ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

L STANDARD ECMA-127

RPC
BASIC REMOTE PROCEDURE CALL
USING OSI REMOTE OPERATIONS

December 1987

Free copies of this document are available from ECMA ,
European Computer Manufacturers Association

114 Rue du Rhone — 1204 Geneva (Switzerland)

(

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

D@ STANDARD ECMA-127

RPC
BASIC REMOTE PROCEDURE CALL
USING OSI REMOTE OPERATIONS

D @

December 1987

BRIEF HISTORY

Aim

The aim of this ECMA Standard is to facilitate the specification and implementation of
Distributed Applications by bringing together programming language techniques, de-
scribed in Section One, and data-communications techniques, described in Section Two.

Remote Procedure Call (RPC)

Procedures are closed bodies of code which are the units of program modularity in most
programming languages. The procedure call is the main construct for executing proce-
dures, and for transferring control and data between them. (See the tutorial in
Appendix A.)

Distributed applications consist of separate components in distinct address spaces.
Remote Procedure Call (RPC) extends procedure call constructs, so that a procedure in
one component of a distributed application can call procedures in other components.
The tutorial in Appendix B outlines the concepts and mechanisms involved.

Communications Protocol

A communications protocol is needed to support remote procedure calls. The
request/response nature of the Remote Operations (ISO 9072/1 and ISO 9072/2) is ide-
ally suited to the protocol requirements of an RPC in a heterogeneous environment.

This ECMA Standard includes the definitions of ASN.1 (ISO 8824) representations for
a set of data types common to ISO Programming Languages. These are used, together
with that subset of Remote Operations which is consistent with programming language
procedure call semantics, to define the communication protocol for RPC (See Appendix
D for further discussion).

Motivations

The main motivations for RPC standardisation are:

1) to enable programmers to use familiar procedure call constructs for remote inter-
actions, avoiding involvement in communications;

i) to enable the components of distributed applications using RPC to be written in
different programming languages and executed in different operating system envi-
ronments;

iii) to enable distributed applications to be developed in the local environment and
become distributed with little or no change;

iv) to enable RPC to be supported by a network conforming to OSI Standards;

v) to specify a standard which is interim to inter-language remote procedure call
standardization by ISO.

RPC Standards are an important ingredient in standardization for Open Distributed
Processing (ODP).

Adopted as an ECMA Standard by the General Assembly of ECMA on 10th December
1987

TABLE OF CONTENTS

Page

1. GENERAL 1

1.1 Scope

1.2 Conformance
1.3 References
1.4 Definitions

N — —

1.4.1 External Definitions
1.4.2 RPC Definitions
1.4.3 Acronyms

W NN

SECTION ONE : RPC STRUCTURE

2. RPC MODEL

7
2.1 Introduction 7
2.2 General RPC Model 7
2.3 Open RPC Model 8
2.4 Implementation Flexibilities 8

9

9

3. RPC SERVICE

3.1 Introduction

3.2 D2 Interface Specification 10
4. RPC PARAMETERS 15
4.1 Introduction 15
4.2 RPC Calling Sequences 16
5. RPC ERROR MANAGEMENT 21
5.1 Introduction 21
5.2 Error Management Specification 21

SECTION TWO : INTERCONNECTION STRUCTURE

6. APPLICATION SERVICE ELEMENTS 29
6.1 Introduction 29
6.2 D1 Notation Definition 29
6.3 Interface Declarations 29
6.4 OPERATION Macro 30
6.5 APPLICATION-SERVICE-ELEMENT Macro 30

- i -

7. APPLICATION CONTEXT 30

7.1 Introduction 30

7.2 D3 Interface Specification 31

8. SERVICE MAPPINGS 32

8.1 Introduction 32

8.2 Mapping from D2 32

8.2.1 Overview 32

8.2.2 Binding 33

8.2.3 Unbinding 33

8.2.4 Disruptions 33

8.2.5 RPCcCall 33

8.2.6 Operation Rejections 34

8.2.7 Local Matters 34

8.3 Mapping from D3 35

9. PROTOCOL 35

9.1 Protocol Specification 35

9.2 Asymmetric Protocol 35
APPENDICES

APPENDIX A - PROCEDURE CALL TUTORIAL 39

APPENDIX B - RPC TUTORIAL 45

APPENDIX C - BIBLIOGRAPHY 57

APPENDIX D - FUTURE EXTENSIONS 59

APPENDIX E - REGISTER OF CODES 63

APPENDIX F - GUIDELINES FOR APPLICATION PROTOCOL
DESIGNERS 65

1. GENERAL

1.1

1.2

1.3

Scope

The subject of this ECMA Standard is Remote Procedure Call (RPC) for open
distributed processing, using the ISO 9072/1 and 9072/2 Remote Operations nota-
tion, services and protocols. These OSI standards are used without change.

The Standard:
- defines an RPC model;

- defines RPC service primitives to model the procedure invocation constructs
common to many (but not all) ISO programming languages;

- defines constructs to support the passing of data types common to many (but
not all) ISO programming languages;

- defines RPC error management;

- defines how to specify OSI Application Service Elements with structure appro-
priate to RPC;

- defines an RPC Application Context;
- defines use of existing OSI protocols to support this RPC Application Context.
The standard does not include specific language bindings for RPC.

The field of application of this standard is: specifications of RPC-oriented dis-
tributed application interactions, and implementations of the protocols to support
such applications.

Conformance

A specification of the remote interactions of a distributed application conforms
with this Standard if it satisfies the D1 interface requirement defined in 6.3.

An implementation conforms with this Standard if it implements the protocol re-
quirement specified in 9.1.

Means of conformance testing are not defined in this standard.

No conformance requirements are defined for the internal interfaces of products,
or for language bindings. These are matters for future study.

References

ISO 6093 Representation of Numerical Values in Character Strings for
Information Interchange.

ISO 8649 Information Processing Systems - Open Systems Interconnec-
tion - Association Control Service Element.

ISO 8824 Information Processing Systems - Open Systems Interconnec-

tion - Specification of Abstract Syntax Notation One (ASN.1).

ISO 9072/1 Draft International Standard: Information Processing Systems -
Text Processing - Remote Operations Part 1: Model, Notation
and Service Definition.

ISO 9072/2 Draft International Standard: Information Processing Systems -
Text Processing - Remote Operations Part 2: Protocol Specifi-
cation.

ECMA TR/42 Framework for Distributed Office Applications.

References to documents that are not standards publications are listed in
Appendix C.

1.4 Definitions
1.4.1 External Definitions

This Standard uses the following terms defined in other standard documents:

- Application Context: (ISO 8649)

- Application Entity Title: (ISO 7498/3)

- Application Service Element: (ISO 8649)

- Association: (ISO 8649)

- Association Control Service Element: (ISO 8649)

- Client: (ECMA TR/42)
- Remote Operation: (ISO 9072/1)

- Remote Operation Service Element: (ISO 9072/1)

- Server: (ECMA TR/42)
- IMPORT: (1SO 9072/1)

- EXPORT: (ISO 9072/2)

- Remote Operation ARGUMENT: (ISO 9072/1)

- Remote Operation RESULT: (ISO 9072/1)

- Remote Operation ERRORS: (ISO 9072/1)

- RO-INVOKE APDU: (ISO 9072/2)

- RO-RESULT APDU: (ISO 9072/2)

- RO-ERROR APDU: (ISO 9072/2)

- RO-REJECT APDU: (ISO 9072/2).
Note 1

By the above definitions, the terms 'import’ and 'export’ are matlters of macro expansion in ASN.1
module specifications. In this standard these terms are not used with any other meaning.

1.4.2 RPC Definitions

For the purposes of this Standard the following definitions apply. Further defi-
nitions are supplied in ASN.1 in the body of the standard.

1.4.2.1 Procedure

A closed sequence of instructions that is entered from and returns control to
an external source.

)

UK

14.2.2

14.23

1424

14.25

1.4.2.6

1.4.2.7

1.4.2.8

1.4.2.9

1.4.2.10

14.2.11

1.4.2.12

Procedure Call

The act of entering a procedure.

Procedure Return

The act of returning to the calling procedure.

Calling Procedure

A procedure which is the source of a procedure call.
Called Procedure

A procedure which is the destination of a procedure call.
Remote Procedure Call

A procedure call in which the calling procedure and called procedure do
not share address space and may be in physically separate locations.

Remote Procedure Call Binding

A particular kind of linkage between a client and a server, which is used for
remote procedure calls.

Remote Procedure Callback

A remote procedure call in a procedure P, which uses the same RPC bind-
ing as the remote procedure call to procedure P.

Language Binding

A defined relationship between the syntax and semantics of a programming
language and that of some supporting service(s).

Input Parameter

An information item which is communicated to the called procedure on en-
try from the calling procedure.

Output Parameter

An information item which is communicated from the called procedure on
return to the calling procedure.

Input/Output Parameter

An information item which is communicated to the called procedure on en-
try from the calling procedure, and from the called procedure on return to
the calling procedure.

1.4.3 Acronyms

ACSE association control service element
APDU application protocol data unit
ASE application service element

CCR concurrency, commitment and recovery

PDU

RO

ROSE

RPC Binding
RPC

protocol data unit

remote operation

remote operation service element
remote procedure call binding
remote procedure call

0

SECTION ONE : RPC STRUCTURE

ve

2. RPC MODEL

2.1

22

Introduction

A General RPC Model is detined in 2.2. The Open RPC Model defined in 2.3 is
a particularisation of it.

General RPC Model

Functional partitioning for a General RPC Model is defined in this subclause,
and is illustrated in Figure 1.

client D1 server
calling — remote procedure calls —»{called
D2 procedures procedures D2
RPC service RPC service
provider _ provider
D3 D3
end-to-end protocols

Figure 1 - General RPC Model

This Model may be used to distinguish the main run time components of any
RPC, and to position them relative to each other. Three abstract interfaces are
identified. They are labelled D1, D2, and D3 (D for distributed).

- Interface D1 is any interaction specification which is implementable via RPC.
The content of any particular D1 interface is application-specific, and is defined
in an interface declaration. Its generic structure should be constrained to be
RPC-like by the specification notation used.

- Interface D2 is the interface to the local RPC service used by application proce-
dures.

- Interface D3 is the interface to the end-to-end service provided by the protocols
which mechanise the RPC interactions.

There may also be a level of abstraction at which there is no visible syntactic
difference between a local procedure call and a remote procedure call. Such lan-
guage bindings are outside the scope of this standard.

In the terminology defined in 1.4, the main characteristics of RPC strucuture are
as follows. The remote procedure calls (and remote procedure callback) are made
via a remote procedure call binding between a client and a server. These calls in-
voke execution and pass values between the calling procedure the called proce-
dure via input parameters, output parmeters and input/output parameters. All pa-
rameters are passed by copying values from client to server, and vice versa.

23

24

RPC, viewed as a programming language concept, has a synchronous interaction
structure (the "blocking call"), common to local and remote procedure calls. The
execution of each procedure call is modelled as a flow of control passing from
the calling procedure to the called procedure, and then returning to the calling
procedure.

Open RPC Model

The functional partitioning of Open RPC defined in this standard is illustrated in
Figure 2. It is the same as the General RPC Model, but with particular D1, D2
and D3 interfaces.

- D1. The D1 remote interactions are defined in the ISO 9072/1 notation (see
clause 6) as a named set of Remote Operations, packaged together as an OSI
Application Service Element.

- D2. The D2 interface is an abstract RPC service (see clause 3).

- D3. The D3 interconnection interface is an OSI Application Context defined in
the ISO 9072/1 notation (see clause 7).

Items for future study are extensions to these D1, D2 and D3 interfaces, and
mappings to other services and end-to-end protocols below D3.

D1
calling Remote Operations —» |called
D2 procedures procedures D2
RPC support RPC support
procedures procedures
D3 D3
0SI Remote Operations Protocol, etc.

Figure - 2 Open RPC Model

This Standard restricts an RPC Binding to a concurrency level of one (ie. one
remote call at a time). Programs with suitable provisions for internal execution
concurrency may achieve arbitrary concurrency levels by using multiple separate
RPC Bindings.

Implementation Flexibilities

Some important implementation flexibilities are inherent in this Open RPC
Model:

- Language independence. The RPC Service and the ISO 9072/1 Remote Opera-
tions notation and protocol are independent of choices of programming lan-
guages.

9

'@

D2

D3

- Machine independence. The ISO 8824 external data representation used is in-
dependent of the host machines.

- Network independence. The Open RPC Model is designed to be independent of
the choice of protocols below the D3 interface.

- Implementation independence. Implementations of this Basic RPC may position
the ACSE and ROSE protocol machines as common services, accessed via a
communications-oriented read/write interface, or integrate them directly into
the RPC support procedures of each program.

- Hybrid interworking. Interworking between RPC use of ROSE and non-RPC
use of ROSE is also possible, and could facilitate gradual evolution to the RPC
style of software construction.

