Standard ECMA-227

October 1995

ECMA

Standardizing Information and Communication Systems

Portable Common Tool
Environment (PCTE) -
Extensions for support of
Fine-Grain Objects -
Abstract Specification

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 = URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch

%—mﬂ

Standard ECMA-227

October 1995
Standardizing Information and Communication Systems

Portable Common Tool
Environment (PCTE) -
Extensions for support of
Fine-Grain Objects -
Abstract Specification

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL.: http://www.ecma.ch - Internet: helpdesk@ecma.ch
Gino Lauri - ECMA-227.DOC - 01.11.95 14,06

Brief History

Software engineering tools are increasingly manipulating large amounts of objects accessed by several application developers
in the context of integrated software development environments. With PCTE, defined in Standard ECMA-149, the software
community has all the basic functionalities required to develop such repositories. In early 1993, however, it became apparent
that not all objects manipulated by software tools need the same level of flexibility but, on the other hand, very often require
performance which is hard to achieve with all the properties associated with PCTE objects in general. Typically, a tool needs to
manipulate a large set of objects which are mostly accessed at the same time (therefore allowing simplified concurrent access
mechanisms), with very short access times.

In 1993, several projects addressed this problem. Two of them produced results which were made publicly available and were
thereafter used as input to this Standard:

e the Portable Common Interface Set (PCIS) project of the NATO Special Working Group on APSE,
e the Object Oriented Tool Interface Set (OOTIS) project of IBM.

By the end of 1993, the US Department of Defense, the US National Institute of Standards and Technology (NIST), and the
Object Management Group (OMG) decided to create an initiative, called the North American PCTE Initiative (NAPI) in order
to resolve this problem (among others).

At the same time, the technical committee TC33 of ECMA decided to create a new task group, named TGOO, to add object
orientation and support of fine-grain objects to PCTE. The NAPI and TGOO groups soon decided to merge their efforts in
order to prepare a joint specification.

In 1994, the NAPI group transformed itself into the OMG Special Interest Group on PCTE (OMG PCTE SIG) and the joint
work with ECMA TC33-TGOO continued.

In September 1994, a new working group ISO/IEC JTC1/SC22/WG22 was created to manage the maintenance of the PCTE
International Standard ISO/IEC 13719, which is equivalent to Standard ECMA-149 3rd edition. That working group
participated in the review of the final drafts of this Standard.

This Standard is the result of all these collaborative efforts.

This ECMA Standard has been adopted by the ECMA General Assembly in October 1995.

-i-

Table of contents

1 Scope

2 Conformance
2.1 Conformance of binding

2.2 Conformance of implementation
3 Normative references

4 Definitions
4.1 Technical terms

4.2 Other terms
5 Formal notations
6 Overview of support of fine-grain objects in PCTE
7 Outline of the Standard
8 Foundation

9 Object management

9.1 Object management concepts

9.2 Link operations affected by support of fine-grain objects
9.2.1 LINK_CREATE
9.2.2 LINK_DELETE
9.2.3 LINK_REPLACE

9.3 Object operations affected by support of fine-grain objects
9.3.1 OBJECT_COPY
9.3.2 OBJECT_CREATE
9.3.3 OBJECT_DELETE
9.3.4 OBJECT_MOVE
9.3.5 OBJECT_SET_TIME_ATTRIBUTES

9.4 Version operations affected by support of fine-grain objects
9.4.1 VERSION_IS_CHANGED
9.4.2 VERSION_REVISE
9.4.3 VERSION_SNAPSHOT

10 Schema management

11 Volumes, clusters, devices, and archives
11.1 Cluster concepts

11.2 Archive operations affected by support of fine-grain objects

ENEEEN e e e N Y Y T - BV RV R (S)

- i -

11.2.1 ARCHIVE_RESTORE
11.2.2 ARCHIVE_SAVE

11.3 New operations on clusters
11.3.1 CLUSTER_CREATE
11.3.2 CLUSTER_DELETE
11.3.3 CLUSTER_LIST_OBJECTS

12 Files, pipes, and devices
13 Process execution
14 Message queues

15 Notification
15.1 Notification concepts

15.2 Notification operations affected by support of fine-grain objects
15.2.1 NOTIFY_CREATE

16 Concurrency and integrity control

17 Replication
17.1 Replication concepts
17.2 Replication operations affected by support of fine-grain objects
17.2.1 REPLICATED_OBJECT_CREATE
17.2.2 REPLICATED_OBJECT_DUPLICATE
17.2.3 REPLICATED_OBJECT_REMOVE

