

Standard ECMA-262

3
r d

 Edition - December 1999

S t a n d a r d i z i n g I n f o r m a t i o n a n d C o m m u n i c a t i o n S ys t e m s

Phone: +41 22 849.60 .00 - Fax: +41 22 849 .60 .01 - URL: h t tp : / /www.ecma.c h - In ternet : he lpdes k@ecma.c h

11 August 2008

ECMAScript 3.1 Language

Specification - DRAFT

Standard ECMA-262

3
r d

 Edition - December 1999

S t a n d a r d i z i n g I n f o r m a t i o n a n d C o m m u n i c a t i o n S ys t e m s

Phone: +41 22 849.60 .00 - Fax: +41 22 849 .60 .01 - URL: h t tp : / /www.ecma.c h - In ternet : he lpdes k@ecma.c h

11 August 2008

Standard ECMA-262

3
r d

 Edition - December 1999

S t a n d a r d i z i n g I n f o r m a t i o n a n d C o m m u n i c a t i o n S ys t e m s

Phone: +41 22 849.60 .00 - Fax: +41 22 849 .60 .01 - URL: h t tp : / /www.ecma.c h - In ternet : he lpdes k@ecma.c h

11 August 2008

ECMAScript 3.1 Language

Specification - DRAFT

Phone: +41 22 849.60 .00 - Fax: +41 22 849 .60 .01 - URL: h t tp : / /www.ecma.c h - In ternet : he lpdes k@ecma.c h

11 August 2008

Brief History

This ECMA Standard is based on several originating technologies, the most well known being JavaScript (Netscape)

and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company‘s

Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft

starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this ECMA Standard was adopted by

the ECMA General Assembly of June 1997.

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under the fast -track procedure, and approved as

international standard ISO/IEC 16262, in April 1998. The ECMA General Assembly of June 1998 approved the

second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second

edition are editorial in nature.

The third edition of the Standard includes powerful regular expressions, better string handling, new control

statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor changes

in anticipation of forthcoming internationalisation facilities and future language growth. The language documented by

the third edition has come to be known as ECMAScript 3 or ES3.

Work on the language is not complete. The technical committee is working on significant enhancements, including

mechanisms for scripts to be created and used across the Internet, and tighter coordination with other standards bodies

such as groups within the World Wide Web Consortium and the Wireless Application Protocol Forum.

Deleted: current document defines the

Deleted: and

Deleted: This Standard has been adopted as 3rd Edition of
ECMA-262 by the ECMA General Assembly in December,

1999.

- i -

11 August 2008

Table of contents

1 Scope 1

2 Conformance 1

3 References 1

4 Overview 1

4.1 Web Scripting 2

4.2 Language Overview 2

4.2.1 Objects 2

4.2.2 Voluntary Usage Language Subsets 3

4.3 Definitions 4

4.3.1 Type 4

4.3.2 Primitive Value 4

4.3.3 Object 4

4.3.4 Constructor 4

4.3.5 Prototype 4

4.3.6 Native Object 4

4.3.7 Built-in Object 4

4.3.8 Host Object 5

4.3.9 Undefined Value 5

4.3.10 Undefined Type 5

4.3.11 Null Value 5

4.3.12 Null Type 5

4.3.13 Boolean Value 5

4.3.14 Boolean Type 5

4.3.15 Boolean Object 5

4.3.16 String Value 5

4.3.17 String Type 5

4.3.18 String Object 5

4.3.19 Number Value 5

4.3.20 Number Type 5

4.3.21 Number Object 5

4.3.22 Infinity 6

4.3.23 NaN 6

4.3.24 Function 6

4.3.25 Property 6

4.3.26 Method 6

4.3.27 Attribute 6

4.3.29 Own Property 6

4.3.28 Inherited Property 6

4.3.29 Built-in Method 6

5 Notational Conventions 7

5.1 Syntactic and Lexical Grammars 7

5.1.1 Context-Free Grammars 7

5.1.2 The Lexical and RegExp Grammars 7

- i i -

11 August 2008

5.1.3 The Numeric String Grammar 7

5.1.4 The Syntactic Grammar 7

5.1.5 Grammar Notation 8

5.2 Algorithm Conventions 10

6. Source Text 11

7 Lexical Conventions 12

7.1 Unicode Format-Control Characters 12

7.2 White Space 12

7.3 Line Terminators 13

7.4 Comments 14

7.5 Tokens 15

7.5.1 Reserved Words 15

7.5.2 Keywords 15

7.5.3 Future Reserved Words 15

7.6 Identifiers 15

7.7 Punctuators 17

7.8 Literals 17

7.8.1 Null Literals 17

7.8.2 Boolean Literals 17

7.8.3 Numeric Literals 17

7.8.4 String Literals 19

7.8.5 Regular Expression Literals 22

7.9 Automatic Semicolon Insertion 23

7.9.1 Rules of Automatic Semicolon Insertion 23

7.9.2 Examples of Automatic Semicolon Insertion 24

8 Types 25

8.1 The Undefined Type 25

8.2 The Null Type 25

8.3 The Boolean Type 25

8.4 The String Type 25

8.5 The Number Type 26

8.6 The Object Type 27

8.6.1 Property Attributes 27

8.6.2 Internal Properties and Methods 28

8.7 The Reference Type 33

8.7.1 GetValue (V) 33

8.7.2 PutValue (V, W, Throw) 34

8.8 The List Type 34

8.9 The Completion Type 34

8.10 The Property Descriptor and Property Identifier Types 34

8.10.1 IsAccessorDescriptor (Desc) 35

8.10.2 IsDataDescriptor (Desc) 35

8.10.3 IsGenericDescriptor (Desc) 35

8.10.4 FromPropertyDescriptor (Desc) 35

8.10.6 ToPropertyDescriptor (Desc) 36

- i i i -

11 August 2008

9 Type Conversion and Testing 36

9.1 ToPrimitive 36

9.2 ToBoolean 37

9.3 ToNumber 37

9.3.1 ToNumber Applied to the String Type 37

9.4 ToInteger 40

9.5 ToInt32: (Signed 32 Bit Integer) 40

9.6 ToUint32: (Unsigned 32 Bit Integer) 40

9.7 ToUint16: (Unsigned 16 Bit Integer) 41

9.8 ToString 41

9.8.1 ToString Applied to the Number Type 41

9.9 ToObject 42

9.10 IsCallable 43

10 Execution Contexts 43

10.1 Definitions 43

10.1.1 Function Objects 43

10.1.2 Types of Executable Code 43

10.1.3 Environment Bindings Instantiation 44

10.1.4 Scope Chain and Identifier Resolution 45

10.1.5 Global Object 45

10.1.6 Activation Object 46

10.1.7 This 46

10.1.8 Arguments Object 46

10.2 Entering An Execution Context 47

10.2.1 Global Code 47

10.2.2 Eval Code 47

10.2.3 Function Code 47

10.2.4 Lexical Block Code 47

11 Expressions 48

11.1 Primary Expressions 48

11.1.1 The this Keyword 48

11.1.2 Identifier Reference 48

11.1.3 Literal Reference 48

11.1.4 Array Initialiser 48

11.1.5 Object Initialiser 49

11.1.6 The Grouping Operator 51

11.2 Left-Hand-Side Expressions 51

11.2.1 Property Accessors 52

11.2.2 The new Operator 53

11.2.3 Function Calls 53

11.2.4 Argument Lists 53

11.2.5 Function Expressions 54

11.3 Postfix Expressions 54

11.3.1 Postfix Increment Operator 54

11.3.2 Postfix Decrement Operator 54

- iv -

11 August 2008

11.4 Unary Operators 55

11.4.1 The delete Operator 55

11.4.2 The void Operator 55

11.4.3 The typeof Operator 55

11.4.4 Prefix Increment Operator 56

11.4.5 Prefix Decrement Operator 56

11.4.6 Unary + Operator 56

11.4.7 Unary - Operator 57

11.4.8 Bitwise NOT Operator (~) 57

11.4.9 Logical NOT Operator (!) 57

11.5 Multiplicative Operators 57

11.5.1 Applying the * Operator 58

11.5.2 Applying the / Operator 58

11.5.3 Applying the % Operator 58

11.6 Additive Operators 59

11.6.1 The Addition operator (+) 59

11.6.2 The Subtraction Operator (-) 60

11.6.3 Applying the Additive Operators (+,-) to Numbers 60

11.7 Bitwise Shift Operators 60

11.7.1 The Left Shift Operator (<<) 60

11.7.2 The Signed Right Shift Operator (>>) 61

11.7.3 The Unsigned Right Shift Operator (>>>) 61

11.8 Relational Operators 61

11.8.1 The Less-than Operator (<) 62

11.8.2 The Greater-than Operator (>) 62

11.8.3 The Less-than-or-equal Operator (<=) 62

11.8.4 The Greater-than-or-equal Operator (>=) 62

11.8.5 The Abstract Relational Comparison Algorithm 63

11.8.6 The instanceof operator 63

11.8.7 The in operator 64

11.9 Equality Operators 64

11.9.1 The Equals Operator (==) 64

11.9.2 The Does-not-equals Operator (!=) 64

11.9.3 The Abstract Equality Comparison Algorithm 65

11.9.4 The Strict Equals Operator (===) 66

11.9.5 The Strict Does-not-equal Operator (!==) 66

11.9.6 The Strict Equality Comparison Algorithm 66

11.10 Binary Bitwise Operators 66

11.11 Binary Logical Operators 67

11.12 Conditional Operator (?:) 68

11.13 Assignment Operators 68

11.13.1 Simple Assignment (=) 69

11.13.2 Compound Assignment (op=) 69

11.14 Comma Operator (,) 69

- v -

11 August 2008

12 Statements 71

12.1 Block 71

12.1.1 Usage Subset cautious Restrictions 72

12.2 Variable statement 72

12.3 Empty Statement 73

12.4 Expression Statement 73

12.5 The if Statement 74

12.6 Iteration Statements 74

12.6.1 The do-while Statement 74

12.6.2 The while statement 75

12.6.3 The for Statement 75

12.6.4 The for-in Statement 76

12.7 The continue Statement 77

12.8 The break Statement 77

12.9 The return Statement 77

12.10 The with Statement 78

12.10.1 Usage Subset cautious Restrictions 78

12.11 The switch Statement 78

12.12 Labelled Statements 80

12.13 The throw statement 80

12.14 The try statement 81

12.15 Constant statement 81

13 Function Definition 82

13.1 Definitions 83

13.2 Creating Function Objects 83

13.2.1 [[Call]] 84

13.2.2 [[Construct]] 84

14 Program 85

15 Native ECMAScript Objects 87

15.1 The Global Object 87

15.1.1 Value Properties of the Global Object 88

15.1.2 Function Properties of the Global Object 88

15.1.3 URI Handling Function Properties 89

15.1.4 Constructor Properties of the Global Object 94

15.1.5 Other Properties of the Global Object 94

15.2 Object Objects 94

15.2.1 The Object Constructor Called as a Function 94

15.2.2 The Object Constructor 95

15.2.3 Properties of the Object Constructor 95

15.2.4 Properties of the Object Prototype Object 98

15.2.5 Properties of Object Instances 99

15.3 Function Objects 99

15.3.1 The Function Constructor Called as a Function 99

15.3.2 The Function Constructor 100

- vi -

11 August 2008

15.3.3 Properties of the Function Constructor 100

15.3.4 Properties of the Function Prototype Object 101

15.3.5 Properties of Function Instances 102

15.4 Array Objects 102

15.4.1 The Array Constructor Called as a Function 103

15.4.2 The Array Constructor 103

15.4.3 Properties of the Array Constructor 103

15.4.4 Properties of the Array Prototype Object 104

15.4.5 Properties of Array Instances 119

15.5 String Objects 119

15.5.1 The String Constructor Called as a Function 119

15.5.2 The String Constructor 119

15.5.3 Properties of the String Constructor 120

15.5.4 Properties of the String Prototype Object 120

15.5.5 Properties of String Instances 128

15.6 Boolean Objects 129

15.6.1 The Boolean Constructor Called as a Function 129

15.6.2 The Boolean Constructor 129

15.6.3 Properties of the Boolean Constructor 129

15.6.4 Properties of the Boolean Prototype Object 129

15.6.5 Properties of Boolean Instances 130

15.7 Number Objects 130

15.7.1 The Number Constructor Called as a Function 130

15.7.2 The Number Constructor 130

15.7.3 Properties of the Number Constructor 130

15.7.4 Properties of the Number Prototype Object 131

15.7.5 Properties of Number Instances 134

15.8 The Math Object 134

15.8.1 Value Properties of the Math Object 134

15.8.2 Function Properties of the Math Object 135

15.9 Date Objects 140

15.9.1 Overview of Date Objects and Definitions of Internal Operators 140

15.9.2 The Date Constructor Called as a Function 144

15.9.3 The Date Constructor 145

15.9.4 Properties of the Date Constructor 145

15.9.5 Properties of the Date Prototype Object 146

15.9.6 Properties of Date Instances 152

15.10 RegExp (Regular Expression) Objects 153

15.10.1 Patterns 153

15.10.2 Pattern Semantics 155

15.10.3 The RegExp Constructor Called as a Function 166

15.10.4 The RegExp Constructor 166

15.10.5 Properties of the RegExp Constructor 167

15.10.6 Properties of the RegExp Prototype Object 167

15.10.7 Properties of RegExp Instances 168

15.11 Error Objects 169

15.11.1 The Error Constructor Called as a Function 169

- vi i -

11 August 2008

15.11.2 The Error Constructor 169

15.11.3 Properties of the Error Constructor 169

15.11.4 Properties of the Error Prototype Object 169

15.11.5 Properties of Error Instances 170

15.11.6 Native Error Types Used in This Standard 170

15.11.7 NativeError Object Structure 170

15.12 JSON 172

15.12.1 parse (text, reviver) 172

15.12.2 stringify (value, replacer, space) 172

15.13 Decimal 174

15.13.1 Overview of Decimal Objects and Definitions of Internal Operators 174

15.13.2 The Decimal Constructor Called as a Function 174

15.13.3 The Decimal Constructor 174

15.13.4 Properties of the Decimal constructor 175

15.13.5 Properties of the Decimal Prototype Object 175

15.13.6 Properties of Decimal Instances 180

16 Errors 181

Annex A 182

A.1 Lexical Grammar 182

A.2 Number Conversions 187

A.3 Expressions 188

A.4 Statements 193

A.5 Functions and Programs 195

A.6 Universal Resource Identifier Character Classes 196

A.7 Regular Expressions 196

Annex B 200

Compatibility 200

B.1 Additional Syntax 200

B.1.1 Numeric Literals 200

B.1.2 String Literals 200

B.2 Additional Properties 201

B.2.1 escape (string) 201

B.2.2 unescape (string) 202

B.2.3 String.prototype.substr (start, length) 202

B.2.4 Date.prototype.getYear () 203

B.2.5 Date.prototype.setYear (year) 203

B.2.6 Date.prototype.toGMTString () 203

Annex C 204

- vi i i -

11 August 2008

Usage Subsets 204

C.1 The cautious Subset 204

C.1.1 Excluded Features 204

C.1.2 Additional Execution Exceptions 205

Annex D 206

Correction and Clarifications in Edition 3.1 with Possible Compatability Impact 206

Annex E 207

Additions and Changes in Edition 3.1 which Introduce Incompatabilities with Edition 3 . 207

- 1 -

11 August 2008

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,

properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this International standard shall interpret characters in conformance with the

Unicode Standard, Version 3.0 or later, and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted

encoding form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is

presumed to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it

presumed to be the UTF-16 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,

properties, and functions beyond those described in this specification. In particular, a conforming

implementation of ECMAScript is permitted to provide properties not described in this specification, and

values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax

not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to

support program syntax that makes use of the ―future reserved words‖ listed in 7.5.3 of this specification.

3 References

ISO/IEC 9899:1996 Programming Languages – C, including amendment 1 and technical corrigenda 1 and 2.

ISO/IEC 10646-1:1993 Information Technology -- Universal Multiple-Octet Coded Character Set (UCS) plus

its amendments and corrigenda.

The Unicode Consortium. The Unicode Standard, Version 3.0, defined by: The Unicode Standard, Version 3.0

(Boston, MA, Addison-Wesley, 2000. ISBN 0-201-61635-5).

Unicode Inc. (1998), Unicode Technical Report #15: Unicode Normalization Forms.

ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and

Electronic Engineers, New York (1985).

4 Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating

computational objects within a host environment. ECMAScript as defined here is not intended to be

computationally self-sufficient; indeed, there are no provisions in this specification for input of external data

or output of computed results. Instead, it is expected that the computational environment of an ECMAScript

program will provide not only the objects and other facilities described in this specification but also certain

environment-specific host objects, whose description and behaviour are beyond the scope of this specification

except to indicate that they may provide certain properties that can be accessed and certain functions that can

be called from an ECMAScript program.

A scripting language is a programming language that is used to manipulate, customise, and automate the

facilities of an existing system. In such systems, useful functionality is already available through a user

interface, and the scripting language is a mechanism for exposing that functionality to program control. In this

way, the existing system is said to provide a host environment of objects and facilities, which completes the

capabilities of the scripting language. A scripting language is intended for use by both professional and non -

professional programmers. To accommodate non-professional programmers, some aspects of the language are

defined to be tolerant of programmer mistakes. However, such tolerance can easily result in programs

containing undiscovered errors that professional programmers would wish to discover and correct. Ta

facilitate such error detection script can be explicitly be declared to use a ―cautious‖ subset of the full

ECMAScript language that provides enhanced error detection as well.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web

pages in browsers and to perform server computation as part of a Web-based client-server architecture.

Deleted: 2.1

Deleted: Unicode Inc. (1996), The Unicode

Standard , Version 2.0. ISBN: 0-201-48345-9,
Addison-Wesley Publishing Co., Menlo Park,

California.

Deleted: Unicode Inc. (1998), Unicode

Technical Report #8: The Unicode Standard ,
Version 2.1.¶

Deleted: may be somewhat less strict

- 2 -

11 August 2008

ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core

scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular

Java , Self, and Scheme as described in:

 Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing

Co., 1996.

 Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference

Proceedings, pp. 227–241, Orlando, FL, October 1987.

 IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for

instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history,

cookies, and input/output. Further, the host environment provides a means to attach scripting code to events

such as change of focus, page and image loading, unloading, error and abort, selection, form submission,

and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of

user interface elements and fixed and computed text and images. The scripting code is reactive to user

interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects

representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side and

server-side scripting together, it is possible to distribute computation between the client and server while

providing a customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the

ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This

overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an

ECMAScript program is a cluster of communicating objects. An ECMAScript object is an unordered

collection of properties each with zero or more attributes that determine how each property can be used—

for example, when the Writable attribute for a property is set to false, any attempt by executed

ECMAScript code to change the value of the property fails. Properties are containers that hold other

objects, primitive values, or methods. A primitive value is a member of one of the following built-in types:

Undefined, Null, Boolean, Number, and String; an object is a member of the remaining built-in type

Object; and a method is a function associated with an object via a property.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities.

These built-in objects include the Global object, the Object object, the Function object, the Array object,

the String object, the Boolean object, the Number object, the Math object, the Date object, the RegExp

object, the JSON object, the Decimal object, and the Error objects Error, EvalError, RangeError,

ReferenceError, SyntaxError, TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary

operations, multiplicative operators, additive operators, bitwise shift operators, relational operators,

equality operators, binary bitwise operators, binary logical operators, assignment operators, and the comma

operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to

serve as an easy-to-use scripting language. For example, a variable is not required to have its type declared

nor are types associated with properties, and defined functions are not required to have their declarations

appear textually before calls to them.

4.2.1 Objects

ECMAScript does not contain classes such as those in C++, Smalltalk, or Java, but rather, supports

constructors which create objects by executing code that allocates storage for the objects and initialises

all or part of them by assigning initial values to their properties. All constructors are objects, but not all

Deleted: and

Deleted: ReadOnly

Deleted: true

Deleted: has no effect

Deleted: that may not be, strictly speaking, functions
or methods

Deleted: proper

- 3 -

11 August 2008

objects are constructors. Each constructor has a property named ―prototype‖ that is used to

implement prototype-based inheritance and shared properties. Objects are created by using constructors

in new expressions; for example, new String("A String") creates a new String object. Invoking a

constructor without using new has consequences that depend on the constructor. For example,

String("A String") produces a primitive string, not an object.

ECMAScript supports prototype-based inheritance. Every object created by a constructor has an implicit

reference (called the object‘s prototype) to the value of its constructor‘s ―prototype‖ property.

Furthermore, a prototype may have a non-null implicit reference to its prototype, and so on; this is called

the prototype chain. When a reference is made to a property in an object, that reference is to the property

of that name in the first object in the prototype chain that contains a property of that name. In other

words, first the object mentioned directly is examined for such a property; if that object contains the

named property, that is the property to which the reference refers; if that object does not contain the

named property, the prototype for that object is examined next; and so on.

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by

classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are

carried by objects, and structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that

property and its value. The following diagram illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf1,

cf2, cf3, cf4, and cf5. Each of these objects contains properties named q1 and q2. The dashed lines

represent the implicit prototype relationship; so, for example, cf3‘s prototype is CFp. The constructor,

CF, has two properties itself, named P1 and P2, which are not visible to CFp, cf1, cf2, cf3, cf4, or cf5. The

property named CFP1 in CFp is shared by cf1, cf2, cf3, cf4, and cf5 (but not by CF), as are any properties

found in CFp‘s implicit prototype chain that are not named q1, q2, or CFP1. Notice that there is no

implicit prototype link between CF and CFp.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values

to them. That is, constructors are not required to name or assign values to all or any of the constructed

object‘s properties. In the above diagram, one could add a new shared property for cf1, cf2, cf3, cf4, and

cf5 by assigning a new value to the property in CFp.

4.2.2 Voluntary Usage Language Subsets

The ECMAScript Language recognizes the possibility that some users of the language may wish to

restrict their usage of some features available in the language. They might do so in the interests of

security, to avoid what they consider to be error prone features, to get better error checking, or for other

reasons of their choosing. In support of this possibility, ECMAScript defines the concept of usage

 cf5

 q1

 q2

 cf4

 q1

 q2

 cf3

 q1

 q2

 CFp

 CFP1

 CF

 prototype

 P1

 P2

 cf1

 q1

 q2

 cf2

 q1

 q2

implicit prototype link

explicit prototype property

Comment [pL1]: Rationale:
Consider window.document. It is an object (typeof

document should be ‗object‘), but it not a constructor
(does not support the [[Construct]] property.

Comment [pL2]: From AWB: Need to make
typography consistent.

Deleted: Prototype property

Deleted: constructor has an associated

prototype, and every

Deleted: that

Deleted: to the prototype

Deleted: associated with its constructor

Comment [pL3]: Needs to be reworked to
―harmonize‖ as strict mode.

Deleted: Cfp

Deleted: link

- 4 -

11 August 2008

subsets of the language. A usage subset is simply a specified subset of the ECMAScript language. A

usage subset may exclude specific syntactic and semantic features of the full ECMAScript language and

may identify additional error conditions that could be reported by throwing error exceptions in situations

that are not specified as errors by the full language.

A usage subset is not intended as a means of enabling implementations of subsets of ECMAScript. To

conform to this specification, an ECMAScript implementation must implement the full language as

defined by this specification. Instead, a usage subset is simply a way for a user of the language to state

their intent to voluntarily restrict themselves so a well specified subset of the language. Implementations

of ECMAScript may treat such statements of intent as a request from a user that they would like the

implementation to help them ensure that they have actually adhered to the limitations of a subset. An

implementation should honour such a request by reporting violations of a subset‘s syntactic and semantic

restrictions and by detecting any additional error conditions and throwing the appropriate error

exception. Because usage subsets are selected at the level of a syntactic program unit they may only

impose restriction that would have local effect within such a syntactic program unit. They may not

restrict the ECMAScript semantics that must operate consistently across all program units.

With one exception, an ECMAScript program that is voluntarily limited to a usage subset and which

executes without error under the subset‘s restrictions will behave identically if executed without on any

usage subset restrictions. The exception is any situation where the operation of such a program depends

upon the actual occurrence and subsequent handling of additional error conditions that are part of the

subset.

ECMAScript defines a single usage subset, named cautious which implementations must support to

be in compliance with this specification. Other usage subsets may be defined by future versions of the

ECMAScript language.

4.3 Definitions

The following are informal definitions of key terms associated with ECMAScript.

4.3.1 Type

A type is a set of data values.

4.3.2 Primitive Value

A primitive value is a member of one of the types Undefined, Null, Boolean, Number, or String. A

primitive value is a datum that is represented directly at the lowest level of the language implementation.

4.3.3 Object

An object is a member of the type Object. It is an unodered collection of properties.

4.3.4 Constructor

A constructor is a Function object that creates and initialises objects. The value of a constructor‘s

―prototype‖ property is a prototype object that is used to implement inheritance and shared

properties.

4.3.5 Prototype

A prototype is an object used to implement structure, state, and behaviour inheritance in ECMAScript.

When a constructor creates an object, that object implicitly references the constructor‘s ―prototype‖

property for the purpose of resolving property references. The constructor‘s ―prototype‖ property can

be referenced by the program expression constructor.prototype, and properties added to an

object‘s prototype are shared, through inheritance, by all objects sharing the prototype.

4.3.6 Native Object

A native object is any object supplied by an ECMAScript implementation independent of the host

environment. Standard native objects are defined in this specification. Some native objects are built -in;

others may be constructed during the course of execution of an ECMAScript program.

4.3.7 Built-in Object

A built-in object is any object supplied by an ECMAScript implementation, independent of the host

environment, which is present at the start of the execution of an ECMAScript program. Standard built-in

objects are defined in this specification, and an ECMAScript implementation may specify and define

Deleted: It is an unordered collection of properties
each of which contains a primitive value, object, or

function. A function stored in a property of an object is

called a method.

Deleted: Each constructor has an associated

Deleted: associated prototype

Deleted: associated prototype

- 5 -

11 August 2008

others. Every built-in object is a native object. A built-in constructor is a built-in object that is also a

constructor.

4.3.8 Host Object

A host object is any object supplied by the host environment to complete the execution environment of

ECMAScript. Any object that is not native is a host object.

4.3.9 Undefined Value

The undefined value is a primitive value used when a variable has not been assigned a value.

4.3.10 Undefined Type

The type Undefined has exactly one value, called undefined.

4.3.11 Null Value

The null value is a primitive value that represents the null, empty, or non-existent reference.

4.3.12 Null Type

The type Null has exactly one value, called null.

4.3.13 Boolean Value

A boolean value is a member of the type Boolean and is one of two unique values, true and false.

4.3.14 Boolean Type

The type Boolean represents a logical entity and consists of exactly two unique values. One is called

true and the other is called false.

4.3.15 Boolean Object

A Boolean object is a member of the type Object and is an instance of the built-in Boolean object. That

is, a Boolean object is created by using the Boolean constructor in a new expression, supplying a

boolean as an argument. The resulting object has an implicit (unnamed) property that is the boolean. A

Boolean object can be coerced to a boolean value.

4.3.16 String Value

A string value is a member of the type String and is a finite ordered sequence of zero or more 16-bit

unsigned integer values.

NOTE

Although each value usually represents a single 16-bit unit of UTF-16 text, the language does not place

any restrictions or requirements on the values except that they be 16-bit unsigned integers.

4.3.17 String Type

The type String is the set of all string values.

4.3.18 String Object

A String object is a member of the type Object and is an instance of the built-in String object. That is, a

String object is created by using the String constructor in a new expression, supplying a string as an

argument. The resulting object has an implicit (unnamed) property that is the string. A String object can

be coerced to a string value by calling the String constructor as a function (15.5.1).

4.3.19 Number Value

A number value is a member of the type Number and is a direct representation of a number.

4.3.20 Number Type

The type Number is a set of values representing numbers. In ECMAScript, the set of values represents

the double-precision 64-bit format IEEE 754 values including the special ―Not-a-Number‖ (NaN) values,

positive infinity, and negative infinity.

4.3.21 Number Object

A Number object is a member of the type Object and is an instance of the built-in Number object. That

is, a Number object is created by using the Number constructor in a new expression, supplying a number

- 6 -

11 August 2008

as an argument. The resulting object has an implicit (unnamed) property that is the number. A Number

object can be coerced to a number value by calling the Number constructor as a function (15.7.1).

4.3.22 Infinity

The primitive value Infinity represents the positive infinite number value. This value is a member of the

Number type.

4.3.23 NaN

The primitive value NaN represents the set of IEEE Standard ―Not-a-Number‖ values. This value is a

member of the Number type.

4.3.24 Function

A function is a member of the type Object and is an instance of the built-in Function object. In addition

to its named properties, a function contains executable code and state that determine how it behaves

when invoked. A function‘s code may or may not be written in ECMAScript.

4.3.25 Property

A property is an association between a name and a value. Depending upon the form of the property the

value may be either a data value (a primitive value, an object, or a function) or a pair of functions.

4.3.26 Method

A method is a function that is the value of a property.

4.3.27 Attribute

An attribute is an internal value that defines some characteristic of a property.

4.3.29 Own Property

An own property of an object is a property that is directly defined by that object.

4.3.28 Inherited Property

An inherited property is a property of an object that is not one of its own properties but is a property

(either own or inherited) of the object‘s prototype.

4.3.29 Built-in Method

A built-in method is any method supplied by an ECMAScript implementation, independent of the host

environment, which is present at the start of the execution of an ECMAScript program. Standard built-in

methods are defined in this specification, and an ECMAScript implementation may specify and define

others.

- 7 -

11 August 2008

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

This section describes the context-free grammars used in this specification to define the lexical and

syntactic structure of an ECMAScript program.

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol

called a nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal

symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified

alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given

context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of

terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-

hand side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols the

characters of the Unicode character set. It defines a set of productions, starting from the goal symbol

InputElementDiv or InputElementRegExp, that describe how sequences of Unicode characters are

translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic

grammar for ECMAScript and are called ECMAScript tokens. These tokens are the reserved words,

identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, although

not considered to be tokens, also become part of the stream of input elements and guide the process of

automatic semicolon insertion (7.9). Simple white space and single-line comments are discarded and do

not appear in the stream of input elements for the syntactic grammar. A MultiLineComment (that is, a

comment of the form ―/*…*/‖ regardless of whether it spans more than one line) is likewise simply

discarded if it contains no line terminator; but if a MultiLineComment contains one or more line

terminators, then it is replaced by a single line terminator, which becomes part of the stream of input

elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols

the characters of the Unicode character set. It defines a set of productions, starting from the goal symbol

Pattern, that describe how sequences of Unicode characters are translated into regular expression

patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons ―::‖ as

separating punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the part

of the lexical grammar having to do with numeric literals and has as its terminal symbols the characters

of the Unicode character set. This grammar appears in 9.3.1.

Productions of the numeric string grammar are distinguished by having three colons ―:::‖ as

punctuation.

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has

ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of

productions, starting from the goal symbol Program, that describe how sequences of tokens can form

syntactically correct ECMAScript programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted to a

stream of input elements by repeated application of the lexical grammar; this stream of input elements is

then parsed by a single application of the syntax grammar. The program is syntactically in error if the

tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal

Program, with no tokens left over.

Deleted: 7.8.5

- 8 -

11 August 2008

Productions of the syntactic grammar are distinguished by having just one colon ―:‖ as punctuation.

The syntactic grammar as presented in sections 11, 12, 13 and 14 is actually not a complete account of

which token sequences are accepted as correct ECMAScript programs. Certain additional token

sequences are also accepted, namely, those that would be described by the grammar if only semicolons

were added to the sequence in certain places (such as before line terminator characters). Furthermore,

certain token sequences that are described by the grammar are not considered acceptable if a terminator

character appears in certain ―awkward‖ places.

5.1.5 Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic

grammar, are shown in fixed width font, both in the productions of the grammars and throughout

this specification whenever the text directly refers to such a terminal symbol. These are to appear in a

program exactly as written. All nonterminal characters specified in this way are to be understood as the

appropriate Unicode character from the ASCII range, as opposed to any similar -looking characters from

other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name

of the nonterminal being defined followed by one or more colons. (The number of colons indicates to

which grammar the production belongs.) One or more alternative right-hand sides for the nonterminal

then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :

while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis

token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The

occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic

definition:

ArgumentList :

AssignmentExpression

ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList,

followed by a comma, followed by an AssignmentExpression. This definition of ArgumentList is

recursive, that is, it is defined in terms of itself. The result is that an ArgumentList may contain any

positive number of arguments, separated by commas, where each argument expression is an

AssignmentExpression. Such recursive definitions of nonterminals are common.

The subscripted suffix ―opt‖, which may appear after a terminal or nonterminal, indicates an optional

symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that

omits the optional element and one that includes it. This means that:

VariableDeclaration :

Identifier Initialiseropt

is a convenient abbreviation for:

VariableDeclaration :

Identifier

Identifier Initialiser

and that:

IterationStatement :

for (ExpressionNoInopt ; Expressionopt ; Expressionopt) Statement

is a convenient abbreviation for:

IterationStatement :

for (; Expressionopt ; Expressionopt) Statement

for (ExpressionNoIn ; Expressionopt ; Expressionopt) Statement

which in turn is an abbreviation for:

Deleted: 0, 0, 0 and 0

Deleted: WithStatement

Deleted: with

Deleted: WithStatement

Deleted: with

- 9 -

11 August 2008

IterationStatement :

for (; ; Expressionopt) Statement

for (; Expression ; Expressionopt) Statement

for (ExpressionNoIn ; ; Expressionopt) Statement

for (ExpressionNoIn ; Expression ; Expressionopt) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ;) Statement

for (; ; Expression) Statement

for (; Expression ;) Statement

for (; Expression ; Expression) Statement

for (ExpressionNoIn ; ;) Statement

for (ExpressionNoIn ; ; Expression) Statement

for (ExpressionNoIn ; Expression ;) Statement

for (ExpressionNoIn ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

If the phrase ―[empty]‖ appears as the right-hand side of a production, it indicates that the production's

right-hand side contains no terminals or nonterminals.

If the phrase ―[lookahead set]‖ appears in the right-hand side of a production, it indicates that the

production may not be used if the immediately following input terminal is a member of the given set.

The set can be written as a list of terminals enclosed in curly braces. For convenience, the set can also be

written as a nonterminal, in which case it represents the set of all terminals to which that nonterminal

could expand. For example, given the definitions

DecimalDigit :: one of

0 1 2 3 4 5 6 7 8 9

DecimalDigits ::

DecimalDigit

DecimalDigits DecimalDigit

the definition

LookaheadExample ::

n [lookahead {1, 3, 5, 7, 9}] DecimalDigits

DecimalDigit [lookahead DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal

digit not followed by another decimal digit.

If the phrase ―[no LineTerminator here]‖ appears in the right-hand side of a production of the syntactic

grammar, it indicates that the production is a restricted production: it may not be used if a

LineTerminator occurs in the input stream at the indicated position. For example, the production:

ReturnStatement :

return [no LineTerminator here] Expressionopt ;

indicates that the production may not be used if a LineTerminator occurs in the program between the

return token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of

occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input

elements without affecting the syntactic acceptability of the program.

When the words ―one of‖ follow the colon(s) in a grammar definition, they signify that each of the

terminal symbols on the following line or lines is an alternative definition. For example, the lexical

grammar for ECMAScript contains the production:

- 10 -

11 August 2008

NonZeroDigit :: one of

1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

NonZeroDigit ::
1

2

3

4

5

6

7

8

9

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be

a multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the

phrase ―but not‖ and then indicating the expansions to be excluded. For example, the production:

Identifier ::

IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace

IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where it

would be impractical to list all the alternatives:

SourceCharacter ::

any Unicode character

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to

clarify semantics. In practice, there may be more efficient algorithms available to implement a given

feature.

When an algorithm is to produce a value as a result, the directive ―return x‖ is used to indicate that the

result of the algorithm is the value of x and that the algorithm should terminate. The notation Result(n) is

used as shorthand for ―the result of step n‖. Type(x) is used as shorthand for ―the type of x‖.

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented

and may themselves be further divided into indented substeps. Outline numbering conventions are used to

identify substeps with the first level of substeps labeled with lower case alphabetic characters and the

second level of substeps labelled with lower case roman numerals. If more than three levels are required

these rules repeat with the fourth level using numeric labels. For example:

Top-level step

Substep.

Substep

Subsubstep.

Subsubstep.

Subsubsubstep

Subsubsubsubstep

A step or substep may be written as a predicate that conditions its substeps. In this case, the substeps are

only applied if the predicate is true. If a step or substep begins with the word ―else‖ it is a predicate that is

the negation of the preceding predicate step at the same level. If ―else‖ is immediately followed by a

parenthesized step or substep label then it is a predicate that is the negation of that labelled predicate.

Deleted: one of

- 11 -

11 August 2008

A step my specify the iterative application of its substeps.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the

mathematical functions defined later in this section should always be understood as computing exact

mathematical results on mathematical real numbers, which do not include infinities and do not include a

negative zero that is distinguished from positive zero. Algorithms in this standard that model floating-point

arithmetic include explicit steps, where necessary, to handle infinities and signed zero and to perform

rounding. If a mathematical operation or function is applied to a floating-point number, it should be

understood as being applied to the exact mathematical value represented by that floating-point number;

such a floating-point number must be finite, and if it is +0 or 0 then the corresponding mathematical value

is simply 0.

The mathematical function abs(x) yields the absolute value of x, which is x if x is negative (less than zero)

and otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and 1 if x is negative. The sign function is not

used in this standard for cases when x is zero.

The notation ―x modulo y‖ (y must be finite and nonzero) computes a value k of the same sign as y (or zero)

such that abs(k) < abs(y) and x k = q y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger

than x.

NOTE

floor(x) = x (x modulo 1).

If an algorithm is defined to ―throw an exception‖, execution of the algorithm is terminated and no result is

returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals

with the exception, using terminology such as ―If an exception was thrown…‖. Once such an algorithm step

has been encountered the exception is no longer considered to have occurred.

6. Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding, version

3.0 or later, using the UTF-16 transformation format. The text is expected to have been normalised to Unicode

Normalised Form C (canonical composition), as described in Unicode Technical Report #15. Conforming

ECMAScript implementations are not required to perform any normalisation of text, or behave as though they

were performing normalisation of text, themselves.

SourceCharacter ::

any Unicode character

ECMAScript source text can contain any of the Unicode characters. All Unicode white space characters are

treated as white space. Only the carriage return and line feed characters are treated as line separators. Non-

Latin Unicode characters are allowed in identifiers, string literals, regular expression literals and comments.

Throughout the rest of this document, the phrase ―code point‖ and the word ―character‖ will be used to refer

to a 16-bit unsigned value used to represent a single 16-bit unit of UTF-16 text. The phrase ―Unicode

character‖ will be used to refer to the abstract linguistic or typographical unit represented by a single Unicode

scalar value (which may be longer than 16 bits and thus may be represented by more than one code point).

This only refers to entities represented by single Unicode scalar values: the components of a combining

character sequence are still individual ―Unicode characters,‖ even though a user might think of the whole

sequence as a single character.

In string literals, regular expression literals and identifiers, any character (code point) may also be expressed

as a Unicode escape sequence consisting of six characters, namely \u plus four hexadecimal digits. Within a

comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal or

regular expression literal, the Unicode escape sequence contributes one character to the value of the literal.

Within an identifier, the escape sequence contributes one character to the identifier.

NOTE 1

Deleted: 2.1

Deleted: , and all Unicode line/paragraph
separators

- 12 -

11 August 2008

Although this document sometimes refers to a ―transformation‖ between a ―character‖ within a ―string‖ and

the 16-bit unsigned integer that is the UTF-16 encoding of that character, there is actually no transformation

because a ―character‖ within a ―string‖ is actually represented using that 16-bit unsigned value.

NOTE 2

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a

Java program, if the Unicode escape sequence \u000A, for example, occurs within a single-line comment, it

is interpreted as a line terminator (Unicode character 000A is line feed) and therefore the next character is

not part of the comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a

Java program, it is likewise interpreted as a line terminator, which is not allowed within a string literal—one

must write \n instead of \u000A to cause a line feed to be part of the string value of a string literal. In an

ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and

therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring

within a string literal in an ECMAScript program always contributes a character to the string value of the

literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are

either tokens, line terminators, comments, or white space. The source text is scanned from left to right,

repeatedly taking the longest possible sequence of characters as the next input element.

There are two goal symbols for the lexical grammar. The InputElementDiv symbol is used in those syntactic

grammar contexts where a division (/) or division-assignment (/=) operator is permitted. The

InputElementRegExp symbol is used in other syntactic grammar contexts.

Note that contexts exist in the syntactic grammar where both a division and a RegularExpressionLiteral are

permitted by the syntactic grammar; however, since the lexical grammar uses the InputElementDiv goal

symbol in such cases, the opening slash is not recognised as starting a regular expression literal in such a

context. As a workaround, one may enclose the regular expression literal in parentheses.

Syntax

InputElementDiv ::

WhiteSpace

LineTerminator

Comment

Token

DivPunctuator

InputElementRegExp ::

WhiteSpace

LineTerminator

Comment

Token

RegularExpressionLiteral

7.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category ―Cf‖ in the Unicode Character

Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the

formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow these in source text to facilitate editing and display.

The format control characters maybe used in identifiers, within comments, and within string literals and

regular expression literals.

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible

lexical units) from each other, but are otherwise insignificant. White space may occur between any two

tokens, and may occur within strings (where they are considered significant characters forming part of the

literal string value), but cannot appear within any other kind of token.

Deleted: can occur

Deleted: anywhere in the source text of an

ECMAScript program. These characters are removed
from the source text before applying the lexical

grammar. Since these characters are removed before

processing string and regular expression literals, one
must use a. Unicode escape sequence (see 7.6) to

include a Unicode format-control character inside a

string or regular expression literal

- 13 -

11 August 2008

The following characters are considered to be white space:

Code Point Value Name Formal Name

\u0009 Tab <TAB>

\u000B Vertical Tab <VT>

\u000C Form Feed <FF>

\u0020

\u0085

Space

Next Line

<SP>

<NEL>

\u00A0 No-break space <NBSP>

\u200B Zero width space <ZWSP>

\uFEFF

Other category ―Zs‖

Byte Order Mark

Any other Unicode

―space separator‖

<BOM>

<USP>

ECMAScript implementations must recognize all of the white space characters defined in Unicode 3.0.

Later editions of the Unicode Standard may define other white space characters. ECMAScript

implementations may recognize white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace ::

<TAB>

<VT>

<FF>

<SP>

<NEL>

<NBSP>

<ZWSP>

<BOM>

<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to

separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line

terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators

may occur between any two tokens, but there are a few places where they are forbidden by the syntactic

grammar. A line terminator cannot occur within any token, except that line terminators that are preceded by

an escape sequence may occur within a string literal token. Line terminators also affect the process of

automatic semicolon insertion (7.9).

Line terminators are included in the set of white space characters that are matched by the \s class in regular

expressions.

The following characters are considered to be line terminators:

Code Point Value Name Formal Name

\u000A Line Feed <LF>

\u000D Carriage Return <CR>

\u2028 Line separator <LS>

\u2029 Paragraph separator <PS>

Deleted: not even a string

Deleted: 7.8.5

- 14 -

11 August 2008

Only the characters in the above table are treated as line terminators. Other new line or line breaking

characters are treated as white space but not as line terminators. The character sequence <CR><LF>

is treated as a single line terminator.

Syntax

LineTerminator ::

<LF>

<CR>

<LS>

<PS>

<CR><LF>

7.4 Comments

Description

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except a LineTerminator character, and because

of the general rule that a token is always as long as possible, a single-line comment always consists of all

characters from the // marker to the end of the line. However, the LineTerminator at the end of the line is

not considered to be part of the single-line comment; it is recognised separately by the lexical grammar and

becomes part of the stream of input elements for the syntactic grammar. This point is very important,

because it implies that the presence or absence of single-line comments does not affect the process of

automatic semicolon insertion (7.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line

terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing

by the syntactic grammar.

Syntax

Comment ::

MultiLineComment

SingleLineComment

MultiLineComment ::

/* MultiLineCommentCharsopt */

MultiLineCommentChars ::

MultiLineNotAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

PostAsteriskCommentChars ::

MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

MultiLineNotAsteriskChar ::

SourceCharacter but not asterisk *

MultiLineNotForwardSlashOrAsteriskChar ::

SourceCharacter but not forward-slash / or asterisk *

SingleLineComment ::

// SingleLineCommentCharsopt

SingleLineCommentChars ::

SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::

SourceCharacter but not LineTerminator

- 15 -

11 August 2008

7.5 Tokens

Syntax
Token ::

ReservedWord

Identifier

IdentifierName

Punctuator

NumericLiteral

StringLiteral

7.5.1 Reserved Words

Description

Reserved words cannot be used as identifiers.

Syntax
ReservedWord ::

Keyword

FutureReservedWord

NullLiteral

BooleanLiteral

7.5.2 Keywords

The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript

programs.

Syntax
Keyword :: one of

break else new var

case finally return void

catch for switch while

continue function this with

default if throw debugger

delete in try const

do instanceof typeof

7.5.3 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for

the possibility of future adoption of those extensions.

Syntax
FutureReservedWord :: one of

abstract enum int short

boolean export interface static

byte extends long super

char final native synchronized

class float package throws

 goto private transient

 implements protected volatile

double import public

7.6 Identifiers

Description

Identifiers are interpreted according to the grammar given in Section 5.16 of the Unicode standard, with

some small modifications. This grammar is based on both normative and informative character categories

specified by the Unicode Standard. The characters in the specified categories in version 3.0 of the Unicode

standard must be treated as in those categories by all conforming ECMAScript implementations.

Comment [pL4]: From AWB:
ReservedWord and Identifier can be deleted as they
are IdentifierNames.

Deleted: Break

Comment [pL5]: Specify that its normative
semantics is simply a noop, but advise in an annex

that it causes a breakpoint when run under a
debugger.

Comment [pL6]: From AWB:
Does it get defined as a statement or as something

that can occur in an expression. Wouldn‘t defining it
as a ―getter‖property of the global object accomplish

the same thing without reserving it.

Deleted: const

Deleted: debugger

Comment [pL7]: This table needs to be repacked
to get rid of the holes.

Deleted: upcoming version 3.0 of the

Deleted: standard

Deleted: 2.1

Deleted: ; however, conforming ECMAScript
implementations may allow additional legal

identifier characters based on the category

assignment from later versions of Unicode

- 16 -

11 August 2008

This standard specifies specific character additions: The dollar sign ($) and the underscore (_) are permitted

anywhere in an identifier.

Unicode escape sequences are also permitted in identifiers, where they contribute a single character to the

identifier, as computed by the CV of the UnicodeEscapeSequence (see 7.8.4). The \ preceding the

UnicodeEscapeSequence does not contribute a character to the identifier. A UnicodeEscapeSequence

cannot be used to put a character into an identifier that would otherwise be illegal. In other words, if a \

UnicodeEscapeSequence sequence were replaced by its UnicodeEscapeSequence's CV, the result must still

be a valid Identifier that has the exact same sequence of characters as the original Identifier.

Two identifiers that are canonically equivalent according to the Unicode standard are not equal unless they

are represented by the exact same sequence of code points (in other words, conforming ECMAScript

implementations are only required to do bitwise comparison on identifiers). The intent is that the incoming

source text has been converted to normalised form C before it reaches the compiler.

ECMAScript implementations may recognize identifier characters defined in later editions of the Unicode

Standard. If portability is a concern, programmers should only employ identifier characters defined in

Unicode 3.0.

Syntax
Identifier ::

IdentifierName but not ReservedWord

IdentifierName ::

IdentifierStart

IdentifierName IdentifierPart

IdentifierStart ::

UnicodeLetter
$

_

\ UnicodeEscapeSequence

IdentifierPart ::

IdentifierStart

UnicodeCombiningMark

UnicodeDigit

UnicodeConnectorPunctuation

\ UnicodeEscapeSequence

UnicodeLetter

any character in the Unicode categories ―Uppercase letter (Lu)‖, ―Lowercase letter (Ll)‖, ―Titlecase letter (Lt)‖,

―Modifier letter (Lm)‖, ―Other letter (Lo)‖, or ―Letter number (Nl)‖.

UnicodeCombiningMark

any character in the Unicode categories ―Non-spacing mark (Mn)‖ or ―Combining spacing mark (Mc)‖

UnicodeDigit

any character in the Unicode category ―Decimal number (Nd)‖

UnicodeConnectorPunctuation

any character in the Unicode category ―Connector punctuation (Pc)‖

UnicodeEscapeSequence

see 7.8.4.

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

Deleted: one departure from the grammar given in the
Unicode standard

Deleted: The dollar sign is intended for use only in
mechanically generated code.

- 17 -

11 August 2008

7.7 Punctuators

Syntax
Punctuator :: one of

{ } () []

. ; , < > <=

>= == != === !==

+ - * % ++ --

<< >> >>> & | ^

! ~ && || ? :

= += -= *= %= <<=

>>= >>>= &= |= ^=

DivPunctuator :: one of
/ /=

7.8 Literals

Syntax
Literal ::

NullLiteral

BooleanLiteral

NumericLiteral

StringLiteral

7.8.1 Null Literals

Syntax
NullLiteral ::

null

Semantics

The value of the null literal null is the sole value of the Null type, namely null.

7.8.2 Boolean Literals

Syntax
BooleanLiteral ::

true

false

Semantics

The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal false is a value of the Boolean type, namely false.

7.8.3 Numeric Literals

Syntax

NumericLiteral ::

DecimalLiteral

HexIntegerLiteral

DecimalLiteral ::

DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalIntegerLiteral ExponentPartopt

- 18 -

11 August 2008

DecimalIntegerLiteral ::
0

NonZeroDigit DecimalDigitsopt

DecimalDigits ::

DecimalDigit

DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::

ExponentIndicator SignedInteger

ExponentIndicator :: one of
e E

SignedInteger ::

DecimalDigits

+ DecimalDigits

- DecimalDigits

HexIntegerLiteral ::

0x HexDigit

0X HexDigit

HexIntegerLiteral HexDigit

The source character immediately following a NumericLiteral must not be an IdentifierStart or

DecimalDigit.

NOTE

For example:

3in

is an error and not the two input elements 3 and in.

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a

mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as

described below.

The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

The MV of DecimalLiteral :: DecimalIntegerLiteral . is the MV of DecimalIntegerLiteral.

The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits is the MV of DecimalIntegerLiteral plus

(the MV of DecimalDigits times 10
–n

), where n is the number of characters in DecimalDigits.

The MV of DecimalLiteral :: DecimalIntegerLiteral . ExponentPart is the MV of DecimalIntegerLiteral times

10
e
, where e is the MV of ExponentPart.

The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits ExponentPart is (the MV of

DecimalIntegerLiteral plus (the MV of DecimalDigits times 10
–n

)) times 10
e
, where n is the number of

characters in DecimalDigits and e is the MV of ExponentPart.

The MV of DecimalLiteral ::. DecimalDigits is the MV of DecimalDigits times 10
–n

, where n is the number of

characters in DecimalDigits.

The MV of DecimalLiteral ::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10
e–n

, where n is

the number of characters in DecimalDigits and e is the MV of ExponentPart.

- 19 -

11 August 2008

The MV of DecimalLiteral :: DecimalIntegerLiteral is the MV of DecimalIntegerLiteral.

The MV of DecimalLiteral :: DecimalIntegerLiteral ExponentPart is the MV of DecimalIntegerLiteral times

10
e
, where e is the MV of ExponentPart.

The MV of DecimalIntegerLiteral :: 0 is 0.

The MV of DecimalIntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10
n
) plus

the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of

DecimalDigit.

The MV of ExponentPart :: ExponentIndicator SignedInteger is the MV of SignedInteger.

The MV of SignedInteger :: DecimalDigits is the MV of DecimalDigits.

The MV of SignedInteger :: + DecimalDigits is the MV of DecimalDigits.

The MV of SignedInteger :: - DecimalDigits is the negative of the MV of DecimalDigits.

The MV of DecimalDigit :: 0 or of HexDigit :: 0 is 0.

The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 is 1.

The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 is 2.

The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 is 3.

The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 is 4.

The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 is 5.

The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 is 6.

The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 is 7.

The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is 9.

The MV of HexDigit :: a or of HexDigit :: A is 10.

The MV of HexDigit :: b or of HexDigit :: B is 11.

The MV of HexDigit :: c or of HexDigit :: C is 12.

The MV of HexDigit :: d or of HexDigit :: D is 13.

The MV of HexDigit :: e or of HexDigit :: E is 14.

The MV of HexDigit :: f or of HexDigit :: F is 15.

The MV of HexIntegerLiteral :: 0x HexDigit is the MV of HexDigit.

The MV of HexIntegerLiteral :: 0X HexDigit is the MV of HexDigit.

The MV of HexIntegerLiteral :: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the

MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number

type. If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the number

value for the MV (in the sense defined in 8.5), unless the literal is a DecimalLiteral and the literal has

more than 20 significant digits, in which case the number value may be either the number value for the

MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the number

value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit and

then incrementing the literal at the 20th significant digit position. A digit is significant if it is not part of

an ExponentPart and

it is not 0; or

there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

7.8.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be

represented by an escape sequence. All Unicode characters may appear literally in a string literal except

for the closing quote character, backslash, carriage return, and line feed. Any character may appear in the

form of an escape sequence.

Syntax

- 20 -

11 August 2008

StringLiteral ::

" DoubleStringCharactersopt "

' SingleStringCharactersopt '

DoubleStringCharacters ::

DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::

SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::

SourceCharacter but not double-quote " or backslash \ or LineTerminator

\ EscapeSequence

LineContinuation

SingleStringCharacter ::

SourceCharacter but not single-quote ' or backslash \ or LineTerminator

\ EscapeSequence

LineContinuation

LineContinuation ::

\ LineTerminator

EscapeSequence ::

CharacterEscapeSequence
0 [lookahead DecimalDigit]

HexEscapeSequence

UnicodeEscapeSequence

CharacterEscapeSequence ::

SingleEscapeCharacter

NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b f n r t v

NonEscapeCharacter ::

SourceCharacter but not EscapeCharacter or LineTerminator

EscapeCharacter ::

SingleEscapeCharacter

DecimalDigit
x

u

HexEscapeSequence ::

x HexDigit HexDigit

UnicodeEscapeSequence ::

u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminal HexDigit is given in section 7.8.3. SourceCharacter is described in

sections 2 and 6.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in

terms of character values (CV) contributed by the various parts of the string literal. As part of this

process, some characters within the string literal are interpreted as having a mathematical value (MV), as

described below or in section 7.8.3.

The SV of StringLiteral :: "" is the empty character sequence.

Comment [pL8]: From DEC:

Do we really want to do this?

Comment [pL9]: 4/4 browsers support this.

- 21 -

11 August 2008

The SV of StringLiteral :: '' is the empty character sequence.

The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the CV of

DoubleStringCharacter.

The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of the CV

of DoubleStringCharacter followed by all the characters in the SV of DoubleStringCharacters in order.

The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one character, the CV of

SingleStringCharacter.

The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of the CV of

SingleStringCharacter followed by all the characters in the SV of SingleStringCharacters in order.

The SV of LineContinuation :: \ LineTerminator is the empty character sequence.

The CV of DoubleStringCharacter :: SourceCharacter but not double-quote " or backslash \ or

LineTerminator is the SourceCharacter character itself.

The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

The CV of SingleStringCharacter :: SourceCharacter but not single-quote ' or backslash \ or LineTerminator

is the SourceCharacter character itself.

The CV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

The CV of EscapeSequence :: 0 [lookahead DecimalDigit]is a <NUL> character (Unicode value 0000).

The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code point value is

determined by the SingleEscapeCharacter according to the following table:

Escape Sequence Code Point Value Name Symbol

\b \u0008 backspace <BS>

\t \u0009 horizontal tab <HT>

\n \u000A line feed (new line) <LF>

\v \u000B vertical tab <VT>

\f \u000C form feed <FF>

\r \u000D carriage return <CR>

\" \u0022 double quote "

\' \u0027 single quote '

\\ \u005C backslash \

The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

The CV of NonEscapeCharacter :: SourceCharacter but not EscapeCharacter or LineTerminator is the

SourceCharacter character itself.

The CV of HexEscapeSequence :: x HexDigit HexDigit is the character whose code point value is (16 times the

MV of the first HexDigit) plus the MV of the second HexDigit.

The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the character whose code

point value is (4096 (that is, 16
3
) times the MV of the first HexDigit) plus (256 (that is, 16

2
) times the MV of

the second HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit.

NOTE

A 'LineTerminator' character cannot appear in a string literal, except when preceded by a backslash \

as a ‗LineContinuation‘ to produce the empty character sequence. The correct way to cause a line

terminator character to be part of the string value of a string literal is to use an escape sequence such as

\n or \u000A.

Deleted: even if

- 22 -

11 August 2008

7.8.5 Regular Expression Literals

A regular expression literal is an input element that is converted to a RegExp object (section 15.10) each

time the literal is evaluated. Two regular expression literals in a program evaluate to regular expression

objects that never compare as === to each other even if the two literals' contents are identical. A RegExp

object may also be created at runtime by new RegExp (section 15.10.4) or calling the RegExp

constructor as a function (section 15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input

element scanner to find the end of the regular expression literal. The strings of characters comprising the

RegularExpressionBody and the RegularExpressionFlags are passed uninterpreted to the regular

expression constructor, which interprets them according to its own, more stringent grammar. An

implementation may extend the regular expression constructor's grammar, but it should not extend the

RegularExpressionBody and RegularExpressionFlags productions or the productions used by these

productions.

Syntax

RegularExpressionLiteral ::

/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::

RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::

NonTerminator but not * or \ or /

BackslashSequence

RegularExpressionChar ::

NonTerminator but not \ or /

BackslashSequence

BackslashSequence ::

\ NonTerminator

NonTerminator ::

SourceCharacter but not LineTerminator

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

NOTE

Regular expression literals may not be empty; instead of representing an empty regular expression

literal, the characters // start a single-line comment. To specify an empty regular expression, use

/(?:)/.

Semantics

A regular expression literal evaluates to a value of the RegExp type. This value is determined in two

steps: first, the characters comprising the regular expression's RegularExpressionBody and

RegularExpressionFlags production expansions are collected uninterpreted into two strings Pattern and

Flags, respectively. Then each time the literal is evaluated, a new object is created as if by the expression

new RegExp(Pattern, Flags) where RegExp is the standard built-in constructor with that name.

The newly constructed object becomes the value of the RegularExpressionLiteral. If the call to new

RegExp would generate an error, the error must be reported while scanning the program.

Deleted: when it is scanned

Comment [pL10]: From AWB:
Because of this change RegularExpressionLiteral arguably
should be moved to section 11.1. However, I am not

actually proposing we do so.

Deleted: The object is created before evaluation of
the containing program or function begins. Evaluation
of the literal produces a reference to that object; it does

not create a new object.

Comment [pL11]: All browser currently support

/[/]/ and /(.(/ as regexp literals so need to fix grammar.

Deleted: stands for

Deleted: Object

Deleted: constructor is called with two arguments
Pattern and Flags and t

Deleted: result

Deleted: becomes the value of the
RegularExpressionLiteral

Deleted: If

Deleted: s

Deleted: an implementation may, at its discretion,

either report the error immediately while scanning the
program, or it may defer the error until the regular

expression literal is evaluated in the course of program

execution

Comment [pL12]: Note that both IE and FF detect early
(testcase below).

<script>
 var falsy = function(){return 0}();
 re = /[/]/;
 alert(re);
 if (falsy) {
 re2 = /(/;
 alert(re2);
 }
</script>

- 23 -

11 August 2008

7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while

statement, continue statement, break statement, return statement, and throw statement) must be

terminated with semicolons. Such semicolons may always appear explicitly in the source text. For

convenience, however, such semicolons may be omitted from the source text in certain situations. These

situations are described by saying that semicolons are automatically inserted into the source code token

stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion

 When, as the program is parsed from left to right, a token (called the offending token) is encountered

that is not allowed by any production of the grammar, then a semicolon is automatically inserted

before the offending token if one or more of the following conditions is true:

1. The offending token is separated from the previous token by at least one LineTerminator.

2. The offending token is }.

 When, as the program is parsed from left to right, the end of the input stream of tokens is

encountered and the parser is unable to parse the input token stream as a single complete

ECMAScript Program, then a semicolon is automatically inserted at the end of the input stream.

 When, as the program is parsed from left to right, a token is encountered that is allowed by some

production of the grammar, but the production is a restricted production and the token would be the

first token for a terminal or nonterminal immediately following the annotat ion ―[no LineTerminator

here]‖ within the restricted production (and therefore such a token is called a restricted token), and

the restricted token is separated from the previous token by at least one LineTerminator, then a

semicolon is automatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never

inserted automatically if the semicolon would then be parsed as an empty statement or if that semicolon

would become one of the two semicolons in the header of a for statement (section 12.6.3).

NOTE

These are the only restricted productions in the grammar:

PostfixExpression :

LeftHandSideExpression [no LineTerminator here] ++

LeftHandSideExpression [no LineTerminator here] --

ContinueStatement :

continue [no LineTerminator here] Identifieropt ;

BreakStatement :

break [no LineTerminator here] Identifieropt ;

ReturnStatement :

return [no LineTerminator here] Expressionopt ;

ThrowStatement :

throw [no LineTerminator here] Expression ;

The practical effect of these restricted productions is as follows:

 When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at

least one LineTerminator occurred between the preceding token and the ++ or -- token, then a

semicolon is automatically inserted before the ++ or -- token.

 When a continue, break, return, or throw token is encountered and a LineTerminator is

encountered before the next token, a semicolon is automatically inserted after the continue,

break, return, or throw token.

