Cecma Draft

Ecma/TC39/2012/088

A0 ECMA-262
_ - - 6th Edition / Draft December 21, 2012

ECMAScript Language
Specification

Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: December 21, 2012 Draft

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001

https://bugs.ecmascript.org/

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2012

secmd

Contents Page
LA 0T LUT o] 10 o [P Vii
1 Yo o] oSO PP PP P PPPPPPPUTPPP 1
2 (OdaY a1 10] 1K= 1o =T T 1
3 o] 8 g E= AV SR = A=Y A oT 1
4 (@ V2= VAT T 1
4.1 RTAT L= o TS 1] {1 o P PSS 2
4.2 (= T T LU= Vo [T @ V2= VA= S PRRRR 2
o T @ | o= o3 SR 3
4.2.2 The Strict Variant 0f ECMASCIIPTuviiiieeiiiiiiiiee i sforettse s s sieee e e e s e snsieeeeee e s s snsnashee e s e snsnaneeeeeseannnnnns 4
4.3 NIRRT [B0 L= AL 0 o = S 4
5 Lo E=Y A Lo Y b=t IO e Y AV =T 0L {0] 1T T ST 7
5.1 Syntactic and LeXiCal GrammMarsS.........ocuuiiiiiieiis e i ieee e sfinmaeesesiaeeeesbaeeessbseeesbeeeessebeeeesbaeeesnnneeas 7
LT O A O] ¢ (=) G S =TS T =10 010 = 5 7
5.1.2 The Lexical and REGEXDP GIamIMAIsScocuiiiiiiieeeiiieiiaatbeeesasteteeatteeeaaebeeesabneeesaabeeesabseeeassbeeesabeeeeannns 8
5.1.3 The NUMEIIC StriNg GramMMaAccoiiueeeiiureeeaiieeeeaaieeeesasbaeesaiheeeessreeesastneesaasreeesabesesasseesaasneeessnsneessnnns 8
T I B L= IS YA = ol Lol €1 = 10 40 = | T SRR 8
T T I a TSI LS 1O] N] =10] 0 = T 9
T T 1 =0 0= U (0) =10 o T 9
5.2 AlGOrithm CONVENTIONS ...ttt e Tt e e e e e ettt e e e e e e bbbt e e e e e e e annbeeeeeeeeannnees 12
5.3 StALiC SEMANTIC RUIBS ..vvvieiii i s e e e f et ettt e e sesseaeeaaa s e s e sseesseseassbaba s seeeseseesbbabanseeeesssensrens 13
6 Yo 10 L oL ST 1= A PP 14
7 [IS) ToT= L O Y o RYZ=T 011 o) o F= e 15
7.1 Unicode FOrmat-Control CRHArACIEISuuuriiiii it e e e e e et e s e e e s e e e ee st s s e e eeeerenens 16
7.2 R AT LT =TS 0 T o = S SR PEEP 16
7.3 [TSI =T L= 0T 17
7.4 (©00] 1 01 1.8 =1 015 18
7.5 B IO 1 C=T £ FST ST 19
7.6 Identifier NameES @nNd IHENEITIEISiiieeee ettt e et e e et e e e e ra s e e s eaae e e s esbeeeeeranaes 19
0 R = =L T RV =To IRV AT 0] o T T 20
7.7 [U Lo AU = 10T =T 21
7.8 L] = 1 E TR 22
< 0 R (0 | B I =] = 1 £ o S 22
A N = Yo Lo (=t Y IR A= =1 T TR 22
A T T U] o X< (o N (=T = | E TR 22
AR S T S 41 o T 1 (=T = SRR 25
7.85 Regular EXPreSSION LItEralScuiiiiiiiiiiiiiiie ittt ettt ettt e e st e e st e e e sntaee e s sbaeeessnbeeeesnraeeeans 27
7.8.6 Template Literal Lexical COMPONENTSccuiiiiiiii e st e e e e e r e e e e s snnbae e e e e e s ennnnees 28
7.9 AUtOMALiC SEMICOION INSEITION covvuieeiiii ittt e e e et e et s e e e s e e e esa bbb seeesaeseesbbaaaseeeaaaes 30
7.9.1 Rules of Automatic SEMICOION INSEITION ...u.iiiiiiiiiieeeiee e e e e e e e e e e s e e ee e e s e e eeseeenens 30
7.9.2 Examples of Automatic SemMiCOlON INSEITIONccoiuiiiiiiiie e 31
8 L7 L2 PP PPPPTPTRRR 32
8.1 ECMASCIIPE LANQUAGE TYPES weriiiieeiiiiiiiiiiee et aattieeteeeesasetteeeaaeesassssteeeeeesssnssbaeeeaeesaastsseeaeessansnnreneeaessn 33
S0 00t R N U= O e o = T o = To B Y o L= OO U PPPUPPPOPUPPR 33
S O N 1 U= NN (U] B I o 1SS P OO PP T OTPPTPPPN 33
8.1.3 TNE BOOIEAN TY P ittt ettt e ekt e e st et e e s kb e e e e s bbe e e e abbe e e e aabee e e aabreee e 33
o I N U= 0o (o o T 57 1 SRS PRRPT 33
S0 I T B U= A (U1 Y oT=T g Y o L= TP PR 33
S0 I G R B L= @] o] [T o A 1] o L= TR PP PPRPP 34

© Ecma International 2012 |

secmd

ST B =1 £ N =] Lo Tod 1= TP PPPTPO 44
8.2.2 The List and Record SPeCifiCation TY P ..occuiiiii i e s e e e s s s an e e e e e e e e aneees 45
8.2.3 The Completion Record SPeCifiCation TYP @ ..ot e s s s e e e e e e nnneees 45
8.2.4 The Reference SPeCIifiCaAtiON TY PO ..o e e e e e e e e e s e e e e e s s san e e e e e e e enneees 46
8.2.5 The Property Descriptor SPeCifiCation TYPE .uueveeiiiiiiiiiie et e e e e e e e e e 48
8.2.6 The Lexical Environment and Environment Record Specification Types......cccccccvvvvvvveveeeerinnnee, 50
8.3 Ordinary Object Internal Methods and Internal Data Propertiesccccccvcvvveveeeeviccivineene e 50
o o R (1= Aol Y=l gL = Ta LT =] | I () OO 50
8.3.2 [[SetINNErItANCE]] (V) «eeeiieiieitiiie ettt ettt et e ettt e sttt e e sab bt esabb et e e s abb e e e snbr e e e s annneas 50
8.3.3 [[ISEXIENSIDIE]TT ([)eeiuereeeeiutteteiitite ettt ettt ettt ettt e ettt e e skt e a ekt e e eabb e e e e s e e e e nbn e e e e nneas 51
8.3.4 [[PreventEXtENSIONS]] () . i i rrteiiiieeiiiieeiiieeeesieeeessiteeeesteeeesineeeesebsee e ife e s s e e e sttt et e e e abbe e e s nanneas 51
8.3.5 [[HASOWNPIOPEITY]] (P) :eeeeeiteeteiitiiiee ittt stite e sttt ettt ettt s e ettt e st e e e s e e sbn e e s nnnneas 51
8.3.6 [[GEtOWNPIOPEITY]] (P) «oiiouteeeteieeiiiiiite ettt ettt e e e et e e e 2 € a bbb et e e e e e e bt be e e e e e e e e sanbeeeeaaeeennnnees 51
8.3.7 [[DefineOWNPIoperty]] (P, DESC) ettt e e e s st be e et e e e e e e e annbeeee e e e e e nnnnees 51
8.7.8 [[HASPIOPEITY]](P) o eeteeeteeieiitiiee ettt ettt e e e st ee e e e e e fane e e e e e et s an e e e e B bbbt e e e e e e e ansbeeeeeeeeannnees 54
R I | (= 4o I B =oAL o T SRR 54
8.3.10 [[SEtP]] (P, V, RECEIVEI)utiiiieieiiiiiiiieee e e eeetiiieee e e e s s eiitesaiienaathaaee e e e s s sstaaeeaaeessannnabar e e e e e esnntaneeeeeeennneens 54
R 0 5 R | 1T =1 = [T R 55
TR I 2 | = g Y0 L= = =) U S SR 56
8.3.13 [[OWNPIOPEIrtYKEYS]] () cooeureerreeeeiiiieeieeeeeiiiieteeesdenaaasneneeseesssassseeeesinesansssnneeeessanssssnsseeesansnassereeeesannnsens 56
SR 0 | (=T 2= [() TP S PSSP 56
8.3.15 [[SEAI]J] () -rvveerrreeruersrueraiueeaateeesnteesueeseeesteeanseeesseeesssananstinnseeenssdannnnsnseeenseeesnsesansesanseesnseesnseeessseesnsessnseens 57
8.3.16 [[ISFIOZEN]T () eueeeeeiueeeeiiuieeee sttt e ettt ee e sttt ettt e e st e e s bame e e s et e skttt e e ettt e sttt e e s ettt e e s bb et e e nnbb e e e s s 57
R N A SIS T=T 1= | (O TP PSP P S UPUPPOP 57
8.3.18 ObjectCreate ADSIract OPeralioN fi i iiin . et e e sbr e e e s aneeas 57
8.3.19 Ordinary FUNCLION ODJECESoiiiiiiieiih it skse e ettt e e ittt e st e s e e e e sbee e e s nnnneas 57
8.4 Built-in Exotic Object Internal Methods and Data Fields ...t 60
8.4.1 Bound FUNCHION EXOLIC ODJECTS ..o iieie ittt ittt e s e ettt e e e e e s bbbt e e e e e e s nnbeeeeeeeeennnnees 60
8.4.2 Array EXOUIC ODJECLS ...eiiiiiiiiiiiiiiiiee i tie st afe s s ai et as s e s s R B e e e ettt e e e e e s abb e e e e e e e e aannbeeeeeeeeannnnees 61
R IS T a Lo o A (o @ o 1=t € SRR 63
o o) (1o} A 1 0] oY] I @ o =T o TSRS 64
8.4.5 EXOtiC ArgUMENTS OBJECTSuuiiiieieti et e e e e e e e s e e e e e e s et e e e e e e s sastetreeaeessassntaneeeeeeennnrens 66
8.4.6 Indexed Delegation EXOtIC ODJECLScuiiiiiiiiiiieeie i eciiieie st e e e e s st e e e e e e st e e e e e s s snnreeeeeeeeennnees 67
8.4.7 BUIlt-iN FUNCHION OB ECESiiitdeiiies it e e e s sttt e e e s et e e e e e s st e e e eaeessstateeeaeessanntaneeeeeeannnrees 67
8.5 Proxy Object Internal Methods and Internal Data Propertiesccccccccvieeeeeeiiiiieine e ciieeeee e 68
8.5.1 [[GEtINNEITEANCE]] () it e sthueteruueeeiiuteeee i iteatssatstesesteeeestteeessateeeesabbe e e e saba e e e abbeeeeaabeeeesabbeeeeaanbeeesnbbeeesnnnneas 68
ST T 51 =t =T K=Y o1 = [N () PO 69
8.5.4 [[PreVentEXTENSIONS]] () :tierretaateieeiieeie ittt e sttt ettt ettt e sttt e sabe e e sbb e e e sabe e e e sabb e e e s annb e e e aabbeeeennnneas 69
8.5.5 [[HASOWNPIOPEITYI] (P) - ueteitiueteiiuteieeitiit e ittt sti ettt ettt e sttt et e e skt e e asbe et e s abb e e e e annn e e e sbneeesnnnneas 70
8.5.6 [[GEtOWNPTIOPEITYT] (P) ..eeeeiiittetieieee ittt ettt ettt ettt a bt e s st e st et e e sane e e e sbe e e e s annneas 71
8.5.7 [[DefineOWNPIOPErtY]] (P, DESEC) .. .cie ettt e e e e s ennneas 71
oI I [Fo] ad o] 1= 0 | I (T TSP PT R PPPRPP 72
8.5.9 [[GELPR]] (P, RECEBIVET) ceii ittt ettt e s et e e st e st e s e e e s e e s nanneas 73
8.5.10 [[SEtP]] (P, V, RECEINEL)ccitiiie ittt ettt ettt sttt et e st e e st e e e s st eesseeeesastaeeeanseeeessnneeeesnseeeesnnnaeas 73
ST A B L= 1= = |) I S 74
8.5.12 [[ENUMETFALE]] ()44t euureeteeeiiiiiieeieeeeeiiitttee et e e s sstateeeaeesssaateeeeaeessassteaeeaeessansssaneeaeeesansnbeeeeeesaasntnneeeessannnrens 74
8.5.13 [[OWNPIOPEITYKEYS]] () coieurrerteeeeiiiitiiieee e i ittt et e e s s sttt e e e e e s sssstaaeeeaeessstaaneeaeesaassntneeaeessassstaneeeeesennnnens 74
T | L =T=Y4 =Y (PSSR 75
T I EST= =L | I (O I PSP 75
ST I ST S g V4=T 0 | (PSP 75
T A SIS T=T 1T | (O I PP PTPR 75
8.5.18 [[Call]] (thisArgument, arguUMENTSLIST) ...ocueiiiiiiiie it 75
8.5.19 [[Construct]] INternal MEetNOGooi it 76
N oL = To O] o1 =T = 1A o] o S TP PP PUPPPP 76
9.1 Type ConVersion @nd TESTINGeeiiiiiiee ittt e et e e e st e e e s abb e e e s sabeeeesanneee e 76
1S 8 I A oY = T a1 A= TSP 76
1S I8 2 e = Yo o] =T o H PO 77
1S T8 I B o1 \\1¥ {1] o 1= PP OTPPPPTT 78
LS T O o][1 (=0 = SRR PPPPTR 81

Il © Ecma International 2012

secmd

9.1.5 ToInt32: (SignNed 32 Bit INLEUET) cooviiiiiiiiiieei e 81
9.1.6 ToUint32: (UNSIgNed 32 Bit INTEOET) ..eeiiiiiiiiiiiiie ettt et e st e e e et e e e e e s st ae e e e e e s s e anrae e e e e e e annneees 81
9.1.7 ToUintle: (UNSigned 16 Bit INTEOEI) ..euiiiiiiiiiieiie ettt e e sttt e e e s s st r e e e e e s st e e e e e s s e nnbae e e e e e e annnnees 82
LS S T 10 1 1 o o SRR 82
1S I T 10 1@ =T o SRR 83
LS 00 0000 T oY 0T o1 = 1Y/ =Y/ 83
9.2 Testing and CompariSON OPEIAtiONSueiiiiiiee ittt st e et e e seb e e e sbeeeessbreeeeaaee 84
9.2.1 CheCKODJECICOBICIDIE ...ttt et e e rbb e e s st e e e snbneee e 84
S I 11 @ 1| =] = PSR 84
9.2.3 The SameValue AIGOTTRMoo et sk et e e e st e e e e sab e e e sabneee e 84
S I S L] 0 = { 0[] A) S O PRUPPPPRPPPPIR 85
0.2.5 ISPIOPEITYKEY ..ttt 85
9.3 OPErationNs 0N ODJECESuiiiiiiiiiiiiii ettt e e e e e e s e bttt e e e e et e et e e e e s snbbbeeeee e e aanneeeeeeas 85
LSRG 700 R T (@ R . e SRR 85
9.3.2 PUL (O, P, V, TRIOW) .ottt sttt ettt sieee e staee e siteee e s dbaaaanteeeesnssaassabheeeesstaeeesssbeeessnseeeesnsaeeenns 85
9.3.3 CreateOwnDataProperty (O, P, V) ettt et e riitse e e e e e senteeeasaeaaathn e e e e e e s e stnbaeeaeesesnnnnees 85
9.3.4 DefinePropertyOrThrow (O, P, GESC) ..cciiiciiiiiee it e sfesiathuee e e e e setee e e e e e s s anaaesie e e e sntraeeaaeeesnneneeeas 86
9.3.5 DeletePropertyOrTRrOW (O, P) oottt e e e s e e e e e s s e e e e ie e st te e e e e e e e e nnneees 86
1S TR G I o -] o o o 1= VA (@ 0 = T R 86
1S IR A €11 41/ 11 d T Yo I (TR = U SRR 86
9.3.8 INVOKE(O,P [LAIGS]) teeeeertrreeeiiiieeiitiieeeiieieesstieeee s amessabneeeeseseeeeseesdeaanbaesesnteeeesatbeeessbteeeesabeeessnbeeeesnseeeeans 87
9.3.9 MakeObjectSecure (O, IMMULADIE)iciii i it ahrtt et e e e e e e s ee e e e e s s srnre e e e e e s e anneees 87
9.3.10 TestlfSecureObject (O, IMMULADIE)coiiiiiiiie i 88
9.3.11 Create ArrayFromLiSt (ElEMENTS)ciuiiiiiiiii ittt e e b e e aneeee s 88
9.3.12 OrdinaryHasINSTANCE (C, O) ...eiiiureeiii i e iieieeestieee et rassst b e se et e e sttt e e e stbe e e e sabeeeesabneeessnbeeeesabneeeaas 88
9.3.13 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto).........cccccoviiieiiiieiinnnnen. 89
10 Executable Code and EXeCULtION CONTEXLSiuiiieee it eeeee e iisees i e e eieieeeaa e s s snbbeeeeaeeesannbneeeeaeaanns 89
10.1 Types of EXecCUtable COOE ... ahie e i ettt e e e ettt e e e e e e bbb e e e e e e e e nneneeeeas 89
020 00t R 1 (o3 8 1Y oo L= @ Lo [T OO EPT PR 90
10.1.2 NON-ECMASCIIPt FUNCIIONS 1.iiiuiiiiiiiii ettt s et e e e e s e st e e e e s s st e e e e e e e e e sannrnneeeas 90
10.2 LexiCal ENVIFONMENTS ... ittt sbe et e et e e e st e e e sate e e e ettt e e ettt e e e anteeeeesbeeeeanbeeeeansaeeeannes 90
O T A = AV oY 0T ¢ T=T 0 A =T e o] o K S SRR 91
10.2.2 Lexical ENViroNmMeENt OPEratiOnNSccccuviiiisieeiatiiiiieeeee e s settateeeeessssaataeeeeeesesntaereeaesssnnsaseeeeeessansnsnens 102
T T 0o Yo [== 11 0 o PP 103
10.4 EXECULION CONEEXES tin..veeiidiuiiiesiiiiieiitneesssse et 520 e e seteeeesnteeeesssteeeesntseeesseeeeesnbbeeesneeeeesnsbeeesanbeeeesnnneeas 104
10.4.1 1dentifier RESOIUTION . ittt e e e e e e e e e s e e e e e e e e s snstaaeeeaeeesnnsnnaeeeeeesannnrnees 105
OB S 1= B =] =1 Y/ 0 2L =T L RS 105
10.4.3 THIS RESOIULION tiueeiie ittt ettt et e e e et e et e e e sttt e e e e e saaeteeeeeeeaassssbeeeeeeeesansnsaeeeeeesnnsnrnees 105
O g 1= (€] o] =1L @ o =T ol TP O PP PTPPPPI 105
10.5.< Declaration Binding INSTantiation............c..oiiiuiiiiiiiii e 106
10.5.1 Global Declaration INSTANtiatioNooiuieiiiiie e a e e e e e e e e e e 106
10.5.2 Module Declaration INSTANTIAtIONoiuuiiiiiiae e a e e e e e eneeees 107
10.5.3 Function Declaration INSTANTIAtIONcicieiiiiiiiie et e e s e s saaee s 107
10.5.4 Block Declaration INSTANTIATIONcueiiiiiiiieiiiiie et essiee et e e e e sare e e st e e e snsbeeesnsaeessnneeas 109
10.5.5 Eval Declaration INSTANTIAtiONociiiiiiiiiiiee et ee e e e e snnaeeesneeeas 109
O ST N o 10 [T=T] €T @ o =T SRR 109
11 D d o =TT o] 1SS 112
O R = T o 0 = 1 VA T o] €= ET=T o 1 SRR 112
5 O O I ¢ Lo ot =3 (=) VAT o T o RS 113
8 2 o 1= o | A =T g =) (=T =] L] SO R 113
O T) (=T - | =S PP 113
O N g - YA [TN (= 1] = PP TPR 114
R I @ o T = To [11 A=Y= PSSP 117
11.1.6 Function Defining EXPrESSIONS ...cciiuiiiiiiiiie ittt sttt ettt ettt e et e e sabe e e sabb e e e snbeeessnaeeas 120
11.1.7 Generator COMPIrENENSIONS . .o.uiii ittt sttt e s et et b e e e snbae e e sneeeas 120
11.1.8 Regular EXPresSion LItEralSottt s 120
11.1.9 TeMPIALE LITEIAIS ...oeieiiiiee ittt ettt ekt e e st e e aab e e aab b e e e s annne e e snnnee s 121
11.2.20 The GrOUPING OPEIALOTeiii ittt ete ettt e e e e e ettt e e e e e e teeeeeeaaeaaaanbeeeeaaeaaaansbeeaeaeesaannsseeeeaesaaannenees 124

© Ecma International 2012 1

secmd

11.2 Left-Hand-Side EXPreSSIONS ..o ettt ettt e e e s et b et e e e e e s annbereeeeeeeaannnes 125
N R o 0T o 1T A AN o o 13T] = OSSP PP POUPPPPRRPIN: 126
N N oI U= N @ T 01T - o] S 127
11.2.3 FUNCHION CAIIS ..ottt oottt e oo e e et e et e e e e e s a bbbt e e e e e e e e asbe et e e e e e eannbbbeeeaeeaannnnes 128
11.2.4 The sup@r KEYWOIT ...coiuiiiieiie ettt e e e e e e e et e e e e e e e saateae e e e e e e s atabeeeeeessaantaeeeeeesannnrens 129
B ST N o 10 1 1= A I = USRS 130
2 ST 1= Vo o [=To B =10 0T o] = =SSR 131
0 T =0 1Y D = d o] =] [0 1 131
11.3.1 POStfiX INCreMENT OPEIALOF ...ccoieiiiieiee et e e e er e e e e s s e e e e e s st e e e e e s s anssteaeeeeeesanntanneeeeeeannnnes 132
11.3.2 POStiX DECTEMENT OPEIALON ..eiiiiiiiieiiiiee ettt ettt et ettt e e ee e sin et e e enbbe e e e nbeeesenbeeeeanreas 132
R U o = 1V T 1T - o1 = 132
I A I g Lo PN RN T @ T =T = (o | S SO PU P OPPRPI 133
R B I oI % e @ o 1= - o) 134
B N T I g TCTR oA Y=Y B @ 01T - o | 134
11.4.4 PrefiX INCremMent OPEIatorcciiiciieieeeeeiciiiieee e e e e sssieeeeeeessssdhnnaaaeessanssseesanasathinsseseeeeessanssnseneeeesannnes 134
11.4.5 Prefix DeCremMent OPEIatorccccuiieieeeeiiiiiieeeeeeesssuieeeseessfineneereeeeesssssseeeseesasssstbneeeesssnssseseeeeeessnnnns 135
11.4.6 UNAIY 4 OPEIALOL ..eeeiieiiiiiiiiiieeeieii et e e e st e e e s s e sfeaaaast et eeesasannnseeeeeseas s anne et be e s nn e eeeesesnnrees 135
R O o= 1 VA @ o = = | o | R S 135
11.4.8 BitwWiSe NOT OPEIrAtOr (™)ureeeeeiiiiiiirereeesiiiiiureeeeesssdonsnseeesesssatsseeseessiasssseessesssassssseseesasansstbuseeeesssnnnns 135
11.4.9 Logical NOT OPErator (1)uuuiieeiiiiiiiieieeeeiiiiiieeeienaaaenneeeeeesssisssssssienatinneteeeeeessassteeeeessssasbesseseeessansnes 136
115 MUItiPlICAtiVE OPEIALOIS .. uuiiiiiiiiiiiiiiiieeeeeiiitireeeeeessasinsbareeeesesesdanaaaaeesaassseeseeessassstseeeasassanssnreneseesannnns 136
TS AN o] o] VAT g Lo TR TSI @ 1= = Lo 1 USRS 136
ST N oY o] VAT g Lo IR0 a1c I A @] o 1=] = Lo 1 G USRS 137
ST AN o] o N4 T g Lo IR a=TE R @] 011 = Lo (USRS 137
3 S I Vo o [YL @ o T=T = o T PP 138
11.6.1 The AdditioN OPEIALOr () .eeeeeiiiiiiieiieeeieniresieasessa s iineeceeeeeasnreesnaeesaianseseeeeeessaassbeeeaaesssannrnneeeaeessansnes 138
11.6.2 The Subtraction OPEIratOr (=) «ooiceeeeiiieeaiieiieeieeaa sisreseee s i eeeeeaesaaaabebeeeeaaeaaasnbreeaeaessaanrsseeeaeesaansnes 139
11.6.3 Applying the Additive Operators to NUMDErs ... e 139
11.7 BitWisSe Shift O POl al Or S it iiiitii e etk i e ettt e e e e et ettt e e e e e s bbbt e e e e e e e ansbe e e e e e e e e anbbbeeeaeeeaannes 139
11.7.1 The Left SNift OPEratOr (€<) e it e i iieeeeiiitetetsteeeeestteeesaeteeesatteeesasteeeaasreeeaasteeesasreessssreeessnsseeessnsees 140
11.7.2 The Signed Right Shift OPerator (3>) ...cc.uiiiiibieree et see e e e e s e e e e e srbeeessnsaeas 140
11.7.3 The Unsigned Right Shift Operator (>>>) ..ot 140
11.8 REIAIONAI OPBIALOTS ...eeiii it idhiiiitieeiaieteie e e ettt th e e e ettt e e e e e s s s bebe et aeessaasbeeeeeesssnnsbeeeeaaesaanbeseeeaeeans 141
11.8.1 RUNTIME SEMANTICS Liteuuiiieiiteiiiutiiiaaeeeeeseeess s s iiismeeseeeessstannaseeesssessstannaeseeesessssstannaseeesssessstanaaaseeeesesennes 142
11.9 Lo [T 11T @] o] = Lo = PP PRRP T UUTUPPRR 144
11.9.1 RUNTIME SEBMANTICS L.uiiiieiiieiiiiiiiiiiiieeeee e ettt ie e e e e ee et et eea b aaseeesseesss bt aeseeeseesssstanaasaeesessssstannasaaeeeessnnts 145
11.10 BiNAry BitWiS@ OP EIatOrS ciiu..iiiiueiieiiiieeeiiiieeasiteeesiteeesasteeesstteeesasteeeaasteeeaasteeesansbeeeanstaeeeansseeesansees 147
I I A =1 o =T VA o Yo [o= T @ o =T = 1o = PSPPSR 148
11.12 ConditioNal OPErAtOr (2 &) tiiiieeeiiieieeiiiieeiiieeesstere s reeesstbeeesssteeesansbeeesasteeeessbeeesanbaeeesnsbeeesanses 149
11.13 ASSIGNMENT OPEIATOISeeeiiiee ittt ettt e e e e e e e et et et e e e e s e abeeee e e e e e e abbbeeeeeesaaasbeeeeeeeeannnrees 150
S = LTS T=T g =V o= PSPPSR 150
RUNEIME SEMANTICS ...eiiiiiiiie ittt e e sttt e e sttt e e sttt e e e sate e e e aatt e e e s bt et e e sasbeeesaseeeeesnsbeeesnbeeeennnteeesn 151
11.13.1 DeStruCtUring ASSIGNIMENTccoiiiiiiiiiee e ittt et e e e e et r e e e s e st e e e e e e s satetaeeeeeeessssbaareaeessanstnsneeeeesaannnes 151
1114 COMMA OPEFALON A ;) teeeeiiteeieiiiiit ittt ettt e et e sttt e e sttt e s sttt e e e nbbe e e asbeeeeanbbeeesanbaeeeannbeeesanneas 155
12 Statements and DECIAratiONScoiuiiiiiiiii e e et e e sb e nb e sneeee s 156
= LTS T = 4 =T] o PSPPSR 156
RUNEIME SEMANTICS ..eeiiiiiiiiii ittt sttt e e s bttt e e sa b e e e sttt e e e sabb e e e e abbe e e e snbteeesnnbeeesanneeeenn 156
12.1 2] T Yo QR 157
12.2 Declarations and the Variable StatemMeNnt..... ..o 160
12.2.1 Let and CONSt DECIArAtIONS ..occiiiiiiiiiie ettt ee e e st e e e e e e st e e e e e s e sssbeeeeaeessannbnneeeeeeeaannnes 160
12.2.2 Variable SEALEIMENT ...ttt e e e ettt e e e e e s nbe et e e e e e e e nbsbeeeeeessansbeeeeeeeeannneees 163
12.2.4 Destructuring Binding PAtIEINScooii ittt e et e e e e e e e snbeeeeeaeeeaannes 165
12.3 EMPLY STALEMIENT ..o bbbttt ettt s s e e e e e e e e e e ee e 170
12,4 EXPreSSION SEALEMENTuiiiiii ettt e e e e e e bbb e e et e e e e e aaabeee e e e e e e e absbeeeaaesaaaasbeeeeaaeeaannrens 170
12,5 THE L SEALEMENT...ciii ettt e e e e ettt e e e e e s ab ettt e e e e e e abbbe et e e e s e e nnbeeeeeeeeannrees 170
D2 I 1 (=T = T o] g IES] = L= 0 1= o PP 171
12.6.1 The do-While SEAlEMENT.....ooii i e e e e e e s bbb e e e e e e e e aabeee e e e e e aanbbbeeeaeeeaannes 172

v © Ecma International 2012

»ecma

12.6.2 The While STAtEMENT......u et e e e s ettt e e e e e s s a b b et e e e e e s anbbbeeeee e e s annbnees 172
12.6.3 The £OIr STALEMENT ...t e oottt e e e s e h bbb e et e e e e e aanbbe e e e e e e e anbbbaeeeeeesannbnees 173
12.6.4 The for-in and £or-o0f STAtEMENTScc.uuiiiii e 174
12.7 The continue STAEMENT ...ttt e ettt e e e e et e e e e e e eneereeeeaeeeannnenees 178
12.8 The break STAtEMENT et e e e st et e e e e e s s be et e e e e e e sannbeeeeeeeesanneeees 178
12.9 The return STALEMENTot e e e e e s et e e e e e e s teeteeaeeeeannnraeeeeeesannnenees 179
12,00 The With SEAEMENT e e e e st e e e e e s s et ee e e e e e s e sssbaeeeeaeessansneeeeeeeesannnrnees 179
2 R I g o= i G o o S = = 0 = RS 180
2 I I 1 1Y 1T S = L= 0 =T 1 PSSR 184
12.13 The throw STAatEMENT... ... e e e e e e e s ssneeeeeee e s dia bt eeeeeeeeenneeeeeeeesennnenees 185
2 R I g oI ot oS - L= 0= S 186
12.15 The debugger STAtEMENT......ccii e e e e e e s e an e e e e e e e sttt e e e e e s sntaaaeeeeeesennneeees 188
13 FUNCLIONS AN GENEIALOTS ...uvviiiiiiiee it ciiee ettt et e e afenabbe e asbetie e bee e e e nnbe e e e snbeeeeennbeeeennees 188
13,1 FUNCLION DEfiNMITIONSueiiiiiiiiiiiieii e e o e ab e e s e s a e bt e e st e e s nnnaeeesnneeeas 188
13.2 Arrow FUNCLION DEfiNItIONS ..oooiviiiiiiiiiiiiiie e s s et e e ntae e s snneeees 194
R 20C T |V =1 d o To Yo I = 1oV 10 1 S 197
2 A 1= T o 1= = Lo 1= o T 10 1 SRR 200
R 28 T O - TS 0T 1 114 o o U SRS 201
13.6 Creating Function Objects and CONSIIUCTOIS ..tiiiriiiiuieieiiiieee s idetie ittt 205
13.7 Tail POSITION CaAIIS ..eeiiiiiiiiiiiiiei et i e et e e et am ettt e e e e e santbe e e e e e e s sntateeeeeeesnnnneeees 206
14 Y oa g1 o] £3=Ta Yo [N 1Y/ o Yo [U1 = PR UERT R 207
I S Tod T o | AT PP PP PR 207
14.1.1 Directive Prologues and the Use STHCEDITECLIVEc...iiiiiitiue i siee e sieee e 209
I |V o To LU] S T PP PPRT PP 210
15 Standard Built-in ECMASCIIPt ODJECTS .iu..eieiie it Bt ee e e e 210
70 R I o L= €1 oY o -1 I @ o =T o T RS 211
15.1.1 Value Properties of the Global ODbJECT ..o i e e e 211
15.1.2 Function Properties of the Global ObjJeCt ... e 212
15.1.3 URIHandling FUNCHON ProPEITIES........c.uiiiiieee i ectieee ettt e s e e e e e st ee e e e e s s e e e e e e s nnnnnees 214
15.1.4 Constructor Properties of the Global ODJECT ..i......eiiiiiiiiiii s 219
15.1.5 Other Properties of the Global ODJECt ... 220
T © 1 o][d @] =T RS S 220
15.2.1 The Object Constructor Called @s @ FUNCHION..............ccuuiiiiiiiiiiiiiie s 220
15.2.2 THe ODjJECT CONSIIUCTOI teeiutiiiiiitiiee ittt ettt ettt et e sb et e e s b e e e s ab et e e aab b e e e s annee e e snneeees 221
15.2.3 Properties of the ODJECT CONSTIUCTONuuiiiiiiiii it 221
15.2.4 Properties of the Object Prototype ODJECTooo i s 224
15.2.5 Properties Of ODJECT INSTANCESeiiiiiiiiiiiiiie ittt e s s 226
15.3 © FUNCHION OB JOCTS Lottt ittt ettt e ettt e e e e e e bttt e e e e e s e abbe e et e e e e e aanbbeeeeaeeesanbbbbeeaeeeaannenees 226
15.3.1 The Function Constructor Called as @ FUNCLIONcccviiiiiiie i 226
15.3.2 The FUNCLION CONSIIUCTON ...eiiiiiiiiieiiiiee ettt et et e ettt e st e e sste e e e sbb e e e anteeeesnseeeesannaeeesnneeeas 227
15.3.3 Properties of the FUNCHON CONSIIUCTONiiiiiiiiiiiiii et 228
15.3.4 Properties of the FUuNCtion Prototype ODJECTc.uviiiiieii i e 228
15.3.5 Properties of FUNCTION INSTANCESccoiiuiiiiiie e e e e e e e e e e e s e e e e e e e nnnnnees 230
R N 8- 1A ©] oo £ PSPPI 230
15.4.1 The Array Constructor Called as @ FUNCLIONccuiiiiiiiiiiiie e 231
ST N Lo = YA O o] o] {1 o (o] S PP RTUR 231
15.4.3 Properties Of the Array CONSIIUCTOTcuuiii it 232
15.4.4 Properties of the Array Prototype ODJECTueiiiiiiiiii s 233
15.4.5 Properties Of Array INSTANCEScoiiuiiiiiiiie ettt e nn e e e snneeas 252
15.4.6 Array [terator ODJECT STIUCTUIEciiuiiiiiii ittt e e snn e snneees 252
T I Y 1 [Yo [@ o] =T ox £ PP PRRPPO 254
15.5.1 The String Constructor Called as a FUNCLION...........ooii e 254
15.5.2 The STHNQG CONSIIUCTON ...ueiiiiiiiiiiiit ittt e ettt e e e ettt e e e e e s e s b bbe et e e e e e anbbeeeeae e e aabbbneeeeeesannenees 254
15.5.3 Properties of the String CONSIIUCTONuuiiiiiiiie e 254
15.5.4 Properties of the String Prototype ODJECT ... e 256
15.5.5 Properties Of SIriNG INSTANCESuuiiii i e e e e e s e e e e s e st re e e e e e e s e nanenees 268
T S = Yo Yo 1= Y= U I @ Lo =T o RS 268

© Ecma International 2012 V

»ecma

15.6.1 The Boolean Constructor Called as @ FUNCLIONciiiiiiiiiiiiiie e 268
15.6.2 The BOOIEAN CONSIIUCTON ...uviiiiiiiieeiiiiie ettt ettt e sttt e e e st e e s sbe e e e anbbe e e s nbe e e e ensbeeesnneeas 268
15.6.3 Properties of the BOolean CONSIIUCTONuuiiiii i ee e s ster e e e et e e e e e s s s e e e e e e e e nnneees 269
15.6.4 Properties of the Boolean Prototype ObjJEC........ocuiiiiiii i 269
15.6.5 Properties 0f BOOIEAN INSTANCESiiiiiiiiiiiiie et e e s s e e e e e s et r e e e e e s snteaeeeaeeeannnes 270
TR A V1012 01 o X=T @ o =T £ SRS 270
15.7.1 The Number Constructor Called as @ FUNCLIONooiiiiiiiiiiecc e e e e e e 270
15.7.2 The NUMDEI CONSIIUCTON ..uiiiiiiiiiiiiiii e e et ee e e e st ee e e e e e st e e e e e e s ants e eaeeesanssteneeaeessansnneeeeeeeaannne 270
15.7.3 Properties of the NUMBDer CONSTIUCTONccoiiiiiiiiiii e 270
15.7.4 Properties of the Number Prototype ODJECT ... 272
15.7.5 Properties of NUMDEr INSTANCEScuviiiiiiiieiiie e e s e 276
15.8 The Math ODJECT.......ooiiiiie e st e e 276
15.8.1 Value Properties of the Math ODJeCt...........eeiiiiiii e 277
15.8.2 Function Properties of the Math ODJECT ... e i 278
ST I B T (= @] o] <o £ OO PT TP PUPPTO: 285
15.9.1 Overview of Date Objects and Definitions of Abstract Operations.........ccccciiuevereeeeiiciiieeeeeeseiinnns 285
15.9.2 The Date Constructor Called as a FUNCHION.........ooouiier it s 290
15.9.3 The Date CONSIIUCTON ..uuiiiiiiiii ittt seee et ediaba e e e st eeesbteeesnseeeeesnseeeessanneaShn s eeeesneeeeesnnneeas 290
15.9.4 Properties 0f the Date CONSIIUCTOLiciiiiiiiiiiie s adhrieeee e e e s ccree e e e e e setereeeee e e s s snteeeesasasathaereeeeeesannnnes 291
15.9.5 Properties of the Date Prototype ODJECTuuviie il ee e e e e e e e e e e annnas s e e e e e e nnneees 293
15.9.6 Properties Of DAte INSTANCEScc.vviiiiieeiiciiieee et asathr e e e e e s seeeesfanaaassteteeeeeessssssteneeeeessansrneeeeeeesannsnes 301
15.10 RegExp (Regular EXPression) ODJECTESuuiiieiiiiiieietie e eeeifeneiane s esiiieeeaessssieneeeeesssssssneeeeeessansnsens 301
ST 0 I = 11 =T PSP PPPPPPRP 301
15.20.2 PAEIN SEMANTICS .oieieiiiiiiiiiiie e ettt e e e ettt e e e e e e ettt e e et asaaaan e e et e e e e e amnteseeaaeeeaanssaeeeeaeeaaansteeeaeeesannneees 303
15.10.3 The RegExp Constructor Called as@ FUNCLIONcociiiiiiiie e 315
15.10.4 The REGEXDP CONSTIUCTON ...uviiiiiiiii ittt eaissee i et e st e sise e S e et e e esbe e e e enbbe e e e st neeeanbeeeeanneas 315
15.10.5 Properties of the REGEXP CONSIIUCTONiiii i i e et e s Tt e e e et e e e e e s e anbe e e e e e e e e nneees 316
15.10.6 Properties of the RegEXp Prototype OBJECT ittt 316
15.10.7 Properties of REGEXP INSTANCESooiiiiiiiiiiiieie it s ettt e e e ettt e e e e e e snbeb e e e e e e e annnes 318
00 I R Y oY G @] oY= o] £ USRS 319
15.11.1 The Error Constructor Called @s a FUNCHION.............oiiiiiiiiiiiee e 319
15.11.2 The Error CONSIIUCTOTcccitiiiiiiith e e iieiee et tee s ahe e e sttt e e sste e e e sbae e e e sabbeeessbeeeesnbeeeesasaeeeesnseeeesnneeeesannneas 319
15.11.3 Properties 0f the EFror CONSIIUCTONc.uvuiieeesiiiiiiieiee e e et e e e e e e st eee e e e e s st e e e e e s s s nnntaneeeeesennnrens 319
15.11.4 Properties ofthe Error Prototype ODJECTiiiei it e e e e e e e e e 320
15.11.5 Properties Of EFFOF INSTANCESuuuieee i e eiees et e e e e e st e e e e e s st ee e e e e e s ssssteeeeeeessantnneeeeeesannnne 320
15.11.6 Native Error Types Usedin This Standardccoouiiiiiiiieiiiii e 320
15.11.7 NatiVEELFOL ODJECT STFUCTUT @eeiiiiiiiee ettt ettt e e s bt e e e sabb e e e e sneeas 321
LT I N g =T LT @ |\ @ o = PSPPI 322
15.12.1 THe JSON GFAMMIAuueeiieeeiaeeieeeeaeeaaaataeeeeaeeaaateteeeaaesaaasteeeeaaeesaanteseeaaeeaaanssseeeeaessaassreeeeeesssnnnsens 323
15.12.2 JSON.PArse (XL [, FEVIVEIT) iueriiiiiiii ittt s b e e 324
15.12.3 JSON.stringify (value [, replaCer [, SPACE] 1) ittt 326
15.13 BINArY Data O CTS i iiiiiiiiiiie ettt ettt ettt h e e et e e anne s 330
15.13.1 The BinaryData MOGUIE..........cooiiiiiiiiiie ettt s bt e e e e e e e 330
15.13.2 The BinaryData. TYPE ODJECT........uii ittt a e e st e e s st e e e e st e e e aneeas 330
15.13.3 The BinaryData. Array Ty Pe ODJECTuiiiiiiiie ittt et e e ebbe e e e nneeas 330
15.13.4 The BinaryData.StruCtTYPE ODJECT ...cciiiiiiiiiii e e e s s ee e e e e e e st re e e e e e e e nnnnes 330
15.13.5 ArrayBuUffer ODJECTSuviiiiiieiiiiiiic e e e e s e e e e e s st e e e e e e s et a e e e e e e e aannrareeeeeeannnrees 330
15.13.6 TypedArray ODJECT SIFUCTUIESuviiiiii e e s e e e e e st e e e e e e s e st e e e e e e e e s sntnrneeeeeeaannes 334
ST Ty A T = NV A=Y @] oY= o3 £ S 342
T Y =T o I @ o] [T o £ PSPPSR 346
15.14.1 Abstract Operations FOr Map ODJECESuii i 346
15.14.2 The Map Constructor Called as @ FUNCLIONoociiiiiiiii e 347
15.14.3 THE MAP CONSTIUCTONueiiiitiiee ittt ettt b et e b et e s bb et e e sabb e e e sabb et e e aabb e e e sabbe e e s annneas 347
15.14.4 Properties 0f the Map CONSIIUCTONiiiiiiiii i eb e e 347
15.14.5 Properties of the Map Prototype ODjJECT.......coui it 348
15.14.6 Properties Of Map INSTANCESoouuiiiiieii ettt ettt e e ettt e e e e e s asbe e e e e e e e s annbebeeeaaeeaannnes 351
15.14.7 Map Iterator ODJECT SIUCTUIueiiiiiiee ittt e ettt a e e e e st b e e e e e e e s anbbbeeeaaeeaannnes 351
15.15 WEBKMAP OBJECES ...eeeiiiiiiiiiiiiiii ettt ettt e e ettt e e e e e e s b et e e e e e e e s nbbbe e e e e e e e s s nbeeeeaeeesannbnbeeeaeeaaannnns 352
15.15.1 Abstract Operations For WeakMap ODjJECTEScccooiiiiiiiiiiiiert ettt e e e e e e e e e e e e e e aaaaaaaa s 353

VI © Ecma International 2012

secmd

15.15.2 The WeakMap Constructor Called as @ FUNCHIONooiiiiiiiiiiiiiiiice e 353
15.15.3 The WEaKMaP CONSIIUCTON ...ciiiiiiiiiiie e ettt e e e s e sttt e e e e e st e e e e e e st e e e e e e e e santbeeeeaeessntnraeeeeeesansnrnens 354
15.15.4 Properties of the WeakMap CONSIIUCTONuiiiiiiiiiiiieie et ee e seee e e e e s s e e e e e e snnrae e e e e e s e nnnenees 354
15.15.5 Properties of the WeakMap Prototype ODjJECT........uuiiiii i e e 354
15.15.6 Properties 0f WeakMap INSTANCEScccviiiiie et e sttt e s e e e e e st ee e e e e s snnaaae e e e e e s nnnenees 356
BT IR Y= A @ o] = o £ RS 356
15.16.1 Abstract Operations FOr SEt ODJECTSuuiiiiiiiii i 356
15.16.2 The Set Constructor Called as a FUNCLION ...t 357
15.16.3 The St CONSIIUCTON ..o e e e e e e e e e e e e e e eeeeeeaeaeaeaeaaaaaeaaaeaaaaaaaeaeaas 357
15.16.4 Properties Of the Set CONSTIUCTONiiiiiiiiiiiiiie e 357
15.16.5 Properties of the Set Prototype ODJECT ... e 358
15.16.6 Properties Of SEt INSTANCESuiiiiiiiieii et fb ettt es 360
15.16.7 Set Iterator ODJECT STFUCTUIEuuiiiiie ettt e e e e e b bt e e e e e ettt e e e e e sbb b e e e e e e e s e nanenees 360
15.17 The RefleCt MOAUIE ...t sttt e e Bttt e e e e e e e e e e e s eneees 361
15.17.1 Exported Function Properties Reflecting the Essentional Internal Methodsccccccveveeen. 361
ST I o 0 D1V @ o] =T o £ RS 364
16 T 0 O S UTUTPTPPPPPPTPP 364
Annex A (informative) Grammar SUMMATYeeeoiiiiuieesiierainiunnieeeeesiisinreeeeessasssseeseessssnssnsssstaessnsssseeeeeas 367
A.l [o= T € =011 = | PR SRR 367
A.2 N TU]] oX=T g @] 1YY =T Yo o TP SPPP SR 373
A.3 D d 0TI 1T o] 1 PR PRP T R 374
A4] = 1= 0 1=] PPN 378
A.5 FUNCHIONS ANO SCITPEIS .ttt a bR ettt e e e kbt e e e st et e e aabb e e e e abb e e e e anbeeeeenbeeeenees 380
A.6 Universal Resource Identifier CharaCter ClasSSesSuuiiiie i 381
A7 REGUIAT EXPIESSIONS ..ciitiiiiiiitiee et e st e eassse ittt e e ettt e e s ambe e e bbbt e e e ket e e anb e e e eb b e e e e enbeeeeanbeeeenees 381
A.8 0011] SRR 383
A.8.1 JSON LeXIiCaAl GraMIMIArccieiiiiiiiiie s iithetauitaeareessssssssss s SEaae e eeeeesesstaeeeeeeteeataaaaaaaaaaaeaeaaeaeaaaaaeaaaananas 383
A.8.2 JSON SyNtaCtiC GramMMIAIcuieiieeiiiiiieetiee e e ifoeeaaeeesivaneesss et i eeeeeaeesaastbeeeeaesssanbbseeaaesesanreseeaaens 384
Annex B (normative) Additional ECMAScript Features for Web Browserscccoccveeeiiieeeiiieeesiiieeenns 387
B.1 F o o T AT oT g = LIRSV] - b G oo S SRS 387
2 00 I A 10T 1= o I =T = L SO R 387
2 0 S g Lo L (=T = | T SRR 387
B.2 P Yo o [ToT g = U ol o] o 1=] =T S SRR 388
B.2.1 Additional Properties of the Global OBJECt i . .eeiiii e 388
B.2.2 Additional Properties of the String.prototype ODJECtcccevi i 389
B.2.3 Additional Properties of the Date.prototype ODJecCtccvvviiieiiiii e 392
B.3 Other AddItIONAl FEATUIES . ii...ocoei et a e e e e e eeeeeeeeeeeeeeeees 393
(2300 T Rt 1 o (= o] o o TR ¢ 151 =1U o Lo o] o] o<1 i Y2 PR 393
Annex C (informative) The Strict Mode 0f ECMASCHIIPT ...ooiiiiiiiiiiii ettt 395
Annex D (informative) Corrections and Clarifications with Possible Compatibility Impact 397
T o LT oY I SRS UP PP 397
TN o 1 T Yo = PR UPRUURRI 397
IN 5™ EQItION 5 .ttt sttt 398
Annex E (informative) Additions and Changes that Introduce Incompatibilities with Prior

=0 [(0] ¢ 1< T PP PTPP PRI 401
IR TNl =L [T oY s VOO OO SORO OO PR 401
IR gLl =L [1T oY s VOO OO OSSO OO PRPRRO 401
Annex F (informative) Static Semantic Rule Cross ReferenCe.......cccocuveieiiiiii i 405
o =T o N ==V o P 407
8.3.10 [[Enumerate]] (includePrototype, onlyEnuUmMerable). ... 408
10.5.3 Function Declaration INStANTIAtioNcoooiiiiiii e ae e 409

© Ecma International 2012 Vil

VI

© Ecma International 2012

secma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption<under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned.with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has.achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of. ECMAScript. Although that work was not
completed and not published?! as the fourth edition of ECMASeript, it-informs continuing evolution of the
language. The fifth edition of ' ECMAScript (published as ECMA-262 5" edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective’ creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standard ISO/IEC 16262:2011.

