
Standard ECMA-234
December 1995

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S y s t e ms

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: h t tp : / /www.ecma.ch - In ternet : he lpdesk@ecma.ch

Application Programming
Interface for Windows

Volume 2
Section 4 - System Services

Section 5 - Application Support Functions

Standard ECMA-234
December 1995

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S y s t e ms

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: h t tp : / /www.ecma.ch - In ternet : he lpdesk@ecma.ch

GL E-234-V2.DOC 07-03-96 15,54

Application Programming
Interface for Windows

Brief History

The APIW Standard is a functional specification of the Microsoft Windows 3.1 application programming interface. It is based
on existing implementations (including Microsoft and others) and behavior. The goal of writing this specification is to define an
environment in which:

− applications written to this baseline will be portable to all implementations of the APIW Standard.

− the interface can be enriched through open standards processes to meet current and future user needs in a timely fashion.

APIW uses the current C language binding, and reflects existing coding practices to ensure that current applications will
conform to this standard. The APIs documented in this standard shall accurately reflect existing implementations of the
windows APIs. If an application that runs with an existing implementation uses one or more APIs contrary to the way it is
described in the standard, the standard will be changed to accurately reflect the behavior.

The APIW Standard defines a set of application programming interfaces that allow for the creation of graphical applications
spanning a wide range of capabilities. The standard groups these APIs into major functional areas including a window manager
interface, a graphics device interface and interfaces necessary for accessing system resources and capabilities. The API
requirements of today’s major desktop applications are reflected in this specification and are the criteria for determining the
APIW content.

The APIW Standard focuses on providing the necessary APIs for writing applications for the desktop, and also allows
additional APIs to be bound to an application. This feature enables services outside the scope of a standard desktop application
to be provided, for example, database, networking or other system services.

The APIW Standard defines the basic graphical use interface objects, such as buttons, scrollbars, menus, static and edit
controls, and the painting functions to draw them, such as area fill, and line and rectangle drawing. Finally, a rich set of text
routines in defined, from simple text output to more complex text output routines using multiple founts and font styles, all
supporting the use of color.

The APIW Standard is documented in five sections, corresponding loosely to the four functional subsystems represented by the
API and the conformance clause. The four APIW sections cover window management, graphical interface, system services and
an application support services section. These functions cover window creation and management, graphics routines to paint text
and other graphics objects in those windows, functions to access system resources such as files and timers, and finally, common
support functions to accelerate the development of graphical window-based applications.

The APIW Window Subsystem section of the standard covers the creation, deletion and management of the window, including
window positioning and sizing and the sending and receiving of messages. Within each of these window management
subsections are routines that significantly extend the basic functions. With window creation, there are many types of windows
that can be created including built-in classes and user-definable classes, that have the ability to modify the style of any one of
the built-in classes. Additional functions are defined to affect the display of a window, including functions to modify the
windows menu, scrollbars, and the display of carets or cursors within the window. With multiple overlapped windows being
displayed simultaneously, functions are defined to manage the position and size of those windows, as well as to control the
visibility of a window and its associated icon when it is minimized.

The APIW Window Subsystem section also defines a set of functions for managing a subset of the user interface, referred to as
dialog boxes. These functions allow for the creation and management of the dialog box, as well as the user interaction with the
dialog box up to its closure. Utility functions are defined to make designing and using a dialog box easier. These utilities
provide common dialog box functions, such as group boxes and check boxes, as well as file interface functions to list files and
directories. Each of these dialog boxes are controlled by the use of dialog box templates that are stored in resource files.

The APIW Graphics Subsystem section covers all aspects of actually drawing in a window. These aspects include line drawing,
text output, graphics primitives, such as rectangles and ellipses, as well as more sophisticated routines such as floodfill(),
bitblts() and stretchblt(). The Graphics Device Interface defines bitmaps, icons, cursors and carets, as well as functions to
provide for a portable graphics file format called metafiles. The Graphics Device Interface defines a logical coordinate space to
further abstract the underlying hardware and has functions to map between the logical and physical coordinate space. The
Graphics Device Interface defines utility functions for all drawing routines that use pens, brushes and regions to get precise
control over how graphical objects will be drawn.

The APIW System Services section defines platform-independent routines for an application to query the system environment
and access system services. System services that may be accessed include memory, timers, the keyboard and the native file
system. There are subsections that deal with resources, device I/O and system diagnostic routines. Resource management

allows for the loading and unloading of user- and system-defined resources, such as icons, bitmaps and strings. Device I/O
includes both parallel and serial port input and output operations. System diagnostic routines enable an application or
diagnostic tool to examine the state of an application, including memory utilization, task information and stack usage.

The APIW Application Support Function section defines miscellaneous functions that can be used by a developer in an
application. These utility functions define built-in services that a developer does not have to rewrite with each application.
These service functions include debugging routines and simple user interface routines to provide graphical feedback to a user.
They also include routines for file compression and decompression, standardized routines to retrieve application version
information and routines to manage initialization files.

Adopted as an ECMA Standard by the General Assembly of December 1995.

- i -

Table of contents

Section 4 - System Services 1

305 GetFreeSystemResources 1

306 SystemParametersInfo 1

307 GetWinFlags 6

308 GetSystemMetrics 7

309 GetVersion 8

310 SetTimer, TimerProc, KillTimer 9

311 SetDoubleClickTime, GetDoubleClickTime 9

312 GetTickCount, GetCurrentTime 10

313 GetTimerResolution 10

314 LoadLibrary, FreeLibrary 11

315 LoadModule, FreeModule 11

316 GetModuleFileName, GetModuleHandle, GetModuleUsage 13

317 GetProcAddress 13

318 MakeProcInstance, FreeProcInstance 14

319 LibMain 14

320 WEP 15

321 GetInstanceData 15

322 GetFreeSpace 16

323 GlobalAlloc, GlobalFree, LocalAlloc, LocalFree 16

324 GlobalCompact, LocalCompact 17

325 GlobalFix, GlobalUnfix 17

326 GlobalFlags, LocalFlags 18

327 GlobalHandle, LocalHandle 18

328 GlobalLock, GlobalUnlock, LocalLock, LocalUnlock 19

329 GlobalLRUNewest, GlobalLRUOldest 19

330 GlobalNotify, NotifyProc 20

331 GlobalReAlloc 20

332 GlobalSize, LocalSize 21

333 LocalInit, LocalShrink 21

334 Catch, Throw 22

335 Yield, DirectedYield 22

336 GetCurrentTask 23

337 GetNumTasks 23

338 GetWindowTask 23

339 IsTask 24

340 WinHelp 24

341 EnumTaskWindows, EnumTaskWndProc 25

342 WinExec 26

343 WinMain 26

344 ExitWindows 27

345 GetAsyncKeyState 27

346 qGetInputState 28

- i i -

347 GetKeyboardState, SetKeyboardState 28

348 GetKeyNameText 29

349 GetKeyState 29

350 GetKBCodePage 30

351 OemKeyScan 30

352 MapVirtualKey 31

353 VkKeyScan 31

354 SwapMouseButton 32

355 GetKeyboardType 32

356 FindResource 33

357 LoadResource, FreeResource 34

358 LockResource 35

359 LoadString 35

360 LoadIcon 35

361 LoadBitmap 36

362 SetResourceHandler, LoadProc 37

363 SizeofResource 38

364 LoadMenu 38

365 LoadMenuIndirect 38

366 LoadAccelerators 39

367 AllocResource 39

368 BuildCommDCB 39

369 ClearCommBreak, SetCommBreak 40

370 CloseComm, OpenComm 40

371 EnableCommNotification 41

372 EscapeCommFunction 42

373 FlushComm 43

374 GetCommError 44

375 GetCommEventMask, SetCommEventMask 45

376 GetCommState, SetCommState 46

377 ReadComm, WriteComm 47

378 TransmitCommChar, UngetCommChar 47

379 GetDriveType 48

380 GetSystemDirectory 48

381 GetTempDrive 49

382 GetTempFileName 49

383 GetWindowsDirectory 50

384 OpenFile 50

385 SetHandleCount 52

386 _lclose 52

387 _lread 52

388 _lcreat 53

389 _llseek 53

390 _lopen 54

- i i i -

391 _lwrite 55

392 RegCloseKey 55

393 RegCreateKey, RegOpenKey 55

394 RegDeleteKey 56

395 RegEnumKey 56

396 RegQueryValue, RegSetValue 57

397 IsBadCodePtr 57

398 IsBadHugeReadPtr 57

399 IsBadHugeWritePtr 58

400 IsBadReadPtr 58

401 IsBadStringPtr 58

402 IsBadWritePtr 59

Section 5 - Application Support Functions 60

403 ExtractIcon 60

404 FindExecutable 60

405 GetPrivateProfileString, GetProfileString 61

406 WritePrivateProfileString, WriteProfileString 62

407 GetPrivateProfileInt, GetProfileInt 62

408 AnsiLower, AnsiLowerBuff 63

409 AnsiUpper, AnsiUpperBuff 63

410 AnsiNext, AnsiPrev 64

411 IsCharAlpha 64

412 IsCharAlphaNumeric 64

413 IsCharLower 65

414 IsCharUpper 65

415 lstrcmp, lstrcmpi 65

416 lstrcat, lstrcpy, lstrcpyn 66

417 lstrlen 66

418 wsprintf, wvsprintf 66

419 IsDBCSLeadByte 67

420 ToAscii 68

421 AnsiToOem, AnsiToOemBuff 68

422 OemToAnsi, OemToAnsiBuff 69

423 CopyRect, SetRect, SetRectEmpty, InflateRect, OffsetRect 69

424 EqualRect, IsRectEmpty, PtInRect 70

425 IntersectRect, UnionRect, SubtractRect 71

426 OutputDebugString 71

427 DebugOutput 72

428 FatalAppExit 72

429 FatalExit 72

430 QuerySendMessage 73

431 LockInput 73

432 FlashWindow 74

433 MessageBeep 74

- iv -

434 MessageBox 74

435 SetErrorMode 76

436 GetExpandedName 76

437 ChooseColor 77

438 ChooseFont 78

439 FindText, ReplaceText 80

440 GetOpenFileName, GetSaveFileName 82

441 GetFileTitle 85

442 PrintDlg 85

443 CommDlgExtendedError 86

444 MulDiv 87

Section 4 - System Services

305 GetFreeSystemResources
305.1 Synopsis

UINT GetFreeSystemResources(UINT ResourceType)

305.2 Description
The GetFreeSystemResources() function determines the percentage of free space available for all system resources
or a system resource of a specific type. An application should not use this function to determine if it is possible to
create a new resource object.

The resource type is specified in the ResourceType parameter and can be one of the following defined values:

GFSR_SYSTEMRESOURCES This value specifies all system resources.

GFSR_USERRESOURCES This value specifies USER resources; window and menu handles are
considered USER resources.

GFSR_GDIRESOURCES This value specifies GDI resources; device-context handles, brushes,
pens, regions, fonts, and bitmaps are considered GDI resources.

305.3 Returns
The GetFreeSystemResources() function returns the percentage of free space available for the system resource
indicated.

305.4 Errors
None.

305.5 Cross-References
None.

306 SystemParametersInfo
306.1 Synopsis

BOOL SystemParametersInfo(UINT Operation, UINT Data1,void *Data2, UINT UpdateFlag);

306.2 Description
The SystemParametersInfo() function gets or sets a specific type of system information. The type of system
information and the operation performed on that information is specified in the function's Operation parameter. The
function's Data1 and Data2 parameters contain data unique to the operation being performed.

If the operation sets system information, the function uses the UpdateFlag parameter to determine if the change to
the system information should be saved to the WIN.INI file. The value of the UpdateFlag parameter can be zero to
indicate that the WIN.INI file should not be updated or it can be one or more of the following values OR'ed
together:

SPIF_UPDATEINIFILE This value updates the WIN.INI file.

SPIF_SENDWININICHANGE This value broadcasts the WM_WININICHANGE message to all top-
level windows; valid only when used in combination with the
SPIF_UPDATEINIFILE value.

The following table contains the allowable values for the Command parameter and a description of its function:

- 2 -

Beep Sound Value

SPI_GETBEEP This value determines if the warning beep is set to on or off.

SPI_SETBEEP This value sets the warning beep to on or off.

Window Border Value

SPI_GETBORDER This value gets the border multiplying factor that is used when
calculating the width of a window's sizing border.

SPI_SETBORDER This value sets the border multiplying factor that is used when
calculating the width of a window's sizing border.

Task Switching Value

SPI_GETFASTTASKSWITCH This value determines if the fast task switching option is set on or
off.

SPI_SETFASTTASKSWITCH This value turns the fast task switching option on or off.

Desktop Value

SPI_GETGRIDGRANULARITY This value gets the granularity value for the desktop's sizing grid.

SPI_SETGRIDGRANULARITY This value sets the granularity value for the desktop's sizing grid.

SPI_SETDESKPATTERN This value sets the desktop pattern.

SPI_SETDESKWALLPAPER This value sets the bitmap used for the desktop wallpaper.

Icons Value

SPI_GETICONTITLELOGFONT This value gets the font information for the current font used to draw
icon titles.

SPI_SETICONTITLELOGFONT This value sets the font that is used for drawing icon titles.

SPI_GETICONTITLEWRAP This value determines if icon title word wrapping is set to on or off.

SPI_SETICONTITLEWRAP This value sets the icon title word wrapping option on or off.

SPI_ICONHORIZONTALSPACING This value sets the number of pixels in an icon's cell width.

SPI_ICONVERTICALSPACING This value sets the number of pixels in an icon's cell height.

Keyboard Value

SPI_GETKEYBOARDDELAY This value gets the keyboard's repeat-delay value

SPI_SETKEYBOARDDELAY This value sets the keyboard's repeat-delay value.

SPI_GETKEYBOARDSPEED This value gets the keyboard's repeat-speed value.

SPI_SETKEYBOARDSPEED This value sets the keyboard's repeat-speed value.

Menus Value

SPI_GETMENUDROPALIGNMENT This value determines if pop-up menus are aligned to the left or right
of its menu-bar item. Sets how pop-up menus are aligned relative to
its menu-bar item.

SPI_SETMENUDROPALIGNMENT This value sets how pop-up menus are aligned relative to its menu-
bar item.

Mouse Gets the mouse speed and the mouse threshold values.

SPI_GETMOUSE This value gets the mouse speed and the mouse threshold values.

- 3 -

SPI_SETMOUSE This value sets the mouse speed and the mouse threshold values.

SPI_SETDOUBLECLKHEIGHT This value sets the height of the rectangle within which the second
click of the mouse button double-click must fall for it to be
registered as a mouse double-click.

SPI_SETDOUBLECLICKTIME This value sets the maximum number of milliseconds that can occur
between the first and second mouse button clicks of a mouse button
double-click.

SPI_SETDOUBLECLKWIDTH This value sets the width of the rectangle within which the second
click of a double-click.

SPI_SETMOUSEBUTTONSWAP This value sets the meaning of the left and right mouse buttons.

Screen Saver Value

SPI_GETSCREENSAVEACTIVE This value determines if screen saving is set to on or off.

SPI_SETSCREENSAVEACTIVE This value sets the screen saver to on or off.

SPI_GETSCREENSAVETIMEOUT This value retrieves the screen saver's time-out setting.

SPI_SETSCREENSAVETIMEOUT This value sets the screen saver's time-out setting.

Language Value

SPI_LANGDRIVER This value forces the use of a new language driver.

The following table describes the use of the Data1 and Data2 parameters for each of the Command parameter's
values:

Command Data1 Data2

SPI_GETBEEP Ignored. This value is a pointer to a BOOL variable. The
value of the variable is set to TRUE if the
warning beep is on or FALSE if it is off.

SPI_GETBORDER Ignored. This value is a pointer to an integer variable.
The value of the border multiplying factor is
assigned to the variable.

SPI_GETFASTTASK-
SWITCH

Ignored. This value is a pointer to a BOOL variable. The
value of the variable is set to TRUE if fast task
switching is on or FALSE if it is off.

SPI_GETGRIDGRAN-
ULARITY

Ignored. This value is a pointer to an integer variable.
The value of the grid-granularity setting is
assigned to the variable.

SPI_GETICONTITLE-
LOGFONT

The size of the LOGFONT
structure pointed to by the Data2
parameter.

This value is a pointer to a LOGFONT structure
that is assigned the is filled with logical-font
information.

SPI_GETICONTITLE-
WRAP

Ignored. This value is a pointer to a BOOL variable. The
value of the variable is set to TRUE if icon title
wrapping is on or FALSE if it is off.

SPI_GETKEYBOARD-
DELAY

Ignored. This value is a pointer to an integer variable.
The value of the keyboard repeat-delay setting
is assigned to the variable.

- 4 -

SPI_GETKEYBOARD-
SPEED

Ignored. This value is a pointer to a WORD variable.
The value of the keyboard repeat-speed setting
is assigned to the variable.

SPI_GETMENUDROP-
ALIGNMENT

Ignored. This value is a pointer to a BOOL variable. The
value of the variable is set to TRUE if pop-up
menus are right-aligned or FALSE if they are
left-aligned.

SPI_GETMOUSE Ignored. This value is a pointer to an array of three
integers. The first integer is assigned the value
of the MouseThreshold1 WIN.INI entry. The
second integer is assigned the value of the
MouseThreshold2 WIN.INI entry. The third
integer is assigned the value of the MouseSpeed
WIN.INI entry.

SPI_GETSCREENSAVEA
CTIVE

Ignored. This value is a pointer to a BOOL variable. The
value of the variable is set to TRUE if the
screen saver is active or FALSE if it is not
active.

SPI_GETSCREENSAVET
IMEOUT

Ignored. This value is a pointer to an integer variable.
The value, in milliseconds, of the screen saver's
time-out is assigned to the variable.

SPI_ICONHORIZON-
TALSPACING

If the value of the Data2
parameter is NULL, this
parameter's value should be the
new width, in pixels, for the
horizontal spacing of icons. If the
value of the Data2 parameter is
not NULL, this parameter is
ignored.

If this value is a pointer to an integer variable,
the value of the current icon horizontal spacing
is returned in the variable.

If this value is NULL, the value in the Data1
parameter is used to set the horizontal spacing
of icons.

SPI_ICONVERTICAL-
SPACING

If the value of the Data2
parameter is NULL, this
parameter's value should be the
new height, in pixels, for the
vertical spacing of icons. If the
value of the Data2 parameter is
not NULL, this parameter is
ignored.

If this value is a pointer to an integer variable,
the value of the current icon vertical spacing is
returned in the variable.

If this value is NULL, the value in the Data1
parameter is used to set the vertical spacing of
icons.

SPI_LANGDRIVER Ignored. This value is a pointer to an string containing
the file-
name of the new language driver.

SPI_SETBEEP TRUE turns the warning beep on.

FALSE turns the warning beep
off.

Ignored.

SPI_SETBORDER The new value of the window
border multiplying factor.

Ignored.

SPI_SETDESK-
PATTERN

If the value of the Data2
parameter is NULL, this
parameter's value should be -1.
Otherwise, this parameter is
ignored.

If this value is NULL and the value of the
Data1 parameter is -1, the value of WIN.INI
file's desktop pattern is reread.

If this value is not NULL, it is assumed to be a
pointer to a null-terminated string. The string
should contain eight RGB values representing

- 5 -

the new pattern for the desktop.

SPI_SETDESKWALL-
PAPER

Ignored. This value is a pointer to a string. The string
contains the name of a bitmap file to be used for
the desktop wallpaper.

SPI_SETDOUBLE-
CLKHEIGHT

Number of pixels to use for the
mouse button's double-click
height.

Ignored.

SPI_SETDOUBLE-
CLICKTIME

Number of milliseconds to use
for the mouse button's double-
click time.

Ignored.

SPI_SETDOUBLE-
CLKWIDTH

Number of pixels to use for the
mouse button's double-click
width.

Ignored.

SPI_SETFASTTASK-
SWITCH

TRUE turns the fast task
switching on.

FALSE turns the fast task
switching off.

Ignored.

SPI_SETGRIDGRAN-
ULARITY

Number of pixels to use for grid
granularity.

Ignored.

SPI_SETICONTITLE-
LOGFONT

If the value of the Data2
parameter is NULL, this
parameter's value should be zero.

Otherwise, the parameter should
contain the size of the
LOGFONT structure pointed to
by the Data2 parameter.

If the value of the Data1 parameter is zero and
this parameter is set to NULL, the font
information that was in effect when the session
was started is used to draw icon titles.

Other, this parameter is a pointer to a
LOGFONT structure that defines a logical-font
to use when drawing an icon's title.

SPI_SETICONTITLE-
WRAP

TRUE turns the icon title
wrapping feature on.

FALSE turns the icon title
wrapping feature off.

Ignored.

SPI_SETKEYBOARD-
DELAY

The new value for the keyboard's
delay setting.

Ignored.

SPI_SETKEYBOARD-
SPEED

The new value for the keyboard's
repeat-speed setting.

Ignored.

SPI_SETMENUDROP-
ALIGNMENT

TRUE sets drop-down menus to
be right-aligned.

FALSE sets drop-down menus to
be left-aligned.

Ignored.

SPI_SETMOUSE Ignored This value is a pointer to an array of three
integers. The MouseThreshold1 WIN.INI entry
is set the value of the first integer. The
MouseThreshold2 WIN.INI entry is set the
value of the first integer. The Mouse-
Speed WIN.INI entry is set the value of the
third integer.

SPI_SETMOUSE-
BUTTONSWAP

TRUE sets the right mouse button
to act as the left mouse button
and left mouse button to act as

Ignored.

- 6 -

the right mouse button.

FALSE restores the mouse
buttons to their normal meanings.

SPI_SETSCREEN-
SAVEACTIVE

TRUE activates the screen saving
feature.

FALSE deactivates the screen
saving feature.

Ignored.

SPI_SETSCREEN-
SAVETIMEOUT

The new value, in seconds, for
the screen saver's idle time-out.

Ignored.

306.3 Returns
If the SystemParametersInfo() function is successful, it returns TRUE. Otherwise, it returns FALSE.

306.4 Errors
None.

306.5 Cross-References
None.

307 GetWinFlags
307.1 Synopsis

DWORD GetWinFlags(void);

307.2 Description
The GetWinFlags() function gets the system and memory configuration.

307.3 Returns
The GetWinFlags() function's return value can be a combination of the following values described below:

WF_80x87 The system contains a Intel math coprocessor.

WF_CPU286 The system contains a Intel 80286 or equivalent CPU.

WF_CPU386 The system contains a Intel 80386 or equivalent CPU.

WF_CPU486 The system contains a Intel 80486 or equivalent CPU.

WF_ENHANCED Windows is running in 386-enhanced mode; if the WF_ENHANCED is
set, the WF_PMODE flag is also set.

WF_WIN386 Same as WF_ENHANCED.

WF_STANDARD Windows is running in standard mode; if the WF_STANDARD is set, the
WF_PMODE flag is also set.

WF_WIN286 Same as WF_STANDARD.

WF_PMODE Windows is running in protected mode; this flag is always set.

WF_PAGING Windows is running on a system with paged memory.

307.4 Errors
None.

307.5 Cross-References
None.

- 7 -

308 GetSystemMetrics
308.1 Synopsis

int GetSystemMetrics (int InfoType);

308.2 Description
The GetSystemMetrics() function retrieves information about the width and height, in pixels, of the various elements
displayed by the system and also retrieves some other miscellaneous system information. The InfoType parameter
specifies the type of information that is desired. The InfoType parameter can be one of the following values:

SM_CXBORDER This value specifies the frame width of a window that cannot be sized.

