
Changes To ECMA-262 Specification

8.6.2 Internal Properties and Methods

Internal properties and methods are not exposed in the language. For the purposes of this
document, their names are enclosed in double square brackets [[]]. When an algorithm uses an
internal property of an object and the object does not implement the indicated internal property, a
runtime error is generated.

There are two types of access for exposed properties: get and put, corresponding to retrieval and
assignment, respectively.

Native ECMAScript objects have an internal property called [[Prototype]]. The value of this
property is either null or an object and is used for implementing inheritance. Properties of the
[[Prototype]] object are exposed as properties of the child object for the purposes of get access,
but not for put access.

The following table summarises the internal properties used by this specification. The description
indicates their behaviour for native ECMAScript objects. Host objects may implement these
internal methods with any implementation-dependent behaviour, or it may be that a host object
implements only some internal methods and not others.

Property Parameters Description
[[Prototype]] none The prototype of this object.
[[Class]] none A string value indicating the kind of this object.
[[Value]] none Internal state information associated with this

object.
[[Get]] (PropertyName) Returns the value of the property.
[[Put]] (PropertyName, Value) Sets the specified property to Value.
[[CanPut]] (PropertyName) Returns a boolean value indicating whether a

[[Put]] operation with the specified PropertyName
will succeed.

[[HasProperty]] (PropertyName) Returns a boolean value indicating whether the
object already has a member with the given
name.

[[Delete]] (PropertyName) Removes the specified property from the object.
[[DefaultValue]] (Hint) Returns a default value for the object, which

should be a primitive value (not an object or
reference).

[[Construct]] a list of argument values
provided by the caller

Constructs an object. Invoked via the new
operator. Objects that implement this internal
method are called constructors.

[[Call]] a list of argument values
provided by the caller

Executes code associated with the object.
Invoked via a function call expression. Objects
that implement this internal method are called
functions.

[[HasInstance]] (Value) Returns a boolean value indicating whether the
Value delegates behaviour to this object. Of the
native ECMAScript objects, only Function objects
implement [[HasInstance]].

[[Closure]] none A scope chain that defines the environment in
which a Function object is executed.

Every object must implement the [[Class]] property and the [[Get]], [[Put]], [[HasProperty]],
[[Delete]], and [[DefaultValue]] methods, even host objects. (Note, however, that the
[[DefaultValue]] method may, for some objects, simply generate a runtime error.)

The value of the [[Prototype]] property must be either an object or null, and every [[Prototype]]
chain must have finite length (that is, starting from any object, recursively accessing the
[[Prototype]] property must eventually lead to a null value). Whether or not a native object can
have a host object as its [[Prototype]] depends on the implementation.

The value of the [[Class]] property is defined by this specification for every kind of built-in object.
The value of the [[Class]] property of a host object may be any value, even a value used by a
built-in object for its [[Class]] property. Note that this specification does not provide any means for
a program to access the value of a [[Class]] property; that value is used internally to distinguish
different kinds of built-in objects.

Every native object implements the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], and [[Delete]]
methods in the manner described in sections Error! Reference source not found., Error!
Reference source not found., Error! Reference source not found., Error! Reference source
not found., and Error! Reference source not found., respectively, except that Array objects
have a slightly different implementation of the [[Put]] method (section Error! Reference source
not found.). Host objects may implement these methods in any manner; for example, one
possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store property
values but [[HasProperty]] always generates false.

In the following algorithm descriptions, assume O is a native ECMAScript object and P is a string.

8.9 The Completion Type

The internal Completion type is not a language data type. It is defined by this specification
purely for expository purposes. An implementation of ECMAScript must behave as if it produced
and operated upon Completion values in the manner described here. However, a value of the
Completion type is used only as an intermediate result of statement evaluation and cannot be
stored as the value of a variable or property.

The Completion type is used to explain the behaviour of statements (break, continue, return
and throw) that perform nonlocal transfers of control. Values of the Completion type are triples of
the form (type, value, target), where type is one of normal, break, continue, return, or throw,
value is any ECMAScript value, or empty, and target is any ECMAScript identifier, or empty.

The term “abrupt completion” refers to any completion with a reason value other than normal.

