
Ecma/TC39/2012/017

1

River Trail API (draft specification v2)

Stephan Herhut, Richard L. Hudson, Tatiana Shpeisman, and Jaswanth Sreeram

Intel Corporation

March 7, 2012

Introduction
This proposal describes a gentle extension to EcmaScript that will enable access to the parallelism found in all modern

processors.

Goals
The goal of this proposal is to enable data-parallelism in web applications. Browser applications and in particular EcmaScript

often need to leverage all available computing resources to provide the best possible user experience. Today web

applications do not take full advantage of parallel client hardware due to the lack of appropriate programming models. This

proposal puts the parallel computing power of client’s hardware into the hands of the web developer while staying within the

safe and secure boundaries of the familiar EcmaScript programming paradigm. It gently extends EcmaScript with simple

deterministic data-parallel constructs that enable runtime translation to a low-level hardware abstraction layer. By leveraging

multiple CPU cores and vector instructions, River Trail achieves significant speedup over sequential EcmaScript.

Proposal

Design approach

Three Pillar Approach

The design of RiverTrail is based on three pillars:

• A type called ParallelArray that holds data values

• Several prototypical methods of ParallelArray that implement parallel constructs like map

• The concept of an elemental function which is passed to the parallel constructs and typically returns a single data

element.

We have chosen a set of parallel constructs that we feel is minimal and upon which other data parallel constructs can be

built. For example sum would be implemented using the reduce construct while prefix sum would be implemented using

the scan construct. We anticipate useful libraries and infrastructure being built upon these constructs. This approach

enables a “do few things well” implementation strategy while ensuring the composability needed to build other abstractions.

ParallelArray Data Structure

We add ParallelArray, a new data type, to EcmaScript. ParallelArray is a read only array-like data structure that is created by

a call to a constructor or is returned from a call to one of the ParallelArray prototype methods. By making ParallelArray

immutable we can guard against race conditions. In addition to normal constructors we also support comprehensions where

a ParallelArray object can be created by specifying an iteration space and providing a function that maps indices to values.

Ecma/TC39/2012/017

2

Elemental Functions

Similar in spirit to the use of kernel functions and callback functions our approach makes use of elemental functions written

in EcmaScript. Any EcmaScript function can be used as long as it has an appropriate signature and is side effect free, i.e.,

the function does not mutate global state. Violations of the latter property will result in an exception.

The system will determine if the elemental function can be optimized to take advantage of data parallel hardware. If

optimization is not possible the function is simply executed sequentially. Providing an elemental function that can be

optimized is the responsibility of the developer though there are a few hints that will serve the programmer well. Recursion is

an example of a typical EcmaScript construct that is likely to defeat optimization. Sequences of arithmetic operations on

ParallelArrays that hold homogeneous data, e.g. ParallelArray objects that contain only floating point numbers, are good

candidates for optimization.

EcmaScript provides the object oriented concept of a this variable. As a general rule, we define this within elemental

functions to be the ParallelArray object associated with the called method.

Prototype Methods
ParallelArray comes with the following five data parallel methods that map ParallelArrays to

ParallelArrays: map, combine, scan, filter, and scatter. When combined with elemental functions each of these

methods creates a freshly minted ParallelArray. ParallelArray also includes a sixth data parallel method, reduce, which

maps a ParallelArray to a single value. We believe that with these six methods one can create a very robust and complete

data parallel library that covers a large number of applications. Since ParallelArrays are immutable we do not provide

destructive array methods such as push, pop, shift, or unshift.

Example
This simple example creates a three element ParallelArray myPA using new. It then uses the prototype method map and the

elemental function function(element){return element+1;} to create a freshly minted ParallelArray myPlusPA with

each element in myPA incremented by 1.

myPA = new ParallelArray([1, 2, 3]); // <1, 2, 3>

myPlusPA = myPA.map(function(element){return element+1;}); // <2, 3, 4>

Ecma/TC39/2012/017

3

API

ParallelArray

The ParallelArray prototype is the central data structure around which River Trail programs are built. A ParallelArray data
structure can be constructed using the following three constructor forms:

Synopsis

ParallelArray();

No arguments: return an empty ParallelArray

ParallelArray(anArray);

Argument 0 is array-like and the only argument: Use the values in the array-like argument to populate the new ParallelArray.
Array-like is defined as having a length attribute and having enumerable properties from 0 to length -1. If elements are

missing, the undefined value is used. Typed arrays are considered array-like.

