

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

PC For Ecma use only

Minutes of the: Ecma TC39, ES3.1WG

held in: Phone conference

on: 10 July 2008

1 Roll call and logistics

1.1 Participants

Mike Cowlishaw (IBM), Doug Crockford (Yahoo!), Pratap Lakshman (Microsoft), Mark Miller
(Google), Adam Peller (IBM), Sam Ruby (IBM), Allen Wirfs-Brock (Microsoft) and Kris Zyp
(The Dojo Foundation)

2 Agenda

Decimal

3 Minutes

In the process of adding Object.keys - if the first parameter is not an Object we should throw
an exception - only in the cautious mode ? - no, throw irrespective of the mode - look at it on a
case by case basis and make sure it applies in all situations.

Decimal

Should we be defining an object model for decimal values and use OO style method
invocations ? - or should we just define static methods - all operations should be specified as
static methods on the Decimal constructor - these methods should be sealed and the global
binding of Decimal should also be sealed and readonly - just expose basic decimal capabilities
in a way that can be supported efficiently by implementat ions.

What do we see as the primary use case for decimal - do we expect it to be used by user code
(as in the parking meter case cited early on) or by code generators? - primary motivation is for
applications to be able to do precise arithmetic.

Lets make a subroutine library that can be wrappered - code generators could directly call the
static methods - methods would take all the necessary arguments - ugly - and inconsistent with
the rest of the global library - why not be able to lock it down - its about what you can do on
the implementation side - target for a layered language - in ES4 you cannot rebind a global
name - but you can monkey patch the members - would like to be as consistent as the style of
the existing library it is being added to - can we have the statics as well as the non-statics ? -
which is more primitive? lets add only the more primitive ones for this iteration - ideally you
want to cleanly integrate the capability into the foundations of the language - for ES3.1 we
cannot get it in that deeply - lets provide it as library - parking meter folks would use decimal
arithmetic using either the primitive operations or by writing a wrapper - nothing convenient
about the static method proposal - create wrappers if you want convenient - use objects to
implement a primitive numeric type

For now lets have a decimal by adding to the spec from the DecNum package as well as have
static methods - post Oslo we can, if required, yank the higher level stuff.

ES4 non-strict too is conditioned by opt-in

Not enough clarity around this till now - without the opt-in, non-strict ES4 behaves like ES3 - in
the case of ES3.1 certain semantic differences are observable even outside of the cautious
subset - how do we handle function declaration in blocks ? - spec needs to call out non-opt in

Ecma/TC39/2008/064

http://www.ecma-international.org/

2

behaviour - specifically function declaration in blocks must be specified - caja implements an
intersection of current browser semantics; for function declaration in blocks, scoping of the var
hoisted to containing function but its initialization gets turned into an assignment that gets
hoisted to the top of the block of the containing function - no! not representative of intersection
semantics; won't work in IE.

use subset cautious prohibits var declarations inside blocks - why not say if you are in cautious
code functions are properly block scoped - what if you take out the cautious code; now it would
behave differently - how about a new directive 'use nested blocks' - ES3 grammar anyway
does not function declarations within blocks; why not enforce that in cautious mode - in ES3.1
treat functions like vars - if you are in cautious mode they are prohibited in blocks - you can
still get block scoped functions using const foo = function () {}.

Updating to draft

Do we keep posting updates to the draft - yes, important updates should be circulated on the
discuss lists and the draft must be kept updated - if people get the time to readup on the latest
drafts that would be good; if not we must be ready to review the "Oslo" draft and call out which
sections have evolved.

Meeting adjourned.

