
Ecma/TC39/2009/021

Page 1

Errata (Revision 7)

For

Ecma/TC39/2009/018

ECMAScript 3.1 Candidate Specification

March 2, 2009 Draft

Open Issues

The value of the caller and arguments property of Function instances.

Sections 13.2, 15.3.4.5, and 15.3.5.

ES3.1 specified that function instances have non-writable, non-configurable properties whose values are

null. This are intended to prevent conforming implementations from continuing to support legacy use

of these property names. Should the specified value of these properties be undefined rather than null?

Should this definition of these properties apply to all function instances or just strict mode functions?

13.2 and 15.3.4.5 creates them for all function instances but section 15.3.5 says they only apply to strict

mode functions.

Should we clarify how much flexibility have in implementing complex algorithms in Section 15?

Section 15.

Add the following paragraph at the end of section 15:

Functions in this section are generally defined using algorithms that are intended to describe the result

produced by each function in the absence of any implicit error conditions. These algorithms are not

intended to imply the use of any specific implementation technique. The each algorithm produces its results

by using a specific sequence of calls to internal methods and abstract operations. Implementation may use

other algorithms that use a different sequencing of these calls as long as an identical result is obtained in the

absence of errors conditions that are not explicitly handled by the specified algorithm. If any internal

method call invokes a get or set function of an accessor property that has side-effects or if an implicit error

occurs the observable side-effects of a function are implementation dependent but are restricted to those

that would be produced by some sequence of the internal method and abstract operation calls that would be

made by the specified algorithm.

Normative Changes

Remove name property of function objects and assignment of names to functions.

10.5 (Arguments Object)

In step 2 of MakeArgGetter and step 3 of MakeArgSetter, replace the phrase “env as Scope, and

the empty string as Name” with “and env as Scope”.

11.1.5 (Object Initialiser)

Ecma/TC39/2009/021

Page 2

In step 3 of both the algorithm for PropertyAssignment : get PropertyName… and

PropertyAssignment : set PropertyName… delete the phrase “, and descriptiveName as the

Name”

Delete step 2, and renumber of former steps 3-5 as 2-4.

13 (Function Definition Semantics)

In the first step 1, delete the phrase “and the string value of Identifier as Name”. In the second

step 1, delete the phrase “and an empty string as Name”. In step 4 of the third algorithm, delete

the phrase “and the string value of Identifier as Name”.

13.2 (Creating Function Objects)

In the descriptive paragraph, replace the phrases “a Boolean flag Strict, and a possibly empty

string Name,” with “, and a Boolean flag Strict,”.

Delete steps 15 and 16. Renumber existing steps 17 and 18 as 15 and 16.

15 (Native ECMAScript Objects)

Delete paragraph 10, which describes the name property for built-in functions.

15.3.2.1 (new Function …)

In step 10, delete the phrase “and the empty string as Name”.

15.3.4 (Properties of Function Prototype)

Delete the third paragraph that begins “The value of the name property…”

15.3.4.5 (Function.prototype.bind)

Deletes steps 18-22 of the algorithm. Renumber step 23 as step 18.

15.3.5.4 (name)

Delete this section

Fix method calls to a with bound property use the correct this value

Section 10.2.1 (Environment Records)

Add the following row to the end of the table:

ImplicitThisValue() Returns the value to use as the this value on calls to function

objects that are obtained as binding values from this

environment record.

Section 10.2.1.1.7 (ImplicitThisValue)

Add the following new section:

10.2.1.1.7 ImplicitThisValue()

Declarative Environment Records always return null as their ImplicitThisValue.

1. Return null.

Section 10.2.1.2.5 (ImplicitThisValue)

Add the following new section:

10.2.1.2.5 ImplicitThisValue()

Ecma/TC39/2009/021

Page 3

Object Environment Records return null as their ImplicitThisValue unless their

provideThis flag is true.

1. Let envRec be the object environment record for which the method was

invoked.

2. If the provideThis flag of envRec is true, return the binding object for

envRec.

3. Otherwise, return null.

Section 10.2.1.2 (Object Environment Records)

Add the following as the second paragraph of this section:

Object environment records can be configured to provide their binding object as an implicit

this value for use in function calls. This capability is used to specify the behaviour of With
Statement (12.10) induced bindings. The capability is controlled by a provideThis Boolean

value that is associated with each object environment record. By default, the value of

provideThis is false for any object environment record.

Section 10.2.1.2.5 (ImplicitThisValue)

Add the following new section:

10.2.1.2.5 ImplicitThisValue()

Object Environment Records return null as their ImplicitThisValue unless their

provideThis flag is true.

4. Let envRec be the object environment record for which the method was

invoked.

5. If the provideThis flag of envRec is true, return the binding object for

envRec.

6. Otherwise, return null.

Section 11.2.3

Replace steps 6 and 7 with the following:

6. If Type(ref) is Reference, then

a. If IsPropertyReference(ref) is true, then

i. Let thisValue be GetBase(ref).

b. Else, the base of ref is an Environment Record

i. Let thisValue be the result of calling the ImplicitThisValue concrete method of

GetBase(ref).

7. Else, Type(ref) is not Reference.
a. Let thisValue be null.

8. Return the result of calling the [[Call]] internal method on func, providing thisValue as the

this value and providing the list argList as the argument values.

Section 12.10

Add a new step 5 and renumber the previous steps 5-8 increasing them by 1:

1. Set the provideThis flag of newEnv to true.

Clarify meaning of “early” or “scan time” error reporting.

Section 7.8.5 (Regular Expression Literals)

Ecma/TC39/2009/021

Page 4

Replace the last sentence of the last paragraph with:

If the call to new RegExp would generate an error specified in 15.10.4.1, the error must be

treated as is an early error (Section 16).