The resulting practical advice to ECMAScript programmers is:

 A postfix ++ or -- operator should appear on the same line as its operand.

- 24 -

11 August 2008

 An Expression in a return or throw statement should start on the same line as the return or

throw token.

 A label in a break or continue statement should be on the same line as the break or

continue token.

7.9.1.1 Usage Subset cautious Restrictions

A Program that contains cautious in its set of usage subsets or is evaluated within an execution

context that is subset restricted to the cautious subset does not perform automatic semicolon

insertion. Where the above rules would insert a semicolon, instead a syntax error is detected.

7.9.2 Examples of Automatic Semicolon Insertion

The source

{ 1 2 } 3

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules.

In contrast, the source

{ 1

2 } 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the

following:

{ 1

;2 ;} 3;

which is a valid ECMAScript sentence.

The source

for (a; b

)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the

semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one

of the two semicolons in the header of a for statement.

The source

return

a + b

is transformed by automatic semicolon insertion into the following:

return;

a + b;

NOTE

The expression a + b is not treated as a value to be returned by the return statement, because a

'LineTerminator' separates it from the token return.

The source

a = b

++c

is transformed by automatic semicolon insertion into the following:

a = b;

++c;

NOTE

Comment [pL13]: Needs to be removed.

Modify as follows:

In strict mode, it shall be an error if semicolon insertions

results in unreachable code following a return.

- 25 -

11 August 2008

The token ++ is not treated as a postfix operator applying to the variable b, because a 'LineTerminator'

occurs between b and ++.

The source

if (a > b)

else c = d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else

token, even though no production of the grammar applies at that point, because an automatically inserted

semicolon would then be parsed as an empty statement.

The source

a = b + c

(d + e).print()

is not transformed by automatic semicolon insertion, because the parenthesised expression that begins

the second line can be interpreted as an argument list for a function call:

a = b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for

the programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely

on automatic semicolon insertion.

8 Types

A value is an entity that takes on one of eleven types. There are eleven types (Undefined, Null, Boolean,

String, Number, Object, Reference, List, Completion, Property Descriptor, and Property Identifier). Values of

type Reference, List, and Completion are used only as intermediate results of expression evaluation and

cannot be stored as properties of objects.

8.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a

value has the value undefined.

8.2 The Null Type

The Null type has exactly one value, called null.

8.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

8.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16 -bit unsigned integer values

(―elements‖). The String type is generally used to represent textual data in a running ECMAScript program,

in which case each element in the string is treated as a code point value (see section 6). Each element is

regarded as occupying a position within the sequence. These positions are indexed with nonnegative

integers. The first element (if any) is at position 0, the next element (if any) at position 1, and so on. The

length of a string is the number of elements (i.e., 16-bit values) within it. The empty string has length zero

and therefore contains no elements.

When a string contains actual textual data, each element is considered to be a single UTF-16 unit. Whether

or not this is the actual storage format of a String, the characters within a String are numbered as though

they were represented using UTF-16. All operations on Strings (except as otherwise stated) treat them as

sequences of undifferentiated 16-bit unsigned integers; they do not ensure the resulting string is in

normalised form, nor do they ensure language-sensitive results.

NOTE

The rationale behind these decisions was to keep the implementation of Strings as simple and high-

performing as possible. The intent is that textual data coming into the execution environment from outside

(e.g., user input, text read from a file or received over the network, etc.) be converted to Unicode

Normalised Form C before the running program sees it. Usually this would occur at the same time incoming

Deleted: nine

Deleted: nine

Deleted: and

- 26 -

11 August 2008

text is converted from its original character encoding to Unicode (and would impose no additional

overhead). Since it is recommended that ECMAScript source code be in Normalised Form C, string literals

are guaranteed to be normalised (if source text is guaranteed to be normalised), as long as they do not

contain any Unicode escape sequences.

8.5 The Number Type

The Number type has exactly 18437736874454810627 (that is, 2
64

2
53

+3) values, representing the double-

precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point

Arithmetic, except that the 9007199254740990 (that is, 2
53

2) distinct ―Not-a-Number‖ values of the IEEE

Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN value is

produced by the program expression NaN, assuming that the globally defined variable NaN has not been

altered by program execution.) In some implementations, external code might be able to detect a difference

between various Non-a-Number values, but such behaviour is implementation-dependent; to ECMAScript

code, all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values

are also referred to for expository purposes by the symbols + and , respectively. (Note that these two

infinite number values are produced by the program expressions +Infinity (or simply Infinity) and

-Infinity, assuming that the globally defined variable Infinity has not been altered by program

execution.)

The other 18437736874454810624 (that is, 2
64

2
53

) values are called the finite numbers. Half of these are

positive numbers and half are negative numbers; for every finite positive number there is a corresponding

negative number having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for

expository purposes by the symbols +0 and 0, respectively. (Note that these two zero number values are

produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 2
64

2
53

2) finite nonzero values are of two kinds:

18428729675200069632 (that is, 264 254) of them are normalised, having the form

s m 2
e

where s is +1 or 1, m is a positive integer less than 2
53

 but not less than 2
52

, and e is an integer ranging

from 1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2
53

2) values are denormalised, having the form

s m 2
e

where s is +1 or 1, m is a positive integer less than 2
52

, and e is 1074.

Note that all the positive and negative integers whose magnitude is no greater than 2 53 are representable in

the Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the

two forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase ―the number value for x‖ where x represents an exact nonzero real

mathematical quantity (which might even be an irrational number such as) means a number value chosen

in the following manner. Consider the set of all finite values of the Number type, with 0 removed and with

two additional values added to it that are not representable in the Number type, namely 2
1024

 (which is +1

2
53

 2
971

) and 2
1024

 (which is 1 2
53

 2
971

). Choose the member of this set that is closest in value to x.

If two values of the set are equally close, then the one with an even significand is chosen; for this purpose,

the two extra values 2
1024

 and 2
1024

 are considered to have even significands. Finally, if 2
1024

 was chosen,

replace it with + ; if 2
1024

 was chosen, replace it with ; if +0 was chosen, replace it with 0 if and only

if x is less than zero; any other chosen value is used unchanged. The result is the number value for x. (This

procedure corresponds exactly to the behaviour of the IEEE 754 ―round to nearest‖ mode.)

Some ECMAScript operators deal only with integers in the range 2
31

 through 2
31

1, inclusive, or in the

range 0 through 2
32

1, inclusive. These operators accept any value of the Number type but first convert

- 27 -

11 August 2008

each such value to one of 2
32

 integer values. See the descriptions of the ToInt32 and ToUint32 operators in

sections 9.5 and 9.6, respectively.

8.6 The Object Type

An Object is a collection of properties. Each property is either a named data property, a named accessor

property, or an internal property.

 A named data property associates a name with a value and a set of boolean attributes.

 A named accessor property associates a name with a getter method, a setter method, and a set of

boolean attributes.

 An internal property has no name and is not directly accessible via the property accessor operators.

Internal properties exist purely for specification purposes. How and when some of these properties are

used is specified by the language specification below.

8.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of named properties. A named

data property associates a name with the following attributes:

Table 1 Attributes of a Named Data Property

Attribute

Name

Value

Domain

Description

[[Value]] any The value retrieved by reading the property.

[[Const]] Uninitialized
or Initialized

Used only for the implementation of properties created by a

ConstantDeclaration. If present, the value is one of the two

symbolic values Uninitialized or Initialized.

[[Writable]] boolean If true, attempts by ECMAScript code to assign the

property‘s value will succeed. Otherwise the property is said

to be read-only.

[[Enumerable]] boolean If true, the property will be enumerated by a for-in

enumeration (section 12.6.4). Otherwise, the property is said

to be non-enumerable.

[[Flexible]] boolean If true, attempts to delete the property or change its attributes

will succeed. Otherwise, the property is said to be sealed. See

the description of the delete operator in section 11.4.1, and

the reflective Object methods . A data property which is both

sealed and read-only is frozen.

A named accessor property associates a name with the following attributes:

Table 2 Attributes of a Named Accessor Property

Attribute

Name

Value Domain Description

[[Getter]] function or undefined A method that to be called each time the property is

read, to retrieve the current value of the property.

[[Setter]] function or undefined A method to be called each time the property is

assigned to, in order to define the current value of the

property.

[[Enumerable]] boolean If true, the property is to be enumerated by a for-in

enumeration (section 12.6.4). Otherwise, the property

is said to be non-enumerable.

Deleted: 0

Deleted: 0

Deleted: an unordered

Deleted: consists of a name, a value and a set
of attributes.

Comment [pL14]: From AWB:
Explore replacing by absence of [[Value]] property.

- 28 -

11 August 2008

[[Flexible]] boolean If true, attempts to delete the property or change its

attributes will succeed. Otherwise, the property is said

to be sealed. See the description of the delete operator

in section 11.4.1, and the reflective Object methods .

If the value of an attribute is not explicitly specified for a named property, the default value as defined in

the following table is used:

Table 3 Default Attribute Values

Attribute

Name

Default Value

[[Value]] undefined

[[Const]] Unspecified

[[Getter]] undefined

[[Setter]] undefined

[[Writable]] true

[[Enumerable]] true

[[Flexible]] true

Property descriptors, defined in section 8.10, are internal types used within this specification to describe

manipulations of property attributes.

8.6.2 Internal Properties and Methods

Internal properties and methods are not part of the language. They are defined by this specification

purely for expository purposes. An implementation of ECMAScript must behave as if it produced and

operated upon internal properties in the manner described here. For the purposes of this document, the

names of internal properties are enclosed in double square brackets [[]]. When an algorithm uses an

internal property of an object and the object does not implement the indicated internal property, a

TypeError exception is thrown.

There are two types of access for normal (non-internal) properties: get and put, corresponding to

retrieval and assignment, respectively.

All ECMAScript objects have an internal property called [[Prototype]]. The value of this property is

either null or an object and is used for implementing inheritance. Named data properties of the

[[Prototype]] object are inherited (are visible as properties of the child object) for the purposes of get

access, but not for put access. Named accessor properties are inherited for both get access and put

access.

The following table summarises the internal properties used by this specification that are applicable to

all ECMAScript objects. The description indicates their behaviour for all ECMAScript objects, unless

stated otherwise in this document for particular types of ECMAScript objects. In particular, Array

objects have a slightly different implementation of the [[ThrowablePut]] method (see 15.4.5.1) and

String objects have a different implementation of the [[GetOwnProperty]] method. Host objects may

implement these internal methods with any implementation-dependent behaviour, or it may be that a host

object implements only some internal methods and not others.

Deleted: A property can have zero or more attributes
from the following set:¶

¶

Attribute ...

Deleted: Native

Deleted: Properties

Deleted: native

- 29 -

11 August 2008

Property Parameters → Result Description

[[Prototype]] none The prototype of this object. Must be null or an Object.

[[Class]] none A string value indicating the kind of this object.

[[PrimitiveValue]] none Internal state information associated with this object.

[[Extensible]] none If true, own properties may be added to the object.

[[Get]] (PropertyName) → any Returns the value of the named property.

[[GetOwnProperty]] (PropertyName) →

undefined or Property

Descriptor

Returns the Property Descriptor of the named own

property of this object, or undefined if absent.

[[GetProperty]] (PropertyName) →

undefined or Property

Descriptor

Returns the Property Descriptor of the named property

of this object, or undefined if absent.

[[Put]] (PropertyName, Value) Sets the specified named property to Value.

[[CanPut]] (PropertyName) → boolean Returns a boolean value indicating whether a [[Put]]

operation with PropertyName can be performed.

[[HasProperty]] (PropertyName) → boolean Returns a boolean value indicating whether the object

already has a property with the given name.

[[Delete]] (PropertyName, Throw) →

boolean

Removes the specified named own property from the

object.

[[DefaultValue]] (Hint) → any Returns a default value for the object, which should be

a primitive value (not an object or reference).

[[DefineOwnProperty]] (PropertyName, Desc,

Throw)

Creates or alters the named own property to have the

state described by a Property Descriptor. Throw flag

controls failure handling.

[[ThrowablePut]] (PropertyName, Value,

Throw)

Sets the specified named property to Value. Throw flag

controls failure handling.

[[Construct]] (a list of argument values

provided by the caller) →

Object

Constructs an object. Invoked via the new operator.

Objects that implement this internal method are called

constructors.

[[Call]] (a list of argument values

provided by the caller) →

any or nothing

Executes code associated with the object. Invoked via a

function call expression. Objects that implement this

internal method are called functions.

[[HasInstance]] (Value) → boolean Returns a boolean value indicating whether Value

delegates behaviour to this object. Of the native

ECMAScript objects, only Function objects implement

[[HasInstance]].

[[Scope]] none A scope chain that defines the environment in which a

Function object is executed.

[[Match]] (String, Index) →

MatchResult

Tests for a regular expression match and returns a

MatchResult value (see section 15.10.2.1).

Every object (including host objects) must implement the [[Prototype]], [[Class]], and [[Extensible]]

internal data properties and the [[Get]], [[GetProperty]], [[GetOwnProperty]], [[DefineOwnProperty]],

[[Put]], [[CanPut]], [[HasProperty]], [[Delete]], and [[DefaultValue]] internal methods. (Note, however,

that the [[DefaultValue]] method may, for some objects, simply throw a TypeError exception.)

The value of the [[Prototype]] property must be either an object or null, and every [[Prototype]] chain

must have finite length (that is, starting from any object, recursively accessing the [[Prototype]] property

must eventually lead to a null value). Whether or not a native object can have a host object as its

[[Prototype]] depends on the implementation.

The value of the [[Class]] property is defined by this specification for every kind of built -in object. The

value of the [[Class]] property of a host object may be any value, even a value used by a built -in object

for its [[Class]] property. The value of a [[Class]] property is used internally to distinguish different

kinds of built-in objects. Note that this specification does not provide any means for a program to access

that value except through Object.prototype.toString (see 15.2.4.2).

Deleted: will succeed

Deleted: member

Comment [pL15]: Divide the table into two; one
is properties of all objects, and the other is properties

that apply to only some objects.

Deleted: None

Deleted: and

- 30 -

11 August 2008

For native objects the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], [[Delete]] and [[DefaultValue]]

methods behave as described in described in 8.6.2.1, 8.6.2.2, 8.6.2.3, 8.6.2.4, 8.6.2.5 and 8.6.2.6,

respectively, except that Array objects have a slightly different implementation of the [[Put]] method

(see 15.4.5.1). Host objects may implement these methods in any manner unless specified otherwise; for

example, one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store

property values but [[HasProperty]] always generates false.

In the following algorithm descriptions, assume O is an ECMAScript object, P is a string, Desc is an

internal property description record, and Throw is a boolean flag.

8.6.2.1 [[Get]] (P)

When the [[Get]] method of O is called with property name P, the following steps are taken:

1. Call the [[GetProperty]] method of O with property name P.

2. If Result(1) is undefined, return undefined.

3. If Result(1).[[Const]] is Uninitialized throw a ReferenceError exception.

4. If IsDataDescriptor(Result(1)) is true, return Result(1).[[Value]].

5. Otherwise, IsAccessorDescriptor(Result(1)) must be true so, get Result(1).[[Getter]].

6. If Result(5) is undefined, return undefined.

7. Call the [[Call]] method of Result(4) providing O as the this value and providing no arguments.

8. Return Result(5).

8.6.2.2 [[Put]] (P, V)

[[Put]] is primarily used in the specification of built-in methods. Algorithms that require explicit

control over the handling of invalid property store should call [[ThrowablePut]] directly.

When the [[Put]] method of O is called with property P and value V, the following steps are taken:

1. Call the [[ThrowablePut]] method of O with arguments P, V, and false.

2. Return.

Note, however, that if O is an Array object, it has a more elaborate [[Put]] method (15.4.5.1).

8.6.2.3 [[CanPut]] (P)

When the [[CanPut]] method of O is called with property name P, the following steps are taken:

1. Call the [[GetOwnProperty]] method of O with argument P.

2. If Result(1) is not undefined, then

a. If IsAccessorDescriptor(Result(1)) is true, then return true.

b. Otherwise, Result(1) must be a DataDescriptor so return the value of

Result(1).[[Writable]].

3. Get the internal [[Prototype]] property of O.

4. If Result(3) is null, then return the value of the [[Extensible]] property of O.

5. Call the [[GetProperty]] method of Result(3) with property name P.

6. If Result(5) is undefined, return the value of the [[Extensible]] property of O.

7. If IsAccessorDescriptor(Result(5)) is true, then return true.

8. Else, Result(5) must be a DataDescriptor

a. If the [[Extensible]] property of O is false, return false.

b. Else return the value of Result(5).[[Writable]].

8.6.2.4 [[HasProperty]] (P)

When the [[HasProperty]] method of O is called with property name P, the following steps are taken:

1. Call the [[GetProperty]] method of O with property name P.

2. If Result(1) is undefined, then return false.

3. Else return true.

.

8.6.2.5 [[Delete]] (P, Throw)

When the [[Delete]] method of O is called with property name P and the boolean flag Throw, the

following steps are taken:

1. Call the [[GetOwnProperty]] method of O with property name P.

Deleted: a native

Deleted: and

Comment [pL16]: Need to make consistent with above
table(s).

Deleted: If O doesn‘t have a property with name P,
go to step 4.¶
Get the value of the property.¶

Return Result(2).¶

If the [[Prototype]] of O is null, return undefined.¶
Call the [[Get]] method of [[Prototype]] with property

name P.¶

Return Result(5).¶

Deleted: <#>Call the [[CanPut]] method of O with
name P.¶

<#>If Result(1) is false, return.¶

<#>If O doesn‘t have a property with name P, go to
step 6.¶

<#>Set the value of the property to V. The attributes of

the property are not changed.¶
<#>Return.¶

<#>Create a property with name P, set its value to V

and give it empty attributes.¶
<#>Return.¶

Note, however, that if O is an Array object, it has a

more elaborate [[Put]] method (15.4.5.1).¶

Deleted: The [[CanPut]] method is used only by the
[[Put]] method.¶

Deleted: If O doesn‘t have a property with name P,
go to step 4.¶
If the property has the ReadOnly attribute, return false.¶

Return true.¶

If the [[Prototype]] of O is null, return true.¶
Call the [[CanPut]] method of [[Prototype]] of O with

property name P.¶

Return Result(5).

Deleted: <#>¶

Deleted: If O has a property with name P, return true.¶
If the [[Prototype]] of O is null, return false.¶

Call the [[HasProperty]] method of [[Prototype]] with

property name P.¶
Return Result(3).

Deleted: ¶
If O doesn‘t have a property with name P, return true.¶

If the property has the DontDelete attribute, return
false.¶

Remove the property with name P from O.¶

Return true.

- 31 -

11 August 2008

2. If Result(1) is undefined, then return true.

3. If Result(1).[[Flexible]] is true, then

a. Remove the own property with name P from O.

b. Return true.

4. Else if Throw, then throw a TypeError exception.

5. Return false.

8.6.2.6 [[DefaultValue]] (hint)

When the [[DefaultValue]] method of O is called with hint String, the following steps are taken:

1. Call the [[Get]] method of object O with argument "toString".

2. If Result(1) is not an object, go to step 5.

3. Call the [[Call]] method of Result(1), with O as the this value and an empty argument list.

4. If Result(3) is a primitive value, return Result(3).

5. Call the [[Get]] method of object O with argument "valueOf".

6. If Result(5) is not an object, go to step 9.

7. Call the [[Call]] method of Result(5), with O as the this value and an empty argument list.

8. If Result(7) is a primitive value, return Result(7).

9. Throw a TypeError exception.

When the [[DefaultValue]] method of O is called with hint Number, the following steps are taken:

1. Call the [[Get]] method of object O with argument "valueOf".

2. If Result(1) is not an object, go to step 5.

3. Call the [[Call]] method of Result(1), with O as the this value and an empty argument list.

4. If Result(3) is a primitive value, return Result(3).

5. Call the [[Get]] method of object O with argument "toString".

6. If Result(5) is not an object, go to step 9.

7. Call the [[Call]] method of Result(5), with O as the this value and an empty argument list.

8. If Result(7) is a primitive value, return Result(7).

9. Throw a TypeError exception.

When the [[DefaultValue]] method of O is called with no hint, then it behaves as if the hint were

Number, unless O is a Date object (see 15.9), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a

host object implements its own [[DefaultValue]] method, it must ensure that its [[DefaultValue]]

method can return only primitive values.

8.6.2.7 [[GetProperty]] (P)

When the [[GetProperty]] method of O is called with property name P, the following steps are taken:

1. Call the [[GetOwnProperty]] method of O with property name P.

2. If Result(1) is not undefined, return Result(1).

3. If the [[Prototype]] of O is null, return undefined.

4. Call the [[GetProperty]] method of [[Prototype]] with property name P.

5. Return Result(4).

8.6.2.8 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] method of O is called with property name P, the following steps are

taken:

1. If O doesn‘t have an own property with name P, return undefined.

2. Otherwise O has an own property with name P, so return a Property Descriptor describing its

current attribute state.

Note, however, that if O is a String object it has a more elaborate [[GetOwnProperty]] method

(15.5.5.2).

8.6.2.9 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithm, the term ―Reject‖ means ―If Throw is true, then throw a TypeError

exception, otherwise return.‖

- 32 -

11 August 2008

When the [[DefineOwnProperty]] method of O is called with property name P, property descriptor

Desc, and boolean flag Throw, the following steps are taken:

1. Call the [[GetOwnProperty]] method of O with property name P.

2. Get the [[Extensible]] internal property of O.

3. If Result(1) is undefined and Result(2) is true, then

a. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then

i. Create an own data property named P of object O whose state is that described by

Desc. If the value of an attribute field of Desc is the value Unspecified, the

corresponding attribute of the newly created property gets its default value. If the

Desc includes a [[Const]] attribute whose value is Unspecified, do not create a

[[Const]] attribute for the property.

b. Else, Desc must be an accessor property descriptor so,

i. Create an own accessor property named P of object O whose state is that

described by Desc. If the value of an attribute field of Desc is the value

Unspecified, the corresponding attribute of the newly created property gets its

default value.

c. Return.

4. Else If Result(1) is undefined and Result(2) is false, then Reject.

5. Return, if the value of every field in Desc is either Unspecified or is the same value as the

corresponding field in Result(1).

6. If Desc.[[Const]] is not Unspecified, then

a. Reject, if Result(1).[[Const]] is Unspecified because [[Const]] must be specified when a

Const property is created.

b. Reject, if Result(1).[[Const]] is Initialized and Desc.[[Const]] is Uninitialized because

[[Const]] cannot make that state transition.

7. If the [[Flexible]] field of Result(1) is false then

a. Reject, if the [[Flexible]] field of Desc is true.

b. Reject, if the [[Enumerable]] field of Result(1) and Desc are the Boolean negation of each

other.

8. If IsGenericDescriptor(Desc) is true, then no further validation is required.

9. Else, if IsDataDescriptor(Result(1)) and IsDataDescriptor(Desc) have different results, then

a. Reject, if the [[Flexible]] field of Result(1) is false.

b. If IsDataDescriptor(Result(1)) is true, then

i. Convert the property named P of object O to from a data property to an accessor

property. Preserve the existing values of the converted property‘s [[Flexible]] and

[[Enumerable]] attributes and set the the rest of the property‘s attributes to their

default values.

c. Else,

i. Convert the property named P of object O to from an accessor property to an data

property. Preserve the existing values of the converted property‘s [[Flexible]] and

[[Enumerable]] attributes and set the the rest of the property‘s attributes to their

default values.

10. Else, if IsDataDescriptor(Result(1)) and IsDataDescriptor(Desc) are both true, then

a. If the [[Flexible]] field of Result(1) is false, then

i. Reject, if the [[Writable]] field of Result(1) is false and the [[Writtable]] field of

Desc is true.

ii. If the [[Writable]] field of Result(1) is false, then

1. Reject, if the [[Value]] field of Desc is not Unspecified and is a different

value than the [[Value]] field of Result(1).

b. else, the [[Flexible]] field of Result(1) is true, so any change is acceptable.

11. Else, IsAccessorDescriptor(Result(1)) and IsAccessorDescriptor(Desc) are both true so,

a. If the [[Flexible]] field of Result(1) is false, then

i. Reject, if the [[Setter]] field of Desc is not Unspecified and is a different value

than the [[Setter]] field of Result(1).

ii. Reject, if the [[Getter]] field of Desc is not Unspecified and is a different value

than the [[Getter]] field of Result(1).

12. For each attribute field of Desc that does not have the value Uspecified, set the correspondingly

named attribute of the property named P of object O to the value of the field.

Comment [pL17]: Need to define or clarify.

- 33 -

11 August 2008

13. Return.

8.6.2.10 [[ThrowablePut]] (P, V, Throw)

When the [[ThrowablePut]] method of O is called with property P, value V, and boolean flag Throw

the following steps are taken:

1. Call the [[GetOwnProperty]] method of O with argument P.

2. If result(1) is not undefined, then

a. If Result(1).[[Const]] is not Unspecified, then throw a ReferenceError exception.

3. Call the [[CanPut]] method of O with argument P.

4. If Result(3) is false, then

a. If Throw is true, then throw a TypeError exception.

b. Else return.

5. If IsDataDescriptor(Result(1)) is true, then

a. Set the [[Value]] attribute of property P of O to V.

b. Return.

6. Call the [[GetProperty]] method of O with argument P.

7. If IsAccessorDescriptor(Result(1)) is true, then

a. Get Result(1).[[Setter]].

b. If Result(7a) is not undefined, then

i. Call the [[Call]] method of Result(7a) providing O as the this value and

providing V as the sole argument.

c. Return.

8. Create a named data property named P on object O whose attributes are:

a. [[Value]]: V,

b. [[Writable]]: true,

c. [[Enumerable]]: true,

d. [[Flexible]]: true.

9. Return.

Note, however, that if O is an Array object, it has a more elaborate [[ThrowablePut]] method

(15.4.5.1).

8.7 The Reference Type

The internal Reference type is not a language data type . It is defined by this specification purely for

expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon

references in the manner described here. However, a value of type Reference is used only as an

intermediate result of expression evaluation and cannot be stored as the value of a variable or property.

The Reference type is used to explain the behaviour of such operators as delete, typeof, and the

assignment operators. For example, the left-hand operand of an assignment is expected to produce a

reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis on

the syntactic form of the left-hand operand of an assignment operator, but for one difficulty: function calls

are permitted to return references. This possibility is admitted purely for the sake of host objects. Another

reason not to use a syntactic case analysis is that it would be lengthy and awkward, affecting many parts of

the specification.

Another use of the Reference type is to explain the determination of the this value for a function call.

A Reference is a reference to a property of an object. A Reference consists of two components, the base

object and the property name.

The following abstract operations are used in this specification to access the components of references:

 GetBase(V). Returns the base object component of the reference V.

 GetPropertyName(V). Returns the property name component of the reference V.

The following abstract operations are used in this specification to operate on references:

8.7.1 GetValue (V)

1. If Type(V) is not Reference, return V.

2. Call GetBase(V).

3. If Result(2) is null, throw a ReferenceError exception.

Comment [pL18]: From AWB:

Consider renaming to ThrowingPut.

Deleted: ¶

Comment [pL19]: We wanted to remove this ,
but have decided to leave it in as this could

potentially break web applications.

Deleted: No built-in ECMAScript function
defined by this specification returns a reference

and there is no provision for a user-defined

function to return a reference. (

Deleted:)

- 34 -

11 August 2008

4. Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.

5. Return Result(4).

8.7.2 PutValue (V, W, Throw)

1. If Type(V) is not Reference, throw a ReferenceError exception.

2. Call GetBase(V).

3. If Result(2) is null, then

a. If Throw is true, then throw a ReferenceError exception.

b. Call the [[ThrowablePut]] method for the global object, passing GetPropertyName(V) for the

property name, W for the value, and false for the Throw flag.

c. Return

4. Else

a. Call the [[ThrowablePut]] method of Result(2), passing GetPropertyName(V) for the property

name, W for the value, and Throw for the Throw flag.

b. Return.

8.8 The List Type

The internal List type is not a language data type. It is defined by this specification purely for expository

purposes. An implementation of ECMAScript must behave as if it produced and operated upon List values

in the manner described here. However, a value of the List type is used only as an intermediate result of

expression evaluation and cannot be stored as the value of a variable or property.

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions and in

function calls. Values of the List type are simply ordered sequences of values. These sequences may be of

any length.

8.9 The Completion Type

The internal Completion type is not a language data type . It is defined by this specification purely for

expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon

Completion values in the manner described here. However, a value of the Completion type is used only as

an intermediate result of statement evaluation and cannot be stored as the value of a variable or property.

The Completion type is used to explain the behaviour of statements (break, continue, return and

throw) that perform nonlocal transfers of control. Values of the Completion type are triples of the form

(type, value, target), where type is one of normal, break, continue, return, or throw, value is any

ECMAScript value or empty, and target is any ECMAScript identifier or empty.

The term ―abrupt completion‖ refers to any completion with a type other than normal.

8.10 The Property Descriptor and Property Identifier Types

The internal Property Descriptor and Property Identifier types are not language data types. They are defined

by this specification purely for expository purposes. An implementation of ECMAScript must behave as if

it produced and operated upon Property Descriptor and Property Identifier values in the manner described

here. However, values of these types are used only as an intermediate result of expression evaluation and

cannot be stored as the value of a variable or property.

The Property Descriptor type is used to explain the manipulation and reification of named property

attributes. Values of the Property Descriptor type are records composed of named fields where each field‘s

name is an attribute name and its value is a corresponding attribute value. In addition, any field may have

the value Unspecified. Unspecified is a unique distinguished value that is only used for specification

purposes in conjunction with property descriptor fields. It cannot be stored as the value of a variable or

property.

Property Descriptor values may be further classified as data property descriptors and accessor property

descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes

any fields named either [[Value]], or [[Writable]] and at least one of the those fields has a value other than

Unspecified. A accessor property descriptor is one that includes any fields named either [[Getter]], or

[[Setter]] and at least one of the those fields has a value other than Unspecified. Any property descriptor

may have fields named [[Enumerable]], and [[Flexible]]. The domain of values for each field is the possible

values of the correspondingly named attribute and the value Unspecified.

Deleted: <#>If Type(V) is not Reference, throw a
ReferenceError exception.¶

<#>Call GetBase(V).¶

<#>If Result(2) is null, go to step 6.¶
<#>Call the [[Put]] method of Result(2), passing

GetPropertyName(V) for the property name and W for

the value.¶
<#>Return.¶

<#>Call the [[Put]] method for the global object,

passing GetPropertyName(V) for the property name
and W for the value.¶

<#>Return.¶

- 35 -

11 August 2008

For notational convenience within this specification, an object literal-like syntax can be used to define a

property descriptor value. For example, Property Descriptor{[[Value]]: 42, [[Writable]]: false, [[Flexible]]:

true} defines a data property descriptor. The order of listing fields names is not significant and any fields

that are not explicitly listed have the value Unspecified.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Property

Descriptor. For example, if D is a property descriptor then D.[[Value]] is short hand for ―the field of D

named [[Value]]‖.

The Property Identifier type is used to associate a property name with a Property Descriptor. Values of the

Property Identifier type are pairs of the form (name, descriptor), where name is a string and descriptor is a

Property Descriptor value.

The following abstract operations are used in this specification to operate upon Property Descriptor values :

8.10.1 IsAccessorDescriptor (Desc)

When the internal IsAccessorDescriptor function is called with property descriptor Desc the following

steps are taken:

1. If Desc is undefined, then return false.

2. If Desc.[[Getter]] and Desc.[[Setter]] both have the value Unspecified, then return false.

3. Return true.

8.10.2 IsDataDescriptor (Desc)

When the internal IsDataDescriptor function is called with property descriptor Desc the following steps

are taken:

1. If Desc is undefined, then return false.

2. If Desc.[[Value]] and Desc.[[Writable]] both have the value Unspecified, then return false.

3. Return true.

8.10.3 IsGenericDescriptor (Desc)

When the internal IsGenericDescriptor function is called with property descriptor Desc the following

steps are taken:

1. If Desc is undefined, then return false.

2. If calling IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) both return false, then return true.

3. Return false.

8.10.4 FromPropertyDescriptor (Desc)

When the internal FromPropertyDescriptor function is called with property descriptor Desc the following

steps are taken:, the following steps are taken:

1. If Desc is undefined, then return undefined.

2. Create a new object as if by the expression new Object() where Object is the standard built-in constructor

with that name.

3. If IsDataDescriptor(Desc) is true, then

a. If the value of Desc.[[Value]] is not Unspecified then

i. Call the [[Put]] method of Result(2) with arguments ―value‖ and Desc.[[Value]].

b. Else, Call the [[Put]] method of Result(2) with arguments ―value‖ and undefined.

c. If the value of Desc.[[Writable]] is not Unspecified then

i. Call the [[Put]] method of Result(2) with arguments ―writable‖ and Desc.[[Value]].

d. Else, Call the [[Put]] method of Result(2) with arguments ―writable‖ and false.

4. If IsAccessorDescriptor(Desc) is true, then

a. If the value of Desc.[[Getter]] is not Unspecified then

i. Call the [[Put]] method of Result(2) with arguments ―getter‖ and Desc.[[Value]].

b. Else, Call the [[Put]] method of Result(2) with arguments ―getter‖ and undefined.

c. If the value of Desc.[[Setter]] is not Unspecified then

i. Call the [[Put]] method of Result(2) with arguments ―setter‖ and Desc.[[Value]].

d. Else, Call the [[Put]] method of Result(2) with arguments ―setter‖ and undefined.

5. If the value of Desc.[[Enumerable]] is not Unspecified then

a. Call the [[Put]] method of Result(2) with arguments ―enumerable‖ and Desc.[[Value]].

6. Else, Call the [[Put]] method of Result(2) with arguments ―enumerable‖ and false.

- 36 -

11 August 2008

7. If the value of Desc.[[Flexible]] is not Unspecified then

a. Call the [[Put]] method of Result(2) with arguments ―flexible‖ and Desc.[[Value]].

8. Return Result(2).

8.10.6 ToPropertyDescriptor (Desc)

When the internal ToPropertyDescriptor function is called with object DescObj, the following steps are

taken:

1. If Desc is undefined, then return undefined.

2. Call ToObject(Desc).

3. Create a new Property Descriptor all of whose fields have the value Unspecified.

4. Call the [[HasProperty]] method of Result(2) with argument ―enumerable‖.

5. If Result(4) is true, then

a. Call the [[Get]] method of Desc with ―enumerable‖.

b. Call ToBoolean(Result(5a)).

c. Set the [[Enumerable]] field of Result(3) to Result(5b).

6. Call the [[HasProperty]] method of Result(2) with argument ―flexible‖.

7. If Result(6) is true, then

a. Call the [[Get]] method of Result(2) with argument ―flexible‖.

b. Call ToBoolean(Result(7a)).

c. Set the [[Flexible]] field of Result(3) to Result(7b)

8. Call the [[HasProperty]] method of Result(2) with argument ―value‖.

9. If Result(8) is true, then

a. Call the [[Get]] method of Result(2) with argument ―value‖.

b. Set the [[Value]] field of Result(3) to Result(9a).

10. Call the [[HasProperty]] method of Result(2) with argument ―writable‖.

11. If Result(10) is true, then

a. Call the [[Get]] method of Result(2) with argument ―writable‖.

b. Call ToBoolean(Result(11a)).

c. Set the [[Writable]] field of Result(3) to Result(11b).

12. Call the [[HasProperty]] method of Result(2) with argument ―getter‖.

13. If Result(12) is true, then

a. Call the [[Get]] method of Result(2) with argument ―getter‖.

b. Call IsCallable(Result(13a))

c. If Result(13b) is false and Result(13a) is not undefined, then throw a TypeError exception.

d. Set the [[Getter]] field of Result(3) to Result(13b).

14. Call the [[HasProperty]] method of Result(2) with argument ―setter‖.

15. If Result(10) is true, then

a. Call the [[Get]] method of Result(2) with argument ―setter‖.

b. Call IsCallable(Result(15a))

c. If Result(15b) is false and Result(15a) is not undefined, then throw a TypeError exception.

d. Set the [[Setter]] field of Result(3) to Result(15b).

16. If either Result(3).[[Getter]] or Result(3).[[Setter]] have a value other than Unspecified, then

a. If either Result(3).[[Value]] or Result(3).[[Writable]] have a value other than Unspecified,

then throw a TypeError exception.

17. Return Result(3).

9 Type Conversion and Testing

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of

certain constructs it is useful to define a set of conversion operators. These operators are not a part of the

language; they are defined here to aid the specification of the semantics of the language. The conversion

operators are polymorphic; that is, they can accept a value of any standard type, but not of type Reference,

List, Completion, or PropertyDescriptor (the internal types).

9.1 ToPrimitive

The operator ToPrimitive takes a Value argument and an optional argument PreferredType. The operator

ToPrimitive converts its value argument to a non-Object type. If an object is capable of converting to more

than one primitive type, it may use the optional hint PreferredType to favour that type. Conversion occurs

according to the following table:

Deleted: or

- 37 -

11 August 2008

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is retrieved by

calling the internal [[DefaultValue]] method of the object, passing the optional

hint PreferredType. The behaviour of the [[DefaultValue]] method is defined by

this specification for all native ECMAScript objects (8.6.2.6).

9.2 ToBoolean

The operator ToBoolean converts its argument to a value of type Boolean according to the following table:

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, 0, or NaN; otherwise the result is true.

String The result is false if the argument is the empty string (its length is zero); otherwise

the result is true.

Object true

9.3 ToNumber

The operator ToNumber converts its argument to a value of type Number according to the following table:

Input Type Result

Undefined NaN

Null +0

Boolean The result is 1 if the argument is true. The result is +0 if the argument is false.

Number The result equals the input argument (no conversion).

String See grammar and note below.

Object Apply the following steps:

1. Call ToPrimitive(input argument, hint Number).

2. Call ToNumber(Result(1)).

3. Return Result(2).

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot

interpret the string as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

StringNumericLiteral :::

StrWhiteSpaceopt

StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt

- 38 -

11 August 2008

StrWhiteSpace :::

StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::

WhiteSpace

LineTerminator

StrNumericLiteral :::

StrDecimalLiteral

HexIntegerLiteral

StrDecimalLiteral :::

StrUnsignedDecimalLiteral

+ StrUnsignedDecimalLiteral

- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity

 DecimalDigits . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalDigits ExponentPartopt

DecimalDigits :::

DecimalDigit

DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 4 5 6 7 8 9

ExponentPart :::

ExponentIndicator SignedInteger

ExponentIndicator ::: one of
e E

SignedInteger :::

DecimalDigits

+ DecimalDigits

- DecimalDigits

HexIntegerLiteral :::

0x HexDigit

0X HexDigit

HexIntegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral

(see 7.8.3):

 A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.

 A StringNumericLiteral that is decimal may have any number of leading 0 digits.

 A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

 A StringNumericLiteral that is empty or contains only white space is converted to +0.

The conversion of a string to a number value is similar overall to the determination of the number value

for a numeric literal (see 7.8.3), but some of the details are different, so the process for converting a

string numeric literal to a value of Number type is given here in full. This value is determined in two

Deleted: <TAB>
<SP>

<NBSP>
<FF>

<VT>

<CR>
<LF>

<LS>

<PS>

Deleted: <USP>

- 39 -

11 August 2008

steps: first, a mathematical value (MV) is derived from the string numeric li teral; second, this

mathematical value is rounded as described below.

 The MV of StringNumericLiteral ::: [empty] is 0.

 The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

 The MV of StringNumericLiteral ::: StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt is the MV

of StrNumericLiteral, no matter whether white space is present or not.

 The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

 The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

 The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of

StrUnsignedDecimalLiteral.

 The MV of StrDecimalLiteral::: + StrUnsignedDecimalLiteral is the MV of

StrUnsignedDecimalLiteral.

 The MV of StrDecimalLiteral::: - StrUnsignedDecimalLiteral is the negative of the MV of

StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of

this MV is also 0. The rounding rule described below handles the conversion of this sign less

mathematical zero to a floating-point +0 or 0 as appropriate.)

 The MV of StrUnsignedDecimalLiteral::: Infinity is 10
10000

 (a value so large that it will round to

+).

 The MV of StrUnsignedDecimalLiteral::: DecimalDigits. is the MV of DecimalDigits.

 The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits is the MV of the first

DecimalDigits plus (the MV of the second DecimalDigits times 10
n
), where n is the number of

characters in the second DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10
e
,

where e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first

DecimalDigits plus (the MV of the second DecimalDigits times 10
n
)) times 10

e
, where n is the number of

characters in the second DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral:::. DecimalDigits is the MV of DecimalDigits times 10
n
, where n is

the number of characters in DecimalDigits.

The MV of StrUnsignedDecimalLiteral:::. DecimalDigits ExponentPart is the MV of DecimalDigits times

10
e n

, where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10
e
,

where e is the MV of ExponentPart.

The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.

The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV

of DecimalDigit.

The MV of ExponentPart ::: ExponentIndicator SignedInteger is the MV of SignedInteger.

The MV of SignedInteger ::: DecimalDigits is the MV of DecimalDigits.

The MV of SignedInteger ::: + DecimalDigits is the MV of DecimalDigits.

The MV of SignedInteger ::: - DecimalDigits is the negative of the MV of DecimalDigits.

The MV of DecimalDigit ::: 0 or of HexDigit ::: 0 is 0.

The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is 1.

The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is 2.

The MV of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.

The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is 4.

The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 is 5.

The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.

The MV of DecimalDigit ::: 7 or of HexDigit ::: 7 is 7.

The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is 8.

The MV of DecimalDigit ::: 9 or of HexDigit ::: 9 is 9.

The MV of HexDigit ::: a or of HexDigit ::: A is 10.

The MV of HexDigit ::: b or of HexDigit ::: B is 11.

- 40 -

11 August 2008

The MV of HexDigit ::: c or of HexDigit ::: C is 12.

The MV of HexDigit ::: d or of HexDigit ::: D is 13.

The MV of HexDigit ::: e or of HexDigit ::: E is 14.

The MV of HexDigit ::: f or of HexDigit ::: F is 15.

The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.

The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

The MV of HexIntegerLiteral ::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the

MV of HexDigit.

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the

Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in

the string numeric literal is ‗-‘, in which case the rounded value is 0. Otherwise, the rounded value

must be the number value for the MV (in the sense defined in 8.5), unless the literal includes a

StrUnsignedDecimalLiteral and the literal has more than 20 significant digits, in which case the number

value may be either the number value for the MV of a literal produced by replacing each significant digit

after the 20th with a 0 digit or the number value for the MV of a literal produced by replacing each

significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A

digit is significant if it is not part of an ExponentPart and

it is not 0; or

there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

9.4 ToInteger

The operator ToInteger converts its argument to an integral numeric value. This operator functions as

follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, return +0.

3. If Result(1) is +0, 0, + , or , return Result(1).

4. Compute sign(Result(1)) * floor(abs(Result(1))).

5. Return Result(4).

9.5 ToInt32: (Signed 32 Bit Integer)

The operator ToInt32 converts its argument to one of 2
32

 integer values in the range 2
31

 through 2
31

1,

inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, +0, 0, + , or , return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 2
32

; that is, a finite integer value k of Number type with positive sign and

less than 2
32

 in magnitude such the mathematical difference of Result(3) and k is mathematically an

integer multiple of 2
32

.

5. If Result(4) is greater than or equal to 2
31

, return Result(4) 2
32

, otherwise return Result(4).

NOTE

Given the above definition of ToInt32:

The ToInt32 operation is idempotent: if applied to a result that it produced, the second application leaves that value

unchanged.

ToInt32(ToUint32(x)) is equal to ToInt32(x) for all values of x. (It is to preserve this latter property that + and

are mapped to +0.)

ToInt32 maps 0 to +0.

9.6 ToUint32: (Unsigned 32 Bit Integer)

The operator ToUint32 converts its argument to one of 2
32

 integer values in the range 0 through 2
32

1,

inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, +0, 0, + , or , return +0.

- 41 -

11 August 2008

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 2
32

; that is, a finite integer value k of Number type with positive sign and

less than 2
32

 in magnitude such the mathematical difference of Result(3) and k is mathematically an

integer multiple of 2
32

.

5. Return Result(4).

NOTE

Given the above definition of ToUInt32:

Step 5 is the only difference between ToUint32 and ToInt32.

The ToUint32 operation is idempotent: if applied to a result that it produced, the second application leaves that value

unchanged.

ToUint32(ToInt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that + and

are mapped to +0.)

ToUint32 maps 0 to +0.

9.7 ToUint16: (Unsigned 16 Bit Integer)

The operator ToUint16 converts its argument to one of 2
16

 integer values in the range 0 through 2
16

1,

inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, +0, 0, + , or , return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 2
16

; that is, a finite integer value k of Number type with positive sign and

less than 2
16

 in magnitude such the mathematical difference of Result(3) and k is mathematically an

integer multiple of 2
16

.

5. Return Result(4).

NOTE

Given the above definition of ToUint16:

The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUint16.

ToUint16 maps 0 to +0.

9.8 ToString

The operator ToString converts its argument to a value of type String according to the following table:

Input Type Result

Undefined "undefined"

Null "null"

Boolean If the argument is true, then the result is "true".

If the argument is false, then the result is "false".

Number See note below.

String Return the input argument (no conversion)

Object Apply the following steps:

1. Call ToPrimitive(input argument, hint String).

2. Call ToString(Result(1)).

3. Return Result(2).

9.8.1 ToString Applied to the Number Type

The operator ToString converts a number m to string format as follows:

1. If m is NaN, return the string "NaN".

- 42 -

11 August 2008

2. If m is +0 or 0, return the string "0".

3. If m is less than zero, return the string concatenation of the string "-" and ToString(m).

4. If m is infinity, return the string "Infinity".

5. Otherwise, let n, k, and s be integers such that k 1, 10
k 1

 s < 10
k
, the number value for s 10

n k
 is

m, and k is as small as possible. Note that k is the number of digits in the decimal representation of s,

that s is not divisible by 10, and that the least significant digit of s is not necessarily uniquely

determined by these criteria.

6. If k n 21, return the string consisting of the k digits of the decimal representation of s (in order,

with no leading zeroes), followed by n k occurrences of the character ‗0‘.

7. If 0 < n 21, return the string consisting of the most significant n digits of the decimal representation

of s, followed by a decimal point ‗.‘, followed by the remaining k n digits of the decimal

representation of s.

8. If 6 < n 0, return the string consisting of the character ‗0‘, followed by a decimal point ‗.‘,

followed by n occurrences of the character ‗0‘, followed by the k digits of the decimal

representation of s.

9. Otherwise, if k = 1, return the string consisting of the single digit of s, followed by lowercase

character ‗e‘, followed by a plus sign ‗+‘ or minus sign ‗ ‘ according to whether n 1 is positive or

negative, followed by the decimal representation of the integer abs(n 1) (with no leading zeros).

10. Return the string consisting of the most significant digit of the decimal representation of s, followed

by a decimal point ‗.‘, folloarwed by the remaining k 1 digits of the decimal representation of s,

followed by the lowercase character ‗e‘, followed by a plus sign ‗+‘ or minus sign ‗ ‘ according to

whether n 1 is positive or negative, followed by the decimal representation of the integer abs(n 1)

(with no leading zeros).

NOTE

The following observations may be useful as guidelines for implementations, but are not part of the normative

requirements of this Standard:

If x is any number value other than 0, then ToNumber(ToString(x)) is exactly the same number value as x.

The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

For implementations that provide more accurate conversions than required by the rules above, it is recommended

that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such that k 1, 10k 1 s < 10k, the number value for s 10n k is m, and k is

as small as possible. If there are multiple possibilities for s, choose the value of s for which s 10n k is closest in

value to m. If there are two such possible values of s, choose the one that is even. Note that k is the number of

digits in the decimal representation of s and that s is not divisible by 10.

Implementors of ECMAScript may find useful the paper and code written by David M. Gay for binar y-to-decimal

conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis

Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as

http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as

http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as http://cm.bell-

labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various netlib mirror sites.

9.9 ToObject

The operator ToObject converts its argument to a value of type Object according to the following table:

Input Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Create a new Boolean object whose [[PrimitiveValue]] property is set to the value

of the boolean. See 15.6 for a description of Boolean objects.

Number Create a new Number object whose [[PrimitiveValue]] property is set to the value

of the number. See 15.7 for a description of Number objects.

String Create a new String object whose [[PrimitiveValue]] property is set to the value of

Deleted: value

Deleted: value

Deleted: value

- 43 -

11 August 2008

the string. See 15.5 for a description of String objects.

Object The result is the input argument (no conversion).

9.10 IsCallable

The operator IsCallable determines if its argument is a callable function Object according to the following

table:

Input Type Result

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Object If the argument object implements the internal [[Call]] method return true,

otherwise return false.

10 Execution Contexts

When control is transferred to ECMAScript executable code, control is entering an execution context. Active

execution contexts logically form a stack. The top execution context on this logical stack is the running

execution context.

10.1 Definitions

10.1.1 Function Objects

There are two types of Function objects:

Program functions are defined in source text by a FunctionDeclaration or created dynamically either by

using a FunctionExpression or by using the built-in Function object as a constructor.

Internal functions are built-in objects of the language, such as parseInt and Math.exp. An

implementation may also provide implementation-dependent internal functions that are not described

in this specification. These functions do not necessarily contain executable code defined by the

ECMAScript grammar, in which case they are excluded from this discussion of execution contexts.

10.1.2 Types of Executable Code

There are five types of ECMAScript executable code:

Global code is source text that is treated as an ECMAScript Program. The global code of a particular

Program does not include any source text that is parsed as part of a Block or a FunctionBody except

that it does include the code of any VariableDeclaration that is parsed as part of such a Block or as

part of a Block nested at any level within such a Block.

Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter to

the built-in eval function is a string, it is treated as an ECMAScript Program. The eval code for a

particular invocation of eval is the global code portion of the string parameter. The eval code for a

particular invocation of eval does not include any source text that is parsed as part of a Block or a

FunctionBody except that it does include the code of any VariableDeclaration that is parsed as part of

such a Block or as part of a Block nested at any level within such a Block.

Function code is source text that is parsed as part of a FunctionBody. The function code of a particular

FunctionBody does not include any source text that is parsed as part of a Block or a FunctionBody

except that it does include the code of any VariableDeclaration that is parsed as part of such a Block

or as part of a Block nested at any level within such a Block.

Function code also denotes the source text supplied when using the built-in Function object as a

constructor. More precisely, the last parameter provided to the Function constructor is converted to

Deleted: so

Deleted: three

Deleted: FunctionBody.

Deleted: The function code of a particular
FunctionBody does not include any source text

that is parsed as part of a nested FunctionBody.

- 44 -

11 August 2008

a string and treated as the FunctionBody. If more than one parameter is provided to the Function

constructor, all parameters except the last one are converted to strings and concatenated together,

separated by commas. The resulting string is interpreted as the FormalParameterList for the

FunctionBody defined by the last parameter. The function code for a particular instantiation of a

Function does not include any source text that is parsed as part of a nested FunctionBody. The

function code for a particular instantiation of a Function does not include any source text that is

parsed as part of a Block or a FunctionBody except that it does include the code of any

VariableDeclaration that is parsed as part of such a Block or as part of a Block nested at any level

within such a Block.

Lexical Block code is the source code that that is parsed as the StatementList of a Block. The lexical

block code of a particular StatementList does not include any source text that is parsed as part of a

nested FunctionBody.

10.1.2.1 Applying Usage Subsets to Executable code

Each occurence of one of these types of code may be restricted to use a defined subset of the complete

ECMAScript language.

 Global code is unrestricted unless the Program that defines the code includes a

UseSubsetDirective.

 Eval code inherits the restrictions of the execution context in which the eval operator appears,

but its execution context may be further restricted if the Program that defines the eval code

includes a UseSubsetDirective. In that case, the restrictions of the execution context are the union

of the restrictions of the inherited execution context and the restrictions specified by the

UseSubsetDirective. Such a unioning of restrictions is the equivalent of intersecting the specified

usage subsets.

 Function code made by evaluating a FunctionDeclaration or a FunctionExpression, function code

supplied as the last argument to the Function constructor, and lexical block code all inherit the

restrictions of the execution context in which the evaluation occurs.

10.1.3 Environment Bindings Instantiation

Every execution context has associated with it a environment object. For all kinds of execution contexts,

constants and functions declared in the source text are added as properties of the environment object. For

global code, eval code, and function code variables declared in the source text are also added as

properties of the environment object. For function code, parameters are added as properties of the

environment object.

Which object is used as the environment object and what attributes are used for the properties depends

on the type of code, but the remainder of the behaviour is generic. On entering an execution context, the

properties are bound to the environment object in the following order:

For function code: for each formal parameter, as defined in the FormalParameterList, create a named

data property of the environment object whose name is the Identifier and whose attributes are

determined by the type of code. The values of the parameters are supplied by the caller as arguments

to [[Call]]. If the caller supplies fewer parameter values than there are formal parameters, the extra

formal parameters have value undefined. If two or more formal parameters share the same name,

hence the same property, the corresponding property is given the value that was supplied for the last

parameter with this name. If the value of this last parameter was not supplied by the caller, the value

of the corresponding property is undefined.

For lexical block code: if the lexical block has any block parameters, create for each block parameter a

named data property of the environment object whose name, value, are determined by evaluation

context of the Block and whose attributes are {[[Writable]]: true, [[Enumerable]]: false, [[Flexible:

false]]}. Only a TryStatement creates lexical block contexts with block parameters.

For all of the FunctionDeclaration and ConstantDeclaration in the code perform the following

algorithm. Semantically, this step must follow the creation of FormalParameterList or block

parameter properties.

1. Let CTX be the current execution context and its associated environment object.

Deleted: Variable

Deleted: variable

Deleted: Variables

Deleted: variable

Deleted: variable

Deleted: variable

Deleted: variable

Deleted: variable

Comment [pL20]: From AWB:
Should duplicate formal parameter names be restricted in

the cautious subset?

Deleted: each FunctionDeclaration in the code, in
source text order

Deleted: variable

Deleted: is the Identifier in the
FunctionDeclaration, whose value is the result

returned by creating a Function object as described in
13, and whose attributes are determined by the type of

code. If the variable object already has a property with

this name, replace its value and attributes

- 45 -

11 August 2008

2. For each FunctionDeclaration and ConstantDeclaration, D in the code in source code order,

a. Let N be the Identifier in D.

b. If D is a ConstantDeclaration then

i. If CTX already contains a property named N, throw a SyntaxError exception.

ii. Create a named data property in CTX whose name is N, whose [[Const]] attribute is

Unitialized, whose [[Writable]] attribute is false, and whose value is set to

undefined.

c. If D is a FunctionDeclaration then

i. If CTX already contains a property named N, then

1. If CTX is the execution context of a Block, throw a SyntaxError exception.

2. If the existing property has a [[Const]] attribute, throw a SyntaxError

exception otherwise the value and attributes of the existing property will be

replaced by the actions of step 2cii below.

ii. Create a named data property in CTX whose name is N and whose value is the result

returned by creating a Function object as described in 13.

d. Other attributes of the named data property are determined by the type of code

For execution contexts that are not lexical blocks: For each VariableDeclaration or

VariableDeclarationNoIn in the code (including VariableDeclarations contained within Blocks that

are within the code), create a property of the environment object whose name is the Identifier in the

VariableDeclaration or VariableDeclarationNoIn, whose value is undefined and whose attributes

are determined by the type of code. If there is already a property of the environment object with the

name of a declared variable and the property has a [[Const]] attribute throw a SyntaxError

exception, otherwise, the value of the existing property and its attributes are not changed.

Semantically, this step must follow the creation of the FormalParameterList and the

FunctionDeclaration and ConstantDeclaration properties. In particular, if a declared variable has the

same name as a declared function or formal parameter, the variable declaration does not disturb the

existing property.

10.1.3.1 Usage Subset Restrictions

When defined within an execution context subset restricted to the cautious subset, a function may

not have two or more formal parameters that have the same name. An attempt to create a such a

function with conflicting parameters names will fail, either statically, if expressed as a

FunctionDeclaration or FunctionExpression, or dynamically by throwing a SyntaxError exception,

if expressed in a call to the Function constructor.

10.1.4 Scope Chain and Identifier Resolution

Every execution context has associated with it a scope chain. A scope chain is a list of objects that are

searched when evaluating an Identifier. When control enters an execution context, a scope chain is

created and populated with an initial set of objects, depending on the type of code. During execution

within an execution context, the scope chain of the execution context is affected only by Blocks, with

statements (see 12.10) and catch clauses (see 12.14).

During execution, the syntactic production PrimaryExpression : Identifier is evaluated using the

following algorithm:

1. Get the next object in the scope chain. If there isn't one, go to step 5.

2. Call the [[HasProperty]] method of Result(1), passing the Identifier as the property name.

3. If Result(2) is true, return a value of type Reference whose base object is Result(1) and whose

property name is the Identifier.

4. Go to step 1.

5. Return a value of type Reference whose base object is null and whose property name is the

Identifier.

The result of evaluating an identifier is always a value of type Reference with its member name

component equal to the identifier string.

10.1.5 Global Object

There is a unique global object (15.1), which is created before control enters any execution context.

Initially the global object has the following properties:

Deleted: variable

Deleted: variable

- 46 -

11 August 2008

Standard built-in objects such as Math, String, Date, parseInt, etc. These have attributes {

[[Enumerable]]: false }.

Additional host defined properties. This may include a property whose value is the global object itself;

for example, in the HTML document object model the window property of the global object is the

global object itself.

As control enters execution contexts, and as ECMAScript code is executed, additional properties may be

added to the global object and the initial properties may be changed.

10.1.6 Activation Object

When control enters an execution context for function code or a lexical block, an object called the

activation object is created and associated with the execution context.

If the execution context is for function code, the activation object is initialised with a property with name

arguments and attributes { [[Writable]]: true, [[Enumerable]]: false, [[Flexible]]: false }. The initial

value of this property is the arguments object described below.

The activation object is then used as the environment object for the purposes of environment bindings

instantiation.

The activation object is purely a specification mechanism. It is impossible for an ECMAScript program

to access the activation object. It can access members of the activation object, but not the activation

object itself. When the call operation is applied to a Reference value whose base object is an activation

object, null is used as the this value of the call.

10.1.6.1 Usage Subset cautious Restrictions

For functions defined within an execution subset restricted to the cautious subset, the activation

object is only initialized with an ―arguments‖ property if the function mentions ―arguments‖ freely in

its body. In which case the ―arguments‖ property is initialized with attributes {[[Writable]]: false,

[[Enumerable]]: false, [[Flexible]]: false}.

10.1.7 This

There is a this value associated with every active execution context. The this value depends on the caller

and the type of code being executed and is determined when control enters the execution context. The

this value associated with an execution context is immutable.

10.1.8 Arguments Object

When control enters an execution context for function code, an arguments object is created (see above)

and initialised as follows:

The value of the internal [[Prototype]] property of the arguments object is the original Array prototype

object, the one that is the initial value of Array.prototype (see 15.4.3.1).

The value of the internal [[Class]] property is "Object".

A property is created with the name constructor and attributes { [[Writable]]: true, [[Enumerable]]:

false, [[Flexible]]: true}. The initial value of this property is the standard builtin function named

Object.A property is created with name callee and property attributes { [[Writable]]: false,

[[Enumerable]]: false, [[Flexible]]: false }. The initial value of this property is the Function object

being executed. This allows anonymous functions to be recursive.

A property is created with name length and property attributes { [[Enumerable]]: false }. The initial

value of this property is the number of actual parameter values supplied by the caller.

For each non-negative integer, arg, less than the value of the length property, a property is created

with name ToString(arg) and property attributes { [[Writable]]: true, [[Enumerable]]: false,

[[Flexible]]: false }. The initial value of this property is the value of the corresponding actual

parameter supplied by the caller. The first actual parameter value corresponds to arg = 0, the second

to arg = 1, and so on. In the case when arg is less than the number of formal parameters for the

Function object, this property shares its value with the corresponding property of the activation

object. This means that changing this property changes the corresponding property of the activation

object and vice versa.

Deleted: Built-in

Comment [pL21]: Need a normative list.

Comment [pL22]: From AWB:
It would desirable to also make this [[Writable]]: false, and

[[Flexible]]:false but that may be too incompatable of a
change.

Deleted: DontEnum

Deleted: The

Deleted: DontDelete

Deleted: variable

Deleted: variable

Comment [pL23]: From AWB:
―mentions freely‖ needs to be more clearly defined.

Comment [pL24]: ALP says: Deviations doc §2.4 raises

concern over the representation of arguments.toString().
ES4 specifies Object.prototype.toString() here (see

incompatibilities.pdf §3.4.

Deleted: Object

Comment [pL25]: This change is still creating

controversy from the ES4 designers.

Deleted: Object

Deleted: 2

Comment [pL26]: From AWB:
This appears to be an observable change from ES3. Is that
OK?

Comment [pL27]: From AWB:
This appears to be an observable change from ES3. Is that

OK?

Deleted: DontEnum

Deleted: DontEnum

Comment [pL28]: From AWB:
Should other attributes also be specified like for callee?

Comment [pL29]: From AWB:
I assume tht it must be writable for backwards
compatability.

Deleted: DontEnum

Comment [pL30]: From AWB:
This is a change ES3. Is it OK?

Comment [pL31]: From AWB:

There are two better alternatives for defining this
algorithmicly. Either define is parameter property as a

getter/setter pair or provided an alternative definition of the

[[TrhowablePut]] in ternal property.

- 47 -

11 August 2008

10.1.8.1 Usage Subset cautious Restrictions

For functions defined within an execution subset restricted to the cautious subset, an arguments

object is only created if the function mentions ―arguments‖ freely in its body.

If a arguments object is created, a callee property is not created.

