

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

 FC 2007_01_09_TC39_TG1.doc 12/09/2017 10:19:00 For Ecma use only

Minutes of the: Ecma TC39-TG1

held in: San Francisco/Newton (Adobe)

on: 21st – 23rd February 2007

Attendees

• Francis Cheng, Adobe Systems

• Jeff Dyer, Adobe Systems

• Dan Smith, Adobe Systems

• Pratap Lakshman, Microsoft

• Brendan Eich, Mozilla Foundation

• Brian Crowder, Mozilla Foundation

• Graydon Hoare, Mozilla Foundation

• Dave Herman, Northastern University

• Douglas Crockford, Yahoo!

• Cormac Flanagan, UC Santa Cruz

Agenda

• Pratap’s Browser Profile proposal.

• Outstanding items from past meetings and phone conferences.
o The late-breaking enum proposal.
o The &&= and ||= operators need to be included in the spec.

o We should re-export the wiki this week, or by the weekend.

• Don’t forget these issues raised during discussion:
o Should package initialization be atomic, in the sense that a throw from package code rolls

back all effects?

• Reference implementation work.
o How do we express types in the verifier / evaluator
o Resolved: function to C!(v) {...} is allowed in nullable class C, and return type

annotation on function to declarations are not allowed.

o Resolved: type parameters are invariant and you can’t do anything with them in generic
classes or functions except:

▪ annotate declarations with them;
▪ reflect them into runtime with (type T), e.g.

Reference Implementation

Changes to TYPE_EXPR:

• NominalType is changed to TypeName, which represents any unresolved type name

• FunctionType is now a collection of type expressions rather than having extra irrelevant details

• InstanceType is new

o represents class or interface types
o possibly parameterized

• TypeNames get resolved into either structural types or InstanceTypes

Ecma/TC39-TG1/2007/009

http://www.ecma-international.org/
file:///C:/doku.php%3fid=discussion:browser_profile
file:///C:/doku.php%3fid=proposals:enumeration_type

2

o could potentially be forward references
o definition phase can’t resolve forward references
o so TypeNames are resolved in the verifier

— Dave Herman 2007/02/22 10:25

Function types with initial izers

Function arguments may have default values. So we need a syntax for type expressions to denote this.

• Dave’s wacky GNU-man-page-inspired idea: function(int [, string, boolean]) : void

o blech. one character-transpose and you’ve got function(int,[string,boolean]) :
void

o absurd in the base case of all args having default values: function([, int, string,
boolean]) : void

• nullability? no, doesn’t work

• Brendan’s idea: function(int, string= , boolean=) : void

o follows the principle of type syntax reflecting expression syntax
o no new special funky Unicode sigils (heh heh heh)

• allow a placeholder like ? or _ after the = sign? nah, it’s dead wood.

Resolved: Brendan’s idea is good.

— Dave Herman 2007/02/22 15:23

Further resolved: function types must not include formal parameter names. We had been thinking of allowing them

optionally, for documentation reasons. And the reference implementation required them, but it will be fixed to forbid

them.

— Brendan Eich 2007/02/22 15:51

Parameterized typedefs

• we had said we didn’t want to have to close type definitions over their type parameters

• but now we can’t express the IteratorType

• we have (roughly) the following type, which is more or less nonsensical:

type IteratorType = {

 next: function.<T>():T;

}

• the type we need is:

type IteratorType.<T> = {

 next: function ():T;

}

• but now it appears we can’t express this type

• Graydon: just go to an interface instead?
o Brendan: long-standing decision to avoid imposing nominal type system on iteration

protocol;
o Lots of existing ES3 objects can be iterators already, expensive to wrap in class clothing.

mailto:%26%23x64%3B%26%23x68%3B%26%23x65%3B%26%23x72%3B%26%23x6d%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x63%3B%26%23x63%3B%26%23x73%3B%26%23x2e%3B%26%23x6e%3B%26%23x65%3B%26%23x75%3B%26%23x2e%3B%26%23x65%3B%26%23x64%3B%26%23x75%3B
mailto:%26%23x64%3B%26%23x68%3B%26%23x65%3B%26%23x72%3B%26%23x6d%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x63%3B%26%23x63%3B%26%23x73%3B%26%23x2e%3B%26%23x6e%3B%26%23x65%3B%26%23x75%3B%26%23x2e%3B%26%23x65%3B%26%23x64%3B%26%23x75%3B
file:///C:/doku.php%3fid=proposals:documentation
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B

3

• Dave: or allow parameterized typedefs?

• Dave: or allow parameterized record types?

