STANDARD ECMA-59

DATA INTERCHANGE ON 200 mm
FLEXIBLE DISK CARTRIDGES
USING TWO-FREQUENCY RECORDING
AT 13262 ftp-rad ON BOTH SIDES

August 1979
Free copies of this document are available from ECMA,
European Computer Manufacturers Association
114 Rue du Rhône - 1204 Geneva (Switzerland)
STANDARD ECMA-59

DATA INTERCHANGE ON 200 mm
FLEXIBLE DISK CARTRIDGES
USING TWO-FREQUENCY RECORDING
AT 13262 ft/1000 rad ON BOTH SIDES

August 1979
BRIEF HISTORY

In January 1978 ECMA issued its standard ECMA-54 for Data Interchange on 200 mm Flexible Disk Cartridges using 2-Frequency Recording at 13262 ft/prad on One Side. Work began then on such cartridges recorded on both sides.

It was recognized that it was absolutely essential to use the same Master Standard for Signal Amplitude, Reference Fields, Overwrite and Resolution as already established by PTB for the flexible disk cartridge described in ECMA-54. As the interim standard established by PTB has been taken over by ISO in 1978 as the sole International Master Standard and that Secondary Reference Flexible Disk Cartridges are available from PTB this requirement was completely justified.

In establishing its master PTB defined certain procedures, one characteristic of which being that measurements are made only on track 00 and track 76 of Side 0. On the other hand it is well known that on flexible disk cartridges recorded on both sides the tracks of Side 1 are offset inwards by four track positions compared with Side 0.

In order to solve this difficulty, the same surface is used as a standard for Side 1 by turning the disk over in its jacket. Measurements have shown that the correlation between tracks on both sides is sufficiently close for the purpose of this Standard in spite of their different locations.

Accepted by the General Assembly as Standard ECMA-59 on June 21, 1979.
TABLE OF CONTENTS

SCOPE

SECTION I - GENERAL DESCRIPTION AND DEFINITIONS

1. GENERAL DESCRIPTION
 1.1 General Figures
 1.2 Main Elements
 1.3 Description
 1.4 Optional Features
 1.5 Definitions
 1.5.1 Flexible Disk
 1.5.2 Reference Flexible Disk Cartridge
 1.5.3 Secondary Reference Flexible Disk Cartridge
 1.5.4 Reference Flexible Disk Cartridge for Recording Field and Signal Amplitude
 1.5.5 Typical Field
 1.5.6 Reference Field
 1.5.7 Test Recording Currents
 1.5.8 Standard Reference Amplitude
 1.5.9 Average Signal Amplitude
 1.5.10 In Contact
 1.5.11 Direction of Rotation

SECTION II - MECHANICAL AND PHYSICAL CHARACTERISTICS

2. GENERAL REQUIREMENTS
 2.1 Environment and Transportation
 2.1.1 Testing Environment
 2.1.2 Operating Environment
 2.1.3 Storage Environment
 2.1.4 Transportation
 2.1.5 Handling
 2.2 Materials
 2.2.1 Jacket
 2.2.2 Liner
 2.2.3 Disk
 2.2.4 Envelope

3. DIMENSIONAL CHARACTERISTICS

 3.1 Jacket
 3.1.1 Form
 3.1.2 Thickness
 3.1.3 Central windows
 3.1.4 Index windows
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.5</td>
<td>Head windows</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Reference Edge Profile</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Construction of the jacket</td>
</tr>
<tr>
<td>3.1.8</td>
<td>Notches</td>
</tr>
<tr>
<td>3.2</td>
<td>Liner</td>
</tr>
<tr>
<td>3.3</td>
<td>Disk</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Diameters</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Thickness</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Index hole</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Recording area</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Sides</td>
</tr>
<tr>
<td>4.1</td>
<td>Flammability</td>
</tr>
<tr>
<td>4.2</td>
<td>Coefficient of linear thermal expansion of the disk</td>
</tr>
<tr>
<td>4.3</td>
<td>Coefficient of linear hygroscopic expansion of the disk</td>
</tr>
<tr>
<td>4.4</td>
<td>Opacity</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Opacity of the jacket</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Opacity of the disk</td>
</tr>
<tr>
<td>4.5</td>
<td>Torque</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Starting Torque</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Running Torque</td>
</tr>
<tr>
<td>5.1</td>
<td>Track Geometry</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Number of tracks</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Width of tracks</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Track locations</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Physical track identification</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Index</td>
</tr>
<tr>
<td>5.2</td>
<td>Functional Testing</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Surface tests</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Track quality tests</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Rejection criteria</td>
</tr>
<tr>
<td>6.1</td>
<td>General Requirements</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Mode of recording</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Track location tolerance of the recorded flexible disk cartridge</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Recording offset angle</td>
</tr>
</tbody>
</table>
6.1.4 Density of recording 17
6.1.5 Flux transition spacing 17
6.1.6 Average Signal Amplitude 18
6.1.7 Byte 18
6.1.8 Sector 18
6.1.9 Cylinder 18
6.1.10 Physical cylinder identification 18
6.1.11 Data capacity of a track 18
6.1.12 Hexadecimal notation 18
6.1.13 Error Detection Characters (EDC) 18

6.2 Detailed Description of Track Layout after the First Initialization 19
6.2.1 Index Gap 19
6.2.2 Sector Identifier 19
6.2.3 Identifier Gap 20
6.2.4 Data Block 20
6.2.5 Data Block Gap 21
6.2.6 Track Gap 21

6.3 Detailed Description of Track Layout of a Recorded Flexible Disk for Data Interchange 21
6.3.1 Representation of characters 21
6.3.2 Good and bad cylinders 21
6.3.3 Requirements for cylinders 22
6.3.4 Layout of the tracks of a good cylinder 22
6.3.5 Layout of the tracks of a bad cylinder 24

