ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-137

DOCUMENT FILING AND RETRIEVAL
(DFR)

Part 1 - Abstract-Service Definition and Procedures

Part 2 - Protocol Specification

January 1990

Free copies of this document are available from ECMA,
European Computer Manufacturers Association
114 Rue du Rhone - CH-1204 Geneva (Switzerland)

Phone: +4122 7353634 Fax: +4122 786 52 31

°

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-137

DOCUMENT FILING AND RETRIEVAL
(DFR)

Part 1 - Abstract-Service Definition and Procedures

Part 2 - Protocol Specification

January 1990

BRIEF HISTORY

The Document Filing and Retrieval Application is one of a series of standards defining
applications needed in the area of office automation, as described in the Distributed
Office Application Model [ISO/IEC 10031]. This ECMA standard provides the
functionality of document filing and retrieval which directly supports the user in an
office environment. Thus Document Filing and Retrieval is not a general
standardization of all types of filestores as they may exist in computing systems. Rather
it concentrates on the filing and retrieval of documents, as related to the task of office
work. Document Filing and Retrieval aims only at standardizing the model of such
document stores and the associated services and protocols defining the principles of
how clients can access such document store servers, where clients and servers reside on
different nodes of a distributed office system.

In this environment the distributed office applications should satisfy the following
objectives:

- Make easier the implementation of application processes developed for a distributed
environment based on microprocessors and large or medium sized mainframes
interconnected through local area network or wide area network means;

- Reduce the processing delay time for document-related activities such as document
filing and retrieval, document distribution, printing, etc., and group communication
related activities such as interpersonal messaging, user directory and authentication
processes, etc.;

- Allow concurrent processing of different tasks within the distributed office system;
- Reduce the overall size of an office system and facilitate its modular extension.

This ECMA Standard has been developd by ECMA-TG32 in close cooperation with
ISO/IEC SC18 WG4. A similar standard is under development in WG4 (see ISO/IEC
DIS 10166).

Adopted as an ECMA Standard by the General Assembly of 14th December 1989.

Table of Contents

Page

PART 1 - ABSTRACT-SERVICE DEFINITION AND PROCEDURES 1
SECTION ONE - INTRODUCTION 3
1. SCOPE AND FIELD OF APPLICATION 5
1.1 Scope 5

1.2 Field of Application 5

2. REFERENCES 6
2.1 Reference Model and DOAM References 6

2.2 Presentation References 6

2.3 Association Control References 7

2.4 Reliable Transfer References 7

2.5 Remote Operations References 7

2.6 Directory References 7

2.7 Office Document Architecture References 7

2.8 Message Handling References 7

3 DEFINITIONS 7
3.1 Ancestor 7

3.2 Attribute-Type 7

33 Attribute-Value 8

34 Attribute-Value-Assertion 8

3.5 Conceptual-Document 8

3.6 Control-Attribute-Package 8

3.7 Descendant 8

3.8 DFR-Attribute 8

3.9 DFR-Basic-Attribute-Set 8

3.10 DFR-Content 8

3.11 DFR-Document 8

3.12 DFR-Document-Content 8

3.13 DFR-Document-Store 8

3.14 DFR-Entry 8

3.15

3.16 DFR-External-Reference
3.17 DFR-Group
3.18 DFR-Group-Content
3.19 DFR-Group-Member
3.20 DFR-Internal-Reference
3.21 DFR-Membership-Criteria
3.22 DFR-Obiject
3.23 DFR-Object-Class
3.24 DFR-Object-Tree
3.25 DFR-Pathname
3.26 DFR-Proper-Group
3.29 DFR-Reference
3.28 DFR-Reference-Content
3.29 DFR-Root-Group
3.30 DFR-Search-Criteria
3.31 DFR-Search-Result-List
3.32 DFR-Search-Result-List-Content
3.33 DFR-Server
3.34 DFR-Unique-Permanent-ldentifier
3:35 DFR-User
3.36 Filter
3.37 Member
3.38 Owner
3.39 Parent
3.40 Privilege-Attribute-Certificate
3.41 Referent
3.42 Version

ACRONYMS

CONVENTIONS
5.1 Conventions for Abstract-services
5.2 Conventions for Text in General

DFR-Extension-Attribute-Set

O\O\D\D\D\O\D\D\O\OO\D\O\D\D\OOOOOOO

e e e T e S S e
© © © © o o o o o

10

11

11
11

SECTION TWO - DFR ABSTRACT-SERVICE DEFINITION

6. DFR ABSTRACT MODEL
6.1 Objects in DFR Environment
6.2 DFR Port
6.3 Information Model
6.3.1 DFR-Document-Store
6.3.2 DFR-Documents
6.3.3 DFR-References
6.3.4 DFR-Groups
6.3.5 DFR-Search-Result-List
6.3.6 DFR Version Management
6.3.7 Attributes
6.3.8 Security in DFR
7. ABSTRACT-BIND AND ABSTRACT-UNBIND PARAMETERS
7.1 Abstract-bind Parameters
7.1.1 Bind-argument Parameters
1.1.2 Bind-result Parameters
7.1.3 Bind-error Parameters
7.2 Abstract-unbind Parameters
8. ABSTRACT-OPERATIONS
8.1 Common Data-types used in Abstract-operations
8.1.1 Data-Types used for DFR-Object specification
8.1.2 Imported data-types
8.1.3 Data-types common for most DFR abstract operations
8.14 Access names for DFR-Entries
8.1.5 Data-types common for operations on single entries
8.1.6 Data-types common for operations on multiple entries
8.2 Document Filing and Retrieval Port Operations Definitions
8.2.1 Create
8.2.2 Delete
8.2.3 Copy
8.2.4 Move
8.2.5 Read
8.2.6 Modify
8.2.7 List
8.2.8 Search
8.2.9 Reserve
8.2.10 Abandon
8.3 Abstract-Errors
8.3.1 Attribute-error
8.3.2 Name-error
8.3.3 Access-error

8.3.4 Update-error

13

15

15
16

16
18
18
19
23
25
26
27
32

35

35
35
37
38

38

39

39
39
39
40
44
44
48

51
52
54
55
57
58
60
61
63
65
66

67
67
69
69
70

8.4

8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.3.10
8.3.11
8.3.12
8.3.13

_iv-

ReferentAccess-error
InterServerAccess-error
Reservation-error
VersionManagement-error
Security-error
Service-error
Abandon-error
Abandoned

Error Precedence

Function Sets

SECTION THREE - DFR ATTRIBUTES

9. ATTRIBUTE DEFINITIONS

9.1 Overview of Attributes

9.2 DFR-Basic-Attribute-Set
9.2.1 DFR-UPI (DFR-Unique-Permanent-1dentifier)
9.2.2 DFR-Object-Class
9:2.3 DFR-Document-Type
9.24 Document-Architecture-Class
9.2.5 DFR-Title
9.2.6 DFR-Pathname
9.2.7 DFR-Parent-Identification
9.2.8 DFR-Guarantee-QoS
9.2.9 DFR-Referent-Deleted
9.2.10 DFR-Membership-Criteria
9.2.11 DFR-Ordering
9.2.12 DFR-Resource-Limit
9.2.13 DFR-Resource-Used
9.2.14 DFR-Number-Of-Group-Members
9.2.15 Version Name
9.2.16 DFR-Previous-Versions
9.2.17 DFR-Next-Versions
9.2.18 DFR-Version-Root
9.2.19 DFR-External Location
9.2.20 User-Reference
9.2.21 User-References-To-Other-Objects
9.2.22 DFR-Attributes-Create-Date-And-Time
9.2.23 DFR-Content-Create-Date-And-Time
9.2.24 DFR-Created-By
9.2.25 DFR-Attributes-Modify-Date-And-Time
9.2.26 DFR-Content-Modify-Date-And-Time
9.2.27 DFR-Attributes-Modified-By
9.2.28 DFR-Content-Modified-By
9.2.29 Document-Date-And-Time
9.2.30 DFR-Reservation
9.2.31 DFR-Reserved-By
9.2.32 DFR-Access-List

9.3 DFR-Extension-Attribute-Set

71
72
72
73
74
74
75
75
75

76

77

79

79

83
83
83
83
83
84
84
84
84
85
85
85
85
85
86
86
86
86
87
87
87
88
88
88
88
88
89
89
89
89
90
90
90

90

»

9.3.1 Other-Titles ' 90

9.3.2 Subject 91

9.3.3 Document-Type 9]

9.3.4 Keywords 91

9.3.5 Creation-Date-And-Time 91

9.3.6 Purge-Date-And-Time 91

9.3.7 Version-Date-And-Time 92

9.3.8 Organizations 92

9.3.9 Preparers 92

9.3.10 Owners 92

9.3.11 Authors 92

9.3.12 Status 93

9.3.13 User-Specific-Codes 93

9.3.14 Superseded-Documents 93

9.3.15 Number-Of-Pages 93

9.3.16 Languages 93

9.4 DFR ATTRIBUTE SYNTAXES 94
9.4.1 String Attribute Syntaxes 94

9.4.2 Miscellaneous Attribute Syntaxes 94

SECTION FOUR - DFR REALIZATION 97
10. SUPPLY OF THE DFR ABSTRACT SERVICE 99
10.1 Performance of the Create abstract operation 99

10.2 Performance of the Delete abstract operation 99

10.3 Performance of the Copy abstract operation 99

10.4 Performance of the Move abstract operation 99

10.5 Performance of the Read abstract operation 100

10.6 Performance of the Modify abstract operation 100

10.7 Performance of the List abstract operation 100

10.8 Performance of the Search abstract operation 100

10.9 Performance of the Reserve abstract operation 100

10.10 Performance of the Abandon abstract operation 101

11. PORT REALIZATION 101
APPENDICES PART 1 103

APPENDIX A - OVERVIEW OF ATTRIBUTE MAPPING - ODA DOCUMENT PROFILE TO DFR105

APPENDIX B - FORMAL ASSIGNMENT OF OBJECT IDENTIFIERS 107

APPENDIX C - FORMAL DEFINITION OF THE DFR ABSTRACT-SERVICE 111

- Vi -

APPENDIX D - FORMAL DEFINITION OF DFR-BASIC-ATTRIBUTE-SET
APPENDIX E - FORMAL DEFINITION OF DFR-EXTENSION-ATTRIBUTE-SET
PART 2 - PROTOCOL SPECIFICATION

SECTION ONE - DFR ACCESS PROTOCOL SPECIFICATION

1. OVERVIEW OF THE PROTOCOL

1.1 DFR Access Protocol Model

1.2 Services Provided by the DFR Access Protocol
2. DFR ACCESS PROTOCOL ABSTRACT SYNTAX DEFINITION
3. CONFORMANCE

3.1 Static Requirements

3.2 Dynamic Requirements

APPENDIX A - FORMAL ASSIGNMENT OF OBJECT IDENTIFIERS

129

135

139

141

143

143
144

144

147

147

147

149

Part 1

Abstract-Service Definition and Procedures

m\
-

SECTION ONE - INTRODUCTION

1.
1.1

1.2

SCOPE AND FIELD OF APPLICATION

Scope

This Standard ECMA-137 consists of two parts:

Part 1: Document Filing and Retrieval - Abstract-Service Definition and Procedures
Part 2: Document Filing and Retrieval - Protocol Specification

The Document Filing and Retrieval Application (DFR) provides the capability for large capacity
non-volatile document storage to multiple users in a distributed office system. This facility is
particularly useful in an environment where a large population of desktop workstations that have
limited storage capacity require access to large expensive storage devices.

Documents have associated attributes, to facilitate and control retrieval. Use of these attributes
according to given algorithms will enable documents in the document storage to be browsed, re-
trieved, managed and deleted in a variety of ways. Access control protects documents from unau-
thorized operations. Documents can be stored in nested groups. References to documents and
groups can be created and also stored in nested groups. With specific attributes a document can
be designated a version of another document. Single documents, references or groups can be
moved from one group into another group. Enumeration of groups, identification by other at-
tributes besides names, identification by conditions over attributes, search for documents meeting
search criteria, concurrent access to the same document, reference or group of documents are
further functions provided by this standard for the user requirements in an office environment.

The Document Filing and Retrieval Application is a Distributed Application located in the
Application Layer of the Reference Model for Open Systems Interconnection (see ISO 7498).

It should be noted that a Document Filing and Retrieval Application will provide storage for an
open-ended set of document types. The content of the documents stored is transparent to the
Document Filing and Retrieval Server.

NOTE 1

This Standard deals with individual Document Filing and Retrieval Servers, it defines the Docu-
ment Filing and Retrieval (DFR) Protocol. The Standard governs the interactions of a Document
Filing and Retrieval Client and a single Document Filing and Retrieval Server. Future siandardiza-
tion will consider the facilities of a Distributed Filing and Retrieval Server System and the need for
inter-server protocols and a DFR Administration Protocol. It is intended that the results of the ini-
tial standardization work be extendible and support this future work.

NOTE 2

This Siandard does not presently include administration aspects of the Document Filing and
Retrieval abstract-service. For the time being these aspects are left to local implementation,
although they are candidates for future standardization.

Field of Application

This Part 1 of this ECMA Standard specifies the Document Filing and Retrieval Abstract-service
that enables a User to communicate with a remote Document Filing and Retrieval Server in
order to access a remote document store.

This Part 1 of this ECMA Standard:

- defines a Client-Server type model in accordance with the Distributed Office Application
Model,

- defines functions and services provided by Document Filing and Retrieval Servers;

2.1

2.2

defines a specific Document Filing and Retrieval model for managing Documents and Groups
of Documents;

defines the Document Filing and Retrieval Abstract Service using the principles established by
the Abstract Service Definition Conventions [ISO 10021-3];

defines the usage of other Services.

This ECMA Standard serves the following important fields of application:

capability for large capacity document storage for use by multiple users in a distributed
system;

ordered filing and multi-key retrieval of documents;
structured organization of groups of documents;

storage of an open-ended number of different document types;
referencing documents and groups ;

filing and referencing of documents outside of the document storage (for example, non-elec-
tronic hard copy documents);

adjoining attributes to documents, groups and references, independent of the content;

capabilities to store, retrieve and delete documents of the document store whatever their
content;

capabilities to search for, order, retrieve, and delete single documents or groups of documents
using document attributes;

capabilities to maintain different versions of a document, including such concepts as
""previous version", "next version" and "last version";

protection against unauthorized storage and retrieval of documents:

capabilities to control concurrent access to DFR objects.

REFERENCES
Reference Model and DOAM References 0
ECMA-131 Referenced Data Transfer (ISO/IEC DP 10031-2)

ECMA TR/42 Framework for Distributed-Office-Applications (ISO/IEC DP 10031-1)

ISO 7498 Information Processing Systems - Open Systems Interconnection - Basic

Reference Model

ISO/IEC 10021-3 Information Processing Systems - Text Communication - MOTIS - Part 3: Ab-

stract Service Definition Conventions

Presentation References

ISO 8824 Information Processing Systems - Open Systems Interconnection -

Specification of Abstract Syntax Notation One (ASN.1)

ISO 8824 DAD1 Information Processing Systems - Open Systems Interconnection -

Specification of Abstract Syntax Notation One (ASN.1): Draft Addendum 1
on ASN.1 Extensions

2.3

24

2.5

2.6

2.7

2.8

3.2

ISO 8825 Information Processing Systems - Open Systems Interconnection -
Specification of Basic Encoding Rules for Abstract Syntax Notation One
(ASN.1)

ISO 8825 DAD1 Information Processing Systems - Open Systems Interconnection -

Specification for ASN.1: Draft Addendum 1: ASN.1 Extensions
Association Control References

ISO 8649 Information Processing Systems - Open Systems Interconnection - Service
Definition for the Association Control Service Element

ISO 8650 Information Processing Systems - Open Systems Interconnection - Protocol
Specification for the Association Control Service Element

Reliable Transfer References

ISO/IEC 9066-1 Information Processing Systems - Text Communication - Reliable Transfer -
Part 1: Model and Service Definition

ISO/IEC 9066-2 Information Processing Systems - Text Communication - Reliable Transfer -
Part 2: Protocol Specification

Remote Operations References

ISO/IEC 9072-1 Information processing systems - Text Communication - Remote Operations
Part 1: Model, Notation and Service Definition

ISO/IEC 9072-2 Information Processing Systems - Text Communication - Remote Operations
Part 2: Protocol Specification

Directory References

ISO/IEC 9594-1 Information Processing Systems - The Directory - Overview of Concepts,
Models and Services

ISO/IEC 9594-2 Information Processing Systems - The Directory - Models
ISO/IEC 9594-3 Information Processing Systems - The Directory - Abstract Service Definition
Office Document Architecture References

ECMA-101 Open Document Architecture (ODA) and Interchange Format
Part 1: Introduction and General principles (ISO/IEC 8613-1)
Part 4: Document Profile (ISO/IEC 8613-4)
Part 5: Office Document Interchange Format (ISO/IEC 8613-5)

Message Handling References

ISO/IEC 10021-5 Information Processing Systems - Text Communication - MOTIS - Part S:
Message Store: Abstract Service Definition

DEFINITIONS

Ancestor

The Parent of a DFR-Object and, recursively, any Ancestor of the former, including the DFR-
Root-Group.

Attribute-Type

That component of an attribute which indicates the type of information given by the Auribute
Value.

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

Attribute-Value
A particular instance of that class of information indicated by an Auribute-Type.
Attribute-Value-Assertion

A proposition, which may be true, false, or undefined, concerning the values of Awuributes in a
DFR-Entry.

Conceptual-Document

A set of DFR-Documents, considered to be "different Versions of the same document".
Control-Attribute-Package

A collection of attributes used to control access to a DFR-Object.

Descendant

For a given DFR-Group, any of the DFR-Group Members, and recursively, any Descendant
thereof.

DFR-Attribute 0
A distinctive characteristic of a DFR-Object.

DFR-Basic-Attribute-Set

The set of DFR-Auributes, that will be mandatorily supported by every DFR-Server.

DFR-Content

The prime information content of a DFR-Object. The nature of the DFR-Content depends on
the DFR-Object-class of the DFR-Object.

DFR-Document

A structured amount of information that can be filed, retrieved, and interchanged consisting of a
DFR-Document-Content and associated DFR-Attributes.

DFR-Document-Content

A body of information actually contained within the document, e.g an office document, and not
interpreted by DFR.

DFR-Document-Store 0
A named collection of DFR-Objects which is logically arranged in a hierarchical structure.
DFR-Entry

A DFR-Object together with additional DFR-Auributes describing its hierarchical place in the
DFR-Document-Store.

DFR-Extension-Attribute-Set

The set of DFR-Auributes (beyond the DFR-Basic-Auribute-Set) defined in this Standard and
optionally supported by some DFR-Servers.

DFR-External-Reference
A DFR-Reference whose Referent is in another DFR-Document-Store.
DFR-Group

A collection of DFR-Objects in a DFR-Document-Store which are called DFR-Group Members of
the DFR-Group. A DFR-Group consists of DFR-Attributes which are associated with the DFR-
Group as a whole and a DFR-Group-Content.

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

DFR-Group-Content

A sequence of UPIs, identifying all the DFR-Group-Members of the DFR-Group.
DFR-Group-Member

A DFR-Object which is identified in the DFR-Content of it’s parent DFR-Group.
DFR-Internal-Reference

A DFR-Reference whose Referent is in the same DFR-Document-Store.
DFR-Membership-Criteria

A DFR-Auribute of a DFR-Group establishing constraints on DFR-Group membership based on
attribute values.

DFR-Object

One of a set of information entities managed by a DFR-Server. DFR-Objects defined are DFR-
Documents, DFR-Groups, DFR-References and DFR-Search-Resuli-Lists.

DFR-Object-Class

A DFR-Auribute indicating the class of a DFR-Object (DFR-Document, DFR-Group, DFR-
Reference or DFR-Search-Result-List).

DFR-Object-Tree

The DFR-Object-Tree of a DFR-Group is the tree formed by a specific DFR-Group and all its
Descendants.

DFR-Pathname

A DFR-Auribute used to help identify a DFR-Object in a DFR-Document-Store. The DFR
Pathname is formed by a sequence of values of the DFR-Title attribute of all Ancestors of the
DFR-Object to be identified with the DFR-Title of the DFR-Object itself being the last in the
sequence.

DFR-Propei--Group
Any DFR Group other than the DFR-Root-Group.
DFR-Reference

A DFR-Object which acts as a link to another DFR-Object, which is called the Referent of the
DFR-Reference.

DFR-Reference-Content
The information stored in a DFR-Reference for the purpose of identifying the Referent.
DFR-Root-Group

The distinguished DFR-Group within a DFR-Document-Store having no Ancestor and the DFR-
Object-Tree of which encompasses all DFR-Objects in the DFR-Document Store.

DFR-Search-Criteria
A Filter.
DFR-Search-Result-List

A DFR-Object which has information about a set of DFR-Objects satisfying specified search crite-
ria.

DFR-Search-Result-List-Content

Information about the result of a DFR Search abstract operation.

3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40

3.41

3.42

-10 -

DFR-Server
That part of the DFR which supplies Document Filing and Retrieval services.
DFR-Unique-Permanent-Identifier

A DFR-Auribute assigned to every DFR-Object by the DFR-Server to identify unambiguously a
DFR-Object within the DFR-Document-Store.

DFR-User

The consumer of services supplied by a DFR-Server. At any time it is acting for a security subject
and takes on the security privileges of that security subject.

Filter

A construct specifying assertions about the presence or value of DFR-Auributes, it is intended to
be the same as in Directory (ISO/IEC 9594) and Message Store (ISO/IEC 10021-5).

Member

See DFR-Group-Member. ‘
Owner

A Security subject, with Owner Access right to a specific DFR-Object.

Parent

Each DFR-Object, except the DFR-Root-Group, is a DFR-Group-Member of a DFR-Group, which
is called its Parent

Privilege-Attribute-Certificate

A certified set of access privileges that can be presented by a DFR-User to establish access rights.
Referent

That DFR-Object to which a DFR-Reference refers.

Version

DFR-Document specified by the user as a derivation of one or more other DFR-Documents by
means of specific DFR-Attributes.

ACRONYMS
AE Application Entity
ASN.1 Abstract Syntax Notation One
CAP Control-Attribute-Package
DFR Document Filing and Retrieval Application
DOAM Distributed Office Application Model
DS DFR-Document-Store
PAC Privilege-Attribute-Certificate
QoS Quality of Service
RDT Referenced Data Transfer
UPI DFR-Unique-Permanent-ldentifier

5.

5.1

S.2

-11 -

CONVENTIONS

This Part 1 of this ECMA Standard uses the description conventions listed in the following clauses.

Conventions for Abstract-services

This Part 1 of this ECMA Standard uses the following ASN.1-based descriptive conventions for
the indicated purposes:

1) ASN.1 itself, to specify the abstract-syntax of information-objects and their compo-
nents, common data-types, and state-variables.

2) The ASN.1 OBJECT and PORT macros and associated abstract-service definition
conventions of ISO/IEC 10021-3, to specify the DFR Port.

3) The ASN.1 ABSTRACT-BIND, ABSTRACT-UNBIND, ABSTRACT-OPERATION,
and ABSTRACT-ERROR macros of ISO/IEC 10021-3, to specify the DFR abstract-
service.

4) The ASN.1 ATTRIBUTE MACRO and ATTRIBUTE SYNTAX MACRO from
ISO/IEC 9594-2, to specify attributes and attribute syntaxes.

NOTE 3

ASN.1 specifications in this Standard make full use of the ISO 8824 Addendum | features,
especially such syntactical constructs as "WITH COMPONENTS" (sub-typing of sequences, sels
and choices). All specifications are written using "IMPLICIT TAGS" convention, which means
systematic omission, at the time of ASN.l encoding, of all unnecessary “nested" tags, especially
those “recovered" by context-specific ones.

The DFR as any ROSE-based standard does not exploit the Presentation Layer facilities for
coping with difference between the local encoding and local syntaxes of each open system (see
the use of EXTERNAL in 6.3.2.1).

Conventions for Text in General
For the terms used in this Part 1 of this ECMA Standard the following rules apply:

1) Single terms beginning with a capital letter and compound terms (chained by hyphens
and each word also beginning with a capital letter) are defined terms. For the defini-
tions see 3, for the Attributes see also 9. Exceptions are the titles of the International
Standards, which also begin with capital letters, see clause 2.

2) Single terms and compound terms (written together without hyphens) which are ren-
dered in bold are either ASN.1-specified data-type names or their component
identifiers. For the definitions refer to the Appendices or to the corresponding clauses
in the main text.

The following characters are used in this Standard to indicate whether a parameter, an attribute
or other items described are mandatory, optional or conditional. That is:

M (Mandatory) stands for the condition that an item shall be present in any case (must be
supported by DFR);

O (Optional) stands for the condition that an item shall be present at the discretion of a
DFR implementer;

& (Conditional) stands for the condition that an item shall be present under some circum-
stances defined in this Standard.

=12 =

- 13-

SECTION TWO - DFR ABSTRACT-SERVICE DEFINITION

=14 =

6.1

- 15 -

DFR ABSTRACT MODEL

This clause provides an abstract functional model of Document Filing and Retrieval. For an
introduction and description of the abstract-service concept and its definition conventions, see
ISO/IEC 10021-3.

The Document Filing and Retrieval environment comprises two atomic objects, the Document
Filing and Retrieval Server (DFR-Server) and the Document Filing and Retrieval User (DFR-
User). A DFR-Server is modelled as an atomic object, which acts as a provider of services to the
DFR-User. The DFR-Server is described using an abstract model in order to define the service
provided by the DFR-Server - the Document Filing and Retrieval abstract service. Figure 1 shows
the DFR model.

DFR-User

DFR
abstract-service
user

DFR-Protocol

DFR-Server

DFR
abstract-service
provider

Fig. 1 - Document Filing and Retrieval Abstract-service
Objects in DFR Environment

The DFR-Server is modelled as an atomic object. It supplies the DFR Port abstract-services to
the DFR -User.

The formal definition of the DFR-Server object is as follows:
dfr-server OBJECT

PORTS { dfr-port [S]}
:: = id-dfr-server

The DFR-User is modeled as a separate object. The DFR-User consumes the DFR Port abstract-
services supplied by the DFR-Server.

dfr-user OBJECT
PORTS { dfr-port [C] }
;2= id-dfr-user

The DFR-Server Port is the concern of this ECMA Standard for operations on DFR-Objects.

6.2

6.3

= 16 =

DFR Port

A DFR-User is joined to, and interacts with, a DFR-Server by means of the DFR Port. The
collection of capabilities provided by this port forms the DFR-Server Abstract-service. These
capabilities include obtaining information on, fetching, and deleting documents residing in the
DFR-Server.

By means of the abstract-bind-operation, the DFR-Server authenticates a user by checking the
user’s credentials or certified identity and access privileges (PAC) before providing it with any of
the filing and retrieval capabilities.

This asymmetric abstract port is defined for any DFR-User (in the consumer role) and for any
DFR-Server (in the supplier role). Such a pair of abstract ports makes it possible for any DFR-
User to communicate with a DFR-Server with a view to executing ordinary DFR-operations.
All these operations are also asymmetrical. Each of them is invoked by the consumer (the DFR-
User) and performed by the supplier (the DFR-Server).

The DFR Port is defined as follows:

Dfr PORT
CONSUMER INVOKES {
Create,
Delete,
Copy,
Move,
Read,
Modify,
List,
Search,
Reserve,
Abandon }
SUPPLIER INVOKES { }
= id-pt-dfr
Information Model
A DFR-Server offers its users operations on DFR-Objects in its DFR-Document-Store. The
object classes of DFR-Objects are DFR-Documents, DFR-Groups, DFR-References, and DFR-
Search-Result-Lists. A DFR-Group is either a DFR-Root-Group or a DFR-Proper-Group. A

DFR-Reference is either internal or external. This gives the following specification for all DFR-
Object classes.

DfrObjectClass :: = ENUMERATED {

dfr-document (0),
dfr-root-group (1),
dfr-proper-group (2),

dfr-internal-reference (3

)
dfr-external-reference (4),
dfr-search-result-list (5)

}

A DFR-Document-Store is managed and accessed by the DFR-Server. A DFR-Document-Store
is assigned to one DFR-Server only. A DFR-Server manages one DFR-Document-Store. The
assignment of DFR-Servers to DFR-Document-Stores, that is which DFR-Server manages which

-17 -

DFR-Document-Store, may be noted in the OSI Directory [ISO/IEC 9594]. A DFR-Document-
Store is a named collection of DFR-Objects which is logically arranged in a hierarchical
structure. An example of how different DFR-Objects in a DFR-Document-Store are related to
each other is illustrated in Figure 2 according to the definitions below. Group membership is
depicted in the figure by solid lines.

DFR-ROOT-GROUP

\

DFR-GROUP DFR-DOCUMENT DFR-REFERENCE DFR-GROUP
\\
\\
\\
DFR-GROUP DFR-DOCUMENT
DFR-SEARCH- DFR-DOCUMENT DFR-REFERENCE
RESULT-LIST .

DFR-DOCUMENT DFR-DOCUMEN'T

Fig. 2 - Kxample of DFR Document Store Structure

A DFR-Object is a member of one and only one DFR-Group (parent group), an exception is the
DFR-Root-Group that has no parent group. A DFR-Object may participate indirectly in more
than one DFR-Group by means of DFR-References. A DFR-Reference refers to one and only
one DFR-Object. A reference to a DFR-Reference is not permitted. A DFR-Object may be
referenced from more than one DFR-Reference. Each DFR-Group represents a DFR-Object-
Tree which is formed by all descendants of that DFR-Group. A DFR-Search-Result-List contains
information about a set of DFR-Objects satisfying some selection criteria.

A DFR-Object consists of DFR-Attributes and DFR-Content. A DFR-Object is introduced into a
DS by creating a DFR-Entry for it. A DFR-Entry is formed by a DFR-Object together with
additional DFR-Attributes describing its hierarchical place in the DFR-Document-Store. The
immediately containing DFR-Group is the parent of the DFR-Object, and the DFR-Object is a
member of that DFR-Group.

DfrEntry :: = SEQUENCE {
attributes [0] DfrEntryAttributes,
content [1]DfrObjectContent }

The attributes of a DFR-Entry are those of the correspondent DFR-Object plus two
supplementary DFR-Attributes, DFR-Parent-Identification and DFR-Pathname.

The attributes forming the DfrEntryAttributes are defined either in this Standard, or may be
defined externally. This is modelled by attribute sets, a basic attribute set and extension attribute
sets. Two attribute sets are defined in this Standard, the mandatory DFR-Basic-Attribute-Set and
the optional DFR-Extension-Attribute-Set. Other optional extension attribute sets possibly
including Security attributes may be defined elsewhere. The DFR-Basic-Attribute-Set is

6.3.1

6.3.2

- 18 -

contained in the abstract syntax of the DFR access protocol. Each extension attribute set réquires
at least one supplementary abstract syntax. The abstract syntax of the DFR-Extension-Attribute-
Set is defined in Appendix E.

