
Full Unicode in 
ECMAScript

Norbert Lindenberg

patrick
Text Box
Ecma/TC39/2012/015



Please ask questions!



Encoding Unicode
Character a α 吉 𠮷

Code point U+0061 U+03B1 U+5409 U+20BB7

UTF-32 00000061 000003B1 00005409 00020BB7

UTF-16 0061 03B1 5409 D842•DFB7

UCS-2 0061 03B1 5409 —

UTF-8 61 CE•B1 E5•90•89 F0•A0•AE•87



Encoding Unicode
Character a α 吉 𠮷

Code point U+0061 U+03B1 U+5409 U+20BB7

UTF-32 00000061 000003B1 00005409 00020BB7

UTF-16 0061 03B1 5409 D842•DFB7

UCS-2 0061 03B1 5409 —

UTF-8 61 CE•B1 E5•90•89 F0•A0•AE•87



Today: UCS-2 or UTF-16?
UCS-2:

• Regular 
expressions

• String comparison

• Case conversion

UTF-16:

• Source text 
conversion

• URI handling



Today: UCS-2 or UTF-16?
UCS-2:

• Regular 
expressions

• String comparison

• Case conversion

UTF-16:

• Source text 
conversion

• URI handling

• DOM, text input, 
text rendering, 
XMLHttpRequest, 
libraries, apps



Full Unicode?

• One code point === one string element?

• UTF-32

• All Unicode characters supported, 
somehow?

• UTF-32 or UTF-16



UTF-32

+ Easy to understand, easy to use

– Breaks code that assumes UTF-16

– Breaks code that transmits index 
information without translation

– Unclear how to interpret \uD842\uDFB7



UTF-32/16 switch
+ Locally easy to understand, easy to use

+ Compatibility box for old code

– Breaks code that gets run with wrong 
setting; requires libraries to support both

– Breaks code that transmits index 
information without translation

– Unclear whether \uD842\uDFB7 should be 
allowed



UTF-16

+ Compatible with existing code

+ Compatible with index transmission

+ Code-point based regex, string functions, 
string iteration possible

– Requires low-level developers to think in 
both code units and code points



Priorities
1. Code-point based regular expressions

2. Supplementary characters in functions

3. Supplementary characters everywhere

4. One code point === one string element

5. Code-point based string accessors

6. Code point escapes \u{20BB7}



Proposal
1. Code-point based regular expressions

2. Supplementary characters in functions

3. Supplementary characters everywhere

4. One code point === one string element

5. Code-point based string accessors

6. Code point escapes \u{20BB7}



Basics

• De"ne code unit, code point

• De"ne interpretation of code unit 
sequence as code point sequence

• Well-formedness not required



Regular expressions

• Patterns and input interpreted as code points

• /./ matches code point, not code unit

• Supplementaries as range limits

• Case insensitive matching for all

• Workaround for workarounds

• Some compatibility issues – /u needed?



/u – little red switch?

• Unicode code point semantics

• Unicode based \d\D\w\W\b\B

• Unicode case folding

• Remove some/all identity escapes to 
allow future extensions: \p, \X, \N

• Don’t match web reality?



Other text processing

• Case conversion: toLowerCase & Co.

• Any future functions

• Not: relational comparison for strings



Complete Unicode

• Unicode 5.1

• No more UCS-2

• Code point based identi"ers: 𝄞, 𝌞

• Clean up speci"cation



Code point access

• String.fromCodePoint([cp0 [, cp1 [, ...]]])

• String.prototype.codePointAt(pos)

• String.prototype.[iterator]



Code point escape

• “\u{20BB7}” === “𠮷” =?= “\uD842\uDFB7”

• 1-6 hex digits; value 0–0x10FFFF

• Exclude 0xD800–0xDFFF?

• Use in identi"er, string literal, regex literal; 
not in JSON

• Interpretation context-sensitive, as for \uxxxx