SM_CYBORDER This value specifies the frame height of a window that cannot be sized.

SM_CYCAPTION This value specifies the window title height; this is the title height plus
the height of the window frame that cannot be sized (SM_CYBORDER).

SM_CXCURSOR This value specifies the current cursor width.

SM_CYCURSOR This value specifies the current cursor height.

SM_CXDOUBLECLK This value specifies the width of the rectangle around the location of the
first mouse button click in a mouse button double-click sequence; the
second mouse button click must occur within this rectangle for the system
to consider the two mouse button clicks a button double-click.

SM_CYDOUBLECLK This value specifies the height of the rectangle around the location of the
first mouse button click in a mouse button double-click sequence; the
second mouse button click must occur within this rectangle for the system
to consider the two mouse button clicks a button double-click.

SM_CXDLGFRAME This value specifies the frame width of the window when the window has
the WS_DLGFRAME style.

SM_CYDLGFRAME This value specifies the frame height of the window when the window
has the WS_DLGFRAME style.

SM_CXFRAME This value specifies the frame width of the window that can be sized.

SM_CYFRAME This value specifies the frame height of the window that can be sized.

SM_CXFULLSCREEN This value specifies the width of a window client area for a full-screen
window.

SM_CYFULLSCREEN This value specifies the height of a window client area for a full-screen
window (the same value as the height of the screen minus the height of
the window title).

SM_CXICON This value specifies the icon width.

SM_CYICON This value specifies the icon height.

SM_CXICONSPACING This value specifies the rectangle width used by the system to position
tiled icons.

SM_CYICONSPACING This value specifies the rectangle height used by the system to position
tiled icons.

SM_CYKANJIWINDOW This value specifies the Kanji window height.

SM_CYMENU This value specifies the single-line menu bar height; this value is the
menu height minus the window frame height that cannot be sized
(SM_CYBORDER).

SM_CXMIN This value specifies the minimum window width.

SM_CYMIN This value specifies the minimum window height.

- 8 -

SM_CXMINTRACK This value specifies the minimum tracking window width.

SM_CYMINTRACK This value specifies the minimum tracking window height.

SM_CXSCREEN This value specifies the screen width.

SM_CYSCREEN This value specifies the screen height.

SM_CXHSCROLL This value specifies the arrow bitmap width on a horizontal scroll bar.

SM_CYHSCROLL This value specifies the arrow bitmap height on a horizontal scroll bar.

SM_CXVSCROLL This value specifies the arrow bitmap width on a vertical scroll bar.

SM_CYVSCROLL This value specifies the arrow bitmap height on a vertical scroll bar.

SM_CXSIZE This value specifies the width of bitmaps contained in the title bar.

SM_CYSIZE This value specifies the height of bitmaps contained in the title bar.

SM_CXHTHUMB This value specifies the thumb height on the vertical scroll bar.

SM_DBCSENABLED A non-zero value is returned if double-byte characters are being used;
zero is returned if double-byte characters are not being used.

SM_DEBUG A non-zero value is returned if a debug version of the system is being
used; zero is returned if a debug version of the system is not being used.

SM_MENUDROPALIGNMENT This value specifies the current alignment of pop-up menus to their
respective menu item. Zero is returned when pop-up menus are aligned to
the left of its menu-bar item; a non-zero value is returned when pop-up
menus are aligned to the right of its menu-bar item.

SM_MOUSEPRESENT Zero is returned when a mouse is not installed on the system; a non-zero
value is returned when a mouse is installed on the system.

SM_PENWINDOWS If Pen Windows is installed, a handle to the Pen Windows dynamic-link
library (DLL) is returned.

SM_SWAPBUTTON Zero is returned when the left and right mouse buttons are not swapped; a
non-zero value is returned when the left and right mouse buttons are
swapped.

308.3 Returns
If the GetSystemMetrics() function is successful, the requested information is returned.

308.4 Errors
None.

308.5 Cross-References
GetWinFlag()

309 GetVersion
309.1 Synopsis

DWORD GetVersion(void);

309.2 Description
The GetVersion() function retrieves the current versions of both Windows and MS-DOS.

309.3 Returns
If successful, the GetVersion() function returns the Windows version number in the low-order word of the return
value and the MS-DOS version number in the high-order word. The high-order byte in each word contains the major
version number and the low-order byte contains the minor version number.

- 9 -

309.4 Errors
None.

309.5 Cross-References
None.

310 SetTimer, TimerProc, KillTimer
310.1 Synopsis

UINT SetTimer(HWND hWnd, UINT TimerID, UINT Notify, TIMERPROC TimerProc);

void CALLBACK TimerProc(HWND hWnd, UINT msg, UINT TimerID, DWORD Time);

BOOL KillTimer(HWND hWnd, UINT TimerID);

310.2 Description
The SetTimer() function creates a new system timer. The TimerID parameter is the identifier associated with the new
timer. If the hWnd parameter is NULL, the TimerID parameter is ignored. The Notify parameter's value defines at
what interval, in milliseconds, the application is sent a WM_TIMER message. If the value of the TimerProc
parameter is NULL, the WM_TIMER message is posted to the message queue of the window given in the hWnd
parameter. Otherwise, the WM_TIMER is sent to the procedure given in the TimerProc parameter. The TimeProc
parameter contains a procedure-instance address of a TIMERPROC callback function whose name has been
exported in the application's module-definition file.

TimerProc() is an application-defined callback function that processes WM_TIMER messages. The hWnd
parameter contains the handle of a window associated with the timer. The msg parameter contains the value
WM_TIMER. The TimerID parameter contains the identifier of the system timer. The Time parameter contains the
current system time.

KillTimer() removes a system timer. The TimerID parameter is the identifier of the timer to be removed. The hWnd
parameter is the handle of the window used when the timer was created by the SetTimer() function. When a timer is
removed, any unprocessed WM_TIMER messages for the timer are removed from the associated window's message
queue.

310.3 Returns
If the SetTimer() function is successful and the value of its hWnd parameter is NULL, it returns the new timer's
identifier. If the SetTimer() function is successful and the value of its hWnd parameter is not NULL, it returns a non-
zero value. If the SetTimer() function is not successful, it returns zero.

TimerProc() does not return a value.

If KillTimer() is successful, it returns TRUE. Otherwise, it returns FALSE.

310.4 Errors
None.

310.5 Cross-References
None.

311 SetDoubleClickTime, GetDoubleClickTime
311.1 Synopsis

void SetDoubleClickTime(UINT Time);

UINT GetDoubleClickTime(void);

311.2 Description
The SetDoubleClickTime() function sets the maximum number of milliseconds that can occur between the first and
second mouse button clicks of a mouse button double-click. The Time parameter contains the maximum number of
milliseconds allowed.

- 10 -

GetDoubleClickTime() returns the maximum number of milliseconds that can occur between the first and second
mouse button clicks of a mouse button double-click.

311.3 Returns
SetDoubleClickTime() does not return a value.

GetDoubleClickTime() returns the maximum number of milliseconds that can occur between the first and second
mouse button clicks of a mouse button double-click.

311.4 Errors
None.

311.5 Cross-References
None.

312 GetTickCount, GetCurrentTime
312.1 Synopsis

DWORD GetTickCount(void);

DWORD GetCurrentTime(void);

312.2 Description
The GetTickCount() function returns the number of milliseconds that have elapsed since the session started. If the
session is run for approximately 49 days, the tick count value rolls back over to zero.

GetCurrentTime() is identical to the GetTickCount() function.

312.3 Returns
When GetTickCount() and GetCurrentTime() are successful, they return the number of milliseconds that have
elapsed since the session started.

312.4 Errors
None.

312.5 Cross-References
None.

313 GetTimerResolution
313.1 Synopsis

DWORD GetTimerResolution(void);

313.2 Description
The GetTimerResolution() function returns the number of microseconds for each timer tick.

313.3 Returns
GetTimerResolution() returns the number of microseconds for each timer tick.

313.4 Errors
None.

313.5 Cross-References
None.

- 11 -

314 LoadLibrary, FreeLibrary
314.1 Synopsis

HINSTANCE LoadLibrary(LPCSTR lpszFileName);

void FreeLibrary(HINSTANCE hInst);

314.2 Description
The LoadLibrary() function is used to load a library module. The file name used with the function is specified in
lpszFileName parameter.

If the lpszFileName string does not contain the full path, the following directories are searched:

- the current directory

- the Windows directory (retrieved by GetWindowsDirectory())

- the system directory (retrieved by GetSystemDirectory())

- the directory containing the executable file for the current task (retrieved by GetModuleFileName())

- the directories listed in the PATH environment variable

- the directories mapped in the network

If the library module to be loaded already resides in memory, the LoadLibrary() function increases the reference
count of the module.

FreeLibrary() decreases by 1 the reference count of the module identified by the hInst parameter. If the reference
count is decremented to zero, the module is removed, and all the memory associated with it is freed.

314.3 Returns
LoadLibrary() returns the instance handle of the loaded library module, if it is successful. If the function fails, it
returns the value less than HINSTANCE_ERROR.

FreeLibrary() does not return a value.

314.4 Errors
The cause of failure of the LoadLibrary() function and the error codes can be:

0 There is insufficient memory to load the module or corrupted library file.

2 The file is not found.

4 The path is not found.

5 A sharing or network-protection error has occurred.

8 There is insufficient memory to start the application.

11 A library file is invalid.

14 The type of library file is unknown.

19 The file is compressed.

20 The DLL file is invalid or one of the DLLs it requires is corrupt.

21 The library module needs 32-bit extensions not provided by the system.

314.5 Cross-References
LoadModule(), FreeModule(), WinExec()

315 LoadModule, FreeModule
315.1 Synopsis

typedef struct tagLOADPARAMS {

WORD segEnv;

LPSTR lpszCmdLine;

- 12 -

LPUINT lpShow;

LPUINT lpReserved;

} LOADPARAMS;

HINSTANCE LoadModule(LPCSTR lpszFileName, LPVOID lpvParamBlock);

BOOL FreeModule(HINSTANCE hInst);

315.2 Description
The LoadModule() function loads and executes an application module. The name of the application module is
provided in lpszFileName parameter. The lpvParamBlock parameter is a pointer to a LOADPARAMS structure.

The segEnv field in the LOADPARAMS structure contains the segment for the new application environment for the
application being launched. If it is set to 0, the new application receives a copy of the parent application's
environment block.

The lpszCommandLine parameter points to a null-terminated string (up to 120 characters long) that specifies the
command line string for the application being launched. It points to an empty string when no command line is
provided. It cannot be set to NULL.

The lpShow parameter is a pointer to an array of two UINT values. The first element of the array must be set to 2.
The second element is the nCmdShow value that is passed to ShowWindow() when the main application window is
being shown.

If the lpszFileName string does not contain the full path, the following directories are searched:

- the current directory

- the Windows directory (retrieved by GetWindowsDirectory())

- the system directory (retrieved by GetSystemDirectory())

- the directory containing the executable file for the current task (retrieved by GetModuleFileName())

- the directories listed in the PATH environment variable

- the directories mapped in the network

If the module to be loaded already resides in memory, the LoadModule() function creates another instance of the
application.

FreeModule() decreases by 1 the reference count of the module identified by the hInst parameter. If the reference
count is decremented to zero, the module is removed and all the memory associated with it is freed.

315.3 Returns
LoadModule() returns the instance handle of the loaded module, if it is successful. It returns the value less than
HINSTANCE_ERROR if it is unsuccessful.

FreeModule() returns TRUE if the module's memory has been freed. Otherwise, it returns FALSE.

315.4 Errors
The cause of failure of the LoadLibrary() function and the error codes can be as follows:

- 13 -

0 There is insufficient memory to load the module or corrupted executable file.

2 The file is not found.

4 The path is not found.

5 A sharing or network-protection error has occurred.

8 There is insufficient memory to start the application.

11 An invalid executable file was discovered.

14 An unknown executable file type was discovered.

16 A second attempt was made to load an executable file with multiple data segments not
marked read-only.

19 The file is compressed.

20 A DLL file is invalid or one of the DLLs it requires is corrupt.

21 The library module needs 32-bit extensions not provided by the system.

315.5 Cross-References
LoadLibrary(), FreeLibrary(), WinExec()

316 GetModuleFileName, GetModuleHandle, GetModuleUsage
316.1 Synopsis

int GetModuleFileName(HINSTANCE hInst,LPSTR lpszFileName, int cbFileName);

HMODULE GetModuleHandle(LPCSTR lpszModule);

int GetModuleUsage(HINSTANCE hInst);

316.2 Description
GetModuleFileName(), GetModuleHandle(), and GetModuleUsage() are used to obtain information about a loaded
module.

GetModuleFileName() retrieves the null-terminated filename, including the full path, of the file from which the
module specified by hInst parameter has been loaded. The hInst parameter can be an instance handle or a module
handle.

The lpszFileName parameter points to a buffer to which the filename is copied. The cbFileName parameter specifies
the length of the buffer. If the filename is longer than the buffer, it is truncated.

GetModuleHandle() obtains a handle of the module specified by name in the lpszModule parameter.

GetModuleUsage() returns the reference count for the module specified by hInst parameter. The hInst parameter can
be an instance handle or a module handle. The reference count of a module is increased by one by every call to
LoadLibrary() or LoadModule() and decreased by one by calls to FreeModule() or FreeLibrary().

316.3 Returns
GetModuleFileName() returns the number of bytes copied to the buffer. Otherwise, it returns zero.
GetModuleHandle() returns the module handle. Otherwise, it returns zero. GetModuleUsage() returns the reference
handle of the given module. Otherwise, it returns zero.

316.4 Errors
None.

316.5 Cross-References
LoadLibrary(), LoadModule(), FreeLibrary(), FreeModule()

317 GetProcAddress
317.1 Synopsis

FARPROC GetProcAddress(HINSTANCE hInst, LPCSTR lpszProcName);

- 14 -

317.2 Description
The GetProcAddress() function retrieves the address of a function in the module specified in the hInst parameter.

The hInst parameter can be either an instance handle or a module handle.

The lpszProcName parameter specifies the function whose address must be obtained. If the function is to be
searched by name, the lpszProcName parameter is a pointer to a null-terminated function name string. If the
function is identified by its ordinal, the high-order word of lpszProcName must be zero and the low-order word
must contain the ordinal value of the function.

317.3 Returns
If the requested function exists in the module, the function returns it's address. If the function could not be located,
the return value is NULL.

317.4 Errors
None.

317.5 Cross-References
None.

318 MakeProcInstance, FreeProcInstance
318.1 Synopsis

FARPROC MakeProcInstance(FARPROC lpProc, HINSTANCE hInst);

void FreeProcInstance(FARPROC lpProc);

318.2 Description
The MakeProcInstance() function creates a procedure instance of a given function. The address of the function is
specified in lpProc parameter.

The procedure instance binds an exported function to an instance data segment of the application identified by the
hInst parameter, so when the function is called, it has access to the data in this segment. In this way multiple
instances of an application can call the same function and the function is able to use instance-specific data.

Dynamic-link libraries (DLLs) cannot have multiple data instances, so MakeProcInstance() returns the address
specified in lpProc parameter.

The procedure-instance address of the function should be used when passing the pointer of a callback function to the
system (for example, window procedure, enumeration procedure, etc.).

FreeProcInstance() frees the procedure instance specified in lpProc parameter. After the procedure instance has
been freed, it cannot be used to call the function.

318.3 Returns
The MakeProcInstance() function returns the procedure-instance address, if it is successful. Otherwise, it returns a
NULL.

318.4 Errors
None.

318.5 Cross-References
None.

319 LibMain
319.1 Synopsis

int CALLBACK LibMain(HINSTANCE hInst, WORD wDataSeg, WORD wHeapSize,

LPSTR lpszCmdLine);

- 15 -

319.2 Description
The LibMain() function is an entry point of a dynamic-link library (DLL) and is called by the system at the time the
DLL is loaded. Every DLL should contain an exported procedure with this name.

The hInst parameter is the instance handle of the DLL module, the wDataSeg parameter specifies the selector of the
data segment of the DLL. The wHeapSize parameter provides the size of the local heap in that data segment. By the
time the LibMain() function is called, the local heap has already been initialized. The lpszCmdLine parameter is a
pointer to the command line string.

319.3 Returns
The function returns 1, if it is successful. Otherwise, it returns zero.

319.4 Errors
None.

319.5 Cross-References
WEP()

320 WEP
320.1 Synopsis

int CALLBACK WEP(int nExitType);

320.2 Description
The WEP() (Windows Exit Procedure) function in a dynamic-link library (DLL), is called by the system at the time
the DLL is unloaded. It performs whatever cleanup is needed. The DLL does not require an exported entry point.

The nExitType parameter specifies the type of exit that is taking place. It can be one of the following:

WEP_FREE_DLL Only the given library task is being terminated.

WEP_SYSTEM_EXIT The whole system is shutting down.

320.3 Returns
The function returns 1, if it is successful. Otherwise, it returns zero.

320.4 Errors
None.

320.5 Cross-References
LibMain()

321 GetInstanceData
321.1 Synopsis

int GetInstanceData(HINSTANCE hndlinst, BYTE *npDataBuff, int nbData);

321.2 Description
GetInstanceData() makes a copy of the previous instance of an application into the data area of the current instance.
The parameter hndlinst specifies a previous instance of the application which has to be copied. The parameter
npDataBuff contains a pointer to the buffer that will contain the current instance. The parameter nbData identifies
the number of bytes to be copied.

The function GetInstanceData() if successful returns the number of bytes copied. Otherwise, it returns zero.

321.4 Errors
None.

- 16 -

321.5 Cross-References
None.

322 GetFreeSpace
322.1 Synopsis

DWORD GetFreeSpace(UINT uFlags);

322.2 Description
The GetFreeSpace() function retrieves the number of bytes of free memory available. The uFlags parameter is
currently ignored. This function is not applicable to virtual memory systems.

322.3 Returns
GetFreeSpace() returns the number of bytes of available memory, if it is successful.

322.4 Errors
None.

322.5 Cross-References
None.

323 GlobalAlloc, GlobalFree, LocalAlloc, LocalFree
323.1 Synopsis

HGLOBAL GlobalAlloc(UINT uFlags, DWORD dwBytes);

HANDLE GlobalFree(HANDLE hMem);

HLOCAL LocalAlloc(UINT uFlags, DWORD dwBytes);

HANDLE LocalFree(HANDLE hMem);

323.2 Description
The GlobalAlloc() function allocates dwBytes bytes and returns a handle to the memory segment that can be
accessed via GlobalLock().

uFlags Values Description

GHND This value is equivalent to GMEM_MOVEABLE and
GMEM_ZEROINIT.

GMEM_DDESHARE This value is used for DDE only; equivalent to GMEM_SHARE.

GMEM_DISCARDABLE1 This value marks the segment as discardable; can only be used with
GMEM_MOVEABLE.

GMEM_FIXED2 This value marks the segment as fixed; GMEM_FIXED and
GMEM_MOVEABLE are mutually exclusive.

GMEM_GPTR This value is equivalent to GMEM_FIXED AND GMEM_ZEROINIT.

GMEM_LOWER1 This value is equivalent to GMEM_NOT_BANKED.

GMEM_MOVEABLE1 This value marks the segment as moveable; GMEM_FIXED and
GMEM_MOVEABLE are mutually exclusive.

GMEM_NOCOMPACT1 This value does not attempt to compact or discard memory.

GMEM_NODISCARD1 This value does not attempt to discard memory.

GMEM_NOT_BANKED2 This value marks the segment as non-banked; cannot be used with
GMEM_NOTIFY.

GMEM_NOTIFY1 This value calls the notification function if the segment is discarded.

GMEM_SHARE This value marks the segment as shared, accessible by other
applications.

- 17 -

GMEM_ZEROINIT This value initializes the memory segment to zero.

GMEM_GPTR2 This value is equivalent to GMEM_FIXED and GMEM_ZEROINIT.
1 These flags are ignored in VM environments. However, this should not affect the functionality of your program.

2 These flags are non-portable and are currently ignored. Your code should not depend on these flags.

GlobalFree() frees the memory segment specified by the handle hMem. GlobalFree() cannot free a locked memory
segment or a memory segment with a lock count greater than zero. To find the number of locks on a memory
segment, see the GlobalFlags() function. Once a memory segment is freed, the handle to that memory segment
should not be used again.

The LocalAlloc() and LocalFree() functions call the GlobalAlloc() and GlobalFree() functions respectively.

323.3 Returns
GlobalAlloc() and LocalAlloc() return a handle of the newly allocated memory segment, if they are successful. If
unsuccessful, both functions return zero.

GlobalFree() and LocalFree() return zero, if they are successful. GlobalFree() and LocalFree() also return zero, if
the handle passed to it does not exist. If unsuccessful, GlobalFree() and LocalFree() return hMem.

323.4 Errors
None.

323.5 Cross-References
GlobalLock(), GlobalUnlock(), GlobalFlags()

324 GlobalCompact, LocalCompact
324.1 Synopsis

DWORD GlobalCompact(DWORD MinFree);

DWORD LocalCompact(DWORD MinFree);

324.2 Description
The GlobalCompact() function rearranges the memory content until MinFree bytes of memory can no longer be
rearranged.

LocalCompact() calls GlobalCompact().

324.3 Returns
GlobalCompact() and LocalCompact() return the number of bytes available in the largest contiguous memory
segment. If MinFree is zero, GlobalCompact() returns the number of bytes available in the largest contiguous
memory segment if all discardable memory segments are removed.

GlobalCompact() and LocalCompact() currently do nothing and return 4194304 bytes.

324.4 Errors
None.

324.5 Cross-References
None.

325 GlobalFix, GlobalUnfix
325.1 Synopsis

void GlobalFix(HANDLE hMem);

void GlobalUnfix(HANDLE hMem);

- 18 -

325.2 Description
The GlobalFix() function prevents the global memory object specified in the hmem parameter from moving in linear
memory.

The GlobalUnfix() function allows the global memory object specified in the hmem parameter to be moved in linear
memory.

GlobalFix() and GlobalUnfix() are unnecessary in the virtual memory environment, and therefore, currently perform
no operation.

325.3 Returns
None.

325.4 Errors
None.

325.5 Cross-References
None.

326 GlobalFlags, LocalFlags
326.1 Synopsis

UINT GlobalFlags(HANDLE hMem);

UINT LocalFlags(HANDLE hMem);

326.2 Description
The GlobalFlags() function returns the flag associated with the global memory segment specified by the hMem
parameter.

The LocalFlags() function calls GlobalFlags().

326.3 Returns
The functions return the flags and lock count of the specified memory segment, if they are successful. The flags are
stored in the high-order byte and lock count in the low-order byte of the return value. Use the
GMEM_LOCKCOUNT mask on the return value to retrieve the lock count. If the handle hmem, does not exist or is
invalid, GlobalFlags() and LocalFlags() return zero.

326.4 Errors
None.

326.5 Cross-References
None.

327 GlobalHandle, LocalHandle
327.1 Synopsis

DWORD GlobalHandle(LPVOID lpaddress);

DWORD LocalHandle(LPVOID lpaddress);

327.2 Description
The GlobalHandle() function searches for a memory segment that contains lpaddress, and returns its associated
handle. GlobalHandle() is functionally equivalent to GlobalHandle32().