This present sixth edition of the Standard.........

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number “ECMA-262 Edition 4” was reserved but not
used in the Ecma publication process. Therefore “ECMA-262 Edition 4” as an Ecma International publication does not
exist.

© Ecma International 2012 IX

»ecma

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

X © Ecma International 2012

secma

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support<all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not otherwise
specified, it is presumed to be the Unicode set, collection 10646:

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript<is permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that makes use of the “future reserved words” listed in 7.6.1.2 of this specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages — C, including amendment 1 and technical corrigenda 1 and 2
ISO/IEC 10646:2003: Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda; or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or successor.

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

© Ecma International 2012 1

secma

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers. ECMAScript was originally designed to be used as a scripting language, but has
become widely used as a general purpose programming language.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript is now used both as a general propose programming language and to provide core scripting
capabilities for a variety of host environments. Therefore the core language is specified in this document apart
from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other.programming languages; in particular
Java™, Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java™ Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227-241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. |IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and.computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different-host environment for server-side computation including objects representing
requests, clients, and.files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for.a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be used—for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a function is a callable object. A function that is
associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object, the Object object, the Function object, the Array object, the String

2 © Ecma International 2012

»ecma

object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the
JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a property named “prototype” that is used to implement prototype-based inheritance and shared
properties. Objects are created by using constructors in new _expressions; for example, new
Date (2009,11) creates a new Date object. Invoking a constructor without using new has consequences that
depend on the constructor. For example, Date () produces a string representation of the current date and
time rather than an object.

Every object created by a constructor has an implicit reference (called the object’s prototype) to the value of
its constructor’s “prototype” property. Furthermore, a prototype may have a non-null implicit reference to its
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object in the prototype chain that contains a property
of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is examined next; and so on.

A A ... >
""""" CE implicit prototype link
prokotype R
Pl
P2 CFP1 explicit prototype property

--------- Cfl mmmm Cf2 Cfs Cf4 Cf5
gl gl gl gl gl
q2 g2 g2 a2 a2

Figure 1 — Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried by

classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, while structure, behaviour, and state are all inherited.

© Ecma International 2012 3

secma

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfi, cfy,
cfs, cfs, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfs's prototype is CF,. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFy, cfy, cfa, cfs, cfs, or cfs. The property named CFP1 in CFp
is shared by cfy, cf,, cfs, cfs, and cfs (but not by CF), as are any properties found in CFy’s implicit prototype
chain that are not named g1, g2, or CFP1. Notice that there is no implicit prototype link between CF and CF;.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not required to name or assign values to all or.any of the constructed object’s
properties. In the above diagram, one could add a new shared propertyfor cfi, cf,, cfs, cfs, and cfs by
assigning a new value to the property in CFy.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as.the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicity made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions_that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, stricttmode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

43.1

type

set of data values as defined in Clause 8 of this specification

4.3.2

primitive value

member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4 © Ecma International 2012

»ecma

4.3.4
constructor
function object that creates and initialises objects

NOTE The value of a constructor's “prototype” property is a prototype object that is used to implement inheritance
and shared properties.

4.35
prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor’'s “prototype” property
for the purpose of resolving property references. The constructor's “prototype” property can be referenced by the
program expression constructor.prototype, and properties added to an object’s. prototype are shared, through
inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object. create built-in function.

4.3.6

ordinary object

object that has the default behaviour for the internal methods that must be supported by all. ECMAScript
objects.

4.3.7

exotic object

object that has some alternative behaviour for-one or more of the internal methods that must be supported by
all ECMAScript objects.

NOTE Any object that is not an ordinary object is an exotic object.

4.3.8
standard object
object whose semantics are defined by this specification.

4.3.9

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

4.3.11
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14

Boolean value
member of the Boolean type

© Ecma International 2012 5

secma

NOTE There are only two Boolean values, true and false.

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal data property whose value.is the Boolean value. A Boolean
object can be coerced to a Boolean value.

4.3.17
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

4.3.18
String type
set of all possible String values

4.3.19
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as
an argument. The resulting object has an internal data property whose value is the String value. A String object can be
coerced to a String value by calling the String constructor as a function (15.5.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.21

Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and
negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value
as an argument. The resulting object has an internal data property whose value is the Number value. A Number object can
be coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24

NaN
number value that is a IEEE 754 “Not-a-Number” value

6 © Ecma International 2012

»ecma

4.3.25
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves
when invoked. A function’s code may or may not be written in ECMAScript.

4.3.26
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp. An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.27

property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.28
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.29
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods.

4.3.30
attribute
internal value that defines some characteristic of a property

4.3.31

own property

property that is directly contained by its object
4.3.32

inherited property

property of an object that is‘not an own property but is a property (either own or inherited) of the object’s
prototype

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its

right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with
zero or more terminal symbols.

© Ecma International 2012 7

secma

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharacter defined in Clause 6. It defines a set of
productions, starting from the goal symbol InputElementDiv or InputElementRegExp, that describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,
also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).
Simple white space and single-line comments are discarded and do not appear in the stream of input
elements for the syntactic grammar. A MultiLineComment (that is; a comment of the form “/*...* /” regardless
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineComment contains one or more line terminators, then it is replaced by a single line terminator, which
becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern,
that describe how sequences of characters are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having<to do with numeric literals and has as its terminal symbols SourceCharacter. This
grammar appears in 9:3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.
5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Script, that describe how sequences of tokens can form syntactically correct independent
components of an ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript script, it is first converted to a stream of input
elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a
single application of the syntactic grammar. The script is syntactically in error if the tokens in the stream of
input elements cannot be parsed as a single instance of the goal nonterminal Script, with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript scripts. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
“awkward” places.

8 © Ecma International 2012

»ecma

In certain cases in order to avoid ambiguities the syntactic grammar uses generalize productions that permit
token sequences that are not valid ECMAScript scriptss. For example, this technique is used in with object
literals and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided
that further restricts the acceptable token sequences. In certain contexts, when explicitly specific, the input
elements corresponding to such a production are parsed again using a goal symbol of a supplemental
grammar. The script is syntactically in error if the tokens in the stream of input elements cannot be parsed as
a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScriptobjects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON lexical grammar are distinguished by having two colons “::” as separating
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The
JSON syntactic grammar is similar to parts of the ECMAScript syntactic'grammar. Productions of the JSON

syntactic grammar are distinguished by using one colon “;” as separating punctuation.
5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a script exactly as written. All terminal symbol characters specified in this way are to be understood as the
appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from other
Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production”) is
introduced by the name of the nonterminal being defined followed by one or more colons. (The number of
colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token,
followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of
Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by
a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined
in terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpression. Such recursive definitions of
nonterminals are common.

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional symbol.

The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

© Ecma International 2012 9

secma

VariableDeclaration :
Identifier Initialiserqpt

is a convenient abbreviation for:

VariableDeclaration :
Identifier
Identifier Initialiser

and that:

IterationStatement :
for (ExpressionNolngy: ; Expressiongy: ; Expressiongy) Statement

is a convenient abbreviation for:

IterationStatement :
for (; Expressiong: ; Expressionoy,) Statement
for (ExpressionNoln ; Expressiong: ; Expressiono:) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ; Expressiongy:) Statement
for (; Expression ; EXxpressionept). Statement
for (ExpressionNoln ; ; Expressiong) Statement
for (ExpressionNoln ; Expression. ; Expressiong,) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ;) Statement
for (; . Expression) /Statement
for (; Expression ;) Statement
for (; Expression ; Expression) Statement
for (ExpressionNoln ; ;) Statement
for (ExpressionNoln.; ; Expression) Statement
for (ExpressionNoln ; Expression ;) Statement
for (ExpressionNoln ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.
When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for

ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

10 © Ecma International 2012

»ecma

NonZeroDigit ::

wWoJdJonUld WN R

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-
hand side contains no terminals or nonterminals.

If the phrase “[lookahead ¢ set]” appears in the right-hand side of a production, it indicates that the production
may not be used if the immediately following input token is a member of the given set. The set can be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead ¢ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the
input stream at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw token
and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the script.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the
syntactic grammar context. If a phrase of the form “[Lexical goal LexicalGoalSymbol]” appears on the right-hand-
side of a syntactic production then the next token must be lexically recognized using the indicated goal symbol.
In the absence of such a phrase the default lexical goal symbol is used.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

© Ecma International 2012 11

secma

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
“but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode character

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique.<In practice, there may be more efficient algorithms
available to implement a given feature.

Algorithms may be explicitly parameterized, in which case the names and usage of the parameters must be
provided as part of the algorithm’s definition. In order to facilitate their use in multiple parts of this specification,
some algorithms, called abstract operations, are named and written in parameterised functional form so that
they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has
multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is
associated with a grammar production, it may reference the terminal and non-terminal symbols of the
production alternative as if they were parameters of the algorithm. When used in this manner, non-terminal
symbols refer to the actual alternative definition that is matched when parsing the script souce code.

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every
algorithm that is might be applied to that production’s left-hand side nonterminal. The implicit simply reapplies
the same algorithm name with the same parameters, if any, to the chain production’s sole right-hand side
nonterminal and-then result. For example, assume there is a production

Block :
{ StatementList }

but there is no evalution algorithm that is explicitly specified for that production. If in some algorithm there is a
statement of the form: “Return the result of evaluating Block” it is implicit that the algorithm has an evalution
algorithm of the form:

Runtime Semantics: Evaluation

Block : { StatementList }

1. Return the result of evaluating StatementList
For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Top-level step
a. Substep.

12 © Ecma International 2012

»ecma

b. Substep
i Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a Subsubsubsubstep

A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the substeps
are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is
the negation of the preceding “if’ predicate step at the same level.

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation.< They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if it is +0 or —0 then the corresponding mathematical value is simply 0.

The mathematical function abs(x) yields the absolute value of x, which'is —x.if x is negative (less than zero) and
otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and -1 if x'is negative. The sign function is not used in
this standard for cases when x is-zero.

The mathematical function-min(xi, xz, ..., Xn) Yields the mathematically smallest of x; through x,.

The notation “x moduloy” (y must be finite and nonzero) computes a value k of the same sign as y (or zero)
such that abs(k) < abs(y) and x-k = q x'y for some integer.q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.
NOTE floor(x) = x—(x modulo 1).

If an algorithm is defined to “throw an exception”, execution of the algorithm is terminated and no result is
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals
with the exception, using terminology such as “If an exception was thrown...”. Once such an algorithm step
has been encountered the exception is no longer considered to have occurred.

5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript script that may be evaluated. In some situations additional rules
are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements.
Such rules are always associated with a production of a grammar and are called the static semantics of the
production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic

Rules are associated with grammar productions and a production that has multiple alternative definitions will
typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

© Ecma International 2012 13

secma

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition
for a static semantic rule named Contains which takes an argument named symbol whose value is a terminal or
non-terminal of the grammar that includes the associated production. The default definition of Contains is:

1. For each terminal and non-terminal grammar symbol, sym, in the definition of this production do
a. If sym is the same grammar symbol as symbol, return true.
b. If sym is a non-terminal, then
i Let contained be the result of Contains for sym with argument symbol.
il If contained is true, return true.
2. Return false.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see
clause 16) that are associate with specific grammar productions. Evaluation of most early error rules are not
explicitly invoked within the algorithms of this specification. A comforming implementation must, prior to the
first evaluation of a Script, validate all of the early error rules of the productions used to parse that Script. If any
of the early error rules are violated the Script is invalid and can not be evaluated.

6 Source Text

Syntax

SourceCharacter ::
any Unicode character

The ECMAScript code is expressed using Unicode, version 5.1 or later. ECMAScript source text is a
sequence of Unicode characters. The phrase ‘Unicode character” refers to the abstract linguistic or
typographical unit represented by a single Unicode scalar value. The actual encodings used to store and
interchange ECMAScript source text.is not relevant to this specification. Any well-defined encoding such as
UTF-32 or UTF-16 may be used. Source text might even be externally represented using a non-Unicode
character encoding. Regardless of the external source text encoding, a conforming ECMAScript
implementation processes the source text as if it was an equivalent sequence of SourceCharacter values. Each
SourceCharacter being an abstract Unicode character with a corresponding Unicode scalar value. Conforming
ECMAScript implementations are not.required-to.perform any normalisation of text, or behave as though they
were performing normalisation of text.

The phrase “code point” refers to such a Unicode scalar value. “Unicode character” only refers to entities
represented by single Unicode scalar values: the components of a combining character sequence are still
individual “Unicode characters,” even though a user might think of the whole sequence as a single character.

In string literals, regular expression literals,template literals and identifiers, any Unicode characters may also
be expressed as a Unicode escape sequence that explicitly express a code point's numeric value. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within other contexts, such
an escape sequence contextually contributes one Unicode character.

NOTE ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \u000a, for example, occurs within a single-line comment, it is interpreted
as a line terminator (Unicode character 000A is line feed) and therefore the next Unicode character is not part of the
comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java program, it is likewise
interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of \u0O00A to cause
a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode escape sequence
occurring within a comment is never interpreted and therefore cannot contribute to termination of the comment. Similarly, a
Unicode escape sequence occurring within a string literal in an ECMAScript program always contributes a Unicode
character to the literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

ECMAScript String values (8.4) are computational sequences of 16-bit integer values called “code units”.

ECMAScript language constructs that generate string values from SourceCharacter sequences use UTF-16
encoding to generate the code unit values.

14 © Ecma International 2012

»ecma

Static Semantics: UTF-16 Encoding
The UTF-16 Encoding of a numeric code point value, cp, is deterimined as follows:

Assert: 0 < cp < 0x10FFFF

If cp < 65535, then return cp.

Let cul be floor((cp — 65536) / 1024) + 55296. NOTE 55296 is 0xD800.
Let cu2 be ((cp — 65536) modulo 1024) + 56320. NOTE 56320 is 0xDCOO.
Return the code unit sequence consisting of cul followed by cu2.

g E

7 Lexical Conventions

The source text of an ECMAScript script is first converted into a sequence of input elements, which are tokens,
line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking the
longest possible sequence of characters as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic
grammar context that is consuming the input elements. This-requires multiple goal symbols for the lexical
grammar. The InputElementDiv goal symbol is the default goal symbol and is used in those syntactic grammar
contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExp goal symbol is used in all syntactic grammar contexts where a RegularExpressionLiteral is
permitted. The InputElementTemplateTail goal is used in syntactic grammar contexts where a TemplateLiteral
logically continues after a substitution element.

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading
RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see 7.9); in examples such as the
following:

a=>b
/hi/g.exec(c) .map (d);

where the first non-whitespace, -non-comment character after a LineTerminator is slash (/) and the syntactic context allows
division or division-assignment, no semicolon is inserted at the LineTerminator. That is, the above example is interpreted in
the same way as:

a=b / hi / g.exec(c) .map(d) ;
Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
RightBracePunctuator

InputElementRegExp ::
WhiteSpace
LineTerminator
Comment
Token
RightBracePunctuator
RegularExpressionLiteral

© Ecma International 2012 15

secmd

InputElementTemplateTail ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator
TemplateSubstitutionTail

7.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf’ in the Unicode Character
Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals, template literals, and regular expression
literals.

<ZWNJ> and <ZWJ> are format-control characters that are‘used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ>and <ZWJ> may also be used in
an identifier after the first character.

<BOM> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes
also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised-in Table 1.

Table 1 — Format-Control Character Usage

Code Point Name Formal Name Usage
U+200C Zero'width-non-joiner <ZWNJ> IdentifierPart
U+200D Zero width joiner <ZWJ> IdentifierPart
U+FEFF Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may occur within a StringLiteral, a
RegularExpressionLiteral, a Template, or a TemplateSubstitutionTail where they are considered significant
characters forming part of a literal value. They may also occur within a Comment, but cannot appear within any
other kind of token.

The ECMAScript white space characters are listed in Table 2.

Table 2 — Whitespace Characters

Code Point Name Formal Name
U+0009 Tab <TAB>
U+000B Vertical Tab <VT>
U+000C Form Feed <FF>
U+0020 Space <SP>
U+00A0 No-break space <NBSP>
U+FEFF Byte Order Mark <BOM>

Other category “Zs” Any other Unicode <USP>

16 © Ecma International 2012

secma

| “space separator”

ECMAScript implementations must recognise all of the white space characters defined in Unicode 5.1. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may
recognise white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<Sp>
<NBSP>
<BOM>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). A line terminator
cannot occur within any token except a StringLiteral, Template, or TemplateSubstitutionTail. Line terminators may
only occur within a StringLiteral token as part of a LineContinuation.

A line terminator can occur within a MultiLineComment (7.4) but cannot. occur within a SingleLineComment.

Line terminators are included in-the set of white space Characters that are matched by the \s class in regular
expressions.

The ECMAScript line terminator characters are listed in Table 3.
Table 3 — Line Terminator Characters

Code Point Name Formal Name
U+000A Line Feed <LF>
U+000D Carriage Return <CR>
U+2028 Line separator <LS>
U+2029 Paragraph separator <PS>

Only the ‘Unicode characters in Table 3 are treated as line terminators. Other new line or line breaking
Unicode characters are treated as white space but not as line terminators. The sequence <CR><LF> is
commonly used as a line terminator. It should be considered a single SourceCharacter for the purpose of
reporting line numbers.

Syntax

LineTerminator ::
<LF>
<CR>
<LS>
<pPS>

© Ecma International 2012 17

secma

LineTerminatorSequence ::
<LF>
<CR> [lookahead ¢ <LF>]
<LS>
<PS>
<CR> <LF>

7.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode character except a-LineTerminator character, and
because of the general rule that a token is always as long as possible, a single-line comment always consists
of all characters from the // marker to the end of the line. However, the LineTerminator at the end of the line is
not considered to be part of the single-line comment; it is recognised separately by.the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic

semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a. MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing by

the syntactic grammar.

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharSgpt * /

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsept
* PostAsteriskCommentCharsept

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsept
* PostAsteriskCommentCharsqpt

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or *

SingleLineComment :;
// SingleLineCommentCharsgpt

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsSqpt

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

18

© Ecma International 2012

»ecma

7.5 Tokens

Syntax

Token ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral
Template

NOTE The DivPunctuator, RegularExpressionLiteral, RightBracePunctuator, and TemplateSubstitutionTail productions
define tokens, but are not included in the Token production.

7.6 ldentifier Names and ldentifiers

IdentifierName, Identifier, and ReservedWord are tokens that are interpreted according to the Default Identifier
Syntax given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications.
ReservedWord is is an enumerated subset of IdentifierName and ldentifier is an IdentifierName that is not a
ReservedWord (see 7.6.1). The Unicode identifier grammar is based on character properties specified by the
Unicode Standard. The Unicode characters in the specified categories in version 5.1.0 of the Unicode
standard must be treated as in those categories by all conforming ECMAScript implementations. ECMAScript
implementations may recognise identifier characters defined in later editions of the Unicode Standard.

NOTE 1 This standard specifies specific character additions: The dollar sign. (U+0024) and the underscore (U+005£)
are permitted anywhere in an ldentifierName, and the characters zero width non-joiner (U+200C) and zero width joiner
(U+200D) are permitted anywhere after the first character of an IdentifierName.

Unicode escape sequences are permitted in an IdentifierName, where they contribute a single Unicode
character to the IdentifierName. The code point of the contributed character is expressed by the HexDigits of
the UnicodeEscapeSequence (see 7.8.4). The \ preceding the UnicodeEscapeSequence and the u and { }
characters, if they appear,do not contribute characters to the IdentifierName. A UnicodeEscapeSequence cannot
be used to put a character into an ldentifierName that would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequence sequence were replaced by the Unicode character it constributes, the result must
still be a valid IdentifierName that has the exact same sequence of characters as the original IdentifierName. All
interpretations of IdentifierName within this specification are based upon their actual characters regardless of
whether or not:an escape sequence was used to contribute any particular characters.

Two ldentifierName that are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on IdentifierName values).

NOTE 2 If maximal portability is @ concern, programmers should only employ the identifier characters that were defined
in Unicode 3.0.
Syntax
Identifier ::
IdentifierName but not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName ldentifierPart

IdentifierStart ::
UnicodelDStart
$

\ UnicodeEscapeSequence

© Ecma International 2012 19

secma

IdentifierPart ::
UnicodelDContinue
$

\ UnicodeEscapeSequence
<ZWNJ>
<ZWJ>

UnicodelDStart ::
any Unicode character with the Unicode property “ID_Start”.

UnicodelDContinue ::
any Unicode character with the Unicode property “ID_Continue”

The definitions of the nonterminal UnicodeEscapeSequence is given in 7.8.4
Static Semantics: StringValue
Identifier :: IdentifierName but not ReservedWord
1. Return the StringValue of IdentifierName.
IdentifierName ::
IdentifierStart

IdentifierName IdentifierPart

1. Return the String value consisting of the sequence of code units corresponding to IdentifierName. In
determining the sequence any occurrences of \ UnicodeEscapeSequence are first replaced with the code
point represented by the UnicodeEscapeSequence and and then the code points of the entire IdentifierName
are converted to code units by UTF-16 Encoding (clause 6) each code point.

7.6.1 Reserved Words
A reserved word is an ldentifierName that cannot be used as an Identifier.

Syntax

ReservedWord.::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

The ReservedWord definitions are specified as literal sequences of Unicode characters. However, any Unicode
character in a ReservedWord can also be expressed by a \ UnicodeEscapeSequence that expresses that same
Unicode character’'s. code point. Use of such escape sequences does not change the meaning of the
ReservedWord.

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiers in ECMAScript programs.

20 © Ecma International 2012

»ecma

Syntax

Keyword :: one of
break delete
case do
catch else
class export
continue finally
const for
debugger function
default if

7.6.1.2 Future Reserved Words

import this
throw
instanceof try
typeof
var
return void
while
switch with

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the

possibility of future adoption of those extensions.

Syntax

FutureReservedWord :: one of
enum

extends

The following tokens are also considered to be FutureReservedWords.when they occur within strict mode code
(see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the

occurrence of a FutureReservedWord would produce an error must also produce an equivalent error:

implements private

interface package protected

7.7 Punctuators

Syntax

Punctuator :: one of
{ () [

; ’ <
>= == 1= ===
+ = * %
<< >> >>> &

! ~ && |1
= += -= *=
>>= >>>= &= =

DivPunctuator :: one of
/ /=

RightBracePunctuator ::
}

© Ecma International 2012

public

static

yield

21

secma

7.8 Literals
7.8.1 Null Literals

Syntax

NullLiteral ::
null

7.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

7.8.3 Numeric Literals

Syntax

NumericLiteral ::
DecimalLiteral
BinarylIntegerLiteral
OctallntegerLiteral
HexIntegerLiteral

DecimallLiteral ::
DecimallntegerLiteral . DecimalDigitsop: EXxponentPartopt
. DecimalDigits ExponentPartop:
DecimallntegerLiteral ExponentPartop:

DecimallntegerLiteral ::
0

NonZeroDigit DecimalDigitSopt

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 17 8 9

ExponentPart ::
Exponentindicator Signedinteger

Exponentindicator :: one of
e E

Signedinteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

BinarylIntegerLiteral ::
0b BinaryDigit
0B BinaryDigit
BinarylIntegerLiteral BinaryDigit

22 © Ecma International 2012

»ecma

BinaryDigit :: one of
01

OctallntegerLiteral ::
0o OctalDigit
00 OctalDigit
OctallntegerLiteral OctalDigit

OctalDigit :: one of
0123 4 567

HexIntegerLiteral ::
0x HexDigits
0x HexDigits

HexDigits ::
HexDigit
HexDigits HexDigit

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b ¢ d e £f A B C D E F

The SourceCharacter immediately following a NumericLiteral must not-be an IdentifierStart or DecimalDigit.
NOTE For example:
3in

is an error and not the two input elements 3 and in.

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of

NumericLiteral to include OctallntegerLiteral as described in B.1.1.

Static Semantics: MV’s

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from theliteral; second, this mathematical value is rounded as described

below.

e The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

e TheMV of NumericLiteral :: BinarylntegerLiteral is the MV of BinarylintegerLiteral.

e The MV of NumericLiteral :: OctallntegerLiteral is the MV of OctalintegerLiteral.

e The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

e The MV of DecimalLiteral :: DecimalintegerLiteral . is the MV of DecimalintegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of DecimallntegerLiteral plus

(the MV of DecimalDigits'times 10™), where n is the number of characters in DecimalDigits.

e The MV of DecimalLiteral :: DecimallntegerLiteral . ExponentPart is the MV of DecimalintegerLiteral times

10°, where e is the MV of ExponentPart.

. The MV of DecimalLiteral :: DecimalintegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimalintegerLiteral plus (the MV of DecimalDigits times 10™)) times 10°, where n is the number of

characters in DecimalDigits and e is the MV of ExponentPart.

e The MV of DecimalLiteral :: . DecimalDigits is the MV of DecimalDigits times 10", where n is the number of

characters in DecimalDigits.

e The MV of DecimalLiteral :: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10°", where n is

the number of characters in DecimalDigits and e is the MV of ExponentPart.
e The MV of DecimalLiteral :: DecimalintegerLiteral is the MV of DecimallntegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimalintegerLiteral times 10°,

where e is the MV of ExponentPart.
e The MV of DecimalintegerLiteral :: 0 is 0.

© Ecma International 2012

23

secma

e The MV of DecimallntegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

e The MV of DecimalintegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10") plus
the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

e The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

e The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of
DecimalDigit.

e The MV of ExponentPart ::
e The MV of Signedinteger ::
e The MV of Signedinteger ::
e The MV of Signedinteger ::
e The MV of DecimalDigit ::
e The MV of DecimalDigit ::
of BinaryDigit:: 1 is 1.
e The MV of DecimalDigit ::

Exponentindicator Signedinteger is the MV of Signedinteger.
DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.

- DecimalDigits is the negative of the MV of DecimalDigits.

0 or of HexDigit :: 0 or of OctalDigit :: 0 or of BinaryDigit :: 0 is 0.
1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or.of OctalDigit :: 1 or
2 or of NonZeroDigit ::

2 or of HexDigit ;¥ 2 or of OctalDigit :: 2 is 2.

e The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.
e The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit:: 4:is 4.
° The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit:: 5 is 5.
e The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or'of HexDigit :: 6 or of OctalDigit :: 6 is 6.
e The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit ::<7 or of OctalDigit:: 7is 7.

The MV of DecimalDigit ::
The MV of DecimalDigit ::

8 or of NonZeroDigit ::
9 or of NonZeroDigit ::

e The MV of HexDigit :: a or of HexDigit :: & is 10.
e The MV of HexDigit :: b or of HexDigit :: Biis 11.
e The MV of HexDigit :: c or of HexDigit :: C is 12.
e The MV of HexDigit :: d or of HexDigit :: D is 13.
e The MV of HexDigit :: e or.of HexDigit :: E is 14.
e The MV of HexDigit :: £or of HexDigit:: F is 15.

8 or of HexDigit ::
9 or of HexDigit ::

8 is 8.
9is 9.

e The MV of BinarylntegerLiteral :: 0b BinaryDigit is the MV of BinaryDigit.
e The MV of BinarylntegerLiteral :: 0B BinaryDigit is the MV of BinaryDigit.

e The MV of BinarylntegerLiteral :: BinarylntegerLiteral BinaryDigit is (the MV of BinarylntegerLiteral times 2)
plus the MV of BinaryDigit.

e The MV of OctalintegerLiteral :: 0o OctalDigit is the MV of OctalDigit.
e The MV of OctallntegerLiteral :: 00 OctalDigit is the MV of OctalDigit.

e The MV of OctalintegerLiteral :: OctallntegerLiteral OctalDigit is (the MV of OctallntegerLiteral times 8) plus
the MV of OctalDigit.

e The MV of HexIntegerLiteral :: 0x HexDigits is the MV of HexDigits.

e The MV of HexIntegerLiteral :: 0X HexDigits is the MV of HexDigits.

e The MV of HexDigits :: HexDigit is the MV of HexDigit.

e The MV of HexDigits ::'HexDigits HexDigit is (the MV of HexDigits times 16) plus the MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 8.5), unless the literal is a DecimalLiteral and the literal has more than 20 significant digits,
in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by
replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th
significant digit position. A digit is significant if it is not part of an ExponentPart and

. it is not 0; or
e there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

24 © Ecma International 2012

secma

7.8.4 String Literals

NOTE A string literal is zero or more Unicode code points enclosed in single or double quotes. Unicode code points
may also be be represented by an escape sequence. All characters may appear literally in a string literal except for the
closing quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character may
appear in the form of an escape sequence. String literals evaluate to ECAMScript String values. When generating these
string values Unicode code points are UTF-16 encoded as defined in clause 6. Code points belonging to Basic Multilingual
Plane are encoded as a single code unit element of the string. All other code points are encoded as two code unit
elements of the string.

Syntax

StringLiteral ::
" DoubleStringCharactersgp: "
' SingleStringCharactersqp; '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::
SourceCharacter but not one of " or \ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter ::
SourceCharacter but not one of ' or \ or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ¢ DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
EscapeSequence to include OctalEscapeSequence as described in B.1.2.

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b £f n r t v

NonEscapeCharacter ::
SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X
u

© Ecma International 2012 25

secma

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit
u{ HexDigits }

The definition of the nonterminal HexDigit is given in 7.8.3. SourceCharacter is defined in clause 6.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuation to produce the
empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \n or \uOOOA.

Static Semantics
Static Semantics: Early Errors
UnicodeEscapeSequence :: u{ HexDigits }

e ltis a Syntax Error if the MV of HexDigits > 1114111
Static Semantics: SV’s and CV’s

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
code unit values (CV) contributed by the various. parts of the string literal. As part of this process, some
Unicode characters within the string literal are interpreted as having a mathematical value (MV), as described
below or in 7.8.3.

e The SV of StringLiteral :: "" is the empty code unit sequence.

e The SV of StringLiteral :: '*“is the empty code unit' sequence.

e The SV of StringLiteral :: "™ DoubleStringCharacters " is the SV of DoubleStringCharacters.

e The SV of StringLiteral :: ' SingleStringCharacters ! is the SV of SingleStringCharacters.

e The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one or two code units that is
the CV of DoubleStringCharacter:

e The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of one or
two code-units.that is the CV of DoubleStringCharacter followed by all the code units in the SV of
DoubleStringCharacters in order.

e The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one or two code units that is the
CV of SingleStringCharacter.

e The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of one or
two code units that is the CV of SingleStringCharacter followed by all the code units in the SV of
SingleStringCharacters in order.

e The SV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

e The CV of DoubleStringCharacter :: SourceCharacter but not one of " or \ or LineTerminator is the UTF-16
Encoding (clause 6) of the code point value of SourceCharacter.

e The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

e The CV of DoubleStringCharacter :: LineContinuation is the empty character sequence.

e The CV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the UTF-16
Encoding (clause 6) of the code point value of SourceCharacter .

e The CV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

e The CV of SingleStringCharacter :: LineContinuation is the empty character sequence.

e The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

° The CV of EscapeSequence :: 0 [lookahead ¢ DecimalDigit] is the code unit value 0.

e The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

e The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

26 © Ecma International 2012

»ecma

e The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit value is
determined by the SingleEscapeCharacter according to Table 4:

Table 4 — String Single Character Escape Sequences

Escape Sequence Code Unit Value Name Symbol

\b 0x0008 backspace <BS>
\t 0x0009 horizontal tab <HT>
\n 0x000A line feed (new line) <LF>
\v 0x000B vertical tab <VT>
\f 0x000C form feed <FF>
\r 0x000D carriage return <CR>
\" 0x0022 double quote "

\' 0x0027 single quote '

\\ 0x005C backslash \

e The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

e The CV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the
UTF-16 Encoding (clause 6) of the code point value of SourceCharacter .

e The CV of HexEscapeSequence :: x HexDigit HexDigit is the code unit value that is (16 times the MV of the
first HexDigit) plus the MV of the second HexDigit.

e The CV of UnicodeEscapeSequence :: u HexDigit-HexDigit HexDigit HexDigit is the code unit value that is
(4096 times the MV of the first HexDigit) plus (256 times.the MV of the second HexDigit) plus (16 times the
MV of the third HexDigit) plus the MV of the fourth HexDigit.

e The CV of UnicodeEscapeSequence :: u{ HexDigits } the is the UTF-16 Encoding (clause 6) of the MV of
HexDigits.

7.8.5 Regular Expression Literals

NOTE A regular expression literal is an input element that is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in-a.program evaluate to regular expression objects that never compare
as === to each other even if the two literals' contents are identical. A RegExp object may also be created at runtime by

new RegExp (See 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the ‘end. of the regular expression literal. The source code comprising the
RegularExpressionBody and the RegularExpressionFlags are subsequently parsed using the more stringent
ECMAScript Regular Expression grammar (15.10.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 15.10.1, but it must
not extend the RegularExpressionBody and RegularExpressionFlags productions defined below or the productions
used by these productions:

Syntax
RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::

[empty] _ _
RegularExpressionChars RegularExpressionChar

© Ecma International 2012 27

secma

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars 1]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not.one of] or \
RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: / (?:)/.

Static Semantics: BodyText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags
1. Returnithe source code that was recognized as RegularExpressionBody.
Static Semantics: FlagText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags
1. Return the source code that was recognized as RegularExpressionFlags.
7.8.6 Template Literal'Lexical Components

Syntax

Template ::
NoSubstitutionTemplate
TemplateHead

NoSubstitutionTemplate ::
* TemplateCharactersop

TemplateHead ::
* TemplateCharactersop: $ {

28 © Ecma International 2012

»ecma

TemplateSubstitutionTail ::

TemplateMiddle
TemplateTail

TemplateMiddle ::

} TemplateCharactersop: $ {

TemplateTail ::

} TemplateCharactersep: °

TemplateCharacters ::

TemplateCharacter TemplateCharactersept

TemplateCharacter ::

SourceCharacter but not one of * or \ or $
$ [lookahead ¢ {]

\ EscapeSequence

LineContinuation

Static Semantics: TV’s and TRV’s

A template literal component is interpreted as a sequence of Unicode characters. The Template Value (TV) of
a literal component is described in terms of code unit values (CV, 7.8.4) contributed by the various parts of the
template literal component. As part of this process, some Unicode characters within the template component
are interpreted as having a mathematical value (MV, 7.8.3). In determining a TV, escape sequences are
replaced by the code unit of the Unicode characters represented by the escape sequence. The Template
Raw Value (TRV) is similar to a Template Value with the difference that.in TRVs escape sequences are
interpreted literally.

The TV and TRV of NoSubstitutionTemplate :: * ° isthe empty code unit sequence.

The TV and TRV of TemplateHead :: *${ is the empty code unit sequence.

The TV and TRV of TemplateMiddle :: }${ is the empty code unit sequence.

The TV and TRV of TemplateTail :: 3 is the empty code unit sequence.

The TV of NoSubstitutionTemplate:: ° TemplateCharacters " is the TV of TemplateCharacters.
The TV of TemplateHead :: . TemplateCharacters ${ is the TV of TemplateCharacters.

The TV of TemplateMiddle :: } TemplateCharacters ${ is the TV of TemplateCharacters.

The TV of TemplateTail :: } TemplateCharacters " is the TV of TemplateCharacters.

The TV of TemplateCharacters:: TemplateCharacter is the TV of TemplateCharacter.

The TV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of the
code units in the TV of TemplateCharacter followed by all the code units in the TV of TemplateCharacters in
order.

The TV of TemplateCharacter :: SourceCharacter but not one of * or \ or $ is the UTF-16 Encoding (clause
6) of the code point value of SourceCharacter.

The TV of TemplateCharacter :: $ [lookahead ¢ {] is the code unit value 0x0024.

The TV of TemplateCharacter :: \ EscapeSequence is the CV of EscapeSequence.

The TV of TemplateCharacter :: LineContinuation is the TV of LineContinuation.

The TV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

The TRV of NoSubstitutionTemplate :: * TemplateCharacters " is the TRV of TemplateCharacters.
The TRV of TemplateHead :: * TemplateCharacters ${ is the TRV of TemplateCharacters.

The TRV of TemplateMiddle :: } TemplateCharacters ${ is the TRV of TemplateCharacters.

The TRV of TemplateTail :: } TemplateCharacters " is the TRV of TemplateCharacters.

The TRV of TemplateCharacters:: TemplateCharacter is the TRV of TemplateCharacter.

The TRV of TemplateCharacters:: TemplateCharacter TemplateCharacters is a sequence consisting of the
code units in the TRV of TemplateCharacter followed by all the code units in the TRV of
TemplateCharacters, in order.

© Ecma International 2012 29

secma

e The TRV of TemplateCharacter :: SourceCharacter but not one of * or \ or $ is the UTF-16 Encoding
(clause 6) of the code point value of SourceCharacter.

° The TRV of TemplateCharacter :: $ [lookahead ¢ {] is the code unit value 0x0024.

e The TRV of TemplateCharacter :: \ EscapeSequence is the sequence consisting of the code unit value
0x005C followed by the code units of TRV of EscapeSequence.

e The TRV of TemplateCharacter:: LineContinuation is the TRV of LineContinuation.

e The TRV of EscapeSequence :: CharacterEscapeSequence is the TRV of the CharacterEscapeSequence.

. The TRV of EscapeSequence :: 0 [lookahead « DecimalDigit] iS the code unit value 0x0030.

e The TRV of EscapeSequence :: HexEscapeSequence is the TRV of the HexEscapeSequence.

e The TRV of EscapeSequence :: UnicodeEscapeSequence is the TRV of the UnicodeEscapeSequence.

e The TRV of CharacterEscapeSequence :: SingleEscapeCharacter is the TRV of the SingleEscapeCharacter.

e The TRV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

e The TRV of SingleEscapeCharacter :: oneof ' "™ \ b £ n .xr t w.istheCV ofthe
SourceCharacter that is that single character.

e The TRV of HexEscapeSequence :: x HexDigit HexDigit is the sequence consisting of code unit value
0x0078 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit.

e The TRV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the sequence consisting of
code unit value 0x0075 followed by TRV of the first HexDigit followed by the TRV of the second HexDigit
followed by TRV of the third HexDigit followed by the TRV of the fourth HexDigit.

e The TRV of UnicodeEscapeSequence :: u{ HexDigits }is the sequence consisting of code unit value 0x0075
followed by code unit value 0x007B followed by TRV of HexDigits followed by code unit value 0x007D.

e The TRV of HexDigits :: HexDigit is the TRV of HexDigit.

e The TRV of HexDigits :: HexDigits HexDigit is the sequence consisting of TRV of HexDigits followed by
TRV of HexDigit.

e The TRV of a HexDigit is the CV of the SourceCharacter that.is that HexDigit.

e The TRV of LineContinuation :: \ LineTerminatorSequence is the sequence consisting of the code unit value
0x005C followed by the code-units of TRV of LineTerminatorSequence.

e The TRV of LineTerminatorSequence :: <LF> is'the code unit value 0xX000A.

. The TRV of LineTerminatorSequence :: <CR> [lookahead ¢ <LF>] is the code unit value 0x000D.

e The TRV of LineTerminatorSequence:: <LS> is the code unit value 0x2028.

e The TRV of LineTerminatorSequence :: <PS> is the code unit value 0x2029.

e The TRV of LineTerminatorSeguence :: <CR><LF>. is the sequence consisting of the code unit value
0x000D followed by the ‘code unit value 0x000A.

NOTE TV excludes the code units of LineContinuation while TRV includes them.
7.9 ~Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while
statement, continue statement, break statement, return statement, and throw statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion
There are three basic rules of semicolon insertion:
1. When, as the script is parsed from left to right, a token (called the offending token) is encountered that is

not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

e The offending token is separated from the previous token by at least one LineTerminator.
e The offending token is }.

30 © Ecma International 2012

»ecma

2. When, as the script is parsed from left to right, the end of the input stream of tokens is encountered and
the parser is unable to parse the input token stream as a single complete ECMAScript script, then a
semicolon is automatically inserted at the end of the input stream.

3. When, as the script is parsed from left to right, a token is encountered that is allowed by some production
of the grammar, but the production is a restricted production and the token would be the first token for a
terminal or nonterminal immediately following the annotation “[no LineTerminator here]” within the restricted
production (and therefore such a token is called a restricted token), and the restricted token is separated
from the previous token by at least one LineTerminator, then a semicolon is automatically inserted before
the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

ContinueStatement :
continue [no LineTerminator here] Identifier ;

BreakStatement :
break [no LineTerminator here] ldentifier ¢

ReturnStatement :
return [no LineTerminator here] Expression 8

ThrowStatement :
throw [no LineTerminator here] Expression ;

The practical effect of these restricted productions is as follows:
When a ++ or -- token.is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminator occurred between the preceding token-and the ++ or -- token, then a semicolon is automatically

inserted before the ++ or -= token.

