

PROOF/ÉPREUVE

Reference number
ISO/IEC 22537:2005(E)

© ISO/IEC 2005

INTERNATIONAL
STANDARD

ISO/IEC
22537

First edition
2005-##-##

Information technology — ECMAScript
for XML (E4X) specification

Technologies de l'information — ECMAScript pour spécification
XML (E4X)

patrick
Text Box
Ecma/TC39-TG1/2005/009

ISO/IEC 22537:2005(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2005
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE iii

Contents

Foreword.. vi
Introduction .. vii
1 Scope ..1
2 References..1
2.1 Normative References...1
2.2 Informative References ...1
3 Definitions ..2
4 Conformance..3
5 Motivation ...3
5.1 The Rise of XML Processing ..3
5.2 Current XML Processing Approaches...3
5.2.1 The Document Object Model (DOM) ..3
5.2.2 The eXtensible Stylesheet Language (XSLT)..4
5.2.3 Object Mapping..4
5.3 The E4X Approach...4
6 Design Principles...4
7 Notational Conventions ..5
7.1 Algorithm Conventions ...5
7.1.1 Indentation Style ..5
7.1.2 Property Access...5
7.1.3 Iteration...7
7.1.4 Conditional Repetition ..8
7.1.5 Method Invocation ...8
8 Lexical Conventions..9
8.1 Context Keywords ...10
8.2 Punctuators ..10
8.3 XML Initialiser Input Elements..11
9 Types...12
9.1 The XML Type...12
9.1.1 Internal Properties and Methods..13
9.2 The XMLList Type ..22
9.2.1 Internal Properties and Methods..23
9.3 The AttributeName Type ...29
9.3.1 Internal Properties ...29
9.4 The AnyName Type..30
10 Type Conversion..30
10.1 ToString ..30
10.1.1 ToString Applied to the XML Type ...30
10.1.2 ToString Applied to the XMLList Type...31
10.2 ToXMLString (input argument, [AncestorNamespaces], [IndentLevel])32
10.2.1 ToXMLString Applied to the XML Type ...32
10.2.2 ToXMLString Applied to the XMLList Type...35
10.3 ToXML...35
10.3.1 ToXML Applied to the String Type...36
10.3.2 ToXML Applied to a W3C XML Information Item ..36
10.4 ToXMLList...39
10.4.1 ToXMLList Applied to the String Type ..40

ISO/IEC 22537:2005(E)

iv PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

10.5 ToAttributeName ... 40
10.5.1 ToAttributeName Applied to the String Type ... 41
10.6 ToXMLName... 41
10.6.1 ToXMLName Applied to the String Type .. 41
11 Expressions... 42
11.1 Primary Expressions .. 42
11.1.1 Attribute Identifiers ... 43
11.1.2 Qualified Identifiers... 43
11.1.3 Wildcard Identifiers... 44
11.1.4 XML Initialiser .. 45
11.1.5 XMLList Initialiser ... 48
11.2 Left-Hand-Side Expressions .. 48
11.2.1 Property Accessors .. 49
11.2.2 Function Calls.. 51
11.2.3 XML Descendant Accessor .. 53
11.2.4 XML Filtering Predicate Operator .. 53
11.3 Unary Operators.. 55
11.3.1 The delete Operator .. 55
11.3.2 The typeof Operator.. 55
11.4 Additive Operators.. 56
11.4.1 The Addition Operator (+) .. 56
11.5 Equality Operators .. 57
11.5.1 The Abstract Equality Comparison Algorithm... 57
11.6 Assignment Operators ... 58
11.6.1 XML Assignment Operator... 58
11.6.2 XMLList Assignment Operator .. 59
11.6.3 Compound Assignment (op=).. 60
12 Statements ... 62
12.1 The default xml namespace Statement... 62
12.1.1 GetDefaultNamespace ().. 63
12.2 The for-in Statement ... 63
12.3 The for-each-in Statement.. 65
13 Native E4X Objects ... 67
13.1 The Global Object ... 67
13.1.1 Internal Properties of the Global Object ... 67
13.1.2 Function Properties of the Global Object... 67
13.1.3 Constructor Properties of the Global Object ... 67
13.2 Namespace Objects .. 68
13.2.1 The Namespace Constructor Called as a Function... 68
13.2.2 The Namespace Constructor ... 68
13.2.3 Properties of the Namespace Constructor... 69
13.2.4 Properties of the Namespace Prototype Object (Built-in Methods)... 70
13.2.5 Properties of Namespace Instances ... 70
13.3 QName Objects ... 70
13.3.1 The QName Constructor Called as a Function .. 71
13.3.2 The QName Constructor... 71
13.3.3 Properties of the QName Constructor .. 72
13.3.4 Properties of the QName Prototype Object.. 72
13.3.5 Properties of QName Instances... 73
13.4 XML Objects... 74
13.4.1 The XML Constructor Called as a Function ... 74
13.4.2 The XML Constructor.. 74
13.4.3 Properties of the XML Constructor ... 75
13.4.4 Properties of the XML Prototype Object (Built-in Methods) ... 78
13.4.5 Properties of XML Instances.. 92
13.5 XMLList Objects .. 92
13.5.1 The XMLList Constructor Called as a Function... 92
13.5.2 The XMLList Constructor ... 92

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE v

13.5.3 Properties of the XMLList Constructor..93
13.5.4 Properties of the XMLList Prototype Object (Built-in Methods) ...93
14 Errors ..100
Annex A (normative) Optional Features ...101
A.1 XML Built-in Methods ..101
A.1.1 domNode() ...101
A.1.2 domNodeList()...101
A.1.3 xpath (XPathExpression) ..101
A.2 XMLList Built-in Methods..102
A.2.1 domNode() ...102
A.2.2 domNodeList()...102
A.2.3 xpath (XPathExpression) ..102

ISO/IEC 22537:2005(E)

vi PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 22537 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

Ecma (as Ecma-357) was adopted, under a special “fast-track procedure”, by Joint Technical Committee
ISO/IEC JTC 1, Information technology, in parallel with its approval by national bodies of ISO and IEC.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE vii

Introduction

On 13 June 2002, a group of companies led by BEA Systems proposed a set of programming language
extensions adding native XML support to ECMAScript (ISO/IEC 16262). The programming language
extensions were designed to provide a simple, familiar, general purpose XML programming model that flattens
the XML learning curve by leveraging the existing skills and knowledge of one of the largest developer
communities worldwide. The benefits of this XML programming model include reduced code complexity,
tighter revision cycles, faster time to market, decreased XML footprint requirements and looser coupling
between code and XML data.

The ECMAScript group (Ecma TC39-TG1) unanimously agreed to the proposal and established a sub-group
to standardize the syntax and semantics of a general purpose, cross platform, vendor neutral set of
programming language extensions called ECMAScript for XML (E4X). The development of this International
Standard started on 8 August 2002. This Standard was developed as an extension to ECMAScript Edition 3,
but may be applied to other versions of ECMAScript as well.

This International Standard adds native XML datatypes to the ECMAScript language, extends the semantics
of familiar ECMAScript operators for manipulating XML data and adds a small set of new operators for
common XML operations, such as searching and filtering. It also adds support for XML literals, namespaces,
qualified names and other mechanisms to facilitate XML processing.

This International Standard will be integrated into future editions of ISO/IEC 16262 (ECMAScript). The
ECMAScript group is working on significant enhancements for future editions of the ECMAScript language,
including mechanisms for defining XML types using the XML Schema language and support for classes.

INTERNATIONAL STANDARD ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 1

Information technology — ECMAScript for XML (E4X)
specification

1 Scope

This International Standard defines the syntax and semantics of ECMAScript for XML (E4X), a set of
programming language extensions adding native XML support to ECMAScript.

2 References

2.1 Normative References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 10646:2003, Information Technology – Universal Multiple-Octet Coded Character Set (UCS).

ISO/IEC 16262:2001, ECMAScript Language Specification – 3rd edition.

Document Object Model (DOM) Level 2 Specifications, W3C Recommendation, 13 November 2000.

Extensible Markup Language 1.0 (Second Edition), W3C Recommendation 6 October 2000.

Namespaces in XML, W3C Recommendation, 14 January 1999.

Unicode Inc. (1996), The Unicode StandardTM, Version 2.0. ISBN: 0-201-48345-9, Addison-Wesley Publishing
Co., Menlo Park, California.

Unicode Inc. (1998), Unicode Technical Report #8: The Unicode StandardTM, Version 2.1.

Unicode Inc. (1998), Unicode Technical Report #15: Unicode Normalization Forms.

XML Information Set, W3C Recommendation 24 October 2001.

XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999.

XML Schema Part 1: Structures, W3C Recommendation, 2 May 2001.

XML Schema Part 2: Datatypes, W3C Recommendation, 2 May 2001.

2.2 Informative References

The following are non-normative references

XSL Transformations (XSLT), W3C Recommendation 16 November 1999.

ISO/IEC 22537:2005(E)

2 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

3 Definitions

XML – the Extensible Markup Language (XML) is an information encoding standard endorsed by the World
Wide Web Consortium (W3C) for sending, receiving, and processing data across the World Wide Web. XML
comprises a series of characters that contains not only substantive information, called character data, but also
meta-information about the structure and layout of the character data, called markup.

markup – one of the two basic constituents of XML data (the other is character data). Markup is a series of
characters that provides information about the structure or layout of character data. Common forms of markup
are start-tags, end-tags, empty-element tags, comments, CDATA tag delimiters, and processing instructions.

character data – one of the two basic constituents of XML data (the other is markup). Character data is a
series of characters that represents substantive data encapsulated by XML markup. Character data is defined
as any series of characters that are not markup.

tag – a single markup entity that acts as a delimiter for character data. A tag can be a start-tag, an end-tag, or
an empty-element tag. Start-tags begin with a less than (<) character and end with a greater than (>)
character. End-tags begin with a pairing of the less than and slash characters (</) and end with a greater than
(>) character. Empty-element begin with a less than (<) character and end with a pairing of the slash and
greater than (/>) characters.

element – a data construct comprising two tags (a start-tag and an end-tag) that delimit character data or
nested elements. If neither character data nor nested elements exist for a given element, then the element
can be defined by a single empty-element tag. Every well-formed XML document contains at least one
element, called the root or document element.

attribute – an optional name-value pair, separated by an equal sign (=), that can appear inside a tag.
Attributes can store information about an element or actual data that would otherwise be stored as character
data.

namespace – a group of identifiers for elements and attributes that are collectively bound to a Uniform
Resource Identifier (URI) such that their use will not cause naming conflicts when used with identically named
identifiers that are in a different namespace.

processing-instruction – a markup entity that contains instructions or information for the application that is
processing the XML. Processing-instruction tags begin with a combination of the less than (<) character and a
question mark (?) character (<?) and end with the same combination of characters but in reverse order (?>).

type – a set of data values

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 3

4 Conformance

A conforming implementation of E4X shall provide and support all the mandatory types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall conform to the ECMAScript Language Specfication,
ISO/IEC 16262:2001.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 2.1 or later, and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted encoding
form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is presumed
to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it presumed to
be the UTF-16 encoding form.

A conforming implementation of E4X may provide additional types, values, objects, properties, and functions
beyond those described in this specification. In particular, a conforming implementation of E4X may provide
properties not described in this specification, and values for those properties, for objects that are described in
this specification. A conforming implementation of E4X shall not provide methods for XML.prototype and
XMLList.prototype other than those described in this specification.

5 Motivation

This section contains a non-normative overview of the motivation behind ECMAScript for XML.

5.1 The Rise of XML Processing

Developing software to create, navigate and manipulate XML data is a significant part of every developer’s job.
Developers are inundated with data encoded in the eXtensible Markup Language (XML). Web pages are
increasingly encoded using XML vocabularies, including XHTML and Scalable Vector Graphics (SVG). On
mobile devices, data is encoded using the Wireless Markup Language (WML). Web services interact using the
Simple Object Access Protocol (SOAP) and are described using the Web Service Description Language
(WSDL). Deployment descriptors, project make files and configuration files and now encoded in XML, not to
mention an endless list of custom XML vocabularies designed for vertical industries. XML data itself is even
described and processed using XML in the form of XML Schemas and XSL Stylesheets.

5.2 Current XML Processing Approaches

Current XML processing techniques require ECMAScript programmers to learn and master a complex array of
new concepts and programming techniques. The XML programming models often seem heavyweight,
complex and unfamiliar for ECMAScript programmers. This section provides a brief overview of the more
popular XML processing techniques.

5.2.1 The Document Object Model (DOM)

One of the most common approaches to processing XML is to use a software package that implements the
interfaces defined by the W3C XML DOM (Document Object Model). The XML DOM represents XML data
using a general purpose tree abstraction and provides a tree-based API for navigating and manipulating the
data (e.g., getParentNode(), getChildNodes(), removeChild(), etc.).

This method of accessing and manipulating data structures is very different from the methods used to access
and manipulate native ECMAScript data structures. ECMAScript programmers must learn to write tree
navigation algorithms instead of object navigation algorithms. In addition, they have to learn a relatively
complex interface hierarchy for interacting with the XML DOM. The resulting XML DOM code is generally
harder to read, write, and maintain than code that manipulates native ECMAScript data structures. It is more
verbose and often obscures the developer’s intent with lengthy tree navigation logic. Consequently, XML DOM
programs require more time, knowledge and resources to develop.

ISO/IEC 22537:2005(E)

4 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

5.2.2 The eXtensible Stylesheet Language (XSLT)

XSLT is a language for transforming XML documents into other XML documents. Like the XML DOM, it
represents XML data using a tree-based abstraction, but also provides an expression language called XPath
designed for navigating trees. On top of this, it adds a declarative, rule-based language for matching portions
of the input document and generating the output document accordingly.

From this description, it is clear that XSLT’s methods for accessing and manipulating data structures are
completely different from those used to access and manipulate ECMAScript data structures. Consequently,
the XSLT learning curve for ECMAScript programmers is quite steep. In addition to learning a new data model,
ECMAScript programmers have to learn a declarative programming model, recursive descent processing
model, new expression language, new XML language syntax, and a variety of new programming concepts
(templates, patterns, priority rules, etc.). These differences also make XSLT code harder to read, write and
maintain for the ECMAScript programmer. In addition, it is not possible to use familiar development
environments, debuggers and testing tools with XSLT.

5.2.3 Object Mapping

Several have also tried to navigate and manipulate XML data by mapping it to and from native ECMAScript
objects. The idea is to map XML data onto a set of ECMAScript objects, manipulate those objects directly,
then map them back to XML. This allows ECMAScript programmers to reuse their knowledge of ECMAScript
objects to manipulate XML data.

This is a great idea, but unfortunately it does not work for a wide range of XML processing tasks. Native
ECMAScript objects do not preserve the order of the original XML data and order is significant for XML. Not
only do XML developers need to preserve the order of XML data, but they also need to control and manipulate
the order of XML data. In addition, XML data contains artifacts that are not easily represented by the
ECMAScript object model, such as namespaces, attributes, comments, processing instructions and mixed
element content.

5.3 The E4X Approach

ECMAScript for XML was envisioned to address these problems. E4X extends the ECMAScript object model
with native support for XML data. It reuses familiar ECMAScript operators for creating, navigating and
manipulating XML, such that anyone who has used ECMAScript is able to start using XML with little or no
additional knowledge. The extensions include native XML data types, XML literals (i.e., initialisers) and a small
set of new operators useful for common XML operations, such as searching and filtering.

E4X applications are smaller and more intuitive to ECMAScript developers than comparable XSLT or DOM
applications. They are easier to read, write and maintain requiring less developer time, skill and specialized
knowledge. The net result is reduced code complexity, tighter revision cycles and shorter time to market for
Internet applications. In addition, E4X is a lighter weight technology enabling a wide range of mobile
applications.

6 Design Principles

The following non-normative design principles are used to guide the development of E4X and encourage
consistent design decisions. They are listed here to provide insight into the E4X design rational and to anchor
discussions on desirable E4X traits

• Simple: One of the most important objectives of E4X is to simplify common programming tasks.
Simplicity should not be compromised for interesting or unique features that do not address common
programming problems.

• Consistent: The design of E4X should be internally consistent such that developers can anticipate its

behaviour.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 5

• Familiar: Common operators available for manipulating ECMAScript objects should also be available for
manipulating XML data. The semantics of the operators should not be surprising to those familiar with
ECMAScript objects. Developers already familiar with ECMAScript objects should be able to begin using
XML objects with minimal surprises.

• Minimal: Where appropriate, E4X defines new operators for manipulating XML that are not currently

available for manipulating ECMAScript objects. This set of operators should be kept to a minimum to
avoid unnecessary complexity. It is a non-goal of E4X to provide, for example, the full functionality of
XPath.

• Loose Coupling: To the degree practical, E4X operators will enable applications to minimize their

dependencies on external data formats. For example, E4X applications should be able to extract a value
deeply nested within an XML structure, without specifying the full path to the data. Thus, changes in the
containment hierarchy of the data will not require changes to the application.

• Complementary: E4X should integrate well with other languages designed for manipulating XML, such

as XPath, XSLT and XML Query. For example, E4X should be able to invoke complementary languages
when additional expressive power is needed without compromising the simplicity of the E4X language
itself.

7 Notational Conventions

This specification extends the notational conventions used in the ECMAScript Edition 3 specification. In
particular, it extends the algorithm notation to improve the clarity, readability and maintainability of this
specification. The new algorithm conventions are described in this section.

7.1 Algorithm Conventions

This section introduces the algorithm conventions this specification adds to those used to describe the
semantics of ECMAScript Edition 3. These conventions are not part of the E4X language. They are used
within this specification to describe the semantics of E4X operations.

7.1.1 Indentation Style

This specification extends the notation used in the ECMAScript Edition 3 specification by defining an algorithm
indentation style. The new algorithm indention style is used in this specification to group related collections of
steps together. This convention is useful for expressing a set of steps that are taken conditionally or
repeatedly. For example, the following algorithm fragment uses indentation to describe a set of steps that are
taken conditionally:

1. If resetParameters is true
a. Let x = 0
b. Let y = 0
c. Let deltaX = 0.5

2. Else
a. Let deltaX = deltaX + accelerationX

In the example above, steps 1.a through 1.c are taken if the condition expressed in step 1 evaluates to true.
Otherwise, step 2.a is taken.

Standard outline numbering form is used to identify steps and distinguish nested levels of indentation when it
might not otherwise be obvious due to pagination.

7.1.2 Property Access

This specification extends the notation used in the ECMAScript Edition 3 specification by defining three
property access conventions. When used on the left hand side of an assignment operation in this specification,
the property access conventions are used to modify the value of a specified property of a specified object. In

ISO/IEC 22537:2005(E)

6 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

other contexts in this specification, the property access conventions are used for specifying that the value of a
specified property be retrieved from a specified object based on its property name.

There are three forms of the property access conventions, two for accessing normal properties and one for
accessing internal properties. The first convention for accessing normal properties is expressed using the
following notation:

 object . propertyName

When used on the left hand side of an assignment operation, this property access convention is equivalent to
calling the [[Put]] method of object, passing the string literal containing the same sequence of parameters as
propertyName and the value from the right hand side of the assignment operator as arguments. For example,
the following algorithm fragment:

1. Let item.price = "5.95"

is equivalent to the following algorithm fragment:

1. Call the [[Put]] method of item with arguments "price" and "5.95"

When used in other contexts, this property access convention is equivalent to calling the [[Get]] method of
object passing the string literal containing the same sequence of characters as propertyName as an argument.
For example, the following algorithm fragment:

1. Let currentPrice = item.price

is equivalent to the following algorithm fragment:

1. Let currentPrice be the result of calling the [[Get]] method of item with argument "price"

The second convention for accessing normal properties is expressed using the following notation:

 object [propertyName]

When used on the left hand side of an assignment operation, this property access convention is equivalent to
calling the Object [[Put]] method with object as the this object, passing ToString(propertyName) and the value
from the right hand side of the assignment operator as arguments. For example, the following algorithm
fragment:

1. Let item[1] = item2

is equivalent to the following algorithm fragment:

1. Call the Object [[Put]] method with item as the this object and arguments ToString(1) and item2

When used in other contexts, this property access convention is equivalent to calling the Object [[Get]] method
with object as the this object and argument ToString(propertyName). For example, the following algorithm
fragment:

1. Let item2 = item[1]

is equivalent to the following algorithm fragment:

1. Let item2 be the result of calling the Object [[Get]] method with item as the this object and argument
ToString(1)

This is a convenient and familiar notation for specifying numeric property names used as array indices.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 7

The convention for accessing internal property names, including those that refer to internal methods, is
specified using the following notation:

 object . [[internalPropertyName]]

When used on the left hand side of an assignment operation, this property access convention is equivalent to
setting the value of the [[internalPropertyName]] of the specified object to the value from the right hand side
of the assignment operator. For example, the following algorithm fragment:

1. Let x.[[Class]] = "element"

is equivalent to the following algorithm fragment:

1. Let the value of the [[Class]] property of x be "element"

When used in other contexts, this property access convention is equivalent to getting the value of the
[[internalPropertyName]] property of object. For example, the following algorithm fragment:

1. Let class = x.[[Class]]

is equivalent to the following algorithm fragment:

1. Let class be the value of the [[Class]] property of x

7.1.3 Iteration

This specification extends the notation used for describing ECMAScript Edition 3 by defining two iteration
conventions. These iteration conventions are used by this specification for expressing that a set of steps shall
be taken once for each item in a collection or once for each integer in a specified range.

The first iteration convention is defined for expressing a sequence of steps that shall be taken once for each
member of a collection. It is expressed using the following for each notation:

 For each item in collection steps

This for each notation is equivalent to performing the given steps repeatedly with the variable item bound to
each member of collection. The value of collection is computed once prior to performing steps and does not
change while performing steps. The order in which item is bound to members of collection is implementation
dependent. The repetition ends after item has been bound to all the members of collection or when the
algorithm exits via a return or a thrown exception. The steps may be specified on the same line following a
comma or on the following lines using the indentation style described in section 7.1.1. For example,

1. Let total = 0
2. For each product in groceryList

a. If product.price > maxPrice, throw an exception
b. Let total = total + product.price

In this example, steps 2.a and 2.b are repeated once for each member of the collection groceryList or until an
exception is thrown in line 2.a. The variable product is bound to the value of a different member of groceryList
before each repetition of these steps.

The second iteration convention defined by this specification is for expressing a sequence of steps that shall
be repeated once for each integer in a specified range of integers. It is expressed using the following for
notation:

 For variable = first to last steps

This for notation is equivalent to computing first and last, which will evaluate to integers i and j respectively,
and performing the given steps repeatedly with the variable variable bound to each member of the sequence i,

ISO/IEC 22537:2005(E)

8 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

i+1 … j in numerical order. The values of first and last are computed once prior to performing steps and do not
change while performing steps. The repetition ends after variable has been bound to each item of this
sequence or when the algorithm exits via a return or a thrown exception. If i is greater than j, the steps are not
performed. The steps may be specified on the same line following a comma or on the following lines using the
indentation style described above. For example,

1. For i = 0 to priceList.length-1, call ToString(priceList[i])

In this example, ToString is called once for each item in priceList in sequential order.

A modified version of the for notation exists for iterating through a range of integers in reverse sequential
order. It is expressed using the following notation:

 For variable = first downto last steps

The modified for notation works exactly as described above except the variable variable is bound to each
member of the sequence i, i-1, .. j in reverse numerical order. If i is less than j, the steps are not performed.

7.1.4 Conditional Repetition

This specification extends the notation used in the ECMAScript Edition 3 specification by defining a
convention for expressing conditional repetition of a set of steps. This convention is defined by the following
notation:

 While (expression) steps

The while notation is equivalent to computing the expression, which will evaluate to either true or false and if
it is true, taking the given steps and repeating this process until the expression evaluates to false or the
algorithm exits via a return or a thrown exception. The steps may be specified on the same line following a
comma or on the following lines using the indentation style described above. For example,

1. Let log2 = 0
2. While (n > 1)

a. Let n = n / 2
b. Let log2 = log2 + 1

In this example, steps 2.a and 2.b are repeated until the expression n > 1 evaluates to false.

7.1.5 Method Invocation

This specification extends the notation used in the ECMAScript Edition 3 specification by defining a method
invocation convention. The method invocation convention is used in this specification for calling a method of a
given object passing a given set of arguments and returning the result. This convention is defined by the
following notation:

 object . methodName (arguments)

where arguments is a comma separated list of zero or more values. The method invocation notation is
equivalent to constructing a new Reference r with base object set to object and property name set to a string
literal containing the same sequence of characters as methodName, constructing an internal list list of the
values in arguments, invoking the CallMethod operator (section 11.2.2.1) passing r and list as arguments and
returning the result. For example, the following algorithm fragment:

1. Let sub = s.substring(2, 5)

Is equivalent to the following algorithm fragment:

1. Let r be a new Reference with base object = s and property name = "substring"
2. Let list be an internal list containing the values 2 and 5
3. Let sub = CallMethod(r, list)

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 9

8 Lexical Conventions

This section introduces the lexical conventions E4X adds to ECMAScript.

E4X modifies the existing lexical grammar productions for InputElementRegExp and Punctuators. It also
introduces the goal symbols InputElementXMLTag and InputElementXMLContent that describe how
sequences of Unicode characters are translated into parts of XML initialisers.

The InputElementDiv symbol is used in those syntactic grammar contexts where a division (/), division-
assignment (/=), less than (<), less than or equals (<=), left shift (<<) or left shift-assignment (<<=) operator is
permitted. The InputElementXMLTag is used in those syntactic contexts where the literal contents of an XML
tag are permitted. The InputElementXMLContent is used in those syntactic contexts where the literal contents
of an XML element are permitted. The InputElementRegExp symbol is used in all other syntactic grammar
contexts.

The addition of the production InputElementRegExp :: XMLMarkup and extended use of the existing
production InputElementRegExp :: Punctuator :: < allow the start of XML initialisers to be identified.

To better understand when these goal symbols apply, consider the following example:

order = <{x}>{item}</{x}>;

The input elements returned from the lexical grammar along with the goal symbol and productions used for
this example are as follows:

Input Element Goal Productions

order InputElementRegExp Token::Identifer

= InputElementDiv Punctuator

< InputElementRegExp Punctuator

{ InputElementXMLTag {

x InputElementRegExp Token::Identifier

} InputElementDiv Punctuator

> InputElementXMLTag XMLTagPunctuator

{ InputElementXMLContent {

item InputElementRegExp Token::Identifier

} InputElementDiv Punctuator

</ InputElementXMLContent </

{ InputElementXMLTag {

x InputElementRegExp Token::Identifier

} InputElementDiv Punctuator

> InputElementXMLTag XMLTagPunctuator

; InputElementRegExp Token::Punctuator

ISO/IEC 22537:2005(E)

10 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Syntax

E4X extends the InputElementRegExp goal symbol defined by ECMAScript with the following production:

InputElementRegExp ::
 XMLMarkup

E4X extends ECMAScript by adding the following goal symbols:

InputElementXMLTag ::
 XMLTagCharacters
 XMLTagPunctuator
 XMLAttributeValue
 XMLWhitespace
 {

InputElementXMLContent ::
 XMLMarkup
 XMLText
 {
 < [lookahead ∉ { ?, ! }]
 </

8.1 Context Keywords

E4X extends ECMAScript by adding a set of context keywords. Context keywords take on a specific meaning
when used in specified contexts where identifiers are not permitted by the syntactic grammar. However, they
differ from ECMAScript Edition 3 keywords in that they may also be used as identifiers. E4X does not add any
additional keywords to ECMAScript.

Syntax

E4X extends ECMAScript by replacing the Identifier production and adding a ContextKeyword production as
follows:

 Identifier::
 IdentifierName but not ReservedWord or ContextKeyword
 ContextKeyword
 ContextKeyword ::
 each
 xml
 namespace

8.2 Punctuators

E4X extends the list of Punctuators defined by ECMAScript by adding the descendent (..) input element to
support the XML descendent accessor (section 11.2.3), the attribute (@) input element to support XML
attribute lookup (section 11.1.1) and the name qualifier (::) input element to support qualified name lookup
(section 11.1.2).

Syntax

E4X extends the Punctuator non-terminal with the following production:

 Punctuator ::
 ..
 @
 ::

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 11

8.3 XML Initialiser Input Elements

The goal symbols InputElementXMLTag and InputElementXMLContent describe how Unicode characters are
translated into input elements that describe parts of XML initialisers. These input elements are consumed by
the syntactic grammars described in sections 11.1.4 and 11.1.5.

