
Reference number
ECMA-123:2009

© Ecma International 2009

Ecma/TC39/2011/NN

ECMA-XXX
Edition / Date

1st Draft

ECMAScript
Internationalization API
Specification

COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2009

Contents Page

1 Scope
..
1

2 Conformance
..
1

3 Normative references
..
1

4 Overview
..
1

4.1 API Overview.. 2
4.2 Object construction... 2
4.3 Definitions.. 2

5 Interface
..
3

5.1 Locale support... 3
5.2 Collation.. 3
5.3 Number formatting... 3
5.4 Date and time formatting... 3

Annex A
(normative)100

Annex title
..
4

Annex B
(informative)
200
Annex title
..
5

I

Introduction

This Ecma Standard is based on several existing internationalization technologies, the most well known being
ICU library for C and Java (open source) and Microsoft Windows APIs.

The development of this standard started in September 2010. It is not yet adopted by the Ecma General
Assembly.

Initial implementations can be found in Chrome browser and in Amazon Kindle e-book reader.

ECMAScript internationalization API is a vibrant library and its evolution is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

II

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE."

III

IV

ECMAScript Internationalization API Specification

1 Scope

This Standard defines ECMAScript Internationalization API.

2 Conformance

A conforming implementation of ECMAScript Internationalization API must provide and support all the types,
values, objects, properties, functions and semantics described in this specification.

A conforming implementation of ECMAScript i18n API is permitted to support objects, functions and
parameters not described in this specification. In particular, a conforming implementation of ECMAScript i18n
API is permitted to support optional parameters listed in TODO(cira): (add section for dateformat and nubmer
format optional parameters) of this specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

Unicode Technical Standard 35, Unicode Locale Data Markup Language

ECMA-262, ECMAScript Language Specification, 6th edition

4 Overview

This section contains a non-normative overview of the ECMAScript i18n API.

ECMAScript i18n API enables development of locale (language and region) aware applications. It is based on
current best practices in internationalization community and it's aim is to improve current built in capabilities of
ECMAScript language and to fill in the gap between actual user needs and what is offered in current third
party i18n libraries.

The goals are:

• Consistent, rich i18n API, similar to what modern OS/i18n libraries have today for Python, C++ and
Java.

• Consistent i18n results (not 100% identical but comparable to the data collected in CLDR or locale
support on major platforms).

• Support for multiple locales per application.

• Reuse of objects that are more expensive to create, like collators.

• Off-line processing.

© Ecma International 2009 1

4.1 API Overview

The following is an informal overview of ECMAScript i18n API—not all parts of the API are described. This
overview is not part of the standard proper.

The API is based on top level LocaleInfo object that serves both as a namespace and as a locale descriptor.
LocaleInfo holds information about users' language and region, and that information is used throughout the
API.

Collation is locale aware sorting and it's one of unsolved problems in ECMAScript internationalization effort.
Data set required for some of the Asian locales is prohibitively large so most i18n libraries avoid implementing
collation. Proper collation is becoming increasingly important with online and mobile services – sorting contact
lists, dictionaries, phonebooks, number lists etc. – so it needs to be solved.

Date, time and number formatting lets you format data in locale acceptable format, with more or less details,
e.g. 11/08/11 or August, 11th 2011. It is also possible to get date related symbols like month, week, day and era
names in various widths, e.g. J, Jan or January, which is important in mobile development.

4.2 Object construction

The following is an informal overview of how API objects are created — not all parts of construction process
are described. This overview is not part of the standard proper.

LocaleInfo object is the only public object in the API and is constructed using new statement. Collator and
formatter objects are private and are constructed using a factory methods on LocaleInfo instance. Both
constructor and factory methods accept settings object which contains key/value pairs necessary for
successful construction of the given object. LocaleInfo constructor may accept simple string parameter
containing the proper language identifier.

Once object is constructed it becomes immutable and exposes derive method, other methods related to its
domain, e.g. format(), and options property.