18 Network connection

19 Discretionary security

19.1 Concepts of discretionary security

19.2 Discretionary access control operations affected by support of fine-grain objects

19.2.1 OBJECT_SET_ACL_ENTRY

20 Mandatory security

20.1 Mandatory security concepts

20.2 Mandatory security operations affected by support of fine-grain objects

20.2.1 OBJECT_SET_CONFIDENTIALITY_LABEL
20.2.2 OBJECT_SET_INTEGRITY_LABEL

21 Auditing
21.1 Auditing concepts

21.2 Auditing operations affected by support of fine-grain objects
21.2.1 AUDIT_ADD_CRITERION

22 Accounting

O© O O o o©

10

10

10

10

10
10
10
10

11

11
11
12
12
12
12

12

12
12
12
12

13
13
13
13
13

13
13
13
13

13

- iii -

23 Common binding features

24 Implementation limits

Annex A - VDM Specification Language for the Abstract Specification
Annex B - The Data Definition Language (DDL)

Annex C - Specification of new errors

Annex D - Auditable events

Annex E - The predefined schema definition sets

13

14

14

14

14

14

14

(0]
()
(3)

(C]
(&)
(6)

2.1
(0]

2.2
)

2

(O]

(2

4.1
(0]

4.2
1)

(0]

Scope

This ECMA Standard specifies fine-grain extensions to PCTE, as defined in Standard ECMA-149.

The extensions described in this Standard are as follows:

For some operations specified in ECMA-149, the semantics is extended for the cases when the objects
manipulated by these operations are fine-grain objects. Some operations have their semantics affected because
NEw EITors may OCcur.

There are new operations.

There are new errors.

When objects passed as arguments of PCTE operations are not fine-grain objects, the syntax and semantics of the
operations described in this Standard are the same as the syntax and semantics of operations described in ECMA-149.
For this reason, this Standard is said to be upwards compatible from ECMA-149.

Conformance

Conformance of binding

The provisions of 2.1 of ECMA-149 are extended to cover the operations, datatypes and error values of this
Standard.

Conformance of implementation

The functionality of PCTE is divided into several modules, as defined in ECMA-149, clause 2.2. This Standard
introduces a new module: the fine-grain objects module, which consists of all the extensions specified in this
Standard and defines a new conformance level of PCTE implementations.

An implementation of PCTE conforms to ECMA-149 with fine-grain objects if and only if it implements the core
module and, in addition, implements the fine-grain objects module.

Normative references

The following Standard contains provisions which, through reference in this text, constitute provisions of this
Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and
parties to agreements based on this Standard are encouraged to investigate the possibility of applying the most recent
editions of the Standard indicated below.

ECMA-149 Portable Common Tool Environment (PCTE) - Abstract Specification (3rd edition,

December 1994)

Definiicions

Technical terms

All technical terms used in this Standard, other than a few in widespread use, are defined in the text, usually in a
formal notation, or in ECMA-149. All identifiers defined in VDM-SL or in DDL (see ECMA-149, 4.1) are technical
terms; apart from those, a defined technical term is printed in italics at the point of its definition, and only there.

Other terms
For the purpose of this Standard, all non-technical terms defined in 4.2 of ECMA-149 apply.

Formal notations

The formal notations used in this Standard are those defined in clause 5 of ECMA-149.

(¢))

(2

3
“
(5
(6)
O]
®)
©

(0]

2

(0]

9
9.1

(e))

2

3
(C)

(5

(6)

(O]
(®)

©

Overview of support of fine-grain objects in PCTE

The notion of support of fine-grain objects is mostly concerned with improved performance time for creating and
accessing PCTE objects. Object granularity is not dependent on type. It is described in terms of the amount of
processing that has to be done to access an object.

To enhance performance, the concept of cluster is introduced. A cluster is an object that represents the set of fine-
grain objects that share the same values for certain PCTE properties and with some specific restrictions:

e Usage restrictions on concurrency allow them to be cached in the main memory of processes.
o Time attributes of all fine-grain objects residing in a cluster are shared.

e Notification is not applicable to fine-grain objects.

e Security properties are also shared and only checked once at the level of the cluster.

o Auditing has limitations which decreases the controls to be made on fine-grain objects.

e Fine-grain objects are not accountable resources.

o Fine-grain objects have the same replicated state as their cluster.