The LocalHandle() function simply calls GlobalHandle().

- 19 -

327.3 Returns
GlobalHandle() and LocalHandle() return the handle associated with the memory segment that contains lpaddress.
(Note: lpaddress can be on the boundary or in the middle of the memory segment.) GlobalHandle() and
LocalHandle() return zero, if they are unsuccessful.

327.4 Errors
None.

327.5 Cross-References
None.

328 GlobalLock, GlobalUnlock, LocalLock, LocalUnlock
328.1 Synopsis

LPVOID GlobalLock(HANDLE hMem);

BOOL GlobalUnlock(HANDLE hMem);

LPVOID LocalLock(HANDLE hMem);

BOOL LocalUnlock(HANDLE hMem);

328.2 Description
The GlobalLock() and LocalLock() functions increment the lock count and lock the memory specified by the hMem
parameter. Locked memory cannot be moved or discarded unless reallocated by GlobalReAlloc() or LocalReAlloc().
The memory segment remains locked until its lock count decreases to zero.

The GlobalUnlock() and LocalUnlock() functions decrement the lock count and unlock the memory specified by the
hMem parameter. See GlobalFlags() or LocalFlags() to find the number of locks on a memory segment.

328.3 Returns
GlobalLock() and LocalLock() return a pointer to the memory segment, if they are successful.

GlobalUnlock() and LocalUnlock() return FALSE if the lock count for hMem reaches zero. Otherwise,
GlobalUnlock() and LocalUnlock() return a TRUE value.

328.4 Errors
None.

328.5 Cross-References
None.

329 GlobalLRUNewest, GlobalLRUOldest
329.1 Synopsis

HGLOBAL GlobalLRUNewest(HGLOBAL hglb);

HGLOBAL GlobalLRuOldest(HGLOBAL hglb);

329.2 Description
The GlobalLRUNewest() function moves a memory segment to the newest LRU (least-recently-used) position in
memory. This reduces the likelihood of it being discarded soon. GlobalLRUOldest() moves a memory segment to
the oldest LRU position in memory. This increases the likelihood of it being discarded soon. GlobalLRUNewest()
and GlobalLRUOldest() are unnecessary in a virtual memory environment. Therefore, they currently do nothing.

329.3 Returns
GlobalLRUNewest() and GlobalLRUOldest() both return value of hgldb.

329.4 Errors
None.

- 20 -

329.5 Cross-References
None.

330 GlobalNotify, NotifyProc
330.1 Synopsis

void GlobalNotify(GNOTIFYPROC NotifyProc);

BOOL CALLBACK NotifyProc(HGLOBAL hMem);

330.2 Description
The GlobalNotify() function sets the callback function pointed to by the NotifyProc parameter. If GlobalNotify() is
called more than once, only the last installed procedure is notified.

The NotifyProc() function is a user-defined, exported callback function of type GNOTIFYPROC, which is called by
the system whenever a global memory segment, allocated with the GMEM_NOTIFY flag, is about to be discarded.
The function is passed to the memory segment's handle in its hMem parameter. NotifyProc() should not assume its
using the same stack segment as the application, nor should it call any routine that might move in memory.
NotifyProc() must be in a fixed code segment in a DDL.

The system does not call the notification procedure when discarding memory belonging to a DLL.

If the memory segment is discarded, the application should use the GMEM_NOTIFY flag when calling
GlobalRealloc() so that it will be notified when the object is discarded again.

330.3 Returns
NotifyProc() returns TRUE, if the memory segment should be discarded. If the function returns FALSE, the block
will not be discarded. GlobalNotify() does not return a value.

330.4 Errors
None.

330.5 Cross-References
None.

331 GlobalReAlloc
331.1 Synopsis

HGLOBAL GlobalReAlloc(HGLOBAL hMem, DWORD dwBytes, UINT uFlags);

331.2 Description
The GlobalReAlloc() function modifies the size or other attributes in a memory segment, specified by the hMem
parameter. If GMEM_MODIFY is not flagged in the uFlags parameter, GlobalReAlloc() resizes the memory
segment to dwBytes. The uFlags parameter can be a combination of the following values:

uFlags values Description

GMEM_DISCARDABLE1 This flag makes a previously moveable memory segment
discardable. (Can only be used with GMEM_MODIFY.)

GMEM_MODIFY This flag allows modification of the memory segment's flags
only (dwBytes is ignored); it can be used with
GMEM_DISCARDABLE and GMEM_MOVEABLE.

GMEM_MOVEABLE1 If a moveable memory segment is locked, this flag allows
the segment to be moved to a new locked location without
invalidating the handle.

When it is used with GMEM_MODIFY, GlobalReAlloc()
changes fixed memory to moveable memory.

- 21 -

If the dwBytes parameter is non-zero and the segment
specified by hMem is fixed, GlobalReAlloc() will relocate
the memory segment to a new fixed location.

A previously moveable and discardable segment will be
discarded if dwBytes and the memory segment's lock count
are both zero.

GlobalReAlloc() fails if dwBytes and the memory segment is
not moveable and discardable.

GMEM_NODISCARD1 This flag prevents memory from being discarded if there is
insufficient memory available. (Cannot be used with
GMEM_MODIFY.)

GMEM_ZEROINIT This flag initializes additional memory to zero, if memory is
being added to the segment. GMEM_ZEROINIT cannot be
used with GMEM_MODIFY.

1 - These options are not necessary in a VM environment. In most implementations, they will simply be ignored.

331.3 Returns
GlobalReAlloc() returns the handle of the reallocated memory segment, if it is successful. If unsuccessful,
GlobalReAlloc() returns zero.

331.4 Errors
None.

331.5 Cross-References
GlobalAlloc()

332 GlobalSize, LocalSize
332.1 Synopsis

DWORD GlobalSize(HANDLE hMem);

DWORD LocalSize(HANDLE hMem);

332.2 Description
The GlobalSize() and LocalSize() functions return the size of the memory segment specified by the hMem
parameter.

LocalSize() calls GlobalSize().

332.3 Returns
The GlobalSize() and LocalSize() functions return the size (in bytes) of the memory segment specified by hMem, if
they are successful. If the handle hMem is not valid or the memory segment has been discarded, the GlobalSize()
and LocalSize() functions return zero.

332.4 Errors
None.

332.5 Cross-References
None.

333 LocalInit, LocalShrink
333.1 Synopsis

BOOL LocalInit(UINT)

- 22 -

BOOL LocalShrink(UINT)

333.2 Description
The LocalInit() and LocalShrink() functions are provided as stub functions that perform no actions.

333.3 Returns
These functions return TRUE if they are successful. Otherwise, they return FALSE.

333.4 Errors
None.

333.5 Cross-References
None.

334 Catch, Throw
334.1 Synopsis

int Catch(LPINT lpCatchBuf);

void Throw(LPINT lpCatchBuf, int nReturnCode);

334.2 Description
The Catch() function saves the current execution environment and stores it in the buffer. The lpCatchBuf parameter
points to the buffer. Catch() is similar to the C library function setjmp.

Throw() restores the execution environment from the buffer specified by the lpCatchBuf parameter. Throw() is
similar to the C library function longjmp.

The execution environment is composed of the contents of all system registers and the instruction pointer. The
execution environment is copied into the CATCHBUF structure in the lpCatchBuf buffer.

334.3 Returns
Catch() returns zero after being called. When the Throw() function is called, the environment is restored. Execution
resumes from the point where the Catch() function returns again. This time, the return value of the Catch() function
is the nReturnCode value, passed to Throw() as a parameter.

Throw() never returns, except to send requested values to Catch().

334.4 Errors
None.

334.5 Cross-References
None.

335 Yield, DirectedYield
335.1 Synopsis

void Yield(void);

void DirectedYield(hTask);

335.2 Description
The Yield() and DirectedYield() functions are used to pass control between multiple running tasks.

Yield() suspends the execution of the current task and passes the control to a waiting task that has messages waiting
in the message queue.

DirectedYield() passes control to a task specified in the hTask parameter. The task is activated only if there is an
event in its queue. If no events are queued for the specified task, the control is passed to another waiting task. To
force the task to be activated regardless of the event status, the PostAppMessage() function should be called with
WM_NULL as a message identifier before calling DirectedYield(), so that an event is placed into the task's queue.

- 23 -

These functions return when the task regains control.

335.3 Returns
None.

335.4 Errors
None.

335.5 Cross-References
PostAppMessage()

336 GetCurrentTask
336.1 Synopsis

HTASK GetCurrentTask(void);

336.2 Description
The GetCurrentTask() function retrieves the handle of the currently running task.

336.3 Returns
This function returns the handle of the current task.

336.4 Errors
None.

336.5 Cross-References
GetWindowTask()

337 GetNumTasks
337.1 Synopsis

UINT GetNumTasks(void);

337.2 Description
The GetNumTasks() function returns the number of tasks currently running in the system.

337.3 Returns
This function returns the number of running tasks.

337.4 Errors
None.

337.5 Cross-References
None.

338 GetWindowTask
338.1 Synopsis

HTASK GetWindowTask(HWND hWnd);

338.2 Description
The GetWindowTask() function retrieves the handle of a task that created the window specified in hWnd parameter.

338.3 Returns
This function returns the task handle, if it is successful. Otherwise, it returns zero.

- 24 -

338.4 Errors
None.

338.5 Cross-References
EnumTaskWindows(), GetCurrentTask()

339 IsTask
339.1 Synopsis

BOOL IsTask(HTASK hTask);

339.2 Description
The IsTask() function checks whether the task handle specified in hTask parameter is valid.

339.3 Returns
This function returns TRUE, if the task handle is valid. Otherwise, it returns FALSE.

339.4 Errors
None.

339.5 Cross-References
None.

340 WinHelp
340.1 Synopsis

BOOL WinHelp(HWND hwnd, LPCSTR lpszHelpFile, UINT fuCommand,

DWORD dwData);

340.2 Description
The WinHelp() function invokes the Windows Help facility and optionally requests the application specific help
topic. The lpszHelpFile parameter specifies the name of the help file that the application is about to display. The
fuCommand parameter can be as follows:

HELP_CONTEXT This value displays the help for a particular topic; the dwData parameter
should contain the context number for the topic requested.

HELP_CONTENTS This value displays the help contents; the dwData parameter is ignored.

HELP_SETCONTENTS This value determines the contents topic that should be displayed when a
user presses F1 key; the dwData parameter should contain the context
number for the topic requested as the contents topic.

HELP_SETCONTEXTPOPUP This value displays a pop-up window with the particular help topic; the
dwData parameter should contain the context number for the topic
requested

HELP_KEY This value displays the topic that matches one found in the help's
keyword list. The dwData parameter should point to a string with the
target keyword; if more than one keyword is found, the help displays the
Search dialog with the topics listed in the GoTo list box.

HELP_PARTIALKEY This value displays the topic found in the help's keyword list. If the
dwData parameter points to a string with the target keyword and more
than one keyword is found, the help displays the Search dialog with the
topics listed in the GoTo list box. If the dwData parameter points to an
empty string, the help brings up the empty Search dialog with no
keywords in it.

- 25 -

HELP_MULTIKEY This value displays the topic found in the alternate help's keyword list;
the dwData parameter should point to MULTIKEYHELP structure,
which specifies the footnote character and the keyword.

HELP_COMMAND This value executes the help macro; the dwData parameter should point
to the character string with the macro to be executed.

HELP_SETWINPOS This value displays and positions the help window according to the data
passed in dwData parameter; the dwData parameter should point to
HELPWININFO structure, which specifies the size and position of the
primary or secondary help windows.

HELP_FORCEFILE This value tries to open the correct help file; if the file is already open by
Help, there is no action and the dwData parameter is ignored.

HELP_QUIT If no other applications have requested help, the Help application is
closed and the dwData parameter is ignored.

340.3 Returns
The WinHelp() function returns TRUE if it is successful. Otherwise, it returns FALSE.

340.4 Errors
None.

340.5 Cross-References
None.

341 EnumTaskWindows, EnumTaskWndProc
341.1 Synopsis

BOOL EnumTaskWindows(HTASK htask, WNDENUMPROC EnumTaskWndProc, LPARAM lParam);

BOOL CALLBACK EnumTaskWndProc(HWND hWnd, LPARAM lParam);

341.2 Description
The EnumTaskWindows() function enumerates all windows associated with a task. The hTask parameter contains
the handle to the task. The lParam parameter contains a user-defined value. The EnumTaskWndProc parameter is a
pointer to an exported, user-defined, callback function that is called each time the EnumTaskWindows() function
finds a window associated with the task. The EnumTaskWindows() function passes the window's handle and the
value of the lParam parameter to the callback function. The process continues until all of the task's windows are
enumerated or until the EnumTaskWndProc callback function returns FALSE. The EnumTaskWindows() function
enumerates all top-level windows and does not consider child windows during its search.

The EnumTaskWndProc() function is an exported, user-defined, callback function of type WNDENUMPROC
whose address is passed to the EnumTaskWindows() function. The EnumTaskWindows() function calls the
EnumTaskWndProc() function each time that it finds a window associated with the task. The hWnd parameter is a
handle to a window associated with a task. The lParam parameter is a user-defined value that was passed to the
EnumTaskWindows() function when it was called.

341.3 Returns
If the EnumTaskWindows() function is successful it returns TRUE. If the EnumTaskWindows() function is not
successful, it returns FALSE.

The EnumTaskWndProc() function should return TRUE to inform the EnumTaskWindows() function to continue
enumerating the task's windows. The EnumTaskWndProc() function should return FALSE to inform the
EnumTaskWindows() function to stop enumerating the task's windows.

341.4 Errors
None.

- 26 -

341.5 Cross-References
None.

342 WinExec
342.1 Synopsis

UINT WinExec(LPCSTR lpszCmdLine, UINT uiCmdShow);

342.2 Description
The WinExec() function starts an application. The functionality is similar to LoadModule().

The lpszCmdLine parameter is a pointer to the command line string, providing the name of the executable file and
optional command-line parameters.

The uiCmdShow parameter specifies the show style for the new application. It is similar to the argument used in the
ShowWindow() function.

If the lpszCmdLine string does not contain the full path, the following directories are searched:

- the current directory

- the Windows directory (retrieved by GetWindowsDirectory())

- the system directory (retrieved by GetSystemDirectory())

- the directory containing the executable file for the current task (retrieved by GetModuleFileName())

- the directories listed in the PATH environment variable

- the directories mapped in the network

342.3 Returns
This function returns an instance handle of the loaded module, if successful. Otherwise, an error value less than
HINSTANCE_ERROR is returned.

342.4 Errors
The cause of failure of the WinExec() function and the error codes can be as follows:

0 There is insufficient memory to load the module or corrupted executable file.

2 The file is not found.

4 The path is not found.

5 A sharing or network-protection error has occurred.

8 There is insufficient memory to start the application.

11 An invalid executable file was discovered.

14 An unknown type of executable file was discovered.

16 A second attempt was made to load an executable file with multiple data segments not
marked read-only.

19 The file is compressed.

20 A DLL file is invalid or one of the DLLs it requires is corrupt.

21 The library module needs 32-bit extensions not provided by the system.

342.5 Cross-References
LoadModule(), FreeModule()

343 WinMain
343.1 Synopsis

int WinMain(HINSTANCE hInst, HINSTANCE hPrevInstance, LPSTR lpszCmdLine, int nCmdShow);

- 27 -

343.2 Description
The WinMain() function is an initial entry point of an application and is called by the system to start the program.
The hInst parameter specifies the data instance of the application. The hPrevInstance parameter is a previous
instance of the application, if the application is already running. The lpszCmdLine parameter points to the
command-line string for the application. The nCmdShow parameter determines how the application's main window
will be shown. The options are the same as they are for the nCmdShow parameter of the ShowWindow() function.

WinMain() of the application performs all necessary instance-specific initialization. If the first instance of the
application is being started (the hPrevInstance parameter is 0), it might also need to do some application
initialization. After initialization it provides the message loop that drives the application's execution. This loop is
responsible for dispatching the messages and yielding control to other tasks. The normal termination of the task
happens when it receives a WM_QUIT message. In response, the WinMain() function exits with the return value
passed by the PostQuitMessage() function.

343.3 Returns
WinMain() returns the value passed to the PostQuitMessage() function or zero if it returns before entering the
message loop.

343.4 Errors
None.

343.5 Cross-References
GetMessage(), PostQuitMessage(), ShowWindow()

344 ExitWindows
344.1 Synopsis

BOOL ExitWindows(DWORD dwRetCode, UINT reserved);

344.2 Description
The ExitWindows() function shuts down the runtime environment with an option to restart it. The dwRetCode
parameter specifies the way the system should be shut down. The high-order word of dwRetCode should be zero.
The low-order word is the value to be returned by the system on exit. If the low-order code is
EW_RESTARTWINDOWS, the system runtime should be restarted. If it is EW_REBOOTSYSTEM, the requested
action is to restart the computer, which is implementation-dependent.

The reserved parameter is not used and should be set to zero.

In response to the call to ExitWindows(), the system sends the WM_QUERYENDSESSION message to all running
tasks. If one or more tasks return 0, the system is not shut down. If all tasks return non-zero, the system sends the
WM_ENDSESSION message to all tasks and terminates.

344.3 Returns
The ExitWindows() function returns FALSE if one or more tasks will not terminate. If the system is being shut
down, the function does not return.

344.4 Errors
None.

344.5 Cross-References
None.

345 GetAsyncKeyState
345.1 Synopsis

int GetAsyncKeyState(int keycode);

- 28 -

345.2 Description
The GetAsyncKeyState() function indicates, at the time the function is called, whether a particular key is up or
down. It also indicates if the key was pressed since the last call to the GetAsyncKeyState() function. The keycode
parameter can have one of the 256 possible virtual-key codes. In the case where the keycode parameter contains the
value VK_LBUTTON or VK_RBUTTON, the status of the left or right mouse button is returned respectively,
regardless of whether the SwapMouseButton() function had been called to redefine the meaning of the left and right
mouse buttons.

345.3 Returns
The function return value indicates if the key was pressed since the last call to GetAsyncKeyState() and the status of
the key (UP or DOWN). If the most significant bit is set then the key is down. If the least significant bit is set then
that particular key has been pressed since the last call to the function GetAsyncKeyState().

345.4 Errors
None.

345.5 Cross-References
GetKeyboardState(), GetKeyState(), SetKeyboardState(), SwapMouseButton()

346 qGetInputState
346.1 Synopsis

BOOL GetInputState(void);

346.2 Description
The GetInputState() function checks the system queue and identifies mouse clicks or keyboard events that need to
be processed. It should be mentioned here that the system stores keyboard events (which occur when one or more
keys are pressed) and mouse events in the system queue and determines whether there are mouse clicks or keyboard
events in the system.

346.3 Returns
The function returns TRUE if mouse clicks or keyboard events are found in the system queue. Otherwise, it returns
FALSE.

346.4 Errors
None.

346.5 Cross-References
EnableHardwareInput()

347 GetKeyboardState, SetKeyboardState
347.1 Synopsis

void GetKeyboardState(BYTE *lpKeyStateBuf);

void SetKeyboardState(BYTE *lpKeyStateBuf);

347.2 Description
The GetKeyboardState() function copies the status of the 256 virtual-keyboard keys to the buffer. The
lpKeyStateBuf parameter contains a pointer to the 256-byte buffer into which the function copies the virtual-key
codes. GetKeyboardState() is called when a keyboard-input message is generated and retrieves the state of the
keyboard at the time the message is generated. A key is considered to be down if the high-order bit is set to 1.
Otherwise, the key is considered to be up. If the low-order bit is set to 1, the key is considered to be toggled. In the
case of toggle keys like NUMLOCK, SCROLL LOCK and CAPSLOCK, it is considered toggled if the key has been
pressed an odd number of times since the system was started, and is considered untoggled if the low-order bit is set
to zero.

- 29 -

The SetKeyboardState() function copies the contents of the 256-byte array buffer pointed to by the lpKeyStateBuf
parameter into the system keyboard state table. The lpKeyStateBuf parameter contains a pointer to the 256-byte
array that contains the keyboard key states. Typically an application calls the function GetKeyboardState() to obtain
the keyboard key states and then modifies the desired bytes before calling the SetKeyboardState() function. In the
case of the NUMLOCK, CAPSLOCK, and SCROLL LOCK keys, the BIOS flags and LED's are set according to
the values of the VK_NUMLOCK, VK_CAPITAL, and VK_SCROLL entries of the array, respectively.

347.3 Returns
GetKeyboardState() does not return a value.

SetKeyboardState() does not return a value.

347.4 Errors
None.

347.5 Cross-References
GetKeyState()

348 GetKeyNameText
348.1 Synopsis

int GetKeyNameText(LONG lParam, LPSTR lpszKeyBuffer, int nbMaxKey);

348.2 Description
The GetKeyNameText() function retrieves a string representing the name of the key. The lParam parameter
identifies the 32-bit parameter of the keyboard message that needs to be processed. The lpszKeyBuffer parameter
contains a pointer to the buffer in which the key name will be stored. The nbMaxKey parameter is the maximum
length in bytes of the keyname less the null-terminating character. The value of this parameter is usually the size of
the buffer identified by the lpszKeyBuffer parameter minus one. The current keyboard driver that is in use
determines the format of the key-name string. If the name of the key is longer than one character, the driver
maintains a list in the form of character strings. The key name is translated into the principal language supported by
the keyboard driver depending on the layout of the currently installed keyboard device.

348.3 Returns
This function returns the length of the string in bytes that was copied to the buffer identified by the lpszKeyBuffer
parameter, if it is successful. Otherwise, it returns zero.

348.4 Errors
None.

348.5 Cross-References
None.

349 GetKeyState
349.1 Synopsis

int GetKeyState(int vidkey);

349.2 Description
The GetKeyState() function obtains the state of the virtual key identified by the vidkey parameter. The obtained state
identifies if the key state is up, down, or toggled. The vidkey parameter identifies the virtual key. This parameter
should be set to the ASCII value of the character if the virtual key is a letter or digit (A-Z or 1-9), otherwise it must
be set to the virtual-key code.

This function is called when the keyboard-input message is sent and obtains the state of the key at the time the input
message is generated.

- 30 -

349.3 Returns
The function returns a value which identifies the state of the given virtual key. Depending on the value of the high
and low-order bits, the key may be up or down or toggled. The key is considered to be down if the high-order bit is
1. Otherwise, it is considered to be up. A key is considered to be in a toggled state if the low-order bit is 1.
Otherwise, it is considered to be untoggled. A key is considered to be toggled if it has been pressed an odd number
of times since the system was started.

349.4 Errors
None.

349.5 Cross-References
GetAsyncKeyState(), GetKeyboardState()

350 GetKBCodePage
350.1 Synopsis

int GetKBCodePage(void);

350.2 Description
The GetKBCodePage() function returns the current system code page. This function is actually provided by the
keyboard driver. Therefore, an application that intends to call this function should include the following two lines in
the module definition file (.DEF):

IMPORTS

KEYBOARD.GETKBCODEPAGE

The file OEMANSI.BIN, if present, resides in the system directory and is read by the system before it overwrites
the OEM/ANSI translation tables in the keyboard driver. If the language that is chosen by the Setup program does
not use the default code page then the corresponding file for that language is copied into the OEMANSI.BIN file in
the system directory. If the selected language uses the default code page then the file OEMANSI.BIN is deleted
from the system directory if one is present.