APPENDIX A - MEASUREMENT OF LIGHT TRANSMITTANCE 29
APPENDIX B - MEASUREMENT OF THE CARTRIDGE THICKNESS 33
APPENDIX C - METHOD FOR MEASURING THE EFFECTIVE TRACK WIDTH 35
APPENDIX D - EDC IMPLEMENTATION 36
APPENDIX E - WRITE-INHIBIT NOTCH 37
SECTION I

GENERAL DESCRIPTION AND DEFINITIONS
SCOPE

This Standard ECMA-59 specifies the characteristics of flexible disk cartridges to provide physical interchangeability between data processing systems. It also specifies a standard track format. Together with the labelling system specified in Standard ECMA-58, this track format provides for full data interchange between data processing systems.
1. GENERAL DESCRIPTION

1.1 General Figures

A typical flexible disk cartridge is represented in Fig. 1 to 3.
- Fig. 1 shows the cartridge seen from above, Side 0 up,
- Fig. 2 is a cross-section, along line II-II in Fig. 1,
- Fig. 3 shows a protective envelope with cartridge, Side 1 up.

1.2 Main Elements

The main elements of this flexible disk cartridge are:
- the recording disk
- the liner
- the jacket
- the envelope.

1.3 Description

The jacket shall have a square form. It includes a central window, an index whole and a head window in both sides. The liner is fixed to the inside of the jacket. It comprises two sheets of material between which the disk is held. The liner has the same openings as the jacket. The disk has only a central hole and an index hole.

1.4 Optional Features

The interchange characteristics of the jacket allow for variations of its construction. It may include flaps (e.g. three flaps as shown in the drawings, or none), and notches along the Reference Edge. See also Appendix E.

1.5 Definitions

For the purpose of this Standard the following definitions apply:

1.5.1 Flexible Disk

A flexible disk which accepts and retains on the specified side or sides magnetic signals intended for input/output and storage purposes of information data processing and associated systems.

1.5.2 Reference Flexible Disk Cartridge

A flexible disk cartridge arbitrarily selected for a given property for calibrating purposes.

1.5.3 Secondary Reference Flexible Disk Cartridge

A flexible disk cartridge intended for routine calibrating purposes, the performance of which is known and stated in relation to that of the Reference Flexible Disk Cartridge.

1.5.4 Reference Flexible Disk Cartridge for Recording Field and Signal Amplitude

A Reference Flexible Disk Cartridge selected as a standard
for Recording Field and Signal Amplitude.

On side 0 of this cartridge track 00, having a radius of 91,754 mm and track 76, having a radius of 51,537 mm are declared as reference tracks. To provide a standard for side 1 the same surface is used by turning the disk over in the jacket. Under these conditions track 00 has now a radius of 89,637 mm and is not a reference track. However, its correlation with the reference track having a radius of 91,754 mm is sufficiently close for the purpose of this Standard. Track 72 having a radius of 51,537 mm is a reference track and is therefore used instead of track 76.

NOTE: The Master Standard for Signal Amplitude established by the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany, for Standard ECMA-54 shall be the Master Standard for this Standard ECMA-59. Secondary Reference Flexible Disk Cartridges can be ordered from PTB under number RM 5654 as long as available.

1.5.5 Typical Field

The minimum recording field which, when applied to a flexible disk cartridge, causes a signal output equal to 95% of the maximum of the Average Signal Amplitude when taken as a function of the Recording Field at the specified track and flux transition frequency of that flexible disk cartridge.

1.5.6 Reference Field

The Reference Field is the typical field of the Reference Flexible Disk Cartridge for Recording Field and Signal Amplitude.

1.5.7 Test Recording Currents

The four recording currents between 145% and 155% of the currents which produce the Reference Field at 250 000 ftps on tracks 00 and 76 of side 0 and on tracks 00 and 72 of side 1. For each side, the first of these currents shall be used for recording on tracks 00 to 43 and the second shall be used for recording on tracks 44 to 76.

1.5.8 Standard Reference Amplitudes

The Standard Reference Amplitudes (SRA) are the Average Signal Amplitudes derived from the reference tracks of the Signal Amplitude Reference Flexible Disk Cartridge. SRA₁f is the Average Signal Amplitude from a recording written using 250 000 ftps at a radius of 91,754 mm. SRA₂f is the Average Signal Amplitude from a recording written using 500 000 ftps at a radius of 51,537 mm.

1.5.9 Average Signal Amplitude

The Average Signal Amplitude for a track is the arithmetically averaged value of the output voltages measured peak-to-peak over the whole track.
1.5.10 **In Contact**

An operating condition in which the magnetic surface of the disk intended for data storage is in physical contact with the magnetic head.

1.5.11 **Direction of Rotation**

The direction of rotation shall be counterclockwise when looking at side 0.
SECTION II

MECHANICAL AND PHYSICAL CHARACTERISTICS
2. GENERAL REQUIREMENTS

2.1 Environment and Transportation

2.1.1 Testing Environment

Test and measurements made on the cartridge to check the requirements of this Standard shall be carried out under following conditions:

- Temperature: $(23 \pm 2) \degree C$
- RH: 40% to 60%
- Conditioning before testing: 24 hours minimum

The temperature and the RH shall be measured in the air immediately surrounding the cartridge. The ambient stray magnetic field shall not exceed 4000 A/m.

2.1.2 Operating Environment

Cartridges used for data interchange shall be operated under the following conditions:

- Temperature: 10 \degree C to 50 \degree C
- RH: 20% to 80%
- Wet bulb temperature: less than 29 \degree C

The temperature and the RH shall be measured in the air immediately surrounding the cartridge. It is recommended that the rate of change of the temperature should not exceed 20 \degree C per hour.

There shall be no deposit of moisture on or in the cartridge.

The ambient stray magnetic field shall not exceed 4000 A/m.

2.1.3 Storage Environment

During storage it is recommended that the cartridges are kept within the following conditions:

- Temperature: 4 \degree C to 53 \degree C
- RH: 8% to 80%

Each cartridge shall be in an envelope and in an upright position.

