
ES5.1	11.6.2		The	Subtraction	Operator	
	
1. Let lref be the result of evaluating AdditiveExpression. 
2. Let lval be GetValue(lref). 
3. Let rref be the result of evaluating MultiplicativeExpression. 
4. Let rval be GetValue(rref). 
5. Let lnum be ToNumber(lval). 
6. Let rnum be ToNumber(rval). 
7. Return the result of applying the subtraction operation to lnum and rnum. See the note below 11.6.3. 

	
Modified	11.6.2		The	Overloadable	Subtraction	Operator	
	
1. Let lref be the result of evaluating AdditiveExpression. 
2. Let lval be GetValue(lref). 
3. Let rref be the result of evaluating MultiplicativeExpression. 
4. Let rval be GetValue(rref). 
5. If Type(lval) is Number and Type(rval) is Number, then   

a. Return the result of applying the subtraction operation to lval and rval. See the note below 11.6.3. 
6. Let dispatchable be the result of calling the [[Get]] internal methods of lval with the private name 

@operatorMinus as argument. 
7. If IsCallable(dispatchable) is true, then 

a. Return the result of calling the [[Call]] internal method of dispatchable with providing lval as the 
this value and rval as the argument.  

8. Let lnum be ToNumber(lval). 
9. Let rnum be ToNumber(rval). 
10. Return the result of applying the subtraction operation to lnum and rnum. See the note below 11.6.3. 

Note	that	@operatorMinus	is	a	new	convention	for	expressing	a	private	name	value	that	is	
both	known	to	the	implementation	and	made	publically	available	to	ECMAScrpt	code.	In	a	
primordial	ECMAScript	environment	no	ES5.1	built-in	objects	would	have	own	or	inherited	
such	private	named	operator	methods.	So,	the	above	algorithm	changes	have	no	semantic	
impact	on	existing	code	that	does	not	explicitly	add	such	operator	methods	to	built-in	or	
user	defined	objects.		
	
Note	that	an	implementation	could	treat	lines	8-10	as	the	body	of	a	default	fallback	
@operatorMinus	method.		This	enables	the	generic	–	operator	to	be	code	generated	as	a	
guarded	double	subtract	with	a	fall	back	to	a	PIC-able	method	call.	
	
Similar	modification	would	need	to	be	made	to	the	definition	of	all	the	chapter	11	
operators.		These	are	essentially	the	only	changes	that	need	to	be	made	to	the	core	
language	semantics	to	support	over-loadable	operators.		All	support	for	any	new	data	types	
that	over-load	the	operators	is	provided	library	methods	and	functions	(either	standard,	
implementation,	or	user	provided	libraries).		In	particular,	all	(beyond	what	exits	in	ES5.1)	
type	promotion	and	coercion	semantics	is	implemented	in	the	library	code	and	is	not	part	
of	the	base	language	operator	semantics.		If	the	libraries	are	implemented	in	ES	then	any	
inter-procedural	optimization	techniques	available	in	an	implementation	are	fully	
applicable	to	them.		
	



An	operator	method	can	be	implemented	to	do	anything	that	is	desired	and	appropriate	for	
its	operands.		For	example,	such	a	method	might	do	explicit	type	analysis	on	the	this	value	
and	the	argument	value	to	determine	what	operation	to	perform	based	upon	a	closed	
ended	set	of	types.			Note	that	the	type	of	the	first	lval	is	typically	implicitly	known	by	the	
operator	method	based	upon	the	property	lookup	that	was	performed	to	retrieve	the	
method.	The	method	can	then	apply	the	“double	dispatch”	technique	with	the	argument	to	
invoke	a		“minus”	function	that	is	appropriate	to	that	specific	operator	combination.			Use	of	
this	technique	allows	operator	over-loading	an	open	ended	set	of	extensible	numeric	types.	
	
For	example:	
	
//	overload	–	to	perform	scalar	subtraction	from	array	elements	and	to	subtract	
//	and	to	subtract	corresponding	
	
Array.prototype.@operatorMinus	=	function	(rval)	{return	rval.@subFromArray(this)};	
	
Number.prototype.@subFromArray	=	function(minuend)	{“use	strict”;	
					//	array-number	subtracts	number	from	each	minuend	element	and	returns	a	new	array	
					var	self	=	this;	
					return	anArray.map(function(v)	{return	v-self});	
}	
	
Array.prototype.@subFromArray(minuend)	
					//	array-array	subtracts	corresponding	elements	and	collects	in	a	new	array	
					var	result	=	new	Array;	
					for	(var	i	=	Math.max(this.length,	minuend.length)-1;	i>=	0;	i--)	
									result[i]	=	minuend[i]-this[i];	
					return	result;	
}	
	
Note	that	while	monkey	patching	is	an	easy	way	to	extend	existing	objects	to	support	
operator	double	dispatch	for	new	types,	it	is	not	the	only	extensibility	mechanisms	that	can	
be	used.		Side-tables	can	also	be	used	to	accomplish	the	same	result.		
	
Finally,	there	are	no	restrictive	requirements	imposed	upon	the	objects	that	implement	
operator	methods.	In	particular,	they	need	not	be	immutable.		However,	if	a	standard	
library	defines	certain	classes	of	immutable	objects	that	include	support	for	operator	
methods	then	an	implementation	might	choose	to	recognize	such	objects	in	the	generic	or	
specialized	code	emitted	for	operators.			
	
	
	
	
	


