
 ECMA/TC39-TG1/2002/9
 Draft Standard ECMA-xxx

 International

September 2002

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: h t tp : / /www.ecma.ch - In ternet: he lpdesk@ecma.ch

ECMAScript for XML (E4X)
Specification

Draft 01 – September 2002

.

 Draft Standard ECMA-xxx

 International

September 2002

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: h t tp : / /www.ecma.ch - In ternet: he lpdesk@ecma.ch

MB 2002tg1-009.doc 23-09-02 11,09

ECMAScript for XML (E4X)
Specification

.

Brief History

TBD.

This ECMA Standard has been adopted by the ECMA General Assembly of

- i -

Table of contents

1 Scope 1

2 Status of this Document 1

3 Motivation 1
3 .1 The Rise of XML Processing 1
3.2 Current XML Processing Approaches 1

3.2 .1 The Document Object Model (DOM) 1
3.2 .2 The eXtensible Stylesheet Language (XSLT) 1
3.2 .3 Object Mapping 2

3.3 The E4X Approach 2

4 Design Principles 2

5 Lexical Conventions 3

6 Types 3

7 Type Conversion 3

8 Execution Contexts 3

9 Expressions 3

10 Statements 3

11 Native E4X Objects 3

1 Scope
This standard defines the syntax and semantics of ECMAScript for XML (E4X), a set programming language
extensions adding native XML support to ECMAScript.

2 Status of this Document
This is a working draft produced to motivate and facilitate discussions related to E4X with the goal of
creating a general purpose, cross platform, vendor neutral E4X standard. Comments and suggestions are
solicited and encouraged.

3 Motivation
3.1 The Rise of XML Processing

Developing software to create, navigate and manipule XML data is a significant part of every Internet
developer’s job. Developers are inundated with data encoded in the eXtensible Markup Language (XML).
Web pages are increasingly encoded using XML vocabularies, including XHTML and Scalable Vector
Graphics (SVG). On mobile devices, data is encoded using the Wireless Markup Language (WML). Web
services interact using the Simple Object Access Protocol (SOAP) and are described using the Web
Service Description Language (WSDL). Deployment descriptors, project make files and configuration files
and now encoded in XML, not to mention an endless list of custom XML vocabularies designed for
vertical industries. XML data itself is even described and processed using XML in the form of XML
Schemas and XSL Stylesheets.

3.2 Current XML Processing Approaches
Current XML processing techniques require ECMAScript programmers to learn and master a complex
array of new concepts and programming techniques. The XML programming models often seem
heavyweight, complex and unfamiliar for ECMAScript programmers. This section provides a brief
overview of the more popular XML processing techniques.

3.2.1 The Document Object Model (DOM)

One of the most common approaches to processing XML is to use a software package that implements
the interfaces defined by the XML DOM (Document Object Model). The XML DOM represents XML
data using a general purpose tree abstraction and provides a tree-based API for navigating and
manipulating the data (e.g., getParentNode(), getChildNodes(), removeChild(), etc.).

This method of accessing and manipulating data structures is very different from the methods used to
access and manipulate native ECMAScript data structures. ECMAScript programmers must learn to
write tree navigation algorithms instead of object navigation algorithms. In addition, they have to learn
a relatively complex interface hierarchy for interacting with the XML DOM. The resulting XML DOM
code is generally harder to read, write, and maintain than code that manipulates native ECMAScript
data structures. It is more verbose and often obscures the developer’s intent with lengthy tree navigation
logic. Consequently, XML DOM programs require more time, knowledge and resources to develop.

3.2.2 The eXtensible Stylesheet Language (XSLT)

XSLT is a language for transforming XML documents into other XML documents. Like the XML DOM,
it represents XML data using a tree-based abstraction, but also provides an expression language called
XPath designed for navigating trees. On top of this, it adds a declarative, rule-based language for
matching portions of the input document and generating the output document accordingly.