• Brendan: we have function, class, and interface closures – is the problem with record, array, and

union closures due to a difference in kind, or just because we got tired ?

— Dave Herman 2007/02/22 16:45

Primitives, Yet Again

• See primitive_types_day_2, the updates from Brendan.

• Due to web script extending String.prototype and expecting the added methods to work on

primitive strings, we probably want string <: String. Can it work?

• Same for boolean <: Boolean.

• For Number.prototype extensions, we have problems: 0, 1, ... 42, ... are all int, so

(42).myNewNumberProtoMethod() won’t work as before (but the other way of writing it,

42..myNewNumberProtoMethod(), will). IIRC we agreed that the numeric types are not related,

they are all direct subclasses of Object. But what breaks if we make {int, uint, double,

decimal} <: Number?

• Subtyping isn’t right anyway, unless we make the lowercase-named class hide its methods in
intrinsic

o so that unqualified method calls go up to the capitalized-name class’s prototype;

o in which case we still have incompatibility due to lack of “wrapping”: let s = ‘‘‘‘; s.foo

= 42; assert(s.foo === undefined);

o but this may be a compatibility constraint we can keep, as Jeff suggested, via catchalls.

• On reflection, the “Day 1” minutes_jan_24_2007 proposal to unify string into String, likewise for

Boolean, looks better again.

o It does require optimizations at least as involved as today’s ES3 implementations have to do
to avoid doing new String(’’‘‘) for every ‘‘‘‘ literal.

o But that’s not so bad – question is, what further optimizations (e.g. such as AS3 does) are
“hard”.

• Number is still a problem, and (without detailed memories) I believe there are use-cases for AOP on

Number.prototype.

• UPDATE: to be precise, what ES1-3 specify are primitive types that get wrapped by every
ToObject, but what “Day 1” proposed was only ever (the appearance of) a new String instance

for every literal or concatenation result.
o Not fully backward compatible as noted above (let s = ‘‘‘‘; s.foo = 42;

assert(s.foo === 42) – unlike ES1-3, it’s as if the primitive empty string “becomes” in

the Smalltalk sense a new String).

o Suppose we support primitive types via final class string!, etc., and model wrapping

as follows:
▪ class string! extends String.

▪ The fixed methods of the final primitive class are all intrinsic.

▪ Which implies that the standard methods of String are only prototype.

▪ Thus we split intrinsic functionality from String and push it down into string.

▪ ‘‘hi’’.charAt(0) therefore invokes String.prototype.charAt on the string

‘‘hi’’.

▪ If you want speed and not AOP, use namespace intrinsic or call

‘‘hi’’.intrinsic::charAt(0) (or in this case, use indexing).

▪ To support ‘‘hi’’.nosuch === undefined and ‘‘hi’’.foo = 42, we use Jeff’s

catchalls suggestion, which simulates ES1-3’s wrapping under ToObject

mailto:%26%23x64%3B%26%23x68%3B%26%23x65%3B%26%23x72%3B%26%23x6d%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x63%3B%26%23x63%3B%26%23x73%3B%26%23x2e%3B%26%23x6e%3B%26%23x65%3B%26%23x75%3B%26%23x2e%3B%26%23x65%3B%26%23x64%3B%26%23x75%3B
file:///C:/doku.php%3fid=meetings:minutes_jan_24_2007%23primitive_types_day_2
file:///C:/doku.php%3fid=meetings:minutes_jan_24_2007
file:///C:/doku.php%3fid=proposals:slice_syntax
file:///C:/doku.php%3fid=proposals:catchalls

4

▪ Code may freely use string and unless it explicitly uses intrinsic, AOP via

String.prototype still works.

▪ And (thanks to the catchalls) generic get-and-test-against-undefined (or

equivalent) and useless sets still work.
o Please poke holes in this.

— Brendan Eich 2007/02/23 10:12

Alpha-renaming

There appear to be places in the language where we can’t avoid the need for doing alpha renaming.

Example 1:

class C.<T> {

 type A = T

 function f.<T>() {

 var x : A = ... // x has outer type T

 }

}

• the verifier needs to associate x with the type of the outer T, so it must rename the inner binding of

type parameter T (the type argument of f) to prevent it from capturing the outer T

• could we forbid nested type declarations?

• there are some useful type declarations we then wouldn’t be able to express

• for example, the type A = T can’t be lifted out to top-level, because it refers to the type parameter

T which isn’t in scope outside the class declaration

Example 2:

function f.<T>() {

 return (function <U>():[T,U] { ... });

}

class C.<U> {

 f.<U>() // has type function.<U'>():[U,U']

}

• here, the application of f to the type U inside class C requires that we alpha-rename the returned

function’s type parameter U to prevent it from capturing the other U (the argument to class C)

This latter example is especially hard to avoid. No clear restriction that we could impose on the language to prevent it.

