
Errata, Issues, and Proposed Changes

ECMAScript 5 Candidate Specification
July 27, 2009 Revision

Revised/added sections July 27: 10.2.1, 10.2.1.1.2, 10.2.1.1.5-8, 10.2.1.2.2, 10.2.1.2.5-6, 10.5,

11.4.1, 15.1.3, 15.10, 15.10.7, A1, A7

Revised/added sections July 16: 7.3, 7.5, 7.5.1-7.5.3->7.6.1-7.6.1.2 10.5(really 10.6), 12.14,

13.2, 15.3.3, 15.3.4.3, 15.3.4.4, 15.3.4.5, 15.3.5, 15.3.4.5, 15.5.4.14, 15.9.1.5, A1, C

Revised/added sections July 9: 5.1.2-5, 7.2, 7.8.5, 8.6.2, 8.7.1-2 8.10, 10.5/10.6, 10.6/10.5,

11.1.1, 11.1.4, 11.2.4, 11.3.1, 11.3.2, 11.4.1, 11.4.3, , 11.4.4, 11.4.5, 11.13.1, 11.13.2, 12.6,

12.10, 13, 13.2.1, 14, 15, 15.3.2.1, 15.3.4.5, 15.4, 15.4.3.2, 15.4.2.1, 15.4.2.2, 15.4.4.14,

15.4.4.15, 15.4.4.16-15.4.4.22, 15.4.5.1, 15.9.5.44, 15.10.7.5, 15.12.3, C

Revised/added sections June 17: 5.1.5, 6, 7.1, 7.2, 7.5, 7.5, 8.6.2, 8.7.2, 8.12.8, 11.1.5, 11.4.1,

12.2.1, 12.14.1, 13, 13.1, 14, 14.1, 15, 15.1.3, 15.4, 15.4.4.4, 15.4.4.14, 15.4.4.15, 15.4.4.11,

15.4.5.1, 15.9.5.43, 15.11.6.1, 15.12, 15.12.1.1, 15.12.3, 16, A.1, D

Revised/added sections May 21: 4.3.27, 5.1.5, 7.5.3, 7.6, 8.6, 8.6.1, 8.7.2, 12.14.1, 14.1

4.2 Language Overview.
Issue: The explanation of a method in the second paragraph is circular. Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: this is ancient text but can be easily fix as:

Properties are containers that hold other objects, primitive values, or functions. A primitive

value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and

String; an object is a member of the remaining built-in type Object; and a function is a callable

object. A function that is associated with an object via a property is a method.

4.2.1 Objects
Issue: In “… constructors which create objects by executing code that allocates storage for the objects

and initializes …”, Javascript code does not express explicit allocation, so I suggest deleting “allocates

storage for the objects and”. https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html ,

Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Proposed resolution: Revise paragraph:

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be

created in various ways including via a literal notation or via constructors which create objects

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

and then execute code that nitializes all or part of them by assigning initial values to their

properties. Each constructor is a function that has a property named “prototype” …

4.3 Definitions
Issue: The definitions in the subsections that follow would be enhanced by cross references to the

sections that provide normative details. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-

May/009171.html

Resolution: Agree with point, will consider on a time available basis. Contrary to what the introductory

paragraph says, some of these definitions are in fact the normative definition of the term.

4.3.6 Native Object
Issue: The definition of a native object confuses me. It requires such an object to be “supplied by an

implementation” but allows it to be “constructed during the course of execution of an ECMAScript

program”. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: Revise first sentence as:

A native object is any object in an ECMAScript implementation whose semantics are fully

defined by this specification rather than by the host environment. …

4.3.9-12 Primitive value/type Definitions
Issue: it is not explicitly stated that the undefined value of 4.3.9 is the one member of type Undefined

referred to in 4.3.10. Ditto for 4.3.11 and 4.3.12. Flanagan https://mail.mozilla.org/pipermail/es-

discuss/2009-May/009171.html

Resolution: Agree with point, will consider on a time available basis.

4.3.11 Null Value
Issue: this paragraph uses “reference”, which is not consistent with the “properties are containers”

metaphor of 4.2. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: Replace definition with:

The null value is a primitive value that represents the intentional absence of any other value.

4.3.15 Boolean Object
Issue: this is the first time that “instance of” appears. I think it would be useful to define it somewhere

in 4.3. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: Agree with point, will consider on a time available basis. Also see item for 4.3.18.

4.3.18 String Object
Issue: 4.3.18: Confusing because it basically says “a string object is an instance of the string object”.

Perhaps when using “instance of” you could use the word “constructor” instead of object. This would

be a change throughout. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: replace “object” with “constructor in this context and similar ones in 4.3.15 and 4.3.21

4.3.26 Property
Issue: last line implies that functions are not objects. Flanagan https://mail.mozilla.org/pipermail/es-

discuss/2009-May/009171.html

Resolution: It add “object” after first occurrence of “function”.

4.3.27 Method.
Issue: What does it mean to be “called as a method”, asked by Waldemar about section 8.6.1

Resolution: Add sentence to definition of Method:

When a function is called as a method of an object, the object is passed to the function as its

this value.

5.1.2-5.1.5 xxx Grammars
Issue: the uses of “Unicode character” in this section are inconsistent with the conventions established

in section 6.

Resolution: drop “Unicode” and reference section 6.

5.1.5 The Use Strict Directive Grammar
Issue: Waldemar things that the productions of this grammar should use “:::” instead of “:”

https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002572.html Allen thinks it is correct the way

it is written https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002590.html Also see items for

14.1

Resolution: May F2f: : A grammar will not be used to describe directive. Delete section, renumber 5.1.6,

5.1.7 Also see changes to 14.1

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002572.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002590.html

5.1.7 Grammar Notation
Issue: middle of the 1st paragraph: “All nonterminal characters specified in this way…” Shouldn’t that be

“All *terminal* characters”? Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-

May/009171.html

Resolution: Replace “all nonterminal characters” with “All symbol characters”

Issue: near the bottom of page 9: “immediately following input terminal”. Wouldn’t “token” be a

clearer word than “terminal” here? Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-

May/009171.html

Resolution: agreed, change “terminal” to “token”

Issue with: “For convenience, the set can also be written as a nonterminal, in which case it represents

the set of all terminals to which that nonterminal could expand.” Since a nonterminal can expand into a

sequence of terminals, this can be misread as including any terminal in any possible expansion, even if it

can’t be an initial terminal. In practice, I believe this shorthand is only used for one terminal deep

nonterminals. Not sure what is the best way to clarify. Perhaps simply “… set of all initial terminals to

…”. https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002430.html

Proposed resolution reject: As such a misreading cannot occur in the only use of this convention in the

specification there is little value in making changes to it at this point.

6 Source Text
Issue: 1st paragraph: the requirement for UTF-16 puzzles me. I don’t understand what purpose it serves

in the specification, and it might lead readers to think that they have to transcode their HTML files to

UTF-16! I would think that it would be sufficient to say something like “a conforming interpreter must

treat string literals as if they were encoded in UTF-16”. Everything is probably correct as it stands here,

but it is probably confusing to all but real Unicode wizards. Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: At May F2F - Strings are raw 16-bit code units, source text is Unicode. Trouble occurs when

a supplemental character occurs in a string literal -- the spec is not well-defined. Agreed to change

wording of chapter 6 to state that source text is first converted to 16-bit code units if it's not already in

that form. If it's in one of the Unicode formats then convert it to UTF-16 and treat the resulting 16-bit

code units as inputs to the lexer grammar. If it's already in 16-bit code units (as would happen when

eval'ing a string), pass those through verbatim. Note that they might contain unmatched surrogates

which would not have been allowed under UTF-16.

This is accomplish via the following:

ECMAScript source text is represented as a sequence of characters in the Unicode character

encoding, version 3.0 or later using the UTF-16 transformation format. The text is expected to have

been normalised to Unicode Normalised Form C (canonical composition), as de scribed in Unicode

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002430.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Technical Report #15. Conforming ECMAScript implementations are not required to perform any

normalisation of text, or behave as though they were performing normalisation of text, themselves.

ECMAScript source text is assumed to be a sequence of 16-bit code units for the purposes of this

specification. Such a source text may include sequences of code units that are not valid UTF -16

character encodings. If an actual source text is encoded in a form other than 16 -bit code units it must

be processed as if it was first convert to UTF-16.

SourceCharacter ::

any Unicode character code unit

Throughout the rest of this document, the phrase “code unit” and the word “character” will be used

to refer to a 16-bit unsigned value used to represent a single 16-bit unit of UTF-16 text.). The

phrase “code point” refers to such a Unicode scalar value. “Unicode character” This only refers to

entities represented by single Unicode scalar values: the components of a combining character

sequence are still individual “Unicode characters,” even though a user might think of the whole

sequence as a single character.

7 Lexical Conventions
Issue: It is unfortunate that one of the non-terminals (aka tokens) of this lexical grammar is named

“Token”. This is confusing. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-

May/009171.html

Resolution: True, but probably too much work to change for this edition. Emphasis and capitalization

distinguish the two meanings.

7.1 Cf characters in identifiers
Issue: Second paragraph says that Cf characters can be used in identifiers but identifier grammar (7.6)

does not allow for them.

jgraham@opera.com https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002430.html and much

other discussion in es5-discuss

Resolution: Replace 7.1 with the following and fix up whitespace and IdentifierPart

The Unicode format-control characters (i.e., the characters in category “Cf” in the Unicode

Character Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used

to control the formatting of a range of text in the absence of higher-level protocols for this (such

as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All

format control characters may be used in within comments, and within stri ng literals and regular

expression literals.

<ZWNJ> and <ZWJ> are format control characters that are used to make necessary distinctions

when forming words or phrases in certain languages. In ECMAScript source text, <ZWNJ> and

<ZWJ> may also be used in an identifier after the first character.

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
mailto:jgraham@opera.com
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002430.html

<BOM> is a format-control character used primarily at the start of a text to mark it as Unicode

and to allow detection of the text's encoding and byte order. <BOM> characters intended for this

purpose can sometimes also appear after the start of a text, for example as a result of

concatenating files. <ZWSP> is a format-control character used for line break control when

justifying text. In ECMAScript source text, <ZWSP> and <BOM> characters are treated as white

space characters (7.2).

The following format-control characters have special treatment outside of coments, string literals,

and regular expression literals:

Code Unit Value Name Formal Name Usage

\u200B Zero width space <ZWSP> Whitespace

\u200C Zero width non-joiner <ZWNJ> IdentifierPart

\u200C Zero width joiner <ZWJ> IdentifierPart

\uFEFF Byte Order Mark <BOM> Whitespace

7.2 White Space
Issue: says that whitespace can appear in string literals but not other tokens. This refers to the Token

production, but it is confusing because comments and regexps can contain whitespace as well… The

distinction between regexps and other “tokens” is an artificial one anyway, so I think it would be clearer

to list all non-terminals that can contain whitespace… Flanagan https://mail.mozilla.org/pipermail/es-

discuss/2009-May/009171.html

Resolution: Revised second sentence as follows:

White space characters may occur between any two tokens, and may occur within a

StringLiteral or a RegularExpressionLiteral (where they are considered significant characters

forming part of the literal value) or within a Comment,…

Issue: NEF should not be a whitespace character

Resolution: May F2F, yes that is correct. Remove NEL from table in 7.2 and in the WhiteSpace grammar

production in 7.2 and A.1. Also from Annex E section 7.2 item.

