
5.1.2 The Lexical Grammar

A lexical grammar for ECMAScript is given in Section 7. This grammar has as its terminal symbols the characters
of the Unicode character set. It defines a set of productions, starting from the goal symbol InputElementDiv or
InputElementRegExp, that describe how sequences of Unicode characters are translated into a sequence of input
elements.

…
5.1.5 Grammar Notation

…

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional symbol. The
alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional
element and one that includes it. This means that:

VariableDeclaration :
Identifier Initializeropt

is a convenient abbreviation for:

VariableDeclaration :
Identifier
Identifier Initializer

and that:

IterationStatement :
for (Expressionopt ; Expressionopt ; Expressionopt) Statement

is a convenient abbreviation for:

IterationStatement :
for (; Expressionopt ; Expressionopt) Statement
for (Expression ; Expressionopt ; Expressionopt) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ; Expressionopt) Statement
for (; Expression ; Expressionopt) Statement
for (Expression ; ; Expressionopt) Statement
for (Expression ; Expression ; Expressionopt) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ;) Statement
for (; ; Expression) Statement
for (; Expression ;) Statement
for (; Expression ; Expression) Statement
for (Expression ; ;) Statement
for (Expression ; ; Expression) Statement
for (Expression ; Expression ;) Statement
for (Expression ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-hand
side contains no terminals or nonterminals.

If the phrase “[lookahead ∉ set]” appears in the right-hand side of a production, it indicates that the production may not
be used if the immediately following input terminal is a member of the given set. The set can be written as a list of
terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal, in which case it
represents the set of all terminals to which that nonterminal could expand. For example, given the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead ∉ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead ∉ DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit not
followed by another decimal digit.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the input
stream at the indicated position. For example, the production:

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

indicates that the production may not be used if a LineTerminator occurs in the program between the return
token and the Expression.

…

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are either
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking
the longest possible sequence of characters as the next input element.

There are two goal symbols for the lexical grammar. The InputElementDiv symbol is used in any syntactic grammar
context where a division (/) or division-assignment (/=) operator is permitted. The InputElementRegExp symbol is
used in any other syntactic grammar context.

Note that contexts exist in the syntactic grammar where both a division and a RegularExpressionLiteral are both
permitted by the syntactic grammar; however, since the lexical grammar uses the InputElementDiv goal symbol in
such cases, the opening slash is not recognized as starting a regular expression literal in such a context. As a
workaround, one may enclose the regular expression literal in parentheses.

Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElementRegExp ::
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral

7.6 Punctuators

Syntax

Punctuator :: one of
= > < == <= >=

!= , ! ~ ? :

. && || ++ -- +

- * & | ^ %

<< >> >>> += -= *=

&= |= ^= %= <<= >>=

>>>= () { } [

] ;

DivPunctuator :: one of
/ /=

7.7.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be represented
by an escape sequence.

Syntax

StringLiteral ::
" DoubleStringCharactersopt "
' SingleStringCharactersopt '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::
SourceCharacter but not double-quote " or backslash \ or LineTerminator
\ EscapeSequence

SingleStringCharacter ::
SourceCharacter but not single-quote ' or backslash \ or LineTerminator
\ EscapeSequence

EscapeSequence ::
CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b f n r t v

NonEscapeCharacter ::
SourceCharacter but not EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
OctalDigit
x
u

HexEscapeSequence ::
x HexDigit HexDigit

OctalEscapeSequence ::
OctalDigit [lookahead ∉ OctalDigit]

ZeroToThree OctalDigit [lookahead ∉ OctalDigit]

FourToSeven OctalDigit
ZeroToThree OctalDigit OctalDigit

ZeroToThree :: one of
0 1 2 3

FourToSeven :: one of
4 5 6 7

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminals HexDigit and OctalDigit are given in section 7.7.3. SourceCharacter is
described in sections 2 and 6.

The above grammar contains an ambiguity where sequences like \00 can be interpreted either as a one-digit
OctalEscapeSequence followed by a SourceCharacter or as a two-digit OctalEscapeSequence. This ambiguity is
resolved in favor of the longer OctalEscapeSequence. Specifically, we amend the grammar to state that a one-digit
OctalEscapeSequence expansion applies only if the next character is not an OctalDigit. A two-digit
OctalEscapeSequence expansion whose first digit is between 0 and 3, inclusive, applies only if the next character
is not an OctalDigit.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in terms of
character values (CV) contributed by the various parts of the string literal. As part of this process, some characters
within the string literal are interpreted as having a mathematical value (MV), as described below or in section 7.7.3.

• The SV of StringLiteral :: "" is the empty character sequence.
• The SV of StringLiteral :: '' is the empty character sequence.
• The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.
• The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.
• The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the CV of

DoubleStringCharacter.
• The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of the CV

of DoubleStringCharacter followed by all the characters in the SV of DoubleStringCharacters in order.
• The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one character, the CV of

SingleStringCharacter.
• The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of the CV of

SingleStringCharacter followed by all the characters in the SV of SingleStringCharacters in order.
• The CV of DoubleStringCharacter :: SourceCharacter but not double-quote " or backslash \ or

LineTerminator is the SourceCharacter character itself.
• The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

• The CV of SingleStringCharacter :: SourceCharacter but not single-quote ' or backslash \ or LineTerminator
is the SourceCharacter character itself.

• The CV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.
• The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.
• The CV of EscapeSequence :: OctalEscapeSequence is the CV of the OctalEscapeSequence.
• The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.
• The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.
• The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the Unicode character whose Unicode

value is determined by the SingleEscapeCharacter according to the following table:

Escape Sequence Unicode Value Name Symbol
\b \u0008 backspace <BS>
\t \u0009 horizontal tab <HT>
\n \u000A line feed (new line) <LF>
\v \u000B vertical tab <VT>
\f \u000C form feed <FF>
\r \u000D carriage return <CR>
\" \u0022 double quote "
\' \u0027 single quote '
\\ \u005C backslash \

• The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.
• The CV of NonEscapeCharacter :: SourceCharacter but not EscapeCharacter or LineTerminator is the

SourceCharacter character itself.
• The CV of HexEscapeSequence :: x HexDigit HexDigit is the Unicode character whose code is (16 times the

MV of the first HexDigit) plus the MV of the second HexDigit.
• The CV of OctalEscapeSequence :: OctalDigit is the Unicode character whose code is the MV of the

OctalDigit.
• The CV of OctalEscapeSequence :: ZeroToThree OctalDigit is the Unicode character whose code is (8 times

the MV of the ZeroToThree) plus the MV of the OctalDigit.
• The CV of OctalEscapeSequence :: FourToSeven OctalDigit is the Unicode character whose code is (8 times

the MV of the FourToSeven) plus the MV of the OctalDigit.
• The CV of OctalEscapeSequence :: ZeroToThree OctalDigit OctalDigit is the Unicode character whose code is

(64 (that is, 82) times the MV of the ZeroToThree) plus (8 times the MV of the first OctalDigit) plus the MV of
the second OctalDigit.

• The MV of ZeroToThree :: 0 is 0.
• The MV of ZeroToThree :: 1 is 1.
• The MV of ZeroToThree :: 2 is 2.
• The MV of ZeroToThree :: 3 is 3.
• The MV of FourToSeven :: 4 is 4.
• The MV of FourToSeven :: 5 is 5.
• The MV of FourToSeven :: 6 is 6.
• The MV of FourToSeven :: 7 is 7.
• The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the Unicode character whose

code is (4096 (that is, 163) times the MV of the first HexDigit) plus (256 (that is, 162) times the MV of the
second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit.

NOTE A LineTerminator character cannot appear in a string literal, even if preceded by a backslash \. The correct way to
cause a line terminator character to be part of the string value of a string literal is to use an escape sequence such as \n or
\u000A.