The arguments object does not share properties with the activation object. Changing the value of a

arguments object property does not change the value of the corresponding activation object property

and vice versa.

10.2 Entering An Execution Context

Every function and constructor call enters a new execution context, even if a function is calling itself

recursively. Every evalution of a Block enters enters a new execution context which is exited when the

block evaluation completes. Every return exits an execution context. A thrown exception, if not caught,

may also exit one or more execution contexts.

When control enters an execution context, the scope chain is created and initialised, environment bindings

instantiation is performed, and the this value is determined.

The initialisation of the scope chain, variable instantiation, and the determination of the this value depend

on the type of code being entered.

10.2.1 Global Code

The scope chain is created and initialised to contain the global object and no others.

Environment bindings instantiation is performed using the global object as the environment object and

using property attributes { [[Writable]]: true, [[Enumerable]]: true, [[Flexible]]: false }.

The this value is the global object.

10.2.2 Eval Code

When control enters an execution context for eval code, the previous active execution context, referred

to as the calling context, is used to determine the scope chain, the environment object, and the this value.

If there is no calling context, then initialising the scope chain, environment bindings instantiation, and

determination of the this value are performed just as for global code.

The scope chain is initialised to contain the same objects, in the same order, as the calling context's

scope chain. This includes objects added to the calling context's scope chain by Blocks, with

statements and catch clauses.

Environment bindings instantiation is performed using the calling context's environment object and using

the property attributes { [[Writable]]: true, [[Enumerable]]: true, [[Flexible]]: true }.

The this value is the same as the this value of the calling context.

10.2.2.1 Usage Subset cautious Restrictions

If either the execution context for the eval code or the execution context in which the eval operator

was executed is subset restricted to the cautious subset, the eval code cannot instantiate variables,

functions, or constants in the lexical context of its eval operator.

Instead, a new environment object is created and appended to the head of the calling context‘s scope

chain and that environment object is used for environment bindings instantiation of the eval code.

10.2.3 Function Code

The scope chain is initialised to contain the activation object followed by the objects in the scope chain

stored in the [[Scope]] property of the Function object.

Environment bindings instantiation is performed using the activation object as the environment object

and using property attributes { [[Writable]]: true, [[Enumerable]]: true, [[Flexible]]: false }.

The caller provides the this value.

10.2.4 Lexical Block Code

A new activation object is created for use as the environment object. The scope chain is initialised to

contain the new activation object followed by the objects in the current execution context‘s scope chain.

Comment [pL32]: From AWB:
―mentions freely‖ needs to be more clearly defined.

Deleted: variable

Deleted: Variable

Deleted: variable

Deleted: DontDelete

Deleted: variable

Deleted: variable

Deleted: Variable

Deleted: variable

Deleted: empty

Deleted: Variable

Deleted: variable

Deleted: DontDelete

Deleted: If the this value provided by the
caller is not an object (including the case where

it is null), then the this value is the global

object.

- 48 -

11 August 2008

Environment bindings instantiation is performed using the new object as the environment object and

using property attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

The this value is the same as the this value of the previously current context.

11 Expressions

11.1 Primary Expressions

Syntax

PrimaryExpression :
this

Identifier

Literal

ArrayLiteral

ObjectLiteral

(Expression)

11.1.1 The this Keyword

The this keyword evaluates to the this value of the execution context.

11.1.1.1 Usage Subset cautious Restrictions

If this is evaluated within an execution context that is subset restricted to the cautious subset and

the this value is null or undefined, then the this expression throws a ReferenceError exception.

11.1.2 Identifier Reference

An Identifier is evaluated using the scoping rules stated in 10.1.4. The result of evaluating an Identifier

is always a value of type Reference.

11.1.3 Literal Reference

A Literal is evaluated as described in 7.8.

11.1.4 Array Initialiser

An array initialiser is an expression describing the initialisation of an Array object, written in a form of a

literal. It is a list of zero or more expressions, each of which represents an array element, enclosed in

square brackets. The elements need not be literals; they are evaluated each time the array initialiser is

evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in

the element list is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after

another comma), the missing array element contributes to the length of the Array and increases the index

of subsequent elements. Elided array elements are not defined. If an element is elided at the end of an

array, that element does not contribute to the length of the Array.

Syntax

ArrayLiteral :

[Elisionopt]

[ElementList]

[ElementList , Elisionopt]

ElementList :

Elisionopt AssignmentExpression

ElementList , Elisionopt AssignmentExpression

Elision :

,

Elision ,

Semantics

The production ArrayLiteral : [Elisionopt] is evaluated as follows:

Comment [pL33]: From AWB:
This really should be specified in the grammar if it isn‘t

already.

- 49 -

11 August 2008

1. Create a new object as if by the expression new Array() where Array is the standard built-in

constructor with that name.

2. Evaluate Elision; if not present, use the numeric value zero.

3. Call the [[Put]] method of Result(1) with arguments "length" and Result(2).

4. Return Result(1).

The production ArrayLiteral : [ElementList] is evaluated as follows:

1. Evaluate ElementList.

2. Return Result(1).

The production ArrayLiteral : [ElementList , Elisionopt] is evaluated as follows:

1. Evaluate ElementList.

2. Evaluate Elision; if not present, use the numeric value zero.

3. Call the [[Get]] method of Result(1) with argument "length".

4. Call the [[Put]] method of Result(1) with arguments "length" and (Result(2)+Result(3)).

5. Return Result(1).

The production ElementList : Elisionopt AssignmentExpression is evaluated as follows:

1. Create a new object as if by the expression new Array() where Array is the standard built-in

constructor with that name.

2. Evaluate Elision; if not present, use the numeric value zero.

3. Evaluate AssignmentExpression.

4. Call GetValue(Result(3)).

5. Call the [[Put]] method of Result(1) with arguments Result(2) and Result(4).

6. Return Result(1)

The production ElementList : ElementList , Elisionopt AssignmentExpression is evaluated as follows:

1. Evaluate ElementList.

2. Evaluate Elision; if not present, use the numeric value zero.

3. Evaluate AssignmentExpression.

4. Call GetValue(Result(3)).

5. Call the [[Get]] method of Result(1) with argument "length".

6. Call the [[Put]] method of Result(1) with arguments (Result(2)+Result(5)) and Result(4).

7. Return Result(1)

The production Elision : , is evaluated as follows:

1. Return the numeric value 1.

The production Elision : Elision , is evaluated as follows:

Evaluate Elision.

2. Return (Result(1)+1).

NOTE:

The use of [[Put]] rather than [[ThrowablePut]] in this section is intentional as there are no situations

where these [[Put]] operations should fail.

11.1.5 Object Initialiser

An object initialiser is an expression describing the initialisation of an Object, written in a form

resembling a literal. It is a list of zero or more pairs of property names and associated values, enclosed in

curly braces. The values need not be literals; they are evaluated each time the object initialiser is

evaluated.

Syntax

Deleted: array

Deleted: array

- 50 -

11 August 2008

ObjectLiteral :
{ }

{ PropertyNameAndValueList }

{ PropertyNameAndValueList , }

PropertyNameAndValueList :

PropertyAssignment

PropertyNameAndValueList , PropertyAssignment

PropertyAssignment :

PropertyName : AssignmentExpression

get PropertyName () { FunctionBody }

set PropertyName (PropertySetParameterList) { FunctionBody }

PropertyName :

IdentifierName

StringLiteral

NumericLiteral

PropertySetParameterList :

Identifier

Semantics

The production ObjectLiteral : { } is evaluated as follows:

1. Create a new object as if by the expression new Object() where Object is the standard built-in

constructor with that name.

2. Return Result(1).

The productions ObjectLiteral : { PropertyNameAndValueList } and { PropertyNameAndValueList ,}

are evaluated as follows:

1. Evaluate PropertyNameAndValueList.

2. Return Result(1);

The production

 PropertyNameAndValueList : PropertyAssignment

is evaluated as follows:

1. Create a new object as if by the expression new Object() where Object is the standard built-in

constructor with that name.

2. Evaluate PropertyAssignment.

3. Call the [[DefineOwnProperty]] method of Result(1) with arguments Result(2).name,

Result(2).descriptor, false.

4. Return Result(1).

The production

 PropertyNameAndValueList : PropertyNameAndValueList , PropertyAssignment

is evaluated as follows:

1. Evaluate PropertyNameAndValueList.

2. Evaluate PropertyAssignment.

3. Call the [[DefineOwnProperty]] method of Result(1) with arguments (Result(2).name,

Result(2).descriptor, false).

4. Return Result(1).

The production PropertyAssignment : PropertyName : AssignmentExpression is evaluated as follows:

1. Evaluate PropertyName.

2. Evaluate AssignmentExpression.

Deleted: PropertyName : AssignmentExpression

Deleted: PropertyName : AssignmentExpression

Deleted: is

Deleted: PropertyName : AssignmentExpression

Deleted: PropertyName

Deleted: <#>Evaluate AssignmentExpression.¶

Comment [pL34]: Object literal property definition
should never cause [[DefineProperty]] to throw; so, false is
fine here.

Deleted: GetValue(Result(3))

Deleted: <#>Call the [[Put]] method of Result(1)
with arguments Result(2) and Result(4).¶

Deleted: PropertyName : AssignmentExpression

Deleted: PropertyName

Deleted: <#>Evaluate AssignmentExpression.¶

Deleted: GetValue(Result(3))

Deleted: <#>Call the [[Put]] method of Result(1)
with arguments Result(2) and Result(4).¶

- 51 -

11 August 2008

3. Call GetValue(Result(2)).

4. Create Property Descriptor{[[Value]]: Result(2), [[Writable]]: true, [[Enumerable]]: true,

[[Flexible]]: true}

5. Return Property Identifer (Result(1), Result(4)).

The production PropertyAssignment : get PropertyName () { FunctionBody } is evaluated as follows:

1. Evaluate PropertyName.

2. Create a new Function object as specified in 13.2 with an empty parameter list and body specified by

FunctionBody. Pass in the scope chain of the running execution context as the Scope.

3. Create Property Descriptor{[[Getter]]: Result(2), [[Enumerable]]: true, [[Flexible]]: true}

4. Return Property Identifer (Result(1), Result(4)).

The production PropertyAssignment : set PropertyName (PropertySetParameterList) { FunctionBody }

is evaluated as follows:

1. Evaluate PropertyName.

2. Create a new Function object as specified in 13.2 with parameters specified by

PropertySetParameterList and body specified by FunctionBody. Pass in the scope chain of the

running execution context as the Scope.

3. Create Property Descriptor{[[Setter]]: Result(2), [[Enumerable]]: true, [[Flexible]]: true}

4. Return Property Identifer (Result(1), Result(4)).

The production PropertyName : IdentifierName is evaluated as follows:

1. Form a string literal containing the same sequence of characters as the IdentifierName.

2. Return Result(1).

The production PropertyName : StringLiteral is evaluated as follows:

1. Return the value of the StringLiteral.

The production PropertyName : NumericLiteral is evaluated as follows:

1. Form the value of the NumericLiteral.

2. Return ToString(Result(1)).

11.1.6 The Grouping Operator

The production PrimaryExpression : (Expression) is evaluated as follows:

1. Evaluate Expression. This may be of type Reference.

2. Return Result(1).

NOTE

This algorithm does not apply GetValue to Result(1). The principal motivation for this is so that

operators such as delete and typeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions

Syntax

MemberExpression :

PrimaryExpression

FunctionExpression

MemberExpression [Expression]

MemberExpression . IdentifierName

new MemberExpression Arguments

NewExpression :

MemberExpression

new NewExpression

- 52 -

11 August 2008

CallExpression :

MemberExpression Arguments

CallExpression Arguments

CallExpression [Expression]

CallExpression . IdentifierName

Arguments :
()

(ArgumentList)

ArgumentList :

AssignmentExpression

ArgumentList , AssignmentExpression

LeftHandSideExpression :

NewExpression

CallExpression

11.2.1 Property Accessors

Properties are accessed by name, using either the dot notation:

MemberExpression . IdentifierName

CallExpression . IdentifierName

or the bracket notation:

MemberExpression [Expression]

CallExpression [Expression]

The dot notation is explained by the following syntactic conversion:

MemberExpression . IdentifierName

is identical in its behaviour to

MemberExpression [<identifier-name-string>]

and similarly

CallExpression . IdentifierName

is identical in its behaviour to

CallExpression [<identifier-name-string>]

where <identifier-name-string> is a string literal containing the same sequence of characters as the

IdentifierName.

The production MemberExpression : MemberExpression [Expression] is evaluated as follows:

1. Evaluate MemberExpression.

2. Call GetValue(Result(1)).

3. Evaluate Expression.

4. Call GetValue(Result(3)).

5. Call ToObject(Result(2)).

6. Call ToString(Result(4)).

7. Return a value of type Reference whose base object is Result(5) and whose property name is

Result(6).

The production CallExpression : CallExpression [Expression] is evaluated in exactly the same

manner, except that the contained CallExpression is evaluated in step 1.

- 53 -

11 August 2008

11.2.2 The new Operator

The production NewExpression : new NewExpression is evaluated as follows:

1. Evaluate NewExpression.

2. Call GetValue(Result(1)).

3. If Type(Result(2)) is not Object, throw a TypeError exception.

4. If Result(2) does not implement the internal [[Construct]] method, throw a TypeError exception.

5. Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of

arguments).

6. Return Result(5).

The production MemberExpression : new MemberExpression Arguments is evaluated as follows:

1. Evaluate MemberExpression.

2. Call GetValue(Result(1)).

3. Evaluate Arguments, producing an internal list of argument values (11.2.4).

4. If Type(Result(2)) is not Object, throw a TypeError exception.

5. If Result(2) does not implement the internal [[Construct]] method, throw a TypeError exception.

6. Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument values.

7. Return Result(6).

11.2.3 Function Calls

The production CallExpression : MemberExpression Arguments is evaluated as follows:

1. Evaluate MemberExpression.

2. Evaluate Arguments, producing an internal list of argument values (see 11.2.4).

3. Call GetValue(Result(1)).

4. If Type(Result(3)) is not Object, throw a TypeError exception.

5. If IsCallable(Result(3)) is false,, throw a TypeError exception.

6. If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Result(6) is null.

7. If Result(6) is an activation object, Result(7) is null. Otherwise, Result(7) is the same as Result(6).

8. Call the [[Call]] method on Result(3), providing Result(7) as the this value and providing the list

Result(2) as the argument values.

9. Return Result(8).

The production CallExpression : CallExpression Arguments is evaluated in exactly the same manner,

except that the contained CallExpression is evaluated in step 1.

NOTE

Result(8) will never be of type Reference if Result(3) is a native ECMAScript object. Whether calling a

host object can return a value of type Reference is implementation-dependent.

11.2.4 Argument Lists

The evaluation of an argument list produces an internal list of values (see 8.8).

The production Arguments : () is evaluated as follows:

1. Return an empty internal list of values.

The production Arguments : (ArgumentList) is evaluated as follows:

1. Evaluate ArgumentList.

2. Return Result(1).

The production ArgumentList : AssignmentExpression is evaluated as follows:

1. Evaluate AssignmentExpression.

2. Call GetValue(Result(1)).

3. Return an internal list whose sole item is Result(2).

The production ArgumentList : ArgumentList , AssignmentExpression is evaluated as follows:

Deleted: does not implement the internal
[[Call]] method

Comment [pL35]: We wanted to remove this
possibility but have not done so because this could
break bridging to VBScript. Cannot afford to do that

as VBScript is still used in the intranet.

- 54 -

11 August 2008

1. Evaluate ArgumentList.

2. Evaluate AssignmentExpression.

3. Call GetValue(Result(2)).

4. Return an internal list whose length is one greater than the length of Result(1) and whose items are

the items of Result(1), in order, followed at the end by Result(3), which is the last item of the new

list.

11.2.5 Function Expressions

The production MemberExpression : FunctionExpression is evaluated as follows:

1. Evaluate FunctionExpression.

2. Return Result(1).

11.3 Postfix Expressions

Syntax

PostfixExpression :

LeftHandSideExpression

LeftHandSideExpression [no LineTerminator here] ++

LeftHandSideExpression [no LineTerminator here] --

11.3.1 Postfix Increment Operator

The production PostfixExpression : LeftHandSideExpression [no LineTerminator here] ++ is evaluated as

follows:

1. Evaluate LeftHandSideExpression.

2. Call GetValue(Result(1)).

3. If Type(Result(2)) is Decimal, then

a. Call the Decimal add method with arguments Result(2) and the decimal value 1m.

b. Call PutValue(Result(1), Result(3a), false).

c. Return Result(1).

4. Call ToNumber(Result(2)).

5. Add the value 1 to Result(4), using the same rules as for the + operator (see 11.6.3).

6. Call PutValue(Result(1), Result(5), false).

7. Return Result(5).

11.3.1.1 Usage Subset cautious Restrictions

When a postfix increment operator occurs within an execution context that is subset restricted to the

cautious subset, its LeftHandSide must not be a reference to a property with the attribute value

{[[Writable]]: false} nor to a non-existent property of an object whose [[Extensible]] property has the

value false. In these cases a TypeError exception is thrown. This is accomplished by replacing

step 5 of the above algorithm with the following:

5. Call PutValue(Result(1), Result(4), true).

11.3.2 Postfix Decrement Operator

The production PostfixExpression : LeftHandSideExpression [no LineTerminator here] -- is evaluated as

follows:

1. Evaluate LeftHandSideExpression.

2. Call GetValue(Result(1)).

3. If Type(Result(2)) is Decimal, then

a. Call the Decimal subtract method with arguments Result(2) and the decimal value 1m.

b. Call PutValue(Result(1), Result(3a), false).

c. Return Result(1).

4. Call ToNumber(Result(2)).

5. Subtract the value 1 from Result(4), using the same rules as for the - operator (11.6.3).

6. Call PutValue(Result(1), Result(5), false).

7. Return Result(5).

Deleted: 3

Deleted: 4

Deleted: 3

Deleted: 3

Deleted: 4

Deleted: 3

- 55 -

11 August 2008

11.3.2.1 Usage Subset cautious Restrictions

The same restrictions apply as specified in section 11.3.1.1 for the postfix increment operator.

11.4 Unary Operators

Syntax

UnaryExpression :

PostfixExpression

delete UnaryExpression

void UnaryExpression

typeof UnaryExpression

++ UnaryExpression

-- UnaryExpression

+ UnaryExpression

- UnaryExpression

~ UnaryExpression

! UnaryExpression

11.4.1 The delete Operator

The production UnaryExpression : delete UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.

2. If Type(Result(1)) is not Reference, return true.

3. Call GetBase(Result(1)).

4. Call GetPropertyName(Result(1)).

5. Call the [[Delete]] method on Result(3), providing (Result(4), false) as the arguments.

6. Return Result(5).

11.4.1.1 Usage Subset cautious Restrictions

When a delete operator occurs within an execution context that is subset restricted to the

cautious subset, its UnaryExpression is further limited to being a MemberExpression. In addition,

if the property to be deleted is has the attribute { [[Flexible]]:false }, a TypeError exception is

thrown. This is accomplished by replacing step 5 of the above algorithm with the following:

5. Call the [[Delete]] method on Result(3), providing (Result(4), true) as the arguments.

11.4.2 The void Operator

The production UnaryExpression : void UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.

2. Call GetValue(Result(1)).

3. Return undefined.

11.4.3 The typeof Operator

The production UnaryExpression : typeof UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.

2. If Type(Result(1)) is not Reference, go to step 4.

3. If GetBase(Result(1)) is null, return "undefined".

4. Call GetValue(Result(1)).

5. Return a string determined by Type(Result(4)) according to the following table:

Deleted: as the property name to delete

- 56 -

11 August 2008

Type Result

Undefined "undefined"

Null "object"

Boolean "boolean"

Number "number"

String "string"

Object (native and

doesn‘t implement

[[Call]])

"object"

Object (native and

implements [[Call]])

"function"

Object (host) Implementation-dependent

11.4.4 Prefix Increment Operator

The production UnaryExpression : ++ UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.

2. Call GetValue(Result(1)).

3. If Type(Result(2)) is Decimal, then

a. Call the Decimal add method with arguments Result(2) and the decimal value 1m.

b. Call PutValue(Result(1), Result(3a), false).

c. Return Result(1).

4. Call ToNumber(Result(2)).

5. Add the value 1 to Result(4), using the same rules as for the + operator (see 11.6.3).

6. Call PutValue(Result(1), Result(5), false).

7. Return Result(5).

11.4.4.1 Usage Subset cautious Restrictions

The same restrictions apply as specified in section 11.3.1.1 for the postfix increment operator.

11.4.5 Prefix Decrement Operator

The production UnaryExpression : -- UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.

2. Call GetValue(Result(1)).

3. If Type(Result(2)) is Decimal, then

a. Call the Decimal subtract method with arguments Result(2) and the decimal value 1m.

b. Call PutValue(Result(1), Result(3a), false).

c. Return Result(3a).

4. Call ToNumber(Result(2)).

5. Subtract the value 1 from Result(4), using the same rules as for the - operator (see 11.6.3).

6. Call PutValue(Result(1), Result(5), false).

7. Return Result(5).

11.4.5.1 Usage Subset cautious Restrictions

The same restrictions apply as specified in section 11.3.1.1 for the postfix increment operator.

11.4.6 Unary + Operator

The unary + operator converts its operand to Number type.

The production UnaryExpression : + UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.

2. Call GetValue(Result(1)).

3. If Type(Result(2)) is Decimal, then

a. Return Result(2).

4. Call ToNumber(Result(2)).

5. Return Result(4).

Deleted: 3

Deleted: 4

Deleted: 4

Deleted: 3

Deleted: 4

Deleted: 4

Deleted: 3

- 57 -

11 August 2008

11.4.7 Unary - Operator

The unary - operator converts its operand to Number type and then negates it. Note that negating +0

produces 0, and negating 0 produces +0.

The production UnaryExpression : - UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.

2. Call GetValue(Result(1)).

3. If Type(Result(2)) is Decimal, then

a. Call the Decimal negate method with argument Result(2).

b. Return Result(3a).

4. Call ToNumber(Result(2)).

5. If Result(4) is NaN, return NaN.

6. Negate Result(4); that is, compute a number with the same magnitude but opposite sign.

7. Return Result(6).

11.4.8 Bitwise NOT Operator (~)

The production UnaryExpression : ~ UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.

2. Call GetValue(Result(1)).

3. Call ToInt32(Result(2)).

4. Apply bitwise complement to Result(3). The result is a signed 32-bit integer.

5. Return Result(4).

11.4.9 Logical NOT Operator (!)

The production UnaryExpression : ! UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.

2. Call GetValue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) is true, return false.

5. Return true.

11.5 Multiplicative Operators

Syntax

MultiplicativeExpression :

UnaryExpression

MultiplicativeExpression * UnaryExpression

MultiplicativeExpression / UnaryExpression

MultiplicativeExpression % UnaryExpression

Semantics

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands

for one of the operators in the above definitions, is evaluated as follows:

1. Evaluate MultiplicativeExpression.

2. Call GetValue(Result(1)).

3. Evaluate UnaryExpression.

4. Call GetValue(Result(3)).

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then

a. Call the corresponding Decimal method (multiply, divide, remainder) with arguments Result(1)

and Result(3).

b. Return Result(5a).

6. Call ToNumber(Result(2)).

7. Call ToNumber(Result(4)).

8. Apply the specified operation (*, /, or %) to Result(6) and Result(7). See the notes below (11.5.1,

11.5.2, 11.5.3).

9. Return Result(8).

Deleted: 3

Deleted: 3

Deleted: 5

Deleted: 5

Deleted: 6

Deleted: 7

- 58 -

11 August 2008

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is

commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 double-precision

arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have

different signs.

Multiplication of an infinity by a zero results in NaN.

Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule

already stated above.

Multiplication of an infinity by a finite non-zero value results in a signed infinity. The sign is determined

by the rule already stated above.

In the remaining cases, where neither an infinity or NaN is involved, the product is computed and

rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is

too large to represent, the result is then an infinity of appropriate sign. If the magnitude is too small

to represent, the result is then a zero of appropriate sign. The ECMAScript language requires support

of gradual underflow as defined by IEEE 754.

11.5.2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the

dividend and the right operand is the divisor. ECMAScript does not perform integer division. The

operands and result of all division operations are double-precision floating-point numbers. The result of

division is determined by the specification of IEEE 754 arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have

different signs.

Division of an infinity by an infinity results in NaN.

Division of an infinity by a zero results in an infinity. The sign is determined by the rule already stated

above.

Division of an infinity by a non-zero finite value results in a signed infinity. The sign is determined by

the rule already stated above.

Division of a finite value by an infinity results in zero. The sign is determined by the rule already stated

above.

Division of a zero by a zero results in NaN; division of zero by any other finite value results in zero,

with the sign determined by the rule already stated above.

Division of a non-zero finite value by a zero results in a signed infinity. The sign is determined by the

rule already stated above.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is

computed and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If

the magnitude is too large to represent, the operation overflows; the result is then an infinity of

appropriate sign. If the magnitude is too small to represent, the operation underflows and the result is

a zero of the appropriate sign. The ECMAScript language requires support of gradual underflow as

defined by IEEE 754.

11.5.3 Applying the % Operator

The % operator yields the remainder of its operands from an implied division; the left operand is the

dividend and the right operand is the divisor.

NOTE

In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts

floating-point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the

―remainder‖ operation defined by IEEE 754. The IEEE 754 ―remainder‖ operation computes the

- 59 -

11 August 2008

remainder from a rounding division, not a truncating division, and so its behaviour is not analogous to

that of the usual integer remainder operator. Instead the ECMAScript language defines % on floating-

point operations to behave in a manner analogous to that of the Java integer remainder operator; this may

be compared with the C library function fmod.

The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE

arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is finite, the result is the same as the dividend.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point

remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q)

where q is an integer that is negative only if n/d is negative and positive only if n/d is positive, and

whose magnitude is as large as possible without exceeding the magnitude of the true mathematical

quotient of n and d.

11.6 Additive Operators

Syntax

AdditiveExpression :

MultiplicativeExpression

AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression

11.6.1 The Addition operator (+)

The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as

follows:

1. Evaluate AdditiveExpression.

2. Call GetValue(Result(1)).

3. Evaluate MultiplicativeExpression.

4. Call GetValue(Result(3)).

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then

a. Apply the Decimal add method to Result(1) and Result(2).

b. Return Result(5a).

6. Call ToPrimitive(Result(2)).

7. Call ToPrimitive(Result(4)).

8. If Type(Result(6)) is String or Type(Result(7)) is String, then

a. Call ToString(Result(6)).

b. Call ToString(Result(7)).

c. Concatenate Result(8a) followed by Result(8b).

d. Return Result(8c).

9. Call ToNumber(Result(6)).

10. Call ToNumber(Result(7)).

11. Apply the addition operation to Result(9) and Result(10). See the note below (11.6.3).

12. Return Result(11).

NOTE

No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except

Date objects handle the absence of a hint as if the hint Number were given; Date objects handle the

absence of a hint as if the hint String were given. Host objects may handle the absence of a hint in some

other manner.

Comment [pL36]: How will you perform such a
test? There is no ‗Decimal‘ type yet. This test needs

to be elaborated.

Deleted: 5

Deleted: 6

Deleted: go to step 12. (Note that this step
differs from step 3 in the comparison algorithm

for the relational operators, by using or instead

of and.)

Deleted: 5

Deleted: 6

Deleted: 8

Deleted: 9

Deleted: 10

Deleted: <#>Call ToString(Result(5)).¶
<#>Call ToString(Result(6)).¶

<#>Concatenate Result(12) followed by
Result(13).¶

<#>Return Result(14).¶

- 60 -

11 August 2008

11.6.2 The Subtraction Operator (-)

The production AdditiveExpression : AdditiveExpression - MultiplicativeExpression is evaluated as

follows:

1. Evaluate AdditiveExpression.

2. Call GetValue(Result(1)).

3. Evaluate MultiplicativeExpression.

4. Call GetValue(Result(3)).

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then

a. Apply the Decimal subtract method to Result(2) and Result(3).

b. Return Result(5b).

6. Call ToNumber(Result(2)).

7. Call ToNumber(Result(4)).

8. Apply the subtraction operation to Result(6) and Result(7). See the note below (11.6.3).

9. Return Result(8).

11.6.3 Applying the Additive Operators (+,-) to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of

the operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:

If either operand is NaN, the result is NaN.

The sum of two infinities of opposite sign is NaN.

The sum of two infinities of the same sign is the infinity of that sign.

The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two negative zeros is 0. The sum of two positive zeros, or of two zeros of opposite sign, is

+0.

The sum of a zero and a nonzero finite value is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands have

the same sign or have different magnitudes, the sum is computed and rounded to the nearest

representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large to represent,

the operation overflows and the result is then an infinity of appropriate sign. The ECMAScript

language requires support of gradual underflow as defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing the

difference of its operands; the left operand is the minuend and the right operand is the subtrahend. Given

numeric operands a and b, it is always the case that a–b produces the same result as a+(–b).

11.7 Bitwise Shift Operators

Syntax

ShiftExpression :

AdditiveExpression

ShiftExpression << AdditiveExpression

ShiftExpression >> AdditiveExpression

ShiftExpression >>> AdditiveExpression

11.7.1 The Left Shift Operator (<<)

Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

The production ShiftExpression : ShiftExpression << AdditiveExpression is evaluated as follows:

1. Evaluate ShiftExpression.

2. Call GetValue(Result(1)).

3. Evaluate AdditiveExpression.

4. Call GetValue(Result(3)).

Deleted: 5

Deleted: 6

Deleted: 7

- 61 -

11 August 2008

5. Call ToInt32(Result(2)).

6. Call ToUint32(Result(4)).

7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.

8. Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

9. Return Result(8).

11.7.2 The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the

right operand.

The production ShiftExpression : ShiftExpression >> AdditiveExpression is evaluated as follows:

1. Evaluate ShiftExpression.

2. Call GetValue(Result(1)).

3. Evaluate AdditiveExpression.

4. Call GetValue(Result(3)).

5. Call ToInt32(Result(2)).

6. Call ToUint32(Result(4)).

7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.

8. Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is

propagated. The result is a signed 32 bit integer.

9. Return Result(8).

11.7.3 The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the

right operand.

The production ShiftExpression : ShiftExpression >>> AdditiveExpression is evaluated as follows:

1. Evaluate ShiftExpression.

2. Call GetValue(Result(1)).

3. Evaluate AdditiveExpression.

4. Call GetValue(Result(3)).

5. Call ToUint32(Result(2)).

6. Call ToUint32(Result(4)).

7. Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & 0x1F.

8. Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The

result is an unsigned 32 bit integer.

9. Return Result(8).

11.8 Relational Operators

Syntax

RelationalExpression :

ShiftExpression

RelationalExpression < ShiftExpression

RelationalExpression > ShiftExpression

RelationalExpression <= ShiftExpression

RelationalExpression >= ShiftExpression

RelationalExpression instanceof ShiftExpression

RelationalExpression in ShiftExpression

RelationalExpressionNoIn :

ShiftExpression

RelationalExpressionNoIn < ShiftExpression

RelationalExpressionNoIn > ShiftExpression

RelationalExpressionNoIn <= ShiftExpression

RelationalExpressionNoIn >= ShiftExpression

RelationalExpressionNoIn instanceof ShiftExpression

Deleted: 11.4

- 62 -

11 August 2008

NOTE

The 'NoIn' variants are needed to avoid confusing the in operator in a relational expression with the in

operator in a for statement.

Semantics

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship

named by the operator holds between its two operands.

The RelationalExpressionNoIn productions are evaluated in the same manner as the RelationalExpression

productions except that the contained RelationalExpressionNoIn is evaluated instead of the contained

RelationalExpression.

11.8.1 The Less-than Operator (<)

The production RelationalExpression : RelationalExpression < ShiftExpression is evaluated as follows:

1. Evaluate RelationalExpression.

2. Call GetValue(Result(1)).

3. Evaluate ShiftExpression.

4. Call GetValue(Result(3)).

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then

a. Call the Decimal compare method with arguments Result(1) and Result(3).

b. If Result(5a) < 0, then return true, otherwise return false.

6. Perform the comparison Result(2) < Result(4). (see 11.8.5)

7. If Result(6) is undefined, return false. Otherwise, return Result(6).

11.8.2 The Greater-than Operator (>)

The production RelationalExpression : RelationalExpression > ShiftExpression is evaluated as follows:

1. Evaluate RelationalExpression.

2. Call GetValue(Result(1)).

3. Evaluate ShiftExpression.

4. Call GetValue(Result(3)).

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then

a. Call the Decimal compare method with arguments Result(1) and Result(3).

b. If Result(5a) > 0, then return true, otherwise return false.

6. Perform the comparison Result(4) < Result(2) with LeftFirst equal to false. (see 11.8.5).

7. If Result(6) is undefined, return false. Otherwise, return Result(6).

11.8.3 The Less-than-or-equal Operator (<=)

The production RelationalExpression : RelationalExpression <= ShiftExpression is evaluated as follows:

1. Evaluate RelationalExpression.

2. Call GetValue(Result(1)).

3. Evaluate ShiftExpression.

4. Call GetValue(Result(3)).

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then

a. Call the Decimal compare method with arguments Result(1) and Result(3).

b. If Result(5a) <= 0, then return true, otherwise return false.

6. Perform the comparison Result(4) < Result(2) with LeftFirst equal to false. (see 11.8.5).

7. If Result(6) is true or undefined, return false. Otherwise, return true.

11.8.4 The Greater-than-or-equal Operator (>=)

The production RelationalExpression : RelationalExpression >= ShiftExpression is evaluated as follows:

1. Evaluate RelationalExpression.

2. Call GetValue(Result(1)).

3. Evaluate ShiftExpression.

4. Call GetValue(Result(3)).

5. If Type(Result(2)) is Decimal and Type(Result(4)) is Decimal, then

a. Call the Decimal compare method with arguments Result(1) and Result(3).

b. If Result(5a) >= 0, then return true, otherwise return false.

Deleted: 5

Deleted: 5

Deleted: 5

Deleted: 5

Deleted: 5

- 63 -

11 August 2008

6. Perform the comparison Result(2) < Result(4). (see 11.8.5).

7. If Result(6) is true or undefined, return false. Otherwise, return true.

11.8.5 The Abstract Relational Comparison Algorithm

The comparison x < y, where x and y are values, produces true, false, or undefined (which indicates that

at least one operand is NaN). In addition to x and y the algorithm takes a boolean flag named LeftFirst as

a parameter. The flag is used to control the order in which operations with potentially visible side-effects

are performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of

expressions. The default value of LeftFirst is true and indicates that the x paramenter corresponds to an

expression that occurs to the left of the y parameters corresponding expression. If LeftFirst is false, the

reverse is the case and operations must be performed upon y before x. Such a comparison is performed as

follows:

1. If the LeftFirst flag is true, then

a. Let px be the result of calling ToPrimitive(x, hint Number).

b. Let py be the result of calling ToPrimitive(y, hint Number).

2. Else the order of evaluation needs to be reversed to preserve left to right evaluation

a. Let py be the result of calling ToPrimitive(y, hint Number).

b. Let px be the result of calling ToPrimitive(x, hint Number).

3. If Type(px) is String or Type(py) is String, go to step 16. (Note that this step differs from step 7 in

the algorithm for the addition operator + in using and instead of or.)

4. Let nx be the result of calling ToNumber(px). Because of px and py are primitive values evaluation

order is not important.

5. Let ny be the result of calling ToNumber(py).

6. If nx is NaN, return undefined.

7. If ny is NaN, return undefined.

8. If nx and ny are the same number value, return false.

9. If nx is +0 and ny is 0, return false.

10. If nx is 0 and ny is +0, return false.

11. If nx is + , return false.

12. If ny is + , return true.

13. If ny is , return false.

14. If nx is , return true.

15. If the mathematical value of nx is less than the mathematical value of ny —note that these

mathematical values are both finite and not both zero—return true. Otherwise, return false.

16. If py is a prefix of px, return false. (A string value p is a prefix of string value q if q can be the result

of concatenating p and some other string r. Note that any string is a prefix of itself, because r may be

the empty string.)

17. If px is a prefix of py, return true.

18. Let k be the smallest nonnegative integer such that the character at position k within px is different

from the character at position k within py. (There must be such a k, for neither string is a prefix of the

other.)

19. Let m be the integer that is the code point value for the character at position k within px.

20. Let n be the integer that is the code point value for the character at position k within py.

21. If m < n, return true. Otherwise, return false.

NOTE

The comparison of strings uses a simple lexicographic ordering on sequences of code point value values.

There is no attempt to use the more complex, semantically oriented definitions of character or string

equality and collating order defined in the Unicode specification. Therefore strings that are canonically

equal according to the Unicode standard could test as unequal. In effect this algorithm assumes that

both strings are already in normalised form.

11.8.6 The instanceof operator

The production RelationalExpression: RelationalExpression instanceof ShiftExpression is evaluated

as follows:

1. Evaluate RelationalExpression.

2. Call GetValue(Result(1)).

3. Evaluate ShiftExpression.

4. Call GetValue(Result(3)).

Deleted: 5

Deleted: Call

Deleted: Call

Deleted: Result(1)

Deleted: and

Comment [pL37]: See Deviations doc item 2.8

Deleted: Result(2)

Deleted: Call

Deleted: Result(1)

Deleted: Call

Deleted: Result(2)

Deleted: Result(4)

Deleted: Result(5)

Deleted: Result(4)

Deleted: Result(5)

Deleted: Result(4)

Deleted: Result(5)

Deleted: Result(4)

Deleted: Result(5)

Deleted: Result(4)

Deleted: Result(5)

Deleted: Result(5)

Deleted: Result(4)

Deleted: Result(4)

Deleted: Result(5)

Deleted: Result(2)

Deleted: Result(1)

Deleted: Result(1)

Deleted: Result(2)

Deleted: Result(1)

Deleted: Result(2)

Deleted: Result(1)

Deleted: Result(2)

- 64 -

11 August 2008

5. If Result(4) is not an object, throw a TypeError exception.

6. If Result(4) does not have a [[HasInstance]] method, throw a TypeError exception.

7. Call the [[HasInstance]] method of Result(4) with parameter Result(2).

8. Return Result(7).

11.8.7 The in operator

The production RelationalExpression : RelationalExpression in ShiftExpression is evaluated as follows:

1. Evaluate RelationalExpression.

2. Call GetValue(Result(1)).

3. Evaluate ShiftExpression.

4. Call GetValue(Result(3)).

5. If Result(4) is not an object, throw a TypeError exception.

6. Call ToString(Result(2)).

7. Call the [[HasProperty]] method of Result(4) with parameter Result(6).

8. Return Result(7).

11.9 Equality Operators

Syntax

EqualityExpression :

RelationalExpression

EqualityExpression == RelationalExpression

EqualityExpression != RelationalExpression

EqualityExpression === RelationalExpression

EqualityExpression !== RelationalExpression

EqualityExpressionNoIn :

RelationalExpressionNoIn

EqualityExpressionNoIn == RelationalExpressionNoIn

EqualityExpressionNoIn != RelationalExpressionNoIn

EqualityExpressionNoIn === RelationalExpressionNoIn

EqualityExpressionNoIn !== RelationalExpressionNoIn

Semantics

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship

named by the operator holds between its two operands.

The EqualityExpressionNoIn productions are evaluated in the same manner as the EqualityExpression

productions except that the contained EqualityExpressionNoIn and RelationalExpressionNoIn are evaluated

instead of the contained EqualityExpression and RelationalExpression, respectively.

11.9.1 The Equals Operator (==)

The production EqualityExpression : EqualityExpression == RelationalExpression is evaluated as

follows:

1. Evaluate EqualityExpression.

2. Call GetValue(Result(1)).

3. Evaluate RelationalExpression.

4. Call GetValue(Result(3)).

5. Perform the comparison Result(4) == Result(2). (see 11.9.3).

6. Return Result(5).

11.9.2 The Does-not-equals Operator (!=)

The production EqualityExpression : EqualityExpression != RelationalExpression is evaluated as

follows:

1. Evaluate EqualityExpression.

2. Call GetValue(Result(1)).

- 65 -

11 August 2008

3. Evaluate RelationalExpression.

4. Call GetValue(Result(3)).

5. Perform the comparison Result(4) == Result(2). (see 11.9.3).

6. If Result(5) is true, return false. Otherwise, return true.

11.9.3 The Abstract Equality Comparison Algorithm

The comparison x == y, where x and y are values, produces true or false. Such a comparison is

performed as follows:

1. If Type(x) is different from Type(y), go to step 14.

2. If Type(x) is Undefined, return true.

3. If Type(x) is Null, return true.

4. If Type(x) is Decimal, return the result of x.compareTo(y) == 0

5. If Type(x) is not Number, go to step 12.

6. If x is NaN, return false.

7. If y is NaN, return false.

8. If x is the same number value as y, return true.

9. If x is +0 and y is 0, return true.

10. If x is 0 and y is +0, return true.

11. Return false.

12. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same

length and same characters in corresponding positions). Otherwise, return false.

13. If Type(x) is Boolean, return true if x and y are both true or both false. Otherwise, return false.

14. Return true if x and y refer to the same object. Otherwise, return false.

15. If x is null and y is undefined, return true.

16. If x is undefined and y is null, return true.

17. If Type(x) is Number and Type(y) is String,

return the result of the comparison x == ToNumber(y).

18. If Type(x) is String and Type(y) is Number,

return the result of the comparison ToNumber(x) == y.

19. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.

20. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).

21. If Type(x) is either String or Number and Type(y) is Object,

return the result of the comparison x == ToPrimitive(y).

22. If Type(x) is Object and Type(y) is either String or Number,

return the result of the comparison ToPrimitive(x) == y.

23. Return false.

NOTE

Given the above definition of equality:

String comparison can be forced by: "" + a == "" + b.

Numeric comparison can be forced by: a - 0 == b - 0.

Boolean comparison can be forced by: !a == !b.

The equality operators maintain the following invariants:

A != B is equivalent to !(A == B).

A == B is equivalent to B == A, except in the order of evaluation of A and B.

The equality operator is not always transitive. For example, there might be two distinct String objects,

each representing the same string value; each String object would be considered equal to the string

value by the == operator, but the two String objects would not be equal to each other.

Comparison of strings uses a simple equality test on sequences of code point value values. There is no

attempt to use the more complex, semantically oriented definitions of character or string equality and

collating order defined in the Unicode 2.0 specification. Therefore strings that are canonically equal

according to the Unicode standard could test as unequal. In effect this algorithm assumes that both

strings are already in normalised form.

Comment [pL38]: Needs to be specifed more
precisely.

Deleted: 11

Deleted: or if they refer to objects joined to

each other (see 13.1.2)

- 66 -

11 August 2008

11.9.4 The Strict Equals Operator (===)

The production EqualityExpression : EqualityExpression === RelationalExpression is evaluated as

follows:

1. Evaluate EqualityExpression.

2. Call GetValue(Result(1)).

3. Evaluate RelationalExpression.

4. Call GetValue(Result(3)).

5. Perform the comparison Result(4) === Result(2). (See below.)

6. Return Result(5).

11.9.5 The Strict Does-not-equal Operator (!==)

The production EqualityExpression : EqualityExpression !== RelationalExpression is evaluated as

follows:

1. Evaluate EqualityExpression.

2. Call GetValue(Result(1)).

3. Evaluate RelationalExpression.

4. Call GetValue(Result(3)).

5. Perform the comparison Result(4) === Result(2). (See below.)

6. If Result(5) is true, return false. Otherwise, return true.

11.9.6 The Strict Equality Comparison Algorithm

The comparison x === y, where x and y are values, produces true or false. Such a comparison is

performed as follows:

1. If Type(x) is different from Type(y), return false.

2. If Type(x) is Undefined, return true.

3. If Type(x) is Null, return true.

4. If Type(x) is not Number, go to step 11.

5. If x is NaN, return false.

6. If y is NaN, return false.

7. If x is the same number value as y, return true.

8. If x is +0 and y is 0, return true.

9. If x is 0 and y is +0, return true.

10. Return false.

11. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same

length and same characters in corresponding positions); otherwise, return false.

12. If Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.

13. Return true if x and y refer to the same object. Otherwise, return false.

11.10 Binary Bitwise Operators

Syntax

BitwiseANDExpression :

EqualityExpression

BitwiseANDExpression & EqualityExpression

BitwiseANDExpressionNoIn :

EqualityExpressionNoIn

BitwiseANDExpressionNoIn & EqualityExpressionNoIn

BitwiseXORExpression :

BitwiseANDExpression

BitwiseXORExpression ^ BitwiseANDExpression

BitwiseXORExpressionNoIn :

BitwiseANDExpressionNoIn

BitwiseXORExpressionNoIn ^ BitwiseANDExpressionNoIn

Deleted: or if they refer to objects joined to each
other (see 13.1.2)

- 67 -

11 August 2008

BitwiseORExpression :

BitwiseXORExpression

BitwiseORExpression | BitwiseXORExpression

BitwiseORExpressionNoIn :

BitwiseXORExpressionNoIn

BitwiseORExpressionNoIn | BitwiseXORExpressionNoIn

Semantics

The production A : A @ B, where @ is one of the bitwise operators in the productions above, is evaluated

as follows:

1. Evaluate A.

2. Call GetValue(Result(1)).

3. Evaluate B.

4. Call GetValue(Result(3)).

5. Call ToInt32(Result(2)).

6. Call ToInt32(Result(4)).

7. Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.

8. Return Result(7).

11.11 Binary Logical Operators

Syntax

LogicalANDExpression :

BitwiseORExpression

LogicalANDExpression && BitwiseORExpression

LogicalANDExpressionNoIn :

BitwiseORExpressionNoIn

LogicalANDExpressionNoIn && BitwiseORExpressionNoIn

LogicalORExpression :

LogicalANDExpression

LogicalORExpression || LogicalANDExpression

LogicalORExpressionNoIn :

LogicalANDExpressionNoIn

LogicalORExpressionNoIn || LogicalANDExpressionNoIn

Semantics

The production LogicalANDExpression : LogicalANDExpression && BitwiseORExpression is evaluated as

follows:

1. Evaluate LogicalANDExpression.

2. Call GetValue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) is false, return Result(2).

5. Evaluate BitwiseORExpression.

6. Call GetValue(Result(5)).

7. Return Result(6).

The production LogicalORExpression : LogicalORExpression || LogicalANDExpression is evaluated as

follows:

1. Evaluate LogicalORExpression.

2. Call GetValue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) is true, return Result(2).

- 68 -

11 August 2008

5. Evaluate LogicalANDExpression.

6. Call GetValue(Result(5)).

7. Return Result(6).

The LogicalANDExpressionNoIn and LogicalORExpressionNoIn productions are evaluated in the same

manner as the LogicalANDExpression and LogicalORExpression productions except that the contained

LogicalANDExpressionNoIn, BitwiseORExpressionNoIn and LogicalORExpressionNoIn are evaluated

instead of the contained LogicalANDExpression, BitwiseORExpression and LogicalORExpression,

respectively.

NOTE

The value produced by a && or || operator is not necessarily of type Boolean. The value produced will

always be the value of one of the two operand expressions.

11.12 Conditional Operator (?:)

Syntax

ConditionalExpression :

LogicalORExpression

LogicalORExpression ? AssignmentExpression : AssignmentExpression

ConditionalExpressionNoIn :

LogicalORExpressionNoIn

LogicalORExpressionNoIn ? AssignmentExpression : AssignmentExpressionNoIn

Semantics

The production ConditionalExpression : LogicalORExpression ? AssignmentExpression :

AssignmentExpression is evaluated as follows:

1. Evaluate LogicalORExpression.

2. Call GetValue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) is false, go to step 8.

5. Evaluate the first AssignmentExpression.

6. Call GetValue(Result(5)).

7. Return Result(6).

8. Evaluate the second AssignmentExpression.

9. Call GetValue(Result(8)).

10. Return Result(9).

The ConditionalExpressionNoIn production is evaluated in the same manner as the ConditionalExpression

production except that the contained LogicalORExpressionNoIn, AssignmentExpression and

AssignmentExpressionNoIn are evaluated instead of the contained LogicalORExpression, first

AssignmentExpression and second AssignmentExpression, respectively.

NOTE

The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java,

which each allow the second subexpression to be an Expression but restrict the third expression to be a

ConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment

expression to be governed by either arm of a conditional and to eliminate the confusing and fairly useless

case of a comma expression as the centre expression.

11.13 Assignment Operators

Syntax

AssignmentExpression :

ConditionalExpression

LeftHandSideExpression AssignmentOperator AssignmentExpression

- 69 -

11 August 2008

AssignmentExpressionNoIn :

ConditionalExpressionNoIn

LeftHandSideExpression AssignmentOperator AssignmentExpressionNoIn

AssignmentOperator : one of
= *= /= %= += -= <<= >>= >>>= &= ^= |=

Semantics

The AssignmentExpressionNoIn productions are evaluated in the same manner as the AssignmentExpression

productions except that the contained ConditionalExpressionNoIn and AssignmentExpressionNoIn are

evaluated instead of the contained ConditionalExpression and AssignmentExpression, respectively.

11.13.1 Simple Assignment (=)

The production AssignmentExpression : LeftHandSideExpression = AssignmentExpression is evaluated

as follows:

1. Evaluate LeftHandSideExpression.

2. Evaluate AssignmentExpression.

3. Call GetValue(Result(2)).

4. Call PutValue(Result(1), Result(3), false).

5. Return Result(3).

11.13.1.1 Usage Subset cautious Restrictions

When a simple assignment occurs within an execution context that is subset restricted to the

cautious subset, its LeftHandSide must not evaluate to a Reference to a property of the Global

Object. If it does a ReferenceError exception is thrown. The LeftHandSide also may not be a

reference to a property with the attribute value {[[Writable]]:false} nor to a non-existent property of

an object whose [[Extensible]] property has the value false. In these cases a TypeError exception is

thrown. This is accomplished by replacing step 5 of the above algorithm with the following:

5. Call PutValue(Result(1), Result(3), true).

11.13.2 Compound Assignment (op=)

The production AssignmentExpression : LeftHandSideExpression @ = AssignmentExpression, where @

represents one of the operators indicated above, is evaluated as follows:

1. Evaluate LeftHandSideExpression.

2. Call GetValue(Result(1)).

3. Evaluate AssignmentExpression.

4. Call GetValue(Result(3)).

5. Apply operator @ to Result(2) and Result(4).

6. Call PutValue(Result(1), Result(5), false).

7. Return Result(5).

11.13.2.1 Usage Subset cautious Restrictions

The same restrictions apply as specified in 11.13.1.1 except that the algorithm change is:

6. Call PutValue(Result(1), Result(5), true).

11.14 Comma Operator (,)

Syntax

Expression :

AssignmentExpression

Expression , AssignmentExpression

ExpressionNoIn :

AssignmentExpressionNoIn

ExpressionNoIn , AssignmentExpressionNoIn

- 70 -

11 August 2008

Semantics

The production Expression : Expression , AssignmentExpression is evaluated as follows:

1. Evaluate Expression.

2. Call GetValue(Result(1)).

3. Evaluate AssignmentExpression.

4. Call GetValue(Result(3)).

5. Return Result(4).

The ExpressionNoIn production is evaluated in the same manner as the Expression production except that

the contained ExpressionNoIn and AssignmentExpressionNoIn are evaluated instead of the contained

Expression and AssignmentExpression, respectively.

- 71 -

11 August 2008

12 Statements

Syntax

Statement :

SubStatement

ConstantStatement

VariableStatement

FunctionDeclaration

SubStatement :

Block

EmptyStatement

ExpressionStatement

IfStatement

IterationStatement

ContinueStatement

BreakStatement

ReturnStatement

WithStatement

LabelledStatement

SwitchStatement

ThrowStatement

TryStatement

Semantics

A Statement can be part of a LabelledStatement, which itself can be part of a LabelledStatement, and so on.

The labels introduced this way are collectively referred to as the ―current label set‖ when describing the

semantics of individual statements. A LabelledStatement has no semantic meaning other than the introduction

of a label to a label set. The label set of an IterationStatement or a SwitchStatement initially contains the

single element empty. The label set of any other statement is initially empty.

12.1 Block

Syntax

Block :

{ StatementListopt }

StatementList :

Statement

StatementList Statement

Semantics

The production Block : { } is evaluated as follows:

1. Return (normal, empty, empty).

The production Block : { StatementList }is evaluated as follows:

1. Establish a new lexical lock execution context using any contextually supplied block parameters.

2. Evaluate StatementList using the new execution context.

3. Exit the execution context established in step 1, restoring the previous execution context.

4. Return Result(2).

NOTE 1

Note that if there are no contextually supplied block parameters and the StatementList does not contain any

ConstantStatement or FunctionDeclaration statements the creation of a new execution context may be

skipped.

NOTE 2

Deleted: VariableStatement

Comment [pL39]: Note this means that
VariableStatements cannot be used as ―pseudo-

blocks‖. This is a change from ES3.

Deleted: 1

- 72 -

11 August 2008

No matter how control leaves the embedded Block, whether normally or by some form of abrupt completion

or exception, the execution context is always restored to its former state.

The production StatementList : Statement is evaluated as follows:

1. Evaluate Statement.

2. If an exception was thrown, return (throw, V, empty) where V is the exception. (Execution now

proceeds as if no exception were thrown.)

3. Return Result(1).

The production StatementList : StatementList Statement is evaluated as follows:

1. Evaluate StatementList.

2. If Result(1) is an abrupt completion, return Result(1).

3. Evaluate Statement.

4. If an exception was thrown, return (throw, V, empty) where V is the exception. (Execution now

proceeds as if no exception were thrown.)

5. If Result(3).value is empty, let V = Result(1).value, otherwise let V = Result(3).value.

6. Return (Result(3).type, V, Result(3).target).

12.1.1 Usage Subset cautious Restrictions

A VariableStatement within an execution context that is subset restricted to the cautious subset, may

not occur as the StatementList of a Block. The occurrence of a VariableStatement in such a context must

be treated as a syntax error.

12.2 Variable statement

Syntax

VariableStatement :

var VariableDeclarationList ;

VariableDeclarationList :

VariableDeclaration

VariableDeclarationList , VariableDeclaration

VariableDeclarationListNoIn :

VariableDeclarationNoIn

VariableDeclarationListNoIn , VariableDeclarationNoIn

VariableDeclaration :

Identifier Initialiseropt

VariableDeclarationNoIn :

Identifier InitialiserNoInopt

Initialiser :

= AssignmentExpression

InitialiserNoIn :

= AssignmentExpressionNoIn

Description

If the variable statement occurs inside a FunctionDeclaration, the variables are defined with function-local

scope in that function, as described in s10.1.3. Otherwise, they are defined with global scope (that is, they

are created as members of the global object, as described in 10.1.3) using property attributes { [[Writable]]:

true, [[Enumerable]]: true, [[Flexible]]: false }. Variables are created when the execution scope is entered.

A Block does not define a new execution scope for variables. Only Program and FunctionDeclaration

produce a new scope for variables. Variables are initialised to undefined when created. A variable with an

Initialiser is assigned the value of its AssignmentExpression when the VariableStatement is executed, not

when the variable is created.

Deleted: DontDelete

- 73 -

11 August 2008

Semantics

The production VariableStatement : var VariableDeclarationList ; is evaluated as follows:

1. Evaluate VariableDeclarationList.

2. Return (normal, empty, empty).

The production VariableDeclarationList :VariableDeclaration is evaluated as follows:

1. Evaluate VariableDeclaration.

The production VariableDeclarationList : VariableDeclarationList , VariableDeclaration is evaluated as

follows:

1. Evaluate VariableDeclarationList.

2. Evaluate VariableDeclaration.

The production VariableDeclaration : Identifier is evaluated as follows:

1. Return a string value containing the same sequence of characters as in the Identifier.

The production VariableDeclaration : Identifier Initialiser is evaluated as follows:

1. Evaluate Identifier as described in 11.1.2.

2. Evaluate Initialiser.

3. Call GetValue(Result(2)).

4. Call PutValue(Result(1), Result(3), false).

5. Return a string value containing the same sequence of characters as in the Identifier.

The production Initialiser : = AssignmentExpression is evaluated as follows:

1. Evaluate AssignmentExpression.

2. Return Result(1).

The VariableDeclarationListNoIn, VariableDeclarationNoIn and InitialiserNoIn productions are evaluated

in the same manner as the VariableDeclarationList, VariableDeclaration and Initialiser productions except

that the contained VariableDeclarationListNoIn, VariableDeclarationNoIn, InitialiserNoIn and

AssignmentExpressionNoIn are evaluated instead of the contained VariableDeclarationList,

VariableDeclaration, Initialiser and AssignmentExpression, respectively.

12.3 Empty Statement

Syntax

EmptyStatement :
;

Semantics

The production EmptyStatement : ; is evaluated as follows:

1. Return (normal, empty, empty).

12.4 Expression Statement

Syntax

ExpressionStatement :

[lookahead {{, function}] Expression ;

Note that an ExpressionStatement cannot start with an opening curly brace because that might make it

ambiguous with a Block. Also, an ExpressionStatement cannot start with the function keyword because

that might make it ambiguous with a FunctionDeclaration.

Semantics

The production ExpressionStatement : [lookahead {{, function}] Expression; is evaluated as follows:

- 74 -

11 August 2008

1. Evaluate Expression.

2. Call GetValue(Result(1)).

3. Return (normal, Result(2), empty).

12.5 The if Statement

Syntax

IfStatement :

if (Expression) SubStatement else SubStatement

if (Expression) SubStatement

Each else for which the choice of associated if is ambiguous shall be associated with the nearest

possible if that would otherwise have no corresponding else.

Semantics

The production IfStatement : if (Expression) SubStatement else SubStatement is evaluated as follows:

1. Evaluate Expression.

2. Call GetValue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) is false, go to step 7.

5. Evaluate the first SubStatement.

6. Return Result(5).

7. Evaluate the second SubStatement.

8. Return Result(7).

The production IfStatement : if (Expression) SubStatement is evaluated as follows:

1. Evaluate Expression.

2. Call GetValue(Result(1)).

3. Call ToBoolean(Result(2)).

4. If Result(3) is false, return (normal, empty, empty).

5. Evaluate SubStatement.

6. Return Result(5).

12.6 Iteration Statements

An iteration statement consists of a header (which consists of a keyword and a parenthesised control

construct) and a body (which consists of a Statement).

Syntax

IterationStatement :

do SubStatement while (Expression);

while (Expression) SubStatement

for (ExpressionNoInopt; Expressionopt ; Expressionopt) SubStatement

for (var VariableDeclarationListNoIn; Expressionopt ; Expressionopt) SubStatement

for (LeftHandSideExpression in Expression) SubStatement

for (var VariableDeclarationNoIn in Expression) SubStatement

12.6.1 The do-while Statement

The production do SubStatement while (Expression); is evaluated as follows:

1. Let V = empty.

2. Evaluate SubStatement.

3. If Result(2).value is not empty, let V = Result(2).value.

4. If Result(2).type is continue and Result(2).target is in the current label set, go to step 7.

5. If Result(2).type is break and Result(2).target is in the current label set, return (normal, V, empty).

6. If Result(2) is an abrupt completion, return Result(2).

7. Evaluate Expression.

8. Call GetValue(Result(7)).

- 75 -

11 August 2008

9. Call ToBoolean(Result(8)).

10. If Result(9) is true, go to step 2.

11. Return (normal, V, empty);

12.6.2 The while statement

The production IterationStatement : while (Expression) SubStatement is evaluated as follows:

1. Let V = empty.

2. Evaluate Expression.

3. Call GetValue(Result(2)).

4. Call ToBoolean(Result(3)).

5. If Result(4) is false, return (normal, V, empty).

6. Evaluate SubStatement.

7. If Result(6).value is not empty, let V = Result(6).value.

8. If Result(6).type is continue and Result(6).target is in the current label set, go to 2.

9. If Result(6).type is break and Result(6).target is in the current label set, return (normal, V, empty).

10. If Result(6) is an abrupt completion, return Result(6).

11. Go to step 2.

12.6.3 The for Statement

The production IterationStatement : for (ExpressionNoInopt ; Expressionopt ; Expressionopt)

SubStatement is evaluated as follows:

1. If ExpressionNoIn is not present, go to step 4.

2. Evaluate ExpressionNoIn.

3. Call GetValue(Result(2)). (This value is not used.)

4. Let V = empty.

5. If the first Expression is not present, go to step 10.

6. Evaluate the first Expression.

7. Call GetValue(Result(6)).

8. Call ToBoolean(Result(7)).

9. If Result(8) is false, go to step 19.

10. Evaluate SubStatement.

11. If Result(10).value is not empty, let V = Result(10).value

12. If Result(10).type is break and Result(10).target is in the current label set, go to step 19.

13. If Result(10).type is continue and Result(10).target is in the current label set, go to step 15.

14. If Result(10) is an abrupt completion, return Result(10).

15. If the second Expression is not present, go to step 5.

16. Evaluate the second Expression.

17. Call GetValue(Result(16). (This value is not used.)

18. Go to step 5.

19. Return (normal, V, empty).

The production IterationStatement : for (var VariableDeclarationListNoIn ; Expressionopt ;

Expressionopt) SubStatement is evaluated as follows:

1. Evaluate VariableDeclarationListNoIn.

2. Let V = empty.

3. If the first Expression is not present, go to step 8.

4. Evaluate the first Expression.

5. Call GetValue(Result(4)).

6. Call ToBoolean(Result(5)).

7. If Result(6) is false, go to step 17.

8. Evaluate SubStatement.

9. If Result(8).value is not empty, let V = Result(8).value.

10. If Result(8).type is break and Result(8).target is in the current label set, go to step 17.

11. If Result(8).type is continue and Result(8).target is in the current label set, go to step 13.

12. If Result(8) is an abrupt completion, return Result(8).

13. If the second Expression is not present, go to step 3.

Deleted: the first Expression

Deleted: 14

- 76 -

11 August 2008

14. Evaluate the second Expression.

15. Call GetValue(Result(14)). (This value is not used.)

16. Go to step 3.

17. Return (normal, V, empty).

12.6.4 The for-in Statement

The production IterationStatement : for (LeftHandSideExpression in Expression) SubStatement is

evaluated as follows:

1. Evaluate the Expression.

2. Call GetValue(Result(1)).

3. If Result(2) is null or undefined, return (normal, V, empty).

4. Call ToObject(Result(2)).

5. Let V = empty.

6. Get the name of the next property of Result(3) whose [[Enumerable]] attribute is true. If there is no

such property, go to step 15.