Issue: <ZWSP> should not be whitespace, both for consistency with Unicode spec. and for backwards

compatibility with ES3. https://mail.mozilla.org/pipermail/es5-discuss/2009-June/002867.html

Resolution: remove <ZWSP> from whitespace productiuons.

7.3 Line Terminator
Issue: same comment as above. Line terminators can occur in comments and it is confusing that

comments aren't considered "tokens". Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-

May/009171.html

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-June/002867.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: Replace sentencing beginning “A line terminator cannot occur…” with:

A line terminator cannot occur within any token, except a MultiLineComment or a StringLiteral.

Any line terminators within a StringLiteral token must be preceded by an escape sequence.

David-Sarah ad issues with the above because comments are not tokens so did some more restructuring

and moved text about comments to a separate paragraph.

7.5 Tokens
Issues: The organization of the grammar gets strange here. It seems to me that 7.6 should come before

7.5. 7.5 begins with a production for identifiers, but then the body of the section defines reserved

words, with no indication that they are kinds of identifiers. Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution. Leave as is. The real problem is that ReservedWord is not listed as a Token nor does it have

the get its own section like the other kinds of Token and giving them one would change the section

number for the remainder of section 7. It isn’t clear why ReservedWord isn’t an alternative for Token.

Added note suggest by David-Sarah that explains that DivPunctuator and RegularExpressionLiteral

defines tokens but not Tokens.

Bit the bullet and moved sections related to reserved words (7.5.1-7.5.3) to be subsections of 7.6

7.5.3 Future Reserved Words
Issue: const enum export extends import super are the only FutureReservedWords that are actually

reserved on IE (or any other browser). (May F2F)

Resolution: We'll unreserve the rest except for the following, which would behave just like let and yield:

implements interface package private protected public static

7.5.1, 7.5.2 , 10.2.1.2 Identifier usage
Issue: “In Reserved words cannot be used as identifiers.” And similar context it isn’t clear whether or not

“identifiers” is referring to the like named non-terminal. https://mail.mozilla.org/pipermail/es5-

discuss/2009-April/002428.html

Proposed fix. In 7.5.1 and 7.5.2 capitalize and italicize "Identifiers" in these contexts. In 10.2.1.2 replace

the first “identifiers” with “identifier names” and the second “identifiers” with “an IdentifierName”

7.5.3 Let and Yield reserved in strict mode
Issue: The spec. doesn’t say this. https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Waldemar https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002572.html . Note that Walder

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002572.html

also propose a number of sections in 11, 12, 13 where he thinks we need to explicitly state that it is a

syntax error for let or yield to show up. I think this is overkill for what we are trying to accomplish here

and that the proposed fixed below accomplishes the same thing with a much smaller change.

allenwb@micrsoft.com

Proposed Fix: Replace NOTE with:

The tokens let, and yield are also considered to be FutureReservedWords when they occur

within strict mode code (10.1.1). The occurrence of either of these tokens within strict mode

code in a context where the occurrence of a FutureReservedWords would produce an error must

also produce an equivalent error.

Note that Waldemar proposed a different wording for the first sentence but I don’t think his extra words

add anything essential.

7.6 Identifiers
Issue: Continuing sloppy use of “Identifier” and “Identifier Name” allenwb@microsoft.com and

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html.

Proposed Fix: Replace most occurrences of “identifier” in this section’s propose with “IdentifierName”.

See marked-up draft for details.

Issue: Change sentence in one of the middle paragraphs to: A UnicodeEscapeSequence cannot be used

to put a character into an identifier that would otherwise be illegal, whether due to grammar rules or

due to rules in sections 11, 12, and 13 that cause some uses of identifiers to be syntax errors or

EvalErrors. Waldemar https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002572.html This fix

seems a little to specific to the “eval” restrictions. I think a more general statement can be make.

allenwb@micrsoft.com

Proposed Fix: Add the following sentence to the end of the 3d paragraph:

All interpretations of identifiers within this specification are based upon the actual characters of

the identifier regardless of whether or not an escape sequence was used to contribute any

particular characters.

Issue: bottom of page 17: the HexDigit production is not needed here. It belongs in 7.8.4 Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Fix: Actually, 7.8.3 seems like where it belongs as that is the first explicit reference to it. Move it after

the HexIntegerLiteral production. Also fix it in Annex A.1

Issue: <ZWNJ> and <ZWJ> should be allow as IdentiferPart characters

Resolution: add them.

7.8.5 Regular Expression Literals
Issue: in the sentence “An implementation may extend the regular expression constructor's grammar,

but it should not extend the RegularExpressionBody and RegularExpressionFlags productions or the

mailto:allenwb@micrsoft.com
mailto:allenwb@microsoft.com
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002572.html
mailto:allenwb@micrsoft.com
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

productions used by these productions.” the word “should” should be replaced with “must”.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html.

Issue: there seems to be a typo in

RegularExpressionBackslashSequence ::

\ NonTerminator Should this not be RegularExpressionNonTerminator?

Resolution: fixed

Typos: Fixed various grammar formatting errors identified by Waldemar.

7.9 Automatic Semicolon Insertion
Issue: this is a really awkward paragraph--statements must be terminated with semicolons, but the

semicolons may be omitted. . Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-

May/009171.html

Proposed Resolution: Fix if time available. It’s a difficult concept to express, however, I don’t think the

current text is actually as self contradictory as this comment suggests.

8 Types
Issue: . 2nd paragraph: would it simplify things throughout the specification if you formally defined

Function as a subtype of Object? Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-

May/009171.html

Resolution : Leave as it. I don’t think it would simplify things as for consistency other built-in object

“types” would also need to be specified and we would end up with a more complex hierarchical model

of ECMAScript types that included subtyping relationships that are not really relevant to specifying the

semantics of the language.

8.6.2,8.12.5, 8.12.6, etc. [[Put]] and [[ThrowingPut]]
Issue: All calls to [[Put]] should be replaced by calls to [[ThrowingPut]] and then [[ThrowingPut]] should

be renamed to [[Put]].

In the Table 4 of 8.6.2 replace the Domain and Descriptions cells of [[Put]] with the corresponding

[[ThrowingPut]] cells and delete the ThrowingPut row of the table.

Eliminate redundant mentions of [[ThrowingPut]] in 8.6.2

Rename section 8.12.5 from [[ThrowingPut]] to [[Put]] and delete section 8.12.6. Renumber 8.12.7-

8.12.10 by -1.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Add extra final false argument to [[Put]] calls: 10.2.1.2.2 step 4; 11.1.4 Step 3 first algorithm and step 4

second algorithm;

Add extra final true argument to [[Put]] calls: 15.4.4.6 step 4.a, 15.4.4.9 step 4.a

Replaces all algorithm references to [[ThrowingPut]] with [[Put]] in: 8.7.2, , 15.4.4.6, 15.4.4.7, 15.4.4.8,

15.4.4.9, 15.4.4.11, 15.4.4.12, 15.4.4.13,

Delete first sentence in NOTE at end of 11.1.4.

8.6 The Object Type
Issue: 1st bullet point: either say "value and a set of boolean attributes" or just a "set of attributes" since

[[Value]] is defined as an attribute on the next page. Flanagan https://mail.mozilla.org/pipermail/es-

discuss/2009-May/009171.html

Issue: 2nd bullet: method or function? These are called as methods, but they're described as functions

in the table on the next page. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-

May/009171.html

Resolution: Rephrase first two bullet items as:

 A named data property associates a name with a value attribute and a set of Boolean

attributes.

 A named accessor property associates a name with a get function attribute, a set function

attribute, and a set of Boolean attributes.

Issue: Waldemar found the revised phrasing ambiguous

Resolution: Rephrase the first two bullet items as:

 A named data property associates a name with an ECMAScript language value and a set of

Boolean attributes.

 A named accessor property associates a name with one or two accessor functions, and a set of

Boolean attributes. The accessor functions are used to store or retrieve an ECMAScript

language value that is associated with the property.

Issue: 3rd bullet: cut "by the language specification". Also, since we've just talked about an "accessor

property", it is really confusing to have the phrase "property accessor" appear here. Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: Delete last sentence of bullet. Replace “via the property accessor operators” with “via

ECMAScript language operators.

8.6.1 Property Attribute Table
Issue: 1st table: change header of 2nd column to match the tables that follow. Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Fix: change second table heading to match first table. Use “Value Domain” for both tables.

Issue: For **Writable++ “attempts by ECMAScript code to change the property’s **Value++ attribute” isn’t

specific enough. https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Fix: replace text with “attempts by ECMAScript code to change the property’s **Value++ attribute using

**Put++”

Issue: For [[Configurable]] Statement about what cannot change if [[Configurable]] is true is not quite

accurate because of allowable change of [[Writable]] from true to false.

Resolution: Leave as it, this non-normative statement is accurate enough. [[DefineOwnProperty]]

actually defines the allowable state transitions.

Issue: 2nd table: the descriptions of [[Get]] and [[Set]] should make it clear that these are called as

methods, even if they are described as "functions". Flanagan https://mail.mozilla.org/pipermail/es-

discuss/2009-May/009171.html

Fix: add ”as a method” immediately after “called” in the description of both **Get++ and **Set++.

Issue: What does “called as a method mean? Waldemar

Fix: see expanded definition in 4.3.27

Issue: bottom of page 29: Add "by this language specification" after "is not explicitly specified".

Otherwise, it sounds as if user code must explicitly specify these attributes for each object property.

Fix: Make the suggested addition. However, every place a property is defined by this specification its

attributes should be explicitly specified. So, it’s possible that we could just delete this table. These

defaults may be somewhat confusing because they describe the default attributes of a property created

via assignment or via an object literal. They are not the defaults used when a property is defined using

Object.defineProperty.

8.6.2 Table 5 Internal Properties of some objects
Issue: table 4: section number crossrefs to the various SpecOp definitions would be helpful. Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Proposed resolution: Leave as is. A number of the [[Internal]] methods have multiple alternative

definitions and if we listed any we probably should list them all. This would probably require some

explanation and possibly complicate the table formatting (should there a x-ref column). We an revisit

this issue latter if we have available time.

Issue: For **Call++, “SpecOp(a List of any)” should be “SpecOp(any, a List of any)”

Issue: For **Call++ , use of term “function” in description is inconsistent with other use of the term in the

specification.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed resolution: fix signature and change description to:

Executes code associated with the object. Invoked via a function call expression. The arguments

to the SpecOp are a this object and a list containing the arguments passed to the function call

expression. Objects that implement this internal method are callable. Only callable objects that

are host objects may return Reference values.

Issue: For [[HasInstance]]: The first sentence is wrong. [[HasInstance]] tests whether the argument

delegates to this object's ".prototype". "built-in" above should probably be "native", since it applies to

all objects whose behavior is defined by this spec (i.e., not host objects). "built-in" objects are

specifically those that exist before execution begins, which is not the distinction you intend. This

problem comes up several places, such as the next 3 rows of table 5 , the [[Match]] row, and the first

paragraph of 8.7. However, the above paragraph is still wrong. Function.prototype is not an instance of

the constructor Function, though presumably it does implement [[HasInstance]]. Also,

Object.create(Function.prototype) would create an instance of the constructor Function that doesn't

implement [[HasInstance]]. Perhaps the distinction is: Functions are objects whose [[Class]] is

"Function". https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed resolution: This is non-normative that is largely carry over text from ES3. The first sentence

can be improved by saying “Returns a Boolean value indicating whether the argument is likely an Object

that was constructed by this object.”. Use of “instance of the standard built-in constructor X” is new ES5

language that sounds precise without actually being precise. It probably is better to revert the ES3

language which was “X objects” which is obviously less precise.