Invoking the [[Call]] or [[Construct]] method of a Function object, amounts to the evaluation of a
Block (see section 12.1) in an appropriate Execution Context (see section 10). The result of
evaluating a Block is of the Completion Type. This value should not be returned as the result of
the method invocation, or it might end up being stored in a variable or property. Instead, the value
field of the completion value becomes the result of the invocation, except that an empty value is
replaced with undefined. If the completion value is of type throw, execution of the algorithm that
invoked the method should proceed as if a runtime error has occurred, see section 5.2.

10.1.2 Types of Executable Code

There are five types of executable ECMAScript source text:

• Global code is source text that is outside all function declarations. More precisely, thetreated
as an ECMAScript Program. The global code of a particularECMAScript Program consists of

all SourceElements in the Program production, which come from the Statement definition.does
not include any source text that is parsed as part of a nested FunctionBody.

• Eval code is the source text supplied to the built-in eval function. More precisely, if the
parameter to the built-in eval function is a string, it is treated as an ECMAScript Program. The
eval code for a particular invocation of eval is the global code portion of the string parameter.

• Function code is source text that is inside a function declaration. More precisely, theparsed as
part of a FunctionBody. The function code of a particular ECMAScript FunctionDeclaration
consists of the Block in the definition of FunctionDeclaration.FunctionBody does not include
any source text that is parsed as part of a nested FunctionBody.

• Anonymous code is the source text supplied when instantiating Function. More precisely, the
last parameter provided in an instantiation of Function is converted to a string and treated as
the StatementList of the Block of a FunctionDeclaration.FunctionBody. If more than one
parameter is provided in an instantiation of Function, all parameters except the last one are
converted to strings and concatenated together, separated by commas. The resulting string is
interpreted as the FormalParameterList of a FunctionDeclaration for the StatementListfor the
FunctionBody defined by the last parameter. The anonymous code for a particular instantiation
of a Function does not include any source text that is parsed as part of a nested
FunctionBody.

� Implementation-supplied code is the source text supplied by the host when creating an
implementation-supplied function. The source text is treated as the StatementList of the Block
of a FunctionDeclaration.a FunctionBody. Depending on the implementation, the host may also
supply a FormalParameterList.

• FormalParameterList. The implementation-supplied code of a particular function does not
include any source text that is parsed as part of a nested FunctionBody.

10.1.3 Variable Instantiation

Every execution context has associated with it a variable object. Variables and functions declared
in the source text are added as properties of the variable object.For global and eval code,
functions defined in the source text are added as properties of the variable object. Function
declarations in other types of code are not allowed by the grammar. For function, anonymous,
and implementation-supplied code, parameters are added as properties of the variable object.

Which object is used as the variable object and what attributes are used for the properties
depends on the type of code, but the remainder of the behaviour is generic. On entering an
exection context, the properties are bound to the variable object in the following order:

� For each FunctionDeclaration in the code, in source text order, instantiate a declared function
from the FunctionDeclaration and create a property of the variable object whose name is the
Identifier in the FunctionDeclaration, whose value is the declared function and whose attributes
are determined by the type of code. If the variable object already has a property with this
name, replace its value and attributes.

• For each formal parameter,function code, anonymous code, and implementation-supplied
code, for each formal parameter as defined in the FormalParameterList, create a property of
the variable object whose name is the Identifier and whose attributes are determined by the
type of code. The values of the parameters are supplied by the caller as arguments to [[Call]]. If
the caller supplies fewer parameter values than there are formal parameters, the extra formal
parameters have value undefined. If two or more formal parameters share the same name,
hence the same property, the corresponding property is given the value that was supplied for

the last parameter with this name. If the value of this last parameter was not supplied by the
caller, the value of the corresponding property is undefined.

• For each FunctionDeclaration in the code, in source text order, create a property of the variable
object whose name is the Identifier in the FunctionDeclaration, whose value is the result
returned by creating a Function object as described in section 13, and whose attributes are
determined by the type of code. If the variable object already has a property with this name,
replace its value and attributes. Semantically, this step must follow the creation of
FormalParameterList properties.