The lexical grammar allows characters which may not form a valid XML initialiser. The syntax and semantics
described in the syntactic grammar ensure that the final initialiser is well formed XML.

Unlike in string literals, the back slash (\) is not treated as the start of an escape sequence inside XML
initialisers. Instead the XML entity references specified in the XML 1.0 specification should be used to escape
characters. For example, the entity reference ' can be used for a single quote ('), " for a double
quote ("), and < for less than (<).

The left curly brace ({) and right curly brace (}) are used to delimit expressions that may be embedded in tags
or element content to dynamically compute portions of the XML initialiser. The curly braces may appear in
literal form inside an attribute value, a CDATA, PI, or XML Comment. In all other cases, the character
reference { shall be used to represent the left curly brace ({) and the character reference } shall
be used to represent the right curly brace (}).

Syntax

XMLMarkup ::
 XMLComment
 XMLCDATA
 XMLPI

XMLTagCharacters ::
 SourceCharacters but no embedded XMLTagPunctuator

or left-curly { or quote ' or double-quote " or forward-slash / or
XMLWhitespaceCharacter

XMLWhitespaceCharacter ::
 <SP>
 <TAB>
 <CR>
 <LF>
XMLWhitespace ::
 XMLWhitespaceCharacter
 XMLWhitespace XMLWhitespaceCharacter

XMLText ::
 SourceCharacters but no embedded left-curly { or less-than <

XMLName ::

XMLNameStart
XMLName XMLNamePart

XMLNameStart ::

UnicodeLetter
underscore _
colon :

XMLNamePart ::

UnicodeLetter
UnicodeDigit
period .
hyphen -
underscore _
colon :

ISO/IEC 22537:2005(E)

12 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

XMLComment ::
 <!-- XMLCommentCharactersopt -->

XMLCommentCharacters ::
 SourceCharacters but no embedded sequence --

XMLCDATA ::
 <![CDATA[XMLCDATACharactersopt]]>

XMLCDATACharacters ::
 SourceCharacters but no embedded sequence]]>

XMLPI ::
 <? XMLPICharactersopt ?>

XMLPICharacters ::
 SourceCharacters but no embedded sequence ?>

XMLAttributeValue::
 " XMLDoubleStringCharactersopt "
 ' XMLSingleStringCharactersopt '

XMLDoubleStringCharacters ::
 SourceCharacters but no embedded double-quote "

XMLSingleStringCharacters ::
 SourceCharacters but no embedded single-quote '

SourceCharacters ::
 SourceCharacter SourceCharactersopt

XMLTagPunctuator :: one of

= > />

9 Types

E4X extends ECMAScript by adding two new fundamental data types for representing XML objects and lists of
XML objects. Future versions will also provide the capability to derive user-defined types for specific XML
vocabularies using XML Schemas.

9.1 The XML Type

The XML type is an ordered collection of properties with a name, a set of XML attributes, a set of in-scope
namespaces and a parent. Each property of an XML object has a unique numeric property name P, such that
ToString(ToUint32(P)) is equal to P, and has a value of type XML representing a child node. The name of an
XML object is a QName object or null. Each XML attribute is an instance of the XML type. Each namespace is
a Namespace object. The parent is a value of type XML or null. Methods are associated with XML objects
using non-numeric property names.

Each value of type XML represents an XML element, attribute, comment, processing-instruction or text node.
The internal [[Class]] property is set to “element”, “attribute”, “comment”, “processing-instruction” or “text” as
appropriate. Each XML object representing an XML attribute, comment, processing-instruction (PI) or text
node has no user visible properties and stores a String value representing the value of the associated attribute,
comment, PI or text node in the [[Value]] property logically inherited from the Object type.

E4X intentionally blurs the distinction between an individual XML object and an XMLList containing only that
object. To this end, all operations available for XMLList objects are also available for XML objects.
Implementations that extend E4X should preserve this constraint.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 13

NOTE The internal XML data model described above represents XML child nodes as properties with numeric
property names. The numeric names of these properties indicate the ordinal position of a given child within its parent. The
values of these properties are XML objects that have an associated name (e.g., an element name). E4X defines XML
[[Get]] and [[Put]] operators (below) that provide access to the properties of an XML object based on the names of the
property values rather than their internal numeric property names.

9.1.1 Internal Properties and Methods

Internal properties and methods are not part of the E4X language. They are defined by this specification
purely for expository purposes. An implementation of E4X shall behave as if it produced and operated upon
internal properties in the manner described here. This specification reuses the notation for internal properties
from the ECMAScript Edition 3 specification, wherein the names of internal properties are enclosed in double
square brackets [[]]. When an algorithm uses an internal property of an object and the object does not
implement the indicated internal property, a TypeError exception is thrown.

The XML type is logically derived from the Object type and inherits its internal properties. Unless otherwise
specified, the XML type also inherits the type conversion semantics defined for the Object type (section 9 of
ECMAScript Edition 3). The following table summarises the internal properties the XML type adds to those
defined by the Object type.

Property Parameters Description

[[Name]] None The name of this XML object.

[[Parent]] None The parent of this XML object.

[[Attributes]] None The attributes associated with this XML object.

[[InScopeNamespaces]] None The namespaces in scope for this XML object

[[Length]] None The number of ordered properties in this XML
object.

[[DeleteByIndex]] (PropertyName) Deletes a property with the numeric index
PropertyName.

[[DeepCopy]] () Returns a deep copy of this XML object.

[[ResolveValue]] () Returns this XML object. This method is used when
attempting to resolve the value of an empty
XMLList.

[[Descendants]] (PropertyName) Returns an XMLList containing the descendants of
this XML object with names that match
propertyName.

[[Equals]] (Value) Returns a boolean value indicating whether this
XML object has the same XML content as the
given XML Value.

[[Insert]] (PropertyName, Value) Inserts one or more new properties before the
property with name PropertyName (a numeric
index).

[[Replace]] (PropertyName, Value) Replaces the value of the property with name
PropertyName (a numeric index) with one or more
new properties.

[[AddInScopeNamespace]] (Namespace) Adds Namespace to the [[InScopeNamespaces]]
property of this XML object.

ISO/IEC 22537:2005(E)

14 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

The value of the [[Name]] property shall be null or a QName object containing a legal XML element name,
attribute name, or PI name. The value of the [[Name]] property is null if and only if the XML object represents
an XML comment or text node. The [[Name]] for each XML object representing a processing-instruction will
have its uri property set to the empty string.

The value of the [[Parent]] property shall be either an XML object or null. When an XML object occurs as a
property (i.e., a child) of another XML object, the [[Parent]] property is set to the containing XML object (i.e.,
the parent).

The value of the [[Attributes]] property is a set of zero or more XML objects. When a new object is added to
the [[Attributes]] set, it replaces any existing object in [[Attributes]] that has the same set identity. The set
identity of each XML object x ∈ [[Attributes]] is defined to be x.[[Name]]. Therefore, there exists no two objects
x, y ∈ [[Attributes]] such that the result of the comparison x.[[Name]] == y.[[Name]] is true. The value of the
[[Attributes]] property is the empty set if the XML object represents an XML attribute, comment, PI or text node.

NOTE Although namespaces are declared using attribute syntax in XML, they are not represented in the [[Attributes]]
property.

The value of the [[InScopeNamespaces]] property is a set of zero or more Namespace objects representing
the namespace declarations in scope for this XML object. All of the Namespace objects in the
[[InScopeNamespaces]] property have a prefix property with a value that is not undefined. When a new
object is added to the [[InScopeNamespaces]] set, it replaces any existing object in the
[[InScopeNamespaces]] set that has the same set identity. The set identity of each Namespace object n ∈
[[InScopeNamespaces]] is defined to be n.prefix. Therefore, there exists no two objects x,y ∈
[[InScopeNamespaces]], such that the result of the comparison x.prefix == y.prefix is true.

The value of the [[Length]] property is a non-negative integer.

Unless otherwise specified, a newly created instance of type XML has [[Prototype]] initialized to the XML
prototype object (section 13.4.4), [[Class]] initialized to the string "text", [[Value]] initialized to undefined,
[[Name]] initialized to null, [[Parent]] initialized to null, [[Attributes]] initialized to the empty set { },
[[InscopeNamespaces]] initialized to the empty set { }, and [[Length]] initialized to the integer 0.

9.1.1.1 [[Get]] (P)

Overview

The XML type overrides the internal [[Get]] method defined by the Object type. The XML [[Get]] method is
used to retrieve an XML attribute by its name or a set of XML elements by their names. The input argument P
may be an unqualified name for an XML attribute (distinguished from the name of XML elements by a leading
“@” symbol) or a set of XML elements, a QName for a set of XML elements, an AttributeName for a set of
XML attributes, the properties wildcard “*” or the attributes wildcard “@*”. When the input argument P is an
unqualified XML element name, it identifies XML elements in the default namespace. When the input
argument P is an unqualified XML attribute name, it identifies XML attributes in no namespace.

In addition, the input argument P may be a numeric property name. If P is a numeric property name, the XML
[[Get]] method converts this XML object to an XMLList list and calls the [[Get]] method of list with argument P.
This treatment intentionally blurs the distinction between a single XML object and an XMLList containing only
one value.

NOTE Unlike the internal Object [[Get]] method, the internal XML [[Get]] method is never used for retrieving methods
associated with XML objects. E4X modifies the ECMAScript method lookup semantics for XML objects as described in
section 11.2.2.

Semantics

When the [[Get]] method of an XML object x is called with property name P, the following steps are taken:

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 15

1. If ToString(ToUint32(P)) == P
a. Let list = ToXMLList(x)
b. Return the result of calling the [[Get]] method of list with argument P

2. Let n = ToXMLName(P)
3. Let list be a new XMLList with list.[[TargetObject]] = x and list.[[TargetProperty]] = n
4. If Type(n) is AttributeName

a. For each a in x.[[Attributes]]
i. If ((n.[[Name]].localName == "*") or (n.[[Name]].localName == a.[[Name]].localName))

and ((n.[[Name]].uri == null) or (n.[[Name]].uri == a.[[Name]].uri))
1. Call the [[Append]] method of list with argument a

b. Return list
5. For (k = 0 to x.[[Length]]-1)

a. If ((n.localName == "*")
 or ((x[k].[[Class]] == "element") and (x[k].[[Name]].localName == n.localName)))
and ((n.uri == null) or ((x[k].[[Class]] == “element”) and (n.uri == x[k].[[Name]].uri)))

i. Call the [[Append]] method of list with argument x[k]
6. Return list

9.1.1.2 [[Put]] (P, V)

Overview

The XML type overrides the internal [[Put]] method defined by the Object type. The XML [[Put]] method is
used to replace and insert properties or XML attributes in an XML object. The parameter P identifies which
portion of the XML object will be affected and may be an unqualified name for an XML attribute (distinguished
from XML valued property names by a leading “@” symbol) or set of XML elements, a QName for a set of
XML elements, an AttributeName for a set of XML attributes or the properties wildcard “*”. When the
parameter P is an unqualified XML element name, it identifies XML elements in the default namespace. When
the parameter P is an unqualified XML attribute name, it identifies XML attributes in no namespace. The
parameter V may be an XML object, an XMLList object or any value that may be converted to a String with
ToString().

If P is a numeric property name, the XML [[Put]] method throws a TypeError exception. This operation is
reserved for future versions of E4X.

NOTE Unlike the internal Object [[Put]] method, the internal XML [[Put]] method is never used for modifying the set of
methods associated with XML objects.

Semantics

When the [[Put]] method of an XML object x is called with property name P and value V, the following steps
are taken:

1. If ToString(ToUint32(P)) == P, throw a TypeError exception
NOTE this operation is reserved for future versions of E4X.

2. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return
3. If (Type(V) ∉ {XML, XMLList}) or (V.[[Class]] ∈ {"text", "attribute"})

a. Let c = ToString(V)
4. Else

a. Let c be the result of calling the [[DeepCopy]] method of V
5. Let n = ToXMLName(P)
6. If Type(n) is AttributeName

a. Call the function isXMLName (section 13.1.2.1) with argument n.[[Name]] and if the result is
false, return

b. If Type(c) is XMLList
i. If c.[[Length]] == 0, let c be the empty string
ii. Else

1. Let s = ToString(c[0])
2. For i = 1 to c.[[Length]]-1

ISO/IEC 22537:2005(E)

16 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

a. Let s be the result of concatenating s, the string " " (space) and ToString(c[i])
3. Let c = s

c. Else
i. Let c = ToString(c)

d. Let a = null
e. For each j in x.[[Attributes]]

i. If (n.[[Name]].localName == j.[[Name]].localName)
and ((n.[[Name]].uri == null) or (n.[[Name]].uri == j.[[Name]].uri))

1. If (a == null), a = j
2. Else call the [[Delete]] method of x with argument j.[[Name]]

f. If a == null
i. If n.[[Name]].uri == null

1. Let nons be a new Namespace created as if by calling the constructor new
Namespace()

2. Let name be a new QName created as if by calling the constructor new QName(nons,
n.[[Name]])

ii. Else
1. Let name be a new QName created as if by calling the constructor new

QName(n.[[Name]])
iii. Create a new XML object a with a.[[Name]] = name, a.[[Class]] == "attribute" and

a.[[Parent]] = x
iv. Let x.[[Attributes]] = x.[[Attributes]] ∪ { a }
v. Let ns be the result of calling the [[GetNamespace]] method of name with no arguments
vi. Call the [[AddInScopeNamespace]] method of x with argument ns

g. Let a.[[Value]] = c
h. Return

7. Let isValidName be the result of calling the function isXMLName (section 13.1.2.1) with argument n
8. If isValidName is false and n.localName is not equal to the string "*", return
9. Let i = undefined
10. Let primitiveAssign = (Type(c) ∉ {XML, XMLList}) and (n.localName is not equal to the string "*")
11. For (k = x.[[Length]]-1 downto 0)

a. If ((n.localName == "*")
 or ((x[k].[[Class]] == "element") and (x[k].[[Name]].localName==n.localName)))
and ((n.uri == null) or ((x[k].[[Class]] == “element”) and (n.uri == x[k].[[Name]].uri)))

i. If (i is not undefined), call the [[DeleteByIndex]] property of x with argument ToString(i)
ii. Let i = k

12. If i == undefined
a. Let i = x.[[Length]]
b. If (primitiveAssign == true)

i. If (n.uri == null)
1. Let name be a new QName created as if by calling the constructor new

QName(GetDefaultNamespace(), n)
ii. Else

1. Let name be a new QName created as if by calling the constructor new QName(n)
iii. Create a new XML object y with y.[[Name]] = name, y.[[Class]] = "element" and y.[[Parent]]

= x
iv. Let ns be the result of calling [[GetNamespace]] on name with no arguments
v. Call the [[Replace]] method of x with arguments ToString(i) and y
vi. Call [[AddInScopeNamespace]] on y with argument ns

13. If (primitiveAssign == true)
a. Delete all the properties of the XML object x[i]
b. Let s = ToString(c)
c. If s is not the empty string, call the [[Replace]] method of x[i] with arguments "0" and s

14. Else
a. Call the [[Replace]] method of x with arguments ToString(i) and c

15. Return

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 17

9.1.1.3 [[Delete]] (P)

Overview

The XML type overrides the internal [[Delete]] method defined by the Object type. The XML [[Delete]] method
is used to remove a set of XML attributes by name or a set of XML valued properties by name. Unlike, the
internal Object [[Delete]], the XML [[Delete]] method shifts all the properties following deleted properties up to
fill in empty slots created by the delete. The input argument P may be an unqualified name for an XML
attribute (distinguished from the name of XML elements by a leading “@” symbol) or a set of XML elements, a
QName for a set of XML elements, an AttributeName for a set of XML attributes, the properties wildcard “*” or
the attributes wildcard “@*”. When the input argument P is an unqualified XML element name, it identifies
XML elements in the default namespace. When the input argument P is an unqualified XML attribute name, it
identifies XML attributes in no namespace.

If P is a numeric property name, the XML [[Delete]] method throws a TypeError exception. This operation is
reserved for future versions of E4X.

Semantics

When the [[Delete]] method of an XML object x is called with property name P, the following steps are taken:

1. If ToString(ToUint32(P)) == P, throw a TypeError exception
NOTE this operation is reserved for future versions of E4X.

2. Let n = ToXMLName(P)
3. If Type(n) is AttributeName

a. For each a in x.[[Attributes]]
i. If ((n.[[Name]].localName == "*") or (n.[[Name]].localName == a.[[Name]].localName))

and ((n.[[Name]].uri == null) or (n.[[Name]].uri == a.[[Name]].uri))
1. Let a.[[Parent]] = null
2. Remove the attribute a from x.[[Attributes]]

b. Return true
4. Let dp = 0
5. For q = 0 to x.[[Length]]-1

a. If ((n.localName == "*")
 or (x[q].[[Class]] == "element" and x[q].[[Name]].localName == n.localName))
and ((n.uri == null) or (x[q].[[Class]] == “element” and n.uri == x[q].[[Name]].uri))

i. Let x[q].[[Parent]] = null
ii. Remove the property with the name ToString(q) from x
iii. Let dp = dp + 1

b. Else
i. If dp > 0, rename property ToString(q) of x to ToString(q – dp)

6. Let x.[[Length]] = x.[[Length]] - dp
7. Return true.

9.1.1.4 [[DeleteByIndex]] (P)

Overview

The XML type adds the internal [[DeleteByIndex]] method to the methods defined by the Object type. The
XML [[DeleteByIndex]] method is used to remove an XML property by its numeric property name. Like, the
XML [[Delete]] method, the XML [[DeleteByIndex]] method shifts all the properties following deleted properties
lower to fill in empty slots created by the delete. The input argument P may be a numeric property name.

Semantics

When the [[DeleteByIndex]] method of an XML object x is called with property name P, the following steps are
taken:

ISO/IEC 22537:2005(E)

18 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

1. Let i = ToUint32(P)
2. If ToString(i) == P

a. If i is less than x.[[Length]]
i. If x has a property with name P

1. Let x[P].[[Parent]] = null
2. Remove the property with the name P from x

ii. For q = i+1 to x.[[Length]]-1
1. Rename property ToString(q) of x to ToString(q – 1)

iii. Let x.[[Length]] = x.[[Length]] – 1
b. Return true

3. Else throw a TypeError exception

9.1.1.5 [[DefaultValue]] (hint)

Overview

The XML type overrides the internal [[DefaultValue]] method defined by the Object type. The XML
[[DefaultValue]] method returns a primitive value representing this XML object. Unlike, the [[DefaultValue]]
method defined by the Object type, the XML [[DefaultValue]] method always returns a string. The hint
parameter is ignored.

Semantics

When the [[DefaultValue]] method of an XML object x is called with parameter hint, the following step is taken:

1. Return ToString(x)

9.1.1.6 [[HasProperty]] (P)

Overview

The XML type overrides the internal [[HasProperty]] method defined by the Object type. The XML
[[HasProperty]] method is used to determine whether this XML object contains an XML element or attribute by
its name. The input argument P may be an unqualified name for an XML attribute (distinguished from the
name of XML elements by a leading “@” symbol) or a set of XML elements, a QName for a set of XML
elements, an AttributeName for a set of XML attributes, the properties wildcard “*” or the attributes wildcard
“@*”. When the input argument P is an unqualified XML element name, it identifies XML elements in the
default namespace. When the input argument P is an unqualified XML attribute name, it identifies XML
attributes in no namespace.

In addition, the input argument P may be a numeric property name. If P is a numeric property name equal to
"0", the XML [[HasProperty]] method returns true. If P is a numeric property name other than "0", the XML
[[HasProperty]] method returns false. This treatment intentionally blurs the distinction between a single XML
object and an XMLList containing only one value.

Semantics

When the [[HasProperty]] method of an XML object x is called with property name P, the following steps are
taken:

1. If ToString(ToUint32(P)) == P
a. Return (P == "0")

2. Let n = ToXMLName(P)
3. If Type(n) is AttributeName

a. For each a in x.[[Attributes]]
i. If ((n.[[Name]].localName == "*") or (n.[[Name]].localName == a.[[Name]].localName))

and ((n.[[Name]].uri == null) or (n.[[Name]].uri == a.[[Name]].uri))
1. Return true

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 19

b. Return false
4. For (k = 0 to x.[[Length]]-1)

a. If ((n.localName == "*")
 or ((x[k].[[Class]] == "element") and (x[k].[[Name]].localName == n.localName)))
and ((n.uri == null) or (x[k].[[Class]] == "element") and (n.uri == x[k].[[Name]].uri)))

i. Return true
5. Return false

9.1.1.7 [[DeepCopy]] ()

Overview

The XML type adds the internal [[DeepCopy]] method to the internal properties defined by the Object type.
The XML [[DeepCopy]] method is used to create and return a deep copy of this object, including its attributes,
properties, namespaces and the attributes, properties and namespaces of all its descendants. The internal
[[Parent]] property of the return value is set to null and the internal [[Parent]] property of each copied
descendant is set to its newly copied parent as appropriate.

Semantics

When the [[DeepCopy]] method of an XML object x is called, the following steps are taken:

1. Let y be a new XML object with y.[[Prototype]] = x.[[Prototype]], y.[[Class]] = x.[[Class]], y.[[Value]] =
x.[[Value]], y.[[Name]] = x.[[Name]], y.[[Length]] = x.[[Length]]

2. For each ns in x.[[InScopeNamespaces]]
a. Let ns2 be a new Namespace created as if by calling the constructor new Namespace(ns)
b. Let y.[[InScopeNamespaces]] = y.[[InScopeNamespaces]] ∪ { ns2 }

3. Let y.[[Parent]] = null
4. For each a in x.[[Attributes]]

a. Let b be the result of calling the [[DeepCopy]] method of a
b. Let b.[[Parent]] = y
c. Let y.[[Attributes]] = y.[[Attributes]] ∪ { b }

5. For i = 0 to x.[[Length]]-1
a. Let c be the result of calling the [[DeepCopy]] method of x[i]
b. Let y[i] = c
c. Let c.[[Parent]] = y

6. Return y

9.1.1.8 [[Descendants]] (P)

Overview

The XML type adds the internal [[Descendants]] method to the internal properties defined by the Object type.
The XML [[Descendants]] method is used to retrieve all the XML valued descendants of this XML object (i.e.,
children, grandchildren, great-grandchildren, etc.) with names matching the input argument P. The input
argument P may be an unqualified name for an XML attribute (distinguished from the name of XML elements
by a leading “@” symbol) or a set of XML elements, a QName for a set of XML elements, an AttributeName
for a set of XML attributes, the properties wildcard “*” or the attributes wildcard “@*”. When the input argument
P is an unqualified XML element name, it identifies XML elements in the default namespace. When the input
argument P is an unqualified XML attribute name, it identifies XML attributes in no namespace.

Semantics

When the [[Descendants]] method of an XML object x is called with property name P, the following steps are
taken:

1. Let n = ToXMLName(P)
2. Let list be a new XMLList with list.[[TargetObject]] = null

ISO/IEC 22537:2005(E)

20 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

3. If Type(n) is AttributeName
a. For each a in x.[[Attributes]]

i. If ((n.[[Name]].localName == "*") or (n.[[Name]].localName == a.[[Name]].localName))
and ((n.[[Name]].uri == null) or (n.[[Name]].uri == a.[[Name]].uri))

1. Call the [[Append]] method of list with argument a
4. For (k = 0 to x.[[Length]]-1)

a. If ((n.localName == "*")
 or ((x[k].[[Class]] == "element") and (x[k].[[Name]].localName == n.localName)))
and ((n.uri == null) or ((x[k].[[Class]] == "element") and (n.uri == x[k].[[Name]].uri)))

i. Call the [[Append]] method of list with argument x[k]
b. Let dq be the resultsof calling the [[Descendants]] method of x[k] with argument P
c. If dq.[[Length]] > 0, call the [[Append]] method of list with argument dq

5. Return list

9.1.1.9 [[Equals]] (V)

Overview

The XML type adds the internal [[Equals]] method to the internal properties defined by the Object type. The
XML [[Equals]] method is used to compare this XML object for XML content equality with another XML object
V. The [[Equals]] operator returns true if V is a value of type XML considered equal to this XML object.
Otherwise, it returns false.

Semantics

When the [[Equals]] method of an XML object x is called with value V, the following steps are taken:

1. If Type(V) is not XML, return false
2. If x.[[Class]] is not equal to V.[[Class]], return false
3. If x.[[Name]] is not null

a. If V.[[Name]] is null, return false
b. If x.[[Name]].localName is not equal to V.[[Name]].localName, return false
c. If x.[[Name]].uri is not equal to V.[[Name]].uri, return false

4. Else if V.[[Name]] is not null, return false
5. If x.[[Attributes]] does not contain the same number of items as V.[[Attributes]], return false
6. If x.[[Length]] is not equal to V.[[Length]], return false
7. If x.[[Value]] is not equal to y[[Value]], return false
8. For each a in x.[[Attributes]]

a. If V.[[Attributes]] does not contain an attribute b, such that b.[[Name]].localName ==
a.[[Name]].localName, b.[[Name]].uri == a.[[Name]].uri and b.[[Value]] == a.[[Value]], return
false

9. For i = 0 to x.[[Length]]-1
a. Let r be the result of calling the [[Equals]] method of x[i] with argument V[i]
b. If r == false, return false

10. Return true

9.1.1.10 [[ResolveValue]] ()

Overview

The XML type adds the internal [[ResolveValue]] method to the internal properties defined by the Object type.
The XML [[ResolveValue]] method returns this XML object. It is used by the XMLList [[ResolveValue]] method
to support [[Put]] operations on empty XMLLists.
Semantics

When the [[ResolveValue]] method of an XML object x is called, the following step is taken:

1. Return x

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 21

9.1.1.11 [[Insert]] (P, V)

Overview

The XML type adds the internal [[Insert]] method to the internal properties defined by the Object type. The
XML [[Insert]] method is used to insert a value V at a specific position P. The input argument P shall be a
numeric property name. The input argument V may be a value of type XML, XMLList or any value that can be
converted to a String with ToString().

Semantics

When the [[Insert]] method of an XML object x is called with property name P and value V, the following steps
are taken:

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return
2. Let i = ToUint32(P)
3. If (ToString(i) is not equal to P), throw a TypeError exception
4. Let n = 1
5. If Type(V) is XMLList, let n = V.[[Length]]
6. If n == 0, Return
7. For j = x.[[Length]]-1 downto i, rename property ToString(j) of x to ToString(j + n)
8. Let x.[[Length]] = x.[[Length]] + n
9. If Type(V) is XMLList

a. For j = 0 to V.[[Length-1]]
i. V[j].[[Parent]] = x
ii. x[i + j] = V[j]

NOTE the E4X data model does not enforce the constraint: ∀ x ∈ XML : x.[[InScopeNamespaces]]
⊇ x.[[Parent]].[[InScopeNamespaces]]. However, implementations may at this point add namespaces
from V[j].[[InScopeNamespaces]] to x or any ancestors of x. Likewise, implementations may at this
point add namespaces from x to V[j] or any descendents of V[j].

10. Else
a. Call the [[Replace]] method of x with arguments i and V

11. Return

9.1.1.12 [[Replace]] (P, V)

Overview

The XML type adds the internal [[Replace]] method to the internal properties defined by the Object type. The
XML [[Replace]] method may be used to replace the property at a specific position P with the value V. The
input argument P shall be a numeric property name. The input argument V may be a value of type XML,
XMLList or any value that can be converted to a String with ToString().

Semantics

When the [[Replace]] method of an XML object x is called with property name P and value V, the following
steps are taken:

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return
2. Let i = ToUint32(P)
3. If (ToString(i) is not equal to P), throw a TypeError exception
4. If i is greater than or equal to x.[[Length]],

a. Let P = ToString(x.[[Length]])
b. Let x.[[Length]] = x.[[Length]] + 1

5. If Type(V) is XML and V.[[Class]] ∈ {"element", "comment", "processing-instruction", "text"}
a. Let V.[[Parent]] = x
b. If x has a property with name P

i. Let x[P].[[Parent]] = null

ISO/IEC 22537:2005(E)

22 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

c. Let x[P] = V
NOTE the E4X data model does not enforce the constraint: ∀ x ∈ XML : x.[[InScopeNamespaces]] ⊇
x.[[Parent]].[[InScopeNamespaces]]. However, implementations may at this point add namespaces from
V.[[InScopeNamespaces]] to x or any ancestors of x. Likewise, implementations may at this point add
namespaces from x to V or any descendents of V.