7.7.5 Regular Expression Literals

A regular expression literal is an input element that becomes converted an object of type RegExp when it is
scanned. The object is created before the evaluation of the containing program or function begins. Evaluation of
the literal produces a reference to that object; it does not create a new object. Two regular expression literals in a
program evaluate to regular expression objects that never compare as === even if the two literals' contents are
identical. A RegExp object may also be created at runtime by calling the RegExp constructor as a function.

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The strings of characters comprised of the
RegularExpressionBody and the RegularExpressionFlags are passed uninterpreted to the regular expression
constructor, which interprets them according to its own, more stringent grammar. An implementation may extend
the regular expression constructor's grammar, but it should not extend the RegularExpressionBody and
RegularExpressionFlags productions or the productions used by these productions.

Note that regular expression literals may not be empty; instead of representing an empty regular expression literal,
the characters // start a single-line comment.

Syntax

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
NonTerminator but not * or \ or /
BackslashSequence

RegularExpressionChar ::
NonTerminator but not \ or /
BackslashSequence

BackslashSequence ::
\ NonTerminator

NonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

Semantics

A regular expression literal stands for a value of the Object type. This value is determined in two steps: first, the
characters comprising the regular expression's RegularExpressionBody and RegularExpressionFlags production
expansions are collected uninterpreted into two strings Pattern and Flags, respectively. Then the new RegExp
constructor is called with two arguments Pattern and Flags and the result becomes the value of the
RegularExpressionLiteral. If the call to new RegExp generates an error, an implementation may, at its discretion,
either report the error immediately while scanning the program, or it may defer the error until the regular expression
literal is evaluated in the course of program execution.

8.6.2 Internal Properties and Methods

Internal properties and methods are not exposed in the language. For the purposes of this document, their names
are enclosed in double square brackets [[]]. When an algorithm uses an internal property of an object and the
object does not implement the indicated internal property, a runtime error is generated.

There are two types of access for exposed properties: get and put, corresponding to retrieval and assignment,
respectively.

Native ECMAScript objects have an internal property called [[Prototype]]. The value of this property is either null
or an object and is used for implementing inheritance. Properties of the [[Prototype]] object are exposed as
properties of the child object for the purposes of get access, but not for put access.

The following table summarises the internal properties used by this specification. The description indicates their
behaviour for native ECMAScript objects. Host objects may implement these internal methods with any
implementation-dependent behaviour, or it may be that a host object implements only some internal methods and
not others.

Property Parameters Description
[[Prototype]] none The prototype of this object.
[[Class]] none A string value indicating the kind of this object.
[[Value]] none Internal state information associated with this object.
[[Get]] (PropertyName) Returns the value of the property.
[[Put]] (PropertyName, Value) Sets the specified property to Value.
[[CanPut]] (PropertyName) Returns a boolean value indicating whether a [[Put]]

operation with the specified PropertyName will
succeed.

[[HasProperty]] (PropertyName) Returns a boolean value indicating whether the object
already has a member with the given name.

[[Delete]] (PropertyName) Removes the specified property from the object.
[[DefaultValue]] (Hint) Returns a default value for the object, which should be

a primitive value (not an object or reference).
[[Construct]] a list of argument values

provided by the caller
Constructs an object. Invoked via the new operator.
Objects that implement this internal method are called
constructors.

[[Call]] a list of argument values
provided by the caller

Executes code associated with the object. Invoked via a
function call expression. Objects that implement this
internal method are called functions.

[[HasInstance]] (Value) Returns a boolean value indicating whether the Value
delegates behaviour to this object. Of the native
ECMAScript objects, only Function objects implement
[[HasInstance]].

[[Closure]] none A scope chain that defines the environment in which a
Function object is executed.

[[Match]] (string, integer) Tests for a regular expression match and returns a
MatchResult value (see section 15.10.2.1).

Every object must implement the [[Class]] property and the [[Get]], [[Put]], [[HasProperty]], [[Delete]], and
[[DefaultValue]] methods, even host objects. (Note, however, that the [[DefaultValue]] method may, for some
objects, simply generate a runtime error.)

12.4 Expression Statement

Syntax

ExpressionStatement :
[lookahead ∉ {{}] Expression ;

Note that an ExpressionStatement cannot start with an opening curly brace because that might make it ambiguous
with a Block:

Semantics

The production ExpressionStatement : Expression ; is evaluated as follows:

1. Evaluate Expression.
2. Call GetValue(Result(1)).
3. Return (normal, Result(2), empty).

15.1.2.1 eval (x)

When the eval function is called with one argument x, the following steps are taken:

1. If x is not a string value, return x.
2. Parse x as an ECMAScript Program. If the parse fails, generate a runtime error.
3. Evaluate the program from step 2.
4. If the completion type of Result(3) is “normal” and its completion value is a value V, then return the value V.
5. If the completion type of Result(3) is “normal” and its completion value is empty, then return the value

undefined.
6. The completion type of Result(3) must be “throw”. Throw its completion value as an exception.

If value of the eval property is used in any way other than a direct call (that is, other than by the explicit use of its
name as an Identifier which is the MemberExpression in a CallExpression), or if the eval property is assigned to, a
runtime error may be generated.

15.1.3.8 RegExp (. . .)

See section 15.10.3.

15.5.4.10 String.prototype.split (separator [, limit])

Returns an Array object into which substrings of the result of converting this object to a string have been stored.
The substrings are determined by searching from left to right for occurrences of the given separator; these
occurrences are not part of any substring in the returned array, but serve to divide up the string value. The
separator may be a string of any length or it may be an object of type RegExp.

The separator may be an empty string, an empty regular expression, or a regular expression which can match an
empty string. Such a separator does not match the empty substring at the beginning or end of the input string, nor
does it match the empty substring at the end of the previous separator match. (For example, if the separator is the
empty string, the string is split up into individual characters; the length of the result array equals the length of the
string, and each substring contains one character.) If the separator is a regular expression, only the first match at a
given position of the this string is considered, even if backtracking could yield a non-empty-substring match at that
position. (For example, "ab".split(/a*?/) evaluates to the array ["a","b"], while "ab".split(/a*/)
evaluates to the array["","b"].)

If the this string is empty, the result depends on whether the separator can match the empty string. If it can, the
result array contains no elements. Otherwise, the result array contains one element, which is the empty string.

If the separator is a regular expression that contains capturing parentheses, then each time the separator is
matched the results (including any undefined results) of the capturing parentheses are spliced into the output
array.

If the separator is not supplied, then the result array contains just one string, which is the this string.

If limit is supplied, then the output array is truncated so that it contains no more than limit elements.

When the split method is called, the following steps are taken:

1. Let S = ToString(this).
2. Let A be a new array created as if by the expression new Array().
3. If limit is undefined or not supplied, let lim = 232-1; else let lim = ToUint32(limit).
4. Let s be the number of characters in S.
5. Let p = 0.
6. If separator is a RegExp object, let R = separator; otherwise let R = ToString(separator).
7. If lim = 0, return A.
8. If separator is undefined or not supplied, go to step 33.
9. If s = 0, go to step 31.
10. Let q = p.
11. If q = s, go to step 28.
12. Call SplitMatch(R, S, q) and let z be its MatchResult result.
13. If z is failure, go to step 26.

14. z must be a State. Let e be z's endIndex and let cap be z's captures array.
15. If e = p, go to step 26.
16. Let T be a string value equal to the substring of S consisting of the characters at positions p (inclusive) through

q (exclusive).
17. Call the [[Put]] method of A with arguments A.length and T.
18. If A.length = lim, return A.
19. Let p = e.
20. Let i = 0.
21. If i is equal to the number of elements in cap, go to step 10.
22. Let i = i+1.
23. Call the [[Put]] method of A with arguments A.length and cap[i].
24. If A.length = lim, return A.
25. Go to step 21.
26. Let q = q+1.
27. Go to step 11.
28. Let T be a string value equal to the substring of S consisting of the characters at positions p (inclusive) through

s (exclusive).
29. Call the [[Put]] method of A with arguments A.length and T.
30. Return A.
31. Call SplitMatch(R, S, 0) and let z be its MatchResult result.
32. If z is not failure, return A.
33. Call the [[Put]] method of A with arguments “0” and S.
34. Return A.

