
Standard ECMA-234
December 1995

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S y s t e ms

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: h t tp : / /www.ecma.ch - In ternet : he lpdesk@ecma.ch

Application Programming
Interface for Windows

Volume 3
Annexes

Standard ECMA-234
December 1995

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S y s t e ms

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: h t tp : / /www.ecma.ch - In ternet : he lpdesk@ecma.ch

GL E-234-V3.DOC 07-03-96 16,08

Application Programming
Interface for Windows

Brief History

The APIW Standard is a functional specification of the Microsoft Windows 3.1 application programming interface. It is based
on existing implementations (including Microsoft and others) and behavior. The goal of writing this specification is to define an
environment in which:

− applications written to this baseline will be portable to all implementations of the APIW Standard.

− the interface can be enriched through open standards processes to meet current and future user needs in a timely fashion.

APIW uses the current C language binding, and reflects existing coding practices to ensure that current applications will
conform to this standard. The APIs documented in this standard shall accurately reflect existing implementations of the
windows APIs. If an application that runs with an existing implementation uses one or more APIs contrary to the way it is
described in the standard, the standard will be changed to accurately reflect the behavior.

The APIW Standard defines a set of application programming interfaces that allow for the creation of graphical applications
spanning a wide range of capabilities. The standard groups these APIs into major functional areas including a window manager
interface, a graphics device interface and interfaces necessary for accessing system resources and capabilities. The API
requirements of today’s major desktop applications are reflected in this specification and are the criteria for determining the
APIW content.

The APIW Standard focuses on providing the necessary APIs for writing applications for the desktop, and also allows
additional APIs to be bound to an application. This feature enables services outside the scope of a standard desktop application
to be provided, for example, database, networking or other system services.

The APIW Standard defines the basic graphical use interface objects, such as buttons, scrollbars, menus, static and edit
controls, and the painting functions to draw them, such as area fill, and line and rectangle drawing. Finally, a rich set of text
routines in defined, from simple text output to more complex text output routines using multiple founts and font styles, all
supporting the use of color.

The APIW Standard is documented in five sections, corresponding loosely to the four functional subsystems represented by the
API and the conformance clause. The four APIW sections cover window management, graphical interface, system services and
an application support services section. These functions cover window creation and management, graphics routines to paint text
and other graphics objects in those windows, functions to access system resources such as files and timers, and finally, common
support functions to accelerate the development of graphical window-based applications.

The APIW Window Subsystem section of the standard covers the creation, deletion and management of the window, including
window positioning and sizing and the sending and receiving of messages. Within each of these window management
subsections are routines that significantly extend the basic functions. With window creation, there are many types of windows
that can be created including built-in classes and user-definable classes, that have the ability to modify the style of any one of
the built-in classes. Additional functions are defined to affect the display of a window, including functions to modify the
windows menu, scrollbars, and the display of carets or cursors within the window. With multiple overlapped windows being
displayed simultaneously, functions are defined to manage the position and size of those windows, as well as to control the
visibility of a window and its associated icon when it is minimized.

The APIW Window Subsystem section also defines a set of functions for managing a subset of the user interface, referred to as
dialog boxes. These functions allow for the creation and management of the dialog box, as well as the user interaction with the
dialog box up to its closure. Utility functions are defined to make designing and using a dialog box easier. These utilities
provide common dialog box functions, such as group boxes and check boxes, as well as file interface functions to list files and
directories. Each of these dialog boxes are controlled by the use of dialog box templates that are stored in resource files.

The APIW Graphics Subsystem section covers all aspects of actually drawing in a window. These aspects include line drawing,
text output, graphics primitives, such as rectangles and ellipses, as well as more sophisticated routines such as floodfill(),
bitblts() and stretchblt(). The Graphics Device Interface defines bitmaps, icons, cursors and carets, as well as functions to
provide for a portable graphics file format called metafiles. The Graphics Device Interface defines a logical coordinate space to
further abstract the underlying hardware and has functions to map between the logical and physical coordinate space. The
Graphics Device Interface defines utility functions for all drawing routines that use pens, brushes and regions to get precise
control over how graphical objects will be drawn.

The APIW System Services section defines platform-independent routines for an application to query the system environment
and access system services. System services that may be accessed include memory, timers, the keyboard and the native file
system. There are subsections that deal with resources, device I/O and system diagnostic routines. Resource management

allows for the loading and unloading of user- and system-defined resources, such as icons, bitmaps and strings. Device I/O
includes both parallel and serial port input and output operations. System diagnostic routines enable an application or
diagnostic tool to examine the state of an application, including memory utilization, task information and stack usage.

The APIW Application Support Function section defines miscellaneous functions that can be used by a developer in an
application. These utility functions define built-in services that a developer does not have to rewrite with each application.
These service functions include debugging routines and simple user interface routines to provide graphical feedback to a user.
They also include routines for file compression and decompression, standardized routines to retrieve application version
information and routines to manage initialization files.

Adopted as an ECMA Standard by the General Assembly of December 1995.

- i -

Table of contents

Annex A - Supported Windows 3.1 Functions 1

Annex B - Unsupported Windows 3.1 Functions 9

Annex C - Data Structures 13

Annex D - Window Messages 69

Annex E - Control Notifications 151

Annex F - Window Styles 159

Annex G - Macros 167

Annex H - Binary Raster Operations 177

Annex A

Supported Windows 3.1 Functions

A.1 Description
The following table is an alphabetical list of the supported Windows 3.1 functions.

_lclose BringWindowToTop CreateBitmap
_lcreate BuildCommDCB CreateBitmapIndirect
_llseek CallMsgFilter CreateBrushIndirect
_lopen CallNextHookEx CreateCaret
_lread CallWindowProc CreateCompatibleBitmap
_lwrite CallWndProc CreateCompatibleDC
AbortDoc Catch CreateCursor
AbortProc ChangeClipboardChain CreateDC
AddAtom CheckDlgButton CreateDialog
AddFontResource CheckMenuItem CreateDialogIndirect
AdjustWindowRect CheckRadioButton CreateDialogIndirectParam
AdjustWindowRectEx ChildWindowFromPoint CreateDialogParam
AllocResource ChooseColor CreateDIBitmap
AnimatePalette ChooseFont CreateDIBPatternBrush
AnsiLower Chord CreateDiscardableBitmap
AnsiLowerBuf ClearCommBreak CreateEllipticRgn
AnsiNext ClientToScreen CreateEllipticRgnIndirect
AnsiPrev ClipCursor CreateFont
AnsiToOem CloseClipboard CreateFontIndirect
AnsiToOemBuff CloseComm CreateHatchBrush
AnsiUpper CloseMetaFile CreateIC
AnsiUpperBuf CloseWindow CreateIcon
AnyPopup CombineRgn CreateMenu
AppendMenu CommDlgExtendedError CreateMetaFile
Arc CopyCursor CreatePalette
ArrangeIconicWindows CopyIcon CreatePatternBrush
BeginDeferWindowPos CopyMetaFile CreatePen
BeginPaint CopyRect CreatePenIndirect
BitBlt CountClipboardFormats CreatePolygonRgn

- 2 -

CreatePolyPolygonRgn DispatchMessage EnumObjectsProc

CreatePopupMenu DlgDirList EnumProps

CreateRectRgn DlgDirListComboBox EnumPropsProc

CreateRectRgnIndirect DlgDirSelect EnumTaskWindows

CreateRoundRectRgn DlgDirSelectComboBox EnumTaskWndProc

CreateSolidBrush DlgDirSelectComboBoxEx EnumWindows

CreateWindow DlgDirSelectEx EnumWindowsProc

CreateWindowEx DPtoLP EqualRect

DebugOutput DrawFocusRect EqualRgn

DefDlgProc DrawIcon Escape

DeferWindowPos DrawMenuBar EscapeCommFunction

DefFrameProc DrawText ExcludeClipRect

DefHookProc Ellipse ExcludeUpdateRgn

DefMDIChildProc EmptyClipboard ExitWindows

DefWindowProc EnableCommNotification ExtDeviceMode

DeleteAtom EnableMenuItem ExtFloodFill

DeleteDC EnableScrollBar ExtractIcon

DeleteMenu EnableWindow ExtTextOut

DeleteMetaFile EndDeferWindowPos FatalAppExit

DeleteObject EndDialog FatalExit

DestroyCaret EndDoc FillRect

DestroyCursor EndPage FillRgn

DestroyIcon EndPaint FindAtom

DestroyMenu EnumChildProc FindExecutable

DestroyWindow EnumChildWindows FindResource

DeviceCapabilities EnumClipboardFormats FindText

DeviceMode EnumFontFamProc FindWindow

DialogBox EnumFontProc FlashWindow

DialogBoxIndirect EnumFonts FloodFill

DialogBoxIndirectParam EnumFontsFamilies FlushComm

DialogBoxParam EnumMetaFile FrameRect

DialogProc EnumMetaFileProc FrameRgn

DirectedYield EnumObjects FreeLibrary

- 3 -

FreeModule GetCommEventMask GetKeyNameText

FreeProcInstance GetCommState GetKeyState

FreeResource GetCurrentPosition GetLastActivePopup

GetActiveWindow GetCurrentPositionEx GetMapMode

GetAspectRatioFilter GetCurrentTask GetMenu

GetAspectRatioFilterEx GetCurrentTime GetMenuCheckMarkDimensions

GetAsyncKeyState GetCursor GetMenuItemCount

GetAtomName GetCursorPos GetMenuItemID

GetBitmapBits GetDC GetMenuState

GetBitMapDimension GetDCEx GetMenuString

GetBitMapDimensionEx GetDCOrg GetMessage

GetBkColor GetDeskTopWindow GetMessageExtraInfo

GetBkMode GetDeviceCaps GetMessagePos

GetBoundsRect GetDialogBaseUnits GetMessageTime

GetBrushOrg GetDIBits GetMetaFile

GetBrushOrgEx GetDlgCtrlID GetMetaFileBits

GetCapture GetDlgItem GetModuleFileName

GetCaretBlinkTime GetDlgItemInt GetModuleHandle

GetCaretPos GetDlgItemText GetModuleUsage

GetCharABCWidths GetDoubleClickTime GetMsgProc

GetCharWidth GetDriveType GetNearestColor

GetClassInfo GetExpandedName GetNearestPaletteIndex

GetClassLong GetFileTitle GetNextDlgGroupItem

GetClassName GetFocus GetNextDlgTabItem

GetClassWord GetFontData GetNextWindow

GetClientRect GetFreeSpace GetNumTasks

GetClipboardData GetFreeSystemResources GetObject

GetClipboardFormatName GetInputState GetOpenClipboardWindow

GetClipboardOwner GetInstanceData GetOpenFileName

GetClipboardViewer GetKBCodePage GetOutlineTextMetrics

GetClipBox GetKerningPairs GetPaletteEntries

GetClipCursor GetKeyboardState GetParent

GetCommErrror GetKeyboardType GetPixel

- 4 -

GetPolyFillMode GetTextFace GlobalFlags

GetPriorityClipboardFormat GetTextMetrics GlobalFree

GetPrivateProfileInt GetTickCount GlobalGetAtomName

GetPrivateProfileString GetTimerResolution GlobalHandle

GetProcAddress GetTopWindow GlobalLock

GetProfileInt GetUpdateRect GlobalLRUNewest

GetProfileString GetUpdateRgn GlobalLRUOldest

GetProp GetVersion GlobalNotify

GetQueueStatus GetViewportExt GlobalReAlloc

GetRasterizerCaps GetViewportExtEx GlobalSize

GetRgnBox GetViewportOrg GlobalUnfix

GetROP2 GetViewportOrgEx GlobalUnlock

GetSaveFileName GetWindow GrayString

GetScrollPos GetWindowDC GrayStringProc

GetScrollRange GetWindowExt HideCaret

GetStockObject GetWindowExtEx HiLiteMenuItem

GetStretchBltMode GetWindowLong InflateRect

GetSubMenu GetWindowOrg InitAtomTable

GetSysColors GetWindowOrgEx InSendMessage

GetSysModalWindow GetWindowPlacement InsertMenu

GetSystemDirectory GetWindowRect IntersectClipRect

GetSystemMenu GetWindowsDir IntersectRect

GetSystemMetrics GetWindowTask InvalidateRect

GetSystemPaletteEntries GetWindowText InvalidateRgn

GetSystemPaletteUse GetWindowTextLength InvertRect

GetTabbedTextExtent GetWindowWord InvertRgn

GetTempDrive GetWinFlags IsBadCodePtr

GetTempFileName GlobalAddAtom IsBadHugeReadPtr

GetTextAlign GlobalAlloc IsBadHugeWritePtr

GetTextCharacterExtra GlobalCompact IsBadReadPtr

GetTextColor GlobalDeleteAtom IsBadStringPtr

GetTextExtent GlobalFindAtom IsBadWritePtr

GetTextExtentPoint GlobalFix IsCharAlpha

- 5 -

IsCharAlphaNumeric LocalCompact MulDiv

IsCharLower LocalFirst NotifyProc

IsCharUpper LocalFlags OemKeyScan

IsChild LocalFree OemToAnsi

IsClipboardFormatAvailable LocalHandle OemToAnsiBuff

IsDBCSLeadByte LocalInit OffsetClipRgn

IsDialogMessage LocalLock OffsetRect

IsDlgButtonChecked LocalNext OffsetRgn

IsGDIObject LocalRealloc OffsetViewportOrg

IsIconic LocalShrink OffsetViewportOrgEx

IsMenu LocalSize OffsetWindowOrg

IsRectEmpty LocalUnlock OffsetWindowOrgEx

IsTask LockInput OpenClipboard

IsWindow LockResource OpenComm

IsWindowEnabled LockWindowUpdate OpenFile

IsWindowVisible LPtoDP OpenIcon

IsZoomed lstrcat OutputDebugString

KillTimer lstrcmp PaintRgn

LibMain lstrcmpi PatBlt

LineDDA lstrcpy PeekMessage

LineDDAProc lstrcpyn Pie

LineTo lstrlen PlayMetaFile

LoadBitmap MakeProcInstance PlayMetaFileRecord

LoadCursor MapDialogRect Polygon

LoadIcon MapVirtualKey PolyLine

LoadLibrary MapWindowPoints PolyPolygon

LoadMenu MessageBeep PostAppMessage

LoadMenuIndirect MessageBox PostMessage

LoadModule MessageProc PostQuitMessage

LoadProc ModifyMenu PrintDlg

LoadResource MoveTo PtInRect

LoadString MoveToEx PtInRegion

LocalAlloc MoveWindow PtVisible

- 6 -

QueryAbort ScaleWindowExtEx SetDlgItemInt

QuerySendMessage ScreenToClient SetDlgItemText

ReadComm ScrollDC SetDoubleClickTime

RealizePalette ScrollWindow SetErrorMode

Rectangle ScrollWindowEx SetFocus

RectInRegion SelectClipRgn SetHandleCount

RectVisible SelectObject SetKeyboardState

RedrawWindow SelectPalette SetMapMode

RegCloseKey SendDlgItemMessage SetMapperFlags

RegCreateKey SendMessage SetMenu

RegDeleteKey SetAbortProc SetMessageQueue

RegEnumKey SetActiveWindow SetMetaFileBits

RegisterClass SetBitmapBits SetMetaFileBitsBetter

RegisterClipboardFormat SetBitMapDimension SetPaletteEntries

RegisterWindowMessage SetBitMapDimensionEx SetParent

RegOpenKey SetBkColor SetPixel

RegQueryValue SetBkMode SetPolyFillMode

RegSetValue SetBoundsRect SetProp

ReleaseCapture SetBrushOrg SetRect

ReleaseDC SetCapture SetRectEmpty

RemoveFontResource SetCaretBlinkTime SetRectRgn

RemoveMenu SetCaretPos SetResourceHandler

RemoveProp SetClassLong SetROP2

ReplaceText SetClassWord SetScrollPos

ReplyMessage SetClipboardData SetScrollRange

ResetDC SetClipboardViewer SetStretchBltMode

ResizePalette SetCommBreak SetSysColors

RestoreDC SetCommEventMask SetSysModalWindow

RoundRect SetCommState SetSystemPaletteUse

SaveDC SetCursor SetTextAlign

ScaleViewportExt SetCursorPos SetTextCharacterExtra

ScaleViewportExtEx SetDIBits SetTextColor

ScaleWindowExt SetDIBitsToDevice SetTextJustification

- 7 -

SetTimer SpoolFile UnionRect

SetViewportExt StartDoc UnrealizeObject

SetViewportExtEx StartPage UnregisterClass

SetViewportOrg StretchBlt UpdateColors

SetViewportOrgEx StretchDIBits UpdateWindow

SetWindowExt SubtractRect ValidateRec

SetWindowExtEx SwapMouseButton ValidateRgn

SetWindowLong SysMsgProc VkKeyScan

SetWindowOrg SystemParametersInfo WaitMessage

SetWindowOrgEx TabbedTextOut WEP

SetWindowPlacement TextOut WindowFromPoint

SetWindowPos Throw WindowProc

SetWindowsHook TimerProc WinExec

SetWindowsHookEx ToAscii WinHelp

SetWindowText TrackPopupMenu WinMain

SetWindowWord TranslateAccelerator WriteComm

ShowCaret TranslateMDISysAccel WritePrivateProfileString

ShowCursor TranslateMessage WriteProfileString

ShowOwnedPopups TransmitCommChar wsprintf

ShowScrollBar UngetCommChar wsvprintf

ShowWindow UnhookWindowsHook Yield

SizeofResource UnhookWindowsHookEx

- 8 -

- 9 -

Annex B

Unsupported Windows 3.1 Functions

B.1 Description
This annex lists unsupported Windows 3.1 functions by functional group.

B.1.1 Compression Functions

CopyLZFile LZDone LZOpenFile LZSeek

LZClose LZIni LZRead LZStart

B.1.2 Control Panel Functions

CPlApplet

B.1.3 DDE Functions

DdeAbandonTransaction DdeConnectList DdeFreeStringHandle DdeQueryConvInfo

DdeAccessData DdeCreateDataHandle DdeGetData DdeQueryNextServer

DdeAddData DdeCreateStringHandle DdeGetLastError DdeQueryString

DdeCallback DdeDisconnect DdeInitialize DdeReconnect

DdeClientTransaction DdeDisconnectList DdeKeepStringHandle DdeSetUserHandle

DdeCmpStringHandles DdeEnableCallback DdeNameService DdeUnaccessData

DdeConnect DdeFreeDataHandle DdePostAdvise DdeUninitialize

B.1.4 Debugging Functions

DebugBreak GetWinDebugInfo SetWinDebugInfo

DebugProc LogError ValidateCodeSegments

GetSystemDebugState LogParamError ValidateFreeSpaces

B.1.5 Drag and Drop Functions

DragAcceptFiles DragFinish DragQueryFile DragQueryPoint

B.1.6 Driver Functions

CloseDriver DefDriverProc DriverProc GetDriverInfo

GetDriverModuleHandle GetNextDriver OpenDriver SendDriverMessage

B.1.7 Edit Control Functions

WordBreakProc

B.1.8 File I/O Functions

_hread _hwrite

B.1.9 File Manager Functions

UndeleteFile

- 10 -

B.1.10 Font Functions

CreateScalableFontResource GetGlyphOutline

B.1.11 Hardware Functions

EnableHardwareInput

B.1.12 Hook Call-Back Functions

CBTProc JournalPlaybackProc KeyboardProc ShellProc

HardwareProc JournalRecordProc MouseProc

B.1.13 Memory Management Functions

GlobalDosAlloc hmemcopy SetSelectorLimit UnlockSegment

GlobalDosFree LimitEmsPages SetSwapAreaSize

GetSelectorBase LockSegment SwitchStackBack

GetSelectorLimit SetSelectorBase SwitchStackTo

B.1.14 Module Management Functions

GetCodeHandle

B.1.15 Message Functions

hardware_event

B.1.16 Networking Functions

WNetAddConnection WNetCancelConnection WNetGetConnection

- 11 -

B.1.17 OLE Functions

OleActivate OleEqual OleQueryReleaseMethod OleRevokeObject

OleBlockServer OleExecute OleQueryReleaseStatus OleRevokeServer

OleClone OleGetData OleQueryServerVersion OleRevokeServerDoc

OleClose OleGetLinkUpdateOptions OleQuerySize OleSavedClientDoc

OleCopyFromLink OleIsDcMeta OleQueryType OleSavedServerDoc

OleCopyToClipboard OleLoadFromStream OleReconnect OleSaveToStream

OleCreate OleLockServer OleRegisterClientDoc OleSetBounds

OleCreateFromClip OleObjectConvert OleRegisterServer OleSetColorScheme

OleCreateFromFile OleQueryBounds OleRegisterServerDoc OleSetData

OleCreateFromTemplate OleQueryClientVersion OleRelease OleSetHostNames

OleCreateInvisible OleQueryCreateFromClip OleRename OleSetLinkUpdateOptions

OleCreateLinkFromClip OleQueryLinkFromClip OleRenameClientDoc OleSetTargetDevice

OleCreateLinkFromFile OleQueryName OleRenameServerDoc OleUnblockServer

OleDelete OleQueryOpen OleRequestData OleUnlockServer

OleDraw OleQueryOutOfDate OleRevertClientDoc OleUpdate

OleEnumFormats OleQueryProtocol OleRevertServerDoc Open

OleEnumObjects OleQueryReleaseError OleRevokeClientDoc

B.1.18 Profiler Functions

ProfClear ProfFinish ProfFlush ProfInsChk

ProfSampRate ProfSetup ProfStart ProfStop

B.1.19 Program Manager Functions

FMExtensionProc

B.1.20 Process Management Functions

GetCurrentPDB

B.1.21 Resource Manager Functions

AccessResource

B.1.22 Segment Functions

AllocDStoCSAlias FreeSelector GlobalPageLock PrestoChangoSelector

AllocSelector GetCodeInfo GlobalPageUnlock

B.1.23 Shell Functions

ShellExecute

- 12 -

B.1.24 Stress Functions

AllocDiskSpace AllocMem FreeAllMem UnAllocDiskSpace

AllocFileHandles AllocUserMem FreeAllUserMem UnAllocFileHandles

AllocGDIMem FreeAllGDIMem GetFreeFileHandles

B.1.25 System Services Functions (General)

DOS3Call NetBIOSCall

GetDOSEnvironment WaitEvent

B.1.26 ToolHelp Functions

ClassFirst InterruptUnRegister SystemHeapInfo TaskFirst

ClassNext LocalFirst StackTraceFirst TaskNext

GlobalFirst LocalNext StackTraceCSIPFirst TaskGetCSIP

GlobalNext LocalInfo StackTraceNext TaskSetCSIP

GlobalEntryHandle MemManInfo ModuleFirst TaskSwitch

GlobalEntryModule MemoryRead ModuleNext TerminateApp

GlobalHandleToSel MemoryWrite ModuleFindHandle TimerCount

GlobalInfo NotifyRegister ModuleFindName

InterruptRegister NotifyUnregister TaskFindHandle

B.1.27 Version Functions

GetFileResource GetFileVersionInfoSize VerFindFile VerQueryValue

GetFileResourceSize GetSystemDir VerInstallFile

GetFileVersionInfo GetWindowsDir VerLanguageName

B.1.28 WINMEM32 DLL Functions

GetWinMem32Version Global16PointerAlloc Global16PointerFree Global32Alloc

Global32CodeAlias Global32CodeAliasFree Global32Free Global32Realloc

- 13 -

Annex C

Data Structures

C.1 Description
This annex describes data structures.