The ambient stray magnetic field shall not exceed 4000 A/m.

NOTE: Cartridges which have been exposed to temperatures and humidities exceeding the operating conditions may exhibit degraded performance characteristics. Such cartridges should be subjected to a conditioning period of not less than 24 hours within the operating environment prior to use.

2.1.4 Transportation

Responsibility for ensuring that adequate precautions are taken during transport shall be with the sender. During
the transport the cartridge shall be in its envelope, and in a protective package. The latter must be free from dust or extraneous matter. It must have a clean interior and construction preventing ingress of dust and water. It is recommended that a sufficient space exists between cartridge and outer surface of the final container, so that risk of damage due to stray magnetic fields will be negligible. It is recommended that the following conditions should not be exceeded:

Temperature : -40 °C to 53 °C
Maximum rate of temperature change : 20 °C per hour
RH : 8% to 90%

There should be no deposit of moisture on or in the cartridge.

2.1.5 Handling

The cartridge shall stay out of its envelope for the shortest time possible. When handling the cartridge the operator shall not touch the exposed magnetic surfaces of the disk and shall avoid exposing the cartridge to direct sunlight, moisture and dust.

2.2 Materials

2.2.1 Jacket

The jacket may be constructed from any suitable material.

2.2.2 Liner

The material of the liner shall be able to retain dust without damage to the disk.

2.2.3 Disk

The disk may be constructed from any suitable material (e.g. bi-axially oriented polyethylene terephthalate) coated on both sides with a strong and flexible layer of magnetic material (e.g. γ-Fe₂O₃).

2.2.4 Envelope

The envelope may be manufactured from any suitable material (e.g. paper).

3. DIMENSIONAL CHARACTERISTICS

The dimensional characteristics listed in the following clauses are indicated in Fig. 4 to 7.

Fig. 4 shows the jacket,
Fig. 5 shows a partial cross-section of the jacket,
Fig. 6 shows the disk,
Fig. 7 shows a cross-section of the disk.
All the dimensions are referred to the Reference Edge of the cartridge (see Fig. 4).

3.1 Jacket

3.1.1 Form

The jacket shall have a square form with angles of $90^\circ \pm 30'$ and a side length

$$l_1 = 203,2 \text{ mm } \pm 0,4 \text{ mm}$$

3.1.2 Thickness

In an area defined by

$$r_1 = 60 \text{ mm}$$
$$r_2 = 85 \text{ mm}$$

and with a probe having a diameter of 15 mm applied against the cartridge with a force of 1 N, the thickness of the jacket wall and liner shall be

$$e_1 = 0,45 \text{ mm } \pm 0,15 \text{ mm}$$

The overall thickness of the cartridge shall be (see also 3.1.7):

$$1,2 \text{ mm } < e_2 < 2,1 \text{ mm},$$
measured according to Appendix B.

The cartridge shall fall freely through a gauge with a 2,6 mm wide opening having flat and vertical walls and having a depth of 150 mm.

3.1.3 Central windows

The central windows shall have a diameter

$$d_1 = 58,40 \text{ mm } \pm 0,15 \text{ mm}$$

The position of their centre is defined by

$$l_2 = 101,6 \text{ mm } \pm 0,3 \text{ mm}$$

3.1.4 Index windows

Location

The centre of the index windows shall be defined by

$$l_3 = 85,09 \text{ mm } \pm 0,25 \text{ mm}$$
$$l_4 = 135,95 \text{ mm } \pm 0,25 \text{ mm}$$

Diameter

The diameter of the index windows shall be

$$d_2 = 7,7 \text{ mm } \pm 0,1 \text{ mm}$$
3.1.5 Head windows

Location

The location of the lowest point of the head windows shall be defined by

\[l_5 = 3,70 \text{ mm } \pm 0,25 \text{ mm} \]

Dimensions

The width of the head windows shall be

\[l_6 = 12,7 \text{ mm } \pm 0,1 \text{ mm} \]

The nominal radius of their ends shall be

\[r_3 = 6,35 \text{ mm} \]

Their length shall be

\[l_7 = 52,60 \text{ mm } \pm 0,25 \text{ mm} \]

3.1.6 Reference Edge Profile

Within an area defined by

\[l_8 = 25 \text{ mm} \]

The Reference Edge shall have a convex profile, e.g. be rounded off with one or more radii of 0,5 mm minimum.

3.1.7 Construction of the jacket

If the jacket utilizes flaps, their width shall be

\[l_9 = 14 \text{ mm max.} \]

The total thickness \(e_2 \) of the cartridge with flaps shall satisfy the conditions of 3.1.2. The thickness of the flaps shall be at most 0,9 mm.

3.1.8 Notches

Two notches may be provided along the Reference Edge. They have to be entirely contained within areas defined by:

\[l_{10} = 81,6 \text{ mm min} \]
\[l_{11} = 94,6 \text{ mm max} \]
\[l_{12} = 108,6 \text{ mm min} \]
\[l_{13} = 121,6 \text{ mm max} \]
\[l_{14} = 2,0 \text{ mm max} \]

3.2 Liner

The liner shall always cover the recording area (3.3.4). However, no part of the liner shall protrude by more than 0,2 mm into the openings of the jacket.
3.3 Disk

3.3.1 Diameters

The external diameter of the disk shall be
\[d_3 = 200,2 \text{ mm} \pm 0,2 \text{ mm} \]
The inner diameter of the disk shall be
\[d_4 = 38,100 \text{ mm} \pm 0,025 \text{ mm} \]

3.3.2 Thickness

The thickness of the disk shall be
\[e_5 = 0,080 \text{ mm} \pm 0,010 \text{ mm} \]

3.3.3 Index hole

Location
The location of the index hole shall be defined by
\[r_4 = 38,1 \text{ mm} \pm 0,1 \text{ mm} \]

Diameter
The diameter of the index hole shall be
\[d_5 = 2,54 \text{ mm} \pm 0,10 \text{ mm} \]

3.3.4 Recording area

The recording area shall be defined on both sides by
\[r_5 = 49,0 \text{ mm max} \]
\[r_6 = 92,0 \text{ mm min} \]

3.3.5 Sides

For convenience of description the two sides are defined as side 0 and side 1; they are shown in Figs. 1-4 and Fig. 7.