From this description, it is clear that XSLT’s methods for accessing and manipulating data structures
are completely different from those used to access and manipulate ECMAScript data structures.
Consequently, the XSLT learning curve for ECMAScript programmers is quite steep. In addition to
learning a new data model, ECMAScript programmers have to learn a declarative programming model,
recursive decent processing model, new expression language, new XML language syntax, and a variety
of new programming concepts (templates, patterns, priority rules, etc.). These differences also make
XSLT code harder to read, write and maintain for the ECMAScript programmer. In addition, it is not
possible to use familiar development environments, debuggers and testing tools with XSLT.

- 2 -

3.2.3 Object Mapping

Several have also tried to navigate and manipulate XML data by mapping it to and from native
ECMAScript objects. The idea is to map XML data onto a set of ECMAScript objects, manipulate those
objects directly, then map them back to XML. This would allow ECMAScript programmers to reuse
their knowledge of ECMAScript objects to manipulate XML data.

This is a great idea, but unfortunately it does not work. Native ECMAScript objects do not preserve the
order of the original XML data and order is significant for XML. Not only do XML developers need to
preserve the order of XML data, but they also need to control and manipulate the order of XML data. In
addition, XML data contains artifacts that are not easily represented by the ECMAScript object model,
such as attributes, comments and mixed element content.

3.3 The E4X Approach
ECMAScript for XML was envisioned to address these problems. E4X extends the ECMAScript object
model with native support for XML data. It reuses familiar ECMAScript operators for creating, navigating
and manipulating XML, such that anyone who has used ECMAScript is able to start using XML with little
or no additional knowledge. The extensions include a native XML data type, XML literals and a small set
of new operators useful for common XML operations, such as searching and filtering.

E4X applications are smaller and more intuitive to ECMAScript developers than comparable XSLT or
DOM applications. They are easier to read, write and maintain requiring less developer time, skill and
specialized knowledge. The net result is reduced code complexity, tighter revision cycles and shorter time
to market for Internet applications. In addition, E4X is a lighter weight technology enabling a wide range
of mobile applications.

4 Design Principles
The following design principles are used to guide the development of E4X and encourage consistent design
decisions. They are listed here to provide insight into the design rational and to anchor discussions on
desirable E4X traits

• Simple: One of the most important objectives of E4X is to simplify common programming tasks.
Simplicity should not be compromised for interesting or unique features that do not address common
programming problems.

• Consistent: The design of E4X should be internally consistent so developers can anticipate its
behaviour. To the extent possible, the logical data model for XML data should mirror that of native
ECMAScript objects. Developers already familiar with ECMAScript objects should be able to begin
using XML objects with minimal surprises.

• Familiar: Common operators available for manipulating ECMAScript objects should also be available
for manipulating XML data. The semantics of the operators should not be surprising to those familiar
with ECMAScript objects.

• Minimal: Where appropriate, E4X defines new operators for manipulating XML that are not currently
available for manipulating ECMAScript objects. This set of operators should be kept to a minimum to
avoid unnecessary complexity. It is a non-goal of E4X to provide, for example, the full functionality of
XPath.

• Complementary: E4X should integrate well with other languages designed for manipulating XML, such
as XPath, XSLT and XML Query. Specifically, E4X should be able to invoke complementary languages
when additional expressive power is needed without compromising the simplicity of the E4X language
itself. In addition, invoking E4X code from other host languages should be possible.

• Loose Coupling: To the degree practical, E4X operators will enable applications to minimize their
dependencies on external data formats. For example, E4X applications should be able to extract a value
deeply nested within an XML structure, without specifying the full path to the data. Thus, changes in the
containment hierarchy of the data will not require changes to the application.

- 3 -

• Secure [Edition 4]: E4X for ECMAScript Edition 4 should support ECMAScript Edition 4 security
mechanisms, such as access control and visibility. In addition, E4X for Edition 4 should support
verification of data integrity of XML data types using a Schema.

This list is evolving and may be revised as the specification progresses.

5 Lexical Conventions

6 Types

7 Type Conversion

8 Execution Contexts

9 Expressions

10 Statements

11 Native E4X Objects

Free printed copies can be ordered from:
ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

Fax: +41 22 849.60.01
Email: documents@ecma.ch

Files of this Standard can be freely downloaded from the ECMA web site (www.ecma.ch). This site gives full
information on ECMA, ECMA activities, ECMA Standards and Technical Reports.

ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

See inside cover page for obtaining further soft or hard copies.