ParallelArray(size, elementalFunction);

Argument 1 is an instance of a function (the elemental function), argument 0 is the size of the resulting array: Return a
ParallelArray of size size where each value is the result of calling the elemental function with the index where its result is

placed. If size is a number, then the index passed to the elemental function will be a number, as well. To support the

construction of multi-dimensional arrays, size furthermore can be a one dimensional array. In such case, the elemental

function will take multiple index arguments up to the length of the array size.

Returns
A freshly minted ParallelArray.

Throws
When the constructor is invoked with two or more arguments but elementalFunction is not a function.

Ecma/TC39/2012/017

4

map

Synopsis

myArray.map(elementalFunction, arg1, arg2, ...)

Arguments
elementalFunction described below

arg1, arg2, ... optional array-like objects that are indexed similar to myArray, which is available through the this variable

Elemental Function

function (val, val1, val2, ...)

this The entire ParallelArray

val An element from the ParallelArray

val1, val2, ... – values from arg1, arg2 and so forth from the same relative locations as val in this.

The result of the function will be used as an element to be placed in the result at the same offset we found val in the source

array.

Returns

A freshly minted ParallelArray

Elements are the results of applying the elemental function to the elements in the original ParallelArray plus values from any

optional arguments.

Throws
When elementalFunction is not a function.

Discussion
If an additional argument’s length is greater than the original ParallelArray’s length then the extra values are ignored. Any

missing values will use the undefined value.

Unlike combine, map does not provide a depth argument to steer the number of dimensions the map operation iterates

over. Instead, the dimensionality of the source array can be modified. Using a helper function flatten, which collapses the

outer two dimensions of an array into a single dimension, map can be applied to elements across multiple dimensions. The

result can then be transformed to the original shape using partition, a helper function that splits dimensions by dividing

elements into groups of a given size. For example, instead of

result = pa.map(2, f); // NOT LEGAL

where 2 would be the depth argument, the programmer can instead use

tmp = pa.flatten();

tmp = tmp.map(f);

result = tmp.partition(pa.shape[0]);

Note that this transformation does not work for combine. As combine exposes the iteration index to the elemental function,

collapsing the iteration space to a single index would be observable from the elemental function.

Example: an identity function
result = pa.map(function(val){return val;});

Ecma/TC39/2012/017

5

Example: Scale Alpha X plus Y
Perform the DAXPY operation found in the vector library BLAS (Basic Linear Algebra Subprograms)

alpha = 2; // some scalar scale factor (a number)

xPA = new ParallelArray(...);

yPA = new ParallelArray(...);

resultPA = xPA.map(function(x,y){return alpha*x + y;}, yPA);

 // x is an element of xPA, y is an element of yPA

Ecma/TC39/2012/017

6

combine

Synopsis

myArray.combine(elementalFunction)

myArray.combine(depth, elementalFunction)

Arguments
depth (optional) the number of dimensions traversed to access an element in this; the default is 1

elementalFunction described below

Elemental Function

function (index1, index2, ...)

this The ParallelArray

index1, index2,... Each index is a scalar value indicating where the result of the elemental function is placed. The

number of indices is determined by the dimensionality of the iteration space, i.e., by the value of the depth argument. If

depth is omitted or has the value 1, only a single index is passed. To write dimensionality independent code, the

EcmaScript variable arguments can be used as the first argument to get to retrieve source values. Future version of

EcmaScript may provide rest parameters which are likely to be more convenient.

The result is used as an element to be placed in combine’s result at the location indicated by index1, index2, . . .

Returns
A freshly minted ParallelArray containing elements are the results of applying the elemental function.

Throws
When elementalFunction is not a function and if depth indicates an iteration space that is not available in the

ParallelArray.

Discussion
Combine is similar to map, except an index is provided. This allows elemental functions to access elements from other

source arrays relative to the one at the current index position. While any element in the source arrays can be accessed the

result returned by the elemental function will be placed at the location indicated by the index.

Example: an identity function
result = pa.combine(function(i){return this[i];})

Ecma/TC39/2012/017

7

reduce

Synopsis

myArray.reduce(elementalFunction)

Arguments
elementalFunction described below

Elemental Function

function (a, b)

this The entire ParallelArray

a, b Arguments to be reduced and returned

Returns

The final value, if the ParallelArray has only 1 element then that element is returned.