An example of such hybrid interworking is illustrated in Figure 3. This example
depends on the application protocol (D1) having been specified in a way which
respects the restrictions inherent in the RPC style of interaction. The program at
one end implements the interactions at language level as remote procedure calls
via the RPC service; but the program at the other end uses a programmed
read/write interface to implementations of ACSE and ROSE. Such differences
are internal matters. They are masked by the uniformity of: the abstract Remote
Operations (D1), the OSI Remote Operations protocol, and the services below
the D3 level. These are common to both the implementations.

D1-conforming

calling —— Remote Operations —> ROSE user
procedures application
RPC support (programmed
procedures read/write
interface)

OSI AppTication Control Service Elements (ACSE)
OSI Remote Operations Service Element (ROSE)

Figure 3 - Hybrid interworking via Remote Operations between an RPC implementation

and a communications-oriented implementation

3. RPC SERVICE

31

Introduction

The RPC Service at the D2 interface is an abstract model of the programming
language constructs used for remote procedure calls.

The service is language-independent. Its main characteristics are illustrated in-
formally in Figure 4 (remote procedure callback is not fully illustrated here).

Programs that are to interwork via RPC are constructed independently,
but with reference to the same D1 interface (a named set of Remote
Operations).

Client Server
BeginRPCBinding RPCProceduresOffered
Declares RPC binding information, Declares procedure definitions
usually during program construction, but for construction of the server
possibly also at run time. software.
Multiple bindings may be declared.

GetRPCAttributes
The client may observe the attributes
of an RPC Binding at any time when
executing.
RPCCall .
Invokes a remote procedure, and RPCInvocation
waits for the return. Execution of the procedure,
and if needed:
RPCCall (for call-back) and
(execution is blocked) GetRPCAttributes.
RPCReturn
Procedure resumes execution = <
Caller may continue invoking remote
procedures...
EndRPCBinding terminates the RPC Binding

3.2

Figure 4 - RPC Service summary

D2 Interface Specification

The following text through to the end of this subclause is the abstract syntax of
the D2 service primitives. It is defined in the ISO 8824 ASN.1 abstract syntax
notation. No external data representation or concrete syntax is implied.

ECMABasicRPC-D2 DEFINITIONS -- version 1 -- :: =
BEGIN

-- No definitions are exported from this module. It defines the structure and the
-- syntactic content of the service primitives of the Basic RPC D2 interface. This
-- is only defined to the degree necessary for mappings onto D3 (see clause 8),
-- and for integration with RPC parameters and RPC error management (see
--clauses 4 and 5). The actual language structures corresponding to this
-- interface are implementation-specific.

0

- 11 -

-- External definitions:

IMPORTS RPCBindingStatusInfo, RPCStatusInfo, RPCEnvironmentalError
FROM ECMABasicRPC-ErrorManagement;

IMPORTS RPCInput, RPCOutput, RPCError, RPCCharacterString
FROM ECMABasicRPC-CallingSequences

-- First level definitions (ie. the service primitives):

BeginRPCBinding ::= SET {RPCBindingLocalName, RPCBindingClass,
ServerName, ServerLocationHint,
Di1SpecificationReference}
-- Purpose. This primitive is the means for the client to define the beginning of
-- the temporal scope of an RPC Binding, and to propose attribute values. This
-- element does not involve direct interaction between the calling and called
-- procedures. The client may make multiple bindings to the same server or
-- different servers.
-- Parameters. The particular RPC Binding is distinguished by the
-- RPCBindingLocalName. The values of the other types are the RPC Binding
-- attributes proposed by the client.
-- Implementation Factors. This primitive would be implemented in different ways
-- in different kinds of languages/execution environments. In some it might be a
-- declaration processed at compile time; in others it might be a call to a local
-- support procedure which is executed when the program is loaded; etc. The
-- underlying implementation would, as necessary, access directories, allocate
-- resources, establish communications connections, etc. This would be done
-- before execution of the first GetRPCAttributes or RPCCall element.

EndRPCBinding ::= RPCBindinglLocalName

-- Purpose. This service primitive is the means for a client program to define the
-- end of the temporal scope of an RPC Binding.

-- Parameters. The particular RPC Binding is distinguished by its

-- RPCBindingLocalName value.

-- Implementation Factors. This primitive defines the point after which the
-- underlying implementation should release communications resources, etc. In
-- some implementations it might be a declarative statement (E.g. end of block),
-- in others an explicit call to a local support procedure; or it could be implicit in
-- execution termination.

- 12 -

GetRPCAttributes ::= SET {AttributesReference, RPCBindingStatusInfo,
ClientTitle, ClientAddress,
ServerTitle, ServerAddress,
D1-SpecificationReference, RPCBindingClass}
-- Purpose. This primitive is the means for client and server to observe the
-- current attributes of an RPC binding.
-- Parameters. The D2 user distinguishes the particular RPC Binding by an
-- AttributesReference value (which also differentiates between the client and
-- server cases). The D2 service provider is the immediate source of the values
-- of the other types. There is no visibility of any underlying connection identifier
-- or connection endpoint identifier.
-- Implementation Factors. This primitive would typically be a procedure call to
-- a local support procedure executed at runtime.

RPCCall ::= SET {RemoteProcedureReference, RPCInput,

CHOICE {RPCOutput, RPCError, RPCEnvironmentalError}}
-- Purpose. This primitive is the means for a client or server to invoke execution
-- of a particular remote procedure. A server only uses it for remote procedure
-- callback. Callback may be recursive to arbitrary depth (client calls server, calls
-- back to client, calls back to server...).
.- Parameters. The caller provides the RPCinput value and the
-- RemoteProcedureReference value (which identifies the particular procedure
-- to be executed remotely). The D2 service provider is the direct source of the
-- other values (but their ultimate source is usually the remote procedure that is
-- called).
-- Implementation_Factors. This primitive would typically be implemented as a
-- procedure call to a local support procedure executed at runtime. This and
-- other support procedures would handle the remote interaction through to its
-- termination; then report the outcome. The usual outcome is RPCOutput, but
-- for severe execution errors it is RPCError, and for environmental errors it is
- RPCEnvironmentalError (these distinctions are specified in clauses 4 and 5).

RPCProceduresOffered ::= SET {SET OF {ProcedureName},
D1-SpecificationReference}

-- Purpose. This primitive models the procedure definitions of the procedures

.- offered for remote execution (including procedures offered for remote

-- procedure callback).

-13 -

-- Parameters. The program declares the set of remotely executable procedures
-- corresponding to those identified in the D1 specification which it
-- references.

-- Implementation Factors. This primitive would typically be implemented by
-- using a tools package which generates, in the programming language used,
-- the local procedure definitions and procedure headers, etc.

RPCInvocation ::= SET {ProcedureName, RPCInput}
-- Purpose. This primitive models invocation of a remotely executable
-- procedure.

. -- Parameters. The ProcedureName is one of those identified in the
-- RPCProceduresOffered primitive. The RPCInput value comes from the
-- RPCCall primitive.
-- Implementation Factors. This primitive would typically be implemented via the
-- normal procedure call construct of the programming language used, coupled
-- with means of dispatching to it the execution of incoming remote requests.

RPCReturn ::= CHOICE {RPCOutput, RPCError}

-- Purpose. This primitive models programmed return from a remote
-- procedure.

-- Parameters. The exit distinguishes between mutually exclusive outcomes
-- which are defined in clause 4.

. -- Implementation Factors. This primitive would typically be implemented via the
-- procedure return constructs of the programming language used.

Second level definitions:

D1-SpecificationReference ::= SEQUENCE
{specificationName RPCCharacterString,
specificationldentifier Objectldentifier}
—-— per clause 6.

AttributesReference ::= CHOICE {RPCBindingLocalName, NULL}

-- The client uses an RPCBindingLocalName to reference an RPC Binding via
-- which it calls remote procedures. The NULL reference is for a server to
-- reference the RPC Binding via which it is currently being executed.

B .

-14 -

RemoteProcedureReference ::= SET {RPCBindingLocalName, ProcedureName}
-- Together these identify the remote procedure to be executed.

Third level définitions:

RPCBindingLocalName ::= ANY

-- References the RPC Binding and thereby the server. lts value is only valid
-- within the lexical scope of the client. In an implementation this might be a
-- programmer defined name, a handle value originating from the D2 service
-- provider, etc.

RPCBindingClass ::= INTEGER {

staticEvaluationOfBinding (0),
-- The parameter values of the proposed RPC Binding are to be evaluated and
-- frozen at program construction time.

semilazyEvaluationOfBinding (1),
-- The parameter values of the proposed RPC Binding are to be evaluated and
-- acted upon at program initialisation time.

fullyLazyEvaluation0fBinding (2)}

-- The parameter values of the proposed RPC Binding are to be evaluated and
-- acted upon during program execution, and only at the point when the
-- corresponding language element is actually executed.

ServerName ::= RPCCharacterString

- The external identity of the server, as visible to the client. These naming
-- conventions may be implementation-specific, and are mapped to OSI naming
-- conventions etc. below the D2 interface (see clause 8).

serverlLocationHint ::= CHOICE {Location, NULL}

-- Means for the client to influence location selection where the named server
-- exists at multiple locations. Also useful if the implementation is not supported
-- by run-time access 1o Directory Services. Otherwise it is null, and an
-- appropriate location is selected by the D2 service provider, if possible.

ClientTitle o= AE-Title
ClientAddress ::= AE-Address

>

E-Title
E—-Address

ServerTitle —
ServerAddress :

1]
>

1)
o'»v) .

- 15 -

-- (The RPCError, RPCOutput, RPCError and RPCEnvironmentalError
-- definitions are imported.)

ProcedureName ::= RPCCharacterString

-- Per the programming language used locally. This local name maps in some
-- locally agreed way to the corresponding Operation name in the D1
-- specification being used (see clause 8).

-- Fourth level definitions:

Location ::= RPCCharacterString

-- This is the name/address of the location of the server. The naming/addressing
-- conventions here at the D2 service may be implementation-specific, and are
-- mapped to OSI naming and addressing conventions below the D2 interface
-- (see clause 8).

AE-Title ::= ANY
-- Application-Entity Title established via A-ASSOCIATE. For details see
-- ISO 8649.

AE-Address ::= ANY
-- Presentation address established via A-ASSOCIATE. For details see
-- 1ISO 8649.

END -- end of ECMA Basic RPC D2 definitions.

4. RPC PARAMETERS

4.1

Introduction

This clause defines the parameter structure for remote procedure calls executed
via the Basic RPC protocol.

In most programming languages the term "parameter" is used as a synonym for
the term "argument". In this clause the term "parameter" is used to refer to val-
ues that appear in the programming language statement, while the term
"argument" refers to the ISO 9072/1 Operation ARGUMENT.

The parameters of an ISO 9072/2 Operation are not fully self- describing, and the
RPC mechanism depends on agreement between the calling and called proce-
dures to interpret the Remote Operations in a consistent way, as defined in this
clause.

The defined RPC parameter structure is a stereotyped use of 1SO 8824 ASN.1
within ISO 9072/1 Remote Operations, and is intended to be consistent with

« 16 =

higher level programming language characteristics. E.g. the error management is
defined mostly in terms of status parameters rather than distinct exception/error
returns, because that is the way most languages work.

4.2 RPC Calling Sequences

The following text through to the end of this subclause defines the abstract syntax
of the RPC parameters. It is in the ISO 8824 ASN.1 abstract syntax notation.

ECMABasicRPC-CallingSequences DEFINITIONS -- version 1 -- ::=
BEGIN

EXPORTS

-- the module defines the types used to define the structure of Remote 0 ‘
-- Procedure Call parameters:

RPCInput, RPCOutput, RPCError, -- general parameter structure;

RPCBoolean, RPCBinaryInteger, RPCFloating, RPCComplex,
RPCCharacterString, RPCBitString, RPCNumericString, RPCProcedureName,
RPCDateTime; -- individual parameter types;

-- External definitions:

IMPORTS RPCStatusInfo
FROM ECMABasicRPC-ErrorManagement; -- see 5.2

IMPORTS ERROR
FROM Remote-Operation-Notation -- 1SO 9072
{joint-iso-ccittremoteOperations(4)notation(0)}; 0 ‘

-- First level definitions:

RPCInput ::= CHOICE {RPCParameterList, empty}
-- Metatype for the input parameters of remote procedures (including
-- input/output parameters).

RPCOutput ::= SEQUENCE {RPCStatusInfo, RPCParameterList OPTIONAL}
-- Metaype for the output parameters of remote procedures (including
-- input/output parameters).

RPCError ::= ERROR -- the Remote Operations error return macro.
PARAMETER RPCStatusInfo
se= -1

-- The error return type generic to all remote procedures.

I T

-17 -

-- Second level definitions:

RPCParameterList ::= SEQUENCE OF RPCParameter
-- (The definition of RPCStatusinfo is imported.)

-- Third level definitions:

RPCParameter ::= CHOICE {RPCParameterValue,
RPCParameterDescriptor}

‘ f ’ -- The RPCParameterValue is used for scalar data values except certain types
. -- of character strings.