Outline of the Standard

Clause 6 gives an informal, non-normative explanation of the concepts of support of fine-grain objects. Clause 7 gives
an overview of the document and of the structure of the definition.

This Standard follows the same structure as ECMA-149: all clauses are normative except clauses 6 and 7 and annex E
which are informative. For each clause of this Standard, an introduction summarizes the extensions made to the
corresponding clause of ECMA-149 in order to support fine-grain objects. Then the semantic changes of affected
operations (if any) are described, and finally new operations (if any) are specified.

Foundation
The foundations described in clause 8 of ECMA-149 are not affected by the support of fine-grain objects.

Object management

Object management concepts

sds system:

extend object with
attribute

cluster_identifier: (read) non_duplicated natural;
end object;

end system;

The cluster identifier identifies the cluster in which the object resides. If the cluster identifier is O, the object does
not reside in a cluster. If the cluster identifier is not 0, it is the key of a "known_cluster" link from the volume on
which the object resides to the cluster in which the object resides. See 11.1.

An object which resides in a cluster is called a fine-grain object. An object which does not reside in a cluster is
called a coarse-grain object. The same object can be created as coarse-grain object and become fine-grain after it is
moved into a cluster and conversely.

Objects which have the following types (or one of their descendant types) cannot reside in a cluster. They are
always coarse-grain objects:

e "file", "pipe", "message_queue", "device", "accounting_log", "audit_file";

e "volume", "cluster", "archive", "archive_directory";

e "process", "activity";

10
amn
12)
13)
14
15)

(16)

17)

(18)
19)

(20)

(21
(22)

(23)

(24

(25)

9.2
9.2.1
M

(2

9.2.2
(6]

2

e '"common_root";

° "SdS";

e "workstation", "execution_class", "execution_site

, "execution_site_directory";

e ‘"replica_set_directory", "replica_set";

e "security_group", "program_group", "mandatory_directory

"on "non

, "mandatory_class", "security_group_directory";

e '"accounting_directory"”, "consumer_group", "resource_group".

The last access time of a fine-grain object is equal to the default initial value of time attributes (see 8.3.2 of
ECMA-149).

The last modification time of a fine-grain object is equal to the last modification time of the cluster in which it
resides.

The last change time of a fine-grain object is equal to the last change time of the cluster in which it resides.
The last modification time of a fine-grain object is set only:

e when the object is created in a cluster (operations OBJECT_CREATE, OBJECT_COPY, VERSION_REVISE,
VERSION_SNAPSHOT),

e when the object is moved into a cluster (operation OBJECT_MOVE),
e when the last modification time of the cluster in which it resides is modified.

The last modification time of a cluster is the system time of the last release of a write or delete lock for an object
residing in the cluster.

The replicated state of a fine-grain object is equal to the replicated state of the cluster in which it resides.

NOTE - Neither a fine-grain object nor a cluster has contents, so the last access time is meaningless for both. That
is why it is always equal to the default initial value of time attributes.
Link operations affected by support of fine-grain objects

LINK_CREATE

LINK_CREATE (

origin : Object_designator,
new_link : Link_designator,
dest : Object_designator,
reverse_key : [Actual_key]

)

New semantics

If dest is a fine-grain object and new_link is a composition link, then any security group that has OWNER
granted or denied to origin has OWNER granted or denied respectively to all objects which reside in the cluster
of dest; similarly if origin is a fine-grain object and reverse_link (the reverse link of new_link) is a composition
link, then any security group that has OWNER granted or denied to dest has OWNER granted or denied
respectively to all objects which reside in the cluster of origin. This requires the process to have OWNER rights
on dest or origin respectively. See 19.1.2 of ECMA-149 for details.

LINK_DELETE

LINK_DELETE (
origin : Object_designator,
link : Link_designator

)

New semantics

For each deleted fine-grain object object, the "object_in_cluster" link from the cluster in which object was
residing to object is also deleted.

9.2.3
(¢))

2
9.3
9.3.1
(1

(2

3)

(C)]

(6))

(6

O]

®

(©)]
(10)
(1)

(12)

(13)
(14)

LINK_REPLACE
LINK_REPLACE (

)

origin : Object_designator,
link : Link_designator,
new_origin : Object_designator,
new_link : Link_designator,
on_reverse_key : [Actual_key]

New semantics

The semantics of this operation refers to LINK_DELETE. It is therefore affected in the same way.