Throws
When elementalFunction is not a function and if the source ParallelArray object is empty.

Discussion

Reduce is free to group calls to the elemental function and reorder the calls. For an elemental function that is associative

and commutative the final result will be the same as reducing from left to right. Modular addition of integers is an example of

an associative and commutative function and in this case the sum of a ParallelArray will always be the same regardless of

the order that reduce calls the addition operator. On the other hand, averaging is an example of a non-associative function.

The expression Average(Average(2, 3), 9) produces the value 5 2/3 while the expression Average(2, Average(3, 9))

produces the value 4. reduce is permitted to chose whichever call ordering it finds convenient.

reduce is only required to return a result consistent with some call ordering and is not required to chose the same call

ordering on subsequent calls. Furthermore, reduce does not magically resolve problems related to overflow and the well

documented fact that some floating point numbers are not represented exactly in EcmaScript and the underlying hardware

so floating point addition and multiplication are not truly associative.

reduce also requires the elemental function be commutative since reduce can induce reordering of the arguments passed

to the elemental functions.

Typically the programmer will only call reduce with associative and commutative functions but there is nothing preventing

them doing otherwise. Calling reduce with a non-associative and/or non-commutative function will lead to a result that is

guaranteed only to be consistent with some ordering of applying the elemental function on some ordering of the arguments.

Ecma/TC39/2012/017

8

scan

Synopsis

myArray.scan(elementalFunction)

Arguments
elementalFunction described below

Elemental Function

function (a, b)

this - the entire ParallelArray

a, b - arguments to be reduced and result returned

Returns

A freshly minted ParallelArray whose i-th element is the result of using the elemental function to reduce the elements

between 0 and i, inclusively, in the original ParallelArray.

Throws
When elementalFunction is not a function.

Example: an identity function

pa.scan(function(a, b){return b;})

Discussion:

The construct implements what is known as an inclusive scan which means that the value of the i-th result is the same as

what would be produced by [0..i].reduce(elementalFunction). Notice that the first element of the result is the

same as the first element in the original ParallelArray. An exclusive scan can be implemented by shifting right by one the

results of an inclusive scan, dropping the rightmost value, and inserting the identity at location 0. Similar to reduce, scan can

reorder the calls to the elemental functions. Ignoring overflow and floating point anomalies, this cannot be detected if the

elemental function is associative and commutative, in which case using an elemental function such as addition to create a

partial sum will produce the same result regardless of the order in which the elemental function is called. However using a

non-associative or non-commutative function can produce different results due to the ordering that scan calls the elemental

function. While scan will produce a result consistent with a legal ordering the ordering and the result may differ for each call

to scan.

Typically the programmer will only call scan with associative and commutative functions but there is nothing preventing

them doing otherwise. Calling scan with a non-associative and/or non-commutative function will lead to a result that is

guaranteed only to be consistent with some ordering of applying the elemental function.

Ecma/TC39/2012/017

9

scatter

Synopsis

myArray.scatter(indices, defaultValue, conflictFunction, length)

Arguments
indices array of indices in the resulting array

defaultValue optional argument indicating the value of elements not set by scatter. When not present, the default value

is undefined

conflictFunction optional function to resolve conflicts, details below.

length optional argument indicating the length of the resulting array. If absent, the length is the same as the length of the

original ParallelArray.

Returns
A freshly minted ParallelArray A where each element A[i] is defined as

• A[indices[i]] = this[i], when indices[i] is unique

• A[indices[i]] = conflictFunction(valA, valB) when multiple elements are scattered to the same

location. see below

• defaultValue, when i is not present in indices array

Example: an identity function
result = pa.scatter(indices); where indices is a ParallelArray where element === index

Handling conflicts with the Conflict Function
A conflict occurs when multiple elements are scattered to the same location. It results in a call to conflictFunction, which

is an optional third argument to scatter. If conflictFunction is undefined, scatter throws an expection when a conflict

occurs.

Synopsis

 conflictFunction(valA, valB)

Arguments
this the entire ParallelArray

valA, valB the two values that conflict

To ensure determinism it is the programmer’s responsibility to provide a conflictFunction that is associative and commutative

since there is no guarantee in what order the conflicts will be resolved.

Returns
Value to place in result[indices[index]]

Throws
The length of indices does not match the length of the ParallelArray.

When conflictFunction is neither undefined nor a function.