When.a continue, break, return, or throw token is encountered and a LineTerminator is encountered before
the next token, a semicolon .is automatically inserted after the continue, break, return, or throw token.

The resulting practical advice to ECMAScript programmers is:

A postfix ++ or - - operator should appear on the same line as its operand.

An Expression ina retuzn or throw statement should start on the same line as the return or throw token.

An ldentifier in a break or continue statement should be on the same line as the break or continue token.
7.9.2 Examples of Automatic Semicolon Insertion

The source

{121} 3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

2} 3

© Ecma International 2012 31

secma

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

72 ;Y 35
which is a valid ECMAScript sentence.

The source

for (a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon.insertion never inserts one of
the two semicolons in the header of a for statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a + b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminator separates it from the token return.

The source
a=>
++c
is transformed by automatic semicolon insertion into the following:
a = b;
++c;
NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator occurs

between b and ++.

The source
if (a > b)
else c =d
is not a‘valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,

even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a=b+c¢c

(d + e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a=>b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

32 © Ecma International 2012

»ecma

Within this specification, the notation “Type(x)” is used as shorthand for “the type of x” where “type” refers to the
ECMAScript language and specification types defined in this clause.

8.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Number, and Object. An ECMAScript language value is a value that is characterized by an
ECMAScript language type.

8.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.1.2 The Null Type

The Null type has exactly one value, called null.

8.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, calledtrue and false.
8.1.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in a running ECMAScript program, in
which case each element in the String is treated as a UTF-16 code unit value. Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at index 0, the next.element (if any) at index 1, and so on. The length of a String is the
number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no
elements.

Where ECMASCcript operations interpret String values, each element is interpreted as a single UTF-16 code
unit. However, ECMAScript does not place any restrictions or requirements on the sequence of code units in a
String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences. Operations that do
not interpret String contents treat them as sequences of undifferentiated 16-bit unsigned integers. No
operations-ensure that Strings are in a normalized form. Only operations that are explicitly specified to be
language or locale sensitive produce language-sensitive results

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. If ECMAScript source code is in Normalised Form C, string literals are guaranteed to also be normalised, as long
as they do not contain any Unicode escape sequences.

Some operations interpret<String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:

e A code unit'in the range 0 to OXD7FF or in the range 0XE000 to OxFFFF is interpreted as a code point
with the same value.

e A sequence of two code units, where the first code unit ¢l is in the range 0xD800 to 0xDBFF and the
second code unit c2 is in the range 0XxDCO00 to OXDFFF, is a surrogate pair and is interpreted as a code
point with the value (c1 - 0xD800) x 0x400 + (c2 — 0xDCO00) + 0x10000.

e A code unit that is in the range 0xD800 to OXDFFF, but is not part of a surrogate pair, is interpreted as
a code point with the same value.

8.1.5 The Number Type
The Number type has exactly 18437736874454810627 (that is, 2%4-2%+3) values, representing the double-

precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 9007199254740990 (that is, 253-2) distinct “Not-a-Number” values of the IEEE Standard are

© Ecma International 2012 33

secma

represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN.) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +oo and —oo, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity.)

The other 18437736874454810624 (that is, 2%4-2%) values are called the finite_numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0)and -0.)

The 18437736874454810622 (that is, 264-25%-2) finite nonzerovalues are of two kinds:
18428729675200069632 (that is, 264-254) of them are normalised, having the form

s xm x 2°

where s is +1 or -1, m is a positive integer less than.2% but not less than 2%, and e is an integer ranging from
—1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2%-2) values are denormalised, having the form

sxmx 2°

where s is +1 or -1, m is a positive integer less than 2%, and e is —1074.

Note that all the positive and negative integers whose magnitude is no greater than 2% are representable in
the Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number-has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents an exact nonzero real
mathematical quantity (which might even be an irrational number such as ©) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with —0 removed and with two
additional values added to it that are not representable in the Number type, namely 2% (which is +1 x 25 x
2°) and —2%%24 (which is —1 x 2% x 2°%). Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 2'%%* and -2%%%* are considered to have even significands. Finally, if 21* was chosen, replace it
with +o0; if —21%%* was chosen, replace it with —eo; if +0 was chosen, replace it with =0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure
corresponds exactly to the behaviour of the IEEE 754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range —23! through 23%-1, inclusive, or in the range
0 through 2%%-1, inclusive. These operators accept any value of the Number type but first convert each such
value to one of 2% integer values. See the descriptions of the ToInt32 and ToUint32 operators in 9.5 and 9.6,
respectively.

8.1.6 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor
property:

34 © Ecma International 2012

»ecma

e A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

e A accessor property associates a key value with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

Properties are identified using key values. A key value is either an ECMAScript String value or an Exotic
Symbol object (8.4.3).

Property keys are used to access properties and their values. There are two kinds of access for properties:
get and set, corresponding to value retrieval and assignment, respectively. The properties accessible via get
and set access includes both own properties that are a direct part of an object and inherited properties which
are provided by another associated object via a property inheritance relationship. Inherited properties may be
either own or inherited properties of the associated object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most. common form of
objects and have the default object semantics. An exotic' object is any form of object whose property
semantics differ in any way from the default semantics.

8.1.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. A data property
associates a key value with the attributes listed in Table 5.

Table 5 — Attributes of a Data Property

Attribute Name Value Domain Description

[[Value]] Any ECMASCcript The value retrieved by a get access of the property.
language type

[[Writable]] Boolean If false, attempts by ECMAScript code to change the

property’s [[Value]] attribute using [[SetP]] or
[[DefineOwnProperty]] will not succeed.

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its
attributes (other than [[Value]], for changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 6.

© Ecma International 2012 35

secma

Table 6 — Attributes of an Accessor Property

Attribute Name Value Domain Description
[[Get]] Object or If the value is an Object it must be a function Object. The
Undefined function’s [[Call]] internal method (8.6.2) is called with an
empty arguments list to retrieve the property value each
time a get access of the property is performed.

[[Set]] Object or If the value is an Object it must be a function Object. The

Undefined function’s [[Call]] internal method (8.6.2) is called with an
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[SetP]] internal
method may, but is not required to, have an effect on the
value returned by subsequent calls to the property's
[[GetP]] internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to'be a data property, or change its attributes will
fail.

If the initial values of a property’s attributes are not explicitly specified by this specification, the default value

defined in Table 7 is used.

Table 7 — Default Attribute Values

Attribute Name Default Value
[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

8.1.6.2 Object Internal Methods and Internal Data Properties

The actual semantics of ECMAScript objects are specified via algorithms called internal methods. Each object
in an ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour.
These internal methods are not part of the ECMAScript language. They are defined by this specification purely
for expository purposes. However, each object within an implementation of ECMAScript must behave as
specified by the internal methods associated with it. The exact manner in which this is accomplished is
determined by the implementation.

Internal methods are identified within this specification using names enclosed in double square brackets [[]].
Internal method names are polymorphic. This means that different ECMAScript object values may perform
different algorithms when a common internal method name is invoke upon them. If, at runtime, the
implementation of an algorithm attempts to use an internal method of an object that the object does not
support, a TypeError exception is thrown.

Internal data properties correspond to internal state that is associated with objects and used by various
ECMAScript specification algorithms. Depending upon the specific internal data property such state may
consist of values of any ECMAScript language type or of specific ECMA specification type values. Unless
explicitly specified otherwise, internal data properties may be dynamically added to ECMAScript objects.

36 © Ecma International 2012

»ecma

Table 8 summarises the essential internal methods used by this specification that are applicable to all
ECMAScript objects. Every object must have algorithms for all of the essential internal methods. However, all
objects do not necessarily use the same algorithms for those methods.

The “Signature” column of Table 8 and other similar tables describes the invocation pattern for each internal
method. The invocation pattern always includes a parenthesised list of descriptive parameter names. If a
parameter name is the same as an ECMAScript type name then the name describes the required type of the
parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol
“—” and the type name of the returned value. The type names used in signatures refer to the types defined in
Clause 8 augmented by the following additional names. “any” means the value may be any ECMAScript
language type. “primitive” means Undefined, Null, Boolean, String, or Number. An internal method implicitly
returns a Completion Record as described in 8.8. In addition to its parameters, an internal method always has
access to the object upon which it is invoked as a method.

© Ecma International 2012 37

secma

38

Table 8 — Essential Internal Methods

Internal Method

Signature

Description

[[GetInheritance]]

()—Object or Null

Determine the object that provides inherited
properties for this object. A null value indicates
that there are no inherited properties. an object.

[[SetInheritance]]

(Object or Null)—>Boolean

Associate with an object another object that
provides inherited properties. Passing null
indicates that there are no inherited properties.
Returns true indicating that the operation was
completed successfully. or false indicating that
the operation was not successful.

[[IsExtensible]]

()—Boolean

Determine whether it is permitted to add
additional properties to an object.

[[PreventExtensions]]

0

Control whether new properties may be added to
an object.

[[HasOwnProperty]] (propertyKey) — Boolean Returns.a Boolean value indicating whether the
object already has an own property whose key is
propertyKey.

[[GetOwnProperty]] (propertyKey) — Returns a Property Descriptor for the own

Undefined or Property property of this ebject whose key is propertyKey,
Descriptor or.undefined if no such property exists.
[[GetP]] (propertyKey, Receiver) — | Retrive the value of an object’s property using
any the propertyKey parameter. If any ECMAScript
code must be executed to retrieve the property
value, Receiver is used as the this value when
evaluating the code.

[[SetP]] (propertyKey,value, Try to_set the value of an object’s property

Receiver) — Boolean indentified . by propertyKey to value. If any
ECMAScript code must be executed to set the
property value, Receiver is used as the this
value when evaluating the code. Returns true
indicating that the property value was set or
false indicating that it could not be set.

[[Delete]] (propertyKey) — Boolean Removes the own property indentified by the
propertyKey parameter from the object. Return
false is the property was not deleted because its
[[Configurable]] attribute is false. Otherwise
return true.

[[DefineOwnProperty]] | (propertyKey, Creates or alters the named own property to

PropertyDescriptor) — have the state described by a Property

Boolean Descriptor. Returns true indicating that the
property was successfully created/updated or
false indicating that the property could not be
created or updated.

[[Enumerate]] ()—Object Returns an iterator object that over the string
values of the keys of the enumerable properties
of the object.

[[Keys]] ()—List of String Returns an Array containing all of the
enumerable own property keys for the object that
are Strings.

[[OwnPropertyKeys]] ()—List of (String or Returns an Array containing all of the own

Symbol) property keys for the object except those that are
private Symbols.

[[Freezel]] () — Boolean

[[Seall] () — Boolean

[[IsFrozen]] () — Boolean

[[IsSealed]] () — Boolean

© Ecma International 2012

secmd

Table 9 summarises additional essential internal methods that must be supported by all objects that may be
called as functions..

Table 9 — Additional Essential Internal Methods of Function Objects

Internal Method Sighature Description

[[Call]] (any, a List of any) Executes code associated with the object. Invoked via a
— any or Reference | function call expression. The arguments to the internal
method are a this value and a list containing the arguments
passed to the function by a call expression. Objects that
implement this internal method are callable. Only callable
objects that are host objects may return Reference values.

[[Construct]] (a List of any) — Creates an object. Invoked via the new operator. The
Object arguments to the internal-are the arguments passed to the
new operator. Objects.that implement this internal method
are called constructors.

8.1.6.3 Invariants of the Essential Internal Methods

Current this section is just a bunch of material merged together from the ES5
spec. and from the wiki Proxy pages. It need to be completely reworked.

The intent is that it lists all invariants of the Essential Internal Methods. This
includes both invariants that are enforced for Proxy objects and other
invariants that may not be enfored.

Definitions:

The target of an internal method is the object the internal method is called upon.

A sealed property is a non-configurable own property of a target.

A frozen property is a non-configurable non-writable own property of a target.

A new property.is a property that does not exist on a non-extensible target.

Two property descriptors descl and desc2 for a property key value are incompatible if:

1. Descl is produced by calling [[GetOwnPropertyDescriptor]] of target with key, and

2. Calling [[DefineOwnProperty]] of target with arguments key and desc2 would throw a TypeError exception.

Exotic objects may define additional constraints upon their [[SetP]] internal method behavior. If possible,
exotic objects should not allow [[SetP]] operations in situations where this definition of [[CanPut]] returns false.

[[GetlInheritance]]

Every [[Prototype]] chain must have finite length (that is, starting from any object, recursively accessing the
[[Prototype]] internal data property must eventually lead to a null value).

getOwnPropertyDescriptor

Non-configurability invariant: cannot return incompatible descriptors for sealed properties
Non-extensibility invariant: must return undefined for new properties
Invariant checks:
if trap returns undefined, check if the property is configurable
if property exists on target, check if the returned descriptor is compatible

© Ecma International 2012 39

secma

if returned descriptor is non-configurable, check if the property exists on the target and is also non-
configurable

defineProperty

Non-configurability invariant: cannot succeed (return true) for incompatible changes to sealed properties
Non-extensibility invariant: must reject (return false) for new properties
Invariant checks:
on success, if property exists on target, check if existing descriptor is compatible with argument
descriptor
on success, if argument descriptor is non-configurable, check if the property exists on the target and is
also non-configurable

getOwnPropertyNames
Non-configurability invariant: must report all sealed properties
Non-extensibility invariant: must not list new property names
Invariant checks:
check whether all sealed target properties are present in the trap result
If the target is non-extensible, check that no new properties are listed in the trap result
deleteProperty
Non-configurability invariant: cannot succeed (return true) for.sealed properties
Invariant checks:
on success, check if the target property is configurable

getPrototypeOf

Invariant check: check whether the target’s prototype and the trap result are identical (according to the egal
operator)

freeze | seal | preventExtensions
Invariant checks:
on success, check if isFrozen(target), isSealed(target) or lisExtensible(target)
isFrozen | isSealed | isExtensible

Invariant check: check whether the boolean trap result is equal to isFrozen(target), isSealed(target) or
isExtensible(target)

hasOwn

Non-configurability invariant: cannot return false for sealed properties
Non-extensibility invariant: must return false for new properties
Invariant checks:
if false is returned, check if the target property is configurable
if false is returned, the property does not exist on target, and the target is non-extensible, throw a
TypeError

has

40 © Ecma International 2012

»ecma

Non-configurability invariant: cannot return false for sealed properties
Invariant checks:
if false is returned, check if the target property is configurable

get

Non-configurability invariant: cannot return inconsistent values for frozen data properties, and must return
undefined for sealed accessors with an undefined getter

Invariant checks:

if property exists on target as a data property, check whether the target property’s value and the trap
result are identical (according to the egal operator)

if property exists on target as an accessor, and the accessor’s get attribute is undefined, check whether
the trap result is also undefined.

set

Non-configurability invariant: cannot succeed (return true) for frozen‘data properties or sealed accessors
with an undefined setter
Invariant checks:
on success, if property exists on target as.a data property, check whether the target property’s value and
the update value are identical (according to the egal.operator)
on success, if property exists on target as an accessor, check whether the accessor’s set attribute is not
undefined

keys

Non-configurability invariant: must report all enumerable sealed properties
Non-extensibility invariant: must not list new property names
Invariant checks:

Check whether all enumerable sealed target properties are listed in the trap result

If the target is non-extensible, check that no new properties are listed in the trap result

enumerate
Non-configurability invariant: must report all enumerable sealed properties

Invariant checks:
Check whether all enumerable sealed target properties are listed in the trap result

Unless otherwise specified, the standard ECMAScript objects are ordinary objects and behave as described in
8.3. Some standard objects are exotic objects and have behaviour defined in 8.4..

Exotic objects may implement internal methods in any manner unless specified otherwise; for example, one
possibility is that [[GetP]] and [[SetP]] for a particular exotic object indeed fetch and store property values but
[[HasOwnProperty]] always generates false. However, if any specified manipulation of an exotic object's
internal properties is not supported by an implementation, that manipulation must throw a TypeError
exception when attempted.

© Ecma International 2012 41

ecima

The [[GetOwnProperty]] internal method of all objects must conform to the following invariants for each
property of the object:

If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.
If the result of calling an object’s [[IsExtensible]] internal method has been observed by ECMAScript code

to be false, then if a call to [[GetOwnProperty]] describes aproperty as non-existent all subsequent calls
must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of all objects‘must not permit.the addition of a new property to an
object if the [[Extensible]] internal method of that object has been observed by ECMAScript code to be false.

If the result of calling the [[IsExtensible]] internal method of an object has been observed by ECMAScript code
to be false then it must not subsequently become true.

8.1.6.3 Well-Known Symbols and Intrinsics

Well-known symbols are built-in exotic symbol objects (8.4:4) that are explicitly referenced by algorithms of
this specification. They are typically.used as the keys of properties whose values serve as extension points of
a specification algorithm. Unless otherwise specified, well-known symbols values are shared by all Code
Realms (10.3) and the value of their [[Private]] internal data property (forward ref) is false.

Within this specification a well-known symbol is referred to by using a notation of the form @ @name, where
“name” is one of the values listed in Table 10.

42

Table 10--Well-known Symbols

Specification Name Value and Purpose

@ @create A method used to allocate an object. Called from the
[[Construct]] internal method.
@@haslnstance A method that determines if a constructor object

recoghizes an object as one of the constructor's
instances. Called by the semantics of the instanceof
operator.

@ @iterator A method that returns the default iterator for an object.
Called by the semantics of the for-of statement.

@@ToPrimitive A method that converts an object to a corresponding
primitive value. Called by the ToPrimitive abstract
operation.

@@toStringTag A string value that is used in the creation of the default
string description of an object. Called by the built-in
method Object.prototype.toString.

© Ecma International 2012

»ecma

Well-known intransics are built-in objects that are explicitly referenced by the algorithms of this specification

and which usually have Code Realm specific identifies. Unless otherwise specific each intrinsic object actually
corresponds to a set of similar objects, one per Code Realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current
Code Realm, corresponding to the name. Determine of the current Code Realmand its intransics is described
in 10.3. The well-known intrincs are listed in Table 11.

Table 11 — Well-known Intrinsic Objects

Intrinsic Name

ECMAScript Language Association

%0bject%

The initial value of the global object
property named "Object".

%0ObjectPrototype%

The initial value of the "prototype" data
property of the intrinsic %0bject%.

%O0bjProto_toString%

The initial value of the "toString" data
property of the_intrinsic %ObjectPrototype%.

%Function%

The initial ~value of the _global object
property named "Function".

%FunctionPrototype%

The initial value of the "prototype" data
property of the intrinsic %Function%.

%Array% The initial value " of the global object
property named "Array".
%ArrayPrototype% The initial value of the "prototype" data

property of the intrinsic %Array%.

%ArraylteratorPrototype%

The prototype object used for
interator objects created by the
CreateArraylterator abstract operation.

%Map% The initial value of the global object
property named "Map".
%MapPrototype% The initial 'value of the "prototype" data

property of the intrinsic %Map%.

%MaplteratorPrototype%

The prototype object used for
interator objects created by the
CreateMaplterator abstract operation

%WeakMap%

The initial value of the global object
property named "WeakMap".

%WeakMapPrototype%

The initial value of the "prototype" data
property of the intrinsic %WeakMap%.

%Set% The initial value of the global object
property named "Set".
%SetPrototype% The initial value of the "prototype" data

property of the intrinsic %Set%.

%SetlteratorPrototype%

The prototype object used for
interator objects created by the
CreateSetterator abstract operation

%Stoplteration%

?77?

© Ecma International 2012

43

secmd

8.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Lexical Environment, Environment Record, and Data Block.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

8.2.1 Data Blocks

This section is a placeholder for describing the Data Block internal type. The
following material is verbatium from the the Binary Data ES wiki proposal. The
material has not yet been reviewed or integrated with the rest of this spec.

This spec introduces a new, spec-internal block datatype, intuitively representing a contiguously allocated
block of binary data. Blocks are not ECMAScript language values and appear only in the program store (aka
heap).

A block is one of:

e anumber-block
e an array-block]t, n]
e astruct-block]t1, ..., tn]

A number-block is one of:
e an unsigned-integer; i.e., one of uint8, uint16, uint32, or uint64
e asigned-integer;d.e., one of int8, intl16, int32, or int64
o afloating-point; i.e., one of float32 or float64

A uintk is an integer in the range [0, 2k). An intk is an integer in the range [-2k-1, 2k-1). A floatk is a floating-
point number representable as a k-bit IEE754 value.

An array-block[t, n] is an ordered sequence of n blocks of homogeneous block type t. Each element of the
array is stored at in independently addressable location in the program store, and multiple Data objects may
contain references to the element.

A struct-block]t1, ..., tn] is an ordered sequence of n blocks of heterogeneous types t1 to tn, respectively. Each
field of the struct is stored at/in independently addressable location in the program store, and multiple Data
objects may contain references to the field.

The spec also introduces a datatype of Data objects, which are ECMAScript objects that encapsulate
references to block data in the program store. Every Data object has the following properties:

[[Class]] = “Data”
[[Value]] : reference[block] — a reference to a block in the program store

[[DataType]] : reference[Type] — a reference to a Type object describing this object’s data block

44 © Ecma International 2012

secmd

8.2.2 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function
calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

The Record type is used to describe data aggregations within the algorithms of this specification. A Record
type value consists of one or more named fields. The value of each field is either an ECMAScript value or an
abstract value represented by a name associated with the Record type. Field names are always enclosed in
double brackets, for example [[value]]

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty}.defines a Record value that has
three fields each of which is initialized to a specific value. Field name order is not significant. Any fields that
are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if R is the record shown in the previous paragraph then R.[[field2]] is shorthand for “the field of R
named [[field2]]".

Schema for commonly used Record field combinations may be named, and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}.

8.2.3 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as
the behaviour of statements (break, continue, return and throw) that perform nonlocal transfers of
control.

Values of the Completion type are Record values whole fields are defined as by Table 12.

Table 12 — Completion Record Fields

Field Name | Value Meaning
[[typell One of normal; break, continue, return, | The type of completion that occurred.
or throw
[[value]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript identifier or empty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[type]] value other than normal.

8.2.3.1 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:

1. Return NormalCompletion(argument).

Is a short hand that is defined as follows:

1. Return Completion {[[type]]: normal, [[value]]: argument, [[target]]:empty}.

8.2.3.2 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal.

Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

© Ecma International 2012 45

secma

1. Return "Infinity".

Generally means the same thing as:

1. Return NormalCompletion("Infinity").

A “return” statement without a value in an algoritm step means the same thing as:

1. Return NormalCompletion(undefined).

Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion
Record value unless the Completion Record is an abrupt completion.

8.2.3.3 Throw an Exception

Algorithms steps that say to throw an exception, such as

1. Throw a TypeError exception.

Mean the same things as:

1. Return Completion {[[type]]: throw, [[value]]: a newly created TypeError object, [[target]]:empty}.
8.2.3.4 ReturnlIfAbrupt

Algorithms steps that say

1. ReturnlfAbrupt(argument).

mean the same things as:

1. Ifargument is an abrupt completion, then return argument.
2. Else if argument isca Completion Record, then let argument be argument.[[value]].

8.2.4 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete, typeof£, the assignment
operators, the super keyword and other lanauge features. For example, the left-hand operand of an assignment is
expected to produce a reference.

A Reference is a resolved name binding. A Reference consists of three components, the base value, the
referenced name and the Boolean valued strict reference flag. The base value is either undefined, an Object, a
Boolean, a String, a Number, or an environment record (10.2.1). A base value of undefined indicates that the
Reference could not be resolved to a binding. The referenced name is a String.

A Super Reference is a Reference that is used to represents a hame binding that was expressed using the
super keyword. A Super Reference has an additional thisValue component and its base value will never be an
environment record.

The following abstract operations are used in this specification to access the components of references:

GetBase(V). Returns the base value component of the reference V.

GetReferencedName(V). Returns the referenced nhame component of the reference V.
IsStrictReference(V). Returns the strict reference component of the reference V.

HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.
IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

¢ IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

46 © Ecma International 2012

»ecma

o IsSuperReference(V). Returns true if this reference has a thisValue component.
The following abstract operations are used in this specification to operate on references:
8.24.1 GetValue (V)

ReturnIfAbrupt(V).
If Type(V) is not Reference, return V.
Let base be the result of calling GetBase(V).
If IsUnresolvableReference(V), throw a ReferenceError exception.
If IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is true, then
i Assert: In this case, base will never be null or undefined,
ii. Set base to ToObject(base).
b. Return the result of calling the [[GetP]] internal method of base passing GetReferencedName(V) and
GetThisValue(V) as the arguments.
6. Else base must be an environment record,
a. Return the result of calling the GetBindingValue (see10.2.1) concrete method of base passing
GetReferencedName(V) and IsStrictReference(V) as arguments.

g E

NOTE The object that may be created in step 5.a.ii is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of the object.

8.2.4.2 PutValue (V, W)

ReturnlfAbrupt(V).
ReturnlfAbrupt(Ww).
If Type(V) is not Reference, throw a ReferenceError exception.
Let base be the result of calling GetBase(V).
If IsUnresolvableReference(V), then
a. |If IsStrictReference(V) is true, then
i. Throw ReferenceError exception.
b. Let globalObj.be the result of the abstraction operation GetGlobalObject.
c. Return the result of calling Put(globalObj,GetReferencedName(V), W, false).
6. Elseif IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is true, then
i Assert: In this case, base will never be null or undefined.
ii. Set base to ToObject(base).
b. <Let succeeded be the result of calling the [[SetP]] internal method of base passing
GetReferencedName(V), W, and GetThisValue(V) as arguments.
¢. ReturnIfAbrupt(succeeded).
d.. If succeeded is false and IsStrictReference(V) is true, then throw a TypeError exception.
e. Return.
7. Else base must be a reference whose base is an environment record. So,
a. Return the result of calling the SetMutableBinding (10.2.1) concrete method of base, passing
GetReferencedName(V), W, and IsStrictReference(V) as arguments.
8. Return.

A A

NOTE The object that may be created in step 6.a.ii is not accessible outside of the above algorithm. An
implementation might choose to avoid the actual creation of that transient object.

8.2.4.3 GetThisValue (V)

ReturnlfAbrupt(V).
If Type(V) is not Reference, return V.
If IsUnresolvableReference(V), throw a ReferenceError exception.
If IsSuperReference(V), then
a. Return the value of the thisValue component of the reference V.
5. Return GetBase(V).

PobPE

© Ecma International 2012 47

secma

8.2.5 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes.
Values of the Property Descriptor type are Records composed of named fields where each field’'s name is an
attribute name and its value is a corresponding attribute value as specified in 8.1.6.1. In addition, any field
may be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data-property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.1.6.1 Table 5 or Table 6.

A Property Descriptor may be derived from an ECMAScript object that has properties that directly correspond
to the fields of a Property Descriptor. Such a derived Property Descriptor has an additional field named
[[Origin]] whose value is the object from which the Property . Descriptor was derived.

The following abstract operations are used in this specification to operate upon Property Descriptor values:
8.2.5.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desc, the following steps
are taken:

2. If Desc is undefined, then return false.

3. If both Desc.[[Get]] and Desc.[[Set]] are absent, then return false.
4. Return true.
8.

2.5.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor-is called with property descriptor Desc, the following steps are
taken:

1. If Desc is.undefined; then return false.

2. Ifboth‘Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.
3. Return true.
8.

2.53 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc, the following steps
are taken:

1. If Desc is undefined, then return false.

2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.
3. Return false.
8.

2.5.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc, the following
steps are taken:

The following algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 8.12.1).

1. If Desc is undefined, then return undefined.
2. If Desc has an [[Origin]] field, then return Desc.[[Origin]].
3. Let obj be the result of the abstract operation ObjectCreate.

48 © Ecma International 2012

»ecma

4. Assert: obj is an extensible ordinary object with no own properties.
5. If Desc has a [[Value]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "value', and Property Descriptor {[[Value]]:
Desc.[[Value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}
6. If Desc has a [[Writable]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "writable", and Property Descriptor {[[Value]]:
Desc.[[Writable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
7. If Desc has a [[Get]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "get" , and Property Descriptor {[[Value]]:
Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
8. If Desc has a [[Get]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "set", and Property Descriptor {[[Value]]:
Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
9. If Desc has a [[Enumerable]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj, "enumerable", and Property Descriptor
{[[Value]]: Desc.[[Enumerable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
10. If Desc has a [[Configurable]] field, then
a. Call OrdinaryDefineOwnProperty with arguments obj , "“econfigurable", and Property Descriptor
{[[Value]]: Desc.[[Configurable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
11. Return obj.

8.2.5.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1. ReturnlfAbrupt(Obj).
2. If Type(Obj) is not Object throw a TypeError exception.
3. Let desc be the result of creating a new Property Descriptor that initially has no fields.
4. If the result of HasProperty(Obj, "enumerable") is true; then
a. Letenum be the result of Get(Obj, "enumerable").
b. ReturnlfAbrupt(enum).
c. Setthe [[Enumerable]] field of desc to ToBoolean(enum).
5. If the result of HasProperty(Obj, "configurable") is true, then
a. Letconf be'the result of Get(Obj, "configurable").
b. ReturnlfAbrupt(conf).
c. Setthe [[Configurable]] field of desc to ToBoolean(conf).
6. If the result of HasProperty(Obj, "value") is true, then
a. et value be the result of Get(Obj, "value").
b ReturnlfAbrupt(value).
c. Set the [[Value]] field of desc to value.
7. If the result of HasProperty(Obj, "writable") is true, then
a. - Let writable be the result of Get(Obj, "writable").
b. ReturnlfAbrupt(writable).
c. Setthe [[Writable]] field of desc to ToBoolean(writable).
8. If the result of HasProperty(Obj, "get") is true, then
a. Let getter be the result of Get(Obj, "get").
b. ReturnlfAbrupt(getter).
c. If IsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.
d. Setthe [[Get]] field of desc to getter.
9. |If the result of HasProperty(Obj, "set") is true, then
a. Let setter be the result of Get(Obj, "set").
b. ReturnlfAbrupt(setter).
c. If IsCallable(setter) is false and setter is not undefined, then throw a TypeError exception.
d. Setthe [[Set]] field of desc to setter.
10. If either desc.[[Get]] or desc.[[Set]] are present, then
a. If either desc.[[Value]] or desc.[[Writable]] are present, then throw a TypeError exception.
11. Set the [[Origin]] field of desc to Obj.
12. Return desc.

© Ecma International 2012 49

secma

8.2.5.6 CompletePropertyDescriptor (Desc, LikeDesc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Desc, the following
steps are taken:

1. Assert: LikeDesc is either a Property Descriptor or undefined.
2. ReturnlfAbrupt(Desc).
3. Assert: Desc is a Property Descriptor
4. If LikeDesc is undefined, then set LikeDesc to Record{[[Value]]: undefined, [[Writable]]: false, [[Get]]:
undefined, [[Set]]: undefined, [[Enumerable]]: false, [[Configurable]]: false}.
5. If either IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
a. If Desc does not have a [[Value]] field, then set Desc.[[Value]] to LikeDesc.[[Value]].
b. If Desc does not have a [[Writable]] field, then set Desc.[[Writable]] to LikeDesc.[[WTritable]].
6. Else,
a. If Desc does not have a [[Get]] field, then set Desc.[[Get]] to LikeDesc.[[Get]].
b. If Desc does not have a [[Set]] field, then set Desc.[[Set]] to'LikeDesc.[[Set]].
7. If Desc does not have a [[Enumerable]] field, then set Desc.[[Enumerable]] to LikeDese.[[Enumerable]].
8. If Desc does not have a [[Configurable]] field, then set Desc.[[Configurable]] to LikeDesec.[[Configurable]].
9. Return Desc.
8.

2.6 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.3 Ordinary Object Internal Methods and Internal Data Properties

Sections 8.3-8.5 will eventually be subsectons of a new toplevel section that
follow the current section 10

All ordinary objects have an internal data property called [[Prototype]]. The value of this property is either null
or an object and is used for implementing inheritance. Data properties of the [[Prototype]] object are inherited
(are visible as properties of the child object) for the purposes of get access, but not for set access. Accessor
properties are inherited for both get access and set access.

Every ordinary ECMAScript object has a Boolean-valued [[Extensible]] internal data property that controls
whether or not-properties may be added to the object. If the value of the [[Extensible]] internal data property is
false then additional properties may not be added to the object. In addition, if [[Extensible]] is false the value
of [[Prototype]] internal data properties. of the object may not be modified. Once the value of an object’s
[[Extensible]] internal data property has been set to false it may not be subsequently changed to true.

In the following algorithm descriptions, assume O is an ordinary ECMAScript object, P is a property key value,
V is any ECMAScript language value, Desc is a Property Description record, and B is a Boolean flag.

8.3.1 [[GetInheritance]] ()

When the [[GetInheritance]] internal method of O is called the following steps are taken:

1. Return the value of the [[Prototype]] internal data property of O.

8.3.2 [[Setlnheritance]] (V)

When the [[SetInheritance]] internal method of O is called with argument V the following steps are taken:
Assert: Either Type(V) is Object or Type(V) is Null.

Let extensible be the value of the [[Extensible]] internal data property of O.

If extensible is false, then return false.

Set the value of the [[Prototype]] internal data property of O to V.
Return true.

A o

50 © Ecma International 2012

»ecma

8.3.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of O is called the following steps are taken:

1. Return the value of the [[Extensible]] internal data property of O.

8.3.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of O is called the following steps are taken:

1. Set the value of the [[Extensible]] internal data property of O to false.
2. Return NormalCompletion(empty).

8.3.5 [[HasOwnProperty]] (P)
When the [[HasOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. 1f O does not have an own property with key P, return false
3. Return true.

8.3.6 [[GetOwnProperty]] (P)
When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Return the result of OrdinaryGetOwnProperty with arguments O and P.
8.3.6.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty.is called with Object O and with property key P, the
following steps are taken:

Assert: IsPropertyKey(P) is true.
If O does not have.an own property with key P, return undefined.
Let D be a newly created Property-Descriptor-with no fields.
Let X be O’s own property whose key is P.
If X is a data property, then
a. _Set D.[[Value]] to the value of X’s [[Value]] attribute.
b« Set D.[[Writable]] to the value of X’s [[Writable]] attribute
6. Else X is an accessor property, so
a. Set D.[[Get]] tothe value of X’s [[Get]] attribute.
b. . Set D.[[Set]] to the value of X’s [[Set]] attribute.
7. Set D.[[Enumerable]] to the value of X’s [[Enumerable]] attribute.
8. Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.
9. Return D.
8.3.7 [[DefineOwnProperty]] (P, Desc)

g E

When the [[DefineOwnProperty]] internal method of O is called with property key P and property descriptor
Desc, the following steps are taken:

1. Return the result of OrdinaryDefineOwnProperty with arguments O, P, and Desc.
8.3.7.1 OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnProperty is called with Object O, property key P, and property
descriptors Desc the following steps are taken:

1. Let current be the result of calling OrdinaryGetOwnProperty with arguments O and P.
2. Letextensible be the value of the [[Extensible]] internal data property of O.

© Ecma International 2012 51

secma

3. Return the result of VValidateAndApplyPropertyDescriptor with arguments O, P, extensible, Desc, and
current.

8.3.7.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDesriptor is called with Boolean value Extensible, and
property descriptors Desc, and Current the following steps are taken:

1. Return the result of ValidateAndApplyPropertyDescriptor with arguments undefined, undefined,
Extensible, Desc, and Current.

8.3.7.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptor is called with Object O, property key P,
Boolean value extensible, and property descriptors Desc, and current the following steps are taken:

This algorithm contains steps that test various fields of the Property Descriptor Desc for specific values. The
fields that are tested in this manner need not actually exist in Desc. If a field is absent then its value is
considered to be false.

NOTE If undefined is passed as the O argument only validation is performed and not object updates are preformed.

1. Assert: If O is not undefined then P is a valid property key.
2. Ifcurrent is undefined, then
a. |Ifextensible is false, then return false.
b. Assert: extensible is true.
c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
i If O is not undefined, then create an own data property named P of object O whose
[[Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values are described
by Desc. If the value of an attribute field of Desc is absent, the attribute of the newly
created property is set to its default value.
d. Else Desc must bean accessor Property Descriptor,
i If O is.not undefined, then create an own accessor property named P of object O whose
[[Get]l, [[Set]], [[Enumerable]] and [[Configurable]] attribute values are described by Desc.
Ifthe value of an attribute field of Desc. is absent, the attribute of the newly created
property.is set to.its default value.
e. Return true.
3. Return true,.if every field'in Desc is absent.
4. Return true, if everyfield in Desc also occurs in current and the value of every field in Desc is the same
valueas the corresponding field in current when compared using the SameValue algorithm (9.12).
5. If the [[Configurable]] field of current.is false then
a. Return false, if the [[Configurable]] field of Desc is true.
b. - Return false, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current
and Desc are the Boolean negation of each other.
6. If IsGenericDescriptor(Desc) is true, then no further validation is required.
7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
a. Return false, if the [[Configurable]] field of current is false.
b. If IsDataDescriptor(current) is true, then
i If O is not undefined, then convert the property named P of object O from a data property
to an accessor property. Preserve the existing values of the converted property’s
[[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s attributes to
their default values.
c. Else,
i If O is not undefined, then convert the property named P of object O from an accessor
property to a data property. Preserve the existing values of the converted property’s
[[Configurable]] and [[Enumerable]] attributes and set the rest of the property’s attributes to
their default values.
8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. |If the [[Configurable]] field of current is false, then
i Return false, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is
true.

52 © Ecma International 2012

»ecma

ii. If the [[Writable]] field of current is false, then
1. Return false, if the [[\Value]] field of Desc is present and
SameValue(Desc.[[Value]], current.[[Value]]) is false.
b. else the [[Configurable]] field of current is true, so any change is acceptable.
9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true,
a. If the [[Configurable]] field of current is false, then
i Return false, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]],
current.[[Set]]) is false.
ii. Return false, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]],
current.[[Get]]) is false.
10. If O is not undefined, then
a. For each attribute field of Desc that is present, set the correspondingly named attribute of the
property named P of object O to the value of the field.
11. Return true.

However, if O has an [[BuiltinBrand]] internal data property whose value is BuiltinArray O also has a more
elaborate [[DefineOwnProperty]] internal method defined in 15.4.5.1.

NOTE Step 10.b allows any field of Desc to be different from the corresponding field of current if current’s
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false. This
is allowed because a true [[Configurable]] attribute would permitian equivalent sequence of calls where [[Writable]] is first
set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

© Ecma International 2012 53

8.7.8 [[HasProperty]](P)

When the [[GetProperty]] internal method of O is called with property key P, the following steps are taken:

Assert: IsPropertyKey(P) is true.
Let desc be the result of calling [[HasOwnProperty]] internal method of O with argument P.
ReturnlfAbrupt(desc).
If desc is undefined, then

a. Let parent be the result of calling the [[GetInheritance]] internal method of O.

b. ReturnlfAbrupt(parent).

c. Ifparentis not null, then

i Return the result of calling the [[HasProperty]] internal method of parent with argument P.

5. Return false.

8.3.9 [[GetP]] (P, Receiver)

PR

When the [[GetP]] internal method of O is called with property key P and ECMAScipt language value Receiver
the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
3. ReturnlfAbrupt(desc).
4. If desc is undefined, then
a. Let parent be the result of calling the [[Getinheritance]] internal method of O.
b. ReturnlfAbrupt(parent).
c. If parentis null, then return undefined.
d. Return the result of calling the [[GetP]] internal method of parent with arguments P and Receiver.
5. If IsDataDescriptor(desc) is true, return-desc.[[Value]].
6. Otherwise, IsAccessorDescriptor(desc) must be trueso, let getter be desc.[[Get]].
7. If getter is undefined, return undefined.
8. Return theresult of calling the [[Call]] internal method of getter with Receiver as the thisArgument and an

empty. List as argumentsL.ist.
8.3.10[[SetP]] (P, V, Receiver)

When the [[SetP]] internal method of O is called with property key P, value V, and ECMAScipt language value
Receiver, the following steps are taken:

Assert: IsPropertyKey(P) is true.
Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
ReturnlfAbrupt(ownDesc).
If ownDesc is undefined, then

a. Let parent be the result of calling the [[GetInheritance]] internal method of O.

b. ReturnlfAbrupt(parent).

c. Ifparentis not null, then

i Return the result of calling the [[SetP]] internal method of parent with arguments P, V, and
Receiver.

PR

d. Else,
i If Type(Receiver) is not Object, return false.
il Return the result of performing CreateOwnDataProperty(Receiver, P, V).
5. If IsDataDescriptor(ownDesc) is true, then
a. If ownDesc.[[Writable]] is false, return false.
b. If Type(Receiver) is not Object, return false.

54 © Ecma International 2012

»ecma

c. Let existingDescriptor be be the result of calling the [[GetOwnProperty]] internal method of
Receiver with argument P.
d. ReturnlfAbrupt(existingDescriptor).
e. If existingDescriptor is not undefined, then
i Let valueDesc be the Property Descriptor {[[Value]]: V}.
ii. Return the result of calling the [[DefineOwnProperty]] internal method of Receiver with
arguments P and valueDesc.
f. Else Receiver does not currently have a property P,
i Return the result of performing CreateOwnDataProperty(Receiver, P, V).
6. If IsAccessorDescriptor(ownDesc) is true, then
a. Let setter be ownDesc.[[Set]].
b. If setter is undefined, return false.
c. LetsetterResult be the result of calling the [[Call]] internal method-of setter providing Receiver as
thisArgument and a new List containing V as argumentsList.
d. ReturnlfAbrupt(setterResult).
e. Return true.

8.3.11 [[Delete]] (P)

When the [[Delete]] internal method of O is called with property key P the following steps are taken:

1. Assert: IsPropertyKey(P) is true.

© Ecma International 2012 55

secma

2. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
If desc is undefined, then return true.
4. If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.
5. Return false.

8.3.12 [[Enumerate]] ()

w

When the [[Enumerate]] internal method of O is called the following steps are taken:

1. Return an Iterator object (reference xxxx) whose next method iterates over all the keys of enumerable
property keys of O. The mechanics and order of enumerating the properties .is not specified but must
conform to the rules specified below.

Enumerated properties do not include properties whose property key is a Symbol. Properties of the object
being enumerated may be deleted during enumeration. If a property that has not yet been visited during
enumeration is deleted, then it will not be visited. If new properties are added to the object being enumerated
during enumeration, the newly added properties are not guaranteed to be visited in the active enumeration. A
property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of
the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is “shadowed”
because some previous object in the prototype chain has a property with the same name. The values of
[[Enumerable]] attributes are not considered when.determining if a property of a prototype object is shadowed
by a previous object on the prototype chain.

The following is an informative algorithm that conforms to these rules

Let obj be O.
Let proto be the result of calling the [[GetInheritance]] internal method of O with no arguments.
ReturnlfAbrupt(proto).
If proto is the value null, then
a. Let propList be a new empty List.
5. Else
a. Let propList be the result of calling the [[Enumerate]] internal method of proto.
6. ReturnlfAbrupt(propList).
7. For each'name that is.the property key of an own property of O
a: If Type(name) is String, then
i Let desc be the result of calling OrdinaryGetOwnProperty with arguments O and name.
ii. If name is an element of propList, then remove name as an element of propList.
iii. If desc.[[Enumerable]] is true, then add name as an element of propList.
8. Orderthe elements of propList in an implementation defined order.
9. Return propkList.

8.3.13 [[OwnPropertyKeys]] ()

PR

When the [[OwnPropertyKeys]] internal method of O is called the following steps are taken:

1. Let keys be a new empty List.
2. For each own property key P of O
a. If Pisnota private Symbol, then
i. Add P as the last element of keys.
3. Return MakeListlterator(list).

8.3.14 [[Freeze]] ()
When the [[Freeze]] internal method of O is called the following steps are taken:

1. Return the result of MakeObjectSecure(O, true).

56 © Ecma International 2012

»ecma

8.3.15 [[Seal]] ()

When the [[Seal]] internal method of O is called the following steps are taken:

1. Return the result of MakeObjectSecure(O, false).

8.3.16 [[IsFrozen]] ()

When the [[IsFrozen]] internal method of O is called the following steps are taken:
1. Return the result of TestlfSecureObject (O, true).

8.3.17 [[IsSealed]] ()

When the [[IsSealed]] internal method of O is called the following steps-are taken:
1. Return the result of TestlIfSecureObject (O, false).

8.3.18 ObjectCreate Abstract Operation

The abstract operation ObjectCreate with optional argument proto (an-object or null) is used to specify the
runtime creation of new ordinary objects. It performs the following steps:

If proto was not provided, let proto be the intrinsic %ObjectPrototype%.

Let obj be a newly created ECMAScript object.

Set obj’s essential internal methods to the default ordinary object definitions specified in 8.3.
Set the [[Prototype]] internal data property of obj to proto.

Set the [[Extensible]] internal data property of obj to true.

Return obj.

R A

8.3.19 Ordinary Function Objects

Ordinary function objects encapsulate parameterized ECMAScript code closed over a lexical environment and
support the dynamic evaluation of that code. An ordinary function object is an ordinary object and has the
same internal data properties and (except as noted.below) the same internal methods as other ordinary
objects.