Section 11.1.5 (Object Initialiser)

Replace “If the above steps would throw a SyntaxError then an implementation must report the error

immediately when scanning the program.” With “If the above steps would throw a SyntaxError then an

implementation must treat the error as an early error (Section 16).”

Section 16 (Errors)

Replace the first and second paragraphs with:

An implementation must report most errors at the time the relevant ECMAScript language construct

is evaluated. An early error is an error that can be detected and reported prior to the evaluation of

any construct in the Program containing the error. An implementation must report early errors in a

Program prior to the first evaluation of that Program. Early errors in eval code are reported at the

time eval is called but prior to evaluation of any construct within the eval code. All errors that are

not early errors are runtime errors.

An implementation must treat any instance of the following kinds of errors as an early error:

Replace the paragraph immediately preceding the second bulleted list with:

An implementation may treat any instance of the following kinds of errors as an early error, or the

implementation may, at its option, treat them as runtime errors that are reported when the relevant

construct is evaluated:

To the second bulleted list, add the following as the first item:

• Any syntax error.

In the first sentence of the paragraph immediately following the second bulleted list, replace the phrase:

“An implementation shall not treat other kinds of errors as early errors even” with “An implementation

shall not treat other kinds of errors as early errors even”.

Single Section Changes

Section 8.6.2 (Internal Properties)

Add the paragraph as the last paragraph immediately before Table 5:

If a host object provides its own internal [[GetOwnProperty]] method, the mutability implies

by the property descriptors (8.10) it returns must be an upper bound on the possible mutations

of the described property. For example, if a property is described as a data property and it may

return different values over time, then the [[Writable]] attribute must be true even if no

mechanism to change the value is exposed via the other internal methods. If the attribu tes may

change over time or if the property might disappear, then the [[Configurable]] attribute must be

true. If [[Writable]] and [[Configurable]] are both false and the property is described as a data

property, then the host is effectively promising that the [[Value]] will be stable and may

validly be cached.

Section 8.7 (Reference Specification Type)

Ecma/TC39/2009/021

Page 5

Replace the bulleted item for IsPropertyReference with:

1. IsPropertyReference(V). Returns true if either the base value is an object or

HasPrimitiveBase(V) is true; otherwise false is returned.

Section 8.10.4 (FromPropertyDescriptor)

Every call to [[Put]] needs to be replaced with call to [[DefineOwnProperty]]. The new version of the

algorithm is:

1. If Desc is undefined, then return undefined.

2. Let obj be the result of creating a new object as if by the expression new Object() where Object

is the standard built-in constructor with that name.

3. If IsDataDescriptor(Desc) is true, then

a. Call the [[DefineOwnProperty]] internal method of obj with arguments "value",

Property Descriptor {[[Value]]: Desc.[[Value]], [[Writable]]: true, [[Enumerable]]:

true, [[Configurable]]: true}, and false.

b. Call the [[DefineOwnProperty]] internal method of obj with arguments

"writable", Property Descriptor {[[Value]]: Desc.[[Writable]], [[Writable]]:

true, [[Enumerable]]: true, [[Configurable]]: true}, and false.

4. Else, IsAccessorDescriptor(Desc) must be true, so

a. Call the [[DefineOwnProperty]] internal method of obj with arguments "get",

Property Descriptor {[[Value]]: Desc.[[Get]], [[Writable]]: true, [[Enumerable]]:

true, [[Configurable]]: true}, and false.

b. Call the [[DefineOwnProperty]] internal method of obj with arguments "set",

Property Descriptor {[[Value]]: Desc.[[Set]], [[Writable]]: true, [[Enumerable]]:

true, [[Configurable]]: true}, and false.

5. Call the [[DefineOwnProperty]] internal method of obj with arguments "enumerable",

Property Descriptor {[[Value]]: Desc.[[Enumerable]], [[Writable]]: true, [[Enumerable]]: true,

[[Configurable]]: true}, and false.

6. Call the [[DefineOwnProperty]] internal method of obj with arguments "configurable",

Property Descriptor {[[Value]]: Desc.[[Configurable]], [[Writable]]: true, [[Enumerable]]: true,

[[Configurable]]: true}, and false.

7. Return obj.

Section 8.12.9 ([[DefaultValue]])

Steps 3,4, and 7 of the first algorithm are not correctly indented causing renumbering of them and other

steps. The revised algorithms is:

1. Let toString be the result of calling the [[Get]] internal method of object O with argument

"toString".

2. If IsCallable(toString) is true then,

a. Let str be the result of calling the [[Call]] internal method of toString, with O as

the this value and an empty argument list.

b. If str is a primitive value, return str.

3. Let valueOf be the result of calling the [[Get]] internal method of object O with argument

"valueOf".

4. If IsCallable(valueOf) is true then,

a. Let val be the result of calling the [[Call]] internal method of valueOf, with O as

the this value and an empty argument list.

b. If val is a primitive value, return val.

5. Throw a TypeError exception.

Ecma/TC39/2009/021

Page 6

Section 9.8 (ToString)

Replace the content of the Result cell for item Number with “See 9.8.1 below.”

Section 10.5 (Arguments Object)

In step 3 of the CreateArgumentsObject algorithm, replace “Object” with “Arguments”.

Immediately following step 6 add the following three steps and renumber the following steps

accordingly:

7. Let toString be the standard built-in Object.prototype.toString method (15.2.4.2)

8. Call the [[DefineOwnProperty]] internal method on obj passing "toString", the Property

Descriptor {[[Value]]: toString, [[Writable]]: true, [[Enumerable]]: false,

[[Configurable]]: true}, and false as arguments.

