
New ES6 constructor features and semantics: Alternative 3 Derived constructors default to ordinary object create

 allenwb / 0Option3ConstructorSummary.md Secret
Created 6 years ago

<script src="https://gist. Download ZIP

 0Option3ConstructorSummary.md

New ES6 Constructor Semantics and Usage Examples

Default Ordinary Allocate: Alternative Design where subclass constructors do not
automatically call superclass constructors. bkut instead create a new ordinary object as the
initial value of this .

This Gist presents a new design of class-based object construction in ES6 that does not require use of the two-phase

@@create protocol.

One of the characteristics of this proposal is that subclass constructors must explicitly super invoke their superclass's

constructor if they wish to use the base class' object allocation and initialization logic. If they don't, a new ordinary object

is automatically allocated. This is the same behavior that is used for basic constructor functions in all of the alternative

proposals. So, this alterantive can be seen as a unifying the semantics of basic constructor functions and class

constructors.

An alternative version of this design automatically invokes the base constructor in most situations.

In addition to the material below, there is a seperate design rationale covering several key features that are common to

both designs.

 1constructor-summary.md

Constructor Semantics Summary

1. Constructors may be invoked either as a "function call" or by a new operator

2. function call: Foo(arg)

3. new operator: new Foo(arg)

4. Within a constructor, the new^ token can be used as a PrimaryExpression to determine how the construtor was

invoked

5. If the value of new^ is undefined then the current function invocation was as a function call.

6. If the value of new^ is not undefined then the current function invocation was via the new operator and the value of

new^ is the constructor functon that new was originally applied to.

7. When a constructor is invoked using the new operator it has two responsibility

8. Allocate (or otherwise provide) a this object

9. Initialize the this object prior to returning it to the caller

10. The allocation step may be performed automatially prior to evaluating the constructor body or it may be manually

performed by code within the consturctor body.

11. Automatic allocation is the default for all class constructors (and constructors created using function definitions). 1.

The value of this is initialized to a newly allocated ordinary object immediately prior to evaluating the body of the

Embed

https://gist.github.com/allenwb
https://gist.github.com/allenwb
https://gist.github.com/allenwb/0e8931c71b29b717ffe1
github-mac://openRepo/https://gist.github.com/0e8931c71b29b717ffe1
https://gist.github.com/allenwb/0e8931c71b29b717ffe1/archive/22f47d5f83e5b0e64d5d40d3345df73d3865a971.zip
https://gist.github.com/allenwb/5160d109e33db8253b62
https://gist.github.com/allenwb/291035fbf910eab8e9a6
https://gist.github.com/allenwb/53927e46b31564168a1d#usage-patterns-for-basic-constructor-functions

constructor.

12. If a constructor body contains an assignment of the form this = then automatic allocation is not performed and the

constructor is expected to perform manual allocation. 1. The value of this is uninitialized (in its TDZ) upon entry to the

body of a manually allocating constructor. 2. Referencing (either explicitly or implicitly) an unitialized this will throw a

ReferenceError. 2. The first evaluation of an assignment to this initializes it. 3. this may be dyanmically asigned to

only once within an evaluation of a manaully allocating constructor body. 4. When a constructor is invoked via a

function call (ie, via [[Call]]), this is preinitialized using the normal function call rules. Any dynamic assignment to this

during such an invocation will throw a ReferenceError.

13. Executing new super in a constructor (that was itself invoked using the new operator) invokes its superclass

constructor using the same new^ value as the invoking constructor.

 2usage-patterns.md

Usage Pattern for a Proposed New ES6 Constructor
Semantics

The patterns below progressively explain the key semantic features of this proposal and their uses. A more complete

summary of the semantics for this proposal are in Proposed ES6 Constructor Semantics Summary.

