAN ...eeuiteeiutee ettt ettt ettt se e ae e s s st e sa st e e s h e e e s s s e e e as e s s e e e be e ean e e san e e e neeenneenneennneennn s 24
O T e N\ [U LY =] = = PP U PRSP 25
6.3.1 ToNumber Applied t0 the SIHNG TYPE ..ot 25
O o] LN =l = = OO U SRRSO 27
6.5 TOINT32: (SIGNED 32 BIT INTEGER) ..euteeutteteeteeteeteeseesteessessseesseesseensesseensessseessesssesssesssesssesssesnes 28
6.6 TOUINT32: (UNSIGNED 32 BIT INTEGER) .. cctteteerteerteesteesteesseesssesseesseesseessessseesseesssesnsesssesssessnessnssnes 28
6.7 TOUINTL16: (UNSIGNED 16 BIT INTEGER)....cesueerteerueeteesteesteenseesssesseesseesseessessseesseesssesnsesasesssessnessessses 28
5.8 TOSTRING. ... teeteeeitee ettt ettt et e st e ket e st e s h e et e se e e b et e s s s e e e an e e ean e e aabe e e saneesan e e e aneesaneesanneenneeennes 29
6.8.1 ToString Applied to the NUMDEr TYPE.......oo i 29
5.9 TOOBUIECTuteeuteestieetee ettt et et e et e st s e ae e e s he e e e b et e b e e e s s s e e e as e e eas e e eabe e e aaRe e san e e e aneeenneeeanneenneenanes 30
TEXECUTION CONTEXTS .ttt ettt ettt ettt e b e st ettt et sntesane e sbeenbeenbeens 31
7.1 DEFINITIONS ...eeuuteeeuteeateeetee et e et e e stee s e e s e e as e e sss e e sa s et e sh e e e s e s e e e an e e e an e e eaneeaas e e nar e e e reeeneeenneenneennnes 31
7.1.1 FUNCHION ODJECES ...ttt ettt st b ettt ettt e et e e sbeesbeenreenneens 31
7.1.2 Types Of EXECULADIE COUE..........eoiiiiieiieeieee sttt nae e 31
7.1.3 Variable INSEANtiAtiON.........cceiiiiiieee ettt ettt sreenae e 32
7.1.4 Scope Chain and ldentifier RESOIULIONcoiuiiiiieiieieeeiesiee e 32
7.2.5 GlODAI ODJECL....coueiiiiieeee ettt ettt ettt nb e nre e reeneea 33
7.2.6 ACHIVALION ODJECL. ... eeiitiiiiiie ettt sttt ettt et e e et et e e sbeesbeenbeeneens 33
5 O A 1 01 TSRSV RPRRPRTR 33
7.2.8 ArgUMENES ODJECL......eiitiiiiiiiete ettt ettt st e b ettt et e bt eab e et e e sbeesbeenbeeeeens 33
7.2 ENTERING AN EXECUTION CONTEXT...tttiuteteireeireesireessreessseeessseessneessseesneesneessmneesssessnsesssessnneesnees 33
A% N €1 o) o= LI ©e o L= PSP R TURTPRRPRRTO 34
T.2.2 EVAICOUE. ...ttt ettt ettt ettt a e st nre e 34
7.2.3 Function and ANONYMOUS COUE.........coouiiiieiieieeie ettt ettt sb e b saeenaeeae e eas 34
T2 4 HOSE COUR......eoueeete ettt e bttt et ettt s ae e s ae e et e st et e et saeesaeeseee e 34

B EXPRESSIONS. ...ttt bbbttt ettt ettt e e sb e s b e e be et e e reeneenreene e 35
8.1 PRIMARY EXPRESSIONSuttiitiiitieateeatee sttt e st e s e et e e s s e s enee e nse e e ssseessneesaneessnneennneennneennnes 35
8.1.1 ThE thiS KEYWOIT.iiieiieiieeie ettt ettt b e et s r e e st e sbeenbeeaeens 35
8.1.2 1dentifier REFEIENCE........eiiiieeete ettt et ettt n e b e sreenreen 35
8.1.3 Literal REFEIEINCEc.ti ittt ettt et ettt et ettt re e en 35
8.1.4 The GrouPiNg OPEILOL......c.eeitieieeieeieeieestee st ste e bt e bt ebeebe st sbeesbeesbeenbeebeebessnesnessbeenaeens 35
8.2 LEFT-HAND-SIDE EXPRESSIONS.ciitiiiiieeiteesitee st stee et e st s e s e ssneesn e s s e sneesnneenneennnes 35
8.2. 1 PrOPEITY ACCESSONS. ..uteeeteeeteeesieeestreesssee e st e e ss st e saseeaseeabeeas st e sbeeaneeaneeeneeesneeeanbeeeaneeennneenn 36
8.2.2 THE NEW OPEIBLOK.eeuteeuiieteete ettt st ettt ettt e e st e e sb e e s b e e sbeenbeebeenbeenseeaseesbeenbeenbeeaeens 36
B.2.3 FUNCLION CaAllS. ..ttt ettt ettt et e st e e nbeenbeebeeneeens 37
8.2.4 A QUIMENT LISES. . eeutietietiete ettt ettt b et b e ettt et e et s b e e sbeesbeenbeeneeneeens 37
8.3 POSTFIX EXPRESSIONS.....ccutieiteeiitiestie st ee et st e sttt e s n e n e e s e e be e e nsn e e san e e s nnneennneennneennnes 38
8.3.1 POStiX INCremeENt OPEI@LOL........ccouiiieiieiieeie ettt ettt ettt st sb e sb e sbeenesnesnesnbeens 38
8.3.2 POStiX DECTEMENT OPEIALO.eeteeeieieeieeie et ste ettt ettt ettt st sb e st e sbeesbeeaesnesnesnneens 38
8.4 UNARY OPERATORS.....cutttettteureesureesureesssseessseessseesaseesaseesaseeanreesseeaseeaseeeseeeasneeanreeesnneennneennneennnes 38
8.4.1 THE AElEIE OPEIALOL........eeteeteete ettt ettt ettt ettt b ettt e et e bt et e e abe et e e sbeenbeenaeens 38
8.4.2 THE VOIT OPEIALO ... ceteeutieieete ettt ste sttt ettt et et saee st e e s bt e sbe e beebeeneeesbeease s sbeesbeenbeeneens 39
8.4.3 THE LYPEOT OPEIALOL.eeteeeieee ettt ettt ettt ettt sttt s b et esbe et e e bt et e eabesineesbeenbeenaeens 39
8.4.4 PrefixX INCremMENt OPEIALOL.c.ueiiteeieeieeee et st ste e sttt ettt et be s st et e e sbeesbeenbesnesaesnneesreens 39
8.4.5 Prefix DeCrement OPEIALOL........cciuiiieeieeieeie et sttt ettt ettt st e st esbeesbeenbeenesnesnesnneens 39
8.4.6 UNAIY + OPEIALOL.....ccteeetee ettt et ee ettt ettt e st e st e st esr e e s ne e e nee e seeesnn e e s sneeeanneesnneenn 39
847 UNAIY = OPEIALOL......ccitieitee ettt ettt e et ss e st s e s r e e e s e san e e sn e e e neeene e e ne e e aareeeaneeeanneenn 40
8.4.8 The BitwiSe NOT OPEIAION (=)eeerveerteerteerieeieeieeiteesteesteesteesteesteetestesee s sreesbeesbeesaeenaeeeesneenns 40
8.4.9 Logical NOT OPEIALOr (1)eeveeiveerieerieeieeieeie et st ste ettt ettt sttt et e nbeenesnesnesnaeen 40
8.5 MULTIPLICATIVEOPERATORS. ...ceiuttteteeeteeeieeesieeesaseeasseeessseessseessseessseesasseessseesaseesneesneesnneeanreennnes 40
8.5.1 APPIYING the * OPEIALOL......c..eiitiiiieieeie ettt b et e b e et e nesnesabeeneeens 41
8.5.2 APPIYING e / OPEIALOL......cotiitiiiieie ettt st sb ettt e aesne s sreeneeens 41
8.5.3 APPIYING the U0 OPEIALOL.......eetieieeieeie ettt ettt ettt sttt et sbe et e et e e nesnesaneeneeens 42
8.6 ADDITIVE OPERATORS. ...t ettteireesireesureesseeesuseesaseesaseesseeaseeasseesseeaaseseseeeaseeessseesnreessnneesnneennneennnes 42

8.6.1 The Addition OPEIaLOr (F).veeieeieerieerieeieeie et sttt ettt ettt st sb e b et e et e aesnesnnesnneen 42

8.6.2 The SUDLIraction OPEralOr (=)...eeoeereerieeieeie ettt ettt ettt st et et seee e 43
8.6.3 Applying the Additive Operators (+, -) t0 NUMDEIS.......ccceiiiiiiiiienecieseeseere e 43
8.7 BITWISE SHIFT OPERATORS .. eeetieeeiiuutteeeeeeeaaiuusttreereesaaassssseesesasassssssssesessammssssssesesesmssssssesseesennnnes 43
8.7.1 The Left SNift OPErator (<< Juuiiii ettt ettt sttt s 44
8.7.2 The Signed Right Shift Operator (> ..ot s 44
8.7.3 The Unsigned Right Shift Operator (>>>).t 44
8.8 RELATIONAL OPERATORS ... utttttieeiiiittteteeeeeasisistreeeeeesaaaassseeeeesaaasssssssseesesssassssseesesamssssssseseeeessannnes 44
8.0 EQUALITY OPERATORS. ... uutttiieeeeeiiiutteeeeeeesssaistraeeeeeaasaasssaeeeeesaaasassssseeesesssasssssseesesansnnsssnseseesnannsnes 46
8.10 BINARY BITWISEOPERATORScceiuutttieeeeeesittreeeeeeaessssssseseseesaasasssseseesesssasssssssesessssnssssssesesaessannses 47
8.11 BINARY LOGICAL OPERATORS.....ccituttteeeeeeeiittreteesseessisissseeesesesasssssseeeesesssassssssseseesssassssssesessansanses 47
8.12 CONDITIONAL OPERATOR ([21) 1.veeteertiestiestiesteesteenteesiee st ste st see e s bbb e st st sae e st e saeesbeesaeeseeeenes 48
8.13 ASSIGNMENT OPERATORS. .. eeeteeeeiiuuttreeeeeeaaiunntteeeeeeesaaassseeeeesaaasssssssssesessammssssssesesammmssssseseeeseannnes 48
8.13.1 SIMPIE ASSIGNIMENT (=).uveiiieiieieeie ettt ettt ettt et e sttt et e et et e e nnesnnesaneenreen 49
8.13.2 CompouNd ASSIGNMENT (OPT Jeereerteerieerieeieeieeteesteesteesreesteesreetestesee e sbeesbeesbeesbeensessesneeens 49
8.14 COMMA OPERATOR ([) steeveerueesueesueenseenueenseesueesseesstesseesseesseesseessessasesssesssesssessesssessseessessnsesnsesnsesnns 49
O ST AT EMENT S it e et e et e e e st e e e e eabae e e e abbeeeeabeeeeesabaeeessbeeesasseeeeaseeeeannes 50
0.1 VARIABLE STATEMENT .itttteeeeeeeeiittteeeeeeessssatseeeeaeesaanssaeeeeesaassassssaseeeeessasssseeeeesasssnsssnneeeeessnnnnes 50
0.2 EMPTY STATEMENT ettt eiiiittttteeeeeeeittteeeeeeesessattaeeeeeeeaassssaeeeeeaeeaaassssaeeeeeaaaasnsneseeeesessaanssanneeeeensannes 51
9.3 EXPRESSION STATEMENT ...uutttteeeeeeeittteeeeeeeesssuteeeeeeeessssssseeeeesaaassnsseseeeesssasssssseeesassnsnsssnneeeeesnnnsens 51
0.4 THE I STATEMENT ... ttit ettt e e ettt e ettt e e et e e e e bt e e e e abeeeeeaaeeeeesabaeesasbeeeeassaeeeasseeessasbaeesasaeeesanrenennn 52
O.5 ITERATION STATEMENTS . uuttttteeeeieiiuttreeeeeeaaisisrreeeeeessaaassssreeeesaaasssssseseeeesssasssssssesesamssssssssssseeseannnes 52
9.5.1 ThE WhIlE STALEMIENL.....cei ittt e e et e st e e e et e e e e ebaee e e abeeeesnraeaeas 53
0.5.2 ThE fOr SLALEMENE. ... veee ettt ert e e et e e e e te b e e e s eab e e e e sbreeeeaseeesenbaeseessbeeesanreneenn 53
9.5.3 The fOr..iN STALEIMENT. ...t et e e e e et e e e st e e e e eareeeeeabreeeennbeeeesnreeeean 54
9.6 THE CONMIINMUESTATEMENT ...vviieitteeeeitteeeeeitteeeeestteeesasteeeaasseeesasseeesassresasassesesasseeeeassseeeassresessasseeens 54
0.7 THE DIEAK STATEMENT .. itteee e ettt e eitteeeeeiteteeeestbeeeeebaeeeesaseeesasbaeeeesasbeseeaseeeeasseeesassaeesesasbeeessnreneenn 55
9.8 THE TEIUINM STATEMENT .. tttteeeeeeeeiitteeeeeeessssntreeeeeeessssssaeeeeesaaansssaeeeeeeaaassseseeeesasssnsssnneeeeeesannnns 55
0.0 THE WITN STATEMENT ..eiiiiitiee e ettt ettt e e et e e e bt ee e e st e e e esareeeseasbaeeeasbeeeesabaeeeasseeesasseseeessbeeessnraneean 55
TO FUNCTION DEFINITION. ...ttt ettt ettt e ettt e e et e e e are e e e s eabae e e sbaeeeeanbeeesensaeesesasreeannns 57
L1 PROGRAM ettt ettt e e e e e et e e e e ebb e e e e e baeeeaaateeesesbaeeeesbbeeeeasbeeeeesseeesasseeeeeinns 58
12 NATIVE ECMASCRIPT OBJIECTS. ... ittt et eare e s earae e e aae e e nareee e enns 59
12.1 THE GLOBAL OBJIECT ... uutttteeeeeeeiitrteeeeeeeasssasutsseeesessasassssseeesssasaassssessesssssassseseeesssasssnssssssseessnsnnnnes 59
12.1.1 Value Properties of the Global ODJECL..........coeiiiiiiiiie e 59
5200 T 00t - P EPREPR 59
2 0 2 1) 1 Y2 PRSP 59
12.1.2 Function Properties of the Global ODJECL...........cccviiiiiiiii e 59
120,21 @VAI(X).voveevereeeeeeeeeeeeseeeee e en e n sttt n et 59

o R o= = L T o TR = o) TSRS 59
12.1.2.3 PArSEFIOAL(SLIING). ... veeueeiereeitteeeei ettt sttt ettt n e 59
12.1.2.4 SCAPE(SITTNG). ...t veeteeteeiteesteestee st e sttt e st e sbeesbe e st e sae e seb e e she e sb e e be e she e she e eb e e san et b e naneeReeenn e enneanneenne e 59
12.1.2.5 UNESCAPE(SIING) ...+t eureeueeenreenreereesteeireese ettt re bt eaee e b e s isbe b e e bt e s e e be e bt e nne e b e eesne e beenbeeneenreeneenne 59
12.1.2.6 ISNAN(NUIMDET).eeteetieit ettt ettt et r e s bbb esb e e s bt e sk e e sbe e smb e seeesneesbeenseesnnennee e 59
12.1.2.7 ISFINITE(NUMDEL). ...ttt b e bt ettt b e sb e e b e b e et e e neenneene e 59
D27 @ N o O = N = = TSRS 60
12.2.1 The ODBJECE CONSLIUCTON.......eeieiieeie ettt sttt et st e b 60
12.2.1.1 NEW ODJECH(VAIUB).....ecueeieeeeiei ettt sttt st e ettt snneenn e 60
12.2.1.2 N8W OBJECH() c.vvvevoreeceeceeeeeeees s ees e eee s e s s eseessansensenssnssn s ss s eenesn s s s s ensen e 60
12.2.2 Properties of the ObjECt CONSIIUCTOL..........eouiiieiie et 60
12.2.2.1 ODJECEPIOIOLY IR ..ccuveeueeenteeste ettt ettt ettt ettt b et b e bbbt e sr e e b e e bt e b e e b e ee b e e be e bt e neenneene e 60
12.2.2.2 OBJECEIBNGNL......coovoeeeeeeee e n s en e n s s 60
12.2.3 Properties of the Object Prototype ODJECT..........oouiiiiiierie e 60
12.2.3. L EOSEFING(). -+t enveeureenreenreeneeesreeire st et see e e et eaeees et as e e et e ae e e s b e e bt e R e e en b e een s e e b e et nn e r e ean e nneenr et nne s 60
12.2.3.2VAIUEOF (). ees st nn e 60
12.2.4 Properties of ODJEC INSLANCES.........ccuiiiuiiieiie ettt s 60

12.3.1 The FUNCEION CONSLIUCTOL........vveeieeeeseieesieesieeeseteesiteeseeessaeesseeseeeesneeesseseseeensesenseeensenesnses 60
12.3.2 Properties of the FUNCiON CONSLIUCTOL...........coiuiiieiieiee st 60
12.3.3 Properties of the Function Prototype ODJECE..........ccccoiiiiiiiiii e 60
12.3.4 Properties of FUNCLION INSLANCES.........ccuiiiiiie e e s 60
12,4 ARRAY OBJIECT S, uteteeittieeeiuteeeeaaseeeeesasteeaeaasteeesasseeeaasseeesaasseeesaseeeeansseeesasseeeessnssesesanseneesnsseessnnes 60
12.4.1 TRE Array CONSITUCLOL.....c.veiteeieeete ettt ettt sttt sa e ettt ettt esaeesa b et enes 61
12.4.1.1 new Array(itemO, ITEIML, . .)ittt ettt n e bt n e e r e ne s 61
12.4.1.2 NEW ATTAY (IEN)..ce ettt h et sb e s bt e s bt e sbe e sRb e sae e s ne e b e e nreenneenree e 61
L2413 NMEW ATTAY ().nreeureemeeemteete et et ire et ettt s et e bt e b e e srt e be e s bt e bt e s b e e eb e et e e nb e ee b e e nheenbeenbeenaeesbeenneennnras 61
12.4.2 Properties of the Array CONSIIUCTOL............eiuiiieiie ettt 61
R N = VN o] (001 = OO PSP UPRPPR 61
12.4.2.2 ATTAY.JENGEIN. ...ttt b e b b nr e nn e nne s 61
12.4.3 Properties of the Array Prototype ODJECL.........c.ooiiiiiiii e 61
o e I (0 11 1 o I T TP U PP PP PSPPSRI 62
12.4.3.2VAIUEOF ().t s et ss s en e n st nn e 62
12.4.3.3 JOIN(SEPAIGLOT). ... teeteeteeireesteesteesseeestee st e st e sbeesseesbeesbe e s mb e e she e sbe e ek e e sbeesheeab e e saeeseb e e naeesbeeaneennnesnnennne e 62
L2434 FEVEISE(). e teeureeuteete ettt ettt ettt ettt e e bt b sttt E e E e E e Rt R e e bt et E e Rt R e e bt bt n e ne s 62
12835 SOM() cvvvovoceeeeeeeeee e s e seess e s en s emen e n et neen e n e 62
12.4.4 PropertieS Of Array INSLANCES.eeiieeiieeiiee et siieeseeseesaeeseeessee e sneeesnteesseesneeeneeenneas 62
o I | L 14 S USSP UR 62
A B = o |1 o PSRRI 63
12.5 STRING OBUIECT S ...teiiuteeiutieeteeeteeeieeesseeaste e e bt e se e e sse e e ass e e s ab e e e amee e s as e e sas e e aaseesaneesas bt e snreesaneesaneeannee s 63
12.5.1 The SIHNG FUNCHION. ...ttt ettt st 63
12.5. 1.1 SENGIVAIUE) ...ttt b et b bttt b e Rb e e b e e sb e et e e beenreenbeennee e 63
12.5.2 The SIHING CONSITUCTON. ...cc.viiieiee ettt st et b et sae e nbe s 63
12.5.2.1 NEW SEINQIVBIUE).eeueeiieeeiiieeiet ettt sttt en e e asr e e ean e enneenneenn e 63
12.5.2.2 NEW SEFNQ() -+t evveemeeemreeire ettt ettt ettt e e bbbt st e b e bt e be e s b e e bt e sb e e seb e e nreenbeesbeenbeesreenneennnees 63
12.5.3 Properties of the SIring CONSITUCEOL.........c.oiuiiieiie et 63
12.5.3. 1 StINQ. DI OLOYPE. ... eutteuteeteete ettt ettt et e st sr et e bt e s bt eesbe e sb e e beesbeesre e bt e nbeesreeesbeesreeabeenbeesneenbeenee 63
12.5.3.2 SENGIENGLN ...t b et b et nr et es 63
12.5.3.3 String.fromCharCode(Char0, Charl, . .) ...coci i 63
12.5.4 Properties of the String Prototype ODJECL.........c.oiuiiiiiie et 64
R I (011 1 o I TP U PP PR PR TPRPRTN 64
12.5.4.2 VAIUBOF (). ees e s eaes s s ee e n st n e e 64
12.5.4.3 ChAIAL(DOS) ... eeuveeueeeite ettt ettt ettt b et h s bttt n bt e s b e ek e e eb e ettt eshe e nb e e e be e naeenbeenneennnras 64
12.5.4.4 CarCOUBAT(POS) .- vt eueeenreeteeteesteeire et ettt ettt b e ne e bbb e e b e e bt e ne e b e e b e e be e bt e neenneeneenne 64
12.5.4.5 indexOf (SearchString, POSITION).......cccierieieerieriie sttt san e sae e e e snne e 64
12.5.4.6 lastindexOf (SearchString, POSITION)........cciveiiiieeiiesee st sn e 65
12.5.4.7 SPIIE(SEPAIELOT)eeveeneeeiteestee sttt ettt ettt ettt sb e b e s b bt e st e e sbe e s be e st e e nbeesmb e e saeesbeeebeennnesnnennee e 65
12.5.4.8 SUDSLITNGSIAI) -..c.veeuteetiesteestee sttt ettt ettt sttt r e st sb et e s bt s bt e st e nae e smb e saeenne e e b e e nnnenneennee e 66
12.5.4.9 SUDSLITNG(SLAT, ©N)......eeiueeitieiiee et e s nir e 66
12.5.4. 10 tOL OWEICASE.eeiueieeiieeriee et sr ettt et s st ekt e st e st et e sae e e st e e e nmer e e eane e e n e e e nnn e e nneeennree s 67
12.5.4. 11 tOUPPEICESE......eeeiuteeetrtesiee ettt et e et et et e s bt et e et esar e e s te e e sme e e aane e e nmar e e sane e e nn e e e e e nneeennree s 67
12.5.5 Properties of SIring INSLANCEScoiiiiiiiieieie e s e s 67
228 ST =0 o |1 o P PSRRI 67
12.6 BOOLEAN OBJIECTS. . .uteeiuteeauteeeteeesieeesseeeasseeasseeessseeasseessseesase e e asseessseesmseesaseeaaneesabeeesnreesaneesneeenee s 67
12.6.1 The BOOIEAN FUNCHION......ccueiiiieeiee et eeesee e ste e se e see s e see e saee e snte e snteesnneeeneeenneeenseennees 67
12.6.1.1 BOOIEAN(VAIUE)......cctiemieeteestiestee ittt ettt ettt b et sb et e st s bt e s b e nbe e smb e nee e sme e st e e nneesnnesbee e 67
12.6.2 The BOOIEAN CONSIIUCTOE.cveeeieeeeseieesieeseeeestteesieeessaeesseeeseeessseeesnsesssesssesensesensneensensenses 67
12.6.2.1 NEW BOOIEAN(VAIUE)......c.ueiiiiiiieiiieesiee sttt et nane e s nae e ne e e e 67
12.6.2.2 NEW BOOIEAN(). .. teeteetieiteestie sttt sttt sttt ar e bt b e b e s b sae ekt esae e st nae e n e e h e e nnn e nn e 67
12.6.3 Properties of the Boolean CONSLIUCTOL............eoiuiiieiie ittt 67
12.6.3.1 BOOIEAN.PIOOLYE. ...t ettt sttt ettt sttt ettt s e ean e en e sn e easr e e s e enn e snneenneenneenes 68
12.6.3.2 BOOIEANTENGLN.......coiiiiieiietee ettt bbb ab e sb e ne e b e e nneenre e 68
12.6.4 Properties of the Boolean Prototype ODJECE...........cocviiiiii i 68
ot (011 1 o I TR PP VR TPRTPPTN 68
12.8.4.2 VAIUEOF().....ooeeveceeeeeeeee et eee st eaess s st en e s e nnens 68
12.6.5 Properties of BOOIEAN INSLANCES.........cooiiiiiiee e 68
12.7 NUMBEROBUIECTS ...tttteitteeeesuteteesseeeesassteeasasteaesasseeeeansseessasssesessnseeessnssessssnsesesansssesessnsensesnsseeesnnns 68
12.7.1 The NUMDEr FUNCHION......ccciiiie ettt eenn e e enaeeenees 68

12.7. 1.1 NUMDBDEN(VAIUE) ...ttt ettt ettt ettt b et sh ek esb e she e s ke e nbeesmb e naeesbe e st e e nrnesneenbee e 68
12.7.2 The NUMDET CONSLIUCTOL......c.veitiiteeee ettt ettt st sttt et st st nbe s 68
12.7.2.1 NEW NUMDEN(VAIUE)......ceiueeiieieeeiteesie sttt er e nab e s nnn e neenan e 68
12.7.2.2 NEW NUIMDET (). teetteiee sttt ettt sttt s sb e b e sb e s b et esae e seb e e sae e saeesbeennnesnnesnne e 68
12.7.3 Properties of the NUMDEr CONSLIUCTOL........cccuviiiiie it 69
12.7.3.1 NUMDEL . PEOLOLYPE. c.. ettt ettt sttt sttt ettt et sn e e an e ene e easr e e ean e enneenneenneenes 69
12.7.3.2 NUMDBDEITENGN ...ttt e b e she et esae e sbe e b e ssnesnnesnne e 69
12.7.3.3 NUMDBDE.MAX _VALUEottt ettt s e et e sate e sta e e snaneessbeeennaeennes 69
12.7.3. 4 NUMDBDEr.MIN_VALUE.. ..ottt sttt ettt st st st e et e snte e s s e e snsreeeneeenneeennes 69
12.7.3.5 NUMDEIINGN.c.eiiiiiie ittt et e et e et e e sse e e e be e e sseeeesbeesnsaeesabeeeseeesnbeeateeenssens 69
12.7.3.6 NUMDEr.NEGATIVE _INFINITY ..ottt srsre s s e stae e e st eennaessnees 69
12.7.3.7 NUMDBDEr.POSI TIVE _INFINITY .ottt e s e s tee et e st e snaeesnaeeesneaesnaeeenneneennne 69
12.7.4 Properties of the Number Prototype ODJECL..........c.oiiiiiiii it 69
I (01 1 £ o T TS TP U PSR PPRUR PSPPI 69
12.7.4.2VAIUBOF()....eoeeeeeeeeeeeeee e s et s e s ee et nn e 69
12.7.5 Properties of NUMDEr INSIANCES..........coiiiiiiie ittt 69
12.8 THEMATH OBUIECTeiteitieitee it te et ettt e e e e sre e s e e e sm e e sn e e sa e e sn e e neen e e sneesneesreenneenneas 70

12.8.1 Value Properties of the Math ODJECL...........ccoiiiiie i e 70
R S 0t 1 PP PO PPRRRUPPPPPN 70

L2.8. 1.3 LINZ ittt h e bbbt et h e R £ R E e bRt E £ e R e R e bt R e Rt et e be bt Rt n e e b b e
L2.8. 14 LOG2E......coiiiiite ettt sttt sttt b e bt bbbt e b e Rt b e bt RR Rt b e b bt et et e b ehe bt ne e
L12.8. 1.5 LOGLOE.......ceiiitirtesieeitete sttt ettt ettt sttt s b e bbb e se et e s b e bt e st e e e b sheseb e e st et e s beeb e e bt et e nbenb e e bt neenes
L2.8.1.68 Pluceieieiee sttt bbb R bR R R bbb bR e e bbbt st e et bbb enes
12.8.1.7 SQRT L 2. ettt sttt bttt e et bbb e e e b e bt e he e st et e e b e e b et e b e e s b et e e b e e beeneeee b e beenteenes
12.8.1.8 SQRT 2. ..ottt ettt sttt ettt b et b e bbbt h e e e bt e bt bt e a b e b e e b e e Rb e e b e et e b e bt bt e Rt et e nRe bttt ene s
12.8.2 Function Properties of the Math ODJECL...........ccoiiiiiiiiiie e
L2.8.2.0 BIS(X) . veveeueeneestesteeiee ettt ettt h et b b bRt A e Rt R Rt e b bRt E e R b e b e R bt Rt et e bt ehe Rt e ne et
12.8.2.2 8COS(X) c-vveveereeieeireesiiesiee s e siee s e siee s e
12.8.2.3 asin(x)
12.8.2.4 atan(x)
12.8.2.5 BEAN2(Y, X)-reeureeureemreeteenteenseesseeeteesseesteesteesseebeesseesheresseeshe e sk e e sbe e eR e e eE e e eh e nRR e ehe e Rn e R enn e nnr e nnennn s
L2.8.2.8 CEIT(X) teuveeteestieiee ittt st ettt et b et b e b et b et h e bt bt e b e e b e e bt e R et bt R e e Rt e R e Rt e b e e be e n e e neennean
L2.8.2.7 COS(X) e uvveteeteenteesteestee st e sete e st e s bt et e s bt e skt e bt e eh ettt e s bt e ke e bt e AR e e b e e bt e AR e e R e Re e Rt e Re e nR e e b e e nbe e nRr e e neennean
L2.8.2.8 EXP(X) +uvverreereeteerieenteestee sttt estee bt et e bt e s bt et h e bR e R e Rt R e e R e e bt R e et Rt e Re e Rt e Re e nRe e bt e beennne e neennean
12.8.2.9 floor(x)
12.8.2.10 log(x)
12.8.2.11 max(x, y)
12.8.2.12 min(x, y)
12.8.2.13 pow(x, y)
12.8.2.14 random()
12.8.2.15 FOUND(X) -tteuvteuteemre ettt sttt sttt et s e ss e sabr e e s ae e s e s e et e as e eas e s an e e st san e s sneeabenaneenneennenrnne s
L2.8.2.16 SIN(X).veeueeneetesterieeseestesteesteeseeseestesbesseeseesse s bt s bt e e st es e e be bt ehe e Rt e mb e b e e b e eeE e e R b et e R e bt eh e et et e eaeennt bt e
12.8.2.17 sgrt(x)
12.8.2.18 tan(x)
12.9 DATE OBJECTS
12.9.1 THE DAt CONSLIUCTON......ccviiteeteete ettt ettt sttt s be ettt et st sae e st e s b st enes
12.9.1.1 new Date(year, month, date, hours, MiNULES, SECONAS)........ceiiviiriiieiiie e e see e 75
12.9.1.2 new Date(year, month, date, hours, minutes)
12.9.1.3 new Date(year, Month, date, NOUIS)..........ccuiiiiiiiiie st nrae e e s
12.9.1.4 new Date(year, MONtN, JBY).....c..eeiieiierierieiie ittt sr e b e beesreeesneenneas
12.9.1.5 NEW DELE(LIMEVAIUE).......eoiiiiiieitieitieitee sttt b e bbb sttt be e b nne e beenbeennis
12.9.1.6 NEW DELE(SLINGV BIUE). ... ceveerieteeitieiie ittt ettt ettt er et b et b e bt et e b snb e nn e e neereenis
12.9.1.7 NEW DBEE() +.veveeueenterterterieeie sttt st s iee e st s b sae et et s bbbt et e st e s bt sb e s st et e nbesbb e s bt e s e et et e sbe e bt e e et bt
12.9.2 Properties of the Date CONSLIUCTOL.cocuiiiiiie et
e B R D E- (=N o (0] (0] 1] o= PSP PPRPPR
12.9.2.2 DAEIENGEN.....c..eiie e e h e e h e r e
12.9.2.3 DAEPAIrSE()...cerveerreerueerieerieesieesimeesiee e sieesiee e
12.9. 2.4 DAEUTC()veuerueeeertestesieesie st ittt s et s bt sbe et s bt st be st e b e bt s bt sheese e b s b et bt s e et et e sbeebeeneente b et
12.9.3 Properties of the Date Prototype ODJEC.........cccviiiiiiiee et
12.9.3.1 toString()
12.9.3.2 valueOf ()
12.9.3.3 getDate()