-- The RPCParameterDescriptor is used for arrays, records and certain types
-- of strings. '
-- Comments in D1 interface specifications shall describe the function of each
-- parameter, and whether it is an input parameter, an input/output parameter, or
-- an output parameter.
-- Each element in the parameter lists of a D1 Operation shall be one of these
-- types. But the NULL type shall be substituted where an element (parameter)
-- is omitted in a procedure call or procedure return. Parameters should be
-- given meaningful names.

"(' -- Fourth level definitions: Parameter Data Types:

RPCParameterValue ::= CHOICE {
RPCBoolean, RPCBinarylInteger,
RPCFloating, RPCComplex,
RPCCharacterString, RPCBitString, RPCNumericString,
RPCProcedureName, RPCDateTime}

-- Fifth level definitions: Parameter Data Types:

RPCBoolean ¢ 2= BOOLEAN
-- ISO 8824 Boolean Type.

RPCBinaryInteger ::= INTEGER
-- ISO 8824 Integer Type.

]l

- 18 -

RPCFloating ::= REAL
-- This would be the Real Type under consideration for the first Addendum to
-- 1ISO 8824/8825.

RPCComplex -

[APPLICATION 100] IMPLICIT

SEQUENCE {realPart REAL, imaginaryPart REAL}

-- Floating complex: an ordered pair of quantities, representing a complex
-- number.

RPCCharacterString ::= I1S0646String
-- character string. The length component of the ISO 8825 encoding
--is the current length of the string. For fixed length strings,
-- RPCCharacterString is an RPCParameterValue. For varying length strings,
-- RPCCharacterString is contained in an RPCVaryingStringDescriptor or an
-- RPCStringWithBoundsDescriptor.

RPCBitString ¢ 2= BITSTRING
-- ISO 8824 bit string, used here for fixed length bit strings.

RPCNumericString ::= [APPLICATION 101] IMPLICIT PrintableString
-- Numeric string. The values shall conform to ISO 6093. There may also be
-- application-specific restrictions on the values passed.

RPCProcedureName ::= [APPLICATION 102] IMPLICIT INTEGER
-- Integer corresponding to the name of a procedure in the caller’'s environment
-- which is to be called by a remote procedure callback. The value of
-- RPCProcedureName selects one of the Operation values of the LINKED
-- Operations of the Operation (procedure) of which it is a parameter (see the
-- D1 interface, clause 6).

RPCDateTime ::= UTCTime
-- ISO 8824 date and time.

-- Fourth level definitions: Parameter Descriptors:

RPCParameterDescriptor ::= CHOICE {

RPCArrayDescriptor, RPCRecordDescriptor,

RPCVaryingStringDescriptor, RPCStringWithBoundsDescriptor}
-- These descriptors are used to describe values that consist of more than one
-- scalar value, or to describe values which otherwise would not be sufficiently
-- described.

0

0f

-19 -

-- If there is an RPCArrayDescriptor, or RPCVaryingStringDescriptor, or
-- RPCStringWithBoundsDescriptor in the output parameters of a procedure
--call, there is a corresponding RPCParameterDescriptor in the input
-- parameters. It dynamically defines details of the structure acceptable to the
-- calling procedure. This corresponds to the way in which most programming
-- languages communicate such structure via input/output parameters.

-- Fifth level definitions: RPCArrayDescriptor.

RPCArrayDescriptor ::= [APPLICATION 103] IMPLICIT
SEQUENCE {dimensionCount INTEGER,
-- number of dimensions.

"9

byColumn BOOLEAN,

-- If true, the elements of the array are stored by columns (FORTRAN).
-- That is, the leftmost subscript (first dimension) is varied most rapidly, and
-- the rightmost subscript (n-th dimension) is varied least rapidly.
-- If false, the elements of the array are stored by rows (most languages
-- other than FORTRAN). That is, the rightmost subscript is varied most
-- rapidly, and the leftmost subscript is varied least rapidly.

RPCArrayBounds,
-- Lower and upper bound for each dimension of the array.

RPCArray OPTIONAL}
) -- The values in the array. In RPClnput this optional value is omitted in
0 \ ’ -- descriptors for output parameters.

RPCArrayBounds ::= [APPLICATION 104] IMPLICIT

SEQUENCE OF RPCBoundForDimension
-- Defines the set of all lower and upper bounds. Bounds for the i-th
-- dimension appear as the i-th element of the sequence.

RPCBoundForDimension ::= [APPLICATION 105] IMPLICIT
SEQUENCE
{RPCLowerBound OPTIONAL,
RPCUpperBound}
-- When the lower bound for a particular dimension is omitted, its value is
-- assumed to be 1.

RPCLowerBound :
RPCUpperBound :

] T

:= INTEGER
¢= INTEGER

-20 -

RPCArray ::= [APPLICATION 106] IMPLICIT
SEQUENCE OF {CHOICE
-- Elements of the array, presented in the order specified in byColumn. Each
-- element shall be of the same type.

{RPCParameterValue,
-- Array with scalar elements.

RPCParameterDescriptor}}
-- Used to describe an array of records, or varying strings, or strings
--with bounds. The RPCParameterDescriptor shall not be an
-- RPCArrayDescriptor. ..I ’

-- Fifth level definitions: Record/structure Descriptor.

RPCRecordDescriptor :

= [APPLICATION 107] IMPLICIT

SEQUENCE OF RPCRecordElement
-- This descriptor is used to indicate that a parameter is a composite of
-- different RPCParameterValue and RPCParameterDescriptor types. The
-- RPCRecordDescriptor packages the record as a composite whole. It does
-- not define the internal structure (which is defined by each element in the
-- record being an ASN.1 value).

-- An RPCRecordDescriptor is not used in RPC Input to describe output
-- parameters.

RPCRecordElement ::= RPCParameter

-- Fifth level definitions: Varying String Descriptor.

RPCVaryingStringDescriptor :: = [APPLICATION 108] IMPLICIT
SEQUENCE { rpcMaxStringlLength INTEGER
-- Maximum number of characters.

RPCCharacterString OPTIONAL}
-- Value of the current character string. In RPClInput this optional value is
-- omitted in descriptors for output parameters.

e
(9
‘3

,,._.4

-- Fifth level definitions: String with Bounds Descriptor.

RPCStringWithBoundsDescriptor :: = [APPLICATION 109] IMPLICIT

SEQUENCE {

RPCBoundForDimension,
-- Lower and upper bound for the 1-dimension array containing the character
-- string.

RPCCharacterString OPTIONAL}
-- Current value of the string. In RPClInput this optional value is omitted in
-- descriptors for output parameters.

END -- ECMA Basic RPC Calling Sequences definitions.

5. RPC ERROR MANAGEMENT

51

5.2

Introduction

This clause identifies the different sources of errors which threaten correct oper-
ation of remote procedure calls, and defines how they are handled. The term
"error" is used here with this general meaning, and does not necessarily imply
occurrence of a Remote Operation ERRORS return (RO-ERROR APDU).

A tutorial introduction to error management and related issues is given in A.6,
B.3.3 and B.4.2.

Error Management Specification

The following text through to the end of this subclause is the abstract syntax of
the status and diagnostic information via which the Basic RPC service (D2 inter-
face) reports error conditions. The ISO 8824 ASN.1 notation is used.

ECMABasicRPC-ErrorManagement DEFINITIONS -- version 1 -- 1=
BEGIN

EXPORTS
-- This module defines:
RPCBindingStatusInfo, RPCStatusInfo, RPCEnvironmentalError;

-- External definitions:

IMPORTS RPCCharacterString
FROM ECMABasicRPC—CallingSequences; -- see 4.2

-- First level definitions:

-- The following types have essentially the same structure, and this is
-- emphasised by the similarity of names.

RPCStatusInfo s2= [APPLICATION 110] IMPLICIT
SEQUENCE {RPCStatus,
RPCDiagnosticCode OPTIONAL,

RPCDiagnosticMessage OPTIONAL}

RPCBindingStatusInfo ::= SEQUENCE {RPCBindingStatus,
RPCBindingDiagnosticCode,
RPCBindingDiagnosticMessage}

-- In both, the status distinguishes the first level of granularity within which the
-- diagnostics provide fine grained distinctions. The diagnostic code is intended
-- for interpretation by programs. The diagnostic message should be a natural
-- language equivalent of the diagnostic code, and is intended for human
-- readability.

RPCEnvironmentalError ::= RPCStatusInfo
-- This type packages information about environmental errors. These errors are
-- distinguished from others by their status value (see below).

-- Second level definitions:

RPCStatus ::= INTEGER {
-- Positive values are used for status resulting directly from execution of the
-- procedure.
-- All the other values (negative) report RPCEnvironmentalError conditions
-- arising from the call being to a remote procedure.

normal (0), --thisis the expected outcome.
-- The remote procedure has executed exactly once, produced RPCOutput (of
-- which this status value is part), and has returned reporting success.

warning (1),
-- The remote procedure has executed exactly once, produced RPCOutput (of
-- which this status value is part), and has returned; but the output might not be
-- what the user expected. E.g. a floating point underflow has occurred and a
-- result has been set to zero.

!

- 0B s

abnormal 2),
-- The remote procedure has executed exactly once, produced RPCOutput (of
-- which this status value is part), and has returned; but an error has occurred
-- during the execution. The output produced is not all correct. To avoid
-- marshalling errors, incorrect output values may have been set to the NULL
-- type (or otherwise modified).

error (3),
-- The remote procedure has executed exactly once, but terminated without
-- RPCOutput. Instead an RPCError was produced (of which this status value is
-- part). The execution may have been incomplete (e.g. involuntary termination
-- due to an arithmetic overflow).

-- RPC Environmental Errors:

-- In the following text the term "executes at most once" means that the RPC
-- Service guarantees only that the remote procedure will not execute more than
-- once. Execution of it has or will occur once, or never, and may be complete
-- or incomplete.

rOSEGeneralProblem (-1),
-- Corruption of Remote Operations protocol control information has been
-- detected at the Remote Operations Service. The details are defined in 1SO
-- 9072/1. The remote procedure executes at most once.

rOSEInvokeProblem (-2),
-- An unacceptable invocation has been detected at the Remote Operations
-- Service, locally or remotely (in the latter case it may be a protocol error). The
-- details are defined in ISO 9072/1. The remote procedure executes at most
-- once.

rOSEReturnResultProblem (-3).,
-- An unacceptable RO-RESULT APDU has been detected as a Remote
-- Operations protocol error at the Remote Operations Service. The details are
-- defined in ISO 9072/1. The remote procedure executes at most once.

rOSEReturnErrorProblem (-4),
-- An unacceptable RO-ERROR APDU has been detected as a Remote
-- Operations protocol error at the Remote Operations Service. The details are
-- defined in ISO 9072/1. The remote procedure executes at most once.

interconnectionProblem (-5),
-- The underlying interconnection is not available. This is detected at the
-- Association Control Service (ACSE). The details are defined in ISO 8649. The
-- remote procedure executes at most once.

rPCBindingProblem (-6),
-- The RPC Binding is not available. This is detected at the D2 service. The
-- remote procedure executes at most once.

crashProblem (-7)}
-- The called procedure (and/or the environment in which it executes) has
-- crashed. This has been detected and reported by some implementation
-- specific means, independently of the means inherent in the other status
-- values. The remote procedure executes at most once.

RPCDiagnosticCode ::= INTEGER

-- An optional value which gives the definitive details of what happened to the

-- remote procedure call. The context within which it is interpreted is implicit in

-- the RPCStatus value, as follows:

-- If RPC status is normal the diagnostic code shall be zero (0).

-- If RPCStatus is one of warning, abnormal or error:
-- the interpretation of the RPCDiagnosticCode is either defined in the
-- specification of the D1 interface being used, or not (in which case it
-- may be application-specific or implementation-specific, according to
-- some other specification).

-- |f RPCStatus is one of:
-- rOSEGeneralProblem, rOSEinvokeProblem, rOSEReturnResults
-- Problem or rOSEReturnErrorProblem:
-- the interpretation of the RPCDiagnosticCode is the ROSE problem
-- types defined in ISO 9072/1 and 9072/2.

-- interconnectionProblem: the interpretation of the
-- RPCDiagnosticCode is the rejection and abort types defined in
-- 1ISO 8649.

-- rPCBindingProblem: see RPCBindingDiagnosticCode below.

-- crashProblem: in this case the interpretation of the
-- RPCDiagnosticCode is implementation-specific and is not defined in
-- this standard.

-5 -

RPCDiagnosticMessage ::= RPCCharacterString

-- An optional character string, describing in natural language the reason for the
-- returned status.

-- When the RPCStatus value is normal this string (if present) shall start with
-- "Normal Result" (or its equivalent where the language used is not English),
-- followed optionally by additional information. In such cases the diagnostic
-- information is logically redundant, but provides reassurance and readability
--which may be useful when invoking independently supplied remote
-- procedures, particularly during testing.