350.3 Returns
If the functions is successful then it returns the code page that is currently in use by the system. The return value will
identify which code page is being used as listed below.

437 Default (United States, used by most countries: indicates that there is no OEMANSI.BIN in
the Windows directory)

850 International (OEMANSI.BIN = XLAT850.BIN)

860 Portugal (OEMANSI.BIN = XLAT860.BIN)

861 Iceland (OEMANSI.BIN = XLAT861.BIN)

863 French Canadian (OEMANSI.BIN = XLAT863.BIN)

865 Norway/Denmark (OEMANSI.BIN = XLAT865.BIN)

350.4 Errors
None.

350.5 Cross-References
GetKeyboardType()

351 OemKeyScan
351.1 Synopsis

DWORD OemKeyScan(UINT idOemChar);

- 31 -

351.2 Description
The OemKeyScan() function converts OEM ASCII codes 0 through 0xFF to their corresponding OEM scan codes
and shift states. The idOemChar parameter identifies the ASCII value of the OEM character. Characters that require
CTRL+ALT or dead keys are not translated by this function, but must instead be copied by simulating the input
using the ALT+keypad mechanism, with the NUM LOCK key in the off position. In later versions of the keyboard
device drivers, this function calls the VkKeyScan() function. The OemKeyScan() function is used primarily to send
OEM text to another application by simulating keyboard input.

351.3 Returns
The interpretation of the low-order and high-order word identifies the information returned. The low-order word of
the return value identifies the scan code of the specified OEM character. The high-order word contains the flags
identifying the shift state:

- the SHIFT key has been pressed if bit 1 has been set

- the CTRL key has been pressed if bit 2 is set

If the character has not been defined in the OEM character tables then both the high- and low-order words will
contain a value of -1.

351.4 Errors
None.

351.5 Cross-References
VkKeyScan()

352 MapVirtualKey
352.1 Synopsis

UINT MapVirtualKey(UINT idKeyCode,UINT KeyMapType);

352.2 Description
The MapVirtualKey() function converts the virtual-key code identified by the idKeyCode parameter to the scan code
or ASCII value, or vice-versa. The idKeyCode parameter identifies the virtual-key code or scan code for the key.
The interpretation of this parameter depends on the value of the KeyMapType parameter. The KeyMapType
parameter identifies the translation that has to be performed. If the value of this parameter is 1, the idKeyCode is
identified as a scan code and is translated into a virtual-key code. If the value of the parameter is 2, the idKeyCode
is identified as a virtual-key code and is translated to an unshifted ASCII value. Any other value that this parameter
can have is reserved.

352.3 Returns
The return value of this function depends on the value of the parameters idKeyCode and KeyMapType.

352.4 Errors
None.

352.5 Cross-References
OemKeyScan(), VkKeyScan()

353 VkKeyScan
353.1 Synopsis

UINT VkKeyScan(UINT idChar);

353.2 Description
The VkKeyScan() function converts a system character to a virtual-key code and shift state for the keyboard. The
idChar parameter identifies the character that needs to be converted. This function is most often used to force
conversion for the main keyboard only. Therefore, the numeric keypad values (VK_NUMPAD0 through

- 32 -

VK_DIVIDE) are ignored and not converted by this function. This function is also used by an application to send
characters, by using the WM_KEYUP and WM_KEYDOWN messages.

353.3 Returns
The virtual-key code is returned in the low-order byte and the shift state is returned in the high-order byte, if this
function is successful. The shift state can have on the following values:

1 The character is shifted.

2 The character is a control character.

3-5 A Shift-key combination that is not used for characters.

6 The character is generated by the CTRL+ALT key combination.

7 The character is generated by the SHIFT+CTRL+ALT key combination.

If no key is found that can be translated to the virtual key, the function returns -1.

353.4 Errors
None.

353.5 Cross-References
OemKeyScan()

354 SwapMouseButton
354.1 Synopsis

BOOL SwapMouseButton(BOOL bSwap);

354.2 Description
The SwapMouseButton() function sets the meaning of the right and left mouse buttons. The bSwap parameter
specifies the new meaning and can be one of the following values:

TRUE The left mouse button should generate right mouse button messages and the right mouse
button should generate left mouse button messages.

FALSE The right mouse button should generate right mouse button messages and the left mouse
button should generate left mouse button messages.

Note: The mouse is a shared resource and changing meaning of the mouse buttons affects all other applications.

354.3 Returns
SwapMouseButton() returns TRUE if the meaning of the mouse buttons was reversed before the function was called.
The SwapMouseButton() function returns FALSE if the meaning of the mouse buttons was not reversed before the
function was called.

354.4 Errors
None.

354.5 Cross-References
None.

355 GetKeyboardType
355.1 Synopsis

int GetKeyboardType(int KbTypeInfo);

355.2 Description
The GetKeyboardType() function fetches the requested information about the keyboard that is currently in use. The
KbTypeInfo parameter identifies the type of keyboard information that has to be fetched by this function.

Note: It is the keyboard driver that makes this function available to the application. Hence, the following two lines
must be included in the application's module definition file (DEF).

- 33 -

IMPORTS

KEYBOARD.GETKEYBOARDTYPE

The KbTypeInfo parameter can have one of the following values:

0 This value fetches the type of keyboard.

1 This value fetches the subtype of the keyboard.

2 This value fetches the total number of function keys on the keyboard.

When the subtype is fetched by this function, it can be one of the following values.

Note: The subtype value is OEM-dependent.

1 IBM PC/XT, or compatible (83-key) keyboard

2 Olivetti "ICO" (102-key) keyboard

3 IBM AT (84-key) or similar keyboard

4 IBM Enhanced (101- or 102-key) keyboard

5 Nokia 1050 and similar keyboards

6 Nokia 9140 and similar keyboards

7 Japanese keyboard

When the number of function keys is fetched by this function, it can be one of the following values, for each of the
seven keyboard types.

1 10

2 12 (sometimes 18)

3 10

4 12

5 10

6 24

7 This is a hardware-dependent value and must be specified by the OEM.

355.3 Returns
If the function GetKeyboardType() is successful it returns the requested information. Otherwise, it returns zero.

355.4 Errors
None.

355.5 Cross-References
None.

356 FindResource
356.1 Synopsis

HRSRC FindResource(HINSTANCE hInstance, LPCSTR Name, LPCSTR Type);

356.2 Description
The FindResource() function returns a handle to a resource in a module. The hInstance parameter is the instance of
the module whose that contains the resource. The parameter name is the pointer to a null-terminated string
containing the name of the desired resource. The type parameter is the resource type of the desired resource. The
type parameter can be one of the following system defined values:

RT_ACCELERATOR accelerator table resource

RT_BITMAP bitmap resource

RT_CURSOR cursor resource

RT_DIALOG dialog box resource

- 34 -

RT_FONT font resource

RT_FONTDIR font directory resource

RT_ICON icon resource

RT_MENU menu resource

RT_RCDATA user-defined resource

RT_STRING string resource

To reduce the amount of memory required for the resources used by an application, the application can refer to a
resource by its integer identifier instead of by its name. You can pass an identifier to the FindResource() function in
two different ways.

If the name or type parameter's high-order word is zero, the integer identifier of the name or type of the resource can
be specified in the parameter's low-order word. If the name or type parameter's high-order word is not zero, it is
assumed to be a point to a string.

If the first character of the string is a pound sign (#), the other characters in the string can form a decimal number
that is the integer identifier of the resource's name or type. The string #343, for example, is the resource identifier,
343.

356.3 Returns
If the FindResource() function is successful, it returns a handle to the resource. If the FindResource() function is not
successful, it returns NULL.

356.4 Errors
None.

356.5 Cross-References
None.

357 LoadResource, FreeResource
357.1 Synopsis

HGLOBAL LoadResource(HINSTANCE hInstance, HRSRC hResource);

BOOL FreeResource(HGLOBAL hGlobal);

357.2 Description
The LoadResource() function loads a resource into global memory and returns a handle to the memory. The
hInstance parameter is the instance of the module that contains the resource. The hResource parameter is a handle of
the desired resource retrieved by using the FindResource() function.

The FreeResource() function frees a resource previously loaded by the LoadResource() function. The hGlobal
parameter is assumed to be the memory handle returned by the LoadResource() function when the resource was
loaded.

357.3 Returns
If the LoadResource() function is successful, it returns a handle to the global memory containing the resource's data.
If the LoadResource() function is not successful, it returns NULL. If the FreeResource() function is successful, it
returns TRUE. Otherwise, it returns FALSE.

357.4 Errors
None.

357.5 Cross-References
FindResource()

- 35 -

358 LockResource
358.1 Synopsis

void *LockResource(HGLOBAL hGlobal);

358.2 Description
The LockResource() function locks a resource that has been loaded into global memory and returns a pointer to the
resource's data. The hGlobal parameter is assumed to be the memory handle returned by the LoadResource()
function when the resource was loaded. A resource's memory will not be discarded while it is locked.

358.3 Returns
If the LockResource() function is successful, it returns a pointer to the resource's data. If the LockResource()
function is not successful, it returns NULL.

358.4 Errors
None.

358.5 Cross-References
LoadResource()

359 LoadString
359.1 Synopsis

int LoadString(HINSTANCE hInstance, UINT ResourceID, LPSTR Buffer, int Count);

359.2 Description
The LoadString() function loads a string resource into a given buffer. The hInstance parameter is the instance of the
module that contains the resource. The ResourceID parameter contains the identifier associated with the resource.
The Buffer parameter is a pointer to a memory buffer where the string is copied. The Count parameter contains the
size of the buffer.

359.3 Returns
If the LoadString() function is successful, it returns the number of bytes in the string that were copied into the
buffer. If the LoadString() function is not successful, it returns zero.

359.4 Errors
None.

359.5 Cross-References
LoadResource()

360 LoadIcon
360.1 Synopsis

HICON LoadIcon(HINSTANCE hInstance, LPCSTR ResourceID);

360.2 Description
The LoadIcon() function loads an icon resource from a module or one of the predefined system icons.

The hInstance parameter is the instance of the module that contains the resource. If a system icon is being loaded,
the value of the hInstance parameter should be NULL.

The ResourceID parameter specifies which icon resource to load and can be used in one of two different ways. If
you want to refer to the resource by name, the parameter can be a pointer to a null-terminated string containing the
name of the icon resource. If you want to refer to the resource using an identifier, you can specify the icon resource's
identifier in the parameter's low-word and its high-word should be set to zero. The MAKEINTRESOURCE macro
can be used to create this value.

- 36 -

The following ResourceID values can be used to load a system icon:

IDI_APPLICATION generic application icon

IDI_ASTERISK asterisk icon

IDI_EXCLAMATION exclamation point icon

IDI_HAND hand-shaped icon

IDI_QUESTION question mark icon

An application should destroy any icons that it loads, by calling the DestroyIcon() function. System icons, however,
do not have to be destroyed.

360.3 Returns
If the LoadIcon() function is successful, it returns a handle to the loaded icon. Otherwise, it returns NULL.

360.4 Errors
None.

360.5 Cross-References
DestroyIcon()

361 LoadBitmap
361.1 Synopsis

HBITMAP LoadBitmap(HINSTANCE hInstance, LPCSTR ResourceID);

361.2 Description
The LoadBitmap() function loads a bitmap resource from a module or one of the predefined system bitmaps.

The hInstance parameter is the instance of the module that contains the resource. If a system bitmap is being loaded,
the value of the hInstance parameter should be NULL.

The ResourceID parameter specifies which bitmap resource to load from the file and can be used in one of two
different ways. If you want to refer to the resource by name, the parameter can be a pointer to a null-terminated
string containing the name of the bitmap resource. If you want to refer to the resource using an identifier, you can
specify the bitmap resource's identifier in the parameter's low-word and its high-word should be set to zero. The
MAKEINTRESOURCE macro can be used to create this value.

The following ResourceID values can be used to load a system bitmap:

OBM_BTNCORNERS OBM_OLD_RESTORE

OBM_BTSIZE OBM_OLD_RGARROW

OBM_CHECK OBM_OLD_UPARROW

OBM_CHECKBOXES OBM_OLD_ZOOM

OBM_CLOSE OBM_REDUCE

OBM_COMBO OBM_REDUCED

OBM_DNARROW OBM_RESTORE

OBM_DNARROWD OBM_RESTORED

OBM_DNARROWI OBM_RGARROW

OBM_LFARROW OBM_RGARROWD

OBM_LFARROWD OBM_RGARROWI

OBM_LFARROWI OBM_SIZE

OBM_MNARROW OBM_UPARROW

- 37 -

OBM_OLD_CLOSE OBM_UPARROWD

OBM_OLD_DNARROW OBM_UPARROWI

OBM_OLD_LFARROW OBM_ZOOM

OBM_OLD_REDUCE OBM_ZOOMD

In order to use one of the system bitmap values listed above, the constant OEMRESOURCE must be defined before
the header file WINDOWS.H is included.

An application should destroy all bitmaps, even system bitmaps, that it loads by calling the DeleteObject() function.

361.3 Returns
If LoadBitmap() is successful, it returns a handle to the loaded bitmap. Otherwise, it returns NULL.

361.4 Errors
None.

361.5 Cross-References
DeleteObject()

362 SetResourceHandler, LoadProc
362.1 Synopsis

RSRCHDLRPROC SetResourceHandler(HINSTANCE hInstance, LPCSTR ResourceType,

RSRCHDLRPROC LoadProc);

HGLOBAL CALLBACK LoadProc(HGLOBAL hResMem, HINSTANCE hInstance, HRSRC hResource);

362.2 Description
The SetResourceHandler() function can be used to install a callback function that loads resources. The hInstance
parameter is the instance of the module whose file contains the resource. The ResourceType parameter specifies the
type of resource. For predefined resource types, the parameter's low-word should contain the resource type and its
high-word should be set to zero. The MAKEINTRESOURCE macro can be used to create this value. The LoadProc
parameter contains a procedure-instance address of a RSRCHDLRPROC callback function whose name has been
exported in the application's module-definition file.

A user-defined LoadProc() callback function receives information about a resource to be locked. The hResMem
parameter is a handle to memory containing the resource. If the value of hResMem is NULL, the resource is not
loaded into memory. If an error occurs when locking hResMem, the resource has been discarded and needs to be
reloaded into memory. The hInstance parameter is the instance of the module whose executable file contains the
resource. The hResource parameter is a handle of the resource created by using the FindResource() function.

362.3 Returns
If the SetResourceHandler() function is successful, it returns a handle to the previously installed resource handler. If
no handler has been installed, the SetResourceHandler() returns a pointer to the system's default resource handler.

SetResourceHandler()'s return value is a global memory handle for memory that was allocated using the
GlobalAlloc() function's GMEM_DDESHARE flag.

362.4 Errors
None.

362.5 Cross-References
FindResource()

- 38 -

363 SizeofResource
363.1 Synopsis

DWORD SizeofResource(HINSTANCE hInstance, HRSRC hResource);

363.2 Description
The SizeofResource() function determines the size of a resource in bytes. The hInstance parameter is the instance of
the module that contains the resource. The hResource parameter is a handle of the resource created by using the
FindResource() function.

363.3 Returns
If SizeofResource() is successful, it returns the size of the resource in bytes. The value may be adjusted to a larger
value due to memory alignment. If the SizeofResource() function is not successful, it returns zero.

363.4 Errors
None.

363.5 Cross-References
FindResource()

364 LoadMenu
364.1 Synopsis

HMENU LoadMenu(HINSTANCE hInstance, LPCSTR ResourceID);

364.2 Description
The LoadMenu() function loads an menu resource from a module. The hInstance parameter is the instance of the
module that contains the resource. The ResourceID parameter specifies which menu resource to load and can be
used in one of two different ways. If you want to refer to the resource by name, the parameter can point to a null-
terminated string containing the name of the menu resource. If you want to refer to the resource using an identifier,
you can specify the menu resource's identifier in the parameter's low-word and its high-word should be set to zero.
The MAKEINTRESOURCE macro can be used to create this value.

Before quitting, an application should use the function DestroyMenu() to free any menus that have not been
associated with a window via the SetMenu() function.

364.3 Returns
If the LoadMenu() function is successful, it returns a handle to the loaded menu. If the LoadMenu() function is not
successful, it returns NULL.

364.4 Errors
None.

364.5 Cross-References
DestroyMenu(), SetMenu()

365 LoadMenuIndirect
365.1 Synopsis

HMENU LoadMenuIndirect(const void *MenuInfo);

365.2 Description
The LoadMenuIndirect() function creates a menu resource from the information supplied to the function. The
MenuInfo parameter is a pointer to a block of memory that contains information about the new menu resource. The
memory block contains a MENUITEMTEMPLATEHEADER structure followed by one or more
MENUITEMTEMPLATE structures.

- 39 -

Before quitting, an application should use the function DestroyMenu() to free any menus that are not associated with
a window via the SetMenu() function.

365.3 Returns
If the LoadMenuIndirect() function is successful, it returns a handle to the loaded menu. If the LoadMenuIndirect()
function is not successful, it returns NULL.

365.4 Errors
None.

365.5 Cross-References
None.

366 LoadAccelerators
366.1 Synopsis

HACCEL LoadAccelerators(HINSTANCE hInstance, LPCSTR AccelTableName);

366.2 Description
The LoadAccelerators() function loads an accelerator table into memory and returns a handle to the accelerator
table. The hInstance parameter is the instance of the module that contains the resource. The AccelTableName
parameter is a pointer to a null-terminated string containing the name of the accelerator table.

366.3 Returns
If successful, the LoadAccelerators() function returns a handle to the accelerator table. If unsuccessful, the
LoadAccelerators() function returns NULL.

366.4 Errors
None.

366.5 Cross-References
LoadResource()

367 AllocResource
367.1 Synopsis

HGLOBAL AllocResource(HINSTANCE hinst, HRSRC hrsrc, DWORD cbResource);

367.2 Description
The AllocResource() function allocates uninitialized memory for the resource specified by the hrsrc parameter. The
value of hrsrc should have been created by calling the FindResource() function.

367.3 Returns
AllocResource() returns the handle of the global memory block, if it is successful.

367.4 Errors
None.

367.5 Cross-References
FindResource(), LoadResource(), AccessResource()

368 BuildCommDCB
368.1 Synopsis

int BuildCommDCB(LPCSTR lpszDevcStr,DCB *lpDevcBlk);

- 40 -

368.2 Description
The BuildCommDCB() function converts the given device-definition control string into the appropriate serial device
control block codes. The lpszDevcStr parameter contains a pointer to a character string which specifies the
communication device control information. It should be noted that the format of the string should be the same as the
format of the "mode" command that is used in MSDOS, to setup the Serial Communications port (COM 1 through
COM 4).

The lpDevcBlk parameter contains a pointer to the Device Control Block structure (DCB).

368.3 Returns
If the BuildCommDCB() function is successful, it returns zero. Otherwise, it returns -1.

368.4 Errors
None.

368.5 Cross-References
SetComm()

369 ClearCommBreak, SetCommBreak
369.1 Synopsis

int ClearCommBreak (int NumComDev);

int SetCommBreak(int NumComDev);

369.2 Description
The ClearCommBreak() function returns the communications-device to nonbreak state and permits character
transmission to take place. This function resets the break state of the communication device that has been set with
the SetCommBreak() function. The NumComDev parameter specifies the communication device that is to be
restored. This parameter is the return value of the function OpenComm().

The SetCommBreak() function puts the communication device specified by NumComDev in break state, suspending
the transmission of characters. The NumComDev parameter, which is returned by the OpenComm() function,
identifies the communication device that will be placed in the break state. The communication device can be
released by the application from this break (suspended) state by calling the ClearCommBreak() function.

369.3 Returns
If ClearCommBreak() is successful, the return value is zero. It returns -1 if the NumComDev parameter contains an
invalid device.

If the function SetCommBreak() is successful, the return value is zero. Otherwise, it is less than zero.

369.4 Errors
None.

369.5 Cross-References
OpenComm()

370 CloseComm, OpenComm
370.1 Synopsis

int CloseComm(int NumComDev);

int OpenComm(LPCSTR lpszDevcstr, UINT nbInQueue, UINT nbOutQueue);

370.2 Description
The CloseComm() function closes the communications device identified by NumComDev making sure that the
output queue is empty. If any characters are still in the output queue, these are sent before the communication device
is closed. Memory that was allocated for the device's transmission and receiving queues are freed. The NumComDev

- 41 -

parameter is the device identification value that the function OpenComm() returns and identifies the device that has
to be closed.

The OpenComm() function is used to open the communication device. The lpszDevcstr parameter contains a pointer
to the null-terminated string which identifies the communication device COMn (nth Serial communication port) or
LPTn (nth Parallel communication port).

The nbInQueue parameter identifies the number of bytes the receiving queue can contain in the case of the COMn
devices. This parameter is ignored if the device is a parallel port (LPTn).

The nbOutQueue parameter identifies the number of bytes the transmission queue can contain, in the case of COMn
devices. This parameter is ignored if the device is a parallel port (LPTn).

In the system, serial communication ports COM ports 1 through 9 and Parallel ports 1 through 3 are also supported.
OpenComm() fails if the device driver does not support the communication port number that needs to be used.
When OpenComm() is called, the communication device is initialized to the default settings for the device, which
change these settings and initialize the device to the new settings used by the SetCommState() function.

Since the parallel communication port devices are not interrupt driven, the parameters nbInQueue and nbOutQueue
are ignored and the queue size is set to zero.

370.3 Returns
If CloseComm() is successful, the return value is set to zero. Otherwise, it returns a negative number.

If OpenComm() is successful, the return value is set to zero. Otherwise, it returns a negative number.

370.4 Errors
Other than the return value, no other error information is provided by the CloseComm() function.

The OpenComm() function can return any of the following errors:

IE_BADID The device identifier is invalid or unsupported.

IE_BAUDRATE The device baud rate is unsupported.

IE_BYTESIZE The specified byte size is invalid.

IE_DEFAULT The default parameters are in error.

IE_HARDWARE The hardware is not available (is locked by another device).

IE_MEMORY The function cannot allocate the queues.

IE_NOPEN The device is not open.

IE_OPEN The device is already open.

If the OpenComm() function is called with both parameters nbInQueue and nbOutQueue set to zero, the return value
is set to IE_MEMORY if the device is already open. It is set to IE_OPEN, if the device is already open.

370.5 Cross-References
SetCommState()

371 EnableCommNotification
371.1 Synopsis

BOOL EnableCommNotification(int NumComDev, HWND hwnd, int nbWriteNotify, int nbOutQueue);

371.2 Description
The EnableCommNotification() function toggles the state (Enable/Disable) of the WM_COMMNOTIFY message
that is posted to the given window. The NumComDev parameter, which is returned by the OpenComm() function,
identifies the communication device that posts notification messages to the given window. The hwnd parameter
specifies the handle of the window to which the message WM_COMMNOTIFY is sent. If this parameter is set to
NULL, the function disables the posting of the messages to the current window. The nbWriteNotify parameter
specifies the number of bytes that are written by the COM driver to the application's input queue before sending the

- 42 -

message that notifies the application that the input queue is ready to be read. If the value of this parameter is -1, the
WM_COMMNOTIFY message is sent to the window identified by hwnd for CN_EVENT or CN_TRANSMIT
notification only.