12.9.3.4 GEIDAY (). vveereeeeeeeeeeseeeeeeeeseeeeeeeeeeee s eee e s e s s e sttt eee e 76

12.9.3.5 GEEHOUIS()..uveeute ettt ettt ettt ettt b e bt bbbt e s bt e s b e s b s Rb e sh et e ae e sbe e nnn e nanesnnennn s 76
12.9.3.6 GEIMINULES()......v.voeeeeceeeeeees s ees s eesse s ses s esssssasssssensansans s snsnssns s sn e e en e enen e 76
12.9.3.7 GEIMONEN() ...t s s n e s en e s ansenean e s e 76
12.9.3.8 GEESEOONAS()....vevoeveeeceeeeeeeees e ees s ees s esess s ses s sessessessessanseesensansansanssnessans s aen s enenen e 76
eI 1117 JE OO 76
BT (0o T= 2 IO 76
12.9.3.11 SEDAE(AYV EIUE)..........cvoceeceeceececeeseemeeeee e es e eee e seese s seese st ensenesnssn s esness s en e s snsnsnnes 76
12.9.3.12 SEtHOUIS(NOUISV @IUE).......c.eeeueieiteeteeteet ettt ettt ettt e n et re et 76
12.9.3.13 SetMinULES(MINUEESY GIUE).........eeeietierieesteestee sttt ettt ettt sr et sb e sreeesneenne s 76
12.9.3.14 setMONth(MONEAV @IUE)......ceeieiiie ettt st e et e e sate e e sae e ssaneeesneeesnseaans 76
12.9.3.15 setSecondS(SECONASV AIUE)........eeitieieerieesieesiee sttt ettt ettt be e sr et sbe e nreeesneenneas 76
12.9.3.16 SELTIME(LIMEVAIUE)........eeitieieeitieeiee sttt ettt b e st e sae et e nneesneenbeenns 76
12.9.3.17 SEtY €Ar(YEAIV BIUE)........eeeiieieeitieeiie sttt sttt b e bbb aa e nne e b ne e 76
12.9.3.18 tOGM TSING(LIMEV@IUE)......ceteeiieieieitiesiie ettt ettt sbe e srr e nneenneas 76
12.9.3.19 toL ocal €StHNG(LIMEVAIUE)........coitieiieiiesieeiee sttt ettt sb e sneenne s 76

12.9.4 Properties Of Date INSIANCES.........c.eiiuiiieiieeie ettt s s 76

BRIt = O] = 3 TR 77
TAREFERENGCES oottt ettt e e e e ettt e e e e e e e e b b e e e e e e s eessssabbaeeesesesssssraseeesesaessnnes 78
APPENDIX A: OPEN ISSUES.......co oottt ettt e e s e e eaaae e e e e e e e s saavaeeeesseesssssseeeseeseesnsnnes 79
AL STRING NUMERICLITERALS. . etttttttttteeeeeeeeeeeeeeeeeesssssssssessesessseeeeeeeeeeeeeessssssssssssrsreseremreerereerrrree 79

F A N 21U Y 1 =1 79
APPENDIX B: PROPOSED EXTENSIONS.......oi oottt ettt ettt e e eave e et nreas 80
B L THE CLASS STATEMENT et ttetee ettt et et eeeeeeee et eseeeeeeeetes et esee e e s eseeeseaeteseeeseseeeeeeses et eseseeeeereseneenenenaes 80
B.2 THE TRY AND THROW STATEMENTS . veeettteeeteeeeeeeeeteteseeeseseeeseseeseseseseseseseeseseseseseeeeseseeesesessssnans 80
B.2.1 ThErY STAIEMENEooovicececeeecee ettt s sn e snen 80
B.2.2 THE TRIOW SEAIMENT ...ttt ettt ettt ettt e et et et eee et et et eeeeeeee et eneeeeeseeeeeeeeeeneaens 81

BB THE DATE TY PEL ettt ettt ettt ettt et et et e e et et et et e e et et e e eseeeee et ee et et esee et eseeese e e eeeeeseneeenenaen 81
B.3. L TODALEcvoeeeeceeieeeeeeeee ettt n et n et ena et anss e s s s et enaesn et s sesaeen 81
B.3.2 ToDate Applied t0 the SIrNG TYPE....cciiieie ettt 82

B IMPLICIT THIS ettt e e et et ee et et et et et et et et e st e e e e e e eeeeeeeeeeeeeeeeeeeeeseeeeeseseeeeee e eeeeeeeeeseeeeseeeeeeeeeeeeens 82

B .5 THE ST ST ATEMENT 2 oottt ettt et et et et ee et ee e e et et e e e e e eeeeeeeaeeeeeeeeeeeeeeeeeeenanns 82
B.6 CONVERSIONFUNCTIONS. .. eeiiiiiiiitiiitteeeeeesiinttreeeseesesssssseeeeeeeassnsssaeeeaeesssassseseeeeessssnnnsnsseeeeessannnnes 83
B.7 ASSIGNMENT-ONLY OPERATOR (17)L ottt sttt sttt 83
B.8 SEALING OF ANOBUIECTZ. ... uuuuuuuueuunuureunssesssssssnnnssssnsssssnssssssssssssssssssssnsssssssssssssssssssssssssssssnnnsnnnnnnnnnnnn 83
B.O THE ARGUMENTSKEYWORD®. ..o vttt eeeeeeeeeeeeeeseeeeeeseseeeeesesesessesssasssseasessenseseseeeseesaseeeeesanns 83

B .10 PREPROCESSOR.ccciiiuutttteeeeeeaiitseesteesessasassssseeeesaaaasssssseeeaesssaassssseeseseassssssssesseessssnssseseseesansansnns 84
B.11 THE DO..WHILE STATEMENT ..uuuuuuuuuuuunusssrusssssssssssnnssnnnnnnnnn 84
B.12 BINARY OBUJECT ...uuuuuuuuuuuuunuuusessssssssssnnnsesasssnsnnnsnssssssssnsnnssnnnnns 84
B.13 LABELSWITH BREAK AND CONTINUE.uuuuuuuuuuuruernsssssssssnnnnnssssssssssnsssssssssssssssssssssnnsnssssssssssnsssnnsnns 84
APPENDIX C: PEOPLE CONT ACT S . ittt ettt e ettt et e e e e e s eaba e e e s aae e e eareee s nneeas 85
APPENDIX D: RESOLUTION HISTORY. ...ttt ettt eettee e ena e e e earee e e enrae e e neeas 86
[I N[0 2 S T K 1 AN 86

[I I AT 011 (=S o 7= Lot TP 86
D.1.2 KEYWOITS. ...ttt sttt ettt bt st ae e bt sae e s b e bt e s bt e s bt sa b e satesatesaeesanesaeessee e 86
D.1.3 FULUre RESEIVEA WOTAS.......uveeeeeeeeeceeeieee ettt e e e e e et e e e e e e s e nraeeeeeeseessasraeeeeas 86
D.1.4 Octal And Hex ESCape SEQUENCE ISSUE........cccui ittt 86

[R ST 0] 1 0 Y 86
D.1.6 HEX IN TONUMDEL.....cc.ciiiieeeeiee ettt e e e e et e e e e e e e b e e e e e s e e e s ssssaeeeeeseesssrseeeeeseseessssranneess 86
D.1.7 Attributes of Declared Functions and Built-in ODJeCtS..........ccovvviiiiieniiiieee e 87
D.1.8 The GroupPing OPEIaLOL.........ccueeteeieeieete sttt ettt sttt sttt abesaee e e saeesaeeenbeeaes 87
D.1.9 Prefix Increment and Decrement OPEratorS........ooveeueeeeeeeree sttt 87
D.1.20 UNAIY PIUS.....eitieteie ettt st ettt st e sttt et s ne e naes 87

Vii

D.1.11 MUItipliCAIVE OPEI BLOIS....ecuveiteeteeiee ettt ettt ettt ettt ae e st saeesaeesebe s 87

D.1.12 AQTitiVE OPEIALOIS.....cctieeeeteeite et eee ettt ettt st st e st bttt abe st e saeesaeesbeenbesnteenes 87
D.1.13 Left SNt OPEIALOL. ... eiteeieiteeee ettt ettt sttt e st e ee st enes 87
D.1.14 Binary BitWiSe OPEIr@lOrS.......eeveeiieieeieeiee sttt ettt sttt et st sae e saeesaeesaeeenes 87
D.1.15 Conditional OPEIrALOr (2 1)eveerveerieerieeieeetesee sttt et ettt sttt s ane st s saeenaes 87
D.1.16 SIMPIE ASSIGNIMENL.eetiiieiieete ettt st b e et ettt e saeesaee s be e enneenes 88
D.1.17 The fOr..in SEALEIMENT ..o ettt s ee e 88
D.1.18 The return STAEMENT.......coeiieeie ettt ettt ettt sre e s 88
D.1.19 New Proposad EXLENSIONS........c.ciiiiiiiie ettt st et 89
D.2 JANUARY 24, 19097.... . ettt asas s ss s s s ss s s ssssssssssssssssssssssssssssssnnnsnnssnssssnnnnnnnnnnnn 89
D.2.1 ENA OF SOUMCE.....eiitiiieiieeee ettt ettt ettt s st sttt st e nbe et nne e nees 89
D.2.2 FULUre RESEIVE WOTTS.....c.eeiieeieeie ettt st ettt s 89
D.2.3 White SDACE ... et ete ittt bbbttt a ettt e ae e e s 89
D.2.4 COMIMENTS ...ttt e s st e s e e s s e e s s e s s e e b e e e e n e e e ne e e ne e e nnneennneennns 89
(DIl Lo = 1 = TSP P TP 89
D.2.6 NUMETTC LITEIaAlS..cc.vi ittt ettt sttt et e e e san e 89
D.2.7 SIING LITEIAIS..ccti ettt et ettt st e be et eanenaes 89
D.2.8 Automatic SEmMiCOION TNSEMTION........iiiuiiieiie et 89
D.2.9 Property AFIDULESooovie e e b 20
D.2.20 TOPTIMITIVEcctiiie ettt sttt ettt s st sae e saeesa bt et e neeentesneesaeenaes 90
[20 R o N[0 o GO PRTRPRRPRRP 90
D.2.12 WHITE SPACE......ee ettt ettt ettt ettt sttt ettt s ab e st sae e s it e sae e et eabe e nteennesaeenaes 90
D.2.13 ToNumber Applied to the SIFING TYPE....cooveieeieee e 20
[B o 1S 1 T o TSP RPR 90
D.2.15 Postfix Increment and Decrement OPEraOrS.........oeueeeeeierienee et 91
D.2.16 The tYPEOf OPEIALOL.......veeee et ettt ettt ettt ettt et eees 91
D.2.17 Prefix Increment and Decrement OPEralorS..........oiveeveeieiee st 91
D.2.18 MUt PliCAIVE OPEI BLOIS....ccuveeuteeee ettt sttt ettt et sttt et ettt st s aee e e snbe s 91
D.2.19 The SUDLFraCtioN OPEIALOL........ccueiteeieeie ettt ettt ettt st et ettt ee s ee e e saee e 91
D.2.20 The SUDLFraCtioN OPEIALOL.......cccueetieieeee ettt ettt ettt ettt s ae e e e e saee e 91
D.2.21 Applying the Additive OPErators (F, =).eeceeeeieeie ettt st 91
D.2.22 EQUAITEY OPEIBIOIS .. .eiteeteeite ettt sttt ettt et sttt sa bt sttt ettt eeaeesaeesabeenbesnbeenes 91
D.2.23 TOPIIMITIVE USAJE. .. .cctiiieiieiee ettt ettt st sttt ettt st e ne e s 91
D.2.24 Binary LOgiCal OPEratOrS.......cceeiuieiieeieiiesiie ettt ettt sttt ettt s e 91
[I N Y N[0 2 1 F K 1 RN 92
D.3.1 MUITILINECOMIMENT. ...ttt ettt st ettt et st e st saee st e nbesnne s 92
D.3.2 NG LITEIAIS..ccte et ettt sttt ettt saeenaes 92
D.3.3 Automatic SEmMiCOlON TNSEMTION........eoiuiiieiie et e 92
D.3.4 ThE NUMDET TPttt ettt st b e et sttt s ab e e et e sae e st et e nbesneenaes 93
D.3.5 Put with EXpliCit ACCESS MOUE......c..eiiiiiiiiiieieetee e e s s 93
D.3.6 Put with ImpliCit ACCESS MOUE.........eiitiiiieiieteeee e e e 93
D.3.7 THE SIING TYP. ettt ettt ettt ettt et st ae e sae e st et e nbesatesneenaes 93
D.3.8 TONUMDE. ...ttt ettt et st st s ae e s ettt et e e atesaeesaeenaes 93
D.3.9 ToNumber Applied t0 the SIHNG TYPE......ooviie e 93
(D JRC T L0 o 1 PRSPPI 93
[200 T R e U T 12 USSP 93
D.3.12 Execution Contexts (VariableS)..........oooiiierieiieiie et 93
D.3. L3 FUNCHON CAlIS ...ttt ettt ettt sttt eees 93
D.3.14 The tyPEOf OPEIALOL.......eiteeteeie ettt ettt st ettt sttt sae e et enreeaes 93
D.3.15 APPIYING the %0 OPEIALOL........ccitiiiieie ettt sttt a e s st sae e 93
D.3.16 The Addition OPErator (F)ecveeceeieeiieeiieeieeee et e e esteesteetestesaesaesaeeebeetesaeenneeaesneesneennns 94
D.3.17 RelatioNal OPEratOrS......ccueeiueeierieeeeeee sttt ettt sttt e sttt et et e st saeesaeesaeesbesnreenes 94
D.3.18 Conditional OPEIralOr (21) .eeoveecveerieeieeie ettt ettt et sttt st b et sttt saee e 94
D.3.19 Compound ASSIGNMENT (OPT)uveeteerieeieeieete ettt ettt et s see e sae et st eeste e saeesees 94
D4 FEBRUARY 21, 1997euuieiieieieeetiitieeeste i aassssasssssssassssssssssnnnssssssssssssssssssssssssssssnnnnnnsnnsnsnnsnsnnnnn 94
D.4.1 UNICOUE ESCAPE SEQUENCES......eeuvieuteeuteeitesitesite it etestestestesitesaee sttt ebesatesaaesneesanesaeesseesnes 94
D.4.2 FULUre RESEIVE WOTTS. ... eiiieieieeie ettt st sttt sttt s 94

Viii

D.4.3 Automatic SEmMICOION INSEITION......ccoeeeeeeeeeeeeeeee e 94

D.4.4 THE NUMDET TP . .ei ittt ettt sttt ettt ettt s it e sae e st e be et sntenaes 95
D.4.5 Notlmplicit and NotExplicit Property Attributes Deleted............coooveiiiineniicie e 95
D.4.6 TOINt32 AN TOUINE3Z.....cctiiieiieiie ettt ettt sttt s sreenre s 95
D.4.7 GroUPING OPEIALOL.......cciuiiieiteeite et ste ettt ettt st e e be e be s beeabesabesatesaeesaeesbesneesnnesans 95
D.4.8 SNift EXPIESSIONS......eiteeteeie ettt ettt ettt sttt st ettt st st st e it e saeesaeeenbeenbeentesatesaes 95
D.4.9 Conversion Rules for Relational OPErators...........cveueiieiieiie et s 95
D.4.10 & & AN || SEMANTICS....veiteeteeie ettt ettt ettt et et st ae e st e saee s e enreeaes 96
D.4.11 CONAitioNAl OPEIALOL......c.veeeereeeeeeee e ettt ettt e st ettt sate e e saeesaeesbeenreeaes 96
D.4.12 ASSIGNMENE OPEIALOIS.......viieeeiteeie ettt sttt ettt et st e e st e st ettt e s abesaeesaeesaeessbesnreeaes 96
D.4.13 Syntax Of Class SAEMENT.......cc.eiiiiie et et 96
D.4.14 Syntax Of TrY SBLEMENT.....coiueiieiie ettt et st be e 96
D.5 FEBRUARY 27, 1997 ...ttt ssassssasssssssssasssssssssssssssssssssssssssssssnnnnnnsnnsnnssnnnnnnnn 96
D.5.1 Grammar NOLALION.........c.eiiueeierie ettt sttt sttt st saeesae e e be b st eans 96
D.5.2 End of Medium Character 1s No Longer WhiteSpace..........cocveuereeneeiiieieee e 96
D.5.3 Meaning Of NUI LITEIal.......coceiiiiiiie e 96
D.5.4 Meaning of BOOIEAN LItEralS.......cooiiiiiiiiieie et s 96
D.5.5 Meaning of NUMENIC LItEralS.......cooiiiiiiiiie ettt 97
D.5.6 Automatic SEmMICOION TNSEMTION........iiiuiiieiie e 97
D.5.7 THE NUMDET TP ittt bt ettt st st e s e s ae e st e be b saneeaes 97
D.5.8 TOSIFING ON NUMDEIS......eiiieiieiie ettt sttt s nre s 97
D.5.9 NEW OPEIALO........eeeereeitee sttt ettt e e b e e s e e be e e se e e snn e e es e e e sne e e snneennneennnes 98
D.5.10 DElELE OPEIALOL......ccuiieieieeie ettt ettt ettt st sttt st s ae e st e sae e st e beeneesaeenaes 98
D.5.11 == SEMANTICS. .. e eteiie ettt ettt st ettt et s ae e ae e e be b et e nanenaes 98
D.5.12 & & AN || SEMANTICS....veeteeteete ettt sttt st st saee b e nre s 98
D.5.13 Separate Productions for Continue, Break, REtUrML.........ccoovcveviriiie e 98
D.5.14 Dead Code I's Not Protected from Compile-Time Analysis..........ccevvreneenie e 98
D.6 MARCH B, 1997eeitiitieiieie ettt sttt sttt ettt ettt s bt sbe e s bt e s b e e b e et e e bt et e e sbeesbeenbeesbeenbeenneenbean 98
D.6.1 Reformatted the ENtir€ DOCUMENL..........c.ooiiiiiiieiie ettt 98
D.6.2 Designed a Section Outline for Chapter 11.........ccccoeiiiiiiieiie e e 99
D.6.3 Defined Math FUNCHIONSccouiiiiiie ittt st 99
D.7 MARCH 10, 1997 ...ttt ettt ettt ettt ettt ettt s b e bt s bt e bt et e et e et e enbeesbeesbeenbeenbeenneesean 99
D.7.1 Added Definition of “ The Number Value for X'.........cccooiiiiine e 99
D.7.2 atan and atan2 May Use Implementation-Dependent Values fgp, etC..........ccccevevierieneennn 99
D.7.3 Improved Discussion of Input Stream for Syntactic Grammar.............cocvvveevieerceesnesnesnenens 99
D.7.4 Improved Treatment of LineTerminator in Lexical Grammar...........ccoeceveeneeneenniesiiesnennns 99
D.7.5 Clarify Behavior of Unicode ESCape SEQUENCES.........coiierieeriieiieeiiesiee e 100
D.7.6 Add Careful Description of the String Value of a String Literal..........coooeveeveeneeninnennnen, 100
D.7.7 Description of ldentifiers REWOrded............cooeiiiiiiiiiiieieeree e 100
D.7.8 Table of PUNCIUALOrS COITECTEA.coueiiieiieieeieeiee sttt nneas 100
D.7.9 Improved Descriptions of Tolnt32 and TOUINE32.........ccceiieiieiieninneeneeeesee e 100
D.7.10 Changes to ToString Applied to the NUMber TYPE......ccvoviiieiieieeeeeeeee e 100
D.7.11 Revised Syntax for NewExpression and Member EXPreSsion...........ooeeveereeneenieeneeneeneens 100
D.7.12 Clarify Multiplicative and Additive OPEratorS.........cooeereereerieenieesiesee e see e 100
D.7.13 Addition Operator No Longer Gives Hint NUMDEY..........ccooiiiiieninnieeeeeneesee e 100
D.7.14 Correct Description of Relational OperatorS.........ooeeveereereeriee e 100
D.7.15 Assignment Operator LHS Must Be POStiXEXPreSSion..........coveereenieeneenieeneenieesieesieeiea 101
D.7.16 ChangeS tO FOr-iN LOOPS.cciteeitierieeieeieeiee st sttt sttt ettt sbe bt e s e b e naeenneas 101
D.7.17 Break and Continue Must Occur within While or FOr LOOP.........ccovvereeneeneenienieneeenn 101
D.8 MARCH 12, 1997 ...ttt ettt ettt et ettt sttt et ettt st e et e sa e e sae e et e abeentesntesaneeaes 101
D.8.1 Added OVErVIEW Chaper..........coitiiiieiieieeiee ettt bbb nb e e saeas 101
D.8.2 More Exposition about Internal Properties. ... 101
D.8.3 DALE ODJECL.....eeitietieiiete ettt sttt ettt ettt bt sb e s b b e e bt e bt et e et e she e bt e bt e beenaeennean 101
D.8.4 Array, String, Boolean, NUMDEr ODJECES........ccoiiiiiieiieeriee e see e 101
D.8.5 MALN ODJECL.....eetiiiieieeteeieete ettt bt bbbt b et e b e et e e sbe e beesbeenbeenneenaean 101
D.9 MARCH 24, 1997 ...ttt ettt ettt ettt sttt ettt ettt et eh e s ae e et e abe et e et nanenaes 101
D.9.1 NUMETTC LITEIAIS ...cteitieiietieteeteee sttt b ettt bbb e b e naeennean 101

D.9.2 SIriNg NUMEFIC LITEralS...ccuiiiiiiieieeeeeeee et 101

D.9.3 Prefix and Postfix Increment and Decrement OPErators.cvevveeerieseennieeiie e 102
D.9.4 Left-Hand-Side EXPrESSIONSccouteieeieete ettt ettt ettt st st sttt ssnesaeesaeesneesaeeenes 102
.05 RE I ENCE TY Pttt e ettt ettt a e e sae e et be et st s aneeaes 102
D.9.6 INfINITIES @NA ZEIOS.....c.eeiiiiieee ettt st s e b et st ane s 102
D.9.7 Miscellaneous SMall COMECHIONS.......cccuiiiiiie ittt e 102
D.10 MARCH 27, 1997eeieeeeeiesie et eieeeeste et e te st ste s e e testesseeseesaesseeseensesaesaeaseeneensesseensensessesseeneensens 102
D.10.1 Corrections to [[CanPut]] and [[HasProperty]].......ccooeereererierienieenieesieesieenie e 102
D.10.2 DisCUSSION Of NUMDEN TYPE...ccuteiiieieeieete ettt ettt ettt st sttt sbeeneenesnnesnnens 102
D.210.3 INfINItY @NO NAN......cueitiiiieieiee et sb ettt e b b et esbeesaeenaeas 102
D.10.4 charCodeAt and String.fromChar COOR.........coiueiriiiriieiieiee e 102
D.10.5 Last fraction digit from ToString applied to a NUMDEL............ccceiieiiiiieen 102
D.10.6 Multi-line comment containing line terminator treated as line terminator.............c..c..... 103
D.10.7 Automatic semicolon insertion at end Of SOUICE.........ooeeiierieerieeniie e 103
D.10.8 Added proposed extension for labelled break and continue.............ccoceeveereeniinieneennen, 103
D.10.9 Lowercase “ €” for scientific notation in ToString of a nUMbET..........cccooeeveiiieniinennnen, 103
D.10.10 Evaluation of argument [ISES.........coeiierieiieiie et 103
D.10.11 For ToPrimitive of native objects, no hint is same as hint Number............cccccceevverenne 103
D.10.12 Major overhaul of equality and relational Operators..........coceeveereenieeneeneeneeseeseeeee 103
D.10.13 SN TY Pt eeteetteteete ettt ettt ettt e sttt et et e sb e e sbeesbeesbe e bt et e e b e enbeenbeesbeenbeenbeenneennean 103
APPENDIX E: LALR(1) SYNTACTIC GRAMMARoiiiieee sttt nee e 104

1 OVERVIEW

EMCAScript is an object-oriented programming language for performing computations and
manipulating computational objects within a host environment. ECM A Script as defined here is not
intended to be computationally self-sufficient; indeed, there are no provisionsin this specification for
input of external data or output of computed results. Instead, it is expected that the computational
environment of an ECM A Script program will provide not only the objects and other facilities
described in this specification but also certain environment-specifilsost objects, whose description
and behavior are beyond the scope of this specification except to indicate that they may provide
certain properties that can be accessed and certain functions that can be called from an ECM A Script
program.

[Additional overview to be written, including a brief overview of the data types and a brief comparison
of ECMA Script to other programming languages. May need a disclaimer to the effect that this
introduction is intended as helpful exposition and is not a part of the standard proper.]

1.1 ScoPE
1.2 CONFORMANCE
1.3 NORMATIVEREFERENCES

1.4 DEFINITIONS

object

primitive value

number value

Number object (anda Number object versughe Number object)
Number type

string value

String object (anda String object versusthe String object)
String type

boolean value

Boolean object (anda Boolean object versughe Boolean object)
Boolean type

null

Null type

type

undefined

undefined type

infinity

NaN

prototype

constructor

host object
native object

2 BUILT-IN OBJECTNOTATIONAL CONVENTIONS

2.1 SYNTACTIC ANOLEXICALGRAMMARS

This section describes the context-free grammars used in this specification to define the lexical and
syntactic structure of an ECM A Script program.

2.1.1 Context-Free Grammars

A context-free grammar consists of a number ofproductions Each production has an abstract symbol
called anonterminal as itsleft-hand side and a sequence of one or more nonterminal anderminal
symbols as itsright-hand side For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called thgoal symbol, a
given context-free grammar specifies danguage namely, the (perhaps infinite) set of possible
sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the
sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

2.1.2 The Lexical Grammar

A lexical grammarfor ECMAScript is given in Chapter 3. This grammar has as its terminal symbols
the characters of the Unicode character set. It defines a set of productions, starting from the goal
symbol Input, that describe how sequences of Unicode characters are translated into a sequence of
input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic
grammar for ECM A Script and are called ECM A Scriptokens These tokens are the reserved words,
identifiers, literals, and punctuators of the ECM A Script language. Moreover, line terminators,
although not considered to be tokens, also become part of the stream of input elements and guide the
process of automatic semicolon insertion. Simple white space and single-line comments are simply
discarded and do not appear in the stream of input elements for the syntactic grammar. A multi-line
comment is likewise simply discarded if it contains no line terminator; but if a multi-line comment
contains one or more line terminators, then it is replaced by a single line terminator, which becomes
part of the stream of input elements for the syntactic grammar.

Productions of the lexical grammar are distinguished by having two colons® ” as separating
punctuation.

2.1.3 The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the
part of the lexical grammar having to do with numeric literals and has as its terminal symbols the
characters of the Unicode character set. This grammar appears in Chapter 5.

Productions of the numeric string grammar are distinguished by having three colons® : " as
punctuation.

2.1.4 The Syntactic Grammar

The syntactic grammarfor ECMAScript is given in Chapters 7, 8, 9, and 10. This grammar has
ECM A Script tokens defined by the lexical grammar asits terminal symbols (see sectiéhl.2). It

defines a set of productions, starting from the goal symbdProgram that describe how sequences of
tokens can form syntactically correct ECM A Script programs.

When a stream of Unicode charactersisto be parsed as an ECMA Script program, it isfirst converted
to a stream of input elements by repeated application of the lexical grammar; this stream of input
elements isthen parsed by a single application of the syntax grammarThe program is syntactically in
error if the tokens in the stream of input elements cannot be parsed as a single instance of the goal
nonterminal program with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one colon * as punctuation.

The syntactic grammar as presented in Chapters 7, 8, 9, and 10 is actually not a complete account of
which token sequences are accepted as correct ECM A Script programs. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons
were added to the sequence in certain places (such as before end-of-line characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if an end-of -
line character appearsin certain “awkward” places.

A LALR(1) version of the syntactic grammar is presented in Appendix E. Thisversion provides an
exact account of which token sequences are acceptable ECM A Script programs without needing
special rules about automatically adding semicolons or forbidding end-of-line characters. However, it
is much more complex than the grammar presented in Chapters 7, 8, 9, and 10.

2.1.5 Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the
syntactic grammar, are shown inf i xed wi dt hfont, both in the productions of the grammars and
throughout this specification whenever the text directly refers to such aterminal symbol. These are to
appear in aprogram exactly as written.

Nonterminal symbols are shown irtalic type. The definition of a nonterminal is introduced by the
name of the nonterminal being defined followed by one or more colons. (The number of colons
indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WithStatement :
wi th (Expression) Statement

states that the nonterminal WithStatement represents the tokenwi t h, followed by a left parenthesis
token, followed by arExpression followed by aright parenthesis token, followed by &atement. The
occurrences of Expressionand Statement are themselves nonterminals. As another example, the
syntactic definition:

ArgumentList:
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentListmay represent either a singleAssignmentExpressionor an ArgumentList,
followed by a comma, followed by aAssignmentExpression This definition of ArgumentListis
recursive that isto say, it is defined in terms of itself. The result is that a\rgumentListmay contain
any positive number of arguments. Such recursive definitions of nonterminals are common.

The subscripted suffix ‘opt”, which may appear after aterminal or nonterminal, indicates aroptional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one
that omits the optional element and one that includes it. This means that:

VariableDeclaration:
Identifier Initializeryy

is a convenient abbreviation for:

VariableDeclaration:
Identifier
Identifier Initializer

and that:

IterationStatement :
for (Expressiony ; Expression, ; Expression,) Statement

is a convenient abbreviation for:

IterationStatement :
for (; Expressiony ; Expression,) Statement
for (Expression ; Expression, ; Expression,) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ; Expressiony) Statement
for (; Expression ; Expression,) Statement
for (Expression ; ; Expression,) Statement

for (Expression ; Expression ; Expression,) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ;) Satement

for (; ; Expression) Satement

for (; Expression;) Satement

for (; Expression ; Expression) Statement

for (Expression; ;) Satement

for (Expression; ; Expression) Statement

for (Expression ; Expression ;) Statement

for (Expression ; Expression ; Expression) Statement

so the nonterminal IterationStatementactually has eight alternative right-hand sides.