RPCBindingStatus ::= INTEGER {
binding0K (0),
-- the RPCBindingDiagnosticCode shall be rPCBindingOK.

rPCBindingProblem (1)}
-- the RPCBindingDiagnosticCode shall not be rPCBindingOK.

RPCBindingDiagnosticCode ::= INTEGER {
-- These are problems directly relating to the D2 interface.

rPCBindingOK (0),
TocalNameProblem (1),
rPCBindingClassProblem (2),
serverNameProblem (3),
serverlLocationHintProblem (4),
unknown-D1-Specification (5),
d1-SpecificationNotSupportedlLocally (6),
d1-SpecificationNotSupportedRemotely (7),
rPCVersionsIncompatibleAtD3-1evel (8),
securityProblem (9),
resourceProblem (10)}

RPCBindingDiagnosticMessage ::= RPCCharacterString

-- A character string, describing in natural language the reason for the
- returned status. It should correspond to the names defined in the
-- RPCBIndingDiagnosticCode values (or their equivalent where the language
-- used is not English).

END -- end of ECMA Basic RPC Error Management definitions.

s 96~

0

SECTION TWO : INTERCONNECTION STRUCTURE

-28 -

ORI

-29 .

6. APPLICATION SERVICE ELEMENTS
6.1 Introduction

A distributed application’s remote procedure calls across the D1 interface are
specified as an OSI Application Service Element (ASE).

The D1 notation is a subset of the Remote Operations notation defined in ISO
9072/1.

This notation for defining application-specific remote procedure calls is explained

informally by the examples in Appendix F, which should be read at this point.

6.2 D1 Notation Definition

The D1 notation comprises:

a)
b)

c)

a)

b)

c)

d)

f)
g)

h)

the interface declaration structure defined in 6.3;

the ISO 9072/1 OPERATION macro and APPLICATION-SERVICE-
ELEMENT macro, with the restrictions defined respectively in 6.4 and 6.5;

the ISO 8824 ASN.1 abstract syntax as visible via the interface declaration
structure (a) and macros (b).

6.3 Interface Declarations

An interface declaration conforming with this standard:

shall be a complete ASN.1 syntax definition module conforming with ISO
8824;

shall identify the interface by an ASN.l module name (an
RPCCharacterString value);

should distinguish the interface declaration globally from all others (in-
cluding all other versions of this remote application interface) by an ASN.1
Object Identifier which qualifies the module reference; and additionally by
a comment "-- version xxxx --", immediatly after the DEFINITIONS key-
word; where xxxx is an RPCCharacterString value;

shall define exactly one remote application interface;

shall use the APPLICATION-SERVICE-ELEMENT and OPERATION
macros of ISO 9072/1 via an ISO 8824 IMPORT macro;

shall define the remote application interface via the APPLICATION-
SERVICE-ELEMENT macro of ISO 9072/1;

shall make this Application Service Element available to other ASN.I
modules via an [ISO 8824 EXPORT macro;

shall define one or more operations via the OPERATION macro of ISO
9072/1;

- 30 -

i) shall identify each OPERATION by a name and value that is unique
within the declaration;

1)) shall not directly use the ERROR macro defined in ISO 9072/1 (this is
used indirectly, see clause 5);

k) shall use the LINKED Operations of the ISO 9072/1 OPERATION macro
to specify any remote procedure callback;

1) shall not use the BIND and UNBIND macros defined in 1SO 9072/1 (they
are used at the underlying D3 interface);

m) should include comment text to explain the function and purpose of the
interface, and the semantics and ordering constraints of its operations.

A subject for future study is use of methods more formal than (m) above for
specifying operation semantics etc. 0) |

6.4 OPERATION Macro

The content of the OPERATION macro used in the D1 notation is restricted as
follows:

a) the ARGUMENT of an OPERATION macro shall consist exclusively of
elements within the RPCInput metatype structure defined in clause 4;

b) the RESULT of an OPERATION macro shall consist exclusively of ele-
ments within the RPCOutput metatype structure defined in clause 4:

c) the ERRORS of an OPERATION macro shall consist of one error name,
RPCError defined in clause 4;

d) the integer value which distinguishes an Operation shall be non-negative.

Requirements (a), (b) and (c) are to facilitate language bindings. Requirement (d)
is to allow future distinctions between application-specific operations and generic Q |
operations which may be needed to support future extensions to RPC, etc.

6.5 APPLICATION-SERVICE-ELEMENT Macro

The APPLICATION-SERVICE-ELEMENT name value should be the same as
that of the ASN.1 module name.

The orientation of Operations shall be CONSUMER INVOKES.

The Operations themselves may have LINKED child Operations, allowing remote
procedure callback.

7. APPLICATION CONTEXT
7.1 Introduction

The D3 RPC interface is specified as an OSI Application Context, in the 1SO
9072/1 notation. This defines OSI interconnection details.

..

31 -

7.2 D3 Interface Specification

The following text through to the end of this subclause is the D3 interface speci-
fication, in ISO 8824 and ISO 9072/1 notation.

BasicRPC-D3-Interface DEFINITIONS -- version 1 -- s:=
BEGIN

-- This ASN.1 module specifies the D3 interface as an Application Context
-- conforming with 1ISO 9072/1.

' -- The names of the RPC Application Service Element and Application Context
--referenced by this module are user-defined, application-specific,
-- implementation-dependent. Angled brackets <...> are used to indicate where
-- this module should be customised by substituting the appropriate names etc.

IMPORTS APPLICATION-CONTEXT, BIND, UNBIND -- macros
FROM Remote-Operation-Notation -- ISO 9072/1.
{joint-iso-ccitt remoteOperations(4) notation-extension(2)}

IMPORTS <D1 ASE name>
FROM <D1 module name>
{objectIdentifier0f<D1l ASE name>}
-- imports the particular D1 ASE from the nominated D1 specification
-- (both names should be the same, see clause 6).

’ <Application Context Name> APPLICATION-CONTEXT
APPLICATION SERVICE ELEMENTS {aCSE}
BIND ConnectRPC
UNBIND DisconnectRPC
REMOTE OPERATIONS {rOSE}
INITIATOR CONSUMER OF {<D1 ASE name>}
ABSTRACT SYNTAXES {objectldentifierOfAbstractSyntax1}

::= {objectIdentifierOf<this Application Context>}
-- The operations are all ISO 9072/1 Operation Class 1 (and may include
-- LINKED child operations), via Association Class 1.

-- Inclusion of other ASEs (e.g. CCR) is for future study.

ConnectRPC ::= BIND
DisconnectRPC ::= UNBIND
BIND ::= NULL

UNBIND ::= NULL

g

.32

-- These ROSE BIND and UNBIND operations define the temporal scope of the
-- ACSE Association which is used for the Remote Operations (see ISO 9072/1).

-- As used here they do not exchange any parameter information between the
-- client and server. This restriction is consistent with procedure call language
-- semantics, and facilitates future use of interconnection and remote binding
-- techniques that do not necessarily include end-to-end handshakes before the
-- RPC interactions commence (with opportunity for parameter exchange).

END -- Basic RPC D3 Interface definitions.

8. SERVICE MAPPINGS
8.1 Introduction

The mappings from the D2 and D3 services onto underlying inter-connection
services are illustrated in figure 5, and are defined in clauses 8.2 and 8.3 respec-

tively.
D2
RPC Service Primitives
D3
APPLICATION CONTEXT macro
0SI ACSE 0SI ROSE Tocal

Figure 5 - Service mappings

The DI interface used for a particular RPC interaction is inserted into the
APPLICATION CONTEXT macro, as defined in 7.2.

8.2 Mapping from D2
8.2.1 Overview

The mapping from the D2 service to the underlying services is summarised in
Table 1. It is provided by D2 mapping functions local to the client and the
server.

-33-
D2 element name mapping subclause
BeginRPCBinding -—--» BIND 8.2.2
GetRPCAttributes -——» local 8.2.6
RPCCall -—-» OPERATION 8.2.5
EndRPCBinding ——=» UNBIND 8.2.3
RPCProceduresOffered -——» local 8.2.6
RPCInvocation & RPCReturn ———» OPERATION 8.2.5
RPCStatusInfo or) | <-—— A-ABORT 8.2.4
RPCBindingStatusInfo) | <-—— A-P-ABORT 8.2.4
(| <-—- RO-REJECT-U 8.2.6
RPCStatusInfo (| =-=—— RO-REJECT-P 8.2.6
‘ Table 1 - Summary of D2 mapping

8.2.2 Binding

In this mapping the interconnection to support an RPC Binding is provided by
an ACSE Association.

The parameters of D2 BeginRPCBinding identify the server in ways that may
be dependent on the programming language, host environment and other im-
plementation-specific details. The D2 mapping function converts these values
to parameters of ACSE A-ASSOCIATE, in ways that are implementation-spe-
cific. Typically this would involve access to OSI Directory Services etc.

The D2 mapping function establishes the ACSE Association, using the D3

BIND operation. This is done at some time between the program being ini-

tialised and execution of the first D2 RPCCall or D2 GetRPCAttributes ele-

ment. Success or failure of this Association establishment is reported via the
0 return values of subsequently invoked D2 elements (see 8.2.4 and 8.2.7).

8.2.3 Unbinding
The D2 mapping function maps EndRPCBinding to the D3 UNBIND.

8.2.4 Disruptions

The ACSE association may be disrupted by A-ABORT and A-P-ABORT ser-
vices, in the ways defined in ISO 9072/1. These events and any failure to es-
tablish the ACSE Association are reported via the RPCStatusInfo value of the
current/next RPCCall element, or the RPCBindingStatusinfo value of the next
GetRPCAttributes element, if any.

8.2.5 RPCCall

The D2 RPCCall, RPCInvocation, and RPCReturn service primitives model the
structure of a remote procedure call. The D2 mapping is as follows.

N

- 34 -

a) Procedure ~Name. The ProcedureName component of the
RemoteProcedureReference of the RPCCall primitive identifies the
remote procedure, as specified below.

At the calling procedure the D2 mapping function maps this name to the
corresponding D1 Operation name, defined in the D1 interface being
used. The mapping is implementation specific. If the call is a remote
procedure callback, the Operation name will be that of a linked child
Operation of the Operation by which the calling procedure has itself
been called.

At the called procedure the D2 mapping function maps the Operation
name to the corresponding local ProcedureName. This mapping is de-
fined by the RPCProceduresOffered primitive.

b) Values copied to the Called Procedure. At the calling procedure the D2 ')
mapping function maps the RPCInput of the RPCCall primitive to the
ARGUMENT of the D1 Operation.

At the called procedure the D2 mapping function maps this information
in complementary fashion to the RPCInput of the RPCInvocation.

c) Values copied to the Calling Procedure. At the called procedure, de-
pending on which outcome occurrs, the D2 mapping function maps
RPCOQOutput to the RESULT of the D1 Operation, or RPCError to the
ERRORS and error PARAMETER of the D1 operation.

At the calling procedure the D2 mapping function maps this information
in complementary fashion to the RPCOutput or RPCError of the
RPCCall primitive.

d) RPC Environmental Error. The RPCEnvironmentalError of the RPCCall
primitive is provided by the D2 mapping function at the caller. The
problem may arise from some local cause, or from the underlying D3 0 |
service (see 8.2.6 and clause 5).

8.2.6 Operation Rejections

The D2 mapping functions are the source and destination of the RO-REJECT-
U and RO-REJECT-P service elements of ROSE. These are reported to the
calling procedure via the RPCEnvironmentalError of the RPCCall primitive
(the status values are "rOSEProblem...").

These rejections are not reported to the called procedure via the D2 service
interface. This is inherent in the asymmetric structure of this Basic RPC, and is
reinforced by the asymmetric protocol characteristics defined in clause 9.

8.2.7 Local Matters

The RPCProceduresOffered primitive is only of local significance (at the called
procedure), and is mostly relevant at program construction time.

-

-35-

The GetRPCAttributes primitive is only of local significance in that it obtains
reports from the local D2 mapping function.

8.3 Mapping from D3

The APPLICATION-CONTEXT macro of the D3 service is mapped onto the
underlying OSI services as defined in ISO 9072/1.

9. PROTOCOL
9.1 Protocol Specification

The OSI services identified in clause 8 are mapped onto OSI protocols as defined
in ISO 9072/2.

' The use of the ISO 9072/2 Remote Operations protocol may be restricted as de-
fined in clause 9.2.

9.2 Asymmetric Protocol

For the Basic RPC, it is desirable that the protocol for each call (or callback) is
restricted to a simple request/response message pair, as illustrated in Figure 6.

Calling Procedure RPC messages Called Procedure
RPCCall —>» | — RPC request —>» —> RPCInvocation
message
RPCReturn
next <— | <«— RPC response — [«
statement message

Figure 6 - RPC message pair interaction

In terms of the ISO 9072/2 Remote Operations protocol, the RPC request mes-
sage is always an RO-INVOKE APDU, and the RPC response message is nor-
mally an RO-RESULT APDU, but exceptionally it is an RO-ERROR APDU or
an RO-REJECT APDU; and it may be an RO-INVOKE APDU if there are
LINKED child Operations (remote procedure callback).