NOTE 4
Negotiation of exiension attribute sets is performed by means of negotiation of the corresponding
abstract syntax during the Bind abstract operation.

DfrEntryAttributes ::= SET OF Attribute

The DfrObjectContent is the actual information stored with the DFR-Object. The nature of this
information depends on the DfrObjectClass. The DFR-Content of a DFR-Group is a sequence
of UPIs of all its Members. The DFR-Content of a DFR-Document is a body of information, e.g.
an office document. The DFR-Content of a DFR-Reference is a logical pointer to some other
DFR-Object (DFR-Group or DFR-Document or DFR-Search-Result-List), called the Referent.

DfrObjectContent :: = CHOICE {

document-content [0] DfrDocumentContent,
root-group-content [1] DfrGroupContent,
proper-group-content [2] DfrGroupContent,

internal-reference-content [3] DfrinternalReferenceContent,
external-reference-content [4] DfrExternalReferenceContent,
search-result-list-content [5] DfrSearchResultListContent }

Each DFR-Object has a unique identification within the DFR-Document-Store. This
identification is given by a Unique-Permanent-Identifier (UPI). A UPI is assigned to each DFR-
Object by the DFR-Server. Once assigned by a DFR-Server, the value of each UPI will not be
changed within the life of a DFR-Object. In addition, this UPI value will differ from that of all
DFR-Objects which once existed in the same DFR-Server (including all existing DFR-Objects
and all deleted DFR-Objects).

DfrUniquePermanentldentifier ::= OCTET STRING

NOTE 5
UPI is also modelled as a DFR-Autribute, see 9.2.1.

DFR-Document-Store

A DFR-Document-Store is a collection of DFR-Objects logically arranged in a hierarchical
structure.

All DFR-Objects in a DFR-Document-Store are accessible via the DFR-Server.

Any DFR-Object within a DS can be accessed via its UPI or via the DFR-Pathname. The UPI
is assigned to a DFR-Object by the DFR-Server when the object is stored in a DFR-
Document-Store in order to unambiguously identify the DFR-Object. The DFR-Pathname is
formed by a sequence of values of the DFR-Title attribute from all Ancestors of the DFR-
Object to be identified with the DFR-Title of this DFR-Object being the last in this sequence.
Since the DFR-Title attribute is only unique if such a restriction is defined for the DFR-
Document-Store, access via the DFR-Pathname may fail.

DFR-Documents

A DFR-Document is a structured amount of information that can be interchanged, stored, and
retrieved. A DFR-Document consists of a DFR-Document-Content along with DFR-Attributes
which are associated with the DFR-Content. A DFR-Document is contained in one DFR-
Document-Store.

6.3.2.1

6.3.2.2

6.3.3

- 19 -

NOTE 6

Maintenance of consisiency between DFR-Documents and their copies in different DFR-
Document-Stores are outside the scope of this standard, and left 1o the responsibility of the DFR-
User.

DFR-Attributes are additional data items used to identify and to describe properties of a DFR-
Document. The DFR-Content is the actual information stored in the DFR-Document, and is
not interpreted by the DFR-Server.

DFR-Document-Content

The DFR-Document-Content is a body of information that has been provided to a DFR-
Server for the purpose of storage.

DfrDocumentContent :: = EXTERNAL (WITH COMPONENTS {

.., direct-reference PRESENT,
indirect-reference ABSENT,
encoding (WITH COMPONENTS {

..., arbitrary ABSENT })})

The direct-reference component is an OBJECT IDENTIFIER whose value is the same as
the value of the DFR-Document-Type attribute of the DFR-Document (see 9.2.3).

Upon request a DFR-Server transfers the content of a DFR-Document to the DFR-User. A
DFR-Server never interprets the content of the documents it stores.

NOTE 7
The cooperation of DFR with a document content access protocol is for further Study.

DFR-Document Attributes

DFR-Document attributes are data items that identify a DFR-Document, describe its
Content, help control access to it, or are in some other way associated with the document.

DFR-Attributes serve to qualify or enhance a DFR-Document’s content, or to define
additional characteristics of the Document or its intended use. The values of certain DFR-
Attributes have a particular meaning to the DFR-Server and elicit defined behavior while
others are DFR-User defined and controlled.

DFR-References

A DFR-Reference allows a DFR-Object to participate in more than one DFR-Group without
requiring distinct copies of that DFR-Object to be created. A DFR-Reference consists of a
DFR-Content containing a "pointer" to the referenced DFR-Object (the Referent) and of
DFR-Attributes (see 6.3.3.2).

The Referent may be a DFR-Document, a DFR-Group or a DFR-Search-Result-List; it may
not be another DFR-Reference. The DFR-Object-Class of the Referent is noted in the DFR-
Reference-Content. In the case of a DFR-Reference to a DFR-Document, the content type of
the latter is also noted in this DFR-Reference in the Attribute DFR-Document-Type (in the
form of an OBJECT IDENTIFIER).

A DFR-Reference refers either to a DFR-Object within the same DFR-Document-Store
(DFR-Internal-Reference) or to a DFR-Object in a different DFR-Document-Store (DFR-
External-Reference).

If the DFR-Server detects at any time, that the Referent has been deleted, it does not delete
the DFR-Reference, but sets to true the DFR-Reference-Deleted attribute of the DFR-
Reference.

6.3.3.1

-20 -

The content of a DFR-Reference is structured like a Referenced Data Transfer [ECMA-131]
reference to simplify its use in some cases in an RDT Transfer-operation. The RDT-reference
information stored in a DFR-Reference-Content is modelled in the Document Filing and
Retrieval context as follows:

a)

b)

Use of an RDT-reference as the content of a DFR-External-Reference: An RDT-
reference to an entire DFR-Object may be produced at the DFR-User’s request by
the DFR-Server of the Referent. This RDT-reference may then be stored in the
content of a DFR-External-Reference in another DFR-Document-Store at the DFR-
User’s request (see ASN.1 specification below). This DFR-External-Reference may
later be used in an Referenced Data Transfer [ECMA-131] transfer operation. The
DFR-User may also later read the content of this DFR-External-Reference (the
RDT-reference) and transfer it to another application for subsequent RDT transfer
of the referenced DFR-Object.

Use of an RDT-reference as the content of a DFR-Internal-Reference: A DFR-
Internal-Reference may be created by the DFR-Server internally as the result of a
DFR-User request. The content of a DFR-Internal-Reference is an RDT-reference
without ae-identifier and application sub-components (see ASN.1 specification
below). It is not possible to use this DFR-Internal-Reference in an RDT transfer
operation.

Use of an RDT-reference for immediate RDT transfer: an RDT-reference to an
entire DFR-Object, to the attributes of a DFR-Object, or to the content of a DFR-
Object may be produced at the DFR-User’s request by the DFR-Server of the
Referent, to be used for immediate transfer of the referenced data to some other
(sink) DFR-Server or to another application using the standard RDT mechanism. If
some DFR data are to be transferred via RDT to another application, it is necessary
that the latter be able to interpret these DFR data (for example the Print Application
might only accept a DFR-Document-Content).

DFR-Reference Content

The content of a DFR-Reference contains a logical pointer to the Referent and the DFR-
Object-Class attribute of the Referent (to indicate whether the Referent is a DFR-
Document, a DFR-Group or a DFR-Search-Result-List).

An internal DFR-Reference refers to its Referent by means of the UPI of the latter. An
external DFR-Reference refers to its Referent by means of the name of the DFR-
Document-Store containing the Referent together with the UPI of the Referent. In both
cases of DFR-References, external or internal, a Quality of Service parameter is defined (see
6.3.3.3).

The content of a DFR-Reference is an RDT-reference, with some restrictions on the
presence or absence of its optional components. The ASN.1 specification of a DFR-
Reference-Content is as follows:

- 21 -

DfrinternalReferenceContent :: = RDT-reference
(WITH COMPONENTS {
ae-identifier ABSENT,
local-reference (WITH COMPONENTS { specific-reference }),
data-object-type (DfrObjectClassID (
id-dfr-document |
id-dfr-proper-group |
id-dfr-search-result-list)),
quality-of-service (WITH COMPONENTS {
qos-level (WITH COMPONENTS { ... , level-1 ABSENT })
single-use-of-reference (FALSE)}),
token ABSENT })

DfrExternalReferenceContent :: = RDT-reference
(WITH COMPONENTS {
ae-identifier,

local-reference ,
data-object-type (DfrObjectClassID (
59 id-dfr-document |
id-dfr-root-group |
id-dfr-proper-group |
id-dfr-search-result-list)),
quality-of-service (WITH COMPONENTS {
qos-level (WITH COMPONENTS { ..., level-1 ABSENT 1)
single-use-of-reference (FALSE)}),
token ABSENT 1})

DfrObjectClassID :: = OBJECT IDENTIFIER (
id-dfr-document |
id-dfr-root-group |
id-dfr-proper-group |
id-dfr-internal-reference |
id-dfr-external-reference |
id-dfr-search-result-list)

The semantics of different components of an RDT-reference in the context of a DFR-

Reference-Content is as follows:

ae-identifier

is specified for DFR-External-References only, and identifies the Application Entity of that
DFR-Server which actually manages the DS of the Referent. It is a sequence of three

alternative forms of AE identification; at least one of them shall be present:

locational-identifier

specifies the AE directly, in terms of its presentation address, application-entity title and

application-context name;

logical-identifier
is the distinguished name of the AE in the OSI Directory (ISO/IEC 9594);

6.3.3.2

-22 -

indirect-logical-identifier

is the Distinguished-Name of the DS of the Referent (the corresponding OS] Directory
(ISO/IEC 9594) entry shall specify the AE of the DFR-Server managing this DFR-
Document-Store).

NOTE 8

An RDT-reference to a DFR-Object used as the content of a DFR-External-Reference
would normally have both the "locational-identifier" and the “indirect-logical-identifier"
components present;, however, only the latter component is mandaiory.

local-reference

specifies the Referent locally in its DS, as well as the DS itself (the latter in the case of a
DFR-External-Reference only); it consist of optional application component and mandatory
specific-reference component:

application
(for DFR-External-References only) specifies the Referent’s DS locally in the Application
Process which currently manages it.

NOTE 9

Such an identification may be useful, first, to distinguish between the DFR-Server and other
Servers eventually co-located with it and using the same RDT Service Element; and second,
to distinguish (locally) between the Referent’s DS and some other DS which may have been
later moved 1o this location. In this latter case, this other DS shall not respond 1o the same
"application" identification as the Referent’s DS. On the other side, as this DS
identification remains strictly local, it ceases to be valid if the Referent’s DS has been
moved, so, the actual value of this component shall be specified in the Directory entry for
this DS, 1o be read together with the new DS location information.

specific-reference
gives the UPI of the Referent in its store.

data-object-type

contains an OBJECT IDENTIFIER which corresponds to the value of the DFR-Object-
Class attribute of the Referent. This OBJECT IDENTIFIER is one of six possible values of
the data-type DfrObjectClassID (see specification above), which are in one-to one
correspondence with the values of the DfrObjectClass enumerated type. Not all six values
may be used, because a DFR-Reference cannot refer to another DFR-Reference (in the case
of an DFR-Internal-Reference it also cannot refer to its own DFR-Root-Group).

quality-of-service
has two components, both are mandatory for DFR-External-References as well as for DFR-
Internal-References:

qos-levelq
specifies whether a "fidelity time" is defined for this DFR-Reference (see details in the
next paragraph);

single-use-of-reference
is a boolean value, always set to FALSE (i.e. multiple use of reference) in both DFR-
External-Reference and DFR-Internal-Reference cases.

DFR-Reference Attributes
DFR-Reference attributes are data items associated with a DFR-Reference.

The DFR-Reference attributes are explicitly associated with the DFR-Reference; they may
differ from attributes of the Referent. The semantics of some DFR-Reference attributes

6.3.3.3

6.3.4

23 -

however, will normally, at the users discretion, be related to the Referent; in this way they
provide additional information about the latter. Some other DFR-Reference attributes are
solely related to the DFR-Reference itself. The classification of all DFR-Reference attributes
among these two categories is shown in the tables in chapter 9.

Certain attributes have a particular meaning to a DFR-Server and elicit defined behaviour
while others are user defined and controlled.

DFR-Reference Quality of Service Level

A Reference may be either Guaranteed or Unguaranteed. If it is guaranteed the DFR-Server
guarantees that a Referent will exist and will not be changed (neither its DFR-Content nor
its DFR-Attributes) as long as at least one Guaranteed Reference to it exists. The Quality of
Service (QoSLevel) for References is the same as in RDT. The Referent as existing at
reference creation time may be the same at dereferencing time, might be changed in
between, or may not be available at all at dereferencing time. This situation is modelled by
three Levels of QoS:

Level 1 unguaranteed reference: the Referent might be changed or might not be
available at dereferencing time.

Level 2 unguaranteed reference: the Referent might be changed or might not be
available at dereferencing time. However a change
which has occurred since the reference creation time
is indicated to the DFR-User.

Level 3 guaranteed reference: as Level 2 but now the fidelity of the reference (i.e.
the Referent is identical at reference creation time
and dereferencing time) is guaranteed for a certain
amount of time (fidelity time).

QosLevel :: = CHOICE {
level-1 [0] IMPLICIT NULL,
level-2 [1]IMPLICIT UTCTime, -- produce time --
level-3 [2]IMPLICIT SEQUENCE {
produce-time UTCTime,
fidelity-time UTCTime }}

In a DFR-Reference, in contrast to an RDT-reference, the "level-1" QoSLevel is never used,
that is the "produce-time" is always included in the reference. The reason for this is that the
DFR-Server automatically maintains and updates DFR-Attributes-Modify-Date-And-Time
and DFR-Content-Modify-Date-And-Time attributes of each DFR-Object in the DS, and
thus can always indicate whether changes have been made to the Referent.

DFR-Groups

A DFR-Group is a collection of DFR-Objects in a DFR-Document-Store which are called
DFR-Group-Members of the DFR-Group. A DFR-Group consists of DFR-Attributes which
are associated with the DFR-Group as a whole and a DFR-Group-Content which is a sequence
of UPIs of all Members of the DFR-Group.

A DFR-Group may be either a DFR-Root-Group or a DFR-Proper-Group. A DFR-Proper-
Group itself is always a Member of some other DFR-Group (Parent). A DFR-Root-Group is
not a Member of any other DFR-Group; each DFR-Document-Store contains only one DFR-
Root-Group. Any DFR-Object of a given DS can be reached from the DFR-Root-Group of
that DS. The creation (deletion) of the DFR-Root-Group can not be performed by the user of
the Document Filing and Retrieval Port.

6.3.4.1

6.34.2

< 34 =

NOTE 10

The creation and deletion of the DFR-Root-Group including the first registration of Owner(s)
and other security subjects in the DFR-Access-List (see 6.8) is performed by some administration
authority. This administration authority is not specified in this Siandard but left to local
implementations.

DFR-Group-Content
The DFR-Group-Content is a sequence of UPIs of all members of the DFR-Group.

Members of a DFR-Group may be DFR-Documents, DFR-Groups, DFR-References and
DFR-Search-Result-Lists.

The ordering of the DFR-Group-members is as defined in the DFR-Ordering attribute (see
9.2.11) of the DFR-Group.

DfrGroupContent :: = SEQUENCE OF DfrUniquePermanentldentifier

A DFR-Group may be assigned a DFR-Membership-Criteria attribute. The membership
criteria govern membership in the group; new DFR-Members are required to satisfy the
membership criteria before being added. The attributes of the new DFR-Member are
verified against the membership criteria and the addition is denied if the verification fails. A
DFR-Group having no specified membership criteria permits any new direct DFR-Member
to be added.

When a request to change the membership criteria of a DFR-Group will cause any conflict
with the membership for one or more current members of the group, such a request will be
rejected.

The membership criteria for a Group apply only to members. That means, if a DFR-
Reference is a member of a given DFR-Group, only the attributes of this reference are the
criteria to be verified for the membership in this DFR-Group; it is not relevant for the
reference’s membership in the DFR-Group if the attributes of the corresponding Referent
are changed and thus no longer satisfy the membership criteria.

The Members of a DFR-Group may be enumerated by a List abstract operation and their
attributes examined. When a group is enumerated, the attributes returned for a Reference
member are never those of the Referent. The attributes of a Referent can only be obtained
by the Read abstract operation.

The DFR-Object-Tree of a DFR-Group is formed by the DFR-Group itself and all its
Descendants. These Descendants are either Members of this DFR-Group or Members of
other Descendants of this DFR-Group, recursively.

Some DFR operations apply to the entire DFR-Object-Tree of a DFR-Group rather than to
its DFR-Group-Members only.

DFR-Group Attributes

DFR-Group attributes are data items that identify a Group, describe its Content, help
control access to it, or are in some other way associated with the Group.

DFR-Group attributes serve to qualify or enhance a group s content, or to define additional
characteristics of the Group or its intended use. Certain DFR-Attributes have a particular
meaning to a DFR-Server and elicit defined behavior while others are user defined and
controlled.

6.3.5

6.3.5.1

6.3.5.2

- 25 -

DFR-Search-Result-List

A DFR-Search-Result-List is a DFR-Object intended exclusively for holding results of a
Search abstract operation.

A DFR-Search-Result-List may only be created with empty content, which is filled in as result
of a Search abstract operation. The user can read or list a DFR-Search-Result-List, as well as
modify its attributes, but the content may only be modified by another Search abstract
operation. A Search abstract operation may also be done without specifying new search
criteria (thus updating the content of an existing DFR-Search-Result-List).

DFR-Search-Result-List Content

The DFR-Content of a DFR-Search-Result-List holds a sequence of the DFR-Attributes
UPI and DFR-Object-Class from all DFR-Objects satisfying the search expression specified
in the Filter of a Search abstract operation. It also contains additional information
regarding the domain and criteria of the search as well as the time and conditions of the
most recent Search abstract operation execution.

DfrSearchResultListContent ::= CHOICE { empty NULL,
produced SEQUENCE {
continuation [0] ContinuationContext OPTIONAL,

start-date-and-time [1] UTCTime,
end-date-and-time [2] UTCTime,

object-list [3] DfrEntryList,

ordering [4] OrderingRule OPTIONAL,
search-domain [5] SearchDomain,
search-criteria [6] SearchCriteria 13}

A DfrSearchResultListContent may only be "produced" by a Search abstract operation; at
the SearchResultList creation time it is "empty". There is no possibility to change the DFR-
Content of a DFR-Search-Result-List except by a re-execution of the Search abstract
operation in such a way as either to replace or to append to its existing content.
DfrSearchResultListContent will always be placed in an existing Dfr-Search-Result-List
(produced by a previous Create abstract operation) which is either empty, i.e. never used,
or not empty, i.e. used in a previous Search abstract operation. In the latter case the search-
criteria and search-domain stored in the DfrSearchResultListContent may either be reused
(e.g. for Search continuation) or overwritten by the search-criteria and search-domain used
in the Search abstract operation.

The ASN.1 types of individual components of DfrSearchResultListContent are formally
defined in 8.1.6.

DFR-Search-Result-List Attributes

DFR-Search-Result-List attributes are data items that identify a Search-Result-List, describe
its Content, help control access to it, or are in some other way associated with the Search-
Result-List.

DFR-Search-Result-List attributes serve to qualify or enhance a Search-Result-List-Content,
or to define additional characteristics of the Search-Result-List or its intended use. Certain
Attributes have a particular meaning to a DFR-Server and elicit defined behavior while
others are user defined and controlled.

6.3.6

- 26 -

DFR Version Management

The DFR Version management is achieved by a combination of specific DFR-Attributes,
managed by the DFR-Server in a predefined way, in order to make it possible for the user to
have a very flexible user-defined version structure, and to provide him with DFR-Server
assistance while navigating through this structure or attempting to modify it. Briefly, the DFR
Version management may be qualified as user-defined and server assisted.

A DFR-Document may have several versions, simultaneously present in a DFR-Document-
Store. In fact, each "version of a document" is itself an individual DFR-Document (an
individual entry in the DFR-Document-Store). The set of all DFR-Documents considered to
be "different versions of the same document", defines a Conceptual-Document. Different
DFR-Documents which are versions of the same Conceptual-Document are related by means
of two DFR-Server maintained attributes, DFR-Next-Versions and DFR-Previous-Versions.
The set of all DFR-Documents which are versions of one Conceptual-Document is structured
as a directed graph with regard to these two Attributes. The relationships among different
versions of a Conceptual-Document are independent of the group structure of the DFR-
Document-Store.

All versions of the same Conceptual-Document are distinguished from all other DFR-
Documents by means of a special DFR-Server managed attribute DFR-Version-Root. The
value of this attribute is the UPI of the (historically) first version of the Conceptual-
Document; this value remains valid and unchanged even if this first version is later deleted
(because it is no more considered, in this context, as the UPI of the first version, but is instead
identifying the overall Conceptual-Document). Versions of the same document may also have
other attribute values in common, but this is not mandatory and is not verified by the DFR-
Server.

In contrast, different versions of the same (conceptual) document are distinguished, apart
from their UPIs, by another special attribute, called Version-Name. This is a DFR-User-
specified attribute, intended for the user’s perception; the DFR-Server may only optionally
reinforce the uniqueness of its values among all versions of the same document.

When a DFR-User creates a DFR-Reference to a multi-version document, this DFR-Reference
always points to a particular version (that is, to one specific DFR-Document in the DFR-
Document-Store). By copying the DFR-Version-Root attribute of the Referent in the
corresponding attribute of the created DFR-Reference, the DFR-User is always able to find
(using a search operation with appropriate search criteria) some version of the same
Conceptual-Document even after the referenced version disappears.

In the simplest case, all versions of the same document are linearly ordered: each version
except the first has exactly one previous version, and each version except the last has exactly
one next version. In this case the latest version of a Conceptual-Document may be reached by
navigating through it using the DFR-Next-Versions attribute.

In a more general case, a given version of a Conceptual-Document may have several next
versions (tree model). In addition, a version may be declared following more than one
previous versions (directed graph model). Loops are not possible even in this case, as versions
are created sequentially, and each version may be linked only to existing ones (a DFR-
Previous-Versions attribute may not be modified for any Document which has a next version).

It is always the DFR-User’s action to define some existing or newly created DFR-Document as
a new version of some other DFR-Document or DFR-Documents; the latter are explicitly
specified by the user as previous version(s) for the newly defined one. Links from the new
version to all its predecessors (i.e. their UPIs) are the values of the attribute DFR-Previous-
Versions.

6.3.7

6.3.7.1

=27 -

At the same time, links in the opposite direction are created: each time a new version is
created as a successor of an existing one, the DFR-Next-Versions attribute of the latter
contains the link to the successor as a supplementary value.

When "discarding" an existing version, all links to it from its successors are redirected as to
point to each of its predecessors, and all links to it from its predecessors are redirected as to
point to each of its successors.

Version management applies only to DFR-Documents; versions of DFR-Groups, or of DFR-
References, or of DFR-Search-Result-Lists, are not defined.

Attributes

This subclause is provided to support the reader in understanding DFR. The definitions of
Attribute, ATTRIBUTE MACRO, ATTRIBUTE SYNTAX MACRO and Filter are in ISO/IEC
9594,

Each DFR-Object consists of two parts, a set of Attributes, and a "content" entity. DFR-
Attributes are managed independently of the content. Attributes can be read and changed. If
an attribute is changed the content of that object is not changed. Attributes characterize an
object, that is each attribute provides a piece of information about, or derived from, the object
to which it corresponds. Attributes affect storage and retrieval of an object and control access
to it.

For an overview of the DFR-Attributes see 9.

Some selected attributes are intended for ordering the objects by the value of these attributes.
In the case of textual attributes ordering presupposes the existence of some of collating
sequences. The definition of collating sequuences is outside the scope of this standard.

Introduction

An attribute consists of an attribute type, which identifies the class of information given by
an attribute, and the corresponding attribute value(s), which are particular instances of that
class appearing in the entry (see Figure 3).

Attribute
~
\ NG .
\ ATTRIBUTE N
Attribute Attribute
Type Value(s)
<
- - - \
-
= - \
- \
" \
_-" ATTRIBUTE VALUE(S) \
- \
-
Attribute Attribute Attribute
Value Value LI A S Value

Fig. 3 - Attributes and Attribute Values

Attribute :: = SEQUENCE {
type AttributeType,
values SET OF AttributeValue -- at least one value is required -- }

NOTE 11
Thus, for example, in a DFR-Document attribute the attribute-type could be the object

6.3.7.2

6.3.7.3

6.3.7.4

- 28 -

identifier of the DFR-Documeni-Type attribute, and the auribute-value could be the object

- identifier for "ODA".

All attributes of a given DFR-Entry must be of distinct attribute types.

Attribute-Type

Some attribute types will be internationally standardized. Other attribute types will be
defined by national administrative authorities and private organizations. Some externally
defined attribute types will not be specific to DFR, for example security attributes. This
implies that a number of separate authorities will be responsible for assigning types in a way
that ensures that each is distinct from all other assigned types. This is accomplished by
identifying each attribute type with an object identifier when the type is defined .

Attribute Type :: = OBJECT IDENTIFIER
Attribute-types defined in this Standard are specified in 9.

Attribute-values

Defining an attribute type also involves specifying the syntax, and hence data type to which
every value in such attributes must conform. This could be any data type.

AttributeValue ::= ANY -- DEFINED BY 1ype --
Attribute-type Definition and the ATTRIBUTE Macro

The definition of an attribute-type involves :

a) assigning an object identifier to the attribute type;

b) indicating or defining the attribute syntax for the attribute type;

c) indicating whether an attribute of this type may have only one or more than one
value (secured).

NOTE 12

A filter may always test for the presence or absence of an auribute of a particular attribute-
type.

The DFR ensures that the indicated attribute syntax is used for every attribute of this type.
The DFR also ensures that attributes of this type will have one and only one value in
entries if attributes of this type are defined to have only one value.

The following ASN.1 macro is used to define an attribute-type:

ATTRIBUTE MACRO RS

BEGIN
TYPE NOTATION = AttributeSyntax Multivalued | empty
VALUE NOTATION ::= value (VALUE OBJECT IDENTIFIER)
AttributeSyntax = "WITH ATTRIBUTE-SYNTAX" SyntaxChoice
Multivalued ;1= "SINGLE VALUE" | "MULTI VALUE" | empty
SyntaxChoice ::= value (ATTRIBUTE-SYNTAX) Constraint | type MatchTypes
Constraint .= “("ConstraintAlternative")" | empty
ConstraintAlternative ::= StringConstraint | IntegerConstraint

StringConstraint ;= "SIZE" "("SizeConstraint")"

6.3.7.5

~-20 -

SizeConstraint ::= SingleValue | Range

SingleValue ;1= value (INTEGER)

Range = value (INTEGER) "..." value (INTEGER)

IntegerConstraint ::= Range

MatchTypes ::= "MATCHES FOR" Matches | empty

Matches ::= Match Matches | Match

Match = "EQUALITY" | "SUBSTRINGS" | “ORDERING"
END

The correspondence between the parts of the definition and the various pieces of the
notation introduced by the macro is as follows:

a) the object identifier assigned to the attribute type is the value supplied in the value
assignment of the macro;

b) the attribute syntax for the attribute type is that identified by AttributeSyntax
production. This either points to a separately defined attribute syntax or explicitly
defines an attribute syntax by giving its ANS.1 type and matching rules. If a
separately identified attribute syntax is employed, a size constraint for underlying
string types or a value range for an underlying integer type may optionally be
indicated;

c) the attribute is single valued if the Multivalued production is "SINGLE VALUE"
and may have one or more values if it is "MULTI VALUE" or empty.

Attribute Syntax Definition

The definition of an attribute syntax involves:

a) optionally, assigning an object identifier to the attribute syntax;
b) indicating the data type, in ASN.1, of the attribute syntax;
c) defining appropriate rules for matching a presented value with a target attribute

value. None, some, or all of the following matching rules may be defined for a
particular attribute syntax:

i) equality. Applicable to any attribute syntax. The presented value must
conform to the data type of the attribute syntax.

ii) substrings. Applicable to any attribute syntax with a string data type. The
presented value must be a sequence ("'SEQUENCE OF’), each of whose
elements conforms to the data type.

iii) ordering. Applicable to any attribute syntax for which a rule can be
defined that will allow a presented value to be described as less than,
equal to, or greater than a target value. The presented value must
conform to the data type of the attribute syntax.

If no equality matching rule is defined, the DFR-Serverwill not attempt to match presented
values against target values of such an attribute type.

If an equality matching rule is defined, the DFR-Server:

a) treats values of attributes of this attribute syntax as having type ANY DEFINED
BY the data type indicated for the attribute syntax.

b) will only match according to the matching rules defined for that attribute syntax.

6.3.7.6

=30 -

c) will only match a presented value of a suitable data type.

The following ASN.1 macro is used to define attribute syntaxes:

ATTRIBUTE SYNTAX MACRO :: =

BEGIN

TYPE NOTATION = Syntax MatchTypes | empty

VALUE NOTATION ::= value (VALUE OBJECT IDENTIFIER)

Syntax = type

MatchTypes 1= "MATCHES FOR" Matches | empty

Matches = Match Matches | Match

Match = "EQUALITY" | "SUBSTRINGS" |"ORDERING"
END

The correspondence between the parts of the definition and the various pieces of the
notation introduced by the macro is as follows:

a) the object identifier assigned to the attribute syntax is a value supplied in the value
assignment of the macro;

b) the data type of the attribute syntax is that identified by the Syntax production,
i.e., that following macro name.

c) the defined matching rules are equality, if "EQUALITY" appears in the
MatchTypes production, substrings if "SUBSTRINGS" appears, and ordering if
"ORDERING" appears. If the production is empty, then no matching rules are
defined.

Should the '"empty" alternative of the notation be selected, the resulting notation
("ATTRIBUTE-SYNTAX") can be used to denote any possible attribute syntax.

NOTE 13
No support is provided in the macro for actually defining the maiching rules themselves: this
must be done by natural language or by other means.

Filters

A Filter parameter applies a test that is either satisfied or not by a particular DFR-Entry or
not. The Filter is expressed in terms of assertions about the presence or value of certain
attributes of the DFR-Entry, and is satisfied if and only if it evaluates to TRUE.

NOTE 14
A filter may be TRUE, FALSE, or undefined.

Filter :: = CHOICE {

item [O]Filterltem,

and [1)SET OF Filter,

or [2] SET OF Filter,

not [3]Filter}
A Filter is either a FilterItem (see 6.3.7.6.1), or an expression involving simpler Filters
composed together using the logical operators and, or, and not. The Filter is undefined if it

is a FilterItem which is undefined, or if it involves one or more simpler Filters, all of which
are undefined.