If the phrase “[noLineTerminator here]” appears in the right-hand side of a production of the syntactic
grammar, it indicates that the production isa restricted production it may not be used if a
LineTerminator occurs in the input stream at the indicated position. For example, the production:

ReturnStatement :
r et ur n [noLineTerminator here] EXpI'eSSiOI’bp; ;

indicates that the production may not be used if &ineTerminator occurs in the program between the
r et ur ntoken and theExpression.

Unless the presence of aLineTerminatoris forbidden by arestricted production, any number of
occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When the words “one of’ follow the colon(s) in agrammar definition, they signify that each of the
terminal symbols on the following line or linesis an alternative definition. For example, the lexical
grammar for ECM A Script contains the production:

ZeroToThree:: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree::
0

1
2
3

When an alternative in a production of the lexical grammar or the numeric string grammar appears to
be a multicharacter token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not’ and then indicating the expansions to be excluded. For example, the production:

Identifier ::
Identifier Namebut not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could
replace I dentifier Nameprovided that the same sequence of characters could not replace
ReservedWord

Finaly, afew nonterminal symbols are described by a descriptive phrase in roman type in cases where
it would be impractical to list al the alternatives:

SourceCharacter:
any Unicode character

2.2 ALGORITHMCONVENTIONS

We often use a numbered list to specify stepsin an algorithm. When the algorithm is to produce a
value as a result, we use the directive “return x” to indicate that the result of the algorithm is the value
of x and that the algorithm should terminate. We use the notation Result(n) as short hand for “the
result of step n”. We also use Type(x) as short hand for “the type of x”. If an algorithm is defined to
“generate aruntime error”, execution of the algorithm (and any calling algorithms) is terminated and
no result is returned.

These algorithms are used to clarify semantics. In practice, there may be more efficient algorithms
available to implement a given feature.

3 SOURCE TEXT

ECMA Script source text is represented asm sequence of characters representable using théJnicode
version 2.0character encoding

SourceCharacter::
any Unicode character

However, it is possible to represent every ECM A Script program using only ASCII characters (which
are equivalent to the first 128 Unicode characters). Non-ASCIl Unicode characters may appear only
within comments and string literals; in both of those contexts, any Unicode character may be
expressed as a Unicode escape sequence consisting of six ASCII characters, namélyu plus four
hexadecimal digits. Within a comment, such an escape sequence is effectively ignored as part of the
comment; within a string literal, the Unicode escape sequence contributes one character to the string
value of the literal.

Note that ECM A Script differs from the Java programming language in the behavior of Unicode
escape sequences. In a Java program, if the Unicode escape sequendeu000A for example, occurs
within a single-line comment, it is interpreted as a line terminator (Unicode characteD00Aisline
feed) and therefore the next character is not part of the comment. Similarly, if the Unicode escape
sequence\ uOO0A occurs within a string literal in a Java program, it islikewise interpreted asaline
terminator, which is not allowed within a string literal—one must writ& n instead of\ uO0O0Ato
cause aline feed to be part of the string value of a string literal. In an ECM A Script program, a
Unicode escape sequence occurring within a comment is never interpreted and therefore cannot
contribute to termination of the comment. Similarly, a Unicode escape sequence occurring within a
string literal in an ECM A Script program always contributes a character to the string value of the
literal and is never interpreted as a line terminator or as a quote mark that might terminate the string
literal.

4 LEXICAL CONVENTIONS

The source text of a ECM A Script program is first converted into a sequence of tokens and white
space. A token isa sequence of charactersthat comprise alexical unit. The source text is scanned
from left to right, repeatedly taking the longest possible sequence of characters as the next token.

4.1 WHITE SPACE

White space characters are used to improve source text readability and to separate tokelfindivisible
lexical unitg from each other but are otherwise insignificant. White space may occur between any two
tokens, and may occur within strings (where they are considered significant characters forming part of
the literal string value), but cannot appear within any other kind oftoken.

The following characters are consideredo bewhite space:

Unicode Value Name Formal Name
\u0009 Tab <TAB>
\uOC0B Vertical Tab <VT>
\u000C Form Feed <FF>
\u0020 Space <SpP>
Syntax
WhiteSpace::

<TAB>

<VT>

<FF>

<SP>

4.2 LINE TERMINATORS

Line terminator characters, like whitespace characters, are used to improve source text readability and
to separate tokens(indivisible lexical unit$ from each other. Unlike whitespace characters, line
terminators have some influence over thdehavior of the syntactic grammar. In general, line
terminators may occur between any two tokendyut there are afew places where they are forbidden by
the syntactic grammar. A line terminator cannot occur withirany token (not even a string. Line
terminators also affect the process of automatic semicolon insertion (see sectid).

The following characters are consideredo be line terminators

Unicode Value Name Formal Name
\uOOOA Line Feed <LF>
\u000D Carriage Return ~ <CR>
Syntax
LineTerminator::
<LF>
<CR>

4.3 COMMENTS

Description

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except aineTerminator character, and
because of the general rule that atoken is always as long as possible, a single-line comment always
consists of all characters from the/ / marker to the end of the line. However, thé_ineTer minator at
the end of the line is not considered to be part of the single-line comment; it is recognized separately
by the lexical grammar and becomes part of the stream of input elements for the syntactic grammar.
This point is very important, because it implies that the presence or absence of single-line comments
does not affect the process of automatic semicolon insertion (see sectid).

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment::
/ * MultiLineCommentChar g, * /

MultiLineCommentChars:
MultiLineNotAsteriskChar MultiLineCommentCharg
* PostAsteriskCommentChar s

PostAsteriskCommentChars::
MultiLineNotFawardSashCharMultiLineCommentChar g

MultiLineNotAsteriskChar :
SourceCharacterbut not asterisk *

MultiLineNotFowardSashChar:
SourceCharacterbut not forward-slash/

SingleLineComment::
'/ SingleLineCommentChar s,

SingleLineCommentChars :
SingleLineCommentCharSngleLineCommentChar gy

SingleLineCommentChar::
SourceCharacterbut not LineTerminator

4.4 TOKENS
Syntax

Token ::
ReservedWord
Identifier
Punctuator
Literal

441 Reserved Words

Description
Reserved words cannot be used as identifiers.

ReservedWord::

Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

4.4.2 Keywords

The followingtokens are ECM A Scriptkeywordsand may not be used asidentifiersin ECM A Script

programs
Syntax
Keyword: one of
br eak f or
conti nue function
del ete i f
el se in

4.4.3 Future Reserved Words

new var
return voi d
this whi | e
t ypeof with

The following words are used as keywords in proposed extensions and aredieforereserved to alow

for the possibility of futureadoption of those extensions.

Syntax
FutureReservedWord: one of
case do
catch ext ends
cl ass finally
def aul t i nport

4.5 IDENTIFIERS

Description

nmet hod try
super

switch

t hr ow

Anidentifier is acharacter sequence of unlimited length, where each character in the sequence must
be aletter, a decimal digit, an underscore (_) character, or adollar sign ($) character, and the first
character may not be a decimal digitECMA Script identifiers are case sensitive: identifiers whose
characters differin any way, even ifonly in case are consideredto be distinct

Syntax

Identifier ::
Identifier Namebut not ReservedWord

IdentifierName::
I dentifierLetter
I dentifierName I dentifierLetter
| dentifierName Decimal Digit

IdentifierLetter :: one of
abcdef

uv wxy z

ghi j kIl mnopagr st
ABCDEFGHI JKLMNOPQRSTUVWXYZ

$

DecimalDigit:: one of
012345672829

10

4.6 PUNCTUATORS
Syntax

Punctuator :: one of

= > < == <=

I = , ! ~ ?
&& |] ++ --

- * / &

% << >> >>> +=

L = &= | = N=

<<= >>= >>>= ()

} [] ;

4.7 LITERALS
Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

4.7.1 Null Literals

Syntax
NullLiteral ::
nul |
Semantics

The value of the null literalnul | is the sole value of the Null type, namelyull.

4.7.2 Boolean Literals

Syntax
BooleanLiteral ::
true
fal se
Semantics

The value of the Boolean literalt r ue is avalue of the Boolean type, namelyrue.
The value of the Boolean literalf al seisavalue of the Boolean type, namelyalse.

4.7.3 Numeric Literals
Syntax

NumericLiteral ::
DecimalLiteral
HexlIntegerLiteral
OctallntegerLiteral

11

DecimalLiteral ::

DecimalIntegerLiteral

DecimalIntegerLiteral. DecimalDigits,, ExponentPar
. DecimalDigits ExponentPar f;

DecimalIntegerLiteral ExponentPart

DecimalIntegerLiteral ::
0

NonZeroDigitDecimalDigits,:

DecimalDigits::
DecimalDigit

DecimalDigits DecimalDigit

NonZeroDigit:: one of
1 2

ExponentPart::

Exponentlndicator Signedinteger

Exponentindicator :: one of

e E

Sgnedinteger ::
DecimalDigits
+ Decimal Digits
- DecimalDigits

HexIntegerLiteral ::
0x HexDigit
0X HexDigit

HexlntegerLiteral HexDigit

HexDigit :: one of

0 1 2 3 456 7 8 9 aboc dwef ABUC CDEF

OctallntegerLiteral ::
0 OctalDigit

OctalLiteral OctalDigit

OctalDigit:: one of
0 1

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a

mathematical value (MV) is derived from the literal; second, this mathematical value is rounded,
ideally using |EEE 754 round-to-nearest mode, to a representable value of the number type.

12

The MV of NumericLiteral ::
The MV of NumericLiteral ::
The MV of NumericLiteral ::
The MV of DecimalLiteral ::
The MV of DecimalLiteral ::
The MV of DecimalLiteral ::

DecimalLiteral isthe MV of DecimalLiteral.
HexlintegerLiteralisthe MV of HexInteger Literal.
OctallntegerLiteralis the MV of Octal IntegerLiteral
DecimalIntegerLiteralisthe MV of DecimallntegerLiteral
DecimalIntegerLiteral. isthe MV of DecimallntegerLiteral
DecimallntegerLiteral. DecimalDigitsisthe MV of

DecimallIntegerLiteral plus (the MV of DecimalDigitstimes 10 "), wheren is the number of

charactersin DecimalDigits.
The MV of DecimalLiteral ::

DecimalIntegerLiteral. ExponentPartisthe MV of

DecimallntegerLiteraltimes 1¢, wheree isthe MV of ExponentPart

The MV of DecimalLiteral :: DecimallntegerLiteral. DecimalDigits ExponentPartis (the MV of
DecimallntegerLiteral plus (the MV of DecimalDigitstimes 10 ")) times 1C°, wheren is the
number of charactersinDecimalDigits and e isthe MV of ExponentPart

The MV of DecimalLiteral ::. DecimalDigitsis the MV of DecimalDigitstimes 10", wherenis
the number of charactersinDecimalDigits.

The MV of DecimalLiteral ::. DecimalDigits ExponentPartis the MV of DecimalDigitstimes
10", wheren is the number of characters inDecimalDigits and eis the MV of ExponentPart
The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPartisthe MV of
DecimallntegerLiteraltimes 1¢°, wheree isthe MV of ExponentPart

The MV of DecimallntegerLiteral:: 0 isO.

The MV of DecimallntegerLiteral :: NonZeroDigitDecimal Digitsis (the MV of NonZeroDigit
times 10" plus the MV of Decimal Digits, wheren is the number of characters inDecimalDigits.
The MV of DecimalDigits:: DecimalDigit isthe MV of Decimal Digit

The MV of DecimalDigits:: DecimalDigitsDecimalDigit is (the MV of Decimal Digitstimes 10)
plus the MV of Decimal Digit

The MV of ExponentPart:: Exponentlndicator Sgnedintegeristhe MV of Signedinteger.

The MV of Sgnedinteger :: DecimalDigitsisthe MV of DecimalDigits

The MV of Sgnedinteger :: + DecimalDigitsisthe MV of DecimalDigits

The MV of Sgnedinteger :: - DecimalDigitsisthe negative of the MV ofDecimalDigits

The MV of DecimalDigit:: 0 or of HexDigit :: 0 or of OctalDigit:: 0 isO.

The MV of DecimalDigit:: 1 or of NonZeroDigit:: 1 or of HexDigit:: 1 or of OctalDigit:: 1 is
1

The MV of DecimalDigit:: 2 or of NonZeroDigit:: 2 or of HexDigit :: 2 or of OctalDigit:: 2 is
2.

The MV of DecimalDigit:: 3 or of NonZeroDigit:: 3 or of HexDigit :: 3 or of OctalDigit:: 3 is
3.

The MV of DecimalDigit:: 4 or of NonZeroDigit:: 4 or of HexDigit :: 4 or of OctalDigit:: 4 is
4.

The MV of DecimalDigit:: 5 or of NonZeroDigit:: 5 or of HexDigit:: 5 or of OctalDigit:: 5 is
5.

The MV of DecimalDigit:: 6 or of NonZeroDigit:: 6 or of HexDigit:: 6 or of OctalDigit:: 6 is
6.

The MV of DecimalDigit:: 7 or of NonZeroDigit:: 7 or of HexDigit:: 7 or of OctalDigit:: 7 is
7.

The MV of DecimalDigit:: 8 or of NonZeroDigit:: 8 or of HexDigit:: 8 is 8.

The MV of DecimalDigit:: 9 or of NonZeroDigit:: 9 or of HexDigit:: 9 is9.

The MV of HexDigit :: a or of HexDigit:: Ais 10.

The MV of HexDigit :: b or of HexDigit:: Bis11.

The MV of HexDigit :: ¢ or of HexDigit:: Cis12.

The MV of HexDigit :: d or of HexDigit:: Dis 13.

The MV of HexDigit :: e or of HexDigit:: Eis 14.

The MV of HexDigit:: f or of HexDigit:: F is 15.

The MV of HexIntegerLiteral :: Ox HexDigitisthe MV of HexDigit.
The MV of HexIntegerLiteral :: 0X HexDigitis the MV of HexDigit.
The MV of HexIntegerLiteral :: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral
times 16) plus the MV ofHexDigit.
The MV of OctallntegerLiteral :: 0 OctalDigitisthe MV of OctalDigit.
The MV of OctallntegerLiteral :: OctallntegerLiteral OctalDigit is (the MV of
OctallntegerLiteral times 8) plus the MV ofOctalDigit.
Once the exact MV for anumeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value i$0; otherwise, the rounded value must behe
number value for the MV (in the sense defined in sectioB.4), unless the literal is aDecimalLiteral

13

and the literal has more than 20 significant digits, in which case the number value may be any
implementation-dependent approximation to the MV. A digit isignificantif it is not part of an
ExponentPartand (either it isnotO or it is animportant zeroor thereis no decimal point * " in the
literal). A digit O is an important zero if there is at least one important item to its left and at |east one
important itemto its right within the literal. Any digit that is notO and is not part of anExponentPart
is an important item; adecimal point ‘. ' is also an important item.

4.7.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence.

Syntax

StringLiteral ::
" DoubleStringCharacter gy "
" SingleStringCharacter gy

DoubleStringCharactes ::
DoubleStringCharacter DoubleStringCharactegs

SingleStringCharactes ::
SingleStringCharacter SingleStringChar actersg;

DoubleStringCharacter::
SourceCharacterbut not double-quote” or backslash\ or LineTerminator
EscapeSequence

SingleStringCharacter::
SourceCharacterbut not single-quote' or backslash\ orLineTerminator
EscapeSequence

EscapeSequence::
Character EscapeSeguence
Octal EscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

Character EscapeSequence::
\ SingleEscapeCharacter
\ NonEscapeCharacter

SngleEscapeCharacter :: one of
' " \ b f n r t

NonEscapeCharacter.:
SourceCharacterbut not EscapeCharacter or LineTer minator

EscapeCharacter::
SingleEscapeCharacter
OctalDigit
X
u

HexEscapeSequence::
\ x HexDigit HexDigit

14

Octal EscapeSequence::
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit Octal Digit

ZeroToThree:: one of
0 1 2 3

UnicodeEscapeSequence::
\ u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminaldHexDigit and OctalDigit are given in section4.7.3.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in
terms of character values (CV) contributed by the various parts of the string literal. As part of this
process, some characters within the string literal are interpeted as having a mathematical value (MV),
as described below or in sectiort.7.3

The SV of StringLiteral :: " " isthe empty character sequence .

The SV of StringLiteral :: ' ' isthe empty character sequence.

The SV of StringLiteral :: " DoubleStringCharacters' isthe SV of DoubleStringCharacters

The SV of StringLiteral :: ' SingleStringCharacters isthe SV of SingleStringCharacters

The SV of DoubleStringCharacters: DoubleStringCharacteris a sequence of one character, the

CV of DoubleStringCharactet

The SV of DoubleStringCharacters: DoubleStringCharacterDoubleStringCharactes isa
sequence of the CV ofDoubleStringCharacterfollowed by all the charactersin the SV of
DoubleStringCharactesin order.

The SV of SingleStringCharacters:: SingleStringCharacteris a sequence of one character, the CV
of SingleStringCharacter.

The SV of SingleStringCharacters:: SingleStringCharacter SinglestringCharactes is a sequence
of the CV of SingleStringCharacterfollowed by all the charactersin the SV of
SngleStringCharactesin order.

The CV of DoubleStringCharacter:: SourceCharacterbut not double-quote” or backslash\ or
LineTerminator is the SourceCharacter character itself.

The CV of DoubleStringCharacter:: EscapeSequenceisthe CV of theEscapeSequence

The CV of SngleStringCharacter:: SourceCharacterbut not single-quote’ or backslash\ or
LineTerminatoris the SourceCharacter character itself.

The CV of SngleStringCharacter:: EscapeSequenceis the CV of theEscapeSequence

The CV of EscapeSequence: Character EscapeSequenceis the CV of the

Character EscapeSeguence

The CV of EscapeSequence: Octal EscapeSequenceis the CV of theOctal EscapeSequence

The CV of EscapeSequence: HexEscapeSequenceis the CV of theHexEscapeSequence

The CV of EscapeSequence: UnicodeEscapeSequenceis the CV of theUnicodeEscapeSequence
The CV of CharacterEscapeSequence: \ SingleEscapeCharacteris the Unicode character whose
Unicode value is determined by th&ngleEscapeCharacteraccording to the following table:

Escape Sequence Unicode Value Name Symbol
\'b \ u0008 backspace <BS>
\ 't \ u0009 horizontal tab <HT>
\n \ uOOOA line feed (new line) <LF>
\ f \ u0o0C form feed <FF>
\r \'u000D carriage return <CR>
\ \u0022 double gquote "

\! \ u0027 single quote '

15

\\ \ u005C backslash \

The CV of CharacterEscapeSequence:: \ NonEscapeCharacteris the CV of the
NonEscapeCharacter.

The CV of NonEscapeCharacter:: SourceCharacterbut not EscapeCharacteror LineTerminator
is the SourceCharacter character itself.

The CV of HexEscapeSequence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.

The CV of OctalEscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of theOctalDigit.

The CV of Octal EscapeSequence:: \ OctalDigit OctalDigit is the Unicode character whose code
is (8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctal Digit.

The CV of Octal EscapeSequence:: \ ZeroToThreeOctalDigit OctalDigitis the Unicode
character whose code is (64 (that is, 8) timesthe MV of theZeroToThred plus (8 times the MV
of the first Octal Digif) plus the MV of the secondOctalDigit.

The MV of ZeroToThree:: 0 isO.

The MV of ZeroToThree:: 1 is 1.

The MV of ZeroToThree:: 2 is2.

The MV of ZeroToThree:: 3 is3.

The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 18) times the MV of the firstHexDigit) plus (256 (that is,
16?) times the MV of the secondHexDigit) plus (16 times the MV of the thirdHexDigit) plus the
MV of the fourthHexDigit.

Note that aLineTerminator character cannot appear in a string literal, even if preceded by a backslash
\ . The correct way to cause aline terminator character to be part of the string value of a string literal
is to use an escape sequence such as n or\ uOOOA

4.8 AUTOMATICSEMICOLONINSERTION

Description

Certain ECM A Script statements(empty statement, variable statement, expression statement,

cont i nue statement, br eak statement, andr et ur n statement) must each be terminated with a
semicolon. Such a semicolon may always appear explicitly in the source text. For convenience,
however, such semicolons may be omitted from the source text in certain situations. We describe such
situations by saying that semicolons are automatically inserted into the source code token stream in
those situations:

When, as the program is parsed from left to right,a token (called theoffending token) is
encountered that is not allowed by any production of the grammar and the parser is not currently
parsing the header of af or statement, then a semicolonis automatically insertedbefore the
offending tokenif one or more of the following conditionsis true

1. Theoffending token is separated from the previous token by at least oriéneTer minator.
2. Theoffending tokenis} .

When, as the program is parsed from left to rightthe end of the input stream of tokenss
encounteredand the parser is unable to parse the input token stream as a single complete
ECMA Script Program then a semicolonis automatically inserted at the end of the input stream.

However, there is an additional overriding condition on the preceding rules: a semicolon is never
inserted automatically if the semicolon would then be parsed as an empty statement.

When, as the program is parsed from left to right,a token is encountered that is allowed bysome
production of the grammar, but the production is aestricted productionand the token would be
the first token for aterminal or nonterminal immediately following the annotationfio
LineTerminator here]” Within the restricted production (and therefore such atokeniscalled a
restricted token), and the restricted token is separated from the previous token by at least one
LineTer minator,then there are two cases:

16

1. If the parser is not currently parsing theheader of af or statement, a semicolonis
automatically insertedbefore therestricted token.

2. If the parser iscurrently parsing theheader of af or statement, it isa syntax error.
These are all the restricted productions in the grammar:

Member Expression:
newMember Expression [noLineTerminator here] Arguments

CallExpression:
Member Expression [noLineTerminator here] Arguments
CallExpression [noLineTerminator here] Arguments

PostfixExpression:
LeftHandS deExpression [no LineTerminator here] ++
LeftHandS deExpression [no LineTerminator here] - -

ReturnStatement :
r et ur n [noLineTerminator here] EXpI'eSSiOI’bp; ;

The practical effect of these restricted productionsis as follows:

1. When the token(is encountered where the parser would treat it as the first token of a
parenthesized Argumentslist, and at least oneLineTerminator occurred between the
preceding token and the(token, then a semicolon is automatically inserted before the
token.

2. When the token++ or - - is encountered where the parser would treat it as a postfix operator,

and at least oneLineTerminator occurred between the preceding token and the-+ or - -
token, then a semicolon is automatically inserted before the+ or - - token.

3. When the tokenr et ur nis encountered anda LineTerminatoris encountered before the next

token is encountered,a semicolonis automatically insertedafter the tokenr et ur n.
The resulting practical advice to ECMAScript programmersis:

1. The(that starts an argument list should be on the same line as the expression that indicates

the function to be called.
2. A postfix++ or - - operator should appear on the same line as its operand.
3. AnExpressioninar et ur n statement should start on the same line as the et ur n token.
For example, the source
{121} 3
is not avalid sentence in the ECM A Script grammay even with the automatic semicolon insertion
rules. In contrast, the source
{ 1
2} 3

isalso not avalid ECMA Script sentence, but is transformed by automatic semicolon insertion into the

following:

{1

;251 3
which isavalid ECMA Script sentence.
The source

for (a; b

)

isnot avalid ECMAScript sentence and is not altered by automatic semicolon insertidiecause the
place where a semicolon is needed is within the header of &or statement. Automatic semicolon
insertion never occurs within the header of & or statement.

The source

17

return

a+b
is transformed by automatic semicolon insertion into the following:

return;

a + b;
Note that the expressiona + b isnot treated as a value to be returned by the et ur n statement,
because aLineTerminator separates it from the tokenr et ur n.
The source

a=m>b

++C
is transformed by automatic semicolon insertion into the following:

a = b

++C;
Note that the token++ is not treated as a postfix operator applying to the variable, because a
LineTerminator occurs betweenb and ++.
The source

if (a >0b)

elsec =d
isnot avalid ECMA Script sentence and is not altered by automatic semicolon insertidiefore the
el se token, even though no production of the grammar applies at that point, because an
automatically inserted semicolon would then be parsed as an empty statement

18

5 TYPES

A valueis an entity that takes on one of seven types. There are six standard types and one internal
type calledReference. Values of typeReference are only used as intermediate results of expression
evaluation and cannot be stored to properties of objects.

5.1 THE UNDEFINEDTYPE

The Undefined type has exactly one value, calledndefined. Any variable that has not been assigned
avalueis of typeUndefined

5.2 THENULLTYPE
The Null type has exactly one value, callechull.

5.3 THE BOOLEANTYPE

The Boolean type represents alogical entity and consists of exactly two unique valu&neis called
true and the other is calledfalse.

5.4 THE STRINGTYPE

The String type consists of the set of all finiterdered sequences of zero or more Unicode characters.
Each character is regarded as occupying a position within the sequence. These positions are identified
by nonnegative integers. The leftmost characte(if any) is at position 0, the next character (if any) at
position 1, and so on. The length of a string is the number of distinct positions within it. An empty
string has length zero and therefore contains no characters.

5.5 THE NUMBERTYPE

The Number type has exactly 1843773687445481062Fhat is, 2°*- 2°°+3) values, representing the
double-precision 64-bit format |EEE 754 values as specified in the IEEE Standard for Binary
Floating-Point Arithmetic, except that the 900719925474099(that is, 2°- 2) distinct “Not-a-
Number” values of the |IEEE Standard are represented in ECM A Script as single special NaN value.
(Note that the NaN value is produced by the program expressioNaN, assumingthat the globally
defined variableNaN has not been altered by program execution.)

There are two other special values, calledbositive I nfinityand negative I nfinity. For brevity, these
values are also referred to for expository purposes by the symbol¥ and - ¥, respectively. (Note that
these two infinite number values are produced by the program expressiord nf i ni t y (or simply

I nfinity)and-Infinity,assumingthat the globally defined variabld nf i ni t y has not been
altered by program execution.)

The other 18437736874454810624that is, 2%*- 2°%) values are called the finite numbers. Half of
these are positive numbers and half are negative numbers; for every finite positive number thereisa
corresponding negative number having the same magnitude.

Note that there is both apositive zer oand a negative zer a For brevity, these values are also referred
to for expository purposes by the symbohks0 and - 0, respectively. (Note that these two zero number
values are produced by the program expressions0 (or simply0) and - 0.)

The 18437736874454810623that is, 2°- 2%- 2) finite nonzero values are of two kinds:

18428729675200069637that is, 2°*- 2°%) of them are normalized, having the form

19

s xm x2°

wheresis+1 or - 1, mis a positive integer less than 2° but not less than 22, and e is an integer
ranging from- 1074 to 971, inclusive.

The remaining 900719925474099(that is, 2°°- 2) values are denormalized, having the form
s xm x2°
wheresis+1 or - 1, mis a positive integer less than 2%, and eis - 1074.

Note that all the positive and negative integers whose magnitude is no greater thar"2are
representable in the Number type (indeed, the integer 0 has two representations;0 and - 0).

We say that afinite number has anodd significandif it is nonzero and the integerm used to express
it (in one of the two forms shown above) is odd. Otherwise we say that it has @ven significand

In this specification, the phrase “the number value fox” where x represents an exact nonzero real
mathematical quantity (which might even be an irrational number such ap) means a number value
chosen in the following manner. Consider the set of all finite values of the Number type, with two
additional values added to it that are not representable in the Number type, namely*%* (which is+1 x
253 x2°™) and - 219 (which is- 1 x2% x2°™%). Choose the member of this set that is closest in value to
x. If two values of the set are equally close, then the one with an even significand is chosen; for this
purpose, the two extra values 2* and - 2! are considered to have even significands. Finally, if 9%
was chosen, replace it with+¥; if - 2'°%* was chosen, replace it with- ¥ ; any other chosen valueis
used unchanged. The result is the number value fox. (This procedure corresponds exactly to the
behavior of the IEEE 754 “round to nearest” mode.)

Some ECM A Script operators deal only with integersin the range2® through 2°- 1, inclusive, or in
the range O through 2 1, inclusive. These operators accept any value of the Number type but first
convert each such value to one of # integer values. See the descriptions of the Tolnt32 and ToUint32
operators in sections6.5 and 6.6, respectively.

5.6 THEOBJECTTYPE

An Object is an unordered collection of propertiesEach property consists of a name, avalue and a
set of attributes.

5.6.1 Property Attributes

A property can have zero or more attributes from the following set:

Attribute Description

ReadOnly The property is aread-only property. Attempts to write to the property will be
ignored.

ErrorOnWrite This attribute has precedence over the ReadOnly attribute. Attempts to write to
the property will result in aruntime error and the property will not be changed.

DontEnum The property is notenumerated by af or -i n enumeration (section9.5.3

DontDelete Attempts to delete the property will be ignored. See the description of the

del et e operator in sectiorB8.4.1.

Internal Internal properties have no name and are not directly accessible via the property

accessor operators. How these properties are accessed is implementation
specific. How and when some of these properties are used is specified by the
language specification.

5.6.2 Internal Properties and Methods

Internal properties and methods are not exposed in the language. For the purposes of this document,
we give them names enclosed in double square bracketg]]. When an algorithm uses an internal
property of an object and the object does not implement the indicated internal property, a runtime
error is generated.

20

There are two types of access for exposed propertieget and put, corresponding to retrieval and

assignment.

Native ECM A Script objects have an internal property called [[Prototype]]. The value of this property
iseither nul | or an object and is used for implementing inheritance. Properties of the [[Prototype]]
object are exposed as properties of the child object for the purposes of get access, but not for put

access.

The following table summarizes the internal propertiesised by this specification. The description

indicates their behavior for native ECM A Script objects. Host objects may implement these internal
methods with any implement-dependent behavior, or it may be that a host object implements only
some internal methods and not others.

Parameters

Description

Propert

[[Prototype]] none The prototype of thisobject.

[[Class]] none The kind of this object.

[[Vaue]] none Internal state information associated with this object.

[[Get]] (PropertyName) Returns the value of the property.

[[Put]] (PropertyName, Value) Sets the specified property toValue.

[[CanPut]] (PropertyName, Value) Returns a boolean value indicating whether a[[Put]]
operation with the same arguments will succeed.

[[HasProperty]] | (PropertyName) Returns a boolean value indicating whether the object
already has a member with the given name.

[[DefaultValue]] | (Hint) Returns the default value of the object, which should
be a primitive value (not an object or reference).

[[Construct]] optional user-provided (Constructor) Constructs an object. Invoked viathe

parameters newoperator.
[[Cal]] optional user-provided (Function) Executescode associated withthe object.

parameters

Invoked viaafunction call expression.

Every ECM A Script object must implement the [[Class]] property and the [[Get]], [[Put]],
[[HasProperty]], and [[DefaultV alue]] methods, even host objects.

The value of the [[Prototype]] property must be either an object arull, and every [[Prototype]] chain
must have finite length (that is, starting from any object, recursively accessing the [[Prototype]]

property must eventually lead to aull value).

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The
value of the [[Class]] property of a host object may be any value, even avalue used by a built-in object
for its [[Class]] property. Note that this specification does not provide any means for a program to
access the value of a[[Class]] property; it is used internally to distinguish different kinds of built-in

objects.