Ordinary function objects have the additional internal data properties listed in Table 13. They also have a
[[BuiltinBrand]] internal data property whose value is BuiltinFunction.

Ordinary function objects provide alternative definitions for the [[GetP]] and [[GetOwnProperty]] internal
methods. These alternatives prevent the value of strict mode function from being revealed as the value of a
function object property named "caller". These alternative definitions exist sole to preclude a non-standard
legacy feature of some ECMAScript implementations from revealing information about strict mode callers. If
an implementation does not provide such a feature, it need not implement these alternative internal methods
for ordinary function objects.

© Ecma International 2012 57

secma

Table 13 -- Internal Data Properties of Ordinary Function Objects

Internal Data Property

Type

Description

[[Scope]]

Lexical
Environment

The Lexical Environment that the function was closed over.
Is used as the outer environment when evaluating the code
of the function.

[[FormalParameters]]

Parse Node

The root parse node of the source code that defines the
function’s formal parameter list.

[[Code]]

Parse Node

The root parse node of the source code that defines the
function’s body.

[[Realm]]

Realm Record

The Code Realm in which the function was created and
which provides any intrinsic <objects that are accessed
when evaluating the function.

[[ThisMode]]

(lexical, strict,
global)

Defines how this references are interpreted within the
formal parameters and code body of the function. lexical
means that this refers to the this value of a lexically
enclosing function. strict means that the this value is used
exactly as provided by an invocation of .the function.
global means that a this value of undefined is.interpreted
as a reference to the global object.

[[Strict]]

Boolean

true if this is a strict mode function, false this is not a strict
mode function.

[[Home]]

Object

If the function uses super, this is the object whose
[[Inheritance]] provides the object where super property
lookups begin. Not present for functions that don't
reference super.

[[MethodName]]

String or
Symbol

If the function uses super, this is the property keys that is
used for unqualified references to super. Not present for
functions that don’t reference super.

Ordinary function objects all have the [[Call]], [[GetP]] and [[GetOwnProperty]] internal methods defined here.
Oridinary functions that are also constructors in addition have the [[Construct]] internal method.
8.3.19.1 [[Call]] Internal Method

The [[Call]] internal-method for an ordinary Function object F is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

Let callerContext be the running execution context.

If, callerContext is not already suspended, then Suspend callerContext.

Let calleeContext be a new ECMAScript Code execution context.

Let calleeRealm be the value of F’s [[Realm]] internal data property.

Set calleeContext’s Realm/calleeRealm.

Let thisMode be the value of F’s [[ThisMode]] internal data property.

If thisMode is lexical, then

a. LetlocalEnv be the result of calling NewDeclarativeEnvironment passing the value of the [[Scope]]

internal data property of F as the argument.

NookwhE

8. Else,
a. If thisMode is strict, set thisValue to thisArgument.
b. Else
i if thisArgument is null or undefined, then
1. Set thisValue to calleeRealm.[[globalThis]].
ii. Else if Type(thisArgument) is not Object, set the thisValue to ToObject(thisArgument).
iii. Else set the thisValue to thisArgument.
c. LetlocalEnv be the result of calling NewFunctionEnvironment passing F and thisValue as the
arguments.
9. Set the LexicalEnvironment of calleeContext to localEnv.
10. Set the VariableEnvironment of calleeContext to localEnv.

58 © Ecma International 2012

»ecma

11. Push calleeContext on to the execution context stack; calleeContext is now the running execution context.
12. Let status be the result of performing Function Declaration Instantiation using the function F, argumentsList
, and localEnv as described in 10.5.3.
13. If status is an abrupt completion, then
a. Remove calleeContext from the execution context stack and restore callerContext as the running
execution context.
b. Return status.
14. Let result be the result of evaluating the FunctionBody that is the value of F's [[Code]] internal data
property.
15. Remove calleeContext from the execution context stack and restore callerContext as the running execution
context.
16. Return result.

NOTE Most ordinary functions use a Function Environment Record as their LexicalEnvironment. Ordinary functions
that are arrow functions use a Declarative Environment Record as their LexicalEnvironment:

8.3.19.2 [[Construct]] Internal Method

The [[Construct]] internal method for an ordinary Function-object F is called with a single parameter
argumentsList which is a possibly empty List of ECMAScript language values. The following steps are taken:

1. Return the result of OrdinaryConstruct with arguments F and argumentsList.
8.3.19.2.1 OrdinaryConstruct (F, argumentsList, fallBackProto)

When the abstract operation OrdinaryConstruct.is called with Object F and List argumentsList the following
steps are taken:

1. Let creator be the result of Get(F, @@create).
2. ReturnlfAbrupt(creator).
3. Ifcreator is not undefined, then
a. Let obj be the result-of calling the [[Call]] internal method of creator with arguments F and an empty List.

4. Else creator is undefined.so fall back to object creation defaults

a. Letobj be theresult of calling OrdinaryCreateFromConstructor(F, "$0ObjectPrototype%").
ReturnlfAbrupt(obj):
Let result be the result of calling the [[Call]] internal method of F, providing obj and argumentsList as the arguments.
ReturnlfAbrupt(result).
If Type(result).is Object then return result.
Return obj.

© oo~ G

8.3.19.3 [[GetP]] (P, Receiver)

When the [[GetP]] internal method of ordinary function object F is called with property key P and ECMAScipt
language value Receiver the following steps are taken:

1. Letv be the result of calling the default ordinary object [[GetP]] internal method (8.3.7) on F passing P and
Receiver as arguments:

2. ReturnlfAbrupt(v).

3. IfPis "caller™ andv is astrict mode Function object, return null.

4. Returnv.

8.3.19.4 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of ordinary function object F is called with property key P, the
following steps are taken:

1. Letv be the result of calling the default ordinary object [[GetOwnProperty]] internal method (8.3.6) on F
passing P as the argument.

2. ReturnlfAbrupt(v).

3. If IsDataDescriptor(v) is true, then

© Ecma International 2012 59

secma

a. IfPis "callexr" andv.[[Value]] is a strict mode Function object, then
i Set v.[[Value]] to null.
4. Returnv.

8.4 Built-in Exotic Object Internal Methods and Data Fields

This specification define several kinds of built-in exotic objects. These objects generally behave similar to
ordinary objects except for a few specific situtations. The following exotic objects use the ordinary object
internal methods except where it is explicitly specified wise below:

8.4.1 Bound Function Exotic Objects

A bound function is an exotic object that wrappers another function object. A’bound function is callable (it has
[[Call]] and [[Construct]] internal methods). Calling a bound function generally results in a call of its wrappered
function.

Bound function objects do not have the internal data properties of ordinary function abjects defined in Table
13. Instead they have the internal data properties defined in° Table 14. They also have a [[BuiltinBrand]]
internal data property whose value is BuiltinFunction.

Table 14 -- Internal Data Properties of Exotic Bound Function Objects

Internal Data Property Type Description

[[BoundTargetFunction]] | Callable Object | The wrappered function object.

[[BoundThis]] Any The value that is always passed as the this value when
calling the wrappered function.

[[BoundArguments]] List of Any A list of values that whose elements are used as the first
arguments to any call.to the wrappered function.

Unlike ordinary function objects, bound function objects do not use alternative definitions of the [[GetP]] and
[[GetOwnPropety]] internal methods. Bound function objects provide all of the essential internal methods as
specified in 8.3. However, they use the following definitions for the essential internal methods of function
objects.

8.4.1.1 [[Call]]

When the [[Call]] internal method of an exotic bound function object, F, which was created using the bind
function is‘called with parameters thisArgument and argumentsList, a List of ECMAScript language values, the
following steps are taken:

Let boundArgs be the value of F’s [[BoundArguments]] internal data property.

Let boundThis be the value of F’s [[BoundThis]] internal data property.

Let target be the value of F’s [[BoundTargetFunction]] internal data property.

Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list argumentsList in the same order.

5. Return the result of calling the [[Call]] internal method of target providing boundThis as thisArgument and
providing args as argumentsList.

8.4.1.2 [[Construct]]

PR

When the [[Construct]] internal method of an exotic bound function object, F that was created using the bind
function is called with a list of arguments ExtraArgs, the following steps are taken:

Let target be the value of F’s [[BoundTargetFunction]] internal data property.

If target has no [[Construct]] internal method, a TypeError exception is thrown.

Let boundArgs be the value of F'’s [[BoundArguments]] internal data property.

Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list ExtraArgs in the same order.

5. Return the result of calling the [[Construct]] internal method of target providing args as the arguments.

PR

60 © Ecma International 2012

eCina

8.4.1.3 BoundFunctionCreate Abstract Operation

The abstract operation BoundFunctionCreate with arguments targetFunction, boundThis and boundArgs is
used to specify the creation of new Object objects. It performs the following steps:

Let proto be the intrinsic %FunctionPrototype%.

Let obj be a newly created ECMAScript object.

Set obj’s essential internal methods to the default ordinary object definitions specified in 8.3.
Set the [[Call]] internal method of obj as described in 8.4.1.1.

Set the [[Construct]] internal method of obj as described in 8.4.1.2.

Set the [[Prototype]] internal data property of obj to proto.

Set the [[Extensible]] internal data property of obj to true.

Set the [[BoundTargetFunction]] internal data property of obj to targetFunction.
Set the [[BoundThis]] internal data property of obj to the value of boundThis.

10 Set the [[BoundArguments]] internal data property of obj to boundArgs.

11. Add the [[BuiltinBrand]] internal data property with value BuiltinFunction to obj.
12. Return obj.

CoOoNoO~WNE

8.4.2 Array Exotic Objects

An Array object is an exotic object that gives special‘treatment to a.certain class of property names. A
property name P (in the form of a String value) is an array index if and-only if ToString(ToUint32(P)) is equal to
P and ToUint32(P) is not equal to 2%2-1. A property whose property name is an array index is also called an
element. Every Array object has a 1ength property whose value is always a nonnegative integer less than 2%,
The value of the 1length property is numerically greater than the name of every property whose name is an
array index; whenever a property of an Array object is created or changed, other properties are adjusted as
necessary to maintain this invariant. Specifically, whenever a property is added whose name is an array index,
the 1length property is changed, if necessary, to be one more than the numeric value of that array index; and
whenever the length property is changed, every property whose name:is an array index whose value is not
smaller than the new length is automatically deleted. This constraint applies only to own properties of an Array
object and is unaffected by 1ength or array index properties that may be inherited from its prototypes.

Exotic Array objects always have a non-configurable property named "length".

Exotic Array objects have the same internal data properties as ordinary objects. They also have a
[[BuiltinBrand]] internal data property whose value is BuiltinArray.

Exotic Array objects provide alternative definitions for the [[SetP]] and [[DefineOwnProperty]] internal methods.
Except for these two internal methods, exotic Array objects provide all of the other essential internal methods
as specified in 8.3.

8.4.2.1 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Array object A is called with property P, and
Property Descriptor Desc the following steps are taken:

1. Assert: IsPropertyKey(P) is truet.
2. IfPis "length", then

a. Return the result of calling ArraySetLength with arguments A, and Desc.
3. Elseif Pis an array index, then

a. LetoldLenDesc be the result of calling the [[GetOwnProperty]] internal method of A passing
"length' as the argument. The result will never be undefined or an accessor descriptor because
Array objects are created with a length data property that cannot be deleted or reconfigured.
Let oldLen be oldLenDesc.[[Value]].
Let index be ToUint32(P).
ReturnlfAbrupt(index).
If index > oldLen and oldLenDesc.[[Writable]] is false, then return false.
Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, P, and Desc as
arguments.

D o0 o

© Ecma International 2012 61

4,

eCmna

g. ReturnlfAbrupt(succeeded).
h. If succeeded is false, then return false.
i. If index > oldLen
i Set oldLenDesc.[[Value]] to index + 1.
ii. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, "length",
and oldLenDesc as arguments.
iii. ReturnlfAbrupt(succeeded).
j. Return true.
Return the result of calling OrdinaryDefineOwnProperty passing A, P, and Desc as arguments.

8.4.2.3 ArrayCreate Abstract Operation

The abstract operation ArrayCreate with argument length (a positive integer) is used to specify the creation of
new exotic Array objects. It performs the following steps:

Nk wWNE

9.

Let A be a newly created ECMAScript object.

Set A’s essential internal methods to the default ordinary object definitions specified in.8.3.

Set the [[SetP]] internal method of A as specified in 8.4.2.1.

Set the [[DefineOwnProperty]] internal method of A as specified in 8.4.2.2.

Set the [[Prototype]] internal data property of A to the intrinsic object %ArrayPrototype%.

Set the [[BuiltinBrand]] internal data property of A to the value BuiltinArray.

Set the [[Extensible]] internal data property of A to true.

Call OrdinaryDefineOwnProperty with arguments A, "1length" and Property Descriptor {[[Value]]: length,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false}.

Return A.

8.4.2.4 ArraySetLength Abstract Operation

When the abstract operation ArraySetLength is called with-an exotic Array object A, and Property Descriptor
Desc the following steps are taken:

1.

wn

N O A

10.
11.

12.

13.
14,
15.

62

Let oldLenDesc be the result of calling the [[GetOwnProperty]] internal method of A passing ""length" as
the argument. The result will never be undefined or an accessor descriptor because Array objects are
created with a length data property that cannot be deleted or reconfigured.
Let oldLen be oldLenDesc.[[Value]].
If the [[Value]] field of Desc is.absent, then
a. Return the result of calling OrdinaryDefineOwnProperty passing A, "length', and Desc as
arguments.
Let newLenDesc be a copy of Desc.
LetinewLen be ToUint32(Desc.[[Value]]).
If newLen is not equal to ToNumber(Desc.[[Value]]), throw a RangeError exception.
Set newLenDesc.[[Value]] to newLen.
If newLen >oldLen, then
a. Return the result of calling OrdinaryDefineOwnProperty passing A, "length™, and newLenDesc as
arguments.
If oldLenDesc.[[Writable]] is false, then return false.
If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
Else,
a. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
b. Let newWritable be false.
c. Set newLenDesc.[[Writable]] to true.
Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, "length", and newLenDesc
as arguments.
ReturnlfAbrupt(succeeded).
If succeeded is false, return false.
While newLen < oldLen repeat,
a. SetoldLen tooldLen —1.
b. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing
ToString(oldLen).
c. ReturnlfAbrupt(succeeded).

© Ecma International 2012

eCina

d. If deleteSucceeded is false, then
i Set newLenDesc.[[Value]] to oldLen+1.
ii. If newWritable is false, set newLenDesc.[[Writable]] to false.
iii. Let succeeded be the result of calling OrdinaryDefineOwnProperty passing A, "length",
and newLenDesc as arguments.
iv. ReturnlfAbrupt(succeeded).
V. Return false.
16. If newWritable is false, then
a. Call OrdinaryDefineOwnProperty passing A, "length', and Property Descriptor{[[WTritable]]:
false} as arguments. This call will always return true.
17. Return true.

8.4.3 String Exotic Objects

A String object is an exotic object that encapsulates a String value and exposes. virtual array index data
properties corresponding to the individual code unit elements of the string value. Exotic String objects always
have a data property named "length" whose value is the number of code unit elements.in the encapsulated
String value. Both the code unit data properties and the "length" property are non-writable and non-
configurable.

Exotic String objects have the same internal data properties as ordinary objects. They also have a
[[StringData]] internal data property and a [[BuiltinBrand]] internal data property whose value is
BuiltinStringWrapper.

Exotic String objects provide alternative definitions.for the following internal methods. All of the other exotic
String object essential internal methods that are not defined below are as specified in 8.3.

8.4.3.1 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] .internal-method of exatic String object O is called with property key P, the
following steps are taken:

1. Assert: IsPropertyKey(P) is true.

2. Let has be the result of calling the ordinary object [[HasOwnProperty]] internal method (8.3.5) on O with
argument P.

3. ReturnIfAbrupt(has).

4. If has is true; then.return true.

5. Let index be Tolnteger(P).

6. ReturnlfAbrupt(index).

7. Let absIntindex be ToString(abs(index)).

8. ReturnlfAbrupt(absintindex).

9. If SameValue(absIntindex, P) is false return false.

10. Let str be the String value of the [[StringData]] internal property of O.

11. Let len be the number of elements in str.

12. If len < index, return false.

13. Return true.

8.4.3.2 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an an exotic String object S is called with property key P the
following steps are taken:

Assert: IsPropertyKey(P) is true.

Let desc be the result of OrdinaryGetOwnProperty(S, P).
ReturnlfAbrupt(desc).

If desc is not undefined return desc.

Let index be Tolnteger(P).

ReturnlfAbrupt(index).

Let absIntindex be ToString(abs(index)).

NogkrwbhE

© Ecma International 2012 63

secma

8. ReturnlfAbrupt(absintindex).

9. If SameValue(absintindex, P) is false return undefined.

10. Let str be the String value of the [[StringData]] internal data property of S.

11. Let len be the number of elements in str.

12. If len < index, return undefined.

13. Let resultStr be a String value of length 1, containing one code unit from str, specifically the code unit at
position index, where the first (leftmost) element in str is considered to be at position 0, the next one at
position 1, and so on.

14. Return a Property Descriptor { [[Value]]: resultStr, [[Enumerable]]: true, [[Writable]]: false,
[[Configurable]]: false }.

8.4.3.3 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic String object O is. called with property P, and
Property Descriptor Desc the following steps are taken:

1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
2. Let extensible be the result of calling the [[IsExtensible]] internal method of O.

3. Return the result of ValidateAndApplyPropertyDescriptor with arguments O, P, extensible, Desc, and
current.

NOTE This algorithm differs from the ordinary object OrdinaryDefineOwnProperty abstract operation algorithm only in
invocation of [[GetOwnProperty]] in step 1 and [[IsExtensible]] in step 2.

8.4.3.4 [[Enumerate]] ()
When the [[Enumerate]] internal method of an exotic String object O is called the following steps are taken:
8.4.3.5 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]]-internal method of ‘an exotic String object O is called the following steps are
taken:

8.4.4 Exotic Symbol Objects

An Symbol object is an exotic object that may be used-as a property key. Symbol exotic objects are unique in
that they are always immutable and never observably reference any other object.

Exotic String objects have the a single internal data properties named [[Private]] that is set when the object is
created-and never modified.

Exotic Symbol objects provide alternative definitions for all of the essential internal methods.
8.4.4.1 [[Getlnheritance]] ()

When the [[Getlnheritance]] internal method of an exotic Symbol object O is called the following steps are
taken:

1. Return null.
8.4.4.2 [[SetInheritance]] (V)

When the [[Setinheritance]] internal method of an exotic Symbol object O is called with argument V the
following steps are taken:

1. Assert: Either Type(V) is Object or Type(V) is Null.
2. Return false.

64 © Ecma International 2012

»ecma

8.4.4.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of an exotic Symbol object O is called the following steps are taken:
1. Return false.

8.4.4.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of an exotic Symbol object an exotic Symbol object O is
called the following steps are taken:

1. Return NormalCompletion(empty).
8.4.45 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of an exotic Symbol object O is called with property key P, the
following steps are taken:

1. Return false.
8.4.4.6 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic Symbolobject O is called with property key P, the
following steps are taken:

1. Return undefined.

8.4.4.7 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an-exotic Symbol object O is called with property key P
and property descriptor Desc, the following steps are taken:

1. Return false.

8.4.4.8 [[HasProperty]] (P)

When the [[HasProperty]] internal method of an exotic Symbol object O is called with property key P, the
following steps-are taken:

1. Return false.

8.4.4.9 [[GetP]] (P, Receiver)

When the [[GetP]] internal method of an exotic Symbol object O is called with property key P and ECMAScipt
language value Receiver the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. IfPis "toString", then

a. Let ctx be the running execution context.

b. Let ctxRealm be ctx’s Realm component.

c. Return ctxRealm.[[intrinsics]].% ObjProto_toString %.
3. Return undefined.

8.4.4.10 [[SetP]] (P, V, Receiver)

When the [[SetP]] internal method of an exotic Symbol object O is called with property key P, value V, and
ECMAScipt language value Receiver, the following steps are taken:

1. Return false.

© Ecma International 2012 65

secma

8.4.4.11 [[Delete]] (P)

When the [[Delete]] internal method of an exotic Symbol object O is called with property key P the following
steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Return true.

8.4.4.12 [[Enumerate]] ()
When the [[Enumerate]] internal method of an exotic Symbol object O is called the following steps are taken:

1. Return an Iterator object (reference xxxx) whose next method immediately throws %Stoplteration% and
forms no other action..

8.4.4.13 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an exotic Symbol object O is called the following steps are
taken:

1. Return an Iterator object (reference xxxx) whose next method immediately throws %Stoplteration% and
forms no other action.

8.4.4.14 [[Freeze]] ()

When the [[Freeze]] internal method of an exatic Symbol object O is called the following steps are taken:
1. Return true

8.4.4.15 [[Seal]] ()

When the [[Seal]] internal method of an exotic Symbol object O is called the following steps are taken:

2. Return true

8.4.4.16 [[IsFrozen]] ()

When the [[IskFrozen]}internal method of an exotic Symbol object O is called the following steps are taken:
1. Return true.

8.4.4.17 [[IsSealed]] ()

When the [[IsSealed]] internal method of an exotic Symbol object O is called the following steps are taken:
1. Return true.

8.4.5 Exotic Arguments Objects

An arguments object is an exotic object whose array index properties map to the formal parameters of a non-
strict function invocation.

Exotic arguments objects have the same internal data properties as ordinary objects. They also have a
[[ParsmeterMap]] internal data property and a [[BuiltinBrand]] internal data property whose value is
BuiltinArguments.

Exotic arguments objects provide alternative definitions for the following internal methods. All of the other
exotic arguments object essential internal methods that are not defined below are as specified in 8.3.

66 © Ecma International 2012

»ecma

8.4.6 Indexed Delegation Exotic Objects

A Indexed Delegation object is an exotic object that that delegates [[GetP]] and [[SetP]] handling of array
index property keys to methods of the object.

Indexed Delegation objects initially have the same internal data properties as ordinary objects.

Exotic Indexed Delegation objects provide alternative definitions for the following internal methods. All of the
other exotic Indexed Delegation object essential internal methods that are not defined below are as specified
in 8.3.

8.4.6.1 [[GetP]] (P, Receiver)

When the [[GetP]] internal method of an exotic indexed delegation object-O is called with property key P and
ECMAScipt language value Receiver the following steps are taken:

1. If SameValue(O, Receiver) is true and P is an array index, then
a. Letargs be anew List containing index.
b. Return the result of Invoke(O, @@elementGet, args)).
2. Return the result of calling the default ordinary object [[GetP]] internal method (8.3.7) on O passing P and
Receiver as arguments.

8.4.6.2 [[SetP]] (P, V, Receiver)

When the [[SetP]] internal method of an an exotic.indexed delegation object O is called with property key P,
value V, and ECMAScipt language value Receiver, the following steps are taken:

1. If SameValue(O, Receiver) is true and P is an array index, then
a. Letargs be anew List containing index and V.
b. Return the result of Invoke(O, @ @elementSet, args).
2. Return the result of callingthe default ordinary object [[SetP]] internal method (8.3.7) on O passing P, V,
and Receiver as arguments.

8.4.6.3 IndexedDelegatorCreate Abstract Operation

The abstract operation IndexedDelegatorCreate with argument prototype (is used to specify the creation of
new exotic Indexed Delegation objects. It performs the following steps:

Let A'lbe a newly created ECMAScript object.

Set A’s essential internal methods to the default ordinary object definitions specified in 8.3.
Set the [[GetP]] internal method of A'as specified in 8.4.6.1.

Setthe [[SetP]] internal method of A as specified in 8.4.6.2.

Set the [[Prototype]] internal data property of A to prototype.

Set the [[Extensible]] internal data property of A to true.

Return A.

NoohkwbE

8.4.7 Built-in Function Objects

The function objects specified in Clause 15 may be implemented as either ordinary function objects whose
behaviour is provided using ECMAScript code or as implementation provided exotic function objects whose
behaviour is provide in some other manner. In either case, the effect of calling such functions must be that
specified for each one in Clause 15.

If an implementation provided exotic object is used, the object must have the ordinary object behaviour
specified in 8.3 except for [[GetP]] and [[GetOwnProperty]] which must be as specified in 8.3.19. All such
exotic function objects also have [[Prototype]] and [[Extensible]] internal data properties and a [[BuiltinBrand]]
internal data property whose value is BuiltinFunction.

[[Calll]] and [[Construct]]

© Ecma International 2012 67

secma

8.5 Proxy Object Internal Methods and Internal Data Properties

A proxy object is an exotic object whose essential internal methods are partially implemented using
ECMAScript code. Every proxy objects has an internal data property called [[ProxyHandler]]. The value of
[[ProxyHandler]] is always an object, called the proxy’s handler object. Methods of a handler object may be
used to augment the implementation for one or more of the proxy object’s internal methods. Every proxy
object also has an internal data property called [[ProxyTarget]] whose value is usually an object. This object is
called the proxy’s target object.

When a handler method is called to provide the implementation of a proxy object internal method, the handler
method is passed the proxy’s target object as a parameter. A proxy’s handler object does not necessarily
have a method corresponding to every essential internal method. Invoking an<internal method on the proxy
results in the invocation of the corresponding internal method on the proxy’s target object is the handler object
does not have a method corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal data properties of a proxy object are always initialized when
the object is created and typically may not be modified. Some proxy objects are created in a manner that
permits them to be subsequent revoked. When a proxy is revoked, its [[ProxyHander]] internal data property is
set to a special revoked proxy handler object and its [[ProxyTarget]] internal data property is set to null.

Because proxy permit arbitrary ECMAScript code to be used to in the implementation of internal methods, it is
possible to define a proxy object that violates the invariants defined in8.1.6.2. An ECMAScript implementation
must be robust in the presence of such violations. Some of the internal method invariants defined in 8.1.6.2
are essential integrity invariants. These invariants are explicitly enforced by the proxy internal methods
specified in this section.

In the following algorithm descriptions, assume O is an ECMAScript proxy object, P is a property key value, V
is any ECMAScript language value, Desc is a Property Description record, and B is a Boolean flag.

8.5.1 [[GetInheritance]] ()
When the [[GetInheritance]] internal method of an exotic Proxy object O is called the following steps are taken:

Let handler be the‘value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "getPrototypeO£f").
ReturnlfAbrupt(trap).
If trap.is undefined, then

a. Return the result of calling the [[GetInheritance]] internal method of target.
Let handlerProto be the result of calling the [[Call]] internal method of trap with handler as the this value
and a.new List containing target.
7. ReturnlfAbrupt(handlerProto).
8. Let targetProto be the result of calling the [[GetInheritance]] internal method of target.
9. ReturnlfAbrupt(targetProto).
10. If SameValue(handlerProto, targetProto) is false, then throw a TypeError exception.
11. Return handlerProto.

O wwbE

13

NOTE [[GetInheritance] for proxy objects enforces the following invariant:
e [[Getinheritance] applied to the proxy object must return the same value as [[GetInheritance] applied to the proxy
object’s handler object.

8.5.2 [[Setlnheritance]] (V)

When the [[Setinheritance]] internal method of an exotic Proxy object O is called with argument V the following
steps are taken:

1. Assert: Either Type(V) is Object or Type(V) is Null.

2. Let handler be the value of the [[ProxyHandler]] internal data property of O.
3. Lettarget be the value of the [[ProxyTarget]] internal data property of O.

68 © Ecma International 2012

»ecma

4. Let trap be the result of GetMethod(handler, "setPrototypeO£f").
ReturnIfAbrupt(trap).
6. |Iftrap is undefined, then
a. Return the result of calling the [[SetInheritance]] internal method of target with argument V.
7. LettrapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target and V.
8. ReturnlfAbrupt(trapResult).
9. LettrapResult be ToBoolean(trapResult).
10. Let getProtoTrap be the result of GetMethod(handler, "getPrototypeOf£").
11. ReturnlfAbrupt(getProtoTrap).
12. If getProtoTrap is undefined, then
a. Return trapResult.
13. Let getProtoResult be the result of calling getProtoTrap with handler as the this value and a new List
containing target.
14. ReturnlfAbrupt(getProtoResult).
15. Let targetProto be the result of calling the [[GetInheritance]] internal method of target.
16. ReturnlfAbrupt(targetProto).
17. If SameValue(getProtoResult, targetProto) is false, then throw a TypeError exception.
18. Return trapResult.

o

NOTE [[Setinheritance] for proxy objects enforces the following invariant:
e After a [[Setinheritance]] call, [[GetInheritance] applied to the proxy object must return the same value as
[[GetInheritance] applied to the proxy object’s handler object.

8.5.3 [[IsExtensible]] ()
When the [[IsExtensible]] internal method of an exotic Proxy object O is called the following steps are taken:

Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internaldata property of O.
Let trap be the result of GetMethod(handler, "isExtensible").
ReturnIfAbrupt(trap).
If trap is undefined, then
a. Return theresult of calling the [[IsExtensible]] internal method of target.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target.
7. ReturnlfAbrupt(trapResult).
8. Let proxylsExtensible be ToBoolean(trapResult).
9. Let targetlsExtensible be the result of calling the [[IsExtensible]] internal method of target.
10. ReturnlfAbrupt(targetlsExtensible).
11. If SameValue(proxylsExtensible, targetlsExtensible) is false, then throw a TypeError exception.
12. Return proxylsExtensible.

g e

Sk

NOTE [[IsExtensible] for proxy objects enforces the following invariant:
e [[IsExtensible] applied to the proxy object must return the same value as [[IsExtensible] applied to the proxy
object’s handler object.

8.5.4 [[PreventExtensions]] ()
When the [[PreventExtensions]] internal method of an exotic Proxy object O is the following steps are taken:

Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "preventExtensions").
ReturnIfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[PreventExtensions]] internal method of target.
Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target.
7. ReturnlfAbrupt(trapResult).

ok whE

@

© Ecma International 2012 69

©e

11.

12.
13.
14.
15.
16.
17.

ecimd

Let isTrap be the result of GetMethod(handler, "isExtensible").
ReturnlfAbrupt(isTrap).

. IfisTrap is undefined, then

a. Return NormalCompletion(empty).
Let isTrapResult be the result of calling isTrap with handler as the this value and a new List containing
target.
ReturnlfAbrupt(isTrapResult).
Let proxylsExtensible be ToBoolean(isTrapResult).
Let targetlsExtensible be the result of calling the [[IsExtensible]] internal method of target.
ReturnlfAbrupt(targetlsExtensible).
If SameValue(proxylsExtensible, targetlsExtensible) is false, then throw a TypeError exception.
Return NormalCompletion(empty).

NOTE [[PreventExtensions] for proxy objects enforces the following invariant:

o After a [[PreventExtensions]] call, [[IsExtensible] applied to the proxy object must return the same value as
[[IsExtensible] applied to the proxy object’s handler object.

8.5.5 [[HasOwnProperty]] (P)

When the [[HasOwnProperty]] internal method of an exotic' Proxy object O is called with property key P, the
following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let handler be the value of the [[ProxyHandler]] internal data property of O.
3. Let target be the value of the [[ProxyTarget]] internal data property of O.
4. Lettrap be the result of GetMethod(handler, "hasOwn").
5. ReturnlfAbrupt(trap).
6. If trap is undefined, then
a. Return the result of calling the [[HasOwnProperty]] internal method of target with argument P.
7. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target and P.
8. ReturnlfAbrupt(trapResult).
9. Let success be ToBoolean(trapResult).
10. If success is false, then
a. LettargetDesc be the result of calling.the [[GetOwnProperty]] internal method of target with
argument P.
b. ReturnlfAbrupt(targetDesc).
c. ftargetDesc is not undefined, then
i If targetDesc.[[Configurable]] is false, then throw a TypeError exception.
il Let extensibleTarget be the result of calling the [[IsExtensible]] internal method of target.
iii. ReturnlfAbrupt(extensibleTarget).
iv. If ToBoolean(extensibleTarget) is false, then throw a TypeError exception.
11. Else success is true,
a. LetextensibleTarget be the result of calling the [[ISExtensible]] internal method of target.
b. ReturnlfAbrupt(extensibleTarget).
c. If ToBoolean(extensibleTarget) is true, then return success.
d. LettargetDesc be the result of calling the [[GetOwnProperty]] internal method of target with
argument P.
e. ReturnlfAbrupt(targetDesc).
f. If targetDesc is undefined, then throw a TypeError exception.
12. Return success.
NOTE [[HasOwnProerty] for proxy objects enforces the following invariants:

70

e A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.

e A property cannot be reported as non-existent, if it exists as a own property of the target object and the target
object is not extensible.

e A property cannot be reported as existent, if it does not exists as a own property of the target object and the
target object is not extensible.

© Ecma International 2012

/

ecna

8.5.6 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic Proxy object O is called with property key P, the
following steps are taken:

ocokrwnE

10.
11.
12.

13.
14,
15.
16.
17.
18.
19.
20.
21.

22.

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "getOwnPropertyDescriptor").
ReturnIfAbrupt(trap).
If trap is undefined, then

a. Return the result of calling the [[GetOwnProperty]] internal method of target with argument P.
Let trapResultObj be the result of calling the [[Call]] internal method of trap with handler as the this value
and a new List containing target and P.
ReturnlfAbrupt(trapResultObj).
If Type(trapResultObj) is neither Object or Undefined, then throw a TypeError exception.
Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.
ReturnlfAbrupt(targetDesc).
If trapResultObj is undefined, then
If targetDesc is undefined, then return undefined.
If targetDesc.[[Configurable]] is false, then throw a TypeError exception.
Let extensibleTarget be the result of calling the [[IsExtensible]] internal method of target.
ReturnlfAbrupt(extensibleTarget).
If ToBoolean(extensibleTarget) is false, then throw a TypeError exception.
Return undefined.
Let extensibleTarget be the result of calling the [[ISExtensible]] internal. method of target.
ReturnlfAbrupt(extensibleTarget).
Set extensibleTarget to ToBoolean(extensibleTarget),
Let resultDesc be ToPropertyDescriptor(trapResultObyj):
ReturnlfAbrupt(resultDesc).
Call CompletePropertyDescriptor(resultDesc, targetDesc).
Let valid be the result of IsCompatiblePropertyDesriptor (extensibleTarget, resultDesc, targetDesc).
If valid is false, then throw a TypeError exception.
If resultDesc.[[Configurable]] is false, then

a. If targetDesc is not undefined and targetDesc.[[Configurable]] is true, then

i Throw a TypeError exception.

Return resultDesc.

o oo o

NOTE [[GetOwnProerty] for proxy objects enforces the following invariants:

e _The result of [[GetOwnProperty]] must be either an Object or undefined.

o A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.

e A property cannot be reported as non-existent, if it exists as a own property of the target object and the target
object is not extensible.

e A property cannot be reported as existent, if it does not exists as a own property of the target object and the
target object is not extensible.

e A property cannot be reported as non-configurable, if it does not exists as a own property of the target object or if
it exists as a configurable own property of the target object.

e The result of [[GetOwnProperty]] can be applied to the target object using [[DefineOwnPropery]] and will not
throw an exception.

8.5.7 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an exotic Proxy object O is called with property key P and
property descriptor Desc, the following steps are taken:

oukwhE

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "defineProperty").
ReturnIfAbrupt(trap).

If trap is undefined, then

© Ecma International 2012 71

secma

a. Return the result of calling the [[DefineOwnProperty]] internal method of target with arguments P
and Desc.
7. Let descObj be FromPropertyDescriptor(Desc).
8. NOTE If Desc was originally generated from an object using ToPropertyDescriptor, then descObj will be that original
object.
9. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target, P, and descObj.
10. ReturnlfAbrupt(trapResult).
11. If ToBoolean(trapResult) is false, then return false.
12. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.
13. ReturnlfAbrupt(targetDesc).
14. Let extensibleTarget be the result of calling the [[IsExtensible]] internal method of target.
15. ReturnlfAbrupt(extensibleTarget).
16. Set extensibleTarget to ToBoolean(extensibleTarget),
17. If targetDesc is undefined, then
a. IfextensibleTarget is false, then throw a TypeError exception.
b. If Desc.[[Configurable]] is false, then throw a TypeError exception.
18. Else targetDesc is not undefined,
a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc , targetDesc) is false, then throw a
TypeError exception.
b. If Desc.[[Configurable]] is false and targetDesc.[[Configurable]] is true, then throw a TypeError
exception.
19. Return true.

NOTE [[GetOwnProerty] for proxy objects enforces the following invariants:
e A property cannot be added, if the target object.is not extensible.
e A property cannot be added as or modified to be non-configurable, if it does not exists as a non-configurable own
property of the target object.
e A property may not be non-configurable, if is corresponding configurable property of the target object exists.
e |If a property has a corresponding target object property.then apply the property descriptor of the property to the
target object using [[DefineOwnPropery]] will not throw an exception.

8.5.8 [[HasProperty]] (P)

When the [[HasProperty]] internal method of an exotic Proxy object O is called with property key P, the
following steps are taken:

13. Assert: IsPropertyKey(P) is true.
14. Let handler be the value of the [[ProxyHandler]] internal data property of O.
15. Let target be the value of the [[ProxyTarget]] internal data property of O.
16. Lettrap be the result of GetMethod(handler, "has").
17. ReturnlfAbrupt(trap).
18. If trapiis undefined, then
a. Return the result of calling the [[HasProperty]] internal method of target with argument P.
19. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target and P.
20. ReturnlfAbrupt(trapResult).
21. Let success be ToBoolean(trapResult).
22. If success is false, then
a. LettargetDesc be the result of calling the [[GetOwnProperty]] internal method of target with
argument P.
b. ReturnlfAbrupt(targetDesc).
c. If targetDesc is not undefined, then
i If targetDesc.[[Configurable]] is false, then throw a TypeError exception.
ii. Let extensibleTarget be the result of calling the [[IsExtensible]] internal method of target.
iii. ReturnlfAbrupt(extensibleTarget).
iv. If ToBoolean(extensibleTarget) is false, then throw a TypeError exception.
23. Return success.

NOTE [[HasProperty] for proxy objects enforces the following invariants:
e A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.

72 © Ecma International 2012

eCina

e A property cannot be reported as non-existent, if it exists as a own property of the target object and the target
object is not extensible.

8.5.9 [[GetP]] (P, Receiver)

When the [[GetP]] internal method of an exotic Proxy object O is called with property key P and ECMAScipt
language value Receiver the following steps are taken:

Assert: IsPropertyKey(P) is true..
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "get").
ReturnIfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[GetP]] internal method of target with arguments P and Receiver.
7. Let trapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target, P, and Receiver.
8. ReturnlfAbrupt(trapResult).
9. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with.argument P.
10. ReturnlfAbrupt(targetDesc).
11. If targetDesc is not undefined, then
a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] is false, then
i. If SameValue(trapResult, targetDesc.[[Value]]) is false, then throw a TypeError
exception.
b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and targetDesc.[[Get]]
is undefined, then
i. If trapResult is not undefined, then throw a TypeError exception.
12. Return trapResult.

ocoukrwnE

NOTE [[GetP] for proxy objects enforces the following invariants:
e The value reported for a property must be the same as the value of the corresponding target object property if the
target object property is a non-writable, non-configurable data property.
e The value reported for a property must be undefined if the corresponding corresponding target object property is
non-configurable accessor property that has undefined as its [[Get]] attribute.

8.5.10 [[SetP]] (P, V, Receiver)

When the [[SetP]] internal method of an exotic Proxy object O is called with property key P, value V, and
ECMAScipt language value Receiver, the following steps are taken:

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal data property of O.
Let target be the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "set").
ReturnlfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[SetP]] internal method of target with arguments P, V, and Receiver.
7. LettrapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target, P, V, and Receiver.
8. ReturnIfAbrupt(trapResult).
9. If ToBoolean(trapResult) is false, then return false.
10. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.
11. ReturnIfAbrupt(targetDesc).
12. If targetDesc is not undefined, then
a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and
targetDesc.[[Writable]] is false, then
i. If SameValue(V, targetDesc.[[Value]]) is false, then throw a TypeError exception.
b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is false, then
i If targetDesc.[[Set]] is undefined, then throw a TypeError exception.

o krwnE

© Ecma International 2012 73

secma

13. Return true.

NOTE [[SetP]] for proxy objects enforces the following invariants:
e Cannnot change the value of a property to be different from the value of the corresoponding target object
property if the corresponding target object property is a non-writable, non-configurable data property.
e Cannot set the value of a property if the corresponding corresponding target object property is a non-configurable
accessor property that has undefined as its [[Set]] attribute.

8.5.11 [[Delete]] (P)

When the [[Delete]] internal method of an exotic Proxy object O is called with property name P the following
steps are taken:

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal data property of O.

Let target be the value of the [[ProxyTarget]] internal data property of O.

Let trap be the result of GetMethod(handler, "deleteProperty").

ReturnlfAbrupt(trap).

If trap is undefined, then
a. Return the result of calling the [[Delete]] internal method of target with argument P.

7. LettrapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target and P.

8. ReturnlfAbrupt(trapResult).

9. If ToBoolean(trapResult) is false, then return false.

10. Let targetDesc be the result of calling the [[GetOwnProperty]] internal method of target with argument P.

11. ReturnlfAbrupt(targetDesc).

12. If targetDesc is undefined, then return true.

13. If targetDesc.[[Configurable]] is false, then throw a TypeError exception.

14. Return true.

oukwhrE

NOTE [[Delete]] for proxy objects enforces the following invariant:
e A property cannot be deleted, if it exists as a non-configurable own property of the target object.

8.5.12 [[Enumerate]] ()
When the [[Enumerate]] internal method of an exotic.Proxy object O is called the following steps are taken:

Let handler-besthe value of the [[ProxyHandler]] internal data property of O.

Let target be the value of the [[ProxyTarget]] internal data property of O.

Let trap be the result of GetMethod(handler, "enumerate”).

ReturnIfAbrupt(trap).

If trap is undefined, then
a. Return the result of calling the [[Enumerate]] internal method of target.

6. LettrapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target.

7. ReturnlfAbrupt(trapResult).

8. If Type(trapResult) is'not Object, then throw a TypeError exception.

9. TODO: we may need to add a lot of additional invariant checking here according to the wiki spec. But
maybe it really isn’t necessary

10. Return trapResult.

gk whPE

NOTE [[Enumerate] for proxy objects enforces the following invariants:
e The result of [[Enumerate]] must be an Object.

8.5.13 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an exotic Proxy object O is called the following steps are
taken:

1. Let handler be the value of the [[ProxyHandler]] internal data property of O.
2. Let target be the value of the [[ProxyTarget]] internal data property of O.

74 © Ecma International 2012

»ecma

3. Lettrap be the result of GetMethod(handler, "ownPropertyKeys").

ReturnIfAbrupt(trap).

If trap is undefined, then
a. Return the result of calling the [[OwnPropertyKeys]] internal method of target.

6. LettrapResult be the result of calling the [[Call]] internal method of trap with handler as the this value and
a new List containing target.

7. ReturnlfAbrupt(trapResult).

8. If Type(trapResult) is not Object, then throw a TypeError exception.

9. TODO: we may need to add a lot of additional invariant checking here according to the wiki spec. But
maybe it really isn’t necessary

10. Return trapResult.

o s

NOTE [[OwnPropertyKeys] for proxy objects enforces the following invariants:
e The result of [[OwnPropertyKeys]] must be an Object.

8.5.14 [[Freeze]] ()

When the [[Freeze]] internal method of an exotic Proxy object O is‘called the following steps are taken:
1. Return the result of MakeObjectSecure(O, false).

8.5.15 [[Seal]] ()

When the [[Seal]] internal method of an exotic Proxy object O is called the following steps are taken:

1. Return the result of MakeObjectSecure(O; false).

8.5.16 [[IsFrozen]] ()

When the [[IsFrozen]] internal method of an exotic Proxy.object O is called the following steps are taken:
1. Return the result of TestlfSecureObject (O, true).

8.5.17 [[IsSealed]] ()

When the [[IsSealed]] internal method of an exotic Proxy-object O is called the following steps are taken:
1. Return the result of TestIfSecureObject (O, false).

8.5.18 {[Call]] (thisArgument, argumentsList)

The [[Call]] internal method of an exotic Proxy object O is called with parameters thisArgument and
argumentsList; a List of ECMAScript language values. The following steps are taken:

Let handler the value of the [[ProxyHandler]] internal data property of O.
Let target the value of the [[ProxyTarget]] internal data property of O.
Let trap be the result of GetMethod(handler, "apply").
ReturnIfAbrupt(trap).
If trap is undefined, then
a. Return the result of calling the [[Call]] internal method of target with arguments thisArgument and
argumentsList.
Let argArray be the result of CreateArrayFromList(argumentsList).
7. Return the result of calling the [[Call]] internal method of trap with handler as the this value and a new List
containing target, thisArgument, and argArray.

abwbE

Sk

NOTE An Proxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]] internal data
property is an object that has a [[Call]] internal method.