The internal helper function SplitMatch takes three parameters, a string S, an integer q, and a string or RegExp R,
and performs the following in order to return a MatchResult (see section 15.10.2.1):

1. If R is a RegExp object, go to step 8.
2. R must be a string. Let r be the number of characters in R.
3. Let s be the number of characters in S.
4. If q+r > s then return the MatchResult failure.
5. If there exists an integer i between 0 (inclusive) and r (exclusive) such that the character at position q+i of S is

different from the character at position i of R, then return failure.
6. Let cap be an empty array of captures (see section 15.10.2.1).
7. Return the State (q+r, cap). (see section 15.10.2.1)
8. Call the [[Match]] method of R giving it the arguments S and q, and return the MatchResult result.

NOTE The split function is intentionally generic; it does not require that its this value be a string object. Therefore, it can
be transferred to other kinds of objects for use as a method.

Note that the split method ignores the value of separator.global for separators that are RegExp objects.

15.5.4.14 String.prototype.match(regexp)

If regexp is not an object of type RegExp, it is replaced with the result of the expression new RegExp(regexp).
Let string denote the result of converting the this value to a string.

If regexp.global is false, return the result obtained by invoking RegExp.prototype.exec (see section
15.10.6.2) on regexp with string as parameter.

Otherwise, set the regexp.lastIndex property to 0 and invoke RegExp.prototype.exec repeatedly until there
is no match. If there is a match with an empty string (in other words, if the value of regexp.lastIndex is left
unchanged) increment regexp.lastIndex by 1. The value returned is an array with the properties 0 through n-1
corresponding to the first element of the result of each matching invocation of RegExp.prototype.exec.

Note that the match function is intentionally generic; it does not require that its this value be a string object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.15 String.prototype.replace(regexp, replaceValue)

If regexp is not an object of type RegExp, it is replaced with the result of the expression new RegExp(regexp).
Let string denote the result of converting the this value to a string.

if regexp.global is false, then String is searched for the first occurrence of the regular expression pattern regexp.
If regexp.global is true, then String is searched for all occurrences of the regular expression pattern regexp. The
search is done in the same manner as in String.prototype.match, including the update of
regexp.lastIndex.

Let m be the number of left capturing parentheses in regexp (NCapturingParens as specified in section 15.10.2.1).

If replaceValue is a function, then for each matched substring, call the function with the following m + 3 arguments.
Argument 1 is the substring that matched. The next m arguments are all of the captures in the MatchResult (see
section 15.10.2.1). Argument m + 2 is the offset within string where the match occurred, and argument m + 3 is
string. The result is a string value derived from the original input by replacing each matched substring with the
corresponding return value of the function call, converted to a string if need be.

Otherwise, let newstring denote the result of converting replaceValue to a string. The result is a string value
derived from the original input string by replacing each matched substring with a string derived from newstring by
replacing characters in newstring by replacement text as specified in the following table.

Characters Replacement text
$$ $
$& The matched substring.
$‘ The portion of string that precedes the matched substring.
$’ The portion of string that follows the matched substring.
$n The nth capture, where n is a single digit 1-9. If n� m and the nth capture is

undefined, use the empty string instead. If n>m, the result is implementation-
defined.

$nn The nnth capture, where nn is a two-digit decimal number 01-99. If nn� m and
the nnth capture is undefined, use the empty string instead. If nn>m, the result
is implementation-defined.

Note that the replace function is intentionally generic; it does not require that its this value be a string object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.16 String.prototype.search(regexp)

If regexp is not an object of type RegExp, it is replaced with result of the expression new RegExp(regexp). Let
string denote the result of converting the this value to a string.

String is searched from its beginning for an occurrence of the regular expression pattern regexp. The result is a
number indicating the offset within the string where the pattern matched, or -1 if there was no match.

Note that this method ignores the lastIndex and global properties of regexp, and that the lastIndex property
of regexp is left unchanged.

Note that the search function is intentionally generic; it does not require that its this value be a string object.
Therefore, it can be transferred to other kinds of objects for use as a method.

15.10 RegExp (Regular Expression) Objects

A RegExp object contains a regular expression and the associated flags. The form and functionality of regular
expressions is modelled after the regular expression facility in the Perl programming language.

15.10.1 Patterns

The RegExp constructor applies the following grammar to the input pattern string. An error occurs if the grammar
cannot interpret the string as an expansion of Pattern.

Syntax

Pattern ::
Disjunction

Disjunction ::
Alternative
 Alternative | Disjunction

Alternative ::
[empty]
Alternative Term

Term ::
Assertion
Atom
Atom Quantifier

Assertion ::
^
$
\ b
\ B

Quantifier ::
QuantifierPrefix
QuantifierPrefix ?

QuantifierPrefix ::
*
+
?
{ DecimalDigits }
{ DecimalDigits , }
{ DecimalDigits , DecimalDigits }

Atom ::
PatternCharacter
.
\ AtomEscape
CharacterClass
(Disjunction)
(? : Disjunction)
(? = Disjunction)
(? ! Disjunction)

PatternCharacter ::
SourceCharacter but not any of:

^ $ \ . * + ? () [] { } |

AtomEscape ::
DecimalOrOctalEscape
CharacterEscape
CharacterClassEscape

CharacterEscape ::
ControlEscape
c ControlLetter
HexEscapeSequence
UnicodeEscapeSequence
IdentityEscape

ControlEscape :: one of
f n r t v

ControlLetter :: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

IdentityEscape ::
SourceCharacter but not IdentifierPart

DecimalOrOctalEscape ::
DecimalDigit [lookahead ∉ DecimalDigit]

ZeroToThree OctalDigit [lookahead ∉ OctalDigit]
ZeroToThree EightOrNine
FourToNine DecimalDigit
ZeroToThree OctalDigit OctalDigit

EightOrNine :: one of
8 9

FourToNine :: one of
4 5 6 7 8 9

CharacterClassEscape :: one of
d D s S w W

CharacterClass ::
[[lookahead ∉ {^}] ClassRanges]
[^ ClassRanges]

ClassRanges ::
[empty]
NonemptyClassRanges

NonemptyClassRanges ::
ClassAtom
ClassAtom NonemptyClassRangesNoDash
ClassAtom - ClassAtom ClassRanges

NonemptyClassRangesNoDash ::
ClassAtom
ClassAtomNoDash NonemptyClassRangesNoDash
ClassAtomNoDash - ClassAtom ClassRanges

ClassAtom ::
-
ClassAtomNoDash

ClassAtomNoDash ::
NonTerminator but not one of \] -
\ ClassEscape

ClassEscape ::
DecimalOrOctalEscape
b
CharacterEscape
CharacterClassEscape

15.10.2 Pattern Semantics

A regular expression pattern is converted into an internal function using the process described below. An
implementation is encouraged to use more efficient algorithms than the ones listed below, as long as the results
are the same.

15.10.2.1 Notation

The descriptions below use the following variables:

• Input is the string being matched by the regular expression pattern. The notation input[n] means the nth
character of input, where n can range between 0 (inclusive) and InputLength (exclusive).

• InputLength is the number of characters in the Input string.
• NCapturingParens is the total number of left capturing parentheses (i.e. the total number of times the Atom :: (

Disjunction) production is expanded) in the pattern. A left capturing parenthesis is any (pattern character that
is matched by the (terminal of the Atom :: (Disjunction) production.

• IgnoreCase is the setting of the RegExp object's ignoreCase property.

