
ECMA/TC39-TG1/01/19

ECMAScript Standards Meeting
November 27th, 2001
Netscape, Mountain View

Attendees

Waldemar Horwart, Netscape
Jeff Dyer, Mountain View Compiler Company
Eric Lippert, Microsoft
Herman Venter, Microsoft
Peter Torr, Microsoft

Agenda

Next Meeting date
General document review
Phases of Evaluation
Numeric Heirarchy

Next Meeting

We agreed that the next meeting should be at 10:00 am on January 29th, 2002, at Microsoft in Redmond. Jeff
has a conflict with this and has suggested Thursday 31st instead. A week before the meeting, we will decide
whether or not there is enough new content or other discussion topics to warrant the expense of the meeting.

General Document Review

• The tuples GoBreak and GoContinue have changed to allow a label to be either a string or a default
(empty) value.

• CompoundAttribute is a new name for Attribute
• Created a new VariableReference tuple to store environment information with a variable
• New Contexts section to hold static information about the current location in a program
• New Environments section, still incomplete. StaticFrame stores compile-time information, whilst

DynamicFrame stores run-time information
• CombineAttributes function combines attributes; the function cannot be called with a false first

parameter, thus short-circuiting further attribute evaluation. Herman points out that combining
attributes should be limited to a compile-time operation, as there is nothing interesting you can do with
attribute combination at run time. Waldemar will consider making this change.

• References section updated so that the correct this reference is used. For example, if ob is an expando
object, foo is an old-style function, then in the call ob.foo(42) the value of this should be ob. Herman
expressed a desire for pre-conditions on these methods so that it was clear that, for instance,
writeQualifiedProperty could never be called with a method reference

• For future meetings, Waldemar will provide "clean" copies of the document (without change bars) to
ease reading

Phases of Evaluation

Currently, the draft specification has two phases -- verification and evaluation. There may be more phases
required, for example the JScript .NET implementation adds a "partial evaluation" phase.

Once an attribute has been used, it cannot be shadowed. For example, in the following code, the usage of A on
the third line binds to the declaration of A on the first line, and the attempt to create a shadowing definition on
the fourth line will generate an error:

ECMA/TC39-TG1/01/19

const A = true
{

A const B = Something // Binds to the A above
B const A = AnotherThing // Error; A is already bound

}

Waldemar would like to disallow forward-references to classes when used in an extends clause. For example,
the following code would be illegal:

class Derived extends Base // error; base is a forward reference
{

// implementation
}

class Base
{

// implementation
}

The final specification will make such programs illegal, but Microsoft's implementation may extend the standard
by allowing such forward references.

Numeric Hierarchy

We discussed the numeric hierarchy again. There are at least three possible ways to represent this:

Object Object Object

| / | \ |
Number / | \ ????????

/ | \ / | \ / | \
int double decimal int double decimal int double decimal

The idea is that it would be nice for programmers to specify that their methods took "a number", without having
to worry about (possibly lossy) conversions from integers to doubles, signed to unsigned, etc. The generic type
would be more specific than Object, since passing a string or other non-numeric value would be an error, but
would be less specific than int or double.

The basic problem is that the types in the CLR follow the second diagram (they all derive directly from Object),
and it would be infeasible for Microsoft (or any other implementations on top of the CLR) to create a new
numeric hierarchy that was not based on the platform's built-in types. One possibility that was discussed was to
invent a new "pseudo-type" or compound type in place of the question marks in the third diagram. It would not
be a real type in the type system, but would be a way for the user to specify "any numeric type", and the
compiler would have both compile-time and run-time checks to ensure that this condition was met.
Nevertheless, this would incur a runtime cost and would not interoperate well with other languages.

It was decided that, for this edition of the standard, we would remove support for Integer and Decimal types,
and continue to have Number as the "generic" numeric type. The issue is taking up a lot of the committee's
time, and we believe there are suitable workarounds for customers that need them (eg, the System.Decimal
type in the CLR). We will also remove long from the standard (both signed and unsigned), which will enable all
the built-in numeric types to be stored in a double without loss of precision. For the initial release, overflow

ECMA/TC39-TG1/01/19

checking will be turned on, but we may have a switch in the future to enable truncation. Other numeric types
(such as long or decimal) may be added as part of the units work.