C.1.1 BITMAP
C.1.1.1 Synopsis

typedef struct tagBITMAP {

int bmType;

int bmWidth;

int bmHeight;

int bmWidthBytes;

BYTE bmPlanes;

BYTE bmBitsPixel;

void *bmBits;

} BITMAP;

C.1.1.2 Description

The BITMAP structure contains information about a bitmap.

Element Description

bmType The type of bitmap. The value is zero for a logical bitmap.

bmWidth The pixel width of bitmap. The value is greater than zero.

bmHeight The raster line height of bitmap. The value is greater than zero.

bmWidthBytes The number of bytes in each of the bitmap's raster lines. The value must be an even number.
When bmWidthBytes is multiplied by 8, the resulting value must be the next multiple of 16
that is greater than or equal to the value of the bmWidth * bmBitsPixel.

bmPlanes The number of color planes in the bitmap.

bmBitsPixel The number of contiguous color bits on each color plane that are used to define a pixel.

bmBits The pointer to an array of one-byte values representing the bitmap's bit values.

Only two types of bitmap formats, monochrome and color, are currently used.

A monochrome bitmap has one bit per pixel, uses one color plane, and each scan line has a multiple of 16 bits. A
monochrome bitmap's pixel color is either black or white. If a bit in the bmBits array has a value of 1, the pixel
that it represents is colored white. If a bit in the bmBits array has a value of 0, the pixel that it represents is
colored black.

Use the GetDeviceCaps() function with the RASTERCAPS value to determine if a device supports bitmaps. If
the device supports bitmaps, the RC_BITBLT bit is set in the GetDeviceCaps() function's return value. Use the
GetDIBits() and SetDIBits() functions to transfer a bitmap from one device to another.

C.1.1.3 Cross-References

CreateBitmapIndirect(), GetDIBits(), SetDIBits()

C.2 BITMAPCOREHEADER
C.2.1 Synopsis

typedef struct tagBITMAPCOREHEADER {

- 14 -

DWORD bcSize;

short bcWidth;

short bcHeight;

WORD bcPlanes;

WORD bcBitCount;

} BITMAPCOREHEADER;

C.2.2 Description
The BITMAPCOREHEADER structure contains information about a device-independent bitmap's (DIB)
dimensions and color format.

Element Description

bcSize The size of the BITMAPCOREHEADER structure in bytes.

bcWidth The pixel width of the bitmap.

bcHeight The pixel height of the bitmap.

bcPlanes The number of color planes for the destination device. This value should always be one.

bcBitCount The number of contiguous color bits on each color plane that are used to define each pixel.
The value of the bcBitCount element also defines the maximum number of colors in the
DIB. The value of the bcBitCount element should always be 1, 4, 8, or 24.

Value Meaning

1 The monochrome bitmap containing two entries in the DIB's color
table. Each pixel in the bitmap is represented by a single bit in the
bitmap array. If the bit has a value of zero, the pixel has the color
specified in the first entry of the DIB's color table. If the bit has a
value of one, the pixel has the color specified in the second entry
of the DIB's color table.

4 The 16 color bitmap. Each pixel in the bitmap is represented by a
four-bit index value of the DIB's color table. For example, if the
first byte in the bitmap is 0x3F, the byte represents two pixels.
The first pixel has the color specified in the fourth entry of the
color table entry. The second pixel has the color specified in the
sixteenth entry of the color table entry.

8 The 256 color bitmap. Each pixel in the bitmap is represented by
a byte index value of the DIB's color table. For example, if the
first byte in the bitmap is 0x3F, the byte represents one pixel. The
first pixel has the color specified in the sixty-fourth entry of the
color table entry.

24 The 2^24 color bitmap. There is no color table for the bitmap.
Every three bytes in the bitmap array specify the RGB color value
for a pixel.

C.2.3 Cross-References
BITMAPCOREINFO, BITMAPINFOHEADER

C.3 BITMAPCOREINFO
C.3.1 Synopsis

typedef struct tagBITMAPCOREINFO {

BITMAPCOREHEADER bmciHeader;

RGBTRIPLE bmciColors[1];

- 15 -

} BITMAPCOREINFO;

C.3.2 Description
The BITMAPCOREINFO structure contains information about a device-independent bitmap's (DIB)
dimensions, color format, and colors used in the bitmap.

Element Description

bmciHeader The BITMAPCOREHEADER structure containing the device-independent bitmap's (DIB)
dimensions and color format.

bmciColors The array containing either RGBTRIPLE structures that specify each color used in the
bitmap or 16-bit unsigned integers that are indexes into the currently realized logical palette.
The colors should be in the order of their importance.

The bmciColors array should not contain palette indexes if the bitmap is to be transferred to
another application or stored in a file. The bmciColors array should only contain palette
indexes when the application that is using it has exclusive and complete control over it.

The number of entries in the array depends on the value of the BITMAPCOREHEADER
structure's bcBitCount element. If the value is set to 1, the DIB is monochrome and the
bmciColors array should contain two entries. If the value is set to 4, the DIB uses a maximum
of 16 colors and the bmciColors array should contain 16 entries. If the value is set to 8, the
DIB uses a maximum of 256 colors and the bmciColors array should contain 256 entries. If
the value is set to 24, the DIB uses a maximum of 2^24 colors and the bmciColors array
should be assigned a value of NULL.

The BITMAPCOREINFO structure is followed immediately in memory by an array of bytes that specify the
bitmap's pixels.

C3.3 Cross-References
BITMAPINFO, BITMAPCOREHEADER, RGBTRIPLE

C.4 BITMAPINFO
C.4.1 Synopsis

typedef struct tagBITMAPINFO {

BITMAPINFOHEADER bmiHeader;

RGBQUAD bmiColors[1];

} BITMAPINFO;

C.4.2 Description
The BITMAPINFO structure contains all information about a device-independent bitmap's (DIB) dimensions
and colors.

Element Description

bmiHeader The BITMAPINFOHEADER structure containing the device-independent bitmap's (DIB)
dimensions and color format.

bmiColors The array containing either RGBQUAD structures that specify each color used in the DIB or
16-bit unsigned integers that are indexes into the currently realized logical palette. The colors
should be in the order of their importance.

The bmiColors array should not contain palette indexes if the DIB is to be transferred to
another application or stored in a file. The bmiColors array should only contain palette
indexes when the application that is using it has exclusive and complete total control over it.

If the value of the given BITMAPINFOHEADER structure's biClrUsed element is set to
zero, the DIB uses the maximum number of colors corresponding to the value of the
structure's biBitCount element. In this case, if the value of the biBitCount element is set to
1, the DIB is monochrome and the bmiColors array should contain two entries. If the value
is set to 4, the DIB uses a maximum of 16 colors and the bmiColors array should contain 16

- 16 -

entries. If the value is set to 8, the DIB uses a maximum of 256 colors and the bmiColors
array should contain 256 entries. If the value is set to 24, the DIB uses a maximum of 2^24
colors and the bmiColors array should be assigned a value of NULL.

C.4.3 Cross-References
BITMAPINFOHEADER, RGBQUAD

C.5 BITMAPINFOHEADER
C.5.1 Synopsis

typedef struct tagBITMAPINFOHEADER {

DWORD biSize;

LONG biWidth;

LONG biHeight;

WORD biPlanes;

WORD biBitCount;

DWORD biCompression;

DWORD biSizeImage;

LONG biXPelsPerMeter;

LONG biYPelsPerMeter;

DWORD biClrUsed;

DWORD biClrImportant;

} BITMAPINFOHEADER;

C.5.2 Description
The BITMAPINFO structure contains all information about a device-independent bitmap's (DIB) dimensions
and colors.

Element Description

biSize The size of the BITMAPINFOHEADER structure in bytes.

biWidth The pixel width of bitmap.

biHeight The pixel height of bitmap.

biPlanes The number of color planes for the destination device. This value should always be one.

biBitCount The number of contiguous color bits on each color plane that are used to define each pixel.
The value of the biBitCount element also defines the maximum number of colors in the
DIB. The value the biBitCount element should always be 1, 4, 8, or 24.

Value Description

1 The monochrome bitmap containing two entries in the DIB's color
table. Each pixel in the bitmap is represented by a single bit in the
bitmap array. If the bit has a value of zero, the pixel has the color
specified in the first entry of the DIB's color table. If the bit has a
value of one, the pixel has the color specified in the second entry
of the DIB's color table.

4 The 16 color bitmap. Each pixel in the bitmap is represented by a
four-bit index value into the DIB's color table. For example, if the
first byte in the bitmap is 0x3F, the byte represents two pixels.
The first pixel has the color specified in the fourth entry of the
color table entry. The second pixel has the color specified in the
sixteenth entry of the color table entry.

- 17 -

8 The 256 color bitmap. Each pixel in the bitmap is represented by
a byte index value into the DIB's color table. For example, if the
first byte in the bitmap is 0x3F, the byte represents one pixel. The
first pixel has the color specified in the sixty-fourth entry of the
color table entry.

24 The 2^24 color bitmap. There is no color table for the bitmap.
Every three bytes in the bitmap array specifies the RGB color
value for a pixel.

biCompression The type of compression used to compress the bitmap image. It can be one of the following
constant values:

Value Description

BI_RGB Bitmap is not compressed.

BI_RLE8 Bitmap is compressed using the run-length encoded format for
bitmaps with 8 bits per pixel. The algorithm uses a 2-byte format
consisting of a count byte followed by a byte containing a color
index.

BI_RLE4 Bitmap is compressed using the run-length encoded format for
bitmaps with 4 bits per pixel. The algorithm uses a 2-byte format
consisting of a count byte followed by two word-length color
indexes.

biSizeImage The size in bytes of the decompressed bitmap image. The value can be zero if the image is
not compressed.

BiXPelsPerMeter
The horizontal resolution of the DIB's destination device (in pixels per meter). This value can
be used to determine if a given bitmap best matches a given destination device.

BiYPelsPerMeter
The vertical resolution of the DIB's destination device (in pixels per meter). This value can
be used to determine if a given bitmap best matches a given destination device.

biClrUsed The number of entries in the DIB's color table.

If the value of the biClrUsed element is zero, the DIB uses the
maximum number of colors corresponding to the value of the
structure's biBitCount element.

If the value of the biClrUsed element is not zero and the
biBitCount element's value is less than 24, the value is the
number of colors that the graphics engine or device driver will
access.

If the value of the biClrUsed element's value is not zero and the
biBitCount element's value is 24, biClrUsed element's value is
the size of the reference color table used to optimize performance
of color palettes.

If the DIB is a packed DIB (bitmap bit array follows the
BITMAPINFO header and which is referenced by a single
pointer), the biClrUsed element's value must be zero or the actual
size of the color table.

biClrImportant The number of colors that are considered important when displaying the bitmap. If the value
is zero, it is assumed that all of the colors are important when displaying the bitmap.

C.5.3 Cross-References
BITMAPINFO

- 18 -

C.6 CHOOSECOLOR
C.6.1 Synopsis

typedef struct tagCHOOSECOLOR {

DWORD lStructSize;

HWND hwndOwner;

HWND hInstance;

COLORREF rgbResult;

COLORREF *lpCustColors;

DWORD Flags;

LPARAM lCustData;

UINT (CALLBACK *lpfnHook)(HWND, UINT, WPARAM, LPARAM);

LPCSTR lpTemplateName;

} CHOOSECOLOR;

C.6.2 Description
The CHOOSECOLOR structure contains information that is used by the system to initialize the Color common
dialog box and to return the user's Color common dialog box selections.

Element Description

lStructSize The size of the CHOOSECOLOR structure in bytes. A value must be assigned to this
element before the structure is passed to the ChooseColor() function.

hwndOwner The handle of the window that owns the Color common dialog box. A value must be
assigned to this element before the structure is passed to the ChooseColor() function. If there
is no owner, the element's value should be NULL.

If the CC_SHOWHELP flag is set in the Flags element, a valid window handle must be
assigned to the hwndOwner element. If the user selects the dialog box's Help button, the
window is sent a notification message. The message's ID is registered at runtime and can be
retrieved by calling the RegisterWindowMessage() function with the constant
HELPMSGSTRING.

hInstance Should be assigned the handle of the data block containing the dialog box template given in
the lpTemplateName element.

The value of the hInstance element is used only when the CC_ENABLETEMPLATE or
CC_ENABLETEMPLATEHANDLE constants are used in the Flags element. When the
CC_ENABLETEMPLATE constant is used, hInstance is an instance handle; when the
CC_ENABLETEMPLATEHANDLE constant is used, hInstance is a handle to a dialog
resource. If either of these two constants are used, a value must be assigned to the hInstance
element before the structure is passed to the ChooseColor() function.

rgbResult When the CHOOSECOLOR structure is passed to the ChooseColor() function, the
rgbResult element can contain the color that should be initially selected when the dialog box
is initialized. After the user closes the Color common dialog box with the OK button, the
rgbResult element contains the color that the user selected.

If the CC_RGBINIT constant is set in the Flags element, a value must be assigned to the
hInstance element before the structure is passed to the ChooseColor() function. If the color
value is not available, the system selects the nearest solid color that is available. If the value
of the hInstance element is NULL, the initially-selected color is black.

lpCustColors This element is the pointer to an array of 16 doubleword values that specify the intensity of a
red, green, and blue (RGB) component in the custom color box. A value must be assigned to
this element before the structure is passed to the ChooseColor() function. If an RGB color
value is changed in the dialog box, the corresponding entry in the array is updated with the
modified color value.

- 19 -

Flags These flags determine how the color common dialog box is initialized. A value must be
assigned to this element before the structure is passed to the ChooseColor() function. The
value of this element can be one or more of the following constant values OR'ed together:

CC_ENABLEHOOK This value uses the hook function given in the structure's
lpfnHook element.

CC_ENABLETEMPLATE
This value uses the dialog box template given in the hInstance
and lpTemplateName elements.

CC_ENABLETEMPLATEHANDLE
The hInstance element is a data block that has a pre-loaded
dialog box template; the lpTemplateName element is ignored.

CC_FULLOPEN This value displays the entire Color common dialog box including
the part that allows the creation of custom colors. If this constant
is not used, the custom colors section of the dialog box is not
visible initially, and the user will have to press the "Define
Custom Color" button to see the custom colors section of the
dialog box

CC_PREVENTFULLOPEN
This value disables the "Define Custom Colors" button.

CC_RGBINIT This value uses the default color given in the rgbResult element.

CC_SHOWHELP This value displays the Help button in the dialog box.

lCustData This element is the application-defined data that the system passes to the hook function
specified in the structure's lpfnHook element when the Color dialog box is initialized.

lpfnHook This element is the pointer to a hook function that processes messages for the Color dialog
box. The hook function is used only when the CC_ENABLEHOOK constant is specified in
the structure's Flags element.

The hook function is sent all of the messages that the Color dialog box receives. When the
dialog box is created, the hook function is sent a WM_INITDIALOG message whose lParam
contains a pointer to the CHOOSECOLOR structure. This is the only time that the hook
function can access the application-defined data specified in the lCustData element and to
the rest of the values stored in the CHOOSECOLOR structure.

The hook function must return TRUE when it processes a message it is sent, or zero when it
does not process a message it is sent.

lpTemplateName This element is a null-terminated string containing the name of the resource file that has an
application-defined dialog box template that is to be substituted for the standard Color
common dialog box's template. This element is used only when the
CC_ENABLETEMPLATE constant is specified in the structure's Flags element. The
MAKEINTRESOURCE macro can be used if the dialog box resource is numbered.

C.6.3 Cross-References
ChooseColor(), MAKEINTRESOURCE, RGB

C.7 CHOOSEFONT
C.7.1 Synopsis

typedef struct tagCHOOSEFONT {

DWORD lStructSize;

HWND hwndOwner;

HDC hdc;

LOGFONT *lpLogFont;

- 20 -

int iPointSize;

DWORD Flags;

COLORREF rgbColors;

LPARAM lCustData;

UINT (CALLBACK *lpfnHook)(HWND, UINT, WPARAM, LPARAM);

LPCSTR lpTemplateName;

HINSTANCE hInstance;

LPSTR lpszStyle;

UINT nFontType;

int nSizeMin;

int nSizeMax;

} CHOOSEFONT;

C.7.2 Description
The CHOOSEFONT structure contains information that is used by the system to initialize the Font common
dialog box and to return the user's Font common dialog box selections.

Element Description

lStructSize This element is the size of the CHOOSEFONT structure in bytes. A value must be assigned
to this element before the structure is passed to the ChooseFont() function.

hwndOwner This element is the handle of the window that owns the Font common dialog box. A value
must be assigned to this element before the structure is passed to the ChooseFont() function.
If there is no owner, the element's value should be NULL.

If the CF_SHOWHELP flag is set in the Flags element, a valid window handle must be
assigned to the hwndOwner element. If the user selects the dialog box's Help button, the
window sends a notification message. The message's ID is registered at runtime and can be
retrieved by calling the RegisterWindowMessage() function with the constant
HELPMSGSTRING.

hdc This element is the device-context or information context of the printer for which fonts are to
be listed in the Font common dialog box. A value must be assigned to this element before the
structure is passed to the ChooseFont() function. The value of this element is used only when
the constant CF_PRINTERFONTS is set in the structure's Flags element.

lpLogFont This element is the pointer to a LOGFONT structure the describes the font that should be
initially displayed when the Font common dialog box is shown. If the font is not available, its
closest match is shown instead. A value must be assigned to this element before the structure
is passed to the ChooseFont() function. The value of this element is used only when the
constant CF_INITTOLOGFONTSTRUCT is set in the structure's Flags element. After the
user closes the Font common dialog box with the OK button, the lpLogFont element
contains information about the last font that the user selected.

iPointSize This element is the size of the last selected font, in tenths of a point, is stored in this element
after the user closes the Font common dialog box with the OK button.

Flags These flags determine how the Font common dialog box is initialized. After the user closes
the Font common dialog box with the OK button, the Flags element will contain information
about the user's font selection. A value must be assigned to this element before the structure
is passed to the ChooseFont() function. The value may the one or more of the following
constant values OR'ed together:

CF_APPLY This value enables the "Apply" button. in the Font common dialog
box.

- 21 -

CF_ANSIONLY This value only allows selection of fonts that use the Windows
character set. For example, the user cannot select a font that
contains only symbols.

CF_BOTH This value shows the available screen and printer fonts using the
context given in the structure's hdc element.

CF_TTONLY This value only shows TrueType fonts.

CF_EFFECTS This value allows strikeout, underline, and color effects. If this
constant is used, the LOGFONT structure's lfStrikeOut and
lfUnderline elements and the CHOOSEFONT structure's
rgbColors element can be set before calling the ChooseFont()
function. If this constant is not used, the ChooseFont() function
can set the values of these elements after the user closes the Font
common dialog box with the OK button.

CF_ENABLEHOOK This value uses the hook function given in the structure's
lpfnHook element.

CF_ENABLETEMPLATE
This value uses the dialog box template given in the hInstance
and lpTemplateName elements.

CF_ENABLETEMPLATEHANDLE
The hInstance element is a data block that has a pre-loaded
dialog box template. The lpTemplateName element should be
ignored.

CF_FIXEDPITCHONLY This value selects only monospace fonts.

CF_FORCEFONTEXIST This value reports an error if the user tries to select a font or font
style that does not exist.

CF_INITTOLOGFONTSTRUCT
This value initializes the Font common dialog box by using the
information in the LOGFONT structure specified in the
structure's lpLogFont element.

CF_LIMITSIZE This value selects only those font sizes that are within the range
given in the structure's nSizeMin and nSizeMax elements.