© Ecma International 2012 75

secma

8.5.19 [[Construct]] Internal Method

The [[Construct]] internal method of an exotic Proxy object O is called with a single parameter argumentsList
which is a possibly empty List of ECMAScript language values. The following steps are taken:

1. Let handler be the value of the [[ProxyHandler]] internal data property of O.
2. Lettarget be the value of the [[ProxyTarget]] internal data property of O.
3. Lettrap be the result of GetMethod(handler, "construct").
4. ReturnIfAbrupt(trap).
5. If trap is undefined, then
a. Return the result of calling the [[Construct]] internal method of target with argument argumentsList.
6. LetargArray be the result of CreateArrayFromList(argumentsList).
7. Return the result of callingv trap with handler as the this value and a new List containing target and
argArray.
NOTE An Proxy exotic object only has a [[Construct]] internal method if the initial value of its [[ProxyTarget]] internal

data property is an object that has a [[Construct]] internal method.

9 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics of the ECMAScript Language. Other, more specialized abstract operations are
defined throughout this specification.

9.1 Type Conversion and Testing

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics
of certain constructs it is useful to define a set of conversion abstract operations.. The conversion abstract
operations are polymorphic; that is, they can accept a value of any ECMAScript language type, but not of
specification types.

9.1.1 ToPrimitive

The abstract operation ToPrimitive takes.an._input argument and an optional argument PreferredType. The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredType to favour that type.
Conversion occurs according to Table 15:

Table 15 — ToPrimitive Conversions

Input Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToPrimitive(argument.[[value]]) also passing the optional hint
PreferredType.

Undefined Return argument (no conversion).

Null Return argument (no conversion).

Boolean Return argument (no conversion).

Number Return argument (no conversion).

String Return argument (no conversion).

Object Perform the steps following this table.

When the InputType is Object, the following steps are taken:
1. If PreferredType was not passed, let hint be "default".

2. Else if PreferredType is hint String, let hint be "string".
3. Else PreferredType is hint Number, let hint be "number".

76 © Ecma International 2012

eCina

4. LetexoticToPrim be the result of Get(argument, @@ ToPrimitive).
5. ReturnlfAbrupt(exoticToPrim).
6. IfexoticToPrim is not undefined, then
a. If IsCallable(exoticToPrim) is false, then throw a TypeError exception.
b. Let result be the result of calling the [[Call]] internal method of exoticToPrim, with argument as
thisArgument and a List containing hint as argumentsList.
c. ReturnlfAbrupt(result).
d. [Ifresult isan ECMAScript language value and Type(result) is not Object, then return result.
e. Else, throw a TypeError exception.
7. Ifhintis "default" then, let hint be "number".
8. Return the result of OrdinaryToPrimitive(argument,hint).

When the OrdinaryToPrimitive is called with arguments O and hint, the following steps are taken:

1. Assert: Type(O) is Object
Assert: Type(hint) is String and its value is either "string" or "number".
3. Ifhintis "string", then
a. LettryFirst be "toString".
b. LettrySecond be "valueOf".
4. Else,
a. LettryFirst be "valueOf".
b. LettrySecond be "toString".
5. Let first be the result of Get(O, tryFirst).
ReturnlfAbrupt(first).
7. If IsCallable(first) is true then,
a. Letresult be the result of calling the [[Call]] internal method of first, with O as thisArgument and an
empty List as argumentsList.
b. ReturnlfAbrupt(result).
c. Ifresultis an ECMAScript language value and Type(result) is not Object, then return result.
d. Else, throw a TypeError exception.
8. Letsecond be the result of Get(O, trySecond).
9. ReturnlfAbrupt(second).
10. If IsCallable(second)’is true then,
a. Letresult be the result of calling the [[Call]] internal method of second, with O as thisArgument and
an empty argument list.
b. ReturnlfAbrupt(result).
c. Ifresultis.an ECMAScript language value and Type(result) is not Object, then return result.
11. Throw.a TypeError exception.

N

S

NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However,
objects may over-ride this behaviour by defining-a @ @ ToPrimitve method. Of the objects defined in this specification only
Date objects (see 15.9.6) over-ride the default ToPrimitive behaviour. Date objects treat no hint as if the hint were String.

9.1.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 16:

© Ecma International 2012 77

ecind

Table 16 — ToBoolean Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return the argument. Otherwise return
ToBoolean(argument.[[value]])

Undefined Return false

Null Return false

Boolean Return the input argument (no conversion).

Number Return false if the argument is +0, —0, or NaN; otherwise return true.

String Return false if the argument is the empty String (its length is zero);
otherwise return true.

Object Return true

9.1.3 ToNumber

The abstract operation TONumber converts its argument to a value of type Number according to Table 17:

Table 17 — ToNumber Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]])

Undefined Return NaN

Null Return +0

Boolean Return 1. if argument is true: Return +0 if argument is false.

Number Return argument (no conversion).

String See grammar and note below.

Object Apply the following steps:
1. Let primValue be ToPrimitive(argument, hint Number).
2. Return ToNumber(primValue).

9.1.3.1 < ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret

the String as an expansion of StringNumericLiteral, then the result of ToONumber is NaN.

Syntax

StringNumericLiteral :::
StrWhiteSpacegpt

StrWhiteSpaceop: StrtNumericLiteral StrwhiteSpaceopt

StrWhiteSpace :::

StrwWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::

StrDecimalLiteral

HexIntegerLiteral

78

© Ecma International 2012

»ecma

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigitsep: ExponentPartop:
. DecimalDigits ExponentPartop
DecimalDigits ExponentPartopt

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of

0

1 2 3 4 5 6 7 8 9

ExponentPart :::
Exponentindicator Signedinteger

Exponentindicator ::: one of
e E

SignedIinteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::
0x HexDigit
0x HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of

0

NOTE

7.8.3):
[]
[)
[]
[]

1 2 3 45 6 7 8 9 a b c de £ A B C D E F

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see

A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.

A StringNumericLiteral that is decimal may have any number of leading 0 digits.

A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

A StringNumericLiteral that is empty or contains only white space is converted to +0.

Infinity and -Infinity are recognized as a StringNumericLiteral but not as a NumericLiteral.

Runtime Semantics

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 7.8.3), but some of the details are different, so the process for converting a String numeric
literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

e The MV of StringNumericLiteral ::: [empty] is O.

e The MV of StringNumericLiteral ::: StrwWhiteSpace is O.

e The MV of StringNumericLiteral ::: StrWhiteSpaceo: StrNumericLiteral StrWhiteSpaceqy is the MV of
StrNumericLiteral, no matter whether white space is present or not.

e The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

e The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

© Ecma International 2012 79

ecind

e The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

e The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

e The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is O, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a
floating-point +0 or -0 as appropriate.)

e The MV of StrUnsignedDecimalLiteral:::

e The MV of StrUnsignedDecimalLiteral::: DecimalDigits. is the MV of DecimalDigits.

e The MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits
plus (the MV of the second DecimalDigits times 10™"), where n is the number of characters in the second
DecimalDigits.

Infinity is 10'%% (a value so large that it will round to +oo).

e The MV of StrUnsignedDecimalLiteral::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.
e The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first

DecimalDigits plus (the MV of the second DecimalDigits times 10™)) times 10°, where n is the number of characters
in the second DecimalDigits and e is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral:::. DecimalDigits is the MV of DecimalDigits times 10", where n is the
number of characters in DecimalDigits.

e The MV of StrUnsignedDecimalLiteral:::. DecimalDigits ExponentPart isithe MV of DecimalDigits times 10°™",
where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral::: DecimalDigits is the MV. of DecimalDigits.

e The MV of StrUnsignedDecimalLiteral::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.

e The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.

e The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of
DecimalDigit.

e The MV of ExponentPart :::
e The MV of Signedinteger :::
e The MV of Signedinteger:::
e The MV of Signedinteger ;::

ExponentIndicator Signedinteger is the MV of Signedinteger.
DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.

- DecimalDigits is the negative of the MV of DecimalDigits.

e The MV of DecimalDigit ::: 0 or of HexDigit ::: 0 is 0.
The MV of DecimalDigit ::: 1 or of HexDigit ::: 1is-1.
The MV of DecimalDigit ::: 2 or of HexDigit ::: 2'is 2.
The MV _of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.
The MV of DecimalDigit::: 4 or of HexDigit ::: 4 is 4.
The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 is 5.
The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.
The MV of DecimalDigit :::'7 or of HexDigit ::: 7 is 7.
The MV of DecimalDigit :::'8 or of HexDigit ::: 8 is 8.
The MV of DecimalDigit.::: 9 or of HexDigit ::: 9 is 9.
The MV of HexDigit ::: a or of HexDigit ::: A is 10.

e The MV of HexDigit ::: b or of HexDigit ::: B is 11.

e The MV of HexDigit ::: ¢ or of HexDigit ::: Cis 12.

e The MV of HexDigit ::: d or of HexDigit ::: D is 13.

e The MV of HexDigit ::: e or of HexDigit ::: E is 14.

e The MV of HexDigit ::: £ or of HexDigit ::: Fis 15.

e The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.

e The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

e The MV of HexintegerLiteral ::: HexlIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the
MYV of HexDigit.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the

80 © Ecma International 2012

»ecma

String numeric literal is ‘-’, in which case the rounded value is —0. Otherwise, the rounded value must be the
Number value for the MV (in the sense defined in 8.5), unless the literal includes a StrUnsignedDecimalLiteral
and the literal has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a O digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart
and

e itisnotO; or

o there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

9.1.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

1. Let number be the result of calling ToNumber on the input argument.
2. ReturnlfAbrupt(number).

3. If number is NaN, return +0.

4. If number is +0, —0, +o0, Or —o0, return number.

5. Return the result of computing sign(number) x floor(abs(number)).
9.

1.5 Tolnt32: (Signed 32 Bit Integer)

The abstract operation Tolnt32 converts its argument to one of 2% integer values in the range —23! through
2311, inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input-argument.

ReturnlfAbrupt(number).

If number is NaN, +0, —0, +, or —oo, return +0.

Let int be sign(number) x floar(abs(number)).

Let int32bit be int modulo 2%; that is, a finite integer value k of Number type with positive sign and less
than 2% in magnitude<such that the mathematical difference of int and k is mathematically an integer
multiple of 232,

6. If int32bit is greater than or equal to 2%, return int32bit ~ 232, otherwise return int32bit.

g wbE

NOTE Given the above definition of Tolnt32:

e The ToInt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

e Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latter property that +eo and —w are
mapped to +0.)

e Tolnt32 maps -0 to +0.

9.1.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 232 integer values in the range 0 through 23%2-1,
inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

ReturnlfAbrupt(number).

If number is NaN, +0, -0, +o0, or —o0, return +0.

Let int be sign(number) x floor(abs(number)).

Let int32bit be int modulo 2%; that is, a finite integer value k of Number type with positive sign and less
than 2% in magnitude such that the mathematical difference of int and k is mathematically an integer
multiple of 232,

6. Return int32bit.

abwhE

NOTE Given the above definition of ToUInt32:
e Step 5 is the only difference between ToUint32 and Tolnt32.

© Ecma International 2012 81

secma

e The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

e ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +oo and —oo are
mapped to +0.)

e ToUint32 maps -0 to +0.

9.1.7 ToUintl6: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 22¢ integer values in the range 0 through 261,
inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

ReturnlfAbrupt(number).

If number is NaN, +0, -0, +, or —oo, return +0.

Let int be sign(number) x floor(abs(number)).

Let int16bit be posint modulo 2%; that is, a finite integer value k of Number type with positive sign and less
than 2% in magnitude such that the mathematical difference.of. int and k is mathematically an integer
multiple of 21,

6. Return intl16bit.

gL E

NOTE Given the above definition of ToUint16:

e The substitution of 216 for 2% in step 4 is the only difference between ToUint32 and ToUint16.
e ToUintl16 maps -0 to +0.

9.1.8 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 18:

Table 18 — ToString.Conversions

Argument Type Result

Completion Record |/If argument is an abrupt completion, return argument. Otherwise return
ToString(argument.[[value]])

Undefined "undefined"
Null "null"
Boolean If argument is true, then return "true".
If argument is false, then return "false".
Number See 9.8.1.
String Return argument (no conversion)
Object Apply the following steps:

1, Let primValue be ToPrimitive(argument, hint String).
2. Return ToString(primValue).

9.1.8.1 ToString Applied to the Number Type

The abstract operation ToString converts a Number m to String format as follows:

If m is NaN, return the String "NaN".

If mis +0 or -0, return the String "0".

If m is less than zero, return the String concatenation of the String "-" and ToString(—m).

If m is +oo, return the String "Infinity".

Otherwise, let n, k, and s be integers such that k > 1, 10! < s < 10¥, the Number value for s x 10" is m, and
k is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is not
divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these
criteria.

6. Ifk <n <21, return the String consisting of the k digits of the decimal representation of s (in order, with no
leading zeroes), followed by n—k occurrences of the character <0’.

agappwbdPRE

82 © Ecma International 2012

»ecma

7. 1f0 <n <21, return the String consisting of the most significant n digits of the decimal representation of s,
followed by a decimal point °.’, followed by the remaining k—n digits of the decimal representation of s.

8. If -6 <n <0, return the String consisting of the character ‘0°, followed by a decimal point ., followed by
—n occurrences of the character ‘0°, followed by the k digits of the decimal representation of s.

9. Otherwise, if k = 1, return the String consisting of the single digit of s, followed by lowercase character ‘e’,
followed by a plus sign ‘+’ or minus sign ‘=’ according to whether n—1 is positive or negative, followed by
the decimal representation of the integer abs(n—1) (with no leading zeroes).

10. Return the String consisting of the most significant digit of the decimal representation of s, followed by a
decimal point ‘.’, followed by the remaining k—1 digits of the decimal representation of s, followed by the
lowercase character ‘e’, followed by a plus sign ‘+’ or minus sign ‘=’ according to-whether n—1 is positive
or negative, followed by the decimal representation of the integer abs(n-1) (with no leading zeroes).

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

e If x is any Number value other than -0, then ToNumber(ToString(x)) is exactly the same Number value as x.
e The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such that k > 1, 10~ <'s < 10%, the Number value for s x 10"* is m, and k is as small as
possible. If there are multiple possibilities for s, choose the value of s for which s x 10" is closest in value to m. If there are
two such possible values of s, choose the one that is even. Note that K is the number of digits in the decimal representation of
s and that s is not divisible by 10.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey).. November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as

http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various net1ib mirror sites.

9.1.9 ToObject

The abstract operation ToObject converts its argument.to a value of type Object according to Table 19:

Table 19 — ToObject Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToObject(argument.[[value]])

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]] internal data property
is set to the value of argument. See 15.6 for a description of Boolean
objects.

Number Return a new Number object whose [[NumberData]] internal data property
is set to the value of argument. See 15.7 for a description of Number
objects.

String Return a new String object whose [[StringData]] internal data property is
set to the value of argument. See 15.5 for a description of String objects.

Object Return argument (no conversion).

9.1.10 ToPropertyKey

The abstract operation ToPropertyKey converts its argument to a value that can be used as a property key by
performing the following steps:

© Ecma International 2012 83

secmd

1. ReturnlfAbrupt(argument).
2. If Type(argument) is Object, then
a. Ifargument is an exotic String object, then
i Return argument.
3. Return ToString(argument).

9.2 Testing and Comparison Operations
9.2.1 CheckObjectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument.is a value that cannot be
converted to an Object using ToObject. It is defined by Table 20:

Table 20 — CheckObjectCoercible Results

Argument Type Result
Completion Record | If argument is an abrupt completion, return argument. Otherwise return
CheckObjectCoercible(argument.[[value]])
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return argument
Number Return argument
String Return argument
Object Return argument
9.2.2 IsCallable

The abstract operation IsCallable determines if its argument, which-must be an ECMAScript language value or
a Completion Record, is a callable function Object according to Table 21:

Table 21 — IsCallable Results

Argument Type Result

Completion Record | If argument is an abrupt _completion, return argument. Otherwise return
IsCallable(argument.[[value]])

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Object If argument has a [[Call]] internal method, then return true, otherwise return
false.

9.2.3 The SameValue Algorithm

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

ReturnlfAbrupt(x).
ReturnlfAbrupt(y).
If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then
a. Ifxis NaN andy is NaN, return true.
b. Ifxis+0andy is -0, return false.
c. Ifxis-0andy is+0, return false.

oukwhE

84

© Ecma International 2012

»ecma

d. Ifxisthe same Number value as vy, return true.
e. Return false.
7. If Type(x) is String, then
a. Ifxandy are exactly the same sequence of characters (same length and same characters in
corresponding positions) return true; otherwise, return false.
8. If Type(x) is Boolean, then
a. Ifxandy are both true or both false, then return true; otherwise, return false.
9. Return true if x and y are the same Object value. Otherwise, return false.

9.2.4 IsConstructor

The abstract operation IsConstructor determines if its argument, which must be an‘/ECMAScript language value
or a Completion Record, is a function object with a [[Construct]] internal method.

ReturnIfAbrupt(argument).

If Type(argument) is not Object, return false.

If argument has a [[Construct]] internal method, return true.
Return false.

PobE

9.2.5 IsPropertyKey

The abstract operation IsPropertyKey determine if its argument, which must be an ECMAScript language value
or a Completion Record, is a value that may be used as a property key.

1. ReturnlfAbrupt(argument).

2. If Type(argument) is String, return true.

3. If Type(argument) is Object and argument is an exotic Symbol object, return true.
4. Return false.

9.3 Operations on Objects
9.3.1 Get (O, P)

The abstract operation Get is used to retrieve the value of an specific property of an object. The operation is
called with arguments O and P where O-is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Return the result of calling the [[GetP]] internal method of O passing P and O as the arguments.
9.

3.2 Put (O, P, V, Throw)

The abstract operation Put is used to set the value of a specific property of an object. The operation is called
with arguments O, P, V, and Throw where O is the object, P is the property key, V is the new value for the
property and Throw is a Boolean flag. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Assert: Type(Throw) is Boolean.

4. Let success be the result of calling the [[SetP]] internal method of O passing P, V, and O as the arguments.
5. ReturnlfAbrupt(success).

6. If success is false and Throw is true, then throw a TypeError exception.

7. Return success.

9.

3.3 CreateOwnDataProperty (O, P, V)
The abstract operation CreateOwnProperty is used to create a new own property of an object. The operation is

called with arguments O, P, and V where O is the object, P is the property key, and V is the new value for the
property. This abstract operation performs the following steps:

© Ecma International 2012 85

secma

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Assert: O does not have an own property whose key is P..

Let extensible be the result of calling the [[IsExtensible]] internal method of O.
ReturnlfAbrupt(extensible).

If extensible is false, then return false.

Let newDesc be the Property Descriptor.

{[[\alue]l]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

8. Return the result of calling the [[DefineOwnProperty]] internal method of O passing P and newDesc as
arguments.

NogkwbE

9.3.4 DefinePropertyOrThrow (O, P, desc)

The abstract operation DefinePropertyOrThrow is used to call the [[DefineOwnProperlty]] internal method of an
object in a manner that will throw a TypeError exception if the requested property update can not be
performed. The operation is called with arguments O, P, and desc where O is the object, P is the property key,
and desc is the Property Descriptor for the property. This abstract operation perform, the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let success be the result of calling the [[DefineOwnProperty]] internal‘method of O passing P and desc as
arguments.

4. ReturnIfAbrupt(success).

5. If success is false, then throw a TypeError exception.

6. Return success.

9.3.5 DeletePropertyOrThrow (O, P)

The abstract operation Put is used to remove a specific own property of an object. It throws an exception is the
property is not configurable. The operation is called with arguments O and P where O is the object and P is
the property key. This abstractioperation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let success be the result of calling the [[Delete]].internal method of O passing P as the argument.
4. ReturnlfAbrupt(success).

5. If success is false, then throw a TypeError exception.

6. Return success.

9.

3.6 HasProperty (O, P)

The abstract operation HasProperty is used to determine whether an object has a property with the specified
property key. The property may be either an own or inherited. A Boolean value is return. The operation is
called with arguments O and P where O is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return the result of calling the [[HasProperty]] internal method of O argument P.

9.3.7 GetMethod (O, P)

The abstract operation GetMethod is used to get the value of an specific property of an object when the value
of the property is expected to be a function. The operation is called with arguments O and P where O is the
object, P is the property key. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let func be the result of calling the [[GetP]] internal method of O passing P and O as the arguments.
ReturnlfAbrupt(func).

i A

86 © Ecma International 2012

»ecma

5. If func is undefined, then return undefined.

6. If IsCallable(func) is false, then throw a TypeError exception.
7. Return func.
9.

3.8 Invoke(O,P [,args])

The abstract operation Invoke is used to call a method property of an object. The operation is called with
arguments P, O, and optionally args where P is the property key, O serves as both the lookup point for the
property and the this value of the call, and args is the list of arguments values passed to the method. If args is
not present, an empty List is used as its value. This abstract operation performs the following steps:

Assert: P is a valid property key.

If args was not passed, then let args be a new empty List.

Let obj be ToObject(O).

ReturnlfAbrupt(obj).

Let func be the result of GetMethod(obj, P).

ReturnlfAbrupt(func).

If func is undefined, throw a TypeError exception.

Return the result of calling the [[Call]] internal method of func passing O as thisArgument and args as
argumentsList.

9.3.9 MakeObjectSecure (O, immutable)

N~ WDE

The abstract operation MakeObjectSecure is used to fix the set of own properties of an object. If the Boolean
argument immutable is true all own data properties are also made non-writable. This abstract operation
performs the following steps:

Assert: Type(O) is Object.
Assert: Type(immutable) is Boolean.
Let keys be the result of calling [[OwnPropertyKeys]] internal method of O.
ReturnlfAbrupt(keys).
Let pendingException be undefined.
If immutable is false, then
a. Repeat for each element k of keys,
i~ Let status be the result of DefinePropertyOrThrow(O, k, PropertyDescriptor{
[[Configurable]]: false}).
ii. Ifstatus is/an Abrupt Completion, then
1. If pendingException is undefined, then set pendingException to status.

ourwhE

7. Else,
a. Repeat for each element k of keys,
i. Let status be the result of calling the [[GetOwnProperty]] internal method of O with k.
ii. Ifstatus is an Abrupt Completion, then
1. If pendingException is undefined, then set pendingException to status.
iii. Else,
1. Let currentDesc be status.[[value]].
2. If currentDesc is not undefined, then
a. If IsAccessorDescriptor(currentDesc) is true, then
i. Let desc be PropertyDescriptor{[[Configurable]]: false}.
b. Else,
i. Let desc be PropertyDescriptor [[Configurable]]: false,
[[Writable]]: false }.
c. Let status be the result of DefinePropertyOrThrow(O, k, desc).
d. If status is an Abrupt Completion, then
i. If pendingException is undefined, then set pendingException
to status.
8. If pendingException is not undefined, then return pendingException.
9. Return the result of calling the[[PreventExtensions]] internal method of O.

© Ecma International 2012 87

secma

9.3.10 TestlfSecureObject (O, immutable)

The abstract operation TestlfSecureObject is used to determine the set of own properties of an object are fixed.
If the Boolean argument immutable is true a check is also made to determine whether all own data properties
are non-writable. This abstract operation performs the following steps:

Assert: Type(QO) is Object.
Assert: Type(immutable) is Boolean.
Let status be the result of calling the [[IsExtensible]] internal method of O.
ReturnlfAbrupt(status).
If status is true, then return false
NOTE If the object is extensible, none of its properties are examined.
Let keys be the result of calling [[OwnPropertyKeys]] internal method of O:
ReturnlfAbrupt(keys).
Let pendingException be undefined.
. If immutable is false, then
. Let configurable be false.
. Let writable be false.
. Repeat for each element k of keys,
a. Let status be the result of calling the [[GetOwnProperty]] internal method of O with k.
b. If status is an Abrupt Completion, then
i. If pendingException is undefined, then set pendingException to status.
ii. Let configurable be true.
c. Else,
i. Let currentDesc be status.[[value]].
ii. If currentDesc is not undefined, then
1. Set configurable to configurable logically ored with
currentDesc.[[Configurable]].
2. If IsDataDescriptor(currentDesc) is true; then
a.. Set writable to writable logically ored with currentDesc.[[Writable]].
14. If pendingException is not.undefined, then return pendingException.
15. If immutable is true and-writable is true, then return false.
16. If configurable is true, then return false.
17. Return true.

CoOoNkwnE

Tl
WN RO

9.3.11 CreateArrayFromList (elements)

The abstract operation CreateArrayFromList is used to create an Array object whose elements are provided by
an internal List. This abstract operation performs the following steps:

Assert: elements is a List whose elements are all ECMAScript language values.
Let array be the result of the abstract operation ArrayCreate with argument 0.
Letn be 0.
For each element e of elements
a. Call CreateOwnDataProperty(array, ToString(n), e).
b. Assert: the calliin step 4.a will never result in an abrupt completion.
c. Incrementn. by 1.
5. Return array.

9.3.12 OrdinaryHaslinstance (C, O)

PR

The abstract operation OrdinaryHaslInstance implements the default algorithm for determining if an object O
inherits from the inheritance path used by constructor C. This abstract operation performs the following steps:

1. If IsCallable(C) is false, return false.

2. If C has a [[BoundTargetFunction]] internal data property, then
a. Ler BC be the value of C’s a [[BoundTargetFunction]] internal data property.
b. Return the result of instanceofOperator(O,BC) (see 11.8).

3. If Type(O) is not Object, return false.

4. Let P be the result of Get(C, "prototype™").

88 © Ecma International 2012

»ecma

5. ReturnlfAbrupt(P).
6. If Type(P) is not Object, throw a TypeError exception.
7. Repeat
a. Set O to the result of calling the [[GetInheritance]] internal method of O with no arguments.
b. ReturnlfAbrupt(O).
c. IfO isnull, return false.
d. If SameValue(P, O) is true, return true.

9.3.13 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto)

The abstract operation OrdinaryCreateFromConstructor creates an ordinary object whose [[Prototype]] value is
retrieved from a constructor's prototype property, if it exists. Otherwise the supplied default is used for
[[Prototype]]. This abstract operation performs the following steps:

1. Assert: intrinsicProto is a string value that is this specification’s name_of an intrinsic object. The corresponding
object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.
If Type(constructor) is not Object, then throw a TypeError exception.
Let proto be the result of Get(construtor, "prototype").
ReturnlfAbrupt(proto).
If Type(proto) is not Object, then
a. If constructor has a [[Realm]] internal data property, let realm be £’s [[Realm]].
b. Else,
i Let ctx be the running execution context.
ii. Let realm be be ctx’s Realm.
c. Letproto be realm’s intrinsic object.named. intrinsicDefaultProto.
6. Return the result of the abstract operation ObjectCreate with argument proto.

gk owb

NOTE If constructor does not supply a [[Prototype]] value, the default value that is used is obtained from the Code
Realm of the constructor function rather than from the running execution context. This accounts for the possibility that a
built-in @ @create method from a different. Code Realm might be installed on constructor.

10 Executable Code and Execution Contexts
10.1 Types of Executable Code
There are three types of ECMAScript executable code:

e Global'code is source text that is treated as an ECMAScript Script. The global code of a particular
Script does not include any source text that is parsed as part of a FunctionBody, ConciseBody,
ClassBody, or ModuleBody.

e Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter
to the built-in eval function is a String, it is treated as an ECMAScript Script. The eval code for a
particular invocation of eval is the global code portion of that Script.

e Function code is source text that is parsed to supply the value of the [[Code]] internal data
property (see 13.6) of function and generator objects. The function code of a particular
function or generator does not include any source text that is parsed as the function
code of a nested FunctionBody, ConciseBody, or ClassBody..

e Generator code is source text that is parsed to supply the value of the [[Code]] internal
data property (see 13.5) of generator objects. The generator code of a particular
generator does not include any source text that is parsed as the function code of a
nested FunctionBody, ConciseBody, or ClassBody. All generator code is also considered to
be function code, but only function code that is defined within a generator is generator
code.

e Module code is source text that is parse code that is provided as a ModuleBody. It is the code that is
directly evaluated when a module is initialized. The module code of a particular module does not

© Ecma International 2012 89

secma

include any source text that is parsed as part of a nested FunctionBody, ConciseBody, ClassBody, or
ModuleBody..

NOTE Function code is generally provided as the bodies of Function Definitions (13.1), Arrow Function Definditions
(13.2), Method Definitions (13.3) and Generator Definitions (13.4). Function code is also derived from the last argument to
the Function constructor (15.3). Generator code is provided as the bodies of Generator Definitions 13.4 and Generator
Expressions (11.7?7?7?).

10.1.1 Strict Mode Code

An ECMAScript Script syntactic unit may be processed using either unrestricted. or strict mode syntax and
semantics. When processed using strict mode the three types of ECMAScript code are referred to as strict
global code, strict eval code, and strict function code. Code is interpreted as strict mode code in the following
situations:

e Global code is strict global code if it begins with a Directive Prologue that contains a Use Strict Directive
(see 14.1).

e Module code is always strict code.

e Eval code is strict eval code if it begins with a Directive Prologue that contains a Use Strict Directive or if
the call to eval is a direct call (see 15.1.2.1.1) to the eval function that is contained in strict mode code.

e Function code that is part of a FunctionDeclaration, FunctionExpression, or accessor PropertyDefinition is
strict function code if its FunctionDeclaration, FunctionExpression, or. PropertyDefinition is contained in strict
mode code or if the function code begins with a Directive Prologue that contains a Use Strict Directive.

e Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last argument is a String that when processed as a FunctionBody begins with a Directive
Prologue that contains a Use Strict Directive.

10.1.2 Non-ECMAScript Functions

An ECMAScript implementation may support the evaluation of function objects whose evaluative behaviour is
expressed in some implementation® defined form.of executable code other than via ECMAScript code.
Whether a function object is an ECMAScript code function or a non-ECMAScript function is not semantically
observable from.the perspective of an ECMAScript code function that calls or is called by such a non-
ECMAScript function.

10.2 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiers to specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and/a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a
FunctionDeclaration, a BlockStatement, or a Catch clause of a TryStatement and a new Lexical Environment is
created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then the Lexical
Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current evaluation of the surrounding function.

90 © Ecma International 2012

»ecma

A global environment is a Lexical Environment which does not have an outer environment. The global
environment’s outer environment reference is null. A global environment’s environment record may be
prepopulated with identifier bindings and includes an associated global object whose properties provide some
of the global environment’s identifier bindings. This global object is the value of a global environment’'s this
binding. As ECMAScript code is executed, additional properties may be added to the global object and the
initial properties may be modified.

A method environment is a Lexical Environment that corresponds to the invocation of an ECMAScript function
object that establishes a new this binding. A method environment also captures the state necessary to
support super method invocations.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

10.2.1 Environment Records

There are two primary kinds of Environment Record values used in this specification: declarative environment
records and object environment records. Declarative environment records are used to define the effect of
ECMAScript language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch
clauses that directly associate identifier bindings with ECMAScript language values. Object environment
records are used to define the effect of ECMAScript elements such as WithStatement that associate identifier
bindings with the properties of some object. Global Environment Records and Function Environment Records
are specializations that are used for specifically for Script global declarations and for top-level declarations
within funtions.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with three concrete subclasses, declarative
environment record, object environment record, and global environment record. Function environment records
are a subclass of declarative environment record. The abstract class includes the abstract specification
methods defined in Table 22. These abstract methods have distinct concrete algorithms for each of the
concrete subclasses.

© Ecma International 2012 91

secma

Table 22 — Abstract Methods of Environment Records

Method Purpose

HasBinding(N) Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D) Create a new but uninitialised mutable binding in an
environment record. The String value N is the text of the bound
name. If the optional Boolean argument D is true the binding is
may be subsequently deleted.

CreateImmutableBinding(N) Create a new but uninitialised® immutable binding in an
environment record. The String«value N is the text of the bound
name.

InitializeBinding(N,V) Set the value of an already existing but uninitialised binding in

an environment record. The String value N is the text of the
bound name. V is the value for the binding and is a value of any
ECMAScript language type.

SetMutableBinding(N,V, S) Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for.the binding and may be a value of any
ECMAScript language type. S is a Boolean flag. If S is true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict mode references.

GetBindingValue(N,S) Returns the. value of an already existing binding from an
environment record. The String value N is the text of the bound
name. S is used to identify strict mode references. If S is true
and' the binding does not exist or is uninitialised throw a
ReferenceError exception.

DeleteBinding(N) Delete a binding from an environment record. The String value N
is the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

HasThisBinding() Determine if an environment record establishes a this binding.
Return true if it does and false if it does not.

HasSuperBinding() Determine if an environment record establishes a super
method binding. Return true if it does and false if it does not.

WithBaseObject () If this environment record is associated with a with statement,

return the with object. Otherwise, return undefined.

10.2.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable,
constant, let, class, module, import, and/or function declarations. A declarative environment record binds the
set of identifiers defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the
following algorithms.

10.2.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

1. LetenvRec be the declarative environment record for which the method was invoked.
2. IfenvRec has a binding for the name that is the value of N, return true.

92 © Ecma International 2012

»ecma

3. If it does not have such a binding, return false.
10.2.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates
a new mutable binding for the name N that is uninitialised. A binding must not already exist in this
Environment Record for N. If Boolean argument D is provided and has the value true the new binding is
marked as being subject to deletion.

1. LetenvRec be the declarative environment record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Create a mutable binding in envRec for N and and record that it is uninitialised. If D is true record that the
newly created binding may be deleted by a subsequent DeleteBinding call.

4. Return NormalCompletion(empty)

10.2.1.1.3 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is uninitialised. A binding must not already exist in this
environment record for N.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Create an immutable binding in envRec for N and record that'it is uninitialised.

10.2.1.1.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for. declarative environment records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the value
of argument V. An uninitialised binding for N must already exist.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec must have an uninitialised binding for N.

3. Set the bound value for N in envRec to V.

4. Record that the binding for N in envRec has been initialised.

10.2.1.1.5 SetMutableBinding (N,V,S)

The concrete'Environment Record method SetMutableBinding for declarative environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. A binding for N must already exist. If the binding is an immutable binding, a
TypeError is thrown if S is true.

Let envRec be the declarative environment record for which the method was invoked.

Assert: envRec must have a binding for N.

If the binding for N in envRec is a mutable binding, change its bound value to V.

Else if binding for N in'envRec has not yet been initialized throw a ReferenceError exception.

Else this must be anattempt to change the value of an immutable binding so if S is true throw a TypeError
exception.

6. Return NormalCompletion(empty).

10.2.1.1.6 GetBindingValue(N,S)

g E

The concrete Environment Record method GetBindingValue for declarative environment records simply
returns the value of its bound identifier whose name is the value of the argument N. The binding must already
exist. If S is true and the binding is an uninitialised immutable binding throw a ReferenceError exception.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Assert: envRec has a binding for N.
3. If the binding for N in envRec is an uninitialised binding, then
a. IfSis false, return the value undefined, otherwise throw a ReferenceError exception.

© Ecma International 2012 93

secma

4. Else,
a. Return the value currently bound to N in envRec.

10.2.1.1.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

Let envRec be the declarative environment record for which the method was invoked.
If envRec does not have a binding for the name that is the value of N, return true.

If the binding for N in envRec cannot be deleted, return false.

Remove the binding for N from envRec.

Return true.

10.2.1.1.8 HasThisBinding ()

A A

Regular Declarative Environment Records do not provide a this binding.

1. Return false.
10.2.1.1.9 HasSuperBinding ()

Regular Declarative Environment Records do not provide a super binding.

1. Return false.
10.2.1.1.10 WithBaseObject()

Declarative Environment Records always return undefined as their WithBaseObiject.

1. Return undefined.

10.2.1.2 Object Environment Records

Each object environmentrecord is associated with an object called its binding object. An object environment
record binds the set of identifier names that directly correspond to the property names of its binding object.
Property names that are not.an IdentifierName are.not included in the set of bound identifiers. Both own and
inherited properties are included in'the set regardless of the setting of their [[Enumerable]] attribute. Because
properties can _be._dynamically added and deleted from objects, the set of identifiers bound by an object
environment record may. potentially change as a side-effect of any operation that adds or deletes properties.
Any bindings that are created as a result of such a side-effect are considered to be a mutable binding even if
the Writable attribute of the corresponding property has the value false. Immutable bindings do not exist for
object environment records.

Object environment records created for with statements (12.10) can provide their binding object as an
implicit this value for use in function calls. The capability is controlled by a withEnvironment Boolean value that
is associated with each object environment record. By default, the value of withEnvironment is false for any
object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the
following algorithms.

10.2.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property whose name is the value of the argument N:

1. LetenvRec be the object environment record for which the method was invoked.

2. Let bindings be the binding object for envRec.
3. Return the result of HasProperty(bindings, N).

94 © Ecma International 2012

»ecma

10.2.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates in
an environment record’s associated binding object a property whose name is the String value and initialises it
to the value undefined. A property named N must not already exist in the binding object. If Boolean argument
D is provided and has the value true the new property’s [[Configurable]] attribute is set to true, otherwise it is
set to false.

Let envRec be the object environment record for which the method was invoked.

Let bindings be the binding object for envRec.

Assert: The result of HasProperty(bindings, N) is false.

If D is true then let configValue be true otherwise let configValue be false.

Return the result of DefinePropertyOrThrow(bindings, N, Property Descriptor {[[Value]]:undefined,
[[Writable]]: true, [[Enumerable]]: true , [[Configurable]]: configValue}).

A A

10.2.1.2.3 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding is never used within this specification in
association with Object environment records.

10.2.1.2.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for object environment records is used to set the
bound value of the current binding of the identifier whose name is the value of the argument N to the value of
argument V. An uninitialised binding for N must already exist.

1. LetenvRec be the object environment record for which the-method was invoked.

2. Assert: envRec must have an uninitialised binding for N.

3. Record that the binding for N in envRec has been initialised.

4. Call the SetMutableBinding concrete method of envRec with N, V, and false as arguments.

10.2.1.2.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to set
the value of the environment record’s associated binding object’'s property whose name is the value of the
argument N to the value of argument V. A property named N normally already exists but if it does not or is not
currently writable;-error handling is determined by the value of the Boolean argument S.

1. Let envRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of Put(bindings, N, V, and S).

10.2.1.2.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the value
of its associated binding object’s property whose name is the String value of the argument identifier N. The
property should already exist but if it does not the result depends upon the value of the S argument:

Let envRec be the object environment record for which the method was invoked.
Let bindings be the binding object for envRec.
Let value be the result of HasProperty(bindings, N).
ReturnlfAbrupt(value).
If value is false, then
a. IfSis false, return the value undefined, otherwise throw a ReferenceError exception.
Return the result of Get(bindings, N).

agrwnE

@

© Ecma International 2012 95

secmd

10.2.1.2.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the
value true.

1. LetenvRec be the object environment record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return the result of calling the [[Delete]] internal method of bindings passing N as the argument.

10.2.1.2.8 HasThisBinding ()
Regular Object Environment Records do not provide a this binding.

1. Return false.
10.2.1.2.9 HasSuperBinding ()

Regular Object Environment Records do not provide a super binding.

1. Return false.
10.2.1.2.10 WithBaseObject()

Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag is
true.

1. LetenvRec be the object environment record for which the. method was invoked.
2. If the withEnvironment flag of envRec is true, return the binding.object for envRec.
3. Otherwise, return undefined.

10.2.1.3 Function Environment Records

A function environment record is a declarative environment record that is used to represent the outer most
scope of a function that'provides a this binding. In addition to its identifier bindings, a function environment
record contains the this value used within_its scope. If such a function references super, its function
environment record also contains the state that is used.to perform super method invocations from within the
function.

Function environment records store their this binding as the value of their thisValue. If the associated
function references super, the environment record stores in HomeObject the object that the function is bound
to as a method and in MethodName the property key used for unqualified super invocations from within the
function. The default value for HomeObject and MethodName is undefined.

Methods environment records support all of Declarative Environment Record methods listed in Table 22 and
share the same specifications for all of those methods except for HasThisBinding and HasSuperBinding. In
addition, declarative enviranment records support the methods listed in Table 23:

Table 23 — Additional Methods of Function Environment Records

Method Purpose
GetThisBinding() Return the value of this environment record’s this binding.
GetSuperBase() Return the object that is the base for super property accesses

bound in this environment record. The object is derived from this
environment record’s HomeObject binding. If the value is Empty,
return undefined.

GetMethodName() Return the value of this environment record’s MethodName
binding.

96 © Ecma International 2012

»ecma

The behaviour of the additional concrete specification methods for Function Environment Records is defined
by the following algorithms:

10.2.1.3.1 HasThisBinding ()
Function Environment Records always provide a this binding.

1. Return true.
10.2.1.3.2 HasSuperBinding ()

1. If this environment record’s HomeObject has the value Empty, then return false. Otherwise, return true.
10.2.1.3.3 GetThisBinding ()

1. Return the value of this environment record’s thisValue.
10.2.1.3.4 GetSuperBase ()

Let home be the value of this environment record’s HomeObject.

If home has the value Empty, then return undefined.

Assert Type(home) is Object.

Return the result of calling home’s [[GetInheritance]] internal method..

10.2.1.3.5 GetMethodName ()

PoobPE

1. Return the value of this environment record’s MethodName.

10.2.1.4 Global Environment Records

A global environment record is used to represent the outer-most scope that is shared by all of the ECMAScript
Script elements that are processed in.a.common Realm(10.3): A global environment provides the bindings for built-
in globals (15.1), properties of ‘the global object, and for all declarations that are not function code and that
occur within Script productions.

A global environment.record is logically a single record but it is specified as a composite encapsulating an
object environment record and a declarative environment record. The object environment record has as its
base object the global object of the associated Realm. This global object is also the value of the global
environment record’s thisValue. The object environment record component of a global environment record
contains the bindings for all built-in globals (15.1) and all bindings introduced by a FunctionDeclaration or
VariableStatement contained.in global code. The bindings for all other ECMAScript declarations in global code
are contained in the declarative environment record component of the global environment record.

Properties may be created directly on a global object. Hence, the object environment record component of a
global environment record may contain both bindings created explicitly by FunctionDeclaration or
VariableStatement declarations'and binding created implicitly as properties of the global object. In order to
identify which bindings were explicitly created using declarations, a global environment record maintains a list
of the names bound using:its CreateGlobalVarBindings and CreateGlobalFunctionBindings concrete methods.

Global environment records have the additional state components listed in Table 24 and the additional
methods listed in Table 25.

© Ecma International 2012 97

secmd

Table 24 -- Components of Global Environment Records

Component Purpose

ObjectEnvironment A Object Environment Record whose base object is the global object.
Contains global built-in bindings as well as bindings for
FunctionDeclaration or VariableStatement declarations in global code for
the associated Realm.

DeclarativeEnvironment | A Declarative Environment Record that contains bindings for all
declarations in global for the associated Realm code except for
FunctionDeclaration and VariableStatement declarations.

VarNames A List containing the string names bound by FunctionDeclaration or
VariableStatement declarations in global code for the associated Realm.

Table 25 — Additional Methods of Global Environment Records

Method Purpose
GetThisBinding() Return the value of this environment record’s this binding.
HasVarDeclaration (N) Determines if the. argument identifier has a binding in this

environment record that was created using a VariableStatement or a
FunctionDeclaration.

HasLexicalDeclaration (N) Determines if the argument identifier has a binding in this
environment record that was created using a lexical declaration
such as a LexicalDeclaration or a ClassDeclaration:

CanDeclareGlobalVar (N) Determines if a corresponding CreateGlobalVarBinding call would
succeed if called for the same argument N.

CanDeclareGlobalFunction (N) Determines if a corresponding CreateGlobalFunctionBinding call
would succeed if called for the same argument N.

CreateGlobalvarBinding(N, D) Used to create global var bindings in the

ObjectEnvironmentComponent of the environment record. The
binding will be a mutable binding. The corresponding global object
property will-have attribute values approate for a var. The String
value N is the text of the bound name. V is the initial value of the
binding If the optional Boolean argument D is true the binding is
may be subsequently deleted. This is logically equivalent to
CreateMutableBinding but it allows var declarations to receive
special treatment.

CreateGlobalFunctionBinding(N, V, D) | Used to create and initialize global function bindings in the
ObjectEnvironmentComponent of the environment record. The
binding will be a mutable binding. The corresponding global object
property will have attribute values approate for a function.The
String value N is the text of the bound name. If the optional Boolean
argument D is true the binding is may be subsequently deleted.
This is logically equivalent to CreateMutableBinding followed by a
SetMutableBinding but it allows function declarations to receive
special treatment.

The behaviour of the concrete specification methods for Global Environment Records is defined by the
following algorithms.

10.2.1.4.1 HasBinding(N)

The concrete environment record method HasBinding for global environment records simply determines if the
argument identifier is one of the identifiers bound by the record:

98 © Ecma International 2012

»ecma

Let envRec be the global environment record for which the method was invoked.

Let DclRec be envRec ’s DeclarativeEnvironment.

If the result of calling DclRec’s HasBinding concrete method with argument N is true, return true.
Let ObjRec be envRec’s ObjectEnvironment.