Otherwise, where the Filter is:

6.3.7.6.1

d)

-31 -

an item, it is TRUE if and only if the corresponding Filterltem is TRUE;
an and, it is TRUE unless any of the nested Filters is FALSE;

NOTE 15
Thus, if there are no nested Filters, the and evaluates to TRUE.

an or, it is FALSE unless any of the nested Filters is TRUE;

NOTE 16
Thus, if there are no nested Filters, the or evaluates to FALSE.

a not, it is TRUE if and only if the nested Filter is FALSE.
Filter-item

A FilterItem is an assertion about the presence or value(s) of an attribute of a particular
type in the DFR-Entry under test. Each such assertion is either TRUE, FALSE or
undefined.

Filterltem :: = CHOICE {
equality [0] AttributeValueAssertion,
substrings [1]SEQUENCE {
type Attribute Type,
strings SEQUENCE OF CHOICE {
initial [0]ANY, -- DEFINED BY type --
any [1]ANY, -- DEFINED BY type --
final [2]ANY }},-- DEFINED BY type --
greaterOrEqual [2] AttributeValueAssertion ,
lessOrEqual [3] AttributeValueAssertion,
present [4]Attribute Type,
approximateMatch [5]AttributeValueAssertion}

Every Filterltem includes an Attribute-Type which identifies the particular attribute
concerned.

Any assertion about the value of such an attribute is only defined if the AttributeType is
known, and the purported AttributeValue(s) conform to the attribute syntax defined for
that attribute type.

NOTE 17
Where these conditions are not met, the Filier is undefined

NOTE 18
Access Control restrictions may require that the Filterltem be considered undefined.

Assertions about the value of an attribute are evaluated using the matching rules
associated with the attribute syntax defined for that attribute type. A matching rule not
defined for a particular attribute syntax cannot be used to make assertions about that
attribute.

NOTE 19
Where this condition is not met, the Filterltem is undefined.

A Filterltem may be undefined (as dscribed abowe). Otherwise, where the Filterltem
asserts:

R e a—rp—

6.3.7.6.2

6.3.8

b)

d)

f)

-3 -

equality, it is TRUE if and only if there is a value of the attribute which is
equal to that asserted;

substrings, it is TRUE if and only if there is a value of the attribute in which
the specified substrings appear in the given order. The substrings must be non-
overlapping, and may (but need not) be separated from the ends of the
attribute-value and from one another by zero or more string elements.

If initial is present, the substring shall match the initial substring of the
attribute value; if final is present the substring shall match the final substring of
the attribute value; if any is present the substring may match any substring in
the attribute value;

greaterOrEqual, it is TRUE if and only if the relative ordering (as defined by
the appropriate ordering algorithm) places the supplied value before any value
of the attribute;

lessOrEqual, it is TRUE if and only if the relative ordering (as defined by the
appropriate ordering algorithm) places the supplied value before any value of
the attribute;

present, it is TRUE if and only if such an attribute is present in the entry;

approximateMatch, it is TRUE if and only if there is a value of the attribute
which matches that which is asserted by some locally-defined approximate
matching algorithm (e.g. spelling variations, phonetic match, etc). There are no
specific guidelines for approximate matching in this version of the DFR-
Standard. If approximate matching is not supported, this Filterltem should be
treated as a match for equality.

NOTE 20

In the case of an attribute whose value is of character type, ordering (greater-or-equal and
less-or-equal) is defined by the lexicographic order based upon some collating sequence.
This standard does not specify how and when a collating sequence is established.

Attribute-value-assertion

An AttributeValueAssertion is a proposition, which may be true, false, or undefined,
concerning the values of a DFR-Entry. It involves an attribute type and an attribute

value:

AttributeValueAssertion :: = SEQUENCE { AttributeType, AttributeValue }

and is:

a)

b)

c)

undefined, if any of the following holds:

i) the attribute type is unknown,
ii) the attribute syntax for the type has no equality matching rules,
iii) the value does not conform to the data type of the attribute syntax;

true, if the entry contains an attribute of that type, one of whose values matches
that value;

false, otherwise.

Security in DFR

Two specific
authorization.

security mechanisms are addressed here: Authentication and Access

6.3.8.1

6.3.8.2

6.3.8.3

-33-

Authentication

At bind time, the security subject represented by the DFR-User is authenticated either by
using password(s) or, in the case of a user who has been previously authenticated elsewhere,
by checking a certified identity. The authentication mechanism verifies the credentials of
the DFR-User requesting access to the DFR-Document-Store. This does not, however,
qualify the DFR-User to access all DFR-Objects stored in the DFR-Document-Store.
Certified identities can also be presented subsequent to the bind-operation, as arguments to
individual abstract operations. This permits the bind to be shared between multiple security
subjects, the DFR-User representing a different security subject for each of the abstract
operations concerned.

Access authorization

Access authorization is controlled by security attributes collectively known as a Control-
Attribute-Package (CAP).

The CAP is a collection of security related attributes, assigned to DFR-Objects. In order to
provide the design freedom necessary for DFR-Servers to operate under a wide variety of
security policies, the DFR implementer should be free to choose control attribute types
appropriate to the security regimes to which the implementer is targeted.

In the longer term standards will be defined for access authorization rules and for control
attribute types, from which implementers will make their choice. Particular examples of
such types might be the DFR object’s security classification, integrity level or other access
group category.

In the short term these standards are not available, and this standard defines one specific
control attribute, the Dfr-Access-List.

If the accessing DFR-User has presented, for a DFR-Object, to determine what access the
user may have to it, a Privilege-Attribute-Certificate (PAC), containing privilege attributes,
these will be used where appropriate in conjunction with the attributes in the CAP.
Privilege attributes are optionally presented either at abstract bind time via a PAC type
credentials argument (see 7.1.1) or explicitly at the time of the abstract operation request in
the privileges argument (see 8.1.3.4), or both. The DFR-User may also specify a proxy PAC
in a specific abstract operation request. This proxy PAC is used by the DFR-Server to
access another server on behalf of the requesting DFR-User (see 8.1.3.4).

Each specific DFR realization may make use either of the DFR-Access-List attribute, or of
other CAP attributes, according to some defined matching algorithms.

DFR-Security Policy

All DFR-Objects in a DFR-Document-Store have one or more Owners. An Owner is a
DFR-User with specific privileges with regard to the owned DFR-Object.

Each Owner of a DFR-Object is noted in the DFR-Access-List attribute (of the CAP) of
that DFR-Object. An Owner of a DFR-Object can add further Owners or delete existing
ones. Attempts to delete the last Owner result in an error.

The DFR-Access-List attribute defines the list of security subjects allowed to access a
specific DFR-Object, together with their access rights. A security subject registered in the
DFR-Access-List (of the CAP) of a DFR-Object is allowed, according to the registered
access rights, to access that DFR-Object. A DFR-Object will not be made visible to the
DFR-User unless at least read access was granted by the Owner of this DFR-Object. For
example, if a DFR-Object satisfies a filter condition specified in a Search operation, it will
not be made visible to the DFR-User having no read access permission to this DFR-Object.

- 34 -

The DFR-Access-List is an attribute of the DFR-Object. The contents of the DFR-Access-
List attribute can be modified only by an Owner. A DFR-User having only read access right
to a DFR-Object can only read the own access rights to that DFR-Object. A DFR-Access-
List consists of one or more elements. Each element consists of two parts:

DfrAccessListElement :: =
SEQUENCE {

accessld Accessld, .
accessRights AccessRights }

Accessld :: = DistinguishedName

NOTE 21

In the case of a DFR-User having only read access to the DFR-Object, the DFR-Access-List
returned differs from the DFR-Access-List assigned to the DFR-Object, because it contains
only the users own Accessld and AccessRights.

AccessRights :: = ENUMERATED {

read (0),
extended-read (1),
read-modify (2),

read-modify-delete (3),
owner (4) }

Read access to a DFR-Object allows a DFR-User to access that DFR-Object, using Read,
Copy, Search, and List abstract operations. These abstract operations are permitted to both
the content and attributes of the DFR-Object, except those parts of the DFR-Access-List
attribute not related to this DFR-User and the attributes DFR-Created-By, DFR-Modified-
By, DFR-Reserved-By. Attempts to read the Access-List attribute returns only the initiating
DFR-User’s access rights. Even if a DFR-Object satisfies the search criteria specified in the
Search operation, that DFR-Object is not listed in the resulting DFR-Search-Result-List
unless the initiating DFR-User has read access permission to the DFR-Object. The DFR-
Object will be enumerated in the result of a List abstract operation only if the initiating
security subject is specified in its DFR-Access-List attribute.

Extended-read access to a DFR-Object includes all privileges of Read access and also
permits the user to read the entire DFR-Access-List attribute of that DFR-Object and all
other attributes.

Read-modify access to a DFR-Object allows a DFR-User to reserve or unreserve that DFR-
Object and modify its content and/or attributes with the exception of the attribute.
Modification of the content of a DFR-Group means new Members may be inserted in the
group; operations on existing Members in the DFR-Group depend on the rights noted in
their DFR-Access-List attributes. Read-modify access includes extended-read access.

Read-modify-delete access to a DFR-Object allows a DFR-User to delete or move that
DFR-Object. In the case of a DFR-Group a DFR-User with the Read-modify-delete access
right to this DFR-Group may move or delete the whole Object-Tree of this DFR-Group
and also may move or delete any of the descendants of this DFR-Group regardless of the
access rights noted for this DFR-User in the DFR-Access-Lists of the Descendants. Read-
modify-delete access includes read-modify access.

Owner access to a DFR-Object allows a DFR-User to modify the DFR-Access-List attribute
of that DFR-Object. Owner access includes read-modify-delete access. A DFR-User creating

6.3.8.4

7.
7.1

7.1.1

-35-

a DFR-Object (by Create or Copy abstract operations) is automatically included in the
DFR-Access-List attribute of the new DFR-Object as the Owner.

If a DFR-User does not have at least read access permission to a DFR-Group, this user
cannot access its Descendants via this DFR-Group. Direct access to a Descendant object via
the object’s UPI may still be granted depending upon the DFR-Access-List attribute in
place on the DFR-object. Operations involving access to more than one DFR-Object require
the appropriate access right to each of these objects.

Other Security Policies

A security policy other than that described in 6.3.8.3 may define another set of security-
related attributes for both PAC and CAP, and a specific algorithm to compare them in
order to deliver access rights (of a security-subject to a DFR-Object) having the same
semantics as the DFR access-rights defined in 6.3.8.3. Applying such a security policy does
not modify substantially the operational behaviour of a DFR-Server.

Other security policies may define a set of access-rights different from those defined in
6.3.8.3. Applying such a security policy may interfere more seriously with the operation of a
DFR-Server. However, the abstract syntax of all interactions between the DFR-User and the
DFR-Server shall still conform to that specified in this Standard, in order to maintain a
certain level of compatibility between DFR-Servers as viewed by a DFR-User.

ABSTRACT-BIND AND ABSTRACT-UNBIND PARAMETERS

Abstract-bind Parameters

The bind-operation parameters needed by the DFR-Server Port are defined and described in the
present clause.

DfrBind :: = ABSTRACT-BIND
TO {dfr-port[S]}
BIND

ARGUMENT DfrBindArgument

RESULT DfrBindResult
BIND-ERROR DfrBindError

Bind-argument Parameters

The DfrBindArgument parameter identifies or authenticates the DFR-User. It also accepts a
set of restrictions for entries to be returned as result of a DFR abstract-operation.

The definition is:

DfrBindArgument :: = SEQUENCE {

1)

credentials [0] Credentials,

retrieve-restrictions [1] Restrictions OPTIONAL, -- default is none--
dfr-configuration-request [2] BOOLEAN DEFAULT FALSE,
bind-security [3] BindSecurity OPTIONAL,

priority [4) Priority DEFAULT medium }

credentials (M): Credentials may be exchanged between the DFR-User and the DFR-
Server. Whether the DFR-User is representing a specific end user or not is of no
concern to the DFR-Server. The DFR-Server’s view of the accessing subject’s
identity and access privileges is obtained from the credentials passed . Credentials
serve to identify a user, authenticate a user, or certify the identity of a user

2)

- 36 -

previously externally authenticated. In the latter case, access control privileges
associated with the user can also be passed. The full syntax and semantics of
credentials when used for authentication purposes is out of scope of this standard
(these matters are common to all bind operations). Use of certified security attributes
is described in outline below. Semantic details are however not defined since this is
dependent on the actual security policy formulated and implemented by the
organization operating the DFR.

The authentication of the user may have taken place external to the DFR-Server; the
resulting access control attributes will then be passed in the abstract bind process to
allow the DFR-Server to make subsequent access control decisions. This is the
function of the PAC construct. Either the DFR-User or the DFR-Server may abort
the abstract bind process if the authentication parameters do not justify successful
completion of the abstract bind-operation.

The credentials passed in a bind-operation may be modified by the Privileges
Parameter of a specific DFR operation (see 8.1.3.4).

Credentials ::= CHOICE {
simple [0] Creds, -- used for initial authentication --
certified [1] PrivilegeAttributeCertificate } -- used when initial authentication --
-- has already taken place external to the DFR-Server ---

a) A Creds contains a password associated with the DFR-User.
Creds ::= OCTET STRING

b) A PrivilegeAttributeCertificate contains attributes associated with the
DFR-User, for example the user’s name, job title or security clearance.
These can be used in making access control decisions (see 6.3.8).

PrivilegeAttributeCertificate :: = EXTERNAL

NOTE 22

The detailed syntax of the PrivilegeAuributeCertificate is under study elsewhere. The
access rights needed to make a BIND may under some Security Policies be different
from those needed 1o be established over the BIND; the possibility of using two PACs,
one 1o establish the rights to make the BIND, the other to apply to access 10 DFR-
Objects in the context of the BIND is also under study elsewhere.

retrieve-restrictions (O): This contains the restrictions on objects to be returned as a
result of an abstract-operation. The restrictions remain until an abstract-unbind-
operation is issued.

In the absence of this argument, the default is that no restrictions need to be
performed.

This argument consists of the following components:
Restrictions ::= SET {
allowed-document-types [0] SET OF OBJECT IDENTIFIER OPTIONAL
--default is no restriction--
maximum-result-length [1] ResultLength OPTIONAL

--default is no restriction--}

ResultLength :: = INTEGER

3)

4)

5)

=37~

a) Allowed-document-types (C): The document-types that the DFR-User is
prepared to accept as result of a retrieve abstract-operation. Any document
with a document-type other than the ones specified, will not be returned,
but result in an error, unless the abstract-operation has explicitly
overridden the restriction.

In the absence of this component, the default is that no retrieve-restrictions
on document-types need to be performed.

b) Maximum-result-length (C): The maximum-result-length that the DFR-
User is prepared to accept as result of an abstract-operation. Any result
with a result-length exceeding the one specified will not be returned, but
result in an error or in a continuation parameter.

In the absence of this component, the default is that no restrictions on
result-length need to be performed.

dfr-configuration-request (C): The dfr-configuration-request is specified to obtain
information relating to which optional extension attribute sets and constraints the
DFR supports.

In the absence of this component, the default is FALSE which indicates that no such
request is being made.

bind-security (O): This specifies OSI security services required in the bind for
example peer entity authentication of the software entities involved, or
confidentiality, or integrity protection.

BindSecurity :: = EXTERNAL

priority (C): Priority requested for this DFR-User during the association. If there is
no other priority specified in the abstract operation (see 8.1.3.3), this priority shall

- be applied. Medium priority is applied by default.

Bind-result Parameters

The DfrBindResult parameter returns any authentication-attributes needed.

The definition is:

DfrBindResult :: = SET {

1)

2)

authentication-attributes [0] SET OF AuthenticationAttribute,
available-attribute-types [1] SET OF AttributeType OPTIONAL,
constraints-supported [2] SET OF ConstraintsType OPTIONAL,
dfr-document-types-supported [3] SET OF OBJECT IDENTIFIER OPTIONAL,
function-set-supported [4] FunctionSetType OPTIONAL

maximum-result-length-supported [5] INTEGER OPTIONAL 3}

Authentication-attributes (C): Any information returned as confirmation of an
authentication check. An information that is unconstrained by this Part 1 of this
ECMA standard.

AuthenticationAttribute :: = EXTERNAL

Available-attribute-types (C): Specifies the attribute types defined in the optional
extension attribute sets supported by the DFR. Only present if a DFR-configuration-
request is made.

= 38 ~

3) Constraints-supported (C): Specifies the set of all constraints defined for a DFR-
' Document-Store. Only present if a DFR-configuration-request is made.

For a DFR-Document-Store constraints may be specified:

a) Global unambiguity of DFR-Titles (Each DFR-Entry has a DFR-Title
unique within the DS).

b) Local unambiguity of DFR-Titles (each DFR-Entry has a DFR-Title unique
within its parent group).

c) Version Name unambiguity (Each Version of a Conceptual Document is
uniquely identified by its Version name in the scope of its Conceptual
Document).

ConstraintsType :: = ENUMERATED {
global-unambiguity (0),
local-unambiguity (1),
version-unambiguity (2) }
4) DFR-document-types-supported (C): Specifies a set of object-identifiers that define

the document-types that the Document Store has knowledge of. Only present if a
DFR-configuration-request is made.

5) Function-Set-supported (C): Specifies which Function Set of the three defined sets
(Flat Store Set, Pre-defined Store Structure Set, Full Set) is supported. Only present
if a DFR-configuration-request is made.

FunctionSetType ::= ENUMERATED {

flat-store (1),
predefined-store (2),
full-set (3) 3}
6) Maximum-result-length-supported (C): Specifies the maximum result length the

server supports. This value might be lower or equal to the maximum result length
specified by the DFR-User in the Retrieve-restrictions of the bind-operation. This
result parameter is only present if a maximum result length was specified in the bind
arguments.

7.1.3 Bind-error Parameters

The DFR-Server port may report either of two errors, SecurityProblem or ServiceProblem.
SecurityProblem indicates that the identity of the DFR-User cannot be established on the
basis of the information the DFR-User supplied, or that this DFR-User is not allowed to
access this DS. ServiceProblem reports that the DFR-Server cannot establish the association
die to some operational exception. The same errors may occur in DFR abstract operations, see
8.3.9.

DfrBindError :: = CHOICE {
service-error [0] ServiceProblem,
security-error [1] SecurityProblem }

7.2 Abstract-unbind Parameters

An abstract-unbind-operation closes the filing and retrieval port. The issuing of an abstract-
unbind-operation results in the deletion of any retrieve-restrictions that were specified in the

8.1
8.1.1

8.1.2

-39

abstract-bind-operation argument. There are no arguments or errors associated with the abstract-
unbind-operation.

DfrUnbind :: = ABSTRACT-UNBIND
FROM ({dfr-port[s] }

ABSTRACT-OPERATIONS

All abstract operations are invoked by the consumers (DFR-Users) and each abstract operation
always reports either success or an error.

Common Data-types used in Abstract-operations
Data-Types used for DFR-Object specification

This subclause identifies, and in some cases defines, a number of data-types which are
subsequently used in the definition of Document Filing and Retrieval abstract operations. The
data-types concerned are those which are common to more than one abstract operation, or are
likely to be so in the future, or which are sufficiently complex or self-contained as to merit
being defined separately from the abstract operation which uses them.

Some of these data-types are already defined in 6 of this part of the Standard. They are used
for specification of different DFR-Objects contained in a DFR-Document-Store. These data-
types are the following:

DfrObjectClass, (see 6.3)
DfrEntry, (see 6.3)
DfrEntryAttributes, (see 6.3)
DfrObjectContent, (see 6.3)
DfrUniquePermanentldentifier, (see 6.3)
DfrDocumentContent, (see 6.3.2.1)

DfrinternalReferenceContent, (see 6.3.3.1)
DfrExternalReferenceContent, (see 6.3.3.1)
DfrGroupContent, (see 6.3.4.1)
DfrSearchResultListContent. (see 6.3.5.1)

Imported data-types

Some data-types used in 6 as well as in this clause are actually defined in other standards.
These imported data-types are:

From the OSI Directory (ISO/IEC 9594-2):
Attribute,

AttributeType,

AttributeValue,

AttributeValueAssertion,
DistinguishedName.

From the OSI Directory (ISO/IEC 9594-3):
Filter,
Filterltem.

8.1.3

8.1.3.1

- 40 -

NOTE 23
These two data-types are however included in the complete Formal Definition of the DFR
Abstract-service (Appendix C of this Siandard), to facilitate their eventual further extensions.

From the DOAM (ISO/IEC 10031-2):
RDT-reference.

Data-types common for most DFR abstract operations

An argument of any DFR abstract operation is a sequence of "parameters" (or "arguments"),
some of them being mandatory for the given abstract operation type, while others are
optional. Each individual parameter has its own context-specific tag. Parameters eventually
used in (almost) any DFR abstract operation have their tags at the end of the [0, 30] integer
range, while more specific parameters have their tags at the beginning of this range. The
common parameters are specified as follows:

CommonArguments ::= SEQUENCE {
reservation [27] Reservation OPTIONAL,
error-handling [28] ErrorHandlingMode DEFAULT all-or-nothing,

priority [29] Priority DEFAULT medium,
privileges [30] Privileges OPTIONAL }
CommonResults ::= SEQUENCE {
warnings [30] SEQUENCE OF Warning DEFAULT { } }
Reservation

The semantics of this parameter when it is specified in an abstract operation is the same as
defined in the Reserve abstract operation (see 8.2.9). Omission of this parameter means no
change in the reservation level of the DFR-Entry concerned. For each DFR abstract
operation, the DFR-Entry to which a reservation applies is specified in the description of
that abstract operation. If a change to unreserved, or to exclusive write from exclusive-
access is requested it is always actioned as the last step in the execution of the abstract
operation. If a change to exclusive-access, or to exclusive-write from unreserved is requested
it is always actioned as the first step in the execution of the abstract operation. After a
DFR-Entry is reserved by some user (either exclusive-write or exclusive-access) reservation
requests of other users will be rejected. The reserved DFR-Entry is only re-available for a
reservation by another user if it is set to unreserved by user who has reserved it. The DFR-
Reserved-By attribute is used to indicate the identity of the DFR-User who reserved the
DFR-Entry.

Reservation :: = ENUMERATED {
unreserved (0),
exclusive-write (1)
exclusive-access (2)

The reservation of DFR-Objects is handled according to the following rules:
a) exclusive-write

1) If the reserved DFR-Object is a DFR-Document, a DFR-Reference or a
DFR-Search-Result-List and the reservation level is exclusive-write:

i) other user shall not Delete or Modify the DFR-Object (neither
any attribute nor the content of the object):

b)

2)

exclusive-

1)

2)

iii)

- 41 -

other user shall not move the DFR-Object if the Move abstract
operation is applied directly to the reserved DFR-Object; but
the DFR-Object may be implicitly moved, if the Move abstract
operation is applied to an Ancestor of the DFR-Object;

other user shall not use a reserved DFR-Search-Result-List in a
Search abstract operation.

If the reserved DFR-Object is a DFR-Group and the reservation level is
exclusive-write:

i)

i)

iii)

vi)

access

other user shall not Delete or Modify the DFR-Group (neither
any attribute nor the content of the group);

other user shall not move the DFR-Group if the Move abstract
operation is applied directly to the reserved DFR-Group; but
the DFR-Group may be implicitly moved if the Move abstract
operation is applied to an unreserved Ancestor of this DFR-
Group;

other user shall not

- Delete or Move any Member from the DFR-Group,

- insert new Members into the DFR-Group by Create abstract
operation;

if a Member of the DFR-Group is itself a DFR-Group then the
Descendants of this member DFR-Group are not reserved.

If the reserved DFR-Object is a DFR-Document, a DFR-Reference or a
DFR-Search-Result-List and the reservation level is exclusive-access:

i)

v)

other user shall not Delete or Modify the DFR-Object (neither
any attribute nor the content of the object);

other user shall not move the DFR-Object if the Move abstract
operation is applied directly to the reserved DFR-Object; but
the DFR-Object may be implicitly moved, if the Move abstract
operation is applied to an Ancestor of this DFR-Obiject;

other user shall not Read or Copy the content of the DFR-
Object;

other user shall not use a reserved DFR-Search-Result-List in a
Search abstract operation;

other user shall not List the elements of a DFR-Search-Result-
List.

If the reserved DFR-Object is a DFR-Group and the reservation level is
exclusive-access:

i)

ii)

other user shall not Delete or Modify the DFR-Group (neither
any attribute nor the content of the group);

other user shall not move the DFR-Group if the Move abstract
operation is applied directly to the reserved DFR-Group; but
the DFR-Group may be implicitly moved, if the Move abstract
operation is applied to an Ancestor of this DFR-Group;

8.1.3.2

- 42 -

iii) other user shall not

- Delete or Move any Member from the DFR-Group,

- insert new Members into the DFR-Group by Create abstract
operations,

- Modify a Member of the DFR-Group (neither any attribute
nor the content of a Member) if it is a DFR-Document, a
DFR-Reference or a DFR-Search-Result-List,

- Modify the attributes of a Member if it is a DFR-Group,

- List the Members of the DFR-Group,

- Read or Copy the content of a Member if it is a DFR-
Document, a DFR-Reference or a DFR-Search-Result-List,

- List the DFR-Entries noted in the elements of a DFR-
Search-Result-List which is a Member of the reserved DFR-
Group,

- use a DFR-Search-Result-List which is a Member of the
reserved DFR-Group in a Search abstract operation;

iv) if a Member of the DFR-Group is itself a DFR-Group then the
Descendants of this member DFR-Group are not reserved.

Error handling mode

ErrorHandlingMode ::= CHOICE {
all-or-nothing [0] NULL,
until-first-warning ~ [1] NULL,
report-all-warnings [2] NULL,
report-n-warnings [3] INTEGER }
-- This parameter is only applicable to multiple abstract operations, such as List or Move --
-- group.--

Warning :: = SEQUENCE {
entry [0] DfrEntryName OPTIONAL,
-- never reported if AccessProblem is “insufficient-access-rights" --
access1 [1] AccessProblem } -- see 8.3.3 --
access?2 [2] ReferentAccessProblem
When several DFR-Entries need to be accessed and/or updated during the execution of a

DFR abstract operation, this may lead to different situations, in relation to the requested
access of the requesting DFR-User to these DFR-Entries:

1) none of the DFR-Entries involved may in fact be accessed (updated);
2) all the involved entries may be accessed (updated);
3) some entries may be accessed, while others may not.

The first situation is that of a DFR-error (of access type), and the second that of success (if
no other error occurs). The third situation is more complex. For example, when listing a
DFR-Group some members of which are accessible to the user while others are not, the
DFR-User may however want all accessible members listed, with a warning(s) about inac-
cessible Members. This is the "report-all-warnings" error-handling mode. The alternative
“report-n-warnings" is similar to "report-all-warnings" but it specifies the maximum num-
ber of warnings to be returned; zero means continuing processing without any warning
reported. Inaccessible Members will not be reported if the reason is "insuffi-

)

8.1.3.3

8.1.34

cientAccessRights", but will be reported if the reason is ”reservedByAnotherrUser“. The
DFR service definition leaves it to the DFR-User to specify the error-handling mode
desired on a per abstract operation basis.

The error handling mode "all-or-nothing" means that the abstract operation will proceed to
its conclusion unless any error or warning is detected, in which case the abstract operation
will have no effect whatever on the DFR-Document-Store.

Paired with this common argument is the "warnings" common result. It takes the form of a
sequence of access-type errors (one per DFR-Entry concerned but not accessible), and may
appear in an abstract operation result provided that the abstract operation argument had
ErrorHandlingMode specified as "until-first-warning" or “report-all-warnings" or "report-
n-warnings".

Abstract operations concerned are: List and Copy when applied to a DFR-Group. Eventual
problems related to the modifications parameter of an abstract operation (see 8.1.5.5) are
always handled as if the "all-or-nothing" mode were specified.

Priority

Priority ::= ENUMERATED {
low (0),
medium (1),
high (2) 3}

This common parameter may be specified for any DFR abstract operation. It is useful in
the context of a heavily loaded DFR-Server, to allow better service to some privileged
requests according to an applied priority policy. A default Priority may already have been
established at bind time (see 7.1.1); any Priority requested here will overwrite the Priority
given at bind time.

This concept of operational priority is not necessarily related to any communication priority
policy. This means that specification of this parameter may, but need not, influence the
quality of service of the underlying communication layers.

The DFR-Server does not mandatorily grant the abstract operation with the priority
requested. Any numeric characterization of the above three priority levels is server-specific.

Privileges

Privileges :: = SEQUENCE {
operation-pac [0] PrivilegeAttributeCertificate OPTIONAL,
proxy-pac [1] PrivilegeAttributeCertificate OPTIONAL }

For the definition of PrivilegeAttributeCertificate see 7.1.1.

The Privilege parameter enables a PrivilegeAttributeCertificate to be associated directly
with an abstract operation request, modifying that available from the abstract bind within
which the request is being made. The way the operation-pac modifies the bind PAC
depends on the security policy applied. The resulting privileges are only applied for
thisabstract operation.

The operation-pac may be required for either of two reasons:

a) When the access privileges established by the user during the bind are not
sufficient to permit the requested abstract operation.

8.14

8.1.5

- 44 -

b) When the bind is being multiplexed between a number of users and each abstract
operation is potentially under the control of a different user, who must present his
own access privileges.

The proxy-pac may be required if the DFR-Server shall make further access to another
application on behalf of the user, and itself would have insufficient access rights unless
supplemented by those in the proxy-pac. The DFR-Server that receives the proxy-pac itself
then uses this as an operation-pac to the other application.

Access names for DFR-Entries

DfrEntryName :: = CHOICE {
Upi [0] DfrUniquePermanentldentifier,
path-name [1] DfrPathName,
relative-path-name [2] SEQUENCE {
base [0] DfrUniquePermanentidentifier,
path [1] DfrPathName } }

DfrPathName :: = SEQUENCE OF DfrTitle
DfrTitle :: = CharacterData

CharacterData :: = CHOICE { GraphicString, T61String, PrintableString }

A DFR-Entry, and thus the DFR-Object it represents in the DS may always be accessed using
the DFR-Unique-Permanent-Identifier (UPI) attribute of the object provided the DFR-User
has been granted sufficient access permission. This is the primary DFR-Obiject identification
mechanism. Other possibilities are also offered, which are more "semantical", but less
universal, in the sense that they may sometimes not lead to the same DFR-Entry.

A path-name is a sequence of values of the DFR-Title attribute of all Ancestors of the DFR-
Entry, in descending order. The DfrPathName guarantees an unambiguous identification of
the DFR-Entry only if the DFR-Title of each Ancestor of the DFR-Entry is locally
unambiguous (see 7.1.2).

A relative-path-name is a DfrPathName beginning not from the root DFR-Group of the DS,
but from some specified intermediate DFR-Group. It may be useful to identify some
Descendants of this DFR-Group, the latter specifying some "working domain".

