
ECMA/TC39-TG1/2003/7
ECMA/TC39/2003/15

E4X Meeting Notes 2003-03-27
Date March 27, 2003 1:00 PM – 5:00 PM

March 28, 2003 9:00 AM – 12:30 PM

Location Netscape Communications Corp.
Miami Vice Conference Room
Building 21, 1st Floor
466 Ellis Street
Mountain View, CA 94043

Convener Rok Yu (Microsoft)

Editor John Scheider (BEA/AgileDelta)

Participants Jeff Dyer (Compiler Company)
John Schneider (BEA/AgileDelta)
Michael Shenfield (RIM)
Rok Yu (Microsoft)
Waldemar Horwat (Netscape)

Agenda
The agenda was adopted as written.

New Convener
The working group thanks Peter Torr for his outstanding service as convener of TG1 and
welcomes Rok Yu into his new position.

Next Meetings
Date Host Comments
April 24, 2003 BEA/AgileDelta Conference call 10:00 AM – 12:00 PM PDT. John to send

out draft for discussion by April 17th.
May 9, 2003 Microsoft
May 29, 2003 Conference call
June 13, 2003 Netscape

Schedule
Schedule assumes 6 weeks between meetings which means that there is 4 meetings before spec
must be complete. John wishes to add 1 or 2 additional face to face meetings. Working group
agrees to this proposal.

We’re behind by about one meeting. Working group agrees to have phone conferences between
face to face meetings to make up time. In addition, we agree to try and resolve more issues via
the email reflector.

Use Cases
Rok was going to review XQuery use cases and port to E4X. Working group agrees this is a nice
to have, but not critical, and thus we will not plan to do this.

Onno Elzinga (ECMA Senior Technology Officer) has notified John of a possible synergy
between TG1 and a specification on voice control occurring in another TC. Porting their examples
to E4X may be good use case examples.

Jeff’s use case is still in progress. He will present it next meeting.

Action Items
• John to find spec and example code from voice control specification and send to reflector.
• Rok to port voice control example to E4X solution
• Jeff to prepare use case for presentation at next meeting

Review of Spec Changes
We agreed that the XML type will also include text nodes (as opposed to strings being embedded
directly inside XML trees). However, the implications of this have not been fully explored yet.

6.1.1.2 [[Put]] (P, V)
Based on discussions at the previous meeting, the algorithm was modified so that code does not
throw exception when passed an invalid XML identifier. It was unclear what the rationale was as
we did not have notes from previous meeting.

We reopened the issue and came to agreement that we will throw errors if the identifier to [[Put]]
is not valid.

A method will be included to test if an identifier is a valid XML element or attribute name.

There was some thought that the Validate method was meant to be a method for ensuring well-
formedness, but after agreeing to add the requirement that identifiers must have the proper
characters, the working group could not come up with any examples to get ill-formed xml parsed
into the data model. Hence, the need for method to ensure well-formedness no longer exists.

In addition, the working group believes that schema validation will be a commonly requested
operation and we want to ensure a common API to do this. However, there are some
environments such as on mobile devices where a trusted partner can do validation, and thus,
validation functionality is not critical. We agree that support for the validation method will be
optional.

Action Items
• John to update algorithm to throw errors for invalid property name.
• John to add method to validate identifier and do validation against a schema.

6.1.1.5 [[Replace]] (P, V)
Waldemar notes that for V values that are text, the value stored is a string. It needs to be
converted into an XML node of type text.

Action Items
• John to review Replace algorithm and modify to make sure string values are stored as XML

nodes of type text.

7.1.1 ToString Applied to the XML Type
Working group agrees that for the elements with simple content (i.e. where an element contains
only child text nodes), ToString returns the the content of the element (i.e. the result of
concatenating the strings stored in the text nodes). When applied to elements with simple
content, ToString does not replace XML special characters with entities. ToXMLString does.

There is disagreement as to what ToString does when applied to other XML element instances
withcomplex content (i.e. elements that contain other elements).

When ToString is applied to an XML element with complex content, John wants ToString to return
a string representing the entire element, including its start tag, end tag, attributes, and children.
He believes it is counter-intuitive to omit the start tag, attributes, and end tag for this case. i.e.
ToString effectively returns innerXML for simple content, and outerXML for complext content.
John believes this behavior satisfies the most common cases and yields the most intuitive results.
In other cases, where the user always wants outerXML, the user may use ToXmlString(). In
cases where the user always innerXML, they can call innerXML().ToXMLString() [or use “*” – the
shorthand notation for innerXML()].

Michael, Jeff, and Waldemar believe consistency is more important and that ToString should
always return innerXML. The alternative of modifying the print routine to call ToXMLString for
XML values addresses some of John’s concerns, but introduces a difference in behavior between
using the print routine and other scenarios where XML is converted to string.

Rok leans towards Michael and Waldemar’s point of view, but can see both sides.

There is agreement that attributes do not affect whether innerXML or outerXML is returned.

Examples:
x = <x>4</x>
y = <y id=”number”>5</y>
z = <z><a>3</z>

print(x)

 4
print(y)

 5
print(z)

 <z><a>3</z>

No resolution was achieved on the desired behavior of ToString on XML elements with complex
content. As a last resort, members agree we could keep ToString unspecified in spec for non-
XML elements with complex content.