CF_NOFACESEL This value means that there is no selection in the "face name"
combo box. This flag can be used to support multiple font
selections. After the user closes the Font common dialog box with
the OK button, the CF_NOFACESEL constant is set in the Flags
element if there was no face name selection.

CF_NOOEMFONTS This value means that there are no vector-font selections. It is the
same as CF_NOVECTORFONTS.

CF_NOSIMULATIONS This value does not allow graphics-device-interface (GDI) font
simulations.

CF_NOSIZESEL This value means that there is no selection in the "Size" combo
box. This flag can be used to support multiple size selections.
After the user closes the Font common dialog box with the OK
button, the CF_NOSIZESEL constant is set in the Flags element,
if there was no size selection.

CF_NOSTYLESEL This value means that there is no selection in the "Font Style"
combo box. This flag can be used to support multiple style
selections. After the user closes the Font common dialog box with
the OK button, the CF_NOSTYLESEL constant is set in the Flags
element if there was no style selection.

- 22 -

CF_NOVECTORFONTS This value means that there are no vector-font selections. It is the
same as CF_NOOEMFONTS.

CF_PRINTERFONTS This value shows only the fonts supported by the printer
associated with the context given in the structure's hdc element.

CF_SCALABLEONLY This value selects only scalable fonts (for example, vector fonts,
some printer fonts, TrueType fonts, and fonts that are scaled by
other algorithms or technologies).

CF_SCREENFONTS This value shows only the screen fonts supported by the system.

CF_SHOWHELP This value displays the Help button in the dialog box.

CF_USESTYLE When the Font common dialog box is created, this value uses the
font style specified by the lpszStyle element.

CF_WYSIWYG This value selects only fonts that are available on both the printer
and the screen. The CF_BOTH and CF_SCALABLEONLY
constants should be used as well.

rgbColors These elements are the red, green, and blue (RGB) values to use when setting the initial text
color. The value of this element is used when the CF_EFFECTS constant is set in the Flags
element. After the user closes the Font common dialog box with the OK button, the RGB
values for the selected font's color are copied to the rgbColors element.

lCustData This element is the application-defined data that the system passes to the hook function
specified in the structure's lpfnHook element when the Font dialog box is initialized.

lpfnHook This element is the pointer to a hook function that processes messages for the Color dialog
box. The hook function is used only when the CF_ENABLEHOOK constant is specified in
the structure's Flags element.

The hook function is sent all of the messages that the Color dialog box receives. When the
dialog box is created, the hook function is sent a WM_INITDIALOG message whose lParam
contains a pointer to the CHOOSECOLOR structure. This is the only time that the hook
function has access to the application-defined data specified in the lCustData element and to
the rest of the values stored in the CHOOSECOLOR structure. The hook function must
return TRUE when it processes a received message, or FALSE when it does not process a
received message.

lpTemplateName
This element is the null-terminated string containing the name of the resource file that has an
application-defined dialog box template that is to be substituted for the standard Font
common dialog box's template. This element is used only when the
CF_ENABLETEMPLATE constant is specified in the structure's Flags element. The
MAKEINTRESOURCE macro can be used if the dialog box resource is numbered.

hInstance This is the value that should be assigned the handle of the data block containing the dialog
box template given in the lpTemplateName element.

The value of the hInstance element is used only when the CF_ENABLETEMPLATE or
CF_ENABLETEMPLATEHANDLE constants are used in the Flags element. When the
CC_ENABLETEMPLATE constant is used, hInstance is an instance handle; when the
CC_ENABLETEMPLATEHANDLE constant is used, hInstance is a handle to a dialog
resource. If either of these two constants are used, a value must be assigned to the hInstance
element before the structure is passed to the ChooseFont() function.

lpszStyle This element is the buffer containing a null-terminated string that is the description of the
initial font style. This element is used only when the CF_USESTYLE constant is specified in
the structure's Flags element. After the user closes the Font common dialog box with the OK
button, the description of the selected style is copied to the buffer. The buffer should be at
least LF_FACESIZE bytes in size.

nFontType This element is the type of the selected font. This value may the one or more of the following
constant values OR'ed together:

- 23 -

BOLD_FONTTYPE This value means that the font is bold. This constant only impacts
TrueType fonts and corresponds to the NEWTEXTMETRIC
structure's ntmFlags element.

ITALIC_FONTTYPE This value means that the font is italic. This constant only impacts
TrueType fonts and corresponds to the NEWTEXTMETRIC
structure's ntmFlags element.

PRINTER_FONTTYPE This value means that the font is a printer font.

REGULAR_FONTTYPE This value means that the font is not bold or italic. This constant
only impacts TrueType fonts and corresponds to the
NEWTEXTMETRIC structure's ntmFlags element.

SCREEN_FONTTYPE This value means that the font is a screen font.

SIMULATED_FONTTYPE
This value means that the font is simulated by graphics device
inteface. This is not used if the CF_NOSIMULATIONS constant
is used in the CHOOSEFONT structure's Flags element.

nSizeMin This element is the minimum point size that can be selected by a user. The value of this
element is used only when the constant CF_LIMITSIZE is assigned to the structure's Flags
element. A value must be assigned to this element before the structure is passed to the
ChooseFont() function.

nSizeMax This element is the maximum point size that can be selected by a user. The value of this
element is used only when the constant CF_LIMITSIZE is assigned to the structure's Flags
element. A value must be assigned to this element before the structure is passed to the
ChooseFont() function.

C.7.3 Cross-References
ChooseFont(), LOGFONT, MAKEINTRESOURCE, NEWTEXTMETRIC

C.8 CLASSENTRY
C.8.1 Synopsis

typedef struct tagCLASSENTRY {

DWORD dwSize;

HMODULE hInst;

char szClassName[MAX_CLASSNAME + 1];

WORD wNext;

} CLASSENTRY;

C.8.2 Description
The CLASSENTRY structure contains the handle to the owner and name of a class.

Element Description

dwSize This element is the size of the CLASSENTRY structure in bytes.

hInst This element is the handle of the module that owns the class. The handle can be used in calls
to the GetClassInfo() function. The hInst element is really a handle to a module, since
Windows classes are owned by modules.

szClassName This element is the null-terminated string containing the name of the class. The name can be
used in calls to the GetClassInfo() function.

wNext This element is the next class in the class list. It is reserved for use by the system.

C.8.3 Cross-References
ClassFirst(), ClassNext(), GetClassInfo()

- 24 -

C.9 CLIENTCREATESTRUCT
C.9.1 Synopsis

typedef struct tagCLIENTCREATESTRUCT {

HANDLE hWindowMenu;

UINT idFirstChild;

} CLIENTCREATESTRUCT;

C.9.2 Description
The CLIENTCREATESTRUCT structure contains information about a multiple document interface (MDI)
client window's menu and first MDI child window.

Element Description

hWindowMenu This element is the handle of the Window menu. This handle can be retrieved from the menu
of the MDI frame window by calling the GetSubMenu() function.

idFirstChild This element is the initial identifier for the first MDI child window that is created. As each
new MDI child window is created, the system increments the identifier. When a MDI child
window is destroyed, and another is created, the system reuses the identifier. A new MDI
child window's identifier should not conflict with any other WM_COMMAND identifiers
since the identifiers are used in WM_COMMAND messages to the application's MDI frame
window.

C.9.3 Cross-References
CreateWindow(),GetSubMenu()

C.10 COMPAREITEMSTRUCT
C.10.1 Synopsis

typedef struct tagCOMPAREITEMSTRUCT {

UINT CtlType;

UINT CtlID;

HWND hwndItem;

UINT itemID1;

DWORD itemData1;

UINT itemID2;

DWORD itemData2;

} COMPAREITEMSTRUCT;

C.10.2 Description
The COMPAREITEMSTRUCT structure contains the identifiers and application-defined data for two items in
a sorted, owner-drawn combo box or list box control.

Element Description

CtlType This element is the type of control. The element contains one of the following values:

ODT_LISTBOX This value is the owner-drawn list box.

ODT_COMBOBOX This value is the owner-drawn combo box.

CtlID This element is the control's identifier.

hwndItem This element is the control's window handle.

itemID1 Index value of the first item in the control that is being compared.

itemData1 Application-defined data associated with the first item in the control that is being compared.

- 25 -

itemID2 Index value of the second item in the control that is being compared.

itemData2 Application-defined data associated with the second item in the control that is being
compared.

C.10.3 Cross-References
WM_COMPAREITEM

C.11 CREATESTRUCT
C.11.1 Synopsis

typedef struct tagCREATESTRUCT {

void *lpCreateParams;

HINSTANCE hInstance;

HMENU hMenu;

HWND hwndParent;

int cy;

int cx;

int y;

int x;

LONG style;

LPCSTR lpszName;

LPCSTR lpszClass;

DWORD dwExStyle;

} CREATESTRUCT;

C.11.2 Description
The CREATESTRUCT structure contains initialization information that is passed to a new window's window
procedure.

Element Description

lpCreateParams This element is the pointer to data to use when creating the new window.

hInstance This element is the module-instance handle of the module that owns the new window.

hMenu This element is the new window's menu.

hwndParent This element is the handle of the window that owns the new window. The element's value is
NULL if the new window is a top-level window.

cy This element is the new window's height.

cx This element is the new window's width.

y This element is the Y-coordinate of the new window's upper-left corner. If the new window is
a child window, the coordinate is relative to its parent window. If the new window is not a
child window, the coordinate is relative to the screen's origin.

x This element is the X-coordinate of the new window's upper-left corner. If the new window is
a child window, the coordinate is relative to its parent window. If the new window is not a
child window, the coordinate is relative to the screen's origin.

style This element is the new window's style.

lpszName This element is the pointer to a null-terminated string that contains the new window's name.

lpszClass This element is the pointer to a null-terminated string that contains the new window's class
name.

dwExStyle This element is the new window's extended style.

- 26 -

C.11.3 Cross-References
CreateWindow()

C.12 DELETEITEMSTRUCT
C.12.1 Synopsis

typedef struct tagDELETEITEMSTRUCT {

UINT CtlType;

UINT CtlID;

UINT itemID;

HWND hwndItem;

DWORD itemData;

} DELETEITEMSTRUCT;

C.12.2 Description
The DELETEITEMSTRUCT structure contains information associated with an item that is deleted from an
owner-drawn list-box or combo-box control.

Element Description

CtlType This element is the type of control from which the item was deleted. The element contains
one of the following values:

ODT_LISTBOX This value is the owner-drawn list box.

ODT_COMBOBOX This value is the owner-drawn combo box.

CtlID This element is the control's identifier.

itemID This element is the index value of the item in the control that was deleted.

hwndItem This element is the control's window handle.

itemData This element is the application-defined data associated with the item that was deleted.

C.12.3 Cross-References
WM_DELETEITEM

C.13 DRAWITEMSTRUCT
C.13.1 Synopsis

typedef struct tagDRAWITEMSTRUCT {

UINT CtlType;

UINT CtlID;

UINT itemID;

UINT itemAction;

UINT itemState;

HWND hwndItem;

HDC hdc;

RECT rcItem;

DWORD itemData;

} DRAWITEMSTRUCT;

- 27 -

C.13.2 Description
The DRAWITEMSTRUCT structure contains information that the control's owner needs to determine how to
paint an owner-drawn control.

Element Description

CtlType This element is the type of control from which the item was deleted. The element contains
one of the following values:

ODT_BUTTON This value is the owner-drawn button.

ODT_COMBOBOX This value is the owner-drawn combo box.

ODT_LISTBOX This value is the owner-drawn list box.

ODT_MENU This value is the owner-drawn menu.

CtlID This element is the control's identifier. It is not used for menu controls.

itemID This element is the index value of the item in the combo box or list box, or the menu-item
identifier for a menu control. If the combo box or list box is empty, the value of itemID is
negative.

itemAction This element is the type of drawing to perform. The element will contain one of the following
values:

ODA_DRAWENTIRE This value means the entire control needs to be drawn.

ODA_FOCUS This value means the control has lost or obtained focus.

ODA_SELECT This value means the selection status has changed.

itemState This element is the state of the control after the current drawing action is performed. The
element contains one of the following constant values:

ODS_CHECKED This value means the menu item is to be checked. It is only used
for menu controls.

ODS_DISABLED This value means the item is to be drawn as disabled.

ODS_FOCUS This value means the item has input focus.

ODS_GRAYED This value means the item is to be grayed. It is only used for menu
controls.

ODS_SELECTED This value means the item's status is selected.

hwndItem This element is the window handle of the button, combo box or list box, or the handle of the
menu.

hdc This element is the device context to use when performing drawing operations on the control.

rcItem This element is the RECT structure containing the boundaries of the control to be drawn.
Anything that the owner draws in the device context for combo boxes, list boxes, and buttons
is clipped by the system. Clipping is not performed for menu items. When menu items are
drawn, the system must ensure that the owner does not draw outside the boundaries of the
rcItem .

itemData This element is the last value assigned to the combo box or list box through an
LB_SETITEMDATA or CB_SETITEMDATA message. If the LBS_HASSTRINGS or
CBS_HASSTRINGS style is set in the combo box or list box, the value for itemData is zero
initially. If the LBS_HASSTRINGS or CBS_HASSTRINGS style is not set in the combo
box or list box, the initial value of itemData is the value passed to the control in the lParam
parameter of the CB_ADDSTRING, CB_INSERTSTRING, LB_ADDSTRING, or
LB_INSERTSTRING message.

C.13.3 Cross-References
CB_ADDSTRING, CB_INSERTSTRING, CB_SETITEMDATA, CBS_HASSTRINGS, RECT,
LB_ADDSTRING, LB_INSERTSTRING, LB_SETITEMDATA, LBS_HASSTRINGS, WM_DRAWITEM

- 28 -

C.14 FINDREPLACE
C.14.1 Synopsis

typedef struct tagFINDREPLACE {

DWORD lStructSize;

HWND hwndOwner;

HINSTANCE hInstance;

DWORD Flags;

LPSTR lpstrFindWhat;

LPSTR lpstrReplaceWith;

UINT wFindWhatLen;

UINT wReplaceWithLen;

LPARAM lCustData;

UINT (CALLBACK *lpfnHook)(HWND, UINT, WPARAM, LPARAM);

LPCSTR lpTemplateName;

} FINDREPLACE;

C.14.2 Description
The FINDREPLACE structure contains information that is used by the system to initialize the Find and
Replace common dialog boxes and to return the user's dialog box selections.

Element Description

lStructSize This element is the size of the FINDREPLACE structure in bytes. A value must be assigned
to this element before the structure is passed to the FindText() or ReplaceText() functions.

hwndOwner This element is the handle of the window that owns the Color common dialog box. A value
must be assigned to this element before the structure is passed to the FindText() or
ReplaceText() functions. If there is no owner, the element's value should be NULL.

If the FR_SHOWHELP flag is set in the Flags element, a valid window handle must be
assigned to the hwndOwner element. If the user selects the dialog box's Help button, the
window is sent a notification message. The message's ID is registered at runtime and can be
retrieved by calling the RegisterWindowMessage() function with the constant
HELPMSGSTRING.

hInstance This element should be assigned the handle of the data block containing the dialog box
template given in the lpTemplateName element.

The value of the hInstance element is used only when the FR_ENABLETEMPLATE or
FR_ENABLETEMPLATEHANDLE constants are used in the Flags element. When the
CC_ENABLETEMPLATE constant is used, hInstance is an instance handle; when the
CC_ENABLETEMPLATEHANDLE constant is used, hInstance is a handle to a dialog
resource. If either of these two constants are used, a value must be assigned to the hInstance
element before the structure is passed to the FindText() or ReplaceText() functions.

Flags These flags determine how the common dialog box is initialized. A value must be assigned to
this element before the structure is passed to the FindText() or ReplaceText() functions. The
value of this element may the one or more of the following constant values OR'ed together:

FR_DIALOGTERM This value means the dialog box is closing and the window handle
returned by the FindText() or ReplaceText() functions is no longer
valid. This constant is set by the system.

FR_DOWN This value initially selects the search "down" button and searches
down through the document. If this value is not used, the search
direction is up and the "up" button is selected. After the user

- 29 -

closes the dialog box with the OK button, the FR_DOWN
constant can be used to determine the last search direction.

FR_ENABLEHOOK This value uses the hook function given in the structure's
lpfnHook element.

FR_ENABLETEMPLATE
This value uses the dialog box template given in the hInstance
and lpTemplateName elements.

FR_ENABLETEMPLATEHANDLE
The hInstance element is a data block that has a pre-loaded
dialog box template; the lpTemplateName element should be
ignored.

FR_FINDNEXT This value searches for the next occurrence of the string given in
the structure's lpstrFindWhat element. This constant is set by the
system.

FR_HIDEMATCHCASE This value initially hides and disables the dialog box's "Match
Case" check box.

FR_HIDEWHOLEWORDThis value initially hides and disables the dialog box's "Match
Only Whole Word" check box.

FR_HIDEUPDOWN This value initially hides the dialog box's "Up" and "Down" radio
buttons.

FR_MATCHCASE This value initially a search is to be case sensitive. This constant
may be changed due to user input.

FR_NOMATCHCASE This value initially disables the dialog box's "Match Case" check
box.

FR_NOUPDOWN This value initially disables the dialog box's "Up" and "Down"
buttons.

FR_NOWHOLEWORD This value initially disables the dialog box's "Match Whole Word
Only" check box.

FR_REPLACE This value replaces the current occurrence of the string given in
the structure's lpstrFindWhat element with the string given in the
structure's lpstrReplaceWith element. This flag is set by the
system.

FR_REPLACEALL This value replaces all occurrences of the string given in the
structure's lpstrFindWhat element with the string given in the
structure's lpstrReplaceWith element. This flag is set by the
system.

FR_SHOWHELP This value displays the Help button in the dialog box.

FR_WHOLEWORD This value initially checks the dialog box's "Match Whole Word
Only" check box. Only whole words that match the search string
are considered during a search. This constant may be changed due
to user input.

lpstrFindWhat This element is a pointer to a buffer containing a null-terminate string for
which to search. If lpstrFindWhat contains a valid value when the dialog
box is created, the string is placed in the "Find What" edit control. If the
FR_FINDNEXT constant is specified in the structure's Flags element when
the dialog box is created, a search is performed for the string. The size of the
buffer should be at least eighty bytes. The value of the lpstrFindWhat
element may be changed due to user input.

- 30 -

lpstrReplaceWith This element is a pointer to a buffer containing a null-terminate string that
will replace search strings. The FindText() function does not use this
element. If the lpstrReplaceWith element contains a valid value when the
Replace common dialog box is created, the string is placed in "Replace
With" edit control. The value of the lpstrReplaceWith element may be
changed due to user input.

wFindWhatLen This element is the size, in bytes, of the buffer pointed to by the structure's
lpstrFindWhat element.

wReplaceWithLen This element is the size, in bytes, of the buffer pointed to by the structure's
lpstrReplaceWith element.

lCustData This element is the application-defined data that the system passes to the
hook function specified in the structure's lpfnHook element when the dialog
box is initialized.

lpfnHook This element is the pointer to a hook function that processes messages for the
Color dialog box. The hook function is used only when the
FR_ENABLEHOOK constant is specified in the structure's Flags element.

The hook function is sent all of the messages that the dialog box receives.
When the dialog box is created, the hook function is sent a
WM_INITDIALOG message whose lParam contains a pointer to the
FINDREPLACE structure. This is the only time that the hook function will
have access to the application-defined data specified in the lCustData
element and to the rest of the values stored in the FINDREPLACE
structure.

The hook function must return TRUE when it processes a message that is
sent to it, or FALSE when it does not process a message that is sent to it.

lpTemplateName This element is the null-terminated string containing the name of the resource
file that has an application-defined dialog box template that is to be
substituted for the standard common dialog box's template. This element is
used only when the FR_ENABLETEMPLATE constant is specified in the
structure's Flags element. The MAKEINTRESOURCE macro can be used if
the dialog box resource is numbered.

C.14.3 Cross-References
FindText(), ReplaceText(), MAKEINTRESOURCE

C.15 HELPWININFO
C.15.1 Synopsis

typedef struct {

int wStructSize;

int x;

int y;

int dx;

int dy;

int wMax;

char rgchMember[2];

} HELPWININFO;

- 31 -

C.15.2 Description
The HELPWININFO structure contains the secondary help window's size and position information.

Element Description

wStructSize This element is the size, in bytes, of the HELPWININFO structure.

x This element is the X-coordinate of the help window's upper-left corner.

y This element is the Y-coordinate of the help window's upper-left corner.

cx This element is the Help window's width.

cy This element is the Help window's height.

wMax This element determines whether the window should be maximized or set to the specified
position and size. The element can be assigned one of the following values:

TRUE This value means that the window should be maximized.

FALSE This value means that the window's position and size should be set
using the values in the structure's x, y, cx, and cy elements.

rgchMember This element is the buffer containing a null-terminated string that is the name of the help
window.

The Help file viewer uses a logical screen coordinate system of 1024x1024 when sizing and positioning help
windows. For example, a secondary window with the following position information would fill the upper-right
quadrant of the display:

x 512

y 0

cx 512

cy 1024

C.15.3 Cross-References
WinHelp()

C.16 LOGBRUSH
C.16.1 Synopsis

typedef struct tagLOGBRUSH {

UINT lbStyle;

COLORREF lbColor;

int lbHatch;

} LOGBRUSH;

C.16.2 Description
The LOGBRUSH structure contains a physical brush's style, color, and pattern.

