
strawman:names [ES Wiki]

[[strawman:
names]]

ES
Wiki

Trace: »
classes_as_sugar

» egal » block_scoped_bindings » binary_data » names

-Table of Contents

● Overview

● Name objects

● Name objects as property names

● Binding private names

● Creating private object properties

● Semantics

● Potential Extensions

● References

Overview
In existing ECMAScript, it is not possible to create hidden properties. It is
possible to create non-enumerable properties, but they can still be
discovered by guessing their property name. The proposed es4 facility
for addressing this shortcoming was namespaces, which were complex
and suffered from ambiguity and efficiency problems.

This strawman proposes three related changes to support hidden
properties.

1.

a new, propertyless, object called a Name

2.

generalizing the propertyName concept to include either a string (as in ES5) or a Name as above

3.

a private keyword for automatic use of Name objects instead of strings in certain places in a lexically

scoped fashion.

In addition to creating hidden properties, this also allows properties to be added to existing objects without the
possibility of interference with the existing methods, or with other additions by any other code.

Name objects
The Name constructor allows for the creation of fresh, opaque names:

var name = new Name;
print(name); // [object Name]

Name objects never have properties, aside from those inherited from Object. Attempting to add a property or
mutate an existing property of a Name object results in a type error.

Name objects as property names
Name objects can be used as property names:

var name = new Name;
print(name); // [object Name]

file:///C|/Users/Patrick/Documents/7.htm (1 of 5) [14.09.2010 16:53:07]

http://wiki.ecmascript.org/doku.php?id=strawman:names&do=backlink
http://wiki.ecmascript.org/doku.php?id=strawman:names&do=backlink
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=
http://wiki.ecmascript.org/doku.php?id=strawman:classes_as_sugar
http://wiki.ecmascript.org/doku.php?id=strawman:egal
http://wiki.ecmascript.org/doku.php?id=harmony:block_scoped_bindings
http://wiki.ecmascript.org/doku.php?id=strawman:binary_data
http://wiki.ecmascript.org/doku.php?id=strawman:names
javascript:toggleToc()
javascript:toggleToc()
javascript:toggleToc()
http://wiki.ecmascript.org/doku.php?id=proposals:proposals

strawman:names [ES Wiki]

var obj = { a: 1, b: 2, c: 3 };

obj[name] = "secret";
print(obj[name]); // secret

for (var key in obj) {
 print("obj." + key + " = " + obj[key]); // obj.a = 1, obj.b = 2, obj.c = 3
}

Properties with Name objects as keys can never be enumerable. Attempting to create an enumerable property
with a Name object as its key produces a TypeError. This preserves the invariant that enumerated keys are
always strings.

Object.getOwnPropertyNames, Object.keys, and Object.getOwnPropertyDescriptor skip all
properties with Name objects as keys.

Binding private names
The keyword private allows for block-scoping of an identifier as a special name. The declaration:

private x;

hoists the creation of a new Name to the top of the block (evaluated after functions but before vars and lets).
All uses of x as a propertyName in the block are converted to computed uses of the name object, instead of
static uses of “x”. In particular, uses of x after a . and as a property name in an object literal are so converted.
x is also bound as a plain variable to the Name value.

This can be used both for “instance-private” properties:

function Thing() {
 private key;
 this.key = "secret";
 this.hasKey = function(x) {
 return x.key === this.key;
 };
 this.getThingKey = function(x) {
 return x.key;
 };
}

var thing1 = new Thing;
var thing2 = new Thing;

print("key" in thing1); // false
print(thing1.hasKey(thing1)); // true
print(thing1.hasKey(thing2)); // false

file:///C|/Users/Patrick/Documents/7.htm (2 of 5) [14.09.2010 16:53:07]

strawman:names [ES Wiki]

as well as “class-private” properties:

private key;
function Thing() {
 this.key = "secret";
 this.hasKey = function(x) {
 return x.key === this.key;
 };
 this.getThingKey = function(x) {
 return x.key;
 };
}

var thing1 = new Thing;
var thing2 = new Thing;

print("key" in thing1); // false
print(thing1.hasKey(thing1)); // true
print(thing1.hasKey(thing2)); // true

Creating private object properties
The private keyword can also be used as a modifier on properties in object literals. For example:

let obj = { private foo: 42,
 getFoo: function() this.foo };

is equivalent to:

let obj = let () {
 private foo;
 => { foo: 42,
 getFoo: function() { return this.foo } }
 };

Note that this relies on the conversion for object literals described above.