When a timeout occurs before the number of bytes identified in the nbWriteNotify parameter are sent, the
CN_RECEIVE flag is set before the WM_COMMNOTIFY message is sent. If in a message, the CN_RECEIVE
flag is set, the message is sent only when the size of the output queue is larger than the value of the nbOutQueue
parameter. The nbOutQueue parameter specifies the minimum number of bytes that are there in the output queue. If
the value of this parameter is -1, the WM_COMMNOTIFY message is sent to the window identified by hwnd only
on a CN_EVENT or CN_RECEIVE notification. If the number of bytes in the output queue decreases to a value
below the minimum value, the COM driver notifies the application by sending the notification message indicating
that more information needs to be written to the output queue.

371.3 Returns
If the function is successful,TRUE is returned. A return value of FALSE indicates one of the following:

- the COM port identified by NumComDev is invalid

- an unopened port

- an unsupported function in COMM.DRV has been called

371.4 Errors
None.

371.5 Cross-References
WM_COMMNOTIFY

372 EscapeCommFunction
372.1 Synopsis

LONG EscapeCommFunction(int NumComDev, int NumFunction);

372.2 Description
The EscapeCommFunction() function requests the specified communication device to carry an extended function.
OpenComm() returns the NumComDev parameter that identifies the device used to carry out the extended function.
The NumFunction parameter identifies the function code of the extended function. The possible values are listed
below:

CLRDTR This value clears the DTR (data-terminal-ready) signal.

CLRRTS This value clears the RTS (request-to-send) signal.

GETMAXCOM This value returns the maximum COM port identifier supported by the
system; this value ranges from 0x00 to 0x7F, such that 0x00 corresponds
to COM1, 0x01 to COM2, 0x02 to COM3, and so on .

GETMAXLPT This value returns the maximum LPT port identifier supported by the
system; this value ranges from 0x80 to 0xFF, such that 0x80 corresponds
to LPT1, 0x81 to LPT2, 0x82 to LPT3, and so on.

RESETDEV This value resets the printer device if the idComDev parameter specifies
an LPT port; no function is performed if idComDev specifies a COM
port.

SETDTR This value sends the DTR (data-terminal-ready) signal.

SETRTS This value sends the RTS (request-to-send) signal.

SETXOFF This value causes transmission to act as if an XOFF character has been
received.

SETXON This value causes transmission to act as if an XON character has been
received.

- 43 -

372.3 Returns
If the function successful, the return value is zero. Otherwise, the value is less than zero.

372.4 Errors
None.

372.5 Cross-References
None.

373 FlushComm
373.1 Synopsis

typedef struct tagCOMSTAT {

BYTE status;

UINT cbInQue;

UINT cbOutQue;

} COMSTAT;

int FlushComm(int NumComDev, int idQueue);

373.2 Description
The FlushComm() function flushes all characters from either the transmission or receiving queue of the device
identified by the NumComDev parameter. NumComDev, which is returned by the OpenComm() function, identifies
the communication device to be flushed. The idQueue parameter identifies which queue is to be flushed. If the value
of the idQueue parameter is zero, the transmission queue is flushed. If the value is 1, the receiving queue is flushed.

373.3 Returns
If the function is successful, it returns zero. If the NumComDev parameter is not a valid communication device, or if
the idQueue parameter is not a valid queue, the function returns a value less than zero. The function returns a value
greater than zero if there is an error for the communication device identified by NumComDev.

373.4 Errors
The list of all possible error values greater than zero returned by this function are listed below.

CE_BREAK The hardware detected a break condition.

CE_CTSTO A CTS (clear-to-send) timeout occurred; while a character was being
transmitted, CTS was low for the duration specified by the fCtsHold
member of the COMSTAT structure.

CE_DNS A parallel device was not selected.

CE_DSRTO A DSR (data-set-ready) timeout occurred; while a character was being
transmitted, DSR was low for the duration specified by the fDsrHold
member of COMSTAT .

CE_FRAME The hardware detected a framing error.

CE_IOE An I/O error occurred during an attempt to communicate with a parallel
device.

CE_MODE The requested mode is not supported, or the NumComDev parameter is
invalid if set, CE_MODE is the only valid error.

CE_OOP A parallel device signaled that it is out of paper.

CE_OVERRUN A character was not read from the hardware before the next character
arrived; the character was lost.

- 44 -

CE_PTO A timeout occurred during an attempt to communicate with a parallel
device.

CE_RLSDTO An RLSD (receive-line-signal-detect) timeout occurred; while a character
was being transmitted, RLSD was low for the duration specified by the
fRlsdHold member of COMSTAT .

CE_RXOVER The receiving queue overflowed; there was either no room in the input
queue or a character was received after the end-of-file character was
received.

CE_RXPARITY The hardware detected a parity error.

CE_TXFULL The transmission queue was full when a function attempted to queue a
character.

373.5 Cross-References
GetCommError(), OpenComm()

374 GetCommError
374.1 Synopsis

typedef struct tagCOMSTAT {

BYTE status;

UINT cbInQue;

UINT cbOutQue;

} COMSTAT;

int GetCommError(int NumComDev, COMSTAT *devStat);

374.2 Description
The GetCommError() function returns the most recent error value for the communication device specified by the
NumComDev parameter. It also returns the current status for the communication device specified by the
NumComDev parameter. When an error occurs, the system locks the communication port until the error can be
cleared by this function. The NumComDev parameter identifies the communication device to be examined. The
devStat parameter is a pointer to the COMSTAT structure, which receives the status of the communication device.
If this parameter is set to NULL, then only the error values are returned by this function

374.3 Returns
If the function is successful, the return value indicates the error value for the most recent communication function
call that was made to the device identified by the NumComDev parameter.

374.4 Errors
The return value for the function can be a combination of the following values:

CE_BREAK The hardware detected a break condition.

CE_CTSTO A CTS (clear-to-send) timeout occurred; while a character is transmitted,
CTS is low for the duration specified by the fCtsHold member of the
COMSTAT structure.

CE_DNS A parallel device was not selected.

CE_DSRTO A DSR (data-set-ready) timeout occurred; while a character is
transmitted, DSR is low for the duration specified by the fDsrHold
member of COMSTAT .

CE_FRAME The hardware detected a framing error.

CE_IOE An I/O error occurred during an attempt to communicate with a parallel
device.

- 45 -

CE_MODE The requested mode is not supported, or the idComDev parameter is
invalid; if set, CE_MODE is the only valid error.

CE_OOP A parallel device signaled that it is out of paper.

CE_OVERRUN A character was not read from the hardware before the next character
arrived; the character was lost.

CE_PTO A timeout occurred during an attempt to communicate with a parallel
device.

CE_RLSDTO An RLSD (receive-line-signal-detect) timeout occurred; while a character
is being transmitted, RLSD is low for the duration specified by the
fRlsdHold member of COMSTAT .

CE_RXOVER The receiving queue overflowed; there is either no room in the input
queue or a character is received after the end-of-file character is received.

CE_RXPARITY The hardware detected a parity error.

CE_TXFULL The transmission queue was full when a function attempted to queue a
character.

374.5 Cross-References
OpenComm()

375 GetCommEventMask, SetCommEventMask
375.1 Synopsis

UINT GetCommEventMask(int NumComDev, int idEvtClear);

UINT *SetCommEventMask(int NumComDev, int idEvtMask);

375.2 Description
The GetCommEventMask() function clears the event word of a communications device after retrieving this value.
NumComDev identifies the communication device being examined. NumComDev is returned by the OpenComm()
function. The idEvtClear parameter identifies the events cleared in the event word. The list of event values are as
outlined below in the function SetCommEventMask(). The application calls SetCommEventMask() to enable the
event before this function can record the occurrence of an event. Where the communication device event is a line
status or printer error, then the application should call GetCommEventMask() before calling GetCommError() to
retrieve the error.

SetCommEventMask() enables the event word of the specified communications device. NumComDev identifies the
communication device to be enabled. This parameter is returned by the OpenComm() function. The idEvtMask
parameter identifies the events to be enabled. This parameter can have any of the following values:

EV_BREAK This value is set when a break is detected on input.

EV_CTS This value is set when the CTS (clear-to-send) signal changes state.

EV_CTSS This value is set to indicate the current state of the CTS signal.

EV_DSR This value is set when the DSR (data-set-ready) signal changes state.

EV_ERR This value is set when a line-status error occurs; line-status errors are
CE_FRAME, CE_OVERRUN, and CE_RXPARITY.

EV_PERR This value is set when a printer error is detected on a parallel device;
errors are CE_DNS, CE_IOE, CE_LOOP, and CE_PTO.

EV_RING This value is set to indicate the state of ring indicator during the last
modem interrupt.

EV_RLSD This value is set when the RLSD (receive-line-signal-detect) signal
changes state.

- 46 -

EV_RLSDS This value is set to indicate the current state of the RLSD signal.

EV_RXCHAR This value is set when any character is received and placed in the
receiving queue.

EV_RXFLAG This value is set when the event character is received and placed in the
receiving queue; the event character is specified in the device's control
block.

EV_TXEMPTY This value is set when the last character in the transmission queue is sent.

375.3 Returns
If GetCommEventMask() is successful, its return value is the current event-word for the communications device
specified by NumComDev. The bits in the event-word identifies whether a given event has occurred or not. The bit
is set to 1, if the event has occurred.

If SetCommEventMask() is successful, it returns a pointer to the event word for the communication device identified
by the NumComDev parameter. The bits in the event word indicate whether a given event has occurred or not. A bit
is set to 1, if the event has occurred.

It should be noted that only events that are enabled are recorded. The function GetCommEventMask() clears the
event word after retrieving it.

375.4 Errors
None.

375.5 Cross-References
GetCommError(), OpenComm()

376 GetCommState, SetCommState
376.1 Synopsis

int GetCommState(int NumComDev, DCB *iddcb);

int SetCommState(DCB *iddcb);

376.2 Description
The GetCommState() function gets the device control block for the device identified by the NumComDev parameter.
The NumComDev parameter identifies the communication device. This parameter is returned by the OpenComm()
function. The iddcb parameter contains a pointer to the DCB (Device Control Block) structure that defines the
different control settings for the communication device identified by NumComDev.

The SetCommState() function is used to set the communications device to the state specified by the settings in the
DCB structure. The iddcb parameter contains a pointer to the DCB structure, which defines the different control
settings for the communication device. It should be noted that the id member of this structure should specify the
device.

This function reinitializes the hardware and controls of the communication device as identified by the DCB
structure but does not empty the transmission or receiving queues.

376.3 Returns
If GetCommState() is successful, it returns zero. Otherwise, it returns a value of less than zero.

If SetCommState() is successful, it returns zero. Otherwise, it returns a value of less than zero.

376.4 Errors
None.

376.5 Cross-References
OpenComm()

- 47 -

377 ReadComm, WriteComm
377.1 Synopsis

int ReadComm(int NumComDev, void *lpdBuf,int nbRead);

int WriteComm(int NumComDev, void *lpdBuf, int nbWrite);

377.2 Description
The ReadComm() function reads up to an indicated number of bytes from the communication device specified by
the NumComDev parameter. The NumComDev parameter, which is returned by the OpenComm() function,
identifies the communication device. The lpdBuf parameter contains a pointer to the buffer that contains the bytes to
be read. The nbRead parameter identifies the number of bytes that are read from the buffer.

The WriteComm() function writes up to an indicated number of bytes to the communication device specified by the
NumComDev parameter. The NumComDev parameter, which is returned by the OpenComm() function, identifies
the communication device. The lpdBuf parameter contains a pointer to the buffer containing the bytes to be written.
The nbWrite parameter identifies the number of bytes to be written to the buffer.

377.3 Returns
If the function ReadComm() is successful, the return value contains the number of bytes that were read. If the
function is unsuccessful, the return value is less than zero and its absolute value identifies the number of bytes that
were read. If the communication device is a parallel port, the return value is always zero. It is good practice to call
the GetCommError() function to check the error state even though the return value is zero, since errors can occur
when the number of bytes is zero. When an error occurs, the function GetCommError() is called to retrieve the error
state. If the return value is zero, there are no bytes present. If the return value is less than the nbRead parameter, the
number of bytes in the receiving queue is less than that specified by this parameter. If the return value is equal to
nbRead, there may be additional bytes that are queued for the device.

If the WriteComm() function is successful, the return value contains the number of bytes written. If the function is
unsuccessful, the return value is less than zero and its absolute value identifies the number of bytes written. In case
of an error, the GetCommError() function should be used to retrieve the error state.

If the communication device is a serial port then the WriteComm() function deletes the data in the transmission
queue, if there is not enough room in the queue for the additional bytes. It is a good practice to check the available
space in the queue by calling the GetCommError() function before calling the WriteComm() function. The size of
the transmission queue that is set when the OpenComm() function is called, should be larger or at least equal to the
size of the largest expected output string that will be written.

377.4 Errors
None.

377.5 Cross-References
GetCommError(), OpenComm(), TransmitCommChar()

378 TransmitCommChar, UngetCommChar
378.1 Synopsis

int TransmitCommChar(int NumComDev, char TransCh);

int UngetCommChar(int NumComDev, char UngetCh);

378.2 Description
The TransmitCommChar() function puts the specified character contained in the TransCh parameter at the head of
the transmission queue of the device identified by the NumComDev parameter. The NumComDev parameter
returned by the OpenComm() function, identifies the communication device. The TransCh parameter contains the
character to be transmitted. This function cannot be called repeatedly if the device specified by NumComDev is not
transmitting. If the function has placed a character in the transmission queue, this character should be transmitted
before the function is called again. This is done by checking the return value of this function.

- 48 -

The UngetCommChar() function puts the specified character contained in UngetCh back in the receiving queue of
the device identified by the NumComDev parameter. The NumComDev parameter returned by the OpenComm()
function identifies the communication device. The UngetCh parameter contains the character that is placed in the
receiving queue to be read back when the next read operation takes place. Once this function places a character in
the receiving queue, a read has to happen before this function can be called again.

378.3 Returns
The function TransmitCommChar() returns zero, if it is successful. The return value is less than zero if the character
could not be transmitted.

UngetCommChar() returns zero, if it is successful. Otherwise, the return value is less than zero.

378.4 Errors
None.

378.5 Cross-References
OpenComm()

379 GetDriveType
379.1 Synopsis

UINT GetDriveType(int nDriveNumber);

379.2 Description
The GetDriveType() function reports whether the drive specified in the DriveNumber parameter is removable, fixed,
or remote. The DriveNumber parameter of value 0 is considered to specify drive A, a value of 1 specifies drive B,
and so on.

379.2 Returns
DRIVE_REMOVABLE removable media (for example, floppy disk drives)

DRIVE_FIXED fixed media (for example, hard disk drives)

DRIVE_REMOTE network drives

379.4 Errors
None.

379.5 Cross-References
None.

380 GetSystemDirectory
380.1 Synopsis

UINT GetSystemDirectory(LPSTR lpBuffer, UINT nSize);

380.2 Description
The GetSystemDirectory() function retrieves the system directory that contains drivers, libraries, font files, and so
on.

The lpBuffer parameter points to a buffer which will contain a null-terminated string specifying the path to the
system directory. Only nSize bytes will be copied to this buffer. The recommended minimum value for nSize is 144
bytes.

380.3 Returns
GetSystemDirectory() returns the number of bytes required (excluding the null-terminator) to store the full pathname
to the System directory, if it is successful.

- 49 -

380.4 Errors
None.

380.5 Cross-References
GetWindowsDirectory()

381 GetTempDrive
381.1 Synopsis

BYTE GetTempDrive(char cDrive Letter);

381.2 Description
The GetTempDrive() function returns a drive letter that can be used as temporary space. The cDriveLetter parameter
is currently ignored.

381.3 Returns
The letter returned can range from A-Z. The case is not guaranteed. The drive letter A is associated with drive
number 0, B with 1, and so on. If no drive letters are available, this function returns the letter of the current drive.

381.4 Errors
None.

381.5 Cross-References
None.

382 GetTempFileName
382.1 Synopsis

int GetTempFileName(BYTE cDriveLetter, LPCSTR lpPrefixString, UINT uUnique,

LPSTR lpTempFileName);

382.2 Description
The GetTempFileName() function creates a file name that can be used for temporary storage. These are the
parameters associated with the GetTempFileName() function.

cDriveLetter This parameter suggests a drive number for the temporary file to reside;
if zero, the default (current) drive is used.

lpPrefixString This parameter is a pointer to a NULL-terminated string to be used as the
prefix to the filename; the string must consist of OEM-defined characters.

uUnique If non-zero, this number will be appended to the temporary filename;
otherwise, the current system time will be used.

lpTempFilename This parameter is a pointer to a buffer, where the temporary filename will
be stored; this should be at least 144 bytes long. The application should
expect the filename to consist of only OEM-defined characters.

The file returned by GetTempFileName() is not deleted when the application exits. It is the application's
responsibility to remove the file on exit.

To avoid problems with OEM character strings and the system strings, _lopen() and _lclose() should be used.

The following is the order of precedence (from highest to lowest) in which the drive letter is determined:

- TEMP environment variable

- a local fixed disk

- the cDriveLetter parameter

- 50 -

If the uUnique parameter is zero, the function constructs a unique name for the temporary file, and thus attempts to
create the file. If the file already exists, it increments the unique identifier value and tries again. After it succeeds in
finding the filename, it closes the file and returns.

382.3 Returns
This function returns the unique number that is used to create the filename, if the uUnique parameter is zero.
Otherwise, GetTempFileName() returns the uUnique parameter. The lpszTempFileName parameter contains a string
of the form:

d:\path\prefixuuu.tmp

where

d: This value is a drive letter on which the temporary file will reside.

path This value is a path to the directory containing the temporary file; this is either the system
directory (see GetWindowsDirectory()) or the value of the TEMP environment variable.

prefix This value is a prefix to append to the file name. All letters of the string are used, however,
prefix is no longer than 3 letters.

uuu This value is a hexadecimal value of uUnique, or a unique number based on the system
clock.

382.4 Errors
None.

382.5 Cross-References
lopen(), lclose(), GetWindowsDirectory()

383 GetWindowsDirectory
383.1 Synopsis

UINT GetWindowsDirectory(LPSTR lpBuffer, UINT nSize);

383.2 Description
The GetWindowsDirectory() function returns the path to the system directory, which contains the application's .INI
files, temporary files, and so on.

The lpBuffer parameter is a pointer to a buffer that receives the path name. No more than nSize bytes are copied to
this buffer. A size of 144 bytes is the recommended minimum size for this buffer.

383.3 Returns
This function returns the number of bytes required to hold the entire path name (excluding the null-terminator).

383.4 Errors
None.

383.5 Cross-References
None.

384 OpenFile
384.1 Synopsis

HFILE OpenFile(LPCSTR lpFileName, OFSTRUCT *lpOfs, UINT wMode);

384.2 Description
The OpenFile() function creates, opens, reopens, or deletes a file. The following table describes the function's
parameters.

- 51 -

lpFileName This value is a pointer to a null-terminated string to the filename.

lpOfs This value is a pointer to structure that contains information about the opened file; that
structure can then be used in subsequent calls to OpenFile() to refer to the opened file.

wMode This value specifies any special actions taken as well as the attributes of the file.

Values for wMode can be a combination of the following flags:

OF_CANCEL When used in conjunction with OF_PROMPT, this flag adds a Cancel
button to the dialog box; pressing Cancel causes OpenFile() to return a
file-not-found error.

OF_CREATE This flag creates a new file, or truncates the file if the file already exists.
Sharing flags are ignored when this flag is present; if sharing options are
required, the file is closed and reopened with the proper parameters.

OF_DELETE This flag deletes the file.

OF_EXIST This flag checks to see if the file exists; file and date/time stamp are not
modified.

OF_PARSE This flag fills the lpOfs structure; no other action is performed.

OF_PROMPT This flag displays a dialog box if the requested file does not exist and
prompts the user to insert the disk containing the file in drive A.

OF_READ This flag opens file for read only.

OF_READWRITE This flag opens file for read and write.

OF_REOPEN This flag reopens file with new parameters.

OF_SEARCH This flag searches in directories specified in the path as well as the
Windows and System directories (see GetWindowsDirectory() and
GetSystemDirectory()), even when given a full path.

OF_SHARE_COMPAT This flag opens the file in compatibility mode; any other program can
open the file any number of times. OpenFile() fails if it has been opened
with any other sharing options.

OF_SHARE_DENY_NONE This flag opens the file and allows any other program to open the file for
reading or writing. OpenFile() fails if it has already been opened in
compatibility mode (OF_SHARE_COMPAT) or read-only mode by any
other program.

OF_SHARE_DENY_READ This flag opens the file and denies read access by any other program.
OpenFile() fails if it has already been opened in compatibility mode or
read access by any other program.

OF_SHARE_DENY_WRITE This flag opens the file and denies write access by any other program.
OpenFile() fails if it has already been opened in compatibility mode or
write access by any other program.

OF_SHARE_EXCLUSIVE This flag opens the file with exclusive mode; it denies read or writes to
the file by all other programs. OpenFile() fails if the file has already been
opened for read or write access by any program, including the current
one.

OF_VERIFY This flag compares the time and date in lpOfs with the one in the
specified file. OpenFile() returns HFILE_ERROR if the dates and times
do not match.

OF_WRITE This flag opens the file for writing only.

384.3 Returns
The Openfile() function returns a file handle that can be used with the standard C libraries, if it is successful.

- 52 -

Note: This handle may not be valid. In particular, the OF_EXIST and OF_DELETE functions return a meaningless
value.

384.4 Errors
None.

384.5 Cross-References
None.

385 SetHandleCount
385.1 Synopsis

UINT SetHandleCount(UINT nHandles);

385.2 Description
The SetHandleCount() function sets the number of file handles available to an application.

The nHandles parameter sets the number of file handles available to an application. This value cannot be greater
than 255.

385.3 Returns
This function returns the number of file handles available to the application, if it is successful.

385.4 Errors
None.

385.5 Cross-References
None.

386 _lclose
386.1 Synopsis

HFILE _lclose(HFILE FileHandle);

386.2 Description
The _lclose() function closes the file described by the file handle, FileHandle, which is of type HFILE. By closing a
file, described by FileHandle, with the _lclose() function, the file becomes unusable for further read/write activities
until it is reopened.

386.3 Returns
If the function is successful, _lclose() returns a value of zero. Otherwise, it will return a value of HFILE_ERROR.

386.4 Errors
None.

386.5 Cross-References
_lopen()

387 _lread
387.1 Synopsis

UINT _lread(HFILE hFile, const void *BufferPtr, UINT NumBytes);

387.2 Description
The _lread() function reads a specified number of bytes from a file into memory. The function supports objects that
are larger than 64K. The hFile parameter contains a handle to an open file. The BufferPtr parameter is a pointer to a

- 53 -

memory buffer that will be used to store the data read from the file. The NumBytes parameter specifies the number
of bytes to read from the file.

387.3 Returns
If the function is successful, it returns the number of bytes read from the file. If the function encounters a file
reading error other than the an end-of-file (EOF) error, it returns HFILE_ERROR.