Issue: [[PrimitiveValue]] should move from table 4 to table 5.

Resolution: done

Issue: 8.6.2 paragraph before Table 5: Agreed to nail this down: Remove the first sentence and spell

out the rules one by one. Note that the rules about [[Writable]]==false implying no value changes is

false (the property can be redefined). The rule about [[Configurable]]==false implying no attribute

changes is also false (the [[Writable]] attribute can be legally cleared). A rule about no new properties

appearing on non-[[Extensible]] host objects is missing. A rule about not flipping [[Extensible]] from

false to true is missing. (May F2F)

Resolution: replaced with:

Host objects may implement these internal methods in any manner unless specified otherwise;

for example, one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch

and store property values but [[HasProperty]] always generates false.

The [[GetOwnProperty]] method of a host object must conform to the following invariants for

each property of the host object:

 If a property is described as a data property and it may return different values over

time, then either or both of the [[Writable]] and [[Configurable] attributes must be

true even if no mechanism to change the value is exposed via the other internal

methods.

 If a property is described as a data property and its [[Writable]] and [[Configurable]]

are both, then the SameValue (9.12) must be returned for the [[Value]] attribute of the

property on all calls to [[GetOwnProperty]].

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

 If the attributes other than [[Writable]] may change over time or if the property might

disappear, then the [[Configurable]] attribute must be true.

 If the [[Writable]] attribute may change from false to true, then the [[Configurable]]

attribute must be true.

 If the value of the host object’s [[Extensible]] internal property is has been observed

by ECMAScript code to be false, then if a call to [[GetOwnProperty]] describes a

property as non-existent all subsequent calls must also describe that property as non-

existent.

The [[DefineOwnProperty]] internal method of a host object must not permit the addition of a

new property to a host object if the [[Extensible]] internal property of that host object has been

observed by ECMAScript code to be false.

If the [[Extensible]] internal property of that host object has been observed by ECMAScript

code to be false then it must not subsequently become true.

Issue: [[Extensible]] false needs to prevent modification of [[Prototype]] (Mark Miller)

Resolution added following:

Every ECMAScript object has a Boolean-valued [[Extensible]] internal property that controls

whether or not named properties may be added to the object. If the value of the [[Extensible]]

internal property is false then additional named properties may not be added to the object. In

addition, if [[Extensible]] is false the value of the [[Prototype]] internal property of the object

may not be modified. Once the value of an [[Extensible]] internal property has been set to

false if may not be subsequently changed to true.

NOTE

This specification defines no ECMAScript language operators or built -in functions that permit

a program to modify an object’s [[Prototype]] internal property or to change the value of

[[Extensible]] from false to true. Implementation specific extensions that modify [[Prototype]]

or [[Extensible]] must not violate the invariants defined in the preceding paragraph.

8.7 and others, Use of null to tag unresolved Reference Values
Issue: “The base value is either null, an Object, a Boolean, a String, a Number, or an environment record

(10.2.1). A base value of null indicates that the reference could not be resolved to a binding.” This use of

null implies that calling a strict function as a function will bind its this to "null". This is inconsistent with

previous decisions as well as, for example, Annex D "called as a function, undefined as passed as the this

value." This problem reappears several places: 10.2.1.1.7, 10.2.1.2.5, step 7 of 11.2.3, If all of these

were simply changed from "null" to "undefined", I believe the only observable difference would be to

correct the "this" binding of strict functions called as functions. https://mail.mozilla.org/pipermail/es5-

discuss/2009-April/002428.html

Proposed Resolution: In most cases, the use of null to tag an unresolvable Reference isn’t directly

observable because the primary constructor of References (11.2.1) throws if the base value of the

Reference would be set to either null or undefined. To some degree this use of null is a carryover from

the ES3 spec. but undefined is probably a better choice and should be fixed. Passing null in 11.2.3 is

independent of the Reference issue and also needs to be fixed. In 10.2.2.1 step 1.a, 10.2.1.1.7 ,

10.2.1.2.5 and 11.2.3 step 7 replace all “null” with “undefined”

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Issue : “it s not clear what the term ‘binding’ means above. Likewise ‘binding values’ in the table in

10.2.1.” https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed Resolution: No fix…’binding’ and ‘bind value’ is used relatively informally here and throughout

section 10 but the intent seems pretty clear. The language could be improved but I don’t think it is an

essential or high priority work item.

8.7.1 GetValue
Typo: UnresolvedReference should be IsUnresolvedReference

8.7.2 PutValue
Issue: At May F2Fgreed to delete both EvalError cases from 8.7.2. They're unnecessary and cause

trouble.

Resolution: deleted steps 3.a.i and 5.a

Issue: Step 5.a should only throw an EvalError if the reference is strict. jimb@mozilla.com

Fix: line 5.a should be

a. If IsStrictReference(V) is true and GetReferencedName(V) is "eval", then throw

an EvalError exception.

Typo: UnresolvedReference should be IsUnresolvedReference

8.10 Property Descriptors
Issue: Needed to define “fully populated property descriptor” and minor editorial cleanups

8.12.9 [[DefaultValue]]
Issue: Throughout the spec, when speaking of hints, String and Number appear in normal font and

without quotes. However, presumably, these are actually the strings "String" and "Number". To clarify,

these should have quotes and perhaps be in code font. https://mail.mozilla.org/pipermail/es5-

discuss/2009-April/002428.html

Proposed resolution: Low priority, time available cleanup. Admittedly annoying but it has a carry over

from Es3 that we can live with if necessary.

Issue: 2nd to last paragraph, page 39. Change "O is a Date object" to something like "O is an instance of

the Date constructor".

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
mailto:jimb@mozilla.com
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed resolution: Leave as written. The “x object’ phrasing is used throughout the specification to

talk about instances of the built-in constructors. However, the section references to date instances

should change from “15.9” to “15.9.6”

8.12.10 [[DefineOwnProperty]]
Issue: algorithm steps 5 and 6 should have “true” immediately after the “Return”.

AllenWB@microsoft.com

Resolution: make change

Issue: In 8.12.10, the definition of [[DefineOwnProperty]], algorithm step 7b should say "fields", not

"field". jimb@mozilla.com

Resolution: make change

Issue: algorithm step 10.b: is it intentional that a property value can be changed even if [[Writable]] is

false, as long as [[Configurable]] is true? That makes sense, but I think it is worth noting explicitly at the

end of the section. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: Yes, this is intentional. The note is a good idea:

NOTE

Step 10.b allows any field of Desc to be different from the corresponding field of current if

current’s [[Configurable]] field is true. This even permits changing the [[Value]] of a

property those [[Writable]] attribute is false. This is allowed because a true [[Configurable]]

attribute would permit an equivalent sequence of calls where [[Writable]] is first set to true,

the new [[Value]] is set, and then [[Writable]] is set to false.

Issue: In step 6, it isn’t clear what “same value” means. (jwalden+es@MIT.EDU)

Resolution: add words making it explicit that the SameValue algorithm is used.

Issue: The intent of test various fields of Desc for specific values is not oblivious in situations where the
fields may not be present . (jwalden+es@MIT.EDU)

Resolution: Added the following note:

The above algorithm contains steps that test various fields of the Property Descriptor Desc for

specific values. The fields that are tested in this manner need not actually exist in Desc. If a

field is absent then the result of any test of its value is logically false.

9.1 ToPrimitive
Issue: 1st and 2nd lines: these mention Value and value. I think both ought to be lowercase and italics.

Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Issue: Should this title include the signature? Perhaps "ToPrimitive(value, PreferredType) → primitive |

undefined | null https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

mailto:AllenWB@microsoft.com
mailto:jimb@mozilla.com
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
mailto:jwalden+es@MIT.EDU
mailto:jwalden+es@MIT.EDU
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed Resolution: Don’t add the signature line. None of the functions in this section use the

signature notation and changing them doesn’t add much value at this point. For consistency with the

table, call the first argument input rather than Value and add appropriate italics.

9.2, 9.3, 9.8, 9.9, 9.10, 9.11 Table Headings
Issue: For consistence with the prose description of these functions, the first column of their respective

tables should be labeled “Argument Type” rather than “Input Type” allenwb@microsoft.com

9.4 ToInteger
Issue: Regarding step 4. Return the result of computing sign(number) * floor(abs(number)). I think this

is always representable, but I'm not sure so I thought I'd ask. https://mail.mozilla.org/pipermail/es5-

discuss/2009-April/002428.html

Proposed Resolution: No change unless somebody knows better. This is a direct carry over from ES3.

101.1 Strict Mode Code
Issue: the first line refers to 4.2.2, which is non-normative. Is that okay? Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: The reference isn’t really essential so the easiest resolution is just to delete the opening

phrase “As described in section 4.2.2,”

10.2.1 Environment Records
Issue: 1st para: cut "or variables" Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-

May/009171.html

Resolution: ok, cut

Issue: 1st table, 3rd row. The description of this abstract version of GetBindingValue does not describe

the circumstances in which a ReferenceError is thrown generally enough: it covers the DER case but not

the OER case. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: change description to:

Returns the value of an already existing binding from an environment record. The string value N

is the text of the bound name. S is used to identify strict mode references. If S is true and the

binding does not exist or is uninitialized throw a ReferenceError exception.

Issue: In the 4th row of the table, change "strict mode references" to"strict mode assignments"?

Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

mailto:allenwb@microsoft.com
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: no change. “Reference” can mean either access or assignment

Issue: Update table to reflect changes needed to support deletable bindings

Resultion: added D argument to CreateMutableBinding, added DeleteBinding method

10.2.1.2.2 CreateMutableBinding (N)
Typo: In algorithm step 1, “declarative” should be replaced with “object”. allenwb@microsoft.com

10.2.1.1 Declarative Environment Records

Issue: the first paragraph has an extra comma before "and/or function declarations". There are only two

alternatives there, so no comma is necessary. jimb@mozilla.com

Resolution: delete comma

Issue: 2nd para: looks like there is an unwanted period after "Declarative". Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: don’t see it…

Issue: it would be nice if the subsections that follow were in the same order as the rows of the table

above. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html Also applies to

10.2.1.2

Resolution: In the table in 10.2.1, move SetMutableBinding row above GetBindingValue row. Renumber

10.2.1.1.7 ImplicitThisValue as 10.2.1.1.5, increment following section numbers.

Issue: step 4 of 10.2.1.1.6 implies that a flag is necessary to distinguish an uninitialized undefined from

an initialized undefined. This is confusing because the section right before also uses the word "initialize"

to describe the uninitialized undefined value. I recommend recasting the description of DER so that

each binding includes a variable with three possible states: Mutable, Immutable and

UninitializedImmutable. Then algorithm steps can refer explicitly to the variable and these values.

Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: add a sentence to 10.2.1.1 clarify that immutable bindings can existing in an uninitialized

state:

Creation and initialization of immutable binding are distinct steps so it is possible for such

bindings to exist in either an initialized or uninitialized state.

mailto:allenwb@microsoft.com
mailto:jimb@mozilla.com
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

10.2.1.1.1 HasBinding
Issue: this algorithm (and several that follow) include an assertion. But you've never defined how

assertions work in these algorithms. Add something to section 5.2? Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: Probably won’t bother. Given the information nature of the pseudo code, the intent seems

clear enough.

10.2.1.1.2 CreateMutableBinding
Issue: needed to add additional parameter to support creation of deletable bindings

Resolution: added formal parameter and sentence in step 3

10.2.1.1.3 SetMutableBinding
Issue: The definitions of the SetMutableBinding method for both declarative and object environment

records (10.2.1.1.3 and 10.2.1.2.2) refer to "SetMutableValue" in their first sentence. This name doesn't

occur anywhere else; I assume they're supposed to be SetMutableBinding. jimb@mozilla.com

Resolution: change “SetMutableValue” to “SetMutableBinding”

10.2.1.1.5 DeleteBinding
Issue: Needed to add new method to support deleting bindings

Resolution: renumbered ImplicitThisValue to 10.2.1.1.6, CreateImmutableBinding to 10.2.1.1.7, and

InitializeImmutableBinding to 10.2.1.1.8. Added definition and algorithm for DeleteBinding

10.2.1.2 Object Environment Records
Issue: my first question in the first paragraph was whether OERs worked with inherited properties or

own properties only. Might be worth making this clear right away. Also enumerable vs. non-

enumerable properties. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution, added sentence to first paragraph:

Both own and inherited properties are included in the set regardless of the setting of their

[[Enumerable]] attribute.

Issue: the second sentence begins, "An environment record binds...". I believe that is meant to say, "An

object environment record binds..." since the statement is not true of all environment records.

jimb@mozilla.com

Resolution: inserted “object”

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
mailto:jimb@mozilla.com
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
mailto:jimb@mozilla.com

10.2.1.2.2 CreateMutableBinding
Issue: needed to add additional parameter to support creation of deletable bindings

Resolution: added new step 4 and change [[Put]] call in final step to a [[DefineOwnProperty]] call.

10.2.1.2.3 SetMutableBinding
Issue: The definitions of the SetMutableBinding method for both declarative and object environment

records (10.2.1.1.3 and 10.2.1.2.2) refer to "SetMutableValue" in their first sentence. This name doesn't

occur anywhere else; I assume they're supposed to be SetMutableBinding. jimb@mozilla.com

Resolution: change “SetMutableValue” to “SetMutableBinding”

10.2.1.2.4 GetBindingValue
Issue: algorithm step 4: this doesn't match the abstract description of this method in the table in 10.2.1.

Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: Fixed table description, see item under 10.2.1

Issue: The last sentence of the first paragraph should end with "... the result depends on the value of the

S argument:". jimb@mozilla.com

Resolution: added “the” before “S”

10.2.1.2.5 DeleteBinding
Issue: Needed to add new method to support deleting bindings

Resolution: renumbered ImplicitThisValue to 10.2.1.2.6. Added definition and algorithm for

DeleteBinding

10.2.2.2 NewDeclarativeEnvironmentRecord
Issue: I'd cut "Record" from the name of this function. It creates an environment, not an environment

record. 10.2.2.3: ditto. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: renamed these two abstract operations. In addition to 10.2.2.2 and 10.2.2.3 changes in

10.4.2, 10.4.3, 12.10, 12.14, and 13.

mailto:jimb@mozilla.com
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
mailto:jimb@mozilla.com
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Issue: In step 2 “DeclarativeEnvironmentRecord” should be “declarative environment record”

jimb@mozilla.com

Resolution: make the change

10.2.2.3 NewObjectEnvironmentRecord
Issue: Why not make ProvideThis another parameter of NewObjectEnvironmentRecord, rather than

setting it after creation? I think it would make things simpler and clearer.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html why doesn't this function take

an initial value for providesThis? Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-

May/009171.html

Proposed Resolution: No Change. ProvideThis was a bug fix required to correct an over-sight in the

revised specification in relationship to with binding. It is somewhat of a hack but is only needed when

establishing the environment record for a with (and not for the global) environment. It seems fine to

make setting it be a separate operation that is used only within with statement.

Issue: In step 2 “ObjectEnvironmentRecord” should be “object environment record” jimb@mozilla.com

Resolution: make the change

10.4.2 Eval Code
Issue: In step 1 "If there is no calling context or" is unnecessary, since any such circumstance cannot be a

direct call. https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed Resolution: No change. While the above observation is correct it doesn’t hurt anything and

may provide useful guidance to implementers who are internally using eval for things like html event

handlers.

10.5 Arguments Object
Issue: I'd move this section so it comes after 10.6. Flanagan https://mail.mozilla.org/pipermail/es-

discuss/2009-May/009171.html

Resolution: Move as suggested and changed various cross references.. The original ordering was to

avoid a forward reference to the arguments object section from the declaration instantiation section.

However, I agree that swapping the order make the whole thing flow better.

Issue: The "may be created" in the first line is vague. How about a cross reference to the section that

explains when it is created and when it isn't. Flanagan https://mail.mozilla.org/pipermail/es-

discuss/2009-May/009171.html

Resolution: Replaced first paragraph with:

mailto:jimb@mozilla.com
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
mailto:jimb@mozilla.com
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

When control enters an execution context for function code, an arguments object is created

unless (section 10.5) the identifier arguments occurs as an Identifier in the function’s

FormalParameterList or as the Identifier of VariableDeclaration or FunctionDeclaration

contained in the function code.

Issue: algorithm step 17.b and 17.c: these use the undefined identifier F. I think it should be obj.

Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: change both occurrences of “F” to “obj”

Issue: the MakeArgGetter and MakeArgSetter stuff seems like a kludge. But I don't have anything better

to propose. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: no change

Issue: 1st sentence of the note at the end of the section: I think I read this algorithm pretty carefully, but

it looks to me as if numbered properties of the arguments object are handled completely differently

than named properties, and I can't see how they share their values. Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: no change for now, the magic is all in the functions generated by MakeArgGetter and

MakeArgSetter which get stored as accessor properties in the PrameterMap object. The second

paragraph of the note touches on this. Any ideas for making this mechanism more obvious would be

appreciated.

Issue: In Note at end of 10.5: “The "caller" property has a more specific meaning for non-strict mode

functions and a "callee" property has historically been provided as an implementation-defined extension

by some ECMAScript implementations.” "caller" and "callee" are switched here. "callee" is the specified

one. https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: swap them.

Issue: MakeArgGetter and MakeArgSetter should be referred to as “functions”. (AWB)

Resolution: Change use of “function” to “abstract operations”

Issue: the spec currently defines arguments objects to have an own copy of the built in

Object.prototype.toString and Object.prototype.toLocaleString. This was intended to provide

backwards compatibility to edition 3 where argument objects directly inherit from Object.prototype.

However, this copying of the built-in methods does not account for the possibly that a program may

have replaced the built-in definitions.

Resolution: rather than copying the built-in methods argument objects now have own methods that

dynamically delegate to the current corresponding methods in Object.prototype. This is still not perfect

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

backwards compatibility but the remaining incompatibilities are extreme edge cases such as redefining

Object.prototype. as a non-function value.

Issue: At May F2F it was decided that a implementation defined “caller” property on non-strict

function’s arguments object should not be allowed to expose a strict function object..

Resolution: Modified custom **Get++ method to throw a TypeError exception if getting a “caller”

property tries to return a strict mode function object

Issue: for compatability with ES3, bindings created by eval code need to be deletable

Resolution: add addition argument to CrateMutableBinding that identifiers which bindings are

deletable.

Issue: Step 7.c.i (now 8.c.i) had a bogus extra “and false” argument to the call to CreateMutableBinding

Resolution: deleted it

10.6 Declaration Binding Instantion
Issue: 2nd paragraph defines func as an "input" to the algorithm, but then algorithm 3a defines this

same variable. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: Revise last sentence of second paragraph to remove func:

On entering an execution context, bindings are created in the VariableEnvironment as follows

using the caller provided code and, if it is function code, argument List args:

Issue: Change "Bind" to "Binding" in function names in steps 3.d.iv, 4.d, 7.b.ii, and 7.c.ii Flanagan

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

Resolution: do it.

Issue: step 4b: insert "section" before 13. Flanagan https://mail.mozilla.org/pipermail/es-discuss/2009-

May/009171.html

Resolution: ok, but all the section/clause stuff changes when we convert to ISO format.

Issue: step 7.c.ii: Maybe change "strict" to false? Flanagan https://mail.mozilla.org/pipermail/es-

discuss/2009-May/009171.html

Resolution: do it

Issue: Step 4.b should say “processing” rather than “evaluating”

Resolution: Get rid of “processing” concept. Call in function declaration instantiation instead

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009171.html

11.1.1 The this keyword
Issue: In “evaluates to the value of the ThisBind of the current execution context” what is “ThisBinding”

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Resolution: not a problem, ThisBinding for execution context’s is defined in 10.2

Typo: ThisBind should be ThisBinding

11.1.4 Array Initializer
Typo: last line before the Note: remove the spurious g (Flanagan)

11.1.5 Object Initialiser
Issue: step 4.a of the algorithm for production

 PropertyNameAndValueList : PropertyNameAndValueList , PropertyAssignment

should be checking for multiple data property definitions using the same name rather than multiple

accessor property definitions. (abdulmoh@microsoft.com)

Resolution: replace step 4.a with:

a. This production is contained in strict code and IsDataDescriptor(previous) is true

and IsDataDescriptor(propId.descriptor) is true.

11.2.4 Argument Lists
Issue: throughout, change “internal list” to “List”

Resolution: done

11.3.1 and 11.3.2 Postfix increment/decrement operators
Issue: need to throw syntax error if a strict mode an expression is a ref to eval.,

Fix: added an algorithm step with the throw conditions.

11.4.1 The delete operator
Issue: “When a delete operator occurs within strict mode code, a ReferenceError exception is thrown

if its UnaryExpression is a direct reference to a variable, function argument, or function name.” Shouldn't

this be an early error?

Resolution: May F2F: make it a SyntaxError

Typo: UnresolvedReference should be IsUnresolvedReference

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
mailto:abdulmoh@microsoft.com

Issue: Need to be able to delete bindings that were created by eval code.

Resolution: In step 5, call DeleteBinding to do the work. Add clause to last sentence of note clarify that

the TypeError only applies to strict mode code.

11.4.2 and 11.14 void and , operators
Issue: It is obscure why GetValue is being called when its value is ignored.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed Resolution: add a Note to each section:

NOTE

GetValue must be called even though its value is not used because it may have observable

side-effects.

11.4.3 typeof Operator
Issue: Last row of table should not allow host objects to claim to be "undefined", "boolean", "number", or

"string".

Resolution: added this exclusion to table

11.4.4 and 11.4.5 Prefix increment/decrement operators
Issue: need to throw syntax error if a strict mode an expression is a ref to eval.,

Fix: added an algorithm step with the throw conditions.

11.5 Multiplicative Operators
Issue: In step 3, “MultiplicativeExpression” should be deleted.

Resolution: yes it should

Issue: Shouldn't step 5 occur between steps 2 and 3? https://mail.mozilla.org/pipermail/es5-

discuss/2009-April/002428.html

Resolution: Not a bug. The specified order preserves the evaluation order of ES3.