• Multiline is the setting of the RegExp object's multiline property.

Furthermore, the descriptions below use the following internal data structures:

• A CharSet is a mathematical set of characters.
• A State is an ordered pair (endIndex, captures) where endIndex is an integer and captures is an internal array of

NCapturingParens values. States are used to represent partial match states in the regular expression matching
algorithms. The endIndex is one plus the index of the last input character matched so far by the pattern, while
captures holds the results of capturing parentheses. The nth element of captures is either a string that
represents the value obtained by the nth set of capturing parentheses or undefined if the nth set of capturing
parentheses hasn't been reached yet. Due to backtracking, many states may be in use at any time during the
matching process.

• A MatchResult is either a State or the special token failure that indicates that the match failed.
• A Continuation function is an internal closure (i.e. an internal function with some arguments already bound to

values) that takes one State argument and returns a MatchResult result. If an internal closure references
variables bound in the function that creates the closure, the closure uses the values that these variables had at
the time the closure was created. The continuation attempts to match the remaining portion (specified by the
closure's already-bound arguments) of the pattern against the input string, starting at the intermediate state
given by its State argument. If the match succeeds, the continuation returns the final State that it reached; if the
match fails, the continuation returns failure.

• A Matcher function is an internal closure that takes two arguments -- a State and a Continuation -- and returns a
MatchResult result. The matcher attempts to match a middle subpattern (specified by the closure's already-
bound arguments) of the pattern against the input string, starting at the intermediate state given by its State
argument. The Continuation argument should be a closure that matches the rest of the pattern. After matching
the subpattern of a pattern to obtain a new State, the matcher then calls Continuation on that state to test if the
rest of the pattern can match as well. If it can, the matcher returns the state returned by the continuation; if not,
the matcher may try different choices at its choice points, repeatedly calling Continuation until it either
succeeds or all possibilities have been exhausted.

• An AssertionTester function is an internal closure that takes a State argument and returns a boolean result. The
assertion tester tests a specific condition (specified by the closure's already-bound arguments) against the
current place in the input string and returns true if the condition matched or false if not.

• An EscapeValue is either a character or an integer. An EscapeValue is used to denote the interpretation of a
DecimalOrOctalEscape escape sequence: a character ch means that the escape sequence is interpreted as
the character ch, while an integer n means that the escape sequence is interpreted as a backreference to the
nth set of capturing parentheses.

15.10.2.2 Pattern

The production Pattern :: Disjunction evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Return an internal closure that takes two arguments, a string str and an integer index, and performs the

following:
1. Let Input be the given string str. This variable will be used throughout the functions in section 15.10.2.
2. Let InputLength be the length of Input. This variable will be used throughout the functions in section

15.10.2.
3. Let c be a Continuation that always returns its State argument as a successful MatchResult.
4. Let cap be an internal array of NCapturingParens undefined values, indexed 1 through NCapturingParens.
5. Let x be the State (index, cap).

6. Call m(x, c) and return its result.

Informative comments: A Pattern evaluates ("compiles") to an internal function value.
RegExp.prototype.exec can then apply this function to a string and an offset within the string to determine
whether the pattern would match starting at exactly that offset within the string, and, if it does match, what the
values of the capturing parentheses would be. The algorithms in section 15.10.2 are designed so that compiling a
pattern may throw a RegExpError exception; on the other hand, once the pattern is successfully compiled, applying
its result function to find a match in a string cannot throw an exception (except for exceptions that can occur
anywhere such as out-of-memory).

15.10.2.3 Disjunction

The production Disjunction :: Alternative evaluates by evaluating Alternative to obtain a Matcher and returning that
Matcher.

The production Disjunction :: Alternative | Disjunction evaluates as follows:

1. Evaluate Alternative to obtain a Matcher m1.
2. Evaluate Disjunction to obtain a Matcher m2.
3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the

following:
1. Call m1(x, c) and let r be its result.
2. If r isn't failure, return r.
3. Call m2(x, c) and return its result.

Informative comments: The | regular expression operator separates two alternatives. The pattern first tries to
match the left Alternative (followed by the sequel of the regular expression); if it fails, it tries to match the right
Disjunction (followed by the sequel of the regular expression). If the left Alternative, the right Disjunction, and the
sequel all have choice points, all choices in the sequel are tried before moving on to the next choice in the left
Alternative. If choices in the left Alternative are exhausted, the right Disjunction is tried instead of the left
Alternative. Any capturing parentheses inside a portion of the pattern skipped by | produce undefined values
instead of strings. Thus, for example,

/a|ab/.exec("abc")

returns the result "a" and not "ab". Moreover,

/((a)|(ab))((c)|(bc))/.exec("abc")

returns the array

["abc", "a", "a", undefined, "bc", undefined, "bc"]

and not

["abc", "ab", undefined, "ab", "c", "c", undefined]

15.10.2.4 Alternative

The production Alternative :: [empty] evaluates by returning a Matcher that takes two arguments, a State x and a
Continuation c, and returns the result of calling c(x).

The production Alternative :: Alternative Term evaluates as follows:

1. Evaluate Alternative to obtain a Matcher m1.
2. Evaluate Term to obtain a Matcher m2.
3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the

following:
1. Create a Continuation d that takes a State argument y and returns the result of calling m2(y, c).
2. Call m1(x, d) and return its result.

Informative comments: Consecutive Terms try to simultaneously match consecutive portions of the input string. If
the left Alternative, the right Term, and the sequel of the regular expression all have choice points, all choices in the
sequel are tried before moving on to the next choice in the right Term, and all choices in the right Term are tried
before moving on to the next choice in the left Alternative.

15.10.2.5 Term

The production Term :: Assertion evaluates by returning an internal Matcher closure that takes two arguments, a
State x and a Continuation c, and performs the following:

1. Evaluate Assertion to obtain an AssertionTester t.
2. Call t(x) and let r be the resulting boolean value.
3. If r is false, return failure.
4. Call c(x) and return its result.

The production Term :: Atom evaluates by evaluating Atom to obtain a Matcher and returning that Matcher.

The production Term :: Atom Quantifier evaluates as follows:

1. Evaluate Atom to obtain a Matcher m.
2. Evaluate Quantifier to obtain the three results: an integer min, an integer (or �) max, and boolean greedy.
3. If max is finite and less than min, then throw a RegExpError exception.
4. Let parenIndex be the number of left capturing parentheses in the entire regular expression that occur to the

left of this production expansion's Term. This is the total number of times the Atom :: (Disjunction) production
is expanded prior to this production's Term plus the total number of Atom :: (Disjunction) productions
enclosing this Term.

5. Let parenCount be the number of left capturing parentheses in the expansion of this production's Atom. This is
the total number of Atom :: (Disjunction) productions enclosed by this production's Atom.

6. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the
following:
1. Call RepeatMatcher(m, min, max, greedy, x, c, parenIndex, parenCount) and return its result.

The internal helper function RepeatMatcher takes eight parameters, a Matcher m, an integer min, an integer (or �)
max, a boolean greedy, a State x, a Continuation c, an integer parenIndex, and an integer parenCount, and
performs the following:

1. If max is zero, then call c(x) and return its result.
2. Create an internal Continuation closure d that takes one State argument y and performs the following:

1. If min is zero, and max is �, and y's endIndex is equal to x's endIndex, then return failure.
2. If min is zero, then let min2 be zero; otherwise let min2 be min–1.
3. If max is �, then let max2 be �; otherwise let max2 be max–1.
4. Call RepeatMatcher(m, min2, max2, greedy, y, c, parenIndex, parenCount) and return its result.