387.4 Errors
None.

387.5 Cross-References
None.

388 _lcreat
388.1 Synopsis

HFILE _lcreat(LPCSTR FileName, int FileAttr);

388.2 Description
The _lcreat() function opens a file, described by FileName, for reading and/or writing. If the file to be opened does
not exist, _lcreat() will attempt to create the file first. The FileAttr parameter is used to describe how the file is to be
opened and/or created by _lcreat(). The values valid for FileAttr are the following:

0 This value indicates a normal file; this file can be read and written to by anyone.

1 This value indicates a read-only file; this file can only be written to and cannot be opened for
writing.

2 This value indicates a hidden file; this file has the hidden attribute and will not show up in
directory listings.

3 This value indicates a system file; this file is a system file and will not show up in directory
listings.

388.3 Returns
If _lcreat() is successful, it returns a file handle to the file newly created or opened. If there is an error in opening or
creating the file, an error value of HFILE_ERROR is returned.

388.4 Errors
None.

388.5 Cross-References
None.

389 _llseek
389.1 Synopsis

LONG _llseek(HFILE FileHandle, LONG OffsetFromCurrent, int StartPos);

389.2 Description
The _llseek() function moves the current file position pointer of the file described by FileHandle (of type HFILE),
an offset of OffsetFromCurrent from the position described by StartPos(). StartPos() contains a value describing the
place in the file from which to begin offsetting. StartPos() can have the following values:

- 54 -

0 Begin offsetting from beginning of the file.

1 Begin offsetting from current position in the file.

2 Begin offsetting from the end of the file.

389.3 Returns
The return value of _llseek() is the final offset, from the beginning of the file, to which the pointer is now aimed. If
the function was unsuccessful in completing the offset, the return value is HFILE_ERROR.

389.4 Errors
None.

389.5 Cross-References
None.

390 _lopen
390.1 Synopsis

HFILE _lopen(LPCSTR FileName, int FileMode);

390.2 Description
The _lopen() function is used to open up a file as described by FileName, with the open options as described by
FileMode. FileMode can have the following values:

REQUIRED:

READ File is opened for read access only.

READ_WRITE File is opened for read/write access.

WRITE File is opened for write access only.

OPTIONAL:

OF_SHARE_COMPAT Compatibility mode allows any process to open the file as many times as
they want; an error occurs when the file is opened with any other share
flag.

OF_SHARE_DENY_NONE Do not deny read/write access to any other process; an error occurs if the
file was opened in compatibility mode.

OF_SHARE_DENY_READ Deny read access to any other process; an error occurs if the file was
opened in compatibility mode or any other mode allowing read access.

OF_SHARE_DENY_WRITE Deny write access to any other process; an error occurs if the file was
opened in compatibility mode or any other mode allowing write access.

OF_SHARE_EXCLUSIVE Deny access completely to any other process; an error occurs if the file
was opened in any mode by any other process.

390.3 Returns
If _lopen() is successful, a file handle to the newly opened file is returned. If the function is unsuccessful, a
HFILE_ERROR is returned.

390.4 Errors
None.

390.5 Cross-References
None.

- 55 -

391 _lwrite
391.1 Synopsis

UINT _lwrite(HFILE hFile, const void *BufferPtr, UINT NumBytes);

391.2 Description
The _lwrite() function writes a specified number of bytes of memory to a file. The function supports objects that are
larger than 64K. The hFile parameter contains a handle to an open file. The BufferPtr parameter is a pointer to a
memory buffer that contains the bytes of data to write to the file. The NumBytes parameter specifies the number of
bytes in the memory buffer to write to the file. If the value of the NumBytes parameter is zero, the function will
expand or truncate the file to the current file pointer position.

391.3 Returns
If the function is successful, it returns the number of bytes written to the file. If the function is not successful, it
returns an error value of HFILE_ERROR.

391.4 Errors
None.

391.5 Cross-References
None.

392 RegCloseKey
392.1 Synopsis

LONG RegCloseKey (HKEY hkey);

392.2 Description
The RegCloseKey() function releases the handle of the key specified by the hkey parameter by closing the key. The
Registration Database is updated when all keys are closed.

392.3 Returns
If successful, the function returns ERROR_SUCCESS. Otherwise, it returns an error value.

392.4 Errors
None.

392.5 Cross-References
None.

393 RegCreateKey, RegOpenKey
393.1 Synopsis

LONG RegCreateKey(HKEY hkey, LPCSTR szSubKey, HKEY *lpResult);

LONG RegOpenKey(HKEY hkey, LPCSTR szSubKey, HKEY *lpResult);

393.2 Description
The RegCreateKey() function either creates a Registration Database key or opens the specified key if it already
exists. The szSubKey parameter points to the string that specifies the name of the key to open or create. The lpResult
parameter is the address of the handle of the key created or opened. The hkey parameter is the handle of the parent
key which can be HKEY_CLASSES_ROOT. It cannot be NULL.

The RegOpenKey() function opens a Registration Database key. The szSubKey parameter points to the string that
specifies the name of the key to open. The lpResult parameter is the address of the handle of the key opened. The
hkey parameter is the handle of the parent key which may be HKEY_CLASSES_ROOT and cannot be NULL.

- 56 -

393.3 Returns
The RegCreateKey() function returns ERROR_SUCCESS, if it is successful. Otherwise, it returns an error value.

The RegOpenKey() function returns ERROR_SUCCESS, if it is successful. Otherwise, it returns an error value.

393.4 Errors
None.

393.5 Cross-References
None.

394 RegDeleteKey
394.1 Synopsis

LONG RegDeleteKey(HKEY hkey, LPCSTR szSubKey);

394.2 Description
The RegDeleteKey() function deletes the Registration Database subkey specified by the szSubKey parameter. The
hkey parameter defines the handle of the key whose subkey is to be deleted. The hkey parameter can be
HKEY_CLASSES_ROOT.

394.3 Returns
If successful, RegDeleteKey() returns ERROR_SUCCESS. Otherwise, it returns an error value.

394.4 Errors
RegDeleteKey() returns an error value if it fails. If the returned error is ERROR_ACCESS_DENIED, either the
application does not have the permission to delete the specified subkey or another application has the specified
subkey open.

394.5 Cross-References
None.

395 RegEnumKey
395.1 Synopsis

LONG RegEnumKey(HKEY hkey, DWORD iSubKey, LPSTR szBuffer, DWORD cbBuffer);

395.2 Description
The RegEnumKey() function enumerates the subkeys of the Registration Database entry specified by the hkey
parameter, an open handle (which can be HKEY_CLASSES_ROOT). The iSubKey parameter is the index of the
subkey to be retrieved. It should be set to zero the first time RegEnumKey() is called. The szBuffer parameter is a
buffer of size cbBuffer into which the name of the subkey is copied by RegEnumKey().

395.3 Returns
If successful, RegEnumKey() returns ERROR_SUCCESS. Otherwise it returns an error value.

395.4 Errors
None.

395.5 Cross-References
None.

- 57 -

396 RegQueryValue, RegSetValue
396.1 Synopsis

LONG RegQueryValue(HKEY hkey, LPCSTR szSubKey, LPSTR szValue, LONG *lpcb);

LONG RegSetValue(HKEY hkey, LPCSTR szSubKey, DWORD fdwType, LPCSTR szValue,

DWORD cb);

396.2 Description
RegQueryValue() queries the Registration Database and returns the value of szSubKey. The szSubKey parameter is a
child of the Registration Database entry whose handle is hkey. RegQueryValue() returns the value in the szValue
buffer, and the length of the value string in the lpcb parameter.

RegSetValue() sets the subkey specified by szSubKey to a value stored in szValue. If the szSubKey parameter is
NULL or is a pointer to an empty string, RegSetValue() sets the value of the hkey parameter. The hkey parameter is
the non-NULL handle of the key whose subkey is to be modified. The fdwType parameter must be set to REG_SZ
for Windows 3.1. The cb parameter is the size of szValue in bytes. It is ignored by RegQueryValue() in Windows
3.1.

396.3 Returns
RegQueryValue() returns ERROR_SUCCESS, if it is successful.

RegSetValue() returns ERROR_SUCCESS, if it is successful.

396.4 Errors
None.

396.5 Cross-References
None.

397 IsBadCodePtr
397.1 Synopsis

BOOL IsBadCodePtr(FARPROC FunctPtr);

397.2 Description
The IsBadCodePtr() function validates the given pointer to executable code. The FunctPtr parameter points to the
entry point of a function.

397.3 Returns
If the pointer is correct, the IsBadCodePtr() function returns FALSE. If the pointer is incorrect, the IsBadCodePtr()
function returns TRUE.

397.4 Errors
None.

397.5 Cross-References
IsBadHugeReadPtr(), IsBadHugeWritePtr(), IsBadReadPtr(), IsBadStringPtr(), IsBadWritePtr()

398 IsBadHugeReadPtr
398.1 Synopsis

BOOL IsBadHugeReadPtr(const void _huge *MemPtr, DWORD Size);

398.2 Description
The IsBadHugeReadPtr() function determines whether a huge pointer to readable memory is valid. The MemPtr
parameter is a huge pointer to the first byte of the readable memory block. The block size can be bigger than 64k.
The Size parameter is the total number of bytes in the memory block.

- 58 -

398.3 Returns
If the pointer is correct, the IsBadHugeReadPtr() function returns FALSE. If the pointer is incorrect, the
IsBadHugeReadPtr() function returns TRUE.

398.4 Errors
None.

398.5 Cross-References
IsBadCodePtr(), IsBadHugeWritePtr(), IsBadReadPtr(), IsBadStringPtr(), IsBadWritePtr()

399 IsBadHugeWritePtr
399.1 Synopsis

BOOL IsBadHugeWritePtr(void _huge* MemPtr, DWORD Size);

399.2 Description
The IsBadHugeWritePtr() function validates the given huge pointer to a writable memory block. The MemPtr
parameter is a huge pointer to the first byte of the writable block. The block size can be bigger than 64k. The Size
parameter is the total number of bytes in the memory block.

399.3 Returns
If the pointer is correct, the IsBadHugeWritePtr() function returns FALSE. If the pointer is incorrect, the
IsBadHugeWritePtr() function returns TRUE.

399.4 Errors
None.

399.5 Cross-References
IsBadCodePtr(), IsBadHugeReadPtr(), IsBadReadPtr(), IsBadStringPtr(), IsBadWritePtr()

400 IsBadReadPtr
400.1 Synopsis

BOOL IsBadReadPtr(const void *MemPtr, UINT Size);

400.2 Description
The IsBadReadPtr() function validates the given pointer to readable memory. The MemPtr parameter is a pointer to
the first byte of the readable memory block. The Size parameter is the total number of bytes in the memory block.

400.3 Returns
If the pointer is correct, the IsBadReadPtr() function returns FALSE. If the pointer is incorrect, the IsBadReadPtr()
function returns TRUE.

400.4 Errors
None.

400.5 Cross-References
IsBadCodePtr(), IsBadHugeReadPtr(), IsBadHugeWritePtr(), IsBadStringPtr(), IsBadWritePtr()

401 IsBadStringPtr
401.1 Synopsis

BOOL IsBadStringPtr(const void *MemPtr, UINT Size);

- 59 -

401.2 Description
The IsBadStringPtr() function validates the given pointer to a string. The MemPtr parameter is the pointer to the
first byte of the string.

Note: The string is null-terminated.

The Size parameter is the total number of bytes in the string.

401.3 Returns
If the pointer is correct, the IsBadStringPtr() function returns FALSE. If the pointer is incorrect, the
IsBadStringPtr() function returns TRUE.

401.4 Errors
None.

401.5 Cross-References
IsBadCodePtr(), IsBadHugeReadPtr(), IsBadHugeWritePtr(), IsBadReadPtr(), IsBadWritePtr()

402 IsBadWritePtr
402.1 Synopsis

BOOL IsBadWritePtr(void *MemPtr, UINT Size);

402.2 Description
The IsBadWritePtr() function validates a given pointer to writable memory. The MemPtr parameter is the pointer to
the first byte of the writable block. The Size parameter is the total number of bytes in the memory block.

402.3 Returns
If the pointer is correct, the IsBadWritePtr() function returns FALSE. If the pointer is incorrect, the IsBadWritePtr()
function returns TRUE.

402.4 Errors
None.

402.5 Cross-References
IsBadCodePtr(), IsBadHugeReadPtr(), IsBadHugeWritePtr(), IsBadReadPtr(), IsBadStringPtr()

- 60 -

Section 5 - Application Support Functions

403 ExtractIcon
403.1 Synopsis

HICON ExtractIcon (HINSTANCE hinst, LPCSTR szBinary, UINT iIcon)

403.2 Description
The ExtractIcon() function returns a handle to an icon stored inside the szBinary executable, DLL, or icon file. The
application that calls the functions is identified by the hinst parameter. The hIcon parameter specifies the index of
the icon to be retrieved. If the value of hIcon is zero, the handle to the first icon is returned. If the value is -1, the
total number of icons in the file is returned.

403.3 Returns
If successful, ExtractIcon() returns the handle to the requested icon. It returns the NULL value if the specified file
contains no icons. ExtractIcon() returns 1 if the specified file in not an executable file, DLL, or icon file.

403.4 Errors
None.

403.5 Cross-References
None.

404 FindExecutable
404.1 Synopsis

HINSTANCE FindExecutable (LPCSTR lpszFile, LPCSTR lpszDir, LPCSTR lpszResult)

404.2 Description
FindExecutable() finds and retrieves the executable filename that is associated with a specified filename. The
lpszFile parameter points to a null-terminated string that specifies a filename (which can be a document or an
executable file). The lpszDir parameter points to a null-terminated string that specifies a full directory path for the
default directory. The lpszResult parameter points to a null-terminated string of an executable file.

404.3 Returns
If successful, FindExecutable() returns a value greater than 32.

404.4 Errors
If unsuccessful, FindExecutable() returns one of the following error codes:

- 61 -

Value Meaning

0 The system was out of memory, executable file was corrupt, or relocations were invalid.

2 The file was not found.

3 The path was not found.

5 An attempt was made to dynamically link to a task, or there was a sharing or network-
protection error.

6 A library required separate data segments for each task.

8 There was insufficient memory to start the application.

10 The Windows version was incorrect.

11 An executable file was invalid. Either it was not a Windows application or there was an error
in the .EXE image.

12 The application was designed for a different operating system.

13 The application was designed for MS-DOS 4.0.

14 The type of executable file was unknown.

15 An attempt was made to load a real-mode application (developed for an earlier version of
Windows)

16 An attempt was made to load a second instance of an executable file containing multiple
data. segments that were not marked read-only.

19 An attempt was made to load a compressed executable file. The file must be decompressed
before it can be loaded.

20 A dynamic-link library (DLL) file was invalid. One of the DLLs required to run this
application was corrupt.

21 An application requires Microsoft Windows 32-bit extensions.

31 There is no association for the specified file type.

404.5 Cross-References
None.

405 GetPrivateProfileString, GetProfileString
405.1 Synopsis

int GetPrivateProfileString(LPCSTR lpSect, LPCSTR lpKey, LPCSTR lpDefault, LPSTR lpReturn,

int nSize, LPCSTR lpFile);

int GetProfileString(LPCSTR lpSect, LPCSTR lpKey, LPCSTR lpDefault, LPSTR lpReturn, int nSize);

405.2 Description
The GetPrivateProfileString() and GetProfileString() functions return a string of data from an initialization file.
GetProfileString() is equivalent to the alternative GetPrivateProfileString() with the default windows initialization
file, WIN.INI.

A system initialization file consists of lines of text broken into named sections consisting of a string of characters
starting with the "[" character and ending with the "]" character, continuing to the next section delimited by the "["
and "]" characters. Lines starting with the "#" or ";" character are comments strings, as are blank lines and are not
included in processing by the profile functions.

Data lines within a named section consist of a key string followed by the "=" character, followed by the key data.
Section names and key strings are case insensitive, and any leading and trailing blanks removed before any
processing occurs.

The profile functions parameters consist of a section name, without the leading and trailing braces, the desired key
string and a default string to return if the key string cannot be found, a buffer to store the requested key string data is
provided as well as a parameter specifying the length of the buffer. The default string is returned if the specified file
cannot be found, the section does not exist or the key string cannot be found. The returned string is truncated to fit

- 62 -

into the user specified buffer if it too long. The default string may point to a zero length string which will have the
effect of copying an empty string to the users return buffer.

If no key string is provided, all key strings in the named section are returned separated by a NULL terminator, and
terminated by two NULL terminators. If the user specified return buffer is too small, as much data as possible is
copied including the two terminating NULL characters.

405.3 Returns
The profile functions return the number of characters copied into the return buffer, not including the terminating null
character. The user supplied buffer is filled in with the requested data, or the default string up to the size of the
buffer.

The functions will return default data in the event that the file cannot be found or read, or the section or key data
cannot be found.

405.4 Errors
None.

405.5 Cross-References
WritePrivateProfileString(), WriteProfileString()

406 WritePrivateProfileString, WriteProfileString
406.1 Synopsis

BOOL WritePrivateProfileString(LPCSTR lpSect, LPCSTR lpKey, LPCSTR lpData, LPCSTR lpFile);

BOOL WriteProfileString(LPCSTR lpSect, LPCSTR lpKey, LPCSTR lpData);

406.2 Description
The WritePrivateProfileString() and WriteProfileString() functions write out a key string and its associated data to
the requested section of the specified file, or the default win.ini file. If the file does not exist, it is created. If the
section does not exist, it is created. If the key data exists, it is overwritten.

A system initialization file consists of lines of text broken into named sections consisting of a string of characters
starting with the "[" character and ending with the "]" character, continuing to the next section delimited by the "["
and "]" characters. Lines starting with the "#" or ";" character are comments strings as are blank lines and are not
included in processing by the profile functions.

Data lines within a named section consist of a key string followed by the "=" character, followed by the key data.
Section names and key strings are case insensitive and any leading and trailing blanks are removed before
processing occurs.

The write profile functions allow a given key string and its data to be deleted if the key string data supplied is
NULL. A named section can be deleted along with all its associated key strings and key data, if the key string is
NULL.

406.3 Returns
The function returns TRUE, if it is successful. If it fails because the file is not writable or cannot be found, it returns
FALSE.

406.4 Errors
None.

406.5 Cross-References
GetPrivateProfileString(), GetProfileString()

407 GetPrivateProfileInt, GetProfileInt
407.1 Synopsis

UINT GetPrivateProfileInt(LPCSTR lpSect, LPCSTR lpKey, int nDefault, LPCSTR lpFile);

- 63 -

UINT GetProfileInt(LPCSTR lSect, LPCSTR lpKey, int nDefault);

407.2 Description
The GetPrivateProfileInt() and GetProfileInt() functions return an integer value from the corresponding
initialization file. A default value can be supplied in case the key string in the requested named section cannot be
found. The key string data may be preceded with the "+" and "-" characters, or can be given in hexadecimal format.
If the key string data is not a valid number, these functions return zero.

407.3 Returns
The return value is either an unsigned integer value retrieved from the specified initialization file or the default
value supplied if the key string is not found in the appropriate section.

The functions will return default data in the event that the file cannot be found or read, or the section or key data
cannot be found.

407.4 Errors
None.

407.5 Cross-References
GetPrivateProfileString(), GetProfileString()

408 AnsiLower, AnsiLowerBuff
408.1 Synopsis

LPSTR WINAPI AnsiLower(LPSTR lpszStr);

UINT WINAPI AnsiLowerBuff(LPSTR lpszString, UINT cbStr);

408.2 Description
The AnsiLower() and AnsiLowerBuff() functions convert character strings to lowercase. AnsiLower() converts all the
characters in the zero-terminated string. If a single character is passed when the upper word is zero, the character is
converted. AnsiLowerBuff() converts the number of characters specified by cbStr. If cbStr is zero, the length
defaults to 65,536.

408.3 Returns
AnsiLower() returns a pointer to the converted character string. If unsuccessful, it returns a value that contains the
converted character in the low byte of the low word. AnsiLowerBuff() returns the length of the converted string. If
unsuccessful, it returns zero.

408.4 Errors
None.

408.5 Cross-References
AnsiUpper()

409 AnsiUpper, AnsiUpperBuff
409.1 Synopsis

LPSTR WINAPI AnsiLower(LPSTR lpszStr);

UINT WINAPI AnsiLowerBuff(LPSTR lpszString, UINT cbStr);

409.2 Description
The AnsiUpper() and AnsiUpperBuff() functions convert character strings to uppercase. AnsiUpper() converts all the
characters in the zero-terminated string. If a single character is passed when the upper word is zero, the character is
converted.

AnsiUpperBuff() converts the number of characters specified by cbStr. If cbStr is zero, the length defaults to 65,536.

- 64 -

409.3 Returns
AnsiUpper() returns a pointer to the converted character string. If unsuccessful, it returns a value that contains the
converted character in the low byte of the low word. AnsiUpperBuff() returns the length of the converted string. If
unsuccessful, it returns zero.

409.4 Errors
None.

409.5 Cross-References
AnsiLower()

410 AnsiNext, AnsiPrev
410.1 Synopsis

LPSTR WINAPI AnsiNext(LPCSTR lpchCurrentChar);

LPSTR WINAPI AnsiPrev(LPCSTR lpchStartChar, LPCSTR lpchCurrentChar);

410.2 Description
The AnsiNext() and AnsiPrev() functions move to the next or previous characters in the string respectively.
AnsiPrev() requires a pointer to the starting character for reference.

410.3 Returns
These function return a pointer to the next or previous character in the string. AnsiNext() returns a pointer to the
NULL character if it is encountered. AnsiPrev() returns a pointer to the starting character, if the lpchCurrentChar
parameter is equal to the lpchStartChar parameter.

410.4 Errors
None.

410.5 Cross-References
AnsiLower(), AnsiUpper()

411 IsCharAlpha
411.1 Synopsis

BOOL WINAPI IsCharAlpha(char chTest);

411.2 Description
The IsCharAlpha() function tests if the character is in the set of alphabetic characters.

411.3 Returns
The function returns TRUE if the character is in the set. Otherwise, it returns FALSE.

411.4 Errors
None.

411.5 Cross-References
IsCharAlphaNumeric(), IsCharLower(), IsCharUpper

412 IsCharAlphaNumeric
412.1 Synopsis

BOOL WINAPI IsCharAlphaNumeric(char chTest);

412.2 Description
The IsCharAlphaNumeric() function tests if the character is in the set of alphabetic or numeric characters.

- 65 -

412.3 Returns
This function returns TRUE if the character is in the set. Otherwise, it returns FALSE.

412.4 Errors
None.

412.5 Cross-References
IsCharAlpha(), IsCharLower(), IsCharUpper

413 IsCharLower
413.1 Synopsis

BOOL WINAPI IsCharLower(char chTest);

413.2 Description
The IsCharLower() function tests if the character is lower case.

413.3 Returns
This function returns TRUE if the character is lower case. Otherwise, it returns FALSE.

413.4 Errors
None.

413.5 Cross-References
IsCharUpper()

414 IsCharUpper
414.1 Synopsis

BOOL WINAPI IsCharUpper(chTest);

414.2 Description
The IsCharUpper() function tests if the character is upper case.

414.3 Returns
This function returns TRUE if the character is upper case. Otherwise, it returns FALSE.

414.4 Errors
None.

414.5 Cross-References
IsCharLower()

415 lstrcmp, lstrcmpi
415.1 Synopsis

int WINAPI lstrcmp(LPCSTR lpszStr1, LPCSTR lpszStr2);

int WINAPI lstrcmpi(LPCSTR lpszStr1, LPCSTR lpszStr1);

415.2 Description
The lstrcmp() and lstrcmpi() functions compare two strings. The lstrcmp() function is case sensitive, while the
lstrcmpi() function is not.