Derive method lets us clone given object and possibly overwrite some of the settings. It's a useful approach
for objects that take large number of parameters, e.g. collators.

Options property contains resolved settings passed in during construction. Settings that were not recognised
are skipped, and ones used for construction are canonicalized and possibly resolved to the best match on the
given platform. Some key/value pairs are inferred if they were not passed in in settings object.

4.3 Definitions

For the purposes of this document, the following terms and definitions apply.

4.3.1
Language identifier
Identifies language and related data as spoken in given region. It is defined in TR#35, section 3: Unicode
Language and Locale Identifiers.

Difference between locale and language identifier is described in TR#35, Appendix D: Unicode Language and
Locale Ids.

4.3.2
Locale identifier
Consists of language identifier and extensions, e.g -u-co-phonebk.

© Ecma International 2009 2

4.3.3
Region identifier
Region identifier selects currency code and measurement units. It's orthogonal to locale identifier. Covered in
ISO 3166 document and LDLM document.

4.3.4
Currency code
Identifies currency code used in currency formatting. Defined in ISO 4217, currency and funds name and code
elements.

5 Application Programming Interface

5.1 Locale support

LocaleInfo class is a global object and acts as an aggregator for other classes. This approach avoids pollution
of global namespace and makes it easy to pass locale data around.

5.1.1 The LocaleInfo constructor

When LocaleInfo is called as a part of new expression, it is a constructor: it initialises newly created object.

5.1.1.1 new LocaleInfo()

LocaleInfo object is created using default locale identifier – implementation specific value.

Created object has options.localeID set to default locale identifier, and options.regionID is set to inferred
region identifier value – inferred from options.localeID. If the value of options.regionID can't be inferred it is set
to ZZ.

The [[Prototype]] internal property of the newly constructed object is set to the original LocaleInfo prototype
object, the one that is the initial value of LocaleInfo.prototype (5.1.2.1).

The [[Class]] internal property of the newly constructed object is set to "LocaleInfo".

NOTE It is recommended to use window.navigator.language as default locale identifier in browser environment.

5.1.1.2 new LocaleInfo(localeID)

LocaleInfo object is created using a single string argument which is a valid LDLM locale identifier.

If localeID is an invalid LDLM locale identifier an “Invalid locale identifier specified” exception is thrown.

A best match between specified and supported locale identifier(s) is to be found. Only language identifier part
is to be used for best match search, but original locale extensions should be preserved in the final result.

Created object has options.localeID set to best match language identifier with original extensions preserved,
and options.regionID is set to inferred region identifier value – inferred from options.localeID. If the value of
options.regionID can't be inferred it is set to ZZ.

Valid unicode extensions are defined in LDLM document, in section Key/Type definitions. This standard uses
only -co- for collation and -cu- for currency specification. Other extensions are optional and should be ignored,
but implementations are free to support them.

The [[Prototype]] internal property of the newly constructed object is set to the original LocaleInfo prototype
object, the one that is the initial value of LocaleInfo.prototype (5.1.2.1).

© Ecma International 2009 3

The [[Class]] internal property of the newly constructed object is set to "LocaleInfo".

5.1.1.2.1 Best match algorithm

Best match algorithm cannot fail and in the worst case is allowed to fall back to a default locale. In best case it
selects exact match as a result. The actual implementation of the algorithm is implementation specific.

Example:

requested [A, B], supports {A, B}, pick A, order breaks tie.
requested [A, B], supports {A', B}, pick B. A' is a near perfect match.
requested [A, B], supports {A', B'}, implementation dependent.

5.1.1.3 new LocaleInfo(settings)

LocaleInfo object is created using settings parameter (5.1.1.3.1).

Created object has options.localeID set tp best match language identifier with original extensions preserved,
and options.regionID is set to either settings.regionID or inferred region identifier value – inferred from
options.localeID. If the value of options.regionID can't be inferred it is set to ZZ.