ISO 9072/2 specifies that an RO-REJECT APDU be sent in response to an unac-
ceptable APDU (ie. protocol error). This could result in an extended exchange of
messages per remote procedure call (RPC request message, RPC response mes-
sage, rejection of response, etc.). For the specialised asymmetric interactions of
RPC, the server should not be required to handle this extended interaction (its
RPC response message should be final, even if it is an ISO 9072/2 protocol error).

The restriction applied here to avoid this is that: if the client D3/ROSE function
receives an unacceptable APDU, it should not send any RO-REJECT APDU and
should abort the ACSE Association.

S

APPENDICES

- 38 -

-39 -

APPENDIX A

PROCEDURE CALL TUTORIAL

This Appendix is not an integral part of the standard.

A.1 Introduction

As a preliminary step towards understanding procedure calls which are remote,
this tutorial explains local procedure call characteristics. It assumes only a basic
knowledge of programming techniques. This Appendix is intended to be com-
plete in itself; therefore it repeats some information that is provided elsewhere in
the standard.

The references to standards publications are in 1.3. Other references are in
Appendix C.

A.2 General Structure

We are concerned here with the general language structure and execution struc-
ture of procedure calls. Language-specific details are avoided.

- Inter-module communication. The procedure call mechanism exists as a means
of orderly communication between logically separate procedures of a sequential
computer program. The participants in a procedure call are referred to here as
the calling procedure and the called procedure.

- Procedure structure. A procedure is a closed sequence of instructions that is
entered from and returns control to an external source. It consists essentially of
a procedure definition and a procedure body which is terminated by some kind
of return statement.

- Referencing. The called procedure is referenced by its procedure name. This
value is necessarily unique according to the naming scope rules of the pro-
gramming language concerned. The name of the calling procedure is not visible
to the called procedure.

- Parameter passing. Information is communicated between the procedures by pa-
rameters which are passed by the call, as explained in A.4.

Procedure definition. The identity and parameters of a procedure are defined in
its procedure definition. In most languages this definition is at the beginning of
the procedure itself.

- 40 -

- Sequential execution. Procedure call execution has a request/response structure
with exact synchronisation which is fundamental to the semantics of procedure
calls. It is explained more fully in A.3.

- Nesting. A called procedure may itself make procedure calls to other proce-
dures, which may call others, etc. This calling may be nested to arbitrary depth.
Languages have scoping rules which restrict what can be called.

Figure A.l illustrates an example of a modular program with procedure call

structure.

Proc A Proc B
call B >

P S—

— Proc C
Proc D

call C >

e call D | —m —

«—

Figure A.1 - A modular program, structured into separate procedures integrated via
procedure calls

A more complex example might include recursive calls in which a called proce-
dure makes procedure calls to itself, to its caller, etc.

A.3 Computational Model
The computational model of procedure calls is now explained in more detail.

With respect to any particular procedure call there is one thread of execution
control, as illustrated in Figure A.2 (a). The execution passes from the calling
procedure to the called procedure, and then back again. The execution of the
calling procedure resumes only after the called procedure has been executed.

At the called procedure the thread of execution may itself make further (nested)
procedure calls in order to accomplish its purpose. This same procedure then has
“calling” and ’called” roles with respect to different procedure calls. E.g. the pro-
cedure x in Figure A.2 (b) is the called procedure with respect to the procedure
call from the first procedure, and the calling procedure with respect to the pro-
cedure call to the third procedure.

(a)

- 41 -
Call Xe.o » Proc X
- |
\

: Return
Call X..o. » Proc X
< Call z... » Proc z

\ \J
: Return — Return

Figure A.2 - Procedure execution

The existence of procedure call linkage does not, of itself, extract specific obliga-
tions from the called procedure. The called procedure has general obligations in-
herent in being accessible to such linkage; but it does not know what linkage ac-
tually exists or is in active use until a procedure call uses it; nor is it obliged to
remember this relationship outside the duration of the procedure call. The link-
age only provides repeatable access to a predetermined destination (the called
procedure).

The calling and called procedures should achieve any necessary continuity be-
tween successive procedure calls via the effects of the procedure calls themselves.
This is done by the procedure calls referencing something that persists through-
out this time (e.g. a reference “handle’ value, or a transaction identifier). This
kind of binding is rather different from that familiar to OSI experts (ie. ACSE
Associations). There are examples of it in F.3 and F.5.

A.4 Parameter Structure

Procedure calls exchange information explicitly via parameters. But in most lan-
guages there can also be hidden information flow between procedures via shared
information which is accessible within a scope that is global to the procedures.

- Parameter passing semantics. The called procedure needs to be able to locate
values of the parameters specified in the calling statement. This is usually done
by passing the addresses of the parameters to the called procedure, and is
termed "call by reference". Some languages, e.g. PASCAL, may pass values di-
rectly, and this is termed "call by value". A few languages use a further mecha-
nism, termed "call by name". See [Gries]

- Parameter_quantity. The procedure definition of a procedure fixes the number
of parameters that can be passed to it.

- 42 -

; - Formal parameters. The names, types and sequence of parameters are defined
i in the procedure definition. These are termed the ’formal parmeters’ of the
procedure.

- Actual parameters. The procedure call statement in the calling procedure iden-
tifies the locally accessible information corresponding to the parameters. These
are termed the ’actual parameters’ of the procedure call.

- Parameter direction. For each parameter there is a defined direction of infor-
mation flow. A parameter which passes information into the called procedure is ‘
referred to here as an "input" parameter; vice versa an "output" parameter; or
both directions "input/output".

These parameter passing concepts are summarised in Figure A.3.

The Calling procedure The Called procedure
with the actual parameters with the formal parameters

sae Proc B

Call B (IN x,y,z): OUT p (IN my n, q): OUT s

v Begin

End

Mapping used for these parameter values in program execution:
X —> parameter 1 —>»m
y —> parameter 2 —>n
z —> parameter 3 —>q
p <— parameter 4 <— s

Figure A.3 - Procedure Call parameter passing

In most languages the programmer is left to define output parameters for status Q
information and error diagnostics. This is explained more fully in A.6. Some lan-

guages, such as Mesa [Mitchell], include comprehensive exception handling in

which each procedure call nominates exception procedures to handle defined er-

ror conditions.

A.5 Implementation Considerations

Type checking. Compilers (and run time interpreters) may include type checking
to ensure that the types of the actual parameters of the calling procedure are con-
sistent with the types of the formal parameters in the procedure definition of the
called procedure. Some languages guarantee that all procedure call parameters
are "type complete" and "type safe"; e.g. Algol 68 [Wijngarden].

Linking. The object-code of the calling and called procedures may be constructed
independently. Tying them together is termed linking. This is the process of
binding the object-code to the addresses of the relevant procedures, parameters

-

- 43 -

and variables. Depending on the language system and the environment, the link-
age may be pre-configured (static or early binding), or is determined when or af-
ter the software is loaded for execution (dynamic or late binding).

Mixed languages. In some execution environments it is possible for procedure call
linkage to exist between modules with source code in different languages, com-
piled to common target conventions.

IRDS. Master copies of procedure definitions may be stored in a data-dictionary
(e.g. an Information Resources Dictionary System - IRDS). The definitions are
then maintained there separately from the program procedures.

A.6 Error Management

When a procedure executes, various things can happen to affect the output pro-
duced by it. The classification below is used in the main body of the standard.

(a) Normal. The procedure’s execution is successful, all the values are com-
puted as expected.

(b) Warning. The procedure has produced output; but detected a situation that
should be brought to the caller’s attention. For example, the procedure had
to change the value of an input parameter, ignored an input parameter in
order to complete execution, set a result to zero after floating point under-
flow, encountered the end-of-file condition, etc.

(c) Abnormal. The procedure detects a severe error which prevents successful
completion of the computation. Part of the output may have been com-
puted; but the termination is orderly, in that the procedure is able to indi-
cate that not all the output is present.

(d) Error. The procedure is unable to complete execution and return output
values. E.g. it detects an error in the input parameters and terminates
abruptly without computing any results; or it is abnormally terminated by
an execution problem such as arithmetic overflow. In such cases it is often
impossible to transfer output parameters correctly, because output values
will not exist, and whatever occupies their storage may not have the correct
representation for the output’s type.

The first three situations should be handled by returning in the output parame-
ters, along with any computed values, a status value. The fourth case (d) should
be handled by returning a status value which indicates that parameters values are
undefined. Typically this kind of situation (d) is detected and reported by the
language execution system rather than the called procedure itself.

In some implementations, the occurrence of problems such as (c¢) and (d) may
lead to the calling procedure being aborted without it being aware of them.

A.7 Summary

Local procedure call characteristics of particular relevance are:

- 44 -

- Asymmetric. A procedure call interaction has a strict request/response disci-
pline, and occurs at the initiative of the calling procedure.

- Synchronous. Execution is synchronous. Execution of the calling procedure
waits until the return from the called procedure.

- Restricted Parameters. The information explicitly communicated via procedure
calls is in parameters of defined quantity, sequence and type.

- Variability. Some details of procedure call structure are different in different
languages and execution environments; but there is a core that is common to
nearly all.

- Software engineering. Languages and software development processes may in-
clude highly developed structure to support procedure calls and related soft-
ware modularity.

These procedure call characteristics of programming languages are the principal
determinants of RPC structure.

- 45 -

APPENDIX B

RPC TUTORIAL

This Appendix is not an integral part of the standard.

B.1 Introduction

This tutorial explains Remote Procedure Call (RPC) concepts. It assumes a basic
understanding of procedure call structure as explained in Appendix A, and of
current OSI standardisation. It assumes no prior knowledge of RPC. This
Appendix is intended to be complete in itself; therefore it repeats some informa-
tion that is provided elsewhere in the standard.

The references to standards publications are in 1.3. Other references are in
Appendix C.

As explained in [Birrell 84], the idea of remote procedure calls is simple. It is
based on the observation that procedure calls are a well-known and well-under-
stood mechanism for transfer of control and data within a program running on a
single computer. Therefore, it is proposed that this same mechanism be extended
to provide for transfer of control and data across communication networks.

When a remote procedure is invoked, execution of the calling procedure is sus-
pended, the parameters are passed across the network to the remote environment,
and the called procedure is executed there. When the called procedure termi-
nates and produces its output, this is passed back to the calling environment,
where execution of the calling procedure resumes as if returning from a single-
machine call. While the calling procedure is suspended, other processes on that
machine may still execute (depending on the details of the parallelism of that en-
vironment and the RPC implementation).

There are many attractive aspects to this idea. One is clean and simple semantics:
these should make it easier to build distributed computations, and to get them
right. Another is efficiency: procedure calls seem simple enough for the commu-
nication to be quite rapid. A third is generality: procedure call is already the
most important mechanism for communication between the logically separate
parts of software systems. A more general point is that an RPC approach helps to
assure that applications investment by users is network- independent.

RPC concepts first became generally visible in 1976 [White], and were integrated
into a proprietary networking architecture in 1981 [Xerox].

Since the early 1980s RPC techniques have been thoroughly evaluated and
reported by the research community; e.g. in [Birrell 84], [Birrell 85], [Gibbons],

- 46 -

[Hamilton], [Jones], [Nelson], [Panzieri]. Their general conclusion is that RPC is
a vital ingredient of distributed interactive processing.

Since the mid 1980s proprietary RPC facilities have become available on various
operating systems, e.g. on Unix [Sun] and on PC-DOS [IBM].

In 1984 CCITT Rec. X.410 established a Remote Operations notation and proto-
col, now widely used for open standards. This was evolved from an RPC design
[Xerox], but does not claim to be an RPC. However, comprehensive RPC char-
acteristics are latent in it (and are exploited in this standard).

B.2 Application Systems
B.2.1 RPC Application Characteristics

RPC is oriented to distributed applications in which there is interactive com- ‘
munication, program to program, with short response times and relatively
small amounts of data transfer.

A remote component of an application is usually modelled as a named and
complete service. Where access is via RPC, the primitives of the service are
implemented as a corresponding family of remote procedures. This family of
procedures representing the service is a remote program, as illustrated in

Figure B.1.
service remote service
user service provider
Proc ...
Tocal Call ... RPC » | Proc ... remote
program Proc .. program

Figure B.1 - General structure ‘

The remote service/program accessed via RPC may be application-specific (e.g.
part of some financial application), or a generic shared resource (eg. a file
server). The application system structure may be modelled according to the
ECMA TR/42 framework.

B.2.2 RPC Remote Interface Declarations

The remote interactions are defined in an interface declaration. This is essen-
tially a set of (abstract) procedure definitions of the remote service/program,
combined with other relevant specification information. It defines the remote
interface between the user and provider of the remote service. See Figure B.2.

.

- 47 -

remote
interface

user » provider
(client) | (server)

Figure B.2 - A Remote Interface

At this level of abstraction the parties to request/response interactions are usu-
ally termed client and server, as in ECMA TR/42. Use of client/server/ service
terminology is not particular to RPC.