11.5.1 Applying the * Operator:
Issue: “If the magnitude is too large to represent, the result is then an infinity of appropriate sign. If the

magnitude is too small to represent, the result is then a zero of appropriate sign. The ECMAScript

language requires support of gradual underflow as defined by IEEE 754.” This boilerplate code occurs

several places: 11.5.2, 11.6.3. Can't it simply be replaced with ToNumber, where this conversion is

already covered? https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Resolution: No change. These sections are not algorithmic specifications so a call to ToNumber doesn’t

really fit it. The boiler plate doesn’t hurt anything and cleaning it up isn’t a high priority.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

11.8.7 The in operator
Issue: Line 5. If Type(rval) is not Object, throw a TypeError exception. This seems less useful than either

doing a ToObject or just returning false. I prefer doing ToObject. https://mail.mozilla.org/pipermail/es5-

discuss/2009-April/002428.html

Resolution: No change. Either would be an observable change from the ES3 semantics.

11.13.1 Simple Assignment
Issue: In the NOTE, need to mention that that the LHS also can’t be an accessor property with attribute

value {[[Setter]]:undefined}. Same issue in Annex C https://mail.mozilla.org/pipermail/es5-discuss/2009-

April/002428.html

Resolution: new note text:

When an assignment occurs within strict mode code, its LeftHandSide must not evaluate to an

unresolvable reference. If it does a ReferenceError exception is thrown upon assignment. The

LeftHandSide also may not be a reference to a data property with the attribute value

{[[Writable]]:false}, to an accessor property with the attribute value {[[Put]]:undefined} nor

to a non-existent property of an object whose [[Extensible]] internal property has the value

false. In these cases a TypeError exception is thrown.

Issue: need to throw syntax error if a strict mode an expression is a ref to eval.,

Fix: added an algorithm step with the throw conditions.

11.13.2 Compound Assignment
Issue: need to throw syntax error if a strict mode an expression is a ref to eval.,

Fix: added an algorithm step with the throw conditions.

12 Statement
Issue: Even though these two conflicting uses of "empty" are distinguished by font, it is still confusing.

Also, what kind of value is "the single element empty"?...https://mail.mozilla.org/pipermail/es5-

discuss/2009-April/002428.html

Resolution: No change. This is all carry over from ES3. No doubt it could be improved but it is not

something we should try to do that this point in the release process.

12.1.1 Variable Statement Strict Mode Restrictions
Issue: Use of “eval” as a variable name should be a syntax error.

Resolution: At May F2F agreed to treat "arguments" definitions the same as "eval" definitions within

strict mode. Both would cause syntax errors.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

12.6 Iteration Statements
Issue: the first sentence of this section is kind of contradicted by the syntax of the do/while loop. I just

skimmed quickly, but I don't think you need a definition of "header" or "body" for this section, so I'd just

cut the sentence. Or reword it to say that loops have a statement as their body and the iteration is

controled by one or more expressions? (Flanagan)

Resolution: cut the sentence

12.12 Labelled Statements
Issue: Shouldn’t "(continue, V, L)" be explicitly dealt with? https://mail.mozilla.org/pipermail/es5-

discuss/2009-April/002428.html

Resolution: Probably no change, unless somebody can positively identify that something essential is

missing.. These is no changes here from ES3. Note that continue termination values are handled within

the looping statements. The whole non-sequential control flow mechanism of the specification could be

make much clearer but probably not in this specification.

12.14 Try Statement
Issue: In strict mode code, the variable declared by the identifier of a catch clause should be restricted

from being “eval”. All other ways are declaring an identifier are strict mode code already have this

restriction. jimb@mozilla.com

Resolution: Add this new section:

12.14.1 Strict Mode Restrictions

It is an SyntaxError if a TryStatement with a Catch occurs within strict code and the

Identifier of the Catch production is either "eval" or "arguments".

Issue: should have a note similar to the one in 12.10 about restoring the lexical environment.

Resolution: added

13 Function Definition
Issue: Step 1 of FunctionBody : SourceElements needs to be rewritten to be consistent with changes to

the definition of a Use Strict Directive.

Resolution: Step 1 now says:

1. The code of this FunctionBody is strict mode code if it is part of a FunctionDeclaration or

FunctionExpression that is contained in strict mode code or if the Directive Prologue (14.1) of

its SourceElements contains a Use Strict Directive or if any of the conditions in 10.1.1 apply. If

the code of this FunctionBody is strict mode code, SourceElements is processed and evaluated in

the following steps as strict mode code. Otherwise, SourceElements is processed and evaluated

in the following steps as non-strict mode code.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
mailto:jimb@mozilla.com

Issue: , the FunctionBody production is defined as SourceElementsopt, but the semantics is only given for

when SourceElements is present.

Resolution: fix algorithm to return (normal, empty, empty) if SourceElements is not present.

13.1 Function Definition Strict Mode Restrictions
Issue: I don't remember for sure, but didn't we decide to prohibit bindings of "arguments" in strict code,

just as we correctly do for "eval"? https://mail.mozilla.org/pipermail/es5-discuss/2009-

April/002428.html +1 from David Sarah https://mail.mozilla.org/pipermail/es5-discuss/2009-

April/002430.html

Resolution: At May F2F agreed to treat "arguments" definitions the same as "eval" definitions within

strict mode. Both would cause syntax errors. There is no longer anything that throws EvalError, but we

will retain it for compatibility with ES3.

Issue: “eval” and “arguments” should be illegal as the name of a FunctionExpression in addition to

FunctionDeclaration

Resolution : fixed

Issue: Step 2 in evaluating FunctionBody needs to be delete. The processing of FunctionDeclaration

takes place in Declaration Binding Instantiation rather than here.

Resolution: done.

13.2 Creating Function Objects
Issue: the setting of the [[HasInstance]] internal property is not specified.

Resolution: inserted new step 6 that sets it to the definition in 15.3.5.3

Issue: At May F2F it was decided that a implementation defined “caller” property on non-strict

function’s arguments object should not be allowed to expose a strict function object..

Resolution: inserted to step to install special [[Get]] method defined in 15.3.5.4

13.2.1 [[Call]]
Issue: step 1: change FormalParameterList to [[FormalParameters]]

Resolution: done.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002430.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002430.html

13.2.3 The [[ThrowTypeError]] Function Object
Issue: The inclusion of steps 4, 5, and 6 here look like a copy paste error.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Resolution: Delete step 6, but steps 4 and 5 seem appropriate.

Issue: I think the double-square brackets around ThrowTypeError are inappropriate, since it is not an

internal property or property attribute. I think you could simply add a note explaining that this function

object will be visible to strict mode code but that it does not have a name in the namespace. Or, just

bite the bullet and give it a name: TypeError.thrower (Flanagan)

Resolution: perhaps, but leave as is for now.

14 Program
Issue: “The production: SourceElement : FunctionDeclaration is evaluated as follows: 1. Return (normal,

empty, empty).” This implies that eval("3; function foo(),-") should return undefined. On FF 3.0.9 it

returns 3, which I had understood was correct. I also don't think this is an intended change from ES3 to

ES5. https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Resolution: Changed the production SourceElements : SourceElements SourceElement to propagate

statement values in a manner similar to what is done for Block. No change was necessary for

SourceElement : FunctionDeclaration to make this work.

Issue: Step 1 of Program : SourceElements needs to be rewritten to be consistent with changes to the

definition of a Use Strict Directive.

Resolution: Step 1 now says:

1. The code of this Program is strict mode code if the Directive Prologue (14.1) of its

SourceElements contains a Use Strict Directive or if any of the conditions of 10.1.1 apply. If the

code of this Program is strict mode code, SourceElements is processed and evaluated in the

following steps as strict mode code. Otherwise SourceElements is processed and evaluated in

the following steps as non-strict mode code.

Issue: the concept of “processing for function declarations” is not needed here. It is taken care of in

Declaration Binding Instantiations

Resolution: remove all of the “processing” paragraphs and algorithms.

Issue: need to close the loop between evaluating a program and establishing a global execution context.

Resolution: make establishing the context and returning a result part of evaluating a program. Added

note that initiating program evaluation is up to the implementation

Issue: , the Program production is defined as SourceElementsopt, but the semantics is only given for when

SourceElements is present.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Resolution: fix algorithm to return (normal, empty, empty) if SourceElements is not present.

14.1 Use Strict Directive
Issue: Concerns that tokenization of use strict directive string allows comments in strange places, may

make it hard to recognize and disallows text after , that doesn’t tokenize using lexical grammar.

Waldemar https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002572.html AllenWb claims this

is all intentional, a good https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002590.html

Resolution: Based upon discussion at F2F, require exactly “use strict” but allow it to occur anywhere in a

sequence of such expression statements at the head of Program or FunctionBody.

15 Standard Built-in Objects
Issue: “otherwise specified in the description of a particular function, if a function or constructor

described in this section is given more arguments than the function is specified to allow, the behaviour

of the function or constructor is undefined.” Is this what we decided on, or did we decide that "unless

otherwise specified" extra arguments are ignored? https://mail.mozilla.org/pipermail/es5-discuss/2009-

April/002428.html

Proposed Resolution: see new text below. We decided to delete the sentence that explicitly allow an

implementation to throw an exception for such arguments. However, I don’t see how that really helps

as an implementation can still decide that its undefined or extended behavior is to throw an error.

Regardless, here is a proposed replacement paragraph:

Unless otherwise specified in the description of a particular function, if a function or constructor

described in this section is given more arguments than the function is specified to allow, the extra

arguments are evaluated by the call and then ignored by the function. However, an implementation

may define implementation specific behaviour relating to such arguments as long as the behaviour is

not the throwing of a TypeError exception that is predicated simply on the presence of an extra

argument

Issue: “Every built-in prototype object has the Object prototype object, which is the initial value of the

expression Object.prototype (15.2.4), as the value of its [[Prototype]] internal property, except the

Object prototype object itself.” Isn't, for example, the value of RangeError.prototype's [[Prototype]]

property Error.prototype and not Object.prototype? https://mail.mozilla.org/pipermail/es5-

discuss/2009-April/002428.html

Proposed Resolution: Prefix the sentence with “Unless otherwise specified”

Issue: The relationship between **Call++ / **Construct++ and the chapter 15 sections describing “construct

called as a function” and “called as part of a new expression” is not explicitly explained. (Mark Miller:

https://mail.mozilla.org/pipermail/es5-discuss/2009-July/002888.html)

Resolution: Added the following paragraph to the section 25:

https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002572.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-May/002590.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-July/002888.html

This section generally describes distinct behaviours for when a constructor is “called as a function”

and for when it is “called as part of a new expression”. The “called as a function” behaviour

corresponds to the invocation of the constructor’s [[Call]] internal method and the “called as part of

a new expression” behaviour corresponds to the invocation of the constructor’s [[Construct]]

internal method.

15.1 The Global Object
Issue: “values of the **Prototype++ and **Class++ internal properties of the global object are

implementation-dependent.” I suspect that we're currently confused about whether the global object

should be considered a native or host object. A browser Window object is clearly a host object. Weird.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002430.html

Resolution: Indeed, but nothing really actionable was suggested.