4. PHYSICAL CHARACTERISTICS

4.1 Flammability

Disk, jacket and/or liner components which will ignite from a match flame and when so ignited will continue to burn in a still carbon dioxide atmosphere shall not be used.

4.2 Coefficient of linear thermal expansion of the disk

The coefficient of thermal expansion of the disk shall be
\[(17 \pm 8) \times 10^{-6} \text{ per } ^{\circ} \text{C} \]

4.3 Coefficient of linear hygroscopic expansion of the disk

The coefficient of hygroscopic expansion of the disk shall be
\[(0 \text{ to } 15) \times 10^{-6} \text{ per } \% \text{ RH} \]
4.4 Opacity

4.4.1 Opacity of the jacket

The jacket shall have a light transmittance of less than 1% using an LED with a nominal wavelength of 900 nm as the radiation source when measured according to Appendix A.

4.4.2 Opacity of the disk

The disk shall have a light transmittance of less than 1% using an LED with a nominal wavelength of 900 nm as the radiation source when measured according to Appendix A.

4.5 Torque

4.5.1 Starting Torque

The starting torque, without head and pads loaded to the cartridge, shall not exceed 0.042 N.m.

4.5.2 Running Torque

When the disk cartridge is tested at a rotation speed of 360 rpm \pm 7 rpm with a pressure pad of 690 mm2 \pm 10 mm2 surface applied with a force of 1.50 N \pm 0.05 N and located parallel to the head window as defined in Fig. 8 by

\[l_{15} = 62.0 \text{ mm} \]
\[l_{16} = 75.0 \text{ mm} \]
\[l_{17} = 10.0 \text{ mm} \]
\[l_{18} = 64.0 \text{ mm} \]

the torque necessary to rotate the disk shall be between 0.028 N.m and 0.088 N.m.
SECTION III

MAGNETIC CHARACTERISTICS
OF THE UNRECORDED FLEXIBLE DISK CARTRIDGE
5.1 Track Geometry

5.1.1 Number of tracks
There shall be 77 discrete concentric tracks on each side of the disk in the recording area (3.3.5).

5.1.2 Width of tracks
The recorded track width on the disk surface shall be 0,300 mm ± 0,025 mm

The area between the tracks shall be erased. An appropriate method of measuring effective track width is given in Appendix C.

5.1.3 Track locations

5.1.3.1 Nominal locations
The nominal radius of the centreline of all tracks shall be calculated by using the formula:

\[R_n = x + \left[\frac{76 - n}{48} \right] \cdot 25.4 \text{ mm} \]

where:
\(n \) is the track number: \(n = 00 \) to 76
\(x = 51,537 \text{ mm} \) for side 0
\(x = 49,421 \text{ mm} \) for side 1

Therefore each track on side 1 is offset inwards by four track positions from the track on side 0 having the same track number.

5.1.3.2 Track location tolerance
The centrelines of the tracks recorded for testing purpose shall be within ± 0,025 mm of the nominal positions, when measured in the testing environment (2.1.1).

5.1.4 Physical track identification
The track number shall be a two-digit decimal number (00 to 76) for each side which identifies the tracks consecutively, starting at the outermost track (track 00).

5.1.5 Index
The Index is the point which determines the beginning and the end of a track. At the instant of having detected the leading edge of the Index hole, the Index is under the read-write gap.

5.2 Functional Testing
For the purposes of the following tests the same drive unit shall be used for the writing and reading operations.
5.2.1 Surface tests

The magnetic properties of both data surfaces are defined by the testing requirements given below.

5.2.1.1 Test conditions

The disk shall be tested at 360 rpm ± 7 rpm. The test frequencies used shall be:

\[
1f = 250,000 \text{ ftps} \pm 250 \text{ ftps} \\
2f = 500,000 \text{ ftps} \pm 500 \text{ ftps}
\]

The frequency(ies) to be used is specified for each test.

5.2.1.2 Typical Field

The Typical Field of the disk under test shall be within ± 20% of the Reference Field. It shall be measured using 1f:
- on tracks 00 and 76 on side 0,
- on tracks 00 and 72 on side 1.

5.2.1.3 Average Signal Amplitude

When the disk under test has been recorded with the Test Recording Currents, then read back and compared with the Signal Amplitude Reference Flexible Disk Cartridge recorded under the same conditions and on the same system, the Average Signal Amplitude shall be:

- side 0, track 00, using 1f, less than 130% of SRA\textsubscript{1f}
- side 0, track 76, using 2f, more than 80% of SRA\textsubscript{2f}
- side 1, track 00, using 1f, less than 130% of the average signal amplitude for the track with the same radius (1.5.4)
- side 1, track 72, using 2f, more than 80% of SRA\textsubscript{2f}.

5.2.1.4 Resolution

After recording, using the appropriate Test Recording Current, on track 76 of side 0 and on track 72 of side 1, the ratios:

\[
\begin{align*}
\text{Average Signal Amplitude using 2f} \\
\text{Average Signal Amplitude using 1f}
\end{align*}
\]

shall be greater than 80% of the same ratios for the Signal Amplitude Reference Flexible Disk Cartridge.

5.2.1.5 Overwrite

On track 00 after recording with the appropriate Test Recording Current, first using 1f and then overwriting with 2f for one revolution, the ratio:
Residual Average Signal Amplitude at 1f after overwriting using 2f
Average Signal Amplitude after first recording using 1f
shall be less than 150% of the same ratio for the Signal
Amplitude Reference Flexible Disk Cartridge. This test
shall be performed on both sides; a frequency-selective
voltmeter shall be used.

