
ES6 Library Extensions

Contents
Math Extensions .. 1	
Number extensions ... 3	
String extensions ... 4	

Math Extensions

15.8.2.19 log10 (x)

Returns an implementation-dependent approximation to the base 10 logarithm of x.

• If x is NaN, the result is NaN.
• If x is less than 0, the result is NaN.
• If x is +0, the result is −∞.
• If x is −0, the result is −∞.
• If x is 1, the result is +0.
• If x is +∞, the result is +∞.

15.8.2.20 log2 (x)

Returns an implementation-dependent approximation to the base 2 logarithm of x.

• If x is NaN, the result is NaN.
• If x is less than 0, the result is NaN.
• If x is +0, the result is −∞.
• If x is −0, the result is −∞.
• If x is 1, the result is +0.
• If x is +∞, the result is +∞.

15.8.2.21 log1p (x)

Returns an implementation-dependent approximation to the natural logarithm of 1 + x. The result is computed in a way
that is accurate even when the value of x is close to zero.

• If x is NaN, the result is NaN.
• If x is less than -1, the result is NaN.
• If x is -1, the result is -∞.
• If x is +0, the result is +0.
• If x is −0, the result is −0.
• If x is +∞, the result is +∞.

15.8.2.22 expm1 (x)

Returns an implementation-dependent approximation to subtracting 1 from the exponential function of x (e raised to the
power of x, where e is the base of the natural logarithms). The result is computed in a way that is accurate even when
the value of x is close 0.

• If x is NaN, the result is NaN.
• If x is +0, the result is +0.
• If x is −0, the result is −0.
• If x is +∞, the result is +∞.
• If x is −∞, the result is -1.

15.8.2.23 cosh(x)

Returns an implementation-dependent approximation to the hyperbolic cosine of x.

• If x is NaN, the result is NaN.
• If x is +0, the result is 1.
• If x is −0, the result is 1.
• If x is +∞, the result is +∞.
• If x is −∞, the result is +∞.

Note: The value of cosh(x) is the same as (exp(x) + exp(-x))/2.

15.8.2.24 sinh(x)

Returns an implementation-dependent approximation to the hyperbolic sine of x.

• If x is NaN, the result is NaN.
• If x is +0, the result is +0.
• If x is −0, the result is −0.
• If x is +∞, the result is +∞.
• If x is −∞, the result is −∞.

Note: The value of cosh(x) is the same as (exp(x) - exp(-x))/2.

15.8.2.25 tanh(x)

Returns an implementation-dependent approximation to the hyperbolic tangent of x.

• If x is NaN, the result is NaN.
• If x is +0, the result is +0.
• If x is −0, the result is −0.
• If x is +∞, the result is +1.
• If x is −∞, the result is -1.

Note: The value of tanh(x) is the same as (exp(x) - exp(-x))/(exp(x) + exp(-x)).

15.8.2.26 acosh(x)

Returns an implementation-dependent approximation to the inverse hyperbolic cosine of x.

• If x is NaN, the result is NaN.
• If x is less than 1, the result is NaN.
• If x is 1, the result is +0.
• If x is +∞, the result is +∞.

15.8.2.27 asinh(x)

Returns an implementation-dependent approximation to the inverse hyperbolic sine of x.

• If x is NaN, the result is NaN.
• If x is +0, the result is +0.
• If x is −0, the result is −0.
• If x is +∞, the result is +∞.
• If x is −∞, the result is −∞.

15.8.2.28 atanh(x)

Returns an implementation-dependent approximation to the inverse hyperbolic tangent of x.

• If x is NaN, the result is NaN.
• If x is less than −1, the result is NaN.
• If x is greater than 1, the result is NaN.
• If x is −1, the result is −∞.

• If x is +1, the result is +∞.
• If x is +0, the result is +0.
• If x is −0, the result is −0.

15.8.2.29 hypot(value1 , value2 [, value3])

Given two or three arguments, hypot returns an implementation-dependent approximation of the square root of the sum
of squares of its arguments.

• If any argument is +∞, the result is +∞.
• If any argument is −∞, the result is +∞.
• If no argument is +∞ or −∞, and any argument is NaN, the result is NaN.
• If all arguments are either +0 or -0, the result is +0.

15.8.2.30 hypot2(value1 , value2 [, value3])

Given two or three arguments, hypot2 returns an implementation-dependent approximation of the sum of squares of its
arguments.

• If no arguments are given, the result is +0.
• If any argument is +∞, the result is +∞.
• If any argument is −∞, the result is +∞.
• If no argument is +∞ or −∞, and any argument is NaN, the result is NaN.
• If all arguments are either +0 or -0, the result is +0.

15.8.2.31 trunc(x)

Returns the integral part of the number x, removing any fractional digits. If x is already an integer, the result is x.

• If x is NaN, the result is NaN.
• If x is −0, the result is −0.
• If x is +0, the result is +0.
• If x is +∞, the result is +∞.
• If x is −∞, the result is −∞.

15.8.2.32 sign(x)

Returns the sign of the x, indicating whether x is positive, negative or zero.

• If x is NaN, the result is NaN.
• If x is −0, the result is −0.
• If x is +0, the result is +0.
• If x is negative, the result is −1.
• If x is positive, the result is +1.

15.8.2.32 cbrt(x)

Returns an implementation-dependent approximation to the cube root of x.

• If x is NaN, the result is NaN.
• If x is +0, the result is +0.
• If x is −0, the result is −0.
• If x is +∞, the result is +∞.
• If x is −∞, the result is −∞.