7. Evaluate the LeftHandSideExpression (it may be evaluated repeatedly).

8. Call PutValue(Result(7), Result(6), false).

9. Evaluate SubStatement.

10. If Result(9).value is not empty, let V = Result(9).value.

11. If Result(9).type is break and Result(9).target is in the current label set, go to step 15.

12. If Result(9).type is continue and Result(9).target is in the current label set, go to step 6.

13. If Result(9) is an abrupt completion, return Result(9).

14. Go to step 6.

15. Return (normal, V, empty).

The production IterationStatement : for (var VariableDeclarationNoIn in Expression)

SubStatement is evaluated as follows:

1. Evaluate VariableDeclarationNoIn.

2. Evaluate Expression.

3. Call GetValue(Result(2)).

4. If Result(3) is null or undefined, return (normal, V, empty).

5. Call ToObject(Result(3)).

6. Let V = empty.

7. Get the name of the next property of Result(5) whose [[Enumerable]] attribute is true. If there is no

such property, go to step 16.

8. Evaluate Result(1) as if it were an Identifier; see step 7 from the previous algorithm (yes, it may be

evaluated repeatedly).

9. Call PutValue(Result(8), Result(7), false).

10. Evaluate SubStatement.

11. If Result(10).value is not empty, let V = Result(10).value.

12. If Result(10).type is break and Result(10).target is in the current label set, go to step 16.

13. If Result(10).type is continue and Result(10).target is in the current label set, go to step 7.

14. If Result(9) is an abrupt completion, return Result(9).

15. Go to step 7.

16. Return (normal, V, empty).

The mechanics of enumerating the properties (step 6 in the first algorithm, step 7 in the second) is

implementation dependent. The order of enumeration is defined by the object. Properties of the object

being enumerated may be deleted during enumeration. If a property that has not yet been visited during

enumeration is deleted, then it will not be visited. If new properties are added to the object being

enumerated during enumeration, the newly added properties are not guaranteed to be visited in the active

enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the

prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is

―shadowed‖ because some previous object in the prototype chain has a property with the same name.

Deleted: that doesn‘t have the DontEnum attribute

Deleted: 14

Deleted: 6

Deleted: 5

Deleted: 8

Deleted: 8

Deleted: 8

Deleted: 8

Deleted: 14

Deleted: 8

Deleted: 8

Deleted: 5

Deleted: 8

Deleted: 8

Deleted: 5

Deleted: 4

Deleted: that doesn‘t have the DontEnum attribute

Deleted: 15

Deleted: 0

Deleted: 7

Deleted: 6

Deleted: 9

Deleted: 9

Deleted: 9

Deleted: 9

Deleted: 15

Deleted: 9

Deleted: 9

Deleted: 6

Deleted: 8

Deleted: 8

Deleted: 6

Deleted: 5

Deleted: 6

Comment [pL40]: We considered specifying the
enumeration order but there were too many issues with

existing implementations that optimize the representation of

arrays.

- 77 -

11 August 2008

12.6.4.1 Usage Subset cautious Restrictions

The same restrictions apply as specified in section 11.13.1.1 except that the algorithm change for the

first algorithm is:

7. Call PutValue(Result(6), Result(5), true).

The change for the second algorithm is:

8. Call PutValue(Result(6), Result(5), true)

12.7 The continue Statement

Syntax

ContinueStatement :

continue [no LineTerminator here] Identifieropt ;

Semantics

A program is considered syntactically incorrect if either of the following are true:

The program contains a continue statement without the optional Identifier, which is not nested, directly

or indirectly (but not crossing function boundaries), within an IterationStatement.

The program contains a continue statement with the optional Identifier, where Identifier does not appear

in the label set of an enclosing (but not crossing function boundaries) IterationStatement.

A ContinueStatement without an Identifier is evaluated as follows:

1. Return (continue, empty, empty).

A ContinueStatement with the optional Identifier is evaluated as follows:

1. Return (continue, empty, Identifier).

12.8 The break Statement

Syntax

BreakStatement :

break [no LineTerminator here] Identifieropt ;

Semantics

A program is considered syntactically incorrect if either of the following are true:

The program contains a break statement without the optional Identifier, which is not nested, directly or

indirectly (but not crossing function boundaries), within an IterationStatement or a SwitchStatement.

The program contains a break statement with the optional Identifier, where Identifier does not appear in

the label set of an enclosing (but not crossing function boundaries) Statement.

A BreakStatement without an Identifier is evaluated as follows:

1. Return (break, empty, empty).

A BreakStatement with an Identifier is evaluated as follows:

1. Return (break, empty, Identifier).

12.9 The return Statement

Syntax

ReturnStatement :

return [no LineTerminator here] Expressionopt ;

Semantics

- 78 -

11 August 2008

An ECMAScript program is considered syntactically incorrect if it contains a return statement that is not

within a FunctionBody. A return statement causes a function to cease execution and return a value to the

caller. If Expression is omitted, the return value is undefined. Otherwise, the return value is the value of

Expression.

The production ReturnStatement : return [no LineTerminator here] Expressionopt ; is evaluated as:

1. If the Expression is not present, return (return, undefined, empty).

2. Evaluate Expression.

3. Call GetValue(Result(2)).

4. Return (return, Result(3), empty).

12.10 The with Statement

Syntax

WithStatement :

with (Expression) SubStatement

Description

The with statement adds a computed object to the front of the scope chain of the current execution

context, then executes a statement with this augmented scope chain, then restores the scope chain.

Semantics

The production WithStatement : with (Expression) SubStatement is evaluated as follows:

1. Evaluate Expression.

2. Call GetValue(Result(1)).

3. Call ToObject(Result(2)).

4. Add Result(3) to the front of the scope chain.

5. Evaluate SubStatement using the augmented scope chain from step 4.

6. Let C be Result(5). If an exception was thrown in step 5, let C be (throw, V, empty), where V is the

exception. (Execution now proceeds as if no exception were thrown.)

7. Remove Result(3) from the front of the scope chain.

8. Return C.

NOTE

No matter how control leaves the embedded 'SubStatement', whether normally or by some form of abrupt

completion or exception, the scope chain is always restored to its former state.

12.10.1 Usage Subset cautious Restrictions

An execution context that is subset restricted to the cautious subset, may not execute a

WithStatement. The occurrence of a WithStatement in such a context should be treated as a syntax error.

12.11 The switch Statement

Syntax

SwitchStatement :

switch (Expression) CaseBlock

CaseBlock :

{ CaseClausesopt }

{ CaseClausesopt DefaultClause CaseClausesopt }

CaseClauses :

CaseClause

CaseClauses CaseClause

CaseClause :

case Expression : StatementListopt

- 79 -

11 August 2008

DefaultClause :

default : StatementListopt

Semantics

The production SwitchStatement : switch (Expression) CaseBlock is evaluated as follows:

1. Evaluate Expression.

2. Call GetValue(Result(1)).

3. Evaluate CaseBlock, passing it Result(2) as a parameter.

4. If Result(3).type is break and Result(3).target is in the current label set, return (normal,

Result(3).value, empty).

5. Return Result(3).

The production CaseBlock : { CaseClausesopt } is given an input parameter, input, and is evaluated as follows:

1. Let V = empty.

2. Let A be the list of CaseClause items in source text order.

3. Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 16.

4. Evaluate C.

5. If input is not equal to Result(4) as defined by the !== operator, then go to step 3.

6. If C does not have a StatementList, then go to step 10.

7. Evaluate C‘s StatementList and let R be the result.

8. If R is an abrupt completion, then return R.

9. Let V = R.value.

10. Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 16.

11. If C does not have a StatementList, then go to step 10.

12. Evaluate C‘s StatementList and let R be the result.

13. If R.value is not empty, then let V = R.value.

14. If R is an abrupt completion, then return (R.type, V, R.target).

15. Go to step 10.

16. Return (normal, V, empty).

The production CaseBlock : { CaseClausesopt DefaultClause CaseClausesopt } is given an input parameter, input, and

is evaluated as follows:

1. Let V = empty.

2. Let A be the list of CaseClause items in the first CaseClauses, in source text order.

3. Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 11.

4. Evaluate C.

5. If input is not equal to Result(4) as defined by the !== operator, then go to step 3.

6. If C does not have a StatementList, then go to step 20.

7. Evaluate C‘s StatementList and let R be the result.

8. If R is an abrupt completion, then return R.

9. Let V = R.value.

10. Go to step 20.

11. Let B be the list of CaseClause items in the second CaseClauses, in source text order.

12. Let C be the next CaseClause in B. If there is no such CaseClause, then go to step 26.

13. Evaluate C.

14. If input is not equal to Result(13) as defined by the !== operator, then go to step 12.

15. If C does not have a StatementList, then go to step 31.

16. Evaluate C‘s StatementList and let R be the result.

17. If R is an abrupt completion, then return R.

18. Let V = R.value.

19. Go to step 31.

20. Let C be the next CaseClause in A. If there is no such CaseClause, then go to step 26.

21. If C does not have a StatementList, then go to step 20.

22. Evaluate C‘s StatementList and let R be the result.

23. If R.value is not empty, then let V = R.value.

24. If R is an abrupt completion, then return (R.type, V, R.target).

25. Go to step 20.

- 80 -

11 August 2008

26. If the DefaultClause does not have a StatementList, then go to step 30.

27. Evaluate the DefaultClause‘s StatementList and let R be the result.

28. If R.value is not empty, then let V = R.value.

29. If R is an abrupt completion, then return (R.type, V, R.target).

30. Let B be the list of CaseClause items in the second CaseClauses, in source text order.

31. Let C be the next CaseClause in B. If there is no such CaseClause, then go to step 37.

32. If C does not have a StatementList, then go to step 31.

33. Evaluate C‘s StatementList and let R be the result.

34. If R.value is not empty, then let V = R.value.

35. If R is an abrupt completion, then return (R.type, V, R.target).

36. Go to step 31.

37. Return (normal, V, empty).

The production CaseClause : case Expression : StatementListopt is evaluated as follows:

1. Evaluate Expression.

2. Call GetValue(Result(1)).

3. Return Result(2).

NOTE

Evaluating CaseClause does not execute the associated StatementList. It simply evaluates the Expression

and returns the value, which the CaseBlock algorithm uses to determine which StatementList to start

executing.

12.12 Labelled Statements

Syntax

LabelledStatement :

Identifier : Statement

Semantics

A Statement may be prefixed by a label. Labelled statements are only used in conjunction with labelled

break and continue statements. ECMAScript has no goto statement.

An ECMAScript program is considered syntactically incorrect if it contains a LabelledStatement that is

enclosed by a LabelledStatement with the same Identifier as label. This does not apply to labels appearing

within the body of a FunctionDeclaration that is nested, directly or indirectly, within a labelled statement.

The production Identifier : Statement is evaluated by adding Identifier to the label set of Statement and

then evaluating Statement. If the LabelledStatement itself has a non-empty label set, these labels are also

added to the label set of Statement before evaluating it. If the result of evaluating Statement is (break, V, L)

where L is equal to Identifier, the production results in (normal, V, empty).

Prior to the evaluation of a LabelledStatement, the contained Statement is regarded as possessing an empty

label set, except if it is an IterationStatement or a SwitchStatement, in which case it is regarded as

possessing a label set consisting of the single element, empty.

12.13 The throw statement

Syntax

ThrowStatement :

throw [no LineTerminator here] Expression ;

Semantics

The production ThrowStatement : throw [no LineTerminator here] Expression ; is evaluated as:

1. Evaluate Expression.

2. Call GetValue(Result(1)).

3. Return (throw, Result(2), empty).

Deleted: The production CaseBlock : { CaseClauses

DefaultClause CaseClauses } is given an input

parameter, input, and is evaluated as follows:¶
<#>Let A be the list of CaseClause items in the first

CaseClauses, in source text order.¶

<#>For the next CaseClause in A, evaluate
CaseClause. If there is no such CaseClause, go to step

7.¶

<#>If input is not equal to Result(2), as defined by the

!== operator, go to step 2.¶

<#>Evaluate the StatementList of this CaseClause.¶
<#>If Result(4) is an abrupt completion then return

Result(4).¶

<#>Go to step 13.¶
<#>Let B be the list of CaseClause items in the second

CaseClauses, in source text order.¶

<#>For the next CaseClause in B, evaluate
CaseClause. If there is no such CaseClause, go to step

15.¶

<#>If input is not equal to Result(8), as defined by the

!== operator, go to step 8.¶

<#>Evaluate the StatementList of this CaseClause.¶
<#>If Result(10) is an abrupt completion then return

Result(10)¶

<#>Go to step 18.¶
<#>For the next CaseClause in A, evaluate the

StatementList of this CaseClause. If there is no such
CaseClause, go to step 15.¶

<#>If Result(13) is an abrupt completion then return

Result(13).¶
<#>Execute the StatementList of DefaultClause.¶

<#>If Result(15) is an abrupt completion then return

Result(15)¶
<#>Let B be the list of CaseClause items in the second

CaseClauses, in source text order.¶

<#>For the next CaseClause in B, evaluate the
StatementList of this CaseClause. If there is no such

CaseClause, return (normal, empty, empty).¶

<#>If Result(18) is an abrupt completion then return
Result(18).¶

<#>Go to step 18.¶

- 81 -

11 August 2008

12.14 The try statement

Syntax

TryStatement :

try Block Catch

try Block Finally

try Block Catch Finally

Catch :

catch (Identifier) Block

Finally :

finally Block

Description

The try statement encloses a block of code in which an exceptional condition can occur, such as a

runtime error or a throw statement. The catch clause provides the exception-handling code. When a

catch clause catches an exception, its Identifier is bound to that exception.

Semantics

The production TryStatement : try Block Catch is evaluated as follows:

1. Evaluate Block.

2. If Result(1).type is not throw, return Result(1).

3. Evaluate Catch with parameter Result(1).

4. Return Result(3).

The production TryStatement : try Block Finally is evaluated as follows:

1. Evaluate Block.

2. Evaluate Finally.

3. If Result(2) .type is normal, return Result(1).

4. Return Result(2).

The production TryStatement : try Block Catch Finally is evaluated as follows:

1. Evaluate Block.

2. Let C = Result(1).

3. If Result(1).type is not throw, go to step 6.

4. Evaluate Catch with parameter Result(1).

5. Let C = Result(4).

6. Evaluate Finally.

7. If Result(6).type is normal, return C.

8. Return Result(6).

The production Catch : catch (Identifier) Block is evaluated as follows:

1. Let C be the parameter that has been passed to this production.

2. Evaluate Block with a block parameter whose name is Identifier and whose value is C.value.

3. Return Result(2).

The production Finally : finally Block is evaluated as follows:

1. Evaluate Block.

2. Return Result(1).

12.15 Constant statement

Syntax

Comment [pL41]: Work still needs to be done to
give catch blocks real lexical scoping.

Deleted: If Result(4).type is not normal,

Deleted: Create a new object as if by the

expression new Object().¶

<#>Create a property in the object Result(2).
The property's name is Identifier, value is

C.value, and attributes are { DontDelete }.¶

<#>Add Result(2) to the front of the scope
chain.¶

<#>Evaluate Block.¶

Remove Result(2) from the front of the scope
chain

Deleted: 5

- 82 -

11 August 2008

ConstantStatement :

const ConstantDeclarationList ;

ConstantDeclarationList :

ConstantDeclaration

ConstantDeclarationList , ConstantDeclaration

ConstantDeclaration :

Identifier Initialiser

Description

If the constant statement occurs directly inside a FunctionDeclaration, the constants are defined with

function-local scope in that function, as described in s10.1.3. If a constant statement occurs inside a Block,

the constants are defined with block-local scope. Otherwise, they are defined with global scope (that is,

they are created as members of the global object, as described in 10.1.3) using property attributes {

[[Writable]]: false, [[Enumerable]]: true, [[Flexible]]: false }. Constants are created when the execution

scope is entered. Constants have no value when created. A constant is assigned the value of the

AssignmentExpression of it‘s Initialiser when the ConstantStatement is executed, not when the constant is

created. Any attempts to access the value of a constant before it is assigned a value or to write to a constant

throws a ReferenceError exception.

Semantics

The production ConstantStatement : const ConstantDeclarationList ; is evaluated as follows:

1. Evaluate ConstantDeclarationList.

2. Return (normal, empty, empty).

The production ConstantDeclarationList :ConstantDeclaration is evaluated as follows:

1. Evaluate ConstantDeclaration.

The production ConstantDeclarationList : ConstantDeclarationList , ConstantDeclaration is evaluated as

follows:

1. Evaluate ConstantDeclarationList.

2. Evaluate ConstantDeclaration.

The production ConstantDeclaration : Identifier Initialiser is evaluated as follows:

1. Evaluate Identifier as described in 11.1.2.

2. Evaluate Initialiser.

3. Call GetValue(Result(2)).

4. Call GetBase(Result(1)).

5. Call GetPropertyName(Result(1)).

6. Call the [[GetOwnProperty]] method of Result(4) with argument Result(5).

7. If Result(6).[[Const]] is not Uninitialized then throw a SyntaxError exception.

8. Update the own property P of Result(4) with attributes [[Value]]: Result(2) and [[Const]]:Initialized.

This update is preformed irrespective of the current values of the properties [[Writable]] and

[[Flexible]] attributes.

9. Return a string value containing the same sequence of characters as in the Identifier.

13 Function Definition

Syntax

FunctionDeclaration :

function Identifier (FormalParameterListopt) { FunctionBody }

FunctionExpression :

function Identifieropt (FormalParameterListopt) { FunctionBody }

- 83 -

11 August 2008

FormalParameterList :

Identifier

FormalParameterList , Identifier

FunctionBody :

SourceElements

Semantics

The production FunctionDeclaration : function Identifier (FormalParameterListopt) { FunctionBody } is

processed for function declarations as follows:

1. Create a new Function object as specified in 13.2 with parameters specified by FormalParameterListopt,

and body specified by FunctionBody. Pass in the scope chain of the running execution context as the

Scope.

2. Create a property of the current environment object (as specified in 10.1.3) with name Identifier and value

Result(1).

The production FunctionExpression : function (FormalParameterListopt) { FunctionBody } is evaluated

as follows:

1. Create a new Function object as specified in 13.2 with parameters specified by FormalParameterListopt

and body specified by FunctionBody. Pass in the scope chain of the running execution context as the

Scope.

2. Return Result(1).

The production FunctionExpression : function Identifier (FormalParameterListopt) { FunctionBody } is

evaluated as follows:

1. Create a new object as if by the expression new Object() where Object is the standard built-in

constructor with that name.

2. Add Result(1) to the front of the scope chain.

3. Create a new Function object as specified in 13.2 with parameters specified by FormalParameterListopt

and body specified by FunctionBody. Pass in the scope chain of the running execution context as the

Scope.

4. Create a property in the object Result(1). The property's name is Identifier, value is Result(3), and

attributes are { [[Writable]]: false, [[Enumerable]]: true, [[Flexible]]: false }.

5. Remove Result(1) from the front of the scope chain.

6. Return Result(3).

NOTE

The Identifier in a FunctionExpression can be referenced from inside the FunctionExpression's FunctionBody

to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Identifier in a

FunctionExpression cannot be referenced from and does not affect the scope enclosing the

FunctionExpression.

The production FunctionBody : SourceElements is evaluated as follows:

1. Process SourceElements for function declarations.

2. Evaluate SourceElements.

3. Return Result(2).

13.1 Definitions

This section is no longer used.

13.2 Creating Function Objects

Given an optional parameter list specified by FormalParameterList, a body specified by FunctionBody, and

a scope chain specified by Scope, a Function object is constructed as follows:

1. Create a new native ECMAScript object and let F be that object.

2. Set the [[Class]] property of F to "Function".

3. Set the [[Prototype]] property of F to the original Function prototype object as specified in 15.3.3.1.

4. Set the [[Call]] property of F as described in 13.2.1.

Deleted: variable

Deleted: 2

Comment [pL42]: Mark: is this observable?
Lars: yes it is!

Deleted: DontDelete, ReadOnly

Comment [pL43]: From AWB:
Fix scoping issues …

Deleted: A couple of definitions are needed to
describe the process of creating function objects:

Deleted: ¶
13.1.1 Equated Grammar Productions¶

Two uses of the FunctionBody grammar
production are defined to be equated when one of

the following is true:¶

Both uses obtained their FunctionBody from the
same location in the source text of the same

ECMAScript program. This source text consists

of global code and any contained function codes
according to the definitions in 10.1.2.¶

Both uses obtained their FunctionBody from the

same location in the source text of the same call
to eval (15.1.2.1). This source text consists of

eval code and any contained function codes

according to the definitions in 10.1.2.¶
NOTE¶

Two uses of FunctionBody obtained from a call
to the Function constructor 15.3.1 and 15.3.2) are

never equated. Also, two uses of FunctionBody

obtained from two different calls to eval are
never equated, even if those two calls to eval

were passed the same argument.¶

13.1.2 Joined Objects¶
When two or more Function objects are joined,

they have the following special behaviours:¶

Any time a non-internal property of an object O
is created or set, the corresponding property is

immediately also created or set with the same

value and attributes in all objects joined with O.¶
Any time a non-internal property of an object O

is deleted, the corresponding property is

immediately also deleted in all objects joined
with O.¶

If objects O and P are joined, they compare as ==

and === to each other.¶
Joining is transitive and symmetric, so that if

objects O and P are joined and objects P and Q

are joined, then objects O and Q are also
automatically joined.¶

NOTE ¶

Two or more objects joined to each other are
effectively indistinguishable except that they may

have different internal properties. The only such

internal property that may differ in this
specification is [[Scope]].¶

Joined objects are used as a tool for precise

specification technique in this standard. They are
not meant to be used as a guideline to how

Function objects are implemented in practice.

Rather, in practice an implementation may detect
when the differences in the [[Scope]] properties

of two or more joined Function objects are not ...

Deleted: <#>If there already exists an object

E that was created by an earlier call to this
section's algorithm, and if that call to this

section's algorithm was given a FunctionBody

that is equated to the FunctionBody given now,
then go to step 13. (If there is more than one

object E satisfying these criteria, choose one at

the implementation's discretion.)¶

- 84 -

11 August 2008

5. Set the [[Construct]] property of F as described in 13.2.2.

6. Set the [[Scope]] property of F to a new scope chain (10.1.4) that contains the same objects as Scope.

7. Set the length property of F to the number of formal properties specified in FormalParameterList. If

no parameters are specified, set the length property of F to 0. This property is given attributes as

specified in 15.3.5.1.

8. Set the [[Extensible]] property of F to true.

9. Create a new object as would be constructed by the expression new Object()where Object is the

standard built-in constructor with that name.

10. Set the constructor property of Result(9) to F. This property has attributes { [[Writable]]: true,

[[Enumerable]]: false, [[Flexible]]: true }.

11. Set the prototype property of F to Result(9). This property is given attributes as specified in

15.3.5.2.

12. Return F.

NOTE

A prototype property is automatically created for every function, to allow for the possibility that the

function will be used as a constructor.

13.2.1 [[Call]]

When the [[Call]] property for a Function object F is called, the following steps are taken:

1. Establish a new execution context using F's FormalParameterList, the passed arguments list, and the

this value as described in 10.2.3.

2. Evaluate F's FunctionBody.

3. Exit the execution context established in step 1, restoring the previous execution context.

4. If Result(2).type is throw then throw Result(2).value.

5. If Result(2).type is return then return Result(2).value.

6. (Result(2).type must be normal.) Return undefined.

13.2.2 [[Construct]]

When the [[Construct]] property for a Function object F is called, the following steps are taken:

1. Create a new native ECMAScript object.

2. Set the [[Class]] property of Result(1) to "Object".

3. Set the [[Extensible]] property of Result(1) to true.

4. Get the value of the prototype property of F.

5. If Result(4) is an object, set the [[Prototype]] property of Result(1) to Result(4).

6. If Result(4) is not an object, set the [[Prototype]] property of Result(1) to the original Object

prototype object as described in 15.2.3.1.

7. Invoke the [[Call]] property of F, providing Result(1) as the this value and providing the argument

list passed into [[Construct]] as the argument values.

8. If Type(Result(7)) is Object then return Result(7).

9. Return Result(1).

Deleted: .

Deleted: is given

Deleted: DontEnum

Deleted: <#>At the implementation's discretion, go

to either step 2 or step 14.¶
<#>Create a new native ECMAScript object joined to

E and let F be that object. Copy all non-internal

properties and their attributes from E to F so that all
non-internal properties are identical in E and F.¶

<#>Set the [[Class]] property of F to "Function".¶

<#>Set the [[Prototype]] property of F to the original

Function prototype object as specified in 15.3.3.1.¶
<#>Set the [[Call]] property of F as described in

13.2.1.¶

<#>Set the [[Construct]] property of F as described in
13.2.2.¶

<#>Set the [[Scope]] property of F to a new scope

chain (10.1.4) that contains the same objects as Scope.¶
Return F.

Deleted: Step 1 allows an implementation to optimise
the common case of a function A that has a nested

function B where B is not dependent on A. In this case
the implementation is allowed to reuse the same object

for B instead of creating a new one every time A is

called. Step 13 makes this optimisation optional; an
implementation that chooses not to implement it will go

to step 2.¶

For example, in the code¶
function A() {

 function B(x) {return x*x;}

 return B;
}

function C() {
 return eval("(function (x) {return x*x;})");

}

var b1 = A();

var b2 = A();

function b3(x) {return x*x;}
function b4(x) {return x*x;}

var b5 = C();

var b6 = C();¶
an implementation is allowed, but not required, to join

b1 and b2. In fact, it may make b1 and b2 the same

object because there is no way to detect the difference

between their [[Scope]] properties. On the other hand,

an implementation must not join b3 and b4 because

their source codes are not equated (13.1.1). Also, an

implementation must not join b5 and b6 because they

were produced by two different calls to eval and

therefore their source codes are not equated.¶

In practice it's likely to be productive to join two
Function objects only in the cases where an

implementation can prove that the differences between

their [[Scope]] properties are not observable, so one
object can be reused. By following this policy, an ...

Deleted: the

Deleted: 3

Deleted: 3

Deleted: 3

Deleted: 6

Comment [pL44]: Herman Venter says: shouldn‘t this

be ―is an Object?‖

Deleted: 6

- 85 -

11 August 2008

14 Program

Syntax

Program :

UseSubsetDirectiveopt SourceElements

UseSubsetDirectiveopt :

" use subset SubsetList " ;

SubsetList :

Identifier

SubsetList , Identifier

SourceElements :

SourceElement

SourceElements SourceElement

SourceElement :

Statement

Semantics

The production Program : UseSubsetDirectiveopt SourceElements is evaluated as follows:

1. If the optional UseSubsetDirective is not present, the set of usage subsets for the Program is the empty

set.

2. Else

a. Evaluate SourceElements.

3. The set of usage subsets for the Program is elements of the internal list that is Result(2a).

4. Process SourceElements for function declarations.

5. Evaluate SourceElements.

6. Return Result(5).

The production SourceElements : SourceElement is processed for function declarations as follows:

1. Process SourceElement for function declarations.

The production SourceElements : SourceElement is evaluated as follows:

1. Evaluate SourceElement.

2. Return Result(1).

The production SourceElements : SourceElements SourceElement is processed for function declarations as

follows:

1. Process SourceElements for function declarations.

2. Process SourceElement for function declarations.

The production SourceElements : SourceElements SourceElement is evaluated as follows:

1. Evaluate SourceElements.

2. If Result(1) is an abrupt completion, return Result(1)

3. Evaluate SourceElement.

4. Return Result(3).

The production SourceElement : Statement is processed for function declarations by taking no action.

The production SourceElement : Statement is evaluated as follows:

1. Evaluate Statement.

2. Return Result(1).

The production SourceElement : FunctionDeclaration is processed for function declarations as follows:

Comment [AWB45]: Need to add semantics

Deleted:
FunctionDeclaration

Deleted: 2

- 86 -

11 August 2008

1. Process FunctionDeclaration for function declarations (see clause 13).

The production SourceElement : FunctionDeclaration is evaluated as follows:

1. Return (normal, empty, empty).

The production UseSubsetDirectiveopt : " use subset SubsetList " ; is evaluated as follows:

1. Evaluate SubsetList

2. Return Result(1)

The production SubsetList : Identifier is evaluated as follows:

1. If Identifier is not the name of a usage subset that is supported by this ECMAScript implementation,

return an empty internal list.

2. Return an internal list containing one element which is the Identifier.

The production SubsetList : SubsetList , Identifier is evaluated as follows:

1. Evaluate SubsetList.

2. If Identifier is not the name of a usage subset that is supported by this ECMAScript implementation,

return Result(1)

3. If Identifier is already an element of Result(1), return Result(1)

4. Return an internal list whose length is one greater than the length of Result(1) and whose items are the

items of Result(1), in order, followed at the end by Identifier, which is the last item of the new list.

- 87 -

11 August 2008

15 Native ECMAScript Objects

There are certain built-in objects available whenever an ECMAScript program begins execution. One, the

global object, is in the scope chain of the executing program. Others are accessible as initial properties of the

global object.

Unless specified otherwise, the [[Class]] property of a built -in object is "Function" if that built-in object

has a [[Call]] property, or "Object" if that built-in object does not have a [[Call]] property. Unless specified

otherwise, the [[Extensible]] property of a built-in object has the value true.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are

constructors: they are functions intended for use with the new operator. For each built-in function, this

specification describes the arguments required by that function and properties of the Function object. For each

built-in constructor, this specification furthermore describes properties of the prototype object of that

constructor and properties of specific object instances returned by a new expression that invokes that

constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described in

this section is given fewer arguments than the function is specified to require, the function or constructor shall

behave exactly as if it had been given sufficient additional arguments, each such argument being the

undefined value.

Unless otherwise specified in the description of a particular function, if a function or constructor described in

this section is given more arguments than the function is specified to allow, the additional arguments are

ignored.

NOTE

Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by

adding new functions rather than adding new parameters to existing functions.

Every built-in function and every built-in constructor has the Function prototype object, which is the initial

value of the expression Function.prototype (15.3.2.1), as the value of its internal [[Prototype]]

property.

Every built-in prototype object has the Object prototype object, which is the initial value of the expression

Object.prototype (15.3.2.1), as the value of its internal [[Prototype]] property, except the Object

prototype object itself.

None of the built-in functions described in this section shall implement the internal [[Construct]] method

unless otherwise specified in the description of a particular function. None of the built -in functions described

in this section shall initially have a prototype property unless otherwise specified in the description of a

particular function. Every built-in Function object described in this section—whether as a constructor, an

ordinary function, or both—has a length property whose value is an integer. Unless otherwise specified, this

value is equal to the largest number of named arguments shown in the section headings for the function

description, including optional parameters.

NOTE

For example, the Function object that is the initial value of the slice property of the String prototype object

is described under the section heading ―String.prototype.slice (start , end)‖ which shows the two named

arguments start and end; therefore the value of the length property of that Function object is 2.

In every case, the length property of a built-in Function object described in this section has the attributes

{ [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false } (and no others). Every other property

described in this section has the attribute { [[Writable]]: true, [[Enumerable]]: false, [[Flexible]]: true }

unless otherwise specified.

15.1 The Global Object

The global object does not have a [[Construct]] property; it is not possible to use the global object as a

constructor with the new operator.

The global object does not have a [[Call]] property; it is not possible to invoke the global object as a

function.

The values of the [[Prototype]] and [[Class]] properties of the global object are implementation-dependent.

Deleted: behaviour of the function or
constructor is undefined. In particular, an

implementation is permitted (but not required) to

throw a TypeError exception in this case

Comment [pL46]: Breaking change!!
Lars asks for the motivation of this change? Herman

Venter says: I am not totally sure that this is OK,

since the language was added before my time and
presumably was required to allow either Navigator

or IE to claim to be compliant with the standard

while extending it. TODO: figure out if this issue is
discussed anywhere.

Deleted: ReadOnly, DontDelete, DontEnum

Deleted: DontEnum

Deleted: (and no others)

- 88 -

11 August 2008

15.1.1 Value Properties of the Global Object

15.1.1.1 NaN

The initial value of NaN is NaN (8.5). This property has the attributes { [[Writable]]: false,

[[Enumerable]]: false, [[Flexible]]: false }.

15.1.1.2 Infinity

The initial value of Infinity is + (8.5). This property has the attributes { [[Writable]]: false,

[[Enumerable]]: false, [[Flexible]]: false }.

15.1.1.3 undefined

The initial value of undefined is undefined (8.1). This property has the attributes { [[Writable]]:

false, [[Enumerable]]: false, [[Flexible]]: false }.

15.1.2 Function Properties of the Global Object

15.1.2.1 eval (x)

When the eval function is called with one argument x, the following steps are taken:

1. If x is not a string value, return x.

2. Parse x as a Program. If the parse fails, throw a SyntaxError exception (but see also clause 16).

3. Evaluate the program from step 2.

4. If Result(3).type is normal and its completion value is a value V, then return the value V.

5. If Result(3).type is normal and its completion value is empty, then return the value undefined.

6. Result(3).type must be throw. Throw Result(3).value as an exception.

If the value of the eval property is used in any way other than a direct call (that is, other than by the

explicit use of its name as an Identifier which is the MemberExpression in a CallExpression), or if the

eval property is assigned to, an EvalError exception may be thrown.

15.1.2.1.1 Usage Subset cautious Restrictions

If an execution context that is subset restricted to the cautious subset uses the value of the eval

property any way other than a direct call (that is, other than by the explicit use of its name as an

Identifier which is the MemberExpression in a CallExpression), or if the eval property is assigned

to, an EvalError exception is thrown.

15.1.2.2 parseInt (string , radix)

The parseInt function produces an integer value dictated by interpretation of the contents of the

string argument according to the specified radix. Leading white space in the string is ignored. If radix

is undefined or 0, it is assumed to be 10 except when the number begins with the character pairs 0x

or 0X, in which case a radix of 16 is assumed. Any radix-16 number may also optionally begin with

the character pairs 0x or 0X.

When the parseInt function is called, the following steps are taken:

1. Call ToString(string).

2. Let S be a newly created substring of Result(1) consisting of the first character that is not a

StrWhiteSpaceChar and all characters following that character. (In other words, remove leading

white space.)

3. Let sign be 1.

4. If S is not empty and the first character of S is a minus sign -, let sign be 1.

5. If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the

first character from S.

6. Let R = ToInt32(radix).

7. If R = 0, go to step 11.

8. If R < 2 or R > 36, then return NaN.

9. If R = 16, go to step 13.

10. Go to step 14.

11. Let R = 10.

12. If the length of S is at least 1 and the first character of S is ―0‖, then at the implementation's

discretion either let R = 8 or leave R unchanged.

Comment [pL47]: This is an intentional incompatible
change from ES3.

Deleted: DontEnum, DontDelete

Deleted: DontEnum, DontDelete

Deleted: DontEnum, DontDelete

Comment [pL48]: From AWB:
Need to do additional spec work to make eval act like an

operator but without reserving the eval identifier.

- 89 -

11 August 2008

13. If the length of S is at least 2 and the first two characters of S are either ―0x‖ or ―0X‖, then

remove the first two characters from S and let R = 16.

14. If S contains any character that is not a radix-R digit, then let Z be the substring of S consisting of

all characters before the first such character; otherwise, let Z be S.

15. If Z is empty, return NaN.

16. Compute the mathematical integer value that is represented by Z in radix-R notation, using the

letters A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more

than 20 significant digits, every significant digit after the 20th may be replaced by a 0 digit, at

the option of the implementation; and if R is not 2, 4, 8, 10, 16, or 32, then Result(16) may be an

implementation-dependent approximation to the mathematical integer value that is represented by

Z in radix-R notation.)

17. Compute the number value for Result(16).

18. Return sign Result(17).

NOTE

parseInt may interpret only a leading portion of the string as an integer value; it ignores any

characters that cannot be interpreted as part of the notation of an integer, and no indication is given

that any such characters were ignored.

When radix is 0 or undefined and the string's number begins with a 0 digit not followed by an x or X,

then the implementation may, at its discretion, interpret the number either as being octal or as being

decimal. Implementations are encouraged to interpret numbers in this case as being decimal.

15.1.2.3 parseFloat (string)

The parseFloat function produces a number value dictated by interpretation of the contents of the

string argument as a decimal literal.

When the parseFloat function is called, the following steps are taken:

1. Call ToString(string).

2. Compute a substring of Result(1) consisting of the leftmost character that is not a

StrWhiteSpaceChar and all characters to the right of that character.(In other words, remove

leading white space.)

3. If neither Result(2) nor any prefix of Result(2) satisfies the syntax of a StrDecimalLiteral (see

9.3.1), return NaN.

4. Compute the longest prefix of Result(2), which might be Result(2) itself, which satisfies the

syntax of a StrDecimalLiteral.

5. Return the number value for the MV of Result(4).

NOTE

parseFloat may interpret only a leading portion of the string as a number value; it ignores any

characters that cannot be interpreted as part of the notation of an decimal literal, and no indication is

given that any such characters were ignored.

15.1.2.4 isNaN (number)

Applies ToNumber to its argument, then returns true if the result is NaN, and otherwise returns false.

15.1.2.5 isFinite (number)

Applies ToNumber to its argument, then returns false if the result is NaN, + , or , and otherwise

returns true.

15.1.3 URI Handling Function Properties

Uniform Resource Identifiers, or URIs, are strings that identify resources (e.g. web pages or files) and

transport protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript

language itself does not provide any support for using URIs except for functions that encode and decode

URIs as described in 15.1.3.1, 15.1.3.2, 15.1.3.3 and 15.1.3.4.

NOTE

Many implementations of ECMAScript provide additional functions and methods that manipulate web

pages; these functions are beyond the scope of this standard.

Deleted: 0

- 90 -

11 August 2008

A URI is composed of a sequence of components separated by component separators. The general form

is:

 Scheme : First / Second ; Third ? Fourth

where the italicised names represent components and the ―:‖, ―/‖, ―;‖ and ―?‖ are reserved characters

used as separators. The encodeURI and decodeURI functions are intended to work with complete

URIs; they assume that any reserved characters in the URI are intended to have special meaning and so

are not encoded. The encodeURIComponent and decodeURIComponent functions are intended to

work with the individual component parts of a URI; they assume that any reserved characters represent

text and so must be encoded so that they are not interpreted as reserved characters when the compon ent

is part of a complete URI.

The following lexical grammar specifies the form of encoded URIs.

uri :::

uriCharactersopt

uriCharacters :::

uriCharacter uriCharactersopt

uriCharacter :::

uriReserved

uriUnescaped

uriEscaped

uriReserved ::: one of
; / ? : @ & = + $,

uriUnescaped :::

uriAlpha

DecimalDigit

uriMark

uriEscaped :::

% HexDigit HexDigit

uriAlpha ::: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

uriMark ::: one of
- _ . ! ~ * ' ()

When a character to be included in a URI is not listed above or is not intended to have the special

meaning sometimes given to the reserved characters, that character must be encoded. The character is

first transformed into a sequence of octets using the UTF-8 transformation, with surrogate pairs first

transformed from their UCS-2 to UCS-4 encodings. (Note that for code points in the range [0,127] this

results in a single octet with the same value.) The resulting sequence of octets is then transformed into a

string with each octet represented by an escape sequence of the form ―%xx‖.

The encoding and escaping process is described by the hidden function Encode taking two string

arguments string and unescapedSet. This function is defined for expository purpose only.

1. Compute the number of characters in string.

2. Let R be the empty string.

3. Let k be 0.

4. If k equals Result(1), return R.

5. Let C be the character at position k within string.

6. If C is not in unescapedSet, go to step 9.

7. Let S be a string containing only the character C.

8. Go to step 24.

- 91 -

11 August 2008

9. If the code point value of C is not less than 0xDC00 and not greater than 0xDFFF, throw a

URIError exception.

10. If the code point value of C is less than 0xD800 or greater than 0xDBFF, let V be the code point

value of C and go to step 16.

11. Increase k by 1.

12. If k equals Result(1), throw a URIError exception.

13. Get the code point value of the character at position k within string.

14. If Result(13) is less than 0xDC00 or greater than 0xDFFF, throw a URIError exception.

15. Let V be (((the code point value of C) – 0xD800) * 0x400 + (Result(13) – 0xDC00) + 0x10000).

16. Let Octets be the array of octets resulting by applying the UTF-8 transformation to V, and let L be

the array size.

17. Let j be 0.

18. Get the value at position j within Octets.

19. Let S be a string containing three characters ―%XY‖ where XY are two uppercase hexadecimal digits

encoding the value of Result(18).

20. Let R be a new string value computed by concatenating the previous value of R and S.

21. Increase j by 1.

22. If j is equal to L, go to step 25.

23. Go to step 18.

24. Let R be a new string value computed by concatenating the previous value of R and S.

25. Increase k by 1.

26. Go to step 4.

The unescaping and decoding process is described by the hidden function Decode taking two string

arguments string and reservedSet. This function is defined for expository purpose only.

1. Compute the number of characters in string.

2. Let R be the empty string.

3. Let k be 0.

4. If k equals Result(1), return R.

5. Let C be the character at position k within string.

6. If C is not ‗%‘, go to step 40.

7. Let start be k.

8. If k + 2 is greater than or equal to Result(1), throw a URIError exception.

9. If the characters at position (k+1) and (k + 2) within string do not represent hexadecimal digits,

throw a URIError exception.

10. Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k + 2).

11. Increment k by 2.

12. If the most significant bit in B is 0, let C be the character with code point value B and go to step 37.

13. Let n be the smallest non-negative number such that (B << n) & 0x80 is equal to 0.

14. If n equals 1 or n is greater than 4, throw a URIError exception.

15. Let Octets be an array of 8-bit integers of size n.

16. Put B into Octets at position 0.

17. If k + (3 * (n – 1)) is greater than or equal to Result(1), throw a URIError exception.

18. Let j be 1.

19. If j equals n, go to step 29.

20. Increment k by 1.

21. If the character at position k is not ‗%‘, throw a URIError exception.

22. If the characters at position (k +1) and (k + 2) within string do not represent hexadecimal digits,

throw a URIError exception.

23. Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k + 2).

24. If the two most significant bits in B are not 10, throw a URIError exception.

25. Increment k by 2.

26. Put B into Octets at position j.

27. Increment j by 1.

28. Go to step 19.

29. Let V be the value obtained by applying the UTF-8 transformation to Octets, that is, from an array of

octets into a 32-bit value.

30. If V is less than 0x10000, go to step 36.

31. If V is greater than 0x10FFFF, throw a URIError exception.

- 92 -

11 August 2008

32. Let L be (((V – 0x10000) & 0x3FF) + 0xDC00).

33. Let H be ((((V – 0x10000) >> 10) & 0x3FF) + 0xD800).

34. Let S be the string containing the two characters with code point values H and L.

35. Go to step 41.

36. Let C be the character with code point value V.

37. If C is not in reservedSet, go to step 40.

38. Let S be the substring of string from position start to position k included.

39. Go to step 41.

40. Let S be the string containing only the character C.

41. Let R be a new string value computed by concatenating the previous value of R and S.

42. Increase k by 1.

43. Go to step 4.

NOTE 1

The syntax of Uniform Resource Identifiers is given in RFC2396.

NOTE 2

A formal description and implementation of UTF-8 is given in the Unicode Standard, Version 2.0,

Appendix A.

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence" of one

has the higher-order bit set to 0, the remaining 7 bits being used to encode the character value. In a

sequence of n octets, n>1, the initial octet has the n higher-order bits set to 1, followed by a bit set to 0.

The remaining bits of that octet contain bits from the value of the character to be encoded. The following

octets all have the higher-order bit set to 1 and the following bit set to 0, leaving 6 bits in each to

contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript characters

are:

Code Point Value Representation 1
st
 Octet 2

nd
 Octet 3

rd
 Octet 4

th
 Octet

0x0000 - 0x007F 00000000 0zzzzzzz 0zzzzzzz

0x0080 - 0x07FF 00000yyy yyzzzzzz 110yyyyy 10zzzzzz

0x0800 - 0xD7FF xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz

0xD800 - 0xDBFF

followed by

0xDC00 – 0xDFFF

110110vv vvwwwwxx

followed by

110111yy yyzzzzzz

11110uuu

10uuwwww

10xxyyyy

10zzzzzz

0xD800 - 0xDBFF

not followed by

0xDC00 – 0xDFFF

causes URIError

0xDC00 – 0xDFFF causes URIError

0xE000 - 0xFFFF xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz

Where

uuuuu = vvvv + 1

to account for the addition of 0x10000 as in 3.7, Surrogates of the Unicode Standard version 2.0.

The range of code point values 0xD800-0xDFFF is used to encode surrogate pairs; the above

transformation combines a UCS-2 surrogate pair into a UCS-4 representation and encodes the resulting

21-bit value in UTF-8. Decoding reconstructs the surrogate pair.

15.1.3.1 decodeURI (encodedURI)

The decodeURI function computes a new version of a URI in which each escape sequence and UTF-

8 encoding of the sort that might be introduced by the encodeURI function is replaced with the

- 93 -

11 August 2008

character that it represents. Escape sequences that could not have been introduced by encodeURI are

not replaced.

When the decodeURI function is called with one argument encodedURI, the following steps are

taken:

1. Call ToString(encodedURI).

2. Let reservedURISet be a string containing one instance of each character valid in uriReserved plus

―#‖.

3. Call Decode(Result(1), reservedURISet)

4. Return Result(3).

NOTE

The character ―#‖ is not decoded from escape sequences even though it is not a reserved URI

character.

15.1.3.2 decodeURIComponent (encodedURIComponent)

The decodeURIComponent function computes a new version of a URI in which each escape

sequence and UTF-8 encoding of the sort that might be introduced by the encodeURIComponent

function is replaced with the character that it represents.

When the decodeURIComponent function is called with one argument encodedURIComponent, the

following steps are taken:

1. Call ToString(encodedURIComponent).

2. Let reservedURIComponentSet be the empty string.

3. Call Decode(Result(1), reservedURIComponentSet)

4. Return Result(3).

15.1.3.3 encodeURI (uri)

The encodeURI function computes a new version of a URI in which each instance of certain

characters is replaced by one, two or three escape sequences representing the UTF-8 encoding of the

character.

When the encodeURI function is called with one argument uri, the following steps are taken:

1. Call ToString(uri).

2. Let unescapedURISet be a string containing one instance of each character valid in uriReserved

and uriUnescaped plus ―#‖.

3. Call Encode(Result(1), unescapedURISet)

4. Return Result(3).

NOTE

The character ―#‖ is not encoded to an escape sequence even though it is not a reserved or unescaped

URI character.

15.1.3.4 encodeURIComponent (uriComponent)

The encodeURIComponent function computes a new version of a URI in which each instance of

certain characters is replaced by one, two or three escape sequences representing the UTF-8 encoding

of the character.

When the encodeURIComponent function is called with one argument uriComponent, the

following steps are taken:

1. Call ToString(uriComponent).

2. Let unescapedURIComponentSet be a string containing one instance of each character valid in

uriUnescaped.

3. Call Encode(Result(1), unescapedURIComponentSet)

4. Return Result(3).

- 94 -

11 August 2008

15.1.4 Constructor Properties of the Global Object

15.1.4.1 Object (. . .)

See 15.2.1 and 15.2.2.

15.1.4.2 Function (. . .)

See 15.3.1 and 15.3.2.

15.1.4.3 Array (. . .)

See 15.4.1 and 15.4.2.

15.1.4.4 String (. . .)

See 15.5.1 and 15.5.2.

15.1.4.5 Boolean (. . .)

See 15.6.1 and 15.6.2.

15.1.4.6 Number (. . .)

See 15.7.1 and 15.7.2.

15.1.4.7 Date (. . .)

See 15.9.2.

15.1.4.8 RegExp (. . .)

See 15.10.3 and 15.10.4.

15.1.4.9 Error (. . .)

See 15.11.1 and 15.11.2.

15.1.4.10 EvalError (. . .)

See 15.11.6.1.

15.1.4.11 RangeError (. . .)

See 15.11.6.2.

15.1.4.12 ReferenceError (. . .)

See 15.11.6.3.

15.1.4.13 SyntaxError (. . .)

See 15.11.6.4.

15.1.4.14 TypeError (. . .)

See 15.11.6.5.

15.1.4.15 URIError (. . .)

See 15.11.6.6.

15.1.5 Other Properties of the Global Object

15.1.5.1 Math

See 15.8.

15.2 Object Objects

15.2.1 The Object Constructor Called as a Function

When Object is called as a function rather than as a constructor, it performs a type conversion.

15.2.1.1 Object ([value])

When the Object function is called with no arguments or with one argument value, the following

steps are taken:

1. If value is null, undefined or not supplied, create and return a new Object object exactly if the

object constructor had been called with the same arguments (15.2.2.1).

2. Return ToObject(value).

- 95 -

11 August 2008

15.2.2 The Object Constructor

When Object is called as part of a new expression, it is a constructor that may create an object.

15.2.2.1 new Object ([value])

When the Object constructor is called with no arguments or with one argument value, the following

steps are taken:

1. If value is not supplied, go to step 8.

2. If the type of value is not Object, go to step 5.

3. If the value is a native ECMAScript object, do not create a new object but simply return value.

4. If the value is a host object, then actions are taken and a result is returned in an implementation-

dependent manner that may depend on the host object.

5. If the type of value is String, return ToObject(value).

6. If the type of value is Boolean, return ToObject(value).

7. If the type of value is Number, return ToObject(value).

8. (The argument value was not supplied or its type was Null or Undefined.)

Create a new native ECMAScript object.

The [[Prototype]] property of the newly constructed object is set to the Object prototype object.

The [[Class]] property of the newly constructed object is set to "Object".

The [[Extensible]] property of the newly constructed object is set to true.

The newly constructed object has no [[PrimitiveValue]] property.

9. Return the newly created native object.

15.2.3 Properties of the Object Constructor

The value of the internal [[Prototype]] property of the Object constructor is the Function prototype

object.

Besides the internal properties and the length property (whose value is 1), the Object constructor has

the following properties:

15.2.3.1 Object.prototype

The initial value of Object.prototype is the Object prototype object (15.2.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.2.3.2 Object.getPrototypeOf (O)

When the getPrototypeOf method is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. Return the [[Prototype]] property of O.

The length property of the Object.getPrototypeOf function is 1.

15.2.3.3 Object.getOwnPropertyDescriptor (O, P)

When the static getOwnPropertyDescriptor function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. If P is undefined or null, use the empty string, otherwise call ToString(P).

3. Call the [[GetOwnProperty]] method of O with argument Result(2).

4. Call FromPropertyDescriptor(Result(3)).

5. Return Result(4).

The length property of the Object.getOwnPropertyDescriptor function is 2.

15.2.3.4 Object.getOwnPropertyNames (O)

When the static getOwnPropertyNames function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. Create a new object as if by the expression new Array () where Array is the standard built-

in constructor with that name.

3. For each named own property P of O

a. Get the string value that is the name of P.

Comment [pL49]: Deviations doc item 3.12
suggests removing this phrase.

Deleted:

Deleted: DontEnum, DontDelete, ReadOnly

- 96 -

11 August 2008

b. Call the standard built-in method Array.prototype.push on Result(2) with arguments

Result(3a).

4. Return Result(2).

The length property of the Object.getOwnPropertyNames function is 1.

NOTE

If Result(1) is a String instance, the set of own properties processed in step 3a does not include the

implicit properties defined in 15.5.5.2 that correspond to character positions of the object‘s

[[PrimitiveValue]] string.

15.2.3.5 Object.create (O [, Properties])

The create method creates a new object with a specified prototype. When the static create method is

called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. Create a new object as if by the expression new Object() where Object is the standard built-

in constructor with that name

3. Call the standard built-in function Object.defineProperties with arguments Result(2) and

Properties.

4. Set the internal [[Prototype]] property of Result(2) to Result(1).

5. Return Result(4).

The length property of the Object.create function is 1.

15.2.3.6 Object.clone (O)

The clone method creates a new object that has the same prototype as the object that is the argument. In

addition, the new object has own properties that are copies of the own properties of O. When the static

clone method is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. If O is a host object return an implementation defined result.

3. Create a new object as if by the expression new Object() where Object is the standard built-in

constructor with that name.

4. If O is not null, set the internal [[Prototype]] property of Result(2) to O.

5. Set the internal [[Class]], [[PrimitiveValue]], [[Construct]], and [[Call]] properties of Result(3) to the

same state as the corresponding properties of O.

6. If O has implementations of any internal methods that are different from the standard implementation

defined in section 8.6.2, provide those same methods implementations to Result(3).

7. For each named own property name P of O

a. Call the [[GetOwnProperty]] method of O with P as the argument.

b. Call the [[DefineOwnProperty]] method of Result(13) with arguments P, Result(7a), true.

8. If the internal [[Extensible]] property of O is false, set the internal [[Extensible]] property of

Result(3) to false.

9. Return Result(3).

The length property of the Object.clone function is 1.

15.2.3.7 Object.defineProperty (O, P, Attributes)

The defineProperty method is used to add an own properties and/or update the attributes of existing own

property of an object. When the static defineProperty method is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. Call ToString(P).

3. Call ToPropertyDescriptor with Result(Attributes) as the argument.

4. Call the [[DefineOwnProperty]] method of O with arguments Result(2), Result(3), and true.

5. Return O.

The length property of the Object.defineProperty function is 3.

- 97 -

11 August 2008

15.2.3.8 Object.defineProperties (O, Properties)

The defineProperties method is used to add own properties and/or update the attributes of existing

own properties of an object. When the static defineProperties method is called, the following steps are

taken atomically:

1. If Type(O) is not Object throw a TypeError exception.

2. Call ToObject(Properties).

3. For each named own property name P of Result(2),

a. Call the [[GetOwnProperty]] method of Result(2) with P as the argument.

b. Call ToPropertyDescriptor with Result(3a) as the argument.

c. Call the [[DefineOwnProperty]] method of O with arguments P, Result(3b), true.

4. Return O.

The length property of the Object.defineProperties function is 2.

The above algorithm is specified as a set of sequential steps that include the possibility of a exception

being thrown as various intermediate points. Rather than failing after a partial update of O, this

function must be implemented such that it either atomically completes all property updates

successfully or fails without making any update to the properties of object O.

15.2.3.9 Object.seal (O)

When the static seal function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. For each named own property name P of O,

a. Call the [[GetOwnProperty]] method of O with P.

b. If Result(2a).[[Flexible]] is true, set Result(2a).[[Flexible]] to false

c. Call the [[DefineOwnProperty]] method of O with P, Result(2a), and true as arguments.

3. Set the internal [[Extensible]] property of O to false.

4. Return O.

The length property of the Object.seal function is 1.

The above algorithm is specified as a set of sequential steps that include the possibility of a exception

being thrown as various intermediate points. Rather than failing after a partial update of O, this

function must be implemented such that it either atomically completes all property updates

successfully or fails without making any update to the properties of object O.

15.2.3.10 Object.freeze (O)

When the static freeze function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. For each named own property name P of O,

a. Call the [[GetOwnProperty]] method of O with P.

b. If IsDataDescriptor(Result(2a)) then

i. If Result(2a).[[Writable]] is true, set result(2a).[[Writable]] to false.

c. If Result(2a).[[Flexible]] is true, set Result(2a).[[Flexible]] to false.

d. Call the [[DefineOwnProperty]] method of O with P, Result(2a), and true as arguments.

3. Set the internal [[Extensible]] property of O to false.

4. Return O.

The length property of the Object.freeze function is 1.

The above algorithm is specified as a set of sequential steps that include the possibility of a exception

being thrown as various intermediate points. Rather than failing after a partial update of O, this

function must be implemented such that it either atomically completes all updates successfully or fails

without making any update to object O.

15.2.3.11 Object.preventExtensions (O)

When the static preventExtensions function is called, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. Set the internal [[Extensible]] property of O to false.

- 98 -

11 August 2008

3. Return O.

The length property of the Object.preventExtensions function is 1.

15.2.3.12 Object.isSealed (O)

When the isSealed function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. For each named own data property P of O,

a. Call the [[GetOwnProperty]] method of O with P.

b. If the [[Flexible]] field of Result(2a) is true, then return false.

3. If the internal [[Extensible]] property of O is false, then return true.

4. Otherwise, return false.

The length property of the Object.isSealed function is 1.

15.2.3.13 Object.isFrozen (O)

When the isFrozen function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. For each named own data property name P of O,

a. Call the [[GetOwnProperty]] method of O with P.

b. If IsDataDescriptor(Result(2a)) then

i. If Result(2a).[[Writable]] is true, return false.

c. If the [[Flexible]] field of Result(2a) is true, then return false.

3. If the internal [[Extensible]] property of O is true, then return false.

4. Otherwise, return true.

The length property of the Object.isFrozen function is 1.

15.2.3.14 Object.isExtensible (O)

When the isExtensible function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw a TypeError exception.

2. Return the Boolean value of the internal [[Extensible]] property of O.

The length property of the Object.isExtensible function is 1.

15.2.3.15 Object.keys (O, fast)

When the keys method is called with argument O, the following steps are taken:

4. If the Type(O) is not Object, throw a TypeError exception.

5. Create a new array as if by the expression new Array() where Array is the standard built-in

constructor with that name.

6. For each own enumerable property of O, append the key string of the property to Result(2).

7. Call ToBoolean(fast).

8. If Result(4) is false, then sort the array by Result(2).sort().

9. Return Result(2).

The length property of the Object.keys function is 2.

15.2.4 Properties of the Object Prototype Object

The value of the internal [[Prototype]] property of the Object prototype object is null, the value of the

internal [[Class]] property is "Object", and the value of the internal [[Extensible]] property is true.

15.2.4.1 Object.prototype.constructor

The initial value of Object.prototype.constructor is the built-in Object constructor.

15.2.4.2 Object.prototype.toString ()

When the toString method is called, the following steps are taken:

1. Get the [[Class]] property of this object.

2. Compute a string value by concatenating the three strings "[object ", Result(1), and "]".

3. Return Result(2).

Deleted: and

- 99 -

11 August 2008

15.2.4.3 Object.prototype.toLocaleString ()

This function returns the result of calling this.toString().

NOTE 1

This function is provided to give all Objects a generic toLocaleString interface, even though not

all may use it. Currently, Array, Number, and Date provide their own locale-sensitive

toLocaleString methods.

NOTE 2

The first parameter to this function is likely to be used in a future version of this standard; it is

recommended that implementations do not use this parameter position for anything else.

15.2.4.4 Object.prototype.valueOf ()

The valueOf method returns its this value. If the object is the result of calling the Object constructor

with a host object (15.2.2.1), it is implementation-defined whether valueOf returns its this value or

another value such as the host object originally passed to the constructor.

15.2.4.5 Object.prototype.hasOwnProperty (V)

When the hasOwnProperty method is called with argument V, the following steps are taken:

1. Let O be this object.

2. Call ToString(V).

3. If O doesn‘t have an own property with the name given by Result(2), return false.

4. Return true.

NOTE

Unlike [[HasProperty]] (8.6.2.4), this method does not consider objects in the prototype chain.

15.2.4.6 Object.prototype.isPrototypeOf (V)

When the isPrototypeOf method is called with argument V, the following steps are taken:

1. Let O be this object.

2. If V is not an object, return false.

3. Let V be the value of the [[Prototype]] property of V.

4. if V is null, return false

5. If O and V refer to the same object, return true.

6. Go to step 3.

15.2.4.7 Object.prototype.propertyIsEnumerable (V)

When the propertyIsEnumerable method is called with argument V, the following steps are

taken:

1. Let O be this object.

2. Call ToString(V).

3. If O doesn‘t have a property with the name given by Result(2), return false.

4. Return the value of the property‘s [[Enumerable]] attribute.

NOTE

This method does not consider objects in the prototype chain.

15.2.5 Properties of Object Instances

Object instances have no special properties beyond those inherited from the Object prototype object.

15.3 Function Objects

15.3.1 The Function Constructor Called as a Function

When Function is called as a function rather than as a constructor, it creates and initialises a new

Function object. Thus the function call Function(…) is equivalent to the object creation expression

new Function(…) with the same arguments.

Deleted: or if they refer to objects joined to
each other (13.1.2)

Deleted: <#>If the property has the
DontEnum attribute, return false.¶

Deleted: true

- 100 -

11 August 2008

15.3.1.1 Function (p1, p2, … , pn, body)

When the Function function is called with some arguments p1, p2, … , pn, body (where n might be

0, that is, there are no ―p‖ arguments, and where body might also not be provided), the following steps

are taken:

1. Create and return a new Function object as if the standard built-in constructor Function was used

in a new expression with the same arguments (15.3.2.1).

15.3.2 The Function Constructor

When Function is called as part of a new expression, it is a constructor: it initialises the newly created

object.

15.3.2.1 new Function (p1, p2, … , pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments specify

formal parameters.

When the Function constructor is called with some arguments p1, p2, … , pn, body (where n might

be 0, that is, there are no ―p‖ arguments, and where body might also not be provided), the following

steps are taken:

1. Let P be the empty string.

2. If no arguments were given, let body be the empty string and go to step 13.

3. If one argument was given, let body be that argument and go to step 13.

4. Let Result(4) be the first argument.

5. Let P be ToString(Result(4)).

6. Let k be 2.

7. If k equals the number of arguments, let body be the k‘
th

 argument and go to step 13.