Every built-in object implements the [[Get]], [[Put]], [[CanPut]], and [[HasProperty]] methods in the
manner described in sectionss.6.2.1, 5.6.2.2, and 5.6.2.3, respectively, except that Array objects have
aslightly different implementation of the [[Put]] method (section). Host objects may implement these
methods in any manner; for example, one possibility is that [[Get]] and [[Put]] for a particular host
object indeed fetch and store property values but [[HasProperty]] always generatfz se.

In the following algorithm descriptions, ssumeO is a native ECM A Script object andP is a string.

5.6.2.1 [[Get]l(P)

When the [[Get]] method ofO is called with property nameP, the following steps are taken:
1. If Odoesn’'t have a property with nameP, go to step4.

2. Get the value of the property.
3. Return Result@).

4. If the[[Prototype]] ofOisnul |, return undef i ned.

21

5. Cadll the [[Get]] method of [[Prototype]] with property nampe.
6. Return Result®).

5.6.2.2 [[Put]](P, V)

When the [[Put]] method ofO is called with propertyP and valueV, the following steps are taken:
Call the [[CanPut]] method of O with nameP.

If Result(1) isfalse return.

If O doesn’t have a property with nameP, go to step6.

Set the value of the property tov.

Return.

Create a property with nameP, set its value toV and give it empty attributes.

Return.

Noa~wdE

Note, however, that ifO is an Array object, it has a more elaborate [[Put]] method (sectiot2.4.4.1).

5.6.2.3 [[CanPut]](P)

The [[CanPut]] method is usedonly bythe [[Put] methad.

When the [[CanPut]] method of O is called with propertyP, the following steps are taken:
If O doesn’t have a property with nameP, go to step 4.

If the property has the ErrorOnWrite attribute, generate a runtime error.

If the property has the ReadOnly attribute, returrfalse.

If the [[Prototype]] ofO is not implemented or its value is not an objegtreturn true
Call the [[CanPut]] method of [[Prototype]] ofO with property NameP.

Return Result(5).

oA~ wWNPRE

5.6.2.4 [[HasProperty]](P)

When the [[HasProperty]] method ofO is called with property nameP, the following steps are taken:
1. If O hasaproperty with nameP, return true.

2. If the[[Prototype]] ofO isnot implemented or its value is not an objegtreturn false.

3. Cal the [[HasProperty]] method of [[Prototype]] with property nanie.

4. Return Result).

5.7 THE REFERENCETYPE

Theinternal Referencetype is not a language data type It is defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave asif it produced and operated
upon references in the manner described here. However, &alue of typeReferenceisusedonly asan
intermediate result of expression evaluation and cannot be stored as the value of avariable or
property.

The Reference type is used to explain the behavior of assignment operators: the left-hand operand of
an assignment is expected to produce a reference. This behavior could, instead, be explained entirely
in terms of a case analysis on the syntactic form of the left-hand operand of an assignment operator,
but for one difficulty: function calls are permitted to return references. This possibility is admitted
purely for the sake of host objects. No built-in ECM A Script function defined by this specification
returns a reference and there is no provision for a user-defined function to return a reference.

A Referenceis areference toa property of an object A Reference consists oftwo parts, the base
object and the property name.

The following abstract operations are used in this specification to describe the behavior of references:
GetBase(V). Returns the base object componentf the reference V.
GetPropertyNamel/). Returns the propertyname componentof the reference V.
GetValue(V). Returns the value of the propertyindicated by the reference V.
PutVaueV, W). Changesthe value of the propertyindicated by the reference Vto be W.

22

5.7.1 GetBasqV)

1. If Type(V) is Reference, return the base object component of V.
2. Generate aruntime error.

5.7.2 GetPropertyNam¢V)

1. If Type(V) is Reference, return the propertyname component of V.
2. Generate aruntime error.

5.7.3 GetValugV)

If Type(V) is not Reference, return V.

Call GetBase(V).

If Result(2) isnull, generate aruntime error.

Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the propertyame.
Return Result(4).

akrwbdpE

5.7.4 PutValugV, W)

1. If Type(V) is not Reference, generate a runtime error.

2. Call GetBase(V).

3. If Result(2) isnull, go to step 6.

4. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W

for the value.

Return.

6. Cal the [[Put]] method for the global object, passing GetPropertyName(V) for the property hame
and W for the value.

7. Return.

o

5.8 THELISTTYPE

Theinternal List type is not a language data type It is defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave asif it produced and operated
upon List values in the manner described here. However, galue of the List typeis used only as an
intermediate result of expressionevaluation and cannot be stored as the value of avariable or

property.

The List typeis used to explain the evaluation of argument lists (sectidB®.2.4) in newexpressions

and in function calls. Values of the List type are simply ordered sequences of values. These sequences
may be of any length.

5.9 THE COMPLETIONTYPE

Theinternal Completion type is not a language data type It is defined by this specification purely
for expository purposes. An implementation of ECM A Script must behave as if it produced and
operated upon Completion values in the manner described here. However,\al ue of the Completion
typeis used only as an intermediate result of statement evaluation and cannot be stored as the value of
avariable or property.

The Completion type is used to explain the behavior of statementb(eak, cont i nue, and
r et ur n) that perform nonlocal transfers of control. Values of the Completion type have one of the
following forms:

“normal completion”

“abrupt completion because obr eak”

“abrupt completion because otont i nue’

“abrupt completion because of et ur n V' whereVisavaue

23

6 TYPE CONVERSION

The ECMA Script runtime system performs automatic type conversion as needed. To clarify the
semantics of certain constructsit is useful to define a set of conversion operators. These operators are
not a part of the language; they are defined here to aid the specification of the semantics of the
language. The conversion operators are polymorphic; that is, they can accept a value of any standard
type, but not of type Reference.

6.1 TOPRIMITIVE

The operator ToPrimitive takes a Value argument and an optional PreferredType argument. The
operator ToPrimitive attempts to convert its value argument to a non-Object type. If an object is
capable of converting to more than one primitive type, it may use the optional hiRtreferredTypeto
favor that type. Conversion occurs according to the following table:

Input Type Result

Undefined The result equalsthe input argument (no conversion)

Null The result equalsthe input argument (no conversion)

Boolean The result equalsthe input argument (no conversion)

Number The result equal sthe input argument (no conversion)

String The result equal sthe input argument (no conversion)

Object Return the default value of the Object. The default value of an object is retrieved
by calling the intemal [[DefaultValue]] method of the objectpassing the optional
hint PreferredType The behavior of the [[DefaultValue]] method is defined by
this specification for all native ECMA Script objects. If the return value is of typg
Object or Reference, aruntime error is generated.

6.2 TOBOOLEAN

The operator ToBoolean attempts to convert its argument to a value of type Boolean according to the
following table:

Input Type Result

Undefined fal se

Null fal se

Boolean The result equals the input argument (no conversion)

Number Theresult isf al seif the argument is+0, - 0, or NaN; otherwise the result is
true.

String Theresult isf al seif the argument is an empty string (its length is zero);
otherwise the result ist r ue.

Object true

24

6.3 TONUMBER

The operator TONumber attempts to convert its argument to a value of type Number according to the
following table:

Input Type Result

Undefined NaN

Null NaN

Boolean Theresultisl if the argument ist r ue. The result is+0if the argument is
fal se.

Number The result equal sthe input argument (no conversion)

String See grammar and discussion below.

Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

6.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar
cannot interpret the stringas an expansion of XringNumericLiteral then the result of ToNumber is
NaN.

SringNumericLiteral:::
SirWhiteSpace,,: StrNumericLiteral StrwhiteSpace:

SrwhiteSpace:::
StrwhiteSpaceChar StrwhiteSpace:

SrwhiteSpaceChar :::
<TAB>
<SP>
<FF>
<VT>
<CR>
<LF>

StrNumericLiteral:::
StrDecimalLiteral
+ StrDecimalLiteral
- StrDecimalLiteral
HexlntegerLiteral

SrDecimalLiteral :::
Infinity
DecimalDigits
DecimalDigits. DecimalDigits,, ExponentPart,y
. DecimalDigits ExponentPar f;
DecimalDigits ExponentPart

DecimalDigits:::

DecimalDigit
DecimalDigits DecimalDigit

25

DecimalDigit::: one of
012345672829

ExponentPart:::
Exponentlindicator Signedinteger

Exponentindicator::: one of
e E

Sgnedinteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexlIntegerLiteral :::
0x HexDigit
0X HexDigit
HexlntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 456 7 8 9 abocdef ABUCDEF

Some differences should be noted between the syntax of &ringNumericLiteraland a NumericLiteral
(sect|0n4 7.3):

A StringNumericLiteralmay be preceded and/or followed by whitespace and/or line terminators.

A StringNumericLiteralmay not use octal notation.

A StringNumericLiteralthat is decimal may have any number of leading digits.

A StringNumericLiteralthat is decimal may be preceded by or - to indicate its sign.

A StringNumericLiteralthat is empty or contains only whitespace and/or one occurrence of- is

converted to+0.

A StringNumericLiteralthat contains only whitespace and/or one occurrence of is converted to

-0.
The conversion of a string to a number value is similar overall to the determination of the number
value for anumeric literal (sectiond.7.3), but some of the details are different, so the process for
converting a string numeric literal to avalue of Number typeis given herein full. Thisvalueis
determined in two steps: first, amathematical value (MV) is derived from the string numeric literal;
second, this mathematical value is rounded, ideally using IEEE 754 round-to-nearest mode, to a
representable value of the number type.
- The MV of StringNumericLiteral::: StrWhiteSpacey, StrNumericLiteral StrwhiteSpace: is the

MV of SrNumericLiteral no matter whether whitespace is present or not.

The MV of SrNumericLiteral::: StrDecimalLiteralisthe MV of StrDecimalLiteral.

The MV of SrNumericLiteral::: + StrDecimalLiteralis the MV of StrDecimalLiteral.

The MV of SrNumericLiteral::: - StrDecimalLiteralis the negative of the MV of

SrDecimalLiteral.

The MV of StrNumericLiteral::: HexIntegerLiteralis the MV of HexIntegerLiteral.

The MV of SrDecimalLiteral ::: | nfi ni t yis 10" (avalue so large that it will round to+¥).

The MV of SrDecimalLiteral ::: (an empty character sequence)is 0.

The MV of SrDecimalLiteral ::: DecimalDigitsisthe MV of DecimalDigits

The MV of StrDecimalLiteral ::: DecimalDigits isthe MV of DecimalDigits

The MV of SrDecimalLiteral ::: DecimalDigits DecimalDigitsisthe MV of the first

DecimalDigitsplus (the MV of the secondDecimalDigitstimes 10"), wheren is the number of

characters in the secondDecimalDigits.

The MV of SrDecimalLiteral ::: DecimalDigits ExponentPartisthe MV of DecimalDigitstimes

10°, wheree isthe MV of ExponentPart

26

The MV of StrDecimalLiteral ::: DecimalDigits Decimal Digits ExponentPartis (the MV of the
first Decimal Digitsplus (the MV of the secondDecimalDigitstimes 10")) times 10°, wheren is
the number of charactersin the secondDecimalDigits and e isthe MV of ExponentPart

The MV of StrDecimalLiteral :::. DecimalDigitsis the MV of DecimalDigitstimes 10", wheren
is the number of characters inDecimalDigits.

The MV of StrDecimalLiteral :::. DecimalDigits ExponentPartis the MV of DecimalDigitstimes
10", wheren is the number of characters inDecimalDigits and eisthe MV of ExponentPart
The MV of StrDecimalLiteral ::: Decimal DigitsExponentPartisthe MV of Decimal Digitstimes
10°, whereeisthe MV of ExponentPart

The MV of DecimalDigits::: DecimalDigit isthe MV of DecimalDigit

The MV of DecimalDigits::: DecimalDigitsDecimal Digit is (the MV of Decimal Digitstimes 10)
plus the MV of Decimal Digit

The MV of ExponentPart::: Exponentindicator Signedintegeristhe MV of Signedinteger.

The MV of Sgnedinteger ::: DecimalDigitsisthe MV of DecimalDigits

The MV of Sgnedinteger ::: + DecimalDigitsisthe MV of DecimalDigits

The MV of Sgnedinteger ::: - DecimalDigitsis the negative of the MV ofDecimal Digits

The MV of DecimalDigit ::

0 or of HexDigit ::

OisO.

The MV of DecimalDigit:: 1 or of HexDigit::: 1 is 1.
The MV of DecimalDigit:: 2 or of HexDigit::: 2 is 2.
The MV of DecimalDigit:: 3 or of HexDigit::: 3 is 3.
The MV of DecimalDigit:: 4 or of HexDigit::: 4 is4.
The MV of DecimalDigit:: 5 or of HexDigit::: 5is5.
The MV of DecimalDigit:: 6 or of HexDigit::: 6 is 6.
The MV of DecimalDigit:: 7 or of HexDigit::: 7 is 7.
The MV of DecimalDigit:: 8 or of HexDigit::: 8 is 8.
The MV of DecimalDigit:: 9 or of HexDigit::: 9 is9.
The MV of HexDigit ::: a or of HexDigit ::: Ais 10.
The MV of HexDigit ::: b or of HexDigit ::: Bis11.
The MV of HexDigit ::: ¢ or of HexDigit ::: Cis12.
The MV of HexDigit ::: d or of HexDigit ::: Dis 13.
The MV of HexDigit ::: e or of HexDigit ::: Eis 14.
The MV of HexDigit ::: f or of HexDigit ::: Fis15.

The MV of HexIntegerLiteral::: Ox HexDigitisthe MV of HexDigit.

The MV of HexIntegerLiteral::: 0XHexDigitisthe MV of HexDigit.

The MV of HexIntegerLiteral::: HexIntegerLiteral HexDigitis (the MV of HexInteger Literal

times 16) plus the MV ofHexDigit.
Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of
the Number type. If the MV is 0, then the rounded value i$0 unless the first non-whitespace
character in the string numeric literal is*- ', in which case the rounded value is 0. Otherwise, the
rounded value must bethe number value for the MV (in the sense defined in sectioB.4), unless the
literal includes aStrDecimalLiteral and the literal has more than 20 significant digits, in which case
the number value may be any implementation-dependent approximation to the MV. A digit is
significantif it is not part of anExponentPartand (either it isnotO or it is animportant zeroor there
isno decimal point “. ’ in theliteral). A digitO isan important zero if thereis at least one important
item to itsleft and at least oneimportant itemto its right within the literal. Any digit that is not0 and
is not part of anExponentPartis an important item; a decimal point "’ is also an important item.

6.4 TOINTEGER

The operator Tolnteger attempts to convert its argument to an integral numeric value. This operator
functions as follows:
1. Cal ToNumber on the input argument.

27

If Result(1) isNaN, return +0.

If Result(1) is+¥ or - ¥, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

a bk wd

6.5 TOINT32: (SIGNED32 BIT INTEGER

The operator Tolnt32 converts its argument to one of % integer values in the range- 2** through 2°-

1, inclusive. This operator functions as follows:

1. Cal ToNumber on the input argument.

2. If Result(1) isNaN, +¥, or - ¥, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo Z; that is, a finite integer valuek of Number type with positive sign
and less than 2* in magnitude such the mathematical difference of Result(3) ané is
mathematically an integer multiple of 2.

5. If Result(d) is greater than or equal to 2, return Result(5)- 2%; otherwise return Result6).

Discussion:

Note that the Tolnt32 operation is idempotent: if applied to aresult that it produced, the second
application leaves that value unchanged.

Note also that Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x.

(It isto preserve this latter property that+¥ and - ¥ are mapped to+0.)

Note that Tolnt32 maps- 0 to +0.

6.6 TOUINT32: (UNSIGNED32 BIT INTEGER

The operator ToUint32 converts its argument to one of 2 integer valuesin the range 0 through 3%

1, inclusive. This operator functions as follows:

1. Cal ToNumber on the input argument.

2. If Result(1) isNaN, +¥, or - ¥, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo Z; that is, a finite integer valuek of Number type with positive sign
and less than 2* in magnitude such the mathematical difference of Result(3) anét is
mathematically an integer multiple of 2.

5. Return Result@).

Discussion:

Notethat step 6 is the only difference between ToUint32 and Tolnt32.

Note that the ToUint32 operation is idempotent: if applied to aresult that it produced, the second
application leaves that value unchanged.

Note also that ToUint32(Tolnt32(x)) is equal to ToUint32(x) for al values of x.

(It isto preserve this latter property that+¥ and - ¥ are mapped to+0.)

Note that ToUint32 maps- 0 to +0.

6.7 TOUINT16: (UNSIGNED16 BIT INTEGER

The operator ToUint16 converts its argument to one of integer valuesin the range 0 through 2°-

1, inclusive. This operator functions as follows:

1. Cal ToNumber on the input argument.

2. If Result(1) isNaN, +¥, or - ¥, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo Z; that is, a finite integer valuek of Number type with positive sign
and less than 2° in magnitude such the mathematical difference of Result(3) anét is
mathematically an integer multiple of 2°.

5. Return Result@).

28

Discussion:
Notethat the substitution of 2° for 2°2in step 4 is the only difference between ToUint32 and
ToUnitl6

Note that ToUint16 maps- 0 to +0.

6.8 TOSTRING

The operator ToString attempts to convert its argument to a value of type String according to the
following table:

Input Type Result
Undefined "undefi ned"
Null “nul 1"

Boolean true > "true"

fal se > "fal se"

Number See discussion below.
String Return the input argument (no conversion)
Object Apply the following steps:

1. Cal ToPrimitive(input argument, hint String).
2. Cadll ToString(Result(1)).
3. Return Result(2).

6.8.1 ToString Applied to the Number Type

The operator ToStringconverts a number to string format as follows:
If the argument isNaN, the result isthe string” NaN".
If the argument is+0 or - O, theresult is" 0".
If the argument is+¥, theresultis" | nfi nity".
If the argument is- ¥, theresultis” - I nfinity".

Otherwise, the result is a string that represents the sign and finite nonzero magnitude (absolute
value) of the argument. If the sign is negative, the first character of theresultis"; if thesignis
positive, no sign character appears in the result. As for the magnituden:

If misan integer less than 167, then it is represented as that integer value in decimal form
with no leading zeroes and no decimal point.

If mis greater than or equal to 10° but less than 1G*, and is not an exact integer value, then
it is represented as the integer part (floor) ofm, in decimal form with no leading zeroes,
followed by adecimal point.’, followed by one or more decimal digits (see below)
representing the fractional part ofm.

If mislessthan 10° or not less than 1G*, then it is represented in so-called "computerized
scientific notation." Letn be the unique integer such that 10 £ m< 10™; then let a be the
mathematically exact quotient ofmand 10" so that 1£ a < 10. The magnitude is then
represented as the integer part (floor) ofa, as a single decimal digit, followed by a decimal
point ‘. ’, followed by one or more decimal digits (see below) representing the fractional part
of a, followed by the lowercase letteré’, followed by a representation oh as a decimal
integer (first aminussign -’ if nisnegative or aplussign +' if nis not negative, followed
by the decimal representation of the magnitude oh with no leading zeros).
How many digits must be printed for the fractional part o or a? There must be at least one digit;
beyond that, there must be as many, but only as many, more digits as are needed to uniquely
distinguish the argument value from all other representable numeric values. That is, suppose thatis
the exact mathematical value represented by the decimal representation produced by this method for a

29

finite nonzero argument; thend must be the value of Number type nearest ta; or if two values of the
Number type are equally close te, then d must be one of them and the least significant bit ofl must
be 0. A consequence of this specification is that ToString never produces trailing zero digits for a
fractiona part.

There remains some choice as to the last digit generated for a fractional part. The following
specification was considered but not adopted:

(This paragraph is not part of the ECMAScript specificatiah The decimal string produced

must be as close in its mathematical value to the mathematical value of the original number as
any other decimal string with the same number of digits; and if two decimal strings of the same
minimal length would be equally close in value to the original number, then the decimal string
whose last digit is even should be chosen.

While such a strategy is recommended to implementors, the actual rule is somewhat more permissive:
If X is any number value, then ToNumber(ToStringf)) must be exactly the same as x.

Implementors of ECM A Script may find useful the paper and code written by David M. Gay for
binary-to-decimal conversion of floating-point numbers [Gay 1990].

6.9 ToOBJECT

The operator ToObject attempts to convert its argument to a value of type Object according to the
following table:

Input Type Result

Undefined Generate a runtime error.

Null Generate a runtime error.

Boolean Create anew Boolean object whose default value is the value of the boolean. Seg
section 12.6 for a description of Boolean object

Number Create anew Number object whose default value is the value of the number. See
section 12.7 for a description of Number objed

String Create anew String object whose default value is the value of the string. See
section 12.5for a description of String objecs.

Object The result isthe input argument (no conversion)

30

7 EXECUTION CONTEXTS

When control is transferred to ECM A Script executable code, we say that control is entering an
execution context. Active execution contexts logically form a stack. The top execution context on this
logical stack isthe running execution context.

7.1 DEFINITIONS

7.1.1 Function Objects

There are four types of function objects:
Declared functions are defined in source text by a FunctionDeclaration.

Anonymous functions are created dynamically by using the built-ifFunct i onobject asa
constructor, which we refer to as instantiatingFunct i on.

Host functions are created at the request of the host with source text supplied by the host. The
mechanism for their creation is implementation dependent. Host functions may have any subset of
the following attributes { ImplicitThis, ImplicitParents}. These attributes are described below.

Internal functions are built-in objects of the language, such apar sel nt and Mat h. exp. These
functions do not contain executable code defined by the ECM A Script grammar, so are excluded
from this discussion of execution contexts.

7.1.2 Types of Executable Code

There are five types of executable ECM A Script source text:

Global codeis source text that is outside all function declarations. More precisely, the global code
of aparticular ECM A ScriptProgramconsists of all SourceElementsin the Programproduction
which come from theStatement definition.

Eval codeis the source text supplied to the built-ireval function. More precisely, if the
parameter to the built-ineval functionisastring, it istreated as an ECMA ScriptProgram The
eval code for a particular invocation oeval isthe global code portion of the string parameter.

Function codeis source text that is inside a function declaration. More precisely, the function code
of a particular ECM A ScriptFunctionDeclarationconsists of theBlock in the definition of
FunctionDeclaration

Anonymous codeis the source text supplied when instantiating=unct i on. More precisely, the
last parameter provided in an instantiation ofFunct i onis converted to astring and treated as
the StatementL.ist of the Block of aFunctionDeclaration If more than one parameter is provided
in an instantiation of Funct i on, all parameters except the last one are converted to strings and
concatenated together, separated by commas. The resulting string is interpreted as the

Formal ParameterListof aFunctionDeclarationfor the StatementList defined by the last
parameter.

Host codeis the source text supplied by the host when creating a host function. The source text is
treated as the StatementList of the Block of aFunctionDeclaration Depending on the
implementation, the host may also supply &ormalParameterList

31

7.1.3 Variable Instantiation

Every execution context has associated with it &ariable object Variables declared in the source text
are

added as properties of the variable object. For global and eval code, functions defined in the source
text are added as properties of the variable object. Function declarations in other types of code are not
allowed by the grammar. For function, anonymous and host code, parameters are added as properties
of the variable object.

Which object is used as the variable object and what attributes are used for the properties depends on
the

type of code, but the remainder of the behavior is generic:

For each FunctionDeclarationin the code, in source text order, instantiate a declared function
from the FunctionDeclarationand create a property of the variable object whose nameis the
Identifier in the FunctionDeclaration whose value is the declared function and whose attributes
are determined by the type of code. If the variable object already has a property with this name,
replace its value and attributes.

For each formal parameter, as defined in thé=ormalParameter List create a property of the

variable object whose name is thédentifier and whose attributes are determined by the type of
code. The values of the parameters are supplied by the caller. If the caller supplies fewer parameter
values than there are formal parameters, the extra formal parameters have valueindef i ned If

two or more formal parameters share the same name, hence the same property, the corresponding
property is given the value that was supplied for the last parameter with this naméf the value of
this last parameter was not supplied by the caler, the value of the corresponding property is
undefi ned

For each VariableDeclarationin the code, create a property of the variable object whose nameis
the Identifier in VariableDeclaration whose valueisundef i ned and whose attributes are
determined by the type of code. If there is already a property of the variable object with the name
of adeclared variable, the value of the property and its attributes are not changed. Semantically,
this step must follow the creation of thé-unctionDeclarationand Formal ParametetList

properties. In particular, if a declared variable has the same name as a declared function or formal
parameter, the variable declaration does not disturb the existing property.

7.1.4 Scope Chain and Identifier Resolution

Every execution context has associated with it acope chain Thisislogically alist of objects that are

searched whenbinding an Identifier. When control enters an execution context, the scope chain is

created and is populated with an initial set of objects, depending on the type of code. When control

leaves the execution context, the scope chain is destroyed.

During execution, the scope chain of the execution context is affected only byithStatement When

execution enters awi t h block, the object specified in thevi t h statement is added to the front of the

scope chain. When execution leaves avi t h block, whether normally or viaar eak orconti nue

statement, the object is removed from the scope chain. The object being removed will always be the

first object in the scope chain.

During execution, the syntactic productiorPrimaryExpression: Identifier is evaluated using the

following algorithm:

1. Get the next object in the scope chain. If thereisn't one, go to step 5.

2. Cadl the [[HasProperty]] method of Result(l), passing thédentifier as the property.

3. If Result(2) ist r ue, return avalue of type Reference whose base object is Result(@d whose
property name is theldentifier.

4. Gotostep 1.
5. Return avalue of type Reference whose base object ireul | and whoseproperty name isthe
Identifier.

The result of binding an identifier is always a value of type Reference with its member name
component equal to the identifier string.

32

7.1.5 Global Object

Thereisauniqueglobal objectwhich is created before control enters any execution context. Initially
the global object has the following properties:

Built-in objects such as Math, String, Date, parselnt, etc. These have attributes { DontEnum }.

Additional host defined properties. This may include a property whose value is the global object
itself, for examplewi ndowin HTML.

As control enters execution contexts, and as ECM A Script code is executed, additional properties may
be added to the global object and the initial properties may be changed.

7.1.6 Activation Object

When control enters an execution context for function code, anonymous code or host code, an object
called the activation object is created and associated with the execution contexthe activation object
isinitialized with a single property with namear gunent s and property attributes { DontDelete }.
Theinitial value of this property is the arguments object described below.he activation object ishen
used as the variable object for the purposes of variable instantiation.

The activation object is purely a specification mechanism. It isimpossible for an ECM A Script
program to access the activation object. It can access members of the activation object, but not the
activation object itself. When the call operation is applied to a Reference value whose base object is an
activation object,nul | isused asthet hi s value of the call.

7.1.7 This

Thereisat hi s value associated with every active execution context. Thehi s value depends on the
caller and the type of code being executed and is determined when control enters the execution
context. Thet hi s value associated with an execution context isimmutable.

7.1.8 Arguments Object

When control enters an execution context for function, anonymous or host code, an arguments object
is created and initialized as follows:

A property is created with namecal | ee and property attributes{ DontEnum }. The initial value
of this property is the function object being executed. This allows anonymous functions to be
recursive.

A property is created with namd engt h and property attributes { DontEnum }. The initial value
of this property is the number of actual parameter values supplied by the caller.

For each non-negative integer, iarg, less than the value of thé engt h property, a property is
created with name ToString(iarg) and property attributes{ DontEnum }. The initial value of this
property is the value of the corresponding actual parameter supplied by the caller. The first actual
parameter value correspondsto iarg = 0, the second to iarg = 1 and so on. In the case when iarg is
less than the number of formal parameters for the function object, this property sharesits value
with the corresponding property of the activation object. This means that changing this property
changes the corresponding property of the activation object and vice versa. The value sharing
mechanism depends on the implementation.

I ssue: Should the arguments object have a caller property?

7.2 ENTERINGAN EXECUTIONCONTEXT

When control enters an execution context, the scope chain is created and initialized, variable
instantiation is performed, the break label and continue label stacks are created and initialized to
empty, and thet hi s value is determined

Theinitialization of the scope chain variable instantiation and the determination of thet hi s value
depend on the type of code being entered.

33

7.2.1 Global Code

The scope chain is created and initialized to contain the global object and no others.

Variable instantiation is performed using the global object as the variable object and using empty
property attributes.

Thet hi s value isthe global object.

7.2.2 EvalCode

When control enters an execution context for eval code, the previous active execution context, referred
to asthecalling context, is used to determine the scope chainthe variable object and thet hi s

value If there is no calling context,then initializing the scope chain variable instantiation and
determination of thet hi s valueare performed just as for global code.

The scope chain isinitialized to contain the same objects, in the same order, as the calling
context's scope chain. This includes objects added to the calling context's scope chain by
WithStatement.

Variable instantiation is performed using the calling context's variable object and using empty
property attributes.

Thet hi s valueisthe same asthet hi s value of the calling context.

7.2.3 Function and Anonymous Code

The scope chain isinitialized to contain the activation object followed by the global object.

Variable instantiation is performed using the activation object as the variable object and using
property attributes { DontDelete}.

The caller provides thet hi s value. If thet hi s value provided by the caller is not an object
(including the case whereit isnul |'), then thet hi s valueisthe global object.

7.2.4 Host Code

The scope chain isinitialized to contain the activation object as its first element.

If the host function has the ImplicitThis attribute, the hi s value is placed in the scope chain
after the activation object.

If the host function has the ImplicitParents attribute, alist of objectsletermined solely by the

t hi s value, isinserted in the scope chain after the activation object antd hi s object. Note that
thislist is determined at runtime by thet hi s value. It is not determined by any form of lexical
scoping.

The global object is placed in the scope chain after all other objects.

Variable instantiation is performed using the activation object as the variable object and using
attributes { DontDelete}.

Thet hi s valueis determined just as for function and anonymous code.

34

8 EXPRESSIONS

8.1 PRIMARYEXPRESSIONS

Syntax
PrimaryExpression:
this
Identifier
Literal

(Expression)

8.1.1 Thethis Keyword

Thet hi s keywordevaluatesto thet hi s value of the execution context.

8.1.2 Identifier Reference

An Identifier is evaluated using the scoping rules statedn section Scope Chain and Identifier
ResolutionThe result of anldentifier is always a value of type Reference.

8.1.3 Literal Reference
A Literal is evaluated as described in sectiorLiterals.

8.1.4 The Grouping Operator

The productionPrimaryExpression: (Expression) is evaluated as follows:
1. Evaluate Expression. This may be of type Reference.
2. Return Result().

8.2 LEFT-HAND-SIDE EXPRESSIONS
Syntax

Member Expression:
PrimaryExpression
Member Expression] Expression]
Member Expression. ldentifier
newMember Expression [noLineTerminator here] Arguments

NewEXpression:
Member Expression
newNewExpression

CallExpression:
Member Expression [noLineTerminator here] Arguments
CallExpression [noLineTerminator here] Arguments
CallExpression[Expression]
CallExpression. Identifier

35

Arguments:

()
(ArgumentList)

ArgumentList:
AssignmentExpression
ArgumentList, AssignmentExpression

LeftHandS deExpression:
NewExpression
CallExpression

8.2.1 Property Accessors

Properties are accessed by name, using either the dot notatian
Member Expression. |dentifier
CallExpression. Identifier
or the bracket notation
Member Expression] Expression]
CallExpression[Expression]
The dot notation isexplained bythe following syntactic conversion:
Member Expression. ldentifier
isidentical in its behavior to
Member Expression[<identifier-string>]
and similarly
CallExpression. Identifier
isidentical in its behavior to
CallExpression[<identifier-string>]
where <identifier-string> is a string literal containing the same sequence of characters as the
Identifier.