Number extensions

15.7.3.7 Number.EPSILON

The value of Number.EPSILON is the difference between 1 and the smallest value greater than 1 that is representable
as a Number value, which is approximately 2.2204460492503130808472633361816 x 10-16.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.7.3.7 Number.MAX_INTEGER

The value of Number.MAX_INTEGER is the largest integer value that can be represented as a Number value
without losing precision, which is 9007199254740991.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.7.3.8 Number.parseInt (string, radix)

Same as 15.1.2.2.

15.7.3.9 Number.parseFloat (string)

Same as 15.1.2.3.

15.7.3.10 Number.isNaN (number)

Returns true if the argument is a Number value equal to NaN, and otherwise returns false.

1. If Type(number) is not Number, return false.
2. If number is NaN, return true.
3. Otherwise, return false.

NOTE A reliable way for ECMAScript code to test if a value X is a NaN is an expression of the form X !== X. The result will be
true if and only if X is a NaN.

15.7.3.11 Number.isFinite (number)

Returns false if the argument is a Number value equal to NaN, +∞ , or −∞ , and otherwise returns true.

1. If Type(number) is not Number, return false.
2. If number is NaN, +∞ , or −∞ , return false.
3. Otherwise, return true.

15.7.3.12 Number.isInteger (number)

Returns true if the argument is a Number value which is an integral value.

1. If Type(number) is not Number, return false.
2. Let integer be ToInteger(number).
3. If integer is not equal to number, return false.
4. Otherwise, return true.

15.7.3.13 Number.toInteger (number)

Returns the result of coercing the argument to an integer.

1. Return ToInteger(number).

String extensions

15.5.4.21 String.prototype.repeat (count)

Returns a String consisting of the characters of this object (converted to String) repeated count time. The following
steps are taken:

1. Call CheckObjectCoercible passing the this value as its argument.
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. Let n be the result of calling ToUInt32(count).
4. Let T be a String value that is made from n copies of S appended together.
5. Return T.

15.5.4.22 String.prototype.startsWith (searchString, position)

Returns true if the sequence of characters of searchString converted to a String match the corresponding characters of
this object (converted to a String) starting at position. Otherwise returns false. The following steps are taken:

1. Call CheckObjectCoercible passing the this value as its argument.
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. Let searchStr be ToString(searchString).
4. Let pos be ToInteger(position). (If position is undefined, this step produces the value 0).
5. Let len be the number of characters in S.
6. Let start be min(max(pos, 0), len).
7. Let searchLength be the number of characters in searchString.
8. If searchLength+start is greater than len, return false.
9. If the first searchLength characters of S starting at start are equal to the first searchLength characters of

searchString, return true.
10. Otherwise, return false.

The length property of the startsWith method is 1.

NOTE The startsWith function is intentionally generic; it does not require that its this value be a String object. Therefore, it can
be transferred to other kinds of objects for use as a method.

15.5.4.23 String.prototype.endsWith (searchString, endPosition)

Returns true if the sequence of characters of searchString converted to a String match the corresponding characters of
this object (converted to a String) starting at endPosition – length(this). Otherwise returns false. The following steps
are taken:

1. Call CheckObjectCoercible passing the this value as its argument.
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. Let searchStr be ToString(searchString).
4. Let len be the number of characters in S.
5. If endPosition is undefined, let pos be len, else let pos be ToInteger(endPosition).
6. Let end be min(max(pos, 0), len).
7. Let searchLength be the number of characters in searchString.
8. Let start be end - searchLength.
9. If start is less than 0, return false.
10. If the first searchLength characters of S starting at start are equal to the first searchLength characters of

searchString, return true.
11. Otherwise, return false.

The length property of the endsWith method is 1.

NOTE The endsWith function is intentionally generic; it does not require that its this value be a String object. Therefore, it can
be transferred to other kinds of objects for use as a method.

15.5.4.24 String.prototype.contains (searchString, position)

If searchString appears as a substring of the result of converting this object to a String, at one or more positions that
are greater than or equal to position, then return true; otherwise, returns false. If position is undefined, 0 is assumed,
so as to search all of the String.

The contains method takes two arguments, searchString and position, and performs the following steps:

1. Call CheckObjectCoercible passing the this value as its argument.
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. Let searchStr be ToString(searchString).
4. Let pos be ToInteger(position). (If position is undefined, this step produces the value 0).
5. Let len be the number of characters in S.
6. Let start be min(max(pos, 0), len).
7. Let searchLen be the number of characters in searchStr.
8. If there exists any integer k not smaller than start such that k + searchLen is not greater than len, and for all

nonnegative integers j less than searchLen, the character at position k+j of S is the same as the character
at position j of searchStr, return true; but if there is no such integer k, return false.

The length property of the contains method is 1.

NOTE The contains function is intentionally generic; it does not require that its this value be a String object. Therefore, it can
be transferred to other kinds of objects for use as a method.

15.5.4.25 String.prototype.toArray()

Returns an Array object with elements corresponding to the characters of this object (converted to a String).

The following steps are taken:

1. Call CheckObjectCoercible passing the this value as its argument.
2. Let S be the result of calling ToString, giving it the this value as its argument.
3. Let array be a new array created as if by the expression new Array() where Array is the standard built-in

constructor with that name.
4. Let len be the number of characters in S.
5. Let n be 0
6. Repeat, while n < len:

a. Let c be the character at position n in S.
b. Call the [[DefineOwnProperty]] internal method of array with arguments ToString(n), the

PropertyDescriptor {[[Value]]: c, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and
false.

c. Increment n by 1.
7. Return array.

The length property of the toArray method is 0.

NOTE The toArray function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be
transferred to other kinds of objects for use as a method.