Object operations affected by support of fine-grain objects
OBJECT_COPY
OBJECT_COPY (

object : Object_designator,
new_origin : Object_designator,
new_link : Link_designator,
reverse_key : [Actual_key],
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights
new_object : Object_designator

New semantics

If on_same_volume_as is supplied, then new_object and all its components reside in the same volume as
on_same_volume_as, as currently specified in ECMA-149.

If on_same_volume_as is not supplied, then new_object resides in the same volume as object, and each
component of new_object resides in the same volume as its corresponding component in object, as currently
specified in ECMA-149.

Additionally:

If on_same_volume_as is supplied and if the cluster identifier of on_same_volume_as is not 0, then
new_object and all its components reside in the same cluster as on_same_volume_as.

If on_same_volume_as is supplied is itself a cluster, then new_object and all its components reside in the
cluster on_same_volume_as.

If on_same_volume_as is not supplied and if the cluster identifier of object is not 0, then new_object resides
in the same cluster as object. Similarly, if the cluster identifier of a component of object is not 0, the
corresponding component of new_object is created in the same cluster as that component of object, and so
on for subcomponents.

If new_object or any of its components is created in a cluster, then an "object_in_cluster" link is created from that
cluster to the new object or component. Each created link is keyed by the exact identifier of the created object.

For each object X created in a cluster C:

The atomic ACL of X is set to the atomic ACL of C.
The security labels of X are set to the security labels of C.

The last modification time and last change time of X are set to the last modification time and last change
time of C, respectively.

New errors
OBJECT_CANNOT_BE_CLUSTERED (object or its components)

If object is a fine-grain object:

ACCESS_ERRORS (cluster of object, ATOMIC, MODIFY, APPEND_LINKS)

!

9.3.2
(6]

@)

(3

(C))
(5)

(6)
O]

®)
(©)]

(10)
an

(12)

(13)

(14)

9.3.3
(6]

(2

(€)

-5 -
OBJECT_CREATE
OBJECT_CREATE (
type : Object_type_nominator,
new_origin : Object_designator,
new_link : Link_designator,
reverse_key [Actual_key],
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights
)
new_object : Object_designator

New semantics

If on_same_volume_as is supplied, then new_object resides in the same volume as on_same_volume_as, as
currently specified in ECMA-149.

If on_same_volume_as is not supplied, then new_object resides in the same volume as new_origin, as currently
specified in ECMA-149.

Additionally:

o If on_same_volume_as is supplied and if the cluster identifier of on_same_volume_as is not 0, then
new_object resides in the same cluster as on_same_volume_as.

o If on_same_volume_as is itself a cluster, then new_object resides in the cluster on_same_volume_as.

e If on_same_volume_as is not supplied and if the "cluster_identifier" of new_origin is not 0, then new_object
resides in the same cluster as new_origin.

If new_object is created in a cluster, then:

e An "object_in_cluster” link is created from this cluster to the new object. The created link is keyed by the
exact identifier of the created object.

e The atomic ACL of new_object is set to the atomic ACL of the cluster.
e The security labels of new_object are set to the security labels of the cluster.

e The last modification time and last change time of new_object are set to the last modification time and last
change time of the cluster, respectively.

New errors
OBJECT_CANNOT_BE_CLUSTERED (object to be created)

If object is a fine-grain object:
ACCESS_ERRORS (cluster of object, ATOMIC, MODIFY, APPEND_LINKS)

OBJECT_DELETE
OBJECT_DELETE (
origin : Object_designator,
link : Link_designator
)
New semantics
For each deleted fine-grain object, if any, the "object_in_cluster" link from the cluster in which the deleted object
resided to the deleted object is also deleted.
New errors

If any deleted object is a fine-grain object:
ACCESS_ERRORS (cluster of deleted object, ATOMIC, MODIFY, WRITE_LINKS)

9.34
@

2

3

(C))

(&)

(6
(@)
®)

©

(10

an

(12)

9.3.5
1

(2)

(3

9.4
94.1
M

OBJECT_MOVE
OBJECT_MOVE (

object : Object_designator,
on_same_volume_as : Object_designator,
scope : Object_scope

)

New semantics

object and all its components are moved to the same volume as on_same_volume_as, as currently specified in
ECMA-149.