Element Description

lbStyle This element is the brush's style. One of the following constant values may be assigned to this
element:

BS_DIBPATTERN This value is a pattern brush defined by a device-independent
bitmap (DIB).

BS_HATCHED This value is a hatched brush.

BS_HOLLOW This value is a hollow brush.

BS_PATTERN This value is a pattern brush defined by a memory bitmap.

BS_NULL This value is the same as BS_HOLLOW.

- 32 -

BS_SOLID This value is a solid brush.

lbColor This element is the brush's color. In some cases, the meaning of this element depends on the
value of the lbStyle element.

If the LOGBRUSH structure's lbStyle element is the value BS_HOLLOW or
BS_PATTERN, the lbColor element is ignored.

If the LOGBRUSH structure's lbStyle element is the value BS_ DIBPATTERN, the
lbColor element should specify whether the pattern bitmap's BITMAPINFO structure's
bmiColors element contains explicit RGB values or indexes into the currently realized
logical palette. In this case, the low-order word of lbColor should contain one of the
following values:

DIB_PAL_COLORS This value is the pattern bitmap's color table is an array of 16-bit
indexes into the currently realized logical palette.

DIB_RGB_COLORS This value is the pattern bitmap's color table contains RGB
values.

lbHatch This element is the brush's hatch style. The meaning of this element depends on the value of
the lbStyle element.

If the LOGBRUSH structure's lbStyle element is the value BS_ DIBPATTERN, the
lbHatch element is a handle to a packed DIB. A packed DIB is a BITMAPINFO structure
followed by the array of bytes that define the pixels of the bitmap.

If the LOGBRUSH structure's lbStyle element is the value BS_HATCHED style, the
lbHatch element determines the orientation of the hatch lines and can be one of the
following values:

HS_BDIAGONAL This value is the left to right, 45-degree upward hatch.

HS_CROSS This value is the horizontal and vertical cross-hatch.

HS_DIAGCROSS This value is the 45-degree cross-hatch.

HS_FDIAGONAL This value is the left to right, 45-degree downward hatch.

HS_HORIZONTAL This value is the horizontal hatch.

HS_VERTICAL This value is the vertical hatch.

If the LOGBRUSH structure's lbStyle element is the value BS_
PATTERN, the lbHatch element is a handle to a bitmap that
defines the pattern.

If the LOGBRUSH structure's lbStyle element is the value BS_
SOLID or BS_HOLLOW, the lbHatch element is not used.

C.16.3 Cross-References
BITMAPINFO , CreateBrushIndirect(), CreateBrushIndirect()

C.17 LOGFONT
C.17.1 Synopsis

typedef struct tagLOGFONT {

int lfHeight;

int lfWidth;

int lfEscapement;

int lfOrientation;

int lfWeight;

BYTE lfItalic;

- 33 -

BYTE lfUnderline;

BYTE lfStrikeOut;

BYTE lfCharSet;

BYTE lfOutPrecision;

BYTE lfClipPrecision;

BYTE lfQuality;

BYTE lfPitchAndFamily;

BYTE lfFaceName[LF_FACESIZE];

} LOGFONT;

C.17.2 Description
The LOGFONT structure contains a logical font's attributes.

Element Description

lfHeight This element is the height of the font in logical units.

If the value of lfHeight is less than zero, it is assumed to be the font's character height (cell
height minus the internal leading). If the value of lfHeight is zero, the system maps the font
using the default height.

If all of the fonts are larger than the requested font size, the system picks the smallest font.
Otherwise, the system chooses the largest physical font that is not larger than the requested
font size.

The absolute value of lfHeight must not be greater than 16,384 after the value is converted
into device units.

lfWidth This element is the average width of font characters in logical units.

If the value of lfWidth is zero, the system chooses a default font width that is reasonable
when considering the font's height. This is done by matching the output device's aspect ratio
with the available fonts' digitization aspect ratio.

Each character in a TrueType font is scaled by dividing the value of lfWidth by the
character's average character width.

lfEscapement This element is the angle between a character's base line and the x-axis in tenths of degrees.
The way in which the angle is measured depends on the orientation of the coordinate system.
When the y direction is down (left-handed coordinate system), the angle is measured in a
counterclockwise direction from the x-axis. When the y direction is up (right-handed
coordinate system), the angle is measured in a clockwise direction from the x-axis.

lfOrientation This element is the orientation of the characters. This value of this element is not used.

lfWeight This element is the weight of the font. The lfWeight element can be assigned one of the
following constant values (not all fonts support all of the weights listed below):
FW_DONTCARE (Use font's default weight)

FW_THIN

FW_EXTRALIGHT (Same as FW_ULTRALIGHT)

FW_ULTRALIGHT (Same as FW_ EXTRALIGHT)

FW_LIGHT

FW_NORMAL (Same as FW_ REGULAR)

FW_REGULAR (Same as FW_ NORMAL)

FW_MEDIUM

FW_SEMIBOLD (Same as FW_ DEMIBOLD)

FW_DEMIBOLD (Same as FW_ SEMIBOLD)

- 34 -

FW_BOLD

FW_EXTRABOLD (Same as FW_ ULTRABOLD)

FW_ULTRABOLD (Same as FW_ EXTRABOLD)

FW_BLACK (Same as FW_ HEAVY)

FW_HEAVY (Same as FW_ BLACK)

lfItalic The value of lfItalic determines whether the font is italic. Its value is TRUE if the font is
italic and FALSE if the font is not italic.

lfUnderline The value of lfUnderline determines whether the font is underlined. It is TRUE if the font is
underlined and FALSE if the font is not underlined.

lfStrikeOut The value of lfStrikeOut determines whether the font is struck out. It is TRUE if the font is
struck out and FALSE if the font is not struck out.

lfCharSet The lfCharSet element determines the font's character set, and can be assigned one of the
following constant values:

ANSI_CHARSET

DEFAULT_CHARSET

SYMBOL_CHARSET

SHIFTJIS_CHARSET

OEM_CHARSET

The OEM character set is system-dependent.

The system's font mapper does not use the DEFAULT_CHARSET value. For this reason, the
DEFAULT_CHARSET value should be used with the understanding that unexpected font
mapping results may occur. If an application uses the DEFAULT_CHARSET value and the
font name does not exist, a font from any character set can be substituted for the requested
font.

If an application uses a font that has an unknown character set, the application should not
attempt to translate or interpret strings that are to be rendered with that font.

IfOutPrecision How closely the output must match the requested font's character orientation, escapement,
height, pitch, and width. The lfOutPrecision element can be assigned one of the following
constant values:

OUT_CHARACTER_PRECIS OUT_STRING_PRECIS

OUT_DEFAULT_PRECIS OUT_STROKE_PRECIS

OUT_DEVICE_PRECIS OUT_TT_PRECIS

OUT_RASTER_PRECIS OUT_TT_ONLY_PRECIS

The values OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, and OUT_TT_PRECIS can
be used to control how the system's font mapper chooses a font when the system contains
more than one font with a given name. For example, specifying the OUT_TT_PRECIS value
forces the system's font mapper to choose a TrueType version of a font or to choose a
TrueType font whenever the specified font name matches a device or raster font, even when
there is no TrueType font with the same name.

The value OUT_TT_ONLY_PRECIS can be used to signify the exclusive use of only
TrueType fonts. The system's font mapper chooses a TrueType font even when the font's face
name matches a raster or vector font.

lfClipPrecision This element determines how to clip characters that are partially outside the clipping region.
The lfClipPrecision element can be assigned one or more of the following constant values
OR'ed together:

- 35 -

CLIP_CHARACTER_PRECIS CLIP_MASK

CLIP_DEFAULT_PRECIS CLIP_STROKE_PRECIS

CLIP_EMBEDDED CLIP_TT_ALWAYS

CLIP_LH_ANGLES

An application that wishes to use an embedded read-only font must use the
CLIP_EMBEDDED value.

An application that wishes to have consistent rotation of device, TrueType, and vector fonts
should use the CLIP_LH_ANGLES value. When CLIP_LH_ANGLES is not used, device
fonts are always rotated counter-clockwise and the rotation of other fonts is dependent on the
orientation of the coordinate system. When CLIP_LH_ANGLES is used, the rotation of all
fonts is dependent on the orientation of the coordinate system.

lfQuality This element determines how carefully the graphics device interface (GDI) must attempt to
match the attributes of the logical-font to the physical font. The lfQuality element can be
assigned one of the following constant values:

DEFAULT_QUALITY This value means that the font's appearance does not matter.

DRAFT_QUALITY This value means that the font's appearance is less important than
when the PROOF_QUALITY value is used. For a GDI raster
font, scaling is enabled. If necessary, bold, italic, underline, and
strikeout fonts are synthesized.

PROOF_QUALITY This value means that the font's character quality is more
important than the exact matching of the logical-font attributes.
For a GDI raster font, scaling is disabled and the font closest in
size is chosen. If necessary, bold, italic, underline, and strikeout
fonts are synthesized.

lfPitchAndFamily
This element determines the font's family and pitch. The two low-order bits of the
lfPitchAndFamily value contain the font's pitch and can be one of the following constant
values:

DEFAULT_PITCH

FIXED_PITCH

VARIABLE_PITCH

A font family describes how a font looks in a general way. It is intended as a way in which to
specify a font when the exact desired typeface is not available. The four high-order bits of the
lfPitchAndFamily value contain the font's family and can be one of the following constant
values:

FF_DECORATIVE This value specifies a novelty font family, such as Old English.

FF_DONTCARE This value means that a font's family is unimportant or unknown.

FF_MODERN This value specifies a font with a constant stroke width, with or
without serifs (for example, Pica, Elite, or Courier New).

FF_ROMAN This value specifies a font with a variable stroke width and with
serifs (for example, Times New Roman and New Century
Schoolbook).

FF_SCRIPT This value specifies a font that looks like handwriting (for
example., Script and Cursive).

FF_SWISS This value specifies a font with a variable stroke width and
without serifs (for example, MS Sans Serif).

- 36 -

lfFaceName This element specifies the font's typeface name. The length of name must not exceed
LF_FACESIZE - 1. If the value of lfFaceName is NULL, GDI will use a device-dependent
typeface.

C.17.3 Cross-References
CreateFontIndirect(), EnumFontFamilies()

C.18 LOGPALETTE
C.18 1 Synopsis

typedef struct tagLOGPALETTE {

WORD palVersion;

WORD palNumEntries;

PALETTEENTRY palPalEntry[1];

} LOGPALETTE;

C.18.2 Description
The LOGPALETTE structure contains a logical color palette's attributes.

Element Description

palVersion This element specifies the version of the LOGPALETTE structure.

palNumEntries This element specifies the number of PALETTEENTRY structures in the palPalEntry
array.

palPalEntry This element specifies the colors of the logical palette and their usage. The array entries are
in order of their importance.

C.18.3 Cross-References
CreatePalette(), PALETTEENTRY

C.19 LOGPEN
C.19.1 Synopsis

typedef struct tagLOGPEN {

UINT lopnStyle;

POINT lopnWidth;

COLORREF lopnColor;

} LOGPEN;

C.19.2 Description
The LOGPEN structure contains a logical pen's attributes.

Element Description

lopnStyle This element is the pen's style type. This lopnStyle element can be one of the following
values:

PS_SOLID This value specifies a solid pen.

PS_DASH This value specifies a dashed pen. The value of lopnWidth
element must be 1.

PS_DOT This value specifies a dotted pen. The value of lopnWidth
element must be 1.

PS_DASHDOT This value specifies a pen with dashes and dots. The value of
lopnWidth element must be 1.

- 37 -

PS_DASHDOTDOT This value specifies a pen with dashes and double dots. The value
of lopnWidth element must be 1.

PS_NULL This value specifies a null pen.

PS_INSIDEFRAME This value specifies that the pen will only be allowed to draw
inside of a closed shape that was created by a GDI function that
supports a bounding rectangle (for example, Rectangle()). If the
shape was created by a GDI function that does not support a
bounding rectangle, the pen's drawing area will not be limited by a
frame.

When the pen's width is less than or equal to 1, the
PS_INSIDEFRAME style is the same as the PS_SOLID style.

If the Ellipse(), Rectangle(), and RoundRect() functions were not
used to created the object, a part of the line may not be completely
inside the closed shape.

lopnWidth This element is the pen's width in logical units. If the value of lopnWidth is zero, regardless
of the mapping mode, the pen is one pixel wide on raster devices. The POINT structure's y
element is not used.

lopnColor This element is the pen's color. If the pen's style is PS_INSIDEFRAME, and lopnColor does
not match a color in the logical color table, the pen is drawn with a dithered color. The
PS_SOLID style cannot be used to create a pen with a dithered color.

C.19.3 Cross-References
CreatePenIndirect(), Ellipse(), LineTo(), MoveTo(), POINT , Rectangle(), RoundRect()

C.20 MDICREATESTRUCT
C.20.1 Synopsis

typedef struct tagMDICREATESTRUCT {

LPCSTR szClass;

LPCSTR szTitle;

HINSTANCE hOwner;

int x;

int y;

int cx;

int cy;

DWORD style;

LPARAM lParam;

} MDICREATESTRUCT;

C.20.2 Description
The MDICREATESTRUCT structure contains multiple document interface (MDI) child window's information.

Element Description

szClass This element is the pointer to the child window's class name.

szTitle This element is the pointer to the child window's title.

hOwner This element is the instance handle of the application that is creating the MDI child window.

x This element is the initial x-coordinate position of the MDI child window's upper left-hand
corner. If the value of the x element is the constant value CW_USEDEFAULT, the system
will use a default value.

- 38 -

y This element is the initial y-coordinate position of the MDI child window's upper left-hand
corner. If the value of the y element is the constant value CW_USEDEFAULT, the system
will use a default value.

cx This element is the MDI child window's initial width. If the value of the cx element is the
constant value CW_USEDEFAULT, the system will use a default value.

cy This element is the MDI child window's initial height. If the value of the cy element is the
constant value CW_USEDEFAULT, the system will use a default value.

style This element is the MDI child window's additional styles. If the MDI client window was
created using the MDIS_ALLCHILDSTYLES window style, it can use any of the window
styles that can be passed to the CreateWindow() function. If the MDI client window was not
created using the MDIS_ALLCHILDSTYLES window style, the value of the style element
can be one or more of the following constant values OR'ed together:

WS_MINIMIZE
This value minimizes the window when it is created.

WS_MAXIMIZE
This value maximizes the window when it is created.

WS_HSCROLL This value creates a horizontal scroll bar for the window.

WS_VSCROLL This value creates a vertical scroll bar for the window.

lParam Application-specific value.

C.20.3 Cross-References
CREATESTRUCT , CreateWindow()

C.21 MEASUREITEMSTRUCT
C.21.1 Synopsis

typedef struct tagMEASUREITEMSTRUCT {

UINT CtlType;

UINT CtlID;

UINT itemID;

UINT itemWidth;

UINT itemHeight;

DWORD itemData;

} MEASUREITEMSTRUCT;

C.21.2 Description
The MEASUREITEMSTRUCT structure contains the dimensions of an owner-drawn control.

Element Description

CtlType This element is the type of control. It can contain one of the following values:

ODT_BUTTON This value specifies an owner-drawn button.

ODT_COMBOBOX This value specifies an owner-drawn combo box.

ODT_LISTBOX This value specifies an owner-drawn list box .

ODT_MENU This value specifies an owner-drawn menu.

CtlID This element is the control's identifier. It is not used for menu controls.

itemID This element is the identifier of the list-box item in a variable-height combo box or list box,
or the menu-item identifier for a menu control. The itemID element is not used for a fixed-
height combo box or list box or for a button.

- 39 -

itemWidth This element is the menu item's width. Before returning from the WM_MEASUREITEM
message, the owner of the owner-drawn menu item must assign a value to this element.

itemHeight This element is the height of an item in a list box or a menu. Before returning from the
WM_MEASUREITEM message, the owner of the owner-drawn combo box, list box, or
menu item must assign a value to this element. The value of itemHeight cannot be greater
than 255.

itemData This element is the application-defined data that was passed to the combo box or list box in
the lParam parameter of CB_ADDSTRING, CB_INSERTSTRING, LB_ADDSTRING, or
LB_INSERTSTRING.

C.21.3 Cross-References
CB_ADDSTRING, CB_INSERTSTRING, LB_ADDSTRING, LB_INSERTSTRING, WM_MEASUREITEM

C.22 MENUITEMTEMPLATE
C.22.1 Synopsis

typedef struct {

UINT mtOption;

UINT mtID;

char mtString[1];

} MENUITEMTEMPLATE;

C.22.2 Description
The MENUITEMTEMPLATE structure contains information about a menu item.

Element Description

mtOption This element is the menu item's appearance. The element can contain one or more of the
following values OR'ed together:

MF_CHECKED The menu item has a check mark next to it.

MF_GRAYED The menu item is inactive and drawn with the gray selection.

MF_HELP The menu item has a vertical separator to its left.

MF_MENUBARBREAK The menu item is placed in a new column. The old and new
columns are separated by a bar.

MF_MENUBREAK The menu item is placed in a new column.

MF_OWNERDRAW The menu's owner draws all visual parts of the menu item (for
example, highlighted, checked and inactive states). This value is
not valid for a top-level menu item.

MF_POPUP The menu item is a pop-up that displays a sublist of menu items
when selected.

mtID This element is the menu item's identifier. Not used if the
structure's mtOption element contains the MF_POPUP value.

mtString This element is the null-terminated string containing the menu item's name.

C.22.3 Cross-References
LoadMenuIndirect(), MENUITEMTEMPLATEHEADER

C.23 MENUITEMTEMPLATEHEADER
C.23.1 Synopsis

typedef struct {

- 40 -

UINT versionNumber;

UINT offset;

} MENUITEMTEMPLATEHEADER;

C.23.2 Description
The MENUITEMTEMPLATEHEADER structure contains the header information for a menu-item list.

Element Description

versionNumber This element is the MENUITEMTEMPLATEHEADER structure's version number.

offset This element is the number of bytes from the end of this structure to where the menu-item list
begins.

C.23.3 Cross-References
MENUITEMTEMPLATE

C.24 MINMAXINFO
C.24.1 Synopsis

typedef struct tagMINMAXINFO {

POINT ptReserved;

POINT ptMaxSize;

POINT ptMaxPosition;

POINT ptMinTrackSize;

POINT ptMaxTrackSize;

} MINMAXINFO;

C.24.2 Description
The MINMAXINFO structure contains a window's maximized size and position and tracking size.

Element Description

ptReserved This element is reserved by the system.

ptMaxSize This element is the window's maximized width and height. The POINT structure's x element
contains the window's maximized width. The POINT structure's y element contains the
window's maximized height.

ptMaxPosition This element is the window's maximized position. The POINT structure's x element contains
the x-coordinate of the window's top-left corner. The POINT structure's y element contains
the y-coordinate of the window's top-left corner.

PtMinTrackSize
This element is the window's minimum tracking width and height. The POINT structure's x
element contains the window's minimum tracking width. The POINT structure's y element
contains the window's minimum tracking height.

PtMaxTrackSize
This element is the window's maximum tracking width and height. The POINT structure's x
element contains the window's maximum tracking width. The POINT structure's y element
contains the window's maximum tracking height.

C.24.3 Cross-References
POINT , WM_GETMINMAXINFO

- 41 -

C.25 MSG
C.25.1 Synopsis

typedef struct tagMSG {

HWND hwnd;

UINT message;

WPARAM wParam;

LPARAM lParam;

DWORD time;

POINT pt;

} MSG;

C.25.2 Description
The MSG structure contains a message's information.

Element Description

hwnd This element indicates a window that receives the message.

message This element is a message number.

wParam This element is additional information specific to the message.

lParam This element is additional information specific to the message.

time This element is the time at which the message was posted.

pt This element is the cursor's position, in screen coordinates, at the time that the message was
posted.

C.25.3 Cross-References
GetMessage(), TranslateMessage(), DispatchMessage(), TranslateAccelerator()

C.26 NEWTEXTMETRIC
C.26.1 Synopsis

typedef struct tagNEWTEXTMETRIC {

int tmHeight;

int tmAscent;

int tmDescent;

int tmInternalLeading;

int tmExternalLeading;

int tmAveCharWidth;

int tmMaxCharWidth;

int tmWeight;

BYTE tmItalic;

BYTE tmUnderlined;

BYTE tmStruckOut;

BYTE tmFirstChar;

BYTE tmLastChar;

BYTE tmDefaultChar;

- 42 -

BYTE tmBreakChar;

BYTE tmPitchAndFamily;

BYTE tmCharSet;

int tmOverhang;

int tmDigitizedAspectX;

int tmDigitizedAspectY;

DWORD ntmFlags;

UINT ntmSizeEM;

UINT ntmCellHeight;

UINT ntmAvgWidth;

} NEWTEXTMETRIC;

C.26.2 Description
The NEWTEXTMETRIC structure contains information about a physical font. The structure is an extension of
the TEXTMETRIC structure.

Element Description

tmHeight This element is the character cell's height. It is the sum the values in the structure's tmAscent
and tmDescent elements.

tmAscent This element is the character cell's ascent. It is the space between the base line and the top of
the character cell.

tmDescent This element is the character cell's descent. It is the space between the bottom of the
character cell and the base line.

tmInternalLeading
This element is the difference between the font's physical size and the font's point size.

If the font is a TrueType font, the value of the tmInternalLeading element is equal to the
value of tmHeight - (ScaleFactor * ntmSizeEM), where ScaleFactor is the font's scaling
factor.