Valid unicode extensions are defined in LDLM document, in section Key/Type definitions. This standard uses
only -co- for collation and -cu- for currency specification. Other extensions are optional and should be ignored,
but implementations are free to support them.

The [[Prototype]] internal property of the newly constructed object is set to the original LocaleInfo prototype
object, the one that is the initial value of LocaleInfo.prototype (5.1.2.1).

The [[Class]] internal property of the newly constructed object is set to "LocaleInfo".

5.1.1.3.1 Settings parameter

Settings object helps avoid possible future changes to LocaleInfo constructor signature by encapsulating all
parameters into one object.

Settings object has two properties, localeID and regionID.

Required localeID parameter is either a string (see 5.1.1.2) or a priority list of LDML locale identifiers. If any of
the elements of the priority list is not a string or is not a valid LDLM identifier an “ Invalid locale identifier
specified” exception is thrown. Order in the priority list is used only for breaking ties between two matches
(selecting item closer to the beginning of the list). Exact match should always be selected as the best match.

Optional regionID parameter is a string. Region identifier specifies region to be used for currency handling and
selecting proper units of measurement. It is a two letter region code as defined in LDLM document, section
“Language/Locale Field Definitions”. The value of “ZZ” means undefined or invalid territory.

5.1.2 Properties of LocaleInfo constructor

The value of the [[Prototype]] internal property of the LocaleInfo constructor is the Function prototype object.

Besides the internal properties, the LocaleInfo constructor has the following properties:

5.1.2.1 LocaleInfo.prototype

The initial value of LocaleInfo.prototype is the LocaleInfo prototype object (5.1.3).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

4 © Ecma International 2009

5.1.2.2 LocaleInfo.options

Each LocaleInfo object stores best matched locale identifier into options.localeID and user supplied regionID
or inferred regionID into options.regionID.

Both properties are canonicalized to match LDML definition, as in section Language/Locale field definitions.

5.1.2.3 LocaleInfo.derive(settings)

This function creates a new LocaleInfo object, or returns a cached copy that has the same settings. It is a
convenience method that makes creation of similar objects easier.

It takes LocaleInfo.options and settings and generates new settings. Finally it invokes LocaleInfo
constructor with a newly created settings object.

All applicable properties from settings parameter override corresponding properties in LocaleInfo.options in
the new settings object. To unset a property x one needs to set settings.x to undefined value.

5.1.3 Properties of the LocaleInfo Prototype Object

The LocaleInfo prototype object is itself a LocaleInfo object (its [[Class]] is "LocaleInfo").

The value of the [[Prototype]] internal property of the LocaleInfo prototype object is the standard built-in Object
prototype object.

In following descriptions of functions that are properties of the LocaleInfo prototype object, the phrase “this
LocaleInfo object” refers to the object that is the this value for the invocation of the function.

5.1.3.1 LocaleInfo.prototype.constructor

The initial value of LocaleInfo.prototype.constructor is the LocaleInfo constructor.

5.1.3.2 LocaleInfo.prototype.collator (settings)

This function returns a collator object based on this LocaleInfo object and supplied settings. Content of the
collator object is listed in 5.2.

Function returns either a new collator object or a cached copy.

5.1.3.3 LocaleInfo.prototype.numberFormat (settings)

This function returns a number formatter object based on this LocaleInfo object and supplied settings. Content
of the number formatter object is listed in 5.3.

Function returns either a new number formatter object or a cached copy.

5.1.3.4 LocaleInfo.prototype.dateTimeFormat (settings)

This function returns a date time formatter object based on this LocaleInfo object and supplied settings.
Content of the date time formatter object is listed in 5.4.

Function returns either a new date time formatter object or a cached copy.

© Ecma International 2009 5

5.2 Collation

5.2.1 Collator constructor

When LocaleInfo.__Collator is called as a part of new expression, it is a constructor: it initialises newly
created object. This constructor is not part of the public API. Users of the API should call
LocaleInfo.prototype.collator() instead.

