Prlvate Names and At names

http://wiki.ecmascript.org/doku.php?id=strawman:syntactic support for private name

Allen Wirfs-Brock
Mozilla
September 18, 2012

Unique/Private Names

* Unique and private names (aka symbols) are
ES6’s solution for objects that need to expose
properties that have limited or controlled

accessibility.

* Currently no syntactic support for definition or
use.

const secret = Name();
let obj = {};

obj[secret] = 42;

Basic Problem

* The current imperative code patterns for using
names don’t mesh well with declarative
object/class definitional forms.

const secret = Name();
let obj = {secret: 42}; // does not define an
// unique name properties

Class MyClass extends Another {
secret() {this.mine(); super[secret]()
} // secret is a regular property string key
// when used as method name but evaluated
// to a name when used within []

Some ES6 features are only available
using declarative formes.

* Current no way to define a method that has a
unique/private property name and references
super.

const secret = Name();
//class MyClass extends Another {

// secret() {this.mine(); super[secret]() }
//} // secret 1is a regular property string key

//The following i1s currently 1llegal:
class MyClass extends Another {..};

MyClass.prototype[secret] =
function () {this.mine(); super[secret]() }

Computed Property Names for Object
Literals Were Abandoned

const secret = Name();
let obj = {[secret]: 42}; // does not define an
// unique name properties

Class MyClass extends Another {
[secret] () {this.mine(); super[secret]()
}

* |ssues
— Allowed arbitrary expr. in prop name def. position
— Allowed aliasing of string valued prop keys
— Permitted same key to occur more than once

— Future hostile: ties property def. to indexing
syntax

Also, some minor convenience issues

* Forced to use [] rather than . for name-based
property accesses.
— Hostile to future adoption of an extenstion model
for[].

* Forced to explicitly call the Name constructor
to create a new unique or private Name
object.

At-Names

An At-name is an IdentifierName that is lexically prefixed with

@

At-names are const bound to Name values by new
declaration forms:

name @x, Qy;
private @secret;

Such declarations implicitly create new Name objects.
Normal lexical scoping rules.

No cross-talk between an At-name and a non-At-name
binding of the same base IdentifierName

“name” is a contextually reserved word: first token of
statement and followed by an At-name

name/private declarations make it unnecessary to expose
the Name constructor objet.

At-Name References

 At-names can appear in any context where an
IdentifierName would be interpreted as a literal
property name.
— As a property name in object literals/class definitions
— After . in MemberExpressions

* Lexical scoping rules resolve such At-name
references to a Name object value.

private secret;
let obj = {@secret: 42};

Class MyClass extends Another {
@secret() {mine(); super.@secret()
}

At-names in Primary Expressions

* When used as a Primary expression, an At-
name simply lexically resolves to the visible
const name binding of the At-name.

obj.@secret;
obj[@secret]
; //mean the same thing

let f = (o,k) => o[k];

//At-name values assignable to normal bindings
f(@secret); //0[k] === o[@secret] === o.@secret

Name declarations with initializers

* |In a name/private declaration, each At-name may
have an initialization expression.

private @secret = NameBroker.provideName(secretCode) ;

* The initializer must evaluate to a name object.

* The primary use case is initializing an At-name to
a name provided via a function call or other
computed vaue

Optional Feature — Class-scoped name
declarations

Allow name/private declarations to occur as a
class body element.

* Any such declared At-names are scoped to the
class bodly.

class Point {
private @x, @y; // <=== scoped to class body
get x() {return this.@x}
get y() {return this.@y}
constructor (x,y) {
this.@x X;
this.@y
}
};

Y;

Optional Future Feature — Class-
scoped protected name declarations

* Allow “protected” declarations to occur as a
class body element.

* Any such declared At-names may be explicitly
imported into subclass body scopes.

class Point {

protected @x, @y; * Inherited protected at-name values
constructor (x,y) { g icallv d ined |
this.@x = x: are dynamically determined at class
this.@y = y; initialization time.
11; * Explicit declaration of inherited at-
class Point3D extends Point {| names avoids open with-like scoping
protected @x, @y, @z; issues.
constructor (x, y, z) {
this.@x = x;
this.@Qy = y;
this.Qz = z;

)

Proposal for ES6

Add At-names and name/private declarations

At-names as properties keys supported in object
literals and class bodies.

Allow aliasing of unique/private names via
initializers in name/private declarations

Also allow name/private declarations to occur in
class bodies.

Added at meeting: name/private declarations in
obj literals. Also private/name as prefix.

Continue to explore future support for protected.

