
Private Symbols,
WeakMaps,

and Relationships
Mark S. Miller,

with thanks to Allen Wirfs-Brock

TC39 March 2013

Wednesday, March 13, 2013

“Map” inverts thinking

Wednesday, March 13, 2013

“Map” inverts thinking

Syntax: base@field >> map.get(key)

Wednesday, March 13, 2013

“Map” inverts thinking

Syntax: base@field >> map.get(key)

GC: impl(base)[field] >> impl(map)[key]

Wednesday, March 13, 2013

“Map” inverts thinking

Syntax: base@field >> map.get(key)

GC: impl(base)[field] >> impl(map)[key]

Lookup: Inherited props >> own props

Wednesday, March 13, 2013

“Map” inverts thinking

Syntax: base@field >> map.get(key)

GC: impl(base)[field] >> impl(map)[key]

Lookup: Inherited props >> own props

Intuition: Relationship >> Symbol >> Map

Wednesday, March 13, 2013

“Map” inverts thinking

Syntax: base@field >> map.get(key)

GC: impl(base)[field] >> impl(map)[key]

Lookup: Inherited props >> own props

Intuition: Relationship >> Symbol >> Map

Unique Symbols ok.

Wednesday, March 13, 2013

“Map” inverts thinking

Syntax: base@field >> map.get(key)

GC: impl(base)[field] >> impl(map)[key]

Lookup: Inherited props >> own props

Intuition: Relationship >> Symbol >> Map

Unique Symbols ok.

(non-weak) Maps ok for container thinking

Wednesday, March 13, 2013

ES6 Encapsulation
Mechanisms

Closures hide lexical state (ES5)

Modules hide non-exports

Direct Proxies hide handler & target

WeakMaps hide keys, do rights-amplification

Private Symbols....? Do we really need 5?

Wednesday, March 13, 2013

GC: base@field = value

Abstract heap maps(base, field) => value.
base and field reachable -> value reachable

Obvious representations:

1. impl(base)[field] => value
better when field lives longer

2. impl(field)[base] => value
better when base lives longer

Wednesday, March 13, 2013

GC by use cases

Wednesday, March 13, 2013

GC by use cases

When base is known to live longer.
Just use a map! (Thanks Yehuda)

Wednesday, March 13, 2013

GC by use cases

When base is known to live longer.
Just use a map! (Thanks Yehuda)

oo private field is known to live longer.
Just use representation #1

Wednesday, March 13, 2013

GC by use cases

When base is known to live longer.
Just use a map! (Thanks Yehuda)

oo private field is known to live longer.
Just use representation #1

Most remaining WeakMap use cases
would do better with rep #1 (untested claim)

Wednesday, March 13, 2013

GC by use cases

Only need ephemeron collection when
you guessed wrong relative longevity
you care about the memory pressure

Felixʼs O(N) algorithm is affordable
with inverted representation

Example: Membranes

Wednesday, March 13, 2013

GC by use cases

Only need ephemeron collection when
you guessed wrong relative longevity
you care about the memory pressure

Felixʼs O(N) algorithm is affordable
with inverted representation

Example: Membranes

Speaking of which...

Wednesday, March 13, 2013

Transparency vs Privacy

bL@fL = vL bR@fR === vR
bT@fT = vT
bT@fT = vP
bT@fP = vT
bT@fP = vP
bP@fT = vT
bP@fT = vP
bP@fP = vT
bP@fP = vP

bP@fP === vP
bP@fP === vT
bP@fT === vP
bP@fT === vT
bT@fP === vP
bT@fP === vT
bT@fT === vP
bT@fT === vT

Wednesday, March 13, 2013

bT@fT = vT bP@fP === vP

fT.set(bT, vT) fP.get(bP) === vP

fT

bT

vT vP

bP

fPset get

===

Wednesday, March 13, 2013

fT

bT

vT vP

bP

fPset get

===

get

bT@fT = vT bP@fP === vP

fT.set(bT, vT) fP.get(bP) === vP

Wednesday, March 13, 2013

fT

bT

vT vP

bP

fPset get

===

get

bT@fT = vT bP@fP === vP

fT.set(bT, vT) fP.get(bP) === vP

Wednesday, March 13, 2013

fT

bT

vT vP

bP

fPset get

===

get

bT@fT = vT bP@fP === vP

fT.set(bT, vT) fP.get(bP) === vP

Wednesday, March 13, 2013

bT@fP = vT bP@fT === vP

fP.set(bT, vT) fT.get(bP) === vP

fP

bT

vT vP

bP

fTset get

===

set

Wednesday, March 13, 2013

fP

bT

vT vP

bP

fTset get

===

set

bT@fP = vT bP@fT === vP

fP.set(bT, vT) fT.get(bP) === vP

Wednesday, March 13, 2013

Desugaring private
relationships

base@field
field.get(base)

base@field = value
field.set(base, value)

Wednesday, March 13, 2013

What about symbols
and strings?

base@field
field.get(base)

base@field = value
field.set(base, value)

Wednesday, March 13, 2013

What about symbols
and strings?

base@field
field.get(base)
field[@geti](base)

String.prototype[@geti] =
 function(base) {
 return base[this];
 };

base@field = value
field.set(base, value)
field[@seti](base, value)

String.prototype[@seti] =
 function(base, value) {
 base[this] = value;
 };

Wednesday, March 13, 2013

Private Instance Vars

class Point {
 constructor(private x, private y) {}

 toString() { return `<${this@x}, ${this@y}>`; }
 add(p) {
 return Point(this@x + p@x, this@y + p@y);
 }
}

Wednesday, March 13, 2013

let Point = (function(){
 const x = Rel(); const y = Rel();
 function Point(x1, y1) { this@x = x1; this@y = y1; }

 Point.prototype = {
 toString() { return `<${this@x}, ${this@y}>`; }
 add(p) {
 return Point(this@x + p@x, this@y + p@y);
 }
 };
 return Point;
})();

Wednesday, March 13, 2013