Additionally, if the cluster identifier of on_same_volume_as is not 0, or on_same_volume_as is itself a cluster,
then:

o object and all its components are moved into the cluster of on_same_volume_as, or the cluster
on_same_volume_as.

e An "object_in_cluster" link is created from that cluster to the moved object and to each of its components
and subcomponents. Each created link is keyed by the exact identifier of the moved object.

e The atomic ACLs of object and all its components are set to the atomic ACL of the cluster.
e The security labels of object are set to the security labels of the cluster.

e The last modification time and last change time of object and all its components are set to the last
modification time and last change time of the cluster, respectively.

For object (if moved) and each moved component, which was previously residing in a cluster, the
"object_in_cluster" link from the cluster to the object is deleted.

New errors
OBJECT_CANNOT_BE_CLUSTERED (object)

If object is a fine-grain object:
ACCESS_ERRORS (cluster of object, ATOMIC, MODIFY, WRITE_LINKS)

If on_same_volume_as resides in or is a cluster cluster:
ACCESS_ERRORS (cluster, ATOMIC, MODIFY, APPEND_LINKS)

OBJECT_SET_TIME_ATTRIBUTES
OBJECT_SET_TIME_ATTRIBUTES (

object : Object_designator,
last_access : [Time],
last_modification : [Time],

scope : Object_scope

)

New semantics

If object is a cluster, the new time attributes are also set on all objects residing in the cluster.

New errors
If object is a fine-grain object:
OBJECT_IS_FINE_GRAIN (object)
Version operations affected by support of fine-grain objects
VERSION_IS_CHANGED

VERSION_IS_CHANGED (
version : Object_designator,
predecessor : Natural

changed : Boolean

-7 -
New errors
) If object is a fine-grain object:
OBJECT_IS_FINE_GRAIN (object)
94.2 VERSION_REVISE
(1) VERSION_REVISE (
version : Object_designator,
new_origin : Object_designator,
new_link : Link_designator,
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights
)
new_version : Object_designator

New semantics

) The semantics of VERSION_REVISE refers to the semantics of OBJECT_COPY. It is therefore indirectly
changed in the same way.

9.4.3 VERSION_SNAPSHOT

1) VERSION_SNAPSHOT (
version : Object_designator,
new_link_and_origin : [Link_descriptor],
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights
)
new_version : Object_designator

New semantics

2 The semantics of VERSION_SNAPSHOT refers to the semantics of OBJECT_COPY. It is therefore indirectly
changed in the same way.

10 Schema management
1) This clause is not affected by support of fine-grain objects.

11 Volumes, clusters, devices, and archives
11.1 Cluster concepts

1) Cluster_identifier = Natural

() sds system:

3) extend object type volume with
link

known_cluster: (navigate) non_duplicated existence link (cluster_identifier) to
cluster reverse cluster_in_volume;
end volume;

(4) cluster: child type of object with

attribute
cluster_characteristics: (read) string;

link
object_in_cluster: (navigate) non_duplicated designation link (exact_identifier) to

object;

cluster_in_volume: (navigate) implicit link to volume reverse known_cluster;

end cluster;

(5) end system;

6

(O]
®)

©)
(10)

11.2
11.2.1
(6]

(2

(3
(C)

(5)

©)

O]

®)

11.2.2
(6]

2

3

A cluster is an object which groups a set of objects sharing some common properties or behaviour in respect with
concurrency control, time attributes, auditing, security, notification and accounting. See 9.1.

The destinations of the "known_cluster" links from a volume are the clusters residing on that volume.

The destinations of the "object_in_cluster" links from a cluster are called the objects residing in that cluster. The
value of the "exact_identifier" attribute is the exact identifier of the object (see 9.1.1 of ECMA-149).

All objects which reside in a cluster must also reside on the same volume as the volume of the cluster itself.

The "cluster_characteristics" attribute is an implementation-defined string specifying implementation-dependent
characteristics of the cluster.
Archive operations affected by support of fine-grain objects

ARCHIVE_RESTORE

ARCHIVE_RESTORE (

device : Device_designator,
archive : Archive_designator,
scope : Archive_selection,
on_same_volume_as : Object_designator

)
restoring_status : Archive_status

New semantics

Additionally, if the cluster identifier of on_same_volume_as is not 0, or if on_same_volume_as is itself a cluster,
then for each restored object:

e The object is allocated in the cluster of on_same_volume_as, or the cluster on_same_volume_as.

e An "object_in_cluster" link is created from that cluster to the restored object. Each created link is keyed by
the exact identifier of the restored object.

e The atomic ACLs of object and all its components are set to the atomic ACL of the cluster.

e The last access time, last modification time, and last change time of object and all its components are set to
the last access time, last modification time, and last change time of the cluster, respectively.