5.2.1.6 Modulation
Modulation shall be:

\[
\frac{\text{Maximum Mean} - \text{Minimum Mean}}{\text{Maximum Mean} + \text{Minimum Mean}} \times 100\%
\]

The maximum mean shall be the average value of the am-
plitude-modulated output voltage in that part of the
track with the maximum amplitudes, and the minimum mean
shall be that in the respective part of the minimum am-
plitudes. Output voltage shall be measured peak-to-peak;
averaging shall be done over about 2000 consecutive
flux transitions.

On both sides on track 00 using 1f and on track 76 using
2f, modulation shall be less than 10%.

5.2.2 Track quality tests
These tests shall be carried out using 2f and over all 77
usable tracks at the defined positions on each side. The Test Recording Currents shall be used.

5.2.2.1 Missing pulse
When a track has been recorded with the appropriate
Test Recording Current, any playback signal, when mea-
sured base-to-peak, which is less than 35% of half the arithme-
tically averaged value of the output voltages measured peak-to-peak over the preceding 2000 consecu-
tive flux transitions, shall be a missing pulse.

5.2.2.2 Weak pulse
When a track has been recorded with the appropriate Test
Recording Current, any playback signal, when measured base-to-peak, which is less than 45% of half the arith-
metically averaged value of the output voltages measured peak-to-peak over the preceding 2000 consecutive flux
transitions, shall be a weak pulse.

5.2.2.3 Extra pulse
When a track has been erased with a constant direct
current equivalent to the quiescent value of the appro-
priate Test Recording Current, any playback signal, when
measured base-to-peak which exceeds 20% of half the
Average Signal Amplitude of the track under test shall
be an extra pulse.
5.2.3 Rejection criteria

5.2.3.1 Defective track

A track on which one or more missing and or extra pulses are detected in the same position(s) on consecutive passes shall be a defective track. The applicable number of consecutive passes shall be a matter for agreement between purchaser and supplier.

5.2.3.2 Weak track

A track on which one or more weak pulses are detected in the same position(s) on consecutive passes and which is not a defective track, shall be a weak track. The applicable number of consecutive passes shall be a matter for agreement between purchaser and supplier.

5.2.3.3 Requirements for tracks

As initially received from the media supplier, the cartridges shall have no defective tracks. On both sides, track 00 shall not be weak. There shall be not more than four weak tracks among the remaining 152 tracks.

5.2.3.4 Rejected cartridge

A cartridge which does not meet the requirements of 5.2.3.3 shall be rejected.
SECTION IV

TRACK FORMAT
6.1 General Requirements

6.1.1 Mode of recording

The mode of recording shall be two-frequency where the start of every bit cell is a clock flux transition. A ONE is represented by a data flux transition between two clock flux transitions.

6.1.2 Track location tolerance of the recorded flexible disk cartridge

The centrelines of the recorded tracks shall be within ± 0.085 mm of the nominal positions, when measured in the testing environment (2.1.1). This tolerance corresponds to twice the standard deviation.

6.1.3 Recording offset angle

At the instant of writing or reading a magnetic transition, the transition shall have an angle of 0° ± 18' with the radius. This tolerance corresponds to twice the standard deviation.

6.1.4 Density of recording

6.1.4.1 The nominal density of recording shall be 13262 flux transitions per radian. The resulting nominal spacing between two clock flux transitions, the nominal bit cell length, is 151 microradians.

6.1.4.2 The long term average bit cell length shall be the average bit cell length measured over a sector. It shall be within ± 5% of the nominal bit cell length.

6.1.4.3 The short term average bit cell length, referred to a particular bit cell, shall be the average of the lengths of the preceding eight bit cell. It shall be within ± 8% of the long term average bit cell length.

6.1.5 Flux transition spacing

6.1.5.1 The spacing between two clock flux transitions surrounding a data flux transition or between two data flux transitions surrounding a clock flux transition shall be between 90% and 140% of the nominal bit cell length.

6.1.5.2 The spacing between two clock flux transitions not surrounding a data flux transition or between two data flux transitions surrounding a missing clock flux transition shall be between 60% and 110% of the nominal bit cell length.

6.1.5.3 The spacing between a data flux transition and the preceding clock flux transition (when not missing) or between a clock flux transition and the preceding data flux transition (when not missing) shall be between 45% and 70% of the nominal bit cell length.
6.1.6 Average Signal Amplitude
The Average Signal Amplitude on any non-defective track (5.2.3.1) of the interchanged flexible disk cartridge shall be less than 160% of SRA_{1f} and more than 40% of SRA_{2f}.

6.1.7 Byte
A byte is a group of eight bit-positions, identified B_{8} to B_{1}, with B_{8} most significant and recorded first.
The bit in each position is a ZERO or a ONE.

6.1.8 Sector
Each track is divided into 26 sectors.

6.1.9 Cylinder
A pair of tracks, one on each side, having the same track number.

6.1.10 Physical cylinder identification
The cylinder number shall be a two-digit number identical with the track number of the tracks of the cylinder.

6.1.11 Data capacity of a track
The data capacity of a track is 3328 bytes.

6.1.12 Hexadecimal notation
Hexadecimal notation is used hereafter to denote a number of bytes:

(00) for (B_{8} to B_{1}) = 00000000
(FF) for (B_{8} to B_{1}) = 11111111
(FC)* for (B_{8} to B_{1}) = 11111100
where the clock transitions of B_{6} and B_{4} are missing
(FE)* for (B_{8} to B_{1}) = 11111110
where the clock transitions of B_{6}, B_{5} and B_{4} are missing
(FB)* for (B_{8} to B_{1}) = 11111011
where the clock transitions of B_{6}, B_{5} and B_{4} are missing
(F8)* for (B_{8} to B_{1}) = 11111000
where the clock transitions of B_{6}, B_{5} and B_{4} are missing

6.1.13 Error Detection Characters (EDC)
The two EDC-bytes are hardware generated by shifting serially the relevant bits, specified later for each part of the track through a 16-bit shift register des-
cribed by the generator polynomial:

\[x^{16} + x^{12} + x^5 + 1 \]

(See also Appendix D).