8. Let Result(8) be the k‘
th

 argument.

9. Call ToString(Result(8)).

10. Let P be the result of concatenating the previous value of P, the string "," (a comma), and

Result(9).

11. Increase k by 1.

12. Go to step 7.

13. Call ToString(body).

14. If P is not parsable as a FormalParameterListopt then throw a SyntaxError exception.

15. If body is not parsable as FunctionBody then throw a SyntaxError exception.

16. Create a new Function object as specified in 13.2 with parameters specified by parsing P as a

FormalParameterListopt and body specified by parsing body as a FunctionBody. Pass in a scope

chain consisting of the global object as the Scope parameter.

17. Call the [[Put]] method of Result(16) with arguments "name" and ""

18. Call the [[Put]] method of Result(16) with arguments ―parameters‖ and an array containing the

names of the FormalParameterList. The array may be empty.

19. Return Result(16).

A prototype property is automatically created for every function, to provide for the possibility that

the function will be used as a constructor.

NOTE

It is permissible but not necessary to have one argument for each formal parameter to be specified.

For example, all three of the following expressions produce the same result:

new Function("a", "b", "c", "return a+b+c")

new Function("a, b, c", "return a+b+c")

new Function("a,b", "c", "return a+b+c")

15.3.3 Properties of the Function Constructor

The value of the internal [[Prototype]] property of the Function constructor is the Function prototype

object (15.3.4).

Deleted: function

Deleted: had been called

- 101 -

11 August 2008

The value of the internal [[Extensible]] property of the Function constructor is true. The Function

constructor has the following properties:

15.3.3.1 Function.prototype

The initial value of Function.prototype is the Function prototype object (15.3.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.3.3.2 Function.length

The is a data property with an initial value of 1.This property has the attributes { [[Writable]]: false,

[[Enumerable]]: false, [[Flexible]]: false }.

15.3.4 Properties of the Function Prototype Object

The Function prototype object is itself a Function object (its [[Class]] is "Function") that, when

invoked, accepts any arguments and returns undefined.

The value of the internal [[Prototype]] property of the Function prototype object is the Object prototype

object (15.3.2.1). The value of the internal [[Extensible]] property of the Function prototype object is

true.

It is a function with an ―empty body‖; if it is invoked, it merely returns undefined.

The Function prototype object does not have a valueOf property of its own; however, it inherits the

valueOf property from the Object prototype Object.

15.3.4.1 Function.prototype.constructor

The initial value of Function.prototype.constructor is the built-in Function constructor.

15.3.4.2 Function.prototype.toString ()

An implementation-dependent representation of the function is returned. This representation has the

syntax of a FunctionDeclaration. Note in particular that the use and placement of white space, line

terminators, and semicolons within the representation string is implementation-dependent.

The toString function is not generic; it throws a TypeError exception if its this value is not a

Function object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.3.4.3 Function.prototype.apply (thisArg, argArray)

The apply method takes two arguments, thisArg and argArray, and performs a function call using

the [[Call]] property of the object. If the object does not have a [[Call]] property, a TypeError

exception is thrown.

If thisArg is null or undefined, the called function is passed the global object as the this value.

Otherwise, the called function is passed ToObject(thisArg) as the this value.

If argArray is null or undefined, the called function is passed no arguments. Otherwise, if argArray

is neither an array nor an arguments object (see 10.1.8), a TypeError exception is thrown. If argArray

is either an array or an arguments object, the function is passed the

(ToUint32(argArray.length)) arguments argArray[0], argArray[1], …,

argArray[ToUint32(argArray.length)–1].

The length property of the apply method is 2.

15.3.4.4 Function.prototype.call (thisArg [, arg1 [, arg2, …]])

The call method takes one or more arguments, thisArg and (optionally) arg1, arg2 etc, and performs

a function call using the [[Call]] property of the object. If the object does not have a [[Call]] property,

a TypeError exception is thrown. The called function is passed arg1, arg2, etc. as the arguments.

If thisArg is null or undefined, the called function is passed the global object as the this value.

Otherwise, the called function is passed ToObject(thisArg) as the this value.

The length property of the call method is 1.

Deleted: Besides the internal properties and

the length property (whose value is 1), the

Deleted: DontEnum, DontDelete,

ReadOnly

- 102 -

11 August 2008

15.3.4.5 Function.prototype.bind (thisArg [, arg1 [, arg2, …]])

The bind method takes one or more arguments, thisArg and (optionally) arg1, arg2, etc, and wraps the

function in another, locking its execution scope to the object specified by thisArg. If additional

arguments are provided, then they are curried.

The length data property of the bind method has the value 1.

15.3.5 Properties of Function Instances

In addition to the required internal properties, every function instance has a [[Call]] property, a

[[Construct]] property and a [[Scope]] property (see 8.6.2 and 13.2). The value of the [[Class]] property

is "Function".

15.3.5.1 length

The value of the length property is usually an integer that indicates the ―typical‖ number of

arguments expected by the function. However, the language permits the function to be invoked with

some other number of arguments. The behaviour of a function when invoked on a number of

arguments other than the number specified by its length property depends on the function. This

property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.3.5.2 prototype

The value of the prototype property is used to initialise the internal [[Prototype]] property of a

newly created object before the Function object is invoked as a constructor for that newly created

object. This property has the attribute { [[Writable]]: true, [[Enumerable]]: true, [[Flexible]]: false }.

15.3.5.3 [[HasInstance]] (V)

Assume F is a Function object.

When the [[HasInstance]] method of F is called with value V, the following steps are taken:

1. If V is not an object, return false.

2. Call the [[Get]] method of F with property name "prototype".

3. Let O be Result(2).

4. If O is not an object, throw a TypeError exception.

5. Let V be the value of the [[Prototype]] property of V.

6. If V is null, return false.

7. If O and V refer to the same object, return true.

8. Go to step 5.

15.3.5.4 name

The value of the name property is the name of the function, or an empty string if the function is

anonymous. This property has the attributes { [[Writable]]: false, [[Enumerable]]: true, [[Flexible]]:

false }.

15.3.5.5 parameters

The value of the parameters property is a possibly empty array of strings being the orderd names of

the function's parameters. This property has the attributes { [[Writable]]: false, [[Enumerable]]: true,

[[Flexible]]: false }.

15.4 Array Objects

Array objects give special treatment to a certain class of property names. A property name P (in the form of

a string value) is an array index if and only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not

equal to 2
32

1. Every Array object has a length property whose value is always a nonnegative integer

less than 2
32

. The value of the length property is numerically greater than the name of every property

whose name is an array index; whenever a property of an Array object is created or changed, other

properties are adjusted as necessary to maintain this invariant. Specifically, whenever a property is added

whose name is an array index, the length property is changed, if necessary, to be one more than the

numeric value of that array index; and whenever the length property is changed, every property whose

name is an array index whose value is not smaller than the new length is automatically deleted. This

constraint applies only to properties of the Array object itself and is unaffected by length or array index

properties that may be inherited from its prototype.

Comment [pL50]: From AWB:

Needs a more precise specification.

Deleted: DontDelete, ReadOnly, DontEnum

Deleted: DontDelete

Deleted: or if they refer to objects joined to each
other (13.1.2)

- 103 -

11 August 2008

15.4.1 The Array Constructor Called as a Function

When Array is called as a function rather than as a constructor, it creates and initialises a new Array

object. Thus the function call Array(…) is equivalent to the object creation expression

new Array(…) with the same arguments.

15.4.1.1 Array ([item1 [, item2 [, …]]])

When the Array function is called the following steps are taken:

1. Create and return a new Array object exactly as if the standard built-in constructor Array was

used in a new expression with the same arguments (15.4.2).

15.4.2 The Array Constructor

When Array is called as part of a new expression, it is a constructor: it initialises the newly created

object.

15.4.2.1 new Array ([item0 [, item1 [, …]]])

This description applies if and only if the Array constructor is given no arguments or at least two

arguments.

The [[Prototype]] property of the newly constructed object is set to the original Array prototype

object, the one that is the initial value of Array.prototype (15.4.3.1).

The [[Class]] property of the newly constructed object is set to "Array".

The [[Extensible]] property of the newly constructed object is set to true.

The length property of the newly constructed object is set to the number of arguments.

The 0 property of the newly constructed object is set to item0 (if supplied); the 1 property of the

newly constructed object is set to item1 (if supplied); and, in general, for as many arguments as there

are, the k property of the newly constructed object is set to argument k, where the first argument is

considered to be argument number 0.

15.4.2.2 new Array (len)

The [[Prototype]] property of the newly constructed object is set to the original Array prototype

object, the one that is the initial value of Array.prototype (15.4.3.1). The [[Class]] property of

the newly constructed object is set to "Array". The [[Extensible]] property of the newly constructed

object is set to true.

If the argument len is a Number and ToUint32(len) is equal to len, then the length property of the

newly constructed object is set to ToUint32(len). If the argument len is a Number and ToUint32(len)

is not equal to len, a RangeError exception is thrown.

If the argument len is not a Number, then the length property of the newly constructed object is set

to 1 and the 0 property of the newly constructed object is set to len.

15.4.3 Properties of the Array Constructor

The value of the internal [[Prototype]] property of the Array constructor is the Function prototype object

(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Array constructor has

the following properties:

15.4.3.1 Array.prototype

The initial value of Array.prototype is the Array prototype object (15.4.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.4.3.2 Array.isArray (arg)

The isArray function takes one argument arg, and returns the Boolean value true if the argument is

determined to be an Array; otherwise it return false.

Deleted: array

Deleted: had been called

Deleted: DontEnum, DontDelete,

ReadOnly

Comment [pL51]: From Lars:
Probably to spell out that this is required to work

across global objects and to note that ‗instanceof‘

does not.

- 104 -

11 August 2008

15.4.4 Properties of the Array Prototype Object

The value of the internal [[Prototype]] property of the Array prototype object is the Object prototype

object (15.2.3.1).

The Array prototype object is itself an array; its [[Class]] is "Array", and it has a length property

(whose initial value is +0) and the special internal [[ThrowablePut]] method described in 15.2.3.1.

In following descriptions of functions that are properties of the Array prototype object, the phrase ―this

object‖ refers to the object that is the this value for the invocation of the function. It is permitted for the

this to be an object for which the value of the internal [[Class]] property is not "Array".

NOTE

The Array prototype object does not have a valueOf property of its own; however, it inherits the

valueOf property from the Object prototype Object.

15.4.4.1 Array.prototype.constructor

The initial value of Array.prototype.constructor is the built-in Array constructor.

15.4.4.2 Array.prototype.toString ()

The result of calling this function is the same as if the standard built-in method

Array.prototype.join were invoked for this object with no argument.

The toString function is not generic; it throws a TypeError exception if its this value is not an

Array object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.4.4.3 Array.prototype.toLocaleString ()

The elements of the array are converted to strings using their toLocaleString methods, and these

strings are then concatenated, separated by occurrences of a separator string that has been derived in

an implementation-defined locale-specific way. The result of calling this function is intended to be

analogous to the result of toString, except that the result of this function is intended to be locale-

specific.

The result is calculated as follows:

1. Call the [[Get]] method of this object with argument "length".

2. Call ToUint32(Result(1)).

3. Let separator be the list-separator string appropriate for the host environment‘s current locale

(this is derived in an implementation-defined way).

4. Call ToString(separator).

5. If Result(2) is zero, return the empty string.

6. Call the [[Get]] method of this object with argument "0".

7. If Result(6) is undefined or null, use the empty string; otherwise, call

ToObject(Result(6)).toLocaleString().

8. Let R be Result(7).

9. Let k be 1.

10. If k equals Result(2), return R.

11. Let S be a string value produced by concatenating R and Result(4).

12. Call the [[Get]] method of this object with argument ToString(k).

13. If Result(12) is undefined or null, use the empty string; otherwise, call

ToObject(Result(12)).toLocaleString().

14. Let R be a string value produced by concatenating S and Result(13).

15. Increase k by 1.

16. Go to step 10.

The toLocaleString function is not generic; it throws a TypeError exception if its this value is

not an Array object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

NOTE

The first parameter to this function is likely to be used in a future version of this standard; it is

recommended that implementations do not use this parameter position for anything else.

Deleted: method

- 105 -

11 August 2008

15.4.4.4 Array.prototype.concat ([item1 [, item2 [, …]]])

When the concat method is called with zero or more arguments item1, item2, etc., it returns an array

containing the array elements of the object followed by the array elements of each argument in order.

The following steps are taken:

1. Let A be a new array created as if by the expression new Array() where Array is the standard

built-in constructor with that name.

2. Let n be 0.

3. Let E be this object.

4. If E is not an Array object, go to step 16.

5. Let k be 0.

6. Call the [[Get]] method of E with argument "length".

7. If k equals Result(6) go to step 19.

8. Call ToString(k).

9. If E has a property named by Result(8), go to step 10, but if E has no property named by

Result(8), go to step 13.

10. Call ToString(n).

11. Call the [[Get]] method of E with argument Result(8).

12. Call the [[Put]] method of A with arguments Result(10) and Result(11).

13. Increase n by 1.

14. Increase k by 1.

15. Go to step 7.

16. Call ToString(n).

17. Call the [[Put]] method of A with arguments Result(16) and E.

18. Increase n by 1.

19. Get the next argument in the argument list; if there are no more arguments, go to step 22.

20. Let E be Result(19).

21. Go to step 4.

22. Call the [[Put]] method of A with arguments "length" and n.

23. Return A.

The length property of the concat method is 1.

NOTE

The concat function is intentionally generic; it does not require that its this value be an Array

object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the

concat function can be applied successfully to a host object is implementation-dependent.

15.4.4.5 Array.prototype.join (separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated

by occurrences of the separator. If no separator is provided, a single comma is used as the separator.

The join method takes one argument, separator, and performs the following steps:

1. Call the [[Get]] method of this object with argument "length".

2. Call ToUint32(Result(1)).

3. If separator is undefined, let separator be the single-character string ",".

4. Call ToString(separator).

5. If Result(2) is zero, return the empty string.

6. Call the [[Get]] method of this object with argument "0".

7. If Result(6) is undefined or null, use the empty string; otherwise, call ToString(Result(6)).

8. Let R be Result(7).

9. Let k be 1.

10. If k equals Result(2), return R.

11. Let S be a string value produced by concatenating R and Result(4).

12. Call the [[Get]] method of this object with argument ToString(k).

13. If Result(12) is undefined or null, use the empty string; otherwise, call ToString(Result(12)).

14. Let R be a string value produced by concatenating S and Result(13).

15. Increase k by 1.

- 106 -

11 August 2008

16. Go to step 10.

The length property of the join method is 1.

NOTE

The join function is intentionally generic; it does not require that its this value be an Array object.

Therefore, it can be transferred to other kinds of objects for use as a method. Whether the join

function can be applied successfully to a host object is implementation-dependent.

15.4.4.6 Array.prototype.pop ()

The last element of the array is removed from the array and returned.

1. Call the [[Get]] method of this object with argument "length".

2. Call ToUint32(Result(1)).

3. If Result(2) is not zero, go to step 6.

4. Call the [[Put]] method of this object with arguments "length" and Result(2).

5. Return undefined.

6. Call ToString(Result(2)–1).

7. Call the [[Get]] method of this object with argument Result(6).

8. Call the [[Delete]] method of this object with argument Result(6).

9. Call the [[Put]] method of this object with arguments "length" and (Result(2)–1).

10. Return Result(7).

NOTE

The pop function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the pop

function can be applied successfully to a host object is implementation-dependent.

15.4.4.7 Array.prototype.push ([item1 [, item2 [, …]]])

The arguments are appended to the end of the array, in the order in which they appear. The new length

of the array is returned as the result of the call.

When the push method is called with zero or more arguments item1, item2, etc., the following steps

are taken:

1. Call the [[Get]] method of this object with argument "length".

2. Let n be the result of calling ToUint32(Result(1)).

3. Get the next argument in the argument list; if there are no more arguments, go to step 7.

4. Call the [[Put]] method of this object with arguments ToString(n) and Result(3).

5. Increase n by 1.

6. Go to step 3.

7. Call the [[Put]] method of this object with arguments "length" and n.

8. Return n.

The length property of the push method is 1.

NOTE

The push function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the push

function can be applied successfully to a host object is implementation-dependent.

15.4.4.8 Array.prototype.reverse ()

The elements of the array are rearranged so as to reverse their order. The object is returned as the

result of the call.

1. Call the [[Get]] method of this object with argument "length".

2. Call ToUint32(Result(1)).

3. Compute floor(Result(2)/2).

4. Let k be 0.

5. If k equals Result(3), return this object.

6. Compute Result(2) k 1.

- 107 -

11 August 2008

7. Call ToString(k).

8. Call ToString(Result(6)).

9. Call the [[Get]] method of this object with argument Result(7).

10. Call the [[Get]] method of this object with argument Result(8).

11. If this object does not have a property named by Result(8), go to step 19.

12. If this object does not have a property named by Result(7), go to step 16.

13. Call the [[Put]] method of this object with arguments Result(7) and Result(10).

14. Call the [[Put]] method of this object with arguments Result(8) and Result(9).

15. Go to step 25.

16. Call the [[Put]] method of this object with arguments Result(7) and Result(10).

17. Call the [[Delete]] method on this object, providing Result(8) as the name of the property to

delete.

18. Go to step 25.

19. If this object does not have a property named by Result(7), go to step 23.

20. Call the [[Delete]] method on this object, providing Result(7) as the name of the property to

delete..

21. Call the [[Put]] method of this object with arguments Result(8) and Result(9).

22. Go to step 25.

23. Call the [[Delete]] method on this object, providing Result(7) as the name of the property to

delete.

24. Call the [[Delete]] method on this object, providing Result(8) as the name of the property to

delete.

25. Increase k by 1.

26. Go to step 5.

NOTE

The reverse function is intentionally generic; it does not require that its this value be an Array

object. Therefore, it can be transferred to other kinds of objects for use as a method. Whether the

reverse function can be applied successfully to a host object is implementation-dependent.

15.4.4.9 Array.prototype.shift ()

The first element of the array is removed from the array and returned.

1. Call the [[Get]] method of this object with argument "length".

2. Call ToUint32(Result(1)).

3. If Result(2) is not zero, go to step 6.

4. Call the [[Put]] method of this object with arguments "length" and Result(2).

5. Return undefined.

6. Call the [[Get]] method of this object with argument 0.

7. Let k be 1.

8. If k equals Result(2), go to step 18.

9. Call ToString(k).

10. Call ToString(k–1).

11. If this object has a property named by Result(9), go to step 12; but if this object has no property

named by Result(9), then go to step 15.

12. Call the [[Get]] method of this object with argument Result(9).

13. Call the [[Put]] method of this object with arguments Result(10) and Result(12).

14. Go to step 16.

15. Call the [[Delete]] method of this object with argument Result(10).

16. Increase k by 1.

17. Go to step 8.

18. Call the [[Delete]] method of this object with argument ToString(Result(2)–1).

19. Call the [[Put]] method of this object with arguments "length" and (Result(2)–1).

20. Return Result(6).

NOTE

The shift function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the shift

function can be applied successfully to a host object is implementation-dependent.

- 108 -

11 August 2008

15.4.4.10 Array.prototype.slice (start, end)

The slice method takes two arguments, start and end, and returns an array containing the elements

of the array from element start up to, but not including, element end (or through the end of the array if

end is undefined). If start is negative, it is treated as (length+start) where length is the length of the

array. If end is negative, it is treated as (length+end) where length is the length of the array. The

following steps are taken:

1. Let A be a new array created as if by the expression new Array() where Array is the

standard built-in constructor with that name.

2. Call the [[Get]] method of this object with argument "length".

3. Call ToUint32(Result(2)).

4. Call ToInteger(start).

5. If Result(4) is negative, use max((Result(3)+Result(4)),0); else use min(Result(4),Result(3)).

6. Let k be Result(5).

7. If end is undefined, use Result(3); else use ToInteger(end).

8. If Result(7) is negative, use max((Result(3)+Result(7)),0); else use min(Result(7),Result(3)).

9. Let n be 0.

10. If k is greater than or equal to Result(8), go to step 19.

11. Call ToString(k).

12. If this object has a property named by Result(11), go to step 13; but if this object has no property

named by Result(11), then go to step 16.

13. Call ToString(n).

14. Call the [[Get]] method of this object with argument Result(11).

15. Call the [[Put]] method of A with arguments Result(13) and Result(14).

16. Increase k by 1.

17. Increase n by 1.

18. Go to step 10.

19. Call the [[Put]] method of A with arguments "length" and n.

20. Return A.

The length property of the slice method is 2.

NOTE

The slice function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the slice

function can be applied successfully to a host object is implementation-dependent.

15.4.4.11 Array.prototype.sort (comparefn)

The elements of this array are sorted. The sort is not necessarily stable (that is, elements that compare

equal do not necessarily remain in their original order). If comparefn is not undefined, it should be a

function that accepts two arguments x and y and returns a negative value if x < y, zero if x = y, or a

positive value if x > y.

If comparefn is not undefined and is not a consistent comparison function for the elements of this

array (see below), the behaviour of sort is implementation-defined. Let len be

ToUint32(this.length). If there exist integers i and j and an object P such that all of the

conditions below are satisfied then the behaviour of sort is implementation-defined:

0 i < len

0 j < len

this does not have a property with name ToString(i)

P is obtained by following one or more [[Prototype]] properties starting at this

P has a property with name ToString(j)

Otherwise the following steps are taken.

1. Call the [[Get]] method of this object with argument "length".

2. Call ToUint32(Result(1)).

- 109 -

11 August 2008

3. Perform an implementation-dependent sequence of calls to the [[Get]] , [[Put]], and [[Delete]]

methods of this object and to SortCompare (described below), where the first argument for each

call to [[Get]], [[Put]], or [[Delete]] is a nonnegative integer less than Result(2) and where the

arguments for calls to SortCompare are results of previous calls to the [[Get]] method.

4. Return this object.

The returned object must have the following two properties.

There must be some mathematical permutation of the nonnegative integers less than Result(2),

such that for every nonnegative integer j less than Result(2), if property old[j] existed, then

new[(j)] is exactly the same value as old[j],. But if property old[j] did not exist, then

new[(j)] does not exist.

Then for all nonnegative integers j and k, each less than Result(2), if SortCompare(j,k) < 0 (see

SortCompare below), then (j) < (k).

Here the notation old[j] is used to refer to the hypothetical result of calling the [[Get]] method of

this object with argument j before this function is executed, and the notation new[j] to refer to the

hypothetical result of calling the [[Get]] method of this object with argument j after this function has

been executed.

A function comparefn is a consistent comparison function for a set of values S if all of the

requirements below are met for all values a, b, and c (possibly the same value) in the set S: The

notation a <CF b means comparefn(a,b) < 0; a =CF b means comparefn(a,b) = 0 (of either sign); and

a >CF b means comparefn(a,b) > 0.

Calling comparefn(a,b) always returns the same value v when given a specific pair of values a and

b as its two arguments. Furthermore, v has type Number, and v is not NaN. Note that this

implies that exactly one of a <CF b, a =CF b, and a >CF b will be true for a given pair of a and b.

a =CF a (reflexivity)

If a =CF b, then b =CF a (symmetry)

If a =CF b and b =CF c, then a =CF c (transitivity of =CF)

If a <CF b and b <CF c, then a <CF c (transitivity of <CF)

If a >CF b and b >CF c, then a >CF c (transitivity of >CF)

NOTE

The above conditions are necessary and sufficient to ensure that comparefn divides the set S into

equivalence classes and that these equivalence classes are totally ordered.

When the SortCompare operator is called with two arguments j and k, the following steps are taken:

1. Call ToString(j).

2. Call ToString(k).

3. If this object does not have a property named by Result(1), and this object does not have a

property named by Result(2), return +0.

4. If this object does not have a property named by Result(1), return 1.

5. If this object does not have a property named by Result(2), return –1.

6. Call the [[Get]] method of this object with argument Result(1).

7. Call the [[Get]] method of this object with argument Result(2).

8. Let x be Result(6).

9. Let y be Result(7).

10. If x and y are both undefined, return +0.

11. If x is undefined, return 1.

12. If y is undefined, return 1.

13. If the argument comparefn is undefined, go to step 16.

14. Call comparefn with arguments x and y.

15. Return Result(14).

16. Call ToString(x).

17. Call ToString(y).

18. If Result(16) < Result(17), return 1.

- 110 -

11 August 2008

19. If Result(16) > Result(17), return 1.

20. Return +0.

NOTE 1

Because non-existent property values always compare greater than undefined property values, and

undefined always compares greater than any other value, undefined property values always sort to

the end of the result, followed by non-existent property values.

NOTE 2

The sort function is intentionally generic; it does not require that its this value be an Array object.

Therefore, it can be transferred to other kinds of objects for use as a method. Whether the sort

function can be applied successfully to a host object is implementation-dependent.

15.4.4.12 Array.prototype.splice (start, deleteCount [, item1 [, item2 [, …]]])

When the splice method is called with two or more arguments start, deleteCount and (optionally)

item1, item2, etc., the deleteCount elements of the array starting at array index start are replaced by

the arguments item1, item2, etc. The following steps are taken:

1. Let A be a new array created as if by the expression new Array() where Array is the

standard built-in constructor with that name.

2. Call the [[Get]] method of this object with argument "length".

3. Call ToUint32(Result(2)).

4. Call ToInteger(start).

5. If Result(4) is negative, use max((Result(3)+Result(4)),0); else use min(Result(4),Result(3)).

6. Compute min(max(ToInteger(deleteCount),0),Result(3)–Result(5)).

7. Let k be 0.

8. If k equals Result(6), go to step 16.

9. Call ToString(Result(5)+k).

10. If this object has a property named by Result(9), go to step 11; but if this object has no property

named by Result(9), then go to step 14.

11. Call ToString(k).

12. Call the [[Get]] method of this object with argument Result(9).

13. Call the [[Put]] method of A with arguments Result(11) and Result(12).

14. Increment k by 1.

15. Go to step 8.

16. Call the [[Put]] method of A with arguments "length" and Result(6).

17. Compute the number of additional arguments item1, item2, etc.

18. If Result(17) is equal to Result(6), go to step 48.

19. If Result(17) is greater than Result(6), go to step 37.

20. Let k be Result(5).

21. If k is equal to (Result(3)–Result(6)), go to step 31.

22. Call ToString(k+Result(6)).

23. Call ToString(k+Result(17)).

24. If this object has a property named by Result(22), go to step 25; but if this object has no property

named by Result(22), then go to step 28.

25. Call the [[Get]] method of this object with argument Result(22).

26. Call the [[Put]] method of this object with arguments Result(23) and Result(25).

27. Go to step 29.

28. Call the [[Delete]] method of this object with argument Result(23).

29. Increase k by 1.

30. Go to step 21.

31. Let k be Result(3).

32. If k is equal to (Result(3)–Result(6)+Result(17)), go to step 48.

33. Call ToString(k–1).

34. Call the [[Delete]] method of this object with argument Result(33).

35. Decrease k by 1.

36. Go to step 32.

37. Let k be (Result(3)–Result(6)).

38. If k is equal to Result(5), go to step 48.

- 111 -

11 August 2008

39. Call ToString(k+Result(6)–1).

40. Call ToString(k+Result(17)–1)

41. If this object has a property named by Result(39), go to step 42; but if this object has no property

named by Result(39), then go to step 45.

42. Call the [[Get]] method of this object with argument Result(39).

43. Call the [[Put]] method of this object with arguments Result(40) and Result(42).

44. Go to step 46.

45. Call the [[Delete]] method of this object with argument Result(40).

46. Decrease k by 1.

47. Go to step 38.

48. Let k be Result(5).

49. Get the next argument in the part of the argument list that starts with item1; if there are no more

arguments, go to step 53.

50. Call the [[Put]] method of this object with arguments ToString(k) and Result(49).

51. Increase k by 1.

52. Go to step 49.

53. Call the [[Put]] method of this object with arguments "length" and (Result(3)–

Result(6)+Result(17)).

54. Return A.

The length property of the splice method is 2.

NOTE

The splice function is intentionally generic; it does not require that its this value be an Array

object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the

splice function can be applied successfully to a host object is implementation-dependent.

15.4.4.13 Array.prototype.unshift ([item1 [, item2 [, …]]])

The arguments are prepended to the start of the array, such that their order within the array is the same

as the order in which they appear in the argument list.

When the unshift method is called with zero or more arguments item1, item2, etc., the following

steps are taken:

1. Call the [[Get]] method of this object with argument "length".

2. Call ToUint32(Result(1)).

3. Compute the number of arguments.

4. Let k be Result(2).

5. If k is zero, go to step 15.

6. Call ToString(k–1).

7. Call ToString(k+Result(3)–1).

8. If this object has a property named by Result(6), go to step 9; but if this object has no property

named by Result(6), then go to step 12.

9. Call the [[Get]] method of this object with argument Result(6).

10. Call the [[Put]] method of this object with arguments Result(7) and Result(9).

11. Go to step 13.

12. Call the [[Delete]] method of this object with argument Result(7).

13. Decrease k by 1.

14. Go to step 5.

15. Let k be 0.

16. Get the next argument in the part of the argument list that starts with item1; if there are no more

arguments, go to step 21.

17. Call ToString(k).

18. Call the [[Put]] method of this object with arguments Result(17) and Result(16).

19. Increase k by 1.

20. Go to step 16.

21. Call the [[Put]] method of this object with arguments "length" and (Result(2)+Result(3)).

22. Return (Result(2)+Result(3)).

The length property of the unshift method is 1.

- 112 -

11 August 2008

NOTE

The unshift function is intentionally generic; it does not require that its this value be an Array

object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the

unshift function can be applied successfully to a host object is implementation-dependent.

15.4.4.14 Array.prototype.indexOf (searchElement [, fromIndex])

indexOf compares searchElement to the elements of the array, in ascending order, using strict equality,

and if found at one or more positions, returns the index of the first such position; otherwise, -1 is

returned.

The optional second argument fromIndex defaults to 0 (i.e. the whole array is searched). If it is greater

than or equal to the length of the array, -1 is returned, i.e. the array will not be searched. If it is negative,

it is used as the offset from the end of the array to compute fromIndex. If the computed index is less than

0, the whole array will be searched.

When the indexOf method is called with one or two arguments, the following steps are taken:

1. Let E be this object.

2. Call the [[Get]] method of E with the argument "length".

3. Call ToUint32(Result(2)).

4. If Result(3) is 0 go to step 18.

5. Call ToInt32(fromIndex) (if fromIndex is undefined this step produces 0).

6. Let n be Result(5).

7. If n is greater than or equal to Result(3) go to step 18.

8. If n is greater than or equal to 0, let k be n, and go to step 11.

9. Let k be Result(3) - abs(n).

10. If k is less than 0, let k be 0.

11. Call ToString(k).

12. Call the [[Get]] method of E with the argument Result(11).

13. Perform the comparison searchElement === Result(12).

14. If Result(13) is false go to step 16.

15. Return k.

16. Increase k by 1.

17. If k is less than Result(3) go to step 11.

18. Return -1.

The length property of the indexOf method is 1.

NOTE

The indexOf function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the indexOf

function can be applied successfully to a host object is implementation-dependent.

15.4.4.15 Array.prototype.lastIndexOf (searchElement [, fromIndex])

lastIndexOf compares searchElement to the elements of the array in descending order using str ict

equality, and if found at one or more positions, returns the index of the last such position; otherwise, -1

is returned.

The optional second argument fromIndex defaults to the array's length (i.e. the whole array is searched).

If it is greater than or equal to the length of the array, the whole array will be searched. If it is negative,

it is used as the offset from the end of the array to compute fromIndex. If the computed index is less than

0, -1 is returned.

When the lastIndexOf method is called with one or two arguments, the following steps are taken:

1. Let E be this object.

2. Call the [[Get]] method of E with the argument "length".

3. Call ToUint32(Result(2)).

4. If Result(3) is 0 go to step 18.

5. Call ToInt32(fromIndex) (if fromIndex is undefined this step produces the same values as Result(3)).

6. Let n be Result(5).

Comment [pL52]: From Lars:
I am reasonably confident that this algorithm is not

consistent with the one published as part of the JS1.6 spec:

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_

Reference:Objects:Array:indexOf

In particular, note how the latter algorithm only performs

the ===

comparison if the index is present in the array, whereas
steps 12-14

simply call [[Get]] and use the result. I am also not

confident that
the bounds computations are equivalent.

(As it happens I'm not sure that the code on the mozilla site
is 100%

what we want either, in particular, unlike array methods in

ES3 it
does not appear to bound the length above at 2^32-1, for

better or

worse).

Anyway, anything that isn't essentially 100% compatible

with the
published 1.6 spec will also not be compatible with what's

in ES4.

- 113 -

11 August 2008

7. If n is greater than or equal to Result(3), let k be Result(3) - 1, and go to step 11.

8. If n is greater than or equal to 0, let k be n, and go to step 11.

9. Let k be Result(3) - abs(n).

10. If k is less than 0 go to step 18.

11. Call ToString(k).

12. Call the [[Get]] method of E with the argument Result(11).

13. Perform the comparison searchElement === Result(12).

14. If Result(13) is false go to step 16.

15. Return k.

16. Decrease k by 1.

17. If k is greater than or equal to 0 go to step 11.

18. Return -1.

The length property of the lastIndexOf method is 1.

NOTE

The lastIndexOf function is intentionally generic; it does not require that its this value be an Array

object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the

lastIndexOf function can be applied successfully to a host object is implementation-dependent.

15.4.4.16 Array.prototype.every (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns the boolean value true or false.

every calls the provided callback, as a function, once for each element present in the array, in

ascending order, until it finds one where callbackfn returns false. If such an element is found, every

immediately returns false. Otherwise, if callbackfn returned true for all elements, every will return

true. callbackfn is called only for indexes of the array which have assigned values; it is not called for

indexes which have been deleted or which have never been assigned values.

If a thisArg parameter is provided, it will be used as the this for each invocation of the callback. If it is

not provided, or is null, the global object associated with the callback is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the

Array object being traversed.

every does not mutate the array on which it is called.

The range of elements processed by every is set before the first call to callbackfn. Elements which are

appended to the array after the call to every begins will not be visited by callbackfn. If existing

elements of the array are changed, their value as passed to callbackfn will be the value at the time

every visits them; elements that are deleted are not visited. every acts like the "for all" quantifier in

mathematics. In particular, for an empty array, it returns true.

When the every method is called with one or two arguments, the following steps are taken:

1. Let E be this object.

2. Call the [[Get]] method of E with the argument "length".

3. Call ToUint32(Result(2)).

4. If Result(3) is 0 go to step 18.

5. If Type(callbackfn) is not Object, throw a TypeError exception.

6. If IsCallable(callbackfn) is false, throw a TypeError exception.

7. Let O be thisArg.

8. Let k be 0.

9. Call ToString(k).

10. If E does not have a property named by Result(9), go to step 16.

11. Call the [[Get]] method of E with argument Result(9).

12. Call the [[Call]] method of callbackfn with O as the this value and arguments Result(11), k, and E.

13. Call ToBoolean(Result(12)).

14. If Result(13) is true go to step 16.

15. Return false.

16. Increase k by 1.

17. If k is less than Result(3) go to step 9.

- 114 -

11 August 2008

18. Return true.

The length property of the every method is 1.

NOTE

The every function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the every

function can be applied successfully to a host object is implementation-dependent.

15.4.4.17 Array.prototype.some (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns the boolean value true or false.

some calls the callback, as a function, once for each element present in the array, in ascending order,

until it finds one where callbackfn returns true. If such an element is found, some immediately returns

true. Otherwise, some returns false. callbackfn is called only for indexes of the array which have

assigned values; it is not called for indexes which have been deleted or which have never been assigned

values.

If a thisArg parameter is provided, it will be used as the this for each invocation of the callback. If it is

not provided, or is null, the global object associated with the callback is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the

Array object being traversed.

some does not mutate the array on which it is called.

The range of elements processed by some is set before the first call to callbackfn. Elements that are

appended to the array after the call to some begins will not be visited by callbackfn. If an existing,

unvisited element of the array is changed by callbackfn, their value as passed to callbackfn will be the

value at the time that some visits them; elements that are deleted are not visited.

When the some method is called with one or two arguments, the following steps are taken:

1. Let E be this object.

2. Call the [[Get]] method of E with the argument "length".

3. Call ToUint32(Result(2)).

4. If Result(3) is 0 go to step 18.

5. If Type(callbackfn) is not Object, throw a TypeError exception.

6. If IsCallable(callbackfn) is false, throw a TypeError exception.

7. Let O be thisArg.

8. Let k be 0.

9. Call ToString(k).

10. If E does not have a property named by Result(9), go to step 16.

11. Call the [[Get]] method of E with argument Result(9).

12. Call the [[Call]] method of callbackfn with O as the this value and arguments Result(11), k, and E.

13. Call ToBoolean(Result(12)).

14. If Result(13) is false go to step 16.

15. Return true.

16. Increase k by 1.

17. If k is less than Result(3) go to step 9.

18. Return false.

The length property of the some method is 1.

NOTE

The some function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the some function

can be applied successfully to a host object is implementation-dependent.

15.4.4.18 Array.prototype.forEach (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments. forEach calls the provided callback, as a

function, once for each element present in the array, in ascending order. callbackfn is called only for

- 115 -

11 August 2008

indexes of the array which have assigned values; it is not called for indexes which have been deleted or

which have never been assigned values.

If a thisArg parameter is provided, it will be used as the this for each invocation of the callback. If it is

not provided, or is null, the global object associated with the callback is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the

Array object being traversed.

forEach does not mutate the array on which it is called.

The range of elements processed by forEach is set before the first call to callbackfn. Elements which

are appended to the array after the call to forEach begins will not be visited by callbackfn. If existing

elements of the array are changed, or deleted, their value as passed to callback will be the value at the

time forEach visits them; elements that are deleted are not visited.

When the forEach method is called with one or two arguments, the following steps are taken:

1. Let E be this object.

2. Call the [[Get]] method of E with the argument "length".

3. Call ToUint32(Result(2)).

4. If Result(3) is 0 go to step 14.

5. If Type(callbackfn) is not Object, throw a TypeError exception.

6. If IsCallable(callbackfn) is false, throw a TypeError exception.

7. Let O be thisArg.

8. Let k be 0.

9. Call ToString(k).

10. If E does not have a property named by Result(9), go to step 13.

11. Call the [[Get]] method of E with argument Result(9).

12. Call the [[Call]] method of callbackfn with O as this value and arguments Result(11), k, and E.

13. Increase k by 1.

14. If k is less than Result(3) go to step 9.

15. Return.

The length property of the forEach method is 1.

NOTE

The forEach function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the forEach

function can be applied successfully to a host object is implementation-dependent.

15.4.4.19 Array.prototype.map (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments. map calls the provided callback, as a

function, once for each element in the array, in ascending order, and constructs a new array from the

results. callbackfn is called only for indexes of the array which have assigned values; it is not called for

indexes which have been deleted or which have never been assigned values.

If a thisArg parameter is provided, it will be used as the this for each invocation of the callback. If it is

not provided, or is null, the global object associated with the callback is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the

Array object being traversed.

map does not mutate the array on which it is called.

The range of elements processed by map is set before the first call to callbackfn. Elements which are

appended to the array after the call to map begins will not be visited by callbackfn. If existing elements

of the array are changed, or deleted, their value as passed to callbackfn will be the value at the time map

visits them; elements that are deleted are not visited.

When the map method is called with one or two arguments, the following steps are taken:

- 116 -

11 August 2008

1. Let A be a new array created as if by the expression new Array() where Array is the standard

built-in constructor with that name.

2. Let n be 0.

3. Let E be this object

4. Call the [[Get]] method of E with the argument "length".

5. Call ToUint32(Result(4)).

6. If Result(5) is 0 go to step 20.

7. If Type(callbackfn) is not Object, throw a TypeError exception.

8. If IsCallable(callbackfn) is false, throw a TypeError exception.

9. Let O be thisArg.

10. Let k be 0.

11. Call ToString(k).

12. If E does not have a property named by Result(11), go to step 19.

13. Call the [[Get]] method of E with argument Result(11).

14. Call the [[Call]] method of callbackfn with O as the this value and arguments Result(13), k, and E.

15. Call ToString(n).

16. Call the [[Put]] method of A with the argument Result(14) and Result(15).

17. Increase n by 1.

18. Increase k by 1.

19. If k is less than Result(5) go to step 11.

20. Return A.

The length property of the map method is 1.

NOTE

The map function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the map function

can be applied successfully to a host object is implementation-dependent.

15.4.4.20 Array.prototype.filter (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns the boolean value true or false.

filter calls the provided callback, as a function, once for each element in the array, in ascending

order, and constructs a new array of all the values for which callbackfn returns true. callbackfn is called

only for indexes of the array which have assigned values; it is not called for indexes which have been

deleted or which have never been assigned values.

If a thisArg parameter is provided, it will be used as the this for each invocation of the callback. If it is

not provided, or is null, the global object associated with the callback is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the

Array object being traversed.

filter does not mutate the array on which it is called.

The range of elements processed by filter is set before the first call to callbackfn. Elements which are

appended to the array after the call to filter begins will not be visited by callbackfn. If existing

elements of the array are changed, or deleted, their value as passed to callbackfn will be the value at the

time filter visits them; elements that are deleted are not visited.

When the filter method is called with one or two arguments, the following steps are taken:

1. Let A be a new array created as if by the expression new Array()where Array is the standard

built-in constructor with that name.

2. Let n be 0.

3. Let E be this object

4. Call the [[Get]] method of E with the argument "length".

5. Call ToUint32(Result(4)).

6. If Result(5) is 0 go to step 22.

7. If Type(callbackfn) is not Object, throw a TypeError exception.

8. If IsCallable(callbackfn) is false, throw a TypeError exception.

9. Let O this thisArg.

- 117 -

11 August 2008

10. Let k be 0.

11. Call ToString(k).

12. If E does not have a property named by Result(11), go to step 20.

13. Call the [[Get]] method of E with argument Result(11).

14. Call the [[Call]] method of callbackfn with O as the this value and arguments Result(13), k, and E.

15. Call ToBoolean(Result(14)).

16. If Result(15) is false go to step 20.

17. Call ToString(n).

18. Call the [[Put]] method of A with the argument Result(13) and Result(17).

19. Increase n by 1.

20. Increase k by 1.

21. If k is less than Result(5) go to step 11.

22. Return A.

The length property of the filter method is 1.

NOTE

The filter function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the filter

function can be applied successfully to a host object is implementation-dependent.

15.4.4.21 Array.prototype.reduce (callbackfn [, initialValue])

callbackfn should be a function that takes four arguments. reduce calls the callback, as a function, once

for each element present in the array, in ascending order.

callbackfn is called with four arguments: the previousValue (or value from the previous call to

callbackfn), the currentValue (value of the current element), the currentIndex, and the Array object being

traversed. The first time that callback is called, the previousValue and currentValue can be one of two

values. If an initialValue was provided in the call to reduce, then previousValue will be equal to

initialValue and currentValue will be equal to the first value in the array. If no initialValue was

provided, then previousValue will be equal to the first value in the array and currentValue will be equal

to the second.

reduce does not mutate the array on which it is called.

The range of elements processed by reduce is set before the first call to callbackfn. Elements that are

appended to the array after the call to reduce begins will not be visited by callbackfn. If an existing,

unvisisted element is changed by callbackfn, their value as passed to callbackfn will be the value at the

time reduce visits them; elements that are deleted are not visited.

When the reduce method is called with one or two arguments, the following steps are taken:

1. Let E be this object.

2. Call the [[Get]] method on E with argument "length".

3. Call ToUint32(Result(2)).

4. If Type(callbackfn) is not Object, throw a TypeError exception.

5. If IsCallable(callbackfn) is false, throw a TypeError exception.

6. If Result(3) is 0 and initialValue is not supplied throw a TypeError exception.

7. Let k be 0.

8. If initialValue is supplied let P be initialValue and go to step 17.

9. Call ToString(k).

10. If E does not have a property named by Result(9), go to step 14.

11. Call the [[Get]] method on E with the argument Result(9).

12. Increase k by 1.

13. Let P be Result(11) and go to step 17.

14. Increase k by 1.

15. If k < Result(3) go to step 9.

16. Throw a TypeError exception.

17. Call ToString(k).

18. If E does not have a property named by Result(17), go to step 22.

- 118 -

11 August 2008

19. Call the [[Get]] method of E with the argument Result(17).

20. Call the [[Call]] method on callbackfn with null as the this value and arguments P, Result(19), k, E.

21. Let P be Result(20).

22. Increase k by 1.

23. If k < Result(3) go to step 17.

24. Return P.

The length property of the reduce method is 1.

NOTE

The reduce function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the reduce

function can be applied successfully to a host object is implementation-dependent.

15.4.4.22 Array.prototype.reduceright (callbackfn [, initialValue])

callbackfn should be a function that takes four arguments. reduceRight calls the callback, as a

function, once for each element present in the array, in descending order.

callbackfn is called with four arguments: the previousValue (or value from the previous call to

callbackfn), the currentValue (value of the current element), the currentIndex, and the Array object being

traversed. The first time the function is called, the previousValue and currentValue can be one of two

values. If an initialValue was provided in the call to reduceRight, then previousValue will be equal

to initialValue and currentValue will be equal to the last value in the array. If no initialValue was

provided, then previousValue will be equal to the last value in the array and currentValue will be equal

to the second-to-last value.

reduceRight does not mutate the array on which it is called.

The range of elements processed by reduceRight is set before the first call to callbackfn. Elements

that are appended to the array after the call to reduceRight begins will not be visited by callbackfn.

If an existing, unvisisted element is changed by callbackfn, their value as passed to callbackfn will be the

value at the time reduceRight visits them; elements that are deleted are not visited.

When the reduceRight method is called with one or two arguments, the following steps are taken:

1. Let E be this object.

2. Call the [[Get]] method on E with argument "length".

3. Call ToUint32(Result(2)).

4. If Type(callbackfn) is not Object throw a TypeError exception.

5. If IsCallable(callbackfn) is false, throw a TypeError exception.

6. If Result(3) is 0 and initialValue is not supplied throw a TypeError exception.

7. Let k be Result(3) – 1.

8. If initialValue is supplied let P be initialValue and go to step 17.

9. Call ToString(k).

10. If E does not have a property named by Result(9), go to step 14.

11. Call the [[Get]] method on E with the argument Result(9).

12. Decrease k by 1.

13. Let P be Result(11) and go to step 17.

14. Decrease k by 1.

15. If k is greater than or equal to 0 go to step 9.

16. Throw a TypeError exception.

17. Call ToString(k).

18. If E does not have a property named by Result(17), go to step 22.

19. Call the [[Get]] method of E with the argument Result(17).

20. Call the [[Call]] method on callbackfn with null as the this value and arguments P, Result(19), k, E.

21. Let P be Result(20).

22. Decrease k by 1.

23. If kis greater than or equal to 0 go to step 17.

24. Return P.

- 119 -

11 August 2008

The length property of the reduceRight method is 1.

NOTE

The reduceRight function is intentionally generic; it does not require that its this value be an Array

object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the

reduceRight function can be applied successfully to a host object is implementation-dependent.

15.4.5 Properties of Array Instances

Array instances inherit properties from the Array prototype object and also have the following

properties.

15.4.5.1 [[ThrowablePut]] (P, V, Throw)

Array objects use a variation of the [[ThrowablePut]] method used for other native ECMAScript

objects (8.6.2.10).

Assume A is an Array object, P is a string, and Throw is a boolean flag.

When the [[ThrowablePut]] method of A is called with property P, value V, and Boolean flag Throw,

the following steps are taken:

1. Call the [[CanPut]] method of A with name P.

2. If Result(1) is false, then

a. If Throw is true, throw a TypeError exception.

b. Else return.

3. If A doesn‘t have a property with name P, go to step 7.

4. If P is "length", go to step 12.

5. Set the value of property P of A to V.

6. Go to step 8.

7. Create a property with name P, set its value to V and give it empty attributes.

8. If P is not an array index, return.

9. If ToUint32(P) is less than the value of the length property of A, then return.

10. Change (or set) the value of the length property of A to ToUint32(P)+1.

11. Return.

12. Compute ToUint32(V).

13. If Result(12) is not equal to ToNumber(V), throw a RangeError exception.

14. For every integer k that is less than the value of the length property of A but not less than

Result(12), if A itself has a property (not an inherited property) named ToString(k), then delete

that property.

15. Set the value of property P of A to Result(12).

16. Return.

15.4.5.2 length

The length property of this Array object is always numerically greater than the name of every

property whose name is an array index.

The length property has the attributes { [[Enumerable]]: false, [[Flexible]]: false }.

15.5 String Objects

15.5.1 The String Constructor Called as a Function

When String is called as a function rather than as a constructor, it performs a type conversion.

15.5.1.1 String ([value])

Returns a string value (not a String object) computed by ToString(value). If value is not supplied, the

empty string "" is returned.

15.5.2 The String Constructor

When String is called as part of a new expression, it is a constructor: it initialises the newly created

object.

Deleted: 2

Deleted: and

Deleted: and

Deleted: return

Comment [pL53]: From AWB:
This probably should be rewritten using the

structured notation

Deleted: DontEnum, DontDelete

- 120 -

11 August 2008

15.5.2.1 new String ([value])

The [[Prototype]] property of the newly constructed object is set to the original String prototype

object, the one that is the initial value of String.prototype (15.5.3.1).

The [[Class]] property of the newly constructed object is set to "String". The [[Extensible]]

property of the newly constructed object is set to true.

The [[PrimitiveValue]] property of the newly constructed object is set to ToString(value), or to the

empty string if value is not supplied.

15.5.3 Properties of the String Constructor

The value of the internal [[Prototype]] property of the String constructor is the Function prototype object

(15.3.4).

Besides the internal properties and the length property (whose value is 1), the String constructor has

the following properties:

15.5.3.1 String.prototype

The initial value of String.prototype is the String prototype object (15.5.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.5.3.2 String.fromCharCode ([char0 [, char1 [, …]]])

Returns a string value containing as many characters as the number of arguments. Each argument

specifies one character of the resulting string, with the first argument specifying the first character,

and so on, from left to right. An argument is converted to a character by applying the operation

ToUint16 (9.7) and regarding the resulting 16-bit integer as the code point value of a character. If no

arguments are supplied, the result is the empty string.

The length property of the fromCharCode function is 1.

15.5.4 Properties of the String Prototype Object

The String prototype object is itself a String object (its [[Class]] is "String") whose value is an empty

string.

The value of the internal [[Prototype]] property of the String prototype object is t he Object prototype

object (15.2.3.1).

15.5.4.1 String.prototype.constructor

The initial value of String.prototype.constructor is the built-in String constructor.

15.5.4.2 String.prototype.toString ()

Returns this string value. (Note that, for a String object, the toString method happens to return the

same thing as the valueOf method.)

The toString function is not generic; it throws a TypeError exception if its this value is not a

String object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.5.4.3 String.prototype.valueOf ()

Returns this string value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a String

object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.5.4.4 String.prototype.charAt (pos)

Returns a string containing the character at position pos in the string resulting from converting this

object to a string. If there is no character at that position, the result is the empty string. The result is a

string value, not a String object.

If pos is a value of Number type that is an integer, then the result of x.charAt(pos) is equal to the

result of x.substring(pos, pos+1).

When the charAt method is called with one argument pos, the following steps are taken:

Deleted: DontEnum, DontDelete, ReadOnly

- 121 -

11 August 2008

1. Call ToString, giving it the this value as its argument.

2. Call ToInteger(pos).

3. Compute the number of characters in Result(1).

4. If Result(2) is less than 0 or is not less than Result(3), return the empty string.

5. Return a string of length 1, containing one character from Result(1), namely the character at

position Result(2), where the first (leftmost) character in Result(1) is considered to be at position

0, the next one at position 1, and so on.

NOTE

The charAt function is intentionally generic; it does not require that its this value be a String object.

Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.5 String.prototype.charCodeAt (pos)

Returns a number (a nonnegative integer less than 2
16

) representing the code point value of the

character at position pos in the string resulting from converting this object to a string. If there is no

character at that position, the result is NaN.

When the charCodeAt method is called with one argument pos, the following steps are taken:

1. Call ToString, giving it the this value as its argument.

2. Call ToInteger(pos).

3. Compute the number of characters in Result(1).

4. If Result(2) is less than 0 or is not less than Result(3), return NaN.

5. Return a value of Number type, whose value is the code point value of the character at position

Result(2) in the string Result(1), where the first (leftmost) character in Result(1) is considered to

be at position 0, the next one at position 1, and so on.

NOTE

The charCodeAt function is intentionally generic; it does not require that its this value be a String

object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.6 String.prototype.concat ([string1 [, string2 [, …]]])

When the concat method is called with zero or more arguments string1, string2, etc., it returns a

string consisting of the characters of this object (converted to a string) followed by the characters of

each of string1, string2, etc. (where each argument is converted to a string). The result is a string

value, not a String object. The following steps are taken:

1. Call ToString, giving it the this value as its argument.

2. Let R be Result(1).

3. Get the next argument in the argument list; if there are no more arguments, go to step 7.

4. Call ToString(Result(3)).

5. Let R be the string value consisting of the characters in the previous value of R followed by the

characters Result(4).

6. Go to step 3.

7. Return R.

The length property of the concat method is 1.

NOTE

The concat function is intentionally generic; it does not require that its this value be a String object.

Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.7 String.prototype.indexOf (searchString, position)

If searchString appears as a substring of the result of converting this object to a string, at one or more

positions that are greater than or equal to position, then the index of the smallest such position is

returned; otherwise, -1 is returned. If position is undefined, 0 is assumed, so as to search all of the

string.

The indexOf method takes two arguments, searchString and position, and performs the following

steps:

- 122 -

11 August 2008

1. Call ToString, giving it the this value as its argument.

2. Call ToString(searchString).

3. Call ToInteger(position). (If position is undefined, this step produces the value 0).

4. Compute the number of characters in Result(1).

5. Compute min(max(Result(3), 0), Result(4)).

6. Compute the number of characters in the string that is Result(2).

7. Compute the smallest possible integer k not smaller than Result(5) such that k+Result(6) is not

greater than Result(4), and for all nonnegative integers j less than Result(6), the character at

position k+j of Result(1) is the same as the character at position j of Result(2); but if there is no

such integer k, then compute the value -1.

8. Return Result(7).

The length property of the indexOf method is 1.

NOTE

The indexOf function is intentionally generic; it does not require that its this value be a String

object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.8 String.prototype.lastIndexOf (searchString, position)

If searchString appears as a substring of the result of converting this object to a string at one or more

positions that are smaller than or equal to position, then the index of the greatest such position is

returned; otherwise, -1 is returned. If position is undefined, the length of the string value is assumed,

so as to search all of the string.

The lastIndexOf method takes two arguments, searchString and position, and performs the

following steps:

1. Call ToString, giving it the this value as its argument.

2. Call ToString(searchString).

3. Call ToNumber(position). (If position is undefined, this step produces the value NaN).

4. If Result(3) is NaN, use + ; otherwise, call ToInteger(Result(3)).

5. Compute the number of characters in Result(1).

6. Compute min(max(Result(4), 0), Result(5)).

7. Compute the number of characters in the string that is Result(2).

8. Compute the largest possible nonnegative integer k not larger than Result(6) such that k+Result(7)

is not greater than Result(5), and for all nonnegative integers j less than Result(7), the character at

position k+j of Result(1) is the same as the character at position j of Result(2); but if there is no

such integer k, then compute the value -1.

9. Return Result(8).

The length property of the lastIndexOf method is 1.

NOTE

The lastIndexOf function is intentionally generic; it does not require that its this value be a String

object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.9 String.prototype.localeCompare (that)

When the localeCompare method is called with one argument that, it returns a number other than

NaN that represents the result of a locale-sensitive string comparison of this object (converted to a

string) with that (converted to a string). The two strings are compared in an implementation-defined

fashion. The result is intended to order strings in the sort order specified by the system default locale,

and will be negative, zero, or positive, depending on whether this comes before that in the sort order,

the strings are equal, or this comes after that in the sort order, respectively.

The localeCompare method, if considered as a function of two arguments this and that, is a

consistent comparison function (as defined in 15.4.4.11) on the set of all strings. Furthermore,

localeCompare returns 0 or –0 when comparing two strings that are considered canonically

equivalent by the Unicode standard.

The actual return values are left implementation-defined to permit implementers to encode additional

information in the result value, but the function is required to define a total ordering on all strings and

- 123 -

11 August 2008

to return 0 when comparing two strings that are considered canonically equivalent by the Unicode

standard.

NOTE 1

The localeCompare method itself is not directly suitable as an argument to

Array.prototype.sort because the latter requires a function of two arguments.

NOTE 2

This function is intended to rely on whatever language-sensitive comparison functionality is available

to the ECMAScript environment from the host environment, and to compare according to the rules of

the host environment‘s current locale. It is strongly recommended that this function treat strings that

are canonically equivalent according to the Unicode standard as identical (in other words, compare

the strings as if they had both been converted to Normalised Form C or D first). It is also

recommended that this function not honour Unicode compatibility equivalences or decompositions.

If no language-sensitive comparison at all is available from the host environment, this function may

perform a bitwise comparison.

NOTE 3

The localeCompare function is intentionally generic; it does not require that its this value be a

String object. Therefore, it can be transferred to other kinds of objects for use as a method.

NOTE 4

The second parameter to this function is likely to be used in a future version of this standard; it is

recommended that implementations do not use this parameter position for anything else.

15.5.4.10 String.prototype.match (regexp)

If regexp is not an object whose [[Class]] property is "RegExp", it is replaced with the result of the

expression new RegExp(regexp). Let string denote the result of converting the this value to a

string. Then do one of the following:

If regexp.global is false: Return the result obtained by invoking RegExp.prototype.exec (see

15.10.6.2) on regexp with string as parameter.

If regexp.global is true: Set the regexp.lastIndex property to 0 and invoke

RegExp.prototype.exec repeatedly until there is no match. If there is a match with an empty

string (in other words, if the value of regexp.lastIndex is left unchanged), increment

regexp.lastIndex by 1. Let n be the number of matches. If n=0, then the value returned is null;

otherwise, the value returned is an array with the length property set to n and properties 0

through n–1 corresponding to the first elements of the results of all matching invocations of

RegExp.prototype.exec.

NOTE

The match function is intentionally generic; it does not require that its this value be a String object.

Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.11 String.prototype.replace (searchValue, replaceValue)

Let string denote the result of converting the this value to a string.

If searchValue is a regular expression (an object whose [[Class]] property is "RegExp"), do the

following: If searchValue.global is false, then search string for the first match of the regular

expression searchValue. If searchValue.global is true, then search string for all matches of the regular

expression searchValue. Do the search in the same manner as in String.prototype.match,

including the update of searchValue.lastIndex. Let m be the number of left capturing parentheses

in searchValue (NcapturingParens as specified in 15.10.2.1).

If searchValue is not a regular expression, let searchString be ToString(searchValue) and search

string for the first occurrence of searchString. Let m be 0.

If replaceValue is a function, then for each matched substring, call the function with the following m

+ 3 arguments. Argument 1 is the substring that matched. If searchValue is a regular expression, the

next m arguments are all of the captures in the MatchResult (see 15.10.2.1). Argument m + 2 is the

offset within string where the match occurred, and argument m + 3 is string. The result is a string

Deleted: The value returned is an array with

the length property set to n and properties 0

through n–1 corresponding to the first

elements of the results of all matching

invocations of

RegExp.prototype.exec.

- 124 -

11 August 2008

value derived from the original input by replacing each matched substring with the corresponding

return value of the function call, converted to a string if need be.

Otherwise, let newstring denote the result of converting replaceValue to a string. The result is a string

value derived from the original input string by replacing each matched substring with a string derived

from newstring by replacing characters in newstring by replacement text as specified in the following

table. These $ replacements are done left-to-right, and, once such a replacement is performed, the new

replacement text is not subject to further replacements. For example,

"$1,$2".replace(/(\$(\d))/g, "$$1-$1$2") returns "$1-$11,$1-$22". A $ in

newstring that does not match any of the forms below is left as is.

Characters Replacement text

$$ $

$& The matched substring.

$„ The portion of string that precedes the matched substring.

$‟ The portion of string that follows the matched substring.

$n The nth capture, where n is a single digit 1-9 and $n is not followed by a decimal

digit. If n m and the nth capture is undefined, use the empty string instead. If n>m,

the result is implementation-defined.

$nn The nn
th

 capture, where nn is a two-digit decimal number 01-99. If nn m and the

nn
th

 capture is undefined, use the empty string instead. If nn>m, the result is

implementation-defined.

NOTE

The replace function is intentionally generic; it does not require that its this value be a String

object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.12 String.prototype.search (regexp)

If regexp is not an object whose [[Class]] property is "RegExp", it is replaced with the result of the

expression new RegExp(regexp). Let string denote the result of converting the this value to a

string.

The value string is searched from its beginning for an occurrence of the regular expression pattern

regexp. The result is a number indicating the offset within the string where the pattern matched, or –1

if there was no match.

NOTE 1

This method ignores the lastIndex and global properties of regexp. The lastIndex property

of regexp is left unchanged.

NOTE 2

The search function is intentionally generic; it does not require that its this value be a String object.

Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.13 String.prototype.slice (start, end)

The slice method takes two arguments, start and end, and returns a substring of the result of

converting this object to a string, starting from character position start and running to, but not

including, character position end (or through the end of the string if end is undefined). If start is

negative, it is treated as (sourceLength+start) where sourceLength is the length of the string. If end is

negative, it is treated as (sourceLength+end) where sourceLength is the length of the string. The result

is a string value, not a String object. The following steps are taken:

1. Call ToString, giving it the this value as its argument.

2. Compute the number of characters in Result(1).

3. Call ToInteger(start).

4. If end is undefined, use Result(2); else use ToInteger(end).

5. If Result(3) is negative, use max(Result(2)+Result(3),0); else use min(Result(3),Result(2)).

- 125 -

11 August 2008

6. If Result(4) is negative, use max(Result(2)+Result(4),0); else use min(Result(4),Result(2)).

7. Compute max(Result(6)–Result(5),0).

8. Return a string containing Result(7) consecutive characters from Result(1) beginning with the

character at position Result(5).

The length property of the slice method is 2.

NOTE

The slice function is intentionally generic; it does not require that its this value be a String object.

Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.14 String.prototype.split (separator, limit)

Returns an Array object into which substrings of the result of converting this object to a string have

been stored. The substrings are determined by searching from left to right for occurrences of

separator; these occurrences are not part of any substring in the returned array, but serve to divide up

the string value. The value of separator may be a string of any length or it may be a RegExp object

(i.e., an object whose [[Class]] property is "RegExp"; see 15.10).

The value of separator may be an empty string, an empty regular expression, or a regular expression

that can match an empty string. In this case, separator does not match the empty substring at the

beginning or end of the input string, nor does it match the empty substring at the end of the previou s

separator match. (For example, if separator is the empty string, the string is split up into individual

characters; the length of the result array equals the length of the string, and each substring contains

one character.) If separator is a regular expression, only the first match at a given position of the this

string is considered, even if backtracking could yield a non-empty-substring match at that position.

(For example, "ab".split(/a*?/) evaluates to the array ["a","b"], while

"ab".split(/a*/) evaluates to the array["","b"].)

If the this object is (or converts to) the empty string, the result depends on whether separator can

match the empty string. If it can, the result array contains no elements. Otherwise, the result array

contains one element, which is the empty string.

If separator is a regular expression that contains capturing parentheses, then each time separator is

matched the results (including any undefined results) of the capturing parentheses are spliced into the

output array. (For example,

"Aboldand<CODE>coded</CODE>".split(/<(\/)?([^<>]+)>/) evaluates to

the array ["A", undefined, "B", "bold", "/", "B", "and", undefined,

"CODE", "coded", "/", "CODE", ""].)

If separator is undefined, then the result array contains just one string, which is the this value

(converted to a string). If limit is not undefined, then the output array is truncated so that it contains

no more than limit elements.

When the split method is called, the following steps are taken:

1. Let S = ToString(this).

2. Let A be a new array created as if by the expression new Array()where Array is the standard

built-in constructor with that name.

3. If limit is undefined, let lim = 2
32

–1; else let lim = ToUint32(limit).

4. Let s be the number of characters in S.

5. Let p = 0.

6. If separator is a RegExp object (its [[Class]] is "RegExp"), let R = separator; otherwise let R =

ToString(separator).

7. If lim = 0, return A.

8. If separator is undefined, go to step 33.

9. If s = 0, go to step 31.

10. Let q = p.

11. If q = s, go to step 28.

12. Call SplitMatch(R, S, q) and let z be its MatchResult result.

13. If z is failure, go to step 26.

14. z must be a State. Let e be z's endIndex and let cap be z's captures array.

- 126 -

11 August 2008

15. If e = p, go to step 26.

16. Let T be a string value equal to the substring of S consisting of the characters at positions p

(inclusive) through q (exclusive).

17. Call the [[Put]] method of A with arguments A.length and T.

18. If A.length = lim, return A.

19. Let p = e.

20. Let i = 0.

21. If i is equal to the number of elements in cap, go to step 10.

22. Let i = i+1.

23. Call the [[Put]] method of A with arguments A.length and cap[i].

24. If A.length = lim, return A.

25. Go to step 21.

26. Let q = q+1.

27. Go to step 11.

28. Let T be a string value equal to the substring of S consisting of the characters at positions p

(inclusive) through s (exclusive).

29. Call the [[Put]] method of A with arguments A.length and T.

30. Return A.

31. Call SplitMatch(R, S, 0) and let z be its MatchResult result.

32. If z is not failure, return A.

33. Call the [[Put]] method of A with arguments "0" and S.

34. Return A.

The internal helper function SplitMatch takes three parameters, a string S, an integer q, and a string or

RegExp R, and performs the following in order to return a MatchResult (see 15.10.2.1):

1. If R is a RegExp object (its [[Class]] is "RegExp"), go to step 8.

2. R must be a string. Let r be the number of characters in R.

3. Let s be the number of characters in S.

4. If q+r > s then return the MatchResult failure.

5. If there exists an integer i between 0 (inclusive) and r (exclusive) such that the character at

position q+i of S is different from the character at position i of R, then return failure.

6. Let cap be an empty array of captures (see 15.10.2.1).

7. Return the State (q+r, cap). (see 15.10.2.1)

8. Call the [[Match]] method of R giving it the arguments S and q, and return the MatchResult result.

The length property of the split method is 2.

NOTE 1

The split function is intentionally generic; it does not require that its this value be a String object.

Therefore, it can be transferred to other kinds of objects for use as a method.

NOTE 2

The split method ignores the value of separator.global for separators that are RegExp objects.

15.5.4.15 String.prototype.substring (start, end)

The substring method takes two arguments, start and end, and returns a substring of the result of

converting this object to a string, starting from character position start and running to, but not

including, character position end of the string (or through the end of the string is end is undefined).

The result is a string value, not a String object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the

length of the string, it is replaced with the length of the string.

If start is larger than end, they are swapped.

The following steps are taken:

1. Call ToString, giving it the this value as its argument.

2. Compute the number of characters in Result(1).

3. Call ToInteger(start).

4. If end is undefined, use Result(2); else use ToInteger(end).

- 127 -

11 August 2008

5. Compute min(max(Result(3), 0), Result(2)).

6. Compute min(max(Result(4), 0), Result(2)).

7. Compute min(Result(5), Result(6)).

8. Compute max(Result(5), Result(6)).

9. Return a string whose length is the difference between Result(8) and Result(7), containing

characters from Result(1), namely the characters with indices Result(7) through Result(8) 1, in

ascending order.

The length property of the substring method is 2.

NOTE

The substring function is intentionally generic; it does not require that its this value be a String

object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.16 String.prototype.toLowerCase ()

If this object is not already a string, it is converted to a string. The characters in that string are

converted one by one to lower case. The result is a string value, not a String object.

The characters are converted one by one. The result of each conversion is the original character,

unless that character has a Unicode lowercase equivalent, in which case the lowercase equivalent is

used instead.

NOTE 1

The result should be derived according to the case mappings in the Unicode character database (this

explicitly includes not only the UnicodeData.txt file, but also the SpecialCasings.txt file that

accompanies it in Unicode 2.1.8 and later).

NOTE 2

The toLowerCase function is intentionally generic; it does not require that its this value be a String

object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.17 String.prototype.toLocaleLowerCase ()

This function works exactly the same as toLowerCase except that its result is intended to yield the

correct result for the host environment‘s current locale, rather than a locale-independent result. There

will only be a difference in the few cases (such as Turkish) where the rules for that language conflict

with the regular Unicode case mappings.

NOTE 1

The toLocaleLowerCase function is intentionally generic; it does not require that its this value

be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

NOTE 2

The first parameter to this function is likely to be used in a future version of this standard; it is

recommended that implementations do not use this parameter position for anything else.

15.5.4.18 String.prototype.toUpperCase ()

This function behaves in exactly the same way as String.prototype.toLowerCase, except

that characters are mapped to their uppercase equivalents as specified in the Unicode Character

Database.

NOTE 1

Because both toUpperCase and toLowerCase have context-sensitive behaviour, the functions are

not symmetrical. In other words, s.toUpperCase().toLowerCase() is not necessarily equal to

s.toLowerCase().

NOTE 2

The toUpperCase function is intentionally generic; it does not require that its this value be a String

object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.19 String.prototype.toLocaleUpperCase ()

This function works exactly the same as toUpperCase except that its result is intended to yield the

correct result for the host environment‘s current locale, rather than a locale -independent result. There

- 128 -

11 August 2008

will only be a difference in the few cases (such as Turkish) where the rules for that language conflict

with the regular Unicode case mappings.

NOTE 1

The toLocaleUpperCase function is intentionally generic; it does not require that its this value

be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

NOTE 2

The first parameter to this function is likely to be used in a future version of this standard; it is

recommended that implementations do not use this parameter position for anything else.

15.5.4.20 String.prototype.trim ()

If this object is not already a string, it is converted to a string. The result is a copy of the string with

both leading and trailing white space removed. The definition of white space is the union of

WhiteSpace and LineTerminator. The result is a string value, not a String object.

NOTE

The trim function is intentionally generic; it does not require that its this value be a String object.

Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.21 String.prototype.toJSON (key)

This function returns this.valueOf();

NOTE

The toJSON function is intentionally generic; it does not require that its this value be a String object.

Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and also have a [[PrimitiveValue]]

property and a length property.

The [[PrimitiveValue]] property is the string value represented by this String object.

15.5.5.1 length

The number of characters in the String value represented by this String object.

Once a String object is created, this property is unchanging. It has the attributes { [[Writable]]: false,

[[Enumerable]]: false, [[Flexible]]: false }.

15.5.5.2 [[GetOwnProperty]] (P)

String objects use a variation of the [[GetOwnProperty]] method used for other native ECMAScript

objects (8.6.2.8).

Assume S is a String object and P is a string.

When the [[GetOwnProperty]] method of S is called with property name P, the following steps are

taken:

1. Call the default [[GetOwnProperty]] method (8.6.2.8) with S as the this value and argument P.

2. If Result(1) is not undefined return Result(1).

3. If P is not an array index (15.4), return undefined.

4. Call ToString, giving S as its argument.

5. Call ToInteger(P).

6. Compute the number of characters in Result(4).

7. If Result(5) is less than 0 or is not less than Result(6), return undefined.

8. Create a string of length 1, containing one character from Result(4), namely the character at

position Result(5), where the first (leftmost) character in Result(4) is considered to be at position

0, the next one at position 1, and so on.

9. Return a Property Descriptor { [[Value]]: Result(8), [[Enumerable]]: false, [[Writable]]: false,

[[Flexible]]: false }

Deleted: DontEnum, DontDelete, ReadOnly

- 129 -

11 August 2008

15.6 Boolean Objects

15.6.1 The Boolean Constructor Called as a Function

When Boolean is called as a function rather than as a constructor, it performs a type conversion.

15.6.1.1 Boolean (value)

Returns a boolean value (not a Boolean object) computed by ToBoolean(value).

15.6.2 The Boolean Constructor

When Boolean is called as part of a new expression it is a constructor: it initialises the newly created

object.

15.6.2.1 new Boolean (value)

The [[Prototype]] property of the newly constructed object is set to the original Boolean prototype

object, the one that is the initial value of Boolean.prototype (15.6.3.1).

The [[Class]] property of the newly constructed Boolean object is set to "Boolean".

The [[PrimitiveValue]] property of the newly constructed Boolean object is set to ToBoolean(value).

The [[Extensible]] property of the newly constructed object is set to true.

15.6.3 Properties of the Boolean Constructor

The value of the internal [[Prototype]] property of the Boolean constructor is the Function prototype

object (15.3.4).

Besides the internal properties and the length property (whose value is 1), the Boolean constructor has

the following property:

15.6.3.1 Boolean.prototype

The initial value of Boolean.prototype is the Boolean prototype object (15.6.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.6.4 Properties of the Boolean Prototype Object

The Boolean prototype object is itself a Boolean object (its [[Class]] is "Boolean") whose value is

false.

The value of the internal [[Prototype]] property of the Boolean prototype object is the Object prototype

object (15.2.3.1).

In following descriptions of functions that are properties of the Boolean prototype object, the phrase

―this Boolean object‖ refers to the object that is the this value for the invocation of the function; a

TypeError exception is thrown if the this value is not an object for which the value of the internal

[[Class]] property is "Boolean". Also, the phrase ―this boolean value‖ refers to the boolean value

represented by this Boolean object, that is, the value of the internal [[PrimitiveValue]] property of this

Boolean object.

15.6.4.1 Boolean.prototype.constructor

The initial value of Boolean.prototype.constructor is the built-in Boolean constructor.

15.6.4.2 Boolean.prototype.toString ()

If this boolean value is true, then the string "true" is returned. Otherwise, this boolean value must

be false, and the string "false" is returned.

The toString function is not generic; it throws a TypeError exception if its this value is not a

Boolean object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.6.4.3 Boolean.prototype.valueOf ()

Returns this boolean value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a

Boolean object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Deleted: DontEnum, DontDelete,

ReadOnly

- 130 -

11 August 2008

15.6.4.4 Boolean.prototype.toJSON (key)

This function returns this.valueOf();

NOTE

The toJSON function is intentionally generic; it does not require that its this value be a Boolean

object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.6.5 Properties of Boolean Instances

Boolean instances have no special properties beyond those inherited from the Boolean prototype object.

15.7 Number Objects

15.7.1 The Number Constructor Called as a Function

When Number is called as a function rather than as a constructor, it performs a type conversion.

15.7.1.1 Number ([value])

Returns a number value (not a Number object) computed by ToNumber(value) if value was supplied,

else returns +0.

15.7.2 The Number Constructor

When Number is called as part of a new expression it is a constructor: it initialises the newly created

object.

15.7.2.1 new Number ([value])

The [[Prototype]] property of the newly constructed object is set to the original Number prototype

object, the one that is the initial value of Number.prototype (15.7.3.1).

The [[Class]] property of the newly constructed object is set to "Number".

The [[PrimitiveValue]] property of the newly constructed object is set to ToNumber(value) if value

was supplied, else to +0.

The [[Extensible]] property of the newly constructed object is set to true.

15.7.3 Properties of the Number Constructor

The value of the internal [[Prototype]] property of the Number constructor is the Function prototype

object (15.3.4).

Besides the internal properties and the length property (whose value is 1), the Number constructor has

the following property:

15.7.3.1 Number.prototype

The initial value of Number.prototype is the Number prototype object (15.7.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.7.3.2 Number.MAX_VALUE

The value of Number.MAX_VALUE is the largest positive finite value of the number type, which is

approximately 1.7976931348623157 10
308

.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.7.3.3 Number.MIN_VALUE

The value of Number.MIN_VALUE is the smallest positive value of the number type, which is

approximately 5 10
-324

.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.7.3.4 Number.NaN

The value of Number.NaN is NaN.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

Deleted: DontEnum, DontDelete, ReadOnly

Deleted: DontEnum, DontDelete, ReadOnly

Deleted: DontEnum, DontDelete, ReadOnly

Deleted: DontEnum, DontDelete, ReadOnly

- 131 -

11 August 2008

15.7.3.5 Number.NEGATIVE_INFINITY

The value of Number.NEGATIVE_INFINITY is .

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.7.3.6 Number.POSITIVE_INFINITY

The value of Number.POSITIVE_INFINITY is + .

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.7.4 Properties of the Number Prototype Object

The Number prototype object is itself a Number object (its [[Class]] is "Number") whose value is +0.

The value of the internal [[Prototype]] property of the Number prototype object is the Object prototype

object (15.2.3.1).

In following descriptions of functions that are properties of the Number prototype object, the phrase

―this Number object‖ refers to the object that is the this value for the invocation of the function; a

TypeError exception is thrown if the this value is not an object for which the value of the internal

[[Class]] property is "Number". Also, the phrase ―this number value‖ refers to the number value

represented by this Number object, that is, the value of the internal [[PrimitiveValue]] property of this

Number object.

15.7.4.1 Number.prototype.constructor

The initial value of Number.prototype.constructor is the built-in Number constructor.

15.7.4.2 Number.prototype.toString (radix)

If radix is the number 10 or undefined, then this number value is given as an argument to the

ToString operator; the resulting string value is returned.

If radix is an integer from 2 to 36, but not 10, the result is a string, the choice of which is

implementation-dependent.

The toString function is not generic; it throws a TypeError exception if its this value is not a

Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.7.4.3 Number.prototype.toLocaleString()

Produces a string value that represents the value of the Number formatted according to the

conventions of the host environment‘s current locale. This function is implementation -dependent, and

it is permissible, but not encouraged, for it to return the same thing as toString.

NOTE

The first parameter to this function is likely to be used in a future version of this standard; it is

recommended that implementations do not use this parameter position for anything else.

15.7.4.4 Number.prototype.valueOf ()

Returns this number value.

The valueOf function is not generic; it throws a TypeError exception if its this value is not a

Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.7.4.5 Number.prototype.toFixed (fractionDigits)

Return a string containing the number represented in fixed-point notation with fractionDigits digits

after the decimal point. If fractionDigits is undefined, 0 is assumed. Specifically, perform the

following steps:

1. Let f be ToInteger(fractionDigits). (If fractionDigits is undefined, this step produces the value 0).

2. If f < 0 or f > 20, throw a RangeError exception.

3. Let x be this number value.

4. If x is NaN, return the string "NaN".

5. Let s be the empty string.

6. If x 0, go to step 9.

7. Let s be "-".

Deleted: DontEnum, DontDelete, ReadOnly

Deleted: DontEnum, DontDelete, ReadOnly

- 132 -

11 August 2008

8. Let x = –x.

9. If x 10
21

, let m = ToString(x) and go to step 20.

10. Let n be an integer for which the exact mathematical value of n 10
f
 – x is as close to zero as

possible. If there are two such n, pick the larger n.

11. If n = 0, let m be the string "0". Otherwise, let m be the string consisting of the digits of the

decimal representation of n (in order, with no leading zeroes).

12. If f = 0, go to step 20.

13. Let k be the number of characters in m.

14. If k > f, go to step 18.

15. Let z be the string consisting of f+1–k occurrences of the character ‗0‘.

16. Let m be the concatenation of strings z and m.

17. Let k = f + 1.

18. Let a be the first k–f characters of m, and let b be the remaining f characters of m.

19. Let m be the concatenation of the three strings a, ".", and b.

20. Return the concatenation of the strings s and m.

The length property of the toFixed method is 1.

If the toFixed method is called with more than one argument, then the behaviour is undefined (see

clause 15).

An implementation is permitted to extend the behaviour of toFixed for values of fractionDigits less

than 0 or greater than 20. In this case toFixed would not necessarily throw RangeError for such

values.

NOTE

The output of toFixed may be more precise than toString for some values because toString only

prints enough significant digits to distinguish the number from adjacent number values. For example,

(1000000000000000128).toString() returns "1000000000000000100", while

(1000000000000000128).toFixed(0) returns "1000000000000000128".

15.7.4.6 Number.prototype.toExponential (fractionDigits)

Return a string containing the number represented in exponential notation with one digit before the

significand's decimal point and fractionDigits digits after the significand's decimal point. If

fractionDigits is undefined, include as many significand digits as necessary to uniquely specify the

number (just like in ToString except that in this case the number is always output in exponential

notation). Specifically, perform the following steps:

1. Let x be this number value.

2. Let f be ToInteger(fractionDigits).

3. If x is NaN, return the string "NaN".

4. Let s be the empty string.

5. If x 0, go to step 8.

6. Let s be "-".

7. Let x = –x.

8. If x = + , let m = "Infinity" and go to step 30.

9. If fractionDigits is undefined, go to step 14.

10. If f < 0 or f > 20, throw a RangeError exception.

11. If x = 0, go to step 16.

12. Let e and n be integers such that 10
f
 n < 10

f+1
 and for which the exact mathematical value of n

10
e–f

 – x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for

which n 10
e–f

 is larger.

13. Go to step 20.

14. If x 0, go to step 19.

15. Let f = 0.

16. Let m be the string consisting of f+1 occurrences of the character ‗0‘.

17. Let e = 0.

18. Go to step 21.

- 133 -

11 August 2008

19. Let e, n, and f be integers such that f 0, 10
f
 n < 10

f+1
, the number value for n 10

e–f
 is x, and f

is as small as possible. Note that the decimal representation of n has f+1 digits, n is not divisible

by 10, and the least significant digit of n is not necessarily uniquely determined by these criteria.

20. Let m be the string consisting of the digits of the decimal representation of n (in order, with no

leading zeroes).

21. If f = 0, go to step 24.

22. Let a be the first character of m, and let b be the remaining f characters of m.

23. Let m be the concatenation of the three strings a, ".", and b.

24. If e = 0, let c = "+" and d = "0" and go to step 29.

25. If e > 0, let c = "+" and go to step 28.

26. Let c = "-".

27. Let e = –e.

28. Let d be the string consisting of the digits of the decimal representation of e (in order, with no

leading zeroes).

29. Let m be the concatenation of the four strings m, "e", c, and d.

30. Return the concatenation of the strings s and m.

The length property of the toExponential method is 1.

If the toExponential method is called with more than one argument, then the behaviour is

undefined (see clause 15).

An implementation is permitted to extend the behaviour of toExponential for values of

fractionDigits less than 0 or greater than 20. In this case toExponential would not necessarily

throw RangeError for such values.

NOTE

For implementations that provide more accurate conversions than required by the rules above, it is

recommended that the following alternative version of step 19 be used as a guideline:

Let e, n, and f be integers such that f 0, 10
f
 n < 10

f+1
, the number value for n 10

e–f
 is x, and f is

as small as possible. If there are multiple possibilities for n, choose the value of n for which n 10
e–f

is closest in value to x. If there are two such possible values of n, choose the one that is even.

15.7.4.7 Number.prototype.toPrecision (precision)

Return a string containing the number represented either in exponential notation with one digit before

the significand's decimal point and precision–1 digits after the significand's decimal point or in fixed

notation with precision significant digits. If precision is undefined, call ToString (9.8.1) instead.

Specifically, perform the following steps:

1. Let x be this number value.

2. If precision is undefined, return ToString(x).

3. Let p be ToInteger(precision).

4. If x is NaN, return the string "NaN".

5. Let s be the empty string.

6. If x 0, go to step 9.

7. Let s be "-".

8. Let x = –x.

9. If x = + , let m = "Infinity" and go to step 30.

10. If p < 1 or p > 21, throw a RangeError exception.

11. If x 0, go to step 15.

12. Let m be the string consisting of p occurrences of the character ‗0‘.

13. Let e = 0.

14. Go to step 18.

15. Let e and n be integers such that 10
p–1

 n < 10
p
 and for which the exact mathematical value of n

10
e–p+1

 – x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for

which n 10
e–p+1

 is larger.

16. Let m be the string consisting of the digits of the decimal representation of n (in order, with no

leading zeroes).

17. If e < –6 or e p, go to step 22.

18. If e = p–1, go to step 30.

- 134 -

11 August 2008

19. If e 0, let m be the concatenation of the first e+1 characters of m, the character ‗.‘, and the

remaining p– (e+1) characters of m and go to step 30.

20. Let m be the concatenation of the string "0.", –(e+1) occurrences of the character ‗0‘, and the

string m.

21. Go to step 30.

22. Let a be the first character of m, and let b be the remaining p–1 characters of m.

23. Let m be the concatenation of the three strings a, ".", and b.

24. If e = 0, let c = "+" and d = "0" and go to step 29.

25. If e > 0, let c = "+" and go to step 28.

26. Let c = "-".

27. Let e = –e.

28. Let d be the string consisting of the digits of the decimal representation of e (in order, with no

leading zeroes).

29. Let m be the concatenation of the four strings m, "e", c, and d.

30. Return the concatenation of the strings s and m.

The length property of the toPrecision method is 1.

If the toPrecision method is called with more than one argument, then the behaviour is undefined

(see clause 15).

An implementation is permitted to extend the behaviour of toPrecision for values of precision

less than 1 or greater than 21. In this case toPrecision would not necessarily throw RangeError

for such values.

15.7.4.8 Number.prototype.toJSON (key)

This function returns this.valueOf();

NOTE

The toJSON function is intentionally generic; it does not require that its this value be a Number

object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.7.5 Properties of Number Instances

Number instances have no special properties beyond those inherited from the Number prototype object.

15.8 The Math Object

The Math object is a single object that has some named properties, some of which are functions.

The value of the internal [[Prototype]] property of the Math object is the Object prototype object (15.2.3.1).

The value of the internal [[Class]] property of the Math object is "Math".

The Math object does not have a [[Construct]] property; it is not possible to use the Math object as a

constructor with the new operator.

The Math object does not have a [[Call]] property; it is not possible to invoke the Math object as a function.

NOTE

In this specification, the phrase ―the number value for x‖ has a technical meaning defined in 8.5.

15.8.1 Value Properties of the Math Object

15.8.1.1 E

The number value for e, the base of the natural logarithms, which is approximately

2.7182818284590452354.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.8.1.2 LN10

The number value for the natural logarithm of 10, which is approximately 2.302585092994046.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.8.1.3 LN2

The number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

Deleted: DontEnum, DontDelete, ReadOnly

Deleted: DontEnum, DontDelete, ReadOnly

- 135 -

11 August 2008

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.8.1.4 LOG2E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is

approximately 1.4426950408889634.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

NOTE

The value of Math.LOG2E is approximately the reciprocal of the value of Math.LN2.

15.8.1.5 LOG10E

The number value for the base-10 logarithm of e, the base of the natural logarithms; this value is

approximately 0.4342944819032518.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

NOTE

The value of Math.LOG10E is approximately the reciprocal of the value of Math.LN10.

15.8.1.6 PI

The number value for , the ratio of the circumference of a circle to its diameter, which is

approximately 3.1415926535897932.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.8.1.7 SQRT1_2

The number value for the square root of 1/2, which is approximately 0.7071067811865476.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

NOTE

The value of Math.SQRT1_2 is approximately the reciprocal of the value of Math.SQRT2.

15.8.1.8 SQRT2

The number value for the square root of 2, which is approximately 1.4142135623730951.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.8.2 Function Properties of the Math Object

Every function listed in this section applies the ToNumber operator to each of its arguments (in left -to-

right order if there is more than one) and then performs a computation on the resulting number value(s).

In the function descriptions below, the symbols NaN, 0, +0, and + refer to the number values

described in 8.5.

NOTE

The behaviour of the functions acos, asin, atan, atan2, cos, exp, log, pow, sin, and sqrt is

not precisely specified here except to require specific results for certain argument values that represent

boundary cases of interest. For other argument values, these functions are intended to compute

approximations to the results of familiar mathematical functions, but some latitude is allowed in the

choice of approximation algorithms. The general intent is that an implementer should be able to use the

same mathematical library for ECMAScript on a given hardware platform that is available to C

programmers on that platform.

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by

this standard) that implementations use the approximation algorithms for IEEE 754 arithmetic contained

in fdlibm, the freely distributable mathematical library from Sun Microsystems (fdlibm-

comment@sunpro.eng.sun.com). This specification also requires specific results for certain

argument values that represent boundary cases of interest

15.8.2.1 abs (x)

Returns the absolute value of x; the result has the same magnitude as x but has positive sign.

If x is NaN, the result is NaN.

Deleted: DontEnum, DontDelete,

ReadOnly

Deleted: DontEnum, DontDelete,

ReadOnly

Deleted: DontEnum, DontDelete,

ReadOnly

Deleted: DontEnum, DontDelete,

ReadOnly

Deleted: DontEnum, DontDelete,

ReadOnly

Deleted: DontEnum, DontDelete,

ReadOnly

mailto:Fdlibm-comment@sunpro.eng.sun.com
mailto:Fdlibm-comment@sunpro.eng.sun.com

- 136 -

11 August 2008

If x is 0, the result is +0.

If x is , the result is + .

15.8.2.2 acos (x)

Returns an implementation-dependent approximation to the arc cosine of x. The result is expressed in

radians and ranges from +0 to + .

If x is NaN, the result is NaN.

If x is greater than 1, the result is NaN.

If x is less than 1, the result is NaN.

If x is exactly 1, the result is +0.

15.8.2.3 asin (x)

Returns an implementation-dependent approximation to the arc sine of x. The result is expressed in

radians and ranges from /2 to + /2.

If x is NaN, the result is NaN.

If x is greater than 1, the result is NaN.

If x is less than –1, the result is NaN.

If x is +0, the result is +0.

If x is 0, the result is 0.

15.8.2.4 atan (x)

Returns an implementation-dependent approximation to the arc tangent of x. The result is expressed in

radians and ranges from /2 to + /2.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is 0, the result is 0.

If x is + , the result is an implementation-dependent approximation to + /2.

If x is , the result is an implementation-dependent approximation to /2.

15.8.2.5 atan2 (y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/x of the

arguments y and x, where the signs of y and x are used to determine the quadrant of the result. Note

that it is intentional and traditional for the two-argument arc tangent function that the argument named

y be first and the argument named x be second. The result is expressed in radians and ranges from

to + .

If either x or y is NaN, the result is NaN.

If y>0 and x is +0, the result is an implementation-dependent approximation to + /2.

If y>0 and x is 0, the result is an implementation-dependent approximation to + /2.

If y is +0 and x>0, the result is +0.

If y is +0 and x is +0, the result is +0.

If y is +0 and x is 0, the result is an implementation-dependent approximation to + .

If y is +0 and x<0, the result is an implementation-dependent approximation to + .

If y is 0 and x>0, the result is 0.

If y is 0 and x is +0, the result is 0.

If y is 0 and x is 0, the result is an implementation-dependent approximation to .

If y is 0 and x<0, the result is an implementation-dependent approximation to .

If y<0 and x is +0, the result is an implementation-dependent approximation to /2.

If y<0 and x is 0, the result is an implementation-dependent approximation to /2.

If y>0 and y is finite and x is + , the result is +0.

If y>0 and y is finite and x is , the result if an implementation-dependent approximation to + .

- 137 -

11 August 2008

If y<0 and y is finite and x is + , the result is 0.

If y<0 and y is finite and x is , the result is an implementation-dependent approximation to .

If y is + and x is finite, the result is an implementation-dependent approximation to + /2.

If y is and x is finite, the result is an implementation-dependent approximation to /2.

If y is + and x is + , the result is an implementation-dependent approximation to + /4.

If y is + and x is , the result is an implementation-dependent approximation to +3 /4.

If y is and x is + , the result is an implementation-dependent approximation to /4.

If y is and x is , the result is an implementation-dependent approximation to 3 /4.

15.8.2.6 ceil (x)

Returns the smallest (closest to) number value that is not less than x and is equal to a mathematical

integer. If x is already an integer, the result is x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is 0, the result is 0.

If x is + , the result is + .

If x is , the result is .

If x is less than 0 but greater than -1, the result is 0.

The value of Math.ceil(x) is the same as the value of -Math.floor(-x).

15.8.2.7 cos (x)

Returns an implementation-dependent approximation to the cosine of x. The argument is expressed in

radians.

If x is NaN, the result is NaN.

If x is +0, the result is 1.

If x is 0, the result is 1.

If x is + , the result is NaN.

If x is , the result is NaN.

15.8.2.8 exp (x)

Returns an implementation-dependent approximation to the exponential function of x (e raised to the

power of x, where e is the base of the natural logarithms).

If x is NaN, the result is NaN.

If x is +0, the result is 1.

If x is 0, the result is 1.

If x is + , the result is + .

If x is , the result is +0.

15.8.2.9 floor (x)

Returns the greatest (closest to +) number value that is not greater than x and is equal to a

mathematical integer. If x is already an integer, the result is x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is 0, the result is 0.

If x is + , the result is + .

If x is , the result is .

If x is greater than 0 but less than 1, the result is +0.

NOTE

- 138 -

11 August 2008

The value of Math.floor(x) is the same as the value of -Math.ceil(-x).

15.8.2.10 log (x)

Returns an implementation-dependent approximation to the natural logarithm of x.

If x is NaN, the result is NaN.

If x is less than 0, the result is NaN.

If x is +0 or 0, the result is .

If x is 1, the result is +0.

If x is + , the result is + .

15.8.2.11 max ([value1 [, value2 [, …]]])

Given zero or more arguments, calls ToNumber on each of the arguments and returns the largest of the

resulting values.

If no arguments are given, the result is .

If any value is NaN, the result is NaN.

The comparison of values to determine the largest value is done as in 11.8.5 except that +0 is

considered to be larger than 0.

The length property of the max method is 2.

15.8.2.12 min ([value1 [, value2 [, …]]])

Given zero or more arguments, calls ToNumber on each of the arguments and returns the smallest of

the resulting values.

If no arguments are given, the result is + .

If any value is NaN, the result is NaN.

The comparison of values to determine the smallest value is done as in 11.8.5 except that +0 is

considered to be larger than 0.

The length property of the min method is 2.

15.8.2.13 pow (x, y)

Returns an implementation-dependent approximation to the result of raising x to the power y.

If y is NaN, the result is NaN.

If y is +0, the result is 1, even if x is NaN.

If y is 0, the result is 1, even if x is NaN.

If x is NaN and y is nonzero, the result is NaN.

If abs(x)>1 and y is + , the result is + .

If abs(x)>1 and y is , the result is +0.

If abs(x)==1 and y is + , the result is NaN.

If abs(x)==1 and y is , the result is NaN.

If abs(x)<1 and y is + , the result is +0.

If abs(x)<1 and y is , the result is + .

If x is + and y>0, the result is + .

If x is + and y<0, the result is +0.

If x is and y>0 and y is an odd integer, the result is .

If x is and y>0 and y is not an odd integer, the result is + .

If x is and y<0 and y is an odd integer, the result is 0.

If x is and y<0 and y is not an odd integer, the result is +0.

If x is +0 and y>0, the result is +0.

If x is +0 and y<0, the result is + .

If x is 0 and y>0 and y is an odd integer, the result is 0.

- 139 -

11 August 2008

If x is 0 and y>0 and y is not an odd integer, the result is +0.

If x is 0 and y<0 and y is an odd integer, the result is .

If x is 0 and y<0 and y is not an odd integer, the result is + .

If x<0 and x is finite and y is finite and y is not an integer, the result is NaN.

15.8.2.14 random ()

Returns a number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly

or pseudo randomly with approximately uniform distribution over that range, using an

implementation-dependent algorithm or strategy. This function takes no arguments.

15.8.2.15 round (x)

Returns the number value that is closest to x and is equal to a mathematical integer. If two integer

number values are equally close to x, then the result is the number value that is closer to + . If x is

already an integer, the result is x.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is 0, the result is 0.

If x is + , the result is + .

If x is , the result is .

If x is greater than 0 but less than 0.5, the result is +0.

If x is less than 0 but greater than or equal to -0.5, the result is 0.

NOTE 1

Math.round(3.5) returns 4, but Math.round(–3.5) returns –3.

NOTE 2

The value of Math.round(x) is the same as the value of Math.floor(x+0.5), except when x is

0 or is less than 0 but greater than or equal to -0.5; for these cases Math.round(x) returns 0,

but Math.floor(x+0.5) returns +0.

15.8.2.16 sin (x)

Returns an implementation-dependent approximation to the sine of x. The argument is expressed in

radians.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is 0, the result is 0.

If x is + or , the result is NaN.

15.8.2.17 sqrt (x)

Returns an implementation-dependent approximation to the square root of x.

If x is NaN, the result is NaN.

If x less than 0, the result is NaN.

If x is +0, the result is +0.

If x is 0, the result is 0.

If x is + , the result is + .

15.8.2.18 tan (x)

Returns an implementation-dependent approximation to the tangent of x. The argument is expressed in

radians.

If x is NaN, the result is NaN.

If x is +0, the result is +0.

If x is 0, the result is 0.

- 140 -

11 August 2008

If x is + or , the result is NaN.

15.9 Date Objects

15.9.1 Overview of Date Objects and Definitions of Internal Operators

A Date object contains a number indicating a particular instant in time to within a millisecond. The

number may also be NaN, indicating that the Date object does not represent a specific instant of time.

The following sections define a number of functions for operating on time values. Note that, in every

case, if any argument to such a function is NaN, the result will be NaN.

15.9.1.1 Time Range

Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC. Leap seconds are

ignored. It is assumed that there are exactly 86,400,000 milliseconds per day. ECMAScript number

values can represent all integers from –9,007,199,254,740,991 to 9,007,199,254,740,991; this range

suffices to measure times to millisecond precision for any instant that is within approximately 285,616

years, either forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly –

100,000,000 days to 100,000,000 days measured relative to midnight at the beginning of 01 January,

1970 UTC. This gives a range of 8,640,000,000,000,000 milliseconds to either side of 01 January,

1970 UTC.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the value

+0.

15.9.1.2 Day Number and Time within Day

A given time value t belongs to day number

Day(t) = floor(t / msPerDay)

where the number of milliseconds per day is

msPerDay = 86400000

The remainder is called the time within the day:

TimeWithinDay(t) = t modulo msPerDay

15.9.1.3 Year Number

ECMAScript uses an extrapolated Gregorian system to map a day number to a year number and to

determine the month and date within that year. In this system, leap years are precisely those which are

(divisible by 4) and ((not divisible by 100) or (divisible by 400)). The number of days in year number

y is therefore defined by

DaysInYear(y) = 365 if (y modulo 4) 0

= 366 if (y modulo 4) = 0 and (y modulo 100) 0

= 365 if (y modulo 100) = 0 and (y modulo 400) 0

= 366 if (y modulo 400) = 0

All non-leap years have 365 days with the usual number of days per month and leap years have an

extra day in February. The day number of the first day of year y is given by:

DayFromYear(y) = 365 (y 1970) + floor((y 1969)/4) floor((y 1901)/100) + floor((y 1601)/400)

The time value of the start of a year is:

TimeFromYear(y) = msPerDay DayFromYear(y)

A time value determines a year by:

YearFromTime(t) = the largest integer y (closest to positive infinity) such that TimeFromYear(y) t

The leap-year function is 1 for a time within a leap year and otherwise is zero:

- 141 -

11 August 2008

InLeapYear(t) = 0 if DaysInYear(YearFromTime(t)) = 365

= 1 if DaysInYear(YearFromTime(t)) = 366

15.9.1.4 Month Number

Months are identified by an integer in the range 0 to 11, inclusive. The mapping MonthFromTime(t)

from a time value t to a month number is defined by:

MonthFromTime(t) = 0 if 0 DayWithinYear(t) < 31

 = 1 if 31 DayWithinYear (t) < 59+InLeapYear(t)

 = 2 if 59+InLeapYear(t) DayWithinYear (t) < 90+InLeapYear(t)

 = 3 if 90+InLeapYear(t) DayWithinYear (t) < 120+InLeapYear(t)

 = 4 if 120+InLeapYear(t) DayWithinYear (t) < 151+InLeapYear(t)

 = 5 if 151+InLeapYear(t) DayWithinYear (t) < 181+InLeapYear(t)

 = 6 if 181+InLeapYear(t) DayWithinYear (t) < 212+InLeapYear(t)

 = 7 if 212+InLeapYear(t) DayWithinYear (t) < 243+InLeapYear(t)

 = 8 if 243+InLeapYear(t) DayWithinYear (t) < 273+InLeapYear(t)

 = 9 if 273+InLeapYear(t) DayWithinYear (t) < 304+InLeapYear(t)

 = 10 if 304+InLeapYear(t) DayWithinYear (t) < 334+InLeapYear(t)

 = 11 if 334+InLeapYear(t) DayWithinYear (t) < 365+InLeapYear(t)

where

DayWithinYear(t) = Day(t) DayFromYear(YearFromTime(t))

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April;

4 specifies May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9

specifies October; 10 specifies November; and 11 specifies December. Note that MonthFromTime(0)

= 0, corresponding to Thursday, 01 January, 1970.

15.9.1.5 Date Number

A date number is identified by an integer in the range 1 through 31, inclusive. The mapping

DateFromTime(t) from a time value t to a month number is defined by:

DateFromTime(t) = DayWithinYear(t)+1 if MonthFromTime(t)=0

 = DayWithinYear(t) 30 if MonthFromTime(t)=1

 = DayWithinYear(t) 58 InLeapYear(t) if MonthFromTime(t)=2

 = DayWithinYear(t) 89 InLeapYear(t) if MonthFromTime(t)=3

 = DayWithinYear(t) 119 InLeapYear(t) if MonthFromTime(t)=4

 = DayWithinYear(t) 150 InLeapYear(t) if MonthFromTime(t)=5

 = DayWithinYear(t) 180 InLeapYear(t) if MonthFromTime(t)=6

 = DayWithinYear(t) 211 InLeapYear(t) if MonthFromTime(t)=7

 = DayWithinYear(t) 242 InLeapYear(t) if MonthFromTime(t)=8

 = DayWithinYear(t) 272 InLeapYear(t) if MonthFromTime(t)=9

 = DayWithinYear(t) 303 InLeapYear(t) if MonthFromTime(t)=10

 = DayWithinYear(t) 333 InLeapYear(t) if MonthFromTime(t)=11

15.9.1.6 Week Day

The weekday for a particular time value t is defined as

WeekDay(t) = (Day(t) + 4) modulo 7

A weekday value of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies

Wednesday; 4 specifies Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0)

= 4, corresponding to Thursday, 01 January, 1970.

15.9.1.7 Local Time Zone Adjustment

An implementation of ECMAScript is expected to determine the local time zone adjustment. The local

time zone adjustment is a value LocalTZA measured in milliseconds which when added to UTC

represents the local standard time. Daylight saving time is not reflected by LocalTZA. The value

LocalTZA does not vary with time but depends only on the geographic location.

Deleted: 8

Comment [pL54]: This assertion is incorrect. It
assumes time zone boundaries are fixed for eternity.

It is not, and is subject to politics (as seen by the
recent DST change that has happened in US.

The wording in this section needs to change.

- 142 -

11 August 2008

15.9.1.8 Daylight Saving Time Adjustment

An implementation of ECMAScript is expected to determine the daylight saving time algorithm. The

algorithm to determine the daylight saving time adjustment DaylightSavingTA(t), measured in

milliseconds, must depend only on four things:

(1) the time since the beginning of the year

t – TimeFromYear(YearFromTime(t))

(2) whether t is in a leap year

InLeapYear(t)

(3) the week day of the beginning of the year

WeekDay(TimeFromYear(YearFromTime(t))

and (4) the geographic location.

The implementation of ECMAScript should not try to determine whether the exact time was subject to

daylight saving time, but just whether daylight saving time would have been in effect if the current

daylight saving time algorithm had been used at the time. This avoids complications such as taking

into account the years that the locale observed daylight saving time year round.

If the host environment provides functionality for determining daylight saving time, the

implementation of ECMAScript is free to map the year in question to an equivalent year (same leap-

year-ness and same starting week day for the year) for which the host environment provides daylight

saving time information. The only restriction is that all equivalent years should produce the same

result.

15.9.1.9 Local Time

Conversion from UTC to local time is defined by

LocalTime(t) = t + LocalTZA + DaylightSavingTA(t)

Conversion from local time to UTC is defined by

UTC(t) = t – LocalTZA – DaylightSavingTA(t – LocalTZA)

Note that UTC(LocalTime(t)) is not necessarily always equal to t.

15.9.1.10 Hours, Minutes, Second, and Milliseconds

The following functions are useful in decomposing time values:

HourFromTime(t) = floor(t / msPerHour) modulo HoursPerDay

MinFromTime(t) = floor(t / msPerMinute) modulo MinutesPerHour

SecFromTime(t) = floor(t / msPerSecond) modulo SecondsPerMinute

msFromTime(t) = t modulo msPerSecond

where

HoursPerDay = 24

MinutesPerHour = 60

SecondsPerMinute = 60

msPerSecond = 1000

msPerMinute = msPerSecond SecondsPerMinute = 60000

msPerHour = msPerMinute MinutesPerHour = 3600000

15.9.1.11 MakeTime (hour, min, sec, ms)

The operator MakeTime calculates a number of milliseconds from its four arguments, which must be

ECMAScript number values. This operator functions as follows:

1. If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.

Deleted: 9

Comment [pL55]: Same as the earlier comment. This

assertion about DST is incorrect. The wording needs to be
changed.

- 143 -

11 August 2008

2. Call ToInteger(hour).

3. Call ToInteger(min).

4. Call ToInteger(sec).

5. Call ToInteger(ms).

6. Compute Result(2) * msPerHour + Result(3) * msPerMinute + Result(4) * msPerSecond +

Result(5), performing the arithmetic according to IEEE 754 rules (that is, as if using the

ECMAScript operators * and +).

7. Return Result(6).

15.9.1.12 MakeDay (year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be

ECMAScript number values. This operator functions as follows:

1. If year is not finite or month is not finite or date is not finite, return NaN.

2. Call ToInteger(year).

3. Call ToInteger(month).

4. Call ToInteger(date).

5. Compute Result(2) + floor(Result(3)/12).

6. Compute Result(3) modulo 12.

7. Find a value t such that YearFromTime(t) == Result(5) and MonthFromTime(t) == Result(6) and

DateFromTime(t) == 1; but if this is not possible (because some argument is out of range), return

NaN.

8. Compute Day(Result(7)) + Result(4) 1.

9. Return Result(8).

15.9.1.13 MakeDate (day, time)

The operator MakeDate calculates a number of milliseconds from its two arguments, which must be

ECMAScript number values. This operator functions as follows:

1. If day is not finite or time is not finite, return NaN.

2. Compute day msPerDay + time.

3. Return Result(2).

15.9.1.14 TimeClip (time)

The operator TimeClip calculates a number of milliseconds from its argument, which must be an

ECMAScript number value. This operator functions as follows:

1. If time is not finite, return NaN.

2. If abs(Result(1)) > 8.64 x 10
15

, return NaN.

3. Return an implementation-dependent choice of either ToInteger(Result(2)) or

ToInteger(Result(2)) + (+0).

(Adding a positive zero converts 0 to +0.)

NOTE

The point of step 3 is that an implementation is permitted a choice of internal representations of time

values, for example as a 64-bit signed integer or as a 64-bit floating-point value. Depending on the

implementation, this internal representation may or may not distinguish 0 and +0.

15.9.1.15 Date Time string format

The Simplified ISO 8601 format is as follows: YYYY-MM-DDTHH:mm:ss.sssTZ

Where the fields are as follows:

YYYY is the year in the Gregorian calendar

MM is the month of the year between 01 (January) and 12 (December)

DD is the day of the month between 01 and 31.

The ―T‖ appears literally in the string, to indicate the beginning of the time element, as specified

in ISO 8601.

HH is the number of complete hours that have passed since midnight

- 144 -

11 August 2008

mm is the number of complete minutes since the start of the hour

ss is the number of complete seconds since the start of the minute

The ‗.‘ (dot)

sss is the number of complete milliseconds since the start of the second.

Both the ‗.‘ And the milliseconds field are optional

TZ is the timezone specified as Z (for UTC) or either + or - followed by a time expression
HH:MM

Extended years

ECMAScript requires the ability to specify 6 digit years (extended years); approximately 285,616

years, either forward or backward, from 01 January, 1970 UTC. To represent years before 0 or after

9999, ISO 8601 permits the expansion of the year representation, but only by prior agreement

between the sender and the receiver. In thesimplified ECMAScript format such an expanded year

representation shall have 2 extra year digits and is always prefixed with a + or – sign with the

convention that year 0 is positive.

NOTE

This format includes date-only forms:

YYYY

YYYY-MM

YYYY-MM-DD

Time-only forms with an optional time zone appended:

THH:mm

THH:mm:ss

THH:mm:ss.sss

It also includes ―date-times‖ which could be any combination of the above.

All numbers must be base 10.

 Illegal values (out-of-bounds as well as syntax errors) in a format string means that the format

string is not a valid instance of this format.

As every day both starts and ends with midnight, the two notations 00:00 and 24:00 are

available to distinguish the two midnights that can be associated with one date. This means that the

following two notations refer to exactly the same point in time: 1995-02-04T24:00 and 1995-

02-05T00:00

There exists no international standard that specifies abbreviations for civi l time zones like CET,

EST, etc. and sometimes the same abbreviation is even used for two very different time zones. For

this reason, ISO 8601 and this format specifies numeric representations of date and time.

15.9.2 The Date Constructor Called as a Function

When Date is called as a function rather than as a constructor, it returns a string representing the current

time (UTC).

NOTE

The function call Date(…) is not equivalent to the object creation expression new Date(…) with the

same arguments.

15.9.2.1 Date ([year [, month [, date [, hours [, minutes [, seconds [, ms]]]]]]])

All of the arguments are optional; any arguments supplied are accepted but are completely ignored. A

string is created and returned as if by the expression (new Date()).toString() where Date is

the standard built-in constructor with that name and toString is the standard built-in method

Date.prototype.toString.

- 145 -

11 August 2008

15.9.3 The Date Constructor

When Date is called as part of a new expression, it is a constructor: it initialises the newly created

object.

15.9.3.1 new Date (year, month [, date [, hours [, minutes [, seconds [, ms]]]]])

When Date is called with two to seven arguments, it computes the date from year, month, and

(optionally) date, hours, minutes, seconds and ms.

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object,

the one that is the initial value of Date.prototype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to "Date".

The [[Extensible]] property of the newly constructed object is set to true.

The [[PrimitiveValue]] property of the newly constructed object is set as follows:

1. Call ToNumber(year).

2. Call ToNumber(month).

3. If date is supplied use ToNumber(date); else use 1.

4. If hours is supplied use ToNumber(hours); else use 0.

5. If minutes is supplied use ToNumber(minutes); else use 0.

6. If seconds is supplied use ToNumber(seconds); else use 0.

7. If ms is supplied use ToNumber(ms); else use 0.

8. If Result(1) is not NaN and 0 ToInteger(Result(1)) 99, Result(8) is

1900+ToInteger(Result(1)); otherwise, Result(8) is Result(1).

9. Compute MakeDay(Result(8), Result(2), Result(3)).

10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).

11. Compute MakeDate(Result(9), Result(10)).

12. Set the [[PrimitiveValue]] property of the newly constructed object to

TimeClip(UTC(Result(11))).

15.9.3.2 new Date (value)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object,

the one that is the initial value of Date.prototype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to "Date".

The [[Extensible]] property of the newly constructed object is set to true.

The [[PrimitiveValue]] property of the newly constructed object is set as follows:

1. Call ToPrimitive(value).

2. If Type(Result(1)) is String, then go to step 5.

3. Let V be ToNumber(Result(1)).

4. Set the [[PrimitiveValue]] property of the newly constructed object to TimeClip(V) and return.

5. Parse Result(1) as a date, in exactly the same manner as for the parse method (15.9.4.2); let V be

the time value for this date.

6. Go to step 4.

15.9.3.3 new Date ()

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object,

the one that is the initial value of Date.prototype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to "Date".

The [[Extensible]] property of the newly constructed object is set to true.

The [[PrimitiveValue]] property of the newly constructed object is set to the current time (UTC).

15.9.4 Properties of the Date Constructor

The value of the internal [[Prototype]] property of the Date constructor is the Function prototype object

(15.3.4).

- 146 -

11 August 2008

Besides the internal properties and the length property (whose value is 7), the Date constructor has the

following properties:

15.9.4.1 Date.prototype

The initial value of Date.prototype is the built-in Date prototype object (15.9.5).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.9.4.2 Date.parse (string)

The parse function applies the ToString operator to its argument and interprets the resulting string

as a date; it returns a number, the UTC time value corresponding to the date. The string may be

interpreted as a local time, a UTC time, or a time in some other time zone, depending on the contents

of the string. The function first attempts to parse the format of the string according to the rules called

out in Date Time String Sormat (15.9.1.15). If the string does not conform to that format the function

may fall back to any implementation-specific heuristics or implementation-specific date formats.

Unrecognizable strings or dates containing illegal element values in the format string shall cause

Date.parse to return NaN.

If x is any Date object whose milliseconds amount is zero within a particular implementation of

ECMAScript, then all of the following expressions should produce the same numeric value in that

implementation, if all the properties referenced have their initial values:

x.valueOf()

Date.parse(x.toString())

Date.parse(x.toUTCString())

However, the expression

Date.parse(x.toLocaleString())

is not required to produce the same number value as the preceding three expressions and, in general,

the value produced by Date.parse is implementation-dependent when given any string value that

could not be produced in that implementation by the toString or toUTCString method.

15.9.4.3 Date.UTC (year, month [, date [, hours [, minutes [, seconds [, ms]]]]])

When the UTC function is called with fewer than two arguments, the behaviour is implementation-

dependent. When the UTC function is called with two to seven arguments, it computes the date from

year, month and (optionally) date, hours, minutes, seconds and ms. The following steps are taken:

1. Call ToNumber(year).

2. Call ToNumber(month).

3. If date is supplied use ToNumber(date); else use 1.

4. If hours is supplied use ToNumber(hours); else use 0.

5. If minutes is supplied use ToNumber(minutes); else use 0.

6. If seconds is supplied use ToNumber(seconds); else use 0.

7. If ms is supplied use ToNumber(ms); else use 0.

8. If Result(1) is not NaN and 0 ToInteger(Result(1)) 99, Result(8) is

1900+ToInteger(Result(1)); otherwise, Result(8) is Result(1).

9. Compute MakeDay(Result(8), Result(2), Result(3)).

10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).

11. Return TimeClip(MakeDate(Result(9), Result(10))).

The length property of the UTC function is 7.

NOTE

The UTC function differs from the Date constructor in two ways: it returns a time value as a number,

rather than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.9.5 Properties of the Date Prototype Object

The Date prototype object is itself a Date object (its [[Class]] is "Date") whose value is NaN.

Deleted: DontEnum, DontDelete, ReadOnly

- 147 -

11 August 2008

The value of the internal [[Prototype]] property of the Date prototype object is the Object prototype

object (15.2.3.1).

In following descriptions of functions that are properties of the Date prototype object, the phrase ―this

Date object‖ refers to the object that is the this value for the invocation of the function. None of these

functions are generic; a TypeError exception is thrown if the this value is not an object for which the

value of the internal [[Class]] property is "Date". Also, the phrase ―this time value‖ refers to the

number value for the time represented by this Date object, that is, the value of the internal

[[PrimitiveValue]] property of this Date object.

15.9.5.1 Date.prototype.constructor

The initial value of Date.prototype.constructor is the built-in Date constructor.

15.9.5.2 Date.prototype.toString ()

This function returns a string value. The contents of the string are implementation -dependent, but are

intended to represent the Date in the current time zone in a convenient, human-readable form.

NOTE For any Date value d whose milliseconds amount is zero, the result of

Date.parse(d.toString()) is equal to d.valueOf(). See section 15.9.4.2.

15.9.5.3 Date.prototype.toDateString ()

This function returns a string value. The contents of the string are implementation -dependent, but are

intended to represent the ―date‖ portion of the Date in the current time zone in a convenient, human-

readable form.

15.9.5.4 Date.prototype.toTimeString ()

This function returns a string value. The contents of the string are implementation -dependent, but are

intended to represent the ―time‖ portion of the Date in the current time zone in a convenient, human-

readable form.

15.9.5.5 Date.prototype.toLocaleString ()

This function returns a string value. The contents of the string are implementation -dependent, but are

intended to represent the Date in the current time zone in a convenient, human-readable form that

corresponds to the conventions of the host environment‘s current locale.

NOTE

The first parameter to this function is likely to be used in a future version of this standard; it is

recommended that implementations do not use this parameter position for anything else.

15.9.5.6 Date.prototype.toLocaleDateString ()

This function returns a string value. The contents of the string are implementation -dependent, but are

intended to represent the ―date‖ portion of the Date in the current time zone in a convenient, human-

readable form that corresponds to the conventions of the host environment‘s current locale.

NOTE

The first parameter to this function is likely to be used in a future version of this standard; it is

recommended that implementations do not use this parameter position for anything else.

15.9.5.7 Date.prototype.toLocaleTimeString ()

This function returns a string value. The contents of the string are implementation -dependent, but are

intended to represent the ―time‖ portion of the Date in the current time zone in a convenient, human -

readable form that corresponds to the conventions of the host environment‘s current locale.

NOTE

The first parameter to this function is likely to be used in a future version of this standard; it is

recommended that implementations do not use this parameter position for anything else.

15.9.5.8 Date.prototype.valueOf ()

The valueOf function returns a number, which is this time value.

15.9.5.9 Date.prototype.getTime ()

1. If the this value is not an object whose [[Class]] property is "Date", throw a TypeError

exception.

Deleted: NOTE¶

It is intended that for any Date value d, the

result of
Date.prototype.parse(d.toString(

)) (15.9.4.2) is equal to d.

- 148 -

11 August 2008

2. Return this time value.

15.9.5.10 Date.prototype.getFullYear ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return YearFromTime(LocalTime(t)).

15.9.5.11 Date.prototype.getUTCFullYear ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return YearFromTime(t).

15.9.5.12 Date.prototype.getMonth ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return MonthFromTime(LocalTime(t)).

15.9.5.13 Date.prototype.getUTCMonth ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return MonthFromTime(t).

15.9.5.14 Date.prototype.getDate ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return DateFromTime(LocalTime(t)).

15.9.5.15 Date.prototype.getUTCDate ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return DateFromTime(t).

15.9.5.16 Date.prototype.getDay ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return WeekDay(LocalTime(t)).

15.9.5.17 Date.prototype.getUTCDay ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return WeekDay(t).

15.9.5.18 Date.prototype.getHours ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return HourFromTime(LocalTime(t)).

15.9.5.19 Date.prototype.getUTCHours ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return HourFromTime(t).

15.9.5.20 Date.prototype.getMinutes ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return MinFromTime(LocalTime(t)).

- 149 -

11 August 2008

15.9.5.21 Date.prototype.getUTCMinutes ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return MinFromTime(t).

15.9.5.22 Date.prototype.getSeconds ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return SecFromTime(LocalTime(t)).

15.9.5.23 Date.prototype.getUTCSeconds ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return SecFromTime(t).

15.9.5.24 Date.prototype.getMilliseconds ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return msFromTime(LocalTime(t)).

15.9.5.25 Date.prototype.getUTCMilliseconds ()

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return msFromTime(t).

15.9.5.26 Date.prototype.getTimezoneOffset ()

Returns the difference between local time and UTC time in minutes.

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return (t LocalTime(t)) / msPerMinute.

15.9.5.27 Date.prototype.setTime (time)

1. If the this value is not a Date object, throw a TypeError exception.

2. Call ToNumber(time).

3. Call TimeClip(Result(1)).

4. Set the [[PrimitiveValue]] property of the this value to Result(2).

5. Return the value of the [[PrimitiveValue]] property of the this value.

15.9.5.28 Date.prototype.setMilliseconds (ms)

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(ms).

3. Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), Result(2)).

4. Compute UTC(MakeDate(Day(t), Result(3))).

5. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(4)).

6. Return the value of the [[PrimitiveValue]] property of the this value.

15.9.5.29 Date.prototype.setUTCMilliseconds (ms)

1. Let t be this time value.

2. Call ToNumber(ms).

3. Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), Result(2)).

4. Compute MakeDate(Day(t), Result(3)).

5. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(4)).

6. Return the value of the [[PrimitiveValue]] property of the this value.

15.9.5.30 Date.prototype.setSeconds (sec [, ms])

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds().

- 150 -

11 August 2008

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(sec).

3. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

4. Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2), Result(3)).

5. Compute UTC(MakeDate(Day(t), Result(4))).

6. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(5)).

7. Return the value of the [[PrimitiveValue]] property of the this value.

The length property of the setSeconds method is 2.

15.9.5.31 Date.prototype.setUTCSeconds (sec [, ms])

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds().

1. Let t be this time value.

2. Call ToNumber(sec).

3. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

4. Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2), Result(3)).

5. Compute MakeDate(Day(t), Result(4)).

6. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(5)).

7. Return the value of the [[PrimitiveValue]] property of the this value.

The length property of the setUTCSeconds method is 2.

15.9.5.33 Date.prototype.setMinutes (min [, sec [, ms]])

If sec is not specified, this behaves as if sec were specified with the value getSeconds().

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds().

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(min).

3. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).

4. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

5. Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).

6. Compute UTC(MakeDate(Day(t), Result(5))).

7. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[PrimitiveValue]] property of the this value.

The length property of the setMinutes method is 3.

15.9.5.34 Date.prototype.setUTCMinutes (min [, sec [, ms]])

If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds().

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds().

1. Let t be this time value.

2. Call ToNumber(min).

3. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).

4. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

5. Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).

6. Compute MakeDate(Day(t), Result(5)).

7. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[PrimitiveValue]] property of the this value.

The length property of the setUTCMinutes method is 3.

15.9.5.35 Date.prototype.setHours (hour [, min [, sec [, ms]]])

If min is not specified, this behaves as if min were specified with the value getMinutes().

If sec is not specified, this behaves as if sec were specified with the value getSeconds().

If ms is not specified, this behaves as if ms were specified with the value getMilliseconds().

1. Let t be the result of LocalTime(this time value).

- 151 -

11 August 2008

2. Call ToNumber(hour).

3. If min is not specified, compute MinFromTime(t); otherwise, call ToNumber(min).

4. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).

5. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

7. Compute UTC(MakeDate(Day(t), Result(6))).

8. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(7)).

9. Return the value of the [[PrimitiveValue]] property of the this value.

The length property of the setHours method is 4.

15.9.5.36 Date.prototype.setUTCHours (hour [, min [, sec [, ms]]])

If min is not specified, this behaves as if min were specified with the value getUTCMinutes().

If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds().

If ms is not specified, this behaves as if ms were specified with the value getUTCMilliseconds().

1. Let t be this time value.

2. Call ToNumber(hour).

3. If min is not specified, compute MinFromTime(t); otherwise, call ToNumber(min).

4. If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).

5. If ms is not specified, compute msFromTime(t); otherwise, call ToNumber(ms).

6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

7. Compute MakeDate(Day(t), Result(6)).

8. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(7)).

9. Return the value of the [[PrimitiveValue]] property of the this value.

The length property of the setUTCHours method is 4.

15.9.5.36 Date.prototype.setDate (date)

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(date).

3. Compute MakeDay(YearFromTime(t), MonthFromTime(t), Result(2)).

4. Compute UTC(MakeDate(Result(3), TimeWithinDay(t))).

5. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(4)).