15.1.2.1 eval (x)
Issue: “see also clause 16”. Clause?? https://mail.mozilla.org/pipermail/es5-discuss/2009-

April/002428.html

Resolution: “clause” usage will get fixed when we convert to ISO format (which I believe uses tat term to

mean section”

15.1.2.4 IsNaN
Issue: summary line should be modified to emphasize that the function tests the coerced value rather

than the actual value. https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Resolution: change summary line to: Returns true if the argument coerces to NaN, and otherwise

returns false. Also make similar change to summary line of 15.1.2.5

Issue: Also add Note to effect that a reliable test of whether x is a NaN is "x !== x".

Resolution: add

NOTE

A reliable way to test if a value X is a NaN is an expression of the form X !== X. The

result will be true if and only if X is a NaN.

15.1.3 URIHandler Function Propoerties
Issue: In uriReserved ::: one of ; / ? : @ & = + $,

what about #? https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002430.html

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002430.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002430.html

Resolution: May F2F decision, Ok as spec’ed

Issue: Decode algorithm should not allow decoding of illegal UTF-8 values

Resolution: Added clarifying verbiage to Decode step 8. Added reference in note to RFC 2629, added

new last paragraph to note.

15.2.3.4 Object.getOwnPropertyName
Issue: Should add a note that (unlike keys) the result includes non-enumerable own property names.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed Resolution: no action. The algorithm seems to be clear enough on this point.

Issue: The note says that the character array indexed properties of strings are not included. It should

say that they are included. allenwb@microsoft.com

Resolution: May F2F, they are included. Fix note.

15.2.3.5 Object.create
Issue: Probably too radical a change to consider at this late date, but should we have allowed O to be

null? https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002439.html

Resolution: Replace line 1 with:

1. If Type(O) is not Object or Null throw a TypeError exception.

15.2.3.4 Object.seal 15.2.3.6 Object.freeze
Issue: Ends with text explaining failure atomicity of these operations. However, I think neither of these

operations can fail. https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Resolution: Agreed that there are no failure conditions so delete the atomicity requirement.

15.2.3.12 Object.isFrozen
Issue: For consistency, steps three and 3 should be identical to steps 3 and 4 of 15.2.3.11

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed Resolution: fix it.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
mailto:allenwb@microsoft.com
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002439.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

15.2.4 Properties of the Object Prototype Object
Issue: “value of the [[Extensible]] internal property is true” should say “initially true”.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Resolution: ok. However note that all such statements are redundant with a general statement in

section 15.

15.3.2.1 new Function
Typo: In step 12, “with parsing” should be “passing”

15.3.3 Properties of the Function Constructor
Issue: Specification of caller and arguments. This is inconsistent with 13.2 step 16, which defines these

as accessors using the thrower to throw. 13.2 is correct. 15.3.4.5 steps 18 and 19, the last paragraph of

15.3.5, and Annex C make the same mistake. https://mail.mozilla.org/pipermail/es5-discuss/2009-

April/002428.html

Resolution: Deleted paragraph about caller and arguments from 15.3.3 and added requirement that the

Function constructor is a function object.

15.3.4.3 apply

15.3.4.4 call
Added note:

NOTE

The thisArg value is passed without modification as the this value. This is a change from

Edition 3, where a undefined or null thisArg is replaced with the global object and

ToObject is applied to all other values and that result is passed as the this value.

15.3.4.5 bind
Issue: Step 13 isn't part of the algorithm and should be converted into anote at the end of the algorithm.

Resolution: delete step and add to note.

Issue: Step 16 should be written in active voice.

Issue: “caller” and “arguments” poison pill properties not correctly specified.

Resolution: copied appropriate steps from 13.2

15.3.5 Properties of Function Instances
Issue: the paragraph about “caller” and “argument” properties is not quite right.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Resolution: added mention of functions created by bind as well as references to actual sections that

create these properties. Deleted redundant specification (and incorrect) of their attributes

15.3.5.3 [[HasInstance]]
Issue: does not apply to functions created by bind. https://mail.mozilla.org/pipermail/es5-discuss/2009-

April/002428.html

Resolution: add a NOTE saying such.

15.3.5.4 [[Get]]
Issue: At May F2F it was decided that a implementation defined “caller” property on non-strict function

objects should not be allowed to expose a strict function object..

Resolution: Added custom **Get++ method to throw a TypeError exception if getting a “caller” property

tries to return a strict mode function object

15.4 Array Objects
Change: Added definition of sparse object (or array) which is then used in the definition of

Array.prototype.sort.

Change: Add definition of term “element” which is used in a number of places within this section.

15.4.2.2 new Array (inten0, item1, …)
Issue: The attributes of the initially created array indexed properties are not specified. (AWB)

Resolution: add that they are {[[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}

15.4.2.2 new Array (len)
Issue: “If the argument len is a Number and ToUint32(len) is equal to len, then the length property of

the newly constructed object is set to ToUint32(len).” Since they're equal, the end of the sentence can

be simplified from "ToUint32(len)" to "len". https://mail.mozilla.org/pipermail/es5-discuss/2009-

April/002428.html

Resolution: Non-substantive change is probably not worth making.

Issue: The attributes of the array indexed property that is created if len is not a number isn’t specified.

(AWB)

Resolution: add that they are {[[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

15.4.3.2 Array.isArray
Issue: phrase "behaves as" is *very* misleading here

Resolution: eliminate “behaves” and make explicit that this is a **Class++ check.

15.4.4.4 Array.prototyope.concat
Issue: step 5.b.iii.3.a is unnecessarily and left over from ES3 spec. The necessary ToString is explicitly

done in step 5.b.iii.3.a (tshinnic@io.com) (john.david.dalton@gmail.com)

Resolution: delete the step

15.4.4.11 Array.prototype.sort
Issue: from May F2F

- Allow sorting non-extensible arrays if they have no holes

- Guarantee not calling delete when sorting an array that has no holes

- "this does not have a property with name ToString(i)": should be "own property"

Resolution: Used concept of sparse now defined in 15.4 of address these and related issues.

15.4.4.14 Array.prototype.indexOf
Issue: Steps 9a-9.b should only be performed if a property named k actually exists. This means that the

result of [[HasProperty]] should be used as guard on executing those steps.

(john.david.dalton@gmail.com)

Resolution: add a call to [[HasProperty]] and make call to [[Get]] and SameValue conditional on its

results.

Issue: The 'fromIndex' argument of these methods, if negative, is supposed to be relative to the end of
the string. However, it is coerced using 'ToInt32', which does the wrong thing for fromIndex >= 2**31.
(David-Sarah Hopwood)

Resolution: In step 5 change ToInt32 to ToInteger

15.4.4.15 Array.prototype.lastIndexOf
Issue: Steps 8a-8.b should only be performed if a property named k actually exists. This means that the

result of [[HasProperty]] should be used as guard on executing those steps.

(john.david.dalton@gmail.com)

Resolution: add a call to [[HasProperty]] and make call to [[Get]] and SameValue conditional on its

results.

mailto:tshinnic@io.com
mailto:john.david.dalton@gmail.com
mailto:john.david.dalton@gmail.com
mailto:john.david.dalton@gmail.com

Issue: The 'fromIndex' argument of these methods, if negative, is supposed to be relative to the end of
the string. However, it is coerced using 'ToInt32', which does the wrong thing for fromIndex >= 2**31.
(David-Sarah Hopwood)

Resolution: In step 5 change ToInt32 to ToInteger

15.4.4.17 Array.prototype.some
Issue: the definition should have a statement analogous to the one for every “like the "for all" quantifier

in mathematics. In particular, for an empty array, it returns true” https://mail.mozilla.org/pipermail/es5-

discuss/2009-April/002428.html

Resolution: OK added : some acts like the "exists" quantifier in mathematics. In particular, for an empty

array, it returns false.

15.4.5.1 and 15.4.5.2 Array length
Issue: lack of clarity about how non-deletable array indexed properties interact with changing the length

of an array. https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed Resolution: Add note at end of 15.4.5.2

NOTE

Attempting to set the length property of an Array object to a value that is numerically less

than or equal to the largest numeric property name of an existing array indexed non-

deletable property of the array will result in the length being set to a numeric value that is

one greater than that largest numeric property name.

Issue: Not clear why false is passed as last as throw argument to [[DefineOwnProperty]] in step 4.e.ii

(jwalden+es@MIT.EDU)

Resolution: Add note to step that the call will always succeed.

Issue: In steps 3.a.iii and 3.a.vi.3.a, this algorithm mutates one of its input parameters, and that raises

the question of whether implementations must make that mutation visible to callers

[[DefineOwnProperty]]. I'm not sure that the question even makes sense, but this seems like an

unnecessary can of worms. Can the algorithm be changed to make its own copy of Desc? If not, if

that mutation is important, I think that fact should be called out in a note.

Resolution: for clarity changed to used a copy of Desc along the path that mutates it.

15.5.4.10 String.prototype.match
Issue: [[Put]] calls on IastIndex should be replaced with [[DefineOwnProperty]] calls.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
mailto:jwalden+es@MIT.EDU

Resolution: Not necessary because 15.10.7.5 says that every RegExp has a non-deleteable lastIndex

property

15.5.4.14 String.prototype.split
Issue: [[Put]] calls on A should be replaced with [[DefineOwnProperty]] calls.

Resolution: done

15.4.4 Array prototype functions shouldn’t throw on failed writes
Issue: Array methods that exist in ES3 have had [[Put]] and [[Delete]] operations replaced with throwing

versions of the same operations in order to provided notification when the functions are applied to

objects with non-writable whose existence would cause the functions to violate their normal post

conditions. This may create a compatibility problem for ES3 implementations that have been extended

to support String objects whose individual characters are accessible as array indexed properties. See

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009252.html and

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009255.html

Resolution: Agreed at May meet that throwing is OK.

15.4.4.16-15.4.4.20 every, some, forEach, map, filter
Issues: 1) Some of them say that the callback returns true or false. But

 the algorithms call ToBoolean on the callback return value, so

 really, they expect a truthy or falsy value.

 2) The descriptions say that the callback is called "as a function"

 despite the fact that they all accept an optional object argument

 on which the callback can be called as a method.

 3) The phrase "elements that are deleted are not visited" could be

 expanded a bit for clarity. How about "Elements that are deleted

 after the call to every begins but before being visited by

 callbackfn will not be visited by callbackfn."

 Resolution: fixed them all up.

https://mail.mozilla.org/pipermail/es-discuss/2009-May/009252.html
https://mail.mozilla.org/pipermail/es-discuss/2009-May/009255.html

15.5.5 Properties of String Instances
Issue: does not specify the value of the [[Class]] property of string instances. allenwb@microsoft.com

Fix: specify it, similar to what was done for array.

Issue: Need to mention the array index named properties of string instances.

Resolution: Added sentence:

The array index named properties correspond to the individual characters of the string value. A

special [[GetOwnProperty]] internal method is used to specify the number, values, and

attributes of the array index named properties.

15.5.5.2 String [[GetOwnProperty]]
Issue: Should or shouldn’t the indexable character properties of strings be enumerable.

Resolution: At May F2F, yes they are enumerable

Issue: At may F2F meeting, Consider if this method is really needed to specify the character properties of

strings

Resolution: After further examination, AllenWB concluded that it is still better to define the behavior of

these properties algorithmically rather than via a prose description. However, some additional prose in

15.5.5 was also added to clarify things.