New errors
OBJECT_CANNOT_BE_CLUSTERED (any object being restored)

If on_same_volume_as resides in or is a cluster cluster:
ACCESS_ERRORS (cluster, ATOMIC, MODIFY, APPEND_LINKS)

ARCHIVE_SAVE
ARCHIVE_SAVE (

device : Device_designator,
archive : Archive_designator,
objects : Object_designators

archiving_status : Archive_status

New semantics

For each object to be archived which resides in a cluster, the "object_in_cluster" link from the cluster on which
the object resides to the object is deleted.

New errors

For any object X of objects which resides in a cluster
ACCESS_ERRORS (cluster of X, ATOMIC, MODIFY, APPEND_LINKS)

11.3
11.3.1
(O]

(2

3
(C)]

(&)

(6
(O]

®)

©

(10)

an

12)
11.3.2

(0]

(2)

(3)

(C)
(5)
(6)

O]
®)

-9 .
New operations on clusters

CLUSTER_CREATE

CLUSTER_CREATE (
on_same_volume_as : Object_designator,
cluster_identifier : Natural,
access_mask : Atomic_access_rights,
cluster_characteristics ~ : String
)
new_cluster : Cluster_designator

CLUSTER_CREATE creates a new cluster new_cluster in the volume volume in which the object
on_same_volume_as resides.

A new "known_cluster" link with key cluster_identifier is created from volume to new_cluster.

access_mask is used in conjunction with the default atomic ACL and default object owner of the calling process
to define the atomic ACL and the composite ACL which are to be associated with the created object (see 19.1.4
in ECMA-149).

The confidentiality and integrity labels of cluster are respectively set to the confidentiality and integrity labels of
the mandatory context of the calling process.

The "cluster_characteristics" attribute of new_cluster is set to cluster_characteristics.

Write locks of the default mode are obtained on on_same_volume_as, on new_cluster, and on the new
"known_cluster" link.

Errors
ACCESS_ERRORS (volume, ATOMIC, MODIFY, APPEND_LINKS)

LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_VALUE)
OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL
REFERENCE_CANNOT_BE_ALLOCATED

CLUSTER_EXISTS (cluster_identifier, volume)

CLUSTER_DELETE

CLUSTER_DELETE (
cluster : Cluster_designator

)

CLUSTER_DELETE deletes the "known_cluster" link to cluster from the volume volume on which cluster is
residing. and then deletes cluster.

Write locks (of the default kind) are obtained on cluster and the deleted cluster and the deleted link.

Errors
ACCESS_ERRORS (volume, ATOMIC, MODIFY, WRITE_LINKS)

ACCESS_ERRORS (cluster, ATOMIC, CHANGE, WRITE_IMPLICIT)

If the conditions hold for deletion of the "cluster" object cluster:
ACCESS_ERRORS (volume, ATOMIC, MODIFY, DELETE)

CLUSTER_HAS_OTHER_LINKS (cluster)
CLUSTER_IS_UNKNOWN (cluster)

= 0=

11.3.3 CLUSTER_LIST_OBJECTS

1) CLUSTER_LIST_OBJECTS (
cluster : Cluster_designator,
types : Object_type_nominators

: objects : Object_designators

(2) CLUSTER_LIST_OBIJECTS returns in objects a set of object designators determined by fypes.

3) An object designator is returned in objects for each object which resides in cluster, whose type in working
schema is an element of types.

4) A read lock of the default mode is obtained on cluster.
Errors

(5) ACCESS_ERRORS (cluster, ATOMIC, READ, READ_LINKS)

(6) REFERENCE_CANNOT_BE_ALLOCATED

12 Files, pipes, and devices
1) This clause is not affected by support of fine-grain objects.

(2) NOTE - Files, pipes, and devices cannot reside in clusters, see clause 9.

13 Process execution
(1) This clause is not affected by support of fine-grain objects.

() NOTE - It is intended that a process loads all objects of the clusters that it is accessing. The conditions allowing the
cache to be loaded and downloaded are related to the locking policies. See clause 16.

14 Message queues
(1) This clause is not affected by support of fine-grain objects.

) NOTE - Message queues cannot reside in clusters, see clause 9.

15 Notification
15.1 Notification concepts

1) Notifiers cannot be associated with fine-grain objects.