As explained in B.3.4, the interface declaration should be expressed in an in-
terface specification language which allows heterogeneous implementations of
the programs which provide and use the declared interface.

An interface specification language defines and enforce generic rules which
would restrict call structure and parameter structure in ways generally applica-
ble to heterogeneous RPC.

B.2.3 RPC Bindings

A server declares information about the services (procedures) it offers, and a
client (directly or indirectly) makes use of such information about the services
which it intends to use. This information is in terms of interface declarations,
service names, qualitative controls, etc. Typically such information is stored in
and retrieved from data-dictionaries (IRDS) and directories in ways general to
all distributed processing (and not specific to RPC).

The term RPC Binding is used here for the access linkage which enables the
client to access the server. It has essentially the same properties as local proce-
dure linkage. Therefore, as explained in A.3, any binding to remote state in-
formation specific to the interaction is necessarily via parameters of the proce-
dure calls themselves (and is not part of the RPC Binding mechanism). This
kind of binding is inherent in the examples in F.3 and F.5.

B.3 RPC Considerations
B.3.1 Remoteness

We are concerned here with direct implications of the procedures being in
physically separate computers linked by telecommunications.

- Naming scope. The naming scope of procedure calls is usually restricted to
procedures in the same machine. Some extra naming provisions are needed
to call external procedures.

- Binding and loading. In most languages the binding between procedures is
implicit in the program structure. It occurs as a normal consequence of pro-
gram composition and compilation. Remoteness implies some need for ex-

- 48 -

plicit binding action under program control at run time. Specific provisions
may also be needed to load the remote procedure when it is needed. This is
analagous to the way programs bind to files at run time and cause external
magnetic media volumes to be mounted and dismounted.

- No shared memory. Local procedure calls depend, implicitly or explicitly, on
the use of shared variables which can be accessed by the calling and called
procedures. By definition, RPCs have no shared memory: the two procedures
are usually in physically separate computers. The general conclusion for RPC
is that formal parameters can not include pointers to off-stack memory loca-
tions, and that the parameter values must be copied from machine to ma-
chine (even where the normal compiler generated object code for a corre-
sponding local call would be call by reference). The ideal parameter passing
semantics for RPC are therfore call by value.

- Communications. The underlying support system necessarily uses communi- ‘
cations as part of the mechanisation of the remote procedure calls. But this is
not directly visible in the procedure definition, nor to the procedures using
RPC.

- Error Management. Remoteness also introduces different error possibilities, as
explained in B.3.3.

- Degree of remoteness. Much of the early experience with remote procedure
calls was with local area networks. RPC implementation experience with
wide area networks confirms that RPC techniques scale up to arbitrary de-
grees of remoteness. The ability to scale down to low degrees of remoteness
(e.g. RPC across a backplane bus) is inherent in the derivation of RPC from 1
local procedure call techniques.)

- Security. Remoteness also has many security implications.

A preliminary conclusion to be drawn from the above is that a remote proce-
dure call cannot be exactly like a local procedure call. This is confirmed by the '
other factors now considered.

B.3.2 Distribution Transparency

A major system and application design issue is whether or not to hide dis-
tributedness and its consequences. The term distribution transparency is used
here for discussing the visibility of distributedness within distributed systems.

- Arguments for transparency. It can be advantageous if all the consequences of
distribution are made transparent (ie. invisible). This hides complexity, sim-
plifies the task of application designers, and enhances the re-usability of ap-
plication code. The evolution of existing products based on centralised sys-
tems is then inherently straightforward. A successful experiment with such
transparency for procedure calls is Unix United [Brownbridgel].

- Arguments against transparency. Full transparency, which completely con-

ceals distribution, can be relatively expensive in terms of underlying imple-
mentation effort and performance overheads. Moreover, it denies designers

- 49 -

the opportunity to exploit the consequences of distribution via decentralisa-
tion and replication of control, or data, or both.

System design choices lead to different transparency requirements, and full
distribution transparency is not always necessary. Therefore standards should
not pre-empt these choices.

In this Basic RPC standard the visibility of distributedness at the user pro-
grammer interface is confined to particular parameters of the RPC service
primitives. The user program can choose to ignore these.

B.3.3 Reliability

We are concerned here with the reliability implications of the calling proce-
dure and called procedure being in physically separate machines.

- Independent failures. With a local procedure call there is one process (ie. one
execution context, one thread of execution) which either crashes or survives.
But for a remote procedure call the process in one machine may crash while
that at the other remains intact. This can lead to situations such as: remotely
called procedures that are ’orphaned’ by calling procedure crashes; calling
procedures which become ’bereaved parents’ waiting for replies from re-
motely called procedures that have crashed; and recovery situations in which
the caller is uncertain whether the remote procedure has been executed (e.g.
when network partitioning occurs during a remote interaction).

- Communications failures. The underlying communications system should
hide the occurrence of communications failures, but cannot hide any pro-
longed inability to communicate (network partitioning).

- Compatibility. The physical separation of procedures emphasises the com-
patability and version control problems latent in all modularity.

- Error management. Error possibilities particular to remote and heterogeneous
interactions require special error management. See B.4.2.

It should be appreciated that the most difficult reliability issues arise not from
communications failures, but from host overloads, host crashes and remote ap-
plication failures. Perfect communications would not remove these problems,
therefore the solution is not just a matter of using reliable communications
connections etc. See [Saltzer].

An RPC system should have appropriate execution reliability semantics. This
subject is explained in [Panzieri]. The following choices of guarantees may oc-
cur: remote execution occurs exactly once; remote execution occurs al most
once (including possibilities of no execution and incomplete execution); remote
execution occurs at least once (including possibilities of multiple complete and
incomplete executions).

The exactly once semantics are the most difficult to guarantee, and the at least
once semantics are the easiest. The degree of difficulty affects the amount of
RPC protocol etc. needed to provide the guarantees.

- 50 - |

- The remote execution reliability guarantees inherent in the OSI Remote Oper-
ations standards (ISO 9072/1 and 9072/2) are exactly once for interactions re-
turning to the calling procedure normally without error, and at most once for
all other outcomes. This seems to be the most appropriate choice for general
OSI use (although other choices should not be permanently precluded).

B.3.4 Heterogeneity

Much of the experience with using RPC has been in homogeneous environ-
ments; ie. both ends use the same language and operating system.

An RPC system for OSI standards purposes must allow for heterogeneous en-
vironments: there will typically be different languages and different operating
systems at each end.

These heterogeneity problems are now well understood after several years of Q
practical experience with RPC in heterogeneous environments, e.g.
Matchmaker [Jones] and HRPC [Bershad]. Powerful software tools systems

have been developed to support RPC in heterogeneous environments, e.g. the

stub generator in [Gibbons].

Some of the problems inherent in this heterogeneity are:

- Semantics. In different languages there are differences of semantics for what
might seem to be the same data structures.

- Language characteristics. The data structures and procedure call structures
supported in any one programming language are not all supported in exactly
the same way in all other languages. i

- Concrete syntax. Different machines use different conventions for the bit rep-
resentation of data values, e.g. different byte orderings, size limits and floating
point formats.

The basis for solving these problems is to specify the remote interactions in a .
canonical form which is independent of such variability. This requires use of

an interface specification language and an external data representation which

are independent of the choices of programming languages, operating systems,

computers and networks, as fully explained in [Gibbons]. The next step is to |
define a language binding for each programming language of interest. This de-

fines the mapping of the semantics and syntax of the programming language

onto the RPC control structure and the external data representation structure.

B.4 RPC Structure
B.4.1 Call Structure

For the reasons discussed in B.3, remote calls via a heterogeneous RPC system

need to be in some respects different from local procedure calls. However, they |
also need to be well integrated into the local language, software tools system

and execution environment. The main points are:

1

-51 -

- Language structure. The control structure and syntax of remote calls must be
acceptable in the local language environment. Typically remote procedure
calls will be implemented via a normal procedure call in the host language.

- Call destination. The immediate destination of the call is likely to be a local
RPC support procedure (typically an 'RPC stub procedure’) which handles
the remote interaction. The ultimate destination is a particular procedure in a
particular server which is remote from the calling procedure.

- Control structure. As with local procedure calls, execution of the calling pro-
cedure waits until the called procedure replies, or until this is pre-empted by
an exception condition (see B.4.2).

- Actual Parameters. The call statement will define the actual parameters (in
ways specific to the particular language binding).

These parameters should be consistent with the formal parameters of the in-
terface declaration.

B.4.2 Marshalling

At the calling procedure, parameters that are input to the remote call are con-
verted into the agreed external data representation, and are assembled into a
protocol octet string for transmission.

At the called procedure, the protocol octet string is disassembled, and the
value of each parameter is converted into the local data representation and put
in the appropriate location in the called procedure’s address space. Execution
of the called procedure is then dispatched.

After the called procedure completes execution, the same process occurs in the
opposite direction.

This process of converting, copying, assembling and disassembling RPC param-
eter values is termed "marshalling". It is illustrated in Figure B.3.

Calling procedure Called procedure
Call.ss > > | Proc...
e | <
I
RPC marshalling RPC marshalling
RPC protocol RPC protocol
procedures protocol message procedures
< transmission >

Figure B.3 - RPC Marshalling

- 82 .

In distributed systems the parsing, copying and converting of data for protocol
interactions is often a major source of implementation complexity and of per-
formance overheads. The systematic structure of RPC marshalling is amenable
to automatic code generation (see B.5) and to specialised performance optimi-
sations.

Where the client and server systems are homogeneous and have the same in-
ternal data representation, there is an opportunity for the parameter values to
be transferred in native mode, with reduced marshalling overheads.

B.4.3 RPC Error Management

An RPC system should have comprehensive error reporting provisions. Most
RPC systems distinguishes between: ' ‘

- execution errors which arise from the procedure call itself (as explained in
A.6); and

- environmental errors which arise from the called procedure being remote.
Examples of environmental errors are: remote system crash, unrecoverable
communications problems, naming and binding problems, security problems,
protocol or syntax compatibility problems, etc.

A general way of distinguishing between these different error cases is to in-
clude in the procedure call definition extra parameters for status and diagnos-
tics. This information would usually be examined by the calling procedure af-
ter the return, and could be used to decide what (if any) recovery action is
necessary.

Another error management issue is the use of timeouts. The well researched

solution adopted in [Birrell 84] is for the RPC system not to have user-visible
timeouts. The client application program should have the usual kind of global

timeouts for detecting all non-terminating execution (local or remote). This is '
consistent with the client responsibility for recovery. Internal to the RPC sys-

tem there may be hidden timeouts for protocol error management, and for pe-

riodic checks that unusually long running calls are still executing.

B.4.4 RPC Process Structure

RPC does not require specialised process structures: implementations use
whatever are the normal kinds of process structures for their language systems
and execution environments. The general case is a single thread of execution
per program. That is largely why this standard restricts the concurrency level
within an RPC Binding to be one.

Where a program requires concurrent remote interactions this may be achieved
via multiple programmed asynchronous interactions across message read/write
interfaces to the underlying protocol machines. But the remote interactions
then depart from procedure call language semantics.

-53-

Procedure call structure is fully preserved if the language/systems structure al-
lows program execution to spawn multiple processes capable of executing
asynchronously and subsequently resynchronising together. These constructs
are usually termed a ’process fork’ and a ’process join’. The separate asyn-
chronous and logically concurrent threads of a computation can then make
multiple concurrent procedure calls without directly delaying progress of the
whole computation.

This kind of concurrency, built into the language/execution environment, is
different from that traditionally used for interworking between data processing
systems. Programming is simplified by using well-formed language constructs
(fork and join), and protocols are simplified by decomposition into multiple
logically separate interactions, each with a simple synchronous structure. There
are also potential performance gains through opportunities for specialised local
hardware and software support for handling the asynchrony and synchronisa-
tion internally, instead of across the network.

B.4.5 RPC Protocols

Protocols to support RPC consist mainly of request/response message pairs.
The request message transfers the procedure invocation and the input values,
and the response message transfers the output values (or is an error manage-
ment message). Simple disciplines for sequence control, flow control and error
management are inherent in this strict request/response structure. Each RPC
protocol message (PDU) may have a complete self-identifying structure.

Connectionless communications services may be used to carry such protocols.
But the usual practice is to introduce RPC techniques by using existing con-
nection-oriented communications, and to evolve later to selective use of con-
nectionless services where appropriate. The [Xerox] and [Sun] RPCs have fol-
lowed this evolutionary course. Another possibile evolution is to carry the RPC
data structures over specialised protocols optimised for process-to-process
communication, as in [Birrell 84] and the Rex protocol [Otway] evolved from
it.

B.5 RPC Software Engineering Process

An RPC system may be integrated into comprehensive software engineering pro-
cesses which exploit the structuredness and relative simplicity of RPC.

The first stage of the process is interface definition. The main ingredient here is
the interface specification language, together with means of documenting and
maintaining interface declarations, ideally in machine processable form. This
could include use of an Information Resources Dictionary Systems (IRDS), and
software tools for syntax checking, specification animation, etc. This is an itera-
tive process, as illustrated in Figure B.4.

