Unintitialized Objects

Brendan: “The most important thing here (|
agree with Andreas R.) is -- if possible -- avoiding

uninitialized object observability.”
http://esdiscuss.org/topic/new#content-49

Can we define what it mean for an
object to be “initialized”?
* An object can represent an abstraction of

arbitrary complexity

— An abstraction isn’t just its “root object” but also all
the constituents objects and values that make up
the encapsulated state of the abstraction

— All the invariants that relate to all those constituent
parts.

* So, deciding whether an object has been
initialized can be arbitrarily complex.

The concept of a correctly initialized object lies in the
application domain, not in the language design domain.

* We can’t guarantee completion of application
level object initialization

 We can (and do) guarantee any initialization
necessary for system-level runtime integrity

— For ES objects, this is just the essential runtime
Invariants

— Host supplied objects, need to understand the
differences between their application-level

initialization and initialization necessary for system-
level integrity.

Another concern

“Hideous Number special-casing
spread around in the draft”

 What's this talking about:

If Type(value) is Object
and value has a [[NumberData]] internal slot

and the value of value’s [[NumberData]] internal slot
is undefined,

then throw a TypeError exception.

* This specific check actually occurs exactly one
place in the spec:

http://people.mozilla.org/~jorendorff/es6-draft.htmlt#sec-properties-of-the-number-prototype-object

 What's it doing: checking if we are trying to

access the value of an unitialized Number
object.

But...

* But similar patterns also occurs for other built-
in classes.
* For some built-in classes, they occur at more

than one place

— Because of the need to propagate exceptions,
abstracting the test doesn’t save much

 But most occurrences are only within the
section of the spec that is defining the related

build-in class.

Why is this pattern needed?

. Desire to separate object allocation from
initialization.
. Legacy built-ins that have different, “called as

constructor”, “called as function” behavior.

. Necessitating need to distinguish initialized
and uninitialized instances.

. But exacerbated by spec. level decision to
use some internal slots as both initialization
flags and value holders.

Current ES6 Spec:

* The @@create method of an object F performs

the following steps:

1. Let F be the this value.
2. Let obj be OrdinaryCreateFromConstructor(F, "%NumberPrototype%",
([[NumberDatall)).

3. Return obj.

* |t could just as easily be:

1. Let Fbe the this value.

2. Let obj be OrdinaryCreateFromConstructor(F, "%NumberPrototype%",
([[NumberDatal], [[Numberlnitialized]])).

3. Setobj’s [[NumberData]] internal slot to'NaN-
4. Return obj.

This sort of optimization probably should be in the spec, but there was
resistance to adding more “internal properties to legacy built-ins.

In theory, not needed at all for most
new built-in classes

* Map|[Symbol.create]
1. Let F be the this value.

2. Let obj be the result of calling
OrdinaryCreateFromConstructor(F, "%MapPrototype%",
([[MapData]])).

3. Letobj’s [[MapData]] internal slot be an empty List.
4. Return obj.

* Then this would be legal:
let m = Map[Symbol.create]();
m.set(“foo”, “bar”);

But would you be ok with...

let m = Map[Symbol.create]();

Map.call(m, somethingWithEntries);
Map.call(m, somethingElseWithEntries);

//m has entries from both,

//or do you want Map to implicitly do a clear
//or should Map throw if misn’t empty?