The productionMember Expression: MemberExpression][Expression] isevaluated as follows:
Evaluate Member Expression

Call GetValue(Result(1)).

Evaluate Expression

Call GetValue(Result(3)).

Call ToObject(Result(2)).

Call ToString(Result(4)).

Return avalue of type Reference whose base object is Result(8hd whosepropertyname is
Result(6).

Noa~wdPE

The productionCallExpression: MemberExpression] Expression] is evaluatedin exactly the same
manner, except that the containedCall Expressionis evaluated in step 1.

8.2.2 The new Operator

The productionNewExpression: newNewExpressionis evaluated as follows:

Evaluate NewExpression

Call GetValue(Result(1)).

If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
Call the [[Construct]] method on Result(2), providingio arguments (that is, an empty list of
arguments).

akrwbdpE

36

6. If Type(Result(5) is not Object, generate a runtime error.
7. Return Result(5.

The productionNewCallExpression: new NewExpression Argumentsis evaluated as follows:
Evaluate NewExpression

Call GetValue(Result(1)).

Evaluate Arguments producing an internal list of argument values (sectior8.2.4).

If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
Call the [[Construct]] method on Result(2), providing the lisResult(3) as the argument values
If Type(Result(6)) is not Object, generate a runtime error.

Return Result(6).

N~ WDNER

8.2.3 Function Calls

The productionCallExpression: MemberExpression Argumentsis evaluated as follows:

Evaluate M emberExpression.

Evaluate Arguments producing an internal list of argument values (sectior8.2.4).

Call GetValue(Result(1)).

If Type(Result(3)) is not Object, generate a runtime error.

If Result(3) does not implement the internal [[Call]] method, generate a runtime error.

If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). OtherwisResult(6) isnull.

If Result(6) is an activation object, Result(7) iaull. Otherwise, Result(7) is the same as

Result(6).

8. Cal the[[Call]] method on Result(3), providing Resul#{) asthet hi s value and providing the
list Result(2) as the argument values

9. Return Result@®).

NogkrwbdpE

The productionCallExpression: CallExpression Arguments is evaluatedin exactly the same mannet
except that the containedCallExpressionis evaluated in step 1.

Note: Result(@®) will never be of type Referencéf Result(3) is anative ECM A Script object. Whether
calling a host object can return a value of type Reference is implementatiedependent.

8.2.4 Argument Lists

The evaluation of an argument list produces an internal list of values (sectioh.8).

The productionArguments: () isevaluated as follows:
1. Return an empty internal list of values.

The productionArguments: (ArgumentList) isevaluated as follows:
1. Evauate ArgumentList
2. Return Result(1).

The productionArgumentList: AssignmentExpression is evaluated as follows:
1. Evaluate AssignmentExpression

2. Cdl GetVaue(Result(1)).

3. Return an internal list whose sole item is Result(2).

The productionArgumentList: ArgumentList , AssignmentExpression is evaluated as follows:

1. Evauate ArgumentList

2. Evauate AssignmentExpression

3. Cdl GetVaue(Result(2)).

4. Return aninternal list whose length is one greater than the length of Result(1) and whose items
are the items of Result(1), in order, followed at the end by Result(3), which isthe last item of the
new list.

37

8.3 POSTFIXEXPRESSIONS
Syntax

PostfixExpression:
LeftHandS deExpression
LeftHandS deExpression [no LineTerminator here] ++
LeftHandS deExpression [no LineTerminator here] - -

8.3.1 Postfix Increment Operator

The productionMember Expression: Member Expression++ is evaluated as follows:
Evaluate Member Expression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Add the valuel to Result(3), using the same rules as for ther operator (section8.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(3).

o0 hk~wbdpE

8.3.2 Postfix Decrement Operator

The productionMember Expression: MemberExpression- - is evaluated as follows:

Evaluate Member Expression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Subtract the valuel from Result(3), using the same rules as for the operator (section8.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(3).

o0 k~wbdpE

8.4 UNARYOPERATORS
Syntax

UnaryExpression:
PostfixExpression
del et e UnaryExpression
voi d UnaryExpression
t ypeof UnaryExpression
++ UnaryExpression
- - UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

8.4.1 Thedel ete Operator

The productionUnaryExpression: del et e UnaryExpressionis evaluated as follows:

Evaluate UnaryExpression

Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

If Type(Result(2)) is not Objectreturn true.

If Result(2) does not implement the internal [[Delete]] methgdyo to step 8

Call the [[Delete]] method on Result(2), providing Result(3) as the property name to delete.
Return Result(6).

Call the [[HasProperty]] method on Result(2) providing Result(3 as the property name to check
for.

N~ WDNE

38

0.

If Result(8) istrue, return false

10. Returntrue.

8.4.2 Thevoi d Operator

The productionUnaryExpression: voi d UnaryExpressionis evaluated as follows:

1.
2.
3.

Evaluate UnaryExpression
Call GetValue(Result(1)).
Return undefined.

8.4.3 Thetypeof Operator

The productionUnaryExpression: t ypeof UnaryExpressionis evaluated as follows:

1

2.
3.
4

Evaluate UnaryExpression

If Type(Result(1)) is Reference and GetBase(Result(1)) isull, return " undef i ned".
Call GetValue(Result(1)).

Return a string determined by Type(Result(3)) according to the following table:

Type Result
Undefined "undefi ned"

Null "obj ect”

Boolean "bool ean"

Number "nunber"

String "string"

Object (native and "obj ect”

doesn’t implement

[[Call]])

Object (native and "function"

implements [[Call]])

Object (host) I mplementation-dependent

8.4.4 Prefix Increment Operator

The productionUnaryExpression: ++ UnaryExpressionis evaluated as follows:

o0k~ wbdpE

Evaluate UnaryExpression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Add the valuel to Result(3), using the same rules as for ther operator (section8.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

8.4.5 Prefix Decrement Operator

The productionUnaryExpression: - - UnaryExpressionis evaluated as follows:

o0 hk~wbdpE

Evaluate UnaryExpression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Subtract the valuel from Result(3), using the same rules as for the operator (section8.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

8.4.6 Unary+ Operator

The unary + operator converts its operand to Number type.

39

The productionUnaryExpression: + UnaryExpressionis evaluated as follows:
1. EvauateUnaryExpression

2. Cdl GetVaue(Result(1)).

3. Cadl ToNumber(Result(2)).

4. Return Result(3).

8.4.7 Unary- Operator

The unary - operator converts its operand to Number type and then negates it. Note that negatingp
produces- 0, and negating - O produces+0.

The productionUnaryExpression: - UnaryExpressionis evaluated as follows:

Evaluate UnaryExpression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

If Result(3) is NaN, return NaN.

Negate Result(3) that is, compute a number with the same magnitude but opposite sign
Return Result(5).

oA~ wWDdPE

8.4.8 The Bitwise NOT Operator £)

The productionUnaryExpression: ~ UnaryExpressionis evaluated as follows:
Evaluate UnaryExpression

Call GetValue(Result(1)).

Call Tolnt32(Result(2)).

Apply bitwise complement to Result(3)The result is a signed 32-bit integer.
Return Result(4).

akrwbdpE

8.4.9 Logical NOT Operator ()

The productionUnaryExpression: ! UnaryExpressionis evaluated as follows:
Evaluate UnaryExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, return false.

Return true.

agkrwbdpE

8.5 MULTIPLICATIVEOPERATORS

Syntax
MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression* UnaryExpression
MultiplicativeExpression/ UnaryExpression
MultiplicativeExpression%UnaryExpression
Semartics

The productionMultiplicativeExpression: MultiplicativeExpression @ UnaryExpressionwhere @
stands for one of the operators in the above definitions, is evaluated as follows:

Evaluate M ultiplicativeExpression.

Call GetVaue(Result(1)).

Evaluate UnaryExpression.

Call GetVaue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

oA~ wWDE

40

7. Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the discussions below
(74.1,7.4.2,7.4.3).
8. Return Result(7).

8.5.1 Applying the* Operator

The* operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECM A Script, because of finite precision.

The result of afloating-point multiplication is governed by the rules of IEEE 754 double-precision
arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands
have different signs.

Multiplication of an infinity by a zero resultsin NaN.

Multiplication of an infinity by an infinity results imn infinity. The sign is determined by the rule
aready stated above.

Multiplication of an infinity by afinite non-zero value resultsin asigned infinity. The signis
determined by the rule already stated above.

In the remaining cases, where neither an infinity or NaN isinvolved, the product is computed and
rounded to the nearest representable value using |EEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, the result is then a zero of appropriate sign. The ECMA Script
language requires support of gradual underflow as defined by |IEEE 754.

8.5.2 Applying the/ Operator

The/ operator performs division, producing the quotient of its operands. The left operand is the
dividend and the right operand is the divisor. ECMA Script does not perform integer division. The
operands and result of all division operations are double-precision floating-point numbers. The result
of division is determined by the specification of |EEE 754 arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands
have different signs.

Division of an infinity by an infinity resultsin NaN.
Divisionof an infinity bya zero resultsin an infinity. The sign is determined by the rule already
stated above.

Division of an infinity by a non-zero finite value resultsin asigned infinity. The signis
determined by the rule already stated above.

Division of afinite value by an infinity resultsin zero.

Division of azero by a zero resultsin NaN; division of zero by any other finite value resultsin
zero.

Division of a non-zero finite value by a zero results in asigned infinity. The sign is determined by
the rule already stated above.

In the remaining cases, where neither an infinity, nor a zero, nor NaN isinvolved, the quotient is
computed and rounded to the nearest representable value using |EEE 754 round-to-nearest mode.
If the magnitude istoo large to represent, we say the operation overflows; the result is then an
infinity of appropriate sign. If the magnitude is too small to represent, we say the operation
underflows and the result is zero. The ECM A Script language requires support of gradual
underflow as defined by |IEEE 754.

41

8.5.3 Applying the%Operator

The binary %operator is said to yield the remainder of its operands from an implied division; the |eft
operand is the dividend and the right operand is the divisor. In C and C++, the remainder operator
accepts only integral operands, but in ECMA Script, it also accepts floating-point operands.

The result of afloating-point remainder operation as computed by thigoperator is not the same as
the "remainder" operation defined by |EEE 754. The IEEE 754 "remainder" operation computes the
remainder from a rounding division, not a truncating division, and so its behavior is not analogous to
that of the usual integer remainder operator. Instead the ECM A Script language defineon floating-
point operations to behave in a manner analogous to that of the Javainteger remainder operator; this
may be compared with the C library function fmod.

The result of a ECM A Script floating-point remainder operation is determined by the rules of |IEEE
arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor isfinite, the result ishe same as the dividend

In the remaining cases, where neither an infinity, nor a zero, nor NaN isinvolved, the floating-
point remainder r from adividend n and a divisor d is defined by the mathematical relationr =n -
(d* g) where g is an integer that is negative only if n/d is negative and positive only if n/d is
positive, and whose magnitude is as large as possible without exceeding the magnitude of the true
mathematical quotient of n and d.

8.6 ADDITIVEOPERATORS
Syntax

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression+ MultiplicativeExpression
AdditiveExpression- MultiplicativeExpression

8.6.1 The Addition Operator ¢)

The addition operator either performs string concatenation or numeric addition.

The productionAdditiveExpression: AdditiveExpression+ MultiplicativeExpressionis evaluated as
follows:

1. Evaluate AdditiveExpression.

Call GetValue(Result(1)).

Evaluate M ultiplicativeExpression.

Call GetValue(Result(3)).

Call ToPrimitive(Result(2)).

Call ToPrimitive(Result(4)).

If Type(Result(5)) is String or Type(Result(6)) is String, go to step 18Note that this step differs
from step 3 in the algorithm for comparison for the relational operators in usingr instead of
and.)

8. Call ToNumber(Result(5)).

9. Call ToNumber(Result(6)).

10. Apply the addition operation to Result(8) and Result(9). See the discussion below.

11. Return Result(10).

12. Call ToString(Result(5)).

13. Call ToString(Result(6)).

14. Concatenate Result(R) followed by Result(B).

NoaM~ODN

42

15. Return Result(14).

Note that no hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECM A Script
objects handle the absence of a hint as if the hint Number were given, but host objects may handle the
absence of a hint in some other manner.

8.6.2 The Subtraction Operator {)

The productionAdditiveExpression: AdditiveExpression- MultiplicativeExpressionis evaluated as
follows:

Evaluate AdditiveExpressian.

Call GetValue(Result(1)).

Evaluate M ultiplicativeExpression.

Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the subtraction operation to Result(5) and Result(6). See the discussion below (7.5.3).
Return Result(7).

N ~WDNER

8.6.3 Applying the Additive Operators(-)to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum
of the operands. The- operator performs subtraction, producing the difference of two numeric
operands.

Addition is a commutative operation, but not always associative.
The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:
If either operand isNaN, the result isNaN.
The sum of two infinities of opposite sign islaN.
The sum of two infinities of the same sign is the infinity of that sign.
The sum of an infinity and a finite value is equal to the infinite operand.
The sum of twonegativezerosis- 0. The sum of two positive zeros, or of two zeros of opposite
sign, is+0.
The sum of a zero and a nonzero finite value is equal to the nonzero operand.
The sum of two nonzero finite values of the same magnitude and opposite sign +®.

In the remaining cases, where neither an infinity, nor a zero, nor NaN isinvolved, and the
operands have the same sign or have different magnitudes, the sum is computed and rounded to
the nearest representable value using |EEE 754 round-to-nearest mode. If the magnitude is too
large to represent, the operation overflows and the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, the operation underflows and the result is zero. The
ECMA Script language requires support of gradual underflow as defined by |EEE 754.

The - operator performs subtraction when applied to two operands of humeric typproducing the
difference of its operands; the left operand is the minuend and the right operand is the subtrahend.
Given numeric operandsa and b, it is always the case thata- b produces the same result asa+(- b) .

8.7 BITWISESHIFTOPERATORS

Syntax
ShiftExpression:
AdditiveExpression
ShiftExpression<< AdditiveExpression
ShiftExpression>> AdditiveExpression
ShiftExpression>>> AdditiveExpression

Semantics

43

The result of evaluatingShiftExpressionis always truncated to 32 bits. If the result of evaluating
ShiftExpressionproduces a fractional component, thefactional component is discarded. The result of
evaluating an AdditiveExpresionthat is the right-hand operand of a shift operatoris always truncated
to five bits.

8.7.1 The Left Shift Operator <)

Performs a bitwise | eft shift operation on the left argument by the amount specified by the right
argument.

The productionShiftExpression: ShiftExpression<< AdditiveExpressionis evaluated as follows:
Evaluate ShiftExpression.

Call GetValue(Result(1)).

Evaluate AdditiveExpression.

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
L eft shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

©oNOOOA®BDNE

8.7.2 The Signed Right Shift Operator¥>)

Performs a sign-filling bitwise right shift operation on the left argument by the amount specified by
the right argument.

The productionShiftExpression: ShiftExpression>> AdditiveExpressionis evaluated as follows:
Evaluate ShiftExpression.

Call GetValue(Result(1)).

Evaluate AdditiveExpression.

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is
propagated. The result is a signed 32 bit integer.

9. Return Result(8).

N ~WDNRE

8.7.3 The Unsigned Right Shift Operator>>>)

Performs a zero-filling bitwise right shift operation on the left argument by the amount specified by
the right argument.

The productionShiftExpression: ShiftExpression>>> AdditiveExpressionis evaluated as follows:
Evaluate ShiftExpression.

Call GetValue(Result(1)).

Evaluate AdditiveExpression.

Call GetValue(Result(3)).

Call ToUint32(Result(2)).

Call Tolnt32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero.
The result is an unsigned 32 bit integer.

9. Return Result(8).

N~ WDNRE

8.8 RELATIONALOPERATORS
Syntax

44

Relational Expression:
ShiftExpression
Relational Expression< ShiftExpression
Relational Expression> ShiftExpression
Relational Expression<= ShiftExpression
Relational Expression>= ShiftExpression

Semantics

The productionRelational Expression Relational Expression< ShiftExpressionis evaluated as
follows:

S

Evaluate Rel ational Expression

Call GetVaue(Result(1)).

Evaluate ShiftExpression

Call GetVaue(Result(3)).

Perform the comparison Result(2) < Result(4). (See below.)

If Result(5) isundefined, return false. Otherwise, return Result(5).

The productionRelational Expression Relational Expression> ShiftExpressionis evaluated as
follows:

o uk~wdPE

Evaluate Relational Expression

Call GetVaue(Result(1)).

Evaluate ShiftExpression

Call GetVaue(Result(3)).

Perform the comparison Result(4) < Result(2). (See below.)

If Result(5) isundefined, return false. Otherwise, return Result(5).

The productionRelational Expression Relational Expression<= ShiftExpressionis evaluated as
follows:

o k~wbdrE

Evaluate Rel ational Expression

Call GetValue(Result(1)).

Evaluate ShiftExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result(2). (See below.)

If Result(5) istrueor undefined, return false. Otherwise, returntrue.

The productionRelational Expression Relational Expression>= ShiftExpressionis evaluated as
follows:

N o k~wdpE

10.
11.
12.
13.
14.

Evaluate Rel ational Expression

Call GetValue(Result(1)).

Evaluate ShiftExpression

Call GetValue(Result(3)).

Perform the comparison Result(2) < Result(4). (See below.)

If Result(5) istrueor undefined, return false. Otherwise, returntrue.

The comparisonx <y, wherex and y are values, producestrue, false, or undefined (which
indicates that at |east one operand isNaN). Such a comparison is performed as follow€all
ToPrimitive, hint Number).

Call ToPrimitivefy, hint Number).

If Type(Result)) is String and Type(Result@)) is String, go to stepl16. (Note that this step
differs from step 7 in the algorithm for the addition operatot in using and instead of or.)
Call ToNumber(ResultQ)).

Call ToNumber(Result@)).

If Result(4) isNaN, return undefined

If Result(5) isNaN, return undefined

If Result(4) and Result(5) are the same number value, returifial se.

45

15.
16.
17.
18.
19.
20.
21.

22.

23.
24,

If Result(4) is+0 and Result(5) is- O, return false.

If Result(4) is- 0 and Result(5) is+0, return false.

If Result(4) is+¥, return false.

If Result(4) is- ¥, return true.

If Result(5) is+¥, return true.

If Result(5) is- ¥, return false.

If the (finite, nonzero) mathematical value of Result(4) is less than the (finite, nonzero)
mathematical value of Result(5), returntrue. Otherwise, returnfalse.

If Result(2) is aprefix of Result (1), returrfalse. (A string valuep is a prefix of string valueq if g
can be the result of concatenatingp and some other stringr. Note that any string is a prefix of
itself, because r may be an empty string.)

If Result(1) is aprefix of Result (2), returrtrue.

Let k be the smallest nonnegative integer such that the character at positiok within Result(1) is
different from the character at positionk within Result(2). (There must be such &, for neither
string is a prefix of the other.)

Let m be the integer that is the Unicode encoding for the character at positiok within Result(1).
Let n be the integer that is the Unicode encoding for the character at positiok within Result(2).
If m<n, return true. Otherwise, returnfalse.

8.9 EQUALITYOPERATORS
Syntax

EqualityExpression:
Relational Expression
EqualityExpression== Relational Expression
EqualityExpression! = Relational Expression

The productionEqualityExpression EqualityExpression== Relational Expressionis evaluated as
follows:

o k~wbdPE

Evaluate EqualityExpression

Call GetVaue(Result(1)).

Evaluate Relational Expression

Call GetVaue(Result(3)).

Perform the comparison Result(4) == Result(2). (See below.)

If Result(5) isundefined, return false. Otherwise, return Result(5).

The productionEqualityExpression EqualityExpressionl = Relational Expressionis evaluated as
follows:

o k~wdPE

Evaluate EqualityExpression

Call GetValue(Result(1)).

Evaluate Relational Expression

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (See below.)

If Result(5) istrueor undefined, return false. Otherwise, returntrue

The comparisonx ==y, wherex and y are values, producestr ug, false, or undefined (which indicates
that at least one operand isNaN). Such a comparison is performed as follows:

O NG A®®DNPRE

46

If Type) is differentfrom Type(y), go to step 14
If TypeX) is Undefined, returntrue.

If Type) is Null, returntrue.

If Type) isnot Number, go to step 11

If xisNaN, return undefined.

If yisNaN, return undefined

If X is the same number value asy, return true.

If xis+Oandyis-O0, return true

9. Ifxis-0andyis+0, returntrue
10. Returnfalse
11. If Type) is String, then return trueif x and y are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise, returfialse..
12. If TypeX) is Boolean, returntrueif x and y are bothtrue or bothfalse. Otherwise return false.
13. Returntrueif x andy refer to the same object.Otherwise, returnfalse.
14. If xisnull andy isundefined, return true.
15. If xisundefinedand y is null, return true.
16. If Type) is Number and Typef) is String,
return the result of the comparison ToStringk) ==y.
17. If Type) is String and Typefy) is Number,
return the result of the comparisonx == ToString(y).
18. Returnfalse

Discussion

String comparison can beforcedby'" + a == "" + b
Numeric comparison can beforcedbya - 0 == b - 0.
Boolean comparison can be forced byta == ! b.

The equality operators maintain the following invariants:

1. Al=Bisequivaentto! (A==B).

2. A==Bisequivalent toB == A, except in the order of evaluation of A and B.
3. if A==BandB==C,=>A==C, assuming no side effects.

As no conversions are applied to the operands, equality is always transitive.

8.10 BINARYBITWISEOPERATORS

Syntax
BitwiseANDExpr ession:
EqualityExpression
BitwiseANDExpression& EqualityExpression
BitwiseXOREXxpression:
BitwiseANDEXpression
BitwiseXORExpression™ BitwiseANDEXpression
BitwiseORExpression:
BitwiseXOREXxpression
BitwiseORExpression| BitwiseXOREXxpression
Semantics

The productionA : A @ B, where @ is one of the bitwise operators in the productions above, is
evaluated as follows:

Evaluate A.

Call GetValue(Result(1)).

Evaluate B.

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
Return Result(7).

N R~WDNER

8.11 BINARYLOGICALOPERATORS
Syntax

47

Logical ANDExpression:
BitwiseOREXpression
Logical ANDExpression&& BitwiseOREXxpression

Logical ORExpression:
Logical ANDExpression
Logical ORExpression| | Logical ANDEXxpression

Semantics

The productionLogical ANDExpression: Logical ANDEXxpression&& BitwiseOREXxpressionis
evaluated as follows:

Evaluate Logical ANDEXxpression.

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, returnResult(2).

Evaluate BitwiseOREXxpression.

Call GetValue((Result(5)).

Return Result).

Noa~wDdE

The productionLogical ORExpression: Logical ORExpression| | Logical ANDExpressionis evaluated
asfollows:

1. Evaluate Logical ORExpression.

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, returnResult(2).

Evaluate Logical ANDEXxpression.

Call GetValue(Result(5)).

Return Result().

NoaM~ODN

8.12 CONDITIONALOPERATOR(?:)
Syntax

Conditional Expression:
Logical ORExpression
Logical ORExpression ? AssignmentExpression: AssignmentExpression

Semantics

The productionConditional Expression: Logical ORExpression? AssignmentExpression:
AssignmentExpressionis evaluated as follows:
Evaluate L ogical ORExpression.

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 8.
Evaluatethe first AssignmentExpression.
Call GetValue(Result(5)).

Return Result(6).

Evaluate the second A ssignmentExpression.
. Call GetValue(Result(8)).

10. Return Result(9).

Issue: Add an explanation of how the grammar differs slightly from that of C and Java here.

©oNOOGA®BDNE

8.13 ASSIGNMENTOPERATORS
Syntax

48

AssignmentExpression:
Conditional Expression
LeftHandS deExpression AssignmentOperator AssignmentExpression

AssignmentOperator:: one of
= *= [= U += -= <<= >>= >>>= &= = |:

8.13.1 Simple Assignment §)

The productionAssignmentExpression: LeftHandS deExpression= AssignmentExpressionis
evaluated as follows:

Evaluate LeftHandS deExpression

Evaluate A ssignmentExpression.

Call GetValue(Result(2)).

Call PutVaugResult(1), Result(3)).

Return Result(3).

akrwbdpE

8.13.2 Compound Assignmentdp=)

The productionAssignmentExpression: LeftHandS deExpression @= AssignmentExpression where
@ represents one of operators indicated above, is evaluated as follows:

1. EvauatelLeftHandSdeExpression

Call GetValue(Result(1)).

Evaluate A ssignmentExpression.

Call GetValue(Result(2)).

Apply operator @ to Result(3) and Result(4).

Call PutValugResult(1), Result(5)).

Return Result(5).

NoGaM~ODN

8.14 COMMAOPERATOR(,)

Syntax
Expression:
AssignmentExpression
Expression, AssignmentExpression
Semantics

The productionExpression: Expression, AssignmentExpressionis evaluated as follows:
Evaluate Expression.

Call GetValue(Result(1)).

Evaluate A ssignmentExpression.

Call GetValue(Result(3)).

Return Result(4).

akrwbdpE

49

O STATEMENTS

Syntax

Statement :
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfSatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithSatement

Block :
{ StatementListy: }

SatementList:
Satement
StatementList Statement

Semantics

The productionBlock : { }isevaluated as follows:
1. Return “normal completion”.

The productionBlock : { StatementList} is evaluated as follows:
1. Evauate SatementList
2. Return Result(1).

The productionSatementList: StatementList Statementis evaluated as follows:
1. Evauate SatementList

2. If Result(1) isan Abrupt Completion, return Result(1).

3. Evaluate Statement.

4. Return Result(3).

9.1 VARIABLESTATEMENT
Syntax

VariableStatement:
var VariableDeclarationList;

VariableDeclarationList:
VariableDeclaration
VariableDeclarationList, VariableDeclaration

VariableDeclaration:
Identifier Initializeryy

50

Initializer :
= AssignmentExpression

Description

If the variable statement occurs inside @&unctionDeclaration the variables are defined with function-
local scopein that function. Otherwise, they are defined with global scope, that is, they are created as
members of the global object as described in sectiokrror! Reference source not found.Variables

are created when the execution scope is entered. ABlock does not define a new execution scope. Only
Programand FunctionDeclarationproduce a new scope. Eval code and anonymous code also define a
new execution scope, but these are not an explicit part of the grammer of ECM A Script. Variables are
initialized to theundef i nedvalue when created. A variable with anlnitializer is assigned the value
of its AssignmentExpressionwhen the VariableStatementis executed.

Semantics

The productionVariableStatement: var VariableDeclarationList; isevaluated asfollows:

1. EvauateVariableDeclarationList

2. Return“normal completion”.

The productionVariableDeclarationList: VariableDeclarationis evaluated as follows:
1. Evaluate VariableDeclaration.

The productionVariableDeclarationList: VariableDeclarationList, VariableDeclarationis
evaluated as follows:

1. EvaluateVariableDeclarationList

2. EvauateVariableDeclaration

The productionVariableDeclaration: Identifier is evaluated as follows:
1. Evauateldentifier.

ISSUE: Does it really evaluate the identifier, or does it take no action?

The productionVariableDeclaration: Identifier Initializer is evaluated as follows:
1. Evauateldentifier.

2. Evaluatelnitializer.

3. Cdl GetVaue(Result(2)).

4. Call PutVaue(Result(1), Resultg)).

The productionlnitializer : = AssignmentExpressionis evaluated as follows:
1. Evaluate AssignmentExpression
2. Return Result(1).

9.2 EMPTY STATEMENT

Syntax
EmptyStatement :
Semantics

The productionEmptyStatement : ; is evaluatedas follows:
1. Return“normal completion”.

9.3 EXPRESSIONSTATEMENT

Syntax
ExpressionStatement:
Expression;
Semantics

51

The productionExpressionStatement: Expression; isevaluated as follows:
1. EvauateExpression

2. Cadl GetVaue(Result(1)).(Thisvalueis not used.)

3. Return “normal completion”.

9.4 THE i f STATEMENT
Syntax

IfStatement :
i f (Expression) Statementel se Statement
i f (Expression) Statement

Semantics

The productionlfStatement : i f (Expression) Statementel se Statementis evaluated as follows:
Evaluate Expression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 7.

Evaluatethe first Satement.

Return Result(5).

Evaluate the second Statement.

Return Result(7).

The productionlfStatement : i f (Expression) Statementis evaluated as follows:
Evaluate Expression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return “normal completion”.

Evaluate Statement.

Return Result(5).

N~ WDNE

oA~ PE

9.5 ITERATION STATEMENTS
Syntax

IterationStatement :
whi | e (Expression) Statement
for (Expression, ; Expression, ; Expression,) Statement
for (var VariableDeclarationList;, Expression,; Expression,) Statement
for (LeftHandSdeExpressioni n Expression) Statement
for (var ldentifier Initializeryy i N Expression) Statement

Description

These statements all define a*continue label” and a*break label” for use by an enclosabnt i nue

or br eak statement. For the purposes of this specification, alabel is a step number in an algorithm.
Continue labels are held in acontinue label stackand break labels are held in abreak label stack

These stacks are local to the current execution scope. To execute@ont i nue or br eak statement,
execution control is transferred to the label specified by the top value of the corresponding label stack.
If an implementation of ECM A Script has distinct compile and execute phases, the label stacks need
only be maintained during compilation as the label that @ont i nueor br eak statement jumpsto is
not dependent on any runtime state.

The WithStatement affects both stacks for the purposes of clean up: to remove its object from the scope
chain.

In algorithms, we use “PushBreak(n)” as short hand for “Push Step(n) on the break label stack”.
Similarly we use “PushContinue(n)”, “PopBreak(n)” and “PopContinue(n)” as short hand for the

52

obvious phrases. We use “JumpBreak” as short hand for “ Transfer execution control to the position
indicated by the top label of the break label stack” and similarly for “JumpContinue”.

9.5.1 Thewhil e Statement

The productionlterationStatement: whi | e (Expression) Statementis evaluated as follows:
Evaluate Expression.

Call GetVaue(Result(D).

Call ToBoolean(Result(2).

If Result(3 isfalse, go to step 10.

Evaluate Statement.

If Result(5) is “abrupt completion because dbr eak”, go to step 10.

If Result(5) is “abrupt completion because of ont i nue’, go to step 1.

If Result(5) is “abrupt completion because of et ur nV’, return Result(5).
. Gotostep 1.

10. Return “normal completion”.

© oo NoOOk~WDER

9.5.2 Thefor Statement

The productionlterationStatement: f or (Expression; Expression; Expression) Statementis
evaluated as follows:

1. If thefirst Expression isnot present, go to step 4.

2. Evaluatethe first Expression

3. Cadl GetVaue(Result(3). (Thisvalueis not used.)

4. If the secondExpression is not present, go to step 9.

5. Evaluatethe second Expression.

6. Cal GetVaue(Result(5).

7. Call ToBoolean(Result(§).

8. If Result(7) isfalse go to step 17.

9. Evaluate Statement.

10. If Result(9) is“abrupt completion because dbr eak”, go to step 17.

11. If Result(9) is“abrupt completion because of ont i nue”’, go to step 13.
12. If Result(9) is*abrupt completion because of et ur nV”, return Result(9).
13. If the third Expression is not present, go to step 4.

14. Evaluatethe third Expression.

15. Call GetVaue(Result(1)). (Thisvalueis not used.)

16. Goto step 4.

17. Return “normal completion”.

The productionlterationStatement: f or (var VariableDeclarationList; Expression; Expression
) Statementis evaluated as follows:

1. EvauateVariableDeclarationList

If the secondExpression is not present, go to step 7.