9. Call the [[DefineOwnProperty]] internal method on obj passing "toLocaleString", the

Property Descriptor {[[Value]]: toString, [[Writable]]: true, [[Enumerable]]: false,

[[Configurable]]: true}, and false as arguments.

In the [[DefineOwnProperty]] algorithm steps 6 and 7 (and their substeps) should be substeps of step 5.

Starting with step 5 the code of the algorithm should be:

5. If the value of isMapped is not undefined, then

a. If IsAccessorDescriptor(Desc) is true, then

i. Call the [[Delete]] internal method of map passing P, and false as the

arguments.

b. Else

i. If Desc.[[Value]] is present, then

1. Call the [[ThrowingPut]] internal method of map passing P, Desc.[[Value]],

and Throw as the arguments.

ii. If Desc.[[Writable]] is present and its value is false, then

1. Call the [[Delete]] internal method of map passing P and false as

arguments.

6. Return true.

Section 11.4.3 (typeof Operator)

Remove the word “not” in step 2:

2. If Type(val) is not Reference, then

Section 11.5.1 (Applying *)

In the second paragraph insert the word “binary” immediately before “double-precision”.

Section 11.5.2 (Applying /)

In the 4th sentence of the first paragraph insert the word “binary” immediately after “double-precision”.

Section 11.6.3 (Applying the Additive Operators)

In the third paragraph insert the word “binary” immediately before “double-precision”.

Section 11.13.2 (Compund Assignment)

In step 6, replace “Return” with “Call”. Add the following as step 7:

Ecma/TC39/2009/021

Page 7

7. Return r.

Section 13.2 (Creating Function Objects)

Use [[DefineOwnProperty]] in algorithm to initially set own property values.

Assuming the above changes to 13.2 have already been made, then starting with step 10, replace the

steps of the algorithm with the following:

10. Set the [[Extensible]] internal property of F to true.

11. Let len be the number of formal parameters specified in FormalParameterList. If no

parameters are specified, let len be 0.

12. Call the [[DefineOwnProperty]] internal method of F with arguments "length", Property

Descriptor {[[Value]]: len, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]:

false}, and false.

13. Let proto be the result of creating a new object as would be constructed by the expression

new Object()where Object is the standard built-in constructor with that name.

14. Call the [[DefineOwnProperty]] internal method of proto with arguments "constructor",

Property Descriptor {[[Value]]: F, { [[Writable]]: true, [[Enumerable]]: false,

[[Configurable]]: true}, and false.

15. Call the [[DefineOwnProperty]] internal method of F with arguments "prototype",

Property Descriptor {[[Value]]: proto, { [[Writable]]: true, [[Enumerable]]: false,

[[Configurable]]: false}, and false.

16. Call the [[DefineOwnProperty]] internal method of F with arguments "caller",

PropertyDescriptor {[[Value: null, [[Writable]]: false, [[Enumerable]]: false,

[[Configurable]]: false}, and false.

17. Call the [[DefineOwnProperty]] internal method of F with arguments "arguments",

PropertyDescriptor {[[Value: null, [[Writable]]: false, [[Enumerable]]: false,

[[Configurable]]: false}, and false.

18. Return F.

Section 13.2.1 ([[Call]])

Add the following sentence at the end of the text for step 2: “If F does not have a [[Code]] internal

property or if its value is an empty FunctionBody, then result is (normal, undefined, empty). “

Section 13.2.2 ([[Construct]])

Replace step 4 with:

4. Let proto be the value of calling the [[Get]] internal property of F with argument

"prototype".

Section 15.2.3.4 (Object.getOwnPropertyNames)

Starting with step 3 the algorithm should be :

3. Let n be 0.

4. For each named own property P of O

a. Let name be the string value that is the name of P.

b. Call the [[DefineOwnProperty]] internal method of array with arguments

ToString(n), the PropertyDescriptor {[[Value]]: name, [[Writable]]: true,

[[Enumerable]]: true, [[Configurable]]: true}, and false.

c. Increment n by 1.

5. Return array.

Ecma/TC39/2009/021

Page 8

Section 15.2.3.5 (Object.create)

Step 4 the algorithm should be :

4. If the argument Properties is present and not undefined, add own properties to

obj as if by calling the standard built-in function

Object.defineProperties with arguments obj and Properties.

Section 15.2.3.11 (Object.isSealed)

Section 15.2.3.12 (Object.isFrozen)

Step 2 of the algorithm for each function should be:

2. For each named own property name P of O,

Section 15.2.3.14 (Object.keys)

Step 5.a of the algorithm should be :

a. Call the [[DefineOwnProperty]] internal method of array with arguments

ToString(index), the PropertyDescriptor {[[Value]]: P, [[Writable]]: true,

[[Enumerable]]: true, [[Configurable]]: true}, and false.

Section 15.3.2.1 (new function)

Step 6 should be:

6. Let body be ToString(body).

Starting with step 9, the steps of the algorithm should be:

9. If body includes a Use Strict Directive then let strict be true, else let strict be false.

10. If strict is true, throw any exceptions specified in 13.1 that apply.

11. Return a new Function object created as specified in 13.2 using P as the

FormalParameterList and body as the FunctionBody. Pass in the Global Environment as

the Scope parameter and strict as the Strict flag.

Section 15.3.4 (Properties of the Function Prototype)

Add the following paragraph at the end of the section:

The length property of the Function prototype object is 0.

Section 15.3.4.5 (Function.prototype.bind)

Algorithm is missing the creation of arguments and caller properties as required by 15.3.5. Immediately

before the final step of the algorithm insert these steps:

18. Call the [[DefineOwnProperty]] internal method of F with arguments "caller",

PropertyDescriptor {[[Value: null, [[Writable]]: false, [[Enumerable]]: false,

[[Configurable]]: false}, and false.

