
New	ES6	terminology	

Allen	Wirfs-Brock	
May	2012	

New	Terminology:	Objects	
•  object	-	An	runDme	enDty	that	has	unique	
idenDty	and	exposes	properDes	(via	
implementaDons	of	the	required	“internal	
methods”	specified	in	chapter	8)	

•  Ordinary	object	-	An	object	that	that	uses	only	
default	behaviors	for	the	required	internal	
methods	(as	specified	in	chapter	8).		

•  exo0c	object	-	An	object	that	provides	non-
default	behavior	for	at	least	one	of	the	required	
internal	methods.		

ExoDc	objects	encompasses	Proxies	and	most	of	what	are	currently	called	
“host	objects”.	It	also	includes	some	chapter	15	objects	such	as	array	
instances	that	have	non-default	internal	method	behaviors.		

New	Terminology:	Object	Providers	

•  standard	object	-	An	object	whose	applicaDon	
level	semanDcs	are	defined	by	aECMAScript	
specificaDon.		

•  built-in	object	-	an	object	that	is	provided	by	
the	ECMAScript	implementaDon.	

•  pla6orm	object	-	An	object	that	is	provided	by	
the	environment	that	hosts	the	ECMAScript	
implementaDon.		
	Each	of	the	above	three	categorizaDons	can	include	both	

mundane	and	exoDc	objects.	The	disDncDon	between	built-in	
object	and	plaWorm	object	is	probably	of	minor	importance.		

New	Terminology:	FuncDons	
•  func0on	-	An	object	that	exposes	the	[[Call]]	internal	
method.		

•  ECMAScript	func0on	-	A	funcDon	whose	invocaDon	
result	and	side-effects	is	proved	by	evaluaDng	
ECMAScript	code.		

•  alien	func0on	-	A	funcDon	whose	invocaDon	result	
and	side-effects	is	provided	in	some	manner	other	
than	by	evaluaDng	ECMAScript	code.		

•  standard	func0on	-	a	funcDon	whose	invocaDon	
result	and	side-effects	are	defined	by	the	
ECMAScript	specificaDon	(mostly	chapter	15)		

An	ECMAScript	funcDon	might	be	either	a	mundane	or	an	exoDc	object.	An	alien	funcDon	is	
always	an	exoDc	object	because	the	default	[[Call]]	internal	method	produces	the	
invocaDon	result	and	side-effects	by	evaluaDng	ECMAScript	code.	A	standard	funcDon	can	
potenDally	be	implemented	either	as	an	ECMAScript	funcDon	or	an	alien	funcDon.	

New	Terminology:	Island,	Home	

•  A	“top	level”	ECMAScript	environment	with	its	
own	global	environment,	intrinsic	objects,	
global	ambient	state,	etc.		

May	4	Dra`:	Feature	addiDons	
•  Added	syntax	and	semanDcs	for	Binary	and	Octal	integers	
•  Added	syntax/semanDcs	for	super	in	MemberExpressions	and	

CallExpressions	
•  Added	arrow	funcDons	(13.2)	and	concise	methods	(13.3)	
•  added	Object.isObject	
•  added	Array.of	and	Array.from		
•  added	String.prototype	repeat,	startsWith,	endsWith,	contains,	

toArray	
•  added	Number.EPSILON,MAX_INTEGER,parseInt,	

parseFloat,isNaN,isFinite,	isInteger,	toInt	
•  added	Number.prototype.clz	
•  added	Math.log10,	log2,	log1p,	expm1,	cosh,	sinh,	tanh,	acosh,	

asinh,	atanh,	hypot,	trunc,	sign,	cbrt	

May	4	Dra`:	Editorial/Technical	1	
•  Clarified	that	Iden0fierNames	can	include	escape	sequences	
•  Extended	Reference	to	support	super	references	
•  Added	abstract	operaDons	for	Object	and	Array	creaDons	
•  Added	arrow	funcDons	(13.2)	and	concise	methods	(13.3)	
•  Preliminary	introducDon	of	code	“Realms”	(contexts	with	their	

own	globals,	intrinsics,	etc.)	(incomplete)	
•  Added	Method	Environment	Records	as	part	of	super	support	
•  Extensions	to	execuDon	contexts	needed	to	support	generators,	

super,	and	code	realms	
•  Eliminated	“enter	execuDon	context”	algorithms	by	merging	them	

with	[[Call]],	eval,	Program	etc.	

May	4	Dra`:	Editorial/Technical	2	
•  General	migraDon	of	most	material	related	to	funcDons	and	

their	execuDon	into	Chapter	13	
•  Added	addiDonal	explicit	checks	of	compleDon	values.	
•  made	yield	illegal	outside	of	generators	
•  addiDonal	work/cleanup	on	for-in/for-of	(prep	for	array	

comprehensions)	
•  Started	tracking	Annex	D	and	E	addiDons	
•  refactored	“CreaDng	FuncDon	Objects”	into	separate	funcDon	

and	constructor	creaDon	abstract	operaDons.	
•  Cleaned-up	Array	constructor	specificaDon	
•  clarificaDon	of	Number.MIN_Value	for	Arm	processors	(that	

don’t	support	denormalized	numbers)	

Arrow	FuncDons	

Concise	Methods	

13.3	

Syntax
ObjectLiteral :

{ }
{ PropertyDefinitionList }
{ PropertyDefinitionList , }

PropertyDefinitionList :
PropertyDefinition
PropertyDefinitionList , PropertyDefinition

PropertyDefinition :
IdentifierName
PropertyName : AssignmentExpression
MethodDefinition

NOTE MethodDefinition is defined in 13.3.

11.1.5	

BTW…	

SealedArrayInitialiser :
ArrayInitialiser
ArrayInitialiser

?	