Data-types common for operations on single entries

CommonUpdateArguments :: = SEQUENCE {

object-class [0] DfrObjectClass OPTIONAL,
entry [1] CHOICE { local DfrEntryName,

external [3] ExternalReferenceContent } OPTIONAL,
destination [2] DfrEntryName OPTIONAL, --of the parent group--
position [3] GroupMemberPosition OPTIONAL, --in the parent group--
modifications [4] SEQUENCE OF EntryModification OPTIONAL,
selection [5] EntrylnformationSelection OPTIONAL }

CommonUpdateResult :: = SEQUENCE {
Upi [0] DfrUniquePermanentldentifier,
entry-information [1] Entrylnformation OPTIONAL,
COMPONENTS OF CommonResults }

- 45 -

DFR abstract operations concerned are: Create, Copy, Move, Read, and Modify. Not all of the
above parameters may be specified in each of these abstract operations. Details are given
hereafter, as well as in the paragraphs defining individual abstract operation types.

8.1.5.1 Object-Class

This common parameter specifies the DfrObjectClass of the DFR-Entry concerned in the
abstract operation.

This parameter shall be present in a Create abstract operation, to specify the
DfrObjectClass of a DFR-Object to be created: it is optional in all other cases, and if
specified is used for validation only.

8.1.5.2 Entry

This parameter specifies the DfrEntryName of the DFR-Entry to be copied, moved, read or
modified. It is mandatorily present in all these cases, and absent in the case of a Create
abstract operation.

8.1.5.3 Destination

This parameter specifies the DfrEntryName of the DFR-Group where the specified object
(in a Create or Move abstract operation) or its copy (in a Copy abstract operation) is to be
placed. It is mandatorily present in these three abstract operations, and absent in the case of
a Read or Modify abstract operation.

8.1.54 Position

GroupMemberPosition :: = CHOICE {
last [0] NULL,
first [1] NULL,
after [2] DfrEntryName,
before [3] DfrEntryName }

This optional parameter may be specified only if the destination parameter is specified (i.e.
in a Create, Copy or Move abstract operation). It specifies the place in the parent DFR-
Group where the newly created DFR-Entry is to be put. It cannot be specified if the parent
DFR-Group has its DFR-Ordering attribute specified (in which case the DFR-Server
automatically puts the new entry at the appropriate logical position, according to the
ordering rule specified). This parameter may specify either absolute (first, last) or relative
(before, after) position.

- 46 -

8.1.5.5 Modifications
EntryModification :: = CHOICE{

put-attribute [0] Attribute,

remove-attribute [1] Attribute Type,

copy-attributes-from [2] SEQUENCE {
source [0] SourceEntry,

attribute-selection [1] SET OF AttributeType OPTIONAL },

--default means all copyable attributes--

add-values [3] Attribute,

remove-values [4] Attribute,

add-values-from [5] SEQUENCE {
source [0] SourceEntry,

attribute-selection [1] SET OF AttributeType OPTIONAL },

--default means all multivalued auributes--

put-content [6] DfrObjectContent,
remove-content [7] NULL,
copy-content-from [8] SourceEntry }

The EntryModifications parameter specifies updates to a DFR-Entry as a sequence of
EntryModifications, to be applied in the order in which they are specified. It is the only
means to specify updates in a Modify abstract operation (where it is mandatory), or in a
Copy or Move abstract operation (where it is optional). As for the Create abstract
operation, two methods are available for specifying different items of the newly created
DFR-Entry: either by the EntryModifications parameter (as a sequence of changes applied
to the minimal (server-defined) attribute set and an empty content), or by directly
specifying the items in the abstract operation.

An EntryModification may apply to an attribute of a specified type, or to the entire content
of the DFR-Entry to be updated. An entire attribute may be "put" (possibly deleting the
previous values of the attribute), or "removed" (all values are removed, and the attribute
becomes absent), or else, "copied" from some other DFR-Entry (SourceEntry).

Furthermore, individual values of a multi-valued attribute may be added to its existing
values, or removed from the list of the existing values. In the remove case, the values to be
removed shall be explicitly specified in the abstract operation; in the add case they may be
specified either explicitly in the abstract operation or implicitly (add-values-from") by
specifying another SourceEntry and Attribute-Types to be taken from it.

Finally, the entire DFR-Content of the DFR-Entry to be updated may be "put" (specified
directly in the abstract operation), or "removed", or "copied" from some other specified
DFR-Entry (SourceEntry). In the latter case, some attributes of the source DFR-Entry,
which are closely related to the content, are automatically copied by the DFR-Server (see
Table 3). The DFR-Content of a DFR-Search-Result-List may not be modified. This may
only be changed by directly using the Search abstract operation.

When copying the content of another DFR-Entry, the DFR-Object-Class of the source and
of the receiving DFR-Object (the sink) must be the same, with the following unique
exception:

When creating or modifying a DFR-Internal-Reference, its content may be specified as
being copied from some other SourceEntry. If the source DFR-Entry is a DFR-Internal-

- 47 -

Reference, its content is copied in a straightforward manner. But if the SourceEntry is a
DFR-Document, DFR-Group, or a DFR-Search-Result-List, the DFR-Server creates a
DFR-Internal-Reference-Content in the form of an RDT-reference to the source DFR-
Entry, which thus becomes the Referent of the DFR-Internal-Reference created/modified.

8.1.5.5.1 SourceEntry
SourceEntry ::= CHOICE {

parent [0] NULL,

referent [1] NULL, -- only for a DFR-Reference --
previous-version [2] NULL, -- only if unique previous version --
specified-entry [3] DfrEntryName,

reference [4] RDT-reference }

A SourceEntry, used in some cases of "modifications" as the source of an attribute
and/or the content of the DFR-Object to be created/updated, may be the parent DFR-
Group of the latter, or its previous version (only in the case where the updated DFR-
Object has a unique previous version), its Referent (for DFR-References only; this may
involve the use of the RDT for transfer of attributes or content or both from the
Referent to the DFR-Reference in the case of a DFR-External-Reference), or, some
explicitly specified source DFR-Entry.

8.1.5.6 Selecting entry information for reading

EntryInformationSelection :: = SEQUENCE {

read-selector [0] ENUMERATED {
attributes-only (0),
attributes-and-content (1),
content-only (2),
rdt-ref-to-attr-only (3),
attr-and-rdt-ref-to-content (4),
rdt-ref-to-content-only (5),
rdt-ref-to-entire-object (6),

attr-and-rdt-ref-to-entire-object (7) }
DEFAULT attributes-only,
attribute-selection [1] AttributeSelection OPTIONAL }
For the EntrylnformationSelection parameter the following rules apply: by default, all

attributes are requested, if read-selector is 0, 1, 4 or 7. For other values of read-selector,
attribute-selection shall not be specified. Empty selection shall be specified as {}.

AttributeSelection :: = CHOICE {

all [0] NULL,

none [1] NULL,

unordered [2] SET OF AttributeType, --when the delivery order is insignificant--

ordered [3] SEQUENCE OF AttributeType, --to specify not only auributes to be --
-- delivered, but also the order in which they should appear --

minimum [4] NULL } -- implicitly selects UPI and DFR-object-class attributes --
-- (other predefined selections are for further study) --

8.1.6

- 48 -
EntryInformation :: = CHOICE {

attributes-only [0] DfrEntryAttributes,
attributes-and-content [1] DfrObject,
content-only [2] DfrObjectContent,
rdt-ref-to-attr-only [3] RDT-reference,
attr-and-rdt-ref-to-content [4] SEQUENCE {

attributes [0] DfrEntryAttributes,

rdt-ref-to-content [1] RDT-reference },
rdt-ref-to-content-only [5] RDT-reference,
rdt-ref-to-entire-object [6] RDT-reference,
attr-and-rdt-ref-to-entire-object [7] SEQUENCE {

attributes [0] DfrEntryAttributes,

rdt-ref-to-entire-object [1] RDT-reference 13}

Any of the five abstract operations considered (namely Create, Move, Copy, Read and
Modify) may specify those items from the involved DFR-Entry which are to be read, that
is, returned by the DFR-Server in the result of the abstract operation. This is the only
purpose of the Read abstract operation, but is also interesting in the other four abstract
operations as a control "readback" when some modified items have been copied from other
entries, and not specified explicitly. Thus, the "selection" parameter is mandatory in the
case of the Read abstract operation and optional in other cases.

The EntryInformation component of the abstract operation’s result is present if and only if
the selection parameter was specified in the abstract operation’s argument, and it consists of
exactly those items which were requested in the selection parameter, and which are present
in the DFR-Entry to be read.

The EntryInformationSelection data-type is a sequence with two components: read-selector
and attribute-selection. The read-selector specifies whether an RDT-reference or some
values are required and whether the reference or values pertain to the entire DFR-Object;
its content or its attributes. This gives a number of combinations which are explicitly named
by their ASN.1 identifiers above. The attribute-selection component optionally indicates,
where appropriate, which attributes of the DFR-Entry are to be returned. The absence from
the DFR-Entry of any attribute selected causes no data to be returned for that attribute nor
any error generated.

The RDT-reference produced and returned by the DFR-Server is constructed differently,
and is intended for different purposes, according to whether it is an RDT-reference to an
entire DFR-Object, only the DFR-Object’s attributes, or only the DFR-Object’s content
(the latter is possible only for a DFR-Document). Details are given in 6.3.3.

Data-types common for operations on multiple entries

Abstract Operations concerned are List and Search. Also concerned is the data-type
DfrSearchResultListContent, specified in 6.3.5.1.

CommonListSearchArguments :: = SEQUENCE {
continuation [1] ContinuationContext OPTIONAL,

limits [2] Limits OPTIONAL,
selection [3] AttributeSelection OPTIONAL,
ordering [4] OrderingRule OPTIONAL }

-

8.1.6.1

8.1.6.2

- 49 -

CommonlListSearchResult :: = SEQUENCE {

number-of-entries [0] INTEGER,

continuation [1] ContinuationContext OPTIONAL,
limit-encountered [2] LimitEncountered OPTIONAL,
entry-list [3] DfrEntryList,

COMPONENTS OF CommonResults }

Limits and continuation
ContinuationContext :: = OCTET STRING -- DFR-Server implementation specific --

Limits ::= SEQUENCE {
time-limit [0] INTEGER OPTIONAL,
count-limit [1] INTEGER OPTIONAL }

LimitEncountered :: = ENUMERATED {
time-limit (0),
count-limit (1),
length-exceded (2) } -- maximum result length as specified during Binding exceeded --

When initiating a List or a Search abstract operation, the DFR-User may specify a
maximum number of entries to be found/returned, a maximum execution time (for the
Search abstract operation only), or both. The result returned in this case contains an
indication whether the time-limit, count-limit or maximum result length has been reached.
In the case when the abstract operation has successfully finished without encountering any
limit, the LimitEncountered parameter is absent from the abstract operation result. If,
however, a limit has been encountered, then the server communicates to the user a
continuation parameter, which cannot be interpreted by the DFR-User, but may be sent to
the DFR-Server when resuming "the same" abstract operation (immediately or later), to
instruct the server not to start the abstract operation "from the beginning", but to continue
it from where it has previously stopped. This ContinuationContext also forms a part of a
DFR-Search-Result-List-Content. If the result of a Search operation is not stored by the
DFR-Server in a DFR-Search-Result-List then the option to continue the Search is
withdrawn at unbind time or on abortion.

Information selected and returned

DfrEntryList ::= SEQUENCE OF SEQUENCE {
UniquePermanentldentifier [0] DfrUniquePermanentldentifier,

class [1] DfrObjectClass,
ordering-attribute [2] Attribute OPTIONAL,
other-attributes [3] SEQUENCE OF Attribute OPTIONAL }

This is the information about the DFR-Entries listed or found. Only attributes of entries
may be returned, and the selection of attributes to be returned for each entry concerned is
specified by the selection argument parameter. (The AttributeSelection data-type is
specified in 8.1.5.6).

For each DFR-Entry listed, the UPI of the corresponding DFR-Object is always returned,
regardless of the AttributeSelection specified in the abstract operation. The same applies to
the DFR-Object-Class of the DFR-Object and to its ordering-attribute (see next paragraph).
All other attributes are returned only if their types have been specified in the

8.1.6.3

8.1.6.4

8.1.6.5

=50 -

AttributeSelection in the abstract operation argument. In contrast, these other-attributes are
never stored in a DFR-Search-Result-List-Content.

Ordering of entries in a list

OrderingRule :: = CHOICE {
ascending [0] AttributeType,
descending [1] AttributeType }

The user may specify in the argument of a List or Search abstract operation (in the
ordering parameter) the order in which different entries are to be listed. An OrderingRule
specifies the AttributeType to be used as an ordering key, and the ordering direction
(ascending or descending). If such an ordering rule has been specified, each entry concerned
is listed together with the value of its ordering-attribute; if, however, no explicit ordering
has been specified, then the corresponding parameter is absent from the abstract operation
result. The OrderingRule is retained with the DfrSearchResultList, if the operation
requests the results are to be placed in one. An OrderingRule may only be applied for an
attribute type having a MATCHES FOR ORDERING clause in its definition.

The lexicographic ordering of attributes is discussed in 6.3.7.
Search domain

SearchDomain :: = SEQUENCE OF CHOICE {

previous-result [0] DfrEntryName, --specifies an entry of "SearchResultList" class--

scope [1] SEQUENCE {
root [0] DfrEntryName,
descent-depth [1] INTEGER OPTIONAL,

-- default means the whole subtree --
dereferencing-depth [2] INTEGER DEFAULT 0 }

-- default means no dereferencing -- '}

The SearchDomain parameter is specified in a Search abstract operation and is then
possibly stored in the corresponding DFR-Search-Result-List-Content, from where it can be
then read by the’DFR-Server to continue "the same" abstract operation. A search domain is
specified as a sequence of "subdomains", each being either a DFR-Search-Result-List
(containing results of some previous Search abstract operation), or a DFR-Group,
designating the starting point of the Search abstract operation. In the latter case, the depth
of descendants to be searched may be limited (by the descent-depth parameter), as well as
the depth of dereferencing (that is, the number of times the server may indirectly proceed
from a DFR-Reference to its referent when executing this search), e.g. from a DFR-
Reference to its Referent which is a DFR-Group (first step), then from the latter to one of
its Members which is another DFR-Reference, then from the latter to its Referent (second
step) and so on.

SearchCriteria
SearchCriteria :: = Filter

The SearchCriteria parameter is specified in a Search abstract operation and is then
possibly stored in the corresponding DFR-Search-Result-List-Content (for the same purpose
as the SearchDomain). This parameter is specified as a Filter; it applies to any DFR-Entry
within the SearchDomain specified. In the case where the application of the Filter to such a
DFR-Entry gives TRUE, the DFR-Entry is qualified for inclusion in the
CommonListSearchResult or in the DfrSearchResultList or in both).

8.2

- 5] -

Document Filing and Retrieval Port Operations Definitions

The following abstract operations are available at the Document Filing and Retrieval Port. The
abstract operations are performed within a DFR-Document-Store.

Table 1 provides an overview of which parts of the DFR-Entry an abstract operation is related

to.
| orm DFR DFR DFR-Search-
Operations Group Document Reference Result-List
e Attri- | Con- | Atui-
bute tent bute
Delete X X X X X X X
Copy X X X X X X X
Move X X X X X X X
Read X X X X X X X
Modify X X X X X X
List X
Search X
Reserve X X X X X X X X
Abandon

Table 1 - Overview of applicability of DFR abstract operations to DFR object classes

To perform a DFR abstract operation the DFR-User is required to have sufficient access rights
to all DFR-Entries involved in the abstract operation. This is summarized in Table 2.

Operations || Target | Source | Taget | Sowce | Sources |
elated DFR-Entry DFR-Entry Parent Parent of
to ——> DFR-Entry DFR-Entry | Modification
Delete RMD() N N N N
Copy (0) R RM N R
Move N RMD() RM RM R
Read R N N N N
Modify RM N N N R
List R R N N N
Search RM R N N N
Reserve RM N N N N
Abandon N N N N N

Table 2 - Overview of access rights to DFR-Entries required from a DFR-User to perform a DFR

abstract operation

8.2.1

-52-

Notes to Table 2

@) owner access right, it is automatically granted to the DFR-User
creating this DFR-Object in a Create or Copy abstract
operation.

R read access right.

RM read-modify access right.

RMD read-modify-delete access right.

N Non applicable.

Target DFR-Entry The "target" DFR-Entry specified in the abstract operation. In a

List abstract operation it is the DFR-Group to be listed; in a
Search abstract operation it is the DFR-Search-Result-List where
the result is to be placed.

Source DFR-Entry The "source" DFR-Entry specified in the abstract operation. In
a List abstract operation all DFR-Group-Members to be listed;
in a Search abstract operation all DFR-Entries satisfying the
search criteria.

Target Parent DFR-Entry ~ The DFR-Entry specified in the abstract operation that is the
Parent of the "target" DFR-Entry or of the DFR-Entity to be
created.

Source Parent DFR-Entry ~ The Parent of the "source" DFR-Entry.

Sources of Modification A DFR-Entry specified in the abstract operation from which
attributes or the content are to be copied.

M It is also possible to move or delete a DFR-Entry for which the
requestor has read-modify-delete access right to an Ancestor,
regardless of the requestors access rights to the DFR-Entry to be
moved or deleted.

Create

The Create abstract operation places a new DFR-Object in a DFR-Group. It creates a new
DFR-Entry for this DFR-Object. The class of the new DFR-Object is defined by the object-
class argument. When a DFR-Group is created the group membership criteria for future
group Members may be defined. Consequential changes to the Parent group attributes are
made. The DFR-Content of the DFR-Obiject is provided in this abstract operation optionally
in the case of a DFR-Document, mandatorily in the case of a DFR-Reference, and is not
permitted for a DFR-Group or a DFR-Search-Result-List. If a newly created document is
declared as a new version (attribute DFR-Previous-Versions supplied), consequential changes
are made to the DFR-Next-Versions attribute of each of the Documents specified as previous
versions.

Whenever the security policy defined in this standard is applied: the DFR-Access-list attribute
for the newly created DFR-Object is specified by the creating DFR-User or taken by default.
The default value contains only the creating DFR-User as the Owner. If the DFR-Access-List
is specified explicitly but contains no Owner then the DFR-Server adds to it the creating
DFR-User as the sole Owner.

-53-

Create :: = ABSTRACT-OPERATION
ARGUMENT CreateArgument
RESULT CreateResult
ERRORS {

Abandoned,

NameError,

UpdateError,
AttributeError,
VersionManagementError,
AccessError,
ReferentAccessError,
InterServerAccessError,
SecurityError,
ServiceError}

8.2.1.1 Create-argument

CreateArgument :: = SEQUENCE {
COMPONENTS OF
CommonUpdateArguments (WITH COMPONENTS { e

object-class PRESENT,
destination PRESENT }),

attributes [7] SET OF Attributes OPTIONAL,

content [8] DfrObjectContent OPTIONAL,

COMPONENTS OF CommonArguments (WITH COMPONENTS {
..., error-handling ABSENT })}

The components of CreateArgument have the following meaning:

a) Common update arguments:

- object-class specifies the DfrObjectClass of a DFR-Entry to be created:;

- entry optionally gives the DfrEntryName of (or an RDT reference to) the
DFR-Object which will be copied to the DFR-Entry created;

- destination gives the DfrEntryName of the parent DFR-Group where the
DFR-Entry is to be placed;

- position optionally specifies at what place the DFR-Entry is to be put in the
parent DFR-Group;

- modifications optionally specifies some attributes and/or content of the new
entry, especially when the values are not provided in the Create argument, but
are to be copied from other DFR-Entries;

- selection optionally specifies which information from the created DFR-Entry is
to be read back to the requestor (in the CreateResult) after creation is done.

b) Specific create arguments:

- attributes is the primary means to provide attributes for the DFR-Entry to be
created (alternative means is modifications argument above; both may be used
in the same Create abstract operation, in which case attributes applies first);

- content is the primary means to provide a content for the DFR-Entry to be
created (alternative means is modifications argument; they may not be used
simultaneously in the same Create abstract operation);

8.2.1.2

8.2.1.3

8.2.2

- 54 -

If several alternative parameters are specified then entry is applied first,
subsequently followed by attributes, content and modifications.

c) Common arguments:
- reservation, if requested, applies to the newly created DFR-Entry;
- error-handling, always taken by default (all-or-nothig is used);
- priority, see 8.1.3.3;
- privileges, see 8.1.3.4.

Create-result

Should the request succeed, the CreateResult will be returned.

CreateResult :: = CommonUpdateResult
The components of the CreateResult have the following meaning:

- upi is the DfrUniquePermanentldentifier assigned by the DFR-Server to the newly
created DFR-Entry;

- entry-information returns all those items from the new DFR-Entry (attributes and/or
content) which have been requested by the selection component of the CreateArgument,
and which are present in the DFR-Entry;

- warnings are never returned.
Create Abstract-errors

Should the request fail, one of the listed abstract-errors will be reported. The circumstances
under which the particular abstract-errors will be reported are defined in 8.3.

Delete

The Delete abstract operation deletes a DFR-Entry from the parent DFR-Group and thus
from the DFR-Document-Store. Consequential changes to the parent group attributes are
made. The UPI of the specified DFR-Object ceases to be valid. If a DFR-Group is deleted the
group and all its Descendants are deleted regardless of the requestor’s access rights to these
Descendants. If a DFR-Reference is deleted the Referent is not affected. If the DFR-
Document to be deleted is a version, then consequential changes are made to the related
attributes in all its previous and next versions. If the DFR-Object to be deleted, or any of its
Descendents, is reserved by another DFR-User then the delete request fails.

NOTE 24
To delete a DFR-Object, the requesting DFR-User must have read-modify-delete access right to
this DFR-Object or 10 one of its Ancestors.

Delete :: = ABSTRACT-OPERATION
ARGUMENT DeleteArgument
RESULT DeleteResult
ERRORS {

Abandoned,
NameError,
UpdateError,
AccessError,
SecurityError,
ServiceError}

8.2.2.1

8.2.2.2

8.2.2.3

8.2.3

- 55-

Delete-argument

DeleteArgument :: = SEQUENCE {
entry [0] DfrEntryName,
COMPONENTS OF CommonArguments (WITH COMPONENTS { ...,
reservation ABSENT,
error-handling ABSENT})}

The components of DeleteArgument have the following meanings:

a) Specific delete argument:
- entry identifies the DFR-Entry to be deleted.

b) Common arguments:
- error-handling, always taken by default (all-or-nothing is used);
- priority, see 8.1.3.3;
- privileges, see 8.1.3.4.

Delete-result

Should the request succeed, the DeleteResult will be returned. There are no parameters.
DeleteResult ::= NULL

Delete Abstract-errors

Should the request fail, one of the listed abstract-errors will be reported. The circumstances
under which the particular abstract-errors will be reported are defined in 8.3.

Copy

The Copy abstract operation copies a DFR-Object from one DFR-Group to another DFR-
Group (destination group). It creates a new DFR-Entry in the destination DFR-Group and
copies the original DFR-Object’s attributes (subject to changes explicitly specified in the
abstract operation). For a DFR-Document, a DFR-Reference or a DFR-Search-Result-List, the
DFR-Content is copied from the original to the copy. In the case of a DFR-Group and if an
appropriate ErrorHandlingMode is specified, all Descendants to which the initiating DFR-
User has at least read access permission (a subset of the DFR-Object-Tree) and which are not
currently reserved by another DFR-User are copied. Modifications are applied to the newly
created DFR-Entry if requested by the DFR-User (see 8.2.3.1). Some attribute modifications
are also automatically applied by the DFR-Server (see 9). Consequential changes to the
attributes of the destination group are made. The newly created DFR-Objects are assigned
new UPIs. All existing DFR-References to the original DFR-Object(s) (and to its Descendants
in the case of a DFR-Group) remain valid and do not refer to the new DFR-Object(s) (the
Copy). This abstract operation may not be used to copy a DFR-Group from another DFR-
document-store.

Whenever the security policy defined in this standard is applied: the DFR-Access-List for the
newly created DFR-Object (the copy) and for all the newly created descendants is not taken
from the original(s) but supplied explicitly by the requesting DFR-User or defaulted. The
default value contains only the requesting DFR-User as the Owner. If the DFR-Access-List is
specified explicitly, but contains no Owner, then the DFR-Server adds to it the requesting
DFR-User as the sole Owner. When copying a DFR-Group, this resulting DFR-Access-List is
applied to the newly created DFR-Group and to all its Descendants.

8.2.3.1

- 56 -

Copy ::= ABSTRACT-OPERATION
" ARGUMENT CopyArgument
RESULT

ERRORS {

CopyResult

Abandoned,

NameError,

UpdateError,
AttributeError,
VersionManagementError,

AccessError,

ReferentAccessError,

InterServerAccessError,

SecurityError,

ServiceError}

Copy-argument

CopyArgument :: = SEQUENCE {
COMPONENTS OF
CommonUpdateArguments (WITH COMPONENTS { ...,

entry PRESENT,
destination PRESENT }),

COMPONENTS OF CommonArguments }

The components of CopyArgument have the following meanings:

a)

b)

Common update arguments:

object-class optionally specifies the DfrObjectClass of the original DFR-Entry;
entry gives the DfrEntryName of (or an RDT-reference to) the original DFR-
Entry;

destination gives the DfrEntryName of the parent DFR-Group where the copy
is to be placed,

position optionally specifies at what place the copied DFR-Entry is to be put in
its parent DFR-Group;

modifications optionally specifies some modifications to the attributes and/or
content of the new DFR-Entry (the copy), as compared to the original; no
modifications will be applied to any Descendents copied (with the exception of
DFR-Access-List);

selection optionally specifies which information from the created DFR-Entry
(the copy) is to be read back to the requestor (in the Copy-result) after copying
is done.

Common arguments:

reservation, if requested, applies to the newly created DFR-Entry (but not to
its Descendents);

error-handling, any of four modes may be specified (see 8.1.3.2) when copying
a DFR-Group; in this case when specifying until-first-warning mode the result
is DFR-Server implementation-dependent. When copying a single DFR-Object,
only the all-or-nothing mode applies (taken by default);

priority, see 8.1.3.3;

privileges, see 8.1.3.4

8.2.3.2

8.2.3.3

8.2.4

-57-

Copy-result
Should the request succeed, the CopyResult will be returned.

CopyResult :: = CommonUpdateResult
The components of the CopyResult have the following meaning:

- upi is the DfrUniquePermanentldentifier assigned by the DFR-Server to the newly
created DFR-Entry (the copy);

- entry-information returns all those items from the new DFR-Entry (attributes and/or
content) which have been requested by the selection component of the CopyArgument
and which are present in the new DFR-Entry;

- warnings if returned identify those Descendants of the source DFR-Entry which are not
copied because of insufficient access rights or reservation.

Copy Abstract-errors

Should the request fail, one of the listed abstract-errors will be reported. The circumstances
under which the particular abstract-errors will be reported are defined in 8.3 .

Move

The Move abstract operation moves a DFR-Object from a source DFR-Group to a destination
DFR-Group. A new DFR-Entry is created for this DFR-Object in the destination DFR-Group.
The DFR-Entry in the source group is deleted. This DFR-Object ceases to be a Member of
the source group and becomes a Member of the destination group. Modifications are applied
to the moved DFR-Object if requested by the DFR-User (see 8.2.3.1). Some attribute
modifications are also automatically applied by the DFR-Server (see 9). Consequential changes
to the attributes of the source group and to the attributes of the destination group are made.
The UPI attribute and all existing references to the moved DFR-Object remain valid. The
DFR-Access-List attribute remains unchanged unless explicitly modified. When a DFR-Group
is moved its Descendents are moved with it regardless of the requesting DFR-User’s access
rights to each of them, or of reservations made by other DFR-Users. This abstract operation
may not be used to move a DFR-Object from another DFR-Document-Store.

NOTE 25
To move a DFR-Object the requesting DFR-User must have read-modify-delete access rights
either to this DFR-Object or to one of its Ancestors.

Move ::= ABSTRACT-OPERATION
ARGUMENT MoveArgument
RESULT MoveResult
ERRORS {

Abandoned,

NameError,

UpdateError,
AttributeError,
VersionManagementError,
AccesskError,
ReferentAccesskError,
InterServerAccessError,
SecurityError,
ServiceError}

- 58 -

8.24.1 Move-argument

MoveArgument :: = SEQUENCE {
COMPONENTS OF CommonUpdateArguments (WITH COMPONENTS

{..., entry PRESENT, destination PRESENT }),
COMPONENTS OF CommonArguments (WITH COMPONENTS
{..., error-handling ABSENT 1})}

The components of MoveArgument have the following meanings:

a) Common update arguments:

object-class optionally specifies the DfrObjectClass of the DFR-Object to be
moved;

entry gives the DfrEntryName of the DFR-Object to be moved (external
alternative is not applicable);

destination gives the DfrEntryName of the new parent DFR-Group (where the
DFR-Object is to be moved);

position optionally specifies at what place the DFR-Object is to be put in its
new parent DFR-Group;

modifications optionally specifies some modifications to the attributes and/or
content of the new DFR-Entry (of the DFR-Object moved), as compared to
the old DFR-Entry of this DFR-Object;

selection optionally specifies which information from the new DFR-Entry is to
be read back to the requestor (in the move-result) after moving is done.

b) Common arguments:

8.2.4.2 Move-result

reservation, if requested, applies to the moved object in its new position (by
default the previously defined reservation remains in force); reservations
applied to any Descendant of the moved object are not changed;
error-handling, always taken by default (all-or-nothing is used);

priority, see 8.1.3.3;

privileges, see 8.1.3.4

Should the request succeed, the MoveResult will be returned.

MoveResult :: = CommonUpdateResult

The components of the MoveResult have the following meaning:

- upi is the DfrUniquePermanentldentifier of the newly created DFR-Entry (which is
equal to the UPI of the previous entry of the DFR-Object moved);

- entry-information returns all those items from the new DFR-Entry (attributes and/or
content) which have been requested by the selection component of the move-argument,
and which are present in the DFR-.Entry;

- warnings are never returned.

8.24.3 Move Abstract-errors

Should the request fail, one of the listed abstract-errors will be reported. The circumstances
under which the particular abstract-errors will be reported are defined in 8.3 .

8.2.5 Read

The Read abstract operation returns attributes and/or content of a DFR-Entry. Some or all
attributes may be read. The content if requested is returned entirely, the content of a DFR-

8.2.5.1

8.2.5.2

-59 -

Group shall not be requested. On request attributes and content of the Referent (DFR-Group
or DFR-Document) can be accessed via the DFR-Reference(with the same restriction as
above).