• Graydon: optimize for parameterize classes; most important use case

• Cormac: but without parameterized functions/methods, can’t do things like List.map

• decision between complexity budget vs. unuseful toy implementation of generics

• Dave: reflection concern – let’s just prevent uninstantiated parameterized types from being exposed

• Brendan: we know how to implement it, generics are vital, let’s do it
o Just for the record in detail, I argued that generics types (structural as well as nominal, and

not just function types) are vital for retro-fitting and future-proofing via structural compatibility
rather than nominal subtyping. — Brendan Eich 2007/02/23 12:13

Resolved: alpha-conversion is a must.

mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B
http://foldoc.org/index.cgi?query=alpha+conversion
mailto:%26%23x62%3B%26%23x72%3B%26%23x65%3B%26%23x6e%3B%26%23x64%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x6f%3B%26%23x72%3B%26%23x67%3B

5

— Dave Herman 2007/02/23 11:37

Another example:

Example 3:

type A.<X> = function.<T>():[X,T]

class C.<T> {

 var a : A.<T> = ... // should be function.<T'>:[T,T']

}

Dave notes that example 1 is an example of what’s known in the hygienic macro community as “referential

transparency” (an unfortunate choice of terminology, not unrelated to the general concept but not exactly the same

thing, either), and example 3 is an example of the “hygiene condition”.

— Dave Herman 2007/02/25 04:58

Further resolved: adopt the “more general and composable” form of type parameters: a ‘TyLam([”X”], tyexpr)’

constructor for type expressions that generally represents parametric types.

Fallout:

• Parametric function, class and interface closures lose their type-parameter list and “isApplied” flags

• They gain, instead, a ‘type’ field that begins with ‘TyLam’

• As before, operator ‘new’ refuses to work on a class closure with a ‘TyLam’ in its type.

• As before, function-call refuses to work on a function closure with a ‘TyLam’ in its type.

• The ‘type-apply’ operator ‘.<tyExpr>’ at runtime strips one level of ‘TyLam’ off its operand (closure)
and returns a new closure with the stripped type and a new ‘TypeFixture’ binding in the closure.

• All type definitions can be parametric. If you say ‘type T.<X> = Z.<X>’ you have produced binding for
‘T’ with type ‘TyLam ([”X”], TyApp(TyName(”Z”), TyName(”X”)))’

• The verifier will have to alpha-rename type terms in order to compare them.

• The interface between the evaluator and verifier will need to provide type environments for any type-
compatibility questions it wants answered.

Some further concern was raised about the visibility of types defined inside classes. The consensus view of this is the

following:

• Types defined inside classes cannot be seen outside classes. There is no ‘TyMember’ constructor
for type expressions. ‘C.T’ is not meaningful when ‘T’ is a type.

• Types defined inside classes may refer to type parameters of the class, but all types defined inside
classes are invisible to static initialization code for the class. If you want a type to be visible to static
initialization code, you must move the type out of the class.

— graydon 2007/02/23 14:23

mailto:%26%23x64%3B%26%23x68%3B%26%23x65%3B%26%23x72%3B%26%23x6d%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x63%3B%26%23x63%3B%26%23x73%3B%26%23x2e%3B%26%23x6e%3B%26%23x65%3B%26%23x75%3B%26%23x2e%3B%26%23x65%3B%26%23x64%3B%26%23x75%3B
mailto:%26%23x64%3B%26%23x68%3B%26%23x65%3B%26%23x72%3B%26%23x6d%3B%26%23x61%3B%26%23x6e%3B%26%23x40%3B%26%23x63%3B%26%23x63%3B%26%23x73%3B%26%23x2e%3B%26%23x6e%3B%26%23x65%3B%26%23x75%3B%26%23x2e%3B%26%23x65%3B%26%23x64%3B%26%23x75%3B
mailto:%26%23x67%3B%26%23x72%3B%26%23x61%3B%26%23x79%3B%26%23x64%3B%26%23x6f%3B%26%23x6e%3B%26%23x40%3B%26%23x6d%3B%26%23x6f%3B%26%23x7a%3B%26%23x69%3B%26%23x6c%3B%26%23x6c%3B%26%23x61%3B%26%23x2e%3B%26%23x63%3B%26%23x6f%3B%26%23x6d%3B