- 54 -

application knowledge
interface specification
language

systems g = > tools system =

analyst or / i l
protocol IRDS/1ibrary
standardiser information

machine processable
interface declarations —>

Figure B.4 - Interface definition system

The next stage of the process is stub generation. This takes an interface declara-
tion and generates the RPC procedures to marshal and unmarshal the parameters
of procedure calls using that interface specification. It may also produce the ap-
propriate generic procedures for handling RPC binding primitives for that inter-
face, and code for the RPC buffering and the RPC protocol machine. The stub at
the server end also includes a dispatching procedure which distinguishes between
calls to different procedures within the server program.

Figure B.5 illustrates a highly automated stub generation system which is fully de-
scribed in [Gibbons].

interface declaration
for some particular

all this information
is typically in an

IRDS. remote interface.
client client server server
machine| |language machine| |language
spec. spec. spec. spec.

Y Y
stub generator stub generator

l l

client stub procedures for server stub procedures for
this interface/machine/language this interface/machine/language

Figure B.5 - An automated system for stub generation

The final stage of the automated development route brings together the applica-
tion procedures using the RPC system and the generic stub code for the remote
interfaces concerned. Program development at the client and server ends typically

- 55 -

occurs independently (and possibly many times over, and in many separate busi-
ness enterprises which use and provide the defined service). Automated devel-
opment routes, based on the same machine processable text of the interface dec-
laration, can assure a high probability of correct and compatible implementations.
This may also reduce the amount and cost of validation and conformance testing.

This kind of RPC automation is also relevant for the construction of distributed
application’s software where the user-visible languages do not have procedure
call constructs (e.g. Fourth Generation language systems).

B.6 RPC Summary

The essence of RPC is summarised as:

program-to-program interworking;

via programming language constructs;

maximal de-coupling from communications matters;

minimal intrusion into the user program source code.

There is consequent scope for automated development routes and specialised de-
sign and implementation.

-57 -

APPENDIX C

BIBLIOGRAPHY

This Appendix is not an integral part of the standard.

[Bershad]

[Birrell 84]
[Birrell 85]
[Brownbridge]

[Cristian 82]

[Gibbons]

[Gries]

[Hamilton]

[IBM]

[Jones]

[Mitchell]

BN Bershad, DT Ching, ED Lazowska, J Sanislo, M Schwartz. A
Remote Procedure Call Facility for Interconnecting

Heterogeneous Computer Systems, IE Transactions on Software
Engineering, Vol. SE-13, No. 8, August 1987.

AD. Birrell and BJ. Nelson. Implementing Remote Procedure
Calls. ACM Transactions on Computer Systems, vol 2, no. 1, pp
39-59, Feb 1984.

AD. Birrell. Secure Communications using Remote Procedure
Calls. ACM Transactions on Computer Systems, vol.3, no. 1,
ppl-14, Feb.198S.

DR. Brownbridge, LF. Marshall and B. Randell. The Newcastle
Connection or UNIXes of the World Unite! Software Practice
and Experience, 12 (12), 1147-1162 (December 1982).

F. Cristian. Robust Data Types. Acta Informatica 17, pp 365-397
(1982).

PH. Gibbons. A Stub Generator for Multilanguage RPC in
Heterogeneous Environments. IE Transactions on Software
Engineering, Vol. SE-13, No. 1, Jan 1987.

D. Gries. Compiler Construction for Digital Computers. John
Wiley 1971. ISBN 0-471-32776-X.

KG. Hamilton. A Remote Procedure Call System. Ph.D
dissertation, Computer Laboratory, University of Cambridge,
UK.

Server Requestor Programming Interface (SRPI).

MB. Jones, RF. Raschid, MR. Thompson. Matchmaker: An
Interface Specification Language for Distributed Processing.
Procedings 12th. ACM Symposium on Principles of
Programming Languages, Jan. 1985.

JG. Mitchell, W. Maybury, R. Sweet. Mesa Language Manual
(Version 5.0). Tech. Rep. CSL-79-3, Xerox Palo Alto Research
Centwe, Palo Alto, Calif.1979.

[Nelson]

[Otway]

[Panzieri]

[Saltzer]

[Sun]

[White]

[Wijngarden]|

[Xerox]

- 58 -

BJ. Nelson. Remote Procedure Call. Ph.D dissertation.
Department of Computer Science, Carnegie Mellon University,
Pittsburg, Pennsylvania. Tech. Rep. CMU-CS-81-119, 1981.

D. Otway. Rex: a model for process to process interactions.
Online Open Systems Conference. March 1987.

F. Panzieri, SK. Shrivastava. Rajdoot: a remote procedure call
mechanism supporting orphan detection and orphan Kkilling.
Technical Report 200. Computing Laboratory, University of
Newcastle upon Type.

JH. Saltzer, DP. Reid and DD. Clark: The End to End
Argument. ACM Transactions on Computer Systems, Vol.2 No.
4, November 1987, pp 277-288.

Network File System: Remote Procedure Call Protocol
Specification. Sun Microsystems Inc. 1984.

JE White. A High Level Framework for Network Based
Resource Sharing. AFIPS Conference Procedings, NCC, 45: pp
561-570 1976.

A. Van Wijngarden (ed). Report on the Algorithmic Language
Algol 68. Mathematisch Centrum, Amsterdam. MR 101.

Courier: Remote Procedure Call Protocol. Xerox Corporation,
Stamford, CT, USA. Xerox Systems Integration Standard
038112, Dec. 1981.

- 59 -

APPENDIX D

FUTURE EXTENSIONS

This Appendix is not an integral part of the standard.

D.1 Introduction

This clause describes some potential extensions to the basic RPC protocol, and
their language semantics and mappings onto ROSE and other OSI Application
Service Elements.

In this standard the dialogue structure via the RPC binding between a client and
a server has been restricted in the following ways:

- asymmetric - procedure calls are initiated in the direction client to server;

- request/response - each remote procedure call always consists of an end-to-end
handshake (an invocation and its terminating response);

- no _concurrency - each RPCCall must be completed before the next is invoked
(although concurrency across multiple RPC bindings is not precluded);

- synchronous - where there is no concurrency, actions are one at a time, there-
fore synchronous (except that environmental failures are asynchronous).

These restrictions also apply when there is nested callback within a procedure
call. To whatever depth the callback is nested, it is still serial request/response
activity, and the outermost call is always invoked by the client.

These restrictions are made here because they are inherent in the procedure call
semantics of most programming languages. Furthermore, these dialogue structures
are sufficient for many kinds of distributed applications (although certainly not
all).

In terms of the ISO 9072/1 and 9072/2 Remote Operations standards, the above
restrictions are use of Operation Class 1 (including linked child Operations)
within Association Class 1. The Remote Operations standards handle more com-
plicated dialogue structures via Operations Class 2, 3, 4 and 5 and Associations
Class 2 and 3. Thereby some "extensions" of the protocol subset used in this
standard already exist.

The more complex dialogue structures generally require a more sophisticated
model of computation than the procedure call. This is the subject of ongoing
ECMA work on Open Distributed Processing (ODP) standardisation.

- 60 -

D.2 Concurrent Calls

By introducing concurrency into the computational model, there could be more
direct support for concurrency of procedure calls between a client and a server.

These concurrent calls, asynchronous with respect to each other, might be
mapped onto Remote Operation Class 2 within a single Association. This is for
future study.

D.3 Calls with Immediate Return

In some distributed applications there are one-way interactions with no output
parameters.

In such cases, the calling procedure would continue execution immediately after
making the call, but without confirmation that execution of the remote procedure
occurred and was successful.

This could be mapped onto Class 5 Operations. Similarly for the intermediate
cases where only success or only failure is reported; they could be mapped onto
Class 3 and Class 4 Operations.

But this is a departure from the language semantics of procedure calls, where
return means that execution of the called procedure took place. In terms of dis-
tributed systems structure, these one-way interactions also tend to have pro-
ducer/consumer structure, which is different from the client/server structure natu-
ral to RPC.

D.4 Mutual Calls

Two components of a distributed application may want to interact with each
other via independent calls which are mutual calls, not nested callback.

This standard does not preclude mutual calls, but they would use separate RPC
Bindings (mapped onto separate ACSE Associations, initiated in the opposite di-
rections).

If such mutual calls are to be mapped onto a single association, the D1 interface
might be extended to include bi-directional interfaces. Or this might be a hidden
optimisation at the D3 interface level. Such interactions could be mapped onto
the Remote Operations Association Class 3.

D.5 Interruption Call

It may be desirable for the caller to interrupt the execution of a remote proce-
dure. For example, if the remote execution seems to be non-terminating, or if the
caller no longer wants what was originally requested.

This extension requires the notion of signalling and exception handling to be in-
cluded in the model of computation.

- 61 -

A drastic way of signalling interruption of a call would be by aborting the ACSE
Association. This would cause an A-U-ABORT indication to be received by the
component containing the called procedure. The local environment could then
interrupt the procedure execution. '

Another possible solution would be to signal the interruption asynchronously
within the Association via a Class 2 Operation.

D.6 Orphan Detection

The called procedure is termed an "orphan" if it becomes unintentionally iso-
lated from the calling procedure. This can occur where the calling procedure (the
"parent") fails, or if there is prolonged communications failure (network parti-
tioning).

The orphan has nowhere to send its output parameters, and may be uncertain
what to do with any partial results which it retains.

The parent procedure may not remember what has happend when it recovers.
Continued undetected existence of the orphan(s) may cause difficulties when the
parent makes further calls. See [Panzieri].

When a procedure is orphaned, the component containing the orphaned proce-
dure may detect this as a break in the ACSE Association (visible at the D3 in-
terface as an A-P-Abort). But this detection mechanism requires communication
to be connection-oriented, which may not always be the case in future. Another
possible approach would be use of the OSI CCR ASE.

The computational model needs to be extended to describe the action taken by
the orphan. In the simplest case, the orphan completes execution of the remote
procedure but the return parameters are not returned to the calling procedure.

D.7 Multi-endpoint Interactions

Distributed applications may include multi-endpoint interactions in which an
event at one component triggers action at several other components.

This is outside the scope of the current Remote Operations standards, and a
multi-endpoint procedure call does not have normal procedure call semantics.

But linguistic structure for this kind of requirement is relevant to a general com-
putational model for Open Distributed Processing (ODP).

D.8 Optimised Protocols

There may be requirements for standardisation of protocols optimised for effi-
cient support of the highly specialised kind of request/ response interactions typi-
cal of RPC.

The current generation of OSI protocols are necessarily multi-purpose.

The expectation is that the ISO 9072/2 Remote Operations Protocol used for this
ECMA Basic RPC could be mapped onto alternative protocol infrastructure,

- 62 -

without change to this standard. Therefore the stability of this Basic RPC proto-
col is not threatened by such changes.

D.9 Total Operations

There may be requirements to exploit the explicit ERRORS structure of the
Remote Operations notation more fully than in this standard. The aim would be
to achieve the Total Operations structure and Robust Type characteristics ex-
plained in [Christian 82].

This is a problem because of inherent differences between this style of exception
handling and the procedure call semantics and structure of most programming
language. Therefore, it is left for future study.

D.10 Parameter Types

There may be requirements for RPC to support parameter types other than those
included in this standard (e.g. more complex data structures, such as ODA doc-
ument items).

The current standard includes most of the parameter types supported in ISO
standard programming languages. There may be language binding problems for
other types, and their direct use may be outside the scope of this standard. Exten-
sions to the parameter typing are for future study.

- 63 -

APPENDIX E

REGISTER OF CODES

This Appendix is an integral part of the standard.

E.1 Operation Numbers
<0 Reserved.

. >0 Available for user defined OPERATION macros in D1 interfaces, and
not subject to any further allocation controls here.

E.2 Error numbers
< -1 Reserved.
-1 Used for RPCError (see clause 4).

> 0 Reserved for possible future use in user defined ERROR macros in DI
interfaces.

E.3 Tags

The encoding of RPC parameter lists which is defined in this standard uses the

ASN.1 Tag type in particular ways. The following tag values are allocated to spe-
cific uses in this standard:

. [APPLICATION 100] Tag for RPCComplex.
[APPLICATION 101] Tag for RPCNumericString.
[APPLICATION 102] Tag for RPCProcedureName.
[APPLICATION 103] Tag for RPCArrayDescriptor.
[APPLICATION 104] Tag for RPCArrayBounds.
[APPLICATION 105] Tag for RPCBoundForDimension.
[APPLICATION 106] Tag for RPCArray.
[APPLICATION 107] Tag for RPCRecordDescriptor.
[APPLICATION 108] Tag for RPCVaryingStringDescriptor.
[APPLICATION 109] Tag for RPCStringWithBoundsDescriptor.
[APPLICATION 110] Tag for RPCStatuslinfo.
Use of application tag values <100 and >110 is for future study.

- 64 -

- 65 -

APPENDIX F

GUIDELINES FOR APPLICATION PROTOCOL DESIGNERS

This Appendix is not an integral part of the standard.