Read ::= ABSTRACT-OPERATION
ARGUMENT ReadArgument
RESULT ReadResult
ERRORS {

Abandoned,
NameError,
AccessError,
ReferentAccessError,
InterServerAccessError,
SecurityError,
ServiceError}

Read-argument

ReadArgument ::= SEQUENCE {
COMPONENTS OF
CommonUpdateArguments (WITH COMPONENTS
{ entry, selection }),
dereferencing [7] BOOLEAN DEFAULT FALSE,
COMPONENTS OF CommonArguments (WITH COMPONENTS
{..., error-handling ABSENT})}

The components of ReadArgument have the following meaning:

a) Common update Arguments:
- entry gives the DfrEntryName of the DFR-Entry to be read (external
alternative is not applicable);
- selection specifies which information from the DFR-Entry is to be read.

b) Specific read argument:
- dereferencing, when TRUE, requests the selected items to be read from the
Referent instead of the DFR-Entry specified (applies only when the specified
DFR-Entry is a DFR-Reference); when applied to a DFR-External-Reference
deferencing implies an RDF-Transfer operation.

€: Common arguments:
- reservation, applies to the DFR-Entry specified in the request
- error-handling, always taken by default (all-or-nothing is used);
- priority, see 8.1.3.3;
- privileges, see 8.1.3.4

Read-result

Should the request succeed, the ReadResult will be returned.

ReadResult :: = CommonUpdateResult
(WITH COMPONENTS { ..., entryinformation PRESENT ¥)

The components of the ReadResult have the following meaning:

- upi is the DfrUniquePermanentldentifier of the DFR-Entry;

—

- 60 -

- entry-information returns all those items from the DFR-Entry (attributes and/or
content) which have been requested by the selection component of the ReadArgument,
and which are present in the DFR-Entry and accessible to the requesting DFR-User;

- warnings are never returned.

8.2.5.3- Read Abstract-errors

Should the request fail, one of the listed abstract-errors will be reported. The circumstances
under which the particular abstract-errors will be reported are defined in 8.3 .

8.2.6 Modify

The Modify abstract operation modifies the attributes and/or content of the specified DFR-
Entry. Existing attributes that are not specified in the argument are left unchanged. Attributes
of the parent group are not changed. Content may be modified only for a DFR-Document.
Modification of a DFR-Document-Content means the complete Content is replaced. Content
can be provided explicitly or taken from a specified existing source DFR-Document.

Modify ::= ABSTRACT-OPERATION
ARGUMENT ModifyArgument
RESULT ModifyResult
ERRORS {

Abandoned,

NameError,

UpdateError,
AttributeError,
VersionManagementError,
AccesskError,
ReferentAccessError,
~InterServerAccessError,
SecurityError, .
ServiceError}

8.2.6.1 Modify-argument

ModifyArgument :: = SEQUENCE {
COMPONENTS OF
CommonUpdateArguments (WITH COMPONENTS { ...,

entry PRESENT,
destination ABSENT,
position ABSENT,

modifications PRESENT }),
COMPONENTS OF CommonArguments (WITH COMPONENTS
{..., error handling ABSENT})}

The components of ModifyArgument have the following meanings:

a) Common update arguments:
- object-class optionally specifies the DfrObjectClass of the DFR-Entry to be
modified;
- entry gives the DfrEntryName of the DFR-Object to be modified (external
alternative is not applicable);

- 61 -

- modifications specifies requested modifications of the attributes and/or content
of the DFR-Entry ;

- selection optionally specifies which information from the DFR-Entry modified
is to be read back to the requestor (in the modify-result) after modification is
done.

b) Common arguments:
- reservation, if requested, applies to the DFR-Entry being modified
- error-handling, always taken by default (all-or-nothing is used);
- priority, see 8.1.3.3;
- privileges, see 8.1.3.4

8.2.6.2 Modify-result

Should the request succeed, the ModifyResult will be returned.
ModifyResult ::= CommonUpdateResult

The components of the ModifyResult have the following meaning:
- upi is the DfrUniquePermanentldentifier of the DFR-Entry ;

- entry-information returns all those items from the DFR-Entry modified (attributes
and/or content) which have been requested by the selection component of the
ModifyArgument, and which are present in the DFR-Entry;

- warnings are never returned.
8.2.6.3 Modify Abstract-errors

Should the request fail, one of the listed abstract-errors will be reported. The circumstances
under which the particular abstract-errors will be reported are defined in 8.3.

8.2.7 List

The List abstract operation returns the attributes for the Members of a specified DFR-Group
or for the elements of a specified DFR-Search-Result-List. Only the Members of the group are
listed, not their Descendants. Members of the DFR-Group which are not accessible to the
initiating DFR-User are not included in this list (Other Members are however returned
provided that an appropriate error handling mode is specified). The number of Members
(DFR-Objects) to be listed can be limited by the countLimit argument. If this limit would be
exceeded the listing of Members can be continued with the next List abstract operation. For
each Member only specified attributes are returned. The Members are listed in the specified
order.

List ::= ABSTRACT-OPERATION
ARGUMENT ListArgument
RESULT ListResult
ERRORS {

Abandoned,
NameError,
AccessError,
AttributeError,
SecurityError,
ServiceError}

8.2.7.1

8.2.7.2

- 62 -

List-argument

ListArgument :: = SEQUENCE {
entry [0] DfrEntryName,
COMPONENTS OF
CommonlListSearchArguments (WITH COMPONENTS { ...,
selection PRESENT }),
COMPONENTS OF CommonArguments }

The components of ListArgument have the following meaning:

a) Specific list argument:
- entry identifies the DFR-Group or the DFR-Search-Result-List to be listed.

b) Common list/search arguments:

- continuation optionally specifies the point where the list process has previously
terminated, and from where this time it is to be continued;

- limits optionally specifies the maximum number of DFR-Entries to be returned
and/or the maximum amount of time to be spent for this abstract operation;

- selection specifies which attributes of each DFR-Entry must be returned in the
list-result;

- ordering optionally specifies in which order the DFR-Entries must be put in
the list-result (this ordering, if specified, overrides the eventual predefined
ordering for the DFR-Group or the DFR-Search-Result-List listed).

c) Common arguments:

- reservation, if requested, applies to the DFR-Entry to be listed,

- error-handling, any of four modes may be specified (see 8.1.3.2); if the until-
first-warning mode is specified all the DFR-Group Members (or DFR-Entries
referenced from the DFR-Search-Result-List) are listed in the specified order
until an inaccessible Member is encountered;

- priority, see 8.1.3.3;

- privileges, see 8.1.3.4

List-result
Should the request succeed, the ListResult will be returned.
ListResult :: = CommonListSearchResult

The components of ListResult have the following meaning:

Common list/search result:

- number-of-entries gives the number of DFR-Entries returned in this list-result;

- continuation optionally gives the point at which the list process has terminated this time,
after one of the ’limits’ (specified in the ListArgument) has been encountered; it is
present only when limit-encountered component (see hereafter) is also present;

- limit-encountered optionally indicates which of two limits (number of entries or time)
has been encountered; it is absent if either limits have not been specified in the
ListArgument, or none of them has been encountered,

- entry-list gives the list of DFR-Entries found in the DFR-Group specified (or referenced
from the DFR-Search-Result-List specified), in the order specified; for each DFR-Entry
listed, only those attributes are returned which have been requested by the selection
component in the ListArgument

8.2.7.3

8.2.8

- 63 -

- warnings, if returned, identify those DFR-Entries which have not been listed.
List Abstract-errors

Should the request fail, one of the listed abstract-errors will be reported. The circumstances
under which the particular abstract-errors will be reported are defined in 8.3 .

Search

The Search abstract operation searches for all objects in the specified search domain satisfying
the specified search criteria. The search domain is defined by one or several (starting) DFR-
Groups and/or DFR-Search-Result-Lists. Members of the search domain which are not
accessible to the initiating DFR-User are not included in the search result. The search result
takes the form of a DfrEntryList (see 8.1.6.2); it will be stored in a specified DFR-Search-
Result-List and/or returned to the requestor in the result of the Search abstract operation. The
resulting DfrEntryList contains the UPI and DFR-Object-Class for all DFR-Entries satisfying
the Filter of the Search abstract operation. The Filter of the Search abstract operation is
either provided by the user or taken from a specified DFR-Search-Result-List. The number of
hits noted in the resulting DfrEntryList may be limited. The descent depth of the search
process, that is how many levels of Descendants in the DFR-Object-Tree of each starting
DFR-Group shall be examined, can be restricted. Members in the DFR-Object-Tree of each
starting DFR-Group are examined in the search process to check whether they satisfy the
Filter. Referents of DFR-References are examined on request. If a Referent is examined the
depth argument is also valid for the DFR-Object-Tree of the Referent and will be related to
the level on which the Referent exists in the search domain, i.e. if a Referent is a DFR-Group
and the DFR-Reference pointing to this Referent exists on level two in the DFR-Object-Tree
of a starting DFR-Group to be searched, the counting of the depth for the search process in
the DFR-Object-Tree of the Referent starts with two. If descent depth is not specified the
entire DFR-Object-Tree of each starting DFR-Group and of each Referent will be examined.

Search ::= ABSTRACT-OPERATION
ARGUMENT SearchArgument
RESULT SearchResult

ERRORS {

" Abandoned,
NameError,
AccessError,
AttributeError,
UpdateError,
-- concerns the searchResultList 1o be filled --
SecurityError,
ServiceError }

8.2.8.1

- 64 -

Search-argument

SearchArgument :: = SEQUENCE {

search-mode [0] CHOICE {

continue [0] DfrEntryName,

-- Continue the search with all options (search domain, search criteria and --

-- continuation context) from the search result list specified by the DfrEntryName. --

- The result will be added 1o the present content of this search result list. --
update [1] DfrEntryName,

-- The present content of the search result list is verified and eventually updated. --
new-search-stored [2] DfrEntryName,

-- All options are supplied by the requestor in the subsequent parameters; they are --

-- stored in the search resuli list specified, were the result is then also stored. --
non-stored-search [3] NULL }

-- All options are supplied by the requestor in the subsequent parameters; they are --

-- not stored, and the result also is not stored but only returned to the requestor. --

COMPONENTS OF
CommonListSearchArguments,
search-domain [5] SearchDomain OPTIONAL,
search-criteria [6] SearchCriteria OPTIONAL,
COMPONENTS OF CommonArguments (WITH COMPONENTS

{..., error-handling ABSENT }) }

The components of SearchArgument have the following meanings:

a) Specific search arguments:

search-mode specifies the execution mode for this Search abstract operation;
search-domain optionally specifies the domain of this Search abstract
operation;

search-criteria optionally specifies the criteria for a DFR-Entry to be put in the
search-result (both the search-domain and the search-criteria arguments shall
be present for the search-mode = 2 or 3, and shall be absent for search-mode
= 0or1).

b) Common list/search arguments:

continuation optionally specifies the point where the search process has
previously terminated, and from where this time it is to be continued :

limits optionally specifies the maximum number of DFR-Entries to be found
and/or the maximum amount of time to be spent for this abstract operation;
selection optionally specifies which attributes of each DFR-Entry found in this
Search operation must be returned in the entry-list parameter of the result of
this operation,;

ordering optionally specifies in which order the DFR-Entries must be put in
the search-result ;

c) Common arguments:

reservation, if requested, applies to the DFR-Search-Result-List if specified in
the search-mode parameter;

error-handling, always taken by default (all-or-nothing is used);

priority, see 8.1.3.3;

privilege, see 8.1.3.4.

8.2.8.2

8.2.8.3

8.2.9

- 65 -

Search-result

Should the request succeed, the SearchResult will be returned.

SearchResult :: = SEQUENCE {COMPONENTS OF
CommonListSearchResult,
removed-entries [4] DfrEntryList OPTIONAL 3}

The components of ListResult have the following meaning;
Common list/search result:
- number-of-entries gives the number of DFR-Entries found in this search;

- continuation optionally gives the point at which the search process has terminated this
time, after one of the limits (specified in the SearchArgument) has been encountered; it
is present only when limit-encountered component (see hereafter) is also present;

- limit-encountered optionally indicates which of two limits (number of entries or time)
has been encountered; it is absent if either limits have not been specified in the search-
argument, or none of them has been encountered;

- entry-list optionally gives the list of DFR-Entries found, in the order specified; for each
DFR-Entry listed, only those attributes are returned which have been requested by the
selection component in the SearchArgument.

- removed-entries gives in the case of a Search in update mode the list of DFR-Entries
removed from the previously existing DfrSearchResultList, each element comprising
only the upi, DfrObjectClass and possibly ordering-attribute components;

- warnings are never returned.
Search Abstract-errors

Should the request fail, one of the listed abstract-errors will be reported. The circumstances
under which the particular abstract-errors will be reported are defined in 8.3 .

Reserve

The Reserve abstract operation is used to modify the reservation level of the DFR-Object
specified. There are three levels of reservation defined. Level zero is "unreserved". Level one
restricts write access to a DFR-Obiject’s content and attributes (exclusive-write reservation) to
the DFR-User who has reserved it. Level two in addition restricts read access to the DFR-
Object’s content (exclusive-access reservation), allowing access only to the DFR-User who has
reserved it (this does not affect read access to the attributes of the DFR-Obiject, that is, other
users may still read the attributes). The reservation level of a DFR-Object may only be
changed by a Reservation abstract operation or by specifying a reservation parameter in other
appropriate abstract operations. Unbind does not change the reservation level of a DFR-Entry.
If a DFR-Reference is reserved, the Referent is not affected, that is, not reserved. The DFR-
Reserved-By attribute is used to indicate the identity of the DFR-User who reserved the
object.

8.2.9.1

8.2.9.2

8.2.9.3

8.2.10

- 66 -

Reserve :: = ABSTRACT-OPERATION
- ARGUMENT ReserveArgument
RESULT ReserveResult
ERRORS {
NameError,
ReservationError,
SecurityError,
ServiceError }

Reserve-argument

ReserveArgument :: = SEQUENCE {
entry [0] DfrEntryName,
COMPONENTS OF CommonArguments (WITH COMPONENTS {
..., reservation PRESENT, error-handling ABSENT})}

Reservation :: = ENUMERATED {
unreserved (0),
exclusive-write (1),
exclusive-access (2) }

The components of ReserveArgument have the following meanings:

a) Specific reserve argument:
- entry gives the DfrEntryName of the DFR-Entry to be reserved;

b) Common arguments:
- reservation specifies the level of reservation;
- error-handling, always taken by deafult (all-or-nothing is used);
- priority, see 8.1.3.3;
- privilege, see 8.1.3.4.

Reserve-result

Should the request succeed, the ReserveResult will be returned. There are no parameters.

ReserveResult :: = NULL

Reserve Abstract-errors

Should the request fail, one of the listed abstract-errors will be reported. The circumstances
under which the particular abstract-errors will be reported are defined in 8.3 .

Abandon

The Abandon abstract operation informs the DFR-Server that the user is no longer interested
in the execution of a previously started outstanding abstract operation. The DFR-Server may,
for example, cease processing the outstanding abstract operation, and may discard any result
so far achieved.

Abandon :: = ABSTRACT-OPERATION
ARGUMENT AbandonArgument
RESULT AbandonResult
ERRORS { AbandonFailed }

- 67 -

8.2.10.1 Abandon-argument

AbandonArgument :: = SEQUENCE {
object [0] DfrEntryName }

The components of AbandonArgument have the following meanings:

- entry specifies the DfrEntryName of a DFR-Entry which was specified as an argument
in the abstract operation to be abandoned.

8.2.10.2 Abandon-result

Should the request succeed, no AbandonResult will be returned. Instead, the abstract
operation abandoned reports the Abandoned abstract-error.

AbandonResult :: = NULL

8.2.10.3 Abandon Abstract-errors

8.3

8.3.1

Should the request fail, one of the listed abstract-errors will be reported. The circumstances
under which the particular abstract-errors will be reported are defined in 8.3.

Abstract-Errors

The abstract errors that may be reported in response to the invocation of abstract operations at
the DFR-Server port are defined and described in this clause.

Any error means that the abstract operation has changed nothing (this does not apply, however,
to warnings, reported by the DFR-Server as part of a normal result of a DFR abstract operation;
see 8.1.3.2). The entry parameter in most DFR Abstract Errors identifies the DFR-Entry to
which the abstract operation was being applied when the error occurred. If this DFR-Entry is
that specified explicitly in the abstract operation’s argument, this parameter takes the same form
(i.e. a UPI, or a DfrPathName, or a relative pathname) as that used in the argument. If the
DFR-Entry causing the problem is not explicitly specified in the abstract operation’s argument,
then the entry parameter always takes the UPI form.

If several DFR-Entries were specified in the abstract operation’s argument (e.g. the original entry
and the destination group in a Copy abstract operation), then an abstract error may be reported
having the form of a sequence, each member of which specifies a problem related to a given
entry. However, only one abstract error type may be reported at once.

Attribute-error

An AttributeError reports one or several problems encountered by the DFR-Server while
attempting to read or to modify attributes of a DFR-Entry.

AttributeError ::= ABSTRACT-ERROR
PARAMETER SEQUENCE {
entry [0] DfrEntryName OPTIONAL,
problems [1] SEQUENCE OF
SEQUENCE {
problem [0] AttributeProblem,
type [1] AttributeType,
value [2] AttributeValue OPTIONAL }}

-- applies also to search criteria and group membership criteria --

- 68 -

AttributeProblem :: = ENUMERATED {
no-such-attribute (1),
invalid-attribute-syntax (2),
undefined-attribute-type (3),
inappropriate-matching (4),
constraint-violation (5),

attribute-or-value-already-exists (6),
illegal-madification (7),
inconsistent-with-other-attributes (8),
undefined-for-this-object-class (9)
unsupported-document-type (10) }

The entry parameter is absent in an AttributeError in the following cases;

when the abstract operation causing this error was a Create abstract operation, and an
AttributeProblem has been encountered when processing the attributes component of the
abstract operation’s argument;

when the abstract operation causing this error was a Search abstract operation, and an
AttributeProblem has been encountered when processing the search-criteria component of
the abstract operation’s argument.

The problems parameter specifies one or several attribute problems encountered. Each
problem (identified below) is accompanied by an indication of the Attribute-Type, and, if
necessary to avoid ambiguity, the value, which caused the problem:

a)

b)

c)

d)

e)

f)

g)

h)

no-such-attribute: The named entry lacks one of the attributes specified as an
argument of the abstract operation;

invalid-attribute-syntax: A purported attribute value, specified as an argument of the
abstract operation, does not conform to the attribute syntax of the attribute type;

undefined-attribute-type: An undefined attribute type was provided as an argument
to the abstract operation;

inappropriate-matching: An attempt was made, e.g. in a Filter, to use a matching
rule not defined for the attribute type concerned;

constraint-violation: An attribute value supplied (or specified indirectly) in the
argument of an abstract operation does not conform to the static constraints imposed
by a functional standard or by the attribute definition (e.g. the value exceeds the
maximum size allowed).

attribute-or-value-already-exists: An attempt was made to add an attribute which
already existed in the entry, or a value which already existed in the attribute;

illegal-modification: An attempt was made to modify an attribute (i.e. to add or
remove the entire attribute or some of its values), which has some specific behavior
in DFR, that is, either a DFR-Server assigned attribute (e.g. UPI or Number-Of-
Group-Members), or an attribute which, once assigned by the DFR-User, may not be
modified in the way specified in the abstract operation (the rules are specified in 9);

inconsistent-with-other-attributes: An attempt was made to modify an attribute in a
way inconsistent with other attributes of the same DFR-Object (e.g. if a new version
of some Conceptual-Document is specified with the DFR-Version-Root attribute
identifying this Conceptual-Document, and the DFR-Previous-Versions attribute

8.3.2

8.3.3

- 69 -

pointing to a version of some other Conceptual-Document). An inconsistency with
some existent attribute is not reported if it is eliminated by further modifications
specified in the same abstract operation. If two attributes enter in conflict, the DFR-
Server may report an AttributeProblem for either of them, or for both.

i) undefined-for-this-object-class: An Attribute-Type was specified which is not defined
for the DFR-Object-Class of the DFR-Entry concerned (e.g. the Number-Of-Group-
Members for a DFR-Document). This does not apply to DFR-Entries examined
during a List or a Search abstract operation;

j) unsupported-document-type: An abstract operation has attempted to use a DFR-
Document-Type which was not among those agreed at bind time.

Name-error

A NameError reports a problem related to a name of a DFR-Entry specified in the argument
of an abstract operation. The DfrEntryName which caused a problem is reported as it was
specified, accompanied by an indication of the problem encountered.

NameError ::= ABSTRACT-ERROR
PARAMETER SEQUENCE OF SEQUENCE {
entry [0] DfrEntryName,
problem [1] NameProblem }

NameProblem ::= ENUMERATED {
invalid-upi (1),
invalid-path-name (2),
ambiguous-path-name (3)
inappropriate-object-class (4) }

A NameProblem may be one of the following:

a) invalid-upi: The UPI provided in the abstract operation’s argument does not refer to
any DFR-Object existing in the DFR-Document-Store (either this UPI has never
been assigned, or the related DFR-Obiject has been deleted from the store);

b) invalid-path-name: The DfrPathName (either absolute or relative) provided in the
abstract operation’s argument does not correspond to any existing DFR-Entry in the
store;

c) ambiguous-path-name: the DfrPathName (either absolute or relative) provided in the
abstract operations argument is ambiguous, that is, corresponds to more than one
DFR-Entry;

d) inappropriate-object-class: The DfrEntryName provided in the abstract operation’s
argument points to a DFR-Object of an inappropriate DFR-Object-Class (e.g. to a
DFR-Document in a List abstract operation).

Access-error

An AccessError reports a problem encountered when attempting to access a DFR-Entry
specified in the argument of an abstract operation.

AccessError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE OF SEQUENCE {

entry [0] DfrEntryName,
problem [1] AccessProblem }

8.34

=70 -

AccessProblem ::= ENUMERATED {
inappropriate-object-class (1),
insufficient-access-rights (2),
reserved-by-another-user (3),
externally-located-object (4) }

An AccessProblem may be one of the following:

a) inappropriate-object-class: The DfrEntryName provided in the abstract operation’s
argument refers to a DFR-Object of an inappropriate DFR-Object-Class.

b) insufficient-access-rights: An attempt to read or list a DFR-Entry has been made by
a DFR-User with insufficient access rights to this entry;

c) reserved-by-another-user: The DFR-Entry to be accessed is at present reserved by
another user (with reservationLevel set to "exclusiveAccess");

d) externally-located-object: the DFR-Entry to be accessed is located in another DFR-
Document-Store and it is not suitable for the abstract operation requested.

Update-error

An UpdateError reports a problem encountered when attempting to modify (update),
explicitly or implicitly, an existing DFR-Entry (implicit modification may be, for example, that
caused to a DFR-Group when introducing a new Member into it). Deletion of a DFR-Entry,
or moving it into another DFR-Group, are also considered here as modifications.

UpdateError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE {
entry [0] DfrEntryName,
problem [1] UpdateProblem }

UpdateProblem :: = ENUMERATED {

inappropriate-object-class (1),
insufficient-access-rights (2),
reserved-by-another-user (3),
quality-of-service-violation (4),
illegal-content-modification (5),

group-membership-criteria-violation (6),
reference-loop-detected (7) }

An UpdateProblem may be one of the following:

a) inappropriate-object-class: The DfrEntryName provided in the abstract operation’s
argument refers to a DFR-Object of an inappropriate DFR-ObjectClass.

b) insufficient-access-rights: An attempt to modify a DFR-Entry has been made by a
DFR-User with insufficient access rights to this entry;

c) reserved-by-another-user: The DFR-Entry to be modified is at present reserved by
another DFR-User;

d) quality-of-service-violation: An attempt has been made to modify a DFR-Entry while
the FidelityTime specified in its QosLevel has not yet elapsed,;

8.3.5

e)

)

8)

=777 -

illegal-content-modification: An attempt has been made to modify the content of a
DFR-Entry which is not subject to user specified modifications (e.g. a DFR-Search-
Result-List);

group-membership-criteria-violation: An attempt has been made to introduce a new
member in a DFR-Group, or to modify an existing one, in a way that the member
introduced or modified would violate the Group-Membership-Criteria defined for
that group;

reference-loop-detected: An attempt has been made to create a new DFR-Internal-
Reference or to modify an existing one in a way that the reference created or
modified would form, together with some other reference-to-referent and group-to-
member relations already existing in the DFR-Document-Store, at least one looping
sequence of such relations.

NOTE 26

This standard does not prescribe that every DFR-Server detect all such reference loops
at the point of their creation. If a DFR-Server does not detect all loops, its abstract
operation shall not, however, be affected when such a loop is dynamically discovered
when navigating through the store.

ReferentAccess-error

A ReferentAccessError reports a problem occurring when attempting to access the Referent
of a DFR-Reference by specifying the DfrEntryName of the latter. This applies to internal as
well as to external references.

ReferentAccessError :: = ABSTRACT-ERROR

PARAMETER SEQUENCE {
entry [0] DfrEntryName, --of a reference--
problem [1] ReferentAccessProblem }

ReferentAccessProblem :: = ENUMERATED {
inappropriate-object-class (1),
insufficient-access-rights (2),
reserved-by-another-user (3),
referent-no-more-exists (4),
referent-modified (5),
referenceContent-empty (6) }

A ReferentAccessProblem may be one of the following:

a)

b)

d)

inappropriate-object-class: The referent of the DFR-Reference specified in the
abstract operation’s argument is of an inappropriate DFR-Object-Class (e.g. when
attempting to read the content of the Referent , and the latter is a DFR-Group).

insufficient-access-rights: An attempt to read the referent of a DFR-Reference has
been made by a DFR-User with insufficient access rights to the Referent; -

reserved-by-another-user: The Referent to be accessed is at present reserved by
another DFR-User (with reservationLevel set to exclusiveAccess).

referent-no-more-exists: The Referent of the DFR-Reference specified in the abstract
operation’s argument has been deleted ("dangling reference").

8.3.6

8.3.7

€)

f)

-7 -

referent-modified: The Referent of the DFR-Reference specified in the abstract
operation’s argument has been modified after the produce-time of the reference (the
latter being stored in the qos-level component of the reference content).

reference-content-empty: The content of the DFR-Reference specified in the abstract
operation’s argument contains no UPI; the reference is at present only a
"placeholder".

InterServerAccess-error

An InterServerAccessError reports a problem which occurs when the DFR-Server of the
DFR-Document-Store containing the DFR-External-Reference specified in the abstract
operation’s argument (the sink server) has made an attempt to access the DFR-Document-
Store containing the Referent of that external reference (the source store).

NOTE 27
This access may be initiated using the Referenced Data Transfer protocol between the two DFR-
Servers; but the access problems specified hereafter have nothing specific to the RDT protocol.

InterServerAccessError :: = ABSTRACT-ERROR

PARAMETER SEQUENCE {
entry [0] DfrEntryName, --of an external reference--
problem [1] InterServerAccessProblem }

InterServerAccessProblem :: = ENUMERATED {

referent-store-not-found (1), --bad store identification--
referent-store-unreachable (2), --no port to reach it--
referent-store-unavailable (3), --temporarily--

referent-store-security-problem (4) } --access. rights-

An InterServerAccessProblem may be one of the following:

a)

b)

d)

referent-store-not-found: The source store, as it is specified in the content of the
DFR-External-Reference, has not been found.

NOTE 28

This problem may be caused by bad content of the external reference, or by bad entry
in the Directory describing the current location of the source store, or by any other
access problem between the sink server and the related Directory server.

referent-store-unreachable: The DFR-Server managing the source store has no
protocol in common with the sink server, through which the Referent could be
accessed.

referent-store-unavailable: The source store is temporarily unavailable (e.g. because
of some administrative abstract operations in progress).

referent-store-security-problem: The DFR-User requesting access to the source store
has insufficient access rights for doing this, at least through the given sink server
(this may also be caused by insufficient access rights of the sink server itself).

Reservation-error

A ReservationError reports a problem occurring when an attempt has been made to reserve
or to unreserve some DFR-Entry.

=73 -

ReservationError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE {
entry [0] DfrEntryName,
problem [1] ReservationProblem }

ReservationProblem :: = ENUMERATED {
cannot-reserve (0),
already-reserved (1),
not-yet-reserved (2) }

A ReservationProblem may be one of the following:

a) cannot-reserve: The requestor of the Reserve abstract operation has insufficient
access rights to the specified DFR-Entry in order to reserve it with the specified
Reservation level.

b) already-reserved: An attempt has been made to reserve or to unreserve a DFR-Entry
which is already reserved by another DFR-User.

c) not-yet-reserved: An attempt has been made to unreserve a DFR-Entry which is not
reserved at present.

8.3.8 VersionManagement-error

A VersionManagementError reports a problem occurring when attempting to create a new
version of a Conceptual-Document, or to copy some items from the (unique) previous version
(implicitly specified in the modifications parameter of a Create, Move, Copy or Modify
abstract operation).

VersionManagementError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE {
entry [0] DfrEntryName, -- of the entry itself or of its potential previous version --
problem [1] VersionManagementProblem }

VersionManagementProblem ::= ENUMERATED {
inappropriate-object-class (1), --not a DFR-document--
insufficient-access-rights (2), --when copying items from it--
belongs-to-another-conceptual-document (3) }

A VersionManagementProblem may be one of the following:

a) inappropriate-object-class: An attempt has been made to declare a version some
DFR-Entry which is not a DFR-Document.

b) insufficient-access-rights: An attempt to copy some items from the (unique) previous
version of the DFR-Entry specified in the abstract operation’s argument has been
made by a DFR-User with insufficient access rights to this previous entry;

c) belongs-to-another-conceptual-document: An attempt has been made to declare the
DFR-Entry specified in the abstract operation’s argument a new version of some
Conceptual-Document, while this DFR-Entry is already a version of another
Conceptual-Document; or, the list of DFR-Entries, specified as PreviousVersions for
the given DFR-Entry, do not belong all to the same Conceptual-Document.

8.3.9

8.3.10

Security-error

- 74 -

A SecurityError reports a problem occurring when a DFR-User presents security parameters
to a DFR-Server. This may occur either when binding or when executing a DFR abstract
operation bearing a Privilege parameter.

SecurityError :: = ABSTRACT-ERROR

PARAMETER SEQUENCE {
problem [0] SecurityProblem }

SecurityProblem :: = ENUMERATED {

inappropriate-authentication (1),

invalid-creds
invalid-privilege

(2),
@),

insufficient-access-rights (4),

invalid-pac

(5)}

A SecurityProblem may be one of the following:

a)

b)
<)

d)

e)

inappropriate-authentication: The level of security associated with the requestor’s
credentials is inconsistent with the level of protection requested;

invalid-creds: the supplied simple credentials were invalid;

invalid-privileges: invalid privileges used in the PAC passed in the Privileges

parameter,

insufficient-access-rights: The requestor does not have the right to carry out the
requested abstract operation (e.g. Modify), independently of the DFR-Entry involved

in the abstract operation;

invalid-pac: The supplied PAC is invalid

Service-error

A ServiceError reports a problem related to the provision of the service, which is not due to
an incorrect abstract operation request or the requestor’s access rights.

