
ECMA/TC39/97/34

B.12
The buffer object will act as if it were referencing a region in memory which is

1.)  of unchanging size (in bytes, as will be all sizes throughout this section)

2.)  contiguous, and remains so across any garbage collection in which the object itself is not
removed.

The buffer’s size is accessible via its public, read-only, property length.

The buffer is contiguous in the sense that given any set of operations that, for a positive integer “n”, have
set buffer elements bn and bn+1 of a byte buffer B to an and an+1 respectively, a two-byte subregion C created
at from B at offset n (for which see below) will have

c0 = an

c1 = an+1

for its first two elements.

Associated with it will be facilities for accessing subregions of a given object as binary objects.  The
subregion will be specified by an integer offset within the whole, and a size for the subregion, both in
bytes.  Subregions can either be shared with the original buffer (so that changes to the subregion will
affect the original buffer) or be copies of the subregion as of the time of creation.

Any attempt to create a “subregion” which is not completely within the domain of the original region
(indices within [0, len) for a buffer of length “len”) will generate a runtime error.

Binary objects of appropriate size will be retrievable as and settable by (with specifiable byte ordering,
size, and sign convention, where appropriate) ECMAScript numbers.  The default endness of the bit-
representation of a given integer or float value will be that of the platform.  Binary objects of any size may
be accessed or set as ECMAScript strings or arrays of numbers.  When attempting to retrieve from or
alter an extant Buffer using a get or set method,  and a byte size greater than the one appropriate to the
returned object is specified (e.g., 4 in the case of integers, 2 for a UNICODE character code) is specified
for the relevant Buffer domain or range, only the first or last “appropriate” bytes (depending on default
or specified endness) of the region specified will be altered or retrieved.  Zero-padding as an option?

A runtime error is triggered by any method on a Buffer B which attempts to retrieve or set a byte or bytes
from an invalid offset, defined as one which is negative or exceeds B.length .

B.12.1.1 new Buffer(size)

Creates a new Buffer object of the specified size.

B.12.1.2 new Buffer(aBuffer, offset[, size] [, copy] )

The default size value, here and in subsequent methods, will be

defaultSize = aBuffer.length - offset ,

so the new buffer will be a copy of the old buffer from the specified offset to its end.  The
default value for copy is false, meaning that the new Buffer object refers to some of the
same data as the original.

B.12.1.3 new Buffer(String)

B.12.1.4 new Buffer(integer[] [, signed])

An Array of integer values is used to create the Buffer object, each value being truncated to
a [signed] byte.  The default value for signed is false.

B.12.1.5 Buffer subBuffer(offset[, size][, copy])

This method is equivalent to new Buffer(this, offset, size, copy) .



ECMA/TC39/97/34

B.12.2.1 int getByte(offset[, signed])

Returns value of byte stored at the given offset as a [signed] byte. The default value for
signed will be false, as it will be for all subsequent methods.

B.12.2.2 int getUNICODEValue(offset)

Returns integer value corresponding to the two-byte UNICODE character starting from the
specified offset.

B.12.2.3 int getInt16( offset[, endness] )

B.12.2.4 int getUInt16( offset[, endness] )

B.12.2.5 int getInt32( offset[, endness] )

B.12.2.6 int getUInt32( offset[, endness] )

B.12.2.7 float getFloat(offset[,endness] )

As stated before, all the get methods trigger runtime errors if there aren’t enough bytes to
create the value requested in the region specified, e.g. aBuffer.getInt32( aBuffer.length -
1).  Here and throughout the section, the parameter endness is a boolean for which true
corresponds to a “big-endian” byte-ordering, and false to “little-endian” ordering.

B.12.2.8 int[] getByteArray(offset[, size][,signed])

Creates an array of ECMAScript integers from the [signed] byte-values in the buffer.

B.12.2.12 String getString(offset[, size ])

Creates a UNICODE string from the buffer, triggering a runtime error if there is an extra byte
left over at the end.

B.12.2.9 Buffer[] getBufferArray(offset, size, elementSize)

Creates an array of Buffer objects of size elementSize, triggering a runtime error if there
aren’t an integral number of sub-buffers of size elementSize in the region specified.  Used
rather than defining separate getUInt16Array, getUInt32Array,… methods.

B.12.3.1 void setByte( offset, value[, signed] )

Sets a byte at a given offset to an integer value truncated to one [signed] byte.

B.12.3.2 void setUnicodeValue(offset, value)

Sets two bytes, starting at a given offset, to the UNICODE value.  In this and all subsequent
methods, all values to set are appropriately truncated if they exceed or underflow maximal or
minimal values for a given integral type.

B.12.3.3 void setInt16(offset, value, [,endness])

B.12.3.4 void setInt32(offset, value, [,endness])

B.12.3.5 void setUInt16(offset, value, [,endness])

B.12.3.6 void setUInt32(offset, value, [,endness])

The Int and Uint methods differ only in their treatment of negative values (treated as 0 by
the Uint methods) and truncation-points.

B.12.3.7 void setFloat(offset [,endness])

B.12.3.8 void setFromBuffer(offset[, size], srcBuffer[,  srcOffset])

Sets size bytes in the caller from offset onward using the bytes in srcBuffer from srcOffset
(default 0) onward.

B.12.3.9 void setFromString( offset, aString[,nChar])



ECMA/TC39/97/34

Set the caller’s bytes from offset onward using the values of the first nChar characters of
aString. Equivalent to

src = new Buffer( aString ) ;

this.setFromBuffer(offset, src, src.length) ; .

B.12.3.10 void setFromBufferArray(offset, aBufferArray[, [arrayOffset[, size]] )

Maps an array of buffers into one buffer.  Sets the buffer instance’s elements from offset
onward, using the successive elements of an array of buffer objects.  Bytes are read from
aBufferArray from arrayOffset (default value 0 ) onward, and continuing for size.  A runtime
error is triggered if there are fewer than size available after arrayOffset.


