//////////////////

Closing iterators

Dave Herman


patrick
Text Box
Ecma/TC39/2014/022


lterators need an
early-disposal protocol



Closing a synchronous sequence is a bit of an
abstract question (though not irrelevant).

But we will want asynchronous sequences, and
closing those is definitely important.

We should tuture-proof for symmetry.



for (let x of heap.deflateGzipData()) {

break;



deflateGzipData() {
let i = this.malloc(...);

return {

next() { ... },
return() { this.free(i) }



deflateGzipData: function*() {
let i = this.malloc(...);

try {

} finally {
this.free(i)



for (await x of db.select(...)) {

break;



select(query) {
let records = ...;
try {
} finally {

records.close();



When does the early-
return get called?



for (let x of y) {

break;



outer:
for (let 1 = 0; i < N; i++) {
for (let x of y) {

break outer;



outer:
for (let i = 0; i < N; i++) {
for (let x of y) {

continue outer;



for (let x of y) {

throw new Error();



for (let x of y) {

f();



for (let x of y) {

return;



for (let x of y) {

yield;



for (let x of y) {

yield* g();



* In short: any abrupt completion of the loop.

* Normal completion should not call the method; in

that case the iterator itself decided to close.



What it the iterator
refuses to stop?



function* f() {

try {
yield;
} finally { yield; }



e Disallow yield ina finally?

* No!Bad idea — and doesn't solve the problem.



function* f() {

try {
try {
yield;
} finally { throw "override"; }
} catch (ignore) { }
yield;



function* f() {
try {

yield* g();

} catch (ignore) { }
yield;



function* g() {

try {
yield;
} finally { throw "override"; }



function* g() {

try {
yield;
} finally { cleanup(); }



* Disallow yield dynamically, once we start the

disposal process?

e No! Another bad idea, and doesn't solve the
problem tor hand-written iterators.




» Better framing: for...of gives iterators the

opportunity to do resource disposal.
* Impossible to force an iterator to stop iterating.

o Still, failure to stop iterating is probably a bug in
the contract between the iterator and the loop.



interface IterationResult {
value: any,

done: boolean

interface Generator extends Iterator {
next(value: any?) : IterationResult,

throw(value: any?) : IterationResult



interface IterationResult {
value: any,

done: boolean

interface Generator extends Iterator {
next(value: any?) : IterationResult,
throw(value: any?) : IterationResult,

return(value: any?) : IterationResult



interface Iterator {
next(value: any?) : IterationResult,

return?() : IterationResult



e On abrupt exit, for...of looks for return method.

o |f present, it calls the method with no arguments.

* |f the result has falsy done property, throw an error.



Bikeshed city



interface Iterator {
next(value: any?) : IterationResult,

close?() : IterationResult



5 Jun 14 Resolutions



» Agreed to design, schedule permitting.

* Early termination method is called return.

* If we run out of time, stopgap semantics:

* reject yield in try blocks with finally clause

* early exit from for...of puts generator in

GeneratorComplete state