Ecma/TC39/2009/021

Page 9

19. Call the [[DefineOwnProperty]] internal method of F with arguments "arguments",

PropertyDescriptor {[[Value: null, [[Writable]]: false, [[Enumerable]]: false,

[[Configurable]]: false}, and false.

Section 15.3.5 (Properties of Function Instances)

Replace the first paragraph with the following two paragraphs:

In addition to the required internal properties, every function instance has a [[Call]] internal

property. Depending on how they are created (see 8.6.2 ,13.2, 15, and 15.3.4.5), function

instances may have a [[HasInstance]] internal property, a [[Scope]] internal property, a

[[Construct]] internal property, a [[FormalParameters]] internal property, a [[Code]] internal

property, a [[TargetFunction]] internal property, a [[BoundThis]] internal property, and a

[[BoundArgs]] internal property.

The value of the [[Class]] internal property is "Function".

Section 15.1 (Global Object)

Replace the second paragraph with:

Unless otherwise specified, the standard built -in properties of the global object have attributes

{[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}.

Section 15.4.4.4 (Array.prototype.concat)

In step 5.a.iii, steps 4 to 6 inclusive should be substeps of step 3 numbered a-c. Steps 5.a.iii.7-8 should

be renumbered 5.a.iii.4-5. (David-Sarah Hopwood)

Section 15.4.4.19 (Array.prototype.map)

Delete the paragraph:

The final state of O is unspecified if in the above algorithm any call to the [[ThrowingPut]]

internal method of O throws an exception.

Section 15.5.4.21 (String.prototype. toJSON)

In steps 8.f.ii and 8.f.iii replace “match” with result”

Section 15.6.4.4 (Number.prototype.toJSON)

In step 5, replace “valueOf” with “R”

Section 15.6.4.4 (Boolean.prototype.toJSON)

In the second to last step (step 11 prior to renumbering) replace “valueOf” with “R”

Section 15.6.4.4 (Number.prototype.toJSON)

In step 5, replace “valueOf” with “R”

Section 15.9.4.2 (Date.parse)

After the line consisting of “Date.parse(x.toUTCString())” add the following line:

Date.parse(x.toISOString())

Ecma/TC39/2009/021

Page 10

In the last sentence, immediately after the phrase “when given any string value that” insert “does not

conform to the Date Time String Format (15.9.1.15) and that”

Section 15.11.4.4 (Error.prototype.toString)

Replace the entire single line body of this section with:

The following steps are taken:

1. Let O be the this value.

2. If Type(O) is not Object, throw a TypeError exception.

3. Let name be the result of calling the [[Get]] internal method of O with argument

"name".

4. If name is undefined, then let name be "Error"; else let name be ToString(name).

5. Let msg be the result of calling the [[Get]] internal method of O with argument

"message".

6. If msg is undefined, then let R be msg.

7. Else, let R be the result of concatenating name, ":", a single space character, and

ToString(msg).

8. Return R.

Section 15.12.1.2 (JSON Syntactic Grammar)

Section A.8.2 (JSON Syntactic Grammar)

In the definition of the production JSONValue, replace “NullLiteral” with “JSONNullLiteral” and

“BooleanLiteral” with “JSONBooleanLiteral”.

Section 15.12.3 (JSON.stringify)

In Str abstract operation, line 9.a should be:

a. If value is finite then return ToString(value).

Editorial Changes

Clarify meaning and use of “Type(x)”

Section 5.2

Delete the last sentence of paragraph 3 which begins: “Type(x) is used as…”

Section 8

Add the following as the fourth paragraph:

Within this specification, the notation “Type(x)” is used as shorthand for “the type of x”

where “type” refers to the ECMAScript language and specification types defined in this

section.

Section 11.8.6 and 11.8.7

In step 5 replace “rval is not an object” with “Type(rval) is not Object”

Section 13.2.2 ([[Construct]])

In step 5 replace “proto is an Object” with “Type(proto) is Object”

In step 6 replace “proto is not an Object” with “Type(proto) is not Object”

Ecma/TC39/2009/021

Page 11

Section 15.2.2.1

In Step 1.a, 1.b, 1.c, and 1.d replace “the type of value” with “Type(value)”.

Section 15.7.4

In the last paragraph replace the phrase “if the type of the this value is a Number” with the

phrase “if Type(this value) is Number”.

Section 5.1.6 (JSON Grammar)

In the second sentence of the paragraph, replace “token” with “tokens”

Section 5.1.7 (Grammar Notation)

Page 10, the word “but” in “IdentifierName but not ReservedWord” should be bold and not italic

Section 5.2 (Algorithm Conventions)

The lines:

NOTE

floor(x) = x(x modulo 1).

Should be formatted in italics using the NOTE conventions

Section 6 (Source Tex)

In the first note paragraph replace “UTF-16 encoding” as follows:

Although this document sometimes refers to a “transformation” between a “character” within a

“string” and the 16-bit unsigned integer that is the code unit of that character, there is actually no

transformation because a “character” within a “string” is actually represented using that 16 -bit

unsigned value.

Section 7.2 (White Space) and Section 7.3 (Line Terminators)

The column 1 heading in the tables should be “Code Point Value” instead of “Code Unit Value” because

it is talking abstractly about Unicode characters.

In the last paragraph of 7.3 insert the word “Unicode” before the first occurrence of “character” and

expand the right margin of that paragraph to match other paragraphs of the section.

Section 7.5.3 (Future Reserved Words)

“Note” needs to be all caps.

Section 8 (Types)

The last sentence of the last paragraph should begin “Specification type values may be used…”

Section 8.4 (The String Type)

The Note needs to be in italics.