3. Let cap be a fresh copy of x's captures internal array.
4. For every integer k that satisfies parenIndex < k and k � parenIndex+parenCount, set cap[k] to undefined.
5. Let e be x's endIndex.
6. Let xr be the State (e, cap).
7. If min is not zero, then call m(xr, d) and return its result.
8. If greedy is true, then go to step 12.
9. Call c(x) and let z be its result.
10. If z is not failure, return z.
11. Call m(xr, d) and return its result.
12. Call m(xr, d) and let z be its result.
13. If z is not failure, return z.
14. Call c(x) and return its result.

Informative comments: An Atom followed by a Quantifier is repeated the number of times specified by the
Quantifier. A quantifier can be non-greedy, in which case the Atom pattern is repeated as few times as possible
while still matching the sequel, or it can be greedy, in which case the Atom pattern is repeated as many times as
possible while still matching the sequel. The Atom pattern is repeated rather than the input string which it matches,
so different repetitions of the Atom can match different input substrings.

If the Atom and the sequel of the regular expression all have choice points, the Atom is first matched as many (or
as few, if non-greedy) times as possible. All choices in the sequel are tried before moving on to the next choice in
the last repetition of Atom. All choices in the last (nth) repetition of Atom are tried before moving on to the next
choice in the next-to-last (n-1st) repetition of Atom; at which point it may turn out that more or fewer repetitions of
Atom are now possible; these are exhausted (again, starting with either as few or as many as possible) before
moving on to the next choice in the n-1st repetition of Atom and so on.

Compare

/a[a-z]{2,4}/.exec("abcdefghi")

which returns "abcde" with

/a[a-z]{2,4}?/.exec("abcdefghi")

which returns "abc".

Consider also

/(aa|aabaac|ba|b|c)*/.exec("aabaac")

which, by the choice point ordering above, returns the array

["aaba", "ba"]

and not any of:

["aabaac", "aabaac"]

["aabaac", "c"]

The above ordering of choice points can be used to write a regular expression that calculates the greatest common
divisor of two numbers (represented in unary notation). The following example calculates the gcd of 10 and 15:

"aaaaaaaaaa,aaaaaaaaaaaaaaa".replace(/^(a+)\1*,\1+$/,"$1")

which returns the gcd in unary notation "aaaaa".

Step 4 of the RepeatMatcher clears Atom's captures each time Atom is repeated. We can see its behavior in the
regular expression

/(z)((a+)?(b+)?(c))*/.exec("zaacbbbcac")

which returns the array

["zaacbbbcac", "z", "ac", "a", undefined, "c"]

and not

["zaacbbbcac", "z", "ac", "a", "bbb", "c"]

because each iteration of the outermost * clears all captured strings contained in the quantified Atom, which in this
case includes capture strings numbered 2, 3, and 4.

Step 1 of the RepeatMatcher's closure d states that, once the minimum number of repetitions has been satisfied,
any more expansions of Atom that match the empty string are not considered for further repetitions if the maximum
number of repetitions is infinity. This prevents the regular expression engine from falling into an infinite loop on
patterns such as:

/(a*)*/.exec("b")

or the slightly more complicated:

/(a*)b\1+/.exec("baaaac")

which returns the array

["b", ""]

15.10.2.6 Assertion

The production Assertion :: ^ evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

1. Let e be x's endIndex.
2. If e is zero, return true.
3. If Multiline is false, return false.
4. If the character Input[e–1] is one of the line terminator characters <LF>, <CR>, <LS>, or <PS>, return true.
5. Return false.

The production Assertion :: $ evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

1. Let e be x's endIndex.
2. If e is equal to InputLength, return true.
3. If multiline is false, return false.
4. If the character Input[e] is one of the line terminator characters <LF>, <CR>, <LS>, or <PS>, return true.
5. Return false.

The production Assertion :: \ b evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

1. Let e be x's endIndex.
2. Call IsWordChar(e–1) and let a be the boolean result.
3. Call IsWordChar(e) and let b be the boolean result.
4. If a is true and b is false, return true.
5. If a is false and b is true, return true.
6. Return false.

The production Assertion :: \ B evaluates by returning an internal AssertionTester closure that takes a State
argument x and performs the following:

1. Let e be x's endIndex.
2. Call IsWordChar(e–1) and let a be the boolean result.
3. Call IsWordChar(e) and let b be the boolean result.
4. If a is true and b is false, return false.
5. If a is false and b is true, return false.
6. Return true.

The internal helper function IsWordChar takes an integer parameter e and performs the following:

1. If e=–1 or e=InputLength, return false.
2. Let c be the character Input[e].
3. If c is one of the sixty-three Unicode characters in the table below, return true.
4. Return false.

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

15.10.2.7 Quantifier

The production Quantifier :: QuantifierPrefix evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or �) max.
2. Return the three results min , max, and true.

The production Quantifier :: QuantifierPrefix ? evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or �) max.
2. Return the three results min , max, and false.

The production QuantifierPrefix :: * evaluates by returning the two results 0 and �.

The production QuantifierPrefix :: + evaluates by returning the two results 1 and �.

The production QuantifierPrefix :: ? evaluates by returning the two results 0 and 1.

The production QuantifierPrefix :: { DecimalDigits } evaluates as follows:

1. Let i be the MV of DecimalDigits (see section 7.7.3).
2. Return the two results i and i.

The production QuantifierPrefix :: { DecimalDigits , } evaluates as follows:

1. Let i be the MV of DecimalDigits.
2. Return the two results i and �.

The production QuantifierPrefix :: { DecimalDigits , DecimalDigits } evaluates as follows:

1. Let i be the MV of the first DecimalDigits.
2. Let j be the MV of the second DecimalDigits.
3. Return the two results i and j.

15.10.2.8 Atom

The production Atom :: PatternCharacter evaluates as follows:

1. Let ch be the character represented by PatternCharacter.
2. Let A be a one-element CharSet containing the character ch.
3. Call CharacterSetMatcher(A, false) and return its Matcher result.

The production Atom :: . evaluates as follows:

1. Let A be the set of all characters except the four line terminator characters <LF>, <CR>, <LS>, or <PS>.
2. Call CharacterSetMatcher(A, false) and return its Matcher result.

The production Atom :: \ AtomEscape evaluates by evaluating AtomEscape to obtain a Matcher and returning
that Matcher.

The production Atom :: CharacterClass evaluates as follows:

1. Evaluate CharacterClass to obtain a CharSet A and a boolean invert.
2. Call CharacterSetMatcher(A, invert) and return its Matcher result.

The production Atom :: (Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Let parenIndex be the number of left capturing parentheses in the entire regular expression that occur to the

left of this production expansion's initial left parenthesis. This is the total number of times the Atom :: (
Disjunction) production is expanded prior to this production's Atom plus the total number of Atom :: (
Disjunction) productions enclosing this Atom.

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the
following:
1. Create an internal Continuation closure d that takes one State argument y and performs the following:

1. Let cap be a fresh copy of y's captures internal array.
2. Let xe be x's endIndex.
3. Let ye be y's endIndex.
4. Let s be a fresh string whose characters are the characters of Input at positions xe (inclusive) through

ye (exclusive).
5. Set cap[parenIndex+1] to s.
6. Let z be the State (ye, cap).
7. Call c(z) and return its result.

2. Call m(x, d) and return its result.

The production Atom :: (? : Disjunction) evaluates by evaluating Disjunction to obtain a Matcher and
returning that Matcher.

The production Atom :: (? = Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the

following:
1. Create an internal Continuation closure d that takes one State argument y and performs the following:

1. Let cap be y's captures internal array.
2. Let xe be x's endIndex.
3. Let z be the State (xe, cap).
4. Call c(z) and return its result.

2. Call m(x, d) and return its result.

The production Atom :: (? ! Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the

following:
1. Let d be a Continuation that always returns its State argument as a successful MatchResult.
2. Call m(x, d) and let r be its result.
3. If r isn't failure, return failure.
4. Call c(x) and return its result.

