

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

 FC Document2 12/09/2017 09:38:00 For Ecma use only

Minutes of the: Ecma TC39-TG1

held in: Phone Conference

on: 27th January 2006

Attendees

• Brendan Eich, Mozilla Foundation

• Ed Smith, Adobe Systems

• Graydon Hoare, Mozilla Foundation

• Jeff Dyer, Adobe Systems

Agenda

• Make it up as we go

• Will get one together in advance of next meeting

Process Stuff

• Kudos to Graydon for setting up the wiki
o http://wiki.mozilla.org/ECMA/wiki/doku.php?id=start

• ECMA wants “visibility”, meaning:
o Minutes for each meeting
o Word doc updates occasionally

• Why not make part of the wiki readable to the world?
o We could blog about it

• Graydon asks about reserving new identifiers
o Can’t in web embeddings without new version selection
o We are trying not to reserve if keyword-in-context suffices

• Jeff: how do we call out what is agreed on vs. not
o Graydon: categories such as proposals: vs. spec:
o But the spec: was imported wholesale, yet not all agreed on
o Proposals are good for small, readable straw-men
o As they become agreed upon they move into the spec and may cause sweeping changes to

the spec
o Spec therefore will not be frozen to the same degree everywhere
o So we want a way to call out less-agreed-upon parts of the spec

Type Annotations

• Graydon’s proposal: is_as_to

• Brendan proposed operator “to” for explicit conversions

• We affirmed that “as” is not the right operator

• Ed proposed: “switch class (x) {case C1: ... case C2: ... etc.}”
o Order of matching is order of cases, not sorted by <:

• Need a way to write non-nullable T: T!
o Ed: T! means don’t call “to T” conversion, just do <: T

Ecma/TC39-TG1/2006/008

http://www.ecma-international.org/
http://wiki.mozilla.org/ECMA/wiki/doku.php?id=start
file:///C:/doku.php%3fid=proposals:is_as_to

2

o Jeff: what about “: T! means call ‘to T’ but throw if null results”
o Graydon: “x to T” should result in T, not ?T – T has to include null if that’s what you wanted
o Agreed that we want something like T!

• Do we want ?T to complement T! for symmetry (syntax is placeholder/strawman, don’t panic
o Jeff: overcomplicating the language for little return
o Ed: maybe add string, boolean, etc. as non-nullable counterparts boxed by String, Boolean...
o Brendan: we don’t want boxing, so make boolean <: Boolean && Null <: Boolean
o Graydon and Brendan: keep symmetry
o Jeff: but names are asymmetric as to nullability: Boolean, Double vs. Object, String
o Brendan: want notational symmetry – ability to be symmetric in User types (Color, Complex)

as well as in built-ins, with nullability or not according to pragmatics
o Graydon: Boolean! === boolean
o Ed: Edition 3 Boolean is not the same, however
o Brendan: True, calculated incompatibility – we agreed several times to get rid of boxing

(mutable primitive type wrappers), let’s not go backward

• User-defined “to” could preempt annotations from checking <:
o Brendan: this loses something valuable – ability to cast rather than convert – and splits User

from non-User
o Jeff: if compiling in bang you get <: but in tilde you get “to”
o Graydon: so do you want to remove implicit conversions in bang?
o Jeff: no, need implicit when converting from unannotated slot, and among numeric types,

and anything to Boolean – based on user feedback
o Graydon: if User type has “to” conversion, will it be invoked in bang?
o Jeff: yes, if statically sound
o This is different from Graydon’s proposal as written before the meeting, so he revised it

immediately and updated the wiki

• Static mode tends to make users over-annotate
o Brendan says this makes migration hard, proposes we at least think about some kind of

inference
o Interface for unannotated slots breaks duck typing in bang, so that’s a problem
o Graydon says this conceptually brings in interfaces again

Compact Profile

• Ed brought up lack of complete method name-to-slot optimizability in CP
o CP doesn’t say “can’t shadow prototype functions” – should it?
o CP do this without breaking method extraction meaning this-binding?

• Should we do a CP for Edition 4
o CP for Edition 4 could be done by subsetting/restricting only

• Graydon: this binds to type and value, or one of type and value, or neither?
o To value implies by type, backward compatibility requires neither, so the question is do we

need this binding to type? Probably not.

Host Objects

• I want to restrict how “host objects” might be different
o Especially for callable objects

▪ e.g. apply is not an operator, host callable doesn’t delegate to Function.prototype