6. Else if Type(V) is XMLList
a. Call the [[DeleteByIndex]] method of x with argument P
b. Call the [[Insert]] method of x with arguments P and V

7. Else
a. Let s = ToString(V)
b. Create a new XML object t with t.[[Class]] = "text", t.[[Parent]] = x and t.[[Value]] = s
c. If x has a property with name P

i. Let x[P].[[Parent]] = null
d. Let the value of property P of x be t

8. Return

9.1.1.13 [[AddInScopeNamespace]] (N)

Overview

The XML type adds the internal [[AddInScopeNamespace]] method to the internal properties defined by the
Object type. The XML [[AddInScopeNamespace]] method is used to add a new Namespace to the
[[InScopeNamespaces]] of a given XML object. The input argument N is a value of type Namespace to be
added to the [[InScopeNamespaces]] property of this XML object. If N.prefix is undefined, the namespace is
not added to the [[InScopeNamespaces]]. If N.prefix matches the prefix of a namespace in
[[InScopeNamespaces]], the match is replaced by N and prefixes of the names with the same prefix in this
element are set to undefined.

Semantics

When the [[AddInScopeNamespace]] method of an XML object x is called with a namespace N, the following
steps are taken:

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", “attribute”}, return
2. If N.prefix != undefined

a. If N.prefix == "" and x.[[Name]].uri == "", return
b. Let match be null
c. For each ns in x.[[InScopeNamespaces]]

i. If N.prefix == ns.prefix, let match = ns
d. If match is not null and match.uri is not equal to N.uri

i. Remove match from x.[[InScopeNamespaces]]
e. Let x.[[InScopeNamespaces]] = x.[[InScopeNamespaces]] ∪ { N }
f. If x.[[Name]].[[Prefix]] == N.prefix

i. Let x.[[Name]].prefix = undefined
g. For each attr in x.[[Attributes]]

i. If attr.[[Name]].[[Prefix]] == N.prefix, let attr.[[Name]].prefix = undefined
3. Return

9.2 The XMLList Type

The XMLList type is an ordered collection of properties. Each property of an XMLList object has a unique
numeric property name P, such that ToString(ToUint32(P)) is equal to P and a value of type XML. Methods
are associated with XMLList objects using non-numeric property names.

A value of type XMLList represents an XML document, XML fragment or an arbitrary collection of XML objects
(e.g., a query result).

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 23

E4X intentionally blurs the distinction between an individual XML object and an XMLList containing only that
object. To this end, all operations available for XML objects are also available for XMLList objects.
Implementations that extend E4X should preserve this constraint.

9.2.1 Internal Properties and Methods

The XMLList type is logically derived from the Object type and inherits its internal properties. Unless otherwise
specified, the XMLList type also inherits the type conversion semantics defined for the Object type (section 9
of ECMAScript Edition 3). The following table summarises the internal properties the XMLList type adds to
those defined by the Object type.

Property Parameters Description

[[Length]] None The number of properties contained in this XMLList
object.

[[TargetObject]] None The XML or XMLList object associated with this
object that will be affected when items are inserted
into this XMLList.

[[TargetProperty]] None The name of a property that may be created in the
[[TargetObject]] when objects are added to an
empty XMLList.

[[Append]] (Value) Appends a new property to the end of this XMLList
object.

[[DeepCopy]] () Returns a deep copy of this XMLList object.

[[Descendants]] (PropertyName) Returns an XMLList containing all the descendants
of values of in this XMLList that have names
matching propertyName.

[[Equals]] (Value) Returns a Boolean value indicating whether this
XMLList object has the same content as the given
Value or this XMList object contains an object that
compares equal to the given Value.

[[ResolveValue]] () Resolves the value of this XML object. If this XML
object is not empty, it is returned. Otherwise,
[[ResolveValue]] attempts to create an appropriate
value.

The value of the [[Length]] property is a non-negative Number.

Unless otherwise specified, a newly created instance of type XMLList has [[Prototype]] initialized to the
XMLList prototype object (section 13.5.4), [[Class]] initialized to the string "XMLList", [[Value]] initialized to
undefined, [[Length]] initialized to the integer 0, [[TargetObject]] initialized to null, and [[TargetProperty]]
initialized to null.

9.2.1.1 [[Get]] (P)

Overview

The XMLList type overrides the internal [[Get]] method defined by the Object type. The XMLList [[Get]] method
is used to retrieve a specific property of this XMLList object by its numeric property name or to iterate over the
XML valued properties of this XMLList object retrieving their XML attributes by name or their XML valued

ISO/IEC 22537:2005(E)

24 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

properties by name. The input argument P may be a numeric property name, an unqualified name for an XML
attribute (distinguished from the name of XML elements by a leading “@” symbol) or a set of XML elements, a
QName for a set of XML elements, an AttributeName for a set of XML attributes, the properties wildcard “*” or
the attributes wildcard “@*”. When the input argument P is an unqualified XML element name, it identifies
XML elements in the default namespace. When the input argument P is an unqualified XML attribute name, it
identifies XML attributes in no namespace.

NOTE Unlike the internal Object [[Get]] method, the internal XMLList [[Get]] method is never used for retrieving
methods associated with XMLList objects. E4X modifies the ECMAScript method lookup semantics for XMLList objects as
described in section 11.2.2.

Semantics

When the [[Get]] method of an XMLList object x is called with property name P, the following steps are taken:

1. If ToString(ToUint32(P)) == P
a. Return the result of calling the Object [[Get]] method with x as the this object and argument P

2. Let list be a new XMLList with list.[[TargetObject]] = x and list.[[TargetProperty]] = P
3. For i = 0 to x.[[Length]]-1,

a. If x[i].[[Class]] == "element",
i. Let gq be the result of calling the [[Get]] method of x[i] with argument P
ii. If gq.[[Length]] > 0, call the [[Append]] method of list with argument gq

4. Return list

9.2.1.2 [[Put]] (P, V)

Overview

The XMLList type overrides the internal [[Put]] method defined by the Object type. The XMLList [[Put]] method
is used to modify or replace an XML object within the XMLList and the context of its parent. In addition, when
the XMLList contains a single property with an XML object, the [[Put]] method is used to modify, replace, and
insert properties or XML attributes of that value by name. The input argument P identifies which portion of the
XMLList and associated XML objects will be affected and may be a numeric property name, an unqualified
name for an XML attribute (distinguished from XML valued property names by a leading “@” symbol) or set of
XML elements, a QName for a set of XML elements, an AttributeName for a set of XML attributes or the
properties wildcard “*”. When the input argument P is an unqualified XML element name, it identifies XML
elements in the default namespace. When the input argument P is an unqualified XML attribute name, it
identifies XML attributes in no namespace. The input argument V may be a value of type XML, XMLList or any
value that can be converted to a String with ToString().

NOTE Unlike the internal Object [[Put]] method, the internal XMLList [[Put]] method is never used for modifying the
set of methods associated with XMLList objects.

Semantics

When the [[Put]] method of an XMLList object x is called with property name P and value V, the following
steps are taken:

1. Let i = ToUint32(P)
2. If ToString(i) == P

a. If x.[[TargetObject]] is not null
i. Let r be the result of calling the [[ResolveValue]] method of x.[[TargetObject]]
ii. If r == null, return

b. Else let r = null
c. If i is greater than or equal to x.[[Length]]

i. If Type(r) is XMLList
1. If r.[[Length]] is not equal to 1, return
2. Else let r = r[0]

ii. If r.[[Class]] is not equal to "element", return

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 25

iii. Create a new XML object y with y.[[Parent]] = r, y.[[Name]] = x.[[TargetProperty]],
y.[[Attributes]] = {}, y.[[Length]] = 0

iv. If Type(x.[[TargetProperty]]) is AttributeName
1. Let attributeExists be the result of calling the [[Get]] method of r with argument

y.[[Name]]
2. If (attributeExists.[[Length]] > 0), return
3. Let y.[[Class]] = "attribute"

v. Else if x.[[TargetProperty]] == null or x.[[TargetProperty]].localName == "*"
1. Let y.[[Name]] = null
2. Let y.[[Class]] = "text"

vi. Else let y.[[Class]] = "element"
vii. Let i = x.[[Length]]
viii. If (y.[[Class]] is not equal to "attribute")

1. If r is not null
a. If (i > 0)

i. Let j = 0
ii. While (j < r.[[Length]]-1)

 and (r[j] is not the same object as x[i-1])
1. Let j = j + 1

b. Else
i. Let j = r.[[Length]]-1

c. Call the [[Insert]] method of r with arguments ToString(j+1) and y
2. If Type(V) is XML, let y.[[Name]] = V.[[Name]]
3. Else if Type(V) is XMLList, let y.[[Name]] = V.[[TargetProperty]]

ix. Call the [[Append]] method of x with argument y
d. If (Type(V) ∉ {XML, XMLList}) or (V.[[Class]] ∈ {"text", "attribute"}), let V = ToString(V)
e. If x[i].[[Class]] == "attribute"

i. Let z = ToAttributeName(x[i].[[Name]])
ii. Call the [[Put]] method of x[i].[[Parent]] with arguments z and V
iii. Let attr be the result of calling [[Get]] on x[i].[[Parent]] with argument z
iv. Let x[i] = attr[0]

f. Else if Type(V) is XMLList
i. Create a shallow copy c of V
ii. Let parent = x[i].[[Parent]]
iii. If parent is not null

1. Let q be the property of parent, such that parent[q] is the same object as x[i]
2. Call the [[Replace]] method of parent with arguments q and c
3. For j = 0 to c.[[Length]]-1

a. Let c[j] = parent[ToUint32(q)+j]
iv. If c.[[Length]] == 0

1. For j = i + 1 to x.[[Length]] – 1, rename property j of x to ToString(j-1)
v. Else

1. For j = x.[[Length]]-1 downto i + 1, rename property j of x to ToString(j + c.[[Length]] - 1)
vi. For j = 0 to c.[[Length]]-1, let x[i + j] = c[j]
vii. Let x.[[Length]] = x.[[Length]] + c.[[Length]] - 1

g. Else if (Type(V) is XML) or (x[i].[[Class]] ∈ {"text", "comment", "processing-instruction"})
i. Let parent = x[i].[[Parent]]
ii. If parent is not null

1. Let q be the property of parent, such that parent[q] is the same object as x[i]
2. Call the [[Replace]] method of parent with arguments q and V
3. Let V = parent[q]

iii. If Type(V) is String
1. Create a new XML object t with t.[[Class]] = "text", t.[[Parent]] = x and t.[[Value]] = V
2. Let x[i] = t

iv. Else
1. Let x[i] = V

h. Else
i. Call the [[Put]] method of x[i] with arguments "*" and V

ISO/IEC 22537:2005(E)

26 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

3. Else if x.[[Length]] is less than or equal to 1
a. If x.[[Length]] == 0

i. Let r be the result of calling the [[ResolveValue]] method of x
ii. If (r == null) or (r.[[Length]] is not equal to 1), return
iii. Call the [[Append]] method of x with argument r

b. Call the [[Put]] method of x[0] with arguments P and V
4. Return

9.2.1.3 [[Delete]] (P)

Overview

The XMLList type overrides the internal [[Delete]] method defined by the Object type. The XMLList [[Delete]]
method is used to remove a specific property of the XMLList by its numeric property name or to iterate over
the XML valued properties of the XMLList removing their XML attributes or elements by name. The input
argument P may be a numeric property name, an unqualified name for an XML attribute (distinguished from
the name of XML elements by a leading “@” symbol) or a set of XML elements, a QName for a set of XML
elements, an AttributeName for a set of XML attributes, the properties wildcard “*” or the attributes wildcard
“@*”. When the input argument P is an unqualified XML element name, it identifies XML elements in the
default namespace. When the input argument P is an unqualified XML attribute name, it identifies XML
attributes in no namespace.

Semantics

When the [[Delete]] method of an XMLList object x is called with property name P, the following steps are
taken:

1. Let i = ToUint32(P)
2. If ToString(i) == P

a. If i is greater than or equal to x.[[Length]], return true
b. Else

i. Let parent = x[i].[[Parent]]
ii. If parent is not null

1. If x[i].[[Class]] == "attribute"
a. Call the [[Delete]] method of parent with argument ToAttributeName(x[i].[[Name]])

2. Else
a. Let q be the property of parent, where parent[q] is the same object as x[i]
b. Call the [[DeleteByIndex]] method of parent with argument q

iii. Remove the property with the name P from x
iv. For q = i + 1 to x.[[Length]] – 1

1. Rename property ToString(q) of x to ToString(q – 1)
v. Let x.[[Length]] = x.[[Length]] – 1

c. Return true
3. For each property q in x

a. If q.[[Class]] == "element"
i. Call the [[Delete]] method of q with argument P

4. Return true

9.2.1.4 [[DefaultValue]] (hint)

Overview

The XMLList type overrides the internal [[DefaultValue]] method defined by the Object type. The XMLList
[[DefaultValue]] method returns a primitive value representing this XMLList object. Unlike, the Object
[[DefaultValue]] method, the XMLList [[DefaultValue]] method always returns a string. The hint parameter is
ignored.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 27

Semantics

When the [[DefaultValue]] method of an XMLList object list is called with parameter hint, the following step is
taken:

1. Return ToString(list)

9.2.1.5 [[HasProperty]] (P)

Overview

The XMLList type overrides the internal [[HasProperty]] method defined by the Object type. The XMLList
[[HasProperty]] method is used to determine whether this XMLList object contains an XML element or attribute
by its ordinal position or whether any of the objects contained in this XMLList object contains an XML element
or attribute by its name. The input argument P may be a numeric property name, an unqualified name for an
XML attribute (distinguished from the name of XML elements by a leading “@” symbol) or a set of XML
elements, a QName for a set of XML elements, an AttributeName for a set of XML attributes, the properties
wildcard “*” or the attributes wildcard “@*”. When the input argument P is an unqualified XML element name, it
identifies XML elements in the default namespace. When the input argument P is an unqualified XML attribute
name, it identifies XML attributes in no namespace.

Semantics

When the [[HasProperty]] method of an XMLList object x is called with property name P, the following steps
are taken:

1. If ToString(ToUint32(P)) == P
a. Return (ToUint32(P) < x.[[Length]])

2. For i = 0 to x.[[Length]]-1
a. If x[i].[[Class]] == "element" and the result of calling the [[HasProperty]] method of x[i] with

argument P == true, return true
3. Return false

9.2.1.6 [[Append]] (V)

Overview

The XMLList type adds the internal [[Append]] method to the internal properties defined by the Object type.
The XMLList [[Append]] method is used to append zero or more values specified by V to the end of the
XMLList. The input argument V shall be a value of type XMLList or XML.

Semantics

When the [[Append]] method of an XMLList object x is called with value V, the following steps are taken:

1. Let i = x.[[Length]]
2. Let n = 1
3. If Type(V) is XMLList,

a. Let x.[[TargetObject]] = V.[[TargetObject]]
b. Let x.[[TargetProperty]] = V.[[TargetProperty]]
c. Let n = V.[[Length]]
d. If n == 0, Return
e. For j = 0 to V.[[Length]]-1, let x[i + j] = V[j]
f.

4. Let x.[[Length]] = x.[[Length]] + n
5. Return

ISO/IEC 22537:2005(E)

28 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

9.2.1.7 [[DeepCopy]] ()

Overview

The XMLList type adds the internal [[DeepCopy]] method to the internal properties defined by the Object type.
The XMLList [[DeepCopy]] method is used to create and return a copy of this XMLList object containing deep
copies of all its properties.

Semantics

When the [[DeepCopy]] method of an XMLList object x is called the following steps are taken:

1. Let list be a new XMLList object
2. Copy all internal properties of x to list
3. For i = 0 to x.[[Length]]-1

a. Let list[i] be the result of calling the [[DeepCopy]] method of x[i]
4. Return list

9.2.1.8 [[Descendants]] (P)

Overview

The XMLList type adds the internal [[Descendants]] method to the internal properties defined by the Object
type. The XMLList [[Descendants]] method may be used to retrieve all the XML valued descendants of the
properties in this XMLList (i.e., children, grandchildren, great-grandchildren, etc.) with names matching the
input argument P. The input argument P may be a numeric property name, an unqualified name for an XML
attribute (distinguished from the name of XML elements by a leading “@” symbol) or a set of XML elements, a
QName for a set of XML elements, an AttributeName for a set of XML attributes, the properties wildcard “*” or
the attributes wildcard “@*”. When the input argument P is an unqualified XML element name, it identifies
XML elements in the default namespace. When the input argument P is an unqualified XML attribute name, it
identifies XML attributes in no namespace.

Semantics

When the [[Descendents]] method of an XML object x is called with property name P, the following steps are
taken:

1. Let list be a new XMLList with list.[[TargetObject]] = null
2. For q = 0 to x.[[Length]] - 1

a. If (x[q].[[Class]] == "element")
i. Let dq be the result of calling the [[Descendants]] method of x[q] with argument P
ii. If dq.[[Length]] > 0, call the [[Append]] method of list with argument dq

3. Return list

9.2.1.9 [[Equals]] (V)

Overview

The XMLList type adds the internal [[Equals]] method to the internal properties defined by the Object type. The
XMLList [[Equals]] method is used to compare this XMLList object for content equality with another XMLList
object V or determine whether this XMLList object contains a single XML object that compares equal to V. The
[[Equals]] operator returns true if this XMLList object is considered equal to V or contains only one XML object
that is considered equal to V. Otherwise, it returns false. Empty XMLList objects are considered equal to
undefined. The input argument V may be a value of type XMLList, XML, undefined or any value that can be
converted to a String with ToString().

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 29

Semantics

When the [[Equals]] method of an XML object x is called with value V, the following steps are taken:

1. If V == undefined and x.[[Length]] == 0, return true
2. If Type(V) is XMLList

a. If x.[[Length]] is not equal to V.[[Length]], return false
b. For i = 0 to x.[[Length]]

i. If the result of the comparison x[i] == V[i] is false, return false
c. Return true

3. Else if x.[[Length]] == 1
a. Return the result of the comparison x[0] == V

4. Return false

9.2.1.10 [[ResolveValue]] ()

Overview

The XMLList type adds the internal [[ResolveValue]] method to the internal properties defined by the Object
type. The XMLList [[ResolveValue]] method is used to resolve the value of empty XMLLists. If this XMLList
object is not empty, the [[ResolveValue]] method will return it. If this XMLList is empty, the [[ResolveValue]]
method will attempt to create it based on the [[TargetObject]] and [[TargetProperty]] properties. If the XMLList
cannot be created, [[ResolveValue]] returns null.

Semantics

When the [[ResolveValue]] method of an XMLList object x is called, the following steps are taken:

1. If x.[[Length]] > 0, return x
2. Else

a. If (x.[[TargetObject]] == null) or (x.[[TargetProperty]] == null)
or (type(x.[[TargetProperty]]) is AttributeName) or (x.[[TargetProperty]].localName == "*")

i. Return null
b. Let base be the result of calling the [[ResolveValue]] method of x.[[TargetObject]] recursively
c. If base == null, return null
d. Let target be the result of calling [[Get]] on base with argument x.[[TargetProperty]]
e. If (target.[[Length]] == 0)

i. If (Type(base) is XMLList) and (base.[[Length]] > 1), return null
ii. Call [[Put]] on base with arguments x.[[TargetProperty]] and the empty string
iii. Let target be the result of calling [[Get]] on base with argument x.[[TargetProperty]]

f. Return target

9.3 The AttributeName Type

The internal AttributeName type is not a language data type. It is defined by this specification purely for
expository purposes. An implementation of E4X shall behave as if it produced and operated upon
AttributeNames in the manner described here. However, a value of type AttributeName is used only as an
intermediate result of expression evaluation and cannot be stored as the value of a variable or property.

The AttributeName type specifies the name of an XML attribute. A value of type AttributeName may be
specified using an AttributeIdentifier. If the name of the attribute is not specified as a QualifiedIdentifier, the uri
property of the associated QName will be the empty string representing no namespace.

9.3.1 Internal Properties

The AttributeName type is logically derived from the Object type and inherits its internal properties. Unless
otherwise specified, the AttributeName type also inherits the type conversion semantics defined for the Object

ISO/IEC 22537:2005(E)

30 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

type (section 9 of ECMAScript Edition 3). The following table summarises the internal properties the
AttributeName type adds to those defined by the Object type.

Property Parameters Description

[[Name]] None The name of the attribute

The value of the [[Name]] property is a value of type QName.

9.4 The AnyName Type

The internal AnyName type is not a language data type. It is defined by this specification purely for
expository purposes. An implementation of E4X shall behave as if it produced and operated upon AnyName
values in the manner described here. However, a value of type AnyName is used only as an intermediate
result of expression evaluation and cannot be stored as the value of a variable or property.

The AnyName type is a marker type used to indicate that the name of a particular property was specified as a
WildcardIdentifier (i.e., “*”). The AnyName type has exactly one value, called anyname.

10 Type Conversion

E4X extends the automatic type conversion operators defined in ECMAScript. Unless otherwise specified in
this section, the XML type inherits the type conversion semantics defined for the Object type (section 9 of
ECMAScript Edition 3).

NOTE As in ECMAScript Edition 3, these type conversion functions are internal and are not directly accessible by
users. They occur as needed in E4X algorithms and are described here to aid specification of type conversion semantics.
In addition, ToString and ToXMLString are exposed indirectly to the E4X user via the built-in methods toString() and
toXMLString() defined in sections 13.4.4.38, 13.4.4.39, 13.5.4.21 and 13.5.4.22.

10.1 ToString

E4X extends the behaviour of the ToString operator by specifying its behaviour for the following types.

Input Type Result

XML Return the XML object as a string as defined in section 0.

XMLList Return the XMLList object as a string as defined in section 10.1.2.

AttributeName Given an input argument a, return the result of concatenating the string
"@" and ToString(a.[[Name]]).

10.1.1 ToString Applied to the XML Type

Overview

Given an XML object x, the operator ToString converts x to a string s. If a value of type XML has simple
content (i.e., contains no elements), it represents a primitive value and ToString returns the String contents of
the XML object, omitting the start tag, attributes, namespace declarations and end tag. Otherwise, ToString
returns a string representing the entire XML object, including the start tag, attributes, namespace declarations
and the end tag.

NOTE the actual format of the resulting string content is implementation defined.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 31

Combined with ToString’s treatment of XMLLists (see section 10.1.2), this behaviour allows E4X programmers
to access the values of XML leaf nodes in much the same way they access the values of object properties.
For example, given a variable named order assigned to the following XML value:

<order>
 <customer>
 <firstname>John</firstname>
 <lastname>Doe</lastname>
 </customer>
 <item>
 <description>Big Screen Television</description>
 <price>1299.99</price>
 <quantity>1</quantity>
 </item>
</order>

the E4X programmer can access individual values of the XML value like this:

// Construct the full customer name
var name = order.customer.firstname + " " + order.customer.lastname;

// Calculate the total price
var total = order.item.price * order.item.quantity;

E4X does not require the programmer to explicitly select the text nodes associated with each leaf element or
explicitly select the first element of each XMLList return value. For cases where this is not the desired
behaviour, the ToXMLString operator is provided (see section 10.2).

NOTE In the example above, the String valued properties associated with the XML objects order.item.price and
order.item.quantity are implicitly converted to type Number prior to performing the multiply operation.

For XML objects with [[Class]] set to “attribute” or “text”, ToString simply returns their value as a string.

Semantics

Given an XML object x, ToString takes the following steps:

1. If x.[[Class]] ∈ {"attribute", "text"}, return x.[[Value]]
2. If x.hasSimpleContent() == true

a. Let s be the empty string
b. For i = 0 to x.[[Length]]-1,

i. If x[i].[[Class]] ∉ {"comment", "processing-instruction"}
1. Let s be the result of concatenating s and ToString(x[i])

c. Return s
3. Else

a. Return ToXMLString(x)

10.1.2 ToString Applied to the XMLList Type

Overview

The operator ToString converts an XMLList object list to a string s. The return value is the string
representation of each item in the XMLList concatenated together in order.

Note that the result of calling ToString on a list of size one is identical to the result of calling ToString on the
single item contained in the XMLList. This treatment intentionally blurs the distinction between a single XML
object and an XMLList containing only one value to simplify the programmer’s task. It allows E4X
programmers to access the value of an XMLList containing only a single primitive value in much the same way
they access object properties.

ISO/IEC 22537:2005(E)

32 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Semantics

Given an XMLList object list, ToString performs the following steps:

1. If list.hasSimpleContent() == true
a. Let s be the empty string
b. For i = 0 to list.[[Length]]-1,

i. If x[i].[[Class]] ∉ {"comment", "processing-instruction"}
1. Let s be the result of concatenating s and ToString(list[i])

c. Return s
2. Else

a. Return ToXMLString(x)

10.2 ToXMLString (input argument, [AncestorNamespaces], [IndentLevel])

E4X adds the conversion operator ToXMLString to ECMAScript. ToXMLString is a variant of ToString used to
convert its argument to an XML encoded string. Unlike ToString, it always includes the start tag, attributes,
namespace declarations and end tag associated with an XML element, regardless of content. This is useful in
cases where the default ToString behaviour is not desired. The semantics of ToXMLString are specified by the
following table.

Input Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return ToString(input argument)

Number Return ToString(input argument)

String Return EscapeElementValue(input argument)

XML Create an XML encoded string value based on the content of the XML
object as specified in section 0.

XMLList Create an XML encoded string value based on the content of the
XMLList object as specified in section 10.2.2.