Evaluatethe second Expression.

Call GetVaue(Result(3).

Call ToBoolean(Result(3).

If Result(5 isfalse, go to step 15.

Evaluate Statement.

If Result(7) is “abrupt completion because dbr eak”, go to step 15.

If Result(7) is “abrupt completion because of ont i nue’, go to step 11.
If Result(7) is “abrupt completion because of et ur nV”, return Result(7).
If the third Expression is not present, go to step 2.

Evaluatethe third Expression.

Call GetVaue(Result(13). (Thisvalueis not used.)

©ooNO AN

el el
wNE o

53

14. Goto step 2.
15. Return “normal completion”.

9.5.3 Thefor..in Statement

The productionlterationStatement: f or (LeftHandSdeExpressioni n Expression) Statementis
evaluated as follows:

1. Evaluatethe Expression

Call GetValue(Result(1)).

Call ToObject(Result(2)).

Get the name of the next property of Result(3) which doesn’'t have the DontEnum attribute. If
there is no such property, go to step 12.

Evaluatethe LeftHandS deExpression(it may be evaluated repeatedly).

Call PutValue(Result(5), Result(4)).

Evaluate Statement.

If Result(7) is “abrupt completion because dbr eak”, go to step 12.

If Result(7) is*abrupt completion because of ont i nue’, go to step 4.

10 If Result(7) is*abrupt completion because of et ur nV’, return Result(7).

11. Goto step 4.

12. Return*“normal completion”.

AW

© N U

The productionlterationStatement: f or (var ldentifier Initializery, i N Expression) Statementis
evaluated as follows:

If the Initializer is not present, go to step6.

Evaluatethe Identifier.

Evaluatethe Initializer.

Call GetValue(Result(3)).

Call PutValue(Result(2), Result(4)).

Evaluatethe Expression

Call GetValue(Result(6)).

Call ToObject(Result(7)).

Get the name of the next property of Result(8) which doesn’'t have the DontEnum attribute. If
there is no such property, go to step 17.

10. Evaluatethe Identifier (yes, it may be evaluated repeatedly).

11. Call PutValue(Result(10), Result(9)).

12. Evaluate Statement.

13. If Result(12) is“abrupt completion because dbr eak”, go to step 17.

14. If Result(12) is“abrupt completion because of ont i nu€’, go to step 9.

15. If Result(12) is“abrupt completion because af et ur nV”, return Result(12).

16. Goto step 9.

17. Return“normal completion”.

©oNOOA®BDNE

The mechanics of enumerating the properties (stept) is implementation dependent. The order of
enumeration is defined by the object. Properties of the object being enumerated may be deleted
during enumeration. If a property that has not yet been visited during enumeration is deleted, then it
will not be visited. If new properties are added to the object being enumerated during enumeration, the
newly added properties are not guaranteed to be visited in the active enumeration.

Issue: Need to talk about enumerating properties of the prototype, and so on, recursively. Are
shadowed properties of the prototype(s) enumerated? (I hope not!)

9.6 THEconti nue STATEMENT
Syntax

54

ContinueStatement :
conti nue;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it
containsacont i nue statement that is not within at least onewhi | e or f or statement. The
cont i nue statement is evaluated as.

1. Return “abrupt completion because ot ont i nue’..

9.7 THEDbr eak STATEMENT
Syntax

BreakStatement :
br eak;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it
contains abr eak statement that is not within at least onewhi | e or f or statement. Thebr eak
statement is evaluated as:

1. Return “abrupt completion because obr eak”.

9.8 THEr et ur n STATEMENT

Syntax

ReturnStatement :
r et ur n [noLineTerminator here] EXpI'eSSiOI’bp; ;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it
contains ar et ur n statement that is not withinthe Block of aFunctionDeclaration It causes a
function to cease execution and return avalue to the caller. IExpressionis omitted, the return value
istheundef i nedvalue. Otherwise, the return value is the value oExpression

The productionReturnStatement:: r et ur n [noLineTerminator here] EXpression,y ; isevaluated as:
1. If the Expressionis not present, return “abrupt completion because of et ur n undefined’.

2. Evaluate Expression

3. Call GetValue(Result(2)).

4. Return “abrupt completion because of et ur n V', where the valueV is Result(3).

9.9 THEW t h STATEMENT

Syntax

WithStatement :
wi t h (Expression) Statement

Description

Thewi t h statement adds a computed object to the front of the scope chain of the current execution
context, then executes a statement with this augmented scope chain, then restores the scope chain.
Semantics

The productionWithSatement: wi t h (Expression) Statementis evaluated as follows:
Evaluate Expression

Call GetVaue(Result()).

Call ToObject(Result@)).

Add Result@) to the front of the scope chain.

Evaluate Statement using the augmented scope chain from step 4.

Remove Result@) from the front of the scope chain.

Return Result(5).

Discussion

Noa~wdPE

55

Note that no matter how control leaves the embedde@®atement, whether normally or by some form of
abrupt completion, the scope chain is always restored to its former state.

56

10 FUNCTION DEFINITION

Syntax

FunctionDeclaration:
functi onldentifier (FormalParameterList,) Block

Formal ParameterList:
Identifier
FormalParameterList, Identifier

Semantics

Defines a property of the global object whose name is thielentifier and whose value is a function
object with the given parameter list and statements. If the function definition is supplied text to the
eval function and the calling context has an activation objectthen the declared function is added to
the activation objectinstead of to the global object.

57

11 PROGRAM

Syntax

Program:
Sour ceElements

Sour ceElements:
Sour ceElement
Sour ceElements Sour ceElement

SourceElement :

Satement
FunctionDefinition

58

12 NATIVE ECMASCRIPT OBJECTS

There are certain built-in objects available whenever an ECM A Script program begins execution. One,
the global object, isin the scope chain of the executing program. Others are accessible as initial
properties of the global object.

Some objects are constructors: they are functions intended for use with threew operator. For each
built-in constructor, this specification describes the arguments required by that constructor function,
properties of the constructor object, properties of the prototype object of that constructor, and
properties of specific object instances returned by aewexpression that invokes that constructor.

12.1 THE GLOBALOBJECT

The global object does not have a[[Construct]] property; it is not possible to use the global object asa
constructor with thenew operator.

12.1.1 Value Properties of the Global Object

12.1.1.1 NaN
The initial value of NaNis NaN.

12.1.1.2 Infinity
Theinitial value of | nfi ni tyis+¥.

12.1.2 Function Properties of the Global Object
12.1.2.1 eval(x)

12.1.2.2 parselnt(string, radix)

12.1.2.3 parseFloat(string)

12.1.2.4 escape(string)

12.1.2.5 unescape(string)

12.1.2.6 isNaN(number)

Applies ToNumber to its argument, then returngrueif the result isNaN, and otherwise returnsfalse.

12.1.2.7 isFinite(number)

Applies ToNumber to its argument, then returngalseif the result isNaN, +¥, or - ¥, and otherwise
returnstrue

59

12.2 OBJECTOBJECTS

12.2.1 The Object Constructor

When Cbj ect iscalled as part of anewexpression, it is a constructor that creates an object.

12.2.1.1 new Object(value)
12.2.1.2 new Object()

12.2.2 Properties of the Object Constructor

The value of the internal [[Prototype]] property of the Object constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the Object constructor has the following
properties:

12.2.2.1 Obiject.prototype
The value of Obj ect . pr ot ot ypeis the built-in Object prototype object.

12.2.2.2 Obiject.length

Thel engt h property isl to indicate the expected number of arguments to th€bj ect function.
Thel engt h property has the ReadOnly attribute.

12.2.3 Properties of the Object Prototype Object
12.2.3.1 toString()

12.2.3.2 valueOf()

12.2.4 Properties of Object Instances

12.3 FUNCTIONOBJECTS

12.3.1 The Function Constructor

WhenFunct i oniscalled as part of anewexpression, it is a constructor that creates an object.

12.3.2 Properties of the Function Constructor
12.3.3 Properties of the Function Prototype Object
12.3.4 Properties of Function Instances

12.4 ARRAYOBJECTS

Array objects give special treatment to a certain class of property hames. A property nanfie(in the
form of astring value) is anarray indexif and only if ToString(ToUint32P)) is equal toP. Every
Array object has al engt h property whose value is always an integer with positive sign and less than
2%. It is always the case that thel engt h property is numerically greater than the name of every
property whose name is an array index; whenever a property of an Array object is created or changed,
other properties are adjusted as necessary to maintain this invariant. Specifically, whenever a property
is added whose name is an array index, thd engt h property is changed, if necessary, to be one more

60

than the numeric value of that array index; and whenever the thé engt h property is changed, every
property whose nameis an array index whose value is not smaller than the new length is
automatically deleted.

12.4.1 The Array Constructor

When Ar r ay is called as part of anewexpression, it is a constructor that creates an object.
[Exposition on array constructors TBD]

12.4.1.1 new Array(item0O, item1, . ..)

The[[Class]] property of the newly constructed object is set tbAr r ay".
Thel engt h property of the newly constructed object is set to the number of arguments.

The O property of the newly constructed object is set titemO; the 1 property of the newly constructed
object is set toiteml; and, in general, for as many arguments as there are, thek property of the newly
constructed object is set to argumenk, where the first argument is considered to be argument number
0.

12.4.1.2 new Array(len)

The[[Class]] property of the newly constructed object is set tbAr r ay".

If the argument len is a number, then thel engt h property of the newly constructed object is set to
len. If the argument len is not a number, then thel engt h property of the newly constructed object is
set to1 and the O property of the newly constructed object is set tken.

12.4.1.3 new Array()

The[[Class]] property of the newly constructed object is set tbAr r ay".
Thel engt h property of the newly constructed object is set t60.

12.4.2 Properties of the Array Constructor

The value of the internal [[Prototype]] property of the Array constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the Array constructor has the following
property:

12.4.2.1 Array.prototype
Thevalue of Ar r ay. pr ot ot ypeisthe built-in Array prototype object.

12.4.2.2 Array.length

Thel engt h property isl to indicate the expected number of arguments to thér r ay function. (Of
course, it accepts more than one argument, because it accepts a variable number of arguments.)
Thel engt h property has the ReadOnly attribute.

12.4.3 Properties of the Array Prototype Object

The Array prototype object has its own internal [[Put]] method that keeps tHeengt h property of an
array instance up to date.

In following descriptions of functions that are properties of the Array prototype object, the phrase
“this Array object” refersto the object that isthe hi s value for the invocation of the function; it is

an error if t hi s does not refer to an object for which the value of the internal [[Class]] property is not
"Array".

61

12.4.3.1 toString()

The elements of the array are converted to strings, and these strings are then concatenated, separated
by comma characters. The result is the same as if the built-if oi n method were called on this Array
object with no argument.

12.4.3.2 valueOf()

12.4.3.3 join(separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated
by occurrences of theseparator. If no separator is provided, a single commais used as the separator.
When thej oi n methodis called with one argument separ ator, the following steps are taken:

1. If thet hi s valueisnot an object whose [[Class]|] property iSAr r ay", generate a runtime
error.

If separator is undefined or not supplied, letseparator be the single-character string” , ".

Call ToString(separator).

If thel engt h property of this Array object i®, return an empty string value.

Call the [[Get]] method of this Array object with argumen®.

If Result(6) isundefined or null, use an empty string value; otherwise, call ToString(Result(6)).
Let R be Result(7).

Letkbel.

If k equalsthel engt h property of this Array object, returrR.

Let Sbe a string value produced by concatenatind? and Result(3).

Call the [[Get]] method of this Array object with argumenk.

If Result(11) isundefined or null, use an empty string value; otherwise, call
ToString(Result(11)).

13. Let Rbe astring value produced by concatenating and Result(12).

14. Increasek by 1.

15. Goto step 9.

©ooNO O A~WDN

e
N PO

12.4.3.4 reverse()
12.4.3.5 sort()

12.4.4 Properties of Array Instances

Array instances inherit properties from the Array prototype object and also have the following
properties.

12.4.4.1 [[Put]}(P, V)

Array objects use avariation of the [[Put]] method used for other native ECM A Script objects (section
5.6.2.2).

AssumeA isan Array object andP is astring.

When the [[Put]] method ofA is called with propertyP and valueV, the following steps are taken:
Call the [[CanPut]] method of A with name P.

If Result(1) isfalse return.

If A doesn’t have a property with nameP, go to step7.

If Pis"| engt h", goto step 12.

Set the value of propertyP of Ato V.

Gotostep 8

Create a property with nameP, set its value toV and give it empty attributes.

If Pisnot an array index, return.

If ToUint32(P) is less than the value of thel engt h property of A, return.

©oNOOA~WDNER

62

10. Change the value of thel engt h property of A to ToUint32P)+1.

11. Return.

12. Compute ToUint32y).

13. For every integerk that is less than the value of thel engt h property of A but not less than
Result(12), delete the property ofA that is named ToString(k), asif by using thedel et e
operator (see section8.4.1).

14. Set the value of propertyP of A to Result(12).

15. Return.

12.4.4.2 length

Thel engt h property of this Array object is always numerically greater than the name of every
property whose nameis an array index.

Thel engt h property has the DontDelete attribute.

12.5 STRINGOBJECTS

12.5.1 The String Function

When St ri ngis called as afunction rather than as a constructor, it performs a type conversion.

12.5.1.1 String(value)
Returns a string value (not a String object) computed by ToString(value).

12.5.2 The String Constructor

When St ri ngiscalled as part of anewexpression, it is a constructor that creates an object.

12.5.2.1 new String(value)

The[[Class]] property of the newly constructed object isset tbSt ri ng".
The[[Vaue]] property of the newly constructed object is set to ToString(value).

12.5.2.2 new String()

The[[Class]] property of the newly constructed object isset tbSt ri ng".
The [[Value]] property of the newly constructed object is set to an empty string value.

12.5.3 Properties of the String Constructor

The value of the internal [[Prototype]] property of the String constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the String constructor has the following
property:

12.5.3.1 String.prototype

Thevalueof St ri ng. pr ot ot ypeis the built-in String prototype object.

12.5.3.2 String.length

Thel engt h property is1 to indicate the expected number of argumentsto th&t r i ng function.
Thel engt h property has the ReadOnly attribute.

12.5.3.3 String.fromCharCode(charO, charl, . . .)

Returns a string value containing as many characters asthe number of arguments. Each argument
specifies one character of the resulting string, with the first argument specifying the first character,

63

and so on, from left to right. An argument is converted to a character by applying the operation
ToUint16 (section6.7) and regarding the resulting 16-bit integer as the Unicode encoding of a
character. If no arguments are supplied, the result is an empty string.

12.5.4 Properties of the String Prototype Object

In following descriptions of functions that are properties of the String prototype object, the phrase
“this String object” refers to the object that isthé hi s value for the invocation of the function; it is

an error if t hi s does not refer to an object for which the value of the internal [[Class]] property is not
"String". Also, the phrase “this string value” refers to the string value represented by this String
object, that is, the value of the internal [[Value]] property of this String object.

12.5.4.1 toString()

Returns this string value. (Note that, for a String object, thé oSt r i ng method happens to return
the same thing as theval ueOf method.)

12.5.4.2 valueOf()
Returns this string value.

12.5.4.3 charAt(pos)

Returns a string containing the character at positiorposin this string. If there is no character at that
position, the result is an empty string. The result is a string value, not a String object.

Theresult of x. char At (pos) isequal to the result ofx. subst ri ng(pos pos+1) except inthe
strange case whereposis greater than - 1 but less thanO.

When thechar At methodis called with one argument pos, the following steps are taken:

1. If thet hi s valueisnot an object whose [[Class]|] property i$St ri ng", generate aruntime
error.

Call Tolnteger(start).

Compute the number of charactersin this string value.

If Result(2) islessthan O or is not less than Result(3), return an empty string value.

Return a string of length 1, containing one character from this string value, namely the character
at position Result(2), where the first (Ieftmost) character in this string value is considered to be at
position 0, the next one at position 1, and so on.

a bk wd

12.5.4.4 charCodeAt(pos)

Returns a number (an integer in the range 0 to 2°- 1, inclusive) representing the Unicode encoding of
the character at positionposin this string. If there is no character at that position, the result isNaN.
When thechar Code At methodis called with one argument pos, the following steps are taken:

1. If thet hi s valueisnot an object whose [[Class]|] property i$St ri ng", generate aruntime
error.

Call Tolnteger(start).

Compute the number of charactersin this string value.

If Result(2) islessthan O or is not less than Result(3), returmMaN.

Return a value of Number type, of positive sign, whose magnitude is the Unicode encoding of one
character from this string value, namely the character at position Result(2), where the first
(leftmost) character in this string value is considered to be at position 0, the next one at position
1, and so on.

akrwbd

12.5.4.5 indexOf(searchString, position)

If the given searchString appears as a substring of this string value, at one or more positions that are
at or to the right of the specified position, then the index of the leftmost such position is returned;
otherwise- 1 isreturned. If position is undefined or not supplied, O is assumed, so as to search all of
this string value.

64

When thei ndexOf methodis called withtwo argumentssearchStringand position, the following

steps are taken:

1. If thet hi s valueisnot an object whose [[Class]|] property i$St ri ng", generate aruntime
error.

2. Cadll ToString(searchString.

Call Tolnteger(position). (If position is undefined or not supplied, this step will produce the value

0).

Compute the number of charactersin this string value.

Compute min(max(Result(3), 0), Result(4)).

Compute the number of charactersin the string that is Result(2).

Compute the smallest possible integek not smaller than Result(5) such thatk+Result(6) is not

greater than Result(4), and for all integerg from 0 to Result(6), inclusive, the character at

positionk+j of this string value is the same as the character at positior of Result(2); but if there

is no such integerk, then compute the value- 1.

8. Return Result(7).

w

No A

12.5.4.6 lastindexOf(searchString, position)

If the given searchString appears as a substring of this string value, at one or more positions that are
at or to the left of the specified position, then the index of the rightmost such position is returned;
otherwise- 1 isreturned. If position is undefined or not supplied, the length of this string valueis
assumed, so asto search al of this string value.

When thel ast | ndexOf methodis called withtwo argumentssearchStringand position, the
following steps are taken:

1. If thet hi s valueisnot an object whose [[Class]|] property i$St ri ng", generate aruntime
error.

Call ToString(searchString.

If positionis undefined or not supplied , use+¥; otherwise, call Tolntegerfosition).
Compute the number of charactersin this string value.

Compute min(max(Result(3), 0), Result(4)).

Compute the number of charactersin the string that is Result(2).

Compute the largest possible integek not larger than Result(5) such thatk+Result(6) is not
greater than Result(4), and for all integerg from 0 to Result(6), inclusive, the character at
positionk+j of this string value is the same as the character at position of Result(2); but if there
is no such integerk, then compute the value- 1.

8. Return Result(7).

NoaA~®ODN

12.5.4.7 split(separator)

Returns an Array object into which substrings of this string value have been stored. The substrings are

determined by searching from left to right for occurrences of the given separator; these occurrences

are not part of any substring in the returned array, but serve to divide up this string value. The

separator may be a string of any length.

Asaspecial case, if the separator is the empty string, this string value is split up into individual

characters; the length of the result array equals the length of this string value, and each substring

contains one character.

If the separator is not supplied, then the result array contains just one string, which is this string

value.

When thespl i t methodis called with one argument separator, the following steps are taken:

1. If thet hi s valueisnot an object whose [[Class]|] property i$St ri ng", generate aruntime
error.

2. Create anew Array object of lengttD and call it A.

3. If separatoris undefined or not supplied, call the [[Put]] method of A with and this string value
as arguments, and then return A.

4. Call ToString(separator).

65

Compute the number of charactersin this string value.

Compute the number of charactersin the string that is Result4).

LetpbeO.

Compute the smallest possible integek not smaller than p such that k+Result(6) is not greater

than Result(5), and for all integerg from 0 to Result(6), inclusive, the character at positiok+j of

this string value is the same as the character at positiorj of Result(2); but if there is no such

integer k, then go to step 13.

9. Compute a string value equal to the substring of this string value, consisting of the characters at
positionsp through k- 1, inclusive.

10. Call the [[Put]] method of A withA. | engt h and Result(9) as arguments.

11. Letp bek+max(Result(6), 1). (The max operations handles the special case of an empty string.)

12. Goto step 8.

13. Compute a string value equal to the substring of this string value, consisting of the characters
from positionp to the end of this string value.

14. Call the [[Put]] method of A withA. | engt h and Result(13) as arguments.

15. Return A.

© N oo

12.5.4.8 substring(start)

Returns a substring of this string value, starting from character positiostart and running to the end

of this string value. The result is a string value, not a String object.

If the argument is NaN or negative, it is replaced with zero; if the argument is larger than the length

of this string, it is replaced with the length of this string.

When thesubst r i ngmethodis called with one argument start, the following steps are taken:

1. If thet hi s valueisnot an object whose [[Class]|] property i$St ri ng", generate aruntime

error.

Call Tolnteger(start).

3. Compute the number of charactersin the string that is the value of the [[Value]] property of
t his.

4. Compute min(max(Result(2), 0), Result(3)).

5. Returnastring whose length is the difference between Result(3) and Result(4), containing
characters from the string that is the value of the [[Vaue]] property of hi s, namely the
characters with indices Result(4) through Result(3)1, in that order.

N

12.5.4.9 substring(start, end)

Returns a substring of this String object, starting from character positiostart and running to

character positionend of the string value represented by this String object. The result is a string value,

not a String object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the

length of this string, it is replaced with the length of this string.

If startislarger than end, they are swapped.

When thesubst r i ngmethodis called withtwo argumentsstart and end, the following steps are

taken:

1. If thet hi s valueisnot an object whose [[Class]|] property i$St ri ng", generate aruntime
error.

2. Cadl Tolnteger(start).

3. Cal Tolnteger (end).

4. Compute the number of charactersin this string value.

5. Compute min(max(Result(2), 0), Result(4)).

6. Compute min(max(Result(3), 0), Result(4)).

7. Compute min(Result(5), Result(6))

8. Compute max(Result(5), Result(6))

66

9. Returnastring whose length is the difference between Result(8) and Result(7), containing
characters from this string value, namely the characters with indices Result(7) through Result(8)
1, in that order.

12.5.4.10 toLowerCase

Returns a string equal in length to the length of this string value. The result is a string value, not a
String object.

Every character of the result is equal to the corresponding character of this string value, unless that
character has a Unicode 2.0 lowercase equivalent, in which case the lowercase equivalent is used
instead.

12.5.4.11 toUpperCase

Returns a string equal in length to the length of this string value. The result is a string value, not a
String object.

Every character of the result is equal to the corresponding character of this string value, unless that
character has a Unicode 2.0 uppercase equivalent, in which case the uppercase equivalent is used
instead.

12.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and also have a[[Valueg]] property
and al engt h property.

The [[Value]] property isthe string value represented by this String object.

12.5.5.1 length

The number of charactersin the String value represented by this String object.
Once a String object is created, this property is unchanging.

12.6 BOOLEANOBJECTS

12.6.1 The Boolean Function

When St ri ngis called as afunction rather than as a constructor, it performs a type conversion.

12.6.1.1 Boolean(value)

Returns a boolean value (not a Boolean object) computed by ToBoolean(value).

12.6.2 The Boolean Constructor

When Bool eaniscalled as part of anewexpression, it is a constructor that creates an object.

12.6.2.1 new Boolean(value)

The[[Class]] property of the newly constructed Boolean object is set tdBool ean”.
The[[Vaue]] property of the newly constructed Boolean object is set to ToBoolean(value).

12.6.2.2 new Boolean()

The[[Class]] property of the newly constructed Boolean object is set tdBool ean”.
The[[Value]] property of the newly constructed Boolean object is set false.

12.6.3 Properties of the Boolean Constructor

The value of the internal [[Prototype]] property of the Boolean constructor is the Function prototype
object.

67

Besides the internal [[Call]] and [[Construct]] properties, the Boolean constructor has the following
property:
12.6.3.1 Boolean.prototype

The value of Bool ean. pr ot ot ypeisthe built-in Boolean prototype object.

12.6.3.2 Boolean.length

Thel engt h property isl to indicate the expected number of arguments to th8ool ean function.
Thel engt h property has the ReadOnly attribute.

12.6.4 Properties of the Boolean Prototype Object

In following descriptions of functions that are properties of the Boolean prototype object, the phrase
“this Boolean object” refers to the object that isthehi s value for the invocation of the function; itis
an error if t hi s does not refer to an object for which the value of the internal [[Class]] property is not
"Bool ean". Also, the phrase “this boolean value” refers to the boolean value represented by this
Boolean object, that is, the value of the internal [[Value]] property of this Boolean object.

12.6.4.1 toString()

If this boolean value igrue, then the string"” t r ue" isreturned. Otherwise, this boolean value must
befalse and therefore the string” f al se" isreturned.

12.6.4.2 valueOf()

Returns this boolean value.

12.6.5 Properties of Boolean Instances

Boolean instances have no special properties beyond those inherited from the Boolean prototype
object.

12.7 NUMBEROBJECTS

12.7.1 The Number Function

When Nunmber is called as afunction rather than as a constructor, it performs a type conversion.

12.7.1.1 Number(value)

Returns a number value (not a Number object) computed by ToNumber(value).

12.7.2 The Number Constructor

When Nunmber is called as part of anewexpression, it is a constructor that creates an object.

12.7.2.1 new Number(value)

The[[Class]] property of the newly constructed object is set tbNurmber ".
The[[Value]] property of the newly constructed object is set to ToNumber(value).

12.7.2.2 new Number()

The[[Class]] property of the newly constructed object is set tbNurmber ".
The[[Value]] property of the newly constructed object is set te0.

68

12.7.3 Properties of the Number Constructor

The value of the internal [[Prototype]] property of the Number constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the Number constructor has the following
property:

12.7.3.1 Number.prototype

The value of Nurmber . pr ot ot ypeisthe built-in Number prototype object.

12.7.3.2 Number.length

Thel engt h property is1 to indicate the expected number of arguments to th&untber function.
Thel engt h property has the ReadOnly attribute.

12.7.3.3 Number.MAX_VALUE

Thevalue of Nurmmber . M N_VALUESs the largest positive finite value of the number type, which is
approximatelyl. 7976931348623157e308

12.7.3.4 Number.MIN_VALUE

Thevalue of Nunber . M N_VALUHSs the smallest positive nonzero value of the number type, which
is approximately5e- 324.

12.7.3.5 Number.NaN

The value of Nunber . NaNis NaN.

12.7.3.6 Number.NEGATIVE_INFINITY
Thevalue of Nunber . NEGATI VE_I NFI NI TYs-¥.

12.7.3.7 Number.POSITIVE_INFINITY
Thevalue of Nurber . POSI TI VE_I NFI NI TYs+¥.

12.7.4 Properties of the Number Prototype Object

In following descriptions of functions that are properties of the Number prototype object, the phrase
“this Number object” refers to the object that isthe hi s value for the invocation of the function; it is
an error if t hi s does not refer to an object for which the value of the internal [[Class]] property is not
"Number ". Also, the phrase “this number value” refers to the number value represented by this
Number object, that is, the value of the internal [[Value]] property of this Number object.

12.7.4.1 toString()

This number value is given as an argument to the ToString operator ; the resulting string value is
returned.

12.7.4.2 valueOf()

Returns this number value.

12.7.5 Properties of Number Instances

Number instances have no special properties beyond those inherited from the Number prototype
object.

69

12.8 THE MATHOBJECT

The Math object is merely a single object that has some named properties, some of which are
functions.

The Math object does not have a [[Construct]] property; it is not possible to use the Math object asa
constructor with thenew operator.

Recall that, in this specification, the phrase “the number value fox” means “the value of number
type, not NaN but possibly infinite, that is closer than any other value of number type to the
mathematical valuex, but if x lies exactly halfway between two such values then the number value
whose least significant bitis 0 is chosen”.

12.8.1 Value Properties of the Math Object

12.8.1.1 E

The number value fore, the base of the natural logarithms, which is approximately
2.7182818284590452354

12.8.1.2 LN10

The number value for the natural logarithm of 10, which is approximatel. 302585092994046

12.8.1.3 LN2
The number value for the natural logarithm of 2, which is approximatel®). 6931471805599453

12.8.1.4 LOG2E

The number value for the base-2 logarithm of, the base of the natural logarithms; thisvalueis
approximatelyl. 4426950408889634 (Note that the value of Mat h. LOG2Eis approximately the
reciprocal of the value ofivat h. LN2.)

12.8.1.5 LOGI10E

The number value for the base-2 logarithm of, the base of the natural logarithms; thisvalueis
approximately0. 4342944819032518 (Note that the value of Mat h. LOG2Eis approximately the
reciprocal of the value ofivat h. LN2.)

12.8.1.6 PI

The number value forp, the ratio of the circumference of acircle to its diameter, which is
approximately3. 14159265358979323846

12.8.1.7 SQRT1_2

The number value for the square root of 1/2, which is approximatel§. 7071067811865476 (Note
that the value of Mat h. SQRT1_2is approximately the reciprocal of the value oivat h. SQRT2)
12.8.1.8 SQRT2

The number value for the square root of 2, which is approximatel§. 4142135623730951

12.8.2 Function Properties of the Math Object

Every function listed in this section applies the ToNumber operator to each of its arguments (in left-
to-right order if there is more than one) and then performs a computation on the resulting number
value(s).

The behavior of the functionsacos, asi n, at an, at an2, cos, exp, | og, pow, si n,andsqrt is
not precisely specified here. They are intended to compute approximations to the results of familiar
mathematical functions, but some latitude is allowed in the choice of approximation algorithms. The

70

general intent is that an implementor should be able to use the same mathematical library for
ECMA Script on a given hardware platform that is available to C programmers on that platform.
Nevertheless, this specification recommends (though it does not require) the approximation
algorithms for |EEE 754 arithmetic contained irf dl i bm the freely distributable mathematical
library [XXXREF]. This specification also requires specific results for certain argument values that
represent boundary cases of interest.

12.8.2.1 abs(x)

Returns the absolute value of its argument; in general, the result has the same magnitude as the
argument but has positive sign.

If the argument isNaN, the result isNaN.

If the argument is- O, the result is+0.

If the argument is- ¥, theresult is+¥.

12.8.2.2 acos(x)

Returns an implementation-dependent approximation to the arc cosine of the argument. The result is
expressed in radians and ranges from+0 to +p.

If the argument isNaN, the result isNaN.

If the argument is greater than1, the result isNaN.

If the argument isless than- 1, the result isNaN.

If the argument is exactlyl, the result is+0.

12.8.2.3 asin(x)

Returns an implementation-dependent approximation to the arc sine of the argument. The result is
expressed in radians and ranges from- p/2 to +p/2.

If the argument isNaN, the result isNaN.

If the argument is greater than1, the result isNaN.

If the argument isless than- 1, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, theresult is- 0.

12.8.2.4 atan(x)

Returns an implementation-dependent approximation to the arc tangent of the argument. The result
is expressed in radians and ranges from- p/2 to +p/2.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, the result is- 0.

If the argument is+¥, the result is an implementation-dependent approximation to p/2.

If the argument is- ¥, the result is an implementation-dependent approximation te p/2.

12.8.2.5 atan2(y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient/ x of the
argumentsy and x, where the signs of the arguments are used to determine the quadrant of the
result. Note that it is intentional and traditional for the two-argument arc tangent function that the
argument namedy be first and the argument namedx be second. The result is expressed in radians
and ranges from- p to +p.