15.2 Notification operations affected by support of fine-grain objects
15.2.1 NOTIFY_CREATE

1) NOTIFY_CREATE (
notifier_key : Natural,
queue : Message_queue_designator,
object : Object_designator
)
New errors

® OBJECT_IS_FINE_GRAIN (object)

16
(0]

2
3

(C)

(6))

(6)

o

®)

©

(10

an

17
17.1

)

(2

= 11 =

Concurrency and integrity control

When an activity acquires a lock on a fine-grain object, the locking request is done on the "cluster" in which the object
resides.

When an activity requests a lock on a cluster, the lock is acquired only if all the following conditions hold:

e The requested external lock mode is compatible with the external lock mode of other locks obtained by
concurrent activities, as in ECMA-149.

e The requested internal lock mode is compatible with the external lock mode of the child activities, as in ECMA-
149.

e The requested external lock mode is compatible with the internal lock mode of the parent activity (if any), as in
ECMA-149.

e If a read lock is already acquired by at least one different process running in the same activity and the current
process is performing an operation which requests a write lock, the lock acquisition (such a request is a promotion
from read to write for a coarse-grain object) is delayed until the lock can be promoted to write and until all other
processes which have made a lock request are terminated.

e If a write lock is already acquired by one (and only one) different process running in the same activity and the
current process is performing an operation which requests a read or a write lock acquisition on a fine-grain object
(such a request is necessarily satisfied in case of a lock on a coarse-grain object), the lock acquisition is delayed
until the process which made the write lock request on the cluster is terminated.

NOTES

1. It is intended that an implementation supports caching of fine-grain objects by loading in main memory all the
objects of a cluster. For performance reasons, it is intended that the loading of all the objects of a cluster is done in
the private user space of processes which need to access the objects.

2. The additional locking rules prevent two different processes running in the same activity from accessing the same

fine-grain objects and from performing concurrent non-synchronized updates on their caches. With these additional
locking rules, the loading of the cache is intended to happen as follows:

e when an activity acquires a read lock on a cluster, all objects of the cluster are placed in a read-only cache stored
in the space of the process which is performing the operation causing the lock acquisition.

o When an activity acquires a write lock on a cluster, all objects of the cluster are placed in a read-write cache
stored in the space of the process which is performing the operation causing the lock acquisition.

e Several processes can have read-only caches on the same cluster.
e Only one process can have a read-write cache on a cluster, at a given time.

3. It is intended that a process unloads a cache when the activity causing the cache to be loaded is ended or aborted.
If the activity commits, the cache has to be downloaded to the object base. If the activity is aborted, the cache must be
simply discarded, without updates in the object base.

4. Whenever this Standard or ECMA-149 says 'a read/write lock of the default mode is obtained on an object object’,
if object is a fine-grain object this is implicitly equivalent to 'a read/write lock of the default mode is obtained on the
cluster in which object resides' as a consequence of the first rule above.

Replication
Replication concepts

When a cluster is duplicated, all the fine-grain objects residing in the cluster are replicated.

A fine-grain object cannot be replicated in isolation (i.e. the only way to duplicate it is by duplicating its cluster).

12 -

17.2 Replication operations affected by support of fine-grain objects
17.2.1 REPLICATED_OBJECT_CREATE

1) REPLICATED_OBJECT_CREATE (
replica_set : Replica_set_designator,
object : Object_designator

)

New semantics
2) If object is a cluster, its replicated state is set to MASTER.

New errors
3) OBJECT_IS_FINE_GRAIN (object)
17.2.2 REPLICATED_OBJECT_DUPLICATE

(1) REPLICATED_OBJECT_DUPLICATE (
object : Object_designator,
volume : Administration_volume_designator,
copy_volume : Administration_volume_designator

)

New semantics
(2) If object is a cluster, then all the objects which reside in the cluster are replicated

17.2.3 REPLICATED_OBJECT_REMOVE

(1 REPLICATED_OBJECT_REMOVE (
object : Object_designator
)

New semantics

) If object is a cluster, its replicated state is set to NORMAL.

New errors
3) OBJECT_IS_FINE_GRAIN (object)

18 Network connection
)] This clause is not affected by support of fine-grain objects.

19 Discretionary security
19.1 Concepts of discretionary security

1) All fine-grain objects residing in a cluster have the same ACLs as the cluster.