5.2.1.1 new LocaleInfo.__Collator(settings, localeInfo)

This constructor creates a new LocaleInfo.__Collator object based on supplied collation settings and
localeInfo object.

5.2.1.1.1 Settings parameter

Settings object helps avoid possible future changes to LocaleInfo.prototype.collator(settings)
factory signature by encapsulating all parameters into one object.

Settings object has three properties -- numeric, ignorePunctuation and sensitivity.

Optional boolean-valued numeric property can have true, false or undefined values. If set to true, numbers in
strings are treated as numbers not strings, in which case “9” < “12”. If set to false, numbers in strings are
treated as plain strings, in which case “12” < “9”. If set to undefined then default locale preference should be
taken (TODO – clarify why we need this, if we need it). If a non-boolean value is specified an “Invalid
numeric flag value is specified” exception is thrown.

Optional boolean-valued ignorePunctuation property can have true, false and undefined values. If set to
true, punctuation characters are ignored when comparing strings. If set to false punctuation characters are
taken into account when comparing strings. Value of undefined tells us to use locale default setting (TODO –
do we need undefined?). If a non-boolean value is specified an “Invalid ignorePunctuation flag value is
specified” exception is thrown.

Required string-valued sensitivity property can have values as shown in table 1. If a non-string value, or a
non-listed string value is specified an “Invalid sensitivity value specified” exception is thrown.

Table 1 – Sensitivity key/value pairs and examples

Value (string) Description Strength Example (for sorting)

base Only base letter differences S = P a < b, a == á, a == A

accent Honors accents S = S, a < b, a < á, a == A

case Case sensitive S = P, CL = T a < b, a == á, a < A

variants Includes case, accents and width S = Q, HL = T for ja locale ja cases*

a < b, a < á, a < A

default Locale default

Exact ordering of characters depends on locale, so a < A is illustrative.

6 © Ecma International 2009

* Illustrating Japanese exceptions (only for sensitivity: variants).

S = S (all locales) ぁ == あ == ア

S = T (non-ja) ぁ < あ < ア

S = T (ja) ぁ < あ == ア

S = Q (ja) ぁ < あ < ア

Collation strength (S) is explained in Unicode Technical Report #10 (UTS#10) document. Actual collation
algorithm is implementation specific.

All default values are taken from localeInfo object.

5.2.1.2 new LocaleInfo.__Collator(localeInfo)

Default values for numeric, ignorePunctuation and sensitivity are taken from localeInfo object.

5.2.1.3 LocaleInfo.__Collator.options

This property contains recognised and resolved properties from the settings parameter.

If numeric property was specified as an input, LocaleInfo.__Collator.options.numeric is set to its value.

If ignorePunctuation property was specified as an input, LocaleInfo.__Collator.options.ignorePunctuation
is set to its value.

LocaleInfo.__Collator.options.sensitivity is set to settings.sensitivity value, or “default” if empty constructor
was used.

5.2.1.4 LocaleInfo.__Collator.derive(settings)

This function creates a new LocaleInfo.__Collator object, or returns a cached copy that has the same settings.
It is a convenience method that makes creation of similar objects easier.

It takes LocaleInfo.__Collator.options and settings and generates new settings. Finally it invokes
LocaleInfo.__Collator constructor with a newly created settings object.

All applicable properties from settings parameter override corresponding properties in
LocaleInfo.__Collator.options in the new settings object. To unset a property x one needs to set settings.x
to undefined value.

5.2.2 Properties of the LocaleInfo.__Collator Prototype Object

The LocaleInfo prototype object is itself a LocaleInfo object (its [[Class]] is "LocaleInfo.Collator").

The value of the [[Prototype]] internal property of the LocaleInfo.__Collator prototype object is the standard
built-in Object prototype object.