In the first two sentence of the last paragraph (before the NOTE) add these indicated words:

Ecma/TC39/2009/021

Page 12

When a string contains actual textual data, each element is considered to be a single UTF-16

code unit. Whether or not this is the actual storage format of a String, the characters within a

String are numbered by their initial code unit element position as though they were represented

using UTF-16.

Section 8.6 (The Object Type)

In the first bulleted item, delete the word “boolean”.

In the last sentence, replace “normal” with “named”.

Section 8.6.1 (Property Attributes)

In the data property table description of [[Writable]] change “assign the property’s value” to “change

the property’s [[Value]] attribute”.

In the data property table description of [[Configurable]] add “(other than [[Value]]” between

“attributes” and “will”.

Section 8.6.1 (Object Internal Properties)

In table 4 [[PrimitiveValue], the word “primitive” in the middle column should be in italics.

In table 4 [[Property], the word “boolean” in the middle column should have a capital “B”.

Combine the first and third paragraphs following table 4 by deleting the third paragraph an replacing the

first paragraph with the following:

All ECMAScript objects have an internal property called [[Prototype]]. The value o f this

property is either null or an object and is used for implementing inheritance. Whether or not a

native object can have a host object as its [[Prototype]] depends on the implementation. Every

[[Prototype]] chain must have finite length (that is, starting from any object, recursively

accessing the [[Prototype]] internal property must eventually lead to a null value). Named data

properties of the [[Prototype]] object are inherited (are visible as properties of the child object)

for the purposes of get access, but not for put access. Named accessor properties are inherited

for both get access and put access.

In table 5 the descriptions of [[TargetFunction]] and [[BoundThis]] the phrase “objects that are bound

using” should be “objects created using”.

In table 5 the description of [[BoundArguments] the phrase “objects bound using” should be “objects

created using”.

In table 5 the description of [[ParameterMap]] the phrase “arguments object have” should be

“arguments objects have”.

Section 8.7 (Reference Specification Type)

In the first sentence of the second paragraph replace the phrase “A Reference is a reference to a

resolved…” with “A Reference is a resolved…”

Section 8.7.1 (GetValue)

In step 3.b, “base” should be in italics.

In step 5.a, replace “(N,S)” with section reference (10.2.1.2.4)

Ecma/TC39/2009/021

Page 13

In the note, replace the phrase “its use in that step” with “its use in the next step”

Section 8.7.3 (PutValue)

In step 4.a, insert section reference (15.1) after “global object”.

Replace stepo 5.b with:

a. Call the SetMutableBinding (10.2.1.1.3) concrete method of base, passing

GetReferencedName(V), W, and IsStrictReference(V) as arguments.

In the second sentence of the paragraph between the two algoritms, the “Base” should have a lower

case “b”.

Section 8.10 (Property Descriptor)

A tab is need in the section heading so the section title aligns with the following paragraph.

In the second paragraph replace “{value: 42, writable: false, configurable: true}” with “{[[Value]]: 42,

[[Writable]]: false, [[Configurable]]: true}”.

In the last paragraph replace “named value” with “named [[Value]]”.

Section 8.10.5 (ToPropertyDescriptor)

All of the quoted strings should be bold font, Courier New.

Section 8.12.8 ([[Delete]])

In step 3.a, P and O should be italic.

Section 9.3.1 (To Number applied to String)

Restore lost bullets to last two lines of section.

Section 9.12 (Same Value Algorithm)

Made step 7 align with other top level steps.

Section 10.2.1.1 (Declarative Environment Records)

In the first sentence of the second paragraph replace the word “binds” with “bindings”.

In the table, all mentions of “V” and “N” in the Purpose column should be italic.

Section 10.2.1.1.3 (SetMutableBinding)

“TypeError” in the second sentence should be bold font.

Section 10.2.1.1.4 (GetBindingValue)

“ReferenceError” in the third sentence should be bold font.

Section 10.2.1.1.5 (CreateImmutableBinding)

“undefined” in the first sentence should be bold font.

Ecma/TC39/2009/021

Page 14

Section 10.4 (Establishing an Execution Context)

In the first sentence of the second pargraph insert the section reference “(10.6)” immediately after the

words “declaration binding instantiation”.

Section 10.4.3 (Function code)

In step 8, “F” in “F’s” should be in italics.

Section 10.5 (Arguments Object)

In step 1 of the makeArgGetter and step 2 of makeArgSetter algorithms, “body” should be italic.

In step 1 of the makeArgSetter algorithm, “param” should be italic.

In step 2 of the [[DefineOwnProperty] algorithm, “map” should be italic.

Section 10.6 (Declaration Binding Instantations)

In steps 4 and 5, delete the phrase “the execution context’s” and make “code” italic.

In step 7, delte “the” and make “code” italic.

Section 11.1.1 (The this keyword)

Replace the sole sentence with:

The this keyword evaluates to the value of the ThisBind of the current execution context.

Section 11.1.2 (Identifier Reference)

Replace “using the scoping rules” with “by performing Identifier Resolution as”

Section 11.1.4 (Array Initialiser)

In step 6 of the 5th algorithm, fix the 2nd-3rd line indenting.

Section 11.1.5 (Object Initialiser)

In step 4 of the 5th algorithm, “propValue” should be italic.

Section 11.6.1 (Addition operator)

Remove the parenthesized note from step 3 and add the following paragraph as the first paragraph of

the section note:

Step 7 differs from step 3 of the comparison algorithm for the relational operators(11.8.5), by

using or instead of and.

Section 11.8.5 (Abstract Relational Comparision)

In step 3.a, “ny” should be italic.

Remove the parenthesized note from step 3 and add the following paragraph to the end of the section

note:

Step 3 differs from step 7 in the algorithm for the addition operator + (11.6.1) in using and

instead of or.