6.2 Detailed Description of Track Layout after the First Initialization

After the first initialization there shall be 52 usable sectors on each cylinder. The layout of each track shall be as follows:

<table>
<thead>
<tr>
<th>INDEX GAP</th>
<th>SECTOR IDENTIFIER</th>
<th>IDENTIFIER GAP</th>
<th>FIRST DATA BLOCK</th>
<th>DATA BLOCK GAP</th>
<th>LAST DATA BLOCK</th>
<th>DATA BLOCK GAP</th>
<th>TRACK GAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Sector</td>
<td>--26th Sector --</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2.1 Index Gap

This field shall comprise 73 bytes nominally and shall have one of the following four possible contents:

i) 40 (00)-bytes, 7 (00)-bytes, 26 (00)-bytes
ii) 40 (FF)-bytes, 7 (FF)-bytes, 26 (FF)-bytes
iii) 40 (00)-bytes, 6 (00)-bytes, 1 (FC)*-byte, 26 (00)-bytes
iv) 40 (FF)-bytes, 6 (00)-bytes, 1 (FC)*-byte, 26 (FF)-bytes

Writing the Index Gap is started when the Index hole is detected. Any of the first 20 bytes may be ill-defined due to subsequent overwriting.

6.2.2 Sector Identifier

This field shall be as follows:

<table>
<thead>
<tr>
<th>IDENTIFIER MARK</th>
<th>SECTOR ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Bytes 1 Byte</td>
<td>TRACK ADDRESS</td>
</tr>
<tr>
<td>(00) (FE)*</td>
<td>C Side 1 Byte</td>
</tr>
<tr>
<td></td>
<td>1 Byte 1 Byte</td>
</tr>
</tbody>
</table>

6.2.2.1 Identifier Mark

This field shall comprise 7 bytes:
- 6 (00)-bytes
- 1 (FE)*-byte

6.2.2.2 Sector Address

This field shall comprise 6 bytes.
6.2.2.2.1 Track Address
This field shall comprise 2 bytes:

Cylinder Address (C)
This field shall specify in binary notation the cylinder address from 00 for the outermost cylinder to 76 for the innermost cylinder.

Side Number (Side)
This field shall specify the side of the disk. On side 0 it shall be (00) on all tracks. On side 1 it shall be (01) on all tracks.

6.2.2.2.2 Sector Number (S)
The 3rd byte shall specify in binary notation the sector number from 01 for the 1st sector to 26 for the last sector. The 26 sectors shall be recorded in the natural order: 1, 2, 3, ..., 25, 26.

6.2.2.2.3 4th byte of the Sector Address
The 4th byte shall be always a (00)-byte.

6.2.2.2.4 EDC
These two bytes shall be generated as defined in 6.1.13 using the bytes of the Sector Identifier starting with the (FE)*-byte (6.2.2.1) of the Identifier Mark and ending with the 4th byte (6.2.2.2.3) of the Sector Address.

6.2.3 Identifier Gap
This field shall comprise 11 initially recorded (00) or (FF)-bytes.

6.2.4 Data Block
This field shall be as follows:

<table>
<thead>
<tr>
<th>DATA MARK</th>
<th>DATA FIELD</th>
<th>EDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Bytes</td>
<td>1 Byte</td>
<td>128 Bytes</td>
</tr>
<tr>
<td>(00)</td>
<td></td>
<td>2 Bytes</td>
</tr>
</tbody>
</table>

6.2.4.1 Data Mark
This field shall comprise:
- 6 (00)-bytes
- 1 (FB)*-byte

6.2.4.2 Data Field
This field shall comprise 128 bytes. No requirements are implied beyond the correct EDC for the content of this field (see also 6.3.4.2.4.2).
6.2.4.3 EDC
These two bytes shall be generated as defined in
6.1.13 using the bytes of the Data Block starting with
the 7th byte of the Data Mark (6.2.4.1) and ending with
the last byte of the Data Field (6.2.4.2).

6.2.5 Data Block Gap
This field shall comprise 27 initially recorded (00) or
(FF)-bytes. It is recorded after each Data Block and it
precedes the following Sector Identifier. After the last
Data Block it precedes the Track Gap.

6.2.6 Track Gap
This field shall follow the Data Block Gap of the 26th
Sector. At nominal density it should comprise 247 (00)
or (FF)-bytes. Writing of the Track Gap takes place un-
til the Index hole is detected, unless it has been de-
tected during writing of the last Data Block Gap, in
which case there shall be no Track Gap.

6.3 Detailed Description of Track Layout of a Recorded Flexible
Disk for Data Interchange

6.3.1 Representation of characters
Characters shall be represented by means of the 7-Bit
Coded Character Set (Standard ECMA-6) and, where required,
by its 7-bit or 8-bit extensions (Standard ECMA-35) or
by means of the 8-Bit Coded Character Set (Standard
ECMA-43).

Each 7-bit coded character shall be recorded in bit-posi-
tions B7 to B1 of a byte; bit-position B8 shall be re-
corded with bit ZERO.

The relationship shall be as follows:

<table>
<thead>
<tr>
<th>Bits of the 7-bit combination</th>
<th>0</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit-positions in the byte</td>
<td>B8</td>
<td>B7</td>
<td>B6</td>
<td>B5</td>
<td>B4</td>
<td>B3</td>
<td>B2</td>
<td>B1</td>
</tr>
</tbody>
</table>

Each 8-bit coded character shall be recorded in bit-posi-
tion B8 to B1 of a byte.