In following descriptions of functions that are properties of the LocaleInfo.__Collator prototype object, the
phrase “this Collator object” refers to the object that is the this value for the invocation of the function.

5.2.2.1 LocaleInfo.__Collator.prototype.constructor

The initial value o f LocaleInfo.__Collator.prototype.constructor is the
LocaleInfo.__Collator constructor.

© Ecma International 2009 7

5.2.2.2 LocaleInfo.__Collator.prototype.compare (a, b)

This method compares strings a and b in a locale sensitive way. The result is intended to order String values
in the sort order specified by the locale passed to the constructor, and will be negative, zero, or positive,
depending on whether a comes before b in the sort order, the Strings are equal, or a comes after b in the sort
order, respectively.

5.3 Number formatting

5.3.1 Number formatter constructor

When __NumberFormat is called as a part of new expression, it is a constructor: it initialises newly created
object. This constructor is not part of the public API. Users of the API should call
LocaleInfo.prototype.numberFormat() instead.

5.3.1.1 new LocaleInfo.__NumberFormat(settings, localeInfo)

The localeInfo parameter supplies locale info to the number formatter.

5.3.1.1.1 Settings parameter

Settings object helps avoid possible future changes to
LocaleInfo.prototype.numberFormat(settings) factory signature by encapsulating all parameters
into one object.

Settings object has four properties -- currencyCode, style, pattern and skeleton.

Optional string-valued currencyCode property defines currency code to be used when formatting currencies.
Its value is defined by ISO 4217 standard. If specified it overrides any other currency hint, like locale identifier
-u-cu- value or currency code inferred from the regionID.

Optional string-valued style property defines one of the supported number formatting styles – decimal,
currency and percent. Scientific style is optional with value – scientific, and should be ignored if
implementation doesn't support it. If invalid style value is specified an “Invalid number style specified”
exception is thrown.

Optional string-valued pattern property defines a number format using a pattern. Pattern format is defined in
UTS#35: Appendix G: Number Format Patterns.

Optional string-valued skeleton property defines a number format using a best match pattern that
corresponds to the given skeleton. Best match algorithm is implementation specific. There is a ICU proposal
for skeleton support – http://site.icu-project.org/design/formatting/numbers/skeleton. It it's not supported by an
implementation it should be ignored.

If none of skeleton, pattern or style properties are specified an “No number format style specified” exception
is thrown.

If more than one format descriptor is specified then the skeleton property overrides any of pattern or style
properties. The pattern property overrides the style property.

5.3.1.2 new LocaleInfo.__NumberFormat(localeInfo)

Creates a new LocaleInfo.__NumberFormat object, with number format set to “decimal” style.

5.3.1.3 LocaleInfo.__NumberFormat.options

This property contains recognised and resolved properties from the settings parameter.

8 © Ecma International 2009

http://site.icu-project.org/design/formatting/numbers/skeleton

The LocaleInfo.__NumberFormat.options.currencyCode is set to either settings.currencyCode property
value or to an inferred currency code from the localeInfo.options.regionID. The final value is canonicalized – 3-
letter, uppercased ASCII currency code.

If skeleton property was specified as an input, LocaleInfo.__NumberFormat.options.pattern is set to the
best match pattern. Other number format descriptors (style or pattern) are ignored.

If pattern property was specified as an input (but not skeleton),
LocaleInfo.__NumberFormat.options.pattern is set to that pattern. The style property, if specified, is
ignored.

If style property was specified as an input (but not skeleton or pattern),
LocaleInfo.__NumberFormat.options.style is set to that style.

5.3.1.4 LocaleInfo.__NumberFormat.derive(settings)

This function creates a new LocaleInfo.__NumberFormat object, or returns a cached copy that has the same
settings. It is a convenience method that makes creation of similar objects easier.

It takes LocaleInfo.__NumberFormat.options and settings and generates new settings. Finally it invokes
LocaleInfo.__NumberFormat constructor with a newly created settings object.