If either argument isNaN, the result isNaN.

If y>0 and x is+0, the result is an implementation-dependent approximation to p/2.

If y>0 and x is- 0, the result is an implementation-dependent approximation to p/2.

If y is+0and x>0, the result is+0.

If y is+0and x is+0, theresult is+0.

71

If y is+0and x is- 0, the result is an implementation-dependent approximation to p.

If y is+0and x <0, the result is an implementation-dependent approximation to p.

Ify is-0and x>0, theresult is- 0.

Ifyis-0andx is+0, theresult is- 0.

Ify is-0andx is- 0, theresult is an implementation-dependent approximation to- p.

If y is- 0and x<0, the result is an implementati on-dependent approximation to- p.

If y<0 and x is+0, the result is an implementation-dependent approximation to- p/2.

If y<0 and x is- 0, the result is an implementation-dependent approximation to- p/2.

If y>0andy isfiniteandx is+¥, theresult is+0.

Ify>0andy isfiniteandx is- ¥, the result if an implementation-dependent approximation to
+p.

If y<Oandy isfiniteandx is+¥, theresult is- 0.

If y<Oandy isfiniteandx is- ¥, the result is an implementation-dependent approximation to-
p.

If y is+¥ and x isfinite, the result is an implementation-dependent approximation to p/2.
Ify is-¥ and x isfinite, theresult is an implementation-dependent approximation to p/2.
If y is+¥ and x is+¥, the result is an implementation-dependent approximation to p/4.

Ify is+¥ and x is- ¥, the result is an implementation-dependent approximation to +H3/4.

Ify is-¥ and x is+¥, the result is an implementation-dependent approximation to- p/4.

Ify is-¥ and x is- ¥, the result is an implementation-dependent approximation to- 3p/4.

12.8.2.6 ceil(x)

Returns the smallest (closest to- ¥) number value that is not less than the argument and is equal to a
mathematical integer. If the argument is already an integer, the result is the argument itself.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, the result is- 0.

If the argument is+¥, theresult is+¥.

If the argument is- ¥, theresult is- ¥.

If the argument is less thanO but greater than- 1, the result is- 0.

Thevalue of Mat h. cei | (x) isthe same asthe value of- Mat h. f | oor (- x).

12.8.2.7 cos(x)

Returns an implementation-dependent approximation to the cosine of the argument. The argument is
expressed in radians.

If the argument isNaN, the result isNaN.
If the argument is+0, theresult is1.

If the argument is- O, theresult is1.

If the argument is+¥, the result isNaN.
If the argument is- ¥, the result isNaN.

12.8.2.8 exp(x)

Returns an implementation-dependent approximation to the exponential function of the argument (
raised to the power of the argument, wheres is the base of the natural logarithms).

72

If the argument isNaN, the result isNaN.
If the argument is+0, theresult is1.

If the argument is- O, theresult is1.

If the argument is+¥, the result is+¥ .

If the argument is- ¥, the result is+0.

12.8.2.9 floor(x)

Returns the greatest (closest to- ¥) number value that is not greater than the argument and is equal to
amathematical integer. If the argument is already an integer, the result is the argument itself.
- If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, the result is- 0.

If the argument is+¥, theresult is+¥.

If the argument is- ¥, theresult is- ¥.

If the argument is greater than0 but lessthan1, the result is+0.

Thevalue of Mat h. f | oor (x) isthe same asthe value of- Mat h. cei | (- x).

12.8.2.10 log(x)

Returns an implementation-dependent approximation to natural logarithm of the argument.
If the argument isNaN, the result isNaN.
If the argument is less thanO, the result isNaN.
If the argument is+0 or - O, the result is- ¥.
If the argument is1, the result is+0.
If the argument is+¥, the result is+¥.

12.8.2.11 max(x, y)

Returns the larger of the two arguments.
If either argument isNaN, the result isNaN.
If x>y, the result isx.
If y>X, theresultisy.
If x is+Oandy is+0, theresult is+0.
If x is+Oandy is-0, theresult is+0.
If x is-0andy is+0, theresult is+0.
If xis-Oandy is-0, theresultis- 0.

12.8.2.12 min(x, y)

Returns the smaller of the two arguments.

If either argument isNaN, the result isNaN.
If x<y, the result isx.

If y<x, theresultisy.

If x is+Oandy is+0, theresult is+0.

If x is+Oandy is-0, theresultis- 0.

If x is-0andy is+0, theresult is- 0.

If xis-Oandy is-0, theresultis- 0.

12.8.2.13 pow(x, Y)

Returns an implementation-dependent approximation to the result of raising to the powery.
If y isNaN, the result isNaN.
Ify is+0, theresult is1, even if x is NaN.
Ify is-0, theresultis1, even if x is NaN.
If x isNaN and y isnonzero, the result isNaN.
If abs(x)>1and y is+¥, theresultis+¥.
If abs(x)>1and y is-¥, theresultis+O0.
If abs(x) ==1land y is+¥, theresult isNaN.
If abs(x) ==1and y is- ¥, theresult isNaN.

73

If abs(x) <land y is+¥, theresult is+O0.

If abs(x) <land y is-¥, theresultis+¥.

If x is+¥ and y>0, theresult is+¥.

If x is+¥ and y<O0, the result is+0.

If x is-¥ and y>0andy isan odd integer, the result is- ¥.
If X is-¥ and y>0andy isnot an odd integer, the result is+¥.
If x is-¥ and y<O0andy isan odd integer, the result is- 0.

If x is-¥ and y<0andy isnot an odd integer, the result ist+0.
If x is+0and y>0, the result is+0.

If x is+O0and y<O, theresult is+¥.

If x is-0Oand y>0andy isan odd integer, the result is- 0.

If x is-0Oand y>0andy isnot an odd integer, the result is+O.
If x is-0and y<Oandy isan odd integer, the result is- ¥.

If x is-0and y<0andy isnot an odd integer, the result is+¥ .
If x<0 and x isfinite andy isfinite andy is not an integer, the result isNaN.

12.8.2.14 random()

Returns a number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly
or pseudorandomly with approximately uniform distribution over that range, using an
implementation-dependent algorithm or strategy. This function takes no arguments.

12.8.2.15 round(x)

Returns the number value that is closest to the argument and is equal to a mathematical integer. If two
integer number values are equally close to the argument, then the result is the number value that is
closer to+¥. If the argument is already an integer, the result is the argument itself.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, the result is- 0.

If the argument is+¥, theresult is+¥.

If the argument is- ¥, the result is- ¥.

If the argument is greater than0 but lessthan0. 5, the result is+0.

If the argument is less thanO but greater than or equal to- 0. 5, the result is- 0.
Thevalue of Mat h. r ound(x) isthe same as the value ofMat h. f | oor (x+0. 5). Note that
Mat h. r ound(3. 5) returns 4, but Mat h. r ound(- 3. 5) returns - 3.

12.8.2.16 sin(x)

Returns an implementation-dependent approximation to the sine of the argument. The argument is
expressed in radians.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, the result is- 0.

If the argument is+¥ or - ¥, the result isNaN.

12.8.2.17 sqrt(x)

Returns an implementation-dependent approximation to the square root of the argument.
If the argument isNaN, the result isNaN.
If the argument less thanO, the result isNaN.
If the argument is+0, the result is+0.
If the argument is- O, the result is- 0.
If the argument is+¥, the result is+¥.

74

12.8.2.18 tan(x)

Returns an implementation-dependent approximation to the tangent of the argument. The argument is
expressed in radians.

If the argument isNaN, the result isNaN.

If the argument is+0, the result is+0.

If the argument is- O, the result is- 0.

If the argument is+¥ or - ¥, the result isNaN.

12.9 DATEOBJECTS

12.9.1 The Date Constructor

When Dat e iscaled as part of anewexpression, it is a constructor that creates an object.

12.9.1.1 new Date(year, month, date, hours, minutes, seconds)
12.9.1.2 new Date(year, month, date, hours, minutes)

12.9.1.3 new Date(year, month, date, hours)

12.9.1.4 new Date(year, month, day)

12.9.1.5 new Date(timeValue)

12.9.1.6 new Date(stringValue)

12.9.1.7 new Date()

The[[Class]] property of the newly constructed object is set tbDat e".
The[[Value]] property of the newly constructed object is set to ??7?2.

12.9.2 Properties of the Date Constructor

The value of the internal [[Prototype]] property of the Date constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the Date constructor has the following
property:

12.9.2.1 Date.prototype

Thevalue of Dat e. pr ot ot ypeisthe built-in Date prototype object.

12.9.2.2 Date.length

Thel engt h property is6 to indicate the expected number of arguments to th®at e function.
Thel engt h property has the ReadOnly attribute.

12.9.2.3 Date.parse()
The.

12.9.2.4 Date.UTC()
The.

75

12.9.3 Properties of the Date Prototype Object

In following descriptions of functions that are properties of the Date prototype object, the phrase “this
Date object” refers to the object that isthé hi s value for the invocation of the function; it is an error
if t hi s does not refer to an object for which the value of the internal [[Class]] property is not

" Dat e". Also, the phrase “this time value” refers to the number value for the time represented by this
Date object, that is, the value of the internal [[Value]] property of this Date object.

12.9.3.1 toString()

12.9.3.2 valueOf()

12.9.3.3 getDate()

12.9.3.4 getDay()

12.9.3.5 getHours()

12.9.3.6 getMinutes()

12.9.3.7 getMonth()

12.9.3.8 getSeconds()

12.9.3.9 getTime()

12.9.3.10 getYear()

12.9.3.11 setDate(dayValue)
12.9.3.12 setHours(hoursValue)
12.9.3.13 setMinutes(minutesValue)
12.9.3.14 setMonth(monthValue)
12.9.3.15 setSeconds(SecondsValue)
12.9.3.16 setTime(timeValue)
12.9.3.17 setYear(yearValue)
12.9.3.18 toGMTString(timeValue)
12.9.3.19 tolLocaleString(timeValue)

12.9.4 Properties of Date Instances

Date instances have no special properties beyond those inherited from the Date prototype object.

76

13 ERRORS

This specification specifies the last possible moment an error occurs. A given implementation may
generate errors sooner (e.g. at compile-time). Doing so may cause differencesin behavior among
implementations. Notably, if runtime errors become catchable in future versions, a given error would
not be catchable if an implementation generates the error at compile-time rather than runtime.

An ECMAScript compiler should detect errors at compile time in all code presented to it, even code
that detailed analysis might prove to be “dead” (never executed). A programmer should not rely on the
trick of placing code withinani f (f al se) statement, for example, to try to suppress compile-time
error detection.

Issue: If acompiler can prove that a construct cannot execute without error under any circumstances,
then it may issue a compile-time error even though the construct might not be executed at all?

77

14 REFERENCES

ANSI X3.159-1989:American National Standard for Information Systems - Programming Language -
C, American National Standards Institute (1989)

Gay, David M. Correctly Rounded Binary-Decimal and Decimal -Binary Conversions. Numerical
Analysis Manucript 90-10. AT& T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990.
Availableashtt p: //cm bel | -1 abs. com cm cs/ doc/ 90/ 4- 10. ps. gAssociated code
availableashttp: //cm bel | -1 abs. com’ netli b/ fp/dtoa. c. gand as

http://cmbell-labs.conmnetlib/fp/g fm.c.gahdmay asobefound at the various
net | i bmirror sites.

Gosling, James, Bill Joy and Guy SteeleThe Java Language Specification Addison Wesley
Publishing Company 1996.

David Ungar and Randall B. Smith.Self: The Power of Smplicity OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October, 1987.

78

APPENDIX A: OPEN ISSUES

A.1 STRINGNUMERICLITERALS

Isit really true that an empty string, or a string containing only whitespace and/or asign, isavalid
string literal? |s the result a zero (negative zero if minus sign present)? Or isit necessary that at least
one digit be present (orl nfi ni ty)?

A.2 ARGUMENT

The arguments property of afunction object is “dynamically bound” every time that function is called
and restored as the call returns. (Agreed to on March 14; still needs to be done.)

Also need to write up a step-by-step, algorithmic account of function calls.

79

APPENDIX B: PROPOSED EXTENSIONS

B.1 THE CLASS STATEMENT
Syntax

ClassDeclaration:
cl ass IdentifierFormal Parameter s, ExtendsClausey, { ClassBody}

FormalParametes:
(FormalParameterLisgy)

Formal ParameterList:
Identifier
FormalParameterList, Identifier

ExtendsClause:
ext ends ldentifier Actual Arguments,

Actual Arguments:
(ExpressiorListyy)

ClassBody:
Constructory, Methods,,

Constructor:
StatementList

Methods:
FunctionDefinition
Methods FunctionDefinition

Semantics
Similar to a function except:
The class hame space is global but distinct from the global function name space.
The functions (methods) defined within a class definition are in a name space private to the class.

The inclusion of methods automatically creates one property in the constructed object for each
method defined.

Classes may not be called directly but rather can only be used via theew operator.

B.2 THE TRY AND THROWSTATEMENTS

B.2.1Thetry Statement

At ry statement executes ablock. If avalueisthrown and ther y statement has one or more
cat ch clausesthat can catch it, then control will be transfered to the first sucleat ch clause. If the
t ry statement hasaf i nal | y clause, then thef i nal | y block of code is executed no matter

80

whether thet r y block completes normally or abruptly and regardless of whether@at ch clauseis
first given control.

TryStatement :
t r y Block Catches

t ry Block Catchesopt FinallyClause

Catches:
CatchClause

Catches CatchClause

CatchClause:
cat ch (FormalParameter)Block

FinallyClause:
final | yBlock

B.2.2 TheThr owStatment

A throw statement causes an exception to be thrown. The result is an immediate transfer of control
that may exit multiple statements and method invocations until atry statement is found that catches
the thrown value. If no such try statement is found, then a runtime error is generated.

ThrowStatement:
t hr owExpression

B.3 THE DATE TYPE"

The Date Type is used to represent date and time. It isaJulian value on which certain operations
such as date arithmetic are defined.Arithmetic operators, relational operators and equality operators
apply to this type

Note 1: Of the three current ECM A Script implementations, only the Borland implementation
currently supports date operators. This featureisreally just a convenience that can be implemented
with Date Object methods. However, the same argument can be made for the String type.

Note 2 Of the three current ECM A Script implementations, only the Borland implementation
currently implements dates as Julian dates and thus dates before (January 1970). Without this
representation, dates are very limited in their usage (i.e. you cannot otherwise, represent arbitrary
dates, for example from existing databases)

B.3.1 ToDate

The operator ToDate attempts to convert its argument to a value of subtype Date Object according to
the following table:

Input Type Result
Undefined Blank date value.
Null Blank date value.
Boolean Blank date value.
Number Blank date value.
String See discussion below.
Date Return the input argument (no conversion)
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Date).

81

2. Cadll ToDate(Result(1)).
Return Result(2).

B.3.2 ToDate Applied to the String Type

I ssue: define this.

B.4 IMPLICITTHIS®

In function code where the function definition specifiesthenpl i ci t keyword, thet hi s object is
placed in the scope chain immediately before the global object.

B.5 THESW t ch STATEMENT

Syntax

SwitchStatement:
swi t ch(Expression) CaseBlock

CaseBlock::
{ CaseClausesy }

{ CaseClauses,: DefaultClause CaseClausesg, }

CaseClauses:
CaseClause

CaseClauses CaseClause

CaseClause:
case Expression: StatementListy:

DefaultClause:
def aul t : StatementList,y

Semantics

The SwitchStatementadds a label to the break label stack, which is described in sectiotteration
Statements It also adds alabel to the continue label stack for clean up purposes only.

The productionSwitchStatement: swi t ch (Expression) CaseBlockis evaluated as follows:
If the continue label stack is not empty, PushContinue(9).

PushBreak(6).

Evaluate Expression.

Call GetValue(Result(3)).

Evaluate CaseBlock, passing it Result(4) as a parameter.

PopBreak(6).

If the continue label stack is not empty, PopContinue(9).

Return.

. PopBreak(6).

10. PopContinue(9).

11. JumpContinue.

©oNOOA®BDNE

The productionCaseBlock: { CaseClauses DefaultClause CaseClauses } is given an input

parameter, input, and is evaluated as follows:

1. For the next CaseClause in CaseClausesl, in source text order, evaluate CaseClause. If thereis no
such CaseClause, go to step 6.

2. If inputis not equal to Result(1) (as defined by the != operator), go to step 1.

3. Execute the StatementL ist of this CaseClause.

4. Execute the StatementList of each subsequent CaseClause in CaseClausesl.

82

5. Goto step 11.

6. For the next CaseClause in CaseClauses2 , in source text order, evaluate CaseClause. If thereis
no such CaseClause, go to step 11.

7. If input is not equal to Result(6) (as defined by the != operator), go to step 6.

8. Execute the StatementList of this CaseClause.

9. Execute the StatementList of each subsequent CaseClause in CaseClauses2.

10. Return.

11. Execute the StatementList of DefaultClause.

12. Execute the StatementList of each CaseClause in CaseClauses2.

13. Return.

If CaseClauses isomitted, steps 1 through 5 are omitted from execution. IDefaultClauseis omitted

(in which caseCaseClauses is also omitted), steps 11 and 12 are omitted from execution. If

CaseClauses isomitted, steps 6 through 10 and 12 are omitted from execution.

Typically there will be ar eak statement in one or moreStatementL.ist, which will transfer

execution back to the break label for thé&witchStatement

The productionCaseClause: case Expression: StatementList, is evaluated as follows:
1. EvauateExpression

2. Cdl GetVaue(Result(1)).

3. Return Result(2).

Note that evaluatingCaseClausedoes not execute the associatecdBtatementList It simply evaluates the
Expressionand returns the value, which theCaseBlock algorithm uses to determine which
StatementListto start executing.

B.6 CONVERSIONFUNCTIONS

The conversion functions, ToBoolean, ToNumber, Tolnteger, Tolnt32, ToUint32, ToString and
ToObject are global functions that operate as described in this document.

B.7 ASSIGNMENTONLY OPERATOR(:=)1

The assignment-only operator operates identically to the assignment operator=) except that if the
given lvalue doesn't already exist, prior to the statements execution, a runtime error is generated.

B.8 SEALING OF ANOBJECT2

A facility to prevent an object from being further expanded may be invoked at any time after an object
has been constructed. Thisis semantically the dynamic equivalent to the static Java final class
modifier. Thisfacility may be implemented as a method of the object, a global function, or, if the

cl ass statement is adopted, as a class modifier ta&l ass. Once an object has been sealed or
finalized, any attempt to add a new property to the object results in a runtime error.

B.9 THE ARGUMENTSKEYWORD®

Thear gunent s keyword refers to the arguments object. Within global codgr gunent sreturns
nul | . Within eval code,ar gunent sreturns the same value as in the calling context.
Discussion:

This interpretation of the "arguments" within afunction body differs from existing practice but has
two important advantages over the current mechanism:

1. It can be much more efficiently implemented, especialy in the case of recursive functions.

2. It eliminates some complex and confusing semantic issues that arise as a result of the arguments
to an activation frame being accessible from a function object.

It solves scope resolution issues related to using arguments within awith block on an object that has
an arguments member, such as Math.

83

B.10 PREPROCESSOR
B.11 THE DO..WHILE STATEMENT
B.12BINARYOBJECT

B.13LABELS WITH BREAK AND CONTINUE

Asin Java, allow statements to be labeled with an identifier followed by a colon. Allow alabel to
appear in abr eak or cont i nue statement. The label referred to by &r eak or cont i nue
statement must be an iteration statement that contains théor eak or cont i nue statement in

question. The use of |abels makes code more readable and more robust. In addition, it makes possible
certain transfers of control that otherwise could not be easily expressed at all.

84

APPENDIX C: PEOPLE CONTACTS

Brendan Eich (brendan@netscape.com)
C. Rand McKinney (rand@netscape.com)

Donna Converse (converse@netscape.com)

Clayton Lewis (clayton@netscape.com)
Randy T. Solton (rsolton@wpo.borland.com)

Mike Gardner (mgardner@wpo.borland.com)
Shon Katzenberger (shonk@microsoft.com)
Robert Welland (robwell @microsoft.com)
Guy Steele (guy.steele@east.sun.com)

85

APPENDIX D: RESOLUTION HISTORY

D.1 JANUARY15, 1997

D.1.1 White Space
Updated theWhite Spacesection to include form feed and vertical tab as white space.

D.1.2Keywords

Updated theK eywordssection to exclude those keywords related to proposed extensions. Also updated
this section to include thedel et e keyword which was missing.

D.1.3 Future Reserved Words

Update theFuture Reserved Wordgo only include keywords related to proposed extensions. We
decided to remove words that had been only included as future reserved for Java compatibility
purposes.

D.1.4 Octal And Hex Escape Sequence Issue

Decided to support octal and hex notation. Since only two hex digits are used with hex notation, many
unicode characters cannot be represented thisway. Furthermore, we were not sure if the high 128
characters match up with unicode. (Removed open issue at bottom of sectid@nce the exact MV for a
numeric literal has been determined, it is then rounded to a value of the Number type. If the MV is 0,
then the rounded value is+0; otherwise, the rounded value must béhe number value for the MV (in
the sense defined in section 5.4), unless the literal is @ecimalLiteral and the literal has more than 20
significant digits, in which case the number value may be any implementation-dependent
approximation to the MV. A digit issignificantif it is not part of anExponentPartand (either it is not
0 or it isan important zeroor there is no decimal point ‘." in the literal). A digitO is an important
zero if there is at least one important item to its left and at |east onémportant itemto its right within
the literal. Any digit that is notO and is not part of anExponentPartis an important item; a decimal
point ‘. is aso an important item.

String Literals)

The argument against was that these notations are redundant since any character can be represented
using the unicode escape sequence. The arguments for were that hex and octal notation are convenient
and simple and also that there is a language tradition to be upheld.

D.1.5 ToPrimitive
Removed the erroneous note stating that errors are never generated as a result of calling ToPrimitive
in the ToPrimitivesection.

D.1.6 Hex in ToNumber

We decided to allow hex in ToNumber but not octal. Looking at it from the user input source point of
view, we decided that it was reasonable to use hex but not octal since it might be common to include
leading zeros in auser input field. Furthermore we did not believe that the ability to use octal in data
entry was desirable. (Removed open issue at the bottom of 5.3.1 ToNumber Applied to the String

Type)

86

D.1.7 Attributes of Declared Functions and Built-in Olbjs

We decided that built-in objects will have attributes { DontEnum } and that variables declared in
global code will have empty attributes. (Updated the 6.1.1 Global Object section)

D.1.8 The Grouping Operator

We decided that the grouping operator would return the result of GetValue() so that the result is
never of type reference. (Updated thé he Grouping Operatorand removed the open issue at the
bottom of this section)

D.1.9 Prefix Increment and Decrement Operators

We decided to not to perform GetV alue to the return value and thus leave the algorithm asiis.
(removed the open issue at the bottom of therefix Increment Operator)

D.1.10Unary Plus

We decided to leave the algorithm for unary plus alone and continue to call GetValue() and
ToNumber() after evaluating the unary expression which guarantees a numeric result as opposed to
only evaluating the unary expression which would not guarantee a numeric result. (Updated tireefix
Decrement Oper at or

The producti on UnaryExpression: - - UnaryExpressionis evaluated as follows:

Evaluate UnaryExpression.

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Subtract the valuel from Result(3), using the same rules as for the operator (section 8.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

Unary + Operator section)

o0 k~wbdpE

D.1.11 Multiplicative Operators

Updated step nine in theMultiplicative Operatorssection to refer to three new sections 7.41, 7.42 and
7.43 which define the behavior of, / and %

D.1.12 Additive Operators

Updated step 11 in 7.5.1 and step 10in 7.5.2 to refer to a new section 7.5.3 which define the behavior
of+and-.

D.1.13 Left Shift Operator

We decided to |eave the algorithm for left shift asis, which converts the left operand using Tolnt32
rather than ToUint32. Although an unsigned conversion might be arguably preferred, we decided to
continue to convert to signed, as we can always add a new operator (<<<) to accomplish an unsigned
shift. (Removed the open issue at the bottom of he Left Shift Operator (<<))

D.1.14Binary Bitwise Operators

We decided to leave the algorithm for the binary bitwise operators asis, which uses signed conversion
on the GetValue of its operands. (Removed the open issue at the bottom dBinary Bitwise Operator3
D.1.15Conditional Operator ¢ :)

We decided to leave the algorithm for the conditional operator asis, which performs a GetValue on
the result before returning. Current implementations do not do this. (Removed the open issue at the
bottom of Conditional Operator (?:))

87

D.1.16 Simple Assignment

We decided to leave the algorithm for simple assignment asis. (Removed the open issue at the
bottom of Simple Assignment (=))

D.1.17Thefor..in Statement

We decided to impose no restrictions on Expressionl. (Removed the first open issue at the bottom of
The productionl t er at i onSt at enent: f or (var VariableDeclarationList; Expression;
Expression) Statementis evaluated as follows:

Evaluate VariableDeclarationList

If the secondExpression is not present, go to step 7.

Evaluatethe second Expression.

Call GetVaue(Result(3).

Call ToBoolean(Result(3).

If Result(5 isfalse, go to step 15.

Evaluate Statement.

If Result(7) is “abrupt completion because dbr eak” , go to step 15.

If Result(7) is “abrupt completion because of ont i nue”, go to step 11.

If Result(7) is “abrupt completion because of et ur nV”, return Result(7).

If the third Expression is not present, go to step 2.

Evaluatethe third Expression.

Call GetVaue(Result(1}). (Thisvalueis not used.)

Go to step 2.

Return “normal completion”.

©ooNoOOA~ALDNE

e N <
ahkwbdE O

Thef or. . i nStatement)

D.1.18 The return Statement

We decided to not generate an error if one return statement in a function returns a value and another
return in the same function does not return a value. (Removed the first open issue at the bottom of the
Thereturn St at ement The second issue at the bottom of this section has been moved to

The CV of CharacterEscapeSequence:: \ NonEscapeCharacteris the CV of the
NonEscapeCharacter.

The CV of NonEscapeCharacter:: SourceCharacterbut not EscapeCharacteror LineTerminator
is the SourceCharacter character itself.

The CV of HexEscapeSequence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.

The CV of OctalEscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of theOctalDigit.

The CV of Octal EscapeSequence:: \ OctalDigit OctalDigit is the Unicode character whose code
is (8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctalDigit.

The CV of OctalEscapeSequence:: \ ZeroToThreeOctalDigit OctalDigitis the Unicode
character whose code is (64 (that is, 82) timesthe MV of th&eroToThree)plus (8 times the MV
of the first Octal Digit) plus the MV of the secondOctal Digit.

The MV of ZeroToThree:: 0 isO.

The MV of ZeroToThree:: 1 is 1.

The MV of ZeroToThree:: 2 is2.

The MV of ZeroToThree:: 3 is3.

The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 163) timesthe MV of the firdlexDigit) plus (256 (that is,
162) times the MV of the secondHexDigit) plus (16 timesthe MV of the thirdHexDigit) plus the
MV of the fourthHexDigit.

88

Note that aLineTerminator character cannot appear in a string literal, even if preceded by a backslash
\'. The correct way to cause aline terminator character to be part of the string value of a string literal
is to use an escape sequence such a8 n or\ uO00A.

Automatic Semicolon Insertiof

D.1.19New Proposed Extensions
Sections B.10 Preprocessor, B.11 The do..while Statementand B.12 Binary Object were added.

D.2 JANUARY24, 1997

D.2.1 End Of Source

UpdatedError! Reference sour ce not foundsection to describe the end of source token as logical
rather than physical \u00QO since strings may contain embedded \u0O00O characters.

D.2.2 Future Reserved Words

Updated Future Reserved Wordssection to include the worddo and removed the footnotes indicating
the origin of the proposed keywords.

D.2.3White Space

Updated White Spacesection. Updated the lexical production for SimpleWhiteSpace to include <VT>
and <FF> (already mentioned in the white table above).

D.2.4 Comments

Added new issue to 3.2 regarding nested comments.

D.2.5Identifiers
Updated section 3.3.2 to correctly state what is an allowable first character in an identifier.

D.2.6 Numeric Literals

Updated section 3.3.4.3 Numeric Literalsto disallow leading zeros in floating point literals.

D.2.7 String Literals

Updated the table describing the set of character escape characters in sectio@nce the exact MV for a
numeric literal has been determined, it is then rounded to a value of the Number type. If the MV is 0,
then the rounded value is+0; otherwise, the rounded value must béhe number value for the MV (in
the sense defined in section 5.4), unless the literal is &ecimalLiteral and the literal has more than 20
significant digits, in which case the number value may be any implementation-dependent
approximation to the MV. A digit issignificantif it is not part of anExponentPartand (either it is not
0 or it isanimportant zeroor there is no decimal point *." in the literal). A digitO is an important
zero if there is at least one important item to its left and at |east onémportant itemto its right within
the literal. Any digit that is notO and is not part of anExponentPartis an important item; a decimal
point ‘." is also an important item.

String Literals to include a new column indicating the unicode value. Also added a new issue to the
end of this section.

D.2.8 Automatic Semicolon Insertion

Added two new issues to the end of

The CV of CharacterEscapeSequence:: \ NonEscapeCharacteris the CV of the
NonEscapeCharacter.

89

The CV of NonEscapeCharacter:: SourceCharacterbut not EscapeCharacteror LineTerminator
is the SourceCharacter character itself.

The CV of HexEscapeSequence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.

The CV of OctalEscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of theOctalDigit.

The CV of Octal EscapeSequence:: \ OctalDigit OctalDigit is the Unicode character whose code
is (8 timesthe MV of the firstOctalDigit) plus the MV of the secondOctal Digit.

The CV of Octal EscapeSequence:: \ ZeroToThreeOctalDigit OctalDigitis the Unicode
character whose code is (64 (that is, 82) timesthe MV of th&eroToThree)plus (8 times the MV
of the first Octal Digit) plus the MV of the secondOctal Digit.

The MV of ZeroToThree:: 0 isO.

The MV of ZeroToThree:: 1 is 1.

The MV of ZeroToThree:: 2 is2.

The MV of ZeroToThree:: 3 is 3.

The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 163) timesthe MV of the firdlexDigit) plus (256 (that is,
162) times the MV of the secondHexDigit) plus (16 timesthe MV of the thirdHexDigit) plus the
MV of the fourthHexDigit.

Note that aLineTer minator character cannot appear in a string literal, even if preceded by a backslash
\'. The correct way to cause aline terminator character to be part of the string value of a string literal
is to use an escape sequence such as n or\ uO00A.

Automatic Semicolon Insertion

D.2.9 Property Attributes
Renamed Permanentto DontDeletein the property attributes table in theProperty Attributessection.

D.2.10 ToPrimitive
Reworded sectionT oPrimitiveto better describe the optional hintPreferredType

D.2.11 ToNumber

Updated sectionToNumber. Added Hint Number in call to ToPrimitive. Also added new issue to the
end of this section.

D.2.12 White Space

Updated sectionToNumber Applied to the String TypédJpdated the lexical production for
SimpleWhiteSpace to include <VT> and <FF>.

D.2.13ToNumber Applied to the String Type

Updated section 5.3.1, ToNumber Applied to the String Type. Reworked lexical productionsto be
similar to those used in section,

Numeric Literals The difference between string numeric literals and numeric literalsis that string
numeric literals do not allow octal notation and do alow leading zeros.