Return the result of calling ObjRec’s HasBinding concrete method with argument N.

g E

10.2.1.4.2 CreateMutableBinding (N, D)

The concrete environment record method CreateMutableBinding for global environment records creates a
new mutable binding for the name N that is uninitialised. The binding is created in the associated
DeclarativeEnvironment. A binding for N must not already exist in the DeclarativeEnvironment. If Boolean
argument D is provided and has the value true the new binding is marked as being subject to deletion.

Let envRec be the global environment record for which the method was invoked.

Let DclRec be envRec’s DeclarativeEnvironment.

Assert: DclRec does not already have a binding for N.

Create a mutable binding in DclRec for N and and record that it_is uninitialised. If D is true record that the
newly created binding may be deleted by a subsequent DeleteBinding call.

5. Return NormalCompletion(empty)

10.2.1.4.3 CreatelmmutableBinding (N)

bR

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is uninitialised. A binding must not already exist in this
environment record for N.

1. LetenvRec be the global environment record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Create an immutable binding in envRec for N and record that it is uninitialised.

10.2.1.4.4 InitializeBinding (N;V)

The concrete Environment-Record method InitializeBinding for global environment records is used to set the
bound value of the current binding of the identifier whose name is the value of the argument N to the value of
argument V. An uninitialised binding for/N must already exist.

1. LetenvRec be the global environment record for which the method was invoked.
2. Let DclRec be-envRec’s DeclarativeEnvironment.
3. If the result of calling DclRec’s HasBinding concrete method with argument N is true, then
a: Return the result of calling DclRec’s InitializeBinding concrete method with arguments N and V.
4. Let ObjRec be envRec’s ObjectEnvironment.
5. [If the result of calling ObjRec’s HasBinding concrete method with argument N is true, then
a. Set the bound value for N in envRec to V.
b.. Record that the binding for N in envRec has been initialised.

10.2.1.4.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for global environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. If the binding is an immutable binding, a TypeError is thrown if S is true. A property
named N normally already exists but if it does not or is not currently writable, error handling is determined by
the value of the Boolean argument S.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. If the result of calling DclRec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling the SetMutableBinding concrete method of DclRec with arguments N, V,
and S.
4. Let ObjRec be envRec’s ObjectEnvironment.
5. Return the result of calling the SetMutableBinding concrete method of ObjRec with arguments N, V, and S.

© Ecma International 2012 99

secma

10.2.1.4.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for global environment records simply returns the
value of its bound identifier whose name is the value of the argument N. If S is true and the binding is an
uninitialised binding throw a ReferenceError exception. A property named N normally already exists but if it
does not or is not currently writable, error handling is determined by the value of the Boolean argument S.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. If the result of calling DclRec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling the GetBindingValue concrete method of DclRec with arguments N, and
S.
4. Let ObjRec be envRec’s ObjectEnvironment.
5. Return the result of calling the GetBindingValue concrete method of ObjRec with arguments N, and S.

10.2.1.4.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for global environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. Iftheresult of calling DclRec’s HasBinding concrete method with argument N is true, then
a. Return the result of calling the DeleteBinding concrete method of DclRec with argument N.
Let ObjRec be envRec’s ObjectEnvironment:
If the result of calling ObjRec’s HasBinding concrete method with-argument N is true, then
a. Let status be the result of calling the DeleteBinding concrete method of DclRec with argument N.
b. ReturnlfAbrupt(status).
c. Ifstatusis true, then
i Let varNames be envRec’s VarNames-List.
ii. If N is an element of varNames, then remove that element from the varNames.
d. Return status.
6. Return true.

10.2.1.4.8 HasThisBinding ()

o ke

Global Environment Records always provide a this binding whose value is the associated global object.

1. Return true.
10.2.1.4.9 HasSuperBinding ()

1. Return false.

10.2.1.4.10 WithBaseObject()

Global Environment Records always return undefined as their WithBaseObiject.
1. Return undefined.

10.2.1.4.11 GetThisBinding ()

Let envRec be the global environment record for which the method was invoked.
Let ObjRec be envRec’s ObjectEnvironment.

Let bindings be the binding object for ObjRec.
Return bindings.

a0

100 © Ecma International 2012

»ecma

10.2.1.4.12 HasVarDeclaration (N)

The concrete environment record method HasVarDeclaration for global environment records determines if the
argument identifier has a binding in this record that was created using a VariableStatement or a
FunctionDeclaration:

1. LetenvRec be the global environment record for which the method was invoked.
2. Let varDeclaredNames be envRec’s VarNames List.

3. IfvarDeclaredNames contains the value of N, return true.

4. Return false.

10.2.1.4.13 HasLexicalDeclaration (N)

The concrete environment record method HaslLexicalDeclaration for global environment records determines if
the argument identifier has a binding in this record that was created. using a lexical declaration such as a
LexicalDeclaration or a ClassDeclaration:

1. LetenvRec be the global environment record for which the method was invoked.
2. Let DclRec be envRec’s DeclarativeEnvironment.
3. Return the result of calling DclRec’s HasBinding concrete method with argument N.

10.2.1.4.14 CanDeclareGlobalVar (N)

The concrete environment record method CanDeclareGlobalVar for global environment records determines if
a corresponding CreateGlobalVarBinding call would succeed if called for the same argument N. Redundent
var declarations and var declarations for pre-existing global object properties are allowed.

Let envRec be the global environment record for which the method was invoked.

Let ObjRec be envRec’s ObjectEnvironment.

If the result of calling ObjRec’s HasBinding concrete‘'method with argument N is true, return true.
Let bindings be the binding object for ObjRec.

If the result of calling the [[IsExtensible]] internal method of bindings is true, return true.

Return false.

ourwhE

10.2.1.4.15 CanDeclareGlobalFunction (N)

The concrete environment record method CanDeclareGlobalVar for global environment records determines if
a corresponding CreateGlobalFunctionBinding call would succeed if called for the same argument N.

1. Let envRec be the global environment record for which the method was invoked.

2. Let ObjRec be envRec’s ObjectEnvironment.

3. LetglobalObject be the binding object for ObjRec.

4. Let extensible be the result of calling the [[IsExtensible]] internal method of globalObject.

5. If the result of calling ObjRec’s HasBinding concrete method with argument N is false, then return
extensible.

6. Let existingProp be the result of calling the [[GetOwnProperty]] internal method of globalObject with
argument N.

7. If existingProp is undefined, then return extensible.

8. If existingProp.[[Configurable]] is true, then return true.

9. |If IsDataDescriptor(existingProp) is true and existingProp has attribute values {[[Writable]]: true,
[[Enumerable]]: true}, then return true.

10. Return false.

10.2.1.4.16 CreateGlobalVarBinding (N, D)
The concrete Environment Record method CreateVarBinding for global environment records creates a

mutable binding in the associated object environment record and records the bound name in the associated
VarNames List. If a binding already exists, it is reused.

© Ecma International 2012 101

secma

Let envRec be the declarative environment record for which the method was invoked.
Let ObjRec be envRec’s ObjectEnvironment.
Assert: The result of calling envRec’s CanDeclareGlobalVar concrete method with argument N is true.
If the result of calling ObjRec’s HasBinding concrete method with argument N is false, then
a. Call the CreateMutableBinding concrete method of ObjRec with arguments N and D.
Let varDeclaredNames be envRec’s VarNames List.
If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.
7. Return.

PR

ow

10.2.1.4.17 CreateGlobalFunctionBinding (N, V, D)

The concrete Environment Record method CreateFunctionBinding for global environment records creates a
mutable binding in the associated object environment record and recordsthe bound name in the associated
VarNames List. If a binding already exists, it is replaced.

1. LetenvRec be the declarative environment record for which the method was invoked.
2. Let ObjRec be envRec’s ObjectEnvironment.
3. Assert: The result of calling envRec’s CanDeclareGlobalFunction concrete method with argument N is true.
4. Let globalObject be the binding object for ObjRec.
5. Let existingProp be the result of calling the [[GetOwnProperty]] internal method of globalObject with
argument N.
6. If existingProp is undefined or existingProp.[[Configurable]] is true, then
a. Call the [[DefineOwnProperty]] internal method of globalObject passing N and Property Descriptor
{[[VValue]]:V, [[Writable]]: true, [[Enumerable]]: true , [[Configurable]]: D} as arguments.
7. Else,

a. Call the [[DefineOwnProperty]] internal method of globalObject passing N and Property Descriptor
{[[Value]]:V } as arguments.
8. NOTE The assertion in step 3 means that the above [[DefineOwnProperty]] calls will never return an abrupt
completion.
9. LetvarDeclaredNames be envRec’s VVarNames List.
10. If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.
11. Return.

NOTE Global unction declarations are always represented as a own property of the global object. If possible, an
existing own property is reconfiguredto have a standard set of attribute values.

10.2.2 Lexical Environment Operations
The following abstract operations are used in this specification to operate upon lexical environments:
10.2.2.1" GetldentifierReference (Ilex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name, and a
Boolean flag strict. The value of lex may be null. When called, the following steps are performed:

1. If lex is the value null, then
a. Return a value of type Reference whose base value is undefined, whose referenced name is name,
and whose strict reference flag is strict.
2. LetenvRec be lex’s environment record.
3. Let exists be the result of calling the HasBinding(N) concrete method of envRec passing name as the
argument N.
4. |If exists is true, then
a. Return a value of type Reference whose base value is envRec, whose referenced name is name, and
whose strict reference flag is strict.
5. Else
a. Letouter be the value of /ex’s outer environment reference.
b. Return the result of calling GetldentifierReference passing outer, name, and strict as arguments.

102 © Ecma International 2012

secmd

10.2.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or null
as argument E the following steps are performed:

Let env be a new Lexical Environment.

Let envRec be a new declarative environment record containing no bindings.
Set env’s environment record to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

10.2.2.3 NewObjectEnvironment (O, E)

agbwbPE

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical Environment E
(or null) as arguments, the following steps are performed:

Let env be a new Lexical Environment.

Let envRec be a new object environment record containing O as the binding object.
Set env’s environment record to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

10.2.2.4 NewFunctionEnvironment (F, T)

agrwdE

When the abstract operation NewFunctionEnvironment is called with. an ECMAScript function Object F and a
ECMAScript value T as arguments, the following steps are performed:

Let env be a new Lexical Environment.
Let envRec be a new Function environment record containing containing no bindings.
Set envRec’s thisValue to T.
If F has a [[HomeObject]] internal data property, then
a. SetenvRec’s HomeObject to the value of F’s [[HomeObject]] internal data property.
b. Set envRec’s MethodName to the value of F’s [[MethodName]] internal data property.
5. Else,
a. If F’s [[ThisMode]] internal‘data property is lexical, then
b. SetenvRec’s HomeObject'to Empty.
6. Setenv’s environment record to be envRec.
7. Set the outer lexical environment reference of env to the value of F’s [[Scope]] internal data property.
8. Return env.

10.3 Code Realms

PR

Before it is. evaluated, all ECMAScript code must be associated with a Realm. Conceptually, a realm consists
as of an set of intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that is loaded
within the scope of that global environment, a Loader object that can associate new ECMAScript code with the
realm, and other associated state and resources.

A Realm is specified as-a Record with the fields specified in Table 26:

Table 26 — Realm Record Fields

Field Name | Value Meaning

[[intrinsics]]

A record whose field names are intrinsic
keys and whose values are objects

These are the intrinsic values used by code
associated with this Realm

[[globalThis]]

An ECMAScript object

The global object for this Realm

[[globalEnv]]

A ECMAScript environment

The global environment for this Realm

[[loader]]

any ECMAScript identifier or empty

The Loader object that can associate
ECMAScript code with this Realm

© Ecma International 2012

103

secmd

The intrinsic objects associated with a code Realm include the well-known intrinsics listed in Table 11 and
additional intrinsics specified by Table 27.

Table 27 — Additional Intrinsic Objects with Realm Specific Bindings

Intrinsic Name ECMAScript Language Association
77? ???
?27? ?7??

10.4 Execution Contexts

An execution context is a specification device that is used to track the runtime evaluation of code by an
ECMAScript implementation. At any point in time, there is at most one_execution context that is actually
executing code. This is known as the running execution context. A stack is used to track execution contexts.
The running execution context is always the top element of this stack. A new execution context is created
whenever control is transferred from the executable code associated with the currently running execution
context to executable code that is not associated with that execution context. The newly created execution
context is pushed onto the stack and becomes the running execution context.

An execution context contains whatever implementation specific state is necessary to track the execution
progress of its associated code. Each execution context has the state components listed in Table 28.

Table 28 —State Components for All Execution Contexts

Component Purpose

code evaluation state Any state needed to perform, suspend, and resume evaluation of the
code associated with this execution context.

Realm The Realm from which associated code accesses ECMAScript
resources.

Evaluation of code by the running execution context may be suspended at various points defined within this
specification. Once the running execution.context has been suspended a different execution context may
become the running execution context and commence. evaluating its code. At some latter time a suspended
execution context may again become the running execution context and continue evaluating its code at the
point where it-had previously been suspended. Transition of the running execution context status among
execution contexts usually occurs in stack-like last-in/first-out manner. However, some ECMAScript features
require non-LIFO transitions of the running execution context.

Execution contexts for ECMAScript code have the additional state components listed in Table 29.

Table 29 —Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment record holds
bindings created by VariableStatements within this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical
Environments. When an execution context is created its LexicalEnvironment and VariableEnvironment
components initially have the same value. The value of the VariableEnvironment component never changes
while the value of the LexicalEnvironment component may change during execution of code within an
execution context.

104 © Ecma International 2012

»ecma

In most situations only the running execution context (the top of the execution context stack) is directly
manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment”’, and
“VariableEnvironment” are used without qualification they are in reference to those components of the running
execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact
of an ECMAScript implementation. It is impossible for an ECMAScript program to directly access or observe
an execution context.

10.4.1 Identifier Resolution

Identifier resolution is the process of determining the binding of an IdentifierName using the
LexicalEnvironment of the running execution context. During execution .of ECMAScript code, Identifier
Resolution is performed using the following algorithm:

1. Letenv be the running execution context’s LexicalEnvironment.

2. If the syntactic production that is being evaluated is contained in‘strict mode code, then let strict be true,
else let strict be false.

3. Return the result of calling GetldentifierReference abstract-operation passing env, the StringValue of
IdentifierName, and strict as arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced name component
equal to the Identifier String.

10.4.2 GetThisEnvironment

The abstract operation GetThisEnviroment finds the lexical.environment that currently supplies the binding of
the keyword this. GetThisEnviroment performs the following steps:

1. Let lex be the running execution context’s LexicalEnvironment.

2. Repeat
a. LetenvRec be lex’s environment record.
b. Let exists be the result of calling the HasThisBinding concrete method of envRec.
c. Ifexistsis true, then return envRec.
d. Let outer bethe value of /ex’s outer-environment reference.
e. Let lex be outer.
NOTE The loop-in_step 4 will always terminate because the list of environment always end with the global

environment-which has a this binding.
10.4.3/ This Resolution

The abstract operation ThisResolution is the process of determining the binding of the keyword this using the
LexicalEnvironment of the running execution context. ThisResolution performs the following steps:

1. Letenv be the result of performing the GetThisEnvironment abstract operation.
2. Return the result of calling the GetThisBinding concrete method of env.
10.4.4 GetGlobalObject

The abstract operation GetGlobalObject returns the global object used by the currently running execution
context. GetGlobalObject Performs the following steps:

1. Let ctx be the running execution context.

2. Let currentRealm be ctx’s Realm.
3. Return currentRealm.[[globalThis]].

© Ecma International 2012 105

secma

10.5 Declaration Binding Instantiation
10.5.1 Global Declaration Instantiation

NOTE When an execution context is established for evaluating scripts, declarations are instantiated in the current
global environment. Each global binding declarated in the code is instantiated.

Global Declaration Instantiation is performed as follows using arguments script, env, and deletableBindings.
script is the ScriptBody that for which the execution context is being established. env is the global
environment record in which bindings are to be created. deletableBindings is true if the bindings that are
created should be deletable.

Let strict be IsStrict of script.
Let lexNames be the LexicallyDeclaredNames of script.
Let varNames be the VVarDeclaredNames of script.
For each name in lexNames, do
a. If the result of calling env’s HasVarDeclaration concrete method passing name as the argument is
true, throw a SyntaxError exception.
b. If the result of calling env’s HasLexicalDeclaration concrete method passing name as the argument
is true, throw a SyntaxError exception.
5. For each name in varNames, do
a. If theresult of calling env’s HasLexicalDeclaration concrete method passing name as the argument
is true, throw a SyntaxError exception.
Let varDeclarations be the VarScopedDeclarations of script.
Let functionsTolnitialize be an empty List.
Let declaredFunctionNames be an empty List.
For each d in varDeclarations, in reverse list order do
a. Ifdisa FunctionDeclaration then
i. NOTE If there are multiple FunctionDeclarations for the same name, the last declaration
is used.
il Let fn be the sole element of the BoundNames of d.
iii. If fn is not an element of declaredFunctionNames, then
1. Let fnDefinable be the result of calling env’s CanDeclareGlobalFunction concrete
method passing fn as the argument.
2. If fnDefinable is false, throw TypeError exception.
3." Append fn to declaredFunctionNames.
4. Append d to functionsTolnitialize.
10. Let declaredVarNames be an empty List.
11. For each d in varDeclarations, do
a. Ifdisa VariableStatement then
i For each String vn in the BoundNames of d, do
1. Ifvnis not an element of declaredFunctionNames, then
a LetvnDefinable be the result of calling env’s CanDeclareGlobalVar
concrete method passing vn and deletableBindings as the arguments.
b If vnDefinable is false, throw TypeError exception.
¢ Ifvnisnot an element of declaredVarNames, then
i Append vn to declaredVarNames.
12. NOTE: No abnormal terminations occur after this algorithm step.
13. For each FunctionDeclaration f in functionsTolnitialize, do
a. Letfn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Call env’s CreateGlobalFunctionBinding concrete method passing fn, fo, and deletableBindings as
the arguments.
14. For each String vn in declaredVarNames, in list order do
a. Call env’s CreateGlobalVarBinding concrete method passing vn and deletableBindings as the
argument.
15. Let lexDeclarations be the LexicallyScopedDeclarations of script.
16. For each element d in lexDeclarations do
a. NOTE Lexically declarated names are only instantiated here but not initialized.
b. For each element dn of the BoundNames of d do

PR

©eNo

106 © Ecma International 2012

secmd

i If IsConstantDeclaration of d is true, then
1. Call env’s CreatelmmutableBinding concrete method passing dn as the argument.
ii. Else,
1. Call env’s CreateMutableBinding concrete method passing dn and false as the
arguments.
17. Return NormalCompletion(empty)

NOTE Early errors specified in 14.1 prevent name conflicts between function/var declarations and
let/const/class/module declarations as well as redeclaration of let/const/class/module bindings for declaration contained
within a single Script. However, such conflicts and redeclarations that span more than one Script are detected as runtime
errors during Global Declaration Instantiation. If any such errors are detected, no bindings are instantiated for the script.

Unlike explicit var or function declarations, properties that are directly created on the global object result in global bindings
that may be shadowed by let, const, class, and module declarations.

10.5.2 Module Declaration Instantiation

10.5.3 Function Declaration Instantiation

This version reflects the concensus as of the Sept. 2012 TC39
meeting. However, it now appears that the binding semantics of
formal parameters is like to change again.

NOTE When an execution context is established for evaluating function code a new Declarative Environment Record is
created and bindings for each formal parameter, and each function level variable, constant, or function declarated in the
function are instantiated in the environment record. Formal parameters and functions are initialized as part of this process.
All other bindings are initialized during execution of the function code.

Function Declaration Instantiation is performed.as follows using arguments func, argumentsList, and env. func
is the function object that for which the execution context is being established. env is the declarative
environment record in which hindings are to be created.

Let code be the value of the [[Code]] internal data property of func.
Letstrict be the value of the [[Strict]] internal data property of func.
Leet formals be the value of the [[FormalParameters]] internal data property of func.
Let parameterNames be the BoundNames of formals.
Let varDeclarations be the VVarScopedDeclarations of code.
Let functionsTolnitialize be an emptyList.
Let argumentsObjectNotNeeded be false.
For each d invarDeclarations, in reverse list order do
a. Ifdisa FunctionDeclaration then
i. NOTE If there are multiple FunctionDeclarations for the same name, the last declaration
is used.
ii. Let fn be the sole element of the BoundNames of d.
iii. Iffn is "arguments"”, then let argumentsObjectNotNeeded be true.
iv. Let alreadyDeclared be the result of calling env’s HasBinding concrete method passing fn
as the argument.
V. If alreadyDeclared is false, then
1. Let status be the result of calling env’s CreateMutableBinding concrete method
passing fn as the argument.
2. Assert: status is never an Abrupt Completion.
3. Append d to functionsTolnitialize.
9. For each String paramName in parameterNames, do

N~ WLNE

© Ecma International 2012 107

eCina

a. Let alreadyDeclared be the result of calling env’s HasBinding concrete method passing paramName
as the argument.
b. NOTE Duplicate parameter names can only occur in non-strict functions. Parameter names that are
the same as function declaration names do not get initialized to undefined.
c. IfalreadyDeclared is false, then
i If paramName is "arguments”, then let argumentsObjectNotNeeded be true.
il Let status be the result of calling env’s CreateMutableBinding concrete method passing
paramName as the argument.
iii. Assert: status is never an Abrupt Completion
iv. Call env’s InitializeBinding concrete method passing paramName, and undefined as the
arguments.

10. NOTE If there is a function declaration or formal parameter with the name "arguments" then an
argument object is not created.

11. If argumentsObjectNotNeeded is false, then

a. |Ifstrictis true, then
i Call env’s CreatelmmutableBinding concrete method passing the String "arguments" as
the argument.
b. Else,
i Call env’s CreateMutableBinding concretemethod passing the String "arguments" as the
argument.
12. Let varNames be the VarDeclaredNames of code.
13. For each String varName in varNames, in list order do
a. LetalreadyDeclared be the result of calling env’s HasBinding concrete method passing varName as
the argument.
b. NOTE A VarDeclaredNames is.only instantiated and initialied here if it is not also the name of a
formal parameter or a FunctionDeclarations:
c. IfalreadyDeclared is false, then
i Call env’s CreateMutableBinding concrete method passing varName as the argument.
14. Let lexDeclarations be the LexicalDeclarations of code.
15. For each element d in lexDeclarations do
a. NOTE A lexically declared name can not be the same as a function declaration, formal
parameter, or a var name. Lexically declarated names are only instantiated here but not initialized.
b. For each element dn of the BoundNames of d do
i If IsConstantDeclaration of d is true, then
1. . Call env’sCreatelmmutableBinding concrete method passing dn as the argument.
il Else,
1. Callenv’s CreateMutableBinding concrete method passing dn and false as the
arguments.
16. For each FunctionDeclaration f in functionsTolnitialize, do
a. Letfn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c.. Call env’s SetMutableBinding concrete method passing fn, fo, and false as the arguments.

17. NOTE Function declaration are initialised prior to parameter initialisation so that default value expressions
may reference them. it is not extended code. "arguments" is not initialized until after parameter
initialization.

18. Let ao be the result of InstantiateArgumentsObject with argument argumentsList.

19. NOTE If argumentsObjectNotNeeded is true then the value of ao is not directly observable to ECMAScript
code and need not actually exist. In that case, its use in the above steps is strictly as a device for specifying
formal parameter initialisation semantics.

20. Let formalStatus be the result of performing Binding Initialisation for formals with ao and undefined as
arguments.

21. ReturnlfAbrupt(formalStatus).

22. If argumentsObjectNotNeeded is false, then

a. |Ifstrictis true, then
i Perform the abstract operation CompleteStrictArgumentsObject with argument ao.
b. Else,
i Perform the abstract operation CompleteMappedArgumentsObject with arguments ao, func,
formals, and env.
c. Call env’s InitializeBinding concrete method passing "arguments" and ao as arguments.

23. Return NormalCompletion(empty).

108 © Ecma International 2012

»ecma

10.5.4 Block Declaration Instantiation

NOTE When a Block or CaseBlock production is evaluated a new Declarative Environment Record is created and
bindings for each block scoped variable, constant, or function declarated in the block are instantiated in the environment
record.

Block Declaration Instantiation is performed as follows using arguments code and env. code is the grammar
production corresponding to the body of the block. env is the declarative environment record in which
bindings are to be created.

1. Let declarations be the LexicalDeclarations of code.
2. For each element d in declarations do
a. For each element dn of the BoundNames of d do
i. If IsConstantDeclaration of d is true, then
1. Call env’s CreatelmmutableBinding concrete method passing dn as the argument.
ii. Else,
1. Call env’s CreateMutableBinding concrete method passing dn and false as the arguments.
3. For each FunctionDeclaration f in declarations, in list order do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Call env’s InitializeBinding concrete method passing fn, and fo as the arguments.

10.5.5 Eval Declaration Instantiation
10.6 Arguments Object

When function code is evaluated, an arguments object is created unless (as specified in 10.5) the identifier
arguments occurs as an Identifier in the function’s FormalParameterList or occurs as the Bindingldentifier of a
FunctionDeclaration contained in the outermost StatementList of the function code.

The abstract operation InstantiateArgumentsObject called with an argument args performs the following steps:

Let len be the number of elements in args.

Let obj be the result of the abstract operation ObjectCreate.

Add the [[BuiltinBrand]] internal-data property to-obj with value BuiltinArguments.

Call the [[DefineOwnProperty]] internal method on obj passing "length' and the Property Descriptor
{[[Value]]:-len; [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true} as arguments.

Let indx = len -1,

Repeat while indx >0,

a. Letval be the element of args at 0-origined list position indx.

b. Call the [[DefineOwnProperty]] internal method on obj passing ToString(indx) and the Property
Descriptor {[[Value]]: val, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true} as
arguments.

c. Letindx =indx-1

7. Return obj

el N .

oo

The abstract operation CompleteStrictArgumentsObject called with argument obj which must have been previous
created by the abstraction operation InstantiateArgumentsObject. The following steps are performed:

1. Perform the AddRestrictedFunctionProperties abstract operation with argument obj.
2. Return.

The abstract operation CompleteMappedArgumentsObject is called with object obj, object func, grammar
production formals, and environment record env. obj must have been previous created by the abstraction
operation InstantiateArgumentsObject. The following steps are performed:

Let len be the result of Get(obj, ""1ength").

Let mappedNames be an empty List.

Let numberOfNonRestFormals be NumberOfParameters of formals.
Let map be the result of the abstract operation ObjectCreate.

PoNPE

© Ecma International 2012 109

secma

5. Letindx =len - 1.
6. Repeat while indx >0,
a. Ifindx is less than the numberOfNonRestFormals, then
i Let param be getParameter of formals with argument indx.
ii. If param is a Bindingldentifier, then
1. Let name be the sole element of BoundNames of param.
2. If name is not an element of mappedNames, then
a Add name as an element of the list mappedNames.
b Let g be the result of calling the MakeArgGetter abstract operation with
arguments name and env.
c Letp be the result of calling the MakeArgSetter abstract operation with
arguments name and env.
d Call the [[DefineOwnProperty]] internal method of map passing
ToString(indx) and the Property Descriptor {[[Set]]: p, [[Get]]: g,
[[Configurable]]: true} as arguments:
b. Letindx =indx -1
7. If mappedNames is not empty, then
a. Setthe [[ParameterMap]] internal data property of obj‘'to map.
b. Setthe [[GetP]], [[GetOwnProperty]], [[DefineOwnProperty]], and [[Delete]] internal methods of
obj to the definitions provided below.
8. Call the [[DefineOwnProperty]] internal method on obj passing "callee" and the Property Descriptor
{[[\Value]]: func, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true} as arguments.
9. Return obj

The abstract operation MakeArgGetter called with String name and environment record env creates a function
object that when executed returns the value bound for name in env. It performs the following steps:

Let bodyText be the result of concatenating the Strings "return ", name, and ";".

Let body be the result of parsing bodyText using FunctionBody as the goal symbol.

Let parameters be a FormalParameterList : [empty] production.

Return the result of calling the abstract operation FunctionCreate using Normal as the kind, parameters as
FormalParameterList, body for FunctionBody, env as Scope, and true for Strict.

PobdE

The abstract operation MakeArgSetter called with String name and environment record env creates a function
object that when executed sets the value bound for name inenv. It performs the following steps:

1. Let paramText be the String.name concatenated with the String " arg".

2. Let parameters.be the result of parsing paramText using FormalParameterList as the goal symbol.

3. Let bodyText be the String ""<name> = <param> ;" with <name> replaced by the value of name and
<param> replaced by the value of paramText.

4. Let body be the result of parsing bodyText using FunctionBody as the goal symbol.

5. Return the result of calling the abstract operation FunctionCreate using Normal as the kind, parameters as
FormalParameterList, body for FunctionBody, env as Scope, and true for Strict.

The [[Get]] internal method of an arguments object for a non-strict mode function with formal parameters when
called with a property name P performs the following steps:

1. Letargs be the arguments object.
2. Let map be the value of the [[ParameterMap]] internal data property of the arguments object.
3. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.
4. If the value of isMapped is undefined, then
a. Letv be the result of calling the default ordinary object [[GetP]] internal method (8.12.3) on args
passing P and args as the arguments.
b. IfPis "caller" andv isa strict mode Function object, throw a TypeError exception.
c. Returnv.
5. Else map contains a formal parameter mapping for P,
a. Return the result of calling Get(map, P).

The [[GetOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P performs the following steps:

110 © Ecma International 2012

»ecma

1. Let desc be the result of calling the default [[GetOwnProperty]] internal method (8.12.1) on the arguments
object passing P as the argument.
If desc is undefined then return desc.
Let map be the value of the [[ParameterMap]] internal data property of the arguments object.
4. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.
5. If the value of isMapped is not undefined, then
a. Setdesc.[[Value]] to the result of calling Get(map, P).
6. Return desc.

wn

The [[DefineOwnProperty]] internal method of an arguments object for a non-strict-mode function with formal
parameters when called with a property name P and Property Descriptor Desc performs the following steps:

1. Let map be the value of the [[ParameterMap]] internal data property of the arguments object.
2. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.
3. Let allowed be the result of calling the default [[DefineOwnProperty]] internal method.(8.3.9) on the
arguments object passing P and Desc as the arguments.
ReturnlfAbrupt(allowed).
If allowed is false, then return false.
If the value of isMapped is not undefined, then
a. If IsAccessorDescriptor(Desc) is true, then
i Call the [[Delete]] internal method of map passing P as the argument.
b. Else
i. If Desc.[[Value]] is present, then
1. Assert: the follow Put call will always succeed because formal parameters mapped
by argument objects are always writable.
2. Call Put(map, P, Desc.[[Value]], false).
ii. If Desc.[[Writable]] is present and its value is false, then
1. Call the [[Delete]] internal method of map passing P as the argument.

ook

7. Return true.

The [[Delete]] internal method of an arguments object for a non-strict mode function with formal parameters
when called with a property key P performs the following steps:

1. Let map be the value of the [[ParameterMap]]-internal data property of the arguments object.

2. LetisMapped be the result of calling the [[GetOwnProperty]] internal method of map passing P as the
argument.

3. Let result be the result of calling the default [[Delete]] internal method for ordinary objects (8.3.10) on the
arguments object passing P as the argument.

4. If resultis true and the value of isMapped is not undefined, then

a. Call the [[Delete]] internal method of map passing P as the argument.
5. Returnresult.

NOTE 1 For non-strict mode functions the array index (defined in 15.4) data properties of an arguments object whose
numeric name values are less than the number of formal parameters of the corresponding function object initially share
their values with the corresponding argument bindings in the function’s execution context. This means that changing the
property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if such
a property is deleted and then redefined or if the property is changed into an accessor property. For strict mode functions,
the values of the arguments object’s properties are simply a copy of the arguments passed to the function and there is no
dynamic linkage between the property values and the formal parameter values.

NOTE 2 The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are
not directly accessible from ECMAScript code. An ECMAScript implementation does not need to actually create or use
such objects to implement the specified semantics.

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named "caller" and
"callee" which throw a TypeError exception on access. The "callee" property has a more specific meaning for non-
strict mode functions and a "caller" property has historically been provided as an implementation-defined extension by
some ECMAScript implementations. The strict mode definition of these properties exists to ensure that neither of them is
defined in any other manner by conforming ECMAScript implementations.

© Ecma International 2012 111

secma

11 Expressions
11.1 Primary Expressions

Syntax

PrimaryExpression :
this
IdentifierBecaus
Literal
ArrayInitialiser
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral
CoverParenthesizedExpressionAndArrowParameter List

CoverParenthesizedExpressionAndArrowParameterList:
(Expression)

()
(... ldentifier)
(Expression , ... ldentifier)

Supplemental Syntax

When processing the production PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList the
following grammar is used to refine the interpretation of CoverParenthesizedExpressionAndArrowParameterList.

ParenthesizedExpression :
(Expression)

Static Semantics
Static Semantics: CoveredParenthesizedExpression
CoverParenthesizedExpressionAndArrowParameterList : (Expression)

1. Return the result of parsing the lexical token stream matched by
CoverParenthesizedExpressionAndArrowParameterList using ParenthesizedExpression as the goal symbol.

Static Semantics: IsValidSimpleAssignmentTarget

PrimaryExpression :
this
Literal
Arraylnitialiser
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
GeneratorComprehension
RegularExpressionLiteral
TemplateLiteral

1. Return false.

PrimaryExpression : Identifier

112 © Ecma International 2012

secma

1. If this PrimaryExpression is contained in strict code and StringValue of Identifier is "eval™" or
"arguments", then return false.
2. Return true.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Letexpr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return IsValidSimpleAssignmentTarget of expr.

11.1.1 The this Keyword
Runtime Semantics: Evaluation
PrimaryExpression : this

1. Return the result of calling the ThisResolution abstract operation.

11.1.2 Identifier Reference

Runtime Semantics: Evaluation

PrimaryExpression : ldentifier

1. Let ref be the result of performing Identifier Resolution as specified in 10.4.1 using the IdentifierName
corresponding to Identifier.

2. Return ref.

NOTE: The result of evaluating an Identifier is always a value of type Reference.

11.1.3 Literals

Syntax
Literal :
NullLiteral
ValueLiteral
ValuelLiteral :
BooleanLiteral
NumericLiteral
StringLiteral
Runtime Semantics
Runtime Semantics: Evaluation
Literal : NullLiteral
1. Return null.

ValueLiteral : BooleanLiteral

1. Return false if BooleanLiteral is the token BooleanLiteral :: false
2. Return true if BooleanLiteral is the token BooleanLiteral :: true

ValueLiteral : NumericLiteral

1. Return the number whose value is MV of NumericLiteral as defined in 7.8.3.

© Ecma International 2012 113

secma

ValueLiteral : StringLiteral

1. Return the string whose elements are the SV of StringLiteral as defined in 7.8.4.

11.1.4 Array Initialiser

Syntax

Arraylnitialiser :
ArrayLiteral
ArrayComprehension

11.1.4.1 Array Literal

NOTE An ArrayLiteral is an expression describing the initialisation of an Array object, using a list, of zero or more
expressions each of which represents an array element, enclosed in square brackets. The elements need not be literals;
they are evaluated each time the array initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element list is
not preceded by an AssignmentExpression (i.e., a comma at the beginning or-after another comma), the missing array
element contributes to the length of the Array and increases the index of subsequent elements. Elided array elements are
not defined. If an element is elided at the end of an array, that element does not contribute to the length of the Array.

Syntax

ArrayLiteral :
[Elisiongp: 1
[ElementList]
[ElementList , Elisiongpt1

ElementList :
Elisionep: AssignmentExpression
Elisiongp: SpreadElement
ElementList , Elisiongp: AssignmentExpression
ElementList , Elisiongp: SpreadElement
Elision :

Elision ,

SpreadElement :
... AssignmentExpression

Static Semantics

Static Semantics: Elision Width
Elision : ,

1. Return the numeric value 1.
Elision : Elision ,

1. Let preceding be the Elision Width of Elision.
2. Return preceding+1.

114 © Ecma International 2012

ecima

Runtime Semantics

Runtime Semantics: Array Accumulation

With parameters array and nextindex.

ElementList : Elisionoy: AssignmentExpression

agrwnE

@

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
Let initResult be the result of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

ReturnIfAbrupt(initValue).

Call the [[DefineOwnProperty]] internal method of array with arguments

ToString(ToUint32(nextIndex+padding)) and the Property Descriptor { [[Value]]: initValue, [[Writable]]:

true, [[Enumerable]]: true, [[Configurable]]: true}.
Assert: the above call to [[DefineOwnProperty]] will return false or an abrupt completion value.
Return nextindex+padding+1.

ElementList : Elisionog: SpreadElement

1.
2.

Let padding be the Elision Width of Elision; if Elision‘is not present, use the numeric value zero.
Return the result of performing Array Accumulation for SpreadElement with arguments array and
nextIndex+padding.

ElementList : ElementList , Elisiongy: AssignmentExpression

1.

Nookwn

®

Let postindex be the result of performing Array Accumulation for ElementList with arguments array and
nextindex.

ReturnlfAbrupt(postindex).

Let padding be the Elision Width-of Elision; if Elision is not present, use the numeric value zero.

Let initResult be the result.of evaluating AssignmentExpression.

Let initValue be GetValue(initResult).

ReturnlfAbrupt(initvValue).

Call the [[DefineOwnProperty]] internal method of array with arguments

ToString(ToUint32(postindex+padding)) and the Property Descriptor { [[Value]]: initValue, [[Writable]]:

true, [[Enumerable]]: true, [[Configurable]]: true}.
Assert: the above call to [[DefineOwnProperty]] will return false or an abrupt completion value.
Return postindex+padding+1.

ElementList : ElementList , Elisiongy: SpreadElement

1.

2.
3.
4

Let postindex be the result of performing Array Accumulation for ElementList with arguments array and
nextindex.

ReturnlfAbrupt(postindex).

Let padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

Return the result of performing Array Accumulation for SpreadElement with arguments array and
postindex+padding.

SpreadElement : ... AssignmentExpression

OCOoNoOR~WNE

Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadValue be GetValue(spreadRef).

Let spreadObj be ToObject(spreadValue).
ReturnlfAbrupt(spreadObj).

Let lenVal be the result of calling Get(spreadObj, "length").
Let spreadLen be ToUint32(lenVal).
ReturnlfAbrupt(spreadLen).

Let n=0;

Repeat, while n < spreadLen

© Ecma International 2012

115

secma

a. Let exists be the result of HasProperty(spreadObj, ToString(n)).
b. ReturnlfAbrupt(exists).
c. Ifexists is true then,
i. Letv be the result of calling the [[Get]] internal method of spreadObj passing ToString(n) as the
argument.

ii. ReturnIfAbrupt(v).

iii. Call the [[DefineOwnProperty]] internal method of array with arguments
ToString(ToUint32(nextIndex)) and Property Descriptor {[[Value]]: v, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: true}.

iv. Assert: the above call to [[DefineOwnProperty]] will return false or an abrupt completion value.

d. Letn=n+l.
e. Let nextindex = nextlndex +1.
10. Return nextindex.

NOTE [[DefineOwnProperty]] is used to ensure that own properties are defined for the array even if the standard
built-in Array prototype object has been modified in a manner that would preclude the creation of new own properties
using [[SetP]].

Runtime Semantics: Evaluation

ArrayLiteral : [Elisiongg 1

Let array be the result of the abstract operation ArrayCreate with argument 0.

Let pad be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

Call Put(array, "length", pad, false).
Return array.

PowonE

ArrayLiteral : [ElementList]

Let array be the result of the abstract operation ArrayCreate with argument 0.

Let len be the result of performing Array Accumulation for ElementList with arguments array and 0.
ReturnlfAbrupt(len).

Call Put(array, "length", len, false).

Return array.

ghrwbdE

ArrayLiteral : [ElementList , Elisiongp 1

Let array be the result of the abstract operation ArrayCreate with argument 0.

Let len be the result of performing Array Accumulation for ElementList with arguments array and 0.
ReturnlfAbrupt(len).

LLet padding be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
Call Put(array, "1length", ToUint32(padding+len), false).

Return array.

oukwnE

11.1.4.2 Array Comprehension

Syntax

ArrayComprehension :
[AssignmentExpression ComprehensionForList]
[AssignmentExpression ComprehensionForList if Expression]

ComprehensionForList :
ComprehensionFor
ComprehensionForList ComprehensionFor

ComprehensionFor :
for ForBinding of Expression

116 © Ecma International 2012

secma

ForBinding :
Bindingldentifier
BindingPattern

Runtime Semantics
Runtime Semantics: Binding Initialisation
With arguments value and environment.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a

lexical binding is hosted and preinitialized prior to evaluation of its initializer.
ForBinding : BindingPattern

1. Letobj be ToObject(value).

2. ReturnlfAbrupt(obj).

3. Return the result of performing Binding Initialisation for BindingPattern passing obj and environment as the
arguments.

Runtime Semantics: Evaluation

ToDo
11.1.5 Object Initialiser

NOTE An object initialiser is an expression describing the initialisation of an Object, written in a form resembling a
literal. It is a list of zero or more pairs of property names and associated values, enclosed in curly braces. The values need
not be literals; they are evaluated each time the object initialiser is evaluated.

Syntax

ObijectLiteral :
{1
{ PropertyDefinitionList }
{ PropertyDefinitionList ", }

PropertyDefinitionList :
PropertyDefinition
PropertyDefinitionList , PropertyDefinition

PropertyDefinition :
IdentifierName
CoverlnitialisedName
PropertyName : AssignmentExpression
MethodDefinition

PropertyName :
IdentifierName
StringLiteral
NumericLiteral

CoverlnitialisedName :
IdentifierName Initialiser

Initialiser :
= AssignmentExpression

© Ecma International 2012 117

secma

NOTE 1 MethodDefinition is defined in 13.3.

NOTE 2 In certain contexts, ObjectLiteral is used as a cover grammar for a more restricted secondary grammar. The
CoverlnitialisedName production is necessary to fully cover these secondary grammars. However, use of this production
results in an early Syntax Error in normal contexts where an actual ObjectLiteral is expected.

Static Semantics

Static Semantics: Early Errors

In addition to describe an actual object initialiser the ObjectLiteral productions are-used as a cover grammar
for ObjectAssignmentPattern (11.13.1). When ObjectLiteral appears in a context where ObjectAssignmentPattern

is required, the following Early Error rules are not applied.

ObijectLiteral : { PropertyDefinitionList }
and
ObijectLiteral : { PropertyDefinitionList , }

e It is a Syntax Error if PropertyNameList of PropertyDefinitionList contains any duplicate entries, unless
one of the following conditions are true for each duplicate entry:

1. The source code corresponding to PropertyDefinitionList is not strict code and all occurrences
in the list of the duplicated entry were obtained from productions of the form
PropertyDefinition : PropertyName : AssignmentExpression.

2. The duplicated entry occurs exactly twice in the list and one occurrence was obtained from a
get accessor MethodDefinition and the other occurrence was obtained from a set accessor
MethodDefinition.

PropertyDefinition : MethodDefinition

e |tis a Syntax Error if ReferencesSuper of MethodDefinition is true.
PropertyDefinition : IdentifierName

e ltis a Syntax Error if IdentifierName is-a ReservedWord.
PropertyDefinition : CoverlnitialisedName

o Always throw a Syntax Error if this production is present

NOTE This production exists so that ObjectLiteral can serve as a cover grammar for ObjectAssignmentPattern (11.13.1).
It can not occur in an actual object initialiser.

Static Semantics: Contains
With parameter symbol:
PropertyDefinition : MethodDefinition

1. If symbol is MethodDefinition, return true.
2. Return false.

NOTE Static semantic rules that depend upon substructure generally do not look into function definitions.
PropertyName : IdentifierName

1. If symbol is a ReservedWord, return false.

2. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,

return true;
3. Return false.

118 © Ecma International 2012

»ecma

Static Semantics: IsValidSimpleAssignmentTarget
PrimaryExpression : Literal

1. Return false.

Static Semantics: PropName

PropertyDefinition : IdentifierName

1. Return StringValue of IdentifierName.
PropertyDefinition : PropertyName : AssignmentExpression
1. Return PropName of PropertyName.

PropertyName : StringLiteral

1. Return a String value whose characters are the SV of the StringLiteral.
PropertyName : NumericLiteral

1. Let nbr be the result of forming the value of the NumericLiteral.
2. Return ToString(nbr).

Static Semantics: PropertyNameList

PropertyDefinitionList : PropertyDefinition

1. Return a new List containing PropName of PropertyDefinition.
PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition
1. Let list be PropertyNameList of PropertyDefinitionList.

2. Append PropName of PropertyDefinition to the-end of list.

3. Return list.

Runtime Semantics

Runtime Semantics: Evaluation

ObijectLiteral : { }

1. Return a new object created as if by the expression new Object() where Object is the standard built-
in constructor with that name.

ObijectLiteral :
{ PropertyDefinitionList }
{ PropertyDefinitionList , }

=

Let obj be the result of the abstract operation ObjectCreate.

2. Let status be the result of performing Property Definition Evaluation of PropertyDefinitionList with
argument obj.

ReturnIfAbrupt(status).

4. Return obj.

w

Runtime Semantics: Property Definition Evaluation

With parameter object.