All applicable properties from settings parameter override corresponding properties in
LocaleInfo.__NumberFormat.options in the new settings object. To unset a property x one needs to set
settings.x to undefined value.

5.3.2 Properties of the LocaleInfo.__NumberFormat Prototype Object

The LocaleInfo.__NumberFormat prototype object is itself a LocaleInfo.__NumberFormat object (its [[Class]] is
"LocaleInfo.NumberFormat").

The value of the [[Prototype]] internal property of the LocaleInfo.__NumberFormat prototype object is the
standard built-in Object prototype object.

In following descriptions of functions that are properties of the LocaleInfo.__NumberFormat prototype object,
the phrase “this NumberFormat object” refers to the object that is the this value for the invocation of the
function.

5.3.2.1 LocaleInfo.__NumberFormat.prototype.constructor

The initial value o f LocaleInfo.__NumberFormat.prototype.constructor is the
LocaleInfo.__NumberFormat constructor.

5.3.2.2 LocaleInfo.__NumberFormat.prototype.format (value)

This method returns a string with value formatted using specified number format. If value is NaN method
returns “NaN”. If value is a non-number an “Invalid numeric value specified” exception is thrown.

5.4 Date and time formatting

5.4.1 Date and time formatter constructor

When __DateTimeFormat is called as a part of new expression, it is a constructor: it initialises newly created
object. This constructor is not part of the public API. Users of the API should call
LocaleInfo.prototype.dateTimeFormat() instead.

© Ecma International 2009 9

5.4.1.1 new LocaleInfo.__DateTimeFormat(settings, localeInfo)

The localeInfo parameter supplies locale info to the date time formatter.

5.4.1.1.1 Settings parameter

Settings object helps avoid possible future changes to
LocaleInfo.prototype.dateTimeFormat(settings) factory signature by encapsulating all
parameters into one object.

Settings object has three properties -- timeStyle, dateStyle and skeleton.

Optional string-valued timeStyle property defines one of the supported time formatting styles – short and
long. Support for medium and full styles is optional. Implementation that doesn't support optional values
should ignore them. If invalid timeStyle value is specified an “Invalid time style specified” extension is
thrown.

Optional string-valued dateStyle property defines one of the supported date formatting styles – short and
medium. Support for long and full styles is optional. Implementation that doesn't support optional values
should ignore them. If invalid dateStyle value is specified an “Invalid date style specified” extension is
thrown.

Optional string-valued skeleton property defines a date time format using a best match pattern that
corresponds to the given skeleton. Best match algorithm is implementation specific. If skeleton is not
supported by an implementation it should be ignored. Skeleton format is specified in UTS#35: Appendix F:
Date Format Patterns. See table 2 for supported skeletons.

If none of skeleton, timeStyle or dateStyle properties are specified an “No date time format style specified”
exception is thrown.

If more than one format descriptor is specified then the skeleton property overrides any of dateStyle and
timeStyle properties. The dateStyle and timeStyle can be specified together – the ordering of the two will be
locale specific.

Various calendars are supported by Unicode locale identifier extension -u-ca-. Calendars that are not
supported should be ignored.

Table 2 – Supported skeleton patterns

Skeleton Description

yMd Same as short dateStyle.

yyyyMMMMdEEEE Same as long dateStyle, includes day of the week.

yyyyMMMMd Same as long dateStyle, exclude day of the week,
and include era if necessary.

yMMM Year/month pattern.

MMMd Month/day pattern.

10 © Ecma International 2009

5.4.1.2 new LocaleInfo.__DateTimeFormat(localeInfo)

Creates a new LocaleInfo.__DateTimeFormat object, with dateStyle set to “short”, timeStyle set to “short”
and locale defaults from localeInfo object.

5.4.1.3 LocaleInfo.__DateTimeFormat.options

This property contains recognised and resolved properties from the settings parameter.

