ECMA/TC39/00/10

Introduction to C#

Anders Hejlsberg
Distinguished Engineer
Developer Division
Microsoft Corporation

C# — The Big ldeas

The first component oriented
language In the C/C++ family

Everything really Is an object

Next generation robust and
durable software

Preservation of investment

C# — The Big ldeas

A component oriented language

m C#is the first “component oriented

language In the C/C++ family
Component concepts are first class:

L
Ll
L

Properties, methods, events
Design-time and run-time attributes

ntegrated documentation using XML

Enables one-stop programming
O No header files, IDL, etc.
O Can be embedded in web pages

C# — The Big ldeas

Everything really Is an object

m Traditional views

O C++, Java: Primitive types are “magic” and do
not interoperate with objects

O Smalltalk, Lisp: Primitive types are objects, but
at great performance cost

m C# unifies with no performance cost
O Deep simplicity throughout system

m Improved extensibility and reusability
O New primitive types: Decimal, SQL...
O Collections, etc., work for all types

C# — The Big ldeas

Robust and durable software

m Garbage collection
O No memory leaks and stray pointers

m EXxceptions

O Error handling is not an afterthought
m [ype-safety

O No uninitialized variables, unsafe casts
m \Versioning

O Pervasive versioning considerations in
all aspects of language design

C# — The Big ldeas

Preservation of Investment

m C++ heritage

O Namespaces, enums, unsigned types, pointers
(in unsafe code), etc.

O No unnecessary sacrifices

m Interoperability

O What software is increasingly about

O MS C# implementation talks to XML, SOAP,
COM, DLLs, and any .NET language

m Millions of lines of C# code in .NET

O Short learning curve
O Increased productivity

Hello World

C# Program Structure

m Namespaces
O Contain types and other namespaces

m Type declarations

O Classes, structs, interfaces, enums,
and delegates

m Members

O Constants, fields, methods, properties, indexers,
events, operators, constructors, destructors

m Organization
O No header files, code written “in-line”
O No declaration order dependence

C# Program Structure

Type System

m Value types

O Directly contain data
O Cannot be null

m Reference types

O Contain references to objects
O May be null

Int | = 123;
string s = "Hello worl d";

- [
- [e

Type System

m Value types

O Primitives int i;

O Enums enum State { Of, On }

O Structs struct Point { int x, y; }
m Reference types

O Classes cl ass Foo: Bar, |Foo {...}

O Interfaces interface | Foo: IBar {...}

O Arrays string[] a = new string[10]:

O Delegates del egate void Enpty();

Predefined Types

m C# predefined types

O Reference object, string

O Signhed sbyte, short, int, long

O Unsigned byte, ushort, uint, ulong
O Character char

O Floating-point float, double, decimal

O Logical bool

m Predefined types are simply aliases
for system-provided types

O For example, int == System.Int32

Classes

Single inheritance
Multiple interface implementation

Class members

O Constants, fields, methods, properties,
Indexers, events, operators,
constructors, destructors

O Static and instance members
O Nested types

m Member access
O public, protected, internal, private

Structs

m Like classes, except
O Stored in-line, not heap allocated
O Assignment copies data, not reference
O No inheritance

m |deal for light weight objects

O Complex, point, rectangle, color

O int, float, double, etc., are all structs
m Benefits

O No heap allocation, less GC pressure
O More efficient use of memory

Classes And Structs

class CPoint { int x, vy;, ... }
struct SPoint { int x, vy, ... }
CPoi nt cp new CPoi nt (10, 20);

SPoi nt sp new SPoi nt (10, 20);

op -—.—-

Interfaces

m Multiple inheritance

m Can contain methods, properties,
Indexers, and events

m Private interface implementations

| nterface | Dat aBound

{

voi d Bi nd(| Dat aBi nder bi nder);
}
cl ass Edi t Box: Control, | DataBound
{

voi d | Dat aBound. Bi nd(| Dat aBi nder binder) {...}
}

Enums

m Strongly typed
O No implicit conversions to/from int
o Operators: +, -, ++, -, &, |, *, ~

m Can specify underlying type

O Byte, short, int, long
enum Col or: byte

{
Red
G een
Bl ue
Bl ack
Whi t e

1,
2,
4,
0,

Red | Green | Bl ue,

Delegates

m Object oriented function pointers

m Multiple receivers
O Each delegate has an invocation list
O Thread-safe + and - operations

m Foundation for events

del egate void MouseEvent(int x, int y);
del egat e doubl e Func(doubl e x);