Object Apply the following steps:
1. Let p be the result of calling ToPrimitive(input argument, hint

String)
2. Let s be the result of calling ToString(p)
3. Return EscapeElementValue(s)

10.2.1 ToXMLString Applied to the XML Type

Semantics

Given an XML object x and an optional argument AncestorNamespaces and an optional argument
IndentLevel, ToXMLString converts it to an XML encoded string s by taking the following steps:

1. Let s be the empty string
2. If IndentLevel was not provided, Let IndentLevel = 0
3. If (XML.prettyPrinting == true)

a. For i = 0 to IndentLevel-1, let s be the result of concatenating s and the space <SP> character

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 33

4. If x.[[Class]] == "text",
a. If (XML.prettyPrinting == true)

i. Let v be the result of removing all the leading and trailing XMLWhitespace characters from
x.[[Value]]

ii. Return the result of concatenating s and EscapeElementValue(v)
b. Else

i. Return EscapeElementValue(x.[[Value]])
5. If x.[[Class]] == "attribute", return the result of concatenating s and

EscapeAttributeValue(x.[[Value]])
6. If x.[[Class]] == "comment", return the result of concatenating s, the string "<!--", x.[[Value]] and the

string "-->"
7. If x.[[Class]] == "processing-instruction", return the result of concatenating s, the string "<?",

x.[[Name]].localName, the space <SP> character, x.[[Value]] and the string "?>"
8. If AncestorNamespaces was not provided, let AncestorNamespaces = { }
9. Let namespaceDeclarations = { }
10. For each ns in x.[[InScopeNamespaces]]

a. If there is no ans ∈ AncestorNamespaces, such that ans.uri == ns.uri and ans.prefix == ns.prefix
i. Let ns1 be a copy of ns
ii. Let namespaceDeclarations = namespaceDeclarations ∪ { ns1 }

NOTE implementations may also exclude unused namespace declarations from
namespaceDeclarations

11. For each name in the set of names consisting of x.[[Name]] and the name of each attribute in
x.[[Attributes]]

a. Let namespace be a copy of the result of calling [[GetNamespace]] on name with argument
(AncestorNamespaces ∪ namespaceDeclarations)

b. If (namespace.prefix == undefined),
i. Let namespace.prefix be an arbitrary implementation defined namespace prefix, such that

there is no ns2 ∈ (AncestorNamespaces ∪ namespaceDeclarations) with namespace.prefix
== ns2.prefix

ii. Note: implementations should prefer the empty string as the implementation defined prefix if
it is not already used in the set (AncestorNamespaces ∪ namespaceDeclarations)

iii. Let namespaceDeclarations = namespaceDeclarations ∪ { namespace }
12. Let s be the result of concatenating s and the string "<"
13. If namespace.prefix is not the empty string,

a. Let s be the result of concatenating s, namespace.prefix and the string ":"
14. Let s be the result of concatenating s and x.[[Name]].localName
15. Let attrAndNamespaces = x.[[Attributes]] ∪ namespaceDeclarations
16. For each an in attrAndNamespaces

a. Let s be the result of concatenating s and the space <SP> character
b. If Type(an) is XML and an.[[Class]] == "attribute"

i. Let ans be a copy of the result of calling [[GetNamespace]] on a.[[Name]] with argument
AncestorNamespaces

ii. If (ans.prefix == undefined),
1. Let ans.prefix be an arbitrary implementation defined namespace prefix, such that

there is no ns2 ∈ (AncestorNamespaces ∪ namespaceDeclarations) with ans.prefix ==
ns2.prefix

2. If there is no ns2 ∈ (AncestorNamespaces ∪ namespaceDeclarations), such that
ns2.uri == ans.uri and ns2.prefix == ans.prefix

a. Let namespaceDeclarations = namespaceDeclarations ∪ { ans }
iii. If ans.prefix is not the empty string

1. Let s be the result of concatenating s, namespace.prefix and the string ":"
iv. Let s be the result of concatenating s and a.[[Name]].localName

c. Else
i. Let s be the result of concatenating s and the string "xmlns"
ii. If (an.prefix == undefined),

1. Let an.prefix be an arbitrary implementation defined namespace prefix, such that there
is no ns2 ∈ (AncestorNamespaces ∪ namespaceDeclarations) with an.prefix ==
ns2.prefix

iii. If an.prefix is not the empty string

ISO/IEC 22537:2005(E)

34 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

1. Let s be the result of concatenating s, the string ":" and an.prefix
d. Let s be the result of concatenating s, the string "=" and a double-quote character (i.e. Unicode

codepoint \u0022)
e. If an.[[Class]] == "attribute"

i. Let s be the result of concatenating s and EscapeAttributeValue(an.[[Value]])
f. Else

i. Let s be the result of concatenating s and EscapeAttributeValue(an.uri)
g. Let s be the result of concatenating s and a double-quote character (i.e. Unicode codepoint

\u0022)
17. If x.[[Length]] == 0

a. Let s be the result of concatenating s and "/>"
b. Return s

18. Let s be the result of concatenating s and the string ">"
19. Let indentChildren = ((x.[[Length]] > 1) or (x.[[Length]] == 1 and x[0].[[Class]] is not equal to "text"))
20. If (XML.prettyPrintiing == true and indentChildren == true)

a. Let nextIndentLevel = IndentLevel + XML.PrettyIndent.
21. Else

a. Let nextIndentLevel = 0
22. For i = 0 to x.[[Length]]-1

a. If (XML.prettyPrinting == true and indentChildren == true)
i. Let s be the result of concatenating s and a LineTerminator

b. Let child = ToXMLString (x[i], (AncestorNamespaces ∪ namespaceDeclarations),
nextIndentLevel)

c. Let s be the result of concatenating s and child
23. If (XML.prettyPrinting == true and indentChildren == true),

a. Let s be the result of concatenating s and a LineTerminator
b. For i = 0 to IndentLevel, let s be the result of concatenating s and a space <SP> character

24. Let s be the result of concatenating s and the string "</"
25. If namespace.prefix is not the empty string

a. Let s be the result of concatenating s, namespace.prefix and the string ":"
26. Let s be the result of concatenating s, x.[[Name]].localName and the string ">"
27. Return s

NOTE Implementations may also preserve insignificant whitespace (e.g., inside and between element tags) and
attribute quoting conventions in ToXMLString().

10.2.1.1 EscapeElementValue (s)

Semantics

Given a String value s, the operator EscapeElementValue performs the following steps:

1. Let r be the empty string
2. For each character c in s

a. If (c == "<"), let r be the result of concatenating r and the string"<"
b. Else if (c == ">"), let r be the result of concatenating r and the string ">"
c. Else if (c == "&"), let r be the result of concatenating r and the string "&"
d. Else, let r be the result of concatenating r and c

3. Return r

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 35

10.2.1.2 EscapeAttributeValue (s)

Semantics

Given a string value s, the operator EscapeAttributeValue performs the following steps:

1. Let r be the empty string
2. For each character c in s

a. If (c is a double quote character (i.e., ")). let r be the result of concatenating r and the string
"""

b. Else if (c == "<") let r be the result of concatenating r and the string "<"
c. Else if (c == "&") let r be the result of concatenating r and the string "&"
d. Else if (c == \u000A) let r be the result of concatenating r and the string "
"
e. Else if (c == \u000D) let r be the result of concatenating r and the string ""
f. Else if (c == \u0009) let r be the result of concatenating r and the string "	"
g. Else let r be the result of concatenating r and c

3. Return r

10.2.2 ToXMLString Applied to the XMLList Type

Semantics

Given an XMLList object x, an optional argument AncestorNamespaces and an optional argument IndentLevel,
ToXMLString converts x to an XML encoded string s by taking the following steps:

1. Let s be the empty string
2. For i = 0 to x.[[Length]]-1

a. If (XML.prettyPrinting == true and i is not equal to 0)
i. Let s be the result of concatenating s and a LineTerminator

b. Let s be the result of concatenating s and ToXMLString(x[i], AncestorNamespaces)
3. Return s

10.3 ToXML

E4X adds the operator ToXML to ECMAScript. ToXML converts its argument to a value of type XML
according to the following table:

Input Type Result
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Convert the input argument to a string using ToString then convert the result to XML as

specified in section 10.3.1.
Number Convert the input argument to a string using ToString then convert the result to XML as

specified in section 10.3.1.
String Create an XML object from the String as specified below in section 10.3.1.
XML Return the input argument (no conversion).
XMLList

If the XMLList contains only one property and the type of that property is XML, return that
property. Otherwise, throw a TypeError exception.

Object If the [[Class]] property of the input argument is "String", "Number" or "Boolean",
convert the input argument to a string using ToString then convert the result to XML as
specified in section 10.3.1. Otherwise, throw a TypeError exception.

W3C XML
Information
Item

Create an XML object from a W3C XML Information Item as specified below in section
10.3.2.

ISO/IEC 22537:2005(E)

36 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

10.3.1 ToXML Applied to the String Type

Overview

When ToXML is applied to a string type, it converts it to XML by parsing the string as XML. Prior to conversion,
string concatenation can be used to construct portions of the XML object without regard for XML constraints
such as well-formedness. For example, consider the following.

var John = "<employee><name>John</name><age>25</age></employee>";
var Sue = "<employee><name>Sue</name><age>32</age></employee>";
var tagName = "employees";
var employees = new XML("<" + tagName +">" + John + Sue + "</" + tagName +">");

The last line of this example concatenates several individual strings to form a single string value, then passes
the resulting string to the XML constructor function. The XML constructor function uses the internal ToXML
operator to convert the given string to an XML object.

Semantics

Given a String value s, ToXML converts the string to an XML object using the following steps:

1. Let defaultNamespace = GetDefaultNamespace()
2. Let parentString be the result of concatenating the strings "<parent xmlns='", defaultNamespace,

"'>", s and "</parent>"
3. Parse parentString as a W3C Element Information Item e and if the parse fails, throw a SyntaxError

exception
4. Let x = ToXML(e)
5. If x.[[Length]] == 0

a. Return a new XML object t with t.[[Class]] = "text", t.[[Parent]] = null and t.[[Value]] = the empty
string

6. Else if x.[[Length]] == 1
a. Let x[0].[[Parent]] == null
b. Return x[0]

7. Else throw a SyntaxError exception

NOTE The use of a W3C XML Information Item is purely illustrative. A W3C XML Information Item is not required to
perform this type conversion and implementations may use any mechanism that provides the same semantics.

10.3.2 ToXML Applied to a W3C XML Information Item

Overview

When ToXML is applied to an implementation of a W3C XML Information Item conforming to the W3C XML
Information Set specification, it maps the E4X data model onto the given information item such that E4X
operators may be used to query, navigate and manipulate the given information item.

The definition of ToXML provided in this section is intentionally general. It permits implementations to create
an XML object from a W3C DOM object, XPath node, XQuery item or an instance of any other data model that
can be mapped to a W3C XML Information Item. E4X does not require implementations to support these data
models, nor does it require implementations that support these data models to provide the capability to create
XML objects from them. Rather, it defines the semantics of these operations for implementations that choose
to implement them.

For example, an implementation may deploy E4X to facilitate manipulating the document object in a web
browser. Consequently, an E4X user may write the following E4X code:

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 37

function createTable() {
 var doc = XML(document); // create an E4X wrapper for the document
 var mytablebody = doc..body.TABLE.TBODY;

 for (var j=0;j<2;j++) {
 mytablebody.TR[j] = ""; // append an empty table row
 for (var i=0;i<2;i++) // append a cell with some content
 mytablebody.TR[j].TD[i] = "cell is row " + j + ", column " + i;
 }
 doc..body.TABLE.@border = 2; // set the border attribute of the table
}

Instead of writing the equivalent DOM code below:

function createTable () {
 var mybody=document.getElementsByTagName("body").item(0);
 mytable = document.createElement("TABLE");
 mytablebody = document.createElement("TBODY");
 for (var j=0;j<2;j++) {
 mycurrent_row=document.createElement("TR");
 for (var i=0;i<2;i++) {
 mycurrent_cell=document.createElement("TD");
 currenttext=document.createTextNode("cell is row "+j+", column "+i);
 mycurrent_cell.appendChild(currenttext);
 mycurrent_row.appendChild(mycurrent_cell);
 }
 mytablebody.appendChild(mycurrent_row);
 }
 mytable.appendChild(mytablebody);
 mybody.appendChild(mytable);
 mytable.setAttribute("border","2");
}

NOTE The first example above uses the XML constructor function to create an E4X wrapper object around a W3C
DOM object (line 2), then performs operations on the resulting E4X object to manipulate the underlying DOM object.
Implementations may also provide the capability to use the XML constructor in a new expression (e.g., "var doc = new
XML(document);"), to create an independent XML object that does not manipulate the underlying DOM object. As
mentioned above, E4X implementations are not required to support the W3C DOM or to provide the capability to construct
XML objects from W3C DOM objects.

Semantics

Given a W3C Information Item i, ToXML maps it onto an XML object x as follows:

1. Let x = MapInfoItemToXML(i)
2. if (x is null), return a new XML object with x.[[Class]] = "text", x.[[Value]] = "", and x.[[Parent]] = null
3. Return x

10.3.2.1 MapInfoItemToXML (i)

Overview

When MapInfoItemToXML is called on a W3C XML Information Item, it returns either the null value or an XML
object. The null value is returned in those cases where there is no mapping from the W3C XML information to
the E4X data model or when the mapping generates an empty result. For example, MapInfoItemToXML
returns null when called on a document type declaration Information Item or when called on a comment
Information Item when XML.ignoreComments is set to true.

The Map-to notation used in MapInfoItemToXML asserts a relationship between its first argument and its
second argument. In particular, it asserts that the first argument and second argument behave as if they were
the same object, such that changes to the first argument will result in changes to the second argument and
vice-versa. For example, after the step:

ISO/IEC 22537:2005(E)

38 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

1. Map x.[[Value]] to the [content] property of i

all changes to x.[[Value]] will be applied to the [content] property of i. Likewise, all changes to the [content]
property of i will be applied to x.

Similarly, after the step:

1. Map x.[[Attributes]] to the [attributes] property of i

each attribute added or removed from the set x.[[Attributes]] will result in an equivalent addition or deletion to
the [attributes] property of i. Likewise, each attribute added or removed from to the [attributes] property of i
will result in an equivalent addition or deletion to x.[[Attributes]].

If one of the arguments to Map-to is a constant value, neither of the arguments can be changed. However, an
argument that has been mapped to a constant value may be mapped to a different value later.

NOTE The mechanism by which the Map-to relationship is enforced is implementation dependent. The Map-to
semantics are only visible when the user creates XML wrapper objects around instances of non-E4X data models (e.g.,
W3C DOM nodes). In other cases, the Map-to notation may be treated like the Let notation.

Semantics

Given a W3C information item i, MapInfoItemToXML maps it onto an XML object x or null as follows:

1. Map x.[[Parent]] to null
2. If i is a character information item

a. Map x.[[Class]] to "text"
b. Map x.[[Value]] to the largest contiguous sequence of character information items that have the

same parent starting with i and continuing forward in document order. Map each character of the
string x.[[Value]] to the corresponding [character code] property of each character information
item in the sequence.

c. If (XML.ignoreWhitespace == true) and (each character in x.[[Value]] is a
XMLWhitespaceCharacter), return null

d. Else return x
3. If i is a comment information item

a. If XML.ignoreComments == true, return null
b. Map x.[[Class]] to "comment"
c. Map x.[[Value]] to the [content] property of i
d. Return x

4. If i is a processing instruction information item
a. If XML.ignoreProcessingInstructions == true, return null
b. Map x.[[Class]] to "processing-instruction"
c. Map x.[[Name]] to the [target] property of i
d. Map x.[[Value]] to the [content] property of i
e. Return x

5. If i is an attribute information item
a. Map x.[[Class]] to "attribute"
b. Map x.[[Name]].localName to the [local name] property of i
c. Map x.[[Name]].uri to the [namespace name] property of i

NOTE implementations may also map x.[[Name]].[[Prefix]] to the [prefix] property of i. If the [prefix] has
no value, then x.[[Name]].[[Prefix]] is mapped to the empty string.

d. Map x.[[Value]] to the [normalized value] property of i
e. Return x

6. If i is an element information item
a. Map x.[[Class]] to "element"
b. Map x.[[Name]].localName to the [local name] property of i
c. Map x.[[Name]].uri to the [namespace name] property of i

NOTE implementations may also map x.[[Name]].[[Prefix]] to the [prefix] property of i. If the
[prefix] has no value, then x.[[Name]].[[Prefix]] is mapped to the empty string.

d. Map x.[[Attributes]] to the [attributes] property of i

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 39

e. For each attribute information item a in the [attributes] property of i
i. Map a member attr of x.[[Attributes]] to the result of calling MapInfoItemToXML(a)
ii. Map attr.[[Parent]] to x

f. For each namespace information item n in the [in-scope namespaces] property of I, except for
the namespace information item whose [prefix] property is equal to “xml”

i. Map a member ns of x.[[InScopeNamespaces]] to n as follows:
1. Map ns.prefix to the [prefix] property of n. If [prefix] has no value, then map ns.prefix to

the empty string.
2. Map ns.uri to the [namespace name] property of n

g. Let j = 0
h. Let xmlChild = 0
i. Map the set of properties in x to the [children] property of i
j. Let numItemChildren be the number of information items in the [children] property of i
k. While (j < numItemChildren)

i. Let item be the jth information item in the [children] property of i
ii. Let c = MapInfoItemToXML(item)
iii. If c is not null

1. Map x[xmlChild] to c
2. Map x[xmlChild].[[Parent]] to x
3. If c.[[Class]] == "text"

a. Let j = j + c.[[Value]].length - 1
4. Let xmlChild = xmlChild + 1

iv. Let j = j + 1
l. Map x.[[Length]] to xmlChild

m. Return x
7. If i is a document information item

a. Return the result of calling MapInfoItemToXML on the [document element] property of i
8. If i is an unexpanded entity reference information item

a. Throw a TypeError exception
9. Return null

NOTE MapInfoItemToXML ignores document type declaration information items

10.4 ToXMLList

E4X adds the operator ToXMLList to ECMAScript. ToXMLList converts its argument to a value of type
XMLList according to the following table:

Input Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Convert the input argument to a string using ToString then convert the result to XMLList as
specified in section 10.4.1.

Number Convert the input argument to a string using ToString then convert the result to XMLList as
specified in section 10.4.1.

String Create an XMLList object from the String as specified below in section 10.4.1.

XML Given an input argument x, return a new XMLList object list with list.[[Length]] = 1, list[0] = x,
list.[[TargetObject]] = x.[[Parent]] and list.[[TargetProperty]] = x.[[Name]].

XMLList Return the input argument (no conversion).

Object If the [[Class]] property of the input argument is "String", "Number" or "Boolean", convert
the input argument to a string using ToString then convert the result to XML as specified in
section 10.3.1. Otherwise, throw a TypeError exception.

ISO/IEC 22537:2005(E)

40 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

10.4.1 ToXMLList Applied to the String Type

Overview

When ToXMLList is applied to a string type, it converts the string type to an XMLList by parsing the string as
an XML fragment. Prior to conversion, string concatenation can be used to construct portions of the XMLList
value. For example,

var John = "<employee><name>John</name><age>25</age></employee>";
var Sue = "<employee><name>Sue</name><age>32</age></employee>";
var list = new XMLList(John + Sue);

The last line of this example concatenates two strings to form a single string value, then passes the resulting
string to the XMLList constructor function. The XMLList constructor function uses the internal ToXMLList
operator to convert the given string to an XML object.

Semantics

Given a String value s, ToXMLList converts it to an XMLList using the following steps:

1. Let defaultNamespace = GetDefaultNamespace()
2. Let parentString be the result of concatenating the strings "<parent xmlns='", defaultNamespace,

"'>", s and "</parent>";
3. Parse parentString as a W3C Element Information Item e
4. If the parse fails, throw a SyntaxError exception
5. Let x = ToXML(e)
6. Let list be a new XMLList with list.[[TargetObject]] = null
7. For i = 0 to x.[[Length]]-1

a. Let x[i].[[Parent]] = null
b. Call the [[Append]] method of list with argument x[i]

8. Return list

NOTE The use of a W3C XML Information Item is purely illustrative. A W3C XML Information Item is not required to
perform this type conversion and implementations may use any mechanism that provides the same semantics.

10.5 ToAttributeName

E4X adds the operator ToAttributeName to ECMAScript. ToAttributeName converts its argument to a value of
type AttributeName according to the following table:

Input Type Result
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Throw a TypeError exception.
Number Throw a TypeError exception.
String Create an AttributeName from the String as specified below in section 10.5.1
XML Convert the input argument to a string using ToString then convert the result to an

AttributeName as specified in section 10.5.1.
XMLList Convert the input argument to a string using ToString then convert the result to an

AttributeName as specified in section 10.5.1.
Object If the input argument is a QName object (i.e., its internal [[Class]] property is "QName"),

return a new AttributeName with its [[Name]] property set to the input argument.
Otherwise, convert the input argument to a string using ToString then convert the result to
an AttributeName as specified in section 10.5.1.

AttributeName Return the input argument (no conversion).
AnyName Return the result of calling ToAttributeName("*")

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 41

10.5.1 ToAttributeName Applied to the String Type

Given a string s, the ToAttributeName conversion function returns an AttributeName a. The [[Name]] property
of a is set to a new QName q with its local name set to the given string and its URI set to the empty string
representing no namespace.

Semantics

Given a String value s, ToAttributeName converts it to an AttributeName using the following steps:

1. Let ns be a new Namespace created as if by calling the constructor new Namespace()
2. Let q be a new QName created as if by calling the constructor new QName(ns, s)
3. Return a new AttributeName a with a.[[Name]] = q

10.6 ToXMLName

E4X adds the operator ToXMLName to ECMAScript. ToXMLName is an internal operator that converts its
argument to a value of type AttributeName or a QName object according to the following table:

Input Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Throw a TypeError exception.

Number Throw a TypeError exception.

String Create a QName object or AttributeName from the String as specified
below in section 0.

XML Convert the input argument to a string using ToString then convert the
result to a QName object or AttributeName as specified in section 0.

XMLList Convert the input argument to a string using ToString then convert the
result to a QName object or AttributeName as specified in section 0.

Object If the input argument is a QName object (i.e., its [[Class]] property is
"QName"), return the input argument. Otherwise, convert the input
argument to a string using ToString, then convert the result to a QName
object or AttributeName as specified in section 0.

AttributeName Return the input argument (no conversion).

AnyName Return the result of calling ToXMLName("*")

10.6.1 ToXMLName Applied to the String Type

Given a string s, the ToXMLName conversion function returns a QName object or AttributeName. If the first
character of s is "@", ToXMLName creates an AttributeName using the ToAttributeName operator. Otherwise,
it creates a QName object using the QName constructor.

ISO/IEC 22537:2005(E)

42 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Semantics

Given a String value s, ToXMLName operator converts it to a QName object or AttributeName using the
following steps:

1. If ToString(ToUint32(s)) == ToString(s), throw a TypeError exception
2. If the first character of s is "@"

a. Let name = s.substring(1, s.length)
b. Return ToAttributeName(name)

3. Else
a. Return a QName object created as if by calling the constructor new QName(s)

11 Expressions

11.1 Primary Expressions

Syntax

E4X extends the primary expressions defined by ECMAScript with the following production:

 PrimaryExpression :
 PropertyIdentifier
 XMLInitialiser
 XMLListInitialiser

 PropertyIdentifier :
 AttributeIdentifier
 QualifiedIdentifier
 WildcardIdentifier

Semantics

The production PrimaryExpression : PropertyIdentifier is evaluated as follows:

1. Let n be the result of evaluating PropertyIdentifier
2. Let name = ToXMLName(n)
3. While (true)

a. If there are no more objects on the scope chain,
i. Throw a ReferenceException

b. Let o be the next object on the scope chain.
NOTE on the first iteration, o will be the first object on the scope chain

c. If Type(o) ∈ {XML, XMLList}
i. Let hasProp be the result of calling the [[HasProperty]] method of o, passing name as the

property
ii. If hasProp == true

1. Return a value of type Reference whose base object is o and whose property name is
name

The production PropertyIdentifier : AttributeIdentifier is evaluated as follows:

1. Return the result of evaluating AttributeIdentifier

The productions PropertyIdentifier : QualifiedIdentifier, and PropertyIdentifier : WildcardIdentifier are evaluated
exactly the same manner except AttributeIdentifier is replaced by QualifiedIdentifier and WildcardIdentifier in
step 1.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 43

11.1.1 Attribute Identifiers

Syntax

E4X extends ECMAScript by adding attribute identifiers. The syntax of an attribute identifier is specified by the
following production:

 AttributeIdentifier :
 @ PropertySelector
 @ QualifiedIdentfier
 @ [Expression]

 PropertySelector :
 Identifier
 WildcardIdentifier

Overview

An AttributeIdentifier is used to identify the name of an XML attribute. It evaluates to a value of type
AttributeName. The preceding “@” character distinguishes a XML attribute from a XML element with the same
name. This AttributeIdentifier syntax was chosen for consistency with the familiar XPath syntax.

Semantics

The production AttributeIdentifier : @ PropertySelector is evaluated as follows:

1. Let name be a string value containing the same sequence of characters as in the PropertySelector
2. Return ToAttributeName(name)

The production AttributeIdentifier : @ QualifiedIdentifier is evaluated as follows:

1. Let q be the result of evaluating QualifiedIdentifier
2. Return ToAttributeName(q)

The production AttributeIdentifier : @ [Expression] is evaluated as follows:

1. Let e be the result of evaluating Expression
2. Return ToAttributeName(GetValue(e))

11.1.2 Qualified Identifiers

Syntax

E4X extends ECMAScript by adding qualified identifiers. The syntax for qualified identifiers is specified by the
following productions:

QualfiedIdentifier :
 PropertySelector :: PropertySelector
 PropertySelector :: [Expression]

Overview

QualifiedIdentifiers are used to identify values defined within a specific namespace. They may be used to
access, manipulate and create namespace qualified XML element and attribute names. For example,

ISO/IEC 22537:2005(E)

44 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

// Create a SOAP message
var message = <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <soap:Body>
 <m:GetLastTradePrice xmlns:m="http://mycompany.com/stocks">
 <symbol>DIS</symbol>
 </m:GetLastTradePrice>
 </soap:Body>
</soap:Envelope>

// declare the SOAP and stocks namespaces
var soap = new Namespace("http://schemas.xmlsoap.org/soap/envelope/");
var stock = new Namespace ("http://mycompany.com/stocks");

// extract the soap encoding style and body from the soap message
var encodingStyle = message.@soap::encodingStyle;
var body = message.soap::Body;

// change the stock symbol
message.soap::Body.stock::GetLastTradePrice.symbol = "MYCO";

Semantics

A QualifiedIdentifier evaluates to a QName object. The production QualifiedIdentifier : PropertySelector ::
PropertySelector is evaluated as follows:

1. Let ns be the result of evaluating the first PropertySelector
2. If (ns == anyname), let ns = null
3. Let localName be a string value containing the same sequence of characters as in the second

PropertySelector
4. Return a new QName created as if by calling the constructor new QName(GetValue(ns), localName)

The production QualifiedIdentifier : PropertySelector :: [Expression] is evaluated as follows:

1. Let ns be the result of evaluating PropertySelector
2. If (ns == anyname), let ns = null
3. Let e be the result of evaluating Expression
4. Return a new QName created as if by calling the constructor new QName(GetValue(ns),

GetValue(e))

11.1.3 Wildcard Identifiers

Syntax

E4X extends ECMAScript by adding a wildcard identifier. The syntax of the wildcard identifier is specified by
the following production:

 WildcardIdentifier :
 *
Overview

The WildcardIdentifier is used to identify any name. It may be used for matching namespaces, properties of
XML objects or XML attributes. The wildcard identifier evaluates to the value anyname.

Semantics

The production WildcardIdentifier : * is evaluated as follows:

1. Return anyname

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 45

11.1.4 XML Initialiser

Overview

An XML initialiser is an expression describing the initialization of an XML object, written in a form of a literal. It
may specify an XML element, an XML comment, an XML PI, or a CDATA section using ordinary XML syntax.
For XML elements, it provides the name, XML attributes and XML properties of an XML object.

The syntactic grammar for XML initialisers is used to find the end of XML initialisers and evaluate embedded
expressions. It permits sequences of characters that are not valid XML syntax. After evaluating all embedded
expressions, the resulting string of characters comprising the XML value is passed to the XML constructor,
which parses it according to the more stringent XML grammar.

The syntactic grammar for XML initialisers processes input elements produced by the lexical grammar goal
symbols InputElementXMLTag and InputElementXMLContent. These input elements are described in section
8.3.

Below are some examples of XML initialisers.

// an XML object representing a person with a name and age
var person = <person><name>John</name><age>25</age></person>;

// a variable containing an XML object representing two employees
var e = <employees>
 <employee id="1"><name>Joe</name><age>20</age></employee>
 <employee id="2"><name>Sue</name><age>30</age></employee>
</employees>;

Expressions may be used to compute parts of an XML initialiser. Expressions are delimited by curly braces
and may appear inside tags or element content. Inside a tag, expressions may be used to compute a tag
name, attribute name, or attribute value. Inside an element, expressions may be used to compute element
content. For example,

for (var i = 0; i < 10; i++)
 e[i] = <employee id={i}> // compute id value
 <name>{names[i].toUpperCase()}</name> // compute name value
 <age>{ages[i]}</age> // compute age value
 </employee>;

Each expression is evaluated and replaced by its value prior to parsing the literal XML value. For example the
following expression,

var tagname = "name";
var attributename = "id";
var attributevalue = 5;
var content = "Fred";

var x = <{tagname} {attributename}={attributevalue}>{content}</{tagname}>;

would assign the following XML value to the variable x.