If the font is a bitmap font, the value of the tmInternalLeading element is used to specify
the font's point size. During a request for a logical font, if the LOGFONT structure's
lfHeight element contains a negative value, the height of the font being requested equals the
value of the tmHeight element minus the tmInternalLeading element.

TmExternalLeading
This element is the amount of extra leading space that the application adds between rows.
This area is outside of the character cell and will therefore contains no marks and is not
altered by text output calls using either the opaque or transparent modes. A font designer
sometimes sets the value of this element to zero.

TmAveCharWidth
 This element is the average width of the font's characters. If a font uses the ANSI character
set (ANSI_CHARSET), the value of tmAveCharWidth is a weighted average width of the
characters 'a' -'z' and the space character. For fonts that use other character sets, the value of
tmAveCharWidth is an unweighted average of all characters in the font.

tmMaxCharWidth
This element is the "B" spacing of the font's widest character.

tmWeight This element is the weight of the font. The tmWeight element can be assigned one of the
following constant values:

FW_DONTCARE (Use font's default weight)

FW_THIN

FW_EXTRALIGHT (Same as FW_ULTRALIGHT)

- 43 -

FW_ULTRALIGHT (Same as FW_ EXTRALIGHT)

FW_LIGHT

FW_NORMAL (Same as FW_ REGULAR)

FW_REGULAR (Same as FW_ NORMAL)

FW_MEDIUM

FW_SEMIBOLD (Same as FW_ DEMIBOLD)

FW_DEMIBOLD (Same as FW_ SEMIBOLD)

FW_BOLD

FW_EXTRABOLD (Same as FW_ ULTRABOLD)

FW_ULTRABOLD (Same as FW_ EXTRABOLD)

FW_BLACK (Same as FW_ HEAVY)

FW_HEAVY (Same as FW_ BLACK)

tmItalic This element means the font is italic. The value of tmItalic is TRUE if the font is italic and
FALSE if the font is not italic.

tmUnderlined This element means the font is underlined. The value of tmUnderlined is TRUE if the font is
underlined and FALSE if the font is not underlined.

tmStruckOut This element means the font is struck out. The value of tmStruckOut is TRUE if the font is
struck out and FALSE if the font is not struck out.

tmFirstChar This element is the value of the font's first character.

tmLastChar This element is the value of the font's last character.

tmDefaultChar This element is the value of the character that is substituted for characters not found in the
font.

tmBreakChar This element is the value of the character that is used to define word breaks for text
justification.

tmPitchAndFamily
This element is the font's pitch and family.

The value of the four low-order bits of the tmPitchAndFamily element specifies the type of
font and can be one or more of the following constant values OR'ed together:

TMPF_FIXED_PITCH This value specifies a fixed-pitch font.

TMPF_VECTOR This value specifies a vector or TrueType font.

TMPF_TRUETYPE This value specifies a TrueType font. that can be used on a printer
and display.

TMPF_DEVICE This value specifies a device font. Set for downloaded and device-
resident fonts.

For example, the TrueType font Courier New® uses the
TMPF_FIXED_PITCH, TMPF_VECTOR, and
TMPF_TRUETYPE constants.

The value of the four high-order bits of the tmPitchAndFamily
element specifies the font family and can be one of the following
constant values:

FF_DECORATIVE This value specifies a novelty font family, such as Old English.

FF_DONTCARE This value means that the font's family is unimportant or
unknown.

FF_MODERN This value specifies a font with a constant stroke width and with
or without serifs (for example, Pica, Elite, or Courier New).

- 44 -

FF_ROMAN Font with a variable stroke width and with serifs (for example,
Times New Roman and New Century Schoolbook).

FF_SCRIPT Font that looks like handwriting (for example, Script and
Cursive).

FF_SWISS Font with a variable stroke width and without serifs (for example,
MS Sans Serif).

tmCharSet This element is the font's character set. The tmCharSet element can be assigned one of the
following constant values:

ANSI_CHARSET 0

DEFAULT_CHARSET 1

SYMBOL_CHARSET 2

SHIFTJIS_CHARSET 128

OEM_CHARSET 255

tmOverhang This element is extra width that is added to some synthesized fonts. The GDI or a device will
add width to a string on a per-character and per-string basis when synthesizing such as bold
or italic.

The value of the tmOverhang element is zero for many italic and bold TrueType fonts
because many TrueType fonts include non-synthesized italic and bold faces.

The value of a Raster font's overhang can be used to determine the amount of spacing
between words that have different attributes.

tmDigitizedAspectX
This element is the horizontal aspect of the device for which the font was designed.

TmDigitizedAspectY

This element is vertical aspect of the device for which the font was designed.

ntmFlags This element provides more information about the font's style. The ntmFlags element can
contain one or more of the following constant values OR'ed together:

NTM_REGULAR

NTM_BOLD

NTM_ITALIC

ntmSizeEM This element is the size of font's em square in notional units.

ntmCellHeight This element is the font's height in notional units. This value of the ntmCellHeight element
should be compared with the value of the ntmSizeEM element sntmAvgWidth . This
element is the average width of the font's characters in notional units. The value of the
ntmAvgWidth element should be compared with the value of the ntmSizeEM element.

C.26.3 Cross-References
EnumFontFamilies(), EnumFonts(), GetDeviceCaps(), GetTextMetrics(), TEXTMETRIC

C.27 OFSTRUCT
C.27.1 Synopsis

typedef struct tagOFSTRUCT {

- 45 -

BYTE cBytes;

BYTE fFixedDisk;

UINT nErrCode;

BYTE reserved[4];

BYTE szPathName[128];

} OFSTRUCT;

C.27.2 Description
The OFSTRUCT structure contains information about an open file.

Element Description

cBytes This element is the size of the OFSTRUCT structure in bytes.

fFixedDisk This element specifies whether the file is on a fixed disk. The value of the fFixedDisk
element is TRUE if the file is on a fixed disk and FALSE if the file is not on a fixed disk.

nErrCode If the OpenFile() function returns the value -1, the value of the nErrCode element is set to
one of the following MS-DOS error values:

0x0001 Invalid function

0x0002 File not found

0x0003 Path not found

0x0004 Too many open files

0x0005 Access denied

0x0006 Invalid handle

0x0007 Arena trashed

0x0008 Not enough memory

0x0009 Invalid block

0x000A Bad environment

0x000B Bad format

0x000C Invalid access

0x000D Invalid data

0x000F Invalid drive

0x0010 Current directory

0x0011 Not same device

0x0012 No more files

0x0013 Write protect error

0x0014 Bad unit

0x0015 Not ready

0x0016 Bad command

0x0017 CRC error

0x0018 Bad length

0x0019 Seek error

0x001A Not MS-DOS disk

0x001B Sector not found

0x001C Out of paper

0x001D Write fault

0x001E Read fault

- 46 -

0x001F General failure

0x0020 Sharing violation

0x0021 Lock violation

0x0022 Wrong disk

0x0023 File control block unavailable

0x0024 Sharing buffer exceeded

0x0032 Not supported

0x0033 Remote not listed

0x0034 Duplicate name

0x0035 Bad netpath

0x0036 Network busy

0x0037 Device does not exist

0x0038 Too many commands

0x0039 Adaptor hardware error

0x003A Bad network response

0x003B Unexpected network error

0x003C Bad remote adaptor

0x003D Print queue full

0x003E No spool space

0x003F Print canceled

0x0040 Netname deleted

0x0041 Network access denied

0x0042 Bad device type

0x0043 Bad network name

0x0044 Too many names

0x0045 Too many sessions

0x0046 Sharing paused

0x0047 Request not accepted

0x0048 Redirection paused

0x0050 File exists

0x0051 Duplicate file control block

0x0052 Cannot make

0x0053 Interrupt 24 failure

0x0054 Out of structures

0x0055 Already assigned

0x0056 Invalid password

0x0057 Invalid parameter

0x0058 Net write fault

reserved This element is reserved for future use by the system.

szPathName This element is a buffer containing the file's path. The characters in the buffer are from the
OEM character set.

C.27.3 Cross-References
OpenFile()

- 47 -

C.28 OPENFILENAME
C.28.1 Synopsis

typedef struct tagOPENFILENAME {

DWORD lStructSize;

HWND hwndOwner;

HINSTANCE hInstance;

LPCSTR lpstrFilter;

LPSTR lpstrCustomFilter;

DWORD nMaxCustFilter;

DWORD nFilterIndex;

LPSTR lpstrFile;

DWORD nMaxFile;

LPSTR lpstrFileTitle;

DWORD nMaxFileTitle;

LPCSTR lpstrInitialDir;

LPCSTR lpstrTitle;

DWORD Flags;

UINT nFileOffset;

UINT nFileExtension;

LPCSTR lpstrDefExt;

LPARAM lCustData;

UINT (CALLBACK *lpfnHook) (HWND, UINT, WPARAM, LPARAM);

LPCSTR lpTemplateName;

} OPENFILENAME;

C.28.2 Description
The OPENFILENAME structure contains information that is used by the system to initialize the Open and
Save common dialog boxes and to return the user's dialog box selections.

Element Description

lStructSize This element is the size of the OPENFILENAME structure in bytes. A value must be
assigned to this element before the structure is passed to the GetOpenFileName() or
GetSaveFileName() functions.

hwndOwner This element is the handle of the window that owns the common dialog box. A value must be
assigned to this element before the structure is passed to the GetOpenFileName() or
GetSaveFileName() functions. If there is no owner, the element's value should be NULL.

If the OFN_SHOWHELP flag is set in the Flags element, a valid window handle must be
assigned to the hwndOwner element. If the user selects the dialog box's Help button, the
window is sent a notification message. The message's ID is registered at runtime and can be
retrieved by calling the RegisterWindowMessage() function with the constant
HELPMSGSTRING.

hInstance The element should be assigned the handle of the data block containing the dialog box
template given in the lpTemplateName element.

The value of the hInstance element is used only when the OFN_ENABLETEMPLATEor
OFN_ENABLETEMPLATEHANDLE constants are used in the Flags element. When the

- 48 -

CC_ENABLETEMPLATE constant is used, hInstance is an instance handle; when the
CC_ENABLETEMPLATEHANDLE constant is used, hInstance is a handle to a dialog
resource. If either of these two constants are used, a value must be assigned to the hInstance
element before the structure is passed to the GetOpenFileName() or GetSaveFileName()
functions.

lpstrFilter This element is a pointer to a buffer that contains one or more pairs of null-terminated strings
representing file name filters. A value must be assigned to this element before the structure is
passed to the GetOpenFileName() or GetSaveFileName() functions.

The first string in the pair of string is a description of the file filter (for example, "Help
Files"). The second string in the pair of string is the actual file filter pattern (for example,
"*.hlp"). Multiple file filter patterns can be associated with a single file filter description by
separating each pattern with a semicolon (;) character (for example, "*.txt;*.doc;*.hlp"). Two
NULL characters must appear after the last file filter pattern string to denote the end of the
entire string in the buffer.

If the value of the lpstrFilter element is NULL, no filters are shown in the dialog box.

lpstrCustomFilter
This element is a pointer to a buffer that contains one or more pairs of null-terminated,
custom strings representing file name filters. The strings are formatted in the same manner as
the lpstrFilter element's file filter strings. A value must be assigned to this element before
the structure is passed to the GetOpenFileName() or GetSaveFileName() functions.

If the value of the lpstrFilter element is not NULL, after the user closes the dialog box with
the OK button, the system will always copy the file filter pattern from the "File Name" edit
control to the second string location within the buffer.

When the value of the nFilterIndex element is zero, the string in the lpstrCustomFilter
buffer is used as the dialog box's initial filter description and filter pattern. In this case, if the
first string in the first pair of strings is a NULL string (for example, "", "*.hlp"), only the
string in the lpstrFilter buffer is displayed in the dialog box's "List Files of Type" list box.

The lpstrCustomFilter buffer should be at least 40 bytes in size.

nMaxCustFilter The size of the lpstrCustomFilter buffer in bytes. Not used if the value of the
lpstrCustomFilter element is NULL.

nFilterIndex The index number of the file filter to use when the common dialog box is first shown. An
index value of 1, for example, will cause the first file filter string pair in the lpstrFilter
buffer to be initially shown. A value must be assigned to this element before the structure is
passed to the GetOpenFileName() or GetSaveFileName() functions.

If the value of the nFilterIndex member is zero and the value of the lpstrCustomFilter
element is not NULL, the first filter in the lpstrCustomFilter buffer is used.

If the value of the nFilterIndex member is zero, the value of the lpstrCustomFilter element
is NULL, or the value of the lpstrCustomFilter element is not NULL but the first string in
the lpstrCustomFilter buffer is a NULL string, the first filter in the lpstrFilter buffer is
used.

If the buffer pointed to by the lpstrFilter element should be used, but the value of the
element is NULL, no file filter is used and no files is shown in the "File Name" list box.

After the user closes the dialog box with the OK button, the system will assign the index of
the last selected file filter to the nFilterIndex element.

lpstrFile This element is a pointer to a buffer that contains a filename string to copy to the "File
Name" edit control when the common dialog box is initialized. A value must be assigned to
this element before the structure is passed to the GetOpenFileName() or GetSaveFileName()
functions. If the initialization operation is not desired, the first character in the string should
be NULL.

After the user closes the dialog box with the OK button, the selected file's complete path is
copied into the lpstrFile buffer.

- 49 -

If the file path string is too large to fit in the buffer, the required size, in bytes, of the string is
placed in the buffer instead of the string and the common dialog box's procedure will return
zero. In this case, the application should cast the lpstrFile element to type LPWORD.

The size of the buffer pointed to by the lpstrFile element must be at least three bytes in order
to receive the path size. If the lpstrFile buffer is too small, the CommDlgExtendedError()
function will return the FNERR_BUFFERTOOSMALL value.

nMaxFile This element is the size of the lpstrFile buffer in bytes. Not used if the value of the lpstrFile
element is NULL.

lpstrFileTitle This element is a pointer to a buffer in to which the common dialog box's procedure will
copy the filename and extension of the file selected by the user. If the value of the
lpstrFileTitle element is NULL, the copy operation will not be performed by the common
dialog box's procedure.

nMaxFileTitle This element is the maximum size of a string, in bytes, that can be copied into the lpstrFile
buffer. If the value of the lpstrFileTitle element is NULL, the nMaxFileTitle element is not
used.

lpstrInitialDir This element is a pointer to a buffer that contains a string representing the initial file
directory to use when the common dialog is displayed. A value must be assigned to this
element before the structure is passed to the GetOpenFileName() or GetSaveFileName()
functions.

If the value of the lpstrInitialDir element is NULL, the current directory is used as the initial
directory.

If the lpstrFile buffer contains a valid path to a file, that file directory is initially used instead
of the file directory given in lpstrInitialDir .

lpstrTitle This element is a pointer to a null-terminated string that is a custom title for the common
dialog box. A value must be assigned to this element before the structure is passed to the
GetOpenFileName() or GetSaveFileName() functions.

If the value of the lpstrTitle element is NULL, the dialog box's default title is shown.

Flags This element determines how the common dialog box is initialized. A value must be assigned
to this element before the structure is passed to the GetOpenFileName() or
GetSaveFileName() functions. The value of this element may the one or more of the
following constant values OR'ed together:

OFN_ALLOWMULTISELECT
This value allows the "File Name" list box to have multiple
selections. The lpstrFile buffer will contain a single path followed
by all of the selected filenames. The path and each filename are
separated from one another by a single one space character.

A filename may be preceded by a relative path. The buffer could,
for example, look something like this:

 c:\files file1.txt file2.txt ..\bin\file3.txt

OFN_CREATEPROMPT This value allows the user to create a new file. Automatically sets
the OFN_PATHMUSTEXIST and OFN_FILEMUSTEXIST
constants.

OFN_ENABLEHOOK This value uses the hook function given in the structure's
lpfnHook element.

OFN_ENABLETEMPLATE
This value uses the dialog box template given in the hInstance
and lpTemplateName elements.

OFN_ENABLETEMPLATEHANDLE
The hInstance element is a data block that has a pre-loaded
dialog box template. The lpTemplateName element should be
ignored.

- 50 -

OFN_EXTENSIONDIFFERENT
This value sets the common dialog box's procedure to indicate
that the returned filename's extension is different from the
extension given in the lpstrDefExt element. The constant will not
be set if the value of the lpstrDefExt element is NULL, if the file
extensions match, or if the returned filename has no extension

OFN_FILEMUSTEXIST This value warns the user when they type an invalid name into the
"File Name" edit control; only allows valid filenames.
Automatically sets the OFN_PATHMUSTEXIST constant.

OFN_HIDEREADONLY This value hides the dialog box's "Read Only" check box.

OFN_NOCHANGEDIR This value resets the current directory to what it was when the
dialog box was created.

OFN_NOREADONLYRETURN
The returned file will not have the Read Only attribute and will
not be in a write-protected directory.

OFN_NOTESTFILECREATE
The file will not be created before the dialog box is closed and the
system will not check against write protection, a full disk, an open
drive door, or network protection. This constant is usually used
when an application saves the file on a create-no-modify network
share point.

OFN_NOVALIDATE This value allows the returned filename to contain invalid
characters. In order to check the filename, an application can use
a hook function that responds to the FILEOKSTRING registered
message.

If the edit control's text is empty or if it contains only spaces, the
lists of files and directories are updated.

If the edit control's text is not empty and does contain only spaces,
the structure's nFileOffset and nFileExtension elements are
updated. A default extension will not be added to the text and text
will not be copied to the lpstrFileTitle buffer.

If the value of the nFileOffset element is negative, the returned
filename is invalid.

If the value of the nFileOffset element is not negative, the
filename is valid and the values of the nFileOffset and
nFileExtension elements can be used as if the
OFN_NOVALIDATE constant had not been set at all.

OFN_OVERWRITEPROMPT
If the selected file already exists, the Save As common dialog box
will display a message box and the user must confirm the file
overwriting action.

OFN_PATHMUSTEXIST
This value warns the user when they type in an invalid path into
the "File Name" edit control; only allows valid paths.

OFN_READONLY When the dialog box is created, this value checks the "Read Only"
check box.

After the user closes the dialog box with the OK button, this
constant is set if the "Read Only" check box is checked.

- 51 -

OFN_SHAREAWARE If a network sharing violation occurs when the OpenFile()
function is called, this value ignores the error and returns the
given filename.

If this constant is not used, the registered message for
SHAREVISTRING is sent to the hook function. The message's
lParam value will contain a pointer to a null-terminated string for
the path name. The hook function can return one of the following
constant values:

OFN_SHAREFALLTHROUGH - This value returns the filename
from the dialog box.

OFN_SHARENOWARN - This value performs no further action.

OFN_SHAREWARN - This value displays the standard warning
message for the error. This is the default action when there is not a
hook function.

OFN_SHOWHELP This value displays the Help button
in the dialog box.

nFileOffset After the user closes the dialog box with the OK button, this nFileOffset element will
contain a zero-based offset value from the beginning of the lpstrFile buffer to the selected
file's filename.

nFileExtension After the user closes the dialog box with the OK button, this nFileOffset element will
contain a zero-based offset value from the beginning of the lpstrFile buffer to the selected
file's extension.

lpstrDefExt This element is a pointer to a null-terminated string that is a default file extension. If the user
does not enter a file extension into the "File Name" edit control, the common dialog box
procedure internally appends the default extension to the file's name and looks for the file. If
the search fails, the common dialog box procedure searches for the file using the exact
filename information that the user entered. A value must be assigned to this element before
the structure is passed to the GetOpenFileName() or GetSaveFileName() functions.

Only the first three characters of the string are used. The string should not contain a period
character.

If the value of the lpstrDefExt element is NULL and the user does not type an extension into
the "File Name" edit control, no extension is appended to the user's entry.

lCustData This element is application-defined data that the system passes to the hook function specified
in the structure's lpfnHook element when the dialog box is initialized.

lpfnHook This element is a pointer to a hook function that processes messages for the common dialog
box. The hook function is used only when the OFN_ENABLEHOOK constant is specified in
the structure's Flags element.

The hook function is sent all of the messages that the dialog box receives. When the dialog
box is created, the hook function is sent a WM_INITDIALOG message whose lParam
contains a pointer to the FINDREPLACE structure. This is the only time that the hook
function will have access to the application-defined data specified in the lCustData element
and to the rest of the values stored in the FINDREPLACE structure.

The hook function must return TRUE when it processes a message that is sent to it, or
FALSE when it does not process a message that is sent to it.

lpTemplateName
This element is a null-terminated string containing the name of the resource file that has an
application-defined dialog box template that is to be substituted for the standard common
dialog box's template. This element is used only when the OFN_ENABLETEMPLATE
constant is specified in the structure's Flags element The MAKEINTRESOURCE macro can
be used if the dialog box resource is numbered.

- 52 -

C.28.3 Cross-References
GetOpenFileName(), GetSaveFileName(), MAKEINTRESOURCE

C.29 PAINTSTRUCT
C.29.1 Synopsis

typedef struct tagPAINTSTRUCT {

HDC hdc;

BOOL fErase;

RECT rcPaint;

BOOL fRestore;

BOOL fIncUpdate;

BYTE rgbReserved[16];

} PAINTSTRUCT;

C.29.2 Description
The PAINTSTRUCT structure contains information that an application can use to paint the client area of a
window that it owns.

Element Description

hdc This element is the device context to be used when painting.

fErase This element determines whether the background of the client area needs to be redrawn. If
the value of the fErase element is TRUE, the background needs to be redrawn. If the value
of the fErase element is FALSE, the background does not need to be redrawn.

rcPaint This element is the position information for the area that needs to be painted.

fRestore This element is reserved for use by the system.

fIncUpdate This element is reserved for use by the system.

rgbReserved This element is reserved for use by the system.