The internal helper function CharacterSetMatcher takes two arguments, a CharSet A and a boolean flag invert, and
performs the following:

1. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the
following:
1. Let e be x's endIndex.
2. If e=InputLength, return failure.
3. Let c be the character Input[e].
4. Let cc be the result of Canonicalize(c).
5. If invert is true, go to step 8.
6. If there does not exist a member a of set A such that Canonicalize(a) == cc, then return failure.
7. Go to step 9.
8. If there exists a member a of set A such that Canonicalize(a) == cc, then return failure.
9. Let cap be x's captures internal array.
10. Let y be the State (e+1, cap).
11. Call c(y) and return its result.

The internal helper function Canonicalize takes a character parameter ch and performs the following:

1. If IgnoreCase is false, return ch.
2. Let u be ch converted to upper case as if by calling String.prototype.toUpperCase on the one-character

string ch.
3. If u does not consist of a single character, return ch.
4. Let cu be u's character.

5. If ch's Unicode value is greater than or equal to decimal 128 and cu's Unicode value is less than decimal 128,
then return ch.

6. Return cu.

Informative comments: Parentheses of the form (Disjunction) serve both to group the components of the
Disjunction pattern together and to save the result of the match. The result can be used either in a backreference
(\ followed by a one- or two-digit decimal number), referenced in a replace string, or returned as part of an array
from the regular expression matching function. To inhibit the capturing behavior of parentheses, use the form (?:
Disjunction) instead.

The form (?= Disjunction) specifies a zero-width positive lookahead. In order for it to succeed, the pattern inside
Disjunction must match at the current position, but the current position is not advanced before matching the sequel.
If Disjunction can match at the current position in several ways, backtracking can cause all of these ways to be
tried. This only matters when the Disjunction contains capturing parentheses and the sequel of the pattern contains
backreferences to those captures; in other cases backtracking into a zero-width positive lookahead Disjunction can
be turned off without affecting the semantics of the regular expression.

For example,

/(?=(a+))/.exec("baaabac")

matches the empty string immediately after the first b and therefore returns the array:

["", "aaa"]

To illustrate backtracking into the lookahead, consider:

/(?=(a+))a*b\1/.exec("baaabac")

This expression returns

["aaaba", "a"]

and not:

["aba", "a"]

The form (?! Disjunction) specifies a zero-width negative lookahead. In order for it to succeed, the pattern
inside Disjunction must fail to match at the current position. The current position is not advanced before matching
the sequel. Disjunction can contain capturing parentheses, but backreferences to them only make sense from
within Disjunction inself. Backreferences to these capturing parentheses from elsewhere in the pattern always
return undefined because the negative lookahead must fail for the pattern to succeed. For example,

/(.*?)a(?!(a+)b\2c)\2(.*)/.exec("baaabaac")

looks for an a not immediately followed by some positive number n of a's, a b, another n a's (specified by the first
\2) and a c. The second \2 is outside the negative lookahead, so it matches against undefined and therefore
always succeeds. The whole expression returns the array:

["baaabaac", "ba", undefined, "abaac"]

In case-insignificant matches all characters are implicitly converted to upper case immediately before they are
compared. However, if converting a character to upper case would expand that character into more than one
character (such as converting "ß" (\u00DF) into "SS"), then the character is left as-is instead. The character is
also left as-is if it is not an ASCII character but converting it to upper case would make it into an ASCII character.
This prevents Unicode characters such as \u0131 and \u017F from matching regular expressions such as
/[a-z]/i, which are only intended to match ASCII letters. Furthermore, if these conversions were allowed, then
/[^\W]/i would match each of a, b, …, h, but not i or s.

15.10.2.9 AtomEscape

The production AtomEscape :: DecimalOrOctalEscape evaluates as follows:

1. Evaluate DecimalOrOctalEscape to obtain an EscapeValue E.
2. If E is not a character then go to step 6.
3. Let ch be E's character.
4. Let A be a one-element CharSet containing the character ch.
5. Call CharacterSetMatcher(A, false) and return its Matcher result.
6. E must be an integer. Let n be that integer.
7. If n=0 or n>NCapturingParens then throw a RegExpError exception.
8. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the

following:
1. Let cap be x's captures internal array.
2. Let s be cap[n].
3. If s is undefined, then call c(x) and return its result.
4. Let e be x's endIndex.
5. Let len be s's length.
6. Let f be e+len.
7. If f>InputLength, return failure.
8. If there exists an integer i between 0 (inclusive) and len (exclusive) such that Canonicalize(s[i]) is not the

same character as Canonicalize(Input [e+i]), then return failure.
9. Let y be the State (f, cap).
10. Call c(y) and return its result.

The production AtomEscape :: CharacterEscape evaluates as follows:

1. Evaluate CharacterEscape to obtain a character ch.
2. Let A be a one-element CharSet containing the character ch.
3. Call CharacterSetMatcher(A, false) and return its Matcher result.

The production AtomEscape :: CharacterClassEscape evaluates as follows:

1. Evaluate CharacterClassEscape to obtain a CharSet A.
2. Call CharacterSetMatcher(A, false) and return its Matcher result.

Informative comments: An escape sequence of the form \ followed by a one- or two-digit decimal number n
matches either a character ch or the result of the nth set of capturing parentheses (see section 15.10.2.11). If the
escape sequence is a backreference to the nth set of capturing parentheses, then it is an error if the regular
expression has fewer than n capturing parentheses. If the regular expression has n or more capturing parentheses
but the nth one is undefined because it hasn't captured anything, then the backreference always succeeds.

15.10.2.10 CharacterEscape

The production CharacterEscape :: ControlEscape evaluates by returning the character according to the table
below:

ControlEscape Unicode Value Name Symbol
t \u0009 horizontal tab <HT>
n \u000A line feed (new line) <LF>
v \u000B vertical tab <VT>
f \u000C form feed <FF>
r \u000D carriage return <CR>

The production CharacterEscape :: c ControlLetter evaluates as follows:

1. Let ch be the character represented by ControlLetter.
2. Let i be ch's Unicode number.
3. Let j be the remainder of dividing i by 32.
4. Return the Unicode character numbered j.

The production CharacterEscape :: HexEscapeSequence evaluates by evaluating the CV of the
HexEscapeSequence (see section 7.7.4) and returning its character result.

The production CharacterEscape :: UnicodeEscapeSequence evaluates by evaluating the CV of the
UnicodeEscapeSequence (see section 7.7.4) and returning its character result.

The production CharacterEscape :: IdentityEscape evaluates by returning the character represented by
IdentityEscape.

15.10.2.11 DecimalOrOctalEscape

The production DecimalOrOctalEscape :: \ DecimalDigit [lookahead ∉ DecimalDigit] evaluates as follows:

1. Let i be the MV of DecimalDigit (see section 7.7.3).
2. If i is zero, return the EscapeValue consisting of a <NUL> character (Unicode value 0000).
3. Return the EscapeValue consisting of the integer i.

The production DecimalOrOctalEscape :: \ ZeroToThree OctalDigit [lookahead ∉ OctalDigit] evaluates as follows:

1. Let i be the MV of ZeroToThree (see section 7.7.4).
2. Let j be the MV of OctalDigit (see section 7.7.3).
3. Call TwoDigitEscape(i, j) and return its EscapeValue result.

The production DecimalOrOctalEscape :: \ ZeroToThree EightOrNine evaluates as follows:

1. Let i be the MV of ZeroToThree (see section 7.7.4).
2. Let j be the MV of EightOrNine.
3. Call TwoDigitEscape(i, j) and return its EscapeValue result.

The production DecimalOrOctalEscape :: \ FourToNine DecimalDigit evaluates as follows:

1. Let i be the MV of FourToNine.
2. Let j be the MV of DecimalDigit (see section 7.7.3).
3. Call TwoDigitEscape(i, j) and return its EscapeValue result.