<name id="5">Fred</name>

Syntax

 XMLInitialiser :

XMLMarkup
XMLElement

ISO/IEC 22537:2005(E)

46 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

 XMLElement :
 < XMLTagContent XMLWhitespaceopt />
 < XMLTagContent XMLWhitespaceopt > XMLElementContentopt </ XMLTagName XMLWhitespaceopt
>

XMLTagContent :
XMLTagName XMLAttributesopt

XMLTagName :

{ Expression }
XMLName

XMLAttributes :

XMLWhitespace { Expression }
XMLAttributeopt XMLAttributes

XMLAttribute :

XMLWhitespace XMLName XMLWhitespaceopt = XMLWhitespaceopt { Expression }
XMLWhitespace XMLName XMLWhitespaceopt = XMLWhitespaceopt XMLAttributeValue

XMLElementContent :

{ Expression } XMLElementContentopt
XMLMarkup XMLElementContentopt
XMLText XMLElementContentopt
XMLElement XMLElementContentopt

Semantics

The production XMLInitialiser : XMLMarkup is evaluated as follows:

1. Let markup be a string literal containing the same sequence of characters as XMLMarkup
2. Return a new XML object created as if by calling the XML constructor with argument markup (section

13.4.2)

The production XMLInitialiser : XMLElement is evaluated as follows:

1. Let element be a the result of evaluating XMLElement
2. Return a new XML object created as if by calling the XML constructor with argument element (section

13.4.2)

The production XMLElement : < XMLTagContent XMLWhitespaceopt /> is evaluated as follows:

1. Let content be the result of evaluating XMLTagContent
2. Return the result of concatenating the string value "<", followed by content, followed by the string

value "/>"

The production XMLElement : < XMLTagContent XMLWhitespaceopt > XMLElementContentopt </
XMLTagContent XMLWhitespaceopt > is evaluated as follows:

1. Let startTag be the result of evaluating the first XMLTagContent
2. Let content be the result of evaluating XMLElementContent; if not present, use the empty string
3. Let endTag be the result of evaluating the second XMLTagContent
4. Return the result of concatenating the string value "<", followed by startTag, followed by the string

value ">", followed by content, followed by the string value "</", followed by endTag, followed by the
string value ">"

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 47

The production XMLTagContent : XMLTagName XMLAttributesopt is evaluated as follows:

1. Let name be the result of evaluating XMLTagName
2. Let attributes be the result of evaluating XMLAttributesopt; if not present, use the empty string
3. Return the result of concatenating name followed by attributes

The production XMLTagName : { Expression } is evaluated as follows:

1. Let expRef be the result of evaluating Expression
2. Let expression = GetValue(expRef)
3. Return the result of evaluating ToString(expression)

The production XMLTagName : XMLName is evaluated as follows:

1. Return the string literal containing the same sequence of characters as XMLName

The production XMLAttributes : XMLWhitespace { Expression } is evaluated as follows:

1. Let expRef be the result of evaluating Expression
2. Let expression = GetValue(expRef)
3. Let attribute = ToString(expression)
4. Return the result of concatenating a string containing a single space character and attribute

The production XMLAttributes : XMLAttributeopt XMLAttributes is evaluated as follows:

1. Let attribute be the result of evaluating XMLAttributeopt; if not present, use the empty string
2. Let attributes be the result of evaluating XMLAttributes
3. Return the result of concatenating attribute and attributes

The production XMLAttribute : XMLWhitespace XMLName XMLWhitespaceopt = XMLWhitespaceopt
{ Expression } is evaluated as follows:

1. Let name be the literal string containing the same sequence of characters as XMLName
2. Let expRef be the result of evaluating Expression
3. Let expression = GetValue(expRef)
4. Let value be the result of calling EscapeAttributeValue(ToString(expression))
5. Return the result of concatenating the string containing a single space character, name, the string

containing the ‘=’ character, and value

The production XMLAttribute : XMLWhitespace XMLName XMLWhitespaceopt = XMLWhitespaceopt
XMLAttributeValue is evaluated as follows:

1. Let name be the literal string containing the same sequence of characters as XMLName
2. Let value be a string literal containing the same sequence of characters as XMLAttributeValue
3. Return the result of concatenating the string containing a single space character, name, the string

containing the ‘=’ character, and value

The production XMLElementContent : { Expression } XMLElementContentopt is evaluated as follows:

1. Let expRef be the result of evaluating Expression
2. Let expression = GetValue(expRef)
3. If Type(expression) ∈ {XML, XMLList},

a. Let value be the result of calling ToXMLString(expression)
4. Else

a. Let value be the result of calling EscapeElementValue(ToString(expression))
5. Let content be the result of evaluating XMLElementContentopt; if not present, use the empty string
6. Return the result of concatenating value followed by content

ISO/IEC 22537:2005(E)

48 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

The production XMLElementContent : XMLMarkup XMLElementContentopt is evaluated as follows:

1. Let markup be the result of evaluating XMLMarkup
2. Let content be the result of evaluating XMLElementContentopt; if not present, use the empty string
3. Return the result of concatenating markup followed by content

The production XMLElementContent : XMLText XMLElementContentopt is evaluated as follows:

1. Let text be a string literal containing the same sequence of characters as XMLText
2. Let content be the result of evaluating XMLElementContentopt; if not present, use the empty string
3. Return the result of concatenating text, followed by content.

The production XMLElementContent : XMLElement XMLElementContentopt is evaluated as follows:

1. Let element be the result of evaluating XMLElement
2. Let content be the result of evaluating XMLElementContentopt; if not present, use the empty string
3. Return the result of concatenating element followed by content

11.1.5 XMLList Initialiser

Overview

An XMLList initialiser is an expression describing the initialization of an XMLList object written in a form
resembling a literal. It describes an ordered list of XML properties using an anonymous XML element syntax.
XMLList initialisers begin with the character sequence“<>” and end with the character sequence “</>”.
The syntactic grammar for XML initialisers processes input elements produced by the lexical grammar goal
symbols InputElementXMLTag and InputElementXMLContent. These input elements are described in section
8.3.

Below are some examples of XMLList Initialisers,
var docfrag = <><name>Phil</name><age>35</age><hobby>skiing</hobby></>;

var emplist = <>
 <employee id="0" ><name>Jim</name><age>25</age></employee>
 <employee id="1" ><name>Joe</name><age>20</age></employee>
 <employee id="2" ><name>Sue</name><age>30</age></employee>
</>;

Syntax

XMLListInitialiser :
 < > XMLElementContent </ >

Semantics

The production XMLList : < > XMLElementContentopt </ > is evaluated as follows:

1. Let content be the result of evaluating XMLElementContent; if not specified use the empty string
2. Return a new XMLList object created as if by calling the XMLList constructor with argument content

11.2 Left-Hand-Side Expressions

E4X extends the left-hand-side expressions defined in ECMAScript with the following productions:

MemberExpression :
MemberExpression . PropertyIdentifier
MemberExpression .. Identifier
MemberExpression .. PropertyIdentifier
MemberExpression . (Expression)

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 49

 CallExpression :
 CallExpression . PropertyIdentifier
 CallExpression .. Identifier
 CallExpression .. PropertyIdentifier
 CallExpression . (Expression)

In addition, E4X defines new semantics for existing left-hand-side expressions applied to values of type XML
and XMLList.

11.2.1 Property Accessors

Syntax

E4X reuses and extends ECMAScript’s property accessor syntax for accessing properties and XML attributes
within values of type XML and XMLList. XML properties may be accessed by name, using either the dot
notation:

 MemberExpression . Identifier
 MemberExpression . PropertyIdentifier
 CallExpression . Identifier
 CallExpression . PropertyIdentifier

or the bracket notation:

MemberExpression [Expression]
CallExpression [Expression]

Overview

When MemberExpression or CallExpression evaluate to a XML object, the property accessor uses the XML
[[Get]] method to determine the result. If the right operand evaluates to an array index, the XML [[Get]] method
converts the XML object to an XMLList and retrieves the requested property from the resulting XMLList. This
treatment intentionally blurs the distinction between a single XML object and an XMLList containing only one
value. Otherwise, the XML [[Get]] method examines the XML properties and XML attributes of the left operand
and returns an XMLList containing the ones with names that match its right operand in order. For example,

var order = <order id = "123456" timestamp="Mon Mar 10 2003 16:03:25 GMT-0800 (PST)">
 <customer>
 <firstname>John</firstname>
 <lastname>Doe</lastname>
 </customer>
 <item>
 <description>Big Screen Television</description>
 <price>1299.99</price>
 <quantity>1</quantity>
 </item>
</order>;

var customer = order.customer; // get the customer element from the order
var id = order.@id; // get the id attribute from the order
var orderChildren = order.*; // get all the child elements from the order element
var orderAttributes = order.@*; // get all the attributes from the order element

// get the first (and only) order [treating single element as a list]
var firstOrder = order[0];

When MemberExpression or CallExpression evaluate to an XMLList, the property accessor uses the XMLList
[[Get]] method to determine the result. If the bracket notation is used with a numeric identifier, the XMLList
[[Get]] method simply returns the property of the left operand with a property name matching the numeric
identifier. Otherwise, the XMLList [[Get]] method applies the property accessor operation to each XML object
in the list and returns a new XMLList containing the results in order. For example,

ISO/IEC 22537:2005(E)

50 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

var order = <order>
 <customer>
 <firstname>John</firstname>
 <lastname>Doe</lastname>
 </customer>
 <item id = "3456">
 <description>Big Screen Television</description>
 <price>1299.99</price>
 <quantity>1</quantity>
 </item>
 <item id = "56789">
 <description>DVD Player</description>
 <price>399.99</price>
 <quantity>1</quantity>
 </item>
</order>;

var descriptions = order.item.description; // get the list of all item descriptions
var itemIds = order.item.@id; // get the list of all item id attributes
var secondItem = order.item[1]; // get second item by numeric index
var itemChildren = order.item.*; // get the list of all child elements in all
items
var secondItemChild = order.item.*[1]; // get the second child from the list of all
items

In the first property accessor statement above, the expression “order.item” examines the XML properties of
the XML object bound to “order” and returns an XMLList containing the two XML objects named “item”. The
expression “order.item.description” then examines the XML properties of each item in the resulting XMLList
and returns an XMLList containing the two XML objects named “description”.

When MemberExpression or CallExpression do not evaluate to a value of type XML or XMLList and the right
hand side of the expression is an Identifier, the property accessor performs according to the semantics
specified in ECMAScript Edition 3. However, if MemberExpression or CallExpression do not evaluate to a
value of type XML or XMLList and the right hand side of the expression is a PropertyIdentifier, the property
accessor throws a TypeError exception.

Semantics

As in ECMAScript Edition 3, the behaviour of the production:

MemberExpression : MemberExpression . Identifier

is identical to the behaviour of the production:

 MemberExpression : MemberExpression [<identifier-string>]

and similarly, the behaviour of the production:

 CallExpression : CallExpression . Identifier

is identical to the behaviour of the production:

 CallExpression : CallExpression [<identifier-string>]

where <identifier-string> is a string literal containing the same sequence of characters as the Identifier.

The production MemberExpression : MemberExpression [Expression] is evaluated as follows:

1. Let oRef be the result of evaluating MemberExpression
2. Let o = ToObject(GetValue(oRef))
3. Let pRef be the result of evaluating Expression
4. Let p = GetValue(pRef)
5. If (Type(p) ∈ {AttributeName, AnyName}) or (Type(p) is Object and p.[[Class]] == "QName")

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 51

a. If (Type(o) ∈ {XML, XMLList})
i. Return a value of type Reference whose base object is o and whose property name is

ToXMLName(p)
b. Else

i. Throw a TypeError exception
6. Return a value of type Reference whose base object is o and whose property name is ToString(p)

The production CallExpression : CallExpression [Expression] is evaluated in exactly the same manner,
except the contained CallExpression is evaluated in step 1.

The production MemberExpression : MemberExpression . PropertyIdentifier behaves exactly as the
production MemberExpression : MemberExpression [Expression], except the contained PropertyIdentifier is
evaluated in step 3. Similarly, the production CallExpression : CallExpression . PropertyIdentifier behaves
exactly as the production CallExpression : CallExpression [Expression], except the contained
PropertyIdentifier is evaluated in step 3.

11.2.2 Function Calls

Syntax

E4X reuses ECMAScript’s function call syntax for invoking methods on values of type XML and XMLList. The
ECMAScript syntax for function calls is described by the following productions:

 CallExpression :

MemberExpression Arguments

 Arguments :
 ()
 (ArgumentList)

 ArgumentList :
 AssignmentExpression
 ArgumentList , AssignmentExpression

Overview

Unlike values of type Object, values of type XML and XMLList store and retrieve properties separately from
methods so that XML method names do not clash with XML property names. For example,

var rectangle = <rectangle>
 <x>50</x>
 <y>75</y>
 <length>20</length>
 <width>30</width>
</rectangle>;

var numRectangles = rectangle.length(); // returns 1 – number of <rectangle> elements
var rectangleLength = rectangle.length; // returns 20 – content of <length> element

rectangle.length = 50; // change the length element of the rectangle

To accomplish this, E4X modifies the semantics of the call expression to invoke the operation CallMethod
(see section 11.2.2.1).

Semantics

The production CallExpression : MemberExpression Arguments is evaluated as follows:

1. Let r be the result of evaluating MemberExpression
2. Let args be the result of evaluating Arguments, producing an internal list of argument values
3. Return the result of calling the operation CallMethod(r, args)

ISO/IEC 22537:2005(E)

52 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

11.2.2.1 CallMethod (r , args)

Overview

The CallMethod abstract operator is used in this specification for invoking functions and methods. This
operator is not part of the language. It is defined here to aid the specification of the language.

When the operation CallMethod is called with a single parameter r, it first checks to see if r is a Reference. If it
is not, it attempts to call r as a function. However, if r is a Reference, it extracts the base and property name
from the Reference r. Then, CallMethod calls the Object [[Get]] method to retrieve the property of the base
object with the given property name.

NOTE The XML and XMLList [[Get]] method is never called for method lookup.

If no such property exists and base is an XMLList of size 1, CallMethod delegates the method invocation to
the single property it contains. This treatment intentionally blurs the distinction between XML objects and
XMLLists of size 1.

If no such property exists and base is an XML object containing no XML valued children (i.e., an attribute, leaf
node or element with simple content), CallMethod attempts to delegate the method lookup to the string value
contained in the leaf node. This treatment allows users to perform operations directly on the value of a leaf
node without having to explicitly select it. For example,

var shipto= <shipto>
 <name>Fred Jones</name>
 <street>123 Foobar Ave.</street>
 <citystatezip>Redmond, WA, 98008</citystatezip>
</shipto>

// calls String.toUpperCase on value of text node
var upperName = shipto.name.toUpperCase();

// calls String.split() on text node to parse address
var citystatezip = shipto.citystatezip.split(", ");

var state = citystatezip[1]; // line into individual city, state and zip values
var zip = citystatezip[2];

Semantics

Given a Reference r and a list of arguments args, the operation CallMethod performs the following steps:

1. Let f = r
2. Let base = null
3. If Type(r) is Reference

a. Let base = GetBase(r)
b. If base == null, throw a ReferenceException
c. Let P = GetPropertyName(r)
d. Let f be the result of calling the Object [[Get]] method with base as the this object and argument

P
e. If f == undefined and Type(base) is XMLList and base.[[Length]] == 1

i. Let r0 be a new Reference with base object = base[0] and property name = P
ii. Return the result of calling CallMethod(r0, args) recursively

f. If f == undefined and Type(base) is XML and base.hasSimpleContent () == true
i. Let r0 be a new Reference with base object = ToObject(ToString(base)) and property name

= P
ii. Return the result of calling CallMethod(r0, args) recursively

4. If Type(f) is not Object, throw a TypeError exception
5. If f does not implement the internal [[Call]] method, throw a TypeError exception
6. If base is an activation object, base = null
7. Return the result of calling the [[Call]] method of f providing base as the this value and the list args

as the argument values

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 53

11.2.3 XML Descendant Accessor

Syntax

E4X extends ECMAScript by adding a descendant accessor. The following productions describe the syntax of
the descendant accessor:

MemberExpression :
MemberExpression .. Identifier
MemberExpression .. PropertyIdentifier

CallExpression :

CallExpression .. Identifier
CallExpression .. PropertyIdentifier

Overview

When the MemberExpression or CallExpression evaluate to an XML object or an XMLList, the descendant
accessor examines all of the descendant XML properties (i.e., children, grand children, great-grandchildren,
etc) of its left operand and returns an XMLList containing those with names that match its right operand in
order. For example,

var e = <employees>
 <employee id="1"><name>Joe</name><age>20</age></employee>
 <employee id="2"><name>Sue</name><age>30</age></employee>
</employees>;

var names = e..name; // get all the names in e

Semantics

The production MemberExpression : MemberExpression .. Identifier is evaluated as follows:

1. Let ref be the result of evaluating MemberExpression
2. Let x = GetValue(ref)
3. If Type(x) ∉ {XML, XMLList}, throw a TypeError exception
4. Let P be a string value containing the same sequence of characters as Identifier
5. Return the result of calling the [[Descendants]] method of x with argument P

The production CallExpression : CallExpression .. Identifier is evaluated in exactly the same manner, except
that the contained CallExpression is evaluated in step 1.

The production MemberExpression : MemberExpression .. PropertyIdentifier is evaluated as follows:

1. Let ref be the result of evaluating MemberExpression
2. Let x = GetValue(ref)
3. If Type(x) ∉ {XML, XMLList}, throw a TypeError exception
4. Let P be the result of evaluating PropertyIdentifier
5. Return the result of calling the [[Descendants]] method of x with argument P

The production CallExpression : CallExpression .. PropertyIdentifier is evaluated in exactly the same manner,
except that the contained CallExpression is evaluated in step 1.

11.2.4 XML Filtering Predicate Operator

Syntax

E4X extends ECMAScript by adding a filtering predicate operator. The following productions describe the
syntax of the filtering predicate operator:

ISO/IEC 22537:2005(E)

54 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

 MemberExpression :
MemberExpression . (Expression)

 CallExpression :

CallExpression . (Expression)

Overview

When the left operand evaluates to an XML object, the filtering predicate adds the left operand to the front of
the scope chain of the current execution context, evaluates the Expression with the augmented scope chain,
converts the result to a Boolean value, then restores the scope chain. If the result is true, the filtering
predicate returns an XMLList containing the left operand. Otherwise it returns an empty XMLList.

When the left operand is an XMLList, the filtering predicate is applied to each XML object in the XMLList in
order using the XML object as the left operand and the Expression as the right operand. It concatenates the
results and returns them as a single XMLList containing all the XML properties for which the result was true.
For example,

var john = e.employee.(name == "John"); // employees with name John
var twoemployees = e.employee.(@id == 0 || @id == 1); // employees with id's 0 & 1
var emp = e.employee.(@id == 1).name; // name of employee with id 1

The effect of the filtering predicate is similar to SQL’s WHERE clause or XPath’s filtering predicates.
For example, the statement:

// get the two employees with ids 0 and 1 using a predicate
var twoEmployees = e..employee.(@id == 0 || @id == 1);

produces the same result as the following set of statements:

// get the two employees with the ids 0 and 1 using a for loop
var i = 0;
var twoEmployees = new XMLList();
for each (var p in e..employee) {
 with (p) {
 if (@id == 0 || @id == 1) {
 twoEmployees[i++] = p;
 }
 }
}

Semantics

The production MemberExpression : MemberExpression . (Expression) is evaluated as follows:

1. Let objref be the result of evaluating MemberExpression
2. Let x = GetValue(objref)
3. If Type(x) ∉ {XML, XMLList}, throw a TypeError exception
4. Let list = ToXMLList(x)
5. Let r be a new XMLList with r.[[TargetObject]] = null
6. For i = 0 to list.[[Length]]-1

a. Add list[i] to the front of the scope chain
b. Let ref be the result of evaluating Expression using the augmented scope chain of step 6a
c. Let match = ToBoolean(GetValue(ref))
d. Remove list[i] from the front of the scope chain
e. If (match == true), call the [[Append]] method of r with argument list[i]

7. Return r

The production CallExpression : CallExpression . (Expression) is evaluated in exactly the same manner,
except that the contained CallExpression is evaluated in step 1.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 55

11.3 Unary Operators

11.3.1 The delete Operator

This section is provided to describe the effects of the XML [[Delete]] operators on the delete operator. E4X
does not define any extensions to the syntax or semantics of the ECMAScript delete operator beyond those
specified by the XML and XMLList [[Delete]] operators.

Syntax

E4X reuses the ECMAScript delete operator for deleting XML properties and XML attributes from XML objects
and XMLLists. The syntax of the delete operator is described by the following production:

 UnaryExpression :

delete UnaryExpression

Overview

When UnaryExpression evaluates to a Reference r with a base object of type XML, the delete operator
removes the XML attributes or properties specified by the property name of r from the base object. When
UnaryExpression evaluates to a Reference r with a base object of type XMLList, the delete operator removes
the XML objects specified by the property name of r from the base object and the associated XML object. For
example,

delete order.customer.address; // delete the customer address
delete order.customer.@id; // delete the customer ID
delete order.item.price[0]; // delete the first item price
delete order.item; // delete all the items

Semantics

E4X extends the semantics of the delete operator by providing more elaborate [[Delete]] methods used when
UnaryExpression evaluates to a value of type ReferenceValue whose base is of type XML or XMLList (see
sections 9.1.1.3 and 9.2.1.3 respectively). If the type of the operand is XMLList, then a TypeError exception is
thrown.

11.3.2 The typeof Operator

Syntax

E4X reuses the syntax of the ECMAScript’s typeof operator for determining the types of XML and XMLList
objects. The ECMAScript syntax for the typeof operator is described by the following production:

 UnaryExpression :
 typeof UnaryExpression

Overview

E4X extends the semantics of the ECMAScript typeof operator for determining the types of XML and XMLList
objects. When UnaryExpression evaluates to a value of type XML, the typeof operator returns the string "xml".
When UnaryExpression evaluates to a value of type XMLList, the typeof operator returns the string "xml".

Semantics

The production UnaryExpression : typeof UnaryExpression is evaluated as follows:

1. Let u be the result of evaluating UnaryExpression
2. If Type(u) is Reference and GetBase(u) is null, return "undefined"
3. Return a string determined by Type(GetValue(u)) according to the following table:

ISO/IEC 22537:2005(E)

56 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Type Result

Undefined "undefined"

Null "object"

Boolean "boolean"

Number "number"

String "string"

XML "xml"

XMLList "xml"

Object (native and
doesn't implement
[[Call]])

"object"

Object (native and
implements [[Call]])

"function"

11.4 Additive Operators

Syntax

E4X reuses the syntax of the ECMAScript addition operator for concatenating two values of type XML or
XMLList. The ECMAScript syntax for the addition operator is described by the following production:

 AdditiveExpression :

AdditiveExpression + MultiplicativeExpression

11.4.1 The Addition Operator (+)

Overview

E4X extends the semantics of the ECMAScript addition operator to perform either string concatenation, XML
and XMLList concatenation or numeric addition depending on its arguments.

When both AdditiveExpression and MultiplicativeExpression evaluate to either an XML object or an XMLList,
the addition operator starts by creating a new, empty XMLList as the return value. If the left operand evaluates
to an XML object, it is added to the return value. If the left operand evaluates to an XMLList, each XML
property of the XMLList is added to the return value in order. Likewise, if the right operand evaluates to an
XML object, it is added to the return value. Otherwise, if it is an XMLList each XML property of the XMLList is
added to the return value in order.

For example,

// create an XMLList containing the elements <name>, <age> and <hobby>
var employeedata = <name>Fred</name> + <age>28</age> + <hobby>skiing</hobby>;

// create an XMLList containing three item elements extracted from the order element
var myitems = order.item[0] + order.item[2] + order.item[3];

// create a new XMLList containing all the items in the order plus one new one
var newitems = order.item + <item><description>new item</description></item>;

NOTE Using the addition operator with operands of type XML and XMLList always results in an XMLList. When
numeric addition of XML objects is desired, the operands shall be explicitly coerced to Numbers. This may be
accomplished by using the unary “+” operator or the Number conversion function. For example,

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 57

// add the prices of the first and third items in the order (coersion with unary +)
var totalPrice = +order.item[0].price + +order.item[2].price

// add the prices of the second and fourth items in the order (coersion using Number
// conversion function)
var totalPrice = Number(order.item[1].price) + Number(order.item[3].price)

Likewise, when string concatenation of XML objects is desired, at least one of the operands shall be explicitly
coerced to a String. This may be accomplished by concatenating them to the empty string ("") or using the
String conversion function. For example,

// concatenate the street and the city of the customer's address (coersion with the empty
// string)
var streetcity = "" + order.customer.address.street + order.customer.address.city;

// concatenate the state and the zip of the customer's address (coersion using String
// conversion function)
var statezip = String(order.customer.address.state) + order.customer.address.zip;

Semantics

The production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as follows:

1. Let a be the result of evalutating AdditiveExpression
2. Let left = GetValue(a)
3. Let m be the result of evaluating MultiplicativeExpression
4. Let right = GetValue(m)
5. If (Type(left) ∈ {XML, XMLList}) and (Type(right) ∈ {XML, XMLList})

a. Let list be a new XMLList
b. Call the [[Append]] method of list with argument x
c. Call the [[Append]] method of list with argument y
d. Return list

6. Let pLeft = ToPrimitive(left)
7. Let pRight = ToPrimitive(right)
8. If Type(pLeft) is String or Type(pRight) is String

a. Return the result of concatenating ToString(pLeft) and ToString(pRight)
9. Else

a. Apply the addition operation to ToNumber(pLeft) and ToNumber(pRight) and return the result.
See ECMAScript Edition 3, section 11.6.3 for details.

11.5 Equality Operators
11.5.1 The Abstract Equality Comparison Algorithm

Overview

E4X extends the abstract equality comparison algorithm defined by ECMAScript to enable equality
comparisons involving QName and Namespace objects and the types XML and XMLList.

Semantics

The comparison x == y, where x and y are values, produces true or false. This comparison is performed
using the following steps:

1. If Type(x) is XMLList, call the [[Equals]] method of x with argument y and return the result
2. If Type(y) is XMLList, call the [[Equals]] method of y with argument x and return the result
3. If Type(x) is the same as Type(y)

a. If Type(x) is XML,
i. If ((x.[[Class]] ∈ {"text", "attribute"}) and (y.hasSimpleContent())

or ((y.[[Class]] ∈ {"text", "attribute"}) and (x.hasSimpleContent())
1. Return the result of the comparison ToString(x) == ToString(y)

ISO/IEC 22537:2005(E)

58 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

ii. Else return the result of calling the [[Equals]] method of x with argument y
b. If Type(x) is Object and x.[[Class]] == "QName" and y.[[Class]] == "QName"

i. If the result of the comparison x.uri == y.uri is true and the result of the comparison
x.localName == y.localName is true, return true. Otherwise, return false

c. If Type(x) is Object and x.[[Class]] == "Namespace" and y.[[Class]] == "Namespace", return
the results of the comparison x.uri == y.uri

d. If Type(x) is undefined, return true
e. If Type(x) is null, return true
f. If Type(x) is Number

i. If x is NaN, return false
ii. If y is NaN, return false
iii. If x is the same number value as y, return true
iv. If x is +0 and y is -0, return true
v. If x is -0 and y is +0, return true
vi. Return false

g. If Type(x) is String, then return true if x and y are exactly the same sequence of characters
(same length and same characters in corresponding positions). Otherwise, return false

h. If Type(x) is boolean, return true if x and y are both true or both false. Otherwise, return false
i. Return true if x and y refer to the same object or if they refer to objects joined to each other

(ECMAScript Edition 3 Section 13.1.2). Otherwise, return false
4. If (Type(x) is XML) and x.hasSimpleContent() == true) or (Type(y) is XML and y.hasSimpleContent()

== true)
a. Return the result of the comparison ToString(x) == ToString(y)

5. If x is null and y is undefined, return true
6. If x is undefined and y is null, return true
7. If Type(x) is Number and Type(y) is String, return the result of the comparison x == ToNumber(y)
8. If Type(x) is String and Type(y) is Number, return the result of the comparison ToNumber(x) == y
9. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y
10. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y)
11. If Type(x) is either String or Number and Type(y) is Object, return the result of the comparison x ==

ToPrimitive(y)
12. If Type(x) is Object and Type(y) is either String or Number, return the result of the comparison

ToPrimitive(x) == y
13. Return false.

11.6 Assignment Operators

11.6.1 XML Assignment Operator

This section is provided to describe the effects of the XML [[Put]] operator on the assignment operator. E4X
does not define any extensions to the syntax or semantics of the ECMAScript assignment operator beyond
those specified by the XML and XMLList [[Put]] operators.

Syntax

E4X reuses the ECMAScript assignment operator to modify, replace and insert properties and XML attributes
in an XML object. The ECMAScript syntax for the assignment operator is described by the following
production:

AssignmentExpression :
LeftHandSideExpression = AssignmentExpression

Overview

The assignment operator begins by evaluating the LeftHandSideExpression, which resolves to a reference r
consisting of a base object parent and a property name. If parent is an XML object, the assignment operator
performs the steps described in section (see section 11.6.2 for the steps performed if parent is an XMLList).