415.3 Returns
These functions return a value less than zero if lpszStr1 is less than lpszStr2. It returns zero if the strings are equal,
and greater than zero if lpszStr1 is greater than lpszStr2.

- 66 -

415.4 Errors
None.

415.5 Cross-References
lstrcpy()

416 lstrcat, lstrcpy, lstrcpyn
416.1 Synopsis

LPSTR WINAPI lstrcat(LPSTR lpszDest, LPCSTR lpszSrc);

LPSTR WINAPI lstrcpy(LPSTR lpszDest, LPCSTR lpszSrc);

LPSTR WINAPI lstrcpyn(LPSTR lpszDest, LPCSTR lpszSrc, int cChars);

416.2 Description
The lstrcat() function concatenates the string lpszSrc to the end of lpszDest. The lstrcpy() and lstrcpyn() functions
copy the contents from the string lpszSrc to the string lpszDest, including the NULL character. The lstrcpyn()
function only copies cChars of string lpszSrc to lpszDest. It pads the string with NULL characters to the end of
string lpszSrc.

416.3 Returns
These functions return a pointer to lpszDest, if they are successful. Otherwise, they return NULL.

416.4 Errors
None.

416.5 Cross-References
lstrcmp()

417 lstrlen
417.1 Synopsis

int WINAPI lstrlen(LPCSTR lpszString);

417.2 Description
The lstrlen() function determines the length of the string.

417.3 Returns
The lstrlen() function returns the number of characters contained in the string, not including the NULL terminator.

417.4 Errors
None.

417.5 Cross-References
lstrcpy()

418 wsprintf, wvsprintf
418.1 Synopsis

int CDECL wsprintf(LPSTR lpszOut, LPCSTR lpszFmt, ...);

int WINAPI wvsprintf(LPSTR lpszOut, LPCSTR lpszFmt, const void * lpParams);

418.2 Description
The wsprintf() and wvsprintf() functions format and convert the characters and values into the string lpszOut. The
lpszFmt string contains the objects that control the conversion.

- 67 -

The wvsprintf() function is equivalent to the wsprintf() function except that the variable argument list is replaced by
an array of values, specifying the arguments for the format string.

The format string has two types of objects, normal characters and conversion specifications. Normal characters are
copied directly to the output string. A conversion specification begins with the character % and ends with a
conversion character. The conversion process is performed on the next consecutive argument in the argument list. If
the character following the % is not a valid format character, the single character is output to the string lpszOut.

Between the % and the conversion character, there may be one of the following:

- This object pads the output with blanks or zeros to left justify the output; if omitted, the
output is right justified.

0 This object pads the output with zeros to fill the field width.

This object prefaces hexadecimal values with 0x for lowercase, or 0X for upper case.

width This object is the minimum field width; the converted argument will be printed at least this
wide or wider.

precision This object is the minimum number of digits to be converted; if there are few digits, then the
output is padded on the left with zeros.

For strings, this object is the maximum number of characters to be converted.

type This object formats the argument as a character, a string or a number as shown below.

The following are valid conversion types:

d, i This type inserts a signed decimal integer argument.

ld, li This type inserts a long signed decimal integer argument.

lx, lX This type inserts a long unsigned hexadecimal integer argument in lower case or upper case.

u This type inserts an unsigned integer argument.

lu This type inserts a long unsigned integer argument.

c This type inserts a single character after conversion to an unsigned character.

s This type inserts characters from the string until a NULL is reached or characters indicated
by the precision have been output.

% No argument is output; this type outputs a % character.

418.3 Returns
wsprintf() and wvsprintf() return the number of characters contained in the string lpszOut, not including the NULL
terminator.

418.4 Errors
None.

418.5 Cross-References
lstrcpy()

419 IsDBCSLeadByte
419.1 Synopsis

BOOL IsDBCSLeadByte(BYTE TestChar);

419.2 Description
The IsDBCSLeadByte() function identifies whether the character specified by the TestChar parameter is a lead byte,
meaning it is the first character in a double-byte character set (DBCS).

The TestChar parameter identifies the character that needs to be tested. The current language driver determines
whether the character is in the set. However, if no language driver is set then an internal function is used by the
system. It should be pointed out here, that each double-byte character in a character set has unique lead bytes. The
lead byte by themselves do not have any value, but the lead byte and the following byte, called a trailing byte,
together represent a single character.

- 68 -

419.3 Returns
The function IsDBCSLeadByte() returns TRUE if the character is indeed a DBCS lead byte. Otherwise, it returns
FALSE.

419.4 Errors
None.

419.5 Cross-References
GetKeyboardType()

420 ToAscii
420.1 Synopsis

int ToAscii(UINT VirtKeyCode, UINT ScanCode, BYTE * lpKeyStateBuff, DWORD * lpTransKeyBuff,

UINT FlagState);

420.2 Description
The ToAscii() function converts the specified virtual-keycode and keyboard state to the corresponding windows
character or characters. The VirtKeyCode parameter identifies the virtual-keycode to be converted. The ScanCode
parameter identifies the hardware scan code of the key to be converted. If the key is not in the pressed state, the
high-order bit of this value is set. The lpKeyStateBuff parameter contains a pointer to a 256-byte array which
contains the current keyboard state. Each element of the array contains the state of one key, with the high-order byte
indicating whether the key is in the pressed state. The lpTransKeyBuff parameter contains a pointer to the
doubleword buffer, which will hold the translated system character or characters. The FlagState parameter identifies
if the menu is active. If this value is set to 1, the menu is active. It is set to zero, if inactive.

ToAscii() does the conversion based on the virtual-key code, but in some cases the ScanCode parameter can be used
to differentiate between a key in the pressed state and the released state. The scan-code is used in converting the
ALT+number key combinations. Where a previous dead key is stored in the keyboard buffer, the parameters to the
function ToAscii() may not be sufficient to convert the given virtual-key code.

420.3 Returns
If the function returns a negative value, the specified key is a dead key. Otherwise, the return value can have one of
the following values and meaning.

2 Two characters were copied to the buffer; this is usually an accent and a dead-key character,
when the dead key cannot be translated.

1 One system character was copied to the buffer.

0 The specified virtual key has no translation for the current state of the keyboard.

420.4 Errors
None.

420.5 Cross-References
OemKeyScan(), VkKeyScan()

421 AnsiToOem, AnsiToOemBuff
421.1 Synopsis

void AnsiToOem(constr char _huge *WindowsSet, char _huge *OemSet);

void AnsiToOemBuff(LPCSTR WindowsSet, LPSTR OemSet, UINT BufferSize);

421.2 Description
The AnsiToOem() function takes the string defined by WindowsSet and converts it into the OEM format specified.
The resultant string is stored in the buffer pointed to by OemSet.

- 69 -

The AnsiToOemBuff() function performs the same function as AnsiToOem(), but has the buffer size contained in the
BufferSize parameter. BufferSize defaults to 64K, if it is given the value zero.

421.3 Returns
None.

421.4 Errors
None.

421.5 Cross-References
OemToAnsi(), OemToAnsiBuff()

422 OemToAnsi, OemToAnsiBuff
422.1 Synopsis

void OemToAnsi(const char _huge *OemBuffer, char _huge *WindowsBuffer);

void OemToAnsiBuff(LPCSTR OemBuffer, LPSTR WindowsBuffer, UINT BufferSize);

422.2 Description
The OemToAnsi() function takes an OEM-defined string, OemBuffer, and converts it into a window string, placing
the resultant string in the buffer, WindowsBuffer.

The OemToAnsiBuff() function performs the same function as OemToAnsi(), however, the size of OemBuffer is
specified by BufferSize. BufferSize defaults to 64K, if it is given the value zero.

422.3 Returns
None.

422.4 Errors
None.

422.5 Cross-References
OemToAnsi(), OemToAnsiBuff()

423 CopyRect, SetRect, SetRectEmpty, InflateRect, OffsetRect
423.1 Synopsis

typedef struct tagRECT {

int left;

int top;

int right;

int bottom;

} RECT, *LPRECT;

void CopyRect(LPRECT lprcDest, LPRECT lprcSrc);

void SetRect(LPRECT lprc, int nLeft, int nTop, int nRight, int nBottom);

void SetRectEmpty(LRECT lprc);

void InflateRect(LRECT lprc, int x, int y);

void OffsetRect(LPRECT lprc, int x, int y);

423.2 Description
These functions modify the contents of the specified rectangle.

- 70 -

The CopyRect() function copies the elements from the source rectangle to the destination rectangle.

The SetRect() function copies the given parameters, nLeft, nTop, nRight, and nBottom, to the corresponding
elements in the specified rectangle.

The SetRectEmpty() function sets each of the elements in the specified rectangle to zero.

The InflateRect() function adds x to the right and left elements, and y to the top and bottom elements of the
specified triangle. Negative values of x or y shrink the rectangle in that dimension, while positive values increase the
size of the rectangle in that direction.

The OffsetRect() function moves the specified rectangle by the amounts given. The x value is added to both the left
and right element, while the y value is added to both the top and bottom elements of the given rectangle. Either of
the x or y values can be negative to move the rectangle up or left, or positive to move the rectangle right or down.

423.3 Returns
None.

423.4 Errors
None.

423.5 Cross-References
EqualRect(), IsRectEmpty(), PtInRect(), InflateRect(), OffsetRect(), IntersectRect(), UnionRect(), SubtractRect(),
RECT

424 EqualRect, IsRectEmpty, PtInRect
424.1 Synopsis

typedef struct tagRECT {

int left;

int top;

int right;

int bottom;

} RECT, *LPRECT;

type struct tagPOINT {

int x;

int y;

} POINT, *LPPOINT;

BOOL EqualRect(LPRECT lprc1, LPRECT lprc2);

BOOL IsRectEmpty(LPRECT lprc);

BOOL PtInRect(LPRECT lprc, LPPOINT lppt);

424.2 Description
These functions test various conditions about a rectangle. EqualRect() compares each element of the first rectangle
to its corresponding element in the second rectangle. If they are the same, the rectangles are equal. IsRectEmpty()
checks to see if the given rectangle is empty. A rectangle is empty if either the height (bottom - top), or width (right
- left), is less than or equal to zero.

PtInRect() checks to see if the point lprc lies within the rectangle.

424.3 Returns
EqualRect() returns TRUE if the two rectangles are equal. Otherwise, it returns FALSE. IsRectEmpty() returns
TRUE if the rectangle is empty. Otherwise it returns FALSE. PtInRect() returns TRUE if the point is the rectangle,
otherwise it returns FALSE.

- 71 -

PtInRect() returns TRUE if the point lppt is within the rectangle. It also returns TRUE if the point is on the top or
left side. Otherwise, PtInRect() returns FALSE.

424.4 Errors
None.

424.5 Cross-References
CopyRect(), SetRect(), SetRectEmpty(), InflateRect(), OffsetRect(), IntersectRect(), UnionRect(), SubtractRect()

425 IntersectRect, UnionRect, SubtractRect
425.1 Synopsis

BOOL IntersectRect(LPRECT lprcDest, LPRECT lprcSrc, LPRECT lprcDiff);

BOOL UnionRect(LPRECT lprcDest, LPRECT lprcSrc, LPRECT lprcDiff);

BOOL SubtractRect(LPRECT lprcDest, LPRECT lprcSrc, LPRECT lprcDiff);

425.2 Description
These functions combine two source rectangles, lprcSrc and lprcDiff, to generate a new rectangle, which is stored in
lprcDest.

IntersectRect() creates a new rectangle consisting of the largest rectangle that is contained in both source rectangles.

UnionRect() creates the minimum rectangle that completely encloses both of the two source rectangles.

SubtractRect() creates a new rectangle that is the result of subtracting one rectangle from another. The resulting
rectangle is identical to the source rectangle if the subtraction rectangle does not completely contain the height or
width of the source rectangle.

425.3 Returns
If the result of the operation creates an empty rectangle, the result is FALSE. If it is not empty, the result is TRUE.

425.4 Errors
None.

425.5 Cross-References
CopyRect(), SetRect(), SetRectEmpty(), InflateRect(), OffsetRect(), EqualRect(), IsRectEmpty(), PtInRect(), RECT

426 OutputDebugString
426.1 Synopsis

void OutputDebugString(LPCSTR lpszStr);

426.2 Description
The OutputDebugString() function outputs the null-terminated string lpszStr to the debugger. The debugger must be
running for the output to appear.

426.3 Returns
None.

426.4 Errors
None.

426.5 Cross-References
DebugOutput()

- 72 -

427 DebugOutput
427.1 Synopsis

void _cdecl DebugOutput(UINT flags, LPCSTR lpszFmt, ...);

427.2 Description
The DebugOutput() function outputs a message to the debugger. The debugger must be running for the output to
appear. The flags parameter controls the type of message the debugger receives and is one of the following:

DBF_TRACE This value reports that no error has occurred.

DBF_WARNING This value reports a warning that may or may not be an error.

DBF_ERROR This value reports an error resulting from an API function call.

DBF_FATAL This value reports an error that will terminate the application.

The application formats the output in the same manner as wsprintf(). The lpszFmt string contains the objects that
control the conversion. See the description for wsprintf() for detailed formatting information.

The ... argument is for zero or more arguments, the number and type of which are determined by the format string
lpszFmt.

427.3 Returns
None.

427.4 Errors
None.

427.5 Cross-References
OutputDebugString()

428 FatalAppExit
428.1 Synopsis

void FatalAppExit(UINT action, LPCSTR lpszMessage);

428.2 Description
The FatalAppExit() function displays the null-terminated string lpszMessage in a message box. The message is
displayed on a single line, so it should not be longer than 35 characters. When the user acknowledges the message,
the application is terminated.

The action parameter is reserved and must be zero.

428.3 Returns
None.

428.4 Errors
None.

428.5 Cross-References
FatalExit()

429 FatalExit
429.1 Synopsis

void FatalExit(int nErrCode);

- 73 -

429.2 Description
The FatalExit() function displays the error code nErrCode in the debugger and halts execution. If the debugger is
running, the user can terminate the application or continue. If the debugger is not running, the application is
terminated.

429.3 Returns
None.

429.4 Errors
None.

429.5 Cross-References
FatalAppExit()

430 QuerySendMessage
430.1 Synopsis

BOOL QuerySendMessage(HANDLE hOne, HANDLE hTwo, HANDLE hThree, LPMSG lpMsg);

430.2 Description
The QuerySendMessage() function determines whether a message sent by the SendMessage() function was
originally sent by the current task. If the message is being sent along with other tasks, the QuerySendMessage()
function puts it into the MSG structure, specified by the lpMsg parameter. Parameters hOne, hTwo and hThree must
be NULL.

430.3 Returns
The QuerySendMessage() function returns FALSE if the message originates within the current task. Otherwise, it
returns TRUE.

430.4 Errors
None.

430.5 Cross-References
SendMessage(), PostMessage(), ReplyMessage()

431 LockInput
431.1 Synopsis

BOOL LockInput(HANDLE hOne, HWND hwndInput, BOOL fLock);

431.2 Description
If the fLock parameter is TRUE, the LockInput() function locks keyboard and mouse input to all tasks except the
current one. The locked window becomes system modal, that is it receives all input events. If the fLock parameter is
FALSE, all locked windows are unlocked. The hOne parameter should be NULL.

431.3 Returns
The LockInput() function returns TRUE if it is successful. Otherwise, it returns FALSE.

431.4 Errors
None.

431.5 Cross-References
Yield(), DirectedYield()

- 74 -

432 FlashWindow
432.1 Synopsis

BOOL FlashWindow(HWND hWnd, BOOL bInvert);

432.2 Description
The FlashWindow() function flashes a window by toggling its title bar. This toggle effect is the same as if the
window was activated and deactivated, or vice versa.

The bInvert parameter specifies to flash the window or restore it to its original state. If bInvert is TRUE, the
window is flashed from one state to another. If it is FALSE, the window is restored to its original state.

If the window is minimized, the bInvert flag is ignored and its icon is flashed.

432.3 Returns
The function returns TRUE if the window was active before the call, and FALSE if it was inactive.

432.4 Errors
None.

432.5 Cross-References
MessageBeep()

433 MessageBeep
433.1 Synopsis

void MessageBeep(UINT uAlert);

433.2 Description
The MessageBeep() function plays a sound corresponding to the alert level specified by uAlert. The sound played at
each alert level is determined by the entry in the [sounds] section of the WIN.INI file.

The alert level uAlert can be one of the following. The entry specified is located in the [sounds] section of the
WIN.INI file.

-1 Standard beep.

MB_ICONASTERISK Sound in the SystemAsterisk entry.

MB_ICONEXCLAMATION Sound in the SystemExclamation entry.

MB_ICONHAND Sound in the SystemHand entry.

MB_ICONQUESTION Sound in the SystemQuestion entry.

MB_OK Sound in the SystemDefault entry.

433.3 Returns
None.

433.4 Errors
None.

433.5 Cross-References
MessageBox()

434 MessageBox
434.1 Synopsis

int MessageBox(HWND hWndParent, LPCSTR lpszMessage, LPCSTR lpszTitle, UINT uStyle);

- 75 -

434.2 Description
The MessageBox() function displays the null-terminated string lpszMessage in a dialog box window. The dialog box
title is set to the null-terminated string lpszTitle. The hWndParent parameter is the parent of the dialog box, this
parameter may be set to NULL for no parent. The uStyle parameter allows control over the contents and behavior of
the dialog box. It can be a combination of the following values:

MB_ABORTRETRYIGNORE The dialog has Abort, Retry, and Ignore push buttons.

MB_OK The dialog only contains the OK push button.

MB_OKCANCEL The dialog has OK and Cancel push buttons.

MB_RETRYCANCEL The dialog has Retry and Cancel push buttons.

MB_YESNO The dialog has Yes and No push buttons.

MB_YESNOCANCEL The dialog has Yes, No and Cancel push buttons.

MB_DEFBUTTON1 The first button will be the default; this is the default case if no other
buttons are specified as default.

MB_DEFBUTTON2 The second button is the default.

MB_DEFBUTTON3 The third button is the default.

MB_ICONINFORMATION The information icon appears in the dialog box.

MB_ICONASTERISK This value is the same as the MB_ICONINFORMATION option.

MB_ICONEXCLAMATION The exclamation or caution icon appears in the dialog box.

MB_ICONHAND The stop icon appears in the dialog box.

MB_ICONSTOP This value is the same as the MB_ICONHAND.

MB_ICONQUESTION The question icon appears in the dialog box.

MB_APPLMODAL The user must respond to the dialog before any of the current application
windows can be accessed; the windows of separate applications may be
accessed.

MB_SYSTEMMODAL All applications are suspended until the user responds to the dialog; the
user cannot access any other windows.

MB_TASKMODAL This value is the same as MB_APPLMODAL, except that if hWndParent
is NULL, all top-level windows are disabled.

The default handling of the dialog is MB_APPLMODAL if neither the MB_SYSTEMMODAL nor the
MB_TASKMODAL options are used.

434.3 Returns
This function returns zero, if the dialog box fails to display. If successful, the return value is one of the following:

IDABORT The Abort button was selected.

IDCANCEL The Cancel button was selected.

IDIGNORE The Ignore button was selected.

IDNO The No button was selected.

IDOK The OK button was selected.

IDRETRY The Retry button was selected.

IDYES The Yes button was selected.

If the dialog has a Cancel button and the Esc key is pressed, the dialog returns IDCANCEL.

- 76 -

434.4 Errors
None.

434.5 Cross-References
MessageBeep()

435 SetErrorMode
435.1 Synopsis

UINT SetErrorMode(UINT fuErrorMode);

435.2 Description
The SetErrorMode() function allows the application to control the appearance of MS-DOS interrupt error messages.
The fuErrorMode parameter can be a combination of the following values:

SEM_FAILCRITICALERRORS Do not display the critical-error-handler message box and return the
error to the calling application.

SEM_NOGPFAULTERRORBOX Do not display the general-protection-fault message box.

SEM_NOOPENFILEERRORBOX Do not display a message box when the system fails to find a file.

435.3 Returns
The SetErrorMode() function returns the previous value of error-mode flag, if it is successful.

435.4 Errors
None.

435.5 Cross-References
None.

436 GetExpandedName
436.1 Synopsis

int GetExpandedName(LPCSTR SourceFile, LPSTR OriginalName);

436.2 Description
The GetExpandedName() function is used to return the name of the original compressed file, SourceFile. The
extracted filename is placed in OriginalName. The prerequisites of using this function are:

- The file be compressed with COMPRESS.EXE.

- The file be compressed with the /r option.

If SourceFile is not compressed, OriginalName is extracted from SourceFile.

436.3 Returns
If GetExpandedName() is completed successfully, then TRUE is returned.

If GetExpandedName() is unsuccessful, an error code is returned (a value less than zero). One of the more common
error messages to be returned is LZERROR_BADINHANDLE, which means that the SourceFile is an incorrect file
handle. This can happen in many situations, most likely, not having used the /r option in compressing the file.

436.4 Errors
None.

436.5 Cross-References
None.

- 77 -

437 ChooseColor
437.1 Synopsis

typedef struct tagCHOOSECOLOR {

DWORD lStructSize;

HWND hWndOwner;

HINSTANCE hInstance;

COLORREF rgbResult;

COLORRE *lpCustColors;

DWORD Flags;

LPARAM lCustData;

UINT (CALLBACK *lpfnHook)(HWND,UINT,WPARAM,LPARAM);

LPCSTR lpTemplateName;

} CHOOSECOLOR, *LPCHOOSECOLOR;

BOOL ChooseColor(LPCHOOSECOLOR lpcc);

437.2 Description
The ChooseColor() function provides the user with a modal dialog box, under the control of the lpcc parameter, to
allow for the interactive selection of a color or colors. The operation of the dialog box is controlled by the Flags
member of the CHOOSECOLOR structure. Constant values for the Flags member are the following:

CC_ENABLEHOOK

CC_ENABLETEMPLATE

CC_ENABLETEMPLATEHANDLE

CC_FULLOPEN

CC_PREVENTFULLOPEN

CC_RGBINIT

CC_SHOWHELP

The layout of the dialog box controls are defined by a built-in CHOOSECOLOR dialog box template or by values
passed into the ChooseColor() function.

The default layout consists of a simple array of colors for the user to select, while the expanded layout allows the
user to define and select customized colors. The expanded view can be selected by specifying CC_FULLOPEN, and
can be disabled by setting the CC_PREVENTFULLOPEN flag.

Alternative dialog box control layouts can be specified by setting either the CC_ENABLETEMPLATE or
CC_ENABLETEMPLATEHANDLE flags. The CC_ENABLETEMPLATE selects a user defined dialog box
template resource that is accessed by using the values of the hInstance and the lpTemplateName members. If
CC_ENABLETEMPLATEHANDLE is specified, the value of hInstance is a handle to a block of memory defining
the in-memory instance of the dialog box template.

If the CC_ENABLEHOOK flag is set, the hook function pointed to by the lpfnHook member is called for any
message that is processed by the ChooseColor() function. If the hook function processes the message, then the
function should return TRUE, to prevent the ChooseColor() dialog box procedure from further processing the
message. The lCustData parameter is used to pass data through the ChooseColor() function to the user defined
hook function.

If the CC_SHOWHELP flag is set, the dialog box procedure adds a HELP button that can be pressed by the user to
receive user defined help. If hWndOwner is specified, it denotes the window that owns the dialog box, and receives
any help messages generated during the operation of ChooseColor() when the user presses HELP.