Issue: Step 4 should probably directly access the [[PrimitiveValue]] rather than calling ToString on what

we know is a String object.

Resolution: Replace step 4 with:

4. Let str be the String value of the [[PrimitiveValue]] internal property of S.

15.6.5 Properties of Boolean Instances
Issue: does not specify the value of the [[Class]] property of boolean instances nor its [[PrimitiveValue]]

internal property. allenwb@microsoft.com

Fix: specify it, similar to what was done for string.

15.7.4 Properties of the Number Prototype Object
Issue: “if Type(this value) is Number” should be "if Type(value) is Number".

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed Resolution: I actually don’t think this is the right clarify change but I did make the tweaks to

the wording of the relevant paragraph.

15.7.5 Properties of Number Instances
Issue: does not specify the value of the [[Class]] property of Number instances nor its [[PrimitiveValue]]

internal property. allenwb@microsoft.com

Fix: specify it, similar to what was done for string.

15.8.2.14 Random()
Issue: Should add a note recommending that implementations provide high enough quality randomness

as to make it infeasible to infer how many times random() was called between two calls to random(). If

that is unacceptable, then should add the opposite note warning that programs may so infer, creating a

covert channel hazard. https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Proposed resolution: No change. This seems like a well know best practice that isn’t particularly unique

to ECMAScript and hence there is no particular reason to mention it.

15.9.1.5 Date Time String Format
Issue: http://www.merlyn.demon.co.uk/js-262-5.htm takes issue with the positioning of this format in

relationship to the actual ISO 8601 Extended Format and raises various minor issues WRT the

description of the format.

Resolution: changed the intro to avoid inferring that this format has any official relationship to ISO 8610.

Made minor a few non-substantive minor changes in the format description.

The above review raises a number of good points that it is too late to address in this addition but we

should revisit them in Harmony.

15.9.5.43 Date.prototype.toISOString()
Issue: what does this method produce when applied to (new Date(NaN))? (dhtmlkitchen@gmail.com)

Resolution: throw a RangeError if the time value is not a finite number.

15.9.5.44

Issue: What should toJSON do for Date’s with non-finite date values?

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
http://www.merlyn.demon.co.uk/js-262-5.htm
mailto:dhtmlkitchen@gmail.com

Resolution: Return null. Added two new steps to algorithm:

2. Let tv be ToPrimitive(O, hint Number).

3. If tv is a Number and is not finite, return null.

15.9.6 Properties of Date Instances
Issue: does not specify the value of the [[Class]] property of Date instances nor its [[PrimitiveValue]]

internal property. allenwb@microsoft.com

Fix: specify it, similar to what was done for string.

15.10 RegExp grammar
Issue: Change to IdentifierPart in section 7 unintentionally changes definitioun of IdentityEscape.

Resultion: make <ZWJ> and <ZWNJ> explicit alternatives for IdentityEscape. This restores it to its ES3

definition.

15.10.6.2 RegExp.prototype.exec
Issue [[Put]] calls in steps 9.a.i and 11.a should be [[DefineOwnProperty]] calls.

Resolution: Not necessary because 15.10.7.5 says that every RegExp has a non-deleteable lastIndex

property

15.10.2.10 CharacterEscape
Issue: Unicode terminology usage in consistent with conventions of spec. (allenwb)

Fix: Use “code unit” appropriately instead of code point

15.10.7 Properties of RegExp Instances
Issue: does not specify the value of the [[Class]] property of Number instances nor its [[Match]] internal

property. allenwb@microsoft.com

Fix: specify it, similar to what was done for string.

Typo: woird “word” representation missing after “dependent”

15.10.7.5 lastIndex
Issue: A careful reading shows that lastIndex is only coerced to an integer (using ToInteger) when it is

used, in 15.10.6.2 step 4. That is, it is not conformant to coerce lastIndex to an integer when the

property is set, because RegExp objects are native and so they must have the default [[Put]] internal.

However, implementations differ: SpiderMonkey does coerce lastIndex when it is set; JScript does not.

(David-Sarah Hopwood)

Resolution: Modify wording to emphasize that coercion only occurs on use.

15.11.5 Properties of Error Instances.
Issue: does not specify the value of the [[Class]] property of Error instances. allenwb@microsoft.com

Fix: specify it, similar to what was done for string.

Issue: Shouldn't the "name" and "message" properties of 15.11.4.(2 & 3) instead be properties on Error

instances? Likewise with 15.11.7.11. https://mail.mozilla.org/pipermail/es5-discuss/2009-

April/002428.html

Proposed resolution. Leave as is. I believe that if you follow all the paths the spec. is correct and

complete in this regard. There could be some refactoring that could make where these properties

actual occur clear but I don’t think it is an important enough issues to do that refactoring at this time.

15.11.6.1 EvalError
Issue: No longer thrown in ES5:

Resolution: changed paragraph to:

This exception is not generated by this specification. This object remains for compatibility with

previous editions of this specification.

15.11.7.1 Properties of NativeError Instances.
Issue: does not specify the value of the [[Class]] property of NativeError instances.

allenwb@microsoft.com

Fix: specify it, similar to what was done for Error.

15.12 The JSON Object
Issue: Need to clarify how the specified the ECMAScript JSON format differs from RFC 4627

Resolution: add clarifying sentence and bullet points.

15.12.1.2The JSON Syntactic Grammar
Issue: The use of JSONValue as the goal symbols may cause confusion with in relationship to RFC 4627

which uses JSON-text as its goal symbol.

https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html
https://mail.mozilla.org/pipermail/es5-discuss/2009-April/002428.html

Resolution: add a JSONText production consisting of a JSONValue. Change goal symbol reference in

15.12.2 step to JSONText

Issue: JSONSourceCharacter as defined precludes the occurrence of tabs and new line characters

anywhere within JSON text.

Resolution: eliminate JSONSourceCharacter production and just use SourceCharacter. Exclude control

characters within definition of JSONStringCharacter.

Typo: In the first sentence of the first paragraph delete the word “from”.

15.12.2 JSON.parse
Issue: In the first paragraph need to explicitly mention difference in handling of U+2028 and U+2029 in

JSONString from regular ECMAScript string literals. Fix: immediately after “characters than WhiteSpace”

insert “ and allows Unicode code points U+2028 and U+2029 to directly appear in JSONString literals

without using an escape sequence”. After the main algorithm add the note:

NOTE

In parsing JText in step 3 JSONString is used in place of StringLiteral.

The above note has now been incorporated into step 3 as normative text.

Typo: In the second paragraph, the phrase “the member is deleted” should be “the property is

deleted”.

Typo: In algorithm step 3, the phrase “this result with be” should be “this result will be”.

Issue and proposed change: In Step 2 of Walk the IsCallable test is unnecessary. Fix: delete that clause

of the predicate.

Issue and proposed change: Step 2.a.iii.2 and 2.b.ii.3.a of Walk use [[Put]] to insert “revived” values into

objects being constructed. However, [[Put]] has the potential of calling an inherited setter function if

the property that has being set had been deleted by a previous call to reviver. The fix is to change each

to these calls to a call to [[DefineOwnProperty]] using a property descriptor of the form {[[Value]]:

newElement, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

Typo: In Step 2.a.iii.2 of Walk replace “Let newElement be the result of calling” with “Call”.

Typo: In Step 2.b.i of Walk replace “Object.key” with “Object.keys”

Issue and proposed change: The prose description of the reviver function asserts that returning

undefined caused the corresponding property to be deleted. However, this deletion does not occur

(step 2.a.iii.2 of Walk) if the containing object is an Array. In that case, the corresponding array property

is simply over-written with the value undefined. Writing undefined to an array element is not the same

as creating a “hole” in the array by deleting the element. The fix is to explicitly delete such array

element analogously to what is done in steps 2.b.ii.2-3.

The revised Walk algorithm with all of the above changes is:

1. Let val be the result of calling the [[Get]] internal method of holder with argument name.

2. If val is an object, then

a. If the [[Class]] internal property of val is "Array"

i. Set I to 0.

ii. Let len be the result of calling the [[Get]] internal method of val with argument

"length".

iii. Repeat while I < len,

1. Let newElement be the result of calling the abstract operation walk, passing val

and ToString(I).

2. If newElement is undefined, then

a. Call the [[Delete]] internal method of val with ToString(I) and false as

arguments.

3. Else

a. Call the [[DefineOwnProperty]] internal method of val with arguments

ToString(I) , the Property Descriptor {[[Value]]: newElement,

[[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and

false.

4. Add 1 to I.

b. Else

i. Let keys be an internal List of Strings consisting of the names of all the own

properties of val whose [[Enumerable]] attribute is true. The ordering of the

strings should be the same as that used by the Object.keys standard built-in

function.

ii. For each string P in keys do,

1. Let newElement be the result of calling the abstract operation walk, passing val

and P.

2. If newElement is undefined, then

a. Call the [[Delete]] internal method of val with P and false as arguments.

3. Else

a. Call the [[DefineOwnProperty]] internal method of val with arguments P

, the Property Descriptor {[[Value]]: newElement, [[Writable]]: true,

[[Enumerable]]: true, [[Configurable]]: true}, and false.

3. Return the result of calling the [[Call]] internal method of reviver passing holder as the

this value and with an argument list consisting of name and val.

15.12.3 JSON.stringify
Typo: In the first paragraph replace the two occurrences of “JavaScript” with “ECMAScript”.

Typo: In the first paragraph replace “value is usually an object” with “value, which is usually an object”.

Issue and proposed change: Step 4.a of main algorithm does not consider the possibility that space is

not an integer. Also, it has been proposed that the max value be changed to 10. Replace step 4.a with:

a. Let space be min(10, ToInteger(space)).

Typo: In Step 4.b of main algorithm “space” should be italic in “if space is less”.

Issue and proposed change: While the size of a numeric space argument is limited the length of a string

space argument is not. They should both have the same length limit. Replace Step 5.a of main

algorithm with:

a. If the number of characters in space is 10 or less, set gap to space otherwise set gap to a string

consisting of the first 10 characters of space.

Issue and proposed change: In step 8 of the main algorithm the [[Put]] call should be replaced with a

[[DefineOwnProperty]] all.

Revised main stringify algorithm with above changes:

1. Let stack be an empty List.

2. Let indent be the empty string.

3. If Type(space) is object then,

a. If the [[Class]] internal property of space is "Number" then,

i. Let space be ToNumber(space).

b. Else if the [[Class]] internal property of space is "String" then,

i. Let space be ToString(space).

4. If Type(space) is number

a. Let space be min(10, ToInteger(space)).

b. Set gap to a string containing space space characters. This will be the empty string

if space is less than 1.

5. Else if Type(space) is string

a. If the number of characters in space is 10 or less, set gap to space otherwise set

gap to a string consisting of the first 10 characters of space.

6. Else

a. Set gap to the empty string.

7. Let wrapper be a new object created as if by the expression new Object(), where

Object is the standard built-in constructor with that name.

8. Call the [[DefineOwnProperty]] internal method of wrapper with arguments the empty

string, the Property Descriptor {[[Value]]: value, [[Writable]]: true, [[Enumerable]]: true,

[[Configurable]]: true}, and false.