The production DecimalOrOctalEscape :: \ ZeroToThree OctalDigit OctalDigit evaluates as follows:

1. Let i be the MV of ZeroToThree (see section 7.7.4).
2. Let j be the MV of the first OctalDigit (see section 7.7.3).
3. Let k be the MV of the second OctalDigit (see section 7.7.3).
4. Let ch be the Unicode character numbered 64*i + 8*j + k.
5. Return the EscapeValue consisting of the character ch.

The internal helper function TwoDigitEscape takes two integer parameters i and j and performs the following:

1. Let n = 10*i + j.
2. Let parenIndex be the number of left capturing parentheses in the entire regular expression that occur to the

left of this DecimalOrOctalEscape. This is the total number of times the Atom :: (Disjunction) production is
expanded prior to this DecimalOrOctalEscape plus the total number of Atom :: (Disjunction) productions
enclosing this DecimalOrOctalEscape.

3. If n � 10 and n � parenIndex then return the EscapeValue consisting of the integer n.
4. If i > 7 or j > 7 then throw a RegExpError exception.
5. Let ch be the Unicode character numbered 8*i + j.
6. Return the EscapeValue consisting of the character ch.

• The MV of EightOrNine :: 8 is 8.
• The MV of EightOrNine :: 9 is 9.
• The MV of FourToNine :: 4 is 4.
• The MV of FourToNine :: 5 is 5.
• The MV of FourToNine :: 6 is 6.
• The MV of FourToNine :: 7 is 7.

• The MV of FourToNine :: 8 is 8.
• The MV of FourToNine :: 9 is 9.

Informative comments: Escapes of the form \ followed by a two- or three-digit octal number are used to denote
either backreferences or ASCII characters by ASCII code. This ambiguity is resolved as follows: If \ is followed by
at least a two-digit decimal number n whose first digit is not 0 and there are at least n left capturing parentheses in
the regular expression prior to the escape sequence, then the escape sequence is considered to be a
backreference. Also, if either of the first two digits after the \ is not an octal digit, then the sequence is considered
to be a backreference. Otherwise it is either a two- or three-digit octal number that denotes a literal ASCII
character.

If \ is followed by a one-digit decimal number n, then the escape sequence is considered to be a backreference
unless n is zero. \0 represents the NUL character. It is an error if n is greater than the total number of left capturing
parentheses in the entire regular expression.

15.10.2.12 CharacterClassEscape

The production CharacterClassEscape :: d evaluates by returning the ten-element set of characters containing the
characters 0 through 9 inclusive.

The production CharacterClassEscape :: D evaluates by returning the set of all characters not included in the set
returned by CharacterClassEscape :: d.

The production CharacterClassEscape :: s evaluates by returning the set of characters containing the characters
that are on the right-hand side of the WhiteSpace (section 7.1) or LineTerminator (section 7.2) productions.

The production CharacterClassEscape :: S evaluates by returning the set of all characters not included in the set
returned by CharacterClassEscape :: s.

The production CharacterClassEscape :: w evaluates by returning the set of characters containing the sixty-three
characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

The production CharacterClassEscape :: W evaluates by returning the set of all characters not included in the set
returned by CharacterClassEscape :: w.

15.10.2.13 CharacterClass

The production CharacterClass :: [[lookahead ∉ {^}] ClassRanges] evaluates by evaluating ClassRanges to
obtain a CharSet and returning that CharSet and the boolean false.

The production CharacterClass :: [^ ClassRanges] evaluates by evaluating ClassRanges to obtain a CharSet
and returning that CharSet and the boolean true.

15.10.2.14 ClassRanges

The production ClassRanges :: [empty] evaluates by returning the empty CharSet.

The production ClassRanges :: NonemptyClassRanges evaluates by evaluating NonemptyClassRanges to obtain
a CharSet and returning that CharSet.

15.10.2.15 NonemptyClassRanges

The production NonemptyClassRanges :: ClassAtom evaluates by evaluating ClassAtom to obtain a CharSet and
returning that CharSet.

The production NonemptyClassRanges :: ClassAtom NonemptyClassRangesNoDash evaluates as follows:

1. Evaluate ClassAtom to obtain a CharSet A.
2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRanges :: ClassAtom - ClassAtom ClassRanges evaluates as follows:

1. Evaluate the first ClassAtom to obtain a CharSet A.
2. Evaluate the second ClassAtom to obtain a CharSet B.
3. Evaluate ClassRanges to obtain a CharSet C.
4. Call CharacterRange(A, B) and let D be the resulting CharSet.
5. Return the union of CharSets D and C.

The internal helper function CharacterRange takes two CharSet parameters A and B and performs the following:

1. If A does not contain exactly one character or B does not contain exactly one character then throw a
RegExpError exception.

2. Let a be the one character in CharSet A.
3. Let b be the one character in CharSet B.
4. Let i be the Unicode value of character a.
5. Let j be the Unicode value of character b.
6. If i>j then throw a RegExpError exception.
7. Return the set containing all Unicode characters numbered i through j, inclusive.

15.10.2.16 NonemptyClassRangesNoDash

The production NonemptyClassRangesNoDash :: ClassAtom evaluates by evaluating ClassAtom to obtain a
CharSet and returning that CharSet.

The production NonemptyClassRangesNoDash :: ClassAtomNoDash NonemptyClassRangesNoDash evaluates
as follows:

1. Evaluate ClassAtomNoDash to obtain a CharSet A.
2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRangesNoDash :: ClassAtomNoDash - ClassAtom ClassRanges evaluates as
follows:

1. Evaluate ClassAtomNoDash to obtain a CharSet A.
2. Evaluate ClassAtom to obtain a CharSet B.
3. Evaluate ClassRanges to obtain a CharSet C.
4. Call CharacterRange(A, B) and let D be the resulting CharSet.
5. Return the union of CharSets D and C.

Informative comments: ClassRanges can expand into single ClassAtoms and/or ranges of two ClassAtoms
separated by dashes. In the latter case the ClassRanges includes all Unicode character between the first
ClassAtom and the second ClassAtom, inclusive; an error occurs if either ClassAtom does not represent a single
character (for example, if one is \w) or if the first ClassAtom's Unicode number is greater than the second
ClassAtom's Unicode number.

Even if the pattern ignores case, the case of the two ends of a range is significant in determining which characters
belong to the range. Thus, for example, the pattern /[E-F]/i matches only the letters E, F, e, and f, while the
pattern /[E-f]/i matches all upper and lower-case ASCII letters as well as the symbols [, \,], ^, _, and `.

A - character can be treated literally or it can denote a range. It is treated literally if it is the first or last character of
ClassRanges, the beginning or end limit of a range specification, or immediately follows a range specification.

15.10.2.17 ClassAtom

The production ClassAtom :: - evaluates by returning the CharSet containing the one character -.

The production ClassAtom :: ClassAtomNoDash evaluates by evaluating ClassAtomNoDash to obtain a CharSet
and returning that CharSet.

15.10.2.18 ClassAtomNoDash

The production ClassAtomNoDash :: NonTerminator but not one of \] - evaluates by returning a one-element
CharSet containing the character represented by NonTerminator.

The production ClassAtomNoDash :: \ ClassEscape evaluates by evaluating ClassEscape to obtain a CharSet
and returning that CharSet.

15.10.2.19 ClassEscape

The production ClassEscape :: DecimalOrOctalEscape evaluates as follows:

1. Evaluate DecimalOrOctalEscape to obtain an EscapeValue E.
2. If E is not a character then throw a RegExpError exception.
3. Let ch be E's character.
4. Return the one-element CharSet containing the character ch.

The production ClassEscape :: b evaluates by returning the CharSet containing the one character <BS> (Unicode
value 0008).

The production ClassEscape :: CharacterEscape evaluates by evaluating CharacterEscape to obtain a character
and returning a one-element CharSet containing that character.