If skeleton property was specified as an input, LocaleInfo.__NumberFormat.options.pattern is set to the
best match pattern. Other number format descriptors (style or pattern) are ignored.

If dateStyle property was specified as an input (but not skeleton),
LocaleInfo.__DateTimeFormat.options.dateStyle is set to that style.

If timeStyle property was specified as an input (but not skeleton),
LocaleInfo.__DateTimeFormat.options.timeStyle is set to that style.

5.4.1.4 LocaleInfo.__DateTimeFormat.derive(settings)

This function creates a new LocaleInfo.__DateTimeFormat object, or returns a cached copy that has the same
settings. It is a convenience method that makes creation of similar objects easier.

It takes LocaleInfo.__DateTimeFormat.options and settings and generates new settings. Finally it invokes
LocaleInfo.__DateTimeFormat constructor with a newly created settings object.

All applicable properties from settings parameter override corresponding properties in
LocaleInfo.__DateTimeFormat.options in the new settings object. To unset a property x one needs to set
settings.x to undefined value.

5.4.2 Properties of the LocaleInfo.__DateTimeFormat Prototype Object

The LocaleInfo.__DateTimeFormat prototype object is itself a LocaleInfo.__DateTimeFormat object (its
[[Class]] is "LocaleInfo.DateTimeFormat").

The value of the [[Prototype]] internal property of the LocaleInfo.__DateTimeFormat prototype object is the
standard built-in Object prototype object.

In following descriptions of functions that are properties of the LocaleInfo.__DateTimeFormat prototype object,
the phrase “this DateTimeFormat object” refers to the object that is the this value for the invocation of the
function.

5.4.2.1 LocaleInfo.__DateTimeFormat.prototype.constructor

The initial value o f LocaleInfo.__DateTimeFormat.prototype.constructor is the
LocaleInfo.__DateTimeFormat constructor.

5.4.2.2 LocaleInfo.__DateTimeFormat.prototype.format (date)

This method returns a string with date formatted using specified date time format. If date is missing method
returns current time and date. If date is a non-Date an “Invalid date specified” exception is thrown.

5.4.2.3 LocaleInfo.__DateTimeFormat.prototype.getMonths (width)

This method returns an Array of months, translated to match current locale. The width parameter specifies the
width of month names – abbreviated and wide. The value narrow is optional, and implementation can ignore
it.

© Ecma International 2009 11

If width is omitted use width: 'wide'. If width value is not supported an “Invalid width specified” exception is
thrown.

Example of abbreviated names: [Jan, Feb, Mar,...]. Wide months: [January, February, March,...]. Narrow
months: [J, F, M,...].

5.4.2.4 LocaleInfo.__DateTimeFormat.prototype.getWeekdays (width)

This method returns an Array of week days, translated to match current locale. The width parameter specifies
the width of day names – abbreviated and wide. The value narrow is optional, and implementation can
ignore it.

If width is omitted use width: 'wide'. If width value is not supported an “Invalid width specified” exception is
thrown.

5.4.2.5 LocaleInfo.__DateTimeFormat.prototype.getEras (width)

This method returns an Array of eras, translated to match current locale. The width parameter specifies the
width of era names – abbreviated and wide. The value narrow is optional, and implementation can ignore it.

If width is omitted use width: 'wide'. If width value is not supported an “Invalid width specified” exception is
thrown.

5.4.2.6 LocaleInfo.__DateTimeFormat.prototype.getAmPm (width)

This method returns an Array of day periods, translated to match current locale. The width parameter
specifies the width of day periods – abbreviated and wide. The value narrow is optional, and implementation
can ignore it.

If width is omitted use width: 'wide'. If width value is not supported an “Invalid width specified” exception is
thrown.