The relationship shall be as follows:

<table>
<thead>
<tr>
<th>Bits of the 8-bit combination</th>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit-positions in the byte</td>
<td>B8</td>
<td>B7</td>
<td>B6</td>
<td>B5</td>
<td>B4</td>
<td>B3</td>
<td>B2</td>
<td>B1</td>
</tr>
</tbody>
</table>

6.3.2 Good and bad cylinders
A good cylinder is a cylinder which has both tracks ini-
tialized according to 6.3.4.
A bad cylinder is a cylinder which has both tracks initialized according to 6.3.5.

6.3.3 Requirements for cylinders
Cylinder 00 shall be a good cylinder. There shall be at least 74 good cylinders between cylinder 01 and cylinder 76.

6.3.4 Layout of the tracks of a good cylinder

6.3.4.1 Index Gap
Description: see 6.2.1.

6.3.4.2 Sector Identifier
6.3.4.2.1 Identifier Mark
Description: see 6.2.2.1.

6.3.4.2.2 Sector Address
This field shall comprise 6 bytes.

6.3.4.2.2.1 Track Address
This field shall comprise 2 bytes:

Cylinder Address (C)
This field shall specify in binary notation the cylinder address from 00 for the outermost cylinder to 76 for the innermost cylinder.

- If there is no bad cylinder, the cylinder address is identical to the cylinder number.
- If there are one or two bad cylinders, they are skipped and the cylinder address numbering continues sequentially with the next good cylinder. In this case the cylinder address differs by 1 (or 2) from the cylinder number.

Side Number (Side)
Description: see 6.2.2.2.1.

6.3.4.2.2.2 Sector Number (S)
The 3rd byte shall specify in binary notation the sector number from 01 for the 1st sector to 26 for the last sector of a track.
The 26 sectors can be recorded in 13 different orders, namely:
The selected order shall be used for all tracks on the flexible disk cartridge.

6.3.4.2.2.3 4th byte of the Sector Address
Description: see 6.2.2.2.3.

6.3.4.2.2.4 EDC
Description: see 6.2.2.2.4.

6.3.4.2.3 Identifier Gap
This field shall comprise initially 11 (00) or (FF)-bytes. These bytes may subsequently become ill-defined due to the overwriting process.

6.3.4.2.4 Data Block
6.3.4.2.4.1 Data Mark
This field shall comprise:
- 6 (00)-bytes
- 1 byte

The 7th byte shall be:
(FB)* indicating that the data is valid and that the whole Data Field can be read.
(F8)* indicating that the first byte of the Data Field shall be interpreted according to Standard ECMA- (on labelling).

6.3.4.2.4.2 Data Field
This field shall comprise 128 bytes. If it comprises less than 128 data bytes, the remaining positions shall be filled with (00)-bytes.

Data Fields in track 00 are reserved for operating system use, including labelling.

6.3.4.2.4.3 EDC
Description: see 6.2.4.3.

If the 7th byte of the Data Mark is (F8)* and the 1st character of the Data Field is either CAPITAL LETTER F or FULL STOP, the EDC may or may not be correct, as the sector contains a defective area. If the 1st character is CAPITAL LETTER D, then the EDC shall be correct.

6.3.4.2.5 Data Block Gap
This field is recorded after each Data Block and it precedes the following Sector Identifier. After the last Data Block it precedes the Track Gap.

It comprises initially 27 (00) or (FF)-bytes. These bytes may subsequently become ill-defined due to the overwriting process.

6.3.4.2.6 Track Gap
Description: see 6.2.6.

6.3.5 Layout of the tracks of a bad cylinder
6.3.5.1 Contents of the fields
The fields of the tracks of a bad cylinder should have the following contents.

6.3.5.1.1 Index Gap
This field should comprise 73 (00) or (FF)-bytes.

6.3.5.1.2 Sector Identifier
This field should comprise an Identifier Mark and a Sector Address.

6.3.5.1.2.1 Identifier Mark
This field should comprise 7 bytes:
- 6 (00)-bytes
- 1 (FE)*-byte

6.3.5.1.2.2 Sector Address
This field should comprise 6 bytes:
- 4 (FF)-bytes
- 2 EDC-bytes

These two EDC bytes shall be generated as defined in 6.1.13 using the bytes of the Sector Identifier starting with the (FE)*-byte (6.2.2.1) of the Identifier Mark and ending with the above 4 (FF)-bytes.

6.3.5.1.3 Identifier Gap
This field should comprise 11 (00) or (FF)-bytes.

6.3.5.1.4 Data Block
This field should comprise 137 (00) or (FF)-bytes.

6.3.5.1.5 Data Block Gap
This field should comprise 27 (00) or (FF)-bytes.

6.3.5.1.6 Track Gap
Description: see 6.2.6.

6.3.5.2 Requirements for tracks
Each track of a bad cylinder shall have at least one of its 26 Sector Identifiers with the content specified in 6.3.5.1.2. If this condition is not satisfied, the cartridge shall be rejected. All other fields of these tracks can be ill-defined.
APPENDIX A

MEASUREMENT OF LIGHT TRANSMITTANCE

A.1 INTRODUCTION

The following description outlines the general principle of the measuring equipment and the measuring method to be applied when measuring the radiation (light) transmittance of the jacket and of the magnetic disk.

For the purpose of this document "light transmittance" is defined by convention as the relationship between the reading obtained from the test device with the sample inserted and the reading obtained when no sample is present. The transmittance value is expressed as the percentage ratio of the two readings.

The essential elements of the measuring equipment are:

- the radiation source
- the photo diode
- the optical path
- the measuring circuitry.

A.2 DESCRIPTION OF THE MEASURING EQUIPMENT

A.2.1 Radiation Source

An infra red light-emitting diode (LED) with the following parameter shall be used:

Wavelength at peak emission \(\lambda_{\text{peak}} = 900 \text{ nm} \pm 10 \text{ nm} \)

Half-power band width \(b = \pm 25 \text{ nm} \)

A.2.2 Radiation Receiver

A flat silicon photo diode shall be used as the radiation receiver. It shall be operated in the short circuit mode. The active area of the diode shall be equal to, or at the most 20% larger than, the open area of the aperture. This condition guarantees a linear dependency of the short circuit diode current on the light intensity.