6. Return the value of the [[PrimitiveValue]] property of the this value.

15.9.5.37 Date.prototype.setUTCDate (date)

1. Let t be this time value.

2. Call ToNumber(date).

3. Compute MakeDay(YearFromTime(t), MonthFromTime(t), Result(2)).

4. Compute MakeDate(Result(3), TimeWithinDay(t)).

5. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(4)).

6. Return the value of the [[PrimitiveValue]] property of the this value.

15.9.5.38 Date.prototype.setMonth (month [, date])

If date is not specified, this behaves as if date were specified with the value getDate().

1. Let t be the result of LocalTime(this time value).

2. Call ToNumber(month).

3. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).

4. Compute MakeDay(YearFromTime(t), Result(2), Result(3)).

5. Compute UTC(MakeDate(Result(4), TimeWithinDay(t))).

6. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(5)).

7. Return the value of the [[PrimitiveValue]] property of the this value.

The length property of the setMonth method is 2.

15.9.5.39 Date.prototype.setUTCMonth (month [, date])

If date is not specified, this behaves as if date were specified with the value getUTCDate().

- 152 -

11 August 2008

1. Let t be this time value.

2. Call ToNumber(month).

3. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).

4. Compute MakeDay(YearFromTime(t), Result(2), Result(3)).

5. Compute MakeDate(Result(4), TimeWithinDay(t)).

6. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(5)).

7. Return the value of the [[PrimitiveValue]] property of the this value.

The length property of the setUTCMonth method is 2.

15.9.5.40 Date.prototype.setFullYear (year [, month [, date]])

If month is not specified, this behaves as if month were specified with the value getMonth().

If date is not specified, this behaves as if date were specified with the value getDate().

1. Let t be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.

2. Call ToNumber(year).

3. If month is not specified, compute MonthFromTime(t); otherwise, call ToNumber(month).

4. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).

5. Compute MakeDay(Result(2), Result(3), Result(4)).

6. Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).

7. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[PrimitiveValue]] property of the this value.

The length property of the setFullYear method is 3.

15.9.5.41 Date.prototype.setUTCFullYear (year [, month [, date]])

If month is not specified, this behaves as if month were specified with the value getUTCMonth().

If date is not specified, this behaves as if date were specified with the value getUTCDate().

1. Let t be this time value; but if this time value is NaN, let t be +0.

2. Call ToNumber(year).

3. If month is not specified, compute MonthFromTime(t); otherwise, call ToNumber(month).

4. If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).

5. Compute MakeDay(Result(2), Result(3), Result(4)).

6. Compute MakeDate(Result(5), TimeWithinDay(t)).

7. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[PrimitiveValue]] property of the this value.

The length property of the setUTCFullYear method is 3.

15.9.5.42 Date.prototype.toUTCString ()

This function returns a string value. The contents of the string are implementation-dependent, but are

intended to represent the Date in a convenient, human-readable form in UTC.

NOTE: the intent is produce string representation of a date that is more readeable than the format

specified in Section 15.9.1.15. It is not essential that the chosen format be unambiguous or easily

machine parsable. If an implementation does not have a preferred human-readable format it is

recommended to use the format called out in Section 15.9.1.15 but with a space rather than a ―T‖ used

to separate the date and time elements.

15.9.5.43 Date.prototype.toISOString ()

This function returns a string value. The format of the string is as called out in Date Time string

format (15.9.1.15). All fields are present in the string. The time zone is always UTC, denoted by the

suffix Z.

15.9.5.44 Date.prototype.toJSON (key)

This function returns the same string as Date.prototype.toISOString().

15.9.6 Properties of Date Instances

Date instances have no special properties beyond those inherited from the Date prototype object.

- 153 -

11 August 2008

15.10 RegExp (Regular Expression) Objects

A RegExp object contains a regular expression and the associated flags.

NOTE

The form and functionality of regular expressions is modelled after the regular expression facility in the

Perl 5 programming language.

15.10.1 Patterns

The RegExp constructor applies the following grammar to the input pattern string. An error occurs if the

grammar cannot interpret the string as an expansion of Pattern.

Syntax

Pattern ::

Disjunction

Disjunction ::

Alternative

 Alternative | Disjunction

Alternative ::
[empty]
Alternative Term

Term ::

Assertion

Atom

Atom Quantifier

Assertion ::
^

$
\ b

\ B

Quantifier ::

QuantifierPrefix

QuantifierPrefix ?

QuantifierPrefix ::
*

+
?

{ DecimalDigits }

{ DecimalDigits , }

{ DecimalDigits , DecimalDigits }

Atom ::

PatternCharacter
.

\ AtomEscape

CharacterClass

(Disjunction)

(? : Disjunction)

(? = Disjunction)

(? ! Disjunction)

PatternCharacter :: SourceCharacter but not any of:
^ $ \ . * + ? () [] { } |

- 154 -

11 August 2008

AtomEscape ::

DecimalEscape

CharacterEscape

CharacterClassEscape

CharacterEscape ::

ControlEscape

c ControlLetter

HexEscapeSequence

UnicodeEscapeSequence

IdentityEscape

ControlEscape :: one of
f n r t v

ControlLetter :: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

IdentityEscape ::

SourceCharacter but not IdentifierPart

DecimalEscape ::

DecimalIntegerLiteral [lookahead DecimalDigit]

CharacterClassEscape :: one of
d D s S w W

CharacterClass ::

[[lookahead {^}] ClassRanges]

[^ ClassRanges]

ClassRanges ::
[empty]
NonemptyClassRanges

NonemptyClassRanges ::

ClassAtom

ClassAtom NonemptyClassRangesNoDash

ClassAtom - ClassAtom ClassRanges

NonemptyClassRangesNoDash ::

ClassAtom

ClassAtomNoDash NonemptyClassRangesNoDash

ClassAtomNoDash - ClassAtom ClassRanges

ClassAtom ::
-

ClassAtomNoDash

ClassAtomNoDash ::

SourceCharacter but not one of \] -

\ ClassEscape

ClassEscape ::

DecimalEscape
b

CharacterEscape

CharacterClassEscape

- 155 -

11 August 2008

15.10.2 Pattern Semantics

A regular expression pattern is converted into an internal function using the process described below. An

implementation is encouraged to use more efficient algorithms than the ones listed below, as long as the

results are the same.

15.10.2.1 Notation

The descriptions below use the following variables:

Input is the string being matched by the regular expression pattern. The notation input[n] means the

nth character of input, where n can range between 0 (inclusive) and InputLength (exclusive).

InputLength is the number of characters in the Input string.

NcapturingParens is the total number of left capturing parentheses (i.e. the total number of times the

Atom :: (Disjunction) production is expanded) in the pattern. A left capturing parenthesis is any (

pattern character that is matched by the (terminal of the Atom :: (Disjunction) production.

IgnoreCase is the setting of the RegExp object's ignoreCase property.

Multiline is the setting of the RegExp object'‘s multiline property.

Furthermore, the descriptions below use the following internal data structures:

A CharSet is a mathematical set of characters.

A State is an ordered pair (endIndex, captures) where endIndex is an integer and captures is an

internal array of NcapturingParens values. States are used to represent partial match states in the

regular expression matching algorithms. The endIndex is one plus the index of the last input

character matched so far by the pattern, while captures holds the results of capturing parentheses.

The nth element of captures is either a string that represents the value obtained by the nth set of

capturing parentheses or undefined if the nth set of capturing parentheses hasn'‘t been reached yet.

Due to backtracking, many states may be in use at any time during the matching process.

A MatchResult is either a State or the special token failure that indicates that the match failed.

A Continuation function is an internal closure (i.e. an internal function with some arguments already

bound to values) that takes one State argument and returns a MatchResult result. If an internal

closure references variables bound in the function that creates the closure, the closure uses the

values that these variables had at the time the closure was created. The continuation attempts to

match the remaining portion (specified by the closure's already-bound arguments) of the pattern

against the input string, starting at the intermediate state given by its State argument. If the match

succeeds, the continuation returns the final State that it reached; if the match fails, the continuation

returns failure.

A Matcher function is an internal closure that takes two arguments -- a State and a Continuation -- and

returns a MatchResult result. The matcher attempts to match a middle subpattern (specified by the

closure's already-bound arguments) of the pattern against the input string, starting at the

intermediate state given by its State argument. The Continuation argument should be a closure that

matches the rest of the pattern. After matching the subpattern of a pattern to obtain a new State, the

matcher then calls Continuation on that state to test if the rest of the pattern can match as well. If it

can, the matcher returns the state returned by the continuation; if not, the matcher may try different

choices at its choice points, repeatedly calling Continuation until it either succeeds or all

possibilities have been exhausted.

An AssertionTester function is an internal closure that takes a State argument and returns a boolean

result. The assertion tester tests a specific condition (specified by the closure's already-bound

arguments) against the current place in the input string and returns true if the condition matched or

false if not.

An EscapeValue is either a character or an integer. An EscapeValue is used to denote the

interpretation of a DecimalEscape escape sequence: a character ch means that the escape sequence

is interpreted as the character ch, while an integer n means that the escape sequence is interpreted as

a backreference to the nth set of capturing parentheses.

15.10.2.2 Pattern

The production Pattern :: Disjunction evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.

- 156 -

11 August 2008

2. Return an internal closure that takes two arguments, a string str and an integer index, and

performs the following:

1. Let Input be the given string str. This variable will be used throughout the functions in

15.10.2.

2. Let InputLength be the length of Input. This variable will be used throughout the functions in

15.10.2.

3. Let c be a Continuation that always returns its State argument as a successful MatchResult.

4. Let cap be an internal array of NcapturingParens undefined values, indexed 1 through

NcapturingParens.

5. Let x be the State (index, cap).

6. Call m(x, c) and return its result.

Informative comments: A Pattern evaluates ("compiles") to an internal function value.

RegExp.prototype.exec can then apply this function to a string and an offset within the string

to determine whether the pattern would match starting at exactly that offset within the string, and, if it

does match, what the values of the capturing parentheses would be. The algorithms in 15.10.2 are

designed so that compiling a pattern may throw a SyntaxError exception; on the other hand, once the

pattern is successfully compiled, applying its result function to find a match in a string cannot throw

an exception (except for any host-defined exceptions that can occur anywhere such as out-of-

memory).

15.10.2.3 Disjunction

The production Disjunction :: Alternative evaluates by evaluating Alternative to obtain a Matcher and

returning that Matcher.

The production Disjunction :: Alternative | Disjunction evaluates as follows:

1. Evaluate Alternative to obtain a Matcher m1.

2. Evaluate Disjunction to obtain a Matcher m2.

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and

performs the following:

1. Call m1(x, c) and let r be its result.

2. If r isn't failure, return r.

3. Call m2(x, c) and return its result.

Informative comments: The | regular expression operator separates two alternatives. The pattern

first tries to match the left Alternative (followed by the sequel of the regular expression); if it fails, it

tries to match the right Disjunction (followed by the sequel of the regular expression). If the left

Alternative, the right Disjunction, and the sequel all have choice points, all choices in the sequel are

tried before moving on to the next choice in the left Alternative. If choices in the left Alternative are

exhausted, the right Disjunction is tried instead of the left Alternative. Any capturing parentheses

inside a portion of the pattern skipped by | produce undefined values instead of strings. Thus, for

example,

/a|ab/.exec("abc")

returns the result "a" and not "ab". Moreover,

/((a)|(ab))((c)|(bc))/.exec("abc")

returns the array

["abc", "a", "a", undefined, "bc", undefined, "bc"]

and not

["abc", "ab", undefined, "ab", "c", "c", undefined]

15.10.2.4 Alternative

The production Alternative :: [empty] evaluates by returning a Matcher that takes two arguments, a

State x and a Continuation c, and returns the result of calling c(x).

The production Alternative :: Alternative Term evaluates as follows:

- 157 -

11 August 2008

1. Evaluate Alternative to obtain a Matcher m1.

2. Evaluate Term to obtain a Matcher m2.

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and

performs the following:

1. Create a Continuation d that takes a State argument y and returns the result of calling m2(y, c).

2. Call m1(x, d) and return its result.

Informative comments: Consecutive Terms try to simultaneously match consecutive portions of the

input string. If the left Alternative, the right Term, and the sequel of the regular expression all have

choice points, all choices in the sequel are tried before moving on to the next choice in the right Term,

and all choices in the right Term are tried before moving on to the next choice in the left Alternative.

15.10.2.5 Term

The production Term :: Assertion evaluates by returning an internal Matcher closure that takes two

arguments, a State x and a Continuation c, and performs the following:

1. Evaluate Assertion to obtain an AssertionTester t.

2. Call t(x) and let r be the resulting boolean value.

3. If r is false, return failure.

4. Call c(x) and return its result.

The production Term :: Atom evaluates by evaluating Atom to obtain a Matcher and returning that

Matcher.

The production Term :: Atom Quantifier evaluates as follows:

1. Evaluate Atom to obtain a Matcher m.

2. Evaluate Quantifier to obtain the three results: an integer min, an integer (or) max, and boolean

greedy.

3. If max is finite and less than min, then throw a SyntaxError exception.

4. Let parenIndex be the number of left capturing parentheses in the entire regular expression that

occur to the left of this production expansion's Term. This is the total number of times the Atom ::

(Disjunction) production is expanded prior to this production's Term plus the total number of

Atom :: (Disjunction) productions enclosing this Term.

5. Let parenCount be the number of left capturing parentheses in the expansion of this production's

Atom. This is the total number of Atom :: (Disjunction) productions enclosed by this

production's Atom.

6. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and

performs the following:

1. Call RepeatMatcher(m, min, max, greedy, x, c, parenIndex, parenCount) and return its result.

The internal helper function RepeatMatcher takes eight parameters, a Matcher m, an integer min, an

integer (or) max, a boolean greedy, a State x, a Continuation c, an integer parenIndex, and an

integer parenCount, and performs the following:

1. If max is zero, then call c(x) and return its result.

2. Create an internal Continuation closure d that takes one State argument y and performs the

following:

If min is zero and y's endIndex is equal to x's endIndex, then return failure.

If min is zero then let min2 be zero; otherwise let min2 be min–1.

If max is , then let max2 be ; otherwise let max2 be max–1.

Call RepeatMatcher(m, min2, max2, greedy, y, c, parenIndex, parenCount) and return its result.

3. Let cap be a fresh copy of x's captures internal array.

4. For every integer k that satisfies parenIndex < k and k parenIndex+parenCount, set cap[k] to

undefined.

5. Let e be x's endIndex.

6. Let xr be the State (e, cap).

7. If min is not zero, then call m(xr, d) and return its result.

8. If greedy is true, then go to step 12.

- 158 -

11 August 2008

9. Call c(x) and let z be its result.

10. If z is not failure, return z.

11. Call m(xr, d) and return its result.

12. Call m(xr, d) and let z be its result.

13. If z is not failure, return z.

14. Call c(x) and return its result.

Informative comments: An Atom followed by a Quantifier is repeated the number of times specified

by the Quantifier. A quantifier can be non-greedy, in which case the Atom pattern is repeated as few

times as possible while still matching the sequel, or it can be greedy, in which case the Atom pattern is

repeated as many times as possible while still matching the sequel. The Atom pattern is repeated rather

than the input string that it matches, so different repetitions of the Atom can match different input

substrings.

If the Atom and the sequel of the regular expression all have choice points, the Atom is first matched

as many (or as few, if non-greedy) times as possible. All choices in the sequel are tried before moving

on to the next choice in the last repetition of Atom. All choices in the last (n
th

) repetition of Atom are

tried before moving on to the next choice in the next-to-last (n–1)
st

 repetition of Atom; at which point

it may turn out that more or fewer repetitions of Atom are now possible; these are exhausted (again,

starting with either as few or as many as possible) before moving on to the next choice in the (n-1)
st

repetition of Atom and so on.

Compare

/a[a-z]{2,4}/.exec("abcdefghi")

which returns "abcde" with

/a[a-z]{2,4}?/.exec("abcdefghi")

which returns "abc".

Consider also

/(aa|aabaac|ba|b|c)*/.exec("aabaac")

which, by the choice point ordering above, returns the array

["aaba", "ba"]

and not any of:

["aabaac", "aabaac"]

["aabaac", "c"]

The above ordering of choice points can be used to write a regular expression that calculates the

greatest common divisor of two numbers (represented in unary notation). The following example

calculates the gcd of 10 and 15:

"aaaaaaaaaa,aaaaaaaaaaaaaaa".replace(/^(a+)\1*,\1+$/,"$1")

which returns the gcd in unary notation "aaaaa".

Step 4 of the RepeatMatcher clears Atom's captures each time Atom is repeated. We can see its

behaviour in the regular expression

/(z)((a+)?(b+)?(c))*/.exec("zaacbbbcac")

which returns the array

["zaacbbbcac", "z", "ac", "a", undefined, "c"]

and not

["zaacbbbcac", "z", "ac", "a", "bbb", "c"]

because each iteration of the outermost * clears all captured strings contained in the quantified Atom,

which in this case includes capture strings numbered 2, 3, and 4.

- 159 -

11 August 2008

Step 1 of the RepeatMatcher's closure d states that, once the minimum number of repetitions has been

satisfied, any more expansions of Atom that match the empty string are not considered for further

repetitions. This prevents the regular expression engine from falling into an infinite loop on patterns

such as:

/(a*)*/.exec("b")

or the slightly more complicated:

/(a*)b\1+/.exec("baaaac")

which returns the array

["b", ""]

15.10.2.6 Assertion

The production Assertion :: ^ evaluates by returning an internal AssertionTester closure that takes a

State argument x and performs the following:

1. Let e be x's endIndex.

2. If e is zero, return true.

3. If Multiline is false, return false.

4. If the character Input[e–1] is one of LineTerminator, return true.

5. Return false.

The production Assertion :: $ evaluates by returning an internal AssertionTester closure that takes a

State argument x and performs the following:

1. Let e be x's endIndex.

2. If e is equal to InputLength, return true.

3. If multiline is false, return false.

4. If the character Input[e] is one of LineTerminator, return true.

5. Return false.

The production Assertion :: \ b evaluates by returning an internal AssertionTester closure that takes

a State argument x and performs the following:

1. Let e be x's endIndex.

2. Call IsWordChar(e–1) and let a be the boolean result.

3. Call IsWordChar(e) and let b be the boolean result.

4. If a is true and b is false, return true.

5. If a is false and b is true, return true.

6. Return false.

The production Assertion :: \ B evaluates by returning an internal AssertionTester closure that takes

a State argument x and performs the following:

1. Let e be x's endIndex.

2. Call IsWordChar(e–1) and let a be the boolean result.

3. Call IsWordChar(e) and let b be the boolean result.

4. If a is true and b is false, return false.

5. If a is false and b is true, return false.

6. Return true.

The internal helper function IsWordChar takes an integer parameter e and performs the following:

1. If e == –1 or e == InputLength, return false.

2. Let c be the character Input[e].

3. If c is one of the sixty-three characters in the table below, return true.

A b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Deleted: the line terminator characters
<LF>, <CR>, <LS>, or <PS>

Deleted: the line terminator characters

<LF>, <CR>, <LS>, or <PS>

- 160 -

11 August 2008

0 1 2 3 4 5 6 7 8 9 _

4. Return false.

15.10.2.7 Quantifier

The production Quantifier :: QuantifierPrefix evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or) max.

2. Return the three results min , max, and true.

The production Quantifier :: QuantifierPrefix ? evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or) max.

2. Return the three results min , max, and false.

The production QuantifierPrefix :: * evaluates by returning the two results 0 and .

The production QuantifierPrefix :: + evaluates by returning the two results 1 and .

The production QuantifierPrefix :: ? evaluates by returning the two results 0 and 1.

The production QuantifierPrefix :: { DecimalDigits } evaluates as follows:

1. Let i be the MV of DecimalDigits (see 7.8.3).

2. Return the two results i and i.

The production QuantifierPrefix :: { DecimalDigits , } evaluates as follows:

1. Let i be the MV of DecimalDigits.

2. Return the two results i and .

The production QuantifierPrefix :: { DecimalDigits , DecimalDigits } evaluates as follows:

1. Let i be the MV of the first DecimalDigits.

2. Let j be the MV of the second DecimalDigits.

3. Return the two results i and j.

15.10.2.8 Atom

The production Atom :: PatternCharacter evaluates as follows:

1. Let ch be the character represented by PatternCharacter.

2. Let A be a one-element CharSet containing the character ch.

3. Call CharacterSetMatcher(A, false) and return its Matcher result.

The production Atom :: . evaluates as follows:

1. Let A be the set of all characters except LineTerminator.

2. Call CharacterSetMatcher(A, false) and return its Matcher result.

The production Atom :: \ AtomEscape evaluates by evaluating AtomEscape to obtain a Matcher and

returning that Matcher.

The production Atom :: CharacterClass evaluates as follows:

1. Evaluate CharacterClass to obtain a CharSet A and a boolean invert.

2. Call CharacterSetMatcher(A, invert) and return its Matcher result.

The production Atom :: (Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.

2. Let parenIndex be the number of left capturing parentheses in the entire regular expression that

occur to the left of this production expansion's initial left parenthesis. This is the total number of

times the Atom :: (Disjunction) production is expanded prior to this production's Atom plus the

total number of Atom :: (Disjunction) productions enclosing this Atom.

Deleted: the four line terminator characters <LF>,
<CR>, <LS>, or <PS>

- 161 -

11 August 2008

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and

performs the following:

1. Create an internal Continuation closure d that takes one State argument y and performs the

following:

Let cap be a fresh copy of y's captures internal array.

Let xe be x's endIndex.

Let ye be y's endIndex.

Let s be a fresh string whose characters are the characters of Input at positions xe (inclusive)

through ye (exclusive).

Set cap[parenIndex+1] to s.

Let z be the State (ye, cap).

Call c(z) and return its result.

2. Call m(x, d) and return its result.

The production Atom :: (? : Disjunction) evaluates by evaluating Disjunction to obtain a

Matcher and returning that Matcher.

The production Atom :: (? = Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.

2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and

performs the following:

1. Let d be a Continuation that always returns its State argument as a successful MatchResult.

2. Call m(x, d) and let r be its result.

3. If r is failure, return failure.

4. Let y be r's State.

5. Let cap be y's captures internal array.

6. Let xe be x's endIndex.

7. Let z be the State (xe, cap).

8. Call c(z) and return its result.

The production Atom :: (? ! Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.

2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and

performs the following:

1. Let d be a Continuation that always returns its State argument as a successful MatchResult.

2. Call m(x, d) and let r be its result.

3. If r isn't failure, return failure.

4. Call c(x) and return its result.

The internal helper function CharacterSetMatcher takes two arguments, a CharSet A and a boolean

flag invert, and performs the following:

1. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and

performs the following:

1. Let e be x's endIndex.

2. If e == InputLength, return failure.

3. Let c be the character Input[e].

4. Let cc be the result of Canonicalize(c).

5. If invert is true, go to step 8.

6. If there does not exist a member a of set A such that Canonicalize(a) == cc, then return

failure.

7. Go to step 9.

8. If there exists a member a of set A such that Canonicalize(a) == cc, then return failure.

9. Let cap be x's captures internal array.

10. Let y be the State (e+1, cap).

11. Call c(y) and return its result.

- 162 -

11 August 2008

The internal helper function Canonicalize takes a character parameter ch and performs the following:

1. If IgnoreCase is false, return ch.

2. Let u be ch converted to upper case as if by calling the standard built-in method

String.prototype.toUpperCase on the one-character string ch.

3. If u does not consist of a single character, return ch.

4. Let cu be u's character.

5. If ch's code point value is greater than or equal to decimal 128 and cu 's code point value is less

than decimal 128, then return ch.

6. Return cu.

Informative comments: Parentheses of the form (Disjunction) serve both to group the

components of the Disjunction pattern together and to save the result of the match. The result can be

used either in a backreference (\ followed by a nonzero decimal number), referenced in a replace

string, or returned as part of an array from the regular expression matching function. To inhibit the

capturing behaviour of parentheses, use the form (?: Disjunction) instead.

The form (?= Disjunction) specifies a zero-width positive lookahead. In order for it to succeed, the

pattern inside Disjunction must match at the current position, but the current position is not advanced

before matching the sequel. If Disjunction can match at the current position in several ways, only the

first one is tried. Unlike other regular expression operators, there is no backtracking into a (?= form

(this unusual behaviour is inherited from Perl). This only matters when the Disjunction contains

capturing parentheses and the sequel of the pattern contains backreferences to those captures.

For example,

/(?=(a+))/.exec("baaabac")

matches the empty string immediately after the first b and therefore returns the array:

["", "aaa"]

To illustrate the lack of backtracking into the lookahead, consider:

/(?=(a+))a*b\1/.exec("baaabac")

This expression returns

["aba", "a"]

and not:

["aaaba", "a"]

The form (?! Disjunction) specifies a zero-width negative lookahead. In order for it to succeed,

the pattern inside Disjunction must fail to match at the current position. The current position is not

advanced before matching the sequel. Disjunction can contain capturing parentheses, but

backreferences to them only make sense from within Disjunction itself. Backreferences to these

capturing parentheses from elsewhere in the pattern always return undefined because the negative

lookahead must fail for the pattern to succeed. For example,

/(.*?)a(?!(a+)b\2c)\2(.*)/.exec("baaabaac")

looks for an a not immediately followed by some positive number n of a's, a b, another n a's

(specified by the first \2) and a c. The second \2 is outside the negative lookahead, so it matches

against undefined and therefore always succeeds. The whole expression returns the array:

["baaabaac", "ba", undefined, "abaac"]

In case-insignificant matches all characters are implicitly converted to upper case immediately before

they are compared. However, if converting a character to upper case would expand that character into

more than one character (such as converting "ß" (\u00DF) into "SS"), then the character is left as-

is instead. The character is also left as-is if it is not an ASCII character but converting it to upper case

would make it into an ASCII character. This prevents Unicode characters such as \u0131 and

\u017F from matching regular expressions such as /[a-z]/i, which are only intended to match

- 163 -

11 August 2008

ASCII letters. Furthermore, if these conversions were allowed, then /[^\W]/i would match each of

a, b, …, h, but not i or s.

15.10.2.9 AtomEscape

The production AtomEscape :: DecimalEscape evaluates as follows:

1. Evaluate DecimalEscape to obtain an EscapeValue E.

2. If E is not a character then go to step 6.

3. Let ch be E's character.

4. Let A be a one-element CharSet containing the character ch.

5. Call CharacterSetMatcher(A, false) and return its Matcher result.

6. E must be an integer. Let n be that integer.

7. If n=0 or n>NCapturingParens then throw a SyntaxError exception.

8. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and

performs the following:

1. Let cap be x's captures internal array.

2. Let s be cap[n].

3. If s is undefined, then call c(x) and return its result.

4. Let e be x's endIndex.

5. Let len be s's length.

6. Let f be e+len.

7. If f>InputLength, return failure.

8. If there exists an integer i between 0 (inclusive) and len (exclusive) such that

Canonicalize(s[i]) is not the same character as Canonicalize(Input [e+i]), then return failure.

9. Let y be the State (f, cap).

10. Call c(y) and return its result.

The production AtomEscape :: CharacterEscape evaluates as follows:

1. Evaluate CharacterEscape to obtain a character ch.

2. Let A be a one-element CharSet containing the character ch.

3. Call CharacterSetMatcher(A, false) and return its Matcher result.

The production AtomEscape :: CharacterClassEscape evaluates as follows:

1. Evaluate CharacterClassEscape to obtain a CharSet A.

2. Call CharacterSetMatcher(A, false) and return its Matcher result.

Informative comments: An escape sequence of the form \ followed by a nonzero decimal number n

matches the result of the nth set of capturing parentheses (see 15.10.2.11). It is an error if the regular

expression has fewer than n capturing parentheses. If the regular expression has n or more capturing

parentheses but the nth one is undefined because it hasn't captured anything, then the backreference

always succeeds.

15.10.2.10 CharacterEscape

The production CharacterEscape :: ControlEscape evaluates by returning the character according to

the table below:

ControlEscape Unicode Value Name Symbol

t \u0009 horizontal tab <HT>

n \u000A line feed (new line) <LF>

v \u000B vertical tab <VT>

f \u000C form feed <FF>

r \u000D carriage return <CR>

The production CharacterEscape :: c ControlLetter evaluates as follows:

1. Let ch be the character represented by ControlLetter.

2. Let i be ch's code point value.

- 164 -

11 August 2008

3. Let j be the remainder of dividing i by 32.

4. Return the Unicode character numbered j.

The production CharacterEscape :: HexEscapeSequence evaluates by evaluating the CV of the

HexEscapeSequence (see 7.8.4) and returning its character result.

The production CharacterEscape :: UnicodeEscapeSequence evaluates by evaluating the CV of the

UnicodeEscapeSequence (see 7.8.4) and returning its character result.

The production CharacterEscape :: IdentityEscape evaluates by returning the character represented by

IdentityEscape.

15.10.2.11 DecimalEscape

The production DecimalEscape :: DecimalIntegerLiteral [lookahead DecimalDigit] evaluates as follows.

1. Let i be the MV of DecimalIntegerLiteral.

2. If i is zero, return the EscapeValue consisting of a <NUL> character (Unicode value 0000).

3. Return the EscapeValue consisting of the integer i.

The definition of ―the MV of DecimalIntegerLiteral‖ is in 7.8.3.

Informative comments: If \ is followed by a decimal number n whose first digit is not 0, then the

escape sequence is considered to be a backreference. It is an error if n is greater than the total number

of left capturing parentheses in the entire regular expression. \0 represents the NUL character and

cannot be followed by a decimal digit.

15.10.2.12 CharacterClassEscape

The production CharacterClassEscape :: d evaluates by returning the ten-element set of characters

containing the characters 0 through 9 inclusive.

The production CharacterClassEscape :: D evaluates by returning the set of all characters not

included in the set returned by CharacterClassEscape :: d.

The production CharacterClassEscape :: s evaluates by returning the set of characters containing the

characters that are on the right-hand side of the WhiteSpace (7.2) or LineTerminator (7.3) productions.

The production CharacterClassEscape :: S evaluates by returning the set of all characters not

included in the set returned by CharacterClassEscape :: s.

The production CharacterClassEscape :: w evaluates by returning the set of characters containing the

sixty-three characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

The production CharacterClassEscape :: W evaluates by returning the set of all characters not

included in the set returned by CharacterClassEscape :: w.

15.10.2.13 CharacterClass

The production CharacterClass :: [[lookahead {^}] ClassRanges] evaluates by evaluating

ClassRanges to obtain a CharSet and returning that CharSet and the boolean false.

The production CharacterClass :: [^ ClassRanges] evaluates by evaluating ClassRanges to

obtain a CharSet and returning that CharSet and the boolean true.

15.10.2.14 ClassRanges

The production ClassRanges :: [empty] evaluates by returning the empty CharSet.

The production ClassRanges :: NonemptyClassRanges evaluates by evaluating NonemptyClassRanges

to obtain a CharSet and returning that CharSet.

Comment [pL56]: From DEC:
This class is pretty close to useless in its current form. We

could make it more useful by having it match ECMAScript

identifier characters. It could at least them be used to
process ECMAScript programs.

Deleted: Q

- 165 -

11 August 2008

15.10.2.15 NonemptyClassRanges

The production NonemptyClassRanges :: ClassAtom evaluates by evaluating ClassAtom to obtain a

CharSet and returning that CharSet.

The production NonemptyClassRanges :: ClassAtom NonemptyClassRangesNoDash evaluates as

follows:

1. Evaluate ClassAtom to obtain a CharSet A.

2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.

3. Return the union of CharSets A and B.

The production NonemptyClassRanges :: ClassAtom - ClassAtom ClassRanges evaluates as follows:

1. Evaluate the first ClassAtom to obtain a CharSet A.

2. Evaluate the second ClassAtom to obtain a CharSet B.

3. Evaluate ClassRanges to obtain a CharSet C.

4. Call CharacterRange(A, B) and let D be the resulting CharSet.

5. Return the union of CharSets D and C.

The internal helper function CharacterRange takes two CharSet parameters A and B and performs the

following:

1. If A does not contain exactly one character or B does not contain exactly one character then throw

a SyntaxError exception.

2. Let a be the one character in CharSet A.

3. Let b be the one character in CharSet B.

4. Let i be the code point value of character a.

5. Let j be the code point value of character b.

6. If I > j then throw a SyntaxError exception.

7. Return the set containing all characters numbered i through j, inclusive.

15.10.2.16 NonemptyClassRangesNoDash

The production NonemptyClassRangesNoDash :: ClassAtom evaluates by evaluating ClassAtom to

obtain a CharSet and returning that CharSet.

The production NonemptyClassRangesNoDash :: ClassAtomNoDash NonemptyClassRangesNoDash

evaluates as follows:

1. Evaluate ClassAtomNoDash to obtain a CharSet A.

2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.

3. Return the union of CharSets A and B.

The production NonemptyClassRangesNoDash :: ClassAtomNoDash - ClassAtom ClassRanges

evaluates as follows:

1. Evaluate ClassAtomNoDash to obtain a CharSet A.

2. Evaluate ClassAtom to obtain a CharSet B.

3. Evaluate ClassRanges to obtain a CharSet C.

4. Call CharacterRange(A, B) and let D be the resulting CharSet.

5. Return the union of CharSets D and C.

Informative comments: ClassRanges can expand into single ClassAtoms and/or ranges of two

ClassAtoms separated by dashes. In the latter case the ClassRanges includes all characters between the

first ClassAtom and the second ClassAtom, inclusive; an error occurs if either ClassAtom does not

represent a single character (for example, if one is \w) or if the first ClassAtom's code point value is

greater than the second ClassAtom's code point value.

Even if the pattern ignores case, the case of the two ends of a range is significant in determining

which characters belong to the range. Thus, for example, the pattern /[E-F]/i matches only the

letters E, F, e, and f, while the pattern /[E-f]/i matches all upper and lower-case ASCII letters as

well as the symbols [, \,], ^, _, and `.

- 166 -

11 August 2008

A - character can be treated literally or it can denote a range. It is treated literally if it is the first or

last character of ClassRanges, the beginning or end limit of a range specification, or immediately

follows a range specification.

15.10.2.17 ClassAtom

The production ClassAtom :: - evaluates by returning the CharSet containing the one character -.

The production ClassAtom :: ClassAtomNoDash evaluates by evaluating ClassAtomNoDash to obtain

a CharSet and returning that CharSet.

15.10.2.18 ClassAtomNoDash

The production ClassAtomNoDash :: SourceCharacter but not one of \] - evaluates by returning a

one-element CharSet containing the character represented by SourceCharacter.

The production ClassAtomNoDash :: \ ClassEscape evaluates by evaluating ClassEscape to obtain a

CharSet and returning that CharSet.

15.10.2.19 ClassEscape

The production ClassEscape :: DecimalEscape evaluates as follows:

1. Evaluate DecimalEscape to obtain an EscapeValue E.

2. If E is not a character then throw a SyntaxError exception.

3. Let ch be E's character.

4. Return the one-element CharSet containing the character ch.

The production ClassEscape :: b evaluates by returning the CharSet containing the one character

<BS> (Unicode value 0008).

The production ClassEscape :: CharacterEscape evaluates by evaluating CharacterEscape to obtain a

character and returning a one-element CharSet containing that character.

The production ClassEscape :: CharacterClassEscape evaluates by evaluating CharacterClassEscape

to obtain a CharSet and returning that CharSet.

Informative comments: A ClassAtom can use any of the escape sequences that are allowed in the rest

of the regular expression except for \b, \B, and backreferences. Inside a CharacterClass, \b means

the backspace character, while \B and backreferences raise errors. Using a backreference inside a

ClassAtom causes an error.

15.10.3 The RegExp Constructor Called as a Function

15.10.3.1 RegExp(pattern, flags)

If pattern is an object R whose [[Class]] property is "RegExp" and flags is undefined, then return R

unchanged. Otherwise call the standard built-in RegExp constructor (15.10.4.1), passing it the pattern

and flags arguments and return the object constructed by that constructor.

15.10.4 The RegExp Constructor

When RegExp is called as part of a new expression, it is a constructor: it initialises the newly created

object.

15.10.4.1 new RegExp(pattern, flags)

If pattern is an object R whose [[Class]] property is "RegExp" and flags is undefined, then let P be

the pattern used to construct R and let F be the flags used to construct R. If pattern is an object R

whose [[Class]] property is "RegExp" and flags is not undefined, then throw a TypeError

exception. Otherwise, let P be the empty string if pattern is undefined and ToString(pattern)

otherwise, and let F be the empty string if flags is undefined and ToString(flags) otherwise.

The global property of the newly constructed object is set to a Boolean value that is true if F

contains the character “g” and false otherwise.

The ignoreCase property of the newly constructed object is set to a Boolean value that is true if F

contains the character “i” and false otherwise.

- 167 -

11 August 2008

The multiline property of the newly constructed object is set to a Boolean value that is true if F

contains the character “m” and false otherwise.

If F contains any character other than “g”, “i”, or “m”, or if it contains the same one more than

once, then throw a SyntaxError exception.

If P's characters do not have the form Pattern, then throw a SyntaxError exception. Otherwise let the

newly constructed object have a [[Match]] property obtained by evaluating ("compiling") Pattern.

Note that evaluating Pattern may throw a SyntaxError exception. (Note: if pattern is a StringLiteral,

the usual escape sequence substitutions are performed before the string is processed by RegExp. If

pattern must contain an escape sequence to be recognised by RegExp, the ―\‖ character must be

escaped within the StringLiteral to prevent its being removed when the contents of the StringLiteral

are formed.)

The source property of the newly constructed object is set to an implementation-defined string value

in the form of a Pattern based on P.

The lastIndex property of the newly constructed object is set to 0.

The [[Prototype]] property of the newly constructed object is set to the original RegExp prototype

object, the one that is the initial value of RegExp.prototype.

The [[Class]] property of the newly constructed object is set to "RegExp".

15.10.5 Properties of the RegExp Constructor

The value of the internal [[Prototype]] property of the RegExp constructor is the Function prototype

object (15.3.4).

Besides the internal properties and the length property (whose value is 2), the RegExp constructor has

the following properties:

15.10.5.1 RegExp.prototype

The initial value of RegExp.prototype is the RegExp prototype object (15.10.6).

This property shall have the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]:

false }.

15.10.6 Properties of the RegExp Prototype Object

The value of the internal [[Prototype]] property of the RegExp prototype object is the Object prototype.

The RegExp prototype object is itself a regular expression object; its [[Class]] is "RegExp"..

The RegExp prototype object does not have a valueOf property of its own; however, it inherits the

valueOf property from the Object prototype object.

In the following descriptions of functions that are properties of the RegExp prototype object, the phrase

―this RegExp object‖ refers to the object that is the this value for the invocation of the function; a

TypeError exception is thrown if the this value is not an object for which the value of the internal

[[Class]] property is "RegExp".

15.10.6.1 RegExp.prototype.constructor

The initial value of RegExp.prototype.constructor is the built-in RegExp constructor.

15.10.6.2 RegExp.prototype.exec(string)

Performs a regular expression match of string against the regular expression and returns an Array

object containing the results of the match, or null if the string did not match

The string ToString(string) is searched for an occurrence of the regular expression pattern as follows:

1. Let S be the value of ToString(string).

2. Let length be the length of S.

3. Let lastIndex be the value of the lastIndex property.

4. Let i be the value of ToInteger(lastIndex).

5. If the global property is false, let i = 0.

6. If I < 0 or I > length then set lastIndex to 0 and return null.

Deleted: DontEnum, DontDelete,

ReadOnly

Deleted: The value of the internal [[Class]]
property of the RegExp prototype object is
"Object"

Comment [pL57]: From AWB:
Do any other properties, eg source, need to be

specified?

- 168 -

11 August 2008

7. Call [[Match]], giving it the arguments S and i. If [[Match]] returned failure, go to step 8;

otherwise let r be its State result and go to step 10.

8. Let i = i+1.

9. Go to step 6.

10. Let e be r's endIndex value.

11. If the global property is true, set lastIndex to e.

12. Let n be the length of r's captures array. (This is the same value as 15.10.2.1's

NCapturingParens.)

13. Return a new array with the following properties:

The index property is set to the position of the matched substring within the complete string S.

The input property is set to S.

The length property is set to n + 1.

The 0 property is set to the matched substring (i.e. the portion of S between offset i inclusive and

offset e exclusive).

For each integer i such that I > 0 and I n, set the property named ToString(i) to the i
th

 element of

r's captures array.

15.10.6.3 RegExp.prototype.test(string)

Equivalent to the expression RegExp.prototype.exec(string) != null.

15.10.6.4 RegExp.prototype.toString()

Let src be a string in the form of a Pattern representing the current regular expression. src may or may

not be identical to the source property or to the source code supplied to the RegExp constructor;

however, if src were supplied to the RegExp constructor along with the current regular expression's

flags, the resulting regular expression must behave identically to the current regular expression.

toString returns a string value formed by concatenating the strings "/", src, and "/"; plus "g" if

the global property is true, "i" if the ignoreCase property is true, and "m" if the multiline

property is true.

NOTE

An implementation may choose to take advantage of src being allowed to be different from the source

passed to the RegExp constructor to escape special characters in src. For example, in the regular

expression obtained from new RegExp("/"), src could be, among other possibilities, "/" or

"\/". The latter would permit the entire result ("/\//") of the toString call to have the form

RegularExpressionLiteral.

15.10.7 Properties of RegExp Instances

RegExp instances inherit properties from their [[Prototype]] object as specified above and also have the

following properties.

15.10.7.1 source

The value of the source property is string in the form of a Pattern representing the current regular

expression. This property shall have the attributes { [[Writable]]: false, [[Enumerable]]: false,

[[Flexible]]: false }.

15.10.7.2 global

The value of the global property is a Boolean value indicating whether the flags contained the

character “g”. This property shall have the attributes { [[Writable]]: false, [[Enumerable]]: false,

[[Flexible]]: false }.

15.10.7.3 ignoreCase

The value of the ignoreCase property is a Boolean value indicating whether the flags contained the

character “i”. This property shall have the attributes { [[Writable]]: false, [[Enumerable]]: false,

[[Flexible]]: false }.

Deleted: DontDelete, ReadOnly, DontEnum

Deleted: DontDelete, ReadOnly, DontEnum

Deleted: DontDelete, ReadOnly, DontEnum

- 169 -

11 August 2008

15.10.7.4 multiline

The value of the multiline property is a Boolean value indicating whether the flags contained the

character “m”. This property shall have the attributes { [[Writable]]: false, [[Enumerable]]: false,

[[Flexible]]: false }.

15.10.7.5 lastIndex

The value of the lastIndex property is an integer that specifies the string position at which to start

the next match. This property shall have the attributes { [[Writable]]: false, [[Enumerable]]: false,

[[Flexible]]: false }.

15.11 Error Objects

Instances of Error objects are thrown as exceptions when runtime errors occur. The Error objects may also

serve as base objects for user-defined exception classes.

15.11.1 The Error Constructor Called as a Function

When Error is called as a function rather than as a constructor, it creates and initialises a new Error

object. Thus the function call Error(…) is equivalent to the object creation expression new

Error(…) with the same arguments.

15.11.1.1 Error (message)

The [[Prototype]] property of the newly constructed object is set to the original Error prototype object,

the one that is the initial value of Error.prototype (15.11.3.1).

The [[Class]] property of the newly constructed object is set to "Error".

The [[Extensible]] property of the newly constructed object is set to true.

If the argument message is not undefined, the message property of the newly constructed object is

set to ToString(message). Otherwise, the message property is set to the empty string.

15.11.2 The Error Constructor

When Error is called as part of a new expression, it is a constructor: it initialises the newly created

object.

15.11.2.1 new Error (message)

The [[Prototype]] property of the newly constructed object is set to the original Error prototype object,

the one that is the initial value of Error.prototype (15.11.3.1).

The [[Class]] property of the newly constructed Error object is set to "Error".

The [[Extensible]] property of the newly constructed object is set to true.

If the argument message is not undefined, the message property of the newly constructed object is

set to ToString(message).

15.11.3 Properties of the Error Constructor

The value of the internal [[Prototype]] property of the Error constructor is the Function prototype object

(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Error constructor has

the following property:

15.11.3.1 Error.prototype

The initial value of Error.prototype is the Error prototype object (15.11.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.11.4 Properties of the Error Prototype Object

The Error prototype object is itself an Error object (its [[Class]] is "Error").

The value of the internal [[Prototype]] property of the Error prototype object is the Object prototype

object (15.2.3.1).

Deleted: DontDelete, ReadOnly,

DontEnum

Deleted: DontDelete, DontEnum

Comment [pL58]: ALP: Should this just defer to
15.11.2.1?

Deleted: DontEnum, DontDelete,

ReadOnly

Comment [pL59]: Herman Venter says these do
not have specified attributes.

- 170 -

11 August 2008

15.11.4.1 Error.prototype.constructor

The initial value of Error.prototype.constructor is the built-in Error constructor.

15.11.4.2 Error.prototype.name

The initial value of Error.prototype.name is "Error".

15.11.4.3 Error.prototype.message

The initial value of Error.prototype.message is an implementation-defined string.

15.11.4.4 Error.prototype.toString ()

Returns an implementation defined string.

15.11.5 Properties of Error Instances

Error instances have no special properties beyond those inherited from the Error prototype object.

15.11.6 Native Error Types Used in This Standard

One of the NativeError objects below is thrown when a runtime error is detected. All of these objects

share the same structure, as described in 15.11.7.

15.11.6.1 EvalError

Indicates that the global function eval was used in a way that is incompatible with its definition. See

15.1.2.1.

15.11.6.2 RangeError

Indicates a numeric value has exceeded the allowable range. See 15.4.2.2, 15.4.5.1, 15.7.4.5, 15.7.4.6,

and 15.7.4.7.

15.11.6.3 ReferenceError

Indicate that an invalid reference value has been detected. See 8.7.1, and 8.7.2.

15.11.6.4 SyntaxError

Indicates that a parsing error has occurred. See 15.1.2.1, 15.3.2.1, 15.10.2.5, 15.10.2.9, 15.10.2.15,

15.10.2.19, and 15.10.4.1.

15.11.6.5 TypeError

Indicates the actual type of an operand is different than the expected type. See 8.6.2, 8.6.2.6, 9.9,

11.2.2, 11.2.3, 11.8.6, 11.8.7, 15.3.4.2, 15.3.4.3, 15.3.4.4, 15.3.5.3, 15.4.4.2, 15.4.4.3, 15.5.4.2,

15.5.4.3, 15.6.4, 15.6.4.2, 15.6.4.3, 15.7.4, 15.7.4.2, 15.7.4.4, 15.9.5, 15.9.5.9, 15.9.5.27, 15.10.4.1,

and 15.10.6.

15.11.6.6 URIError

Indicates that one of the global URI handling functions was used in a way that is incompatible with its

definition. See 15.1.3.

15.11.7 NativeError Object Structure

When an ECMAScript implementation detects a runtime error, it throws an instance of one of the

NativeError objects defined in 15.11.6. Each of these objects has the structure described below, differing

only in the name used as the constructor name instead of NativeError, in the name property of the

prototype object, and in the implementation-defined message property of the prototype object.

For each error object, references to NativeError in the definition should be replaced with the appropriate

error object name from 15.11.6.

15.11.7.1 NativeError Constructors Called as Functions

When a NativeError constructor is called as a function rather than as a constructor, it creates and

initialises a new object. A call of the object as a function is equivalent to calling it as a constructor

with the same arguments.

Comment [pL60]: Deviations doc item 3.37 suggests
codifying this behaviour.

- 171 -

11 August 2008

15.11.7.2 NativeError (message)

The [[Prototype]] property of the newly constructed object is set to the prototype object for this error

constructor. The [[Class]] property of the newly constructed object is set to "Error". The

[[Extensible]] property of the newly constructed object is set to true.

If the argument message is not undefined, the message property of the newly constructed object is

set to ToString(message).

15.11.7.3 The NativeError Constructors

When a NativeError constructor is called as part of a new expression, it is a constructor: it initialises

the newly created object.

15.11.7.4 New NativeError (message)

The [[Prototype]] property of the newly constructed object is set to the prototype object for this

NativeError constructor. The [[Class]] property of the newly constructed object is set to "Error".

The [[Extensible]] property of the newly constructed object is set to true.

If the argument message is not undefined, the message property of the newly constructed object is

set to ToString(message).

15.11.7.5 Properties of the NativeError Constructors

The value of the internal [[Prototype]] property of a NativeError constructor is the Function prototype

object (15.3.4).

Besides the internal properties and the length property (whose value is 1), each NativeError

constructor has the following property:

15.11.7.6 NativeError.prototype

The initial value of NativeError.prototype is a NativeError prototype object (15.11.7.7). Each

NativeError constructor has a separate prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.11.7.7 Properties of the NativeError Prototype Objects

Each NativeError prototype object is an Error object (its [[Class]] is "Error").

The value of the internal [[Prototype]] property of each NativeError prototype object is the Error

prototype object (15.11.4).

15.11.7.8 NativeError.prototype.constructor

The initial value of the constructor property of the prototype for a given NativeError constructor

is the NativeError constructor function itself (15.11.7).

15.11.7.9 NativeError.prototype.name

The initial value of the name property of the prototype for a given NativeError constructor is the

name of the constructor (the name used instead of NativeError).

15.11.7.10 NativeError.prototype.message

The initial value of the message property of the prototype for a given NativeError constructor is an

implementation-defined string.

NOTE

The prototypes for the NativeError constructors do not themselves provide a toString function,

but instances of errors will inherit it from the Error prototype object.

15.11.7.11 Properties of NativeError Instances

NativeError instances have no special properties beyond those inherited from the Error prototype

object.

Deleted: DontEnum, DontDelete,

ReadOnly

- 172 -

11 August 2008

15.12 JSON

The JSON object is a single object that contains two functions, parse and stringify, that are used to parse

and construct JSON texts. The JSON Data Interchange Format is described in RFC 4627

<http://www.ietf.org/rfc/rfc4627.txt?number=4627>.

The value of the internal [[Prototype]] property of the JSON object is the Object prototype object

(15.2.3.1). The value of the internal [[Class]] property of the JSON object is "JSON". The value of the

[[Extensible]] property of the JSON object is set to true.

The JSON object does not have a [[Construct]] property; it is not possible to use the JSON object as a

constructor with the new operator.

The JSON object does not have a [[Call]] property; it is not possible to invoke the JSON object as a

function.

15.12.1 parse (text, reviver)

The parse function parses a JSON text (a JSON formatted string) and produces a ECMAScript value.

The JSON format is a restricted form of ECMAScript literal. JSON objects are realized as ECMAScript

objects. JSON Arrays are realized as ECMAScript arrays. JSON strings, numbers, booleans, and null are

realized as ECMAScript strings, numbers, booleans, and null. JSON uses a more limited set of white

space characters than WhiteSpace.

The optional reviver parameter is a function that takes two parameters, (key, value). It can filter and

transform the results. It is called with each of the key/value pairs produced by the parse, and its return

value is used instead of the orginal value. If it returns what it received, the structure is not modified. If it

returns undefined then the member is deleted from the result.

1. Let T be the string obtained by ToString of text.

2. Let V be the value obtained by parsing I. Throw a SyntaxError exception if the text did not conform

to the JSON grammar.

3. If the typeof the reviver parameter is 'function'

a. Return walk({"": V}, ""). The walk function is an internal function described below.

4. Else

a. Return V.

The internal walk function is an internal recursive function that takes two parameters: a holder object

and the name of a property in that object.

1. Let O be holder[key].

2. If O is an object or array

a. For I being each own property name in O

i. Let be walk(V, I).

ii. If V is undefined

1. Delete I from O

iii. Else

1. Let O[I] be V.

3. Return reviver.call(holder, key, O)

15.12.2 stringify (value, replacer, space)

The stringify function produces a JSON formatted string that captures information from a JavaScript

value. It can take three parameters. The first parameter is required. The value parameter is a JavaScript

value, usually an object or array. The optional replacer parameter is either a function that alters the way

objects and arrays are stringified, or an array of strings that acts as a whitelist for selecting the keys that

will be stringified. The optional space parameter is a string or number that allows the result to have

white space injected into it to improve human readability.

JSON structures are allowed to be nested, but they must be acyclic. If the value is a cyclic structure, then

the stringify function must throw an Error. This is an example of a value that cannot be stringified:

a = [];

a[0] = a;

Comment [pL61]: From DEC:

Using Math as the model for the JSON object. I am not
aware that [[Class]] is seen anywhere except in the useless

text returned by object.toString. I see no harm in JSON

being mutable. Caja can lock it down if it wants to.

- 173 -

11 August 2008

my_text = JSON.stringify(a); // This must throw an Error.

The null value is rendered in JSON text as the string null.

The true value is rendered in JSON text as the string true.

The false value is rendered in JSON text as the string false.

String values are wrapped in double quotes. The characters " and \ are escaped with \ prefixes. Control

characters are replaced with escape sequences \uHHHH, or with the shorter forms, \b (backspace), \f

(formfeed), \n (newline), \r (carriage return), \t (tab).

Finite numbers are stringifyed by String(number). NaN and Infinity regardless of sign are represented

as the string null.

Values that do not have a JSON representation (such as undefined and functions) do not produce a

string. Instead they produce the undefined value. In arrays these values are represented as the string

null. In objects an unrepresentable value causes the property to be excluded from stringification.

The process of stringifying an object is more complicated because it is a more complicated value, and

because there are features that allow the programmer some control over the stringification. An object is

rendered as an opening a left brace followed by zero or more properties, separated with commas, closed

with a right brace. A property is a quoted string representing the key or property name, a colon, and then

the stringified property value.

These are the steps in stringifying an object:

1. If the replacer parameter is an array

a. Let K be the replacer parameter.

2. Else

a. Let K be the array that is the result of calling the standard built-in method

Object.keys(object, true).

3. Let S be '{'.

4. Let F be false.

5. For each KEY string in K.

a. Let V be object[KEY].

b. If the type of V.toJSON is 'function'

i. Let V be V.toJSON(KEY). .

c. If the type of the replacer parameter is 'function'

i. Let V be replacer.call(object, KEY, V).

d. Let T be the stringification of V.At this step, the algorithm recurses. Throw an Error

exception if an infinite recursion occurs.

e. If the typeof T is a string

i. If F is true

1. Append ',' to S.

ii. Append the stringification of the KEY string to S. This will wrap it in quotes with

escapement.

iii. Append ':' to S.

iv. Append the stringification of V to S.

v. Let F be true.

6. Append '}' to S.

7. Return S.

The representation of arrays includes only the elements between zero and array.length – 1. Named

properties are excluded from the stringification. An array is stringified as an open left bracket, elements

separated by comma, and a closing right bracket.

These are the steps in stringifying an array:

1. Let S be '['.

2. Let F be false.

3. For I from 0 to (array.length – 1)

a. Let V be array[I].

- 174 -

11 August 2008

b. If the typeof V.toJSON is 'function'

i. Let V be array.toJSON(I).

c. If the typeof the replacer parameter is 'function'

i. Let V be replacer.call(array, I, V).

d. If F is true

i. Append ',' to S.

e. Let T be the stringification of V.

f. If the typeof T is 'string'

i. Append T to S.

g. Else

i. Append 'null' to S.

h. Let F be true.

4. Append ']' to S.

5. Return S.

If the space parameter is provided, white space will be inserted are various places:

 One space after every colon;

 A linefeed and a quantity of white space after every open left brace (or left bracket for arrays), after

every comma, and before the closing right brace (or right bracket for arrays). The space parameter

indicates the basic quantity of white space in a level of indentation. The space parameter can be

string such as '\t', or it can be a number, indicating the number of spaces, such as 4. The amount of

space is increased after each left brace or left bracket, and decreased before each right brace or right

bracket. The insertion of white space after the open left brace or bracket and before the closing right

brace or right bracket is suppressed if fewer than two members (or array elements) are stringified.

15.13 Decimal

15.13.1 Overview of Decimal Objects and Definitions of Internal Operators

A Decimal object contains an IEEE 754r decimal-encoded 34-digit floating point number.

15.13.1.1 UnscaledValue

A 34 digit integer, stored exactly.

15.13.1.2 Scale

The number of digits to the right of the decimal point. If negative, the unscaled value of the number is

multiplied by ten to the power of the negation of the scale

15.13.1.3 Value

The value formed by computing UnscaledValue * (10**Scale).

15.13.2 The Decimal Constructor Called as a Function

The Decimal object does not support the internal [[Call]] method. The Decimal constructor cannot be

invoked as a function.

15.13.3 The Decimal Constructor

When Decimal is called as part of a new expression it is a constructor: it initialises the newly created

object.

15.13.3.1 new Decimal (string)

Translates the string representation of a Decimal into a Decimal. The string representation consists of

an optional sign, '+' ('\u002B') or '-' ('\u002D'), followed by a sequence of zero or more decimal digits

("the integer"), optionally followed by a fraction, optionally followed by an exponent.

The [[Prototype]] property of the newly constructed object is set to the original Decimal prototype

object, the one that is the initial value of Decimal.prototype (15.13.3.1).

The [[Class]] property of the newly constructed Decimal object is set to "Decimal".

The [[Extensible]] property of the newly constructed object is set to false.

The [[Writable]] property of the newly constructed object is set to false.

For decimal numbers, the radix is always 10.

Comment [pL62]: From Sam:
The overall approach is to add support to ECMAScript for

decimal numbers modelled after, but not making reference
to, Java's BigDecimal class. Features that were omitted

from the ECMAScript 3.1 subset are as follows:

Operator overloading. ECMAScript 3.1 users will need

to explicitly use named functions, such as add.

Transcendental functions, like sin. Despite the fact

that these functions are already a part of the ECMAScript

standard, there was an concern expressed about footprint

size.

User definable precision. Instead of providing the

option for 7, 16, 34, or unlimited number of digits, 34 has
been selected for ECMAScript 3.1.

Notes:

ECMAScript 3.1 does not have namespaces. In order to
reduce namespace polution, Java's MathContext and

RoundingMode classes have been subsumed into the

Decimal.prototype object.

It is my belief that operators such as ToPrimitive,

GetValue and GetBase as well as Interal Properties

such as [[DefaultValue]]] should "just work".

Independent confirmation (or noting where such will not
work) would be appreciated.

I am considerably less comfortable that I have the

values for the following properties specified correctly:

[[Writeable]], [[Enumerable]],

[[Dynamic]]. The intent is that Decimal objects, once

constructed, are immutable, and that developers can
create new prototype objects based on the Decimal

prototype, most notably in order to vary the value of the

roundingMode property.

Not in this revision, but we should consider allowing

arguments which are Number objects whose value
contain pure integral values to the following Decimal

methods: add, subtract, multiply, divide,

divideAndRemainder, divideToIntegralValue, and
remainder.

Sources:

P754 Draft Standard for Floating-Point Arithmetic, May
23, 2008

BigDecimal (Java 2 Platform SE 5.0)

General Decimal Arithmetic — IBM Hursley

bigdecimal: Ruby Standard Library Documentation

http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://www2.hursley.ibm.com/decimal/
http://www.ruby-doc.org/stdlib/libdoc/bigdecimal/rdoc/index.html

- 175 -

11 August 2008

The fraction consists of a decimal point followed by zero or more decimal digits. The string must

contain at least one digit in either the integer or the fraction. The number formed by the sign, the

integer and the fraction is referred to as the significand.

The exponent consists of the character 'e' ('\u0075') or 'E' ('\u0045') followed by one or more decimal

digits.

If the string does not meet these conditions, a RangeError exception is thrown.

15.13.4 Properties of the Decimal constructor

The value of the internal [[Prototype]] property of the Decimal constructor is the Function prototype

object (15.3.4).

Besides the internal properties and the length property (whose value is 1), the Decimal constructor has

the following properties:

15.13.4.1 Decimal.valueOf (number)

Translates a Number into a Decimal, using the string representation provided by the

Number.toString method. If val is Infinity or NaN, a RangeError exception is thrown instead.

15.13.4.2 Decimal.prototype

The initial value of Decimal.prototype is the Decimal prototype object. This property has the attributes

{ [[Writable]]: false, [[Enumerable]]: false, [[Flexible]]: false }.

15.13.5 Properties of the Decimal Prototype Object

The Decimal prototype object is itself a Decimal object (its [[Class]] is "Decimal").

The value of the internal [[Prototype]] property of the Decimal prototype object is the Object prototype

object (15.2.3.1).

15.13.5.1 Decimal.prototype.constructor

The initial value of Decimal.prototype.constructor is the built-in Decimal constructor.

15.13.5.2 Decimal.prototype.name

The initial value of Decimal.prototype.name is "Decimal".

15.13.5.3 Decimal.prototype.roundingMode

The initial value of Decimal.prototype.roundingMode is 6. This corresponds to the value of

Decimal.prototype.HALF_EVEN.

15.13.5.4 Decimal.prototype.constructor

The initial value of Decimal.prototype.constructor is the built-in Decimal constructor.

15.13.5.5 Decimal.prototype.toString ()

1. If the value is NaN, return 'NaN'

2. If the value is Infinity, return 'Infinity'

3. If the value is Zero, return '0'

4. Convert the coefficient to a string in base 10 using the characters 0 through 9 with no leading

zeros.

5. Compute the exponent, plus the number of characters in the converted coefficient, less one. That

is, exponent+(clength-1), where clength is the length of the coefficient in decimal digits.

6. If the exponent is less than or equal to zero and the Result(5) is greater than or equal to -6, the

number will be converted to a character form without using exponential notation. In this case, if

the exponent is zero then no decimal point is added. Otherwise (the exponent will be negative), a

decimal point will be inserted with the absolute value of the exponent specifying the number of

characters to the right of the decimal point. ‗0‘ characters are added to the left of the converted

coefficient as necessary. If no character precedes the decimal point after this insertion then a

conventional ‗0‘ character is prefixed.

