
Common Language
Infrastructure (CLI)

Introduction and
Class Library Factorization

Hewlett-Packard

Intel

Microsoft

ECMA/TC39/00/9

Outline

fi What is the CLI?
fi Factoring the Base Class Libraries
fi Categories
fi Packages by Category
fi Questions and Answers

Overview of the CLI

fi A file format
fi A common type system
fi An extensible metadata system
fi An intermediate language
fi Access to the underlying platform
fi A factored base class library

File Format
fi Based on COFF
fi Uses existing extension mechanism
fi Code represented as MSIL instructions
fi Metadata stored in read-only area
fi EAT / IAT for access to platform only
fi Methods include a descriptive header

fi Stack frame size
fi Types of local variables and parameters
fi Pinned variable information
fi Exception handler table

Common Type System
fi Spans large number of languages
fi Object-oriented in flavor
fi Supports procedural and functional

languages, too
fi Includes value types (“structs”), pointers,

and by-reference values
fi Subset for wide reach

fi Common Language Specification (CLS)

Metadata System
fi Self-description for assemblies (components)

fi Includes referenced assemblies
fi Allows crypto-strong names
fi Records version information
fi Security boundary

fi Self-description for types
fi Name and defining assembly
fi Member information (fields, methods, etc.)

fi Extensible through custom attributes
fi Stored in file along with code

Intermediate Language
fi Simple stack machine model
fi Typeless opcodes (add, not add.int32)

fi Signed and unsigned via opcode, not type
fi Rich set of conversion operations

fi Verifiable subset
fi Tail calls, virtual dispatch, call via function pointer,

exception handling (two-pass)
fi Typed variable argument lists, dynamically typed

pointers
fi Objects, vectors, and strings are built-in

fi As are 32- and 64-bit integers and floats, and 32/64-bit
agnostic integers

Access to Platform
fi Metadata describes managed and

unmanaged interface
fi Marshaling is automatic for many types
fi Custom marshaling can be specified
fi Platform-specific transformations are

possible (ANSI <-> Unicode, etc.)
fi Platform-specific calling conventions

can be specified

Factored Class Library
fi Designed for cross-language use

fi Adheres to the CLS rules

fi Factored to allow minimal footprint and
minimal hardware requirements

fi Intended to be platform-neutral
fi Three layers: kernel, basic language,

additional functionality
fi Methodology and details follow….

Outline

fi What is the CLI?
fi Factoring the Base Class Libraries
fi Categories
fi Packages by Category
fi Questions and Answers

Goals
fi Factored Class Library

fi Size constraints (RAM, ROM, Flash)
fi Computational constraints (FPU, 64bit support)
fi Feature requirements

fi Factored Execution Environment
fi Minimal base is always present
fi File format independent of factorization
fi Library factorization is the driver

fi Standardization allows …
fi … vendors to specify what’s available
fi … developers to specify requirements

Methodology
fi Define Kernel

fi Fixes file format
fi Minimal functionality and hardware
fi Hand-picked classes and methods

fi Define Basic Language
fi Minimal hardware support required
fi Most common language features

fi Features required for C# with minimal hardware support

fi Depends on classes defined in Kernel

fi Package each advanced function separately
fi Implemented a la cart by runtime vendors
fi Required a la cart by developers

Defining a Package
fi Choose the classes

fi A class can only be in one package
fi Minimize and specify dependencies on packages
fi Base class in package or one it depends on

fi Basic Language depends on the Kernel
package

fi All other packages depend on both Kernel
and Basic Language

fi Compute the missing methods
fi Check it makes sense, new dependencies
fi Interfaces may be in another package

fi Methods will exist, just can’t cast to interface

Languages and Packages
fi C#

fi Requires Kernel, Basic Language, and
Extended Numerics

fi ECMAScript
fi Requires above plus Reflection

fi ISO C++
fi Requires Kernel, Basic Language,

Extended Numerics, and NonCLS

Scenario-based System Design

Kernel, Basic
Language,
Common DT,
Advanced DT,
Networking, XML,
IO, Collections

Ex: Connected
XML C#
Application

Kernel, Basic
Language,
Common DT,
Networking

Ex: Connected C#
Application

Kernel, Basic
Language

C# Program

KernelMinimal

Required
Packages

Scenario

Core Execution
Engine

Base Language

XML Standard IO

Networking
Common Data

Types

Advanced Data
Types

Collections

Core Execution
Engine

Core Execution
Engine

Core Execution
Engine

Base Language

Base Language
Common Data

Types
Networking

Minimal .Net Execution

Example: Advanced C# App

Example: Connected C# App

C# Program Execution

Outline

fi What is the CLI?
fi Factoring the Base Class Libraries
fi Categories
fi Packages by Category
fi Questions and Answers