ServiceError :: = ABSTRACT-ERROR

PARAMETER SEQUENCE {
problem [0] ServiceProblem }

server-busy (1),
server-unavailable (2),
operation-too-complex (3),
resource-limit-exceeded (4),
unclassified-server-error (5) }

ServiceProblem :: = ENUMERATED {

--please wait and repeal--

--please unbind--

--e.g. searchCriteria--

--e.g. when creating a bulky object--
--e.g. for any bug in the server--

A ServiceProblem reported may be one of the following:

a)

b)

server-busy: The DFR-Server is presently too busy to perform the requested abstract
operation, but may be able to do so after a short while;

server-unavailable: The DFR-Server is currently unavailable;

8.3.11

8.3.12

8.3.13

=75 -

c) operation-too-complex: The requested abstract operation is too complex syntactically
or semantically (e.g. the SearchCriteria in a Search abstract operation have too many
nesting levels to be correctly understood by the given DFR-Server);

d) resource-limit-exceeded: This may happen for example when a very large object is to
be created or copied in the DFR-Document-Store or large List or Search operations
are requested. The resource limit may be that for the overall document store, or for
the requestor of the abstract operation.

e) unclassified-server-error: This is a place-holder for "any other" errors, primarily to
those due to software bugs in a yet unstable DFR-Server implementation, to make it
nevertheless possible to access it remotely before it becomes sufficiently robust.

Abandon-error

An AbandonError reports a problem occurring when attempting to abandon some previously
requested DFR abstract operation.
AbandonFailed :: = ABSTRACT-ERROR
PARAMETER SET {
problem [0] AbandonProblem,
operation [1] Invokeld }

Inwokeld :: = INTEGER

AbandonProblem ::= ENUMERATED {
no-such-operation (1),
too-late (2),
cannot-abandon (3) }

An AbandonProblem may be one of the following:

a) no-such-operation: The DFR abstract operation specified is not currently known to
the DFR-Server;

b) too-late: The execution of the abstract operation specified has entered the phase in
which it already cannot be abandoned, or such an abandon would make no sense;

c) cannot-abandon: The abstract operation specified is of the kind for which an
abandon is not permitted (e.g. Modify or Delete).

Abandoned

This is a report of a DFR abstract operation after it has been abandoned by an Abandon
abstract operation. It is not literally an error, but may instead be considered as a success report
of the related Abandon abstract operation. It may not occur if the related Abandon abstract
operation has reported an AbandonError.

Abandoned :: = ABSTRACT-ERROR

Error Precedence

Should several error conditions occur simultaneously for the same DFR abstract operation
only one of them is reported to the requestor. The precedence of these error conditions is as
follows beginning with the most important:

8.4

- 76 -

SecurityError
ServiceError
NameError
AccessError
InterServerAccessError
ReferentAccessError
ReservationError
Abandoned
AttributeError
UpdateError
VersionManagementError
AbandonFailed

Function Sets

DFR-Document-Stores have flexible structures as indicated in Figure 2 (see 6.3). But, from
user’s viewpoint, it is necessary to define functional sets of this structure. Thus, the following
usage types and corresponding Function Sets are defined:

Usage Type 1: Flat Store Set

In this Usage Type, the structure of a DFR-Document Store is not important. All
DFR-Documents, DFR-References or DFR-Search-Result-Lists in this type of
DFR-Document Store are directly included in the DFR-Root-Group.

In this set, no DFR-Groups (except the DFR-Root-Group) are allowed in a DS.
Usage Type 2: Pre-defined Store Structure Set

In this Usage Type, DFR-Objects are stored according to a pre-defined structure
of DFR-Groups. A DFR-User can create, modify or delete DFR-Documents,
DFR-References and DFR-Search-Result-Lists in each DFR-Group. But, a DFR-
User can not create , modify or delete DFR-Groups.

In this set, no DFR-User can create or delete DFR-Groups. DFR-Groups are
predefined.

Usage Type 3: Full Set

In this Usage Type, users are free to create, modify or delete any DFR-
Documents, DFR-References, DFR-Groups or DFR-Search-Result-Lists in a
DFR-Document-Store.

In this set, all DFR-Users can create, modify or delete DFR-Groups.

All DFR abstract operations applied to DFR-Documents, DFR-References and DFR-Search-
Result-Lists and the abstract operations Reserve and Abandon are available in Function Sets 1
and 2 and 3.

For DFR abstract operations applied to DFR-Groups :
Read, List and Search are only available in Function Sets 2 and 3;

Create, Delete, Copy, Move and Modify are only available in Function Set 3.

- 97 =

SECTION THREE - DFR ATTRIBUTES

- 78 -

-'79 -

ATTRIBUTE DEFINITIONS

Overview of Attributes

The DFR information-model and the attributes were introduced in chapter 6.

For the DfrEntryAttributes the following subclauses contain a short description of each
Attribute-Type together with its abstract-syntax using the ATTRIBUTE macro defined in 6.3.7.4.

It should be noted that some attributes are used primarily for filtering and listing purposes while
others are used for system purposes only.

The concept of how attributes support Security in DFR is described in 6.3.8.

The attributes defined in this Standard are independent of the nature of the stored information,
that is no specific attributes for ODA, SGML or other document content standards are provided.
However, a subset of attributes from the ODA-Document-Profile can be mapped to DFR-
Attributes (see Appendix A). DFR gives support to a subset of ODA Attributes from the ODA
Document Profile (see Standard ECMA-101 Part 4). These attributes are considered not to be
specific to DFR and therefore their names appear without "DFR" prefix. The DFR attribute
mechanism is intended to accommodate different attribute sets defined in International Standards
other than ODA also, for example SGML, IPM, and EDI.

NOTE 29
The consistency between the ODA-Document-Profile auributes and their corresponding DFR-
Autributes is beyond the scope of this standard.

The attribute types defined in this standard are grouped in two subsets, the DFR-Basic-Attribute-
Set and the DFR-Extension-Attribute-Set. DFR supports mandatorily the DFR-Basic-Attribute-
Set and optionally the DFR-Extension-Attribute-Set.

NOTE 30

There will eventually be different extension auribute sets, e.g. each having its own abstract syniax.
Extension-Auribute-Sets to be used in an application association are negotiable at association
establishment time. The DFR-Extension-Attribute-Set (defined in this Standard) is included in the
definition of DFR application Contexts (see Appendix of Part 2 of this Standard); its presence
however is also negotiable.

The attributes defined in this Standard are listed in the tables in the following pages. The details
are given in the attribute-type descriptions. The tables which are provided for the DFR-Basic-
Attribute-Set and the DFR-Extension-Attribute-Set each consists of two parts. Tables 3 and 4
show for the various attributes whether the attribute-type is single-valued or multi-valued, by
whom the attribute-type is managed in different situations and whether an attribute is
automatically copied in a Copy abstract operation. Tables 5 and 6 show for the various attributes,
to which DFR-Objects these attributes are assigned to, their occurrences, and their matching
behavior in Search abstract operations including their availability for ordering.

Attribute-type name

DFR-UPI

Single/
Multi
Valued

Assigned

=2
~<

Modified
by

= ———

Deleted
by

Autom.
Copied
by Copy

DFR-Obiject-Class

DFR-Document-Type

Document-Architecture-Class

DFR-Title

DFR-Pathname

DFR-Parent-Identification

DFR-Guarantee-QoS

Qlo|o|C|C|C

DFR-Referent-Deleted

DFR-Membership-Criteria

DFR-Ordering

DFR-Resource-Limit

ol|lCc|C|O

DFR-Resource-Used

DFR-Number-Of-Group-Members

ojo|jo|c|c

Version-Name

DFR-Previous-Version

DFR-Next-Version

O

DFR-Version-Root

DFR-External-Location

User-Reference

C

User-Reference-To-Other-Objects

clejejelelc|c

DFR-Attributes-Create-Date-And-Time

DFR-Content-Create-Date-And-Time

DFR-Created-By

DFR-Attributes-Modify-Date-And-Time

DFR-Content-Modify-Date-And-Time

DFR-Attributes-Modifyed-By

DFR-Content-Modifyed-By

Document-Date-And-Time

c

DFR-Reservation

o

DFR-Reserved-By

ololclolololololololclclclololclclo|o|o|lc|c|o|O|D|T|C|C|C|O|0

o|o|c|O|0|0|0

O

DFR-Access-List

zlzlzl=<lzlzlzlzlzlzlzix|<|=<|Z|Z|Z|Z|<|X|<|<|X|<|Z|Z|Z2|<|<|<]|<|Z

<
C
o

Table 3: DFR-Basic-Attribute-Set
S=SINGLE VALUE, M= MULTI VALUE, D=DFR-Server, U = DFR-User,O = OWNERS, Y = YES,
N = NO

- 81 -

Used for Matches in filter for

Attribute types
DO GR RE
DFR-UPI M

SR
M

OR

SU

DFR-Object-Class

M

M

DFR-Document-Type

Document-Architecture-Class

DFR-Title

4l Rl R Kl e

=

DFR-Pathname

4 E EAEAEJE (1

O

DFR-Parent-Identification

DFR-Guarantee-QoS

020X [X|X

SIZ R

DFR-Referent-Deleted

=

DFR-Membership-Criteria

DFR-Ordering

DFR-Resource-Limit

o

DFR-Resource-Used

Z

o

DFR-Number-Of-Group-Members

4 -4l ko) o] ko)

Version-Name

DFR-Previous-Version

DFR-Next-Version

DFR-Version-Root

DFR-External-Location

User-Reference

o

User-Reference-To-Other-Objects

DFR-Attributes-Create-Date-And-Time

DFR-Content-Create-Date-And-Time

DFR-Created-By

DFR-Attributes-Modify-Date-And-Time

DFR-Content-Modify-Date-And-Time

DFR-Attributes-Modifyed-By

|| DFR-Content-Modifyed-By

ajajajalg|olz|ololo

ol iol kol Iol k4 il kd el ke

Document-Date-And-Time

=

DFR-Reservation

DFR-Reserved-By

ajajo|ojajalalz|alzlolololalalalo

DFR-Access-List

Table 4: DFR-Basic-Attribute-Set

P

alalo

ololal=|alalalolz|olz|=|=]|=

EZOZZZZZZZZOOZOOOOOOO

ol ol 9!

DO = DFR-Document, GR = DFR-Group, RE = DFR-Reference, SR = DFR-Search-Resuli-List

EQ = Equality, OR = Ordering, SU = Subsirings, C = Conditional, M = Mandatory, O, R = Optional

NOTE 31

For the DFR-Reference (RE) the letter R is used to indicate that the values of the marked optional attributes
are inherited from the Referent at the DFR-Reference creation time. If the values of these attributes of the

Referent are changed later on, the values of the DFR-Reference are not changed.

Attribute-type name

Other-Titles

-82-

Single/
Multi Assigned
Valued by

=

Autom.
Modified

=
<

Deleted Copied
by by Copy

]

Subject

Document-Type

Keywords

Creation-Date-And-Time

Purge-Date-And-Time

Revision-Date-And-Time

Organizations

Prepares

Owners

Authors

Status

User-Specifc-Codes

Superseded-Document

Number-Of-Pages

A HEHHEEHEEEEEEE

CCCCCCCCCCCCC‘.CC“

clclclclclclclclclclclcjc|c|c

=

Languages
P ——————__,.___

Table 5: DFR-Extension-Attribute-Set

clclclclclclclclclclc|c|c|c|Cc|c

|

el <l=<|=<]<]=<]=|=<|=<]|=<]|=<]|=<]|=

S=SINGLE VALUE, M= MULTI VALUE, D=DFR-Server, U = DFR-User, Y = YES, N = NO

Wmﬂ
EQ OR SU

Other-Titles O M M

F Subject O R (0] M M

[Document-Type O M M

f Keywords O O R (@] M M
Creation-Date-And-Time (0] (0] R 0] M M

| Purge-Date-And-Time O O R O M M
Revision-Date-And-Time O O R O M M
Organizations O R M MJ
Prepares O R
Owners O R

[Authors O R

Status O R M M
User-Specifc-Codes O O R O M M
Superseded-Document O R M M
Number-Of-Pages O R M M
Languages O R M M

Table 6: DFR-Extension-Attribute-Set

DO = DFR-Document, GR

9.2
9.2.1

9.2.2

9.2.3

9.24

- 83 -

= DFR-Group, RE = DFR-Reference, SR = DFR-Search-Result-List
EQ = Equality, OR = Ordering, SU = Substrings, C = Conditional, M = Mandaiory,
O = Optional, R = Optional

NOTE 32

For the DFR-Reference (RE) the letter R is used 1o indicate that the values of the marked optional
attributes are inherited from the Referent at the DFR-Reference creation time. If the values of these
autributes of the Referent are changed later on, the values of the DFR-Reference are not changed.

DFR-Basic-Attribute-Set
DFR-UPI (DFR-Unique-Permanent-Identifier)

This attribute is used by a DFR-Server to uniquely identify a given DFR-Document, DFR-
Group or DFR-Reference within the DFR-Document-Store. Its value cannot be interpreted by
the DFR-User. This attribute is associated with each DFR-Object. Once assigned by a DFR-
Server, the value of each UPI will not be changed within the life of a DFR-Obiject. In addition,
this UPI value will differ from that of all DFR-Objects which once existed in the same DFR-
Server (including all existing DFR-Objects and all deleted DFR-Objects).

dfr-upi ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrUniquePermanentldentifier
MATCHES FOR EQUALITY
SINGLE VALUE
1= id-att-dfr-upi

DFR-Object-Class

This attribute indicates the class of a DFR-Object (DFR-Document, DFR-Group, DFR-Refer-
ence or DFR-Search-Result-List). This attribute is associated with each DFR-Object.

dfr-object-class ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrObjectClass
MATCHES FOR EQUALITY
SINGLE VALUE
:: = id-att-dfr-object-class

DFR-Document-Type

This attribute contains an object identifier whose value defines the representation for the
document content, for example ODA or SGML in the DFR access protocol. For a DFR-
Reference this attribute will only exist if the Referent is a DFR-Document and in this case the
attribute is mandatory.

dfr-document-type ATTRIBUTE
WITH ATTRIBUTE-SYNTAX OBJECT IDENTIFIER
MATCHES FOR EQUALITY
SINGLE VALUE
1= id-att-dfr-document-type

Document-Architecture-Class

This attribute specifies the document architecture class used in the document. In the case of
an ODA-Document the value of this attribute can be taken by the DFR-User from the ODA
Document Profile.

9.2.5

9.2.6

9.2.7

9.2.8

-84 -

document-architecture-class ATTRIBUTE
"~ WITH ATTRIBUTE-SYNTAX DocumentArchitectureClass
MATCHES FOR EQUALITY ORDERING
SINGLE VALUE
:: = id-att-document-architecture-class

DFR-Title
This attribute gives the name of the DFR-Object as specified by the DFR-User.

dfr-title ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
SINGLE VALUE
;1= id-att-dfr-title

DFR-Pathname

This attribute is a sequence of DFR-Title attribute values of the DFR-Object’s Parents in de-
scending order beginning from the DFR-Root-Group. It is only defined in the context of a DS
for which global or local DFR-Title attribute uniqueness is enforced by the DFR-Server (see
7.1.2). For a DFR-Root-Group this attribute by convention is an empty sequence of DFR-
Titles.

dfr-pathname ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreListSyntax
SINGLE VALUE
1= id-att-dfr-pathname

DFR-Parent-Identification

This attribute identifies the DFR-Group of which this DFR-Object is a member. Its value is
equal to the UPI of this DFR-Object’s Parent group. This attribute is associated with each
DFR-Obiject. For a DFR-Root-Group it is by convention an octet string of 0 (zero) length.

dfr-parent-identification ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrUniquePermanentidentifier
SINGLE VALUE
:: = id-att-dfr-parent-identification

DFR-Guarantee-QoS

This attribute determines which QoS is obtainable for DFR-References to this DFR-Document
or DFR-Group (see 6.3). No level 3 QoS References will be guaranteed later than the value
(date) of this attribute. This attribute is only associated with DFR-Documents or DFR-Groups.
Once a guarantee is assigned to a DFR-Object, it can only be set to unguaranteed after the
expiration of the guaranteed time. Before the guarantee expires, it may be set to a later date.

dfr-guarantee-qos ATTRIBUTE
WITH ATTRIBUTE-SYNTAX QoS-Level

SINGLE VALUE
:: = id-att-dfr-guarantee-qos

9.2.9

9.2.10

9.2.11

9.2.12

9.2.13

-85 -

DFR-Referent-Deleted

This attribute is assigned to a DFR-Reference and set to true once the DFR-Server detects
that the Referent is deleted. This attribute will be deleted by the DFR-Server once the DFR-
User makes this DFR-Reference point to another Referent.

dfr-referent-deleted ATTRIBUTE
WITH ATTRIBUTE-SYNTAX booleanSyntax
SINGLE VALUE
1= id-att-dfr-referent-deleted

DFR-Membership-Criteria

This attribute is only associated with DFR-Groups. This attribute establishes constraints on
group membership based on attribute values. The value of this attribute is a Filter.

dfr-membership-criteria ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Filter
SINGLE VALUE
i = id-att-dfr-membership-criteria

DFR-Ordering

This attribute defines a default ordering of a DFR-Group’s members in a List abstract
operation. The ordering rule is one specific attribute named by the DFR-User and noted in
the DFR-Ordering attribute. Attributes available for ordering are those which have a
MATCHES FOR ORDERING clause in their definition. This attribute is associated only with
DFR-Group objects.

dfr-ordering ATTRIBUTE
WITH ATTRIBUTE-SYNTAX OrderingRule
SINGLE VALUE
i = id-att-dfr-ordering

DFR-Resource-Limit

This attribute specifies the maximum resource to be used for a DFR-Object based upon
accounting information, for example the actual amount of storage in the Document store used.
The size includes the space required to store content (if a Document), the set of members (if a
DFR-Group) and any associated attributes.

dfr-resource-limit ATTRIBUTE
WITH ATTRIBUTE-SYNTAX integerSyntax
SINGLE VALUE
1= id-att-dfr-resource-limit

DFR-Resource-Used

This attribute contains information for accounting purposes based on resources used during
some period of time, for example the actual amount of storage in the Document Store used.
The resource used includes the space required to store content (if a DFR-Document), the set
of members (if a DFR-Group) and any associated attributes.

9.2.14

9.2.15

9.2.16

9.2.17

- 86 -

dfr-resource-used ATTRIBUTE
WITH ATTRIBUTE-SYNTAX integerSyntax
SINGLE VALUE
:: = id-att-dfr-resource-used

DFR-Number-Of-Group-Members

This attribute specifies the number of immediate Descendants in a DFR-Group.

dfr-number-of-group-members ATTRIBUTE
WITH ATTRIBUTE-SYNTAX integerSyntax
SINGLE VALUE
:: = id-att-dfr-number-of-group-members

Version Name

This is a free-form attribute intended for the DFR-User’s perception and managed by the
DFR-User. It is defined primarily for DFR-Documents which are declared to be versions (in
the sense of DFR version management as described in 6); but it can also be used for any other
DFR-Document. It may also appear in a DFR-Reference to a DFR-Document, normally as a
copy of the corresponding attribute of the Referent. In the case of an ODA-Document the
value of this attribute can be taken by the DFR-User from the ODA Document Profile.

version-name ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
SINGLE VALUE
;1= id-att-version-name

DFR-Previous-Versions

This is a multi-valued attribute. It is defined only for DFR-Documents. It is assigned by the
DFR-User when the document is declared a new version (in a Create or Modify abstract
operation). It may then be modified provided that the DFR-Document has not yet become a
previous version for some other new version(s); after that it cannot be modified. 1t is updated
automatically if any specified previous version disappears (by means of a Delete or Modify
abstract operation).

dfr- previous-versions ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrUniquePermanentldentifier
MATCHES FOR EQUALITY
MULTI VALUE
:: = id-att-dfr-previous-versions

DFR-Next-Versions

This is a multi-valued attribute. It is defined only for DFR-Documents. It is updated by the
DFR-Server each time a new version is declared having this DFR-Document as its previous
version (in a Create or Modify abstract operation), or when such an existing version is
discarded (by a Delete or Modify abstract operation). The DFR-User is prohibited from
modifying this attribute explicitly.

9.2.18

9.2.19

9.2.20

- 87 -

dfr-next-versions ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrUniquePermanentldentifier
MATCHES FOR EQUALITY
MULTI VALUE
1= id-att-dfr-next-versions

DFR-Version-Root

This attribute is defined and has the same value for all DFR-Documents which are declared
versions of the same Conceptual-Document (see section 6), as well as, optionally, for DFR-
References to these documents. It is assigned for the first time by the DFR-Server when a
DFR-Document is declared to be a next version of some other DFR-Document, which has not
been previously declared to be a version. The UPI attribute of the latter becomes the value of
the DFR-Version-Root attribute for both the old and the new version. The value of the DFR-
Version-Root attribute is then systematically copied by the DFR-Server into the DFR-Version-
Root attribute of each new version of the same Conceptual-Document. The DFR-Version-
Root attribute remains valid even when the "original version", bearing the UPI which is the
value, has been deleted. When creating a DFR-Reference to a document, it is normally copied
by the DFR-Server from the Referent into the corresponding attribute of the DFR-Reference,
thus permitting a DFR-User to find some existing version of the same Conceptual-Document
even after the version which was the Referent has been deleted.

dfr-version-root ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrUniquePermanentldentifier
MATCHES FOR EQUALITY
SINGLE VALUE
= id-att-dfr-version-root

DFR-External Location

This attribute contains a user specified description of the location of an object stored outside
any DFR-Document-Store.

dfr-external-location ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
SINGLE VALUE
:: = id-att-dfr-external-location

User-Reference

This attribute contains an identifier for this DFR object. In the case of an ODA-Document the
value of this attribute can be taken by the DFR-User from the ODA Document Profile. The
attributes User-Reference and User-Reference-To-Other-Objects may be used to establish user
references between DFR-Objects stored in a DFR-Document-Store. That is, the value of the
attribute User-Reference is a DFR-User specific identifier for an object; this identifier can be
stored in the attribute User-References-To-Other-Objects. If later a value of the attribute
User-References-To-Other-Objects is used for example in a Search abstract operation, the
Referent will be identified.

user-reference ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax

SINGLE VALUE
;. = id-att-user-reference

9.2.21

9.2.22

9.2.23

9.2.24

9.2.25

- 88 -

User-References-To-Other-Objects

This attribute contains references to other DFR-Objects. In the case of an ODA-Document
the value of this attribute can be taken by the DFR-User from the ODA Document Profile.
The attributes User-Reference and User-Reference-To-Other-Objects may be used to establish
user references between DFR-Objects stored in a DFR-Document-Store. That is, the value of
the attribute User-Reference is a DFR-User specific identifier for an object; this identifier can
be stored in the attribute User-References-To-Other-Objects. If later a value of the attribute
User-References-To-Other-Objects is used for example in a Search abstract operation, the
Referent will be identified. The attribute User-References-To-Other-Objects may contain one
or many references to other objects.

user-reference-to-other-objects ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
MULTI VALUE
:: = id-att-user-reference-to-other-objects

DFR-Attributes-Create-Date-And-Time

This attribute contains the date and time when the mandatory attributes of this DFR-Object
were stored in a DFR-Document-Store. A DFR-Server sets it to the current date and time
during the Create abstract operation.

dfr-attributes-create-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
:: = id-att-dfr-attributes-create-date-and-time

DFR-Content-Create-Date-And-Time

This attribute contains the date and time the DFR-Content of this DFR-Object was stored in a
DFR-Document-Store. DFR-Server will set it to current date and time during the Create
abstract operation. '

dfr-content-create-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
:: = id-att-dfr-content-create-date-and-time

DFR-Created-By

This attribute identifies the DFR-User who created this DFR-Object. It is not modified when
the DFR-Object is moved. It may only be read by a DFR-User having at least extended-read
access right.

dfr-created-by ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DistinguishedName
MATCHES FOR EQUALITY
SINGLE VALUE
1 = id-att-dfr-created-by

DFR-Attributes-Modify-Date-And-Time

This attribute contains the date and time the attributes of this DFR-Object were last modified
in a DFR-Document-Store. When a DFR-Object is created, this attribute is set to the current
time. Subsequently, the DFR-Server maintains the attribute. This attribute is not updated

9.2.26

9.2.27

9.2.28

9.2.29

- 89 -

when those attributes described in Table 3 as being modified or deleted by the DFR-Server are
modified or deleted.

dfr-attributes-modify-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
i1 = id-att-dfr-attributes-modify-date-and-time
DFR-Content-Modify-Date-And-Time

This attribute contains the date and time the DFR-Content of this DFR-Object was last
modified in a DFR-Document-Store. When a DFR-Object is created, this attribute is set to the
current time. Subsequently, the DFR-Server maintains the attribute.

dfr-content-modify-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
:: = id-att-dfr-content-modify-date-and-time

DFR-Attributes-Modified-By

This attribute identifies the DFR-User who has most recently modified DFR-Attributest of
that DFR-Object. It may only be read by a DFR-User having at least extended-read access
right.

dfr-attributes-modified-by ATTRIBUTE

WITH ATTRIBUTE-SYNTAX DistinguishedName

MATCHES FOR EQUALITY

SINGLE VALUE

:: = id-att-dfr-attribute-modified-by
DFR-Content-Modified-By
This attribute identifies the DFR-User who has most recently modified the DFR-Content of
that DFR-Object. It may only be read by a DFR-User having at least extended-read access
right.
dfr-content-modified-by ATTRIBUTE

WITH ATTRIBUTE-SYNTAX DistinguishedName

MATCHES FOR EQUALITY

SINGLE VALUE

1= id-att-dfr-content-modified-by

Document-Date-And-Time

This attribute specifies the date and time that the DFR-User associates with the DFR-
Document or with a DFR-Reference. In the case of an ODA-Document the value of this
attribute can be taken by the DFR-User from the ODA Document Profile.

document-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
1 = id-att-document-date-and-time

9.2.30

9.2.31

9.2.32

9.3
9.3.1

- 90 -

DFR-Reservation

This attribute indicates whether this DFR-Obiject is reserved or not. This attribute is associated
with each DFR-Obiject.

dfr-reservation ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Reservation
MATCHES FOR EQUALITY ORDERING
SINGLE VALUE
.= id-att-dfr-reservation

DFR-Reserved-By

This attribute identifies the security subject on whose behalf the DFR-User has reserved this
DFR-Object. It is absent when the DFR-Object is not reserved. It may only be read by a DFR-
User having at least extended-read access right.

dfr-reserved-by ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DistinguishedName
MATCHES FOR EQUALITY
SINGLE VALUE
1= id-att-dfr-reserved-by

DFR-Access-List

This attribute identifies the security subjects allowed to access this DFR-Object specifying for
each of them their respective access rights. The complete values of the DFR-Access-List
attribute are visible to DFR-Users having at least extended-read access right to this DFR-
Object; it can be modified only by DFR-Users having the owner access right for this DFR-
Object. A DFR-User having only read access right to the DFR-Object may only read his own
access right from this attribute. This attribute is part of the DFR-Security mechanism that is
described in 6.3.8.

dfr-access-list ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrAccessListElement
MATCHES FOR EQUALITY
MULTI! VALUE
:: = id-att-dfr-access-list

DFR-Extension-Attribute-Set

Other-Titles

This attribute contains alternative titles for this DFR-Object. In the case of an ODA-
Document the value of this attribute can be taken by the DFR-User from the "ODA
Document Profile".

other-titles ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
MULTI VALUE
.= id-att-other-titles

9.3.2

933

9.34

9.3.5

9.3.6

- g1 -

Subject

This attribute contains information to indicate the subject of a DFR-Object. In the case of an
ODA-Document the value of this attribute can be taken by the DFR-User from the "ODA
Document Profile".

subject ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
SINGLE VALUE
1= id-att-subject
Document-Type
This attribute specifies the type of DFR-Document, e.g. memorandum, letter, report, resource.
This attribute specifies only an informal name; it does not specify a relation to a particular

document class description. In the case of an ODA-Document the value of this attribute can
be taken by the DFR-User from the "ODA Document Profile".

document-type ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
SINGLE VALUE
.= id-att-document-type

Keywords

This attribute specifies one or more character strings that permit logical associations to be
made about the DFR-Content of an DFR-Object. In the case of an ODA-Document the value
of this attribute can be taken by the DFR-User from the "ODA Document Profile".

keywords ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
MULTI VALUE
1= id-att-keywords

Creation-Date-And-Time

This attribute specifies the date and, optionally, the time of day when the DFR-Document was
created. In the case of an ODA-Document the value of this attribute can be taken by the
DFR-User from the "ODA Document Profile".

creation-date-and-time ATTRIBUTE

WITH ATTRIBUTE-SYNTAX uTCTimeSyntax

SINGLE VALUE

:: = id-att-creation-date-and-time
Purge-Date-And-Time
This attribute specifies the date and, optionally, the time of day after which the DFR-
Document can be purged from the DFR-Document-Store. In the case of an ODA-Document
the value of this attribute can be taken by the DFR-User from the "ODA Document Profile".
purge-date-and-time ATTRIBUTE

WITH ATTRIBUTE-SYNTAX uTCTimeSynatx

SINGLE VALUE

:: = id-att-purge-date-and-time

9.3.7

9.3.8

9.3.9

9.3.10

9.3.11

=92 =

Version-Date-And-Time

This attribute specifies the date and, optionally, the time of day on which a revision of this
DFR-Object occurred. In the case of an ODA-Document the value of this attribute can be
taken by the DFR-User from the "ODA Document Profile".

version-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
. = id-att-revision-date-and-time

Organizations

This attribute identifies the originating organization(s) associated with the DFR-Document. In
the case of an ODA-Document the value of this attribute can be taken by the DFR-User from
the "ODA Document Profile".

organizations ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
MULTI VALUE
1= id-att-organizations

Preparers

This attribute identifies the name(s) of the person(s) and/or organization(s) responsible for the
physical preparation of the document. In the case of an ODA-Document the value of this at-
tribute can be taken by the DFR-User from the "ODA Document Profile".

preparers ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Person

MULTI VALUE
;1= id-att-preparers

Owners

This attribute identifies the name(s) of the person(s) and/or organization(s) responsible for the
content of the document In the case of an ODA-Document the value of this attribute can be
taken by the DFR-User from the "ODA Document Profile".

owners ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Person
MULTI VALUE
:: = id-att-owners

Authors

This attribute identifies the name(s) of the person(s) and/or organization(s) responsible for the
preparation of the intellectual content of the document. In the case of an ODA-Document the
value of this attribute can be taken by the DFR-User from the "ODA Document Profile".

authors ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Person
MULTI VALUE
1= id-att-authors

9.3.12

9.3.13

9.3.14

9.3.15

9.3.16

-03-

Status

This attribute specifies the DFR-Document status, e.g. working paper, draft proposal. In the
case of an ODA-Document the value of this attribute can be taken by the DFR-User from the
"ODA Document Profile".

status ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
SINGLE VALUE
1= id-att-status

User-Specific-Codes

This attribute specifies additional user-specific code(s) for a DFR-Object, e.g. contract
number, project number, budget. In the case of an ODA-Document the value of this attribute
can be taken by the DFR-User from the "ODA Document Profile".

user-specific-codes ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
MULTI VALUE
= id-att-user-specific-codes
Superseded-Documents
This attribute specifies reference(s) to document(s) superseded by the current DFR-

Document. In the case of an ODA-Document the value of this attribute can be taken by the
DFR-User from the "ODA Document Profile".

superseded-documents ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
MULTI VALUE
i1 = id-att-superseded-documents

Number-Of-Pages

This attribute specifies the number of pages in the specific layout structure (if any) of the
document. In the case of an ODA-Document the value of this attribute can be taken by the
DFR-User from the "ODA Document Profile".

number-of-pages ATTRIBUTE

WITH ATTRIBUTE-SYNTAX integerSyntax

SINGLE VALUE

= id-att-number-of-pages
Languages
This attribute specifies the primary language(s) in which the content of the document is
written. In the case of an ODA-Document the value of this attribute can be taken by the
DFR-User from the "ODA Document Profile".
languages ATTRIBUTE

WITH ATTRIBUTE-SYNTAX characterDataSyntax

MULTI VALUE

1= id-att-languages

- 94 -

9.4 DFR Attribute Syntaxes

The following attribute syntaxes are used in the preceeding attribute definitions.