F.1 Intreduction

This Appendix provides guidelines (through examples) for application protocol
designers specifying D1 interfaces. These examples are not meant to suggest ser-
vices which are necessarily desirable; their purpose is to explain the D1 notation.

Each example is a complete D1 interface declaration, including tutorial comment.

F.2 Date-Time Server

DateTimeService DEFINITIONS -- version 1 -- i: =
BEGIN

-- (The module begins with a statement of what it does and a declaration of its
-- relationships to other modules.)

-- This ASN.1 module is the D1 specification for a simple time of day service.
-- The service supports a single operation (procedure), GetDateTime, which
-- returns the current date and time in UTC time format.

-- To make the Application Service Element available to other ASN.1 modules:
EXPORTS dateTimeService;

-- External definitions used:

-- all D1 modules have this import:
IMPORTS OPERATION
FROM Remote-Operation-Notation -- 1ISO 9072/1
{joint-iso-ccitt remoteOperations(4) notation(0)};

- 66 -

-- all D1 modules have this import:
IMPORTS APPLICATION-SERVICE-ELEMENT
FROM Remote-Operation—-Notation-extension -- 1SO 9072/1
{joint-iso—ccitt remoteOperations(4)
notation-extension(2)};

-- all D1 modules have this import:

IMPORTS RPCStatusInfo
FROM ECMABasicRPC-ErrorManagement;
-- clause 5.2 of this Standard

-- all D1 modules have this import:
IMPORTS RPCError, -- all D1 modules import this type. ‘
RPCDateTime -- a particular RPC parameter type used here.
FROM ECMABasicRPC-CallingSequences;
-- clause 4.2 of this Standard

-- (The module now defines the specific D1 interface. This is an interface
-- declaration in the D1 notation defined in 6.2 and 6.3.)

-- Definition of the Application Service Element (ASE):
dateTimeService APPLICATION-SERVICE-ELEMENT
CONSUMER INVOKES {getDateTime}
:2= {version 1}

-- Definition of the Operation identified in the ASE:
getDateTime OPERATION ¢
ARGUMENT empty
RESULT SEQUENCE {RPCStatusInfo, RPCDateTime}
ERRORS {RPCError}
=1

-- This defines a procedure call with no input parameters. It has output
-- parameters (RPCOutput) consisting of status information (always defined for
-- all procedures) and a date/time parameter. The error type definition is the
-- same as for all procedures. The value notation at the end of the macro is the
-- integer encoding for this Operation name in the protocol (1, arbitrarily chosen).

-67 -

-- Expected RPCStatusinfo contents in RPCOutput are defined in the following

-- table:

-— RPCStatus = RPCDiagnosticCode - RPCDiagnosticMessage -
-- normal - 0 - Normal Result -
-- warning = 1 - Clock unreachable, default -

]
I
I
I

time returned =

-- The diagnostic information accompanying the normal status here is logically
-- redundant, but could be reassuring during system development. (The
-- diagnostics in RPCStatusinfo are, by definition, always optional).

-- In this example the abnormal status is not expected to occur, because there
-- are no RPClinput parameters and the functionality is very simple. Similarly, no
-- diagnostics are specified for the error case here (any such diagnostics would
-- be implementation-specific, and would probably only be relevant during server
-- program testing).

END -- Date Time Service definition.

F.3 Text File Service

TextFileService DEFINITIONS -- version 1-- ::
BEGIN

-- This ASN.1 module is the D1 specification for a service which supports the
-- creation, deletion, reading and writing of text files. It is an example of how to
-- specify a service consisting of several Operations (procedures).

-- The interface to this service consists of the following operations (presented
-- here informally to explain their semantics and sequencing):

-- resetFile (File Name, File Handle)
- opens file "File Name" for reading, returning a File Handle.

-- rewriteFile (File Name, File Handle)
- opens file "File Name" for writing, returning File Handle; the file is created
-- if it did not previously exist.

-- readLine (File Handle, Destination Buffer)
-- reads the next line of information from a previously reset file.

-- writeLine (File Handle, Source Buffer)
-- writes the line at the current location of a previously rewritten file.

- 68 -

-- closeFile (File Handle)

-- closes a previously reset or rewritten file.
-- deleteFile (File Name)

= deletes file "File Name".

-- The exports and imports defined below have the same structure as in all D1
-- specifications (e.g. they are copied from the previous example, except for the
-- different names and the importing of different RPC Parameter types).

-- To make the Application Service Element available to other ASN.1 modules:
EXPORTS textFileServer

-- External definitions used:

IMPORTS OPERATION
FROM Remote—Operation-Notation
{joint-iso-ccitt remoteOperations(4) notation(0)};

IMPORTS APPLICATION-SERVICE-ELEMENT
FROM Remote-Operation-Notation-extension
{joint-iso-ccitt remoteOperations(4)
notation-extension(2)};

IMPORTS RPCStatusInfo
FROM ECMABasicRPC-ErrorManagement;

IMPORTS RPCError, RPCCharacterString, RPCBinarylInteger,
RPCVaryingStringDescriptor
FROM ECMABasicRPC-CallingSequences;

-- Application Service Element (ASE) definition:

textFileService APPLICATION-SERVICE-ELEMENT
CONSUMER INVOKES {resetFile, rewriteFile,
ReadlLine, writeLine, closeFile, deleteFile}
::= {version 1}

-- Operation definitions:

closeFile OPERATION
ARGUMENT
RESULT
ERRORS

=1

deleteFile OPERATION
ARGUMENT
RESULT
ERRORS
2= 2

readLine OPERATION
ARGUMENT

RESULT
ERRORS
=3

resetFile OPERATION
ARGUMENT
RESULT
ERRORS

=4

rewriteFile OPERATION
ARGUMENT
RESULT
ERRORS

2= 5

writelLine OPERATION
ARGUMENT
RESULT
ERRORS
2= 6

-- Type definitions:

FileName

FileHandle
DestinationBufferDescriptor
DestinationBuffer
SourceBuffer

- 69 -

SEQUENCE {FileHandle}
SEQUENCE {RPCStatusInfo}
{RPCError}

SEQUENCE {FileName}
SEQUENCE {RPCStatusInfo}
{RPCError}

SEQUENCE {FileHandle,

DestinationBufferDescriptor}
SEQUENCE {RPCStatusInfo,DestinationBuffer}
{RPCError}

SEQUENCE {FileName}
SEQUENCE {RPCStatusInfo, FileHandle}
{RPCError}

SEQUENCE {FileName}
SEQUENCE {RPCStatusInfo, FileHandle}
{RPCError}

SEQUENCE {FileHandle, SourceBuffer}
SEQUENCE {RPCStatusInfo}
{RPCError}

::= RPCCharacterString

::= RPCBinaryInteger

s2= RPCVaryingStringDescriptor
=R

=R

PCVaryingStringDescriptor
PCCharacterString

-70 -

-- Expected content of RPCStatusinfo in RPCOutput:

-— RPCStatus - RPCDiagnostic - RPCDiagnosticMessage - Operations -
— - Code - = =
-- normal -0 - Normal Result - 1-6 -
-- error -1 - Invalid Name = 2,4,5 -
-= - - Operation cannot be = -
= = - performed on file named. - =
-- error = & - File Handle did not - 1,3,6 ~ ,
- - - correspond to opened file - - ‘
-- warning - 3 - Buffer too small - 3 -
== - - Line truncated. = =
-- warning - 4 - End of file reached, no - 3 -
. - - data in buffer. = -
END -- Text File Service.
F.4 Eigenvalue Service
EigenvalueService DEFINITIONS -- version 1-- :: =
BEGIN
-- This ASN.1 module is the D1 specification for a service which computes ’

-- eigenvalues and eigenvectors. It is an example of how to define RPC
-- parameter lists that have floating point parameters.

-- The service supports one operation:

-- calculateEigenvalues (InputMatrix, Eigenvalues, Eigenvectors).
-~ given an input matrix, the service computes its eigenvalues and
-- eigenvectors

EXPORTS eigenvalueService

-- External definitions used:

IMPORTS OPERATION
FROM Remote-Operation-Notation
{joint-iso-ccitt remoteOperations(4) notation(0)};

« 71 «

IMPORTS APPLICATION-SERVICE-ELEMENT
FROM Remote—Operation-Notation—extension
{joint-iso—ccitt remoteOperations(4)
notation—extension(2)};

IMPORTS RPCStatusInfo
FROM ECMABasicRPC-ErrorManagement;

IMPORTS RPCError, RPCArrayDescriptor
FROM ECMABasicRPC-CallingSequences;

-- Application Service Element (ASE) definition:

eigenvalueService APPLICATION-SERVICE-ELEMENT
CONSUMER INVOKES {calculateEigenvalues}
s:= {version 1}

-- Operation definition:

calculateEigenvalues OPERATION
ARGUMENT SEQUENCE {EigenMatrix,
EigenvectorDescriptor,
EigenMatrixDescriptor}

RESULT SEQUENCE {RPCStatusInfo,
Eigenvector, EigenMatrix}
ERRORS {RPCError}
=1
-- Type definitions:
EigenMatrix ::= RPCArrayDescriptor
Eigenvector 2 2= RPCArrayDescriptor
EigenMatrixDescriptor ::= RPCArrayDescriptor

EigenvectorDescriptor RPCArrayDescriptor

-72 -

-- Expected content of RPCStatusinfo in RPCOutput:

-- RPCStatus - RPCDiagnosticCode - RPCDiagnosticMessage .
-- normal = 0 - Normal Result -
-- warning -1 - I11 conditioned matrix. -
— = - Possible underflow in -
= = - diagonalization. -
-= error = 2 = I11 formed matrix. -

Unable to diagonalize =
matrix -

END -- Eigenvalue Service definitions.

F.5 Print Text File Service

PrintTextFileService DEFINITIONS -- version 1 -- ;=
BEGIN

-- This ASN.1 module is the D1 specification for a service which supports the
-- printing of text files. It is an example of how remote procedure callback is
-- specified, using LINKED child Operations.

-- This module defines the following operations: ‘

-- printTextFile (FileName) .
-- causes file "FileName" to be printed. The server prints the file by making
-- callback requests. Printing is completed when this operation returns.

-- openfFile (Filename, FileHandle)

-- callback, opens file "Filename" for reading, returning a FileHandle.

-- readBuffer (FileHandle, DestinationBuffer, CharactersRead)

-- callback, reads the next buffer of information from the opened file,
-- and returns the number of characters read.

-- closeFile (FileHandle)

-- callback, closes the opened file.

-3 -

EXPORTS printTextFileService

-- External definitions used:

IMPORTS OPERATION
FROM Remote—Operation—Notation
{joint-iso-ccitt remoteOperations(4) notation(0)};

IMPORTS APPLICATION-SERVICE-ELEMENT
FROM Remote-Operation-Notation-extension
{joint-iso-ccitt remoteOperations(4)
notation-extension(2)};

IMPORTS RPCStatusInfo
FROM ECMABasicRPC-ErrorManagement;

IMPORTS RPCError, RPCBinaryInteger, RPCVaryingStringDescriptor,
RPCCharacterString
FROM ECMABasicRPC-CallingSequencess;

-- Application Service Element (ASE) definition:

printTextFileService APPLICATION-SERVICE-ELEMENT
CONSUMER INVOKES {printTextFile}
::= {version 1}

-- Operation definitions:

printTextFile OPERATION
ARGUMENT SEQUENCE {FileName}
RESULT SEQUENCE {RPCStatusInfo}
ERRORS {RPCError}
LINKED {openFile, readBuffer, closeFile}

=1

openFile OPERATION
ARGUMENT SEQUENCE {FileName}
RESULT SEQUENCE {RPCStatusInfo, FileHandle}
ERRORS {RPCError}

=2

- 74 -

readBuffer OPERATION
ARGUMENT

RESULT

ERRORS

=3

closeFile OPERATION
ARGUMENT
RESULT
ERRORS
ce= 4

-- Type definitions:

FileName

FileHandle
DestinationBufferDescriptor
DestinationBuffer
CharactersRead

SEQUENCE {FileHandle,
DestinationBufferDescriptor}
SEQUENCE {RPCStatusInfo,
DestinationBuffer, CharactersRead}
{RPCError}

SEQUENCE {FileHandle}
SEQUENCE {RPCStatusInfo}
{RPCError}

< 2= RPCCharacterString

22= RPCBinarylInteger

2 2= RPCVaryingStringDescriptor
s2= RPCVaryingStringDescriptor
<= RPCBinaryInteger

-- Expected content of RPCStatusinfo in RPCOutput:

-— RPCStatus - RPCDiagnosticCode - RPCDiagnosticMessage - Operations
-- normal =10 - Normal Result = 1-4

-- warning = 1 - End of file reached = 3

-— error = 2 - Invalid filename = 2

—-= = - Operation cannot be =

e - - performed -

-- error =3 - FileHandle did not = 3,4

== - - correspond to opened -

— - - file =

END -- Print Text File Service definitions.