Ecma/TC39/2009/021

Page 15

Section 11.9.3 (Abstract Equality Comparision)

In step 1, delete the word “from”.

In the NOTE, delete “2.0” following the word “Unicode”

Section 11.12 (Conditional Operator)

In step 2, delete the word “go”

Section 12 (Statments)

Replace the TBD note at the end of the Semantics text with:

NOTE

Several widely used implementations of ECMAScript are known to support the use of

FunctionDeclaration as a Statement. However there are significant and irreconcilable variations among

the implementations in the semantics applied to such FunctionDeclarations. Because of these

irreconcilable difference, the use of a FunctionDeclaration as a Statement results in code that is not

reliably portable among implementations. It is recommended that ECMAScript implementations either

disallow this usage of FunctionDeclaration or issue a warning when such a usage is encountered. Future

editions of ECMAScript may define alternative portable means for declaring functions in a Statement

context.

Section 12.4 (Expression Statment)

Reformat the paragraph beginning with “Note” as a proper informative NOTE as follows:

NOTE

An ExpressionStatement cannot start with an opening curly brace because that might make it

ambiguous with a Block. Also, an ExpressionStatement cannot start with the function keyword

because that might make it ambiguous with a FunctionDeclaration.

Section 12.6.2 (do-while Statement)

In step 3, “true” should be bold and not italic.

Section 12.10 (with Statment)

Replace the Description paragraph with:

The with statement adds an object environment record for a computed object to the lexical

environment of the current execution context. It then executes a statement with using this

augmented lexical environment. Finaly, it restores the original lexical environment.

In step 2, add an addition “)” immediately before the period.

In step 3, delete “(O,E)”

Section 12.14 (try Statment)

In the algorithm for the production Catch : catch (Identifier) Block :

In step 3, delete “(E)”

In step 4, delete “(N)”

Ecma/TC39/2009/021

Page 16

In step 5, delete “(N,V,S)”

Section 13 (Function Definition)

The section reference “10.3.3” in the definition of FunctionDeclaration production should be “10.6”.

In the algorithm for the second FunctionExpression production:

In step 1, delete “(E)”

In step 3, delete “(N)”

In step 5, delete “(N,V)”

Section 13.2.1 ([[Call]])

Replace step 2 with:

2. Let result be the result of evaluating the FunctionBody that is the value of F's [[Code]]

internal property.

Section 15 (Native ECMAScript Objects)

Change section name to “Standard Built-in ECMAScript Objects”

Section 15.2.2.1 (new Object)

Change the section reference at the end of the last line in step 2 from “8.6.2” to “8.12”

Section 15.2.3.6 (Object.defineProperty)

In the first sentence insert “an” before “existing”.

Section 15.2.3.7 (Object.defineProperties)

In step 3, “P” should be italic. In the second sentence of the paragraph at the end of the section, “O”

should be italic.

Section 15.2.3.8 (Object.seal)

In the paragraph at the end of the section, the two occurrences of “O” should be italic.

Section 15.2.3.9 (Object.freeze)

Section 15.2.3.12 (Object.isFrozen)

In step 2.b , insert “is true,” immediate falling “(desc) “.

Section 15.2.3.14 (Object.keys)

In the first sentence “O” should be italic.

15.3.4 (Properties of Function Prototype)

Delete the paragraph that begins “It is a function with an…”

Section 15.3.4.5 (Function.prototype.bind)

Ecma/TC39/2009/021

Page 17

In the first sentence, “thisArg”, “arg1” and “arg2” should be italic. In step 3 “arg1” and “arg2” should be

italic. In step 6, delete the text “the value of”.

Section 15.3.4.5 (Function.prototype.bind)

Section 15.3.5.2 (prototype)

Add the following note at the end of each section:

NOTE

Function objects created using Function.prototype.bind do not have a

prototype property.

Section 15.4.4.4 (Array.prototype.concat)

Step 4, delete the word “the” immediately before “O”

Step 5.c.1, delete extra period at end of sentence.

Section 15.4.4.6 (Array.prototype.pop)

Step 5.a, “len” should be italic.

Section 15.4.4.11 (Array.prototype.sort)

In the bulleted list that specifies the requirements for a consistent comparision function, “a” and “b” in

the second bullet item should be italic.

In step 1 of the SortCompare algorithm, “j” should be italic.

In step 2 of the SortCompare algorithm, “k” should be italic.

Section 15.4.4.13 (Array.prototype.unshift)

Step 5.f, “k” should be italic.

Step 8.c, “k” should be italic.

Section 15.4.4.18 (Array.prototype.forEach)

Fix the indent of steps 7.c.i and 7.c.ii

Section 15.4.4.21 (Array.prototype.reduce)

Relabel the step labeled “8.b” (the first step indented under step 8) as “8.a”

Relabel the step labeled “8.a” (the second step indented under step 8) as “8.b”

Section 15.4.5.1 ([[DefineOwnProperty]])

In step 1, the phrase “undefined or and accessor descriptor” should be “undefined or an accessor

descriptor”

Section 15.6.4.4 (Boolean.prototype.toJSON)

Renumber the algorithm, starting at step 1 instead of 7.

Ecma/TC39/2009/021

Page 18

Section 15.8.2 (Function Properties of math object)

In the last NOTE paragraph, replace “fdlibm-comment@sunpro.eng.sun.com” with

“http://www.netlib.org/fdlibm”.

Section 15.9.4.4 (Date.now)

Replace the single sentence description of the function with:

The now function return a Number value that is the time value designating the UTC

date and time of the occurrence of the call to now.

Section 15.9.5.27 (Date.prototype.setTime)

Delete step 1 of the algorithm as it is redundant (because of section introduction) and other similar

algorithms in this section to not have a corresponding step.