Allocation Patterns

A base class with default allocation that needs no constructor logic

A class declaration without an extends clause and without a constructor method has a default constructor that allocates

an ordinary object.

class Base0 {};

let b0 = new Base0; //equivalent to: let b0 = Object.create(Base0.prototype);

A base class with default allocation and a simple constructor

The most common form of constructor automatically allocates an ordinary object, binds the object to this, and then

evaluates the constructor body to initialize the object.

class Base1 {
 constructor(a) {
 this.a = a;
 }
}

let b1 = new Base1(1); //equivalent to: let b1 = Object.create(Base1.prototype);
 // b1.a = 1;

A base class that manually allocates an exotic object

Any constructor body that contains an explicit assignment to this does not perform automatic allocation. Code in the

constructor body must allocate an object prior to initializing it.

class Base2 {
 constructor(x) {

https://gist.github.com/allenwb/53927e46b31564168a1d#constructor-semantics-summary

 this = []; //create a new exotic array instance
 Object.setPrototypeOf(this, new^.prototype);
 this[0] = x;
 }
 isBase2 () {return true}
}

let b2 = new Base2(42);
assert(b2.isBase2()===true);
assert(Array.isArray(b2)===true); //Array.isArray test for exotic array-ness.
assert(b2.length == 1); //b2 has exotic array length property behavior
assert(b2[0] == 42);

A derived class with that adds no constructor logic

Often derived classes want to just use the inherited behavor of their superclass constructor. If a derieved class does not

explicitly define a constructor method it automatially inherits its superclass constructor, passing all of its arguments..

class Derived0 extends Base1 {};

let d0 = new Derived0("b1");
assert(d0.a === "b1");
assert(d0.constructor === Derived0);
assert(Object.getPrototypeOf(d0) === Derived0.prototype);

The above definition of Derived0 is equivalent to:

class Derived0 extends Base1 {
 constructor() {
 this = new super(...arguments);
 }
}

Note that the this value of a constructor is the default value of the invoking new expression unless it is explicilty over-

ridden by a return statement in the constructor body. (This is a backwards compatabible reinterpretation of legacy

[[Construct]] semantics, updated to take into account that the initial allocation may be performed within the constructor

body.)

A derived class that extends the behavior of its base class constructor

A derived class that wishes to use and extend its base class constructor must explicitly invoke the base constructor and

may assign the resulting value to this. Such classes typically will first invoke its base class constructor using the new

operator, to obtain a new instance. It then evaluates the remainder of the derived class constructor using the value

returned from the base constructor as the this value.

class Derived1 extends Base1 {
 constructor(a, b) {
 this = new super(a); //note only a passed to super constructor
 this.b = b;
 }
};

let d1 = new Derived1(1, 2);
assert(d1.a === 1); //defined in Base1 constructor
assert(d1.b === 2); //defined in Derived1 constructor

A derived class that invokes its base constructor with permutated arguments

A derived class may perform arbitrary computations prior to calling its base constructor, as long as the computations

don't reference this. For example, if the derived constructor needs to modify the arguments passed to the base

constructor, it must perform the necessary computations prior to invoking the base constructor and assigning the result

to thus.

class Derived2 extends Derived1 {
 constructor(a, b, c) {
 this = new super(b, a);
 this.c = c;
 }
};

let d2 = new Derived2(1, 2);
assert(d2.a === 2);
assert(d2.b === 1);
assert(d2.c === 3);

A derived class that invokes its base constructor with computed arguments

class Derived3 extends Derived1 {
 constructor(c) {
 let a = computeA(), b = computeB(); //note, can't reference 'this' here.
 this = new super(a, b);
 this.c = c;
 }
};

let d3 = new Derived3(3);
assert(d3.c === 3);

A derived class that doesn't use its base class constuctor

class Derived4 extends Base2 {
 constructor (a) {
 this.a = a;
 }
 isDerived4() {return true};
}

let d4 = new Derived4(42);
assert(d4.isBase2()===true); //inherited from Base2
assert(d4.isDerived4()===true);; //from Derived4
assert(Array.isArray(d4)===false); //not an exotic array object.
assert(d4.hasOwnProperty("length")===false);
assert(d4.a == 42);