• For each VariableDeclaration in the code, create a property of the variable object whose name
is the Identifier in VariableDeclaration, whose value is undefined and whose attributes are
determined by the type of code. If there is already a property of the variable object with the
name of a declared variable, the value of the property and its attributes are not changed.
Semantically, this step must follow the creation of the FormalParameterList and
FunctionDeclarationandFormalParameterList properties. In particular, if a declared variable
has the same name as a declared function or formal parameter, the variable declaration does
not disturb the existing property.

10.1.6 Activation Object

When control enters an execution context for declared function code, anonymous code or
implementation-supplied code, an object called the activation object is created and associated
with the execution context. The activation object is initialised with a property with name
arguments and property attributes { DontDelete }. The initial value of this property is the
arguments object described below.

The activation object is then used as the variable object for the purposes of variable instantiation.

When a value is to be returned from the call to a function, its activation object is no longer needed
and may be permanently decommissioned.

The activation object is purely a specification mechanism. It is impossible for an ECMAScript
program to access the activation object. It can access members of the activation object, but not
the activation object itself. When the call operation is applied to a Reference value whose base
object is an activation object, null is used as the this value of the call.

10.2.3 Function and Anonymous Code

• The scope chain is initialised to contain the activation object followed by the globalobjects in
the scope chain stored in the [[Closure]] property of the function object.

• Variable instantiation is performed using the activation object as the variable object and using
property attributes { DontDelete }.

• The caller provides the this value. If the this value provided by the caller is not an object
(including the case where it is null), then the this value is the global object.

11.2 Left-Hand-Side Expressions

Syntax

MemberExpression :
PrimaryExpression
FunctionExpression
MemberExpression [Expression]
MemberExpression . Identifier
new MemberExpression Arguments

NewExpression :
MemberExpression
new NewExpression

CallExpression :
MemberExpression Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . Identifier

Arguments :
()
(ArgumentList)

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

LeftHandSideExpression :
NewExpression
CallExpression

11.2.2 The new Operator

The production NewExpression : new NewExpression is evaluated as follows:

1. Evaluate NewExpression.
2. Call GetValue(Result(1)).
3. If Type(Result(2)) is not Object, generate a runtime error.
4. If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
5. Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of

arguments).
6. If Type(Result(5)) is not Object,Result(5).type is throw then generate a runtime error.
7. Return Result(5).If Result(5).type is not return then generate a runtime error.
8. If Type(Result(5).value) is not Object, then generate a runtime error.
9. Return Result(5).value.

The production MemberExpression : new MemberExpression Arguments is evaluated as follows:

1. Evaluate MemberExpression.
2. Call GetValue(Result(1)).
3. Evaluate Arguments, producing an internal list of argument values (section Error! Reference

source not found.).
4. If Type(Result(2)) is not Object, generate a runtime error.
5. If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
6. Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument

values.
7. If Type(Result(6)) is not Object,Result(6).type is throw then generate a runtime error.
8. Return Result(6).If Result(6).type is not return then generate a runtime error.

9. If Type(Result(6).value) is not Object, then generate a runtime error.
10. Return Result(6).value.

11.2.3 Function Calls

The production CallExpression : MemberExpression Arguments is evaluated as follows:

1. Evaluate MemberExpression.
2. Evaluate Arguments, producing an internal list of argument values (section Error! Reference

source not found.).
3. Call GetValue(Result(1)).
4. If Type(Result(3)) is not Object, generate a runtime error.
5. If Result(3) does not implement the internal [[Call]] method, generate a runtime error.
6. If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Result(6) is null.
7. If Result(6) is an activation object, Result(7) is null. Otherwise, Result(7) is the same as

Result(6).
8. Call the [[Call]] method on Result(3), providing Result(7) as the this value and providing the

list Result(2) as the argument values.
9. Return Result(8).If Result(8).type is throw then generate a runtime error.
10. If Result(8).type is not return then return undefined.
11. Return Result(8).value.

The production CallExpression : CallExpression Arguments is evaluated in exactly the same
manner, except that the contained CallExpression is evaluated in step 1.

NOTE Result(8).value will never be of type Reference if Result(3) is a native ECMAScript object. Whether
calling a host object can return a value of type Reference is implementation-dependent.