Section 15.10.2.8 (Atom)

In step 5 of the algorithm for CharacterSetMatcher replace “else” with “then”

Section 15.10.2.10 (CharacterEscape)

The section heading needs to be reformatted as a level 4 heading.

The algorithm:

1. Let ch be the character represented by ControlLetter.

2. Let i be ch's code unit value.

3. Let j be the remainder of dividing i by 32.

4. Return the Unicode character numbered j.

Should be restated as:

1. Let ch be the Unicode character represented by ControlLetter.

2. Let i be ch's code point value.

3. Let j be the remainder of dividing i by 32.

4. Return the code unit numbered j.

Section 15.10.6.2 (RegExp.prototype.exec)

In step 11 replace “set lastIndex to e.” with “then”

Section 15.11.6.1 (EvalError)

The list of referenced sections should be:

See 8.7.2, 12.2.1 and 13.1.

Section 15.11.6.2 (RangeError)

The list of referenced sections should be:

See 15.1.2.1, 15.3.2.1, 15.10.2.5, 15.10.2.9, 15.10.2.15, 15.10.2.19, and 15.10.4.1.

Section 15.11.6.3 (ReferenceError)

The list of referenced sections should be:

mailto:Fdlibm-comment@sunpro.eng.sun.com

Ecma/TC39/2009/021

Page 19

See 11.1.5, 13.1, 15.1.2.1, 15.10.2.2, 15.3.2.1, 15.10.2.5, 15.10.2.9, 15.10.2.15, 15.10.2.19,

15.10.4.1, and 15.12.2.

Section 15.11.6.4 (SyntaxError)

The list of referenced sections should be:

See 11.1.5, 13.1, 15.1.2.1, 15.10.2.2, 15.3.2.1, 15.10.2.5, 15.10.2.9, 15.10.2.15, 15.10.2.19,

15.10.4.1, and 15.12.2.

Section 15.11.6.5 (TypeError)

The list of referenced sections should be:

See 8.12.5, 8.12.8, 8.12.9, 8.12.10, 9.9, 9.10, 10.2.1, 10.2.1.1.3, 10.5, 11.2.2, 11.2.3, 11.4.1,

11.8.6, 11.8.7, 11.3.1, 15.2.3.2, 15.2.3.3, 15.2.3.4, 15.2.3.5, 15.2.3.6, 15.2.3.7, 15.2.3.8,

15.2.3.9, 15.2.3.10, 15.2.3.11, 15.2.3.12, 15.2.3.13, 15.2.3.14, 15.2.4.3, 15.3.4.2, 15.3.4.3,

15.3.4.4, 15.3.4.5, 15.3.4.5.2, 15.3.4.5.3, 15.3.5.3, 15.4.4.3, 15.4.4.11, 15.4.4.16, 15.4.4.17,

15.4.4.18, 15.4.4.19, 15.4.4.20, 15.4.4.21, 15.4.4.22, 15.4.5.1, 15.5.4.2, 15.5.4.3, 15.5.4.21,

15.6.4.2, 15.6.4.3, 15.6.4.4,15.7.4, 15.7.4.2, 15.7.4.4, 15.7.4.8, 15.9.5, 15.9.5.9, 15.9.5.44,

15.10.4.1, 15.10.6, 15.11.4.4, and 15.12.3.

Section 16

Replace paragraph 2 (“An implementation must…”) with:

An implementation must report early as a syntax error any instance of the following kinds of

runtime errors:

(David-Sarah Hopwood)

Section A.8.1

In the production JSONEscapeCharacter move one of onto the same line as the rule name, immediately

following the ::

Annex C

Delete the last bulleted item, which is redundant.

Revised Versions of Annex D and E follow with highlight changes.

Note that additional items for these Annexes are likely to be identified during the candidate

specification evaluation process.

Ecma/TC39/2009/021

Page 20

Annex D
(Informative)

Correction and Clarifications in Edition 3.1 with Possible

Compatibility Impact
Throughout: In the Edition 3 specification the meaning of phrases such as “as if by the expression

new Array()” are subject to misinterpretation. For Edition 3.1 the specification text for all

internal references and invocations of standard built -in objects and methods has been clarified by

making it implicit that the intent is that the actual built-in object is to be used rather than the current

dynamic value of the correspondingly named property.

11.8.2, 11.8.3, 11.8.5 ECMAScript generally uses a left to right evaluation order, however the

Edition 3 specification language for the > and <= operators resulted in a partial right to left order.

The specification has been corrected for these operators such that it now specifies a full left to right

evaluation order. However, this change of order is potentially observable if user -defined valueOf or

toString methods with side-effects are invoked during the evaluation process.

11.1.4 Edition 3.1 clarifies the fact that a trailing comma at the end of an Array Initialiser does not

add to the length of the array. This is not a semantic change from Edition 3 but some

implementation may have previously misinterpreted it.

11. 2.3 Edition 3.1 reverses the order of steps 2 and 3 of the algorithm. The original order as

specified in Editions 1 through 3 was incorrectly specified such that side -effects of evaluating

Arguments could affect the result of evaluating MemberExpression.

12.2 In Edition 3 the algorithm for evaluating the production VariableDeclaration : Identifier

Initialiser was specified in a manner that is incorrect for situations where a VariableDeclaration is

nested within a WithStatement for an object that has a property name that is identical to the

Identifier in the VariableDeclaration. In this situation, the Edition 3 specification causes the value

of the Initialiser to be assigned to the object’s property rather than the actual variable introduced by

the declaration. For Edition 3.1 the algorithm has been revised such that the value of the Initialiser

will be assigned to the associated variable regardless of any such nesting. Existing ECMAScript

code that depends up faithful implementation of this Edition 3 semantics will not operated as

expected using an implementation that conforms to the Edition 3.1 specification.