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 59

If the property name begins with the character “@”, the XML assignment operator creates or modifies an XML
attribute in the parent. If the named XML attribute already exists, the assignment operator modifies its value,
otherwise it creates a new XML attribute with the given name and value. If AssignmentExpression evaluates
to an XMLList, the value of the named attribute will be a space separated list of values (i.e., an XML attribute
list) constructed by converting each value in the XMLList to a string and concatenating the results separated
by spaces. If the AssignmentExpression does not evaluate to an XMLList, the value of the named attribute will
be derived by evaluating the AssignmentExpression and calling ToString on the result. For example,

// change the value of the id attribute on the second item
order.item[1].@id = 123;

// add a new attribute to the second item
order.item[1].@newattr = "new value";

// construct an attribute list containing all the ids in this order
order.@allids = order.item.@id;

If the property name is an array index, the XML assignment operator throws a TypeError exception. This
operation is reserved for future versions of E4X.

If the property name does not begin with “@” and is not an array index, the XML assignment operator
replaces, modifies or appends one or more XML objects in the parent by XML name. If only one XML object
exists with the given name and the AssignmentExpression evaluates to an XML object or XMLList, the
assignment operator replaces the identified XML object with the given value. If there are no XML properties
with the given name, a new XML property with the given name and value is appended to the end of the parent.
If more than one XML object exists with the given name and the AssignmentExpression evaluates to an XML
object or XMLList, the assignment operator replaces the first XML property with a matching name with the
given value and deletes the remaining XML properties with the given name, essentially replacing all the XML
object with the given name with the given value. If the AssignmentExpression does not evaluate to a XML
object or XMLList, the assignment operator calls ToString on the given value and replaces the properties (i.e.,
the content) of the appropriate XML object (as opposed to replacing the XML object itself). This provides a
simple, intuitive syntax for setting the value of a named XML property to a primitive value. For example,

item.price = 99.95; // change the price of the item
item.description = "Mobile Phone"; // change the description of the item

Semantics

E4X extends the semantics of the assignment operator by providing more elaborate [[Put]] methods used
when MemberExpression evaluates to a value of type XML or XMLList (see sections 9.1.1.2 and 9.2.1.2
respectively).

11.6.2 XMLList Assignment Operator

This section is provided to describe the effects of the XMLList [[Put]] operator on the assignment operator.
E4X does not define any extensions to the syntax or semantics of the ECMAScript assignment operator
beyond those provided by the XML and XMLList [[Put]] operators.

Syntax

E4X reuses the ECMAScript assignment operator to replace or append values to XMLLists and their
associated XML objects. The ECMAScript syntax for the assignment operator is described by the following
production:

AssignmentExpression :
LeftHandSideExpression = AssignmentExpression

ISO/IEC 22537:2005(E)

60 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Overview

The assignment operator begins by evaluating the LeftHandSideExpression, which resolves to a reference r
consisting of a base object parent and a property name. If parent is an XMLList, the assignment operator
performs the steps described in this section (see section 11.6.1 for the steps performed when parent is an
XML object).

If the property name is not an array index, the XMLList assignment operator checks to see if this XMLList
object contains only 1 item and that item is of type XML. If so, the XMLList assignment operator delegates its
behaviour to the [[Put]] method of the XML object it contains (see section 9.1.1.2). This treatment intentionally
blurs the distinction between a single XML object and an XMLList containing only one XML object. For
example,

// set the name of the only customer in the order to Fred Jones
order.customer.name = "Fred Jones";

// replace all the hobbies for the only customer in the order
order.customer.hobby = "shopping";

// attempt to set the sale date of a single item.
order.item.saledate = "05-07-2002";

// replace all the employee's hobbies with their new favorite pastime
emps.employee.(@id == 3).hobby = "working";

In the first statement above, the expression “order.customer” returns an XMLList containing only one XML
item. The expression “order.customer.name” implicitly converts this XMLList to an XML value and assigns the
value “Fred Jones” to that value.

If the property name is an array index, the assignment operator replaces the property identified by property
name in the XMLList or appends a new property if none exists with that property name. In addition, if the
property identified is an XML value with a non-null parent, the XML value is also replaced in the context of its
parent. If the AssignmentExpression evaluates to an XML value, the assignment operator replaces the value
of the property identified by property name with a deep copy of the given XML object. If the
AssignmentExpression evaluates to an XMLList, the assignment operator replaces the value of the property
identified by property name with a deep copy of each item in the XMLList in order, effectively deleting the
original property and inserting the contents of the XMLList in its place. If the AssignmentExpression does not
evaluate to a value of type XML or XMLList, the assignment operator calls ToString on the given value and
replaces the property at the given position with the result. Here are some examples,

// replace the first employee with George
e.employee[0] = <employee><name>George</name><age>27</age></employee>;

// add a new employee to the end of the employee list
e.employee[e.employee.length()] = <employee><name>Frank</name></employee>;

Semantics

E4X extends the semantics of the assignment operator by providing more elaborate [[Put]] methods used
when MemberExpression evaluates to a value of type XML or XMLList (see sections 9.1.1.2 and 9.2.1.2
respectively).

11.6.3 Compound Assignment (op=)

This section is provided to describe the effects of the XML and XMLList [[Get]], [[Put]] and additive operators
on the compound assignment operator. E4X does not define any extensions to the syntax or semantics of the
ECMAScript compound assignment operator beyond those provided by the XML and XMLList [[Get]], [[Put]]
and additive operators.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 61

Syntax

E4X benefits from the compound assignment operator “+=” without requiring additional ECMAScript
extensions. The syntax of the compound assignment “+=” is described by the following production:

 AssignmentExpression :

LeftHandSideExpression += AssignmentExpression

Overview

The expression LeftHandSideExpression += AssignmentExpression is an abbreviated form of the expression
LeftHandSideExpression = LeftHandSideExpression + AssignmentExpression and behaves identically. When
LeftHandSideExpression identifies one or more XML objects and AssignmentExpression identifies one or
more XML objects, the “+=” operator replaces the XML objects identified by LeftHandSideExpression with the
result of concatenating the XML objects identified by LeftHandSideExpression and the XML objects identified
by AssignmentExpression. This has the general effect of inserting the XML objects specified by the
AssignmentExpression just after the XML objects specified by the LeftHandSideExpression in the context of
their parent. For example, after evaluating the statements below,

var e = <employees>
 <employee id="1"><name>Joe</name><age>20</age></employee>
 <employee id="2"><name>Sue</name><age>30</age></employee>
</employees>;

// insert employee 3 and 4 after the first employee
e.employee[0] += <employee id="3"><name>Fred</name></employee> +
 <employee id="4"><name>Carol</name></employee>;

the variable “e” would contain the XML value:

<employees>
 <employee id="1"><name>Joe</name><age>20</age></employee>
 <employee id="3"><name>Fred</name></employee>
 <employee id="4"><name>Carol</name></employee>
 <employee id="2"><name>Sue</name><age>30</age></employee>
</employees>;

Similarly, after evaluating the statements below,

var e = <employees>
 <employee id="1"><name>Joe</name><age>20</age></employee>
 <employee id="2"><name>Sue</name><age>30</age></employee>
</employees>;

// append employees 3 and 4 to the end of the employee list
e.employee += <employee id="3"><name>Fred</name></employee> +
 <employee id="4"><name>Carol</name></employee>;

the variable “e” would contain the XML value:

<employees>
 <employee id="1"><name>Joe</name><age>20</age></employee>
 <employee id="2"><name>Sue</name><age>30</age></employee>
 <employee id="3"><name>Fred</name></employee>
 <employee id="4"><name>Carol</name></employee>
</employees>;

Note, however, that the "+=" operation does not necessarily preserve the identity of the XML object specified
by the LeftHandSideExpression.

ISO/IEC 22537:2005(E)

62 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Semantics

E4X extends the semantics of the compound assignment operator by providing more elaborate [[Get]] and
[[Put]] methods used when MemberExpression evaluates to a value of type XML or XMLList (see sections
9.1.1.1, 9.1.1.2, 9.2.1.1 and 9.2.1.2 respectively).

12 Statements

E4X extends the statements provided in ECMAScript with the following production:

Statement :
 DefaultXMLNamespaceStatement

12.1 The default xml namespace Statement

Syntax

E4X extends ECMAScript by adding a default xml namespace statement. The following production describes
the syntax of the default xml namespace statement:

 DefaultXMLNamespaceStatement :
 default xml namespace = Expression

Overview

The default xml namespace statement sets the value of the internal property [[DefaultNamespace]] of the
variable object associated with the current execution context (see section 10 of ECMAScript Edition 3). The
default xml namespace of the global scope has the initial value of no namespace (section 13.1.1.1). If the
default xml namespace statement occurs inside a FunctionDeclaration, the internal property
[[DefaultNamesapce]] is added to the activation’s variable object and given the initial value of no namespace.
This [[DefaultNamespace]] property hides [[DefaultNamespace]] properties of outer scopes.

When the default xml namespace statement is executed, it evaluates the Expression, converts the result to a
String s, creates a new Namespace object n as if by calling the constructor n = new Namespace("", s), and
sets the default XML namespace associated with the current execution context to n. Unqualified XML element
names following the default xml namespace declaration in the current scope will be associated with the default
xml namespace specified by Expression. For example,

// declare some namespaces and a default namespace for the current scope
var soap = new Namespace("http://schemas.xmlsoap.org/soap/envelope/");
var stock = new Namespace("http://mycompany.com/stocks");
default xml namespace = soap; // alternately, may specify full URI

// Create an XML initializer in the default (i.e., soap) namespace
var message = <Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <Body>
 <m:GetLastTradePrice xmlns:m="http://mycompany.com/stocks">
 <symbol>DIS</symbol>
 </m:GetLastTradePrice>
 </Body>
</Envelope>

// extract the soap encoding style using a QualifiedIdentifier (unqualified attributes are
in
// no namespace)
var encodingStyle = message.@soap::encodingStyle;

//extract the body from the soap message using the default namespace
var body = message.Body;

// change the stock symbol using the default namespace and qualified names
message.Body.stock::GetLastTradePrice.stock::symbol = "MYCO";

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 63

Semantics

The production DefaultXMLNamespaceStatement : default xml namespace = Expression is evaluated as
follows:

1. Let uriRef be the result of evaluating Expression
2. Let uri = GetValue(uriRef)
3. Let namespace be a new Namespace Object, created as if by calling the constructor new

Namespace("", uri)
4. Let varObj be the variable object associated with the current execution context (see section 10.1.3 of

ECMAScript Edition 3)
5. Let varObj.[[DefaultNamespace]] = namespace

12.1.1 GetDefaultNamespace ()

Overview

The GetDefaultNamespace abstract operator is used in this specification for obtaining the value of the default
xml namespace. This operator is not part of the language. It is defined here to aid the specification of the
language.

Semantics

When the internal GetDefaultNamespace method is called, the following steps are taken:

1. While (there are more objects on the scope chain)
a. Let o be the next object on the scope chain

NOTE on the first iteration, o will be the first object on the scope chain
b. If o has the internal property [[DefaultNamespace]], return o.[[DefaultNamespace]]

2. Throw a TypeError exception
NOTE this step should not occur because the global object has a [[DefaultNamespace]] property

12.2 The for-in Statement

Syntax

E4X extends the semantics of the ECMAScript for-in statement used for iterating over the properties of an
object. The syntax of the for-in statement is specified by the following productions:

 IterationStatement :

for (LeftHandSideExpression in Expression) Statement
for (var VariableDeclarationNoLn in Expression) Statement

Overview

The for-in statement evaluates the Expression and iterates through each property of the resulting object. For
each property, the for-in statement assigns the name of the property to the variable identified by
LeftHandSideExpression or VariableDeclarationNoLn and evaluates the Statement. For example,

// print all the employee names
for (var n in e..name) {
 print ("Employee name: " + e..name[n]);
}

// print each child of the first item
for (var child in order.item[0].*) {
 print("item child: " + order.item.[0].*[child]);
}

ISO/IEC 22537:2005(E)

64 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

When the Expression evaluates to an XML object, the for-in statement converts the XML object to an XMLList
and iterates over the resulting XMLList. This treatment intentionally blurs the distinction between a single XML
object and an XMLList containing only one value.

Semantics

The production IterationStatement : for (LeftHandSideExpression in Expression) Statement is evaluated as
follows:

1. Let ref be the result of evaluating Expression
2. Let e = GetValue(ref)
3. If Type(e) is XML

a. Let list = ToXMLList(e)
4. Else if Type(e) is not XMLList

a. Let list = ToObject(e)
5. Let V = empty
6. While (list has more properties)

a. Let p be the next property of list (see notes below)
b. If p does not have the DontEnum attribute

i. Let i be the result of evaluating LeftHandSideExpression
ii. Let name be the name of property p
iii. PutValue(i, name)
iv. Let s be the result of evaluating Statement
v. If s.value is not empty, let V = s.value
vi. If s.type is break and s.target is in the current label set, return (normal, V, empty)
vii. If (s.type is not continue) or (s.target is not in the current label set)

1. If s is an abrupt completion, return s
7. Return (normal, V, empty)

The production IterationStatement : for (var VariableDeclarationNoLn in Expression) Statement is evaluated
as follows:

1. Let varRef be the result of evaluating VariableDeclarationNoLn
2. Let ref be the result of evaluating Expression
3. Let e = GetValue(ref)
4. If Type(e) is XML

a. Let list = ToXMLList(e)
5. Else if Type(e) is not XMLList

a. Let list = ToObject(e)
6. Let V = empty
7. While (list has more properties)

a. Let p be the next property of list (see notes below)
b. If p does not have the DontEnum attribute

i. Let i be the result of evaluating varRef as if it were an identifier (See section 11.1.2 of
ECMAScript Edition 3)

ii. Let name be the name of property p
iii. PutValue(i, name)
iv. Let s be the result of evaluating Statement
v. If s.value is not empty, let V = s.value
vi. If s.type is break and s.target is in the current label set, return (normal, V, empty)
vii. If (s.type is not continue) or (s.target is not in the current label set)

1. If s is an abrupt completion, return s
8. Return (normal, V, empty)

The order of enumeration is defined by the object (steps 6 and 6a in the first algorithm and steps 7 and 7a in
the second algorithm). When e evaluates to a value of type XML or XMLList, properties are enumerated in
ascending sequential order according to their numeric property names (i.e., document order for XML objects).
Properties of other objects are enumerated in an implementation dependent order.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 65

The mechanics of enumerating the properties (steps 6 and 6a in the first algorithm and steps 7 and 7a in the
second) is implementation dependent. Properties of the object being enumerated may be deleted during
enumeration. If a property that has not yet been visited during enumeration is deleted, then it will not be visited.
If new properties are added to the object being enumerated during enumeration, the newly added properties
are not guaranteed to be visited in the active enumeration. Enumerating the properties of an object includes
enumerating properties of its prototype and the prototype of the prototype, and so on, recursively; but a
property of a prototype is not enumerated if it is "shadowed" because some previous object in the prototype
chain has a property with the same name.

12.3 The for-each-in Statement

Syntax

E4X extends ECMAScript by adding a for-each-in statement for iterating over the property values of an object.
The syntax of the for-each-in statement is specified by the following productions:

 IterationStatement :

for each (LeftHandSideExpression in Expression) Statement
for each (var VariableDeclarationNoLn in Expression) Statement

Overview

The for-each-in statement evaluates the Expression and iterates through each property of the resulting object.
For each property, the for-each-in statement assigns the value of the property to the variable identified by
LeftHandSideExpression or VariableDeclarationNoLn and evaluates the Statement. For example,

// print all the employee names
for each (var n in e..name) {
 print ("Employee name: " + n);
}

// print each child of the first item
for each (var child in order.item[0].*) {
 print("item child: " + child);
}

In the first for-each-in statement above, the expression “e..name” returns an XMLList containing all of the
descendant XML properties of the XML object “e” with the name “name”. The for-each-in statement iterates
through each property of the resulting XMLList object in order. For each XML property in the list, it assigns the
value of the XML property to the variable “n” and executes the code nested in curly braces. Similarly, in the
second for-each-in statement above, the expression “order.item[0].*” returns an XMLList containing all of the
children of the first XML object named “item” from the XML object named “order”. The for-each-in statement
iterates through each property of the XMLList object in order assigning the value of the XML property to the
variable “child” and executing the code nested in curly braces.

When the Expression evaluates to an XML object, the for-each-in statement converts the XML object to an
XMLList and iterates over the resulting XMLList. This treatment intentionally blurs the distinction between a
single XML object and an XMLList containing only one value.

NOTE The for-each-in statement behaves differently from the for-in statement. In particular, it assigns the loop
variable over the range of the object rather than the domain of the object. I.e., the for-each-in statement binds the loop
variable to the property values of the given object rather than the property names.

ISO/IEC 22537:2005(E)

66 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Semantics

The production IterationStatement : for each (LeftHandSideExpression in Expression) Statement is
evaluated as follows:

1. Let ref be the result of evaluating Expression
2. Let e = GetValue(ref)
3. If Type(e) is XML

a. Let list = ToXMLList(e)
4. Else if Type(e) is not XMLList

a. Let list = ToObject(e)
5. Let V = empty
6. While (list has more properties)

a. Let p be the next property of list (see notes below)
b. If p does not have the DontEnum attribute

i. Let i be the result of evaluating LeftHandSideExpression
ii. Let value be the value of property p
iii. PutValue(i, value)
iv. Let s be the result of evaluating Statement
v. If s.value is not empty, let V = s.value
vi. If s.type is break and s.target is in the current label set, return (normal, V, empty)
vii. If (s.type is not continue) or (s.target is not in the current label set)

1. If s is an abrupt completion, return s
7. Return (normal, V, empty)

The production IterationStatement : for each (var VariableDeclarationNoLn in Expression) Statement is
evaluated as follows:

1. Let varRef be the result of evaluating VariableDeclarationNoLn
2. Let ref be the result of evaluating Expression
3. Let e = GetValue(ref)
4. If Type(e) is XML

a. Let list = ToXMLList(e)
5. Else if Type(e) is not XMLList

a. Let list = ToObject(e)
6. Let V = empty
7. While (list has more properties)

a. Let p be the next property of list (see notes below)
b. If p does not have the DontEnum attribute

i. Let i be the result of evaluating varRef as if it were an identifier (See section 11.1.2 of
ECMAScript Edition 3)

ii. Let value be the value of property p
iii. PutValue(i, value)
iv. Let s be the result of evaluating Statement
v. If s.value is not empty, let V = s.value
vi. If s.type is break and s.target is in the current label set, return (normal, V, empty)
vii. If (s.type is not continue) or (s.target is not in the current label set)

1. If s is an abrupt completion, return s
8. Return (normal, V, empty)

The order of enumeration is defined by the object (steps 6 and 6a in the first algorithm and steps 7 and 7a in
the second algorithm). When e evaluates to a value of type XML or XMLList, properties are enumerated in
ascending sequential order according to their numeric property names (i.e., document order for XML objects).

The mechanics of enumerating the properties (steps 6 and 6a in the first algorithm, steps 7 and 7a in the
second) is implementation dependent. Properties of the object being enumerated may be deleted during
enumeration. If a property that has not yet been visited during enumeration is deleted, then it may not be
visited. If new properties are added to the object being enumerated during enumeration, the newly added
properties are not guaranteed to be visited in the active enumeration. Enumerating the properties of an object
includes enumerating properties of its prototype and the prototype of the prototype, and so on, recursively; but
a property of a prototype is not enumerated if it is "shadowed" because some previous object in the prototype
chain has a property with the same name.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 67

13 Native E4X Objects

E4X adds four native objects to ECMAScript, the Namespace object, the QName object, the XML object and
the XMLList object. In addition, E4X adds new properties to the global object.

13.1 The Global Object

13.1.1 Internal Properties of the Global Object

E4X extends ECMAScript by adding the following internal properties to the global object.

13.1.1.1 [[DefaultNamespace]]

Overview

Initially, the global object has an internal property [[DefaultNamespace]] with its value set to a Namespace
object representing no namespace, created as if by calling the Namespace constructor with no arguments.
Consequently, unless otherwise specified using the default xml namespace statement (see section 12.1),
unqualified names used to specify properties of XML objects will match XML properties in no namespace.

13.1.2 Function Properties of the Global Object

E4X extends ECMAScript by adding the following function properties to the global object.

13.1.2.1 isXMLName (value)

Overview

The isXMLName function examines the given value and determines whether it is a valid XML name that can
be used as an XML element or attribute name. If so, it returns true, otherwise it returns false.

Semantics

When the isXMLName function is called with one parameter value, the following steps are taken:

1. Let q be a new QName created as if by calling the constructor new QName (value) and if a
TypeError exception is thrown, return false

2. If q.localName does not match the production NCName, return false
3. Return true

Where the production NCName is defined in Section 2 of the Namespaces in XML specification.

13.1.3 Constructor Properties of the Global Object

E4X extends ECMAScript by adding the following constructor properties to ECMAScript.

13.1.3.1 Namespace (. . .)

See section 13.2.1 and 13.2.

13.1.3.2 QName (. . .)

See section 13.3.1 and 13.3.2.

13.1.3.3 XML (. . .)

See sections 13.4.1 and 13.4.2.

ISO/IEC 22537:2005(E)

68 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

13.1.3.4 XMLList (. . .)

See section 13.5.1 and 13.5.2.

13.2 Namespace Objects

Namespace objects represent XML namespaces and provide an association between a namespace prefix and
a Unique Resource Identifier (URI). The prefix is either the undefined value or a string value that may be
used to reference the namespace within the lexical representation of an XML value. When an XML object
containing a namespace with an undefined prefix is encoded as XML by the method ToXMLString(), the
implementation will automatically generate a prefix. The URI is a string value used to uniquely identify the
namespace.

13.2.1 The Namespace Constructor Called as a Function

Syntax

 Namespace ()
 Namespace (uriValue)
 Namespace (prefixValue , uriValue)

Overview

If the Namespace constructor is called as a function with exactly one argument that is a Namespace object,
the argument is returned unchanged. Otherwise, a new Namespace object is created and returned as if the
same arguments were passed to the object creation expression new Namespace (…). See section 13.2.2.

Semantics

When Namespace is called as a function with a no arguments, one argument uriValue, or two arguments
prefixValue and uriValue, the following steps are taken:

1. If (prefixValue is not specified and Type(uriValue) is Object and uriValue.[[Class]] == "Namespace")
a. Return uriValue

2. Create and return a new Namespace object exactly as if the Namespace constructor had been called
with the same arguments (section 13.2.2).

13.2.2 The Namespace Constructor

Syntax

 new Namespace ()
 new Namespace (uriValue)
 new Namespace (prefixValue, uriValue)

Overview

When Namespace is called as part of a new expression, it is a constructor and creates a new Namespace
object.

The [[Prototype]] property of the newly constructed object is set to the original Namespace prototype object,
the one that is the initial value of Namespace.prototype (section 13.2.3.1). The [[Class]] property of the newly
constructed object is set to “Namespace”.

When no arguments are specified, the namespace uri and the prefix are set to the empty string. A namespace
with uri set to the empty string represents no namespace. No namespace is used in XML objects to explicitly
specify that a name is not inside a namespace and may never be associated with a prefix other than the
empty string.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 69

When only the uriValue argument is specified and uriValue is a Namespace object, a copy of the uriValue is
returned. When only the uriValue is specified and it is the empty string, the prefix is set to the empty string. In
all other cases where only the uriValue is specified, the namespace prefix is set to the undefined value.

When the prefixValue argument is specified and set to the empty string, the Namespace is called a default
namespace. Default namespaces are used in XML objects to implicitly specify the namespace of qualified
names that do not specify a qualifier.

Semantics

When the Namespace constructor is called with a no arguments, one argument uriValue or two arguments
prefixValue and uriValue, the following steps are taken:

1. Create a new Namespace object n
2. If prefixValue is not specified and uriValue is not specified

a. Let n.prefix be the empty string
b. Let n.uri be the empty string

3. Else if prefixValue is not specified
a. If Type(uriValue) is Object and uriValue.[[Class]] == "Namespace"

i. Let n.prefix = uriValue.prefix
ii. Let n.uri = uriValue.uri

b. Else if Type(uriValue) is Object and uriValue.[[Class]] == "QName" and uriValue.uri is not null
i. Let n.uri = uriValue.uri

NOTE implementations that preserve prefixes in qualified names may also set n.prefix =
uriValue.[[Prefix]]

c. Else
i. Let n.uri = ToString(uriValue)
ii. If (n.uri is the empty string), let n.prefix be the empty string
iii. Else n.prefix = undefined

4. Else
a. If Type(uriValue) is Object and uriValue.[[Class]] == "QName" and uriValue.uri is not null

i. Let n.uri = uriValue.uri
b. Else

i. Let n.uri = ToString(uriValue)
c. If n.uri is the empty string

i. If prefixValue is undefined or ToString(prefixValue) is the empty string
1. Let n.prefix be the empty string

ii. Else throw a TypeError exception
d. Else if prefixValue is undefined, let n.prefix = undefined
e. Else if isXMLName(prefixValue) == false

i. Let n.prefix = undefined
f. Else let n.prefix = ToString(prefixValue)

5. Return n

13.2.3 Properties of the Namespace Constructor

The value of the internal [[Prototype]] property of the Namespace constructor is the Function prototype object.

Besides the internal properties and the length property (whose value is 2), the Namespace constructor has the
following properties.

13.2.3.1 Namespace.prototype

The initial value of the Namespace.prototype property is the Namespace prototype object (section 13.2.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

ISO/IEC 22537:2005(E)

70 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

13.2.4 Properties of the Namespace Prototype Object (Built-in Methods)

The Namespace prototype object is itself a Namespace object (its [[Class]] is “Namespace”) with its uri and
prefix properties set to the empty string.

The value of the internal [[Prototype]] property of the Namespace prototype object is the Object prototype
object (section 15.2.3.1 of ECMAScript Edition 3).

13.2.4.1 Namespace.prototype.constructor

The initial value of the Namespace.prototype.constructor is the built-in Namespace constructor.

13.2.4.2 Namespace.prototype.toString()

Overview

The toString() method returns a string representation of this Namespace object.

The toString function is not generic. It throws a TypeError exception if its this value is not a Namespace
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Semantics

When the toString method of a Namespace object n is called with no arguments, the following step is taken:

1. if Type(n) is not Object or n.[[Class]] is not equal to "Namespace", throw a TypeError exception
2. Return n.uri

13.2.5 Properties of Namespace Instances

Namespace instances inherit properties from the Namespace prototype object and also have a prefix property
and a uri property.

13.2.5.1 prefix

The value of the prefix property is either the undefined value or a string value. When the value of the prefix
property is the empty string, the Namespace is called a default namespace. Default namespaces are used in
XML objects to determine the namespace of names that do not specify a qualifier.

This property has the attributes { DontDelete, ReadOnly }.

13.2.5.2 uri

The value of the uri property is a string value. When the value of the uri property is the empty string, the
Namespace represents the unnamed namespace. The unnamed namespace is used in XML objects to
explicitly specify that a name is not inside a namespace.

This property has the attributes { DontDelete, ReadOnly }.

13.3 QName Objects

QName objects are used to represent qualified names of XML elements and attributes. Each QName object
has a local name of type string and a namespace URI of type string or null. When the namespace URI is null,
this qualified name matches any namespace.

Implementations may include an internal [[Prefix]] property that is not directly visible to E4X users. When a
QName object is created using a Namespace object argument, the internal [[Prefix]] property may be used to
preserve the prefix of the Namespace object. If no namespace prefix was specified for the associated
Namespace, the [[Prefix]] property may be undefined.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 71

A value of type QName may be specified using a QualfiedIdentifier. If the QName of an XML element is
specified without identifying a namespace (i.e., as an unqualified identifier), the uri property of the associated
QName will be set to the in-scope default namespace (section 12.1). If the QName of an XML attribute is
specified without identifying a namespace, the uri property of the associated QName will be the empty string
representing no namespace.

13.3.1 The QName Constructor Called as a Function

Syntax

QName ()
 QName (Name)
 QName (Namespace , Name)

Overview

If the QName constructor is called as a function with exactly one argument that is a QName object, the
argument is returned unchanged. Otherwise, a new QName object is created and returned as if the same
arguments were passed to the object relation expression new QName (…). See section 13.3.2.

Semantics

When the QName function is called the following step is taken.

1. If Namespace is not specified and Type(Name) is Object and Name.[[Class]] == “QName”
a. Return Name

2. Create and return a new QName object exactly as if the QName constructor had been called with the
same arguments (section 13.3.2).

13.3.2 The QName Constructor

Syntax

new QName ()
 new QName (Name)
 new QName (Namespace , Name)

Overview

When QName is called as part of a new expression, it is a constructor and creates a new QName object.