The production ClassEscape :: CharacterClassEscape evaluates by evaluating CharacterClassEscape to obtain a
CharSet and returning that CharSet.

Informative comments: A ClassAtom can use any of the escape sequences that are allowed in the rest of the
regular expression except for \b, \B, and backreferences. Inside a CharacterClass, \b means the backspace
character, while \B and backreferences raise errors. Octal escapes may be used inside a CharacterClass as long
as they don't look like backreferences. Using a backreference inside a ClassAtom causes an error.

15.10.3 The RegExp Constructor Called as a Function

When RegExp is called as a function rather than as a constructor, it creates and initialises a new regular
expression object.

15.10.3.1 RegExp(pattern, flags)

A regular expression object is created and returned as if by the expression new RegExp (pattern, flags) .

15.10.3.2 RegExp(pattern)

A regular expression object is created and returned as if by the expression new RegExp (pattern) .

15.10.3.3 RegExp()

A regular expression object is created and returned as if by the expression new RegExp () .

15.10.4 The RegExp Constructor

When RegExp is called as part of a new expression, it is a constructor: it initialises the newly created object.

15.10.4.1 new RegExp(pattern, flags)

Let P be the empty string if pattern is not provided and ToString(pattern) otherwise. Similarly, let F be the empty
string if flags is not provided and ToString(flags) otherwise.

The global property of the newly constructed object is set to a Boolean value that is true if F contains the
character ‘g’ and false otherwise.

The ignoreCase property of the newly constructed object is set to a Boolean value that is true if F contains the
character ‘i’ and false otherwise.

The multiline property of the newly constructed object is set to a Boolean value that is true if F contains the
character ‘m’ and false otherwise.

If F contains any character other than ‘g’, ‘i’, or ‘m’, or if it contains the same one more than once, then throw
a RegExpError exception.

If P's characters do not have the form Pattern, then throw a RegExpError exception. Otherwise let the newly
constructed object have a [[Match]] property obtained by evaluating ("compiling") Pattern. Note that evaluating
Pattern may throw a RegExpError exception. (Note: if pattern is a StringLiteral, the usual escape sequence
substitutions are performed before the string is processed by RegExp. If pattern must contain an escape sequence
to be recognised by RegExp, the “\” character must be escaped within the StringLiteral to prevent its being
removed when the contents of the StringLiteral are formed.)

The source property of the newly constructed object is set to an implementation-defined string value in the form of
a Pattern based on P.

The lastIndex property of the newly constructed object is set to 0.

The [[Prototype]] property of the newly constructed object is set to the original RegExp prototype object, the one
that is the initial value of RegExp.prototype.

The [[Class]] property of the newly constructed object is set to “RegExp”.

15.10.4.2 new RegExp(pattern)

This is the same as calling new RegExp(pattern, "").

15.10.4.3 new RegExp()

This is the same as calling new RegExp("", "").

15.10.5 Properties of the RegExp Constructor

The value of the internal [[Prototype]] property of the RegExp constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties, the RegExp constructor has the following properties:

15.10.5.1 RegExp.prototype

The initial value of RegExp.prototype is the built-in RegExp prototype object.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.10.5.2 RegExp.length

The length property is 2.

15.10.6 Properties of the RegExp Prototype Object

The value of the internal [[Prototype]] property of the RegExp prototype object is the Object prototype.

The Function prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the Object prototype object.

In following descriptions of functions that are properties of the RegExp prototype object, the phrase “this RegExp
object” refers to the object that is the this value for the invocation of the function; it is a runtime error to call any of
the functions below if this does not refer to an object for which the value of the internal [[Class]] property is
"RegExp".

15.10.6.1 RegExp.prototype.constructor

The initial value of RegExp.prototype.constructor is the built-in RegExp constructor.

15.10.6.2 RegExp.prototype.exec(string)

Performs a regular expression match of string against the regular expression and returns an Array object
containing the results of the match, or null if the string did not match

The string ToString(string) is searched for an occurrence of the regular expression pattern as follows:

1. Let S be the value of ToString(string).
2. Let length be the length of S.
3. Let lastIndex be the value of the lastIndex property.
4. Let i be the value of ToInteger(lastIndex).
5. If the global property is false, let i = 0.
6. If i<0 or i>length then set lastIndex to 0 and return null.
7. Call [[Match]], giving it the arguments S and i. If [[Match]] returned failure, go to step 8; otherwise let r be its

State result and go to step 10.
8. Let i = i+1.
9. Go to step 6.
10. Let e be r's endIndex value.
11. If the global property is true, set lastIndex to e.
12. Let n be the length of r's captures array. (This is the same value as section 15.10.2.1's NCapturingParens.)
13. Return a new array with the following properties:
• The index property is set to the position of the matched substring within the complete string S.

• The input property is set to S.

• The length property is set to n + 1.

• The 0 property is set to the matched substring (i.e. the portion of S between offset i inclusive and offset e
exclusive).

• For each integer i such that i>0 and i� n, set the property named ToString(i) to the ith element of r's captures
array.

15.10.6.3 RegExp.prototype.test(string)

Equivalent to the expression RegExp.prototype.exec(string) != null.

15.10.6.4 RegExp.prototype.toString()

Returns a string value formed by concatenating the strings “/”, the value of the source property, and “/”; plus
“g” if the global property is true, “i” if the ignoreCase property is true, and “m” if the multiline property
is true.

15.10.7 Properties of RegExp Instances

RegExp instances inherit properties from their [[Prototype]] object as specified above and also have the following
properties.

15.10.7.1 source

The value of the source property is string in the form of a RegularExpressionLiteral representing the current
regular expression. This property shall have the attributes { DontDelete, ReadOnly }.

15.10.7.2 global

The value of the global property is a Boolean value indicating whether the flags contained the character ‘g’.
This property shall have the attributes { DontDelete, ReadOnly }.

15.10.7.3 ignoreCase

The value of the ignoreCase property is a Boolean value indicating whether the flags contained the character
‘i’. This property shall have the attributes { DontDelete, ReadOnly }.

15.10.7.4 multiline

The value of the multiline property is a Boolean value indicating whether the flags contained the character ‘m’.
This property shall have the attributes { DontDelete, ReadOnly }.

15.10.7.5 lastIndex

The value of the lastIndex property is an integer which specifies the string position at which to start the next
match. This property shall have the attributes { DontDelete }.

16 Errors

An implementation should report runtime errors at the time the relevant language construct is evaluated. An
implementation may report syntax errors in the program at the time the program is read in, or it may, at its option,
defer reporting syntax errors until the relevant statement is reached. An implementation may report syntax errors in
eval code at the time eval is called, or it may, at its option, defer reporting syntax errors until the relevant
statement is reached.

An implementation may treat any instance of the following kinds of runtime errors as a syntax error and therefore
report it early:

• Improper uses of return, break, and continue.

• Using the eval property other than via a direct call.

• Errors in regular expression literals.
• Attempts to call PutValue on a value that is not a reference (for example, executing the assignment statement

3=4).

An implementation shall not report other kinds of runtime errors early even if the compiler can prove that a
construct cannot execute without error under any circumstances. An implementation may issue an early warning in
such a case, but it should not report the error until the relevant construct is actually executed.

This specification specifies the last possible moment an error occurs. A given implementation may generate errors
sooner (e.g., at compile-time). Doing so may cause differences in behaviour among implementations. Notably, if
runtime errors become catchable in future versions, a given error would not be catchable if an implementation
generates the error at compile-time rather than runtime.

An ECMAScript compiler should detect errors at compile time in all code presented to it, even code that detailed
analysis might prove to be “dead” (never executed). A programmer should not rely on the trick of placing code
within an if (false) statement, for example, to try to suppress compile-time error detection.

In general, if a compiler can prove that a construct cannot execute without error under any circumstances, then it
may issue a compile-time error even though the construct might never be executed at all.