C.29.3 Cross-References
BeginPaint(), EndPaint(), WNDCLASS

C.30 PALETTEENTRY
C.30.1 Synopsis

typedef struct tagPALETTEENTRY {

BYTE peRed;

BYTE peGreen;

BYTE peBlue;

BYTE peFlags;

} PALETTEENTRY;

C.30.2 Description
The PALETTEENTRY structure contains the color and usage information for an entry in a logical color
palette.

Element Description

peRed This element is the palette entry's intensity of red.

peGreen This element is the palette entry's intensity of green.

- 53 -

peBlue This element is the palette entry's intensity of blue.

peFlags This element determines how the palette entry is to be used. The value of the peFlags
element can be one of the following values:

NULL The system assumes that the the palette entry contains an RGB
value that is mapped normally.

PC_EXPLICIT The low-order word of the logical palette entry is a hardware
palette index. An application can use this constant value to show
the contents of the display device's palette.

PC_NOCOLLAPSE The color is placed in an unused system-palette entry instead of
being matched to an existing system-palette color. Colors in other
logical palettes can be matched to this color. If there are no
unused system-palette entries, the color is matched normally.

PC_RESERVED The logical palette entry is used for palette animation. Because the
palette entry's color will change frequently, the use of this
constant prevents other windows from matching colors to this
palette entry. If there is an unused, available system-palette entry,
the color is placed in that entry. If there is not an unused, available
system-palette entry, the color will not be available for animation.

C.30.3 Cross-References
AnimatePalette(), LOGPALETTE

C.31 POINT
C.31.1 Synopsis

typedef struct tagPOINT {

int x;

int y;

} POINT;

C.31.2 Description
The POINT structure contains the x- and y-coordinates of a point.

Element Description

x This element is a point's x-coordinate.

y This element is a point's y-coordinate.

C.31.3 Cross-References
ChildWindowFromPoint(), PtInRect(), WindowFromPoint()

C.32 PRINTDLG
C.32.1 Synopsis

typedef struct tagPD {

DWORD lStructSize;

HWND hwndOwner;

HGLOBAL hDevMode;

HGLOBAL hDevNames;

HDC hdc;

DWORD Flags;

- 54 -

UINT nFromPage;

UINT nToPage;

UINT nMinPage;

UINT nMaxPage;

UINT nCopies;

HINSTANCE hInstance;

LPARAM lCustData;

UINT (CALLBACK* lpfnPrintHook)(HWND, UINT, WPARAM, LPARAM);

UINT (CALLBACK* lpfnSetupHook)(HWND, UINT, WPARAM, LPARAM);

LPCSTR lpPrintTemplateName;

LPCSTR lpSetupTemplateName;

HGLOBAL hPrintTemplate;

HGLOBAL hSetupTemplate;

} PRINTDLG;

C.32.2 Description
The PRINTDLG structure contains information that is used by the system to initialize the Print common dialog
box and to return the user's dialog box selections.

Element Description

lStructSize This element is the size of the PRINTDLG structure in bytes. A value must be assigned to
this element before the structure is passed to the PrintDlg() function.

hwndOwner This element is the handle of the window that owns the common dialog box. A value must be
assigned to this element before the structure is passed to the PrintDlg() function. If there is
no owner, the element's value should be NULL.

If the PD_SHOWHELP flag is set in the Flags element, a valid window handle must be
assigned to the hwndOwner element. If the user selects the dialog box's Help button, the
window is sent a notification message. The message's ID is registered at runtime and can be
retrieved by calling the RegisterWindowMessage() function with the constant
HELPMSGSTRING.

hDevMode This element identifies a movable global memory object that contains a DEVMODE
structure.

If an application wishes to set the initial state of the Print dialog box's controls, it can allocate
the DEVMODE structure and assign initial values to the structure's elements. If an
application does not wish to set the initial state of the Print dialog box's controls, the value of
the hDevMode element should be set to NULL. If the value of the hDevMode element is
NULL, the PrintDlg() function will allocate the memory for the DEVMODE structure, set
the value of its elements, and return a handle that identifies it.

If the specified printer's device driver does not support extended device modes, the
PrintDlg() function will set the value of hDevMode to NULL when the PrintDlg() function
returns.

If the device name specified in the dmDeviceName element of the DEVMODE structure is
not in the WIN.INI file's (devices) section, the PrintDlg() function will return an error.

The value of the hDevMode element may be changed by the PrintDlg() function. If the value
of the hDevMode element is changed by the PrintDlg() function, it can be assumed that the
original handle was freed by the PrintDlg() function and that the new handle should be freed
by the application.

- 55 -

When the PrintDlg() function returns, an application can use the DEVMODE structure to
determine the last state of the dialog box controls that were associated with the elements in
the structure.

hDevNames This element identifies a movable global memory object that contains a DEVNAMES
structure.

If an application wishes to set the initial state of the Print dialog box's controls, it can allocate
the DEVNAMES structure and assign initial values to the structure's elements.

If an application does not wish to set the initial state of the Print dialog box's controls, the
value of the hDevNames element should be set to NULL. If the value of the hDevNames
element is NULL, the PrintDlg() function will allocate the memory for the DEVNAMES
structure, set the value of its elements, and return a handle that identifies it. When the
PrintDlg() function initially sets the values of the DEVNAMES structure's elements, it uses
the first port name that appears in the (devices) section of WIN.INI.

When the PrintDlg() function returns, an application can use the DEVNAMES structure to
determine the last state of the dialog box controls (for example, the strings in the controls)
that were associated with the elements in the structure. An application can, for example, use
the information to create a device context or an information context.

If the value of the PRINTDLG structure's hDevMode and hDevNames elements are NULL,
the PrintDlg() function specifies the default printer for hDevNames.

The value of the hDevNames element can be changed by the PrintDlg() function. If the
value of the hDevNames element is changed by the PrintDlg() function, it can be assumed
that the original handle was freed by the PrintDlg() function and that the new handle should
be freed by the application.

hdc When the PrintDlg() function is finished, it returns a value in the hdc element. The type of
value stored in the hdc element is dependent on which constant value is set in the Flags
element, PD_RETURNDC or PC_RETURNIC.

If the PD_RETURNDC constant value is used, the value stored in the hdc element is a
device context matching the selections that the user made in the dialog box.

If the PD_RETURNIC constant value is used, the value stored in the hdc element is an
information context matching the selections that the user made in the dialog box.

If both constant values are used, the value stored in the hdc element is a device context.

If neither constant value is used, the value stored in the hdc element is undefined.

Flags These flags determine how the common dialog box is initialized. A value must be assigned to
this element before the structure is passed to the PrintDlg() function. The value of this
element may be one or more of the following constant values OR'ed together:

PD_ALLPAGES This value selects the "All" Page Range radio button.

PD_COLLATE This value checks the "Collate Copies" check box.

PD_DISABLEPRINTTOFILE
This value disables the "Print to File" check box.

PD_ENABLEPRINTHOOKThis value uses the hook function given in the structure's
lpfnPrintHook element.

PD_ENABLEPRINTTEMPLATE
This value uses the dialog box template given in the hInstance
and lpPrintTemplateName elements.

PD_ENABLEPRINTTEMPLATEHANDLE
The hPrintTemplate element is a data block that has a pre-loaded
dialog box template. The lpPrintTemplateName element should
be ignored.

PD_ENABLESETUPHOOK
This value uses the hook function given in the structure's
lpfnSetupHook element.

- 56 -

PD_ENABLESETUPTEMPLATE
This value uses the dialog box template given in the hInstance
and lpSetupTemplateName elements.

PD_ENABLESETUPTEMPLATEHANDLE
The hSetupTemplate element is a data block that has a preloaded
dialog box template. The lpSetupTemplateName element should
be ignored.

PD_HIDEPRINTTOFILE This value hides and disables the "Print to File" check box.

PD_NOPAGENUMS This value disables the "Pages" radio button and its associated
edit controls.

PD_SHOWHELP This value displays the Help button in the dialog box.

PD_NOSELECTION This value disables the "Selection" radio button.

PD_NOWARNING This value does not show a warning message when there is no
default printer.

PD_PAGENUMS This value selects the "Pages" radio button.

PD_PRINTSETUP This value displays the Print Setup dialog box instead of the Print
dialog box.

PD_PRINTTOFILE This value checks the "Print to File" check box.

PD_RETURNDC This value returns a device context matching the selections that
the user made in the dialog box. Assigns the value of the handle to
the device context to the PRINTDLG structure's hdc element.

PD_RETURNDEFAULT This value does not display a dialog box. It returns DEVMODE
and DEVNAMES structures that are initialized for the system
default printer.

When this constant is used, the value of the PRINTDLG
structure's hDevNames and hDevMode elements should be
NULL.

If the system default printer is supported by an old printer driver,
the value of the hDevMode element is NULL.

PD_RETURNIC This value returns an information context matching the selections
that the user made in the dialog box. It assigns the value of the
handle to the device context to the PRINTDLG structure's hdc
element.

PD_SELECTION This value selects the "Selection" radio button.

PD _SHOWHELP This value displays the Help button in the dialog box.

PD_USEDEVMODECOPIES
If a printer driver does not support multiple copies and this
constant value is used, this value disables the Copies edit control.

If a printer driver does support multiple copies and this constant
value is used, the PrintDlg() function stores the requested number
of copies in the DEVMODE structure's dmCopies element and
the value 1 in the PRINTDLG structure's nCopies member.

If this constant value is not used, the PrintDlg() function will store
the value 1 in the DEVMODE structure's dmCopies element and
the requested number of copies in the PRINTDLG structure's
nCopies member.

- 57 -

nFromPage This element is the initial value for the dialog box's "From" edit control. When the PrintDlg()
function returns, the nFromPage element contains the page at which to begin printing. The
value of the nFromPage element should only be used when the PD_PAGENUMS constant is
set in the flag element. The maximum value that can be stored in the nFromPage element is
0xFFFE. If the initial value for the dialog box's "From" edit control is set to 0xFFFF, the edit
control is blank.

nToPage This element is the initial value for the dialog box's "To" edit control. When the PrintDlg()
function returns, the nToPage element contains the page at which to stop printing. The value
of the nToPage element should only be used when the PD_PAGENUMS constant is set in
the Flags element. The maximum value that can be stored in the nToPage element is
0xFFFE. If the initial value for the dialog box's "To" edit control is set to 0xFFFF, the edit
control is blank.

nMinPage This element is the minimum number that can be specified in the "From" and "To" edit
controls.

nMaxPage This element is the minimum number that can be specified in the "From" and "To" edit
controls.

nCopies This element is the initial value for the dialog box's "Copies" edit control when the value of
the hDevMode elements is NULL.

Before the PrintDlg() function returns, it stores a value in the nCopies element. The value
stored in the nCopies element is dependent on the age of the printer driver. For older printer
drivers, the nCopies element is assigned the number of copies requested by the user in the
dialog box's "Copies" edit control. For newer printer drivers, when the
PD_USEDEVMODECOPIES constant is not set in the Flags element, the nCopies element
is assigned copies requested by the user. For newer printer drivers, when the
PD_USEDEVMODECOPIES constant is set in the Flags element, the nCopies element is
assigned the value 1 and the actual number of copies requested by the user is assigned the
DEVMODE structure's dmCopies element.

hInstance This element should be assigned the handle to the data block containing the dialog box
templates given in the lpPrintTemplateName and lpSetupTemplateName elements.

The value of the hInstance element is used only when the PD_ENABLEPRINTTEMPLATE
or PD_ENABLESETUPTEMPLATE constants are used in the Flags element. When the
CC_ENABLETEMPLATE constant is used, hInstance is an instance handle; when the
CC_ENABLETEMPLATEHANDLE constant is used, hInstance is a handle to a dialog
resource. If either of these constants are used, a value must be assigned to the hInstance
element before the structure is passed to the PrintDlg() function.

lCustData This element is application-defined data that the system passes to the hook functions
specified in the structure's lpfnPrintHook and lpfnSetupHook elements when the dialog
box is initialized.

lpfnPrintHook This element is a pointer to a hook function that processes messages for the Print common
dialog box. The hook function is used only when the PD_ENABLEPRINTHOOK constant is
specified in the structure's Flags element.

The hook function is sent all of the messages that the dialog box receives. When the dialog
box is created, the hook function is sent a WM_INITDIALOG message whose lParam
contains a pointer to the PRINTDLG structure. This is the only time that the hook function
has access to the application-defined data specified in the lCustData element and to the rest
of the values stored in the PRINTDLG structure.

The hook function must return TRUE when it processes a message that is sent to it, or
FALSE when it does not process a message that is sent to it.

lpfnSetupHook This element is a pointer to a hook function that processes messages for the Print Setup
common dialog box. The hook function is used only when the PD_ENABLESETUPHOOK
constant is specified in the structure's Flags element.

The hook function is sent all of the messages that the dialog box receives. When the dialog
box is created, the hook function is sent a WM_INITDIALOG message whose lParam
contains a pointer to the PRINTDLG structure. This is the only time that the hook function

- 58 -

will have access to the application-defined data specified in the lCustData element and to
the rest of the values stored in the PRINTDLG structure.

The hook function must return TRUE when it processes a message that is sent to it, or
FALSE when it does not process a message that is sent to it.

LpPrintTemplateName
This element is a null-terminated string containing the name of the resource file that has an
application-defined dialog box template that is to be substituted for the Print common dialog
box's template. This element is used only when the PD_ENABLEPRINTTEMPLATE
constant is specified in the structure's Flags element. The MAKEINTRESOURCE macro can
be used if the dialog box resource is numbered.

lpSetupTemplateName
This element is a null-terminated string containing the name of the resource file that has an
application-defined dialog box template that is to be substituted for the Print Setup common
dialog box's template. This element is used only when the PD_ENABLESETUPTEMPLATE
constant is specified in the structure's Flags element. The MAKEINTRESOURCE macro can
be used if the dialog box resource is numbered.

hPrintTemplate
This element is a handle to a global memory object containing a pre-loaded dialog box
template to be used instead of the default Print dialog box template. The value of the
hPrintTemplate element is used only when the
PD_ENABLEPRINTTEMPLATEHANDLE constant is found in the Flags element.

hSetupTemplate
This element is a handle to a global memory object containing a pre-loaded dialog box
template to be used instead of the default Print Setup dialog box template. The value of the
hSetupTemplate element is used only when the
PD_ENABLESETUPTEMPLATEHANDLE constant is found in the Flags element.

C.32.3 Cross-References
CreateDC(), CreateIC(), PrintDlg()

C.33 RECT
C.33.1 Synopsis

typedef struct tagRECT {

int left;

int top;

int right;

int bottom;

} RECT;

C.33.2 Description
The RECT structure contains the coordinates of a rectangle's upper-left and lower-right corners.

Element Description

left This element is the X-coordinate of the rectangle's upper-left corner.

top This element is the Y-coordinate of the rectangle's upper-left corner.

right This element is the X-coordinate of the rectangle's lower-right corner.

bottom This element is the Y-coordinate of the rectangle's lower-right corner.

A rectangle defined by a RECT structure cannot have a width that exceeds 32,767 units.

C.33.3 Cross-References
CopyRect(), SetRect(), FillRect(), FrameRect(), InvertRect(), PtInRect()

- 59 -

C.34 RGBQUAD
C.34.1 Synopsis

typedef struct tagRGBQUAD {

BYTE rgbBlue;

BYTE rgbGreen;

BYTE rgbRed;

BYTE rgbReserved;

} RGBQUAD;

C.34.2 Description
The RGBQUAD structure contains information that describes a color.

Element Description

rgbBlue This element is the intensity of blue in the color.

rgbGreen This element is the intensity of green in the color.

rgbRed This element is the intensity of red in the color.

rgbReserved This element is unused. It must be assigned the value zero.

C.34.3 Cross-References
BITMAPINFO

C.35 RGBTRIPLE
C.35.1 Synopsis

typedef struct tagRGBTRIPLE {

BYTE rgbtBlue;

BYTE rgbtGreen;

BYTE rgbtRed;

} RGBTRIPLE;

C.35.2 Description
The RGBTRIPLE structure contains information that describes a color.

Element Description

rgbtBlue This element is the intensity of blue in the color.

rgbtGreen This element is the intensity of green in the color.

rgbtRed This element is the intensity of red in the color.

C.35.3 Cross-References
BITMAPCOREINFO, BITMAPINFO, RGBQUAD

C.36 SIZE
C.36.1 Synopsis

typedef struct tagSIZE {

int cx;

int cy;

} SIZE;

- 60 -

C.36.2 Description
The SIZE structure contains some function-specific types of size information (for example, viewport extents,
window extents, text extents, bitmap dimensions, and aspect-ratio filters).

Element Description

cx This element's meaning is specific to the function being used.

cy This element's meaning is specific to the function being used.

C.36.3 Cross-References
GetAspectRatioFilterEx(), GetBitmapDimensionEx(), GetTextExtentPoint(), GetViewportExtEx(),
GetWindowExtEx(), ScaleViewportExtEx(), ScaleWindowExtEx(), SetBitmapDimensionEx(),
SetViewportExtEx(), SetWindowExtEx()

C.37 TEXTMETRIC
C.37.1 Synopsis

typedef struct tagTEXTMETRIC {

int tmHeight;

int tmAscent;

int tmDescent;

int tmInternalLeading;

int tmExternalLeading;

int tmAveCharWidth;

int tmMaxCharWidth;

int tmWeight;

BYTE tmItalic;

BYTE tmUnderlined;

BYTE tmStruckOut;

BYTE tmFirstChar;

BYTE tmLastChar;

BYTE tmDefaultChar;

BYTE tmBreakChar;

BYTE tmPitchAndFamily;

BYTE tmCharSet;

int tmOverhang;

int tmDigitizedAspectX;

int tmDigitizedAspectY;

} TEXTMETRIC;

C.37.2 Description
The TEXTMETRIC structure contains information about a physical font.

Element Description

tmHeight This element is the character cell's height; the sum the values in the structure's tmAscent and
tmDescent elements.

- 61 -

tmAscent This element is the character cell's ascent; the space between the base line and the top of the
character cell.

tmDescent This element is the character cell's descent; the space between the bottom of the character
cell and the base line.

tmInternalLeading
This element is the difference between the font's physical size and the font's point size.

If the font is a TrueType font, the value of the tmInternalLeading element is equal to the
value of tmHeight - (ScaleFactor * ntmSizeEM), where ScaleFactor is the font's scaling
factor.

If the font is a bitmap font, the value of the tmInternalLeading element is used to specify
the font's point size. During a request for a logical font, if the LOGFONT structure's lfHeight
element contains a negative value, the height of the font being requested equals the value of
the tmHeight element minus the tmInternalLeading element.

tmExternalLeading
This element is the amount of extra leading space that the application adds between rows.
This area is outside of the character cell. It will therefore contain no marks, and will not be
altered by text output calls using either the opaque or transparent modes. A font designer will
sometimes set the value of this element to zero.

tmAveCharWidth
This element is the average width of the font's characters. If a font uses the ANSI character
set (ANSI_CHARSET), the value of tmAveCharWidth is a weighted average width of the
characters "a" - "z" and the space character. For fonts that use other character sets, the value
of tmAveCharWidth is an unweighted average of all characters in the font.

tmMaxCharWidth
This element is the "B" spacing of the font's widest character.

tmWeight This element is the weight of the font. The tmWeight element can be assigned one of the
following constant values:

FW_DONTCARE (Use font's default weight)

FW_THIN

FW_EXTRALIGHT (Same as FW_ULTRALIGHT)

FW_ULTRALIGHT (Same as FW_ EXTRALIGHT)

FW_LIGHT

FW_NORMAL (Same as FW_ REGULAR)

FW_REGULAR (Same as FW_ NORMAL)

FW_MEDIUM

FW_SEMIBOLD (Same as FW_ DEMIBOLD)

FW_DEMIBOLD (Same as FW_ SEMIBOLD)

FW_BOLD

FW_EXTRABOLD (Same as FW_ ULTRABOLD)

FW_ULTRABOLD (Same as FW_ EXTRABOLD)

FW_BLACK (Same as FW_ HEAVY)

FW_HEAVY (Same as FW_ BLACK)

tmItalic The font is italic. The value of tmItalic is TRUE if the font is italic and FALSE if the font is
not italic.

tmUnderlined The font is underlined. The value of tmUnderlined is TRUE if the font is underlined and
FALSE if the font is not underlined.

- 62 -

tmStruckOut The font is struck out. The value of tmStruckOut is TRUE if the font is struck out and
FALSE if the font is not struck out.

tmFirstChar This element is the value of the font's first character.

tmLastChar This element is the value of the font's last character.

tmDefaultChar This element is the value of the character that is substituted for characters not found in the
font.

tmBreakChar This element is the value of the character that is used to define word breaks for text
justification.

TmPitchAndFamily
This element is the font's pitch and family.

The value of the four low-order bits of the tmPitchAndFamily element specifies the type of
font and can be one or more of the following constant values OR'ed together:

TMPF_FIXED_PITCH This value is the fixed-pitch font.

TMPF_VECTOR This value is the vector or TrueType font.

TMPF_TRUETYPE This value is the TrueType font that can be used on a printer and
display.

TMPF_DEVICE This value is the device font, which is set for downloaded and
device-resident fonts.

For example, the TrueType font Courier New® uses the
TMPF_FIXED_PITCH, TMPF_VECTOR, and
TMPF_TRUETYPE constants.