9. Return the result of calling the abstract operation Str with the empty string and wrapper.

Issue and proposed change: Steps 7.a and 7.b of the Str algorithm handle String and Number wrapper

objects. They would come into play if a prior call to a toJSON method had returned such an wrapper

object or if the standard-built in toJSON methods for String and Number were deleted. Boolean

wrapper objects could also be encountered for the same reasons, but they are not handled. This could

be fixed by adding a step 7.c that deals with Boolean wrappers in a analogous manner. Note that if this

change is made then the entirety of step 7 should be moved to be immediately prior to the current step

4.

Issue: The explicit handling of wrapper objects in step 7 of Str makes the existence of

Number.prototype.toJSON and String.prototype.toJSON unnecessary. Also, Boolean.prototype.toJSON if

a 7.c is added. The fix is to delete 15.5.4.21, 15.7.4.8, 15.6.4.4

Resolution: agreed to at May F2F

Typo: In Step 6.a of JO replace “Object.key” with “Object.keys”

Issue: As currently specified, a replacer array argument could be modified as a side-effect of toJSON or

other methods called during execution of the algorithm.

Resolution: Compute the whitelist of properties names once in the top level stringify algorithm

Issue: What happens if a replacer array contains non-string values?

Resolution: When constructing the whitelist of property names, filter out any values that are not strings

or numbers.

Revised Str algorithm with above changes:

1. Let value be the result of calling the [[Get]] internal method of holder with argument key.

2. If Type(value) is object, then

a. Let toJSON be the result of calling the [[Get]] internal method of value with

argument "toJSON".

b. If IsCallable(toJSON) is true

i. Let value be the result of calling the [[Call]] internal method of toJSON

passing value as the this value and with an argument list consisting of

key.

3. If IsCallable(replacer) is true

a. Let value be the result of calling the [[Call]] internal method of replacer passing

holder as the this value and with an argument list consisting of key and value.

4. If Type(value) is object then,

a. If the [[Class]] internal property of value is "Number" then,

i. Let value be ToNumber(value).

b. Else if the [[Class]] internal property of value is "String" then,

i. Let value be ToString(value).

c. Else if the [[Class]] internal property of value is "Boolean" then,

i. Let value be the value of the [[PrimitiveValue]] internal property of value.

5. If value is null then return "null".

6. If value is true then return "true".

7. If value is false then return "false".

8. If Type(value) is string, then return the result of calling the abstract operation Quote with

argument value.

9. If Type(value) is number

a. If value is finite then return ToString(value).

b. else, return "null".

10. If Type(value) is object, and IsCallable(value) is false

a. If the [[Class]] internal property of value is "Array" then

i. Return the result of calling the abstract operation JA with argument value.

b. Return the result of calling the abstract operation JO with argument value.

11. Return undefined.

Typo: In Step 8.a of JO replace “str” with “Str”

Typo: In Step 8.a of JA replace “str” with “Str”

Error: In step 10.b.iii of the JA algorithm “,“ should be “*“ and “-” should be “+”.

16 Errors
Issue: EvalError is not longer used in ES5

Resolution: deleted last bullet form early error list.

Annex A.1
Issue: <ZWNJ> and <ZWJ> missing from IdentifierPart

Annex A.7
Issue: Change to IdentifierPart in section 7 unintentionally changes definitioun of IdentityEscape.

Resultion: make <ZWJ> and <ZWNJ> explicit alternatives for IdentityEscape. This restores it to its ES3

definition.

Annex C
Add missing item:

 It is an EvalError if a TryStatement with a Catch occurs within strict code and the Identifier of
the Catch production is eval (12.14.1)

Issues: need to make it clear that null and undefined this values are not converted to the global object
Fix: added sentence to relevant item.

Annex D
Issue: Item for 15.1.2.1 is more appropriate for Annex E

Resolution: move it to Annex E

Annex E

Issue: need to talk about that format control character that were stripped in Es3 may now be

incorporated into string and regexp literals.

Resolution: added sentence to 7.1 item.

Add missing items:

Section 15.4.4: In Edition 5 all methods of Array.prototype are intentionally generic. In

Edition 3 toString and toLocaleString were not generic and would throw a TypeError

exception if applied to objects that were not instances of Array.

Section 10.5: In Edition 5 the array indexed properties of argument objects that correspond to actual formal

parameters are enumerable. In Edition 3, such properties were not enumerable.

Section 10.6: In Edition 5, the [[Prototype]] of an arguments object is Array.prototype. In

Edition 3 it was Object.prototype. However, Edition 5 argument objects also have own

properties that over-ride Array.prototype.constructor,

Array.prototype.toString, and Array.prototype. toLocaleString with the

standard builtin Object.prototype versions of these properties. Using

Object.prototype.isPrototypeOf to test the prototype of an arguments object or any

access to properties of an arguments object that are inherited from Array.protype other than

constructor, toString and toLocaleString may produce different results.

Section 15: In Edition 5, the following new properties are defined on built -in objects that exist in

Edition 3: Object.getPrototypeOf, Object.getOwnPropertyDescriptor,

Object.getOwnPropertyName, Object.create, Object.defineProperty,

Object.defineProperties, Object.seal, Object.freeze,

Object.preventExtensions, Object.isSealed, Object.isFrozen,

Object.isExtensible, Object.keys, Function.prototype.bind,

Array.prototype.indexOf, Array.prototype.lastIndexOf,

Array.prototype.every, Array.prototype.some, Array.prototype.forEach,

Array.prototype.map, Array.prototype.filter, Array.prototype.reduce,

Array.prototype.reduceRight, String.prototype.trim, Date.now,

Date.prototype.toISOString, Date.prototype.toJSON.

	4.2 Language Overview.
	4.2.1 Objects
	4.3 Definitions
	4.3.6 Native Object
	4.3.9-12 Primitive value/type Definitions
	4.3.11 Null Value
	4.3.15 Boolean Object
	4.3.18 String Object
	4.3.26 Property
	4.3.27 Method.
	5.1.2-5.1.5 xxx Grammars
	5.1.5 The Use Strict Directive Grammar
	5.1.7 Grammar Notation
	6 Source Text
	7 Lexical Conventions
	7.1 Cf characters in identifiers
	7.2 White Space
	7.3 Line Terminator
	7.5 Tokens
	7.5.3 Future Reserved Words
	7.5.1, 7.5.2 , 10.2.1.2 Identifier usage
	7.5.3 Let and Yield reserved in strict mode
	7.6 Identifiers
	7.8.5 Regular Expression Literals
	7.9 Automatic Semicolon Insertion
	8 Types
	8.6.2,8.12.5, 8.12.6, etc. [[Put]] and [[ThrowingPut]]
	8.6 The Object Type
	8.6.1 Property Attribute Table
	8.6.2 Table 5 Internal Properties of some objects
	8.7 and others, Use of null to tag unresolved Reference Values
	8.7.1 GetValue
	8.7.2 PutValue
	8.10 Property Descriptors
	8.12.9 [[DefaultValue]]
	8.12.10 [[DefineOwnProperty]]
	NOTE
	9.1 ToPrimitive
	9.2, 9.3, 9.8, 9.9, 9.10, 9.11 Table Headings
	9.4 ToInteger
	101.1 Strict Mode Code
	10.2.1 Environment Records
	10.2.1.2.2 CreateMutableBinding (N)
	10.2.1.1 Declarative Environment Records
	10.2.1.1.1 HasBinding
	10.2.1.1.2 CreateMutableBinding
	10.2.1.1.3 SetMutableBinding
	10.2.1.1.5 DeleteBinding
	10.2.1.2 Object Environment Records
	10.2.1.2.2 CreateMutableBinding
	10.2.1.2.3 SetMutableBinding
	10.2.1.2.4 GetBindingValue
	10.2.1.2.5 DeleteBinding
	10.2.2.2 NewDeclarativeEnvironmentRecord
	10.2.2.3 NewObjectEnvironmentRecord
	10.4.2 Eval Code
	10.5 Arguments Object
	10.6 Declaration Binding Instantion
	11.1.1 The this keyword
	11.1.4 Array Initializer
	11.1.5 Object Initialiser
	11.2.4 Argument Lists
	11.3.1 and 11.3.2 Postfix increment/decrement operators
	11.4.1 The delete operator
	11.4.2 and 11.14 void and , operators
	11.4.3 typeof Operator
	11.4.4 and 11.4.5 Prefix increment/decrement operators
	11.5 Multiplicative Operators
	11.5.1 Applying the * Operator:
	11.8.7 The in operator
	11.13.1 Simple Assignment
	11.13.2 Compound Assignment
	12 Statement
	12.1.1 Variable Statement Strict Mode Restrictions
	12.6 Iteration Statements
	12.12 Labelled Statements
	12.14 Try Statement
	12.14.1 Strict Mode Restrictions

	13 Function Definition
	13.1 Function Definition Strict Mode Restrictions
	13.2 Creating Function Objects
	13.2.1 [[Call]]
	13.2.3 The [[ThrowTypeError]] Function Object
	14 Program
	14.1 Use Strict Directive
	15 Standard Built-in Objects
	15.1 The Global Object
	15.1.2.1 eval (x)
	15.1.2.4 IsNaN
	15.1.3 URIHandler Function Propoerties
	15.2.3.4 Object.getOwnPropertyName
	15.2.3.5 Object.create
	15.2.3.4 Object.seal 15.2.3.6 Object.freeze
	15.2.3.12 Object.isFrozen
	15.2.4 Properties of the Object Prototype Object
	15.3.2.1 new Function
	15.3.3 Properties of the Function Constructor
	15.3.4.3 apply
	15.3.4.4 call
	15.3.4.5 bind
	15.3.5 Properties of Function Instances
	15.3.5.3 [[HasInstance]]
	15.3.5.4 [[Get]]
	15.4 Array Objects
	15.4.2.2 new Array (inten0, item1, …)
	15.4.2.2 new Array (len)
	15.4.3.2 Array.isArray
	15.4.4.4 Array.prototyope.concat
	15.4.4.11 Array.prototype.sort
	15.4.4.14 Array.prototype.indexOf
	15.4.4.15 Array.prototype.lastIndexOf
	15.4.4.17 Array.prototype.some
	15.4.5.1 and 15.4.5.2 Array length
	15.5.4.10 String.prototype.match
	15.5.4.14 String.prototype.split
	15.4.4 Array prototype functions shouldn’t throw on failed writes
	15.4.4.16-15.4.4.20 every, some, forEach, map, filter
	15.5.5 Properties of String Instances
	15.5.5.2 String [[GetOwnProperty]]
	15.6.5 Properties of Boolean Instances
	15.7.4 Properties of the Number Prototype Object
	15.7.5 Properties of Number Instances
	15.8.2.14 Random()
	15.9.1.5 Date Time String Format
	15.9.5.43 Date.prototype.toISOString()
	15.9.6 Properties of Date Instances
	15.10 RegExp grammar
	15.10.6.2 RegExp.prototype.exec
	15.10.2.10 CharacterEscape
	15.10.7 Properties of RegExp Instances
	15.10.7.5 lastIndex
	15.11.5 Properties of Error Instances.
	15.11.6.1 EvalError
	15.11.7.1 Properties of NativeError Instances.
	15.12 The JSON Object
	15.12.1.2The JSON Syntactic Grammar
	15.12.2 JSON.parse
	15.12.3 JSON.stringify
	16 Errors
	Annex A.1
	Annex A.7
	Annex C
	Annex D