- 78 -

The rgbResult and lpCustColor members are set on input and define the initial values to be selected when the dialog
box is initialized, provided the CC_RGBINIT flag is set. On output, these values contain the selected color values,
if the function is successful.

437.3 Returns
The function returns TRUE if it is successful. The function returns FALSE if it is aborted by the user, or if an error
is encountered. If the function is successful, ChooseColor() updates the rgbResult with the users selected color. If
custom colors are defined, the lpCustColors array is filled out with 16 customized colors defined by the user.

437.4 Errors
If the ChooseColor() function is unsuccessful, or encounters a failure, a common dialog box error value is set. This
error value can be retrieved by using the CommDlgExtendedError() function. The defined errors area:

CDERR-INITIALIZATION ChooseColor() encountered an error during the dialog box initialization,
such as not enough memory, unable to create a control, or missing
components specified by Flags.

CDERR_FINDRESFAILURE ChooseColor() was unable to find one of the required resource templates.

CDERR_LOADRESFAILURE ChooseColor() was unable to load the required dialog box template.

CDERR_LOCKRESFAILURE ChooseColor() was unable to lock the dialog box template resource
needed to build the dialog box.

CDERR_LOADSTRFAILURE One of the required string resources was unable to be loaded.

CDERR_NOHINSTANCE Flags required a valid hInstance member to be specified.

CDERR_NOHOOK Flags required a hook function to be specified.

CDERR_NOTEMPLATE Flags required a valid template to be specified.

CDERR_STRUCTSIZE The size specified for the CHOOSECOLOR structure was incorrect.

437.5 Cross-References
CommDlgExtendedError(), CHOOSECOLOR

438 ChooseFont
438.1 Synopsis

typedef struct tagCHOOSEFONT {

DWORD lStructSize;

HWND hwndOwner;

HDC hdc;

LPLOGFONT lpLogFont;

int iPointSize;

DWORD Flags;

COLORREF rgbColors;

LPARAM lCustData;

UINT (CALLBACK *lpfnHook)(HWND, UINT, WPARAM, LPARAM);

HINSTANCE hInstance;

LPSTR lpszStyle;

UINT nFontType;

int nSizeMin;

- 79 -

int nSizeMax;

} CHOOSEFONT, *LPCHOOSEFONT;

BOOL ChooseFont(LPCHOOSEFONT lpcf);

438.2 Description
The ChooseFont() function provides the user with a modal dialog box, under the control of the lpcf parameter,
which allows for the interactive selection of a font. The dialog box allows all the aspects of a font to be modified.
This includes the size, as well as typeface and special effects such as bold, italics, underline, strikethrough, and
color. The operation of the dialog box is controlled by the Flags member of the CHOOSEFONT structure. The
layout of the dialog box controls are defined by a built-in CHOOSEFONT dialog box template or by values passed
to the ChooseFont() function.

Alternative dialog box control layouts can be specified by setting either the CF_ENABLETEMPLATE or
CF_ENABLETEMPLATEHANDLE flags. The CF_ENABLETEMPLATE selects a user defined dialog box
template resource that is accessed by using the values of the hInstance and the lpTemplateName members. If
CF_ENABLETEMPLATEHANDLE is specified, the hInstance value is a handle to a block of memory defining
the in-memory instance of the dialog box template. If the CF_ENABLEHOOK flag is set, then a hook function is
called (by the lpfnHook member) for any message that is processed by the ChooseFont() dialog box procedure. If
the hook function processes the message, then it should return a TRUE value to prevent the ChooseFont() dialog
box procedure from further processing the message. The lCustData member is used to pass data through the
ChooseFont() function to the user-defined hook function. On the WM_INITDIALOG message, a pointer to the
CHOOSEFONT structure is passed in LPARAM. From the pointer location, the lCustData member is available.

If the CF_SHOWHELP flag is set, the dialog box procedure adds a HELP button that can be pressed to receive
user-defined help. If hWndOwner is specified, it denotes the window that owns the dialog box and receives any
help messages that are generated during the operation of ChooseFont(), when the user presses HELP.

The lpLogFont and rgbColors members are set on input to define the initial values selected when the dialog box is
initialized, if the CF_INITTOLOGFONTSTRUCT and CF_EFFECTS flags are set. If the function runs
successfully, the following happens; on output, the structure specified by the lpLogFont member is updated with
the selected logical font and the rgbColors value is updated to the color chosen by the user. If the CF_USESTYLE
flag is set and the dialog box procedure is successful, then the lpszStyle member describes the initial style to use
and it sets the style that is selected by the user. The following flags are used to control the types of fonts dealt with
during the execution of ChooseFont():

CF_FIXEDPITCHONLY Allow only fixed pitch fonts to be displayed.

CF_FORCEFONTEXIST Make sure that the user selected font actually exists.

CF_LIMITSIZE Use the nSizeMin and nSizeMax fields to limit the users selection to
fonts in that range.

CF_PRINTERFONTS Allow only fonts that are supported by the currently selected printer
identified by the hdc parameter.

CF_SCALABLEONLY Allow only scaleable fonts to be selected.

CF_WYSIWYG Allow only the selection of those fonts that can be displayed on the
screen and the printer.

CF_BOTH Allow both printer and screen fonts to be displayed.

CF_ANSIONLY Allow only fonts that are compatible with the ANSI character set.

If the CF_APPLY flag is set, the ChooseFont() dialog box procedure enables the APPLY button. If the user presses
this button, the selected font, text colors, and special effects are applied to the hdc member and are returned to the
user in the appropriate fields of the CHOOSEFONT structure.

438.3 Returns
The function returns TRUE if the function is successful. The function returns FALSE if the function is aborted by
the user or if an error is encountered. If the function is successful, ChooseFont() updates the structure specified by

- 80 -

the lpLogFont member with the selected logical font information. If requested by the user and enabled by the caller,
the function updates the hdc member with the desired font and selected font color.

438.4 Errors
If the ChooseFont() function is unsuccessful, it returns FALSE. The error code from the CommDlgExtendedError()
function returns one of the following:

CDERR_DIALOGFAILURE The dialog box cannot be created.

CDERR_INITIALIZATION A common dialog function encountered an error during initialization of
the dialog box; for example, not enough memory, unable to create a
control.

CDERR_FINDRESFAILURE A common dialog function is unable to find one of the required resource
templates.

CDERR_LOADRESFAILURE The dialog box procedure is unable to load the required dialog box
template.

CDERR_LOCKRESFAILURE The dialog box procedure is unable to lock the dialog box template
resource needed to build the dialog box
(CDERR_LOADSTRFAILURE). One of the string resources required is
unable to be loaded.

CDERR_NOHINSTANCE Flags required the specification of a valid hInstance member.

CDERR_NOHOOK Flags required the specification of a hook function.

CDERR_NOTEMPLATE Flags required the specification of a valid template.

CDERR_REGISTERMSGFAIL The function RegisterWindowMessage() failed to register the defined
help string message.

CDERR_STRUCTSIZE The size specified for the CHOOSEFONT structure is incorrect.

CFERR_NOFONTS No fonts are found that match the user request.

CFERR_MAXLESSTHANMIN The maximum size of the font specified is less than the minimum sized
specified.

438.5 Cross-References
CommDlgExtendedError(), CHOOSEFONT

439 FindText, ReplaceText
439.1 Synopsis

typedef struct tagFINDREPLACE{

- 81 -

DWORD lStructSize;

HWND hwndOwner;

HINSTANCE hInstance;

DWORD Flags;

LPSTR lpstrFindWhat;

LPSTR lpstrReplaceWith;

UINT wFindWhatLen

UINT wReplaceWithLen;

LPARAM lCustData;

UINT (CALLBACK *lpfnHook)(HWND, UINT, WPARAM, LPARAM)

LPCSTR lpTemplateName;

} FINDREPLACE, *LPFINDREPLACE;

HWND FindText(LPFINDREPLACE lpfr);

HWND ReplaceText(LPFINDREPLACE lpfr);

439.2 Description
The FindText() and ReplaceText() functions create modeless dialaog boxes, under the control of the lpfr parameter,
that make it possible for users to find text within a document.

Alternative dialog box control layouts can be specified either by setting the FR_ENABLETEMPLATE or
FR_ENABLETEMPLATEHANDLE flag. The FR_ENABLETEMPLATE flag selects a user defined dialog box
template resource that is accessed by using the values of the hInstance and the lpTemplateName members. If
FR_ENABLETEMPLATEHANDLE is specified, the hInstance value is a handle to a block of memory defining
the in-memory instance of the dialog box template. If the FR_ENABLEHOOK flag is set, then the lpfnHook
function is called for any message that will be processed by the dialog box procedure. If the hook function processes
the message, then it should return a non-zero value to prevent the dialog box procedure from further processing the
message. The lCustData member is available to pass data through the dialog box function to the user-defined hook
function. On the WM_INITDIALOG message, a pointer to the FINDREPLACE structure is passed in LPARAM.
From the pointer location, the lCustData member is available.

If the FR_SHOWHELP flag is set, the dialog box procedure adds a HELP button that can be pressed to receive user
defined help. If the hwndOwner member is specified, it denotes the window that owns the dialog box, and receives
any help messages that are generated while operating the dialog box.

The following flags can be set to further configure the dialog box layout:

FR_HIDEMATCHCASE This flag causes the Match Case checkbox to be disabled by hiding the
control, thus preventing the user from changing its value.

FR_NOMATCHCASE This flag causes the Match Case checkbox to be disabled.

FR_HIDEWHOLEWORLD This flag causes the Whole Word checkbox to be disabled by hiding the
control, thus preventing the user from changing its value.

FR_NOWHOLEWORLD This flag causes the Whole Word check box to be disabled.

FR_HIDEUPDOWN This flag causes the Up Down buttons to be disabled by hiding the
control, thus preventing the user from changing its value.

FR_NOUPDOWN This flag causes the Up Down buttons to be disabled.

After the dialog box is created, it communicates with its parent window through the use of the special registered
messages, FINDMSGSTRING and REPLACEMSGSTRING. The dialog box procedure fills out the
lpstrFindWhat and lpstrReplaceWith buffers and updates the Flags member to reflect the current dialog box
values before sending the message to hwndOwner. The LPARAM of this message is a pointer to the
FINDREPLACE structure where the Flags value has been modified to contain the following bits:

- 82 -

FR_FINDNEXT The application should search for the next occurrence of the string
specified by the lpstrFindWhat member; the search should use the
additional flag bits to determine what direction to search, whether to
match upper and lower case, and whether a wholeword should be
matched.

FR_REPLACE The application should replace the current selection string given by
lpstrFindWhat with the string given by lpstrReplaceWith.

FR_REPLACEALL Similar to FR_REPLACE, this replaces all occurrences of the string
given by lpstrFindWhat with lpstrReplaceWith.

FR_DOWN The search should proceed downward in the document.

FR_MATCHCASE The match for a string should be identical to the string given by
lpstrFindWhat .

FR_WHOLEWORD The match for a string should be identical to a whole word only and not
parts of a word.

439.3 Returns
FindText() and ReplaceText() return the handle of the system modeless dialog box, or NULL, if there is an error in
creating the dialog box.

439.4 Errors
If the FindText() or ReplaceText() function is unsuccessful, it returns NULL. The error code can be retrieved by
calling the CommDlgExtendedError() function. The value returned by the function is one of the following error
codes:

CDERR_DIALOGFAILURE The dialog box could not be created.

CDERR_INITIALIZATION A common dialog function encountered an error during initialization of
the dialog box, such as not enough memory, unable to create a control.

CDERR_FINDRESFAILURE A common dialog function was unable to find one of the resource
templates that are required to function.

CDERR_LOADRESFAILURE The dialog box procedure was unable to load the required dialog box
template.

CDERR_LOCKRESFAILURE The dialog box procedure was unable to lock the dialog box template
resource needed to build the dialog box.

CDERR_LOADSTRFAILURE One of the string resources required was unable to be loaded.

CDERR_NOHINSTANCE Flags required a valid hInstance member to be specified.

CDERR_NOHOOK Flags required a hook function to be specified.

CDERR_NOTEMPLATE Flags required a valid template to be specified.

CDERR_REGISTERMSGFAIL The function RegisterWindowMessage() failed to register the defined
help string message.

CDERR_STRUCTSIZE The size specified for the FINDREPLACE structure was incorrect.

439.5 Cross-References
IsDialogMessage(), RegisterWindowMessage(), CommDlgExtendedError(), FINDREPLACE

440 GetOpenFileName, GetSaveFileName
440.1 Synopsis

typedef struct tagOPENFILENAME{

DWORD lStructSize;

- 83 -

HWND hwndOwner;

HINSTANCE hInstance;

LPCSTR lpstrFilter;

LPSTR lpstrCustomFilter;

DWORD nMaxCustFilter;

DWORD nFilterIndex;

LPSTR lpstrFile;

DWORD nMakeFile

LPSTR lpstrFileTitle;

DWORD nMaxFileTitle;

LPCSTR lpstrInitialDir;

LPCSTR lpstrTitle;

DWORD Flags;

UINT nFileOffset;

UINT nFileExtension;

LPCSTR lpstrDefExt;

LPARAM lCustData;

UINT (CALLBACK *lpfnHook)(HWND, UINT, WPARAM, LPARAM);

LPCSTR lpTemplateName;

} OPENFILENAME, *LPOPENFILENAME;

BOOL GetOpenFileName(LPOPENFILENAME lpof);

BOOL GetSaveFileName(LPOPENFILENAME lpof);

440.2 Description
The GetOpenFileName() and GetSaveFileName() functions provide the user with a modal dialog box, under the
control of the lpof parameter, which allows for the interactive selection of a file, with the ability to open, create and
verify the file. The operation of the dialog box is controlled by the Flags member of the OPENFILENAME
structure. The layout of the dialog box controls are defined by the built-in GETOPENFILENAME and
GETSAVEFILENAME dialog box template or by values passed in the LPOPENFILENAME structure.

Alternative dialog box control layouts can be specified by setting either the OFN_ENABLETEMPLATE or
OFN_ENABLETEMPLATEHANDLE flags. The OFN_ENABLETEMPLATE selects a user defined dialog box
template resource that is accessed by using the values of the hInstance and the lpTemplateName members. If
OFN_ENABLETEMPLATEHANDLE is specified, the hInstance value is a handle to a block of memory defining
the in-memory instance of the dialog box template. If the OFN_ENABLEHOOK flag is set, then the lpfnHook
function is called for any message that is processed by the dialog box procedure. If the hook function processes the
message, it should return a non-zero value to prevent the dialog box procedure from further processing the message.
The lCustData member is available to pass data through the dialog box function to the user defined hook function.
A pointer to the OPENFILENAME structure is passed in lParam of the WM_INITDIALOG message. From there
the lCustData member is available.

If the OFN_SHOWHELP flag is set, the dialog box procedure adds a HELP button that is pressed by the user to
receive user-defined help. If hWndOwner is specified, it denotes the window that owns the dialog box, and
receives any help messages generated during the operation of modal dialog box procedure, when the user presses
HELP.

- 84 -

If the OFN_HIDEREADONLY flag is set, then the Read Only check box is hidden during dialog box initialization.
If the OFN_READONLY flag is set, then the Read Only check box is initialized and displayed. When the dialog
box procedure completes successfully, this bit will contain the last state of the Read Only check box.

The dialog box procedures use the following flags to control the operation of the file dialog boxes:

OFN_FILEMUSTEXIST Only files listed in the file list box may be entered by the user in the
filename edit control; filenames that do not match bring up a message
box indicating that only matching names are allowed.

OFN_PATHMUSTEXIST Similar to the OFN_FILEMUSTEXIST flag, the user may enter valid
pathnames in the filename edit control.

OFN_NOCHANGEDIR On exiting from the dialog box procedure, the dialog box restores the
current working directory to its first initialized state.

OFN_NOREADONLYRETURN This ensures that the selected filename cannot be read-only or in a read-
only directory.

OFN_NOTESTFILECREATE For the GetSaveFileName() function, this flag prevents the function from
creating the file specified by the user.

OFN_NOVALIDATE If a hook procedure is used, the filename selected by the user is validated
by filling out the OPENFILENAME structure and sending the register
message FILEOKSTRING; this flag prevents the dialog box from
attempting to validate the filename.

OFN_OVERWRITEPROMPT This flag causes the GetSaveFileName() function to prompt the user if an
attempt is made to select an existing file.

440.3 Returns
The function returns TRUE if it is successful, or if the OK button is pressed to exit the dialog, or a filename is
selected with a double-click. The function returns FALSE if the function is aborted by the user or if an error is
encountered. If the function is successful, the following fields are updated by the dialog box procedure:

nFilterIndex This field represents the index of the filters that were last active.

lpstrFile This field is filled out with the complete pathname of the desired
filename; its size is limited by the nMaxFile member.

lpstrFileTitle This field represents just the filename and any extension, with no path
information; it either contains the filename and any extension or it is
NULL. Its size is limited in length by the nMaxFileTitle member.

Flags The OFN_EXTENSIONDIFFERENT and OFN_READONLY flags are
updated to reflect the current settings.

nFileOffset This field is set to the index in lpstrFile that starts the actual filename;
this field excludes all path information.

nFileExtension This field is set to the index in lpstrFile that starts the actual extension of
the filename; this filed excludes all path information.

440.4 Errors
If GetOpenFileName() or GetSaveFileName() are unsuccessful, they return NULL. The error code is determined
from CommDlgExtendedError(), which returns one of the following:

CDERR_DIALOGFAILURE The dialog box cannot be created.

CDERR_INITIALIZATION A common dialog function encountered an error during initialization of
the dialog box, such as not enough memory or unable to create a control.

CDERR_FINDRESFAILURE A common dialog function is unable to find one of the required resource
templates.

- 85 -

CDERR_LOADRESFAILURE The dialog box procedure is unable to load the required dialog box
template.

CDERR_LOCKRESFAILURE The dialog box procedure is unable to lock the dialog box template
resource needed to build the dialog box.

CDERR_LOADSTRFAILURE One of the string resources required cannot be loaded.

CDERR_NOHINSTANCE Flags required a valid hInstance member to be specified.

CDERR_NOHOOK Flags required a hook function to be specified.

CDERR_NOTEMPLATE Flags required a valid template to be specified.

CDERR_REGISTERMSGFAIL The function RegisterWindowMessage() failed to register the defined
help string message.

CDERR_STRUCTSIZE The size specified for the OPENFILENAME structure is incorrect.

FNERR_INVALIDFILENAME The filename is not a legal filename.

440.5 Cross-References
RegisterWindowMessage(), CommDlgExtendedError(), OPENFILENAME

441 GetFileTitle
441.1 Synopsis

int GetFileTitle(LPCSTR lpszFile, LPSTR lpszTitle, UINT nSize);

441.2 Description
The GetFileTitle() function is a utility that extracts the actual filename from a filename specification, lpszFile, that
includes path information. The filename specification must be a valid filename or an error occurs. To be valid the
function must be non-null and contain no wildcard characters. It also must not be a directory reference and it must
fit into the file title buffer. The actual filename is stored in the buffer lpszTitle. The nSize parameter is the size of
lpszTitle in bytes.

441.3 Returns
GetFileTitle() returns zero if successful. If the filename supplied is not a valid filename, a negative number is
returned. If the buffer is too small, a positive number is returned that identifies the required size of the file title
buffer including a null terminator.

441.4 Errors
None.

441.5 Cross-References
None.

442 PrintDlg
442.1 Synopsis

BOOL PrintDlg(PRINTDLG *PrintDlgPtr);

442.2 Description
The PrintDlg() function shows the Print or Print Setup common dialog box. The PrintDlgPtr parameter is a pointer
to a PRINTDLG structure that contains initialization information for the dialog box.

442.3 Returns
If the PrintDlg() function configures the printer, it returns TRUE. If the user closes the dialog box by pressing the
Cancel button or by selecting the System menu's Close menu item, the PrintDlg() function returns FALSE. If the
following sequence of steps are performed, the PrintDlg() function will also return FALSE:

- 86 -

1) The user presses the Setup button.

2) The user presses the OK button in the Print Setup dialog box.

3) The user presses the Cancel button in the Print dialog box.

The function CommDlgExtendedError() can be used to retrieve an error value.

442.4 Errors
None.

442.5 Cross-References
PRINTDLG

443 CommDlgExtendedError
443.1 Synopsis

DWORD CommDlgExtendedError(void);

443.2 Description
The last error encountered during execution of one of the common dialog functions is saved and can be retrieved by
this function. Executing any common dialog box procedure successfully will clear the saved value.

443.3 Returns
If the last common dialog function was successful, the CommDlgExtendedError() function returns zero. Otherwise,
the CommonDlgExtendedError() function returns one of the following:

CDERR_DIALOGFAILURE The dialog box could not be created.

CDERR_INITIALIZATION A common dialog function encountered an error during initialization of
the dialog box, such as not enough memory, or unable to create a control.

CDERR_FINDRESFAILURE A common dialog function was unable to find one of the resource
templates that are required to function.

CDERR_LOADRESFAILURE The dialog box procedure was unable to load the required dialog box
template.

CDERR_LOCKRESFAILURE The dialog box procedure was unable to lock the dialog box template
resource needed to build the dialog box.

CDERR_LOADSTRFAILURE One of the string resources required was unable to be loaded.

CDERR_NOHINSTANCE Flags required a valid hInstance parameter to be specified.

CDERR_NOHOOK Flags required a hook function to be specified.

CDERR_NOTEMPLATE Flags required a valid template to be specified.

CDERR_REGISTERMSGFAIL The function RegisterWindowMessage() failed to register the defined
help string message.

CDERR_STRUCTSIZE The size specified for the structure was incorrect.

443.4 Errors
None.

443.5 Cross-References
ChooseColor(), ChooseFont(), FindText(), ReplaceText(), GetFileTitle(), GetOpenFileName(), GetSaveFileName(),
PrintDlg()

- 87 -

444 MulDiv
444.1 Synopsis

int MulDiv(int Multiplicand, int Multiplier, int Divisor);

444.2 Description
The MulDiv() function performs the following operation:

(Multiplicand * Multiplier) / Divisor = return value

444.3 Returns
This function returns the result of the multiplication and division. If either an overflow occurs or the divisor is zero.
(the system is trying to divide by zero) the return value will be -32,768.

444.4 Errors
None.

444.5 Cross-References
None.

Printed copies can be ordered from:

ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

Fax: +41 22 849.60.01
Internet: helpdesk@ecma.ch

Files can be downloaded from our FTP site, ftp.ecma.ch, logging in as anonymous and giving your E-mail address as
password. This Standard is available from library ECMA-ST as MSWord 6.0 files (E-234-V1.DOC, E-234-V2.DOC, E-234-
V3.DOC), as PostScript files (E-234-V1.PSC, E-234-V2.PSC, E-234-V3.PSC) and as Acrobat files (E-234-V1.PDF, E-234-
V2.PDF, E-234-V3.PDF).

The ECMA site can be reached also via a modem. The phone number is +41 22 735.33.29, modem settings are 8/n/1. Telnet
(at ftp.ecma.ch) can also be used.

Our web site, http://www.ecma.ch, gives full information on ECMA, ECMA activities, ECMA Standards and Technical
Reports.

ECMA

114 Rue du Rhône
CH-1204 Geneva
Switzerland

This Standard ECMA-234 is available free of charge in printed form and as a file.

See inside cover page for instructions