The value of the four high-order bits of the tmPitchAndFamily
element specifies the font family and can be one of the following
constant values:

FF_DECORATIVE This value specifies a novelty font family, such as Old English.

FF_DONTCARE This value means the font's family is unimportant or unknown.

FF_MODERN This value specifies a font with a constant stroke width and with
or without serifs (for example, Pica, Elite, or Courier New).

FF_ROMAN This value specifies a font with a variable stroke width and with
serifs (for example, Times New Roman and New Century
Schoolbook).

FF_SCRIPT This value specifies a font that looks like handwriting (for
example, Script and Cursive).

FF_SWISS This value specifies a font with a variable stroke width and
without serifs (for example, MS Sans Serif).

tmCharSet This element is the font's character set. The tmCharSet element can be assigned one of the
following constant values:

ANSI_CHARSET

DEFAULT_CHARSET

SYMBOL_CHARSET

SHIFTJIS_CHARSET

OEM_CHARSET

tmOverhang This element is extra width that is added to some synthesized fonts. The GDI or a device will
add width to a string on a per-character and per-string basis when synthesizing such items as
bold or italic.

The value of the tmOverhang element is zero for many italic and bold TrueType fonts
because many TrueType fonts include non-synthesized italic and bold faces.

- 63 -

The value of a Raster font's overhang can be used to determine the amount of spacing
between words that have different attributes.

tmDigitizedAspectX
This element is the horizontal aspect of the device for which the font was designed.

tmDigitizedAspectY
This element is the vertical aspect of the device for which the font was designed.

C.37.3 Cross-References
EnumFontFamilies(), EnumFonts(), GetDeviceCaps(), GetTextMetrics(), NEWTEXTMETRIC

C.38 WINDOWPLACEMENT
C.38.1 Synopsis

typedef struct tagWINDOWPLACEMENT {

UINT length;

UINT flags;

UINT showCmd;

POINT ptMinPosition;

POINT ptMaxPosition;

RECT rcNormalPosition;

} WINDOWPLACEMENT;

C.38.2 Description
The WINDOWPLACEMENT structure contains information about a window's placement on the screen.

Element Description

length This element is the size of the WINDOWPLACEMENT structure in bytes.

flags This element controls the position of the window when minimized and the method by which
the window is restored. The value of the Flags element can be one or more of the following
constant values OR'ed together:

WPF_SETMINPOSITION
Uses the minimized window position specified in the
ptMinPosition element.

WPF_RESTORETOMAXIMIZED
Maximizes the window the next time that the window is restored.
This setting has no impact after the window is restored one time.
This constant value can only be used when the
SW_SHOWMINIMIZED constant value is set in the showCmd
element.

showCmd This element is the current show state of the window. The value of the showCmd element
can be one of the following constant values:

SW_HIDE This value hides the window and activates another window.

SW_MINIMIZE This value minimizes the window and activates the top-level
window in the system's list.

SW_RESTORE This value activates and displays a window. If the window is
minimized or maximized, restores it to its original size and
position. Same as SW_SHOWNORMAL.

SW_SHOW This value activates a window and displays it in its current size
and position.

- 64 -

SW_SHOWMAXIMIZED
This value activates a window and displays it as a maximized
window.

SW_SHOWMINIMIZED This value activates a window and displays it as an icon.

SW_SHOWMINNOACTIVE
This value displays a window as an icon. The window that is
currently active will remain active.

SW_SHOWNA This value displays a window in its current state. The window that
is currently active will remain active.

SW_SHOWNOACTIVATE
This value displays a window in its most recent size and position.
The window that is currently active will remain active.

SW_SHOWNORMAL This value activates and displays a window. If the window is
minimized or maximized, restores it to its original size and
position. Same as SW_ RESTORE.

ptMinPosition This element is the position of the window's top-left corner when minimized.

ptMaxPosition This element is the position of the window's top-left corner when maximized.

rcNormalPosition
This element is the window's coordinates when restored.

C.38.3 Cross-References
POINT, RECT , ShowWindow(), GetWindowPlacement(), SetWindowPlacement()

C.39 WINDOWPOS
C.39.1 Synopsis

typedef struct tagWINDOWPOS {

HWND hwnd;

HWND hwndInsertAfter;

int x;

int y;

int cx;

int cy;

UINT flags;

} WINDOWPOS;

C.39.2 Description
The WINDOWPOS structure contains information about a window's size and position.

Element Description

hwnd This element is the handle of the window.

hwndInsertAfter
This element is the handle of the window behind which the window is placed.

x This element is the X-coordinate for the upper-left hand corner of the window.

y This element is the Y-coordinate for the upper-left hand corner of the window.

cx This element is the width of the window.

cy This element is the height of the window.

- 65 -

flags This element defines other window attributes. The value of the flags element can be one or
more of the following constant values OR'ed together:

SWP_DRAWFRAME This value draws a frame around the window. The window is sent
a WM_NCCALCSIZE message. The frame is specified in the
window's class description.

SWP_HIDEWINDOW This value hides the window.

SWP_NOACTIVATE This value does not activate the window.

SWP_NOMOVE This value does not move the window. The x and y elements will
not be used.

SWP_NOOWNERZORDER
This value does not change the owner window's Z order position.
Same as the SWP_NOREPOSITION constant value.

SWP_NOSIZE This value does not resize the window. The cx and cy elements
will not be used.

SWP_NOREDRAW This value does not redraw the window.

SWP_NOREPOSITION This value does not change the owner window's Z order position.
Same as the SWP_NOOWNERZORDER constant value.

SWP_NOZORDER This value uses current ordering. The hwndInsertAfter element
will not be used.

SWP_SHOWWINDOW This value shows the window.

C.39.3 Cross-References
EndDeferWindowPos(), WM_NCCALCSIZE, WM_WINDOWPOSCHANGED,
WM_WINDOWPOSCHANGING

C.40 WNDCLASS
C.40.1 Synopsis

typedef struct tagWNDCLASS {

UINT style;

WNDPROC lpfnWndProc;

int cbClsExtra;

int cbWndExtra;

HINSTANCE hInstance;

HICON hIcon;

HCURSOR hCursor;

HBRUSH hbrBackground;

LPCSTR lpszMenuName;

LPCSTR lpszClassName;

} WNDCLASS;

C.40.2 Description
The WNDCLASS structure contains information about a window class.

Element Description

style This element is the class's styles. The value of the style element can be one or more of the
following constant values OR'ed together:

- 66 -

CS_BYTEALIGNCLIENT
A window's client area is aligned on the byte boundary in the x-
direction.

CS_BYTEALIGNWINDOW
The window is aligned on the byte boundary in the x-direction.
Used when an application uses the BitBlt() function.

CS_CLASSDC The window class has its own display context that is shared
among instances.

CS_DBLCLKS The window receives mouse double-click messages.

CS_GLOBALCLASS The window class is created by an application or library and is
available to all applications. The class is destroyed when the
application or library that created it exits. Any windows that use
the class should be closed before the class is destroyed.

CS_HREDRAW The entire window is redrawn when its horizontal size changes.

CS_NOCLOSE This value disables the System menu's Close menu item.

CS_OWNDC Each window instance has its own display context.

CS_PARENTDC This value uses the parent window's display context.

CS_SAVEBITS The system creates a bitmap of the screen image that is covered
by the window. When the window is closed, the system quickly
restores the screen image using the bitmap. A window that uses
this option will take longer to display. This option is useful when
displaying windows that are displayed only briefly and then are
removed before other screen operations can take place (for
example, menus and dialog boxes).

CS_VREDRAW The entire window is redrawn when its vertical size changes.

lpfnWndProc This element is a pointer to the window's message handling function.

cbClsExtra This element is the size of a buffer, in bytes, that is allocated and associated with the class.
Each window that is created from this class has access to the class buffer. The buffer is
initialized with zero when it is allocated. Refer to the SetClassWord() and SetClassLong()
functions.

cbWndExtra This element is the size of a buffer, in bytes, that is allocated each time that a window of the
class is created. The buffer is initialized with zero when it is allocated. Refer to the
SetWindowWord() and SetWindowLong() functions. If the WNDCLASS structure is used to
register a dialog box created with the CLASS resource file keyword, the value of the
cbWndExtra element must be set to DLGWINDOWEXTRA.

hInstance This element is the class module. The value of the hInstance element must be a valid
instance handle and cannot be the value NULL.

hIcon This element is the handle of the window class's icon. The icon is drawn when a window of
the class is minimized. If the value of the hIcon element is NULL, the application is
responsible for drawing the icon when the window is minimized.

hCursor This element is the handle of the window class's cursor. This cursor shape is shown whenever
the mouse is moved into a window of this class. If the value of the hCursor element is
NULL, the application is responsible for setting the cursor shape whenever the mouse is
moved into the window.

hbrBackground This element is the window's background painting. The value of the hbrBackground
element can either be a handle to a physical brush or a color value that is used to paint the
window's background.

If the value of the hbrBackground element is a color value, it must be one of the standard
system colors listed below with the value 1 added to it (for example, COLOR_MENU + 1):

COLOR_ACTIVEBORDER COLOR_HIGHLIGHTTEXT

- 67 -

COLOR_ACTIVECAPTION COLOR_INACTIVEBORDER

COLOR_APPWORKSPACE COLOR_INACTIVECAPTION

COLOR_BACKGROUND COLOR_INACTIVECAPTIONTEXT

COLOR_BTNFACE COLOR_MENU

COLOR_BTNSHADOW COLOR_MENUTEXT

COLOR_BTNTEXT COLOR_SCROLLBAR

COLOR_CAPTIONTEXT COLOR_WINDOW

COLOR_GRAYTEXT COLOR_WINDOWFRAME

COLOR_HIGHLIGHT COLOR_WINDOWTEXT

When the class is freed, the brush associated with the hbrBackground element will
automatically be deleted.

If the value of the hbrBackground element is NULL, the application is responsible for
painting the window's background. In this case, an application should respond to the
WM_ERASEBKGND message and also test the value of the PAINTSTRUCT structure's
fErase element when calling the BeginPaint() function.

lpszMenuName This element is a pointer to a null-terminated string that contains the name of the class's menu
resource. If an integer is used to identify the menu resource, use the MAKEINTRESOURCE
macro.

If the value of the lpszMenuName element is NULL, windows of this class will have no
default menu.

lpszClassName This element is a pointer to a null-terminated string that contains the name of the window
class.

C.40.3 Cross-References
PAINTSTRUCT, MAKEINTRESOURCE, RegisterClass(), WindowProc(), BitBlt(), SetClassWord(),
SetClassWord(), SetClassLong(), SetWindowWord(), SetWindowLong(), BeginPaint()

- 68 -

- 69 -

Annex D

Window Messages

Description

This Annex describes window messages.

D.1 BM_GETCHECK
D.1.1 Description

The BM_GETCHECK message is sent to a button to get its check state.

The button must be created with the BS_AUTOCHECKBOX, BS_AUTORADIOBUTTON,
BS_AUTO3STATE, BS_CHECKBOX, BS_RADIOBUTTON, or BS_3STATE style.

Parameter Description

wParam Not used.

lParam Not used.

D.1.2 Returns
The return value specifies the check state of the button and is one of the following values:

0 Unchecked button state.

1 Checked button state.

2 Indeterminate button state (only for a button with the BS_3STATE or BS_AUTO3STATE
style).

D.1.3 Cross-References
BM_GETSTATE, BM_SETCHECK, SendDlgItemMessage()

D.2 BM_GETSTATE
D.2.1 Description

The BM_GETSTATE message is sent to a button to get information about its current state.

Parameter Description

wParam Not used.

lParam Not used.

D.2.2 Returns
The return value contains all of the state information for the button. To obtain a specific type of state
information for the button, use one of the following mask values and the return value:

Mask Description

0x0003 The check state (used for radio buttons and check boxes only).

Value Meaning

0 Button is unchecked.

1 Button is checked.

2 Indeterminate check state (when a 3-state check box is grayed).

0x0004 The highlight state. When the user presses a button control and holds the left mouse button
down, the button control is highlighted. The highlighting is removed when the user releases
the left mouse button.

- 70 -

Value Meaning

0 Button is not highlighted.

1 Button is highlighted.

0x0008 The focus state. A non-zero value indicates that the button has the focus.

Value Meaning

0 Button does not have the focus.

1 Button has the focus.

D.2.3 Cross-References
BM_GETCHECK, BM_SETSTATE, SendDlgItemMessage()

D.3 BM_SETCHECK
D.3.1 Description

The BM_SETCHECK message is sent to a button to set its current check state.

Parameter Description

wParam The button's new check state. The wParam parameter can be one of the following values:

Value Meaning

0 Button should be unchecked.

1 Button should be checked.

2 The button state should be indeterminate (only for the
BS_3STATE or BS_AUTO3STATE styles).

lParam Not used.

D.3.2 Returns
The message's return value is always zero.

D.3.3 Cross-References
BM_GETCHECK, BM_SETSTATE, SendDlgItemMessage()

D.4 BM_SETSTATE
D.4.1 Description

The BM_SETSTATE message is sent to a button to set its current highlight state.

Parameter Description

wParam The button's new highlight state. The wParam parameter can be one of the following values:

Value Meaning

0 Button should be not highlighted.

1 Button should be highlighted.

lParam Not used.

D.4.2 Returns
The message's return value is always zero.

D.4.3 Cross-References
BM_GETSTATE, BM_SETCHECK, SendDlgItemMessage()

- 71 -

D.5 BM_SETSTYLE
D.5.1 Description

The BM_SETSTYLE message is sent to a button to set its style.

Parameter Description

wParam The value of the button's new style. For a list of supported button styles, see “Button Styles”
in Annex F.

lParam The value of the low-order word of the lParam parameter specifies if the button should be
redrawn. It can be one of the following values:

Value Meaning

FALSE Button should not be redrawn.

TRUE Button should be redrawn.

To retrieve the button's complete button style, call the GetWindowLong() function with the GWL_STYLE offset
value. The low-word of the complete button style is the button's button-specific style.

D.5.2 Returns
The message's return value is always zero.

D.5.3 Cross-References
GetWindowLong()

D.6 CB_ADDSTRING
D.6.1 Description

The CB_ADDSTRING message is sent to a combo box and used to add a string to the combo box's list box. If
the control does not have the CBS_SORT style set, the specified string is added to the end of the list. If the
control has the CBS_SORT style set, the specified string is added to the list and the list is then sorted.

Parameter Description

wParam Not used. Must be set to zero.

lParam A pointer to the null-terminated string to add to the control. If the control was created with an
owner-drawn style and does not have the CBS_HASSTRINGS style set, the value of lParam
is stored instead of the string to which lParam points.

If the control was created with an owner-drawn style and has the CBS_SORT style set but not the
CBS_HASSTRINGS style set, a WM_COMPAREITEM message is sent one or more times to the combo box's
owner so that the new string can be placed in the correct position in the list.

The CB_INSERTSTRING message can be used to insert a string into a specific location within the combo box
list.

D.6.2 Returns
If the insertion is successful, the message returns the string's zero-based position in the combo box's list box. If
there is not enough space to store the string, the return value is CB_ERRSPACE. If any other error occurs, the
return value is CB_ERR.

D.6.3 Cross-References
CB_INSERTSTRING, WM_COMPAREITEM, CB_DIR

D.7 CB_CURSEL
D.7.1 Description

The CB_CURSEL message is sent to a combo box and used to retrieve the zero-based index position of the
currently selected item in the combo box's list box.

- 72 -

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.7.2 Returns
If there is an item selected in the combo box's list box, the item's zero-based position in the list box is returned.
If there is not an item selected in the combo box's list box, the return value is CB_ERR.

D.7.3 Cross-References
CB_SELECTSTRING, CB_SETCURSEL

D.8 CB_DELETESTRING
D.8.1 Description

The CB_DELETESTRING message is sent to a combo box and is used to delete a string from the combo box's
list box.

Parameter Description

wParam Specifies the zero-based index of the string to delete.

lParam Not used. Must be set to zero.

If the control is created with an owner-drawn style but does not have the CBS_HASSTRINGS style set, a
WM_DELETEITEM message is sent to the control's owner to inform it that any additional data associated with
the item can be freed.

D.8.2 Returns
The number of strings left in the combo box after the deletion. If the deletion fails, the return value is CB_ERR.

D.8.3 Cross-References
WM_DELETEITEM, CB_RESETCONTENT

D.9 CB_DIR
D.9.1 Description

The CB_DIR message is sent to a combo box and used to add a list of filenames to the combo box's list box.

Parameter Description

wParam The attributes of the files to be added to the list box. The value can be one or more of the
following constant values OR'ed together:

Value Meaning

DDL_READWRITE Reading and writing allowed.

DDL_READONLY Read only file.

DDL_HIDDEN Hidden file.

DDL_SYSTEM System file.

DDL_DIRECTORY Is a directory.

DDL_ARCHIVE Archived file.

DDL_DRIVES Includes all drives that match the name specified in the buffer
pointed to by the lParam parameter. When this value is used, the
DDL_EXCLUSIVE value is automatically used as well.

DDL_EXCLUSIVE Only lists files of the type specified. If the DDL_EXCLUSIVE
value is not used, files of the specified type are listed in addition
to files that do not match the specified type.

- 73 -

To create a directory listing that shows files and drives, the application should send the
CB_DIR message to the combo box two times. The first message should use the
DDL_DRIVES value to show only the drives. The second message should use the values that
are needed for the files.

lParam A pointer to a null-terminated string that contains the filename to add to the list. If the string
contains any wildcards (for example, *.txt), any file that matches the wildcard specification
and has the desired file attributes is added to the list.

D.9.3 Returns
If the insertion of the entries was successful, the message returns the zero-based position of the last filename that
was inserted into the combo box's list box. If there is not enough space in which to store the strings, the return
value is CB_ERRSPACE. If any other error occurs, the return value is CB_ERR.

D.9.4 Cross-References
CB_ADDSTRING, CB_INSERTSTRING, DlgDirList(), DlgDirListComboBox()

D.10 CB_FINDSTRING
D.10.1 Description

The CB_ FINDSTRING message is sent to a combo box and used to search the combo box's list box for an item
that begins with the characters in the search string. The search string and a list box string is compared up to the
first number of characters in the search string only. Therefore, the target string can contain more characters than
the search string. The string comparison is not case-sensitive.

Parameter Description

wParam The zero-based list box position of the list box item that is before the first list box item to be
searched. For example, if the value -1 is specified, the list box is searched from the first item
in the list box since that is the zero position in the list box. If the search fails to find a match
after processing the last list box item, the search is continued from the top of the list box back
to the specified position.

lParam A pointer to the null-terminated string to search for in the list box.

If the control was created with an owner-drawn style and does not have the CBS_HASSTRINGS style set, the
way in which comparisons are made during the search is dependent on whether the CBS_SORT style is used. If
the CBS_SORT style is used, a WM_COMPAREITEM message is sent one or more times to the combo box's
owner when making string comparisons. Otherwise, the doubleword value of the list box item is compared to the
value of the search string.

D.10.2 Returns
If the search is successful, the return value is the zero-based position of a list box. If the search is not successful,
the return value is CB_ERR.

D.10.3 Cross-References
CB_FINDSTRINGEXACT, CB_SELECTSTRING, WM_COMPAREITEM

D.11 CB_FINDSTRINGEXACT
D.11.1 Description

The CB_FINDSTRINGEXACT message is sent to a combo box and used to search for a string in the combo
box's list box. The target string must contain the same number of characters as the search string for it to be
considered a match. The string comparison is not case-sensitive.

Parameter Description

wParam The zero-based list box position of the list box item that is before the first list box item to be
searched. For example, if the value -1 is specified, the list box is searched from the first item
in the list box since that is the zero position in the list box. If the search fails to find a match
after processing the last list box item, the search is continued from the top of the list box back
to the specified position.

- 74 -

lParam A pointer to the null-terminated string to search for in the list box.

If the control was created with an owner-drawn style and does not have the CBS_HASSTRINGS style set, the
way in which comparisons are made during the search is dependent on whether or not the CBS_SORT style is
used. If the CBS_SORT style is used, a WM_COMPAREITEM message is sent one or more times to the combo
box's owner when making string comparisons. Otherwise, the doubleword value of the list box item is compared
to the value of the search string.

D.11.2 Returns
If the search is successful, the return value is the zero-based position of a list box. If the search is not successful,
the return value is CB_ERR.

D.11.3 Cross-References
CB_FINDSTRING, CB_SELECTSTRING, WM_COMPAREITEM

D.12 CB_GETCOUNT
D.12.1 Description

The CB_GETCOUNT message is sent to a combo box and retrieves the number of items in the combo box's list
box.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.12.2 Returns
Returns the number of items in the list.

D.12.3 Cross-References
None.

D.13 CB_GETDROPPEDCONTROLRECT
D.13.1 Description

The CB_GETDROPPEDCONTROLRECT message is sent to a combo box and used to retrieve the screen
coordinates of the combo box's visible (dropped-down) list box.

Parameter Description

wParam Not used. Must be set to zero.

lParam A pointer to a RECT structure in which the screen coordinates of the combo box's visible
(dropped-down) list box are stored.

D.13.2 Returns
The value CB_OKAY is always returned.

D.13.3 Cross-References
RECT

D.14 CB_GETDROPPEDSTATE
D.14.1 Description

The CB_GETDROPPEDSTATE message is sent to a combo box and is used to determine if the combo box's list
box is visible (dropped down) or not.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

- 75 -

D.14.2 Returns
If the combo box's list box is visible, the value TRUE is returned. If the combo box's list box is not visible, the
value FALSE is returned.