A.2.3 Optical Path (Fig. 1)

The optical axis of the set up shall be perpendicular to the disk.

The distance from the emitting surface of the LED to the disk shall be

\[
L_1 = \frac{d_{\text{max}}}{2 \tan \alpha}
\]

\(d_{\text{max}} \) is the maximum diameter of the index hole.
\(\alpha \) is the angle where the relative intensity of the LED is equal to, or greater than, 95% of the maximum intensity in the optical axis. The aperture shall have a thickness of 1,2 to 1,4 mm and a diameter given by

\[
D = (2 \cdot L_2 \cdot \tan \alpha) \text{ mm} \\
L_2 = (L_1 + 1,5) \text{ mm}
\]

Its surfaces shall be matt black. The whole device should be enclosed within a light-tight casing.

A.2.4 Measuring Circuitry

Fig. 2 shows the recommended circuitry with the following components:

- **E**: regulated power supply with variable output voltage
- **R**: current-limiting resistor
- **LED**: light-emitting diode
- **D_1**: Si photo diode
- **A**: operational amplifier
- **R_{f0}, R_{f1}**: feedback resistors
- **S**: gain switch
- **V**: voltmeter

The forward current of the LED and consequently its radiation power can be varied by means of the power supply E. \(D_1 \) is working in the short circuitry mode. The output voltage of the operational amplifier is given by

\[
V_0 = I_k \cdot R_f
\]

and is therefore a linear function of the light intensity. \(I_k \) is the short circuit current of \(D_1 \).

\(R_{f0} \) and \(R_{f1} \) shall be low-temperature drift resistors with an accuracy of 1%. The following ratio applies:

\[
\frac{R_{f0}}{R_{f1}} = \frac{1}{50}
\]

A.3 MEASURING METHOD

A.3.1 Measurement of the Disk

The measurements shall be taken within an annular band whose boundaries are tangent to the index hole.

- \(S \) is set to position 0. With the index hole in front of the photo diode, the voltmeter is set to full-scale reading (100% transmittance) by varying the output voltage of E.

- The disk is rotated until the photo diode is covered by the disk. \(S \) is set to position 1. Full deflection of
the voltmeter now represents 2% transmittance. The disk is rotated slowly for one revolution and the readings of the voltmeter are observed.

A.3.2 Measurement of the Jacket
The same procedure applies to the jacket measurement, except that the jacket without a disk must be rotated.
FIG. 1 MEASURING DEVICE

FIG. 2 ELECTRONIC CIRCUITRY
APPENDIX B

MEASUREMENT OF THE CARTRIDGE THICKNESS

B.1 MAXIMUM THICKNESS

This value shall be measured for all edges using the gauge of Fig. 1. The cartridge must be capable of entering the gauge for at least 15 mm when a force of 1 N max is applied on the opposite edge.

FIG. 1
B.2 MINIMUM THICKNESS

This value shall be measured for all edges using the gauge of Fig. 2. When submitted to a force of 1 N the cartridge shall enter the slot by less than 1 mm.

![FIG. 2](image)

B.3 THICKNESS OF THE FLAPS (IF ANY)

This thickness shall be measured with the stylus of Fig. 3. The cartridge is placed on a horizontal surface with flaps opposite to the bottom surface.

The stylus is put on the flap, its axis being perpendicular to the cartridge edge. The stylus is loaded with a force of 1 N. The total thickness is measured with a dial gauge. The stylus is then moved radially to the nearest internal zone of the cartridge and the thickness is measured again. The difference between the two values measured is the contribution of the flap to the total thickness of the cartridge.

![FIG. 3](image)
APPENDIX C

METHOD FOR MEASURING THE EFFECTIVE TRACK WIDTH

A 7-track wide band is DC erased. In a track centred in the middle of the erased band a 250 000 ftps frequency pattern is recorded with the read/write head with tunnel erase active.

Then the head is moved radially over the disk in increments not greater than 0.01 mm to the left and to the right until the read back signal becomes zero. The read back signal amplitude is determined for each incremental move and its amplitude is plotted versus displacement. See diagram for reading the half track width, provided the gap width of the head used is not smaller than the effective track width.
APPENDIX D

EDC IMPLEMENTATION

The figure below shows the feedback connections of a shift register which may be used to generate the EDC bytes.

Prior to the operation, all positions of the shift register are set to ONE. Input data are added (exclusive OR) to the contents of position C15 of the register to form a feedback. This feedback is in its turn added (exclusive OR) to the contents of position C4 and position C11.

On shifting, the outputs of the exclusive OR gates are entered respectively into positions C0, C5 and C12. After the last data bit has been added, the register is shifted once more as specified above.

The register then contains the EDC bytes.

If further shifting is to take place during the writing of the EDC bytes, the control signal inhibits exclusive OR operations.

To check for errors when reading, the data bits are added into the shift register in exactly the same manner as they were during writing. After the data the EDC bytes are also entered into the shift register as if they were data. After the final shift, the register contents will be all ZERO if the record does not contain errors.
APPENDIX E

WRITE-INHIBIT NOTCH

i) DATA INTERCHANGE

Full data interchange by means of flexible disks implies the implementation of this Standard ECMA-59 and of Standard ECMA-58 for flexible disk labelling. Write-inhibit situations are to be handled by means of the software features provided by the Standard ECMA-58. If a notch is present in the cartridge, the use of this hardware feature for write-inhibit purpose is strictly forbidden in data interchange.

ii) OTHER APPLICATIONS

In other than data interchange applications, it might be desirable to have a hardware write-inhibit feature. In these cases it shall be a notch in the Reference Edge located and dimensioned as shown below.