
From: Erik Arvidsson arv@google.com
Subject: Re: FW: Your notes from the Google meeting

Date: October 6, 2009 at 10:17 AM
To: Istvan Sebestyen istvan@ecma-international.org
Cc: TC39 e-TC39@ecma-international.org

Hi Istvan,

Sorry for not sending you the notes earlier.

Dear TC39 members, feel free to point out any errors and clear
omissions since these notes are very rough at best.

Opt-in versioning?

<script type="application/ecmascript; version=5">
"use strict";
...
</script>

<script type="application/javascript; version=1.9">
let
yield
...
</script>

version=preharmony
 ph1
 ph2
ephemeron/name/cacthall

Mark: Page level meta tag?
Brendan: We talked about this before

Mike Samuel: Inline code to make sure that using a script by URL/path works:

use version harmony

This is attractive

Allen: Do we need to add namespacing
Brendan: If we only add a dozen items then we might get away without
Mark: Modules
Cormac: Do we need a way to allow setting a limitation on version per
page. The example is that newer versions might add catchalls which
changes the security model.
Mark: Another way to tackle this is to document the constraints under
which future versions and extensions may extend the language.
Brendan: Use lexical scope for example

Waldemar:

{
 double a;
 double b;

mailto:Arvidssonarv@google.com
mailto:Arvidssonarv@google.com
mailto:Sebestyenistvan@ecma-international.org
mailto:Sebestyenistvan@ecma-international.org
mailto:TC39e-TC39@ecma-international.org
mailto:TC39e-TC39@ecma-international.org

 double b;
 ...
 if (a < b) ... true
 if (a < b) ... false
 if (a < b) ... true
}

Brainstorm/discussion about host objects etc

Allen: As long as the ES5 spec is followed and no host objects or
extensions are present reading a property is guaranteed to return the
last value that was set.

8,9: Object model
Execution model

Mark: make functions be the link to the environment. THe objects are
native but its methods might be host objects

Brendan: The idea of taming host objects is something we should pursue.

Thursday 2009-09-24

Promises in E:

def r := a.foo(b, c) // sync
def p := a<-foo(b, c) // async, eventually do
def x := when(x, q)->{
... x ... q ...
} catch(ex) { // optional
 ... ex ...
}

def p := race([a, b, c, ...])
def p := timeBomb(millis, ex)
def p := race(a<-foo(b, c), timeBomb(3000, 'oops'))

def p := when(timeOut(3000)) -> {
 ...
}

Brendan: ES next 2-3 years June GA 2012. Feature freeze in May 2011
(20 months). Definitional interpreter

Mark: Ephemerons require new kernel state
Allen: Weak refs as well
Mark: As soon as we introduce visible collection we need to express that
Waldemar/Allen/Mark: That can be done in prose

W: Grammar needs to be tightly integrated

W: Grammar needs to be tightly integrated
A: We need a mapping at least

Fresh let or not in for (let i = 0; ...; i++)? Consensus to not get a new var.

Mark:

const a = [];
for (let i = 0; i < 3; i++) {
 a.push(function() [{ return i * i; });
}
a[0](); // 4

Brendan:

for (let i in o) {
 a.push(...)
}

for (const i in o) {
 a.push(...)
}

(for (var i = E in o) {...} is valid in ES today)

No consensus after all?

Rob:

for (let x = []; x.length < 3; x.push(42)) {
 ...
}

Specify iteration order for ESH

Mark: Generator and finally?
Brendan: This has been solved in Python and Spidermonkey

Mark: return to label?
Brendan: Not without lambdas
Brendan: Maciej objected on the mailing list. Probably due to
implementation issues.
Allen: It is easy to implement

Brendan:

function gen() {
 while (...) {
 try {
 yield x;
 } finally {
 ...
 }
 }
}

g = gen();

g = gen();
g.next();
g.throw(e);

Let

let x;

x is undefined

redeclaration of let should be forbidden

for (var k in keys(o))
for (var v in values(o))
for each (var x in anIter)

Ephemerons

Allen: Adds overhead to the GC since the ephemerons have to be handled
in a second pass