12 © Ecma International 2009

Annex A
(normative)100

Annex title

Text text text

© Ecma International 2009 13

Annex B
(informative)

200
Annex title

Text text text

14 © Ecma International 2009

Bibliography (if any)

[1] Experimental statistics, US National Bureau of Standards Handbook 91, 1963

[2] Applied Regression Analysis, Draper and Smith, Wiley Edition 2

[3] Statistical Methods for Reliability Data, Meeker, Escobar, 1998, John Wiley & Sons Inc.

© Ecma International 2009 15

© Ecma International 2009 1

	1 Scope
	2 Conformance
	3 Normative references
	4 Overview
	4.1 API Overview
	4.2 Object construction
	4.3 Definitions

	5 Application Programming Interface
	5.1 Locale support
	5.1.1 The LocaleInfo constructor
	5.1.1.1 new LocaleInfo()
	5.1.1.2 new LocaleInfo(localeID)
	5.1.1.2.1 Best match algorithm

	5.1.1.3 new LocaleInfo(settings)
	5.1.1.3.1 Settings parameter

	5.1.2 Properties of LocaleInfo constructor
	5.1.2.1 LocaleInfo.prototype
	5.1.2.2 LocaleInfo.options
	5.1.2.3 LocaleInfo.derive(settings)

	5.1.3 Properties of the LocaleInfo Prototype Object
	5.1.3.1 LocaleInfo.prototype.constructor
	5.1.3.2 LocaleInfo.prototype.collator (settings)
	5.1.3.3 LocaleInfo.prototype.numberFormat (settings)
	5.1.3.4 LocaleInfo.prototype.dateTimeFormat (settings)

	5.2 Collation
	5.2.1 Collator constructor
	5.2.1.1 new LocaleInfo.__Collator(settings, localeInfo)
	5.2.1.1.1 Settings parameter

	5.2.1.2 new LocaleInfo.__Collator(localeInfo)
	5.2.1.3 LocaleInfo.__Collator.options
	5.2.1.4 LocaleInfo.__Collator.derive(settings)

	5.2.2 Properties of the LocaleInfo.__Collator Prototype Object
	5.2.2.1 LocaleInfo.__Collator.prototype.constructor
	5.2.2.2 LocaleInfo.__Collator.prototype.compare (a, b)

	5.3 Number formatting
	5.3.1 Number formatter constructor
	5.3.1.1 new LocaleInfo.__NumberFormat(settings, localeInfo)
	5.3.1.1.1 Settings parameter

	5.3.1.2 new LocaleInfo.__NumberFormat(localeInfo)
	5.3.1.3 LocaleInfo.__NumberFormat.options
	5.3.1.4 LocaleInfo.__NumberFormat.derive(settings)

	5.3.2 Properties of the LocaleInfo.__NumberFormat Prototype Object
	5.3.2.1 LocaleInfo.__NumberFormat.prototype.constructor
	5.3.2.2 LocaleInfo.__NumberFormat.prototype.format (value)

	5.4 Date and time formatting
	5.4.1 Date and time formatter constructor
	5.4.1.1 new LocaleInfo.__DateTimeFormat(settings, localeInfo)
	5.4.1.1.1 Settings parameter

	5.4.1.2 new LocaleInfo.__DateTimeFormat(localeInfo)
	5.4.1.3 LocaleInfo.__DateTimeFormat.options
	5.4.1.4 LocaleInfo.__DateTimeFormat.derive(settings)

	5.4.2 Properties of the LocaleInfo.__DateTimeFormat Prototype Object
	5.4.2.1 LocaleInfo.__DateTimeFormat.prototype.constructor
	5.4.2.2 LocaleInfo.__DateTimeFormat.prototype.format (date)
	5.4.2.3 LocaleInfo.__DateTimeFormat.prototype.getMonths (width)
	5.4.2.4 LocaleInfo.__DateTimeFormat.prototype.getWeekdays (width)
	5.4.2.5 LocaleInfo.__DateTimeFormat.prototype.getEras (width)
	5.4.2.6 LocaleInfo.__DateTimeFormat.prototype.getAmPm (width)