9.4.1 String Attribute Syntaxes
In the syntaxes specified in 9.4.1.1 to 9.4.1.3, the following spaces are regarded as not
significant:
- leading spaces (i.e., those preceding the first printing character);

- trailing spaces (i.e., those following the last printing character);

- multiple consecutive internal spaces (these are taken as equivalent to a single space
character).

Attributes conforming to these syntaxes shall be stored and matched in a form which omits
those spaces which are not significant according to these rules.

94.1.1 Case Ignore String

The case Ignore String attribute syntax is intended for attributes whose values are strings
(either T.61 Strings or Printable Strings), but where the case (upper or lower) is not
significant for comparison purposes (e.g., "Dundee" and "DUNDEE" match).

caselgnoreStringSyntax ATTRIBUTE-SYNTAX

CharacterData -- definition see 8.1.4 --

MATCHES FOR EQUALITY SUBSTRINGS

i = {id-dfr-att-syn 4}
For two strings having this syntax to match for equality, the strings must be the same length
and corresponding characters must be the same, except for case. Two strings of the same or
of different types can be compared. For example, a Printable String can be compared with a
T.61 String: where the corresponding characters are both in the Printable String character
set and in the T.61 String, then comparison proceeds as normal. However if the character in

T.61 String is not in the Printable String characters set then matching fails. Similar rules
apply when comparing a Graphic String with a Printable String or a T.61 String.

94.1.2 Case Ignore List

The Case Ignore List attribute syntax is intended for attributes whose values are sequences
of strings (either T.61 Strings or Printable Strings), but where the case (upper or lower) is
not significant for comparison purposes.
caselgnoreListSyntax ATTRIBUTE-SYNTAX

SEQUENCE OF

CharacterData -- defintion see 8.1.4 --

MATCHES FOR EQUALITY SUBSTRINGS

::= {id-dfr-att-syn 5}
Two Case Ignore Lists match for equality if and only if the number of strings in each is the

same, and corresponding strings match. The latter matching is as for Case Ignore String
attribute syntax.

94.2 Miscellaneous Attribute Syntaxes
9.4.2.1 Boolean

The Boolean attribute syntax is intended for attributes whose values are Boolean (i.e.,
represent true or false).

9.4.2.2

9.4.2.3

- 0§ -

booleanSyntax ATTRIBUTE-SYNTAX

BOOLEAN

MATCHES FOR EQUALITY

r= {id-dfr-att-syn 2}
Two attribute values of this syntax match for equality if they are both true or both false.
Integer

The Integer attribute syntax is intended for attributes whose values are integers.

integerSyntax ATTRIBUTE-SYNTAX
INTEGER
MATCHES FOR EQUALITY ORDERING
2= {id-dfr-att-syn 1}

Two attribute values of this syntax match for equality if the integers are the same. The
ordering rules for integers apply.

UTC Time

The UTC Time attribute syntax is intended for attributes whose values represent absolute
time.
uTCTimeSyntax ATTRIBUTE-SYNTAX

UTCTime

MATCHES FOR EQUALITY ORDERING

::= {id-dfr-att-syn 3}

Two attribute values of this syntax match for equality if they represent the same time. An
earlier time is considered "less" than a later time.

- 06 -

- 97 -

SECTION FOUR - DFR REALIZATION

- 08 -

10.

10.1

10.2

10.3

104

- 99 -

SUPPLY OF THE DFR ABSTRACT SERVICE

This clause specifies how a DFR-Server supplies the DFR abstract service. It covers the supply of
the Create, Delete, Copy, Move, Read, Modify, List, Search, Reserve, and Abandon abstract
operations. The actual description of the operation is in 8.

The supply of the DFR Port abstract-services assumes that an abstract-association exists between
the DFR Port supplier (the DFR-Server) and the DFR Port consumer (the DFR-User).

The DFR-User may have more than one abstract operation outstanding, that is parallel
performance of the abstract operations may take place.

Not all error cases are described.
Performance of the Create abstract operation

When the DFR-Server receives a Create abstract operation from the DFR-User it performs the
following steps:

1) checks that the DFR-User has the access rights as required;

2) creates a new DFR-Entry in the DFR-Document-Store placing the new DFR-Object in
the appointed DFR-Group;

3) establishes the DFR-Attribute values for the new DFR-Object as appropriate;

4) establishes the value of the DFR-Content of the new DFR-Object as appropriate;

5) returns the Create result to the DFR-User

Performance of the Delete abstract operation

When the DFR-Server receives a Delete abstract operation from the DFR-User it performs the
following steps:

1) checks that the DFR-User has the access rights as required;
2) deletes the DFR-Entry removing the DFR-Object from its parent DFR-Group;
3) returns the Delete result to the DFR-User.

Performance of the Copy abstract operation

When the DFR-Server receives a Copy abstract operation from the DFR-User it performs the
following steps:

1) checks that the DFR-User has the access rights as required;

2) creates a new DFR-Entry in the destination DFR-Group;

3) copies the values of the DFR-Attributes and the DFR-Content of the appointed DFR-
Obiject(s) as appropriate;

4) updates the DFR-Attributes of the destination DFR-Object as appropriate;

5) returns the Copy result to the DFR-User.

Performance of the Move abstract operation

When the DFR-Server receives a Move abstract operation from the DFR-User it performs the
following steps:

1) checks that the DFR-User has the access rights as required,;

10.5

10.6

10.7

10.8

10.9

- 100 -
2) creates a new DFR-Entry in the destination DFR-Group;
3) changes the membership of the appointed DFR-Object from the source DFR-Group to
the destination DFR-Group;
4) updates the DFR-Attributes of both the source and destination as appropriate;
5) returns the Move result to the DFR-User.

Performance of the Read abstract operation

When the DFR-Server receives a Read abstract operation from the DFR-User it performs the
following steps:

1) checks that the DFR-User has the access rights as required;

2) returns the values of the DFR-Attribute(s) and/or the DFR-Content of the appointed
DFR-Object as appropriate to the DFR-User.

Performance of the Modify abstract operation

When the DFR-Server receives a Modify abstract operation from the DFR-User it performs the
following steps:

1) checks that the DFR-User has the access rights as required;

2) modifies the DFR-Attribute(s) and/or the DFR-Content of the appointed DFR-Object
as appropriate; see 8.2.6;

3) returns the Modify result to the DFR-User; see 8.2.6.
Performance of the List abstract operation

When the DFR-Server receives a List abstract operation from the DFR-User it performs the fol-
lowing steps:

1) checks that the DFR-User has the access rights as required;

2) returns the values of the DFR-Attributes of the members of the appointed DFR-Group
or the elements of the appointed DFR-Search-Result-List as appropriate to the DFR-
User.

Performance of the Search abstract operation

When the DFR-Server receives a Search abstract operation from the DFR-User it performs the
following steps:

1) checks that the DFR-User has the access rights as required;
2) searches for the DFR-Obijects as specified;
3) if requested, stores the result of the search in the appointed DFR-Search-Result-List as

appropriate;
4) returns the Search result to the DFR-User.
Performance of the Reserve abstract operation

When the DFR-Server receives a Reserve abstract operation from the DFR-User it performs the
following steps:

1) checks that the DFR-User has the access rights as required;
2) reserves the appointed DFR-Object as appropriate;

3) returns the Reserve result to the DFR-User

10.10

11.

- 101 -

Performance of the Abandon abstract operation

When the DFR-Server receives an Abandon abstract operation from the DFR-User it performs
the following steps:

1) checks that the DFR-User has the access rights as required;

2) abandons the appointed, previously invoked DFR abstract operation as appropriate; see
8.2.11;

3) forces the abstract-error Abandoned to be returned for the abstract operation which has

been abandoned, see 8.2.11.

PORT REALIZATION

The Document Filing and Retrieval Port abstract service is realized on a one-to-one basis between
abstract operations defined in this part of the Standard and the real operations in the Document
Filing and Retrieval Service Element (DFRSE) specified in Part 2 of this Standard.

- 102 -

- 103 -

APPENDICES Part 1

- 104 -

- 105 -

Appendix A

Overview of Attribute mapping - ODA Document Profile to DFR

Names of attributes in ODA
Document Profile

Names of Attributes in DFR
attribute sets

—— =
title Other-Title
subject Subject

document-reference

User-Reference

document-type

Document-Type

keywords

Keywords

document-date-and-time

Document-Date-And-Time

creation-date-and-time

Creation-Date-And-Time

purge-date-and-time

Purge-Date-And-Time

revision-date-and-time

Revision-Date-And-Time

version-number

Version-Name

organizations

Organizations

preparers Preparers
owners Owners
authors Authors
status Status

user-specific-codes

User-Specific-Codes

superseded-documents

Superseded-Documents

references-to-other-documents

User-References-To-Other-Objects

number-of-pages

Number-Of-Pages

languages

Languages

document-architecture-class

Document-Architecture-Class

- 106 -

- 107 -

Appendix B
Formal Assignment of Object Identifiers

All Object Identifiers this Part 1 of this ECMA Standard assigns are formally assigned in the present
Appendix using ASN.1. The specified values are cited in the ASN.1 modules of subsequent Appendices.

This Appendix is definitive for all values except those for ASN.1 modules of this Part of this Standard. The
definitive assignments for those occur in the modules themselves.

DFRObjectldentifiers {ISO identified-organization(3) idc-ecma(0012) standard(0) number(137)
part-1(1) modules(0) object-identifiers(0)}

DEFINITIONS :: =

BEGIN

-- PROLOGUE --
EXPORTS EVERYTHING;

ID ::= OBJECT IDENTIFIER
id-dfr ID :: = {standard ECMA-137 part-1(1)}

-- Categories--

id-mod ID ::= {id-dfr 0}
id-ot ID ::= {id-dfr 1}
id-pt ID ::= {id-dfr 2}
id-dfr-oc ID ::= {id-dfr 3}
id-dfr-bas-att ID ::= {id-dfr 4}
id-dfr-ext-att ID ::= {id-dfr 5}
id-dfr-att-syn ID ::= {id-dfr 6}
-- Modules--

id-mod-object-identifiers ID ::= {id-mod 0}

id-mod-abstract-service ID ::= {id-mod 1}
id-mod-basic-attributes ID ::= {id-mod 2}
id-mod-extension-attributes 1D :: = {id-mod 3}
-- Objects--

id-dfr-server ID ::= {id-ot 0}
id-dfr-user » ID ::= {id-ot 1}

-- Ports--

id-pt-dfr ID ::= {id-pt 0}

-- DFR Object Classes--

id-dfr-document
id-dfr-root-group
id-dfr-proper-group
id-dfr-internal-reference
id-dfr-external-reference
id-dfr-search-result-list

-- DFR-Basic-Auributes Identification--
id-dfr-basic-attributes
--Autribute Types--

id-att-dfr-upi

id-att-dfr-object-class
id-att-dfr-document-type
id-att-document-architecture-class
id-att-dfr-title

id-att-dfr-pathname
id-att-dfr-parent-identification
id-att-dfr-guarantee-qos
id-att-dfr-referent-deleted
id-att-dfr-membership-criteria
id-att-dfr-ordering
id-att-dfr-resource-limit
id-att-dfr-resource-used
id-att-dfr-number-of-group-members
id-att-version-name
id-att-dfr-previous-versions
id-att-dfr-next-versions
id-att-dfr-version-root
id-att-dfr-external-location
id-att-user-reference
id-att-user-reference-to-other-objects
id-att-dfr-attribute-create-date-and-time
id-att-dfr-content-create-date-and-time
id-att-dfr-created-by
id-att-dfr-attribute-modify-date-and-time
id-att-dfr-content-modify-date-and-time
id-att-dfr-attributes-modified-by
id-att-dfr-content-modified-by
id-att-document-date-and-time
id-att-dfr-reservation
id-att-dfr-reserved-by
id-att-dfr-access-list

- 108 -

= {id-dfr-oc 0}
= {id-dfr-oc 1}
;2= {id-dfr-oc 2}
2= {id-dfr-oc 3}
i = {id-dfr-oc 4}
;.= {id-dfr-oc 5}

= {id-dfr-bas-att }

::= {id-dfr-bas-att 0}
= {id-dfr-bas-att 1}
;1= {id-dfr-bas-att 2}
= {id-dfr-bas-att 3}
= {id-dfr-bas-att 4}
= {id-dfr-bas-att 5}
1= {id-dfr-bas-att 6}
i = {id-dfr-bas-att 7}
= {id-dfr-bas-att 8}
= {id-dfr-bas-att 9}
= {id-dfr-bas-att 10}
= {id-dfr-bas-att 11}
;1= {id-dfr-bas-att 12}
= {id-dfr-bas-att 13}
.= {id-dfr-bas-att 14}
;1= {id-dfr-bas-att 15}
= {id-dfr-bas-att 16}
o= {id-dfr-bas-att 17}
= {id-dfr-bas-att 18}
. = {id-dfr-bas-att 19}
1= {id-dfr-bas-att 20}
;o= {id-dfr-bas-att 21}
= {id-dfr-bas-att 22}
= {id-dfr-bas-att 23}
= {id-dfr-bas-att 24}
i = {id-dfr-bas-att 25}
:: = {id-dfr-bas-att 26}
= {id-dfr-bas-att 27}
:: = {id-dfr-bas-att 28}
= {id-dfr-bas-att 29}
:: = {id-dfr-bas-att 30}
::= {id-dfr-bas-att 31}

- 109 -

-- DFR-Extension-Attributes Identification--

id-dfr-extension-attributes

--Auribute Types--

id-att-other-titles
id-att-subject
id-att-document-type
id-att-keywords

id-att-creation-date-and-time
id-att-purge-date-and-time
id-att-revision-date-and-time

id-att-organizations
id-att-preparers
id-att-owners
id-att-authors
id-att-status

id-att-user-specific-codes

ID:: = {id-dfr-ext-att }

ID ::= {id-dfr-ext-att 0}
ID ::= {id-dfr-ext-att 1}
ID ::= {id-dfr-ext-att 2}
ID ::= {id-dfr-ext-att 3}
ID ::= {id-dfr-ext-att 4}
ID ::= {id-dfr-ext-att 5}
ID ::= {id-dfr-ext-att 6}
ID ::= {id-dfr-ext-att 7}
ID ::= {id-dfr-ext-att 8}
ID ::= {id-dfr-ext-att 9}
ID ::= {id-dfr-ext-att 10}
ID ::= {id-dfr-ext-att 11}
ID ::= {id-dfr-ext-att 12}

id-att-superseded-documents|D :: = {id-dfr-ext-att 13}

id-att-numbers-of-pages
id-att-languages
--Autribute Syniaxes--
id-dfr-att-syn-int
id-dfr-att-syn-bool
id-dfr-att-syn-utc-time
id-dfr-att-syn-case-ign

id-dfr-att-syn-case-ign-list

ID :: = {id-dfr-ext-att 14}
ID ::= {id-dfr-ext-att 15}

ID ::= {id-dfr-att-syn 1}
ID :: = {id-dfr-ait-syn 2}
ID ::= {id-dfr-att-syn 3}
ID :: = {id-dfr-att-syn 4}
ID ::= {id-dfr-att-syn 5}

END -- of DFR-Object-ldentifiers --

- 110 -

- 111 -

Appendix C
Formal Definition of the DFR Abstract-service

DFRAbstractService {iso identified organization (1) idc-ecma(0012) standard(0) number(137) part-1(1)
modules(0) abstract-service(1) }

DEFINITIONS IMPLICIT TAGS :: =
BEGIN

-- PROLOGUE --
EXPORTS EVERYTHING
IMPORTS
-- Abstract Service macros --

ABSTRACT-BIND, ABSTRACT-ERROR, ABSTRACT-OPERATION, ABSTRACT-UNBIND,
OBJECT, PORT
FROM AbstractServiceNotation { joint-iso-ccitt-mhs-motis(6) asdc(2) modules (0) notation(1)}

-- Object identifiers --

id-dfr-document, id-dfr-rootGroup, id-dfr-properGroup, id-dfr-internalReference, id-dfr-
externalReference, id-dfr-searchResultList, id-dfr-server, id-dfr-user, id-pt-dfr
FROM DFRObjectldentifiers {iso identified organization(3) idc-ecma(0012) standard(0)
number(137) part-1(1) modules(0) object-identifiers(0)}

-- OSI Directory --

Attribute, AttributeType, AttributeValue, AttributeValueAssertion DistinguishedName
FROM informationFramework { joint-iso-ccitt ds(5) modules(1) informationFramework(1) }

-- Referenced Data Transfer --

RDT-reference
FROM RDT-reference-definition {ISO identified-organization(3) idc-ecma(0012) standard(0)
number(137)}

-- DFR Abstract Objects --

dfr-server OBJECT
PORTS { dfr-port [S]}
;. = id-dfr-server

dfr-user OBJECT
PORTS { dfr-port [C] }
;o= id-dfr-user

- 112 -

-- Port types --

Dfr PORT

CONSUMER INVOKES {

Create,

Delete,

Copy,

Move,

Read,

Modify,

List,

Search,

Reserve,

Abandon }
SUPPLIER INVOKES { } (
;1= id-pt-dfr

-- SPECIFICATION OF DFR-OBJECT DATA TYPES --

DfrObjectClass :: = ENUMERATED {
dfr-document (0),
dfr-root-group (1),
dfr-proper-group (2),
dfr-internal-reference (3),
dfr-external-reference (4),
dfr-search-result-list (5) }

DfrEntry ::= SEQUENCE {
attributes [0] DfrEntryAttributeSet,
content [1]DfrObjectContent }

DfrEntryAttributes :: = SET OF Attribute (
DfrObjectContent :: = CHOICE {

document-content [0] DfrDocumentContent,

root-group-content [1] DfrGroupContent,

proper-group-content [2] DfrGroupContent,

internal-reference-content [3] DfrinternalReferenceContent,

external-reference-content [4] DfrExternalReferenceContent,

search-result-list-content [5] DfrSearchResultListContent }

DfrUniquePermanentidentifier :: = OCTET STRING

DfrDocumentContent :: = EXTERNAL(WITH COMPONENTS ~ { ...,
direct-reference PRESENT,
indirect-reference ABSENT,
encoding (WITH COMPONENTS { ...,

arbitrary ABSENT })})

- 113 -

DfrinternalReferenceContent :: = RDT-reference
(WITH COMPONENTS {
ae-identifier ABSENT,
local-reference (WITH COMPONENTS { specific-reference }),
data-object-type (DfrObjectClassID (
id-dfr-document |
id-dfr-proper-group |
id-dfr-search-result-list)),
quality-of-service (WITH COMPONENTS {
qos-level (WITH COMPONENTS { ..., level-1 ABSENT }),
single-use-of-reference (FALSE)}),
token ABSENT })

DfrExternalReferenceContent :: = RDT-reference
(WITH COMPONENTS {
ae-identifier,
local-reference ,
data-object-type (DfrObjectClassID (
id-dfr-document |
id-dfr-root-group |
id-dfr-proper-group |
id-dfr-search-result-list)),
quality-of-service (WITH COMPONENTS {
qos-level (WITH COMPONENTS { ... , level-1 ABSENT }),
single-use-of-reference (FALSE)}),
token ABSENT })

DfrObjectClassID :: = OBJECT IDENTIFIER (
id-dfr-document |
id-dfr-root-group |
id-dfr-proper-group |
id-dfr-internal-reference |
id-dfr-external-reference |
id-dfr-search-result-list)

QoS-Level ::= CHOICE {
level-1 [0] IMPLICIT NULL,
level-2 [1] IMPLICIT UTCTime,
level-3 [2] IMPLICIT SEQUENCE {
produce-time UTCTime,
fidelity-time UTCTime }}

DfrGroupContent :: = SEQUENCE OF DfrUniquePermanentidentifier

- 114 -
DfrSearchResultListContent :: = CHOICE {
empty NULL,
produced SEQUENCE {
continuation [0] ContinuationContext OPTIONAL,
start-date-and-time [1] UTCTime,
end-date-and-time [2] UTCTime,
object-list [3] DfrEntryList,
ordering [4] OrderingRule OPTIONAL,
search-domain [56] SearchDomain,
search-criteria [6] SearchCriteria } }

Filter :: = CHOICE {

item [O] Filterltem,

and [1]1SET OF Filter,
or [2] SET OF Filter,
not [3]Filter}

Filterltem ::= CHOICE {
equality [0] AttributeValueAssertion,
substrings [1]SEQUENCE {
type AttributeType,
strings SEQUENCE OF CHOICE {
initial [0]ANY,
any [1]ANY,
final [2]ANY }},
greaterOrEqual [2] AttributeValueAssertion ,
lessOrEqual [3] AttributeValueAssertion,
present [4] Attribute Type,
approximateMatch [5]AttributeValueAssertion}

-- ABSTRACT BIND --

DfrBind :: = ABSTRACT-BIND
TO {dfr-port[S]}

BIND
ARGUMENT DfrBindArgument
RESULT DfrBindResult

BIND-ERROR DfrBindError

DfrBindArgument :: = SEQUENCE {

credentials [0] Credentials,
retrieve-restrictions [1] Restrictions OPTIONAL,
dfr-configuration-request [2] BOOLEAN DEFAULT FALSE,
bind-security [3] BindSecurity OPTIONAL,

priority [4] Priority DEFAULT medium}

- 115 -

Credentials ::= CHOICE {
simple [0] Creds,
certified [1] PrivilegeAttributeCertificate }
PrivilegeAttributeCertificate :: = EXTERNAL

Creds ::= OCTET STRING
PrivilegeAttributeCertificate :: = EXTERNAL

Restrictions ::= SET {
allowed-document-types [0] SET OF OBJECT IDENTIFIER OPTIONAL
maximum-result-length [1] ResultLength OPTIONAL 3}

ResultLength :: = INTEGER
BindSecurity :: = EXTERNAL
DfrBindResult ::= SET {

authentication-attributes [0] SET OF AuthenticationAttribute,
available-attribute-types [1] SET OF AttributeType OPTIONAL,
constraints-supported [2] SET OF ConstraintsType OPTIONAL,
dfr-document-types-supported [3] SET OF OBJECT IDENTIFIER OPTIONAL,
function-set-supported [4] FunctionSetType OPTIONAL

maximume-result-length-supported [5] INTEGER OPTIONAL 3}
AuthenticationAttribute :: = EXTERNAL

ConstraintsType ::= ENUMERATED {
global-unambiguity (0),
local-unambiguity (1),
version-unambiguity (2) }

FunctionSetType ::= ENUMERATED {

flat-store (0),
pre-defined-store (1),
full-set (3) }

DfrBindError :: = CHOICE {
service-error [0] ServiceProblem,
security-error 1] SecurityProblem }

DfrUnbind :: = ABSTRACT-UNBIND
FROM {dfr-port[S]}

-- COMMON DATA TYPES FOR DFR-OPERATION ARGUMENTS --

CommonArguments ::= SEQUENCE {
reservation [27] Reservation OPTIONAL,
error-handling [28] ErrorHandlingMode DEFAULT all-or-nothing,
priority [29] Priority DEFAULT medium,

privileges [30] Privileges OPTIONAL }

- 116 -

CommonResults ;1= SEQUENCE {
warnings [30] SEQUENCE OF Warning DEFAULT {} }

ErrorHandlingMode :: = CHOICE {
all-or-nothing [0] NULL,
until-first-warning [1] NULL,

report-all-warnings [2] NULL,
report-n-warnings [3] INTEGER }

Warning :: = SEQUENCE {
entry [0] DfrEntryName OPTIONAL,
problem [1] AccessProblem }

Priority :: = ENUMERATED {

low (0),
medium (1),
high 3}

Privileges :: = SEQUENCE {
operation-pac [0] PrivilegeAttributeCertificate OPTIONAL,

proxy-pac [1] PrivilegeAttributeCertificate OPTIONAL}
DfrEntryName :: = CHOICE {
upi [0] DfrUniquePermanentidentifier,
path-name [1] DfrPathName,
relative-path-name [2] SEQUENCE {
base [0] DfrUniquePermanentidentifier,
path [1] DfrPathName } }

DfrPathName ::= SEQUENCE OF DfrTitle
DfrTitle :: = CharacterData -
CharacterData :: = CHOICE { GraphicString, T61String, PrintableString }

CommonUpdateArguments :: = SEQUENCE {
object-class [0] DfrObjectClass OPTIONAL,

entry [1] CHOICE {

local DfrEntryName,

external [3] ExternalReferenceContent} OPTIONAL,
destination [2] DfrEntryName OPTIONAL,
position [3] GroupMemberPosition OPTIONAL,
modifications [4] SEQUENCE OF EntryModification OPTIONAL,
selection [5] EntrylnformationSelection OPTIONAL}

CommonUpdateResult :: = SEQUENCE {
upi [0] DfrUniquePermanentldentifier,
entry-information [1] Entrylnformation OPTIONAL,
COMPONENTS OF CommonResults }

-~ AT

GroupMemberPosition :: = CHOICE {
' last [0] NULL,
first [1] NULL,
after [2] DfrEntryName,
before [3] DfrEntryName }

EntryModification :: = CHOICE{

put-attribute [0] Attribute,
remove-attribute [1] AttributeType,
copy-attributes-from [2] SEQUENCE {
source [0] SourceEntry,
attribute-selection [1] SET OF AttributeType OPTIONAL }
add-values [3] Attribute,
remove-values [4] Attribute,
add-values-from [5] SEQUENCE {
source [0] SourceEntry,
attribute-selection [1] SET OF AttributeType OPTIONAL %
put-content [6] DfrObjectContent,
remove-content [7] NULL,

copy-content-from [8] SourceEntry }

SourceEntry ::= CHOICE {
parent [0] NULL,
referent [1] NULL,
previous-version [2] NULL,
specified-entry 3] DfrEntryName,
reference [4] RDT-reference }

EntrylnformationSelection :: = SEQUENCE {

read-selector [0] ENUMERATED {
attributes-only (0),
attributes-and-content (1),
content-only (2),
rdt-ref-to-attr-only (3),
attr-and-rdt-ref-to-content (4),
rdt-ref-to-content-only (5),
rdt-ref-to-entire-object (6),

attr-and-rdt-ref-to-entire-object (7) }
DEFAULT attributes-only,
attribute-selection [1] AttributeSelection OPTIONAL }

- 118 -
AttributeSelection :: = CHOICE {
all [0] NULL,
none [1] NULL,
unordered [2] SET OF AttributeType, --when the delivery order is unsignificant--
ordered [3] SEQUENCE OF AttributeType,
minimum [4] NULL }
EntryInformation :: = CHOICE {
attributes-only [0] DfrEntryAttributes,
attributes-and-content [1] DfrEntry,
content-only [2] DfrObjectContent,
rdt-ref-to-attr-only [3] RDT-reference,
attr-and-rdt-ref-to-content [4] SEQUENCE {
attributes [0] DfrEntryAttributes,
rdt-ref-to-content [1] RDT-reference },
rdt-ref-to-content-only [5] RDT-reference,
rdt-ref-to-entire-object [6] RDT-reference,
attr-and-rdt-ref-to-entire-object [7] SEQUENCE {
attributes [0] DfrEntryAttributes,
rdt-ref-to-entire-object [1] RDT-reference, 313}
CommonListSearchArguments :: = SEQUENCE {
continuation [1] ContinuationContext OPTIONAL,
limits [2] Limits OPTIONAL,
selection [3] AttributeSelection OPTIONAL,
ordering [4] OrderingRule OPTIONAL }
CommonListSearchResult :: = SEQUENCE {
number-of-entries [0] INTEGER,
continuation [1] ContinuationContext OPTIONAL,
limit-encountered [2] LimitEncountered OPTIONAL,

entry-list [3] DfrEntryList,
COMPONENTS OF CommonResults }

ContinuationContext ::= OCTET STRING

Limits ::= SEQUENCE {
time-limit [0] INTEGER OPTIONAL,
count-limit [1] INTEGER OPTIONAL }

LimitEncountered :: = ENUMERATED {
time-limit (0),
count-limit (1) }

- 119 -

DfrEntryList :: = SEQUENCE OF SEQUENCE {
upi [0] DfrUniquePermanentldentifier,
class [1] DfrObjectClass,
ordering-attribute [2] Attribute OPTIONAL,
other-attributes [3] SEQUENCE OF Attribute OPTIONAL }

OrderingRule ::= CHOICE {
ascending [0] AttributeType,
descending [1] AttributeType }

SearchDomain :: = SEQUENCE OF CHOICE {

previous-result [0] DfrEntryName,

scope [1] SEQUENCE {
root [0] DfrEntryName,
descent-depth [1] INTEGER OPTIONAL,

dereferencing-depth [2] INTEGER DEFAULT 0 } }

SearchCriteria :: = Filter
-- ABSTRACT OPERATIONS --

Create ::= ABSTRACT-OPERATION
ARGUMENT CreateArgument
RESULT CreateResult
ERRORS{ NameError,

UpdateError,
AttributeError,
VersionManagementError,
AccesskError,
ReferentAccessError,
InterServerAccessError,
SecurityError,
ServiceError }