The [[Prototype]] property of the newly constructed object is set to the original QName prototype object, the
one that is the initial value of QName.prototype (section 13.3.3.1). The [[Class]] property of the newly
constructed object is set to “QName”.

If Name is undefined or not specified, then the empty string is used as the name.

If Name is a QName and Namespace is not specified, the QName constructor returns a copy of the given
Name.

When both the Namespace and Name arguments are specified, the localName property of the newly created
object is set according to the given Name and the uri property of the newly created object is set according to
the Namespace argument. If Name is a QName object, the localName of the newly created QName will be
equal to the localName of Name. If the Namespace argument is a Namespace object, the uri property of the
newly created object is set to the uri property of the Namespace object. If the Namespace argument is null,
the uri property of the newly created object will be null, meaning it will match names in any namespace.

ISO/IEC 22537:2005(E)

72 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Semantics

When the QName constructor is called with a one argument Name or two arguments Namespace and Name
the following steps are taken:

1. If (Type(Name) is Object and Name.[[Class]] == "QName")
a. If (Namespace is not specified), return a copy of Name
b. Else let Name = Name.localName

2. If (Name is undefined or not specified)
a. Let Name = “”

3. Else let Name = ToString(Name)
4. If (Namespace is undefined or not specified)

a. If Name = "*"
i. Let Namespace = null

b. Else
i. Let Namespace = GetDefaultNamespace()

5. Let q be a new QName with q.localName = Name
6. If Namespace == null

a. Let q.uri = null
NOTE implementations that preserve prefixes in qualified names may also set q.[[Prefix]] to undefined

7. Else
a. Let Namespace be a new Namespace created as if by calling the constructor new

Namespace(Namespace)
b. Let q.uri = Namespace.uri

NOTE implementations that preserve prefixes in qualified names may also set q.[[Prefix]] to
Namespace.prefix

8. Return q

13.3.3 Properties of the QName Constructor

The value of the internal [[Prototype]] property of the QName constructor is the Function prototype object.

Besides the internal properties and the length property (whose value is 2), the QName constructor has the
following properties.

13.3.3.1 QName.prototype

The initial value of the QName.prototype property is the QName prototype object (section 13.3.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

13.3.4 Properties of the QName Prototype Object

The QName prototype object is itself a QName object (its [[Class]] is “QName”) with its uri and localName
properties set to the empty string.

The value of the internal [[Prototype]] property of the QName prototype object is the Object prototype object
(section 15.2.3.1 of ECMAScript Edition 3).

13.3.4.1 QName.prototype.constructor

The initial value of the QName.prototype.constructor is the built-in QName constructor.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 73

13.3.4.2 QName.prototype.toString()

Overview

The toString method returns a string representation of this QName object.

The toString function is not generic. It throws a TypeError exception if its this value is not a QName object.
Therefore, it cannot be transferred to other kinds of objects for use as a method.

Semantics

When the toString method of a QName object n is called with no arguments, the following steps are taken:

1. If Type(n) is not Object or n.[[Class]] is not equal to "QName", throw a TypeError exception
2. Let s be the empty string
3. If n.uri is not the empty string

a. If n.uri == null, let s be the string "*::"
b. Else let s be the result of concatenating n.uri and the string "::"

4. Let s be the result of concatenating s and n.localName
5. Return s

13.3.5 Properties of QName Instances

QName instances inherit properties from the QName prototype object and also have a uri property, a
localName property and an optional internal [[Prefix]] property that may be used by implementations that
preserve prefixes in qualified names.

13.3.5.1 localName

The value of the localName property is a value of type string. When the value of the localName property is “*”
it represents a wildcard that matches any name.

This property shall have the attributes { DontDelete, ReadOnly }

13.3.5.2 uri

The value of the uri property is null or a value of type string identifying the namespace of this QName. When
the value of the uri property is the empty string, this QName is said to be in no namespace. No namespace is
used in XML objects to explicitly specify that a name is not inside a namespace. When the value of the uri
property is null, this QName will match names in any namespace.

This property shall have the attributes { DontDelete, ReadOnly }

13.3.5.3 [[Prefix]]

The [[Prefix]] property is an optional internal property that is not directly visible to users. It may be used by
implementations that preserve prefixes in qualified names. The value of the [[Prefix]] property is a value of
type string or undefined. If the [[Prefix]] property is undefined, the prefix associated with this QName is
unknown.

13.3.5.4 [[GetNamespace]] ([InScopeNamespaces])

Overview

The [[GetNamespace]] method is an internal method that returns a Namespace object with a URI matching
the URI of this QName. InScopeNamespaces is an optional parameter. If InScopeNamespaces is unspecified,
it is set to the empty set. If one or more Namespaces exists in InScopeNamespaces with a URI matching the

ISO/IEC 22537:2005(E)

74 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

URI of this QName, one of the matching Namespaces will be returned. If no such namespace exists in
InScopeNamespaces, [[GetNamespace]] creates and returns a new Namespace with a URI matching that of
this QName. For implementations that preserve prefixes in QNames, [[GetNamespace]] may return a
Namespace that also has a matching prefix. The input argument InScopeNamespaces is a set of Namespace
objects.

Semantics

When the [[GetNamespace]] method of a QName q is called with no arguments or one argument
InScopeNamespaces, the following steps are taken:

1. If q.uri is null, throw a TypeError exception
NOTE the exception above should never occur due to the way [[GetNamespace]] is called in this
specification

2. If InScopeNamespaces was not specified, let InScopeNamespaces = { }
3. Find a Namespace ns in InScopeNamespaces, such that ns.uri == q.uri. If more than one such

Namespace ns exists, the implementation may choose one of the matching Namespaces arbitrarily.
NOTE implementations that preserve prefixes in qualified names may additionally constrain ns, such that
ns.prefix == q.[[Prefix]]

4. If no such namespace ns exists
a. Let ns be a new namespace created as if by calling the constructor new Namespace(q.uri)

NOTE implementations that preserve prefixes and qualified names may create the new namespaces as
if by calling the constructor Namespace(q.[[Prefix]], q.uri)

5. Return ns

13.4 XML Objects

13.4.1 The XML Constructor Called as a Function

Syntax

 XML ([value])

Overview

When XML is called as a function rather than as a constructor, it performs a type conversion. If no argument is
provided, the XML function returns an XML object representing an empty text node.

Semantics

When the XML function is called with no arguments or with one argument value, the following step is taken.

1. If value is null, undefined or not supplied, let value be the empty string
2. Return ToXML(value)

NOTE The ToXML operator defines a mechanism for constructing an XML object from an implementation of the W3C
information set (e.g., a W3C DOM node). E4X implementations may expose this functionality to users via the XML
constructor; however, this is not required for conformance with E4X. See section 10.3.2 for additional information.

13.4.2 The XML Constructor

Syntax

 new XML ([value])

Overview

When XML is called as part of a new expression, it is a constructor and may create a new XML object. When
the XMLList constructor is called with no arguments, it returns an XML object representing an empty text node.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 75

Semantics

When the XML constructor is called with no arguments or a single argument value, the following steps are
taken:

1. If value is null, undefined or not supplied, let value be the empty string
2. Let x = ToXML(value)

NOTE The ToXML operator defines a mechanism for constructing an XML object from an implementation of
the W3C information set (e.g., a W3C DOM node). E4X implementations may expose this functionality to users
via the XML constructor; however, this is not required for conformance with E4X. See section 10.3.2 for additional
information.

3. If Type(value) ∈ {XML, XMLList, W3C XML Information Item}
a. Return the result of calling the [[DeepCopy]] method of x

4. Return x

13.4.3 Properties of the XML Constructor

The value of the internal [[Prototype]] property of the XML constructor is the Function prototype object.

Besides the internal properties and the length property (whose value is 1), the XML constructor has the
following properties:

13.4.3.1 XML.prototype

The initial value of the XML.prototype property is the XML prototype object (section 13.4.3.7).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

13.4.3.2 XML.ignoreComments

The initial value of the ignoreComments property is true. If ignoreComments is true, XML comments are
ignored when constructing new XML objects.

This property has the attributes { DontEnum, DontDelete}.

13.4.3.3 XML.ignoreProcessingInstructions

The initial value of the ignoreProcessingInstructions property is true. If ignoreProcessingInstructions is true,
XML processing instructions are ignored when constructing new XML objects.

This property has the attributes { DontEnum, DontDelete }.

13.4.3.4 XML.ignoreWhitespace

The initial value of the ignoreWhitespace property is true. If ignoreWhiltespace is true, insignificant
whitespace characters are ignored when processing constructing new XML objects. When elements tags
and/or embedded expressions are separated only by whitespace characters, those whitespace characters are
defined to be insignificant. Whitespace characters are defined to be space (\u0020), carriage return (\u000D),
line feed (\u000A) and tab (\u0009).

This property has the attributes { DontEnum, DontDelete }.

ISO/IEC 22537:2005(E)

76 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

13.4.3.5 XML.prettyPrinting

The initial value of the prettyPrinting property is true. If prettyPrinting is true, the ToString and ToXMLString
operators will normalize whitespace characters between certain tags to achieve a uniform and aesthetic
appearance.

This property has the attributes { DontEnum, DontDelete }.

13.4.3.6 XML.prettyIndent

The initial value of the prettyIndent property is 2. If the prettyPrinting property of the XML constructor is true,
the ToString and ToXMLString operators will normalize whitespace characters between certain tags to
achieve a uniform and aesthetic appearance. Certain child nodes will be indented relative to their parent node
by the number of spaces specified by prettyIndent.

This property has the attributes { DontEnum, DontDelete }.

13.4.3.7 XML.settings ()

Overview

The settings method is a convenience method for managing the collection of global XML settings stored as
properties of the XML constructor (sections 13.4.3.2 through 13.4.3.6). It returns an object containing the
properties of the XML constructor used for storing XML settings. This object may later be passed as an
argument to the setSettings method to restore the associated settings. For example,

// Create a general purpose function that may need to save and restore XML settings
function getXMLCommentsFromString(xmlString) {
 // save previous XML settings and make sure comments are not ignored
 var settings = XML.settings();
 XML.ignoreComments = false;

 var comments = XML(xmlString).comment();

 // restore settings and return result
 XML.setSettings(settings);
 return comments;
}

Semantics

When the settings method of the XML constructor is called, the following steps are taken:

1. Let s be a new Object created as if by calling the constructor new Object()
2. Let s.ignoreComments = XML.ignoreComments
3. Let s.ignoreProcessingInstructions = XML.ignoreProcessingInstructions
4. Let s.ignoreWhitespace = XML.ignoreWhitespace
5. Let s.prettyPrinting = XML.prettyPrinting
6. Let s.prettyIndent = XML.prettyIndent
7. Return s

13.4.3.8 XML.setSettings ([Settings])

The setSettings method is a convenience method for managing the collection of global XML settings stored as
properties of the XML constructor (sections 13.4.3.2 through 13.4.3.6). It may be used to restore a collection
of XML settings captured earlier using the associated settings method. When called with a single argument
settings, the setSettings method copies the properties of the XML constructor used for storing XML settings
from the settings object. When called with no arguments, the setSettings method restores the default XML
settings.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 77

Semantics

When the setSettings method of the XML constructor is called with no arguments or with a single argument
settings, the following steps are taken:

1. If settings is null, undefined or not provided
a. Let XML.ignoreComments = true
b. Let XML.ignoreProcessingInstructions = true
c. Let XML.ignoreWhitespace = true
d. Let XML.prettyPrinting = true
e. Let XML.prettyIndent = 2

2. Else if Type(settings) is Object
a. If Type(settings.ignoreComments) is Boolean,

i. Let XML.ignoreComments = settings.ignoreComments
b. If Type(settings.ignoreProcessingInstructions) is Boolean

i. Let XML.ignoreProcessingInstructions = settings.ignoreProcessingInstructions
c. If Type(settings.ignoreWhitespace) is Boolean

i. Let XML.ignoreWhitespace = settings.ignoreWhitespace
d. If Type(settings.prettyPrinting) is Boolean

i. Let XML.prettyPrinting = settings.prettyPrinting
e. If Type(settings.prettyIndent) is Number

i. Let XML.prettyIndent = settings.prettyIndent
3. Return

13.4.3.9 XML.defaultSettings ()

The defaultSettings method is a convenience method for managing the collection of global XML settings
stored as properties of the XML constructor (sections 13.4.3.2 through 13.4.3.6). It may be used to obtain an
object containing the default XML settings. This object may be inspected to determine the default settings or
be passed as an argument to the setSettings method to restore the default XML settings.

Semantics

When the defaultSettings method of the XML constructor is called with no arguments, the following steps are
taken:

1. Let s be a new Object created as if by calling the constructor new Object()
2. Let s.ignoreComments = true
3. Let s.ignoreProcessingInstructions = true
4. Let s.ignoreWhitespace = true
5. Let s.prettyPrinting = true
6. Let s.prettyIndent = 2
7. Return s

13.4.3.10 [[HasInstance]] (V)

Overview

The XML constructor has a more elaborate [[HasInstance]] method than other function objects. The XML
constructor [[HasInstance]] method is defined such that given an XML object or an XMLList object x, the
expression x instanceof XML will return true. This treatment intentionally blurs the distinction between a single
XML object and an XMLList containing only one value.

ISO/IEC 22537:2005(E)

78 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Semantics

When the [[HasInstance]] method of the XML constructor object F is called with value V, the following steps
are taken:

1. If V is not an object, return false
2. Let xmlProto = XML.prototype
3. Let listProto = XMLList.prototype
4. If (xmlProto is not an object) or (listProto is not an object), throw a TypeError exception
5. Let objProto = V.[[Prototype]]
6. while (objProto is not null)

a. If xmlProto and objProto refer to the same object or if they refer to objects joined to each other
(section 13.1.2 of ECMAScript Edition 3), return true

b. If listProto and objProto refer to the same object or if they refer to objects joined to each other
(section 13.1.2 of ECMAScript Edition 3), return true

c. Let objProto = objProto.[[Prototype]]
7. Return false

13.4.4 Properties of the XML Prototype Object (Built-in Methods)

Each value of type XML has a set of built-in methods available for performing common operations. These
built-in methods are properties of the XML prototype object and are described in the following sections.

The XML prototype object is itself an XML object (its [[Class]] property is "text") whose value is the empty
string.

The value of the internal [[Prototype]] property of the XML prototype object is the Object prototype object
(section 15.2.3.1 of ECMAScript Edition 3).

None of the built-in functions defined on XML.prototype are generic. They throw a TypeError exception if the
this value is not an XML object. Therefore, they cannot be transferred to other kinds of objects for use as a
method.

13.4.4.1 XML.prototype.constructor

The initial value of the XML.prototype.constructor is the built-in XML constructor. This property is reserved for
future versions of E4X.

NOTE The value of this property cannot be accessed, which makes this property write-only in practice.

13.4.4.2 XML.prototype.addNamespace (namespace)

Overview

The addNamespace method adds a namespace declaration to the in scope namespaces for this XML object
and returns this XML object. If the in scope namespaces for the XML object already contains a namespace
with a prefix matching that of the given parameter, the prefix of the existing namespace is set to undefined.

Semantics

When the addNamespace method of an XML object x is called with one parameter namespace, the following
step is taken:

1. Let ns a Namespace constructed as if by calling the function Namespace(namespace)
2. Call the [[AddInScopeNamespace]] method of x with parameter ns
3. Return x

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 79

13.4.4.3 XML.prototype.appendChild (child)

Overview

The appendChild method appends a deep copy of the given child to the end of this XML object’s properties
and returns this XML object. For example,

var e = <employees>
 <employee id="0" ><name>Jim</name><age>25</age></employee>
 <employee id="1" ><name>Joe</name><age>20</age></employee>
</employees>;

// Add a new child element to the end of Jim's employee element
e.employee.(name == "Jim").appendChild(<hobby>snorkeling</hobby>);

Semantics

When the appendChild method of an XML object x is called with one parameter child, the following steps are
taken:

1. Let children be the result of calling the [[Get]] method of x with argument "*"
2. Call the [[Put]] method of children with arguments children.[[Length]] and child
3. Return x

13.4.4.4 XML.prototype.attribute (attributeName)

Overview

The attribute method returns an XMLList containing zero or one XML attributes associated with this XML
object that have the given attributeName. For example,

// get the id of the employee named Jim
e.employee.(name == "Jim").attribute("id");

Semantics

When the attribute method of an XML object x is called with a parameter attributeName, the following steps
are taken:

1. Let name = ToAttributeName(attributeName)
2. Return the result of calling the [[Get]] method of x with argument name

13.4.4.5 XML.prototype.attributes ()

Overview

The attributes method returns an XMLList containing the XML attributes of this object. For example,

// print the attributes of an XML object
function printAttributes(x) {
 for each (var a in x.attributes()) {
 print("The attribute named " + a.name() + " has the value " + a);
 }
}

Semantics

When the attributes method of an XML object x is called, the following step is taken:

1. Return the result of calling the [[Get]] method of x with argument ToAttributeName("*")

ISO/IEC 22537:2005(E)

80 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

13.4.4.6 XML.prototype.child (propertyName)

Overview

The child method returns the list of children in this XML object matching the given propertyName. If
propertyName is a numeric index, the child method returns a list containing the child at the ordinal position
identified by propertyName. For example,

var name = customer.child("name"); // equivalent to: var name = customer.name;
var secondChild = customer.child(1); // equivalent to: var secondChild = customer.*[1]

Semantics

When the child method of an XML object x is called, it performs the following step:

1. If ToString(ToUint32(propertyName)) == propertyName
a. Let children be the result of calling the [[Get]] method of x with argument "*"
b. Let temporary be the result of calling the [[Get]] method of children with argument propertyName
c. If temporary is undefined, let temporary = new XMLList()
d. return temporary

2. Let temporary be the result of calling the [[Get]] method of x with argument propertyName
3. Return ToXMLList(temporary)

13.4.4.7 XML.prototype.childIndex ()

Overview

The childIndex method returns a Number representing the ordinal position of this XML object within the
context of its parent. For example,

// Get the ordinal index of the employee named Joe.
var joeindex = e.employee.(name == "Joe").childIndex();

Semantics

When the childIndex method of an XML object x is called, it performs the following steps:

1. Let parent = x.[[Parent]]
2. If (parent == null) or (x.[[Class]] == "attribute"), return NaN
3. Let q be the property of parent, where parent[q] is the same object as x
4. Return ToNumber(q)

13.4.4.8 XML.prototype.children ()

Overview

The children method returns an XMLList containing all the properties of this XML object in order. For example,

// Get child elements of first employee: returns an XMLList containing:
// <name>Jim</name>, <age>25</age> and <hobby>Snorkeling</hobby>
var emps = e.employee[0].children();

Semantics

When the children method of an XML object x is called, it performs the following step:

1. Return the results of calling the [[Get]] method of x with argument "*"

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 81

13.4.4.9 XML.prototype.comments ()

Overview

The comments method returns an XMLList containing the properties of this XML object that represent XML
comments.

Semantics

When the comments method of an XML object x is called, it performs the following steps:

1. Let list be a new XMLList with list.[[TargetObject]] = x and list.[[TargetProperty]] = null
2. For i = 0 to x.[[Length]]-1

a. If x[i].[[Class]] == "comment", call the [[Append]] method of list with argument x[i]
3. Return list

13.4.4.10 XML.prototype.contains (value)

Overview

The contains method returns the result of comparing this XML object with the given value. This treatment
intentionally blurs the distinction between a single XML object and an XMLList containing only one value.

Semantics

When the contains method is called on an XML object x with parameter value, the following step is taken:

1. Return the result of the comparison x == value

13.4.4.11 XML.prototype.copy ()

Overview

The copy method returns a deep copy of this XML object with the internal [[Parent]] property set to null.

Semantics

When the copy method is called on an XML object x, the following steps are taken:

1. Return the result of calling the [[DeepCopy]] method of x

13.4.4.12 XML.prototype.descendants ([name])

Overview

The descendants method returns all the XML valued descendants (children, grandchildren, great-
grandchildren, etc.) of this XML object with the given name. If the name parameter is omitted, it returns all
descendants of this XML object.

Semantics

When the descendants method is called on an XML object x with the optional parameter name, the following
steps are taken:

1. If name is not specified, let name = "*"
2. Return the result of calling the [[Descendants]] method of x with argument name

ISO/IEC 22537:2005(E)

82 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

13.4.4.13 XML.prototype.elements ([name])

Overview

When the elements method is called with one parameter name, it returns an XMLList containing all the
children of this XML object that are XML elements with the given name. When the elements method is called
with no parameters, it returns an XMLList containing all the children of this XML object that are XML elements
regardless of their name.

Semantics

When the elements method is called on an XML object x with optional parameter name, the following steps
are taken:

1. If name is not specified, let name = "*"
2. Let name = ToXMLName(name)
3. Let list be a new XMLList with list.[[TargetObject]] = x and list.[[TargetProperty]] = name
4. For i = 0 to x.[[Length]]-1

a. If x[i].[[Class]] == "element"
i. If (name.localName == "*" or name.localName == x[i].[[Name]].localName)

and (name.uri == null or n.uri == x[i].[[Name]].uri)
1. Call the [[Append]] method of list with argument x[i]

5. Return list

13.4.4.14 XML.prototype.hasOwnProperty (P)

Overview

The hasOwnProperty method returns a Boolean value indicating whether this object has the property specified
by P. For all XML objects except the XML prototype object, this is the same result returned by the internal
method [[HasProperty]]. For the XML prototype object, hasOwnProperty also examines the list of local
properties to determine if there is a method property with the given name.

Semantics

When the hasOwnProperty method of an XML object x is called with parameter P, the following step is taken:

1. If the result of calling the [[HasProperty]] method of this object with argument P is true, return true
2. If x has a property with name ToString(P), return true
3. Return false

13.4.4.15 XML.prototype.hasComplexContent()

Overview

The hasComplexContent method returns a Boolean value indicating whether this XML object contains
complex content. An XML object is considered to contain complex content if it represents an XML element that
has child elements. XML objects representing attributes, comments, processing instructions and text nodes do
not have complex content. The existence of attributes, comments, processing instructions and text nodes
within an XML object is not significant in determining if it has complex content.

Semantics

When the hasComplexContent method is called on an XML object x, the following steps are taken:

1. If x.[[Class]] ∈ {"attribute", "comment", "processing-instruction", "text"}, return false
2. For each property p in x

a. If p.[[Class]] == "element", return true
3. Return false

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 83

13.4.4.16 XML.prototype.hasSimpleContent()

Overview

The hasSimpleContent method returns a Boolean value indicating whether this XML object contains simple
content. An XML object is considered to contain simple content if it represents a text node, represents an
attribute node or if it represents an XML element that has no child elements. XML objects representing
comments and processing instructions do not have simple content. The existence of attributes, comments,
processing instructions and text nodes within an XML object is not significant in determining if it has simple
content.

Semantics

When the hasSimpleContent method is called on an XML object x, the following steps are taken:

1. If x.[[Class]] ∈ {"comment", "processing-instruction"}, return false
2. For each property p in x

a. If p.[[Class]] == "element", return false
3. Return true

13.4.4.17 XML.prototype.inScopeNamespaces()

Overview

The inScopeNamespaces method returns an Array of Namespace objects representing the namespaces in
scope for this XML object in the context of its parent. If the parent of this XML object is modified, the
associated namespace declarations may change. The set of namespaces returned by this method may be a
super set of the namespaces used by this value.

Semantics

When the inScopeNamespaces method is called on an XML object x, the following steps are taken:

1. Let y = x
2. Let inScopeNS = { }
3. While (y is not null)

a. For each ns in y.[[InScopeNamespaces]]
i. If there exists no n ∈ inScopeNS, such that n.prefix == ns.prefix

1. Let inScopeNS = inScopeNS ∪ { ns }
b. Let y = y.[[Parent]]

4. Let a be a new Array created as if by calling the constructor, new Array()
5. Let i = 0
6. For each ns in inScopeNS

a. Call the [[Put]] method of a with arguments ToString(i) and ns
b. Let i = i + 1

7. Return a

13.4.4.18 XML.prototype.insertChildAfter (child1 , child2)

Overview

The insertChildAfter method inserts the given child2 after the given child1 in this XML object and returns this
XML object. If child1 is null, the insertChildAfter method inserts child2 before all children of this XML object
(i.e., after none of them). If child1 does not exist in this XML object, it returns without modifying this XML
object.

ISO/IEC 22537:2005(E)

84 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Semantics

When the insertChildAfter method is called on an XML object x with parameters child1 and child2, the
following steps are taken:

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return
2. If (child1 == null)

a. Call the [[Insert]] method of x with arguments "0" and child2
b. Return x

3. Else if Type(child1) is XML
a. For i = 0 to x.[[Length]]-1

i. If x[i] is the same object as child1
1. Call the [[Insert]] method of x with arguments ToString(i + 1) and child2
2. Return x

4. Return

13.4.4.19 XML.prototype.insertChildBefore (child1 , child2)

Overview

The insertChildBefore method inserts the given child2 before the given child1 in this XML object and returns
this XML object. If child1 is null, the insertChildBefore method inserts child2 after all children in this XML
object (i.e., before none of them). If child1 does not exist in this XML object, it returns without modifying this
XML object.

Semantics

When the insertChildBefore method is called on an XML object x with parameters child1 and child2, the
following steps are taken:

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return
2. If (child1 == null)

a. Call the [[Insert]] method of x with arguments ToString(x.[[Length]]) and child2
b. Return x

3. Else if Type(child1) is XML
a. For i = 0 to x.[[Length]]-1

i. If x[i] is the same object as child1
1. Call the [[Insert]] method of x with arguments ToString(i) and child2
2. Return x

4. Return

13.4.4.20 XML.prototype.length ()

Overview

The length method always returns the integer 1 for XML objects. This treatment intentionally blurs the
distinction between a single XML object and an XMLList containing only one value.

Semantics

When the length method is called on an XML object x, the following step is taken:

1. Return 1

13.4.4.21 XML.prototype.localName ()

Overview
The localName method returns the local name portion of the qualified name of this XML object.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 85

Semantics

When the localName method is called on an XML object x, the following step is taken:

1. If x.[[Name]] == null, return null
2. Return x.[[Name]].localName

13.4.4.22 XML.prototype.name ()

Overview

The name method returns the qualified name associated with this XML object.

Semantics

When the name method is called on an XML object x, the following step is taken:

1. Return x.[[Name]]

13.4.4.23 XML.prototype.namespace ([prefix])

Overview

If no prefix is specified, the namespace method returns the Namespace associated with the qualified name of
this XML object.

If a prefix is specified, the namespace method looks for a namespace in scope for this XML object with the
given prefix and, if found, returns it. If no such namespace is found, the namespace method returns
undefined.

Semantics

When the namespace method is called on an XML object x with zero arguments or one argument prefix, the
following steps are taken:

1. Let y = x
2. Let inScopeNS = { }
3. While (y is not null)

a. For each ns in y.[[InScopeNamespaces]]
i. If there exists no n ∈ inScopeNS, such that n.prefix == ns.prefix

1. Let inScopeNS = inScopeNS ∪ { ns }
b. Let y = y.[[Parent]]

4. If prefix was not specified
a. If x.[[Class]] ∈ {"text", "comment", "processing-instruction"}, return null
b. Return the result of calling the [[GetNamespace]] method of x.[[Name]] with argument

inScopeNS
5. Else

a. Let prefix = ToString(prefix)
b. Find a Namespace ns ∈ inScopeNS, such that ns.prefix = prefix. If no such ns exists, let ns =

undefined.
c. Return ns

ISO/IEC 22537:2005(E)

86 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

13.4.4.24 XML.prototype.namespaceDeclarations ()

Overview

The namespaceDeclarations method returns an Array of Namespace objects representing the namespace
declarations associated with this XML object in the context of its parent. If the parent of this XML object is
modified, the associated namespace declarations may change.

Semantics

When the namespaceDeclarations method is called on an XML object x, the following steps are taken:

1. Let a be a new Array created as if by calling the constructor, new Array()
2. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return a
3. Let y = x.[[Parent]]
4. Let ancestorNS = { }
5. While (y is not null)

a. For each ns in y.[[InScopeNamespaces]]
i. If there exists no n ∈ ancestorNS, such that n.prefix == ns.prefix

1. Let ancestorNS = ancestorNS ∪ { ns }
b. Let y = y.[[Parent]]

6. Let declaredNS = { }
7. For each ns in x.[[InScopeNamespaces]]

a. If there exists no n ∈ ancestorNS, such that n.prefix == ns.prefix and n.uri == ns.uri
i. Let declaredNS = declaredNS ∪ { ns }

8. Let i = 0
9. For each ns in declaredNS

a. Call the [[Put]] method of a with arguments ToString(i) and ns
b. Let i = i + 1

10. Return a

13.4.4.25 XML.prototype.nodeKind ()

Overview

The nodeKind method returns a string representing the [[Class]] of this XML object.