If a conflict occurs but no conflict function has been supplied by the programmer.
If indices contains an index greater than the result array’s length.

Ecma/TC39/2012/017

10

Example: Resolve conflict with the larger value

function chooseMax(valA, valB){

 return (valA>valB)?valA:valB;

 }

pa = new ParallelArray([0,1,2,3,4,5]);

result = pa.scatter([0,3,1,4,2,5]); // <0,2,4,1,3,5>

result2 = pa.scatter([0,0,1,1,2,2], chooseMax); // <1,3,5,undefined,undefined, undefined>

result3 = pa.scatter([0,0,1,1,2,2], chooseMax, 3); // <1,3,4>

Ecma/TC39/2012/017

11

filter

Synopsis

myArray.filter(elementalFunction)

Arguments
elementalFunction described below

Elemental Function

function (index1, index2, . . .)

this The ParallelArray

index1, index2, . . . The indices specifying the location in this where the source element is found.

The result of the elemental function is interpreted as a truthy value. If the result equals true, the corresponding element will

be included in filter’s result. Otherwise it will be omitted.

Returns

A freshly minted ParallelArray holding the source elements for which the results of applying the elemental function equals to
true. The order of the elements in the returned ParallelArray is the same as the order of the elements in the source

ParallelArray.

Throws
When elementalFunction is not a function.

Example: an identity function
result = pa.filter(function(){return true;})

Ecma/TC39/2012/017

12

flatten

Synopsis

myArray.flatten()

Arguments

none

Returns

A freshly minted ParallelArray whose outermost two dimensions have been collapsed into one.

Example

pa = new ParallelArray([[1,2][3,4]]) // <<1,2>,<3,4>>

pa.flatten() // <1,2,3,4>

pa3D = new ParallelArray(([[[1,2][3,4]],[[11,12][13,14]],[[11,22][23,24]]]);

 // <<<1,2>,<3,4>>, <<11,12>,<13,14>>, <<11,22>,<23,24>>>

pa2D = pa3D.flatten(); // <<1,2>,<3,4>,<11,12>,<13,14>,<11,22>,<23,24>>

pa1D = pa2D.flatten(); // <1,2,3,4,11,12,13,14,11,22,23,24>

Ecma/TC39/2012/017

13

partition

Synopsis

myArray.partition(size)

Arguments
size the size of each element of the newly created dimension; the outermost dimension of myArray needs to be divisible

by size

Returns
A freshly minted ParallelArray where the outermost dimension has been partitioned into elements of size size.

Example

pa = new ParallelArray([1,2,3,4]) // <1,2,3,4>

pa.partition(2) // <<1,2>,<3,4>>

Discussion
While one could implement both flatten and partition using the other constructs we call them out here to make it easy

for the compiler to recognize flatten or partition and make optimizations easier.

Throws

When outermost dimension is not divisible by size.

Ecma/TC39/2012/017

14

[]

Synopsis

myArray[index];

Arguments
index a number value representing a valid index in the outermost dimension of myArray.

Returns
The value found at index or undefined if no such value exists. If myArray is a multi-dimensional ParallelArray object, []

returns a ParallelArray object that represents a slice of the source ParallelArray object at index index. All ParallelArray

methods can be applied to such slice. In particular, [] can be used to further slice the ParallelArray or ultimately select

single elements.

Example

pa = new ParallelArray([[0,1,2,3,4], [10,11,12,13,14], [20,21,22,23,24]])

pa.get[1][1]; // 11

pa[1]; // <10,11,12,13,14>

Discussion
Since ParallelArrays are immutable using [] as part of the left hand side of an assignment is not allowed and results in a

throw.

Ecma/TC39/2012/017

15

get

Synopsis

myArray.get(indices);

Arguments
indices: an array of number values that represent valid indices into myArray. The first index references the outer most

dimension, the second index references the next dimension and so forth.

Returns
The value found at the indices or undefined if no such value exists.

Throws
If indices is not an array like object or if the length of indices is larger than the number of dimensions in the source

array.

Example

pa = new ParallelArray([0,1,2,3,4], [10,11,12,13,14], [20,21,22,23,24])

pa.get([1,1]); // 11 same as pa[1][1].

pa.get([1]); // <10,11,12,13,14>, same as pa[1].

Ecma/TC39/2012/017

16

length

Synopsis

myArray.length

Returns
The toplevel (first dimension) length of the ParallelArray.

