
Simple Modules

Goals

The primary purpose of this spec is to provide better modularity mechanisms for packaging,
deploying, and sharing ECMAScript code.

Examples

See the simple modules examples page for some highlights.

Overview

This proposal describes an incompatible semantics, in the sense that there are ES5 programs
that cannot be used unchanged with the new semantics. For compatibility, some sort of
versioning is required to indicate that code is evaluated with the new semantics.

The semantics implicitly enables ES5 strict mode and lexical scope mode. In particular, eval
cannot modify its container’s scope, with is disallowed, and there is no global object on the
scope chain. The semantics ensures that there are never any object environment records on the
scope chain except in using eval to evaluate legacy code.

The host environment may provide extra-linguistic means, such as compilation switches or
language dialects (again, see versioning) to import certain standard libraries by default.

Terminology

Application: A sequence of scripts. (On the web, this corresponds to all the script tags on

a web page, in the order they appear.)

Goals for language: Goals for hosts:
Goals that are out
of scope:

Non-goals:

Eliminate global object
Zero-admin
provisioning

Security mechanisms
and idioms

Primitives to enable experimentation
with module systems

Orthogonality with existing
features

Uniform location
and retrieval

State isolation
Fully first-class modules (e.g., module
expressions)

Compatibility with non-module
code

Service isolation
mechanisms

Multiple layers of abstraction

Moving ES to true lexical scope Multiple instantiations
Definition by reflective evaluation, esp.
via string concatenation

Simplicity and usability Dynamic upgrade Definition by implementation

Smooth refactoring path from
non-module code

Preserve web UX of online
execution, interactive perf

Standard mechanism for code
sharing

Definition by semantic
specification

Page 1 of 6strawman:simple_modules [ES Wiki]

19/07/2010http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules

isabelle
Text Box
Ecma/TC39/2010/036

Script: A source code unit consisting of declarations (module, var, function, etc.) and
statements. (On the web, this corresponds to a single script tag.)

Module: A module is a source code artifact, i.e. the module M { ... } construct.

Module instance: An instance of a module is an evaluated module; it is an internal construct
(like scope chains or activation objects), not a first-class value.

Module instance object: A module instance object is a first-class object that reflects the
bindings of a module instance.

Module resource locator (MRL): A string that maps, in a host-dependent manner, to a
module source text.

Module binding: A binding in a scope chain record that maps to a module.

Declarative module binding: A module binding in a declarative environment record.

Global environment record: An environment record at the top of a scope chain, which
dynamically reflects the

Syntax

ExportDeclaration ::= 'export' VariableStatement
 | 'export' FunctionDeclaration

ImportDeclaration ::= 'import' ModuleSpecifier '.' '*' ';'
 | 'import' ModuleSpecifier '.' ImportSpecifier ';'

ModuleSpecifier ::= Identifier
 | ModuleSpecifier '.' Identifier

ImportSpecifier ::= '{' ImportSpecifierItem*(',') '}'

ImportSpecifierItem ::= Identifier (':' Identifier)?

ModuleDeclaration ::= 'module' Identifier '=' 'load' MRL+(',') ';'
 | 'module' Identifier '=' ModuleSpecifier ';'
 | 'module' Identifier '{' ModuleElement* '}'

MRL ::= StringLiteral
 | '(' MRL ')'
 | MRL '||' MRL

ModuleElement ::= Statement
 | FunctionDeclaration
 | ImportDeclaration
 | ExportDeclaration
 | ModuleDeclaration

Script ::= ScriptElement*

ScriptElement ::= Statement
 | FunctionDeclaration
 | ImportDeclaration
 | ModuleDeclaration

Top level

The initial scope chain of an application consists of a global environment record, which contains
only module bindings. The global environment record can acquire new entries at runtime, since
the module loader may dynamically register new global modules. All subsequent frames in the

Page 2 of 6strawman:simple_modules [ES Wiki]

19/07/2010http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules

scope chain are declarative environment records; the global environment record is effectively
the only dynamically changing record.

The global object is essentially gone. It is only available via an accessor in the current module
loader, or through evaluation of legacy code via eval.

A program is a sequence of scripts, evaluated from top to bottom. Each script is evaluated in a
nested declarative environment record. Note: This means that subsequent scripts may refer to
bindings in previous scripts, but not vice versa. This precludes mutual recursion between
multiple scripts, but this means that scripts can be incrementally evaluated, each separately
compiled.

At the top level of an individual script, variable and function declarations are hoisted to that
script’s declarative environment record.

After a script is compiled, and before it begins evaluation, all of the script’s top-level modules
are attached to the current module loader, and consequently accessible via the global
environment record. This allows dynamic access to all top-level modules in all scripts. (Note
that this does not make scripts mutually recursive, since these bindings are only attached after
compilation.)

Lexical scope

In the initial scope of a module, the only bindings in scope are the declarative module bindings
in its scope chain. The current module loader determines what modules, if any, are in the global
scope by default.

In the initial scope of a module, the binding of this is to the instance object of that module.

Performance note: to avoid unnecessary space consumption, closures should not capture any
non-module bindings from the portion of the scope chain outside the current module.