7. Otherwise (that is, if the exponent is positive, or the Result(5) is less than -6), the number will be

converted to a character form using exponential notation. In this case, if the converted coefficient

has more than one digit a decimal point is inserted after the first digit. An exponent in character

form is then suffixed to the converted coefficient (perhaps with inserted decimal point); this

- 176 -

11 August 2008

comprises the letter ‗E‘ followed immediately by the Result(5) converted to a character form. The

latter is in base ten, using the characters 0 through 9 with no leading zeros, always prefixed by a

sign character (‗-‘ if the calculated exponent is negative, ‗+‘ otherwise).

8. In all cases, the entire string is prefixed by a minus sign character (‗-‘) if this.signum() is -1. No

sign character is prefixed if this.signum() is 0 or 1.

15.13.5.6 Decimal.prototype.toEngineeringString ()

Returns a string representation of this Decimal, using engineering notation if an exponent is needed.

Returns a string that represents the Decimal as described in the toString() method, except that if

exponential notation is used, the power of ten is adjusted to be a multiple of three (engineering

notation) such that the integer part of nonzero values will be in the range 1 through 999. If exponential

notation is used for zero values, a decimal point and one or two fractional zero digits are used so that

the scale of the zero value is preserved. Note that unlike the output of toString(), the output of this

method is not guaranteed to recover the same scale() and unscaledValue() of this Decimal if the output

string is converting back to a Decimal using the string constructor. The result of this method meets the

weaker constraint of always producing a numerically equal result from applying the string constructor

to the method's output.

15.13.5.7 Decimal.prototype.toPlainString ()

Returns a string representation of this Decimal without an exponent field. For values with a positive

scale, the number of digits to the right of the decimal point is used to indicate scale. For values with a

zero or negative scale, the resulting string is generated as if the value were converted to a numerically

equal value with zero scale and as if all the trailing zeros of the zero scale value were present in the

result. The entire string is prefixed by a minus sign character '-' ('\u002D') if the unscaled value is less

than zero. No sign character is prefixed if the unscaled value is zero or positive. Note that if the result

of this method is passed to the string constructor, only the numerical value of this Decimal will

necessarily be recovered; the representation of the new Decimal may have a different scale. In

particular, if this Decimal has a positive scale, the string resulting from this method will have a scale

of zero when processed by the string constructor.

15.13.5.8 Decimal.prototype.CEILING

Rounding mode to round towards positive infinity.

Value is the number 2

15.13.5.9 Decimal.prototype.DOWN

Rounding mode to round towards zero.

Value is the number 1.

15.13.5.10 Decimal.prototype.FLOOR

Rounding mode to round towards negative infinity.

Value is the number 3.

15.13.5.11 Decimal.prototype.HALF_DOWN

Rounding mode to round towards "nearest neighbour" unless both neighbours are equidistant, in which

case round down.

Value is the number 5.

15.13.5.12 Decimal.prototype.HALF_EVEN

Rounding mode to round towards the "nearest neighbour" unless both neighbours are equidistant, in

which case, round towards the even neighbour.

Value is the number 6.

15.13.5.13 Decimal.prototype.HALF_UP

Rounding mode to round towards "nearest neighbour" unless both neighbours are equidistant, in which

case round up.

Value is the number 4.

- 177 -

11 August 2008

15.13.5.14 Decimal.prototype.UNNECESSARY

Rounding mode to assert that the requested operation has an exact result, hence no rounding is

necessary.

Value is the number 7.

15.13.5.15 Decimal.prototype.UP

Rounding mode to round away from zero.

Value is the number 0.

15.13.5.16 Decimal.prototype.abs ()

Create and initialise a new Decimal object whose value is the absolute value of this Decimal, and

whose scale is this.scale().

15.13.5.17 Decimal.prototype.add (augend [, mc])

If the augend is not a Decimal object, a TypeError exception is thrown.

If mc is not undefined and mc does not have a roundingMode property, a TypeError exception is

thrown.

If mc is not undefined and the roundingMode property of the mc object has a value other than an

integer in the range of 0 through 7, a ValueError exception is thrown.

Create and initialise a new Decimal object whose value is (this + augend), and whose scale is

max(this.scale(), augend.scale()).

If mc is not undefined, then rounding will occur according to the context settings.

15.13.5.18 Decimal.prototype.compareTo (val)

Compares this Decimal with the specified Decimal. Two Decimal objects that are equal in value but

have a different scale (like 2.0 and 2.00) are considered equal by this method.

1. If the val is not a Decimal object, a TypeError is thrown.

2. If this Decimal is numerically less than val, return -1.

3. If this Decimal is numerically greater than val, return 1.

4. Return 0.

15.13.5.19 Decimal.prototype.divide (divisor, scale [, roundingMode])

If the divisor is not a Decimal object, a TypeError exception is thrown.

If divisor is zero, a RangeError exception is thrown.

If roundingMode is not undefined and not in the range of 0 through 7, a RangeError exception is

thrown.

Create and initialise a new Decimal object whose value is (this / divisor), with rounding according to

roundingMode argument if not undefined, otherwise rounding according to the prototype settings of

this object.

15.13.5.20 Decimal.prototype.divideAndRemainder (divisor [, mc])

If the divisor is not a Decimal object, a TypeError exception is thrown.

If divisor is zero, a RangeError exception is thrown.

If mc is not undefined and mc does not have a roundingMode property, a TypeError exception is

thrown.

If mc is not undefined and the roundingMode property of the mc object has a value other than an

integer in the range of 0 through 7, a ValueError exception is thrown.

Create and initialise a new Decimal object whose element Decimal array containing the result of

divideToIntegralValue followed by the result of remainder on the two operands calculated with

rounding according to the context settings if not undefined, otherwise rounding according to the

prototype settings of this object.

- 178 -

11 August 2008

Note that if both the integer quotient and remainder are needed, this method is faster than using the

divideToIntegralValue and remainder methods separately because the division need only be carried

out once.

15.13.5.21 Decimal.prototype.divideToIntegralValue (divisor)

If the divisor is not a Decimal object, a TypeError exception is thrown.

If divisor is zero, a RangeError exception is thrown.

Create and initialise a new Decimal object whose value is the integer part of the quotient (this /

divisor) rounded down. The preferred scale of the result is (this.scale() - divisor.scale()).

15.13.5.22 Decimal.prototype.doubleValue ()

Equivalent to parseFloat(this.toString()).

15.13.5.23 Decimal.prototype.equals (val)

If the val is not a Decimal object, a TypeError is thrown.

Compares this Decimal with the specified Object for equality. Unlike compareTo, this method

considers two Decimal objects equal only if they are equal in value and scale (thus 2.0 is not equal to

2.00 when compared by this method)

15.13.5.24 Decimal.prototype.intValue ()

Equivalent to parseInt(this.toString()).

15.13.5.25 Decimal.prototype.intValueExtract ()

Converts this Decimal to an integer, checking for lost information. If this Decimal has a nonzero

fractional part or is out of the possible range for an integer result then a RangeError exception is

thrown.

15.13.5.26 Decimal.prototype.max (val)

If the val is not a Decimal object, a TypeError is thrown.

Return the Decimal object whose value is the greater of this Decimal and val. If they are equal, as

defined by the compareTo method, this is returned.

15.13.5.27 Decimal.prototype.min (val)

If the val is not a Decimal object, a TypeError is thrown.

Return the Decimal object whose value is the lesser of this Decimal and val. If they are equal, as

defined by the compareTo method, this is returned.

15.13.5.28 Decimal.prototype.movePointLeft (n)

If the type of n is not Number and the value of n is not an exact integer, throw a TypeError

exception.

Create and initialise a new Decimal object whose is equivalent to this one with the decimal point

moved n places to the left. If n is non-negative, the call merely adds n to the scale. If n is negative, the

call is equivalent to movePointRight(-n). The Decimal returned by this call has value (this × 10**(-n))

and scale max(this.scale()+n, 0).

15.13.5.29 Decimal.prototype.movePointRight (n)

If the type of n is not Number and the value of n is not an exact integer, throw TypeError.

Create and initialise a new Decimal object whose is equivalent to this one with the decimal point

moved n places to the right. If n is non-negative, the call merely subtracts n from the scale. If n is

negative, the call is equivalent to movePointLeft(-n). The Decimal returned by this call has value (this

× 10**n) and scale max(this.scale()-n, 0).

15.13.5.30 Decimal.prototype.multiply (multiplicand [, mc])

If the multiplicand is not a Decimal object, a TypeError exception is thrown.

If mc is not undefined and mc does not have a roundingMode property, a TypeError exception is

thrown.

- 179 -

11 August 2008

If mc is not undefined and the roundingMode property of the mc object has a value other than an

integer in the range of 0 through 7, a ValueError exception is thrown.

Create and initialise a new Decimal object whose value is (this × multiplicand), with rounding

according to the context settings if not undefined, otherwise rounding according to the prototype

settings of this object.

15.13.5.31 Decimal.prototype.negate ([mc])

If mc is not undefined and mc does not have a roundingMode property, a TypeError exception is

thrown.

If mc is not undefined and the roundingMode property of the mc object has a value other than an

integer in the range of 0 through 7, a ValueError exception is thrown.

Create and initialise a new Decimal object whose value is (-this), and whose scale is this.scale(), with

rounding according to the context settings, if not undefined.

15.13.5.32 Decimal.prototype.plus ()

Create and initialise a new Decimal object whose value is (+this), and whose scale is this.scale(), with

rounding according to the context settings, if not undefined.

15.13.5.33 Decimal.prototype.pow (n)

If the type of n is not Number and the value of n is not an exact integer, throw TypeError.

Create and initialise a new Decimal object whose value is (thisn), The power is computed exactly.

ZERO.pow(0) returns ONE.

15.13.5.34 Decimal.prototype.precision ()

Return a Number containing the precision is the number of digits in the unscaled value. The precision

of a zero value is 1.

15.13.5.35 Decimal.prototype.remainder (divisor [, mc])

If the divisor is not a Decimal object, a TypeError exception is thrown.

If mc is not undefined and mc does not have a roundingMode property, a TypeError exception is

thrown.

If mc is not undefined and the roundingMode property of the mc object has a value other than an

integer in the range of 0 through 7, a ValueError exception is thrown.

The remainder is given by this.subtract(this.divideToIntegralValue(divisor).multiply(divisor)), with

rounding according to the context settings, if not undefined. Note that this is not the modulo

operation (the result can be negative).

15.13.5.36 Decimal.prototype.scale ()

Create and initialise a new Decimal object whose this Decimal. If zero or positive, the scale is the

number of digits to the right of the decimal point. If negative, the unscaled value of the number is

multiplied by ten to the power of the negation of the scale. For example, a scale of -3 means the

unscaled value is multiplied by 1000.

15.13.5.37 Decimal.prototype.scaleByPowerOfTen (n)

If the type of n is not Number and the value of n is not an exact integer, throw a TypeError

exception.

Create and initialise a new Decimal object whose numerical value is equal to (this * 10**n). The scale

of the result is (this.scale() - n).

15.13.5.38 Decimal.prototype.setScale (newScale [, roundingMode])

If the type of newScale is not Number and the value of n is not an exact integer, throw a TypeError

exception.

If roundingMode is not undefined and not in the range of 0 through 7, a RangeError exception is

thrown.

- 180 -

11 August 2008

Create and initialise a new Decimal object whose scale is the specified value, and whose unscaled

value is determined by multiplying or dividing this Decimal's unscaled value by the appropriate power

of ten to maintain its overall value. If the scale is reduced by the operation, the unscaled value must be

divided (rather than multiplied), and the value may be changed; in this case, the specified rounding

mode is applied to the division.

15.13.5.39 Decimal.prototype.signum ()

1. If the value of this is negative, return -1.

2. If the value of this is positive, return 1.

3. If the value of this is zero, return 0.

15.13.5.40 Decimal.prototype.stripTrailingZeros ()

Create and initialise a new Decimal object whose is numerically equal to this one but with any trailing

zeros removed from the representation. For example, stripping the trailing zeros from the Decimal

value 600.0, which has a scale() of 1, yields 6E2 which has a scale() of -2.

15.13.5.41 Decimal.prototype.subtract (subtrahend [, mc])

If the subtrahend is not a Decimal object, a TypeError exception is thrown.

If mc is not undefined and mc does not have a roundingMode property, a TypeError exception is

thrown.

If mc is not undefined and the roundingMode property of the mc object has a value other than an

integer in the range of 0 through 7, a ValueError exception is thrown.

Create and initialise a new Decimal object whose value is (this - subtrahend), with rounding according

to the context settings, if not undefined. If subtrahend is zero then this, rounded if necessary, is used

as the result. If this is zero then the result is subtrahend.negate(mc).

15.13.5.42 Decimal.prototype.ulp ()

Create and initialise a new Decimal object with an ulp, a unit in the last place, of this Decimal. An ulp

of a nonzero Decimal value is the positive distance between this value and the Decimal value next

larger in magnitude with the same number of digits. An ulp of a zero value is numerically equal to 1

with the scale of this. The result is stored with the same scale as this.

15.13.5.43 Decimal.prototype.unscaledValue ()

Create and initialise a new Decimal object whose value is the unscaled value of this Decimal.

(Computes (this * 10**this.scale()).)

15.13.6 Properties of Decimal Instances

Decimal instances have no special properties beyond those inherited from the Decimal prototype

object.

- 181 -

11 August 2008

16 Errors

An implementation should report runtime errors at the time the relevant language construct is evaluated. An

implementation may report syntax errors in the program at the time the program is read in, or it may, at its

option, defer reporting syntax errors until the relevant statement is reached. An implementation may report

syntax errors in eval code at the time eval is called, or it may, at its option, defer reporting syntax errors

until the relevant statement is reached.

An implementation may treat any instance of the following kinds of runtime errors as a syntax error and

therefore report it early:

Improper uses of return, break, and continue.

Using the eval property other than via a direct call.

Errors in regular expression literals.

Attempts to call PutValue on a value that is not a reference (for example, executing the assignment statemen t

3=4).

An implementation shall not report other kinds of runtime errors early even if the compiler can prove that a

construct cannot execute without error under any circumstances. An implementation may issue an early

warning in such a case, but it should not report the error until the relevant construct is actually executed.

An implementation shall report all errors as specified, except for the following:

An implementation may extend program and regular expression syntax. To permit this, all operations (such as

calling eval, using a regular expression literal, or using the Function or RegExp constructor) that are

allowed to throw SyntaxError are permitted to exhibit implementation-defined behaviour instead of

throwing SyntaxError when they encounter an implementation-defined extension to the program or regular

expression syntax.

An implementation may provide additional types, values, objects, properties, and functions beyond those

described in this specification. This may cause constructs (such as looking up a variable in the global

scope) to have implementation-defined behaviour instead of throwing an error (such as ReferenceError).

An implementation is not required to detect EvalError. If it chooses not to detect EvalError, the

implementation must allow eval to be used indirectly and/or allow assignments to eval.

An implementation may define behaviour other than throwing RangeError for toFixed,

toExponential, and toPrecision when the fractionDigits or precision argument is outside the

specified range.

- 182 -

11 August 2008

Annex A

(informative)

Grammar Summary

A.1 Lexical Grammar

SourceCharacter :: See clause 6

any Unicode character

InputElementDiv :: See clause 7

WhiteSpace

LineTerminator

Comment

Token

DivPunctuator

InputElementRegExp :: See clause 7

WhiteSpace

LineTerminator

Comment

Token

RegularExpressionLiteral

WhiteSpace :: See 7.2

<TAB>

<VT>

<FF>

<SP>

<NEL>

<NBSP>

<ZWSP>

<BOM>

<USP>

LineTerminator :: See 7.3

<LF>

<CR>

<LS>

<PS>

<CR><LF>

Comment :: See 7.4

MultiLineComment

SingleLineComment

MultiLineComment :: See 7.4

/* MultiLineCommentCharsopt */

Deleted: 6

Deleted: 6

- 183 -

11 August 2008

MultiLineCommentChars :: See 7.4

MultiLineNotAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

PostAsteriskCommentChars :: See 7.4

MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

MultiLineNotAsteriskChar :: See 7.4

SourceCharacter but not asterisk *

MultiLineNotForwardSlashOrAsteriskChar :: See 7.4

SourceCharacter but not forward-slash / or asterisk *

SingleLineComment :: See 7.4

// SingleLineCommentCharsopt

SingleLineCommentChars :: See 7.4

SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar :: See 7.4

SourceCharacter but not LineTerminator

Token :: See 7.5

ReservedWord

Identifier

Punctuator

NumericLiteral

StringLiteral

ReservedWord :: See 7.5.1

Keyword

FutureReservedWord

NullLiteral

BooleanLiteral

Keyword :: one of See 7.5.2
break else new var

case finally return void

catch for switch while

continue function this with

default if throw debugger

delete in try const

do instanceof typeof

FutureReservedWord :: one of See 7.5.3
abstract enum int short

boolean export interface static

byte extends long super

char final native synchronized

- 184 -

11 August 2008

class float package throws

 goto private transient

 implements protected volatile

double import public

Identifier :: See 7.6

IdentifierName but not ReservedWord

IdentifierName :: See 7.6

IdentifierStart

IdentifierName IdentifierPart

IdentifierStart :: See 7.6

UnicodeLetter
$

_

\ UnicodeEscapeSequence

IdentifierPart :: See 7.6

IdentifierStart

UnicodeCombiningMark

UnicodeDigit

UnicodeConnectorPunctuation

UnicodeEscapeSequence

UnicodeLetter See 7.6

any character in the Unicode categories ―Uppercase letter (Lu)‖, ―Lowercase letter (Ll)‖, ―Titlecase letter (Lt)‖,

―Modifier letter (Lm)‖, ―Other letter (Lo)‖, or ―Letter number (Nl)‖.

UnicodeCombiningMark See 7.6

any character in the Unicode categories ―Non-spacing mark (Mn)‖ or ―Combining spacing mark (Mc)‖

UnicodeDigit See 7.6

any character in the Unicode category ―Decimal number (Nd)‖

UnicodeConnectorPunctuation See 7.6

any character in the Unicode category ―Connector punctuation (Pc)‖

UnicodeEscapeSequence :: See 7.6

\u HexDigit HexDigit HexDigit HexDigit

HexDigit :: one of See 7.6

0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

Punctuator :: one of See 7.7
{ } () []

. ; , < > <=

>= == != === !==

+ - * % ++ --

<< >> >>> & | ^

! ~ && || ? :

Deleted: const

Deleted: debugger

- 185 -

11 August 2008

= += -= *= %= <<=

>>= >>>= &= |= ^=

{ } () []

DivPunctuator :: one of See 7.7
/ /=

Literal :: See 7.8

NullLiteral

BooleanLiteral

NumericLiteral

StringLiteral

NullLiteral :: See 7.8.1
null

BooleanLiteral :: See 7.8.2
true

false

NumericLiteral :: See 7.8.3

DecimalLiteral

HexIntegerLiteral

DecimalLiteral :: See 7.8.3

DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalIntegerLiteral ExponentPartopt

DecimalIntegerLiteral :: See 7.8.3
0

NonZeroDigit DecimalDigitsopt

DecimalDigits :: See 7.8.3

DecimalDigit

DecimalDigits DecimalDigit

DecimalDigit :: one of See 7.8.3
0 1 2 3 4 5 6 7 8 9

ExponentIndicator :: one of See 7.8.3
e E

SignedInteger :: See 7.8.3

DecimalDigits

+ DecimalDigits

- DecimalDigits

- 186 -

11 August 2008

HexIntegerLiteral :: See 7.8.3

0x HexDigit

0X HexDigit

HexIntegerLiteral HexDigit

StringLiteral :: See 7.8.4

" DoubleStringCharactersopt "

' SingleStringCharactersopt '

DoubleStringCharacters :: See 7.8.4

DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters :: See 7.8.4

SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter :: See 7.8.4

SourceCharacter but not double-quote " or backslash \ or LineTerminator

\ EscapeSequence

LineContinuation

SingleStringCharacter :: See 7.8.4

SourceCharacter but not single-quote ' or backslash \ or LineTerminator

\ EscapeSequence

LineContinuation

LineContinuation :: See 7.8.4

\ LineTerminator

EscapeSequence :: See 7.8.4

CharacterEscapeSequence
0 [lookahead DecimalDigit]

HexEscapeSequence

UnicodeEscapeSequence

CharacterEscapeSequence :: See 7.8.4

SingleEscapeCharacter

NonEscapeCharacter

SingleEscapeCharacter :: one of See 7.8.4
' " \ b f n r t v

NonEscapeCharacter :: See 7.8.4

SourceCharacter but not EscapeCharacter or LineTerminator

EscapeCharacter :: See 7.8.4

SingleEscapeCharacter

DecimalDigit
x

u

- 187 -

11 August 2008

HexEscapeSequence :: See 7.8.4

x HexDigit HexDigit

UnicodeEscapeSequence :: See 7.8.4

u HexDigit HexDigit HexDigit HexDigit

RegularExpressionLiteral :: See 7.8.5

/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody :: See 7.8.5

RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars :: See 7.8.5
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar :: See 7.8.5

NonTerminator but not * or \ or /

BackslashSequence

RegularExpressionChar :: See 7.8.5

NonTerminator but not \ or /

BackslashSequence

BackslashSequence :: See 7.8.5

\ NonTerminator

NonTerminator :: See 7.8.5

SourceCharacter but not LineTerminator

RegularExpressionFlags :: See 7.8.5
[empty]
RegularExpressionFlags IdentifierPart

A.2 Number Conversions

StringNumericLiteral ::: See 9.3.1

StrWhiteSpaceopt

StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace ::: See 9.3.1

StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar ::: See 9.3.1

WhiteSpace

LineTerminator

Deleted: <TAB>
<SP>

<NBSP>

<FF>
<VT>

<CR>

<LF>
<LS>

<PS>

<USP>

- 188 -

11 August 2008

StrNumericLiteral ::: See 9.3.1

StrDecimalLiteral

 HexIntegerLiteral

StrDecimalLiteral ::: See 9.3.1

StrUnsignedDecimalLiteral

+ StrUnsignedDecimalLiteral

- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral ::: See 9.3.1
Infinity

 DecimalDigits . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalDigits ExponentPartopt

DecimalDigits ::: See 9.3.1

DecimalDigit

DecimalDigits DecimalDigit

DecimalDigit ::: one of See 9.3.1
0 1 2 3 4 5 6 7 8 9

ExponentPart ::: See 9.3.1

ExponentIndicator SignedInteger

ExponentIndicator ::: one of See 9.3.1
e E

SignedInteger ::: See 9.3.1

DecimalDigits

+ DecimalDigits

- DecimalDigits

HexIntegerLiteral ::: See 9.3.1

0x HexDigit

0X HexDigit

HexIntegerLiteral HexDigit

HexDigit ::: one of See 9.3.1
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

A.3 Expressions

PrimaryExpression : See 11.1
this

Identifier

Literal

ArrayLiteral

ObjectLiteral

(Expression)

- 189 -

11 August 2008

ArrayLiteral : See 11.1.4

[Elisionopt]

[ElementList]

[ElementList , Elisionopt]

ElementList : See 11.1.4

Elisionopt AssignmentExpression

ElementList , Elisionopt AssignmentExpression

Elision : See 11.1.4

,

Elision ,

ObjectLiteral : See 11.1.5
{ }

{ PropertyNameAndValueList }

{ PropertyNameAndValueList , }

PropertyNameAndValueList : See 11.1.5

PropertyAssignment

PropertyNameAndValueList , PropertyAssignment

PropertyAssignment : See 11.1.5

PropertyName : AssignmentExpression

get PropertyName() { FunctionBody }

set PropertyName(PropertySetParameterList) { FunctionBody }

PropertyName : See 11.1.5

IdentifierName

StringLiteral

NumericLiteral

PropertySetParameterList : See 11.1.5

Identifier

MemberExpression : See 11.2

PrimaryExpression

FunctionExpression

MemberExpression [Expression]

MemberExpression . IdentifierName

new MemberExpression Arguments

NewExpression : See 11.2

MemberExpression

new NewExpression

CallExpression : See 11.2

MemberExpression Arguments

CallExpression Arguments

CallExpression [Expression]

CallExpression . IdentifierName

Deleted: PropertyNameAndValueList ,

Deleted: : AssignmentExpression

Deleted: ¶

- 190 -

11 August 2008

Arguments : See 11.2
()

(ArgumentList)

ArgumentList : See 11.2

AssignmentExpression

ArgumentList , AssignmentExpression

LeftHandSideExpression : See 11.2

NewExpression

CallExpression

PostfixExpression : See 11.3

LeftHandSideExpression

LeftHandSideExpression [no LineTerminator here] ++

LeftHandSideExpression [no LineTerminator here] --

UnaryExpression : See 11.4

PostfixExpression

delete UnaryExpression

void UnaryExpression

typeof UnaryExpression

++ UnaryExpression

-- UnaryExpression

+ UnaryExpression

- UnaryExpression

~ UnaryExpression

! UnaryExpression

MultiplicativeExpression : See 11.5

UnaryExpression

MultiplicativeExpression * UnaryExpression

MultiplicativeExpression / UnaryExpression

MultiplicativeExpression % UnaryExpression

AdditiveExpression : See 11.6

MultiplicativeExpression

AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression

ShiftExpression : See 11.7

AdditiveExpression

ShiftExpression << AdditiveExpression

ShiftExpression >> AdditiveExpression

ShiftExpression >>> AdditiveExpression

- 191 -

11 August 2008

RelationalExpression : See 11.8

ShiftExpression

RelationalExpression < ShiftExpression

RelationalExpression > ShiftExpression

RelationalExpression <= ShiftExpression

RelationalExpression >= ShiftExpression

RelationalExpression instanceof ShiftExpression

RelationalExpression in ShiftExpression

RelationalExpressionNoIn : See 11.8

ShiftExpression

RelationalExpressionNoIn < ShiftExpression

RelationalExpressionNoIn > ShiftExpression

RelationalExpressionNoIn <= ShiftExpression

RelationalExpressionNoIn >= ShiftExpression

RelationalExpressionNoIn instanceof ShiftExpression

EqualityExpression : See 11.9

RelationalExpression

EqualityExpression == RelationalExpression

EqualityExpression != RelationalExpression

EqualityExpression === RelationalExpression

EqualityExpression !== RelationalExpression

EqualityExpressionNoIn : See 11.9

RelationalExpressionNoIn

EqualityExpressionNoIn == RelationalExpressionNoIn

EqualityExpressionNoIn != RelationalExpressionNoIn

EqualityExpressionNoIn === RelationalExpressionNoIn

EqualityExpressionNoIn !== RelationalExpressionNoIn

BitwiseANDExpression : See 11.10

EqualityExpression

BitwiseANDExpression & EqualityExpression

BitwiseANDExpressionNoIn : See 11.10

EqualityExpressionNoIn

BitwiseANDExpressionNoIn & EqualityExpressionNoIn

BitwiseXORExpression : See 11.10

BitwiseANDExpression

BitwiseXORExpression ^ BitwiseANDExpression

BitwiseXORExpressionNoIn : See 11.10

BitwiseANDExpressionNoIn

BitwiseXORExpressionNoIn ^ BitwiseANDExpressionNoIn

BitwiseORExpression : See 11.10

BitwiseXORExpression

BitwiseORExpression | BitwiseXORExpression

- 192 -

11 August 2008

BitwiseORExpressionNoIn : See 11.10

BitwiseXORExpressionNoIn

BitwiseORExpressionNoIn | BitwiseXORExpressionNoIn

LogicalANDExpression : See 11.11

BitwiseORExpression

LogicalANDExpression && BitwiseORExpression

LogicalANDExpressionNoIn : See 11.11

BitwiseORExpressionNoIn

LogicalANDExpressionNoIn && BitwiseORExpressionNoIn

LogicalORExpression : See 11.11

LogicalANDExpression

LogicalORExpression || LogicalANDExpression

LogicalORExpressionNoIn : See 11.11

LogicalANDExpressionNoIn

LogicalORExpressionNoIn || LogicalANDExpressionNoIn

ConditionalExpression : See 11.12

LogicalORExpression

LogicalORExpression ? AssignmentExpression : AssignmentExpression

ConditionalExpressionNoIn : See 11.12

LogicalORExpressionNoIn

LogicalORExpressionNoIn ? AssignmentExpressionNoIn : AssignmentExpressionNoIn

AssignmentExpression : See 11.13

ConditionalExpression

LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoIn : See 11.13

ConditionalExpressionNoIn

LeftHandSideExpression AssignmentOperator AssignmentExpressionNoIn

AssignmentOperator : one of See 11.13
= *= /= %= += -= <<= >>= >>>= &= ^= |=

Expression : See 11.14

AssignmentExpression

Expression , AssignmentExpression

ExpressionNoIn : See 11.14

AssignmentExpressionNoIn

ExpressionNoIn , AssignmentExpressionNoIn

- 193 -

11 August 2008

A.4 Statements

Statement : See clause 12

SubStatement

ConstantStatement

VariableStatement

FunctionDeclaration

SubStatement : See clause 12

Block

EmptyStatement

ExpressionStatement

IfStatement

IterationStatement

ContinueStatement

BreakStatement

ReturnStatement

WithStatement

LabelledStatement

SwitchStatement

ThrowStatement

TryStatement

Block : See 12.1

{ StatementListopt }

StatementList : See 12.1

Statement

StatementList Statement

VariableStatement : See 12.2

var VariableDeclarationList ;

VariableDeclarationList : See 12.2

VariableDeclaration

VariableDeclarationList , VariableDeclaration

VariableDeclarationListNoIn : See 12.2

VariableDeclarationNoIn

VariableDeclarationListNoIn , VariableDeclarationNoIn

VariableDeclaration : See 12.2

Identifier Initialiseropt

VariableDeclarationNoIn : See 12.2

Identifier InitialiserNoInopt

Initialiser : See 12.2

= AssignmentExpression

InitialiserNoIn : See 12.2

= AssignmentExpressionNoIn

Deleted: VariableStatement

- 194 -

11 August 2008

EmptyStatement : See 12.3
;

ExpressionStatement : See 12.4

[lookahead {{, function}] Expression ;

IfStatement : See 12.5

if (Expression) SubStatement else SubStatement

if (Expression) SubStatement

IterationStatement : See 12.6

do SubStatement while (Expression);

while (Expression) SubStatement

for (ExpressionNoInopt; Expressionopt ; Expressionopt) SubStatement

for (var VariableDeclarationListNoIn; Expressionopt ; Expressionopt) SubStatement

for (LeftHandSideExpression in Expression) SubStatement

for (var VariableDeclarationNoIn in Expression) SubStatement

ContinueStatement : See 12.7

continue [no LineTerminator here] Identifieropt ;

BreakStatement : See 12.8

break [no LineTerminator here] Identifieropt ;

ReturnStatement : See 12.9

return [no LineTerminator here] Expressionopt ;

WithStatement : See 12.10

with (Expression) SubStatement

SwitchStatement : See 12.11

switch (Expression) CaseBlock

CaseBlock : See 12.11

{ CaseClausesopt }

{ CaseClausesopt DefaultClause CaseClausesopt }

CaseClauses : See 12.11

CaseClause

CaseClauses CaseClause

CaseClause : See 12.11

case Expression : StatementListopt

DefaultClause : See 12.11

default : StatementListopt

- 195 -

11 August 2008

LabelledStatement : See 12.12

Identifier : Statement

ThrowStatement : See 12.13

throw [no LineTerminator here] Expression ;

TryStatement : See 12.14

try Block Catch

try Block Finally

try Block Catch Finally

Catch : See 12.14

catch (Identifier) Block

Finally : See 12.14

finally Block

ConstantStatement : Sec 12.15

const ConstantDeclarationList ;

ConstantDeclarationList : Sec 12.15

ConstantDeclaration

ConstantDeclarationList , ConstantDeclaration

ConstantDeclaration : Sec 12.15

Identifier Initialiser

A.5 Functions and Programs

FunctionDeclaration : See clause 13

function Identifier (FormalParameterListopt) { FunctionBody }

FunctionExpression : See clause 13

function Identifieropt (FormalParameterListopt) { FunctionBody }

FormalParameterList : See clause 13

Identifier

FormalParameterList , Identifier

FunctionBody : See clause 13

SourceElements

Program : See clause 14

UseSubsetDirectiveopt SourceElements

UseSubsetDirectiveopt :

" use subset SubsetList " ;

SubsetList :

Identifier

SubsetList , Identifier

- 196 -

11 August 2008

SourceElements : See clause 14

SourceElement

SourceElements SourceElement

SourceElement : See clause 14

Statement

A.6 Universal Resource Identifier Character Classes

uri ::: See 15.1.3

uriCharactersopt

uriCharacters ::: See 15.1.3

uriCharacter uriCharactersopt

uriCharacter ::: See 15.1.3

uriReserved

uriUnescaped

uriEscaped

uriReserved ::: one of See 15.1.3
; / ? : @ & = + $,

uriUnescaped ::: See 15.1.3

uriAlpha

DecimalDigit

uriMark

uriEscaped ::: See 15.1.3

% HexDigit HexDigit

uriAlpha ::: one of See 15.1.3
a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

uriMark ::: one of See 15.1.3
- _ . ! ~ * „ ()

A.7 Regular Expressions

Pattern :: See 15.10.1

Disjunction

Disjunction :: See 15.10.1

Alternative

 Alternative | Disjunction

Alternative :: See 15.10.1
[empty]
Alternative Term

Deleted: FunctionDeclaration

Deleted: '

- 197 -

11 August 2008

Term :: See 15.10.1

Assertion

Atom

Atom Quantifier

Assertion :: See 15.10.1
^

$
\ b
\ B

Quantifier :: See 15.10.1

QuantifierPrefix

QuantifierPrefix ?

QuantifierPrefix :: See 15.10.1
*

+

?

{ DecimalDigits }

{ DecimalDigits , }

{ DecimalDigits , DecimalDigits }

Atom :: See 15.10.1

PatternCharacter
.

\ AtomEscape

CharacterClass

(Disjunction)

(? : Disjunction)

(? = Disjunction)

(? ! Disjunction)

PatternCharacter :: SourceCharacter but not any of: See 15.10.1
^ $ \ . * + ? () [] { } |

AtomEscape :: See 15.10.1

DecimalEscape

CharacterEscape

CharacterClassEscape

CharacterEscape :: See 15.10.1

ControlEscape

c ControlLetter

HexEscapeSequence

UnicodeEscapeSequence

IdentityEscape

ControlEscape :: one of See 15.10.1
f n r t v

- 198 -

11 August 2008

ControlLetter :: one of See 15.10.1
a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

IdentityEscape :: See 15.10.1

SourceCharacter but not IdentifierPart

DecimalEscape :: See 15.10.1

DecimalIntegerLiteral [lookahead DecimalDigit]

CharacterClass :: See 15.10.1

[[lookahead {^}] ClassRanges]

[^ ClassRanges]

ClassRanges :: See 15.10.1
[empty]
NonemptyClassRanges

NonemptyClassRanges :: See 15.10.1

ClassAtom

ClassAtom NonemptyClassRangesNoDash

ClassAtom – ClassAtom ClassRanges

NonemptyClassRangesNoDash :: See 15.10.1

ClassAtom

ClassAtomNoDash NonemptyClassRangesNoDash

ClassAtomNoDash – ClassAtom ClassRanges

ClassAtom :: See 15.10.1
-

ClassAtomNoDash

ClassAtomNoDash :: See 15.10.1

SourceCharacter but not one of \] -

\ ClassEscape

ClassEscape :: See 15.10.1

DecimalEscape
b

CharacterEscape

CharacterClassEscape

Deleted: -

Deleted: -

- 199 -

11 August 2008

- 200 -

11 August 2008

Annex B

(informative)

Compatibility

B.1 Additional Syntax

Past editions of ECMAScript have included additional syntax and semantics for specifying octal literals and

octal escape sequences. These have been removed from this edition of ECMAScript. This non-normative

annex presents uniform syntax and semantics for octal literals and octal escape sequences for compatibility

with some older ECMAScript programs.

B.1.1 Numeric Literals

The syntax and semantics of 7.8.3 can be extended as follows:

Syntax

NumericLiteral ::

DecimalLiteral

HexIntegerLiteral

OctalIntegerLiteral

OctalIntegerLiteral ::

0 OctalDigit

OctalIntegerLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

Semantics

The MV of NumericLiteral :: OctalIntegerLiteral is the MV of OctalIntegerLiteral.

The MV of OctalDigit :: 0 is 0.

The MV of OctalDigit :: 1 is 1.

The MV of OctalDigit :: 2 is 2.

The MV of OctalDigit :: 3 is 3.

The MV of OctalDigit :: 4 is 4.

The MV of OctalDigit :: 5 is 5.

The MV of OctalDigit :: 6 is 6.

The MV of OctalDigit :: 7 is 7.

The MV of OctalIntegerLiteral :: 0 OctalDigit is the MV of OctalDigit.

The MV of OctalIntegerLiteral :: OctalIntegerLiteral OctalDigit is (the MV of OctalIntegerLiteral times 8) plus

the MV of OctalDigit.

B.1.2 String Literals

The syntax and semantics of 7.8.4 can be extended as follows:

Syntax

EscapeSequence ::

CharacterEscapeSequence

OctalEscapeSequence

HexEscapeSequence

UnicodeEscapeSequence

- 201 -

11 August 2008

OctalEscapeSequence ::

OctalDigit [lookahead DecimalDigit]

ZeroToThree OctalDigit [lookahead DecimalDigit]

FourToSeven OctalDigit

ZeroToThree OctalDigit OctalDigit

ZeroToThree :: one of
0 1 2 3

FourToSeven :: one of
4 5 6 7

Semantics

The CV of EscapeSequence :: OctalEscapeSequence is the CV of the OctalEscapeSequence.

The CV of OctalEscapeSequence :: OctalDigit [lookahead DecimalDigit] is the character whose code point value is

the MV of the OctalDigit.

The CV of OctalEscapeSequence :: ZeroToThree OctalDigit [lookahead DecimalDigit] is the character whose code

point value is (8 times the MV of the ZeroToThree) plus the MV of the OctalDigit.

The CV of OctalEscapeSequence :: FourToSeven OctalDigit is the character whose code point value is (8 times the

MV of the FourToSeven) plus the MV of the OctalDigit.

The CV of OctalEscapeSequence :: ZeroToThree OctalDigit OctalDigit is the character whose code point value is

(64 (that is, 82) times the MV of the ZeroToThree) plus (8 times the MV of the first OctalDigit) plus the MV of

the second OctalDigit.

The MV of ZeroToThree :: 0 is 0.

The MV of ZeroToThree :: 1 is 1.

The MV of ZeroToThree :: 2 is 2.

The MV of ZeroToThree :: 3 is 3.

The MV of FourToSeven :: 4 is 4.

The MV of FourToSeven :: 5 is 5.

The MV of FourToSeven :: 6 is 6.

The MV of FourToSeven :: 7 is 7.

B.2 Additional Properties

Some implementations of ECMAScript have included additional properties for some of the standard native

objects. This non-normative annex suggests uniform semantics for such properties without making the

properties or their semantics part of this standard.

B.2.1 escape (string)

The escape function is a property of the global object. It computes a new version of a string value in

which certain characters have been replaced by a hexadecimal escape sequence.

For those characters being replaced whose code point value is 0xFF or less, a two-digit escape sequence

of the form %xx is used. For those characters being replaced whose code point value is greater than 0xFF, a

four-digit escape sequence of the form %uxxxx is used

When the escape function is called with one argument string, the following steps are taken:

1. Call ToString(string).

2. Compute the number of characters in Result(1).

3. Let R be the empty string.

4. Let k be 0.

5. If k equals Result(2), return R.

6. Get the character (represented as a 16-bit unsigned integer) at position k within Result(1).

7. If Result(6) is one of the 69 nonblank characters
“ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789@*_+-

./”

then go to step 13.

- 202 -

11 August 2008

8. If Result(6), is less than 256, go to step 11.

9. Let S be a string containing six characters “%uwxyz” where wxyz are four hexadecimal digits encoding

the value of Result(6).

10. Go to step 14.

11. Let S be a string containing three characters “%xy” where xy are two hexadecimal digits encoding the

value of Result(6).

12. Go to step 14.

13. Let S be a string containing the single character Result(6).

14. Let R be a new string value computed by concatenating the previous value of R and S.

15. Increase k by 1.

16. Go to step 5.

NOTE

The encoding is partly based on the encoding described in RFC1738, but the entire encoding specified in

this standard is described above without regard to the contents of RFC1738.

B.2.2 unescape (string)

The unescape function is a property of the global object. It computes a new version of a string value in

which each escape sequence of the sort that might be introduced by the escape function is replaced with

the character that it represents.

When the unescape function is called with one argument string, the following steps are taken:

1. Call ToString(string).

2. Compute the number of characters in Result(1).

3. Let R be the empty string.

4. Let k be 0.

5. If k equals Result(2), return R.

6. Let c be the character at position k within Result(1).

7. If c is not %, go to step 18.

8. If k is greater than Result(2) 6, go to step 14.

9. If the character at position k+1 within Result(1) is not u, go to step 14.

10. If the four characters at positions k+2, k+3, k+4, and k+5 within Result(1) are not all hexadecimal

digits, go to step 14.

11. Let c be the character whose code point value is the integer represented by the four hexadecimal digits

at positions k+2, k+3, k+4, and k+5 within Result(1).

12. Increase k by 5.

13. Go to step 18.

14. If k is greater than Result(2) 3, go to step 18.

15. If the two characters at positions k+1 and k+2 within Result(1) are not both hexadecimal digits, go to

step 18.

16. Let c be the character whose code point value is the integer represented by two zeroes plus the two

hexadecimal digits at positions k+1 and k+2 within Result(1).

17. Increase k by 2.

18. Let R be a new string value computed by concatenating the previous value of R and c.

19. Increase k by 1.

20. Go to step 5.

B.2.3 String.prototype.substr (start, length)

The substr method takes two arguments, start and length, and returns a substring of the result of

converting this object to a string, starting from character position start and running for length characters (or

through the end of the string is length is undefined). If start is negative, it is treated as

(sourceLength+start) where sourceLength is the length of the string. The result is a string value, not a

String object. The following steps are taken:

1. Call ToString, giving it the this value as its argument.

2. Call ToInteger(start).

3. If length is undefined, use + ; otherwise call ToInteger(length).

4. Compute the number of characters in Result(1).

- 203 -

11 August 2008

5. If Result(2) is positive or zero, use Result(2); else use max(Result(4)+Result(2),0).

6. Compute min(max(Result(3),0), Result(4)–Result(5)).

7. If Result(6) 0, return the empty string ―‖.

8. Return a string containing Result(6) consecutive characters from Result(1) beginning with the character

at position Result(5).

The length property of the substr method is 2.

NOTE

The substr function is intentionally generic; it does not require that its this value be a String object.

Therefore it can be transferred to other kinds of objects for use as a method.

B.2.4 Date.prototype.getYear ()

NOTE

The getFullYear method is preferred for nearly all purposes, because it avoids the ―year 2000

problem.‖

When the getYear method is called with no arguments the following steps are taken:

1. Let t be this time value.

2. If t is NaN, return NaN.

3. Return YearFromTime(LocalTime(t)) 1900.

B.2.5 Date.prototype.setYear (year)

NOTE

The setFullYear method is preferred for nearly all purposes, because it avoids the ―year 2000

problem.‖

When the setYear method is called with one argument year the following steps are taken:

1. Let t be the result of LocalTime(this time value); but if this time value is NaN, let t be +0.

2. Call ToNumber(year).

3. If Result(2) is NaN, set the [[PrimitiveValue]] property of the this value to NaN and return NaN.

4. If Result(2) is not NaN and 0 ToInteger(Result(2)) 99 then Result(4) is ToInteger(Result(2))

+ 1900. Otherwise, Result(4) is Result(2).

5. Compute MakeDay(Result(4), MonthFromTime(t), DateFromTime(t)).

6. Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).

7. Set the [[PrimitiveValue]] property of the this value to TimeClip(Result(6)).

8. Return the value of the [[PrimitiveValue]] property of the this value.

B.2.6 Date.prototype.toGMTString ()

NOTE

The property toUTCString is preferred. The toGMTString property is provided principally for

compatibility with old code. It is recommended that the toUTCString property be used in new

ECMAScript code.

The Function object that is the initial value of Date.prototype.toGMTString is the same Function

object that is the initial value of Date.prototype.toUTCString.

- 204 -

11 August 2008

Annex C

Usage Subsets

C.1 The cautious Subset

C.1.1 Excluded Features

1. A Program that contains cautious in its set of usage subsets or is evaluated within an execution

context that is subset restricted to the cautious subset does not perform automatic semicolon

insertion. Where the above rules would insert a semicolon, instead a syntax error is detected (7.9.1.1).

2. When defined within an execution context subset restricted to the cautious subset, a function may

not have two or more formal parameters that have the same name. An attempt to create a such a

function will fail, either statically, if expressed as a FunctionDeclaration or FunctionExpression, or

dynamically by throwing a SyntaxError exception, if expressed in a call to the Function

constructor (10.1.3.1).

3. For functions defined within an execution subset restricted to the cautious subset, the activation

object is only initialized with an ―arguments‖ property if the function mentions ―arguments‖ freely in

its body (10.1.6.1).

4. For functions defined within an execution subset restricted to the cautious subset, an arguments

object is only created if the function mentions ―arguments‖ freely in its body. If a arguments object is

created, a callee property is not created. The arguments object does not share properties with the

activation object. Changing the value of a arguments object property does not change the value of the

corresponding activation object property and vice versa (10.1.8.1).

5. If either the execution context for the eval code or the execution context in which the eval operator

was executed is subset restricted to the cautious subset, the eval code cannot instantiate variables,

functions, or constants in the lexical context of its eval operator. Instead, a new environment object is

appended to the head of the calling context‘s scope chain and that environment object is used for

envrironment bindings instantiation with the eval code (10.2.2.1).

6. If this is evaluated within an execution context that is subset restricted to the cautious subset and

the this value is null or undefined, then the this expression throws a ReferenceError exception

(11.1.1.1).

7. When a postfix increment operator occurs within an execution context that is subset restricted to the

cautious subset, its LeftHandSide must not be a reference to a property with the attribute value

{[[Writable]]: false} nor to a non-existent property of an object whose [[Extensible]] property has the

value false. In these cases a TypeError exception is thrown (11.3.1.1).

8. The same restrictions as specified in 11.3.1.1 apply for the postfix decrement operator (11.3.2.1).

9. When a delete operator occurs within an execution context that is subset restricted to the

cautious subset, its UnaryExpression is further limited to being a MemberExpression. In addition,

if the property to be deleted is has the attribute { [[Flexible]]:false }, a TypeError exception is

thrown (11.4.1.1).

10. The same restrictions as specified in 11.3.1.1 apply for the prefix increment operator (11.4.4.1).

11. The same restrictions as specified in 11.3.1.1 apply for the prefix decrement operator (11.4.5.1).

12. When a simple assignment occurs within an execution context that is subset restricted to the

cautious subset, its LeftHandSide must not evaluate to a Reference to a property of the Global

Object. If it does a ReferenceError exception is thrown. The LeftHandSide also may not be a

reference to a property with the attribute value {[[Writable]]:false} nor to a non-existent property of

an object whose [[Extensible]] property has the value false. In these cases a TypeError exception is

thrown (11.13.1.1)

13. A VariableStatement within an execution context that is subset restricted to the cautious subset,

may not occur as the StatementList of a Block. The occurrence of a VariableStatement in such a

context must be treated as a syntax error (12.1.1)

14. An execution context that is subset restricted to the cautious subset, may not execute a

WithStatement. The occurrence of a WithStatement in such a context should be treated as a syntax

error (12.10.1).

If an execution context that is subset restricted to the cautious subset uses the value of the eval

property any way other than a direct call (that is, other than by the explicit use of its name as an Identifier

- 205 -

11 August 2008

which is the MemberExpression in a CallExpression), or if the eval property is assigned to, an

EvalError exception is thrown (15.1.2.1.1).

C.1.2 Additional Execution Exceptions

206

11 August 2008

Annex D

(informative)

Correction and Clarifications in Edition 3.1 with Possible Compatability Impact

Through out: The meaning of phrases such as ―as if by the expression new Array()‖ are subject to

misinterpretation. The specification text for all interal references and invocations of standard built -in objects

and methods has been clarified by making it implicit that the intent is that the actual built-in object is to be

used rather than the current dynamic value of the correspondingly name property.

11.8.2, 11.8.3,11.8.5 While ECMAScript generally uses a left to right evaluation order the specification

language for the > and <= operators resulted a partial right to left order. The specification has been corrected

for these operators such that it now specifies a full left to right evaluation order. However, this change of

order is potentially observable if user-defined valueOf or toString methods with side-effects are invoked

during the evaluation process.

15.10.6 RegExp.prototype is now a RegExp object rather than an instance of Object. The value of its [[class]]

internal property which is observable using Object.prototype.toString is now ―RegExp‖ rather than ―Object‖

207

11 August 2008

Annex E

(informative)

Additions and Changes in Edition 3.1 which Introduce Incompatabilities with Edition 3.

Section 7.1 Unicode format control characters are no longer stripped from ECMAScript source text before

processing. Unicode BOMs (byte order marks) are treated as whitespace.

Section 7.8.5 Regular expression literals now return an unique object each time the literal is evaluated. This

change is detectable by any programs test the object identity of such literal values.

Section 12.6.4 for-in statements no longer throw a TypeException if the in expression evaluates to null or

undefined. Instead, the statement behaves as if the value of the expression was an object with no enumerable

properties.

 Section 15: Implementations are now required to ignore extra arguments tostandard built -in methods unless

otherwise explicitly specified. In the 3
rd

 Edition the handling of extra arguments were undefined and

implementations were explicitly allowed to throw a TypeError exception.

Section 15.1.1: The value properties NaN, Infinity, and undefined of the Global Object have been changed

to be read-only properties.

Section 15.9.4.2: Date.parse is not required to first attempt to parse its argument as an ISO format string.

Programs that use this format but depended upon implementation specific behavor (including failure) may

behave differently.

Comment [AWB63]: What is the justification for
this change??

208

11 August 2008

Free printed copies can be ordered from:

ECMA

114 Rue du Rhône

CH-1204 Geneva

Switzerland

Fax: +41 22 849.60.01

Interne.ch

Files of this Standard can be freely downloaded from our ECMA web site (www.ecma.ch). This site gives full

information on ECMA, ECMA activities, ECMA Standards and Technical Reports.

http://www.ecma.ch)/

209

11 August 2008

ECMA

114 Rue du Rhône

CH-1204 Geneva

Switzerland

See inside cover page for obtaining further soft or hard copies.

210

11 August 2008

Revision History

25 March 2008 pratapL Added errata from Mozilla (http://www.mozilla.org/js/language/E262-3-

errata.html).

26 May 2008 pratapL Updated to introduce the following:

Strict mode, infrastructure for the introduction of getters/setters, and

improvents to String, Date, Array, Function, and Object. Removed the

notions of equating and joining.

9 June 2008 pratapL Added Array generics (§15.4.4.14 to 15.4.4.22)

Added support for ―abc‖[0] (§8.6.2.1.2).

Reverted the change to separate internal properties on functions.(§8.6.2)

Changed Unicode Version to 4.0.

11 June 2008 pratapL Updated 15.9.1.15 (Date Time string format) calling out that it is not

required for all the fields in the ISO date format to be present.

Integrated first draft of JSON changes

Applied styles uniformly for NOTEs.

14 June 2008 pratapL Incorporated basic placeholders for Decimal.

15 June 2008 pratapL Incorporated updated JSON exposition.

24 June 2008 pratapL All changes related to introduction of internal [[Extensible]] property and

updating the statics on Object:

4.3.3 – abbreviated the definition of object.

4.3.24 – added 210larifying note: function contains executable code

4.3.25 to 4.3.28 – added definitions for property, method, attribute, own

property, inherited property

8.6.1 – changed title text to add ‗and Descriptors‘. Changed first and second

para to introduce clarifying text – introduced Ddesc and Pdesc formally.

8.6.2 – introduced [[Extensible]], removed [[Dynamic]], restored allowances

for host objects, and added clarifying section text.

8.6.2.1.3 – updated to use [[Extensible]]

8.6.2.2 – updated to use [[Extensible]]; steps that said ‗throw something‘

now say ‗throw TypeError‘.

8.6.2.5 – step that said ‗throw something‘ now says ‗throw TypeError‘.

10.1.8 – property attributes for each non-negative integer arg specified.

13.2.1, 13.2.2 – updated steps to use [[Extensible]]

15.2.3.15 – object statics specified.

15.2.4 onwards – called out the intial value of the internal [[Extensible]]

property.

28 June 2008 pratapL 7.8.4, Annex A – introduced ‗LineContinuation‘ to account for string literals

with line terminators.

29 June 2008 pratapL 4.2 onwards – changed Writeable to Writable

4.2.2 – removed ―Strict and Non-Strict Modes‖ and replaced with ―Language

Subset Selection‖ (placeholder)

4.3.7 – introduced built-in constructor

4.3.24 – fixed nature of a function

4.3.29 – added Built-in Method

7.8.5 – minor language cleanup

8.5 – fixed reference to sections 9.5 and 9.6

8.6.1 onwards – Property Attributes; changed [[Dynamic]] to [[Flexible]],

introduced default values for the attributes, changed ‗Strict‘ flag to ‗Throw‘

flag, changed [[SetOwnProperty]] to [[DefineOwnProperty]], added

[[ThrowablePut]]

8.6.2.2 – removed ‗Strict‘ flag from [[Put]]

8.6.2.2.1 – introduced [[ThrowablePut]]

8.6.2.7 to 8.6.2.10 – addednew internal properties

8.10 – introduced whole new section

9.10 – introducded IsCallable

12.2 – introduced const into the grammar

a%20(http:/www.mozilla.org/js/language/E262-3-errata.h
a%20(http:/www.mozilla.org/js/language/E262-3-errata.h

211

11 August 2008

14 – introduced UseSubsetDirective into thegrammar

15.4.4 – fixed Array methods to use [[ThrowablePut]]

15.4.5.1 – defined [[ThrowablePut]] for Arrays

15.9.4.2, 42 – applied Lars‘ comments regarding dates

15.9.5.42, 43 – fixed reference to section 15.9.1.15

Annex C – placeholder

Annex D – placeholder

30 June 2008 pratapL 11.1.5 – introduced syntactic sections for getters/setters in object literals

1 July 2008 pratapL Integrated Unicode changes.

2 July 2008 pratapL [Integrated changes from Allen]

7.8.5 : Backed out change requiring early reporting of invalid regex literals;

removed additional language requiring that each such literal represent s single

unique object.

11.1.5 Added optional trailing comma in object initiaisers

15.10.6 made RegExp.prototype be a RegExp and its [[class]=‖RegExp‖

11.8.2,11.8.3,11.8.5 Fixed evaluation order for > and <=

3 July 2008 pratapL 11.6.1, 11.9.3, 15.13 – incorporated intial edits for Decimal.

Introduction of ―usage subset cautious‖, and all restrictions (7.9.1.1,

10.1.3.1, 10.1.6.1, 10.1.8.1, 10.2.2.1, 11.3.1.1, 11.4.1.1, 11.4.5.1, 11.13.1.1,

11.13.2.1, 12.0.1, 12.6.4.1, 12.10.1, 15.1.2.1.1)

12.15 0 introduced ConstantStatement

15.5.3.3 – introduced String.uniqueIdentifier

4 July 2008 pratapL 7.2 – added <NEL> as a white space character.

7.5.2 – reverted the change that made eval a keyword

7.8.4 – allowed embedded LineTerminator in string literals provided they are

not followed by white space.

8 – introduced Property Descriptor and Property Identifier as new types.

8.6.1 – introduced [[Const]] as a property attribute.

8.6.2.1, 8.6.2.3, 8.6.2.9, 8.6.2.10 – updated the algorithims to account for

[[Const]].

10.1.2, 10.1.3, 12, 12.1, 12.2, 12.5, 12.6, 12.6.1, 12.6.2, 12.6.3, 12.6.4,

12.10, 12.15 - introduced Const statements, lexical scoping of consts and

function declarations, restricting declarations from use as ―pseudo blocks‖.

12.0.1 – deleted this section and added 12.1.1 instead.

15.13.2 – the Decimal constructor can no longer be called as a function;

added a clarification that it does not support the internal [[Call]] method.

15.13.5.17, 15.13.5.20, 15.13.5.30, 15.13.5.31, 15.13.5.35, 15.13.5.41 –

made mc an optional argument.

15.13.5.19 – made roundingMode an optional argument.

Annex C – newly added.

Added a ‗Draft‘ watermark to main content section (section 4), and ‗saved

date‘ in the footer of the page.

Regenerated TOC.

14 July 2008 pratapL 4 - updated the Scheme reference to R6R5.

5.1.4 - fixed reference to Syntactic grammar.

7.8.4 - clarified NonEscapeCharacter

7.8.4 - introduced u {} syntax for Unicode escape sequences.

15.1.2.3 – fixed reference to StrDecimalLiteral.

15.2.3.2 through 15.2.3.14 - changed first step to throw a TypeError

exception if the first parameter was not of type Object.

15.2.3.15 - introduced Object.keys static method.

15.3.2.1 - adding the ―name‖ and ―parameters‖ properties in the Function

Constructor algorithm (steps 17, 18).

15.3.5.4 - introduced the ―name‖ property.

15.3.5.5 - introduced the ―parameters‖ property.

15.5.4.21 - introduced String.prototype.toJSON.

15.6.4.4 - introduced Boolean.prototype.toJSON.

212

11 August 2008

15.7.4.8 - introduced Number.prototype.toJSON.

A.1 - added NonEscapeCharacter, and productions for u { } to the lexical

grammar.

15 July 2008 pratapL 8.6.2 - changed -> to → in internal properties table.

8.6.2.3 - added check for ―readonly‖ accessor properties to [[CanPut]].

10.1.2 - removed the ability to include UseSubsetDirective in the code of a

function body passed as a string to the Function constructor.

10.2.4 - new section.

12.1 - various tweaks to match changes to section 10.

12.6.4 - made for-in ignore expressions whose values are either null or

undefined rather than throwing a TypeError.

12.14 - update catch semantics to match changes to sections 10 and 12.1.

15.2.3.2 - moved getOwnProperty to 15.2.3.3.

15.2.3.3 - moved getProperty to 15.2.3.4.

15.2.3.4 - eliminated getOwnProperties method.

15.2.3.4, 15.2.3.5 - added not stating that implicit string properties,

corresponding to character positions are not included in the returned

property descriptor.

15.2.3.5 - corrected algorithm to correctly deal with shadowed inherited

properties.

15.2.3.5 - eliminated method getProperties, replaced with

getOwnPropertyNames.

15.2.3.8 - changed name of second argument.

15.2.3.9 - reinstated optional second argument to Object.create.

15.2.3.14 - moved getPrototypeOf to 15.2.3.2.

15.2.3.2 through 15.2.3.13 - defined a length property for the function.

A.5 - sync Program grammar in appendix with that in 14.

Throughout most in section 10: changed the term ―variable object‖ to

―environment object‖ and the term ―variable instantiation‖ to ―environment

binding instantiations‖.

Major overhaul of section 10 to better accomodate block scoped consts and

function declarations.

4 Aug 2008 pratapL Incorporated the following based on the Oslo review:

4 - updated the Scheme reference to the IEEE standard.

7.8.4, A.1 - reverted the addition of u { UnicodeHexEscapeSequence }, the

UnicodeHexEscapeSequence production, and the elaboration on its CV.

7.2-7.3, A.1 - restored <LS> and <PS> as line termination characters. Made

<CR><LF> a line terminator.

7.8.4, A.1 - restored original definition of NonEscapeCharacter.

7.8 5 - call out scan time reporting of invalid RegExp literals.

8.6.2 - changed term ―procedural property‖ to ―accessor property‖, removed

stray mention of [[Identity]].

8.6.2.1 - changed references to Result(4) to Result(5).

8.6.2.10 - removed redundant call to [[GetOwnProperty]](O, P) in step 5.

10.1.2.3 - updated this class number to be 10.1.2.1.

15.5.4.21, 15.6.4.4, 15.7.4.8 - added ‗key‘ as a parameter to the toJSON

functions.

15.12.2 - updated step 5.b.i to call V.toJSON(KEY); updated step 5.c.i to

call replacer.call(object, KEY, V).

8.6.2.4 - corrected and refactored algorithm.

8.6.2.9 - made any attribute change to a ―flexible‖ data property acceptable.

8.10.1 - inlined IsValidDescriptor into ToPropertyDescriptor. Removed

other references and deleted definion causing renumber of other definitions.

8.10.5 - (FromPropertyDescriptor) changed undefined arg result and deleted

bogus step 8.

8.10.6 - (ToPropertyDescriptor) corrections in steps 1 and 9b.

213

11 August 2008

15.5.3.3 – reverted the addition of String.uniqueIdentifier.

15.2.3.4 - renamed Object.getProperty to Object.getPropertyDescriptor.

15.2.3.11, 15.2.3.13 renamed Object.const to Object.freeze and

Object.isConst to Object.isFrozen.

15.2.3.12, 15.2.3.15 Added Object.nonExtensible and Object.isExtensible

functions.

11.6.1, 11.6.2 - incorporated changes to the Addition and Subtraction

operators to handle Decimal.

11 Aug 2008 pratapL 11.3.1, 11.3.2, 11.4.4, 11.4.5, 11.4.6, 11.4.7, 11.5, 11.8.1, 11.8.2, 11.8.3,

11.8.4 - incorporated changes to introduce support for Decimal.

15.2.3.2 - deleted Object.getOwnProperty; renumbered the remaining

sections under 15.2.3.

15.2.3.3 - renamed Object.getPropertyDescriptor to

Object.getOwnPropertyDescriptor.

15.2.3.11 - renamed Object.nonExtensible to Object.preventExtensions.