Semantics
Property Selection:

A private x declaration is equivalent to a declaration of the form let x = new Name, with the following
differences:

●

The declaration is hoisted before all other var and let bindings.

file:///C|/Users/Patrick/Documents/7.htm (3 of 5) [14.09.2010 16:53:07]

strawman:names [ES Wiki]

●

The declarative environment record associated with the declaration records that IsBindingPrivate

(”x”) (discussed below) is true.

The key semantic question is the resolution of expressions of the form e.x. The proposed semantics are as
follows:

- Each declarative environment record maintains a marker with each entry declared with private. This is
accessed with a new internal function IsBindingPrivate(String).

- Iterate up the chain of environment records until one is found where HasBinding(”x”) produces true. If
that same environment record produces true for IsBindingPrivate(”x”), then the expression is
evaluated as if it was e[x]. Otherwise it is evaluated as if it was e[”x”].

- If no binding for x is found, e.x is treated normally.

Of course, the semantics need not be implemented via runtime lookup. However, this semantics ensures that e.
x references a Name object as the propertyName only if a declaration of private x is lexically in scope.
This ensures both that programmers can reason about code lexically, and that implementations can statically
compile all property references to either String or Name lookup.

Operation ToName(x):

This converts x to a string, unless x is a Name object, in which case x is produced. Changing the text of ECMA
262 will require more editing, since the spec relies on the string nature of property names implicitly in a number
of places.

GC Semantics

Since names are not enumerable and unforgeable and are always leaves in the object graph, if a name N cannot
be reached, the property N of any object may be safely deleted by the garbage collector. This is not required,
and is not observable by the program (except by measuring memory consumption externally). If gc semantics is
adopted, the spec could state that a value is only reachable through a property whose name is a Name if the
name is independently reachable.

Potential Extensions
Currently, private x always brings a fresh Name into scope. It might be valuable to support

private x = E;

where E is any expression producing a Name object. If the value is not a Name object, a TypeError is raised.
This allows both renaming via lexical scope as well as converting Name values provided as function arguments,
for example, to the f.x syntax.

Also, for debugging purposes, it might be useful to give the Name constructor an optional string argument to be
used in printing. This would mean that Names were no longer leaves in the object graph, however.

References
The Name object is akin to gensym of Lisp and Scheme, and analogous to a capability in object-capability

file:///C|/Users/Patrick/Documents/7.htm (4 of 5) [14.09.2010 16:53:07]

http://wiki.ecmascript.org/doku.php?id=strawman:gc_semantics

strawman:names [ES Wiki]

languages.

The inspiration for private is Racket’s define-local-member-name.

Similar ideas have been proposed for Smalltalk and Ruby under the name “selector namespaces”.

strawman/names.txt · Last modified: 2010/09/07 20:08 by samth

file:///C|/Users/Patrick/Documents/7.htm (5 of 5) [14.09.2010 16:53:07]

http://docs.racket-lang.org/reference/createclass.html?q=define-local-member-name#%28form._%28%28lib._racket/private/class-internal..rkt%29._define-local-member-name%29%29
http://www.smalltalksystems.com/publications/subsys.pdf
http://www.sapphire-lang.org/wiki/1/Selector_namespaces
http://wiki.ecmascript.org/feed.php
http://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.paypal.com/xclick/business=andi%40splitbrain.org&item_name=DokuWiki+Donation&no_shipping=1&no_note=1&tax=0¤cy_code=EUR&lc=US
http://www.php.net/
http://validator.w3.org/check/referer
http://jigsaw.w3.org/css-validator/check/referer
http://wiki.splitbrain.org/wiki:dokuwiki

	Local Disk
	strawman:names [ES Wiki]

	JDCBEMFKDHBCABMGKOJHPHBMBLLFMIBP:
	form1:
	x:
	f1: edit
	f2:
	f3: strawman:names

	f4:

	form2:
	x:
	f1: revisions
	f2: strawman:names

	f3:

	form3:
	x:
	f1: recent
	f2:

	f3:

	form4:
	x:
	f1: search
	f2:

	f3:

	form5:
	x:
	f1: edit
	f2:
	f3: strawman:names

	f4:

	form6:
	x:
	f1: revisions
	f2: strawman:names

	f3:

	form7:
	x:
	f1: login
	f2: strawman:names

	f3:

	form8:
	x:
	f1: index
	f2: strawman:names

	f3:

	form9:
	f1:

