
Ecma/TC39/2010/006

Erratum for ECMAScript, 5th Edition Specification (ECMA-262-5)

(Last Updated January 27, 2010)

6 Source Text

(First paragraph)

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding,
version 3.0 or later. The text is expected to have been normalised to Unicode Normalised Form C
(canonical composition), as described in Unicode Technical Report #15. Conforming ECMAScript
implementations are not required to perform any normalisation of text, or behave as though they were
performing normalisation of text, themselves. ECMAScript source text is assumed to be a sequence of
16-bit code units for the purposes of this specification. Such a source text may include sequences of 16-
bit code units that are not valid UTF-16 character encodings. If an actual source text is encoded in a form
other than 16-bit code units it must be processed as if it was first converted to UTF-16.

7.1 Unicode Format-Control Characters

(Table 1)

Code Unit Value Name Formal Name Usage

\u200C Zero width non-joiner <ZWNJ> IdentifierPart

\u200DC Zero width joiner <ZWJ> IdentifierPart

\uFEFF Byte Order Mark <BOM> Whitespace

7.6 Identifier Names and Identifiers

(Missing :: in several grammar productions)

UnicodeLetter ::

any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter (Ll)”, “Titlecase
letter (Lt)”, “Modifier letter (Lm)”, “Other letter (Lo)”, or “Letter number (Nl)”.

UnicodeCombiningMark ::

any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining spacing mark
(Mc)”

UnicodeDigit ::

any character in the Unicode category “Decimal number (Nd)”

UnicodeConnectorPunctuation ::

any character in the Unicode category “Connector punctuation (Pc)”

UnicodeEscapeSequence ::

see 7.8.4.

Ecma/TC39/2010/006

15.2.3.7 Object.defineProperties (O, Properties)

(confusing use of P in steps 5 and 6 of algorithm)

5. For each element P of names in list order,

a. Let descObj be the result of calling the [[Get]] internal method of props with P as the argument.

b. Let desc be the result of calling ToPropertyDescriptor with descObj as the argument.

c. Append the pair (a two element List) consisting of P and desc to the end of descriptors.

6. For each element pair from desc of descriptors in list order,

a. Let P be the first element of pair.

b. Let desc be the second element of pair.

c.a. Call the [[DefineOwnProperty]] internal method of O with arguments P, desc, and true.

15.4.4.21 Array.prototype.reduce (callbackfn [, initialValue])

(Fourth paragraph)

The range of elements processed by reduce is set before the first call to callbackfn. Elements that are

appended to the array after the call to reduce begins will not be visited by callbackfn. If existing elements

of the array are changed, their value as passed to callbackfn will be the value at the time reduce visits

them; elements that are deleted after the call to reduce filter begins and before being visited are not

visited.

15.4.4.22 Array.prototype.reduceRight (callbackfn [, initialValue])

(Fourth paragraph)

The range of elements processed by reduceRight is set before the first call to callbackfn. Elements that

are appended to the array after the call to reduceRight begins will not be visited by callbackfn. If

existing elements of the array are changed by callbackfn, their value as passed to callbackfn will be the

value at the time reduceRight visits them; elements that are deleted after the call to reduceRight

filter begins and before being visited are not visited.

15.8.2 Function Properties of the Math Object

(First NOTE paragraph)

NOTE The behaviour of the functions acos, asin, atan, atan2, cos, exp, log, pow, sin, and sqrt, and tan

is not precisely specified here except to require specific results for certain argument values that represent boundary
cases of interest. For other argument values, these functions are intended to compute approximations to the results
of familiar mathematical functions, but some latitude is allowed in the choice of approximation algorithms. The
general intent is that an implementer should be able to use the same mathematical library for ECMAScript on a given

hardware platform that is available to C programmers on that platform.

Ecma/TC39/2010/006

15.10.6.3 RegExp.prototype.test(string)

(Section reference in first step of algorithm)

1. Let match be the result of evaluating the RegExp.prototype.exec (15.10.6.23) algorithm upon

this RegExp object using string as the argument.

A.1 Lexical Grammar

(Missing :: in several grammar productions)

UnicodeLetter :: See 7.6

any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter
(Ll)”, “Titlecase letter (Lt)”, “Modifier letter (Lm)”, “Other letter (Lo)”, or “Letter
number (Nl)”.

UnicodeCombiningMark :: See 7.6

any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining
spacing mark (Mc)”

UnicodeDigit :: See 7.6

any character in the Unicode category “Decimal number (Nd)”

UnicodeConnectorPunctuation :: See 7.6

any character in the Unicode category “Connector punctuation (Pc)”

(Insert between DecimalDigit and ExponentIndicator production)

DecimalDigit :: one of See 7.8.3
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of See 7.8.3
1 2 3 4 5 6 7 8 9

ExponentPart :: See 7.8.3

ExponentIndicator SignedInteger

ExponentIndicator :: one of See 7.8.3
e E

(incorrect right-hand-side)

RegularExpressionBackslashSequence :: See 7.8.5
\ RegularExpressionNonTerminator

Ecma/TC39/2010/006

A.8.1 JSON Lexical Grammar

(incorrect right-hand-side)

JSONStringCharacter :: See 15.12.1.1

JSONSourceCharacter but not double-quote " or backslash \ or U+0000 thru U+001F

\ JSONEscapeSequence

ANNEX C

(next to last bullet item, confusing wording)

• An implementation may not extend, beyond that defined in this specification, the
associate special meanings within strict mode functions of to properties named caller

or arguments of function instances. ECMAScript code may not create or modify

properties with these names on function objects that correspond to strict mode functions
(10.6, 13.2, 15.3.4.5.3).