A derived class that wraps a Proxy around the object produced by its base constructor

class Derived5 extends Derived1 {
 constructor() {return Proxy(new super(...arguments), new^.handler())};
 static handler() {
 return {
 get(target, key, receiver) {
 console.log(`accessed property: ${key}`);
 return Reflect.get(target, key, receiver);
 }
 };
 };
};

Use of return is appropiate here because we don't need to reference this within the body of the constructor. Using return

replaces the default ordinary object that was allocated.

Additional classes that use different handlers can be easily defined:

class Derived6 extends Derived5 {
 static handler() {
 return Object.assign({
 set(target, key, value, receiver) {
 console.log(`set property: ${key} to: ${value}`);
 return Reflect.get(target, key, value, receiver)
 }
 }, super.handler());
 };
};

Note that Derived6 doesn't need an explicit constructor method definition. Its automatically generated constructor

performs this=new super(...arguments); . ####An Abstract Base class that can't be instantiated using new

class AbstractBase {
 constructor() {
 this = undefined;
 }
 method1 () {console.log("instance method inherited from AbstractBase");
 static smethod () {console.log("class method inherited from AbstractBase")};
};

let ab;
try {ab = new AbstractBase} {catch(e) {assert(e instance of TypeError)};
assert(ab===undefined);

Classes derived from AbstractBase must explicitly allocate their instance objects.

class D7 extends AbstractBase {
 constructor () {
 return this; //be explicitly that we are using the automatically allocated ordinary object
 }
}

let d7 = new D7();
d7.method1(); //logs message
D7.smethod(); //logs message
assert(d7 instanceof D7);
assert(d7 instanceof AbstractBase);

class D8 extends AbstractBase {};
new D8; //throws TypeError because result of new is undefined

Constructor Called as Function Patterns

A unique feature of ECMAScript is that a constructor may have distinct behaviors depending whether it is invoke by a new

expression or by a regular function call expression.

Detecting when a constructor is called as a function

When a constructor is called using a call expression, the token new^ has the value undefined within the constructor body.

class F0 {
 constructor() {
 if (new^) console.log('Called "as a constructor" using the new operator.');
 else console.log('Called "as a function" using a function expression.');
 }
}

new F0; //logs: Called "as a constructor" using the new operator.
F0(); //logs: Called "as a function" using a function expression.

A constructor that creates new instances when called as a function

class F1 {
 constructor() {
 if (!new^) return new F1;
 }
}

assert((new F1) instanceof F1);
assert(F1() instanceof F1);

A constructor that refuses to be called as a function

class NonCallableConstructor {
 constructor () {
 if (!new^) throw Error("Not allowed to call this constructor as a function");
 }
}

A constructor with distinct behavior when called as a function

class F2 {
 constructor(x) {
 if (new^) {
 //called as a constructor
 this.x = x;
 } else {
 //called as a function
 return x.reverse();
 }
 }
};

let f2c = new F2("xy");
let f2f = F2("xy");
assert(typeof f2c == "object") && f2c.x ==="xy");
assert(f2f === "yx");

super calls to constructors as functions

The distinction between "called as a function" and "called as a constructor" also applies to super invocations.

class F3 extends F2 {
 constructor(x) {
 if (new^) {
 this = new super(x+x); //calls F2 as a constructor
 } else {
 return super(x) + super(x); //calls F2 as a function (twice)
 }
};

let f3c = new F3("xy");
let f3f = F3("xy");
assert(typeof f3c == "object") && f3c.x ==="xyxy");
assert(f3f === "yxyx");

Calling a superclass constructor to perform instance initialization.