© Ecma International 2012 119

ecCmna

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1.

2.
3.

Let status be the result of performing Property Definition Evaluation of PropertyDefinitionList with
argument object.

ReturnlfAbrupt(status).

Return the result of performing Property Definition Evaluation of PropertyDefinition with argument object.

PropertyDefinition : IdentifierName

A

S

Let propName be StringValue of IdentifierName.

Let exprValue be the result of performing ldentifier Resolution as specified in 10.3.1 using ldentifierName.
Let propValue be GetValue(exprValue).

ReturnlfAbrupt(propValue).

Let desc be the Property Descriptor{[[VValue]]: propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}

Return the result of calling the [[DefineOwnProperty]] internal method of object with. arguments propName
and desc

PropertyDefinition : PropertyName : AssignmentExpression

grLbdPE

Let propName be PropName of PropertyName.

Let exprValue be the result of evaluating AssignmentExpression.

Let propValue be GetValue(exprValue).

ReturnlfAbrupt(propValue).

Let desc be the Property Descriptor{[[Valu€]]:-propValue, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}

Return the result of calling the [[DefineOwnProperty]] internal method of object with arguments propName
and desc.

11.1.6 Function Defining Expressions

See

See

See

13.1 for PrimaryExpression : FunctionExpression.
13.4 for PrimaryExpression : GeneratorExpression.

13.5 for PrimaryExpression :. ClassExpression.

11.1.7 Generator Comprehensions

Syn

tax

GeneratorComprehension :

(Expression ComprehensionForList)
(Expression ComprehensionForList if Expression)

11.1.8 Regular Expression Literals

Syn

See

tax
7.8.5.

Static Semantics

Static Semantics: Early Errors

PrimaryExpression : RegularExpressionLiteral

120

e |tis a Syntax Error if BodyText of RegularExpressionLiteral can not be recognized using the goal symbol
Pattern of the ECMAScript RegExp grammar specified in 15.10.

© Ecma International 2012

»ecma

e It is a Syntax Error if FlagText of RegularExpressionLiteral contains any character other than "g", "i",
"m", "u", or "y", or if it contains the same character more than once.

Runtime Semantics
Runtime Semantics: Evaluation
PrimaryExpression : RegularExpressionLiteral

1. Aregular expression literal evaluates to a value of the Object type that is an instance of the standard built-
in constructor RegExp. This value is determined in two steps: first, the characters comprising the regular
expression's RegularExpressionBody and RegularExpressionFlags production expansions are collected
uninterpreted into two Strings Pattern and Flags, respectively. Then each time the literal is evaluated, a
new object is created as if by the expression new RegExp (Pattern, Flags) where RegExp is the
standard built-in constructor with that name. The newly constructed object becomes the value of the
RegularExpressionLiteral.

11.1.9 Template Literals

Syntax

TemplateLiteral :
NoSubstitutionTemplate
TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

TemplateSpans:
TemplateTail
TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

TemplateMiddleList:
TemplateMiddle Expression
TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

Static Semantics
Static Semantics: TemplateStrings
With parameter raw.
TemplateLiteral : NoSubstitutionTemplate
1. Ifrawis false, then
a. Letstring be the TV of NoSubstitutionTemplate.
2. Else,
a. Letstring be the TRV of NoSubstitutionTemplate.
3. Return a List containing the single element, string.
TemplateLiteral : TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans
1. Ifraw is false, then
a. Lethead be the TV of TemplateHead.
2. Else,
a. Lethead be the TRV of TemplateHead.
3. Let tail be TemplateStrings of TemplateSpans with argument raw.
4. Return a List containing head followed by the element, in order of tail.

TemplateSpans : TemplateTail

1. Ifraw is false, then
a. Lettail be the TV of TemplateTail.

© Ecma International 2012 121

2.

3.

ecCmna

Else,
a. Lettail be the TRV of TemplateTail.
Return a List containing the single element, tail.

TemplateSpans : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

1. Let middle be TemplateStrings of TemplateMiddleList with argument raw.
2. Ifrawis false, then
a. Lettail be the TV of TemplateTail.
3. Else,
a. Lettail be the TRV of TemplateTail.
4. Return a List containing the elements, in order, of middle followed by tail.

TemplateMiddleList : TemplateMiddle Expression

1. Ifraw is false, then

a. Letstring be the TV of TemplateMiddle.
2. Else,

a. Letstring be the TRV of TemplateMiddle.
3. Return a List containing the single element, string.

TemplateMiddleList : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

1. Let front be TemplateStrings of TemplateMiddleList with argument raw.
2. Ifraw is false, then
a. Letlast be the TV of TemplateMiddle.
3. Else,
a. Let last be the TRV of TemplateMiddle.
4. Append last as the last elemnt of the List front.
5. Return front.

Runtime Semantics
Runtime Semantics: ArgumentListEvaluation
TemplateLiteral : NoSubstitutionTemplate

1. Let siteObj be the result of the abstraction operation GetTemplateCallSite passing this TemplateLiteral
production as the argument.
2. Return a List containing the one element which is siteObj.

TemplateLiteral : TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

1. Let siteObj be the result of the abstraction operation GetTemplateCallSite passing this TemplateLiteral
production as the argument.

Let firstSub be the result of evaluating Expression.

ReturnlfAbrupt(firstSub).

Let restSub be SubstitutionEvaluation of TemplateSpans.

ReturnlfAbrupt(restSub).

Assert, restSub is a List.

Return a List whose first element is siteObj, whose second elements is firstSub, and whose subsequent
elements are the elements of restSub, in order. restSub may contain no elements.

Nookowd

Runtime Semantics: GetTemplateCallSite Abstract Operation

The abstract operation GetTemplateCallSite is called with a grammar production, templateLiteral, as an
argument. It performs the following steps:

1. Ifa call site object for the source code corresponding to templateLiteral has already been created by a
previous call to this abstract operation, then return that call site object.

122 © Ecma International 2012

»ecma

Let cookedStrings be TemplateStrings of templateLiteral with argument false.
Let rawStrings be TemplateStrings of templateLiteral with argument true.
Let count be the number of elements in the List cookedStrings.
Let siteObj be the result of the abstraction operation ArrayCreate with argument count.
Let rawObj be the result of the abstraction operation ArrayCreate with argument count.
Let index be 0.
Repeat while index < count
a. Letprop be ToString(index).
b. Let cookedValue be the string value at 0-based position index of the List cookedStrings.
c. Call the [[DefineOwnProperty]] internal method of siteObj with arguments prop and Property
Descriptor {[[Value]]: cookedValue, [[Writable]]: false, [[Configurable]]: false}.
d. Let rawValue be the string value at 0-based position index of the List.rawStrings.
e. Call the [[DefineOwnProperty]] internal method of rawObj with arguments prop and Property
Descriptor {[[Value]]: rawValue, [[Writable]]: false, [[Configurable]]: false}.
f. Let index be index+1.
9. Call the [[Freeze]] internal method of rawObj.
10. Call the [[DefineOwnProperty]] internal method of siteObj with arguments "raw' and Property Descriptor
{[[Value]]: rawObj, [[Writable]]: false, [[Enumerable]]: false; [[Configurable]]: false}.
11. Call the [[Freeze]] internal method of siteObj.
12. Remember an association between the source code corresponding to templateLiteral and siteObj such that
siteObj can be retrieve in subsequent calls to this abstract operation.
13. Return siteObj.

N~ ®D

NOTE 1 The creation of a call site object cannot result in an abrupt completion.

NOTE 2 Each TemplateLiteral in the program code is associated with a unique Template call site object that is used in
the evaluation of tagged Templates (11.2.6). The same call site object is used each time a specific tagged Template is
evaluated. Whether call site objects are created lazily upon first evaluation of the TemplateLiteral or eagerly prior to first
evaluation is an implementation choice that is not observable to ECMAScript code.

Runtime Semantics: SubstitutionEvaluation

TemplateSpans : TemplateTail

1. Return an empty List.

TemplateSpans : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

1. Return‘the result of SubstitutionEvaluation of TemplateMiddleList.

TemplateMiddleList : TemplateMiddle Expression

1. Letsub be the result of evaluating Expression.

2. ReturnlfAbrupt(sub).

3. Return a List containing only sub.

TemplateMiddleList : TemplateMiddleL.ist [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

Let preceeding be the result of SubstitutionEvaluation of TemplateMiddleList .

ReturnIfAbrupt(preceeding).

Let next be the result of evaluating Expression.

ReturnIfAbrupt(next).

Append next as the list element of the List preceeding.
Return preceeding.

S A

Runtime Semantics: Evaluation
TemplateLiteral : NoSubstitutionTemplate

1. Return the string value whose elements are the TV of NoSubstitutionTemplate as defined in 7.8.6.

© Ecma International 2012 123

secma

TemplateLiteral : TemplateHead Expression [Lexical goal InputElementTemplateTail] TemplateSpans

Let head be the TV of TemplateHead as defined in 7.8.6.

Let sub be the result of evaluating Expression.

Let middle be ToString(sub).

ReturnlfAbrupt(middle).

Let tail be the result of evaluating TemplateSpans .

ReturnlfAbrupt(tail).

Return the string value whose elements are the code units of head followed by the code units of tail.

NogkwbE

TemplateSpans : TemplateTail

1. Lettail be the TV of TemplateTail as defined in 7.8.6.
2. Return the string whose elements are the code units of tail.

TemplateSpans : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateTail

1. Let head be the result of evaluating TemplateMiddleList.

2. ReturnlfAbrupt(head).

3. Lettail be the TV of TemplateTail as defined in 7.8.6.

4. Return the string whose elements are the elements of head followed by.the elements of tail.

TemplateMiddleList : TemplateMiddle Expression

Let head be the TV of TemplateMiddle as defined in 7.8.6.

Let sub be the result of evaluating Expression.

Let middle be ToString(sub).

ReturnlfAbrupt(middle).

Return the sequence of characters consisting of the codewunits of head.followed by the elements of middle.

gRrwnPE

TemplateMiddleList : TemplateMiddleList [Lexical goal InputElementTemplateTail] TemplateMiddle Expression

Let rest be the result of evaluating TemplateMiddleList .

ReturnlfAbrupt(rest).

Let middle be the TV of TemplateMiddle as defined in 7.8.6.

Let sub be the result of evaluating Expression.

Let last be ToString(sub).

ReturnlfAbrupt(last).

Return the sequence of characters consisting of the elements of rest followed by the code units of middle
followed by the elements of last.

NogkwbpE

11.1.10 The Grouping Operator
Static Semantics: Early Errors
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList
e |tis a Syntax Error if the lexical token sequence matched by
CoverParenthesizedExpressionAndArrowParameterList cannot be parsed with no tokens left over using
ParenthesizedExpression as the goal symbol.
o All Early Errors rules for ParenthesizedExpression and its derived productions also apply to the
CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
Static Semantics: IsValidSimpleAssignmentTarget

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return IsValidSimpleAssignmentTarget of expr.

124 © Ecma International 2012

secma

ParenthesizedExpression : (Expression)

1. Return IsValidSimpleAssignmentTarget of Expression.

Runtime Semantics: Evaluation

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Letexpr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the result of evaluating expr.

ParenthesizedExpression : (Expression)

1. Return the result of evaluating Expression. This may be of type Reference.

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this
is so that operators such as delete and typeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions

Syntax

MemberExpression :
[Lexical goal InputElementRegExp] PrimaryExpression
MemberExpression [Expression]
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
super [Expression]
super . ldentifierName
new MemberExpression Arguments

NewExpression :
MemberExpression
new NewExpression

CallExpression :
MemberExpression Arguments
super Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . ldentifierName
CallExpression TemplateLiteral

Arguments :
()
(ArgumentList)

ArgumentList :
AssignmentExpression
. AssignmentExpression
ArgumentList , AssignmentExpression
ArgumentList , ... AssignmentExpression

LeftHandSideExpression :
NewExpression
CallExpression

Static Semantics

© Ecma International 2012 125

secma

Static Semantics: Contains
With parameter symbol.
MemberExpression : MemberExpression . IdentifierName

1. If MemberExpression Contains symbol is true, return true.
2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,

return true;
4. Return false.

MemberExpression : super . IdentifierName

1. If symbol is the ReservedWord super, return true.
2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the samewvalue as the StringValue of IdentifierName,

return true;
4. Return false.

CallExpression : CallExpression . IdentifierName

1. If CallExpression Contains symbol is true, return true.
2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName,

return true;
4. Return false.

Static Semantics: IsValidSimpleAssignmentTarget

CallExpression :
MemberExpression Arguments
super Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . ldentifierName

MemberExpression :
MemberExpression [Expression]
MemberExpression . ldentifierName
super [Expression]
super . ldentifierName

1. Return true.
CallExpression : CallExpression TemplateLiteral
NewExpression : new NewEXxpression

MemberExpression : new MemberExpression Arguments

1. Return false.

11.2.1 Property Accessors

Properties are accessed by name, using either the dot notation:

MemberExpression . IdentifierName
CallExpression . IdentifierName

or the bracket notation:

126

© Ecma International 2012

»ecma

MemberExpression [Expression]
CallExpression [Expression]

The dot notation is explained by the following syntactic conversion:
MemberExpression . IdentifierName
is identical in its behaviour to
MemberExpression [<identifier-name-string>]
and similarly
CallExpression . ldentifierName
is identical in its behaviour to
CallExpression [<identifier-name-string>]

where <identifier-name-string> is a string literal containing the same sequence of characters after processing
of Unicode escape sequences as the IdentifierName.

Runtime Semantics: Evaluation
MemberExpression : MemberExpression [Expression]

Let baseReference be the result of evaluating MemberExpression:
Let baseValue be GetValue(baseReference).
ReturnIfAbrupt(baseValue).
Let propertyNameReference be the result of evaluating Expression.
Let propertyNameValue be GetValue(propertyNameReference).
ReturnIfAbrupt(propertyNameValue).
ReturnlfAbrupt(CheckObjectCoercible(baseValue)).
Let propertyNameString be ToString(propertyNameValue).
If the code matched by thesyntactic production that is being evaluated is strict mode code, let strict be true,
else let strict be false.
. Return a value of type Reference whose base value is baseValue and whose referenced name is
propertyNameString, and whose strict reference flag is strict.

COoNooo~EWNE

[y
o

CallExpression : CallExpression [Expression]

Is evaluated in exactly the same manner as MemberExpression : MemberExpression [Expression] except that
the contained CallExpression is evaluated in step 1.

11.2.2 The new Operator
Runtime Semantics: Evaluation
NewExpression :‘new NewExpression

Let ref be the result of evaluating NewExpression.

Let constructor be GetValue(ref).

ReturnIfAbrupt(constructor).

If Type(constructor) is not Object, throw a TypeError exception.

If constructor does not implement the [[Construct]] internal method, throw a TypeError exception.
Return the result of calling the [[Construct]] internal method on constructor with an empty List as the
argument.

S o

MemberExpression : new MemberExpression Arguments

1. Let ref be the result of evaluating MemberExpression.
2. Let constructor be GetValue(ref).
3. ReturnIfAbrupt(constructor).

© Ecma International 2012 127

eCina

N~

Let argList be the result of evaluating Arguments, producing an internal List of argument values (11.2.4).
ReturnlfAbrupt(argList).

If Type(constructor) is not Object, throw a TypeError exception.

If constructor does not implement the [[Construct]] internal method, throw a TypeError exception.
Return the result of calling the [[Construct]] internal method on constructor, passing argList as the
argument.

11.2.3 Function Calls

Runtime Semantics: Evaluation

CallExpression : MemberExpression Arguments

1.
2.
3.

Let ref be the result of evaluating MemberExpression.
If this CallExpression is in a tail position (13.7) then let tailCall be true, otherwise let tailCall be false.
Return the result of the abstract operation EvaluateCall with arguments ref, Arguments, and tailCall.

CallExpression : CallExpression Arguments

1.
2.
3.

Let ref be the result of evaluating CallExpression.
If this CallExpression is in a tail position (13.7) then let tailCall be true, otherwise let tailCall be false.
Return the result of the abstract operation EvaluateCall with arguments ref, Arguments, and tailCall.

Runtime Semantics: EvaluateCall Abstract Operation

The abstract operation EvaluateCall takes as arguments a-value ref, anda syntactic grammar production
arguments, and a Boolean argument tailPosition. It performs the following steps:

NookwbpE

10.

11.

12.
13.

Let func be GetValue(ref).
ReturnlfAbrupt(func).
Let argList be the result of performing ArgumentListEvaluation of arguments.
ReturnlfAbrupt(argList):
If Type(func) is not Object, throw a TypeError exception.
If IsCallable(func)is false, throw a TypeError exception.
If Type(ref) is Reference, then

a. If IsPropertyReference(ref) is true, then

i Let thisValue be GetThisValue(ref).
b. _Else, the base of refis an. Environment Record
i Let thisValue be the result of calling the WithBaseObject concrete method of GetBase(ref).

Else Type(ref) is not Reference,

a. LetthisvValue be undefined.
If tailPosition is true, then

a. Let leafContext be the running execution context.

b. "Suspend leafContext.

c. Pop leafContext from the execution context context stack. The execution context now on the top of

the stack becomes the running execution context, however it remains in its suspended state.

d. Assert: leafContext has no further use. It will never be activated as the running execution context.
Let result be the result of calling the [[Call]] internal method on func, passing thisValue as the thisArgument
and argList as the argumentsL.ist.
Assert: If tailPosition is true, the above call will not return here, but instead evaluation will continue with
the resumption of leafCallerContext as the running execution context.
Assert: Type(result) is an ECMAScript language type
Return result.

A tail position call must either release any transient internal resources associated with the currently executing
function execution context before invoking the target function or reuse those resources in support of the target
function.

128

© Ecma International 2012

»ecma

NOTE 1 For example, a tail position call should only grow an implementation’s activication record stack by the amount
that the size of the target function’s activation record exceeds the size of the calling function’s activation record. If the
target function’s activation record is smaller, then the total size of the stack should decrease.

11.2.4 The super Keyword
Static Semantics
Static Semantics: Early Errors
MemberExpression :
super [Expression]
super . ldentifierName
e Itis a Syntax Error if the source code parsed with this production'is global code that is not eval code.
e ltis a Syntax Error if the source code parsed with this production is eval code and the source code is

not being processed by a direct call to eval that is contained in function code.

CallExpression : super Arguments
e Itis a Syntax Error if the source code parsed with this production«s global code that is not eval code.
e ltis a Syntax Error if the source code parsed with this production is eval code and the source code is
not being processed by a direct call to eval that is contained in function code.
Runtime Semantics: Evaluation

MemberExpression : super [Expression]

1. Letenv be the result of performing the GetThisEnvironment abstract operation.

2. If the result of calling the HasSuperBinding concrete‘method of env is false, then throw a ReferenceError
exception.

3. LetactualThis be the result of calling the GetThisBinding concrete method of env.

4. Let baseValue be theresult of calling the GetSuperBase concrete method of env.

5. Let propertyNameReference be the result of evaluating Expression.

6. Let propertyNameValue be GetValue(propertyNameReference).

7. ReturnlfAbrupt(CheckObjectCoercible(baseValue)).

8. Let propertyKey-be ToPropertyKey(propertyNameValue).

9. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,

else let strict be false.
10. Return a value of type Reference that is.a Super Reference whose base value is baseValue, whose referenced
name.is propertyKey, whose thisValue is actualThis, and whose strict reference flag is strict.
MemberExpression : super . IdentifierName

1. Letenv be the result of performing the GetThisEnvironment abstract operation.

2. If the result of callingthe HasSuperBinding concrete method of env is false, then throw a ReferenceError
exception.

3. Let actualThis be the result of calling the GetThisBinding concrete method of env.

4. Let baseValue be the result of calling the GetSuperBase concrete method of env.

5. ReturnIfAbrupt(CheckObjectCoercible(baseValue)).

6. Let propertyKey be StringValue of IdentifierName.

7. If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,

else let strict be false.

8. Return a value of type Reference that is a Super Reference whose base value is baseValue, whose referenced
name is propertyKey, whose thisValue is actualThis, and whose strict reference flag is strict.

CallExpression : super Arguments

1. Letenv be the result of performing the GetThisEnvironment abstract operation.

© Ecma International 2012 129

eCina

If the result of calling the HasSuperBinding concrete method of env is false, then throw a ReferenceError

exception.

Let actualThis be the result of calling the GetThisBinding concrete method of env.

Let baseValue be the result of calling the GetSuperBase concrete method of env.

ReturnlfAbrupt(CheckObjectCoercible(baseValue)).

Let propertyKey be the result of calling the GetMethodName concrete method of env.

If the code matched by the syntactic production that is being evaluated is strict mode code, let strict be true,

else let strict be false.

8. Let ref be a value of type Reference that is a Super Reference whose base value is baseValue, whose
referenced name is propertyKey, whose thisValue.

9. If this CallExpression is in a tail position (13.7) then let tailCall be true, otherwise let tailCall be false.

10. Return the result of the abstract operation EvaluateCall with arguments ref, Arguments, and tailCall.

L

N kW

11.2.5 Argument Lists

The evaluation of an argument list produces a List of values (see 8.7).
Runtime Semantics

Runtime Semantics: ArgumentListEvaluation

Arguments : ()

1. Return an empty List.

ArgumentList : AssignmentExpression

Let ref be the result of evaluating AssignmentExpression.

Let arg be GetValue(ref).

ReturnlfAbrupt(arg).
Return a List whose sole item is arg.

PR

ArgumentList : ... AssignmentExpression

1. Let list be an empty List.
2. Let spreadRef be the result of evaluating AssignmentExpression.
3. Let spreadValue be GetValue(spreadRef).
4. Let spreadObj be ToObject(spreadValue).
5. ReturnlfAbrupt(spreadObj).
6. LetlenVal be the result of calling Get(spreadObj, "length").
7. LetspreadLen be ToUint32(lenVal).
8. ReturnlfAbrupt(spreadLen).
9. Letn=0.
10. Repeat, while.n < spreadLen
a. Let nextArg be the result of calling Get(spreadObj, ToString(n)).
b. ReturnlfAbrupt(nextArg).
c. Append nextArg as the last element of list.
d. Letn=n+l.
11. Return list.

ArgumentList : ArgumentList , AssignmentExpression

Let precedingArgs be the result of evaluating ArgumentList.

ReturnlfAbrupt(precedingArgs).

Let ref be the result of evaluating AssignmentExpression.

Let arg be GetValue(ref).

ReturnlfAbrupt(arg).

Return a List whose length is one greater than the length of precedingArgs and whose items are the items of
precedingArgs, in order, followed at the end by arg which is the last item of the new list.

eogkwnPE

130 © Ecma International 2012

»ecma

ArgumentList : ArgumentList , .. AssignmentExpression

1. Let precedingArgs be an empty List.
2. Let spreadRef be the result of evaluating AssignmentExpression.
3. Let spreadValue be GetValue(spreadRef).
4. LetspreadObj be ToObject(spreadValue).
5. ReturnlfAbrupt(spreadObj).
6. LetlenVal be the result of calling Get(spreadObj, "1length").
7. LetspreadLen be ToUint32(lenVal).
8. ReturnifAbrupt(spreadLen).
9. Letn=0.
10. Repeat, while n < spreadLen
a. Let nextArg be the result of calling Get(spreadObj, ToString(n)).
b. ReturnlfAbrupt(nextArg).
c. Append nextArg as the last element of precedingArgs.
d. Letn=n+l.
11. Return precedingArgs.

11.2.6 Tagged Templates

Runtime Semantics

Runtime Semantics: Evaluation

MemberExpression : MemberExpression TemplateLiteral

1. Let tagRef be the result of evaluating MemberExpression.

2. If this MemberExpression is in a tail position'(13.7) then let tailCall be true, otherwise let tailCall be false.

3. Return the result of the abstract operation EvaluateCall with arguments.tagRef, TemplateLiteral, and
tailCall.

CallExpression : CallExpression TemplateLiteral

1. LettagRef be the result of evaluating CallExpression.

2. If this CallExpression is in a tail position (13.7) then let tailCall be true, otherwise let tailCall be false.

3. Return the result of the abstract operation EvaluateCall with arguments tagRef, TemplateLiteral, and
tailCall.

11.3 Postfix Expressions

Syntax
PostfixExpression :
LeftHandSideExpression
LeftHandSideExpression’ [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-
Static Semantics
Static Semantics: Early Errors
PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-
e ltis an early Reference Error if IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

Static Semantics: IsValidSimpleAssignmentTarget

© Ecma International 2012 131

secma

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

1. Return false.

11.3.1 Postfix Increment Operator

Runtime Semantics: Evaluation

PostfixExpression : LeftHandSideExpression [no LineTerminator here] ++

Let Ihs be the result of evaluating LeftHandSideExpression.

Let oldValue be ToNumber(GetValue(lhs)).

ReturnlfAbrupt(oldVvalue).

Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see
11.6.3).

5. Let status be PutValue(lhs, newValue).

6. ReturnlfAbrupt(status).

7. Return oldValue.

PR

11.3.2 Postfix Decrement Operator
Runtime Semantics: Evaluation
PostfixExpression : LeftHandSideExpression [no LineTerminatorhere] —-

1. Let Ihs be the result of evaluating LeftHandSideExpression.

2. LetoldValue be ToNumber(GetValue(lhs)).

3. Let newValue be the result of subtracting the value 1‘from oldValue, using the same rules as for the -
operator (11.6.3).

4. Let status be PutValue(lhs, newValue).

5. ReturnlfAbrupt(status).

6. Return oldValue.

11.4 Unary Operators

Syntax

UnaryExpression :
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof WUnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

Static Semantics
Static Semantics: Early Errors

UnaryExpression :
delete UnaryExpression

132 © Ecma International 2012

eCina

e |t is a Syntax Error if the UnaryExpression is contained in strict code and the derived UnaryExpression is
the Identifier eval or the Identifier arguments.
e |tis a Syntax Error if the derived UnaryExpression is
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList
and derives a production that if used in place of UnaryExpression would produce a Syntax Error
according to these rules. This rule is recursively applied.

UnaryExpression :
++ UnaryExpression
-- UnaryExpression

e ltis an early Reference Error if IsValidSimpleAssignmentTarget of UnaryExpression is false.
Static Semantics: IsValidSimpleAssignmentTarget

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
-- UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

1. Return false.

11.4.1 The delete Operator

Static Semantics: Early Errors
UnaryExpression : delete UnaryExpression

e |t is a Syntax Error if the UnaryExpression is contained in strict code and the UnaryExpression derives
an Identifier that statically resolves to a environment record.

Runtime Semantics: Evaluation
UnaryExpression : delete UnaryExpression

Let ref be the result of evaluating UnaryExpression.
ReturnlfAbrupt(ref).
If Type(ref) is not Reference, return true.
If IsUnresolvableReference(ref) is true, then,
a. If IsStrictReference(ref) is true, then throw a SyntaxError exception.
b. Return true.
5. If IsPropertyReference(ref) is true, then
a. If IsSuperReference(ref), then throw a ReferenceError exception.
b. Let deleteStatus be the result of calling the [[Delete]] internal method on ToObject(GetBase(ref)),
providing GetReferencedName(ref) as the argument.
c. ReturnlfAbrupt(deleteStatus).
d. If deleteStatus is false and IsStrictReference(ref) is true, then throw a TypeError exception.
e. Return true.
6. Else ref is a Reference to an Environment Record binding,
a. Letbindings be GetBase(ref).
b. Return the result of calling the DeleteBinding concrete method of bindings, providing
GetReferencedName(ref) as the argument.

el N .

© Ecma International 2012 133

secma

NOTE When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its
UnaryExpression is a direct reference to a variable, function argument, or function name. In addition, if a delete operator
occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError
exception is thrown.

11.4.2 The void Operator

Runtime Semantics: Evaluation

UnaryExpression : void UnaryExpression

1. Letexpr be the result of evaluating UnaryExpression.

2. Let status be GetValue(expr).

3. ReturnlfAbrupt(status).

4. Return undefined.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

11.4.3 The typeof Operator
Runtime Semantics: Evaluation
UnaryExpression : typeof UnaryExpression

1. Letval be the result of evaluating UnaryExpression.

2. If Type(val) is Reference, then
a. If IsUnresolvableReference(val) is true, return "undefined".
b. Letval be GetValue(val).

3. ReturnlfAbrupt(val).

4. Return a String determined by-Type(val) according to'Table 30 .

Table 30 — typeof Operator Results

Type of val Result
Undefined "undefined"
Null "object"
Boolean "boolean"
Number "number"
String "string"
Object (ordinary and does "object"

not implement [[Call]])
Object (implements [[Call]]) | "function”

Object (exotic and does not | Implementation-defined unless
implement [[Call]]) explicitly specified. May not be
"undefined", "boolean",
"number", Or "string".

11.4.4 Prefix Increment Operator

Runtime Semantics: Evaluation

UnaryExpression : ++ UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.

2. LetoldValue be ToNumber(GetValue(expr)).
3. ReturnlfAbrupt(oldVvalue).

134 © Ecma International 2012

secma

4. Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see
11.6.3).

5. Let status be PutValue(expr, newValue).

6. ReturnlfAbrupt(status).

7. Return newValue.

11.4.5 Prefix Decrement Operator

Runtime Semantics: Evaluation

UnaryExpression : —=- UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.

2. LetoldValue be ToNumber(GetValue(expr)).

3. ReturnlfAbrupt(oldValue).

4. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the -

operator (see 11.6.3).

Let status be PutVValue(expr, newValue).
ReturnlfAbrupt(status).

7. Return newValue.

o o

11.4.6 Unary + Operator

NOTE The unary + operator converts its operand to Number type.
Runtime Semantics: Evaluation

UnaryExpression : + UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Return ToNumber(GetValue(expr)).

11.4.7 Unary - Operator

NOTE The unary - operator converts its operand to Number type and then negates it. Negating +0 produces -0, and
negating —0 produces +0.

Runtime Semantics: Evaluation
UnaryExpression : = UnaryExpression

Let expr be the result of evaluating UnaryExpression.

Let oldValue be ToNumber(GetValue(expr)).

ReturnlfAbrupt(oldVvalue):

If oldValue is NaN, return NaN.

Return the result of negating oldValue; that is, compute a Number with the same magnitude but opposite
sign.

apbwbPE

11.4.8 Bitwise NOT Operator (~)

Runtime Semantics: Evaluation

UnaryExpression : ~ UnaryExpression

Let expr be the result of evaluating UnaryExpression.
Let oldValue be Tolnt32(GetValue(expr)).

ReturnIfAbrupt(oldValue).
Return the result of applying bitwise complement to oldValue. The result is a signed 32-bit integer.

el NS S

© Ecma International 2012 135

ecCmna

11.4.9 Logical NOT Operator (!)

Run

time Semantics: Evaluation

UnaryExpression : ! UnaryExpression

grwbdPE

Let expr be the result of evaluating UnaryExpression.
Let oldValue be ToBoolean(GetValue(expr)).
ReturnlfAbrupt(oldValue).

If oldValue is true, return false.

Return true.

11.5 Multiplicative Operators

Syn

tax

MultiplicativeExpression :

Stat

UnaryExpression

MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

ic Semantics: IsValidSimpleAssignmentTarget

MultiplicativeExpression :

1.

Run

The

MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

Return false.
time Semantics: Evaluation

production MultiplicativeExpression.: MultiplicativeExpression @ UnaryExpression, where @ stands for one

of the operators in the above definitions, is evaluated as follows:

HooNonkrwbE

Let left be the result of evaluating MultiplicativeExpression.
Let leftValue be GetValue(left).

ReturnlfAbrupt(leftValue).

Let right be the result of evaluating UnaryExpression.

Let rightValue be GetValue(right).

Let Inum be ToNumber(leftValue).

ReturnlfAbrupt(lnum).

Let rnum be ToNumber(rightValue).

ReturnlfAbrupt(rnum).

Return the result of applying the specified operation (*, /, or %) to Inum and rnum. See the Notes below
11.5.1,11.5.2,11.5.3.

11.5.1 Applying the * Operator

The

* operator performs multiplication, producing the product of its operands. Multiplication is commutative.

Multiplication is not always associative in ECMAScript, because of finite precision.

The

result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision

arithmetic:

136

o |[f either operand is NaN, the result is NaN.

e The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

e Multiplication of an infinity by a zero results in NaN.

© Ecma International 2012

»ecma

e Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the
rule already stated above.

e Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is
determined by the rule already stated above.

¢ In the remaining cases, where neither an infinity or NaN is involved, the product is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
the magnitude is too large to represent, the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

11.5.2 Applying the / Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and
the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The.result of division is determined by the
specification of IEEE 754 arithmetic:
o |If either operand is NaN, the result is NaN.
e The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.
o Division of an infinity by an infinity results in NaN.
e Division of an infinity by a zero results in an infinity: The sign is determined by the rule
already stated above.
e Division of an infinity by a nonzero finite value results in a signed infinity. The sign is
determined by the rule already stated above.
e Division of a finite value by an infinity results. in zero. The sign is determined by the rule
already stated above.
e Division of a zero by a zero results'in NaN;division of zero by any other finite value results
in zero, with the sign-determined by the rule already stated above.
e Division of a nonzero finite value by a zero results in a signed infinity. The sign is
determined by.the rule already stated above.
¢ In the remaining cases, where neither ‘an infinity, nor a zero, nor NaN is involved, the
guotient is computed androunded.to the nearest representable value using IEEE 754 round-
to-nearest mode. If the magnitude is too.large to represent, the operation overflows; the
result is then an infinity of appropriate sign. If the magnitude is too small to represent, the
operation underflows and the result is a zero of the appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.

11.5.3 Applying the % Operator

The % operator yields the remainder of its operands from an implied division; the left operand is the dividend
and the right operand is the divisor.

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-
point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
“remainder” operation defined by IEEE 754. The IEEE 754 “remainder” operation computes the remainder
from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the usual
integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to
behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the
C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
o |If either operand is NaN, the result is NaN.
e The sign of the result equals the sign of the dividend.
o |If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
o |If the dividend is finite and the divisor is an infinity, the result equals the dividend.

© Ecma International 2012 137

secma

e |f the dividend is a zero and the divisor is nonzero and finite, the result is the same as the
dividend.

¢ In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
floating-point remainder r from a dividend n and a divisor d is defined by the mathematical
relation r = n — (d x q) where q is an integer that is negative only if n/d is negative and
positive only if n/d is positive, and whose magnitude is as large as possible without
exceeding the magnitude of the true mathematical quotient of n and d. r is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode.

11.6 Additive Operators

Syntax

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

Static Semantics: IsValidSimpleAssignmentTarget

AdditiveExpression :
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

1. Return false.

11.6.1 The Addition operator (+)

NOTE The addition operator either performs string concatenation or numeric addition.
Runtime Semantics: Evaluation

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

Let Iref be the result of evaluating AdditiveExpression.
Let lval be GetValue(lIref).
ReturnlfAbrupt(lval).
Let rrefe the result of evaluating MultiplicativeExpression.
Let rval be GetValue(rref).
ReturnlfAbrupt(rval).
Let Iprim be ToPrimitive(lval).
ReturnifAbrupt(lprim).
Let rprim be ToPrimitive(rval).
ReturnlfAbrupt(rprim).
If Type(lprim) is String or Type(rprim) is String, then
a. Return the String that is the result of concatenating ToString(lprim) followed by ToString(rprim)
Return the result of applying the addition operation to ToNumber(lprim) and ToNumber(rprim). See the
Note below 11.6.3.

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 5 and 6. All standard ECMAScript objects except Date
objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the
hint String were given. Exotic objects may handle the absence of a hint in some other manner.

PP OO0O~NOOOTA,WNPE

[EN
™~

NOTE 2 Step 7 differs from step 3 of the comparison algorithm for the relational operators (11.8.1), by using the
logical-or operation instead of the logical-and operation.

138 © Ecma International 2012

»ecma

11.6.2 The Subtraction Operator (-)

Runtime Semantics: Evaluation

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

N~ E

Let Iref be the result of evaluating AdditiveExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating MultiplicativeExpression.
Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let Inum be ToNumber(lval).

ReturnlfAbrupt(Inum).

9. Let rnum be ToNumber(rval).
10. ReturnlfAbrupt(rnum).
11. Return the result of applying the subtraction operation to Inum and rnum. See the note below 11.6.3.

11.6.3 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:

If either operand is NaN, the result is NaN.

The sum of two infinities of opposite sign is NaN.

The sum of two infinities of the same sign.is the infinity of that sign.

The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two negative zeroes is —0. The sum of two positive zeroes, or of two zeroes of
opposite sign, is +0.

The sum of a zero and a-nonzero-finite value is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

In the-remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the
operands have the same sign or have different magnitudes, the sum is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
maghnitude is too large to represent, the operation overflows and the result is then an infinity
of appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing the difference
of its operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric
operands a and b, it is.always the case that a-b produces the same resultasa + (-b).

11.7 Bitwise Shift Operators

Syntax

ShiftExpression :
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Static Semantics: IsValidSimpleAssignmentTarget

© Ecma International 2012 139

secma

ShiftExpression :
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

1. Return false.

11.7.1 The Left Shift Operator (<<)

NOTE Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.
Runtime Semantics: Evaluation

ShiftExpression : ShiftExpression << AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let lval be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Let Inum be Tolnt32(lval).

ReturnlfAbrupt(lnum).

. Let rnum be ToUint32(rval).

0. ReturnIfAbrupt(rnum).

1. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum
& Ox1F.

12. Return the result of left shifting Inum by shiftCount bits. The result is a signed 32-bit integer.

HRBboo~NokwhPE

11.7.2 The Signed Right Shift Operator (>>)

NOTE Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

Runtime Semantics: Evaluation
ShiftExpression :-ShiftExpression >> AdditiveExpression

Let lref be the result of evaluating ShiftExpression.

Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref.be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Let Inum be Tolnt32(lval).

ReturnlfAbrupt(lnum):

Let rnum be ToUint32(rval).

ReturnlfAbrupt(rnum).

Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum
& Ox1F.

Return the result of performing a sign-extending right shift of Inum by shiftCount bits. The most significant
bit is propagated. The result is a signed 32-bit integer.

PP OOO~NOOOTA,WNE

-
™~

11.7.3 The Unsigned Right Shift Operator (>>>)

NOTE Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

140 © Ecma International 2012

»ecma

Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >>> AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating AdditiveExpression.

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Let Inum be ToUint32(lval).

ReturnIfAbrupt(Inum).

Let rnum be ToUint32(rval).

ReturnlfAbrupt(rnum).

Let shiftCount be the result of masking out all but the least significant’5 bits of rnum, that is, compute rnum
& Ox1F.

Return the result of performing a zero-filling right shift of Inum.by shiftCount bits. Vacated bits are filled
with zero. The result is an unsigned 32-bit integer.

P POO~NO O~ WNPE

[y
™

11.8 Relational Operators

NOTE The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

Syntax

RelationalExpression :
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceo£ ShiftExpression
RelationalExpression in ShiftExpression

RelationalExpressionNoln :
ShiftExpression
RelationalExpressionNoln < ShiftExpression
RelationalExpressionNoln > ShiftExpression
RelationalExpressionNoln <= ShiftExpression
RelationalExpressionNoln >= ShiftExpression
RelationalExpressionNoln instanceo£ ShiftExpression

The semantics of the RelationalExpressionNoln productions are the same as the RelationalExpression
productions except that .the contained RelationalExpressionNoln is used in place of the contained
RelationalExpression.

NOTE The “Noln” variants are needed to avoid confusing the in operator in a relational expression with the in
operator in a for statement.

Static Semantics: IsValidSimpleAssignmentTarget

RelationalExpression :
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceo£ ShiftExpression
RelationalExpression in ShiftExpression

© Ecma International 2012 141

secma

1. Return false.

11.8.1 Runtime Semantics
Runtime Semantics: The Abstract Relational Comparison Algorithm

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a
parameter. The flag is used to control the order in which operations with potentially visible side-effects are
performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LeftFirst is true and indicates that the x parameter corresponds to an expression that
occurs to the left of the y parameter’s corresponding expression. If LeftFirst is false, the reverse is the case
and operations must be performed upon y before x. Such a comparison is performed as follows:

1. ReturnlfAbrupt(x).
2. ReturnlfAbrupt(y).
3. If the LeftFirst flag is true, then

a. Let px be the result of calling ToPrimitive(x, hint Number).

b. ReturnlfAbrupt(px).

c. Let py be the result of calling ToPrimitive(y, hint Number).

d. ReturnlfAbrupt(py).

4. Else the order of evaluation needs to be reversed to preserve left to right evaluation

a. Let py be the result of calling ToPrimitive(y, hint Number).

b. ReturnlfAbrupt(py).

c. Let px be the result of calling ToPrimitive(x, hint Number).

d. ReturnlfAbrupt(px).

5. If both px and py are Strings, then

a. |Ifpyisa prefix of px, return false. (A String value p is-a prefix of String value q if q can be the
result of concatenating p and some other String.r. Note that any String is a prefix of itself, because r
may be the empty String:)

b. If px is a prefix of py, return true.

c. Letk be the smallest nonnegative integer such that the character at position k within px is different
from the character at position k within py. (There must be such a k, for neither String is a prefix of
the other.)

d. Letm be the integer that is the code unit value for the character at position k within px.

e. Letn be the integer.that is the code unit value for the character at position k within py.

f. If m <n, return true. Otherwise, return false.

6. Else,
a< Let nx be the result of calling ToNumber(px). Because px and py are primitive values evaluation
order is not important.
Let ny be the result of calling ToNumber(py).
If nx is NaN, return undefined.
If ny is NaN, return undefined.
If nx and ny are the same Number value, return false.
Ifnx is.+0 and ny is -0, return false.
If nx'is =0 and'ny is +0, return false.
If nx is +oo, return false.
If ny is +oo, return true.
If ny is —o0, return false.
If nx is —oo, return true.
If the mathematical value of nx is less than the mathematical value of ny —note that these
mathematical values are both finite and not both zero—return true. Otherwise, return false.

—xT T SQe o aoo

NOTE 1 Step 3 differs from step 7 in the algorithm for the addition operator + (11.6.1) in using and instead of or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and collating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for

142 © Ecma International 2012

ecind

strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from
that on sequences of code point values.

Runtime Semantics: Evaluation

RelationalExpression : RelationalExpression < ShiftExpression

N~ WDE

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison lIval < rval.(see 11.8.5)
ReturnIfAbrupt(r).

If r is undefined, return false. Otherwise, return r.

RelationalExpression : RelationalExpression > ShiftExpression

N~ E

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison rval < lval with LeftFirst equal to false.
ReturnIfAbrupt(r).

If r is undefined, return false. Otherwise, return r.

RelationalExpression : RelationalExpression <= ShiftExpression

NN E

Let Iref be the result of evaluating Relational Expression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result.of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison rval < lval with LeftFirst equal to false.
ReturnlfAbrupt(r).

If r is true or-undefined, return false. Otherwise, return true.

RelationalExpression : RelationalExpression >= ShiftExpression

N~ E

Let Iref be the result of evaluating RelationalExpression.

Let lval be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

Let r be the result of performing abstract relational comparison Ival < rval.
ReturnIfAbrupt(r).

If r is true or undefined, return false. Otherwise, return true.

RelationalExpression: RelationalExpression instanceof ShiftExpression

NogkrwbhE

Let Iref be the result of evaluating RelationalExpression.
Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

Return the result of instanceofOperator(lval, rval).

© Ecma International 2012 143

secma

The abstract operation instanceofOperator(O,C) implements the generic algorithm for determining if an object
O inherits from the inheritance path defined by constructor C. This abstract operation performs the following
steps:

If Type(C) is not Object, throw a TypeError exception.
Let instOfHandler be the result of GetMethod(C,@ @haslnstance).
ReturnlfAbrupt(instOfHandler).
If instOfHandler is not undefined, then
a. Return the result of calling the [[Call]] internal method of instOfHandler passing C as thisArgument
and a new List containing O as argumentsList.
If IsCallable(C) is false, then throw a TypeError exception.
Return the result of OrdinaryHaslnstance(C, O).

PO E

o u

NOTE Steps 5 and 6 provide compatibility with previous editions of ECMAScript that did not use a @ @hasInstance
method to define the instanceof operator semantics. If a function object doesnot define @ @haslInstance it is assumed
that it implements the default instanceof semantics.

RelationalExpression : RelationalExpression in ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating ShiftExpression.

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

If Type(rval) is not Object, throw a TypeError exception.
Return the result of HasProperty(rval, ToPropertyKey(lval)).

N~ E

11.9 Equality Operators

NOTE The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.
Syntax

EqualityExpression :
RelationalExpression

EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression
EqualityExpression === RelationalExpression

EqualityExpression '== RelationalExpression
EqualityExpression [no LineTerminator here] is RelationalExpression
EqualityExpression [no LineTerminator here] isnt RelationalExpression

EqualityExpressionNoln :
RelationalExpressionNoln

EqualityExpressionNoln == RelationalExpressionNoln
EqualityExpressionNoln !'= RelationalExpressionNoln
EqualityExpressionNoln === RelationalExpressionNoln
EqualityExpressionNoln !'== RelationalExpressionNoln

EqualityExpression [no LineTerminator here] is RelationalExpression
EqualityExpression [no LineTerminator here] isnt RelationalExpression

The semantics of the EqualityExpressionNoln productions are the same as the EqualityExpression productions
except that the contained EqualityExpressionNoln and RelationalExpressionNoln are used in place of the
contained EqualityExpression and RelationalExpression, respectively.