Semantics

When the nodeKind method is called on an XML object x, the following step is taken:

1. Return x.[[Class]]

13.4.4.26 XML.prototype.normalize ()

Overview

The normalize method puts all text nodes in this and all descendant XML objects into a normal form by
merging adjacent text nodes and eliminating empty text nodes. It returns this XML object.

Semantics

When the normalize method is called on an XML object x, the following steps are taken:

1. Let i = 0
2. While i < x.[[Length]]

a. If x[i].[[Class]] == "element"
i. Call the normalize method of x[i]

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 87

ii. Let i = i + 1
b. Else if x[i].[[Class]] == "text"

i. While ((i+1) < x.[[Length]]) and (x[i + 1].[[Class]] == "text")
1. Let x[i].[[Value]] be the result of concatenating x[i].[[Value]] and x[i + 1].[[Value]]
2. Call the [[DeleteByIndex]] method of x with argument ToString(i + 1)

ii. If x[i].[[Value]].length == 0
1. Call the [[DeleteByIndex]] method of x with argument ToString(i)

iii. Else
1. Let i = i + 1

c. Else
i. Let i = i + 1

3. Return x

13.4.4.27 XML.prototype.parent ()

Overview

The parent method returns the parent of this XML object. For example,

// Get the parent element of the second name in "e". Returns <employee id="1" …
var firstNameParent = e..name[1].parent()

Semantics

When the parent method is called on an XML object x, the following step is taken:

1. Return x.[[Parent]]

13.4.4.28 XML.prototype.processingInstructions ([name])

Overview

When the processingInstructions method is called with one parameter name, it returns an XMLList containing
all the children of this XML object that are processing-instructions with the given name. When the
processingInstructions method is called with no parameters, it returns an XMLList containing all the children of
this XML object that are processing-instructions regardless of their name.

Semantics

When the processingInstructions method is called on an XML object x with optional parameter name, the
following steps are taken:

1. If name is not specified, let name = "*"
2. Let name = ToXMLName(name)
3. Let list = a new XMLList with list.[[TargetObject]] = x and list.[[TargetProperty]] = null
4. For i = 0 to x.[[Length]]-1

a. If x[i].[[Class]] == "processing-instruction"
i. If name.localName == "*" or name.localName == x[i].[[Name]].localName

1. Call the [[Append]] method of list with argument x[i]
5. Return list

13.4.4.29 XML.prototype.prependChild (value)

Overview

The prependChild method inserts a deep copy of the given child into this object prior to its existing XML
properties and returns this XML object. For example,

ISO/IEC 22537:2005(E)

88 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

// Add a new child element to the front of John's employee element
e.employee.(name == "John").prependChild(<prefix>Mr.</prefix>);

Semantics

When the prependChild method is called on an XML object x with parameter value, the following steps are
taken:

1. Call the [[Insert]] method of this object with arguments "0" and value
2. Return x

13.4.4.30 XML.prototype.propertyIsEnumerable (P)

Overview

The propertyIsEnumerable method returns a Boolean value indicating whether the property P will be included
in the set of properties iterated over when this XML object is used in a for-in statement. This method returns
true when ToString(P) is "0"; otherwise, it returns false. This treatment intentionally blurs the distinction
between a single XML object and an XMLList containing only one value.

Semantics

When the propertyIsEnumerable method of an XML object x is called with parameter P, the following step is
taken:

1. Return the result of the comparison ToString(P) == "0"

13.4.4.31 XML.prototype.removeNamespace (namespace)

Overview

The removeNamespace method removes the given namespace from the in scope namespaces of this object
and all its descendents, then returns a copy of this XML object. The removeNamespaces method will not
remove a namespace from an object where it is referenced by that object’s QName or the QNames of that
object’s attributes.

Semantics

When the removeNamespace method is called on an XML object x with parameter namespace, the following
steps are taken:

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return x
2. Let ns be a Namespace object created as if by calling the function Namespace(namespace)
3. Let thisNS be the result of calling [[GetNamespace]] on x.[[Name]] with argument

x.[[InScopeNamespaces]]
4. If (thisNS == ns), return x
5. For each a in x.[[Attributes]]

a. Let aNS be the result of calling [[GetNamespace]] on a.[[Name]] with argument
x.[[InScopeNamespaces]]

b. If (aNS == ns), return x
6. If ns.prefix == undefined

a. If there exists a namespace n ∈ x.[[InScopeNamespaces]], such that n.uri == ns.uri, remove the
namespace n from x.[[InScopeNamespaces]]

7. Else
a. If there exists a namespace n ∈ x.[[InScopeNamespaces]], such that n.uri == ns.uri and n.prefix

== ns.prefix, remove the namespace n from x.[[InScopeNamespaces]]
8. For each property p of x

a. If p.[[Class]] = "element", call the removeNamespace method of p with argument ns
9. Return x

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 89

13.4.4.32 XML.prototype.replace (propertyName , value)

Overview

The replace method replaces the XML properties of this XML object specified by propertyName with value and
returns this XML object. If this XML object contains no properties that match propertyName, the replace
method returns without modifying this XML object. The propertyName parameter may be a numeric property
name, an unqualified name for a set of XML elements, a qualified name for a set of XML elements or the
properties wildcard “*”. When the propertyName parameter is an unqualified name, it identifies XML elements
in the default namespace. The value parameter may be an XML object, XMLList object or any value that may
be converted to a String with ToString(). For example,

// Replace the first employee record with an open staff requisition
employees.replace(0, <requisition status="open"/>);

// Replace all item elements in the order with a single empty item
order.replace("item", <item/>);

Semantics

When the replace method is called on an XML object x with parameters propertyName and value, the
following steps are taken:

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction", "attribute"}, return x
2. If Type(value) ∉ {XML, XMLList}, let c = ToString(value)
3. Else let c be the result of calling the [[DeepCopy]] method of value
4. If ToString(ToUint32(P)) == P

a. Call the [[Replace]] method of x with arguments P and c and return x
5. Let n be a QName object created as if by calling the function QName(P)
6. Let i = undefined
7. For k = x.[[Length]]-1 downto 0

a. If ((n.localName == "*")
 or ((x[k].[[Class]] == "element") and (x[k].[[Name]].localName==n.localName)))
and ((n.uri == null) or ((x[k].[[Class]] == "element") and (n.uri == x[k].[[Name]].uri)))

i. If (i is not undefined), call the [[DeleteByIndex]] method of x with argument ToString(i)
ii. Let i = k

8. If i == undefined, return x
9. Call the [[Replace]] method of x with arguments ToString(i) and c
10. Return x

13.4.4.33 XML.prototype.setChildren (value)

Overview

The setChildren method replaces the XML properties of this XML object with a new set of XML properties from
value. value may be a single XML object or an XMLList. setChildren returns this XML object. For example,

// Replace the entire contents of Jim's employee element
e.employee.(name == "Jim").setChildren(<name>John</name> + <age>35</age>);

Semantics

When the setChildren method is called on an XML object x with parameter value, the following steps are
taken:

1. Call the [[Put]] method of x with arguments "*" and value
2. Return x

ISO/IEC 22537:2005(E)

90 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

13.4.4.34 XML.prototype.setLocalName (name)

Overview

The setLocalName method replaces the local name of this XML object with a string constructed from the given
name.

Semantics

When the setLocalName method is called on an XML object x with parameter name, the following steps are
taken:

1. If x.[[Class]] ∈ {"text", "comment"}, return
2. If (Type(name) is Object) and (name.[[Class]] == "QName")

a. Let name = name.localName
3. Else

a. Let name = ToString(name)
4. Let x.[[Name]].localName = name

13.4.4.35 XML.prototype.setName (name)

Overview

The setName method replaces the name of this XML object with a QName or AttributeName constructed from
the given name.

Semantics

When the setName method is called on an XML object x with parameter name, the following steps are taken:

1. If x.[[Class]] ∈ {"text", "comment"}, return
2. If (Type(name) is Object) and (name.[[Class]] == "QName") and (name.uri == null)

a. Let name = name.localName
3. Let n be a new QName created if by calling the constructor new QName(name)
4. If x.[[Class]] == "processing-instruction", let n.uri be the empty string
5. Let x.[[Name]] = n
6. Let ns be a new Namespace created as if by calling the constructor new Namespace(n.prefix, n.uri)
7. If x.[[Class]] == "attribute"

a. If x.[[Parent]] == null, return
b. Call x.[[Parent]].[[AddInScopeNamespace]](ns)

8. If x.[[Class]] == "element"
a. Call x.[[AddInScopeNamespace]](ns)

13.4.4.36 XML.prototype.setNamespace (ns)

Overview

The setNamespace method replaces the namespace associated with the name of this XML object with the
given namespace.

Semantics

When the setNamespace method is called on an XML object x with parameter ns, the following step is taken:

1. If x.[[Class]] ∈ {"text", "comment", "processing-instruction"}, return
2. Let ns2 be a new Namespace created as if by calling the constructor new Namespace(ns)
3. Let x.[[Name]] be a new QName created as if by calling the constructor new QName(ns2, x.[[Name]])
4. If x.[[Class]] == "attribute"

a. If x.[[Parent]] == null, return

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 91

b. Call x.[[Parent]].[[AddInScopeNamespace]](ns2)
5. If x.[[Class]] == "element"

a. Call x.[[AddInScopeNamespace]](ns2)

13.4.4.37 XML.prototype.text ()

Overview

The text method returns an XMLList containing all XML properties of this XML object that represent XML text
nodes.

Semantics

When the text method of an XML object x is called, the following steps are taken:

1. Let list be a new XMLList with list.[[TargetObject]] = x and list.[[TargetProperty]] = null
2. For i = 0 to x.[[Length]]-1

a. If x[i].[[Class]] == "text", Call the [[Append]] method of list with argument x[i]
3. Return list

13.4.4.38 XML.prototype.toString ()

Overview

The toString method returns a string representation of this XML object per the ToString conversion operator
described in section 10.1.

Semantics

When the toString method of an XML object x is called, the following step is taken:

1. Return ToString(x)

13.4.4.39 XML.prototype.toXMLString ()

Overview

The toXMLString() method returns an XML encoded string representation of this XML object per the
ToXMLString conversion operator described in section 10.2. Unlike the toString method, toXMLString provides
no special treatment for XML objects that contain only XML text nodes (i.e., primitive values). The
toXMLString method always includes the start tag, attributes and end tag of the XML object regardless of its
content. It is provided for cases when the default XML to string conversion rules are not desired. For example,

var item = <item>
 <description>Laptop Computer</description>
 <price>2799.95</price>
 <quantity>1</quantity>
</item>;

// returns "Description stored as <description>Laptop Computer</description>"
var logmsg = "Description stored as " + item.description.toXMLString();

// returns "Thank you for purchasing a Laptop Computer!" (with tags removed)
var message = "Thank you for purchasing a " + item.description + "!";

ISO/IEC 22537:2005(E)

92 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Semantics

When the toXMLString method of an XML object x is called, the following step is taken:

1. Return ToXMLString(x)

13.4.4.40 XML.prototype.valueOf ()

Overview

The valueOf method returns this XML object.

Semantics

When the valueOf method of an XML object x is called, the following step is taken:

1. Return x
13.4.5 Properties of XML Instances

XML instances have no special properties beyond those inherited from the XML prototype object.

13.5 XMLList Objects

13.5.1 The XMLList Constructor Called as a Function

Syntax

 XMLList (value)

Overview

When XMLList is called as a function rather than as a constructor, it converts its argument to an XMLList
object. When its argument is an XMLList, the input argument is returned without modification.

Semantics

When XMLList is called as a function with parameter value, the following steps are taken:

1. If value is null, undefined or not supplied, let value be the empty string
2. Return ToXMLList(value)

13.5.2 The XMLList Constructor

Syntax

 new XMLList ([value])

Overview

When XMLList is called as part of a new expression, it is a constructor and creates a new XMLList object.
When the XMLList constructor is called with no arguments, it returns an empty XMLList. When the XMLList
constructor is called with a value of type XMLList, the XMLList constructor returns a shallow copy of the value.
When the XMLList constructor is called with a non-XMLList value, it converts its input argument to an XMLList
object.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 93

Semantics

When the XMLList constructor is called with an optional parameter value, the following steps are taken:

1. If value is null, undefined or not supplied, let value be the empty string
2. If Type(value) is XMLList

a. Let list be a new XMLList object with list.[[TargetObject]] = null
b. Call the [[Append]] method of list with argument value
c. Return list

3. Else
a. Return ToXMLList(value)

13.5.3 Properties of the XMLList Constructor

The value of the internal [[Prototype]] property of the XMLList constructor is the Function prototype object.

Besides the internal properties and the length property (whose value is 1), the XMLList constructor has the
following properties:

13.5.3.1 XMLList.prototype

The initial value of the XMLList.prototype property is the XMLList prototype object (section 13.5.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

13.5.4 Properties of the XMLList Prototype Object (Built-in Methods)

Each value of type XMLList has a set of built-in methods available for performing common operations. These
built-in methods are described in the following sections.

The XMLList prototype object is itself an XMLList object (its [[Class]] property is "XMLList") whose value is
the empty XMLList.

The value of the internal [[Prototype]] property of the XMLList prototype object is the Object prototype object.
(section 15.2.3.1 of ECMAScript Edition 3).

NOTE To simplify the programmer’s task, E4X intentionally blurs the distinction between a single XML object and an
XMLList containing only one value. To this end, E4X extends the ECMAScript function call semantics such that all
methods available for values of type XML are also available for XMLLists of size one. See section 11.2.2 for more
information.

None of the built-in functions defined on XMLList.prototype are generic. They throw a TypeError exception if
the this value is not an XMLList object. Therefore, they cannot be transferred to other kinds of objects for use
as a method.

13.5.4.1 XMLList.prototype.constructor

The initial value of the XMLList prototype constructor is the built-in XMLList constructor.

13.5.4.2 XMLList.prototype.attribute (attributeName)

Overview

The attribute method calls the attribute method of each XML object in this XMLList object passing
attributeName as a parameter and returns an XMLList containing the results in order.

ISO/IEC 22537:2005(E)

94 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Semantics

When the attribute method is called on an XMLList object list with parameter attributeName, the following
steps are taken:

1. Let name = ToAttributeName(attributeName)
2. Return the result of calling the [[Get]] method of list with argument name

13.5.4.3 XMLList.prototype.attributes ()

Overview

The attributes method calls the attributes() method of each XML object in this XMLList object and returns an
XMLList containing the results in order.

Semantics

When the attributes method is called on an XMLList object list, the following step is taken:

!!!1. Return the result of calling the [[Get]] method of list with argument ToAttributeName("*")

13.5.4.4 XMLList.prototype.child (propertyName)

Overview

The child method calls the child() method of each XML object in this XMLList object and returns an XMLList
containing the results in order.

Semantics

When the child method is called on an XMLList object list with parameter propertyName, the following step is
taken:

1. Let m be a new XMLList with m.[[TargetObject]] = list
2. For i = 0 to list.[[Length]]-1

a. Let r = list[i].child(propertyName)
b. If r.[[Length]] > 0, call the [[Append]] method of m with argument r

3. Return m

13.5.4.5 XMLList.prototype.children ()

Overview

The children method calls the children() method of each XML object in this XMLList object and returns an
XMLList containing the results concatenated in order. For example,

// get all the children of all the items in the order
var allitemchildren = order.item.children();

// get all grandchildren of the order that have the name price
var grandChildren = order.children().price;

Semantics

When the children method is called on an XMLList object list, the following step is taken:

1. Return the results of calling the [[Get]] method of list with argument "*"

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 95

13.5.4.6 XMLList.prototype.comments ()

Overview

The comments method calls the comments method of each XML object in this XMLList object and returns an
XMLList containing the results concatenated in order.
Semantics

When the comments method is called on an XMLList object list, the following steps are taken:

1. Let m be a new XMLList with m.[[TargetObject]] = list
2. For i = 0 to list.[[Length]]-1

a. If list[i].[[Class]] == "element"
i. Let r = list[i].comments()
ii. If r.[[Length]] > 0, call the [[Append]] method of m with argument r

3. Return m

13.5.4.7 XMLList.prototype.constructor

The initial value of the XMLList.prototype.constructor is the built-in XMLList constructor. This property is
reserved for future versions of E4X.

NOTE The value of this property cannot be accessed, which makes this property write-only in practice.

13.5.4.8 XMLList.prototype.contains (value)

Overview

The contains method returns a boolean value indicating whether this XMLList object contains an XML object
that compares equal to the given value.

Semantics

When the contains method is called on an XMLList object list with parameter value, the following steps are
taken:

1. For i = 0 to list.[[Length]]-1
a. If the result of the comparison list[i] == value is true, return true

2. Return false

13.5.4.9 XMLList.prototype.copy ()

Overview

The copy method returns a deep copy of this XMLList object.

Semantics

When the copy method is called on an XMLList object list, the following step is taken:

1. Return the result of calling the [[DeepCopy]] method of list

13.5.4.10 XMLList.prototype.descendants ([name])

The descendants method calls the descendants method of each XML object in this XMLList object with the
optional parameter name (or the string "*" if name is omitted) and returns an XMLList containing the results
concatenated in order.

ISO/IEC 22537:2005(E)

96 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

Semantics

When the descendants method is called on an XMLList object list with optional parameter name, the following
steps are taken:

1. If name is not specified, name = "*"
2. Return the result of calling the [[Descendants]] method of list with argument name

13.5.4.11 XMLList.prototype.elements ([name])

Overview

The elements method calls the elements method of each XML object in this XMLList object passing the
optional parameter name (or "*" if it is omitted) and returns an XMList containing the results in order.

Semantics

When the elements method is called on an XMLList object list with optional parameter name, the following
steps are taken:

1. If name is not specified, let name = "*"
2. Let name = ToXMLName(name)
3. Let m = a new XMLList with m.[[TargetObject]] = list and m.[[TargetProperty]] = name
4. For i = 0 to list.[[Length]]-1

a. If list[i].[[Class]] == "element"
i. Let r = list[i].elements(name)
ii. If r.[[Length]] > 0, call the [[Append]] method of m with argument r

5. Return m

13.5.4.12 XMLList.prototype.hasOwnProperty (P)

Overview

The hasOwnProperty method returns a Boolean value indicating whether this object has the property specified
by P. For all XMLList objects except the XMLList prototype object, this is the same result returned by the
internal method [[HasProperty]. For the XMLList prototype object, hasOwnProperty also examines the list of
local properties to determine if there is a method property with the given name.

Semantics

When the hasOwnProperty method of an XMLList object x is called with parameter P, the following step is
taken:

1. If the result of calling the [[HasProperty]] method of this object with argument P is true, return true
2. If x has a property with name ToString(P), return true
3. Return false

13.5.4.13 XMLList.prototype.hasComplexContent()

Overview

The hasComplexContent method returns a Boolean value indicating whether this XMLList object contains
complex content. An XMLList object is considered to contain complex content if it is not empty, contains a
single XML item with complex content or contains elements.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 97

Semantics

When the hasComplexContent method is called on an XMLList object x, the following steps are taken:

1. If x.[[Length]] == 0, return false
2. If x.[[Length]] == 1, return x[0].hasComplexContent()
3. For each property p in x

a. If p.[[Class]] == "element", return true
4. Return false

13.5.4.14 XMLList.prototype.hasSimpleContent()

Overview

The hasSimpleContent method returns a Boolean value indicating whether this XMLList contains simple
content. An XMLList object is considered to contain simple content if it is empty, contains a single XML item
with simple content or contains no elements.

Semantics

When the hasSimpleContent method is called on an XMLList object x, the following steps are taken:

1. If x.[[Length]] is not equal to 0
a. If x.[[Length]] == 1, return x[0].hasSimpleContent()
b. For each property p in x

i. If p.[[Class]] == "element", return false
2. Return true

13.5.4.15 XMLList.prototype.length ()

Overview

The length method returns the number of properties in this XMLList object. For example,

for (var i = 0; i < e..name.length(); i++) {

print("Employee name:" + e..name[i]);
}

Semantics

When the length method of an XMLList object list is called, the following step is taken:

1. Return list.[[Length]]

13.5.4.16 XMLList.prototype.normalize ()

Overview

The normalize method puts all text nodes in this XMLList, all the XML objects it contains and the descendents
of all the XML objects it contains into a normal form by merging adjacent text nodes and eliminating empty text
nodes. It returns this XMLList object.

Semantics

When the normalize method is called on an XMLList object list, the following steps are taken:

1. Let i = 0
2. While i < list.[[Length]]

a. If list[i].[[Class]] == "element"
i. Call the normalize method of list[i]

ISO/IEC 22537:2005(E)

98 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

ii. Let i = i + 1
b. Else if list[i].[[Class]] == "text"

i. While ((i+1) < list.[[Length]]) and (list[i + 1].[[Class]] == "text")
1. Let list[i].[[Value]] be the result of concatenating list[i].[[Value]] and list[i + 1].[[Value]]
2. Call the [[Delete]] method of list with argument ToString(i + 1)

ii. If list[i].[[Value]].length == 0
1. Call the [[Delete]] method of list with argument ToString(i)

iii. Else
1. Let i = i + 1

c. Else
i. Let i = i + 1

3. Return list

13.5.4.17 XMLList.prototype.parent ()

Overview

If all items in this XMLList object have the same parent, it is returned. Otherwise, the parent method returns
undefined.

Semantics

When the parent method is called on an XMLList object list, the following steps are taken:

1. If list.[[Length]] = 0, return undefined
2. Let parent = list[0].[[Parent]]
3. For i = 1 to list.[[Length]]-1, if list[i].[[Parent]] is not equal to parent, return undefined
4. Return parent

13.5.4.18 XMLList.prototype.processingInstructions ([name])

Overview

The processingInstructions method calls the processingInstructions method of each XML object in this
XMLList object passing the optional parameter name (or "*" if it is omitted) and returns an XMList containing
the results in order.

Semantics

When the processingInstructions method is called on an XMLList object list with optional parameter name, the
following steps are taken:

6. If name is not specified, let name = "*"
7. Let name = ToXMLName(name)
8. Let m = a new XMLList with m.[[TargetObject]] = list
9. For i = 0 to list.[[Length]]-1

a. If list[i].[[Class]] == "element"
i. Let r = list[i].processingInstructions(name)
ii. If r.[[Length]] > 0, call the [[Append]] method of m with argument r

10. Return m

13.5.4.19 XMLList.prototype.propertyIsEnumerable (P)

Overview

The propertyIsEnumerable method returns a Boolean value indicating whether the property P will be included
in the set of properties iterated over when this XMLList object is used in a for-in statement.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 99

Semantics

When the propertyIsEnumerable method of an XMLList object x is called with parameter P, the following step
is taken:

1. if ToNumber(P) is greater than or equal to 0 and ToNumber(P) is less than x.[[Length]], return true
2. Return false

13.5.4.20 XMLList.prototype.text ()

Overview

The text method calls the text method of each XML object contained in this XMLList object and returns an
XMLList containing the results concatenated in order.

Semantics

When the text method is called on an XMLList object list, the following steps are taken:

1. Let m be a new XMLList with m.[[TargetObject]] = list
2. For i = 0 to list.[[Length]]-1

a. If list[i].[[Class]] == "element"
i. Let r = list[i].text()
ii. If r.[[Length]] > 0, call the [[Append]] method of m with argument r

3. Return m

13.5.4.21 XMLList.prototype.toString ()

Overview

The toString method returns a string representation of this XMLList object per the ToString conversion
operator described in section 10.1.

Semantics

When the toString() method of an XMLList object list is called, the following step is taken:

1. Return ToString(list)

13.5.4.22 XMLList.prototype.toXMLString ()

Overview

The toXMLString() method returns an XML encoded string representation of this XMLList object per the
ToXMLString conversion operator described in section 10.2. Unlike the toString method, toXMLString provides
no special treatment for XML objects that contain only XML text nodes (i.e., primitive values). The
toXMLString method always calls toXMLString on each property contained within this XMLList object,
concatenates the results in order and returns a single string.

Semantics

When the toXMLString() method of an XMLList object list is called, the following step is taken

1. Return toXMLString(list)

ISO/IEC 22537:2005(E)

100 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

13.5.4.23 XMLList.prototype.valueOf ()

Overview

The valueOf method returns this XMLList object.

Semantics

When the valueOf method of an XMLList object list is called, the following step is taken:

1. Return list

14 Errors

E4X extends the list of errors. Implementations are not required to report as specified as follows:

• An implementation may define behaviour other than throwing a TypeError exception for the ToXML
function and ToXMLList function when they are called with an argument of type Object.

ISO/IEC 22537:2005(E)

© ISO/IEC 2005 – All rights reserved PROOF/ÉPREUVE 101

Annex A
(normative)

Optional Features

This Annex describes some options. An E4X implementation which uses these features shall conform to the
following associated specifications.

A.1 XML Built-in Methods

An E4X implementation may add the following methods to XML objects.

A.1.1 domNode()

Overview

The domNode method returns a W3C DOM Node representation of this XML Object.

Semantics

The semantics of the domNode method are implementation dependent.

A.1.2 domNodeList()

Overview

The domNodeList method returns a W3C DOM NodeList containing a single W3C DOM Node representation
of this XML Object.

Semantics
The semantics of the domNodeList method are implementation dependent.

A.1.3 xpath (XPathExpression)

Overview

The xpath method evaluates the XPathExpression in accordance with the W3C XPath Recommendation using
this XML object as the context node. Before evaluating the XPathExpression, the xpath method sets the
XPath context as follows. The context node is set to this XML object. The context position is set to 1. The
context size is set to 1. The set of variable bindings is set to the empty set. The function library is set to the
empty set. The set of namespaces is set according to the set of in scope namespaces on this XML object. If
the XPathExpression evaluates to a node list, the xpath method returns the results as an XMList. Otherwise,
the xpath method throws a TypeError exception. For example,

// Use an xpath expression to get all the employees named John Smith
var jim = e.xpath("//employee[name='John Smith']")

Semantics
When the xpath method of an XML object x is called with parameter XPathExpression it performs the following
steps:

1. Let e be the result of evaluating XPathExpression
2. Let s = ToString(GetValue(XpathExpression))
3. Create an XPath context object representing the XML object x. This semantics of this step are

implementation dependent.
4. Let the XPath context position be 1

ISO/IEC 22537:2005(E)

102 PROOF/ÉPREUVE © ISO/IEC 2005 – All rights reserved

5. Let the XPath context size be 1
6. Let the XPath variable bindings be { }
7. Let the XPath function library be { }
8. Let the XPath namespaces be x.[[InScopeNamespaces]]
9. Let r be the result of evaluating s in accordance with the W3C XPath Recommendation
10. If r is an XPath node-set, convert it to an XMLList in an implementation dependent way and return it.
11. Throw a TypeError exception

A.2 XMLList Built-in Methods

An E4X implementation may add the following methods to XMLList objects.

A.2.1 domNode()

Overview

If this XMLList object contains only one XML value x, the domNode method returns a W3C DOM Node
representation of x. Otherwise, the domNode method returns undefined.

Semantics

The semantics of the domNode method are implementation dependent.

A.2.2 domNodeList()

Overview

The domNodeList method returns a W3C DOM NodeList representation of this XMLList Object.

Semantics

The semantics of the domNodeList method are implementation dependent.

A.2.3 xpath (XPathExpression)

Overview

The xpath method evaluates the XPathExpression for each XML property contained in this XMLList object and
concatenates the results an XMLList containing the results concatenated in order.

Semantics

When the xpath method is called on an XMLList object list with parameter XPathExpression, the following
steps are taken:

1. Let m = a new XMLList with list.[[TargetObject]] = null
2. For i = 0 to list.[[Length]]-1

a. If Type(list[i]) is XML and list[i].[[Class]] == "element"
i. Let r = list[i].xpath(XPathExpression)
ii. If r.[[Length]] > 0, call the [[Append]] method of m with argument r

3. Return m

ISO/IEC 22537:2005(E)

ICS 35.040
Price based on 102 pages

© ISO/IEC 2005 – All rights reserved