11.2.5 Function Expressions

The production MemberExpression : FunctionExpression is evaluated as follows:

1. Evaluate FunctionExpression.
2. Return Result(1).

12.9 12.9 The return Statement

Syntax

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

Semantics

An ECMAScript program is considered syntactically incorrect if it contains a return statement
that is not within the Block of a FunctionDeclaration.a FunctionBody. It causes a function to cease
execution and return a value to the caller. If Expression is omitted, the return value is the
undefined value. Otherwise, the return value is the value of Expression.

The production ReturnStatement :: return [no LineTerminator here] Expressionopt ; is evaluated
as:

1. If the Expression is not present, return (return, undefined, empty).
2. Evaluate Expression.
3. Call GetValue(Result(2)).
4. Return (return, Result(3), empty).

13 Function Definition
Syntax

FunctionExpression :
function (FormalParameterListopt) { FunctionBody }

FunctionDeclaration :
function Identifier (FormalParameterListopt) Block{ FunctionBody }

FormalParameterList :
Identifier
FormalParameterList , Identifier

FunctionBody :
SourceElements

Semantics

Defines a property of the global object whose name is the Identifier following the function
keyword and whose value is a function object with the given parameter list and statements. If the
function definition is supplied text to the eval function and the calling context has an activation
object, then the declared function is added to the activation object instead of to the global object.
See section 10.1.3.

The production FunctionDeclaration : function Identifier () Block is processed for function
declarations as follows:

1.Create a new Function object (section 15.3.2.1) with no parameters, the Block as the body, and
Identifier as its name.

2.Put this new Function object as the new value of the property named Identifier in the global
object or the activation object, as appropriate (see above).

The production FunctionDeclaration : function Identifier (FormalParameterList) Block is
processed for function declarations as follows:

1.Create a new Function object (section 15.3.2.1) with the parameters specified by the
FormalParameterList, the Block as the body, and Identifier as its name.

2.Put this new Function object as the new value of the property named Identifier in the global
object or the activation object, as appropriate (see above).The production FunctionExpression :
function (FormalParameterListopt) { FunctionBody } is evaluated as follows:

1. Create a new Function object as specified in section 13.1 with parameters specified by
FormalParameterListopt and body specified by FunctionBody. Pass in the scope chain of the
running execution context as the closure.

2. Return Result(1).

The production FunctionDeclaration : function Identifier (FormalParameterListopt) {
FunctionBody } is processed for function declarations as follows:

1. Create a new Function object as specified in section 13.1 with parameters specified by
FormalParameterListopt, and body specified by FunctionBody. Pass in the scope chain of the
running execution context as the closure.

2. Create a property of the variable object as specified in section 10.1.3 with Result(1) as the
Function object.

The production FunctionBody : SourceElements is evaluates as follows:

1. Process SourceElements for function declarations.
2. Evaluate SourceElements.
3. Return Result(2).

13.1 Creating Function Objects

Given an an optional parameter list specified by FormalParametersListopt, a body specified by
FunctionBody, and a closure specified by Closure, a Function object is constructed as follows:

1. Create a new native ECMAScript object.
2. Set the [[Class]] property of Result(1) to “Function”.
3. Set the [[Prototype]] property of Result(1) to the original Function prototype object as

specified in section 15.3.3.1.
4. Set the [[Call]] property of Result(1) to a value which when called establishes a new

execution context as described in Section 10 and returns the result of evaluating
FunctionBody in the new execution context.

5. Set the [[Construct]] property of Result(1) as described in section 15.3.5.4.
6. Set the [[Closure]] property of Result(1) to a copy of Closure.
7. Set the length property of Result(1) to the number of formal properties specified in

FormalParameterList. If no parameters are specified, set the length property of Result(1) to
0. This property is given attributes as specified in section 15.3.5.1.

8. Create a new object as would be constructed by the expression new Object().
9. Set the constructor property of Result(8) to Result(1). This property is given attributes {

DontEnum }.
10. Set the prototype property of Result(1) to Result(8). This property is given attributes as

specified in section 15.3.5.2.
11. Return Result(1).

A prototype property is automatically created for every function, against the possibility that the
function will be used as a constructor.

15.3.2.1 new Function (p1, p2, . . . , pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments
specify formal parameters.