Example

pa = new ParallelArray([1,2,3,4]) // <1,2,3,4>

pa.length // 4

Ecma/TC39/2012/017

17

shape

Synopsis

myArray.shape

Returns
An Array containing the length of each dimension of the ParallelArray starting with the outermost dimension.

Discussion
pa.shape.length gives the dimensionality of the parallel array.

Example

pa = ParallelArray([[1,2,3],[4,5,6]]) // <<1,2,3>,<4,5,6>>

pa.shape // [2, 3]

Ecma/TC39/2012/017

18

Implementations as non-performant Library
This has been implemented as a library available on GitHub.com/rivertrail/rivertrail/. There is a

prototype implementation of a compiler that compiles this proposal into OpenCL and

demonstrates an up to 10x speedup on current hardware.

The River Trail code on GitHub can be used to experiment with the API and over the past year

we have learnt a lot about what the API should look like and a lot about how to simplify the API.

What you see here is the result of that ongoing work.

Discussions and back stories

Immutability discussion

ParallelArray is a separate type and is not a subtype of Array. This section distills the arguments that lead to

this decision.

1. A dedicated type simplifies the detection of arrays that will take part in parallel execution and thus
eases optimizations, e.g., (speculative) use of different storage layout and lazy evaluation of the
constructs.

2. Extending Array and the various typed arrays would create an API that has to be kept in sync across
different prototypes. Using a dedicated object would allow us to use inheritance between
ParallelArray and TypedParallelArray, if we choose to go that route

3. ParallelArray is multidimensional and rectangular whereas Arrays traditionally are not.
4. ParallelArray allows for a clear separation of APIs: Array is always sequential whereas ParallelArray is

parallel, the former allows mutation in lambdas while the latter does not. Otherwise we would end
up with map and pmap with different signatures and semantics, which is awkward.

Extra arguments vs. free variables discussion

The current implementation on GitHub passes any extra (… rest) arguments given to the ParallelArray

method on to the elemental function. In this document we describe an API that instead relies on

EcmaScript’s ability to create closures with access to free variables to accomplish the functionality extra

arguments typically supply. The new pattern is simple. If one wants to write a program that adds some

number, in this case 4, to every element in a ParallelArray it could be accomplished as follows:

function addN(increment) {

 return function (val) {return val+increment;};

};

pa = new ParallelArray([1,2,3,4]) // <1,2,3,4>

pa.map(addN(4)); // <5,6,7,8>

The current implementation on GitHub is unable to properly recognize free variables so instead it allows

the passing of extra arguments to the parallel constructs which are in turn passed to the elemental

Ecma/TC39/2012/017

19

functions. The use of extra arguments and passing scalar indices to elemental function creates

ambiguities so we decided to eliminate the use of extra arguments. Below is an example of how the

GitHub implementation would accomplish the above.

function addNBrokenLegacy(val, increment) {

 {return val+increment;};

};

pa = new ParallelArray([1,2,3,4]) // <1,2,3,4>

pa.map(addNBrokenLegacy, 4); // <5,6,7,8>

Fallback to sequential vs. throwing an exception

In a development environment we probably want to throw or at least log why parallel optimizations

were inhibited. In a deployment environment we probable want to fall back to a sequential

implementation.

Extending ParallelArray and implicit flattening

This is a difficult problem if we want to optimize for multidimensional arrays. For example if we have a

2D array but the inner dimension holds ParallelArrays that have been extended, say with an attribute

color, then if a straight forward implementation flattens the data the attribute will be lost.

GPU, threads, vector instructions discussion

Currently many GPUs are unable to deal gracefully with programs that are long running. This

vulnerability is particularly troublesome in web applications since bugs or malicious code can result in

denial of service (DOS) attacks. If long running code is dealt with at all it is by using web inappropriate

heavy duty clubs, such as resetting the GPU. While running them on the CPU does not in any way bound

the algorithms runtime, CPUs do provide context switching which can be used to manage the amount of

time the HW is dedicated to the data parallel algorithm. Since vector instruction and multiple cores

provide context switching today it is appropriate that current implementations focus on this hardware.

This will provide an opportunity to developers to realize the power of current hardware without

worrying about DOS attacks while knowing that future version of River Trail will be able to take

advantage of GPUs once (if) they eventually provide more appropriate ways to deal with resource

allocation and sharing.