12.4 In Edition 3, an object is created, as if by new Object(), to used to serve as the scope for

resolving the name of the exception parameter passed to a catch clause of a try statement. If the

actual exception object is a function and it is called from within the catch clause, the scope object

will be passed as the this value of the call. The body of the function can then define new properties

on its this value and those property names become visible identifiers bindings within the scope of

the catch clause after the function returns. In Edition 3.1, when an exception parameter is called as a

function, undefined as passed as the this value.

13. In Edition 3, the algorithm for the production FunctionExpression with an Identifier adds an

object created as if by new Object() to the scope chain to serve as a scope for looking up the

name of the function. The identifier resolution rules (10.1.4 in Edition 3) when applied to such an

object will, if necessary, follow the object’s prototype chain when attempting to resolve an

identifier. This means all the properties of Objct.prototype are visible as identifiers within that

scope. In practice most implementations of Edition 3 have not implemented this semantics. In

Edition 3.1 changes the specified semantics by using a Declarative Environment Record bind the

name of the function.

Ecma/TC39/2009/021

Page 21

15.1.2.1. Implementations are no longer permitted restrict to the use of eval in ways that are not a

direct call. In addition, any invocation of eval that is not a direct call uses the global environment as

its variable environment rather than the caller’s variable environment.

15.10.6 RegExp.prototype is now a RegExp object rather than an instance of Object. The value of

its [[Class]] internal property which is observable using Object.prototype.toString is now “RegExp”

rather than “Object”.

Ecma/TC39/2009/021

Page 22

Annex E
(Informative)

Additions and Changes in Edition 3.1 which Introduce

Incompatibilities with Edition 3.
Section 7.1: Unicode format control characters are no longer stripped from ECMAScript source text before

processing.

Section 7.2: Unicode characters <NEL>, <ZWSP>, and <BOM> are now treated as whitespace.

Section 7.3: Line terminator characters that are preceded by an escape sequence are now allowed within a

string literal token.

Section 7.8.5: Regular expression literals now return a unique object each time the literal is evaluated. This

change is detectable by any programs that test the object identity o f such literal values or that are sensitive

to the shared side effects.

Section 7.8.5: In Edition 3.1 requires scan time reporting of any possible RegExp constructor errors that

would be produced when converting a RegularExpressionLiteral to a RegExp object. Prior to Edition 3.1

implementations were permitted to defer the reporting of such errors until the actual execution time creation

of the object.

Section 10.4.2: In Edition 3.1, indirect calls to the eval function use the global environment as the variable

environment and lexical environment for the eval code. In Edition 3.1, the variable and lexical

environments of the caller of an indirect eval was used and the environments for the eval code.

Section 7.8.5: In Edition 3.1 unescaped “/” characters may appear as a CharacterClass in a regular

expression literal. In Edition 3 such a character would have been interpreter as the final character of the

literal.

Section 12.6.4: for-in statements no longer throw a TypeError if the in expression evaluates to null or

undefined. Instead, the statement behaves as if the value of the expression was an object with no

enumerable properties.

Section 15: Implementations are now required to ignore extra arguments to standard built -in methods unless

otherwise explicitly specified. In Edition 3 the handling of extra arguments was unspecified and

implementations were explicitly allowed to throw a TypeError exception.

Section 15.1.1: The value properties NaN, Infinity, and undefined of the Global Object have been changed

to be read-only properties.

Section 15.1.22: The specification of the function parseInt no longer allows implementations to treat

strings beginning with a 0 character as octal values.

Sections 15.3.4.3, 15.3.4.4: In Edition 3 passing undefined or null as the first argument to

Function.prototype.apply or Function.prototype.call causes the global object to be

passed to the indirectly invoked target function as the this value. If the first argument is a primitive value

the result of calling ToObject on the primitive value is passed as the this value. In Edition 3.1, these

transformations are not performed and the actual first argument value is passed as the this value. This

difference will normally be unobservable to existing ECMAScript Edition 3 code because a cor responding

transformation takes place upon activation of the target function. However, depending upon the

implementation, this difference may be observable by host object functions called using apply or call. In

addition, invoking a standard built-in function in that are called in this manner with null or undefined

passed as the this value will in many cases cause behaviour in Edition 3.1 implementations that differ from

Edition 3 behaviour. In particular, built in functions that are specified to actually use the passed this value

as an object typically throw a TypeError exception if passed null or undefined as the this value.

Ecma/TC39/2009/021

Page 23

Section 15.9.4.2: Date.parse is now required to first attempt to parse its argument as an ISO format

string. Programs that use this format but depended upon implementation specific behaviour (including

failure) may behave differently.

Section 15.10.2.12: In Edition 3.1, \s now matches <NEL>, <ZWSP>, and <BOM>.

Section 15.10.4.1: In Edition 3, the exact form of the string value of the source property of an objected

created by the RegExp constructor is implementation defined. In Edition 3.1, the string must conform to

certain specified requirements and hence may be different from that produced by an Edition 3

implementation.

Section 15.10.6.4: In Edition 3, the result of RegExp.prototype.toString need not be derived from

the value of the RegExp object’s source property. In Edition 3.1 the result must be derived from the

source property in a specified manner and hence may be different from the result produced by an Edition

3 implementation.

Sections 15.11.2.1, 15.11.4.3: In Edition 3.1, if an initial value for the message property of an Error

object is not specified via the Error constructor the initial value of the property is the empty string. In

Edition 3, such an initial value is implementation defined.

Section 15.11.4.4: In Edition 3, the result of Error.prototype.toString is implementation

defined. In Edition 3.1, the result is fully specified and hence may differ from some Edition 3

implementations

