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“Map” inverts thinking

Syntax:  base@field >> map.get(key)

GC: impl(base)[field] >> impl(map)[key]

Lookup: Inherited props >> own props

Intuition: Relationship >> Symbol >> Map

Unique Symbols ok.

(non-weak) Maps ok for container thinking
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ES6 Encapsulation 
Mechanisms

Closures hide lexical state (ES5)

Modules hide non-exports

Direct Proxies hide handler & target

WeakMaps hide keys, do rights-amplification

Private Symbols....?  Do we really need 5?
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GC: base@field = value

Abstract heap maps(base, field) => value.
base and field reachable -> value reachable

Obvious representations:

1. impl(base)[field] => value
better when field lives longer

2. impl(field)[base] => value
better when base lives longer
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GC by use cases

When base is known to live longer.
Just use a map! (Thanks Yehuda)

oo private field is known to live longer.
Just use representation #1

Most remaining WeakMap use cases
would do better with rep #1 (untested claim)
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GC by use cases

Only need ephemeron collection when 
you guessed wrong relative longevity
you care about the memory pressure

Felixʼs O(N) algorithm is affordable
with inverted representation

Example: Membranes
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GC by use cases

Only need ephemeron collection when 
you guessed wrong relative longevity
you care about the memory pressure

Felixʼs O(N) algorithm is affordable
with inverted representation

Example: Membranes

Speaking of which...
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Transparency vs Privacy
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Desugaring private 
relationships

base@field
field.get(base)

base@field = value
field.set(base, value)
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What about symbols 
and strings?
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What about symbols 
and strings?

base@field
field.get(base)
field[@geti](base)

String.prototype[@geti] =
  function(base) {
    return base[this];
  };

base@field = value
field.set(base, value)
field[@seti](base, value)

String.prototype[@seti] =
  function(base, value) {
    base[this] = value;
  };
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Private Instance Vars

class Point {
  constructor(private x, private y) {}

  toString() { return `<${this@x}, ${this@y}>`; }
  add(p) {
    return Point(this@x + p@x, this@y + p@y);
  }
}
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let Point = (function(){
  const x = Rel(); const y = Rel();
  function Point(x1, y1) { this@x = x1; this@y = y1; }

  Point.prototype = {
    toString() { return `<${this@x}, ${this@y}>`; }
    add(p) {
      return Point(this@x + p@x, this@y + p@y);
    }
  };
  return Point;
})();
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