Categories of Packages
fi Classes grouped into packages
fi Packages grouped into five categories

fi For ease of discussion only

C ore Ex ec ut ion
Engine

D ev e lopm ent
Tim e C las s es

Bas e Language

G loba liza t ionAdv anc ed XML R em ot ingAs y nc h Support XML

Standard IO N et work ingSec urit y Threading

Seria liza t ion R egular
Ex pres s ions

Ex tended
N um eric s

C om m on D ata
Ty pes

Adv anc ed D ata
Ty pes

C ollec t ions

N on-C LS
Support

R ef lec t ionU nm anagedH os t ingGC

E E Func tionality

Not In B uc kets

High Level P rogram m ing

Com m on P rogram m ing Utilities

Abs trac t O S Interfac es

Miscellaneous

High Level Programming

Abstract OS Interfaces

Common Programming Utilities

EE Functionality

The Five Categories (1 – 3)
fi Abstract OS Interface

fi Platform-independent operating system
functionality

fi Common Programming Library
fi Classes that support common programming

patterns

fi High-Level Programming
fi Programming patterns for the 2000s: XML, remote

objects, asynchronous computing

The Five Categories (4 – 5)

fi EE Functionality
fi Revealing underlying operations to

programming languages

fi Miscellaneous
fi Kernel, Basic Language, and support for

developers

Outline

fi What is the CLI?
fi Factoring the Base Class Libraries
fi Categories
fi Packages by Category
fi Questions and Answers

Abstract OS Interface
183 Classes and interfaces
fi Networking (60)

fi System.Net.*

fi Security (60)
fi System.IsolatedStorage, System.Security, …

fi Standard I/O (32)
fi System.Console, System.IO, System.Text, …

fi Threading (31)
fi System.Threading, …

Common Programming Lib.
118 Classes and interfaces
fi Common Data Types (5)

fi System.DateTime, System.Text.StringBuilder, etc.

fi Advanced Data Types (11)
fi System.BitConverter, System.URI, …

fi Collections (27)
fi System.Collections

fi Extended Numerics (6)
fi System.Decimal, System.Double, etc.

fi Regular Expressions (8)
fi System.Text.RegularExpressions.*

fi Serialization (61)
fi System.Runtime.Serialization.*, etc.

High-Level Programming
188 Classes and interfaces
fi Asynchronous Programming (2)

fi System.AsyncCallback, System.IAsyncResult

fi Globalization (39)
fi System.Globalization.*, System.Resources.*, etc.

fi Remoting (88)
fi System.Runtime.Remoting.*

fi XML (54)
fi System.Xml.* (parsing and generation)

fi Advanced XML (5)
fi System.Xml.Xsl.*, System.Xml.XPath.*

EE Functionality
96 Classes and interfaces
fi GC (2)

fi System.WeakReference,
System.WeakReferenceException

fi Hosting (3)
fi System.OperatingSystem, etc.

fi NonCLS (3)
fi System.ArgIterator, etc.

fi Reflection (62)
fi System.Reflection.*, etc.

fi Unmanaged (26)
fi System.Runtime.InteropServices, etc.

Miscellaneous
107 Classes and interfaces
fi Kernel (66)

fi 1, 2, and 4 byte integers, arrays, string, object, etc.

fi Basic Language Support (17)
fi System.EventHandler, System.IFormattable,

System.Type, etc.

fi Development Time (24)
fi System.Diagnostics.*,

System.Runtime.CompilerServices.*

Outline

fi What is the CLI?
fi Factoring the Base Class Libraries
fi Categories
fi Packages by Category
fi Questions and Answers