When the Function constructor is called with some arguments p1, p2, . . . , pn, body (where n
might be 0, that is, there are no “p” arguments, and where body might also not be provided), the
following steps are taken:

1. Let P be the empty string.
2. If no arguments were given, let body be the empty string and go to step 13.
3. If one argument was given, let body be that argument and go to step 13.
4. Let Result(4) be the first argument.
5. Let P be ToString(Result(4)).
6. Let k be 2.
7. If k equals the number of arguments, let body be the k’th argument and go to step 13.
8. Let Result(8) be the k’th argument.
9. Call ToString(Result(8)).
10. Let P be the result of concatenating the previous value of P, the string "," (a comma), and

Result(9).
11. Increase k by 1.
12. Go to step 7.
13. Call ToString(body).

14.Let F be the newly constructed Function object.
15.The [[Class]] property of F is set to "Function".
16.The [[Prototype]] property of F is set to the original Function prototype object, the one that is

the initial value of Function.prototype (section 15.3.3.1).
17.Set the [[Call]] property of F to a method such that, when it is invoked, the executable function

will be invoked whose formal parameters are specified by P and whose body is specified by
Result(13). The string value P must be parsable as a FormalParameterListopt; the string value
result(13) must be parsable as a StatementListopt. (Note that both P and Result(13) may
contain whitespace, line terminators, and comments.) However, if either P or Result(13) is
syntactically incorrect, or otherwise cannot be interpreted as part of a correct ECMAScript
function definition, then the [[Call]] property of F is not set and a runtime error is generated..

18.Set the [[Construct]] property of F to a method that, when it is invoked, constructs a new object
whose [[Prototype]] property is equal to the value of F.prototype at the time the
[[Construct]] method is invoked (but if this value is not an object then the value of
Object.prototype is used), then invokes F as a function (using its [[Call]] property) with
the new object as the this value and the arguments given to the [[Construct]] method as the
arguments. If the result of invoking the [[Call]] method is an object, that object becomes the
result of the invocation of the [[Construct]] method; otherwise the new object becomes the
result of the invocation of the [[Construct]] method.

19.If the toString method of F is later invoked, it will use “anonymous” as the name of the
function in rendering the function as a string.

20.Compute, as an integer number value of positive sign, the number of formal parameters that
resulted from the parse of P as a FormalParameterListopt.

21.The length property of F is set to Result(20). This property is given attributes { DontDelete,
DontEnum, ReadOnly }.

22.Create a new object as if by the expression new Object().
23.The prototype property of F is set to Result(22). This property is given attributes

{ DontEnum }.
24.The constructor property of Result(22) is set to F. This property is given attributes

{ DontEnum }.
25.5. Return F.If P is not parsable as a FormalParameterListopt then generate a runtime error.
14. If body is not parsable as FunctionBody then generate a runtime error.
15. Create a new Function object as specified in section 13.1 with parameters specified by

parsing P as a FormalParameterListopt and body specified by parsing body as a
FunctionBody. Pass in a scope chain consisting of the global object as the closure.

16. Return Result(16).

Note that it is permissible but not necessary to have one argument for each formal parameter to
be specified. For example, all three of the following expressions produce the same result:

new Function("a", "b", "c", "return a+b+c")

new Function("a, b, c", "return a+b+c")

new Function("a,b", "c", "return a+b+c")

15.3.5.4 [[Construct]]

Assume F is a function object.

When the [[Construct]] property for F is called, the following steps are taken:

1. Create a new native ECMAScript object.
2. Set the [[Class]] property of Result(1) to “Object”.

3. AGet the value of the prototype property is automatically created for every function,
against the possibility that the function will be used as a constructor.of the F.

4. If Result(3) is an object, set the [[Prototype]] property of Result(1) to Result(3).
5. If Result(3) is not an object, set the [[Prototype]] property of Result(1) to the original Object

prototype object as described in section 14.2.3.1.
6. Invoke the [[Call]] property of F, providing Result(1) as the this value and providing

argument list passed into [[Construct]] as the argument values.
7. If the Result(6).type = throw then return Result(6).
8. If the Result(6).type = return and Type(Result(6).value) is Object then return Result(6).
9. Return (return, Result(1), empty).