Func func = new Func(Math. Si n);
double x = func(1.0);

Unified Type System

m Everything is an object
O All types ultimately inherit from object

O Any piece of data can be stored,
transported, and manipulated with no
extra work

Unified Type System

m Boxing
O Allocates box, copies value into it

m Unboxing
O Checks type of box, copies value out

Int 1 = 123;
object o = 1i;
Int Jj = (int)o;

=—’.—’_

0

J

Unified Type System

m Benefits
O Eliminates “wrapper classes”
O Collection classes work with all types
O Replaces OLE Automation's Variant

m Lots of examples in .NET Framework

string s = string. Format (
"Your total was {0} on {1}", total, date);

Hasht able t = new Hasht abl e();
t. Add(0, "zero");
t. Add(1, "one");
t.Add(2, "two");

Component Development

m What defines a component?
O Properties, methods, events
O Integrated help and documentation
O Design-time information

m C# has first class support
O Not naming patterns, adapters, etc.
O Not external files

m Components are easy to build
and consume

Properties

m Properties are “smart fields”
O Natural syntax, accessors, inlining

Indexers

m Indexers are “smart arrays”
O Can be overloaded

Events
Sourcing

m Define the event signature

m Define the event and firing logic

Events
Handling

m Define and register event handler

Attributes

m How do you associate information
with types and members?

O Documentation URL for a class
O Transaction context for a method
O XML persistence mapping
m Traditional solutions
O Add keywords or pragmas to language
O Use external files, e.q., .IDL, .DEF

m C# solution: Attributes

Attributes

Attributes

m Attributes can be

O Attached to types and members

O Examined at run-time using reflection
m Completely extensible

O Simply aclass that inherits from
System.Attribute

m Type-safe
O Arguments checked at compile-time

m Extensive use in .NET Framework

O XML, Web Services, security, serialization,
component model, COM and P/Invoke interop,
code configuration...

XML Comments

Statements And
Expressions

High C++ fidelity
If, while, do require bool condition
goto can’t jump into blocks

Switch statement
O No fall-through, “goto case” or “goto default”

foreach statement
m Checked and unchecked statements

m EXxpression statements must do work

voi d Foo() {
| == 1: [] error

}

foreach Statement

m [teration of arrays

m lteration of user-defined collections

Parameter Arrays

m Can write “printf” style methods
O Type-safe, unlike C++

Operator Overloading

m First class user-defined data types

m Used

In base class library

O Decimal, DateTime, TimeSpan

m Used

in Ul library

O Unit, Point, Rectangle

m Used

O SO
SQ
SQ

In SQL Integration

|_String, SQLInt16, SQLINt32,
_Int64, SQLBool, SQLMoney,

_Numeric, SQLFloat...

Operator Overloading

Versioning

m Problem in most languages
O C++ and Java produce fragile base classes
O Users unable to express versioning intent

m C# allows intent to be expressed
O Methods are not virtual by default

O C# keywords “virtual”, “override” and “new”
provide context

m C# can't guarantee versioning
O Can enable (e.g., explicit override)
O Can encourage (e.g., smart defaults)

Versioning

Conditional Compilation

m #define, #undef

m #Hif, #elif, #else, #endif
O Simple boolean logic

Conditional methods

Unsafe Code

m Platform interoperability covers most cases

m Unsafe code
O Low-level code “within the box”
O Enables unsafe casts, pointer arithmetic

m Declarative pinning
O Fixed statement

Basically “inline C”

Unsafe Code

More Information

http://msdn.microsoft.com/net
O Download .NET SDK and documentation

http://msdn.microsoft.com/events/pdc
O Slides and info from .NET PDC

news://msnews.microsoft.com
O microsoft.public.dotnet.csharp.general