CreateArgument :: = SEQUENCE {
COMPONENTS OF
CommonUpdateArguments (WITH COMPONENTS { ... ,
object-class PRESENT,
destination PRESENT }),
attributes [7] SET OF Attributes OPTIONAL,
content [8] DfrObjectContent OPTIONAL,
COMPONENTS OF CommonArguments (WITH COMPONENTS { ..., error-handling ABSENT })}

CreateResult :: = CommonUpdateResult

- 120 -

Delete :: = ABSTRACT-OPERATION
ARGUMENT DeleteArgument

RESULT DeleteResult

ERRORS { NamekError,
UpdateError,
AccessError,
SecurityError,

ServiceError}

DeleteArgument ::= SEQUENCE {
entry [0] DfrEntryName,

COMPONENTS OF CommonArguments (WITH COMPONENTS { ...,

reservation ABSENT,
error-handlingABSENT })}

DeleteResult ::= NULL

Copy ::= ABSTRACT-OPERATION
ARGUMENT CopyArgument
RESULT CopyResult
ERRORS{ Abandoned,

NameError,

UpdateError,
AttributeError,
VersionManagementError,
AccessError,
ReferentAccessError,
InterServerAccessError,
SecurityError,
ServiceError}

CopyArgument :: = SEQUENCE {
COMPONENTS OF
CommonUpdateArguments (WITH COMPONENTS { ...,
entry PRESENT,
destination PRESENT }),
COMPONENTS OF CommonArguments }

CopyResult :: = CommonUpdateResult

- 121 -

Move ::= ABSTRACT-OPERATION
ARGUMENT MoveArgument
RESULT MoveResult
ERRORS({ Abandoned,

NameError,

UpdateError,
AttributeError,
VersionManagementError,
AccessError,
ReferentAccesskError,
InterServerAccessError,
SecurityError,
ServiceError}

MoveArgument :: = SEQUENCE {
COMPONENTS OF
CommonUpdateArguments (WITH COMPONENTS {
entry PRESENT,
destination PRESENT }),
COMPONENTS OF CommonArguments (WITH COMPONENTS {..,
error-handlin ABSENT })}

MoveResult :: = CommonUpdateResult

Read :: = ABSTRACT-OPERATION
ARGUMENT ReadArgument
RESULT ReadResult
ERRORS{ Abandoned,

NameError,
AccessError,
ReferentAccessError,
InterServerAccessError,
SecurityError,
ServiceError}

ReadArgument ::= SEQUENCE {
COMPONENTS OF
CommonUpdateArguments (WITH COMPONENTS
{ entry, selection }),
dereferencing [7] BOOLEAN DEFAULT FALSE,
COMPONENTS OF CommonArguments (WITH COMPONENTS { ..., error-handling ABSENT })}

ReadResult :: = CommonUpdateResult
(WITH COMPONENTS { ..., entrylnformation PRESENT })

- 122 -

Modify :: = ABSTRACT-OPERATION
ARGUMENT ModifyArgument
RESULT ModifyResult
ERRORS { Abandoned,

NameError,

UpdateError,
AttributeError,
VersionManagementError,
AccessError,
ReferentAccessError,
InterServerAccessError,
SecurityError,
ServiceError}

ModifyArgument :: = SEQUENCE {
COMPONENTS OF
CommonUpdateArguments (WITH COMPONENTS {...,
entry PRESENT,
destination ABSENT,
position ABSENT,
modifications PRESENT }),

COMPONENTS OF CommonArguments (WITH COMPONENTS { ..., error-handling ABSENT })}

ModifyResult ::= CommonUpdateResult

List ::= ABSTRACT-OPERATION
ARGUMENT ListArgument
RESULT ListResult
ERRORS { Abandoned,

NameError,
AccesskError,
AttributeError,
SecurityError,
ServiceError}

ListArgument :: = SEQUENCE {
entry [0] DfrEntryName,
COMPONENTS OF
CommonListSearchArguments (WITH COMPONENTS {..,
selection PRESENT }),
COMPONENTS OF CommonArguments }

ListResult :: = CommonListSearchResult

- 123 -

Search ::= ABSTRACT-OPERATION
ARGUMENT SearchArgument
RESULT SearchResult
ERRORS { Abandoned,

NameError,
AccessError,
AttributeError,
UpdateError,
SecurityError,
ServiceError }

SearchArgument :: = SEQUENCE {

search-mode [0] CHOICE {
continue [0] DfrEntryName,
update [1] DfrEntryName,
new-search-stored [2] DfrEntryName,
non-stored-search [3] NULL }

COMPONENTS OF
CommonListSearchArguments,
search-domain [5] SearchDomain OPTIONAL,
search-criteria [6] SearchCriteria OPTIONAL,
COMPONENTS OF CommonArguments } (WITH COMPONENTS { s
error-handling ABSENT })}

SearchResult :: = SEQUENCE {
COMPONENTS OF CommonListSearchResult,
removed-entries [4] DfrEntryList OPTIONAL }

Reserve :: = ABSTRACT-OPERATION
ARGUMENT ReserveArgument
RESULT ReserveResult
ERRORS { NameError,

ReservationError,
SecurityError,
ServiceError }

ReserveArgument :: = SEQUENCE {
entry [0] DfrEntryName,
COMPONENTS OF CommonArguments (WITH COMPONENTS { s
reservation PRESENT,
error-handlingABSENT 1})}

Reservation :: = ENUMERATED {
unreserved (0),
exclusive-write (1),
exclusive-access (2) }

- 124 -

ReserveResult :: = NULL
Abandon ::= ABSTRACT-OPERATION

ARGUMENT AbandonArgument,
RESULT AbandonResult
ERRORS { AbandonFailed }

AbandonArgument :: = SEQUENCE {
object [0] DfrEntryName }

AbandonResult :: = NULL
-- ABSTRACT-ERRORS

AttributeError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE {
entry [0] DfrEntryName OPTIONAL,
problems [1] SEQUENCE OF
SEQUENCE {

problem [0] AttributeProblem,
type [1] Attribute Type,
value [2] AttributeValue OPTIONAL }}

AttributeProblem :: = ENUMERATED {

no-such-attribute (1),
invalid-attribute-syntax (2),
undefined-attribute-type (3),
inappropriate-matching (4),
constraint-violation (5),

attribute-or-value-already-exists ~ (6),
illegal-modification (7),
inconsistent-with-other‘-attributes (8),
undefined-for-this-object-class (9),
unsupported-document-type (10) }

NameError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE OF SEQUENCE {
entry [0] DfrEntryName,
problem [1] NameProblem }

NameProblem ::= ENUMERATED {

invalid-upi (1),
invalid-path-name (2),
ambiguous-path-name (3),

inappropriate-object-class (4) }

- 125 -

AccessError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE OF SEQUENCE {
entry [0] DfrEntryName,
problem [1] AccessProblem }

AccessProblem :: = ENUMERATED {
inappropriate-object-class (1),
insufficient-access-rights (2,
reserved-by-another-user (3),
externally-located-object (4) }

UpdateError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE {
entry [0] DfrEntryName,
problem [1] UpdateProblem }

UpdateProblem ::= ENUMERATED {

inappropriate-object-class (1),
insufficient-access-rights (2),
reserved-by-another-user (3),
quality-of-service-violation (4),
illegal-content-modification (5),
group-membership-criteria-violation (6),
reference-loop-detected (7) }

ReferentAccessError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE {
entry [0] DfrEntryName,
problem [1] ReferentAccessProblem 3}

ReferentAccessProblem :: = ENUMERATED {

inappropriate-object-class (1),
insufficient-access-rights (2),
reserved-by-another-user (3),
referent-no-more-exists (4),
referent-modified (5),
reference-content-empty (6) 1}

InterServerAccessError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE {
entry [0] DfrEntryName,
problem [1] InterServerAccessProblem }

InterServerAccessProblem :: = ENUMERATED {

referent-store-not-found (1),
referent-store-unreachable (2),
referent-store-unavailable (3),

referent-store-security-problem 4) }

ReservationError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE{
entry [0] DfrEntryName,
problem [1] ReservationProblem }

ReservationProblem :: = ENUMERATED {
cannot-reserve (0),
already-reserved (1),
not-yet-reserved (2}

- 126 -

VersionManagementError :: = ABSTRACT-ERROR

PARAMETER SEQUENCE {
entry [0] DfrEntryName,

problem [1] VersionManagementProblem }

VersionManagementProblem :: = ENUMERATED {

inappropriate-object-class
insufficient-access-rights

belongs-to-another-conceptual-document

SecurityError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE {
problem [0] SecurityProblem }

SecurityProblem :: = ENUMERATED {
inappropriate-authentication (1),

invalid-creds (2),
invalid-privilege 3),
insufficient-access-rights (4),
invalid-pac (5) }

ServiceError :: = ABSTRACT-ERROR
PARAMETER SEQUENCE {
problem [0] ServiceProblem }

ServiceProblem :: = ENUMERATED {

server-busy (1),
server-unavailable (2),
operation-too-complex (3),

resource-limit-exceeded (4),
unclassified-server-error (5)}

AbandonFailed :: = ABSTRACT-ERROR
PARAMETER SET {
problem [0] AbandonProblem,
operation [1] Invokeld }

Invokeld ::= INTEGER

(1),
(2),
@) }

- 127 -

AbandonProblem :: = ENUMERATED {

no-such-operation (1),
too-late (2),
cannot-abandon (3) }

Abandoned :: = ABSTRACT-ERROR

END -- of DFR-Abstract-Service --

- 128 -

- 129 -

Appendix D
Formal Definition of DFR-Basic-Attribute-Set

This Appendix, a supplement to clause 9, formally defines the attribute-types of the DFR-Basic-Attribute-
Set, and the related attribute-syntax for each attribute-type, applicable for Document Filing and Retrieval.
It employs ASN.1 and the ATTRIBUTE and ATTRIBUTE SYNTAX macros.

DFRBasicAttributes {iso identified-organization(3) idc-ecma(0012) standard(0) number(137) part-1(1)
modules(0) basic-attributes(2)}
DEFINITIONS :: =BEGIN

-- PROLOGUE --
EXPORTS EVERYTHING;

IMPORTS

-- DFR Object Identifiers --

id-att-dfr-upi, id-att-dfr-object-class, id-att-dfr-document-type, id-att-document-architecture-class, id-att-
dfr-title, id-att-dfr-pathname, id-att-dfr-parent-identification, id-att-dfr-guarantee-qos, id-att-dfr-referent-
deleted, id-att-dfr-membership-criteria, id-att-dfr-ordering, id-att-dfr-resource-limit, id-att-dfr-resource-
used, id-att-dfr-number-of-group-members, id-att-version-name, id-att-dfr-previous-versions, id-att-dfr-
next-versions, id-att-dfr-version-root, id-att-dfr-external-location, id-att-user-reference, id-att-user-
reference-to-other-objects, id-att-dfr-attribute-create-date-and-time, id-att-dfr-content-create-date-and-
time, id-att-dfr-created-by, id-att-dfr-attribute-modify-date-and-time, id-att-dfr-content-modify-date-and-
time, id-att-dfr-attributes-modified-by, id-att-dfr-content-modified-by, id-att-document-date-and-time, id-
att-dfr-reservation, id-att-dfr-reserved-by, id-att-dfr-access-list, id-dfr-att-syn-int, id-dfr-att-syn-bool, id-
dfr-att-syn-utc-time, id-dfr-att-syn-case-ign, id-dfr-att-syn-case-ign-list

FROM DFRObjectldentifiers {iso identified-organization(3) idc-ecma(0012) standard(0)
number(137) part-1(1) modules(0) object-identifiers(0)}

-- Attribute macros --

ATTRIBUTE, ATTRIBUTE-SYNTAX, DistinguishedName
FROM informationFramework { joint-iso-ccitt ds(5) modules(1) informationFramework(1) }

-- Data Types from DFR-Abstract-Service --

DfrUniquePermanentidentifier, QoS-Level, DfrObjectClass, DfrPathName, DfrOrderingRule, Filter,
Reservation
From DFRAbstractService {iso identified-organization(3) idc-ecma(0012) standard(0)
number(137) part-1(1) modules (0) abstract-service (1) }

-- DFR-Basic-Attribute-Set --

dfr-upi ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrUniquePermanentldentifier
MATCHES FOR EQUALITY
SINGLE VALUE
1= id-att-dfr-upi

- 130 -

dfr-object-class ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrObjectClass
MATCHES FOR EQUALITY
SINGLE VALUE
1= id-att-dfr-object-class

dfr-document-type ATTRIBUTE
WITH ATTRIBUTE-SYNTAX OBJECT IDENTIFIER
MATCHES FOR EQUALITY
SINGLE VALUE
1= id-att-dfr-document-type

document-architecture-class ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DocumentArchitectureClass
MATCHES FOR EQUALITY ORDERING
SINGLE VALUE
:: = id-att-document-architecture-class

dfr-titte ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
SINGLE VALUE
;1= id-att-dfr-title

dfr-pathname ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreListSyntax
SINGLE VALUE
1= id-att-dfr-pathname

dfr-parent-identification ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrUniquePermanentldentifier
SINGLE VALUE
:: = id-att-dfr-parent-identification

dfr-guarantee-qos ATTRIBUTE
WITH ATTRIBUTE-SYNTAX QoS-Level
SINGLE VALUE
1= id-att-dfr-guarantee-qos

dfr-referent-deleted ATTRIBUTE
WITH ATTRIBUTE-SYNTAX booleanSyntax
SINGLE VALUE
1= id-att-dfr-referent-deleted

dfr-membership-criteria ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Filter
SINGLE VALUE
:: = id-att-dfr-membership-criteria

- 131 -

dfr-ordering ATTRIBUTE
WITH ATTRIBUTE-SYNTAX OrderingRule
SINGLE VALUE
1= id-att-dfr-ordering

dfr-resource-limit ATTRIBUTE
WITH ATTRIBUTE-SYNTAX integerSyntax
SINGLE VALUE
1= id-att-dfr-resource-limit

dfr-resource-used ATTRIBUTE
WITH ATTRIBUTE-SYNTAX integerSyntax
SINGLE VALUE
1= id-att-dfr-resource-used

dfr-number-of-group-members ATTRIBUTE
WITH ATTRIBUTE-SYNTAX integerSyntax
SINGLE VALUE
1 = id-att-dfr-number-of-group-members

version-name ATTRIBUTE
WITH ATTRIBUTE-SYNTAX CaselgnoreStringSyntax
SINGLE VALUE
1 = id-att-version-name

dfr- previous-versions ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrUniquePermanentldentifier
MATCHES FOR EQUALITY
MULTI VALUE
1= id-att-dfr-previous-versions

dfr-next-versions ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrUniquePermanentldentifier
MATCHES FOR EQUALITY
MULTI VALUE
1= id-att-dfr-next-versions

dfr-version-root ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrUniquePermanentldentifier
MATCHES FOR EQUALITY
SINGLE VALUE
1= id-att-dfr-version-root

dfr-external-location ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
SINGLE VALUE
:: = id-att-dfr-external-location

- 132 -

user-reference ATTRIBUTE
WITH ATTRIBUTE-SYNTAX CaselgnoreStringSyntax
SINGLE VALUE
1= id-att-user-reference

user-reference-to-other-objects ATTRIBUTE
WITH ATTRIBUTE-SYNTAX CaselgnoreStringSyntax
MULTI VALUE
.. = id-att-user-reference-to-other-objects

dfr-attributes-create-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
:: = id-att-dfr-attributes-create-date-and-time

dfr-content-create-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
:: = id-att-dfr-content-create-date-and-time

dfr-created-by ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DistinguishedName
SINGLE VALUE
:: = id-att-dfr-created-by

dfr-attributes-modify-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
:: = id-att-dfr-attributes-modify-date-and-time

dfr-content-modify-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
:: = id-att-dfr-content-modify-date-and-time

dfr-attribute-modified-by ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DistinguishedName
MATCHES FOR EQUALITY
SINGLE VALUE
:: = id-att-dfr-attribute-modified-by

dfr-content-modified-by ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DistinguishedName
MATCHES FOR EQUALITY
SINGLE VALUE
:: = id-att-dfr-content-modified-by

- 133 -

document-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
= id-att-document-date-and-time

dfr-reservation ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Reservation
MATCHES FOR EQUALITY ORDERING
SINGLE VALUE
1= id-att-dfr-reservation

dfr-reserved-by ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DistinguishedName
MATCHES FOR EQUALITY
SINGLE VALUE
= id-att-dfr-reserved-by

dfr-access-list ATTRIBUTE
WITH ATTRIBUTE-SYNTAX DfrAccessListElement
MATCHES FOR EQUALITY

MULTI! VALUE
:: = id-att-dfr-access-list

-- Attribute Syntaxes --

DocumentArchitectureClass :: = INTEGER {
formatted (0),
processable (1),
formatted-processable (2) }

DirAccessListElement :: = SEQUENCE {
accessld Accessld,
accessRights AccessRights }

Accessld :: = DistinguishedName

AccessRights ::= ENUMERATED {

read (0),
extendedRead (1),
readModify (2),
readModifyDelete (3),
owner (4) }

integerSyntax ATTRIBUTE-SYNTAX-
INTEGER
MATCHES FOR EQUALITY ORDERING
= {id-dfr-att-syn1}

- 134 -

booleanSyntax ATTRIBUTE-SYNTAX
BOOLEAN
MATCHES FOR EQUALITY
= {id-dfr-att-syn2}

uTCTimeSyntax ~ ATTRIBUTE-SYNTAX
UTCTime
MATCHES FOR EQUALITY ORDERING
o= {id-dfr-att-syn3}

caselgnoreStringSyntax ATTRIBUTE-SYNTAX
CharacterData
MATCHES FOR EQUALITY SUBSTRINGS
= {id-dfr-att-syn4}

caselgnoreListSyntax ATTRIBUTE-SYNTAX
SEQUENCE OF
CharacterData

MATCHES FOR EQUALITY SUBSTRINGS
= {id-dfr-att-syn5}

END -- of DFR-Basic -Auribute-Set--

- 135 -

Appendix E
Formal Definition of DFR-Extension-Attribute-Set

This Appendix, a supplement to clause 9, formally defines the attribute-types of the DFR-Extension-
Attribute-Set, and the related attribute-syntax for each attribute-type, applicable for Document Filing and
Retrieval. It employs ASN.1 and the ATTRIBUTE and ATTRIBUTE SYNTAX macro, see 6.8.7.4.

DFRExtensionAttributes {iso identified-organization(3) idc-ecma(0012) standard(0) number(137)
part-1(1) modules(0) extension-attributes(3)}
DEFINITIONS :: =BEGIN

-- PROLOGUE --
EXPORTS EVERYTHING;
IMPORTS

uTCTimeSyntax, caselgnoreStringSyntax
FROM DFRBasicAttributes {iso identified-organization(3) idc-ecma(0012) standard(0)
number(137) part-1(1) modules(0) basic-attributes(2)}

-- DFR Object Identifiers --
id-att-other-titles, id-att-subject, id-att-document-type, id-att-keywords, id-att-creation-date-and-time,
id-att-purge-date-and-time, id-att-revision-date-and-time, id-att-organizations, id-att-preparers, id-att-
owners, id-att-authors, id-att-status, id-att-user-specific-codes, id-att-superseded-documents, id-att-
numbers-of-pages, id-att-languages
FROM DFRObjectldentifiers {iso identified-organization(3) idc-ecma(0012) standard(0)
number(137) part-1(1) part-1(1) modules(0) object-identifiers(0) }

-- Attribute macros --
ATTRIBUTE, ATTRIBUTE-SYNTAX
FROM informationFramework { joint-iso-ccitt ds(5) modules(1) informationFramework(1) }

-- DFR-Extension-Attribute-Set --

other-titles ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
MULTI VALUE
1= id-att-other-titles

subject ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
SINGLE VALUE
' = id-att-subject
document-type ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax

SINGLE VALUE
::= id-att-document-type

- 136 -

keywords ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
MULTI VALUE
1= id-att-keywords

creation-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
:: = id-att-creation-date-and-time

purge-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
1 = id-att-purge-date-and-time

revision-date-and-time ATTRIBUTE
WITH ATTRIBUTE-SYNTAX uTCTimeSyntax
SINGLE VALUE
1 = id-att-revision-date-and-time

organizations ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
MULTI VALUE
:: = id-att-organizations

preparers ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Person
MULTI VALUE
;1= id-att-preparers

owners ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Person
MULTI VALUE
;1= id-att-owners

authors ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Person
MULTI VALUE
1= id-att-authors

status ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
SINGLE VALUE
1= id-att-status
user-specific-codes ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax

MULTI VALUE
:: = id-att-user-specific-codes

- 137 -

superseded-documents ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
MULTI VALUE
:: = id-att-superseded-documents

number-of-pages ATTRIBUTE
WITH ATTRIBUTE-SYNTAX integerSyntax
SINGLE VALUE
1= id-att-number-of-pages

languages ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
MULTI VALUE
.= id-att-languages

-- Autribute Syntaxes --

Person ::= SEQUENCE {
surname [0] IMPLICIT CharacterData OPTIONAL,
givenname [1] IMPLICIT CharacterData OPTIONAL,
initials [2] IMPLICIT CharacterData OPTIONAL,
title [3] IMPLICIT CharacterData OPTIONAL,
organization [4] IMPLICIT Character-Data OPTIONAL }

END -- of DFR-Extension-Auribute-Set--

- 138 -

- 139 -

Part 2
Protocol Specification

- 140 -

- 141 -

SECTION ONE - DFR ACCESS PROTOCOL SPECIFICATION

« 143

1.

1.1

- 143 -

OVERVIEW OF THE PROTOCOL

DFR Access Protocol Model

Part 1 of this Standard ECMA-137 describes an abstract model of the Document Filing and
Retrieval Application, and the DFR Abstract Service which is provided to the DFR-User.

This clause describes how the DFR Abstract Service is supported by instances of OSI
communication when an abstract-service user and an abstract-service provider are realized as
application-process located in different open systems.

In the OSI environment, communication between application-processes is represented in terms of
communication between a pair of application-entities (AEs) using the presentation-service. The
functionality of an application-entity is factored into a set of one or more application-service-
elements (ASEs). The interaction between AEs is described in terms of their use of the services
provided by the ASEs.

Access to the DFR Abstract Service is supported by the DFR Service Element (DFRSE),
supporting a port paired between a DFR-User and the DFR-Server in the abstract model. The
DFR Service Element is an asymmetric ASE, that is, the DFR-User acts as the consumer, and
the DFR-Server acts as the supplier, of the DFR Abstract Service.

The DFRSE is in turn supported by other application-service-elements.

The Remote Operations Service Element (ROSE) supports the request/reply paradigm of the
abstract operations that occur at the DFR-Port in the abstract model. The DFRSE provides the
mapping function of the abstract-syntax notation of this abstract-service onto the services
provided by the ROSE.

Optionally, the Reliable Transfer Service Element (RTSE) may be used to reliably transfer the
application-protocol-data-units (APDUs) that contain the parameters of the operations between
AEs.

The Association Control Service Element (ACSE) supports the establishment and release of an
application-association between a pair of AEs. Associations between a DFR-User and the DFR-
Server may be established only by the DFR-User, and only the initiator of an established
association can release it.

The combination of the DFRSE together with the supporting ASEs, defines the application-
context of an application-association. Note that a single application-association may be used to
support one or more port types paired between two objects in the abstract model.

Figure 1 models an application-context between a DFR-User and and a DFR-Server. The
consumer role of the DFR-User ASE and the supplier role of the DFR-Server ASE, is indicated
by the subscript "c" or "s".

- 144 -

Application
Layer

Presentation

Layer

DFRSE¢

ROSE

ACSE

Document
Filing
and
Retrieval
Protocol

ﬂk

DFR-Server

DFRSEg

ROSE

ACSE

Fig. 1 - The DFR Model

1.2 Services Provided by the DFR Access Protocol

The DFR Access Protocol comprises the following operations which provide the services defined
in Part 1 of this Standard.

DFR-bind and DFR-unbind

- DFR-bind
- DFR-unbind

DFR Service Element (DFRSE)

Create
Delete
Copy
Move
Read
Modify
List
Search
Reserve
Abandon

The DFR Access Protocol makes use of underlying services as defined in ISO/IEC 9072-1.

2. DFR ACCESS PROTOCOL ABSTRACT SYNTAX DEFINITION

The abstract-syntax of the DFR Access Protocoll is defined using the abstract syntax notation
(ASN.1) defined in 1SO 8824, and the remote operations notation defined in ISO/IEC 9072-1.

- 145 «

DFRAccessProtocol {iso identified-organization(3) idc-ecma(0012) standard(0) numbér(137)
' part-2(2) modules(0) access-protocol(1)}

DEFINITIONS IMPLICIT TAGS :: =

BEGIN

-- PROLOGUE --
EXPORTS

-- DFR ASE --
dFRSE;

IMPORTS

-- Application Service Elements and Application Contexts --

APPLICATION-SERVICE-ELEMENT, APPLICATION-CONTEXT, aCSE

FROM Remote-Operations-Notation-extension { joint-iso-ccitt
remote-operations(4) notation-extension(2)}

rTSE
FROM Reliable-Transfer-APDUs { joint-iso-ccitt reliable-transfer(3) apdus(0) }

-- DFR Abstract Service Parameters --
DfrBind, DfrUnbind, Create, Delete, Copy, Move, Read, Modify, List, Search, Reserve, Abandon,
AttributeError, NameError, AccessError, UpdateError, ReferentAccessError,
InterServerAccessError, ReservationError, VersionManagementError, SecurityError, ServiceError,
AbandonFailed, Abandoned

FROM DFRAbstractService {iso identified-organization(3) idc-ecma(0012) standard(0)

number(137) part-1(1) modules(0) abstract-service(1) }

-- Object Identifiers --

id-ac-dfr-access, id-as-acse, id-as-dfrse, id-as-rdtse, id-ase-dfrse
FROM DFRProtocolObjectldentifiers{iso identified-organization(3) idc-ecma(0012) standard(0)
number(137) part-2(2) modules(0) object-identifiers(0)}

-- Application Context Without RTSE --
dfr-access APPLICATION-CONTEXT
APPLICATION SERVICE ELEMENTS { aCSE }
BIND DfrBind
UNBIND DfrUnbind
REMOTE OPERATIONS { rOSE }
INITIATOR CONSUMER OF {dFRSE}
ABSTRACT SYNTAXES {
id-as-acse, -- of ACSE --
id-as-dfrse -- of DFRSE, including ROSE and the DFR-Basic-Attribute-Set--
id-as-dfr-ext-attr } -- optional for the DFR-Extension Attribute-Set. Other abstract--
-- Syntax names for other extension attribute sets may be negotiated--
:: = id-ac-dfr-access

- 146 -

-- Application Context including RTSE --

dfr-reliable-access APPLICATION-CONTEXT
APPLICATION SERVICE ELEMENTS { aCSE, rTSE }
BIND DfrBind
UNBIND DfrUnbind
REMOTE OPERATIONS {rOSE}
INITIATOR CONSUMER OF {dFRSE}

ABSTRACT SYNTAXES {

id-as-acse, -- of ACSE --
id-as-dfrse -- of DFRSE, including ROSE and the DFR-Basic-Attribute-Set--
id-as-dfr-ext-attr } -- optional for the DFR-Extension Auribute-Set. Other abstract--

-- syntax names for other extension attribute sets may be negotiated--
:: = id-ac-dfr-reliable-access

id-as-acse ::= aCSE-as .
aCSE-as OBJECT IDENTIFIER ::= {
joint-iso-ccitt association-control (2) abstractSyntax (1) apdus (0) version1 (1)}
-- as defined in 1SO 8650--

-- DFR Service Element --
dFRSE APPLICATION-SERVICE-ELEMENT
CONSUMER INVOKES {
create,
delete,
copy,
move,
read,
modify,
list,
search, ‘
reserve,
abandon }
SUPPLIER INVOKES { }
;1= id-ase-dfrse

- Remote Operations --

- 147 -

create Create =01
delete Delete n= 02
copy Copy = 03
move Move =04
read Read w= 05
modify Modify 1= 06
list List =07
search Search =08
reserve Reserve == 09
abandon Abandon =10

-- Remote Errors --

attribute-error AttributeError 2= 01
name-error NameError =02
access-error AccessError =03
update-error UpdateError =04
referent-access-error ReferentAccessError =05
inter-server-access-error InterServerAccessError =06
reservation-error ReservationError n= 07
version-management-error ~ VersionManagementError ::= 08
security-error SecurityError =09
service-error ServiceError m=10
abandon-failed AbandonFailed =11
abandoned Abandoned n=12

END -- of DFRAccessProtocol --

3. CONFORMANCE

A DFR system claiming conformance to the DFR Access Protocol specified in this Standard shall
comply with the requirements noted below.

3.1 Static Requirements
The system shall

- conform to the abstract-syntax definition(s) of the DFR Access Protocol defined in 4 of this
part of this Standard,

- conform to the Basic-Attribute-Set defined in Part 1 of this Standard;

- conform to the application-context defined in 4 of this part of this Standard.
3.2 Dynamic Requirements

The system shall

- supply operations conforming to clauses 8 and 10 of part 1 of this Standard;

- conform to the mapping onto used services, required by the application-context defined in 4
of this part of this Standard,

- conform to the use of underlying services as defined in ISO/IEC 9072-1.

- 148 -

Formal Assignment of Object Identifiers

DFRProtocolObjectldentifiers {iso identified-organization(3) idc-ecma(0012) standard(0)

- 149 -

_ Appendix A

All Object Identifiers this Part 2 of this Standard assigns are formally assigned in the present Appendix
using ASN.1. The specified values are cited in the ASN.1 module of this Part of this Standard.

This Appendix is definitive for all values except those for ASN.1 modules of this Part of this Standard. The
definitive assignments for those occur in the modules themselves.

number(137) part-2(2) modules (0) object-identifiers(0)}

DEFINITIONS :: =
BEGIN

-- PROLOGUE --

EXPORTS EVERYTHING;

IMPORTS -- nothing -- ;

-- DFR Protocol --

ID ::= OBJECT IDENTIFIER
id-dfr-protocol ID ::= { standard ECMA-137 part-2(2) }

-- Categories --

id-mod

id-ac

id-as

id-ase

-- Modules --

id-mod-object-identifiers
id-mod-access-protocol

-- Application Context --

id-ac-dfr-access
id-ac-dfr-reliable-access

-- Abstract Syntaxes --

id-as-acse
id-as-dfrse
id-as-dfr-ext-attr

-- Application Service Element

id-ase-dfrse

END

ID:

{ id-dfr-protocol 0 }
{ id-dfr-protocol 1 }
{ id-dfr-protocol 2 }
{ id-dfr-protocol 3 }

n

{ id-mod 0 }

== {id-mod 1}

w= {id-ac 0}
w= {id-ac1}

w={id-as0}
w={id-as 1}
= {id-as 2}

= {id-ase 0}

- 150 -