Action items
• Rok will get opinions from others at Microsoft on behavior preference and write up his

position.

7.1.2 ToString Applied to the XMLList Type
Algorithm was modified to return a comma separated list. Working group agrees to this but notes
that behavior is tied to 7.1.1 which is still being debated.

7.3 ToXML
Based on discussions at the previous meeting, the document was modified so ToXML returns
undefined when an attempt to convert an XMLList fails. It was unclear why this was. The working
group agreed to revert change to throw TypeException. This behavior is consistent with other
type conversions that also fail with exception.

Action Items
• Rok will develop a proposal for ToXML for objects.

Review of New Sections
Sections 5 and 9 were added. Working group did not have enough time to review items 9.5 and
later.

5.1 Identifiers
Waldemar question as to whether the Identifier token is the appropriate place to extend Edition 3
to add identifiers needed for XML lookup. He is concerned that grammar as it stands may be
ambiguous. Waldemar thinks a better place for supporting the identifiers is off of the grammar
section for the dot operator.

John’s approach has been to use a more permissive grammar and to rely on semantics to
disallow the new XML identifiers in inappropriate contexts. He thinks Identifier is an appropriate
place to extend the grammar because he wishes to support unqualified references in filter
predictates. i.e. foo.(@bar == mybar).

Waldemar and Rok indicate that unqualified references will have the same problem as the current
with statement where the lexical scope captures identifiers from dynamic data. This is a situation
both would like to avoid.

For now, we agree to leave grammar as is for now record an issue to revisit grammar once
filtering predicate design has been agreed to.

Action Items
• Waldemar will investigate grammar and come back with proposal for a more specific

grammar definition.

5.2 Puntuators
Waldemar notes .(is not needed as a punctuator and can be handled in grammar.

Action Items
• John to remove .(from punctuator list

9.1.1 XML Initializer
Waldemar notes that a lexing context is needed to resolve an ambiguity problem that exists in
current XML initializer definition. A similar problem exists in the regular expression literal definition
and the same technique can be used to resolve it.

x = a< b+c>d,“</y>”
y = a/b+c/d

Also noted is that XML literals will have the same funky interaction as regular expressions with
semi-colon insertion.

a = b
/c+d/g.exec(“Hello”)

Several bugs also noted.
• Grammar does not allow literals with mixed content – i.e. <a>hello
• PI, Comment, CDATA need to be rewritten to disallow terminating token sequence from

content.

Action Items
• John to fix bugs and make changes so XML literals use technique similar to regular

expression syntax to fix disambiguates.

9.1.2 XMLList Initializer
Rok notes that in almost all cases, an XMLList with one XML element behaves identically to an
XML instance. He suggests that only XMLList initializers are necessary, and suggests that current
delimeters <> and </> are too inconvenient for the common single XML element case.

Action Items
• Rok to work on proposal that unifies XML and XMLList initializeers

9.2.2 XML Descendent Accessor
Waldemar believes that in addition to MemberExpression, CallExpression needs to be modified to
support “..” descendant operator.

Waldemar notes that there is currently no way to execute descendent “..” behavior for a runtime
property name.

Action Items
• John will review and add necessary grammar to CallExpression.
• John to explore adding descendent lookup with runtime property name via a function.

9.2.3 XML Filtering Predicate Operator
Current proposal has same problem as the with statement. A race condition exists between
members of the MemberExpression XML instance and the program’s variables.

Rok suggests using “.” to represent the context node. Using ‘this’ is undesirable because it is
ambiguous. i.e.
 x.(.price > balance)
 x.(this.price > balance)

Waldemar notes that as with descendent operator, there needs to be some way to get at
properties with computed names i.e. [].

Action Items
• Waldemar to check the grammar to see if “.” is possible.
• John to explore options for getting at computed properties.

9.4 Additive Operators
Waldemar notes that since text is stored as XML nodes, concatenation will result in an XML list –
not a string. Working group thinks behavior appears reasonable but has postponed finalizing what
the behavior should be until the implications can be thought through.

Rok is concerned that plus operation on numeric values will be a very common case and people
will be confused when plus concatenates the text nodes into a list. At minimum, we need to
prescribe how to code up the intent to add XML values that are numeric.

Working group agrees that rules we come up with for the + operator should depend only on the
types of the operands and not on their values.

Action Item
• John to add example for case of coercion to number and all text is stored as strings.
• All members to consider implications of having plus operator concatenate and produce a list

when adding text nodes.

Discuss Outstanding Issues
Working group did not have enough time to handle this item.

Next Steps (Statements & Built-ins)
Working group did not have enough time to handle this item.

	E4X Meeting Notes 2003-03-27
	Agenda
	New Convener
	Next Meetings
	Schedule
	Use Cases
	Review of Spec Changes
	6.1.1.2 [[Put]] (P, V)
	6.1.1.5 [[Replace]] (P, V)
	7.1.1 ToString Applied to the XML Type
	7.1.2 ToString Applied to the XMLList Type
	7.3 ToXML

	Review of New Sections
	5.1 Identifiers
	5.2 Puntuators
	9.1.1 XML Initializer
	9.1.2 XMLList Initializer
	9.2.2 XML Descendent Accessor
	9.2.3 XML Filtering Predicate Operator
	9.4 Additive Operators

	Discuss Outstanding Issues
	Next Steps (Statements & Built-ins)