19.2 Discretionary access control operations affected by support of fine-grain objects
19.2.1 OBJECT_SET_ACL_ENTRY

1) OBJECT_SET_ACL_ENTRY (
object : Object_designator,
group : Group_identifier,
modes : Atomic_access_rights,
scope : Object_scope
)
New semantics
2) If object is a cluster, then the same ACL entry is added to the ACL of all objects residing in the cluster.
New errors

(3) OBJECT_IS_FINE_GRAIN (object)

- 13 -
20 Mandatory security
20.1 Mandatory security concepts
(1) All fine-grain objects residing in a cluster have the same confidentiality and integrity labels as the cluster.

20.2 Mandatory security operations affected by support of fine-grain objects
20.2.1 OBJECT_SET_CONFIDENTIALITY_LABEL

(1) OBJECT_SET_CONFIDENTIALITY_LABEL (
object : Object_designator,
label : Security_label
)

New semantics

) If object is a cluster, then the same confidentiality label is set on all objects residing in the cluster.

New errors
3) OBJECT_IS_FINE_GRAIN (object)

20.2.2 OBJECT_SET_INTEGRITY_LABEL

1) OBJECT_SET_INTEGRITY_LABEL (
object : Object_designator,
label : Security_label

)
New semantics

(2) If object is a cluster, then the same confidentiality label is set on all objects residing in the cluster.
New errors

3) OBJECT_IS_FINE_GRAIN (object)

21 Auditing
21.1 Auditing concepts

1) Operations on fine-grain objects do not produce auditable events.

21.2 Auditing operations affected by support of fine-grain objects
21.2.1 AUDIT_ADD_CRITERION

1) AUDIT_ADD_CRITERION (
station : Workstation_designator,
criterion : Selection_criterion
)
New errors
(2) OBJECT_IS_FINE_GRAIN (object)

22 Accounting

(1) This clause is not affected by support of fine-grain objects.

() NOTE - Accountable resources are files, pipes, volumes, devices, static contexts, message queues, and workstations
none of which can be fine-grain objects.

23 Common binding features

(1) This clause is not affected by support of fine-grain objects.

24
(&)

- 14 -

Implementation limits
This clause is not affected by support of fine-grain objects.

Annex A (normative) - VDM Specification Language for the Abstract Specification

(¢))

This annex is not affected by support of fine-grain objects.

Annex B (normative) - The Data Definition Language (DDL)

(0]

This annex is not affected by support of fine-grain objects.

Annex C (normative) - Specification of new errors

C1
0

(2

C.2

(0]

2

3

“

Access errors

Additionally, ACCESS_ERRORS (object, scope, access_mode, permission) is extended for all access modes with the

following:

if object resides in a cluster then:
ACCESS_ERRORS (cluster of object, scope, access_mode, permission)

New errors

OBJECT_IS_FINE_GRAIN (object)
object is fine-grain and an attempt is being made to perform one of the operations which are not permitted on fine-
grain objects.

CLUSTER_EXISTS (cluster_identifier, volume)
The specified cluster number cluster_identifier corresponds to an existing cluster in the volume volume.

CLUSTER_HAS_OTHER_LINKS (cluster)

There are links starting from the cluster volume which are not the "cluster_in_volume" link to its associated volume.

CLUSTER_IS_UNKNOWN (volume)
The "cluster" object cluster is not linked to a volume via link of type "known_cluster".

Annex D (normative) - Auditable events

M

This clause is not affected by support of fine-grain objects.

Annex E (informative) - The predefined schema definition sets

(0]
(2
3

“

The fine-grain objects module requires the following extensions to the system SDS:
sds system:

extend object with
attribute

cluster_identifier: (read) non_duplicated natural;
end object;

extend object type volume with
link
known_cluster: (navigate) non_duplicated existence link (cluster_identifier) to
cluster reverse cluster_in_volume;
end volume;

(5)

(6

- 15 -
cluster: child type of object with
attribute
cluster_characteristics: (read) string;
link
object_in_cluster: (navigate) non_duplicated designation link (exact_identifier) to
object;

cluster_in_volume: (navigate) implicit link to volume reverse known_cluster;
end cluster;

end system;

This Standard ECMA-227 is available free of charge from:

ECMA

114 Rue du Rhone
CH-1204 Geneva
Switzerland

Fax: +41 22 849.60.01
Internet: helpdesk @ecma.ch

This Standard can also be downloaded as file E227-doc.exe and E227-psc.exe from FTP.ECMA.CH.