D.2.14 ToString
Updated sectionNote that ToUint32 maps- 0 to +0.

14.1 TOUINT16: (UNSIGNED16 BIT INTEGER

The operator ToUint16 converts its argument to one of 216 integer values in the range 0 through 216
1, inclusive. This operator functions as follows:

90

Call ToNumber on the input argument.

If Result(1) isNaN, +¥, or - ¥, return +0.

Compute sign(Result(1)) * floor(abs(Result(1))).

Compute Result(3) modulo 216; that isa finite integer valuek of Number type with positive sign
and less than 216 in magnitude such the mathematical difference of Result(3) anklis
mathematically an integer multiple of 216

5. Return Result@).

AwWDdPRE

Discussion:

Notethat the substitution of 216 for 232 intep 4 is the only difference between ToUint32 and
ToUnitl6

Note that ToUint16 maps- 0 to +0.
ToString. Added Hint String in call to ToPrimitive.
D.2.15 Postfix Increment and Decrement Operators

Updated sectionError! Reference sour ce not found. Updated the algorithm to return Result(3) (the
result of converting ToNumber), rather than (Result(2).

D.2.16 Thet ypeof operator
Added a new issue at the end of sectiormhe typeofOper at or.

D.2.17 Prefix Increment and Decrement Operators

Removed extraneous calls to ToPrimitive from the algorithm in sectidBrefix Increment Operator.

D.2.18 Multiplicative Operators

Remove step 7 in the algorithm in section 7.4 (either operand NaN) and added a new rule to 7.4.1 and
7.4.2 to reiterate what was in the old step.

D.2.19The Subtraction Operator

Removed extraneous calls to ToPrimitive from the algorithm in section 7.5.2.

D.2.20 The Subtraction Operator

Remove the old step 9 in the algorithm in section 7.5.2 (either operand NaN) and added a new rule to
section 7.5.3 to reiterate what was in the old step.

D.2.21 Applying the Additive Operators(-)

Update the last rule in section 7.5.3 to clearly state that operands mentioned in the final sentence must
be numeric.

D.2.22 Equality Operators

Moved the Semantic discussion at the beginning of 7.8 to the discussion section at the end of 7.8

D.2.23ToPrimitive Usage
Added issue at the end of sections 7.5.1 and 7,7.

D.2.24Binary Logical Operators
Added issue at the end of 7.10.

91

D.3 JANUARY31, 1997

D.3.1 MultiLineComment

Updated the lexical productionMultiLineCommentin section Comments to allow empty multi-line
comments. Also removed the issue at the end of this section regarding nested mutli-line comments.
The MultiLineCommentproduction continues to disallow multi-line comments.

D.3.2 String Literals

Removed open issue at the end of sectio®nce the exact MV for a numeric literal has been
determined, it is then rounded to a value of the Number type. If the MV is 0, then the rounded valueis
+0; otherwise, the rounded value must béhe number value for the MV (in the sense defined in
section 5.4), unless the literal is aDecimalLiteral and the literal has more than 20 significant digits,
in which case the number value may be any implementation-dependent approximation to the MV. A
digit issignificantif it is not part of anExponentPartand (either it isnotO or it is animportant zero
or thereis no decimal point ‘.’ in theliteral). A digit0 is an important zero if thereis at least one
important item to its left and at least onamportant itemto its right within the literal. Any digit that is
not O and is not part of anExponentPartis an important item; a decimal point ‘.’ is also an important
item.

String Literalswhich stated that the maximum string constant supported must be at least 32000
characters long.

D.3.3 Automatic Semicolon Insertion

Updated section
The CV of CharacterEscapeSequence:: \ NonEscapeCharacteris the CV of the
NonEscapeCharacter.
The CV of NonEscapeCharacter:: SourceCharacterbut not EscapeCharacteror LineTer minator
is the SourceCharacter character itself.
The CV of HexEscapeSequence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.
The CV of OctalEscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of theOctalDigit.
The CV of Octal EscapeSequence:: \ OctalDigit OctalDigit is the Unicode character whose code
is (8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctalDigit.
The CV of Octal EscapeSequence:: \ ZeroToThreeOctalDigit OctalDigitis the Unicode
character whose codeis (64 (that is, 82) timesthe MV of th&eroToThree)plus (8 times the MV
of the first Octal Digit) plus the MV of the secondOctal Digit.
The MV of ZeroToThree:: 0 isO.
The MV of ZeroToThree:: 1 is 1.
The MV of ZeroToThree:: 2 is2.
The MV of ZeroToThree:: 3 is3.
The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 163) timesthe MV of the firdlexDigit) plus (256 (that is,
162) times the MV of the secondHexDigit) plus (16 times the MV of the thirdHexDigit) plus the
MV of the fourthHexDigit.
Note that aLineTerminator character cannot appear in a string literal, even if preceded by a backslash
\'. The correct way to cause aline terminator character to be part of the string value of a string literal
is to use an escape sequence such a8 n or\ uO00A.

Automatic Semicolon Insertionto include rules governing parsing the or statement and dealing
with postfix++ and postfix—— tokens.

92

D.3.4The Number Type

Updated the description in sectionThe String Type

The String type consists of the set of all finiterdered sequences of zero or more Unicode characters.
Each character is regarded as occupying a position within the sequence. These positions are identified
by nonnegative integers. The leftmost characte(if any) is at position 0, the next character (if any) at
position 1, and so on. The length of a string is the number of distinct positions within it. An empty
string has length zero and therefore contains no characters.

The Number Type

D.3.5 Put with Explicit Access Mode

Update section 4.5.2.3, Put with Explicit Access Mode to include looking in the prototype object for
access violations.

D.3.6 Put with Implicit Access Mode

Update section 4.5.2.4, Put with Implicit Access Mode to include looking in the prototype object for
access violations.

D.3.7 The String type
Updated the description in section 4.6, The String Type.

D.3.8 ToNumber
Updated section 5.3, ToNumber to return &NaNfor an input type ofNul | .

D.3.9ToNumber Applied to the String Type

Updated the lexical production for SimpleWhiteSpace in section 5.3.1 to include <CR> and <L F>.
Also updated the lexical productions StrFloatingPointLiteral an&trintegerLiteral to allow signs.

D.3.10TolInt32

Updated description in section 5.5, Tolnt32: (signed 32 bit integer) to tentatively use Guy’s
Conversion modulo 232 algorithm.

D.3.11 ToUint32

Updated description in sectionT oUint32: (unsigned 32 bit integer)to tentatively use Guy’s
Conversion modulo 232 algorithm.

D.3.12 Execution Contexts (Variables)
Section 6 (Variables) replaced by new section (Execution Contexts).

D.3.13 Function Calls
Swapped steps 2 and 3 in section 7.2.4, Function Calls.

D.3.14Thet ypeof Operator

Updated the table in sectionThe typeof Oper at or to specify the result when the input typeis an
external object. Removed related open issue at the end of this section.

D.3.15Applying the%oOperator

Removed step 7 in the algorithm in section 7.4.(either operand NaN) and added a new rule to 7.4.3 to
reiterate what was in the old step.

93

D.3.16 The Addition Operator ¢)

Added the hint Number in the callsto ToPrimitive in section 7.5.1, The Addition Operator<).
Removed related open issue at the end of this section.

D.3.17 Relational Operators

Added the hint Number in the calls to ToPrimitive in section 7.7, Relational Operators. Removed
related open issue at the end of this section.

D.3.18 Conditional Operator (?:)
Updated the syntactic production, Conditional Expression, in sectioBonditional Operator (?:)

D.3.19Compound Assignmentdp=)
Swapped steps 2 and 3 in section 7.12.2, Compound Assignmentdp=)

D.4 FEBRUARYZ21, 1997

D.4.1 Unicode Escape Sequences

Rewrote sectionError! Reference sour ce not foundto reflect the restriction that non-ASCII
Unicode characters may appear only within comments and string literals. M oved the description of
Unicode escape sequences tddnce the exact MV for a numeric literal has been determined, it is then
rounded to a value of the Number type. If the MV is 0, then the rounded value #9; otherwise, the
rounded value must bethe number value for the MV (in the sense defined in section 5.4), unless the
literal is aDecimalLiteral and the literal has more than 20 significant digits, in which case the
number value may be any implementation-dependent approximation to the MV. A digitsignificant
if it is not part of anExponentPartand (either it isnotO or it is an important zeroor there is no
decimal point *." in the literal). A digitO is an important zero if there is at least one important item to
its left and at least oneimportant itemto its right within the literal. Any digit that is notO and is not
part of an ExponentPartis an important item; adecimal point ‘." is also an important item.

String Literals

D.4.2 Future Reserved Words
Addedi nport and super to tableinFuture Reserved Words

D.4.3 Automatic Semicolon Insertion

Rewrote the rules for semicolon insertion in section
The CV of CharacterEscapeSequence:: \ NonEscapeCharacteris the CV of the
NonEscapeCharacter.
The CV of NonEscapeCharacter:: SourceCharacterbut not EscapeCharacteror LineTerminator
is the SourceCharacter character itself.
The CV of HexEscapeSequence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.
The CV of OctalEscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of theOctalDigit.
The CV of Octal EscapeSequence:: \ OctalDigit OctalDigit is the Unicode character whose code
is (8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctalDigit.
The CV of OctalEscapeSequence:: \ ZeroToThreeOctalDigit OctalDigitis the Unicode
character whose code is (64 (that is, 82) timesthe MV of th&eroToThree)plus (8 times the MV
of the first Octal Digit) plus the MV of the secondOctal Digit.
The MV of ZeroToThree:: 0 isO.
The MV of ZeroToThree:: 1 is 1.

94

The MV of ZeroToThree:: 2 is2.
The MV of ZeroToThree:: 3 is3.
The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 163) timesthe MV of the firdlexDigit) plus (256 (that is,
162) timesthe MV of the secondHexDigit) plus (16 times the MV of the thirdHexDigit) plus the
MV of the fourthHexDigit.
Note that aLineTerminator character cannot appear in a string literal, even if preceded by a backslash
\'. The correct way to cause aline terminator character to be part of the string value of a string literal
is to use an escape sequence such as n or\ uO00A.
Automatic Semicolon Insertiorto incorporate the rule that a semicolon is not inserted if it would be
treated as an empty statement. Also, broke out the empty statement as a separate kind of statement for
expository purposes in sectiorm he productionlnitializer : = AssignmentExpressionis evaluated as
follows:
1. Evaluate AssignmentExpression.
2. Return Result(1).

Empty Statement.

D.4.4 The Number Type

Corrected formatting of formulae in sectiorT he String Type

The String type consists of the set of all finiterdered sequences of zero or more Unicode characters.
Each character is regarded as occupying a position within the sequence. These positions are identified
by nonnegative integers. The leftmost characte(if any) is at position 0, the next character (if any) at
position 1, and so on. The length of a string is the number of distinct positions within it. An empty
string has length zero and therefore contains no characters.

The Number Type

D.4.5 Notlmplicit and NotExplicit Property Attributes Deleted

The NotImplicit and NotExplicit property attributes were deleted from the table in sectioRroperty
Attributes Many changes throughout the rest of chapter 4 to reflect this deletion. Also, the
[[TestPutExplicit]] helper method was renamed [[CanPut]].

D.4.6 ToInt32 and ToUint32

Corrected formatting of formulae in sectiomolnt32: (signed 32 bit integer)and section ToUint32:
(unsigned 32 bit integer) Also, change the discarding of the fractional part to truncate toward zero
rather than using a simple floor operation.

Correct an error in the descriptions by adding a new step 4 to each one, which makes sure that
if theinput is negative zero, the output is positive zero.
D.4.7 Grouping Operator

Delete step 2 from sectionT he Grouping Operator. Parentheses no longer force dereferencing.

D.4.8 Shift Expressions

Correct the grammar for ShiftExpressionby adding AdditiveExpressionas an alternative in section
Bitwise Shift Operators

D.4.9 Conversion Rules for Relational Operators

Updated description in section Relational Operatorsso that lexicographic string ordering is used only
if both operands become strings when converted to primitive type; if oneisastring and oneisa
number, then numeric ordering is used. Thusrelational operators differ from the operator, which, if
one operand is a string and one is a number, performs string concatenation rather than addition.

95

D.4.10 && and || Semantics

Updated description in sectiorBinary Logical Operatorsso that && and | | have PERL-like
semantics; that is, theresult of1| | 2is1, not true, and the result of0| | "Hel | 0" is“ Hel | 0”.

D.4.11 Conditional Operator

Updated sectionConditional Operator (?:) to reflect the change that the second and third
subexpressions should each be\ssignmentExpression

D.4.12 Assignment Operators

Updated sectionAssignment Operatorsto reflect the change that the left-hand side of an assignment
should be aPostfixExpression Also change two occurrences in subsections of SetVal to PutValue.

D.4.13 Syntax of Class Statement

Updated sectionB.1 The Class Statement1to allow the parentheses in a class declaration to be
optional.

D.4.14 Syntax of Try Statement

Updated sectionB.2.1 Thetry Statementlto requirethe body of acat chorfi nal | y clauseto be
aBlock.

D.5 FEBRUARY27, 1997

D.5.1 Grammar Notation

Big rewrite of sectionSyntactic and Lexical Grammarsto make the description of grammar notation
more detailed and rigorous. Is this okay? (Much of the text was borrowed, in form at least, from the
Java Language Specification.) The notation is still a bit inconsistent throughout the document
(example: “except” versus “but not”), and should be made consistent within itself and with section
Syntactic and L exicalGrammars.

Also decided to call out the grammar in Chapter 5 as a separate grammar and use triple colons on its
productions.

Restructured some of the grammar in Chapter 3 to make it a bit more readable. Isthis okay?

D.5.2 End of Medium Character Is No Longer WhiteSpace

Deleted character \u0019 (End of Medium) from the table in sectioWhite Space and deleted

<EOM> as an dternative for SimpleWhiteSpace in that same section. Also deleted <EOM> asan
alternative for StrwhiteSpaceChar in sectionT oNumber Applied to the String TypeThese changes
reflect the decision that neither \u0019 (End of Medium, mistakenly also referred to in previous drafts
of this document as ~Z) nor \uOO1A (Substitute, which really is~Z) shall be considered whitespacein
an ECMA Script program. It is expected that host environments will filter any ~Z character that

might occur at the end of the host environment’ s representation of an ECM A SCript program.

D.5.3 Meaning of Null Literal

Added to sectionNull Literalsa discussion of the meaning of anull literal.

D.5.4 Meaning of Boolean Literals

Added to sectionSemantics
The value of the null literalnul | isthe sole value of the Null type, namelyull.
Boolean Literalsa discussion of the meaning of a boolean literal.

96

D.5.5 Meaning of Numeric Literals

Added to section

Numeric Literalsa discussion of the meaning of a numeric literal. It does not yet address the
restriction to 19 significant digits. Is this the style of description we want?

D.5.6 Automatic Semicolon Insertion

Updated description of automatic semicolon insertion in section

The CV of CharacterEscapeSequence:: \ NonEscapeCharacteris the CV of the
NonEscapeCharacter.
The CV of NonEscapeCharacter:: SourceCharacterbut not EscapeCharacteror LineTerminator
is the SourceCharacter character itself.
The CV of HexEscapeSequence:: \ x HexDigit HexDigit is the Unicode character whose code is
(16 timesthe MV of the firstHexDigit) plus the MV of the secondHexDigit.
The CV of OctalEscapeSequence:: \ OctalDigitis the Unicode character whose code isthe MV
of theOctalDigit.
The CV of OctalEscapeSequence:: \ OctalDigit OctalDigitis the Unicode character whose code
is (8 timesthe MV of the firstOctal Digit) plus the MV of the secondOctalDigit.
The CV of OctalEscapeSequence:: \ ZeroToThreeOctalDigit OctalDigitis the Unicode
character whose code is (64 (that is, 82) timesthe MV of th&eroToThree)plus (8 times the MV
of the first Octal Digit) plus the MV of the secondOctal Digit.
The MV of ZeroToThree:: 0 isO.
The MV of ZeroToThree:: 1 is 1.
The MV of ZeroToThree:: 2 is2.
The MV of ZeroToThree:: 3is3.
The CV of UnicodeEscapeSequence:: \ u HexDigit HexDigit HexDigit HexDigit is the Unicode
character whose code is (4096 (that is, 163) timesthe MV of the firdlexDigit) plus (256 (that is,
162) times the MV of the secondHexDigit) plus (16 times the MV of the thirdHexDigit) plus the
MV of the fourthHexDigit.
Note that aLineTerminator character cannot appear in a string literal, even if preceded by a backslash
\'. The correct way to cause aline terminator character to be part of the string value of a string literal
is to use an escape sequence such as n or\ uO00A.

Automatic Semicolon Insertion Systematically replaced the word “injected” with “inserted”. Invented
anew theory of “restricted productions’ to explain in a general way why the parser inserts semicolons
in places where there would otherwise be a valid parse without a semicolon. Added more examples
and advice. Also modified productions in sectionkeft-Hand-SideExpressionsand The return
STATEMENT to indicate the restrictions explicitly.

D.5.7 The Number Type

Updated sectionThe String Type

The String type consists of the set of all finiterdered sequences of zero or more Unicode characters.
Each character is regarded as occupying a position within the sequence. These positions are identified
by nonnegative integers. The leftmost characte(if any) is at position 0, the next character (if any) at
position 1, and so on. The length of a string is the number of distinct positions within it. An empty
string has length zero and therefore contains no characters.

The Number Typeto provide explanations of those large numbers as sums and differences of powers
of two.
D.5.8 ToString on Numbers

Updated sectionToString Applied to the Number Typdiave a draft specification of how this
conversion ought to be done. This needsto be reviewed. This version requires that, when the number
has a nonzero fractional part, the output must be correctly rounded and produce no more digits than

97

necessary for the fractional part. Added a bibliographic reference to the paper and code of David M.
Gay on this subject.

D.5.9 New Operator

Updated description in sectionThe productionCal | Expr essi on: Member Expression[
Expression] isevaluatedin exactly the same manner, except that the containedCall Expressionis
evaluated in step 1.

The new Operator to describe the case where no argument list is provided. This needs to be reviewed.

D.5.10 Delete Operator

Updated description in sectionThe deleteOper at or to reflect decision that this operator shall
return a boolean value; the valug r ue indicates that, after the operation, the object is guaranteed not
to have the specified property.

D.5.11 == Semantics

Updated sectionlf Result(2) is a prefix of Result (1), returrfalse. (A string valuep is a prefix of
string valueq if g can be the result of concatenatingp and some other stringr. Note that any string is
aprefix of itself, becauser may be an empty string.)

1. If Result(l) isaprefix of Result (2), returrirue.

2. Letk bethe smallest nonnegative integer such that the character at positiok within Result(1) is
different from the character at positionk within Result(2). (There must be such &, for neither
string is a prefix of the other.)

Let m be the integer that is the Unicode encoding for the character at positiok within Result(1).
Let n be the integer that is the Unicode encoding for the character at positiok within Result(2).
If m<n, return true. Otherwise, returnfalse.

Equality Operatorsso that (a) nul | and undef i nedare considered equal, and (b) when a number
meets a string, the number is converted to a string and then string equality is used.

D.5.12 && and || Semantics
Updated description in sectiorBinary Logical Operatorsto delete step 7 for eachoperator (the result of
this step was no longer used).

D.5.13 Separate Productions for Continue, Break, Return

To make certain kinds of cross-reference in the document simpler, | broke out the continue, break, and
return statements into separate grammatical productions, eliminating the production for

Control FlowStatement(which was something of a misnomer anyway, and other statements also result
in (structured) control flow.

D.5.14 Dead Code Is Not Protected from Compile-Time Analysis
Added text to chapter 12 (Errors).

D.6 MARCHG6, 1997

D.6.1 Reformatted the Entire Document

| order to make future revisions easier and to take better advantage of the desktop-publishing
capabilities of Word, the entire document was reformatted using some newly defined Word styles.
Heading numbering was turned on to facilitate automatic numbering of headings in the main text
(sections of the appendices are still numbered manually, using new styles Appendix Heading 1,
Appendix Heading 2, and Appendix Heading 3). A new style Algorithm is used for algorithmic steps;
in some cases, the last step should be styled with AlgorithmLast to provide extra vertical space after
the last step.

98

Added a style called MathSpecial Case (generates bullet lists for now).

The title page now uses styles Title and Subtitle, which were modified to use apropriate fonts and
paragraph spacing.

Extraneous tab characters and multiple spaces were deleted from all headings.

The paragraph spacing of Normal, the various headings, Algorithm, AlgorithmL ast, SyntaxRule, and
SyntaxDefinition were adjusted so that the correct vertical space isinserted automatically. All blank
paragraphs in the document were del eted.

The index and all index entries were deleted. Sorry, but they were somehow interfering with other
formatting, and the index entries were terribly incomplete anyway. If we have time to do a good index,
entries can be added semi-systematically.

The document was divided into three of what Word calls “sections” so that the pages of the Table of

Contents could be numbered with the customary roman numerals, with the main text starting on page
1

All therevisions listed in this item were accepted and the change bars reset before the following items
were entered, so that all the changes of thisitem would not clutter the manuscript.

D.6.2 Designed a Section Outline for Chapter 11

Filled in nearly all necessary section headings for Chapter 1 for describing Object, Function, Array,
String, Boolean, Number, and Math and all their properties and methods. Added a fair amount of
boilerplate text.

D.6.3 Defined Math Functions

Added complete definitions for all propertiesin the Math object, following the example of C9X for the
treatment of IEEE 754 special cases.

D.7 MARCH10, 1997

D.7.1 Added Definition of “The Number Value for x”

In section 5.4, the phrase “the number value forx” is now defined. It encapsulates the entire IEEE 754
process for converting any nonzero mathematical value to a representable value by using round-to-
nearest mode. This phrase is of great use in Chapterl2 and elsewhere.

Also corrected two typos in this section: 1073 replaced by- 1074, and 2 replaced by 22,

D.7.2 atan and atan2 May Use Implementation-Dependent Values poetc.

It was decided at the phone meeting that wherivat h. at an, for example, is supposed to returrp/2, it
need not return exactly one-half the initial value oivat h. pi, but may produce an approximation.
The motivation is to allow implementors the use of whatever C math library is present on the
hardware platform at hand, whether or not it conforms to the high quality standards of, for example,
the C9X proposal.

D.7.3 Improved Discussion of Input Stream for Syntactic Grammar

Text added to section2.1 to better explain the handling of whitespace, comments, and line
terminators, and the fact that line terminators become part of the input stream for the syntatic
grammar. Also corrected atype in sectior2.1.5 where the phrase “[no LineTerminator here]” had been
inadvertently omitted.

D.7.4 Improved Treatment of LineTerminator in Lexical Grammar

Eliminated the mythical <EOS> character. As aresultLineEndis not needed either. The trick is not
to include LineEnd (or LineTerminator) as part of the grammar of a single-line comment. This works
out better, because a single-line comment still runs to the end of the line (as dictated by the longest-

99

token-possible rule), but it doesn’'t swallow theineTerminator, so it doesn't affect automatic
semicolon insertion. (That the previous production did swallow theineTer minator was thus a bug.)

The section on whitespace has been divided into two sections, one awhiteSpace(formerly called
SmpleWhiteSpacg and one on Line Terminators.

THIS CHANGE REQUIRES REVIEW.

D.7.5 Clarify Behavior of Unicode Escape Sequences

In Chapter 3, clarify that a Unicode escape sequence such as\u000D does not produce a carriage
return that could end a single-line comment, for example.

D.7.6 Add Careful Description of the String Value of a String Literal

In imitation of the text already present describing the value of a numeric literal, text was added to
section4.7.4 to describe carefully the exact sequence of characters represented by a string literal. In
the process, missing productions folDoubleStringChar acter sand SingleStringChar acter svere added,
and the redundant defintions ofHexDigit and Octal Digit were removed. Also dealt with an open issue
by emphasizing that aLineTerminator may not appear within a string literal.

D.7.7 Description of Identifiers Reworded

Improvements to the wording in sectior.5. Also repaired atypo (capitall replaced by lowercasd).

D.7.8 Table of Punctuators Corrected

Underscore replaced by + operator in table in sectiod.6.

D.7.9 Improved Descriptions of ToInt32 and ToUint32

Step 5 of the algorithms in sections.5 and 6.6 have been clarified to use a mathematical description
rather than fragments of code .

D.7.10 Changes to ToString Applied to the Number Type

See section6.8.1. Negative zero now produces 0" ., not" - 0" .. Integers less than 1G° shall print
without decimal points. Values less than 1 but not less than 16 will not require scientific notation.
D.7.11 Revised Syntax for NewExpression and MemberExpression

Made the changes to sectiorB.2 as suggested by Shon, eliminatingNewCall Expressionand providing
a pleasing symmetry in which the number ohewoperators can exceed or fall short of the number of
argument lists.

D.7.12 Clarify Multiplicative and Additive Operators

In section8.5.1, describe the multiplication of infinity by infinity.

In section8.5.2, describe the division of infinity by zero.

In section8.5.3, better describe the remainder of a zero by afinite number.

In section 8.6, better describe the sum of two zeros and the sum of finite numbers of same magnitude

and opposite sign.
D.7.13 Addition Operator No Longer Gives Hint Number

When the addition operator+ calls ToPrimitive, it no longer gives hint Number. Note that all built-in
objects respond to ToPrimitive without a hint asif hint Number were given, so thius change affects
only external objects.

D.7.14 Correct Description of Relational Operators

Miscellaneous small corrections.

100

D.7.15 Assignment Operator LHS Must Be PostfixExpression

Change four occurrences ofUnaryExpressionto PostfixExpressionin section 8.13.

D.7.16 Changes to For-in Loops

Withoutvar , the expression befored n must be aPostfixExpression(as for an assignment),
Withvar, an optional Initializer is permitted after theldentifier.

A For-In loop enumerates not only properties of the given object itself, but also properties of its
prototype, and so on, recursively.

ISSUE: Are shadowed properties of the prototype enumerated?

D.7.17 Break and Continue Must Occur within While or For Loop

Added text to section9.6 and 9.7 to requirebr eak and cont i nueto appear within loop
statements.

D.8 MARCH12, 1997

D.8.1 Added Overview Chapter
Added a chapter at the beginning as a placeholder for introductory exposition.

D.8.2 More Exposition about Internal Properties

Renamed section5.6.2 from “Property Access’ to the more general “Internal Propeties and Methods”.

Added properties [[Class]], [[Value]], [[CanPut]], and [[DefaultValue]] to the table so as to complete
the list.

Added some discussion of these internal properties.

D.8.3 Date Object
Added the Date object to chapterl2 and method descriptions, etc.

D.8.4 Array, String, Boolean, Number Objects
Tons of work in chapter12 to add method descriptions, etc.

D.8.5 Math Object

Corrections to atan2 and floor.

D.9 MARCH?Z24, 1997

D.9.1 Numeric Literals

Revamped the grammar for numeric literals to simplify it (per Shon’s suggestion) and added prose
indicating that the number value for a decimal literal need only be an implementation-dependent
approximation is there are more than 20 significant digits. In the process, the words “floating-point”
disappear from the grammar; floating-point literals are merely one kind of decimal literal.

D.9.2 String Numeric Literals

Revamped the grammar for string numeric literals and added prose indicating that the number value
for adecimal literal need only be an implementation-dependent approximation is there are more than
20 significant digits. In the process, the words “floating-point” disappear from the grammar; floating-
point literals are merely one kind of decimal literal.

Also added the text describing how to calculate a mathematical value for a string numeric literal. The
details are a bit different from those for ordinary numeric literals.

101

D.9.3 Prefix and Postfix Increment and Decrement Operators

Revise the grammar (for expository reasons), restructure the sections, and revise the algorithms for the
++ and - - operatorsto be more precise.

D.9.4 Left-Hand-Side Expressions

Revise the grammar forPostfixExpressionso that uses of the postfix++ and - - operators cannot

occur to the left of a or =, for example. Now only d_eftHandS deExpressionmay occur on the | eft-
hand side of an assignment ori n keyword. Also updated the list of restricted productions accordingly
in the description of automatic semicolon insertion (sectio.8).

D.9.5 Reference Type

Revise description of the internal reference type (sectioB.7).

D.9.6 Infinities and Zeros

Decided to use the formaNaN, positive zer g negative zerq positive infinity, and negative infinity
(Times bold, no caps except foNaN) consistently throughout the document to refer to those
quantities. (Overridden by D.10.2.)

D.9.7 Miscellaneous Small Corrections

Among the small corrections is the deletion of step 10, which was redundant, in the algorithm for the
addition operator (section8.6.1).

D.10 MARCH27, 1997

D.10.1 Corrections to [[CanPut]] and [[HasProperty]]

Allow for the possibility that the [[Prototype]] is not implemented or has an undefined or primitive
value.

D.10.2 Discussion of Number Type

Explicitly introduce+¥, - ¥, +0, and - 0 as symbols used for expository purposes in this specification,
and briefly point out the program expression®laN +I nfi ni ty, -1 nfinity, +0,and- 0.

Then override D.9.6 to use the symbolsin preference tpositive zer g negative zer g positive
infinity, and negative infinityin most places, as they have turned out to be visually clumsy..
D.10.3 Infinity and NaN

Add properties NaN (initial valueis NaN) andl nf i ni t y (initial valueis)to the global object.
Specify thatSign,,: | nf i ni t y be recognized when ToNumber is applied to a string.

Whilel am at it, clarify the process fo converting a mathematical value (MV) to arounded value of
Number type, both for numeric literals and for string numeric literals.

D.10.4 charCodeAt and String.fromCharCode

Addchar CodeAt method for String objects andSt r i ng. f r omChar Codefunction to the String
object.. In support of the description ofst ri ng. f r omChar Code add the ToUint16 abstract
operator.

D.10.5 Last fraction digit from ToString applied to a number

Added discussion of the rule that ifx is a number, ToNumber(ToStringk)) must be the same asx.

102

D.10.6 Multi-line comment containing line terminator treated as line terminator

In section2.1.2, added text to say that a multi-line comment is simply discarded if it contains no line

terminator; but if a multi-line comment contains one or more line terminators, then it is replaced by a
single line terminator, which becomes part of the stream of input elements for the syntactic grammar.
D.10.7 Automatic semicolon insertion at end of source

Reworked the description of automatic semicolon insertion yet again. Handle end of course as a
special case in section4.8; as a consequence, it is hot necessary to specially append aline terminator
to the input stream in section2.1.4.

D.10.8 Added proposed extension for labelled break and continue

New section B.13 proposes the use of labels asin Javato allow transfer to other than the innermost
containing loop.

D.10.9 Lowercase “e” for scientific notation in ToString of a number

A lowercase “€” shall be used, not uppercase “E” (sectiof.8.1).

D.10.10 Evaluation of argument lists

Added algorithmic explanation of the evaluation of argument lists (sectioB.2.4). To this end,
invented yet another fictitious expository data type, List (sectid8).

D.10.11 For ToPrimitive of native objects, no hint is same as hint Number
Added a helpful note to sectiorB.6.1.

D.10.12 Major overhaul of equality and relational operators

Revised descriptions to make them more precise, especially aboitaN.

D.10.13 String type
Moved the section on the String type and augmented its description (sectidh4).

103

APPENDIX E: LALR(1) SYNTACTIC GRAMMAR

Issue: To be supplied?

104

105