A base class constructor that is known to perform automatic allocation may be called (as a function) by a derived

constructor in order to apply the base initialization behavior to an instance allocated by the derived constructor.

class D8 extends Base1 {
 constructor(x) {
 //note, an ordinary object was automatically allocated and assigned to this
 super(x); //note calling super "as a function", passes this,
 // and does not do any automatic allocation
 }
}

let d8 = new D8(8);
assert(d8.x==8);

However, care must be taken that the base constructor does not assign to this when "called as a function".

Patterns for Alternative Construction Framework

Two phase construction using @@create method

This construction framework breaks object construction into two phase, an allocation phase and an instance initializaiton

phase. This framework design essentially duplicates the @@create design originally proposed for ES6. The design of this

framework uses a static "@@create" method to perform the allocation phase. The @@create method may be over-ridden

by subclass to change allocation behavior. This framework expects subclasses to place instance initialization logic into

the consturctor body and performs top-down initializaiton.

Symbol.create = Symbol.for("@@create");
class BaseForCreate{
 constructor() {
 this = new^[Symbol.create]();
 }
 static [Symbol.create]() {
 // default object allocation
 return Object.create(this.prototpe);
 }}

class DerivedForCreate1 extends BaseForCreate {
 //A subclass that over rides instance initialization phase
 constructor(x) {
 this = new super();
 // instance initialization logic goes into the constructor
 this.x = x;
 }
}

class DerivedForCreate2 extends BaseForCreate{
 //A subclass that over rides instance allocation phase
 static [Symbol.create]() {
 // instance allocation logic goes into the @@create method body
 let obj = [];
 Object.setPrototypeOf(obj, this.prototype);
 return obj;
 }
}

Two phase construction using initialize method

This construction framework also breaks object construction into two phase, an allocation phase and an instance

initializaiton phase. The design of this framework uses the constructor method to perform the allocation phase and

expects subclasses to provide a seperate initializaiton method to peform instance initialization. The initialize methods

control whether initialization occur in a top-down or buttom-up manner.

class BaseForInit {
 constructor(...args) {return this.initialize(...args)}
 initialize () {return this}
}

class DerivedForInit1 extends BaseForInit {
 //A subclass that over rides instance initialization phase
 initialize(x) {
 // instance initialization logic goes into an initialize method
 this.x = x;
 }
}

class DerivedForInit2 extends BaseForInit {
 //A subclass that over rides instance allocation phase
 constructor(...args) {
 // instance allocation logic goes into the constructor body
 this = [];
 Object.setPrototypeOf(this, new^.prototype);
 return this.initialize(...args);
 }
}

class DerivedForInit3T extends DerivedForInit1 {
 //A subclass that over rides instance initialization phase
 //and performs top-down super initialization
 initialize(x) {
 super.initialize(); //first perform any superclass instance initization
 this.x = x;
 }
}

class DerivedForInit3B extends DerivedForInit1 {
 //A subclass that over rides instance initialization phase
 //and performs bottom-up super initialization
 initialize(x) {
 this.x = x; //first initialize the state of this instance
 super.initialize(); //then perform superclass initization
 }
}

Some AntiPatterms

Using return instead of this to replace default allocation

class Anti1 {
 constructor() {
 return Object.create(new^.prototype);
 //better: this = Object.create(new^.prototype);
 //or: this = {__proto__: new^.prototype};
 }
}

JavaScript has always allowed a constructor to over-ride its autmatically allocated instance by returning a different object

value. That remains the case with this design. However, using return in this manner (instead of assigning to this) may be

less efficient because the constructor is specified to still automatically allocates a new instance.

Calling super() instead of invoking super() with new

class Derived2Bad extends Derived1 {
 constructor(a, b, c) {
 this = /*new*/ super(b, a); //what if we forget to put in new
 this.c = c;
 }

};

new Derived2Bad(1,2,3); //ReferenceError

This constructor contains an assignment to this so it doesn't perform automatic allocation and this is initially uninitialized.

It assigns to this but the super() call in its first statement implicitly references this before it is initialized so a

ReferenceError exception will be thrown.