Compilation

The only dynamic portion of the scope chain is the global environment record. Each script is
compiled in the context of a current state of the global environment record. If a script contains
any free variables, a compile-time error is reported and the script is not evaluated.

Module binding and resolution

Modules can be lexically nested, but are static declaration forms, not expression forms.

Modules are bound in the same lexical environment as variables and functions, i.e., in the scope
chain.

It is a static error to declare a binding with the same name as a module binding at the same
level of scope, e.g.:

{
 module m { ... }
 function m() { ... } // error
}

Page 3 of 6strawman:simple_modules [ES Wiki]

19/07/2010http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules

Module name resolution is simply lookup in the scope chain.

Each static module has a mapping from its nested module declarations to their corresponding
static modules.

Dotted module name resolution selects nested modules, which involves a statically computable
lookup.

Compatibility note: object environment records never contain bindings to static modules. If
an object environment record happens to contain a module property (e.g., because a module
object flowed into legacy non-strict code), it contains no static information. Note that this is
harmless since non-strict code cannot do static imports.

Pragmatics note: nested modules make the “reverse DNS” naming convention (as used in
Java) unnecessary; in fact, it doesn’t even work, since you can’t create an open, extensible
module called e.g. org or com. Library writers can simply give their library a single identifier
name such as jQuery. If clients need two different modules with the same name, they can
disambiguate by placing them in different parent modules.

Import and export

Imports can only appear at the outermost scope of a module or script body. Their bindings are
in scope for their entire containing block.

It is a static error for two import declarations or an import declaration and another kind of
declaration to attempt to bind the same identifier in the same scope.

Import declarations

Imported bindings may not be mutated within the module. Because all module exports are
write-once, it is possible for a module to import a binding that has not yet been set (which
results in an exception). However, once an imported binding has been initialized, its value will
never change.

ImportDeclaration ::= ‘import’ ModuleSpecifier ‘.’ ‘*’ ‘;’

Binds all the exported names from the specified module in the current scope.

ImportDeclaration ::= ‘import’ ModuleSpecifier ‘.’
ImportSpecifier ‘;’

Binds the identifiers specified in the import specifier, in the current scope, to the corresponding
exports from the specified module.

ModuleSpecifierItem ::= Identifier ‘:’ Identifier

Binds the export specified by the first identifier locally with the name specified by the second
identifier.

ModuleSpecifierItem ::= Identifier

Binds the specified export.

Page 4 of 6strawman:simple_modules [ES Wiki]

19/07/2010http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules

Export declarations

ExportDeclaration ::= ‘export’ (VariableStatement |
FunctionDeclaration)

Exports the binding(s) from this statement. The bindings are const, i.e., write-once.

Dependencies

A module may refer to or import from (and thus depend on) any other module in scope. This
allows cyclic dependencies between any two modules in a single scope (such as the top-level
scope) by virtue of being in scope of one another.

Module instance objects

Module instance objects are a runtime reflection of a module instance as a first-class object.
Instance objects are almost frozen, except that their properties may internally change from
undefined to defined during the initial evaluation of their corresponding module instance, when
it initially assigns to its exports. But their properties cannot be explicitly updated in importing
code, they cannot receive new properties, etc. If an own-property is read before its
corresponding export has been defined, an exception is thrown.

A module instance object has a prototype chain, which ultimately leads to the Object
prototype (possibly going through some prototype object with standard methods for module
instance objects).

The own-properties of a module instance object are precisely its exports (including nested
modules).

Determining whether a module instance object has a particular export is possible via
hasOwnProperty.

Evaluation

A module body is evaluated in textual order (from top to bottom).

If a module export is dereferenced before it is initialized, an exception is thrown.

Module loading

The current module loader determines how to interpret MRL’s. The disjunction syntax:

MRL || MRL

informs the module loader to try each MRL in turn until one can successfully retrieve its module
source.

Dynamic module loading

Page 5 of 6strawman:simple_modules [ES Wiki]

19/07/2010http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules

Dynamic module loading is possible via module loaders.

Compatibility

Host environments may provide a binding through the global object to give legacy scripts
convenient dynamic access to the current module loader. On the web, this would enable
patterns such as:

<button onclick="modules.MyApp.handleClick(this)">Click Me</button>

Enhancements

Private modules
modules should be automatically public
may wish to allow creating internally private modules
private names proposal may be applicable

packages
like modules but open and extensible
can only contain other packages or modules
can only be contained within packages
inline: package p { ... }
initially empty: package p;

modules can be declared with ‘.’-separated names; the portion before the final ‘.’ must be
a package (created if doesn’t exist yet)
enables the reverse-DNS pattern
establishes a conceptual space for things like offline-JS directories, CLASSPATH, etc

import “all except”
automatic module-wrapping conveniences for upgrading legacy code, e.g.:

<script type="text/javascript?version=1.5" module="jQuery" bindings="this.jQuery" />

strawman/simple_modules.txt · Last modified: 2010/05/14 15:51 by dherman

Page 6 of 6strawman:simple_modules [ES Wiki]

19/07/2010http://wiki.ecmascript.org/doku.php?id=strawman:simple_modules

