
Unin&&alized	Objects	

Brendan:	“The	most	important	thing	here	(I	
agree	with	Andreas	R.)	is	--	if	possible	--	avoiding	
unini&alized	object	observability.”	
hHp://esdiscuss.org/topic/new#content-49		



Can	we	define	what	it	mean	for	an	
object	to	be	“ini&alized”?	

•  An	object	can	represent	an	abstrac&on	of	
arbitrary	complexity	
– An	abstrac&on	isn’t	just	its	“root	object”	but	also	all	
the	cons&tuents	objects	and	values	that	make	up	
the	encapsulated	state	of	the	abstrac&on	

– All	the	invariants	that	relate	to	all	those	cons&tuent	
parts.	

•  So,	deciding	whether	an	object	has	been	
ini&alized	can	be	arbitrarily	complex.		
The	concept	of	a	correctly	ini&alized	object	lies	in	the	
applica&on	domain,	not	in	the	language	design	domain.	



•  We	can’t	guarantee	comple&on	of	applica&on	
level	object	ini&aliza&on	

•  We	can	(and	do)	guarantee	any	ini&aliza&on	
necessary	for	system-level	run&me	integrity	
–  For	ES	objects,	this	is	just	the	essen&al	run&me	
invariants	

– Host	supplied	objects,	need	to	understand	the	
differences	between	their	applica&on-level	
ini&aliza&on	and	ini&aliza&on	necessary	for	system-
level	integrity.	



Another	concern	



“Hideous	Number	special-casing	
spread	around		in	the	dra[”	

•  What’s	this	talking	about:	
If	Type(value)	is	Object	

and	value	has	a	[[NumberData]]	internal	slot	
and	the	value	of	value’s	[[NumberData]]	internal	slot	
				is	undefined,	
then	throw	a	TypeError	excep&on.	

•  This	specific	check	actually	occurs	exactly	one	
place	in	the	spec:	
hHp://people.mozilla.org/~jorendorff/es6-dra[.html#sec-proper&es-of-the-number-prototype-object		

•  What’s	it	doing:	checking	if	we	are	trying	to	
access	the	value	of	an	uni&alized	Number	
object.	



But...	

•  But	similar	paHerns	also	occurs	for	other	built-
in	classes.	

•  For	some	built-in	classes,	they	occur	at	more	
than	one	place	
– Because	of	the	need	to	propagate	excep&ons,	
abstrac&ng	the	test	doesn’t	save	much	

•  But	most	occurrences	are	only	within	the	
sec&on	of	the	spec	that	is	defining	the	related	
build-in	class.		



Why	is	this	paHern	needed?	
1.  Desire	to	separate	object	alloca&on	from	

ini&aliza&on.	
2.  Legacy	built-ins	that	have	different,	“called	as	

constructor”,	“called	as	func&on”	behavior.	
3.  Necessita&ng	need	to	dis&nguish	ini&alized	

and	unini&alized	instances.	
4.  But	exacerbated	by	spec.	level	decision	to	

use	some	internal	slots	as	both	ini&aliza&on	
flags	and	value	holders.		



Undefined	means	unini&alized	

Undefined	means	unini&alized	

Current	ES6	Spec:	
•  The	@@create	method	of	an	object	F	performs	
the	following	steps:	
1.  Let	F	be	the	this	value.	
2.  Let	obj	be	OrdinaryCreateFromConstructor(F,	"%NumberPrototype%",	

(	[[NumberData]])).	
3.  Return	obj.	

•  It	could	just	as	easily	be:	
1.  Let	F	be	the	this	value.	
2.  Let	obj	be	OrdinaryCreateFromConstructor(F,	"%NumberPrototype%",	

(	[[NumberData]],	[[NumberIni&alized]])).	
3.  Set	obj’s	[[NumberData]]	internal	slot	to	NaN.	
4.  Return	obj.	

	 This	sort	of	op&miza&on	probably	should	be	in	the	spec,	but	there	was	
resistance	to	adding	more	“internal	proper&es	to	legacy	built-ins.	



In	theory,	not	needed	at	all	for	most	
new	built-in	classes	

•  Map[Symbol.create]	
1.  Let	F	be	the	this	value.	
2.  Let	obj	be	the	result	of	calling	

OrdinaryCreateFromConstructor(F,	"%MapPrototype%",	
([[MapData]])	).	

3.  Let	obj’s	[[MapData]]	internal	slot	be	an	empty	List.	
4.  Return	obj.	

•  Then	this	would	be	legal:	
let	m	=	Map[Symbol.create]();	
m.set(“foo”,		“bar”);	

This	line	not	in	the	
current	ES6	spec.	dra[.	

No	test	needed	to	see	
if	map	instance	has	
been	ini&alized	



But	would	you	be	ok	with...	

let	m	=	Map[Symbol.create]();	
Map.call(m,	somethingWithEntries);	
Map.call(m,	somethingElseWithEntries);		
//m	has	entries	from	both,	
//or	do	you	want	Map	to	implicitly	do	a	clear	
//or	should	Map	throw	if	m	isn’t	empty?	