Static Semantics: IsValidSimpleAssignmentTarget

144 © Ecma International 2012

»ecma

EqualityExpression :

EqualityExpression == RelationalExpression
EqualityExpression !'= RelationalExpression
EqualityExpression === RelationalExpression
EqualityExpression !== RelationalExpression

EqualityExpression [no LineTerminator here] is RelationalExpression
EqualityExpression [no LineTerminator here] isnt RelationalExpression

1. Return false.
11.9.1 Runtime Semantics
Runtime Semantics: The Abstract Equality Comparison Algorithm

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is the same as Type(y), then
a. Return the result of performing strict equality comparison algorithm x ===

2. Ifxis null andy is undefined, return true.
3. Ifx is undefined and y is null, return true.
4. If Type(x) is Number and Type(y) is String,

return the result of the comparison x == ToNumber(y).
5. If Type(x) is String and Type(y) is Number,

return the result of the comparison ToNumber(x).==y.
6. If Type(x) is Boolean, return the result of the comparison ToNumber(x) ==y.
7. 1f Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
8. If Type(x) is either String or Number and Type(y) is Object,

return the result of the comparison x == ToPrimitive(y):
9. If Type(x) is Object and Type(y) is either String or Number,

return the result of the comparison ToPrimitive(x) ==y.
10. Return false.

NOTE 1 Given the above definition of equality:

e String comparison can beforced by: "" + a.== "" + b.
e Numeric comparison can be forced by: +a == +b.
e Boolean comparison can be forced by: 'a == !b.

NOTE 2° The equality operators maintain the following invariants:
e A !=Bis equivalentto ! (A ==B).
e A ==Bis equivalentto B == A, except in the order of evaluation of A and B.

NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String objects, each
representing the same String value; each String object would be considered equal to the String value by the == operator,
but the two String objects would not be equal to each other. For Example:

e new String("a") =="a" and "a" == new String("a")are both true.

e new String("a") ==new String("a") is false.

NOTE 4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to
use the more complex, semantically oriented definitions of character or string equality and collating order defined in the
Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as
unequal. In effect this algorithm assumes that both Strings are already in normalised form.

Runtime Semantics: The Strict Equality Comparison Algorithm

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

© Ecma International 2012 145

secma

If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then
If x is NaN, return false.
Ify is NaN, return false.
If x is the same Number value as y, return true.
If x is +0 and y is -0, return true.
If x is—0andy is +0, return true.
f. Return false.
5. If Type(x) is String, then
a. Ifxandy are exactly the same sequence of characters (same length and same characters in
corresponding positions), return true.
b. Else, return false.
6. If Type(x) is Boolean, then
a. Ifxandy are both true or both false, return true.
b. Else, return false.
7. Ifxandy are the same Object value, return true.
8. Return false.

PR

®Poooe

NOTE This algorithm differs from the SameValue Algorithm(9.12) in its treatment of signed zeroes and NaNs.
Runtime Semantics: Evaluation
EqualityExpression : EqualityExpression == RelationalExpression

Let Iref be the result of evaluating EqualityExpression.

Let Ival be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating RelationalExpression.

Let rval be GetValue(rref).

ReturnIfAbrupt(rval).

Return the result of performing abstract equality comparison algorithm rval == Ival.

NogkkwbpE

EqualityExpression : EqualityExpression = RelationalExpression

1. Let Iref be the result of evaluating EqualityExpression.

2. Let Ival be GetValue(Iref).

3. ReturnifAbrupt(lval).

4. Letrref be the result of evaluating RelationalExpression.

5. Let rval be GetValue(rref).

6. ReturnlfAbrupt(rval).

7. Letrbe the result of performing abstract equality comparison algorithm rval == lval.
8. Ifristrue, return false. Otherwise, return true.

EqualityExpression : EqualityExpression === RelationalExpression

1. Let Iref be the result of evaluating EqualityExpression.

2. Let Ival be GetValue(lref).

3. ReturnlfAbrupt(lval)

4. Let rref be the result of evaluating RelationalExpression.

5. Letrval be GetValue(rref).

6. ReturnlfAbrupt(rval).

7. Return the result of performing the strict equality comparison algorithm rval === Ival.
EqualityExpression : EqualityExpression !'== RelationalExpression

1. Let Iref be the result of evaluating EqualityExpression.
2. Let lval be GetValue(lref).
3. ReturnlfAbrupt(lval).

146 © Ecma International 2012

»ecma

Let rref be the result of evaluating RelationalExpression.
Let rval be GetValue(rref).
ReturnlfAbrupt(rval).

N A

If r is true, return false. Otherwise, return true.

Let r be the result of performing strict equality comparison algorithm rval

EqualityExpression : EqualityExpression [no LineTerminator here] is RelationalExpression

Let Iref be the result of evaluating EqualityExpression.
Let lval be GetValue(lref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating RelationalExpression.
Let rval be GetValue(rref).

Return the result of performing SameValue(rval, Ival).

ourwhE

Ival.

EqualityExpression : EqualityExpression [no LineTerminator here] isnt RelationalExpression

Let Iref be the result of evaluating EqualityExpression.
Let Ival be GetValue(lref).

ReturnIfAbrupt(lval).

Let rref be the result of evaluating RelationalExpression.
Let rval be GetValue(rref).

Let r be the result of performing SameValue(rval, Ival).
ReturnIfAbrupt(r).

If r is true, return false. Otherwise, return_true.

N~ WLNE

11.10 Binary Bitwise Operators

Syntax

BitwiseANDEXxpression :
EqualityExpression
BitwiseANDExpression & EqualityExpression

BitwiseANDEXxpressionNoln :
EqualityExpressionNaln
BitwiseANDEXxpressionNoln & EqualityExpressionNoln

BitwiseXORExpression:
BitwiscANDExpression
BitwiseXORExpression » BitwissANDExpression

BitwiseXORExpressionNoln :
BitwiseANDEXxpressionNoln
BitwiseXORExpressionNoln ~ BitwissANDExpressionNoln

BitwiseOREXxpression :

BitwiseXOREXxpression

BitwiseORExpression | BitwiseXORExpression
BitwiseORExpressionNoln :

BitwiseXORExpressionNoln

BitwiseORExpressionNoln | BitwiseXORExpressionNoln

Static Semantics: IsValidSimpleAssignmentTarget

© Ecma International 2012

147

secma

BitwiseANDExpression : BitwiseANDEXxpression & EqualityExpression
BitwiseXORExpression : BitwiseXORExpression ~ BitwiseANDExpression
BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression

1. Return false.
Runtime Semantics: Evaluation

The production A: A @ B, where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

Let Iref be the result of evaluating A.
Let Ival be GetValue(lref).
ReturnlfAbrupt(lval).

Let rref be the result of evaluating B.
Let rval be GetValue(rref).
ReturnlfAbrupt(rval).

Let Inum be Tolnt32(lval).
ReturnlfAbrupt(Inum).

9. Letrnum be Tolnt32(rval).

10. ReturnlfAbrupt(rnum).

11. Return the result of applying the bitwise operator @ to Inum and rnum. The result is a signed 32 bit integer.

N~ wdE

11.11 Binary Logical Operators

Syntax

Logical ANDExpression :
BitwiseOREXxpression
LogicalANDEXxpression && BitwiseORExpression

LogicalANDExpressionNoln :
BitwiseORExpressionNoln
LogicalANDEXxpressionNoln && BitwiseORExpressionNoln

LogicalORExpression :
Logical ANDEXxpression
LogicalORExpression | | LogicalANDExpression

LogicalORExpressionNoln :

Logical ANDExpressionNoln

LogicalORExpressionNoln | | LogicalANDExpressionNoln
The semantics of the LogicalANDExpressionNoln and LogicalORExpressionNoln productions are the same
manner as the LogicalANDExpression and LogicalORExpression productions except that the contained
LogicalANDExpressionNoln; BitwiseORExpressionNoln and LogicalORExpressionNoln are used in place of the
contained Logical ANDExpression, BitwiseORExpression and LogicalORExpression, respectively.

NOTE The value produced by a && or | | operator is not necessarily of type Boolean. The value produced will always
be the value of one of the two operand expressions.

Static Semantics: IsValidSimpleAssignmentTarget

LogicalANDExpression : LogicalANDExpression && BitwiseORExpression
LogicalORExpression : LogicalORExpression | | LogicalANDEXxpression

1. Return false.

148 © Ecma International 2012

»ecma

Runtime Semantics: Evaluation
LogicalANDExpression : LogicalANDExpression && BitwiseORExpression

Let Iref be the result of evaluating Logical ANDExpression.
Let Ival be GetValue(lref).

Let Ibool be ToBoolean(lval).

ReturnIfAbrupt(lbool).

If Ibool is false, return Ival.

Let rref be the result of evaluating BitwiseORExpression.
Return GetValue(rref).

NogokrwhE

LogicalORExpression : Logical ORExpression | | LogicalANDEXxpression

Let Iref be the result of evaluating LogicalORExpression.
Let Ival be GetValue(lref).

Let Ibool be ToBoolean(lval).

ReturnlfAbrupt(lbool).

If Ibool is true, return Ival.

Let rref be the result of evaluating Logical ANDExpression.
Return GetValue(rref).

NogohkwbdE

11.12 Conditional Operator (? :)

Syntax

ConditionalExpression :
Logical ORExpression
LogicalORExpression ? AssignmentExpression : AssignmentExpression

ConditionalExpressionNoln :
LogicalORExpressionNoln
LogicalORExpressionNoln ? AssignmentExpression : AssignmentExpressionNoln

The semantics of the ConditionalExpressionNoln-production is the same as the ConditionalExpression production
except that the contained LogicalORExpressionNoln, AssignmentExpression and AssignmentExpressionNoln are
used in place of the contained Logical ORExpression, first AssignmentExpression and second AssignmentExpression,
respectively.

NOTE The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java, which
each allow the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression.
The mativation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a
conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

Static Semantics: IsValidSimpleAssignmentTarget

ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression
1. Return false.

Runtime Semantics: Evaluation

ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression
Let Iref be the result of evaluating LogicalORExpression.

Let Ival be ToBoolean(GetValue(lref)).

ReturnlfAbrupt(lval).

If lval is true, then

a. Let trueRef be the result of evaluating the first AssignmentExpression.
b. Return GetValue(trueRef).

PObPE

© Ecma International 2012 149

secma

5. Else

a. Let falseRef be the result of evaluating the second AssignmentExpression.
b. Return GetValue(falseRef).

11.13 Assignment Operators

Syntax

AssignmentExpression :

ConditionalExpression

YieldExpression

ArrowFunction

LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoln :

ConditionalExpressionNoln

YieldExpression

ArrowFunction

LeftHandSideExpression = AssignmentExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOperator : one of

*= /= %= += - <<= >>= SO>= §g&= A= | =

The semantics of the AssignmentExpressionNoln-productions are the same manner as the AssignmentExpression
productions except that the contained ConditionalExpressionNoln and AssignmentExpressionNoln are used in
place of the contained ConditionalExpression and AssignmentExpression, respectively.

Static Semantics

Static Semantics: Early Errors

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

It is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the
lexical token sequence matched by LeftHandSideExpression cannot be parsed with no tokens left over
using AssignmentPattern as the goal symbol.

If LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the lexical token sequence
matched by LeftHandSideExpression can be parsed with no tokens left over using AssignmentPattern as
the goal symbol then the following rules are not applied. Instead, the Early Error rules for
AssignmentPattern are used.

It is a Syntax Error if LeftHandSideExpression is an ldentifier that can be statically determined to always
resolve to a declarative environment record binding and the resolved binding is an immutable binding.
It is an early Reference Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral
and IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

It is a Syntax Error if the LeftHandSideExpression is an Identifier that can be statically determined to
always resolve to a declarative environment record binding and the resolved binding is an immutable
binding.

It is an early Reference Error if IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

Static Semantics: IsValidSimpleAssignmentTarget

150

© Ecma International 2012

»ecma

AssignmentExpression :
YieldExpression
ArrowFunction
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Return false.

Runtime Semantics

Runtime Semantics: Evaluation

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral then
Let Iref be the result of evaluating LeftHandSideExpression.
ReturnlfAbrupt(lref).
Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).
Let status be PutValue(lref, rval).
ReturnIfAbrupt(status).
g. Return rval.
Let AssignmentPattern be the parse of the source code corresponding to LeftHandSideExpression using
AssignmentPattern as the goal symbol.
Let rref be the result of evaluating AssignmentExpression.
Let rval be ToObject(GetValue(rref)).
ReturnlfAbrupt(rval).
Let status be the result of performing Destructuring Assignment Evaluation of AssignmentPattern using rval
as the argument.
ReturnlfAbrupt(status).
8. Return rval.

o a0 o

N

o0hsw

~

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

Let Iref be the result of evaluatingLeftHandSideExpression.
Let lval be GetValue(lIref).

ReturnlfAbrupt(lval).

Let rref be the result of evaluating AssignmentExpression.
Let rval be GetValue(rref).

ReturnlfAbrupt(rval).

LLet operator be the @ where AssignmentOperator is @=
Let r be the result of applying operator @ to Ival and rval.
9. Let status be PutValue(lref, r).

10. ReturnlfAbrupt(status).

11. Returnr.

ONok~whE

NOTE When an assignment occurs within strict mode code, it is an runtime error if Iref in step 1.e of the first
algorithm or step 9 of the second algorithm it is an unresolvable reference. If it is, a ReferenceError exception is thrown.
The LeftHandSide also may not be a reference to a data property with the attribute value {[[Writable]]:false}, to an accessor
property with the attribute value {[[Set]]:undefined}, nor to a non-existent property of an object where calling its
[[IsExtensible]] internal method returns the value false. In these cases a TypeError exception is thrown.

11.13.1 Destructuring Assignment

Supplemental Syntax

In certain circumstances when processing the production AssignmentExpression : LeftHandSideExpression =
AssignmentExpression the following grammar is used to refine the interpretation of LeftHandSideExpression.

© Ecma International 2012 151

secma

AssignmentPattern :
ObjectAssignmentPattern
ArrayAssignmentPattern

ObjectAssignmentPattern :
{1}
{ AssignmentPropertyList }
{ AssignmentPropertyList , }

ArrayAssignmentPattern :
[Elisiongy: AssignmentRestElementop: 1
[AssignmentElementList]
[AssignmentElementList , Elisiong,: AssignmentRestElementop:]

AssignmentPropertyList :

AssignmentProperty

AssignmentPropertyList , AssignmentProperty
AssignmentElementList :

Elisiongp: AssignmentElement

AssignmentElementList , Elisionop: AssignmentElement
AssignmentProperty :

Identifier Initialiserqpt

PropertyName : AssignmentElement

AssignmentElement :
DestructuringAssignmentTarget Initialiseropt

AssignmentRestElement :
... DestructuringAssignmentTarget

DestructuringAssignmentTarget :
LeftHandSideExpression

Static Semantics
Static.Semantics: Early Errors

AssignmentProperty : Identifier " Initialiserqp

e Itis a Syntax Error if Identifier is the Identifier eval or the Identifier arguments.
e It is a Syntax Errorif Identifier does not statically resolve to a declarative environment record binding

or if the resolved binding is an immutable binding.

DestructuringAssignmentTarget : LeftHandSideExpression

e |tis a Syntax Error LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if the lexical
token sequence matched by LeftHandSideExpression cannot be parsed with no tokens left over using

AssignmentPattern as the goal symbol.

e |t is a Syntax Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and

IsValidSimpleAssignmentTarget of LeftHandSideExpression is false.

e |t is a Syntax Error if the LeftHandSideExpression is an Identifier that can be statically determined to
always resolve to a declarative environment record binding and the resolved binding is an immutable

binding.

e |tis a Syntax Error if LeftHandSideExpression is the Identifier eval or the Identifier arguments.
e |tis a Syntax Error if IsInvalidAssignmentPattern of LeftHandSideExpression is true.

152

© Ecma International 2012

»ecma

e ltis a Syntax Error if the LeftHandSideExpression is
CoverParenthesizedExpressionAndArrowParameterList : (Expression)
and Expression derived a production that would produce a Syntax Error according to these rules. This
rule is recursively applied.
Runtime Semantics
Runtime Semantics: Destructuring Assignment Evaluation

with parameter obj

ObjectAssignmentPattern : { }

and
ArrayAssignmentPattern :
[]
[Elision]

1. Return NormalCompletion(empty).
AssignmentPropertyList : AssignmentPropertyList , AssignmentProperty

1. Let status be the result of performing Destructuring Assignment Evaluation for AssignmentPropertyList
using obj as the argument.

2. ReturnlfAbrupt(status).

3. Return the result of performing Destructuring Assignment Evaluation for AssignmentProperty using obj as
the argument.

AssignmentProperty : Identifier Initialiserqp:

1. Let P be StringValue of Identifier.

2. Letv be the result of calling Get(obj, P).

3. ReturnIfAbrupt(v).

4. If Initialiserqp is present and v is undefined, then
a. Let defaultValue be the result of evaluating Initialiser.
b. Letvbe ToObject(defaultValue).

5. ReturnlfAbrupt(v).

6. Let Iref bethe result of performing ldentifier Resolution(10.3.1) with the IdentifierName corresponding to
Identifier.

7. Return PutValue(lref,v).

AssignmentProperty : PropertyName : AssignmentElement

1. Let name be PropName of PropertyName.

2. Return the result of performing Keyed Destructuring Assignment Evaluation of AssignmentElement with obj
and name as the arguments.

ArrayAssignmentPattern : [Elisiongp: AssignmentRestElement]

1. Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

2. Return the result of performing Indexed Destructuring Assignment Evaluation of AssignmentRestElement
with obj and skip as the arguments.

ArrayAssignmentPattern : [AssignmentElementList]

1. Return the result of performing Indexed Destructuring Assignment Evaluation of AssignmentElementList
using obj and 0 as the arguments.

ArrayAssignmentPattern : [AssignmentElementList , Elisiongy: AssignmentRestElementop:]

© Ecma International 2012 153

secma

1. Let lastindex be the result of performing Indexed Destructuring Assignment Evaluation of
AssignmentElementList using obj and 0 as the arguments.

2. ReturnlfAbrupt(lastindex).

3. Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

4. If AssignmentRestElement is present, then return the result of performing Indexed Destructuring Assignment
Evaluation of AssignmentRestElement with obj and lastindex+skip as the arguments.

5. Return lastindex.

Runtime Semantics: Indexed Destructuring Assignment Evaluation
with parameters obj and index

AssignmentElementList : Elisionos: AssignmentElement

=

Let skip be the Elision Width of Elision; if Elision is not present, use.the numeric value zero.

Let name be ToString(index+skip).

3. Let status be the result of performing Keyed Destructuring Assignment Evaluation of AssignmentElement
with obj and name as the arguments.

ReturnlfAbrupt(status).

Return index+skip+1.

n

ok

AssignmentElementList : AssignmentElementList , Elisionop: AssignmentElement

1. Let listNext be the result of performing Indexed Destructuring Assignment Evaluation of
AssignmentElementList using obj as the obj parameter and index as the index parameter

Let skip be the Elision Width of Elision; if Elision is'not present, use the numeric value zero.
ReturnlfAbrupt(listNext).

Let name be ToString(listNext+skip).

Let status be the result of performing Keyed Destructuring Assignment.Evaluation of AssignmentElement
with obj and name as the arguments.

ReturnlfAbrupt(status).

7. Return listNext+skip+1.

g wn

o

AssignmentRestElement < ... DestructuringAssignmentTarget

Let Iref be the result of evaluating DestructuringAssignmentTarget.
ReturnlfAbrupt(lref).
Let lenVal be the result of Get(obj, "length").
Let len be ToUint32(lenVal).
ReturnIfAbrupt(len).
Let A be the result of the abstract operation ArrayCreate with argument 0.
Let n=0;
Repeat, while index < len
a. Let P be ToString(index).
b. Letexists be the‘result of HasProperty(obj, P).
c. ReturnlfAbrupt(exists).
d. [Ifexistsis true, then
i. Letv bethe result of Get(obj, ToString(index)).
ii. ReturnIfAbrupt(len).
iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n) and Property
Descriptor {[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
e. Letn=n+l.
f. Letindex = index+1.
9. Return PutValue(lref,A).

NN E

Runtime Semantics: Keyed Destructuring Assignment Evaluation

with parameters obj and propertyName

154 © Ecma International 2012

»ecma

AssignmentElement : DestructuringAssignmentTarget Initialiserqpt

1. Letv be the result of Get(obj, propertyName).
ReturnIfAbrupt(v).
3. If Initialiserop is present and v is undefined, then
a. Letv be the result of evaluating Initialiser.
4. If DestructuringAssignmentTarget is an ObjectLiteral or an ArrayLiteral then
a. Let AssignmentPattern be the parse of the source code corresponding to
DestructuringAssignmentTarget using AssignmentPattern as the goal symbol
b. LetvObj be ToObject(v).
c. ReturnlfAbrupt(vObj).
d. Return the result of performing Destructuring Assignment Evaluation-of AssignmentPattern with
vObj as the argument.
5. ReturnlfAbrupt(v).
6. Let Iref be the result of evaluating DestructuringAssignmentTarget.
7. Return PutValue(lref,v).

N

11.14 Comma Operator (,)

Syntax
Expression :
AssignmentExpression
Expression , AssignmentExpression
ExpressionNoln :
AssignmentExpressionNoln
ExpressionNoln , AssignmentExpressionNoln
The semantics of the ExpressionNoln production is the same manner as the Expression production except that
the contained ExpressionNoln and AssignmentExpressionNoln are used in place of the contained Expression and
AssignmentExpression, respectively.
Static Semantics: IsValidSimpleAssignmentTarget
Expression : Expression , AssignmentExpression
1. Return false.

Runtime Semantics: Evaluation

Expression : Expression , AssignmentExpression

1. Let Iref be the result of evaluating Expression.

2. ReturnlfAbrupt(GetValue(lref))

3. Let rref be the result of evaluating AssignmentExpression.

4. Return GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

© Ecma International 2012 155

secma

12 Statements and Declarations

Syntax

Statement :
BlockStatement
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
BreakableStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
ThrowStatement
TryStatement
DebuggerStatement

Declaration :
FunctionDeclaration
GeneratorDeclaration
ClassDeclaration
LexicalDeclaration

BreakableStatement :
IterationStatement
SwitchStatement

Static Semantics
Static Semantics: VarDeclaredNames

Statement :

EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Returna new empty List.
Runtime Semantics
Runtime Semantics: Labelled Evaluation

With argument labelSet.
BreakableStatement : IterationStatement
1. Let stmtResult be the result of performing Labelled Evaluation of IterationStatement with argument labelSet.
2. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then

a. If stmtResult.[[value]] is empty, then let stmtResult be NormalCompletion(undefined).

b. Else, let stmtResult be NormalCompletion(stmtResult.[[value]])
3. Return stmtResult.

156 © Ecma International 2012

»ecma

BreakableStatement : SwitchStatement
1. Let stmtResult be the result of evaluating SwitchStatement.
2. If stmtResult.[[type]] is break and stmtResult.[[target]] is empty, then
a. If stmtResult.[[value]] is empty, then let stmtResult be NormalCompletion(undefined).
b. Else, let stmtResult be NormalCompletion(stmtResult.[[value]])
3. Return stmtResult.
NOTE A BreakableStatement is one that can be exited via an unlabelled BreakStatement.
Runtime Semantics: Evaluation
BreakableStatement :
IterationStatement
SwitchStatement

1. LetnewLabelSet be a new empty List.
2. Return the result of performing Labelled Evaluation of this BreakableStatement with argument newLabelSet.

12.1 Block

Syntax

BlockStatement :
Block

Block :
{ StatementListopt }

StatementList :
StatementListltem
StatementList StatementListltem
StatementListltem :
Statement
Declaration
Static Semantics
Static Semantics: Early Errors

Block: { StatementList }

e Itis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
e |t is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the
VarDeclaredNames of StatementList.
Static Semantics: LexicalDeclarations
StatementList : StatementList StatementListltem
1. Let declarations be LexicalDeclarations of StatementList.
2. Append to declarations the elements of the LexicalDeclarations of StatementListltem.
3. Return declarations.
StatementListltem : Statement

1. Return a new empty List.

StatementListltem : Declaration

© Ecma International 2012 157

secma

1. Return a new List containing Declaration.

Static Semantics: LexicallyDeclaredNames

Block : { }

1. Return a new empty List.

StatementList : StatementList StatementListltem

1. Let names be LexicallyDeclaredNames of StatementList.

2. Append to names the elements of the LexicallyDeclaredNames of StatementListltem.
3. Return names.

StatementL.istltem : Statement

1. Return a new empty List.

StatementListitem : Declaration

1. Return the BoundNames of Declaration.

Static Semantics: TopLevelLexicallyDeclaredNames

StatementList : StatementList StatementListltem

1. Let names be TopLevellLexicallyDeclaredNames of StatementL.ist.

2. Append to names the elements of the TopLevelLexicallyDeclaredNames of StatementListitem.
3. Return names.

StatementL.istitem : Statement

1. Return a new empty List.

StatementListltem : Declaration

1. If Declaration.is Declaration : FunctionDeclaration, then return a new empty List.
2. Return the BoundNames of Declaration.

NOTE At the top level of a function, or script, function declarations are treated like var declarations rather than like
lexical declarations.

Static Semantics: TopLevelLexicallyScopedDeclarations

StatementList : StatementList StatementListltem

1. Letdeclarations be TopLevelLexicallyScopedDeclarations of StatementList.

2. Append to declarations the elements of the TopLevelLexicallyScopedDeclarations of StatementListltem.
3. Return declarations.

StatementListltem : Statement

1. Return a new empty List.

StatementListltem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return a new empty List.
2. Return a new List containing Declaration.

Static Semantics: ToplLevelVarDeclaredNames

158 © Ecma International 2012

»ecma

StatementList : StatementList StatementListltem

1. Let names be TopLevelVarDeclaredNames of StatementList.

2. Append to names the elements of the TopLevelVarDeclaredNames of StatementListltem.

3. Return names.

StatementListltem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return the LexicallyDeclaredNames of
Declaration.

2. Return a new empty List.

StatementListltem : Statement

1. Return VarDeclaredNames of Statement.

NOTE At the top level of a function or script, inner function declarations are treated like var declarations.

Static Semantics: ToplLevelVarScopedDeclarations

StatementList : StatementList StatementListltem

1. Let declarations be TopLevelVarScopedDeclarations of StatementList.

2. Append to declarations the elements of the TopLevelVarScopedDeclarations of StatementListltem.

3. Return declarations.

StatementListltem : Statement

1. If Statement is Statement : VariableStatement, then return a new List.containing VariableStatement.
2. Return a new empty List.

StatementListltem : Declaration

1. If Declaration is Declaration : FunctionDeclaration, then return a new List containing Declaration.
2. Return a new empty List.

Static Semantics: VarDeclaredNames

Block : { }

1. Return a new empty List.

StatementList : StatementList StatementListltem

1. Let names be VarDeclaredNames of StatementList.
2. Append to names the elements of the VarDeclaredNames of StatementListltem.
3. Return names.

StatementL.istltem : Declaration

2. Return a new empty List.

Runtime Semantics

Runtime Semantics: Evaluation

Block : { }

1. Return NormalCompletion(undefined).

© Ecma International 2012 159

secma

Block : { StatementList }

Let oldEnv be the running execution context’s LexicalEnvironment.
Let blockEnv be the result of calling NewDeclarativeEnvironment passing oldEnv as the argument.
Perform Block Declaration Instantiation using StatementList and blockEnv.
Set the running execution context’s LexicalEnvironment to blockEnv.
Let blockValue be the result of evaluating StatementL.ist.
Set the running execution context’s LexicalEnvironment to oldEnv.
If blockValue.[[type]] is normal and blockValue.[[value]] is empty, then
a. Return NormalCompletion(undefined).
8. Return blockValue.

NookwhE

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.
StatementList : StatementList StatementListltem

Let sl be the result of evaluating StatementList.

ReturnIfAbrupt(sl).

Let s be the result of evaluating StatementListltem.

If s.[[type]] is throw, returns.

If s.[[value]] is empty, let V = sl.[[value]], otherwise let V = s.[[value]].
Return Completion {[[type]]: s.[[type]l], [[value]]: V, [[target]]: s.[[target]]}.

eog,rwhdE

NOTE Steps 4 and 5 of the above algoritm ensure that the value of a StatementList is the value of the last value
producing Statement in the StatementList. For example, the following calls to the eval function all return the value 1:

eval("1;{}")
eval ("1l;var a;")

12.2 Declarations and the Variable Statement
12.2.1 Let and Const Declarations

NOTE A 1let and const declarations define variables that are scoped to the running execution context’s
LexicalEnvironment. The variables are created when their.containing Lexical Environment is instantiated but may not be
accessed in any way until the variable’s LexicalBinding is evaluated. A variable defined by a LexicalBinding with an
Initialiser is assigned-the value of its Initialiser’s AssignmentExpression when the LexicalBinding is evaluated, not when the
variable is created. If a LexicalBinding in.a let declaration does not have an an Initialiser the variable is assigned the

value undefined when the LexicalBinding is evaluated.

Syntax

LexicalDeclaration :
LetOrConst BindingList ;

LexicalDeclarationNoln :
LetOrConst BindingListNoln

LetOrConst :
let
const

BindingList :
LexicalBinding
BindingList , LexicalBinding

BindingListNoln :

LexicalBindingNoln
BindingListNoln , LexicalBindingNoln

160 © Ecma International 2012

»ecma

LexicalBinding :
Bindingldentifier Initialiserqpt
BindingPattern Initialiser
LexicalBindingNoln :
Bindingldentifier InitialiserNolnep:
BindingPattern InitialiserNoln

Bindingldentifier :
Identifier

InitialiserNoln :
= AssignmentExpressionNoln

The semantics of the LexicalDeclarationNoln, BindingListNoln, LexicalBindingNoln and InitialiserNoln
productions are the same as the LexicalDeclaration, BindingList, LexicalBinding and Initialiser productions
except that the contained BindingListNoln, LexicalBindingNoln, InitialiserNoln and AssignmentExpressionNoln are
used in place of the contained BindingList, LexicalBinding, Initialiser and AssignmentExpression, respectively.
Static Semantics
Static Semantics: Early Errors
LexicalBinding : Bindingldentifier

e ltis a Syntax Error if IsConstantDeclaration of the LexicalDeclaration containing this production is true.

Bindingldentifier : Identifier

e |t is a Syntax Error if the Bindingldentifier'is contained in strict code and if the Identifier is eval or
arguments.

Static Semantics: BoundNames

LexicalDeclaration : LetOrConst BindingList ;

1. Return the'BoundNames of BindingList.

BindingList : BindingList , LexicalBinding

1. Let names be the BoundNames of BindingList.

2. Append to names the elements of the BoundNames of LexicalBinding.
3. Return names.

LexicalBinding : Bindingldentifier Initialiserop

1. Return the BoundNames of Bindingldentifier.
LexicalBinding: BindingPattern Initialiser

1. Return the BoundNames of BindingPattern.
Bindingldentifier : Identifier

1. Return a new List containing the StringValue of Identifier.

Static Semantics: IsConstantDeclaration

LexicalDeclaration : LetOrConst BindingList ;

© Ecma International 2012 161

secma

1. Return IsConstantDeclaration of LetOrConst.

LetOrConst: let

1. Return false.

LetOrConst: const

1. Return true.

Runtime Semantics

Runtime Semantics: Binding Initialisation
With arguments value and environment.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a

lexical binding is hosted and preinitialized prior to evaluation of its initializer.
Bindingldentifier : ldentifier

1. If environment is not undefined, then
a. Let name be StringValue of Identifier.
b. Letenv be the environment record.component of environment.
c. Call the InitializeBinding concrete method of..env passing name.and value as the arguments.
d. Return NormalCompletion(undefined).
2. Else
Let Ihs be the result of evaluating Identifier as described in 11:1.2.
Return PutValue(lhs,value).

oo

Runtime Semantics: Evaluation
LexicalDeclaration : LetOrConst BindingList ;

1. Let next be the result of evaluating BindingList.
2. ReturnlfAbrupt(next).
3. Return.NormalCompletion(empty).

BindingList : BindingList , LexicalBinding

1. Letnextbe the result of evaluating BindingList.

2. ReturnlfAbrupt(next).

3. Return the result of evaluating LexicalBinding.

LexicalBinding : Bindingldentifier

1. Letenv be the running execution context’s LexicalEnvironment.

2. Return the result of performing Binding Initialisation for Bindingldentifier passing undefined and env as the

arguments.

NOTE A static semantics rule ensures that this form of LexicalBinding never occurs in a const declaration.
LexicalBinding : Bindingldentifier Initialiser

Let rhs be the result of evaluating Initialiser.

Let value be GetValue(rhs).

ReturnlfAbrupt(value).

Let env be the running execution context’s LexicalEnvironment.

PR

162 © Ecma International 2012

»ecma

5. Return the result of performing Binding Initialisation for Bindingldentifier passing value and env as the
arguments.

LexicalBinding: BindingPattern Initialiser

Let rhs be the result of evaluating Initialiser.

Let value be ToObject(GetValue(rhs)).

ReturnlfAbrupt(value).

Let env be the running execution context’s LexicalEnvironment.

Return the result of performing Binding Initialisation for BindingPattern using value and env as the
arguments.

A A

12.2.2 Variable Statement

NOTE A var statement declares variables that are scoped to the running execution context's VariableEnvironment.
Var variables are created when their containing Lexical Environment is instantiated and are initialised to undefined when
created. Within the scope of any VariableEnvironemnt a common’ ldentifier may appear in more than one
VariableDeclaration but those declarations collective define only one variable. A variable defined by a VariableDeclaration
with an Initialiser is assigned the value of its Initialiser’s AssignmentExpression when the VariableDeclaration is executed, not
when the variable is created.

Syntax

VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList , VariableDeclaration

VariableDeclarationListNoln :
VariableDeclarationNoln
VariableDeclarationListNoln , VariableDeclarationNoln

VariableDeclaration :
Bindingldentifier Initialiseropt
BindingPattern Initialiser

VariableDeclarationNoln :

Bindingldentifier InitialiserNolngpt

BindingPattern InitialiserNoln
The semantics of the VariableDeclarationListNoln, VariableDeclarationNoln and InitialiserNoln productions are
the same as the VariableDeclarationList, VariableDeclaration and Initialiser productions except that the
contained VariableDeclarationListNoln, VariableDeclarationNoln, InitialiserNoln and AssignmentExpressionNoln
are used in of the contained VariableDeclarationList, VariableDeclaration, Initialiser and AssignmentExpression,
respectively.
Static Semantics
Static Semantics: BoundNames
VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of BoundNames of VariableDeclaration.
3. Return names.

VariableDeclaration : Bindingldentifier Initialiserop:

© Ecma International 2012 163

secma

1. Return the BoundNames of Bindingldentifier.
VariableDeclaration : BindingPattern Initialiser
1. Return the BoundNames of BindingPattern.
Runtime Semantics
Runtime Semantics: Binding Initialisation
With arguments value and environment.
NOTE undefined is passed for environment to indicate that a PutValue operation should be used to assign the
initialisation value. This is the case for var statements formal parameter lists of non-strict functions. In those cases a
lexical binding is hosted and preinitialized prior to evaluation of its initializer.

VariableDeclaration : Bindingldentifier

1. Return the result of performing Binding Initialisation for Bindingldentifier passing value and undefined as
the arguments.

VariableDeclaration : Bindingldentifier Initialiser

1. Return the result of performing Binding Initialisation for Bindingldentifier passing value and undefined as
the arguments.

VariableDeclaration : BindingPattern Initialiser

1. Return the result of performing Binding Initialisation for BindingPattern passing value and undefined as the
arguments.

Runtime Semantics: Evaluation
VariableStatement : var VariableDeclarationList ;

1. Let next be the result of evaluating VariableDeclarationList.
2. ReturnlfAbrupt(next).
3. Return NormalCompletion(empty).

VariableDeclarationList : VariableDeclarationList , VariableDeclaration
1. Let next be the result of evaluating VariableDeclarationList.

2. ReturnlfAbrupt(next).

3. Return the result of evaluating VariableDeclaration.
VariableDeclaration : Bindingldentifier

1. Return NormalCompletion(empty).

VariableDeclaration : Bindingldentifier Initialiser

1. Letrhs be the result of evaluating Initialiser.

2. Letvalue be GetValue(rhs).

3. ReturnlfAbrupt(value).

4. Return the result of performing Binding Initialisation for Bindingldentifier passing value and undefined as
the arguments.

NOTE If a VariableDeclaration is nested within a with statement and the Identifier in the VariableDeclaration is the

same as a property name of the binding object of the with statement’s object environment record, then step 3 will assign
value to the property instead of to the VariableEnvironment binding of the Identifier.

164 © Ecma International 2012

»ecma

VariableDeclaration : BindingPattern Initialiser

Let rhs be the result of evaluating Initialiser.

Let rval be ToObject(GetValue(rhs)).

ReturnlfAbrupt(rval).

Return the result of performing Binding Initialisation for BindingPattern passing rval and undefined as
arguments.

apbown

12.2.4 Destructuring Binding Patterns

Syntax

BindingPattern :
ObjectBindingPattern
ArrayBindingPattern

ObjectBindingPattern :
{1}
{ BindingPropertyList }
{ BindingPropertyList , 1}

ArrayBindingPattern :
[Elisiong: BindingRestElementqp:]
[BindingElementList]
[BindingElementList , Elisiongy: BindingRestElementop: 1

BindingPropertyList :

BindingProperty

BindingPropertyList , BindingProperty
BindingElementList :

Elisiongp: BindingElement

BindingElementList , Elisiono: BindingElement
BindingProperty :

SingleNameBinding

PropertyName : BindingElement
BindingElement :

SingleNameBinding

BindingPattern Initialiserqpt

SingleNameBinding :
Bindingldentifier Initialiseropt

BindingRestElement :
. . . Bindingldentifier

Static Semantics
Static Semantics: Early Errors
BindingPattern : ObjectBindingPattern

e ltis a Syntax Error if the BoundNames of ObjectBindingPattern contains the string “eval” or the string
“‘arguments”.

BindingPattern : ArrayBindingPattern

© Ecma International 2012 165

secma

e ltis a Syntax Error if the BoundNames of ArrayBindingPattern contains the string “eval” or the string
“‘arguments”.

Static Semantics: BoundNames

ObjectBindingPattern: { }

1. Return an empty List.

ArrayBindingPattern : [Elisionept]

1. Return an empty List.

ArrayBindingPattern : [Elisionept BindingRestElement]

1. Return the BoundNames of BindingRestElement.
ArrayBindingPattern : [BindingElementList , Elisiongp:]

1. Return the BoundNames of BindingElementList.
ArrayBindingPattern : [BindingElementList , Elisiono,: BindingRestElement]
1. Let names be BoundNames of BindingElementList.

2. Append to names the elements of BoundNames of BindingRestElement.
3. Return names.

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let names be BoundNames.of BindingPropertyList.

2. Append to names the elements of BoundNames of BindingProperty.
3. Return names.

BindingElementList : Elisiongp: BindingElement

1. Return BoundNames of BindingElement.

BindingElementList : BindingElementList., Elisiong,: BindingElement

1. Let names be BoundNames of BindingElementList.

2. Append to names the elements of BoundNames of BindingElement.
3. Return names.

BindingProperty : PropertyName : BindingElement

1. Return the BoundNames of BindingElement.

SingleNameBinding : Bindingldentifier Initialiserqp

1. Return the BoundNames of Bindingldentifier.

BindingElement : BindingPattern Initialiserop

1. Return the BoundNames of BindingPattern.

Static Semantics: Haslnitialiser

BindingElement : BindingPattern

166 © Ecma International 2012

»ecma

1. Return false.

BindingElement : BindingPattern Initialiser

1. Return true.

SingleNameBinding : Bindingldentifier

1. Return false.

SingleNameBinding : Bindingldentifier Initialiser

1. Return true.

Runtime Semantics

Runtime Semantics: Binding Initialisation
With parameters value and environment.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the

initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter

bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

BindingPattern : ObjectBindingPattern

1. Assert: Type(value) is Object

2. Return the result of performing Binding Initialisation for. ObjectBindingPattern using value and
environment as arguments.

BindingPattern : ArrayBindingPattern

1. Assert: Type(value) is Object

2. Return the result of performing Indexed Binding Initialisation for ArrayBindingPattern using value, 0, and
environment as arguments.

ObjectBindingPattern: { }

1. Return NormalCompletion(empty).

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let status be the result of performing Binding Initialisation for BindingPropertyList using value and
environment as arguments;

2. ReturnlfAbrupt(status).

3. Return the result of performing Binding Initialisation for BindingProperty using value and environment as
arguments.

BindingProperty : SingleNameBinding

1. Let name be the string that is the only element of BoundNames of SingleNameBinding.

2. Return the result of performing Keyed Binding Initialisation for SingleNameBinding using value,
environment, and name as the arguments.

BindingProperty : PropertyName : BindingElement

1. Let P be the PropName of PropertyName

2. Return the result of performing Keyed Binding Initialisation for BindingElement using value, environment,
and P as arguments.

© Ecma International 2012 167

secma

Runtime Semantics: Indexed Binding Initialisation
With parameters array, nextindex, and environment.
NOTE When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialisation value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.
ArrayBindingPattern : [Elisionep:]
1. Return NormalCompletion(empty).
ArrayBindingPattern: [Elisiong,: BindingRestElement]
1. Let nextlndex be the Elision Width of Elision; if Elision is not present, use the numeric value zero.
2. Return the result of performing Indexed Binding Initialisation for BindingRestElement using array,
nextindex, and environment as arguments.

ArrayBindingPattern: [BindingElementList]

1. Return the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextlndex, and environment as arguments.

ArrayBindingPattern: [BindingElementList , Elisiongp]

1. Return the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextlndex, and environment as arguments.

ArrayBindingPattern: [BindingElementList , Elisiongp: BindingRestElement]

1. Let next be the result of performing Indexed Binding Initialisation for BindingElementList using array ,
nextIndex, and environment as arguments.

2. ReturnlfAbrupt(next).

3. Let skip be the Elision Width of Elision;.if Elision is not present, use the numeric value zero.

4. Return the result of performing Indexed Binding Initialisation for BindingRestElement using array,
next+skip , and environment as arguments.

BindingElementList : Elisionop: BindingElement

=

Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

2. Let status be the result of performing Indexed Binding Initialisation for BindingElement using array,
nextindex+skip , and environment as arguments.

3. ReturnifAbrupt(status).

4. Return nextindex +skip+1:

BindingElementList : BindingElementList , Elisionep: BindingElement

1. Let listNext be the result of performing Indexed Binding Initialisation for BindingElementList using array,
nextlndex, and environment as arguments.

2. ReturnlfAbrupt(listNext).

Let skip be the Elision Width of Elision; if Elision is not present, use the numeric value zero.

4. Let status be the result of performing Indexed Binding Initialisation for BindingElement using array,
listNext+skip , and environment as arguments.

5. ReturnlfAbrupt(status).

6. Return listNext +skip+1.

w

BindingElement: SingleNameBinding

168 © Ecma International 2012

»ecma

1. Return the result of performing Keyed Binding Initialisation for SingleNameBinding using array,
environment, and ToString(nextIndex) as the arguments.

BindingElement: BindingPattern Initialiserop

Let P be ToString(nextindex).

Let v be the result of Get(array, P).

ReturnlfAbrupt(v).

If Initialiserop is present and v is undefined, then

a. Let defaultValue be the result of evaluating Initialiser.

b. Letvbe ToObject(defaultValue).

ReturnlfAbrupt(v).

6. Return the result of performing Binding Initialisation for BindingPattern passing v and environment as
arguments.

PobPE

o

BindingRestElement : ... Bindingldentifier

Let A be the result of the abstract operation ArrayCreate with argument 0.
Let lenVal be the result of Get(array, "length").
Let arrayLength be ToUint32(lenVal).
ReturnlfAbrupt(arrayLength).
Let n=0.
Let index = nextIndex.
Repeat, while index < arrayLength
a. Let P be ToString(index).
b. Let exists be the result of HasProperty(array, P).
¢. ReturnIfAbrupt(exists).
d. Ifexists is true, then
i. Letv be the result of Get(array, P).
ii. ReturnlfAbrupt(v).
iii. Call the [[DefineOwnProperty]] internal method of A with arguments ToString(n) and Property
Descriptor {[[Value]]: v, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.

e. Letn=n+l.
f. Letindex = index+1.
9. Return the result of performing Binding Initialisation for Bindingldentifier using A and environment as
arguments.

N R WD

Runtime Semantics: Keyed Binding Initialisation
With parameters obj, environment, and. propertyName.

NOTE = When undefined is passed for environment it indicates that a PutValue operation