D.14.3 Cross-References
CB_SHOWDROPDOWN

D.15 CB_GETEDITSEL
D.15.1 Description

The CB_GETEDITSEL message is sent to a combo box and used to retrieve the starting and ending character
positions of the characters selected in the combo box's edit control.

Parameter Description

wParam Not used. Must be set to zero

lParam Not used. Must be set to zero.

D.15.2 Returns
A doubleword value is returned, which contains the starting position in the low-order word and the position of
the first non-selected character, after the end of the selection, in the high-order word.

D.15.3 Cross-References
CB_SETEDITSEL

D.16 CB_GETEXTENDEDUI
D.16.1 Description

The CB_GETEXTENDEDUI message is sent to a combo box and used to find out if the combo box has the
default user interface or the extended user interface.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.16.2 Returns
If the combo box has the extended user interface, a non-zero value is returned. If the combo box does not have
the extended user interface, the zero value is returned.

D.16.3 Cross-References
CB_SETEXTENDEDUI

D.17 CB_GETITEMDATA
D.17 1 Description

The CB_GETITEMDATA message is sent to a combo box and used to retrieve the doubleword value that an
application has associated with a combo box's list box item, using the CB_SETITEMDATA message.

Parameter Description

wParam The zero-based list box position of the list box item.

lParam Not used. Must be set to zero.

D.17.2 Returns
If the message is successful, it returns the doubleword value that is associated with the specified list box item. If
the message is not successful, it returns the value CB_ERR.

D.17.3 Cross-References
CB_SETITEMDATA

- 76 -

D.18 CB_GETITEMHEIGHT
D.18.1 Description

The CB_GETITEMHEIGHT message is sent to a combo box and used to retrieve the height of a component of
the combo box.

Parameter Description

wParam The value of wParam specifies the desired combo box component whose height is desired.

If the combo box has the CBS_OWNERDRAWVARIABLE style set, the value of wParam
can be a list box item's zero-based position.

If the value of wParam is -1, the height of the combo box's edit control is returned.

lParam Not used. Must be set to zero.

D.18.2 Returns
If the value of wParam is -1, the height of the combo box's edit control is returned.

If the value of wParam was not -1 and the combo box has the CBS_OWNERDRAWVARIABLE style set, the
height of the specified list box item is returned.

If an error occurs, the return value is CB_ERR.

D.18.3 Cross-References
CB_SETITEMHEIGHT, WM_MEASUREITEM

D.19 CB_GETLBTEXT
D.19.1 Description

The CB_GETLBTEXT message is sent to a combo box and used to retrieve one of its list box item's strings.

Parameter Description

wParam The zero-based position of the list box item whose string is being retrieved.

lParam A pointer to a text buffer that is large enough to store the list box item's string and a
terminating null character. To determine how large the buffer must be, an application can
send the combo box the CB_GETLBTEXTLEN message.

If the combo box is an owner-drawn combo box and uses the CBS_HASSTRINGS style, the doubleword value
associated with the list box item is stored in the buffer pointed to by the lParam parameter.

D.19.2 Returns
If the message is processed successfully, the number of bytes that were used in the buffer to store the string (not
including the terminating null character) is returned.

If an error occurs, the return value is CB_ERR.

D.19.3 Cross-References
CB_GETLBTEXTLEN

D.20 CB_GETLBTEXTLEN
D.20.1 Description

The CB_GETLBTEXTLEN message is sent to a combo box and used to retrieve the size, in bytes, of one of the
strings in the combo box's list box.

Parameter Description

wParam The zero-based position of the list box item.

lParam Not used. Must be set to zero.

- 77 -

D.20.2 Returns
If the message is processed successfully, the size, in bytes, of the list box item's string (not including the
terminating null character) is returned.

If an error occurs, the return value is CB_ERR.

D.20.3 Cross-References
CB_GETLBTEXT

D.21 CB_INSERTSTRING
D.21.1 Description

The CB_INSERTSTRING message is sent to a combo box and used to add a string to the combo box's list box.
The items in the list box will not be sorted after the insertion; even if the CBS_SORT style is set.

Parameter Description

wParam The zero-based list box position at which to insert the string. If the value of wParam is -1,
the string is inserted at the end of the list.

lParam A pointer to the null-terminated string to add to the control. If the control was created with an
owner-drawn style and does not have the CBS_HASSTRINGS style set, the value of lParam
is stored instead of the string to which it lParam points.

The CB_ADDSTRING message can be used to insert a string into the combo box's list box and sort the list after
the insertion.

D.21.2 Returns
If the insertion was successful, the message returns the string's zero-based position in the combo box's list box. If
there is not enough space in which to store the string, the return value is CB_ERRSPACE. If any other error
occurs, the return value is CB_ERR.

D.21.3 Cross-References
CB_ADDSTRING, CB_DIR

D.22 CB_LIMITTEXT
D.22.1 Description

The CB_LIMITTEXT message is sent to a combo box and used to limit the size of the text that can be typed
into the combo box's edit control.

Parameter Description

wParam The number of bytes of text that can be typed into the combo box's edit control. If the value
of wParam is zero, the size defaults to 65,535 bytes.

lParam Not used. Must be set to zero.

If the CBS_AUTOHSCROLL style is not set in the combo box, setting the text limit to be larger than the size of
the edit control has no effect.

This message only limits the amount of text that can be entered into the edit control by a user. It will have no
impact on text that is already in the edit control when the message is processed. If one of the list box's strings is
longer than the limit and is selected, the entire string is still shown in the edit control.

D.22.2 Returns
If the message is processed successfully, TRUE is returned.

If the message is sent to a combo box that has the style CBS_DROPDOWNLIST set, the return value is
CB_ERR.

D.22.3 Cross-References
CBS_AUTOHSCROLL, CBS_DROPDOWNLIST

- 78 -

D.23 CB_RESETCONTENT
D.23.1 Description

The CB_RESETCONTENT message is sent to a combo box and is used to clear the contents of the combo box's
list box and edit control.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

If the control was created with an owner-drawn style but does not have the CBS_HASSTRINGS style set, a
WM_DELETEITEM message is sent to the combo box's owner each time that an item is deleted from the
combo box's list box.

D.23.2 Returns
CB_OKAY is always returned.

D.23.3 Cross-References
CB_DELETESTRING, WM_DELETEITEM

D.24 CB_SELECTSTRING
D.24.1 Description

The CB_SELECTSTRING message is sent to a combo box and used to search the combo box's list box for an
item that begins with the characters in a given search string. If a match is found during the search, the list box
item is selected and its text is copied to the combo box's edit control.

The search string and a list box string is only compared up to the first number of characters in the search string.
Therefore, the target string can contain more characters than the search string. The string comparison is not case-
sensitive.

Parameter Description

wParam The zero-based list box position of the list box item that is before the first list box item to be
searched. For example, if the value -1 is specified, the list box is searched from the first item
in the list box since that is the zero position in the list box. If the search fails to find a match
after processing the last list box item, the search is continued from the top of the list box back
to the specified position.

lParam A pointer to the null-terminated string to search for in the list box.

If the control was created with an owner-drawn style and does not have the CBS_HASSTRINGS style set, the
way in which comparisons are made during the search is dependent on whether or not the CBS_SORT style is
used. If the CBS_SORT style is used, a WM_COMPAREITEM message is sent one or more times to the combo
box's owner when making string comparisons. Otherwise, the doubleword value of the list box item is compared
to the value of the search string.

D.24.2 Returns
If the search string was found, the return value is the zero-based position of the selected list box item. If the
search string was not found, the return value is CB_ERR and the current selection is not changed.

D.24.3 Cross-References
CB_FINDSTRING, CB_FINDSTRINGEXACT, CB_SETCURSEL, WM_COMPAREITEM

D.25 CB_SETCURSEL
D.25.1 Description

The CB_SETCURSEL message is sent to a combo box and used to select an item in the combo box's list box. If
the specified list box item is not visible, the list box is scrolled until the item is visible. The selected item's string
is copied into the edit control. Any previously selected item is unselected.

- 79 -

Parameter Description

wParam The zero-based list box position of the list box item to select. If the value of wParam is -1,
any previous list box selections is cleared and no new selections are made.

lParam Not used. Must be set to zero.

D.25.2 Returns
If successful, the selected list box item's position is returned. If an error occurs or if the value of wParam was -
1, the return value is CB_ERR.

D.25.3 Cross-References
CB_GETCURSEL, CB_SELECTSTRING

D.26 CB_SETEDITSEL
D.26.1 Description

An application sends a CB_SETEDITSEL message to select characters in the edit control of a combo box.

Parameter Description

wParam Not used. Must be set to zero.

lParam The low-order word of lParam specifies the starting position. If this parameter is set to -1,
the selection, if any, is removed.

The high-order word of lParam specifies the ending position. If this parameter is set to -1, all
text from the starting position to the last character in the edit control is selected.

The positions in the edit control are zero-based, meaning that to select the first character of the edit control one
would specify a starting position of zero, the ending position is the character just after to select.

D.26.2 Returns
The return value is non-zero if the message is successful. It is CB_ERR if the message is sent to a combo box
with the CBS_DROPDOWNLIST style.

D.26.3 Cross-References
CB_GETEDITSEL

D.27 CB_SETEXTENDEDUI
D.27.1 Description

An application sends a CB_SETEXTENDEDUI message to select either the default user interface or the
extended user interface for a combo box that has the CBS_DROPDOWN or CBS_DROPDOWNLIST style.

Parameter Description

wParam Specifies whether the combo box should use the extended user interface or the default user
interface. A value of TRUE selects the extended user interface, a value of FALSE selects the
standard user interface.

lParam Not used. Must be set to zero.

The extended user interface is different from the default interface in the following ways:

Clicking the static control displays the list box (CBS_DROPDOWNLIST style only). Pressing the DOWN
ARROW key displays the list box (F4 is disabled).

Scrolling in the static control is disabled when the item list is not visible (the arrow keys are disabled).

D.27.2 Returns
The return value is CB_OKAY if the operation is successful, or it is CB_ERR if an error occurred.

D.27.3 Cross-References
CB_GETEXTENDEDUI

- 80 -

D.28 CB_SETITEMDATA
D.28.1 Description

An application sends a CB_SETITEMDATA message to set the doubleword value associated with the specified
item in a combo box.

Parameter Description

wParam Specifies the zero-based index to the item.

lParam Specifies the new value to be associated with the item.

D.28.2 Returns
The return value is CB_ERR if an error occurs.

D.28.3 Cross-References
CB_GETITEMDATA

D.29 CB_SETITEMHEIGHT
D.29.1 Description

An application sends a CB_SETITEMHEIGHT message to set the height of list items in a combo box or the
height of the edit-control (or static-text) portion of a combo box.

Parameter Description

wParam Specifies whether the height of list items or the height of the edit control (or static-text)
portion of the combo box is set.

lParam The low-order word of lParam specifies the height, in pixels, of the combo box component
identified by wParam.

If the combo box has the CBS_OWNERDRAWVARIABLE style, the wParam parameter specifies the zero-
based index of the list item whose height is to be set. Otherwise, the wParam parameter must be zero and the
height of all list items is set. If wParam is -1, the height of the edit control or static-text portion of the combo
box is to be set.

The height of the edit control (or static-text) portion of the combo box is set independently of the height of the
list items. Therefore an application must ensure that the height of the edit control (or static-text) portion is not
smaller than the height of a particular list box item.

D.29.2 Returns
The return value is CB_ERR if the index or height is invalid.

D.29.3 Cross-References
CB_GETITEMHEIGHT, WM_MEASUREITEM

D.30 CB_SHOWDROPDOWN
D.30.1 Description

An application sends a CB_SHOWDROPDOWN message to show or hide the list box of a combo box that has
the CBS_DROPDOWN or CBS_DROPDOWNLIST style.

Parameter Description

wParam Specifies whether the drop-down list box is to be shown or hidden. A value of TRUE shows
the list box, a value of FALSE hides it.

lParam Not used. Must be set to zero.

This message has no effect on a combo box created with the CBS_SIMPLE style.

D.30.2 Returns
The return value is always non-zero.

- 81 -

D.30.3 Cross-References
CB_GETDROPPEDSTATE

D.31 DM_GETDEFID
D.31.1 Description

An application sends a DM_GETDEFID message to get the identifier of the default push button for a dialog
box.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.31.2 Returns
The return value is a doubleword value. If the default push button has an identifier value, the high-order word
contains DC_HASDEFID and the low-order word contains the identifier value. The return value is zero if the
default push button does not have an identifier value.

D.31.3 Cross-References
DM_SETDEFID

D.32 DM_SETDEFID
D.32.1 Description

An application sends a DM_SETDEFID message to change the identifier of the default push button for a dialog
box.

Parameter Description

wParam Specifies the identifier of the push button that will become the new default.

lParam Not used. Must be set to zero.

D.32.2 Returns
The return value is always non-zero.

D.32.3 Cross-References
DM_GETDEFID

D.33 EM_CANUNDO
D.33.1 Description

An application sends an EM_CANUNDO message to determine whether an edit-control operation can be
undone.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.33.2 Returns
The return value is non-zero if the last edit operation can be undone, or it is zero if the last edit operation cannot
be undone.

D.33.3 Cross-References
EM_EMPTYUNDOBUFFER, EM_UNDO

- 82 -

D.34 EM_EMPTYUNDOBUFFER
D.34.1 Description

An application sends an EM_EMPTYUNDOBUFFER message to reset (clear) the undo flag of an edit control.
The undo flag is set whenever an operation within the edit control can be undone.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

The undo flag is automatically cleared whenever the edit control receives a WM_SETTEXT or
EM_SETHANDLE message.

D.34.2 Returns
This message does not return a value.

D.34.3 Cross-References
EM_CANUNDO, EM_UNDO

D.35 EM_FMTLINES
D.35.1 Description

An application sends an EM_FMTLINES message to set the inclusion of soft line break characters on or off
within a multiline edit control. A soft line break consists of two carriage returns and a linefeed inserted at the
end of a line that is broken because of wordwrapping. This message is processed only by multiline edit controls.

Parameter Description

wParam Specifies whether soft line break characters are to be inserted. A value of TRUE inserts the
characters. A value of FALSE removes them.

lParam Not used. Must be set to zero.

This message affects only the buffer returned by the EM_GETHANDLE message and the text returned by the
WM_GETTEXT message. It has no effect on the display of the text within the edit control. A line that ends with
a hard line break is not affected by the EM_FMTLINES message. A hard line break consists of one carriage
return and a linefeed.

D.35.2 Returns
The return value is identical to the wParam parameter.

D.35.3 Cross-References
EM_GETWORDBREAKPROC, EM_SETWORDBREAKPROC

D.36 EM_GETFIRSTVISIBLELINE
D.36.1 Description

An application sends an EM_GETFIRSTVISIBLELINE message to determine the topmost visible line in an edit
control.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.36.2 Returns
The return value is the zero-based index of the topmost visible line. For single-line edit controls, the return value
is zero.

D.36.3 Cross-References
None.

- 83 -

D.37 EM_GETHANDLE

D.37.1 Description
An application sends an EM_GETHANDLE message to retrieve a handle to the memory currently allocated for
a multiline edit control. The handle is a local memory handle and can be used by any of the functions that take a
local memory handle as a parameter. This message is processed only by multiline edit controls.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

An application can send this message to a multiline edit control in a dialog box only if it created the dialog box
with the DS_LOCALEDIT style flag set. If the DS_LOCALEDIT style is not set, the return value is still non-
zero, but the return value will not be meaningful.

D.37.2 Returns
The return value is a local memory handle identifying the buffer that holds the contents of the edit control. If an
error occurs, such as sending the message to a single-line edit control, the return value is zero.

D.37.3 Cross-References
EM_SETHANDLE

D.38 EM_GETLINE
D.38.1 Description

An application sends an EM_GETLINE message to retrieve a line of text from an edit control.

Parameter Description

wParam Specifies the line number of the line to retrieve from a multiline edit control. Line numbers
are zero-based; a value of zero specifies the first line. This parameter is ignored by a single-
line edit control.

lParam Points to the buffer that receives a copy of the line. The first word of the buffer specifies the
maximum number of bytes that can be copied to the buffer.

The copied line does not contain a terminating null character.

D.38.2 Returns
The return value is the number of bytes actually copied. The return value is zero if the line number specified by
the line parameter is greater than the number of lines in the edit control.

D.38.3 Cross-References
EM_LINELENGTH, WM_GETTEXT

D.39 EM_GETLINECOUNT
D.39.1 Description

An application sends an EM_GETLINECOUNT message to retrieve the number of lines in a multiline edit
control. This message is processed only by multiline edit controls.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.39.2 Returns
The return value is an integer containing the number of lines in the multiline edit control. If no text is in the edit
control, the return value is 1.

D.39.3 Cross-References
None.

- 84 -

D.40 EM_GETMODIFY
D.40.1 Description

An application sends an EM_GETMODIFY message to determine whether the contents of an edit control have
been modified.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

Windows maintains an internal flag indicating whether the contents of the edit control have been changed. This
flag is cleared when the edit control is first created, or an EM_SETMODIFY message can be sent to clear the
flag.

D.40.2 Returns
The return value is non-zero if the edit control contents have been modified, or the value is zero if the contents
remain unchanged.

D.40.3 Cross-References
EM_SETMODIFY

D.41 EM_GETPASSWORDCHAR
D.41.1 Description

An application sends an EM_GETPASSWORDCHAR message to retrieve the password character displayed in
an edit control when the user enters text.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

If the edit control is created with the ES_PASSWORD style, the default password character is set to an asterisk
(*).

D.41.2 Returns
The return value specifies the character to be displayed in place of the character typed by the user. The return
value is NULL if no password character exists.

D.41.3 Cross-References
EM_SETPASSWORDCHAR

D.42 EM_GETRECT
D.42.1 Description

An application sends an EM_GETRECT message to retrieve the formatting rectangle of an edit control. The
formatting rectangle is the limiting rectangle of the text. The limiting rectangle is independent of the size of the
edit control window.

Parameter Description

wParam Not used. Must be set to zero.

lParam Points to the RECT structure that receives the formatting rectangle.

The formatting rectangle of a multiline edit control can be modified by the EM_SETRECT and
EM_SETRECTNP messages.

D.42.2 Returns
The return value is not a meaningful value.

- 85 -

D.42.3 Cross-References
EM_SETRECT, EM_SETRECTNP, RECT

D.43 EM_GETSEL
D.43.1 Description

An application sends an EM_GETSEL message to get the starting and ending character positions of the current
selection in an edit control.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.43.2 Returns
The return value is a doubleword value that contains the starting position in the low-order word and the position
of the first nonselected character after the end of the selection in the high-order word.

D.43.3 Cross-References
EM_REPLACESEL, EM_SETSEL

D.44 EM_GETWORDBREAKPROC
D.44.1 Description

An application sends the EM_GETWORDBREAKPROC message to an edit control to retrieve the current
wordwrap function.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

A wordwrap function scans a text buffer (which contains text to be sent to the display), looking for the first word
that does not fit on the current display line. The wordwrap function places this word at the beginning of the next
line on the display. A wordwrap function defines the point at which Windows should break a line of text for
multiline edit controls, usually at a space character that separates two words.

D.44.2 Returns
The return value specifies the procedure-instance address of the application-defined wordwrap function. The
return value is NULL if no wordwrap function exists.

D.44.3 Cross-References
EM_FMTLINES, EM_SETWORDBREAKPROC, MakeProcInstance(), WordBreakProc()

D.45 EM_LIMITTEXT
D.45.1 Description

An application sends an EM_LIMITTEXT message to limit the length of the text the user can enter into an edit
control.

Parameter Description

wParam Specifies the length, in bytes, of the text the user can enter. If this parameter is zero, the text
length is set to 65,535 bytes.

lParam Not used. Must be set to zero.

The EM_LIMITTEXT message limits the text the user can enter. It has no effect on any text already in the edit
control when the message is sent, nor does it affect the length of text copied to the edit control by the
WM_SETTEXT message. If an application uses the WM_SETTEXT message to place more text into an edit
control than is specified in the EM_LIMITTEXT message, the user can edit the entire contents of the edit
control.

- 86 -

D.45.2 Returns
None.

D.45.3 Cross-References
None.

D.46 EM_LINEFROMCHAR
D.46.1 Description

An application sends an EM_LINEFROMCHAR message to retrieve the line number of the line that contains
the specified character index. A character index is the number of characters from the beginning of the edit
control. This message is processed only by multiline edit controls.

Parameter Description

wParam Specifies the character index of the character contained in the line whose number is to be
retrieved. If the value of the wParam parameter is -1, either the line number of the current
line (the line containing the caret) is retrieved or, if there is a selection, the line number of the
line containing the beginning of the selection is retrieved.

lParam Not used. Must be set to zero.

D.46.2 Returns
The return value is the zero-based line number of the line containing the character index specified by the
wParam parameter.

D.46.3 Cross-References
EM_LINEINDEX

D.47 EM_LINEINDEX
D.47.1 Description

An application sends an EM_LINEINDEX message to retrieve the character index of a line within a multiline
edit control. The character index is the number of characters from the beginning of the edit control to the
specified line. This message is processed only by multiline edit controls.

Parameter Description

wParam Specifies the zero-based line number. A value of -1 specifies the current line number (the line
that contains the caret).

lParam Not used. Must be set to zero.

D.47.2 Returns
The return value is the character index of the line specified in the line parameter, or it is -1 if the specified line
number is greater than the number of lines in the edit control.

D.47.3 Cross-References
EM_LINEFROMCHAR

D.48 EM_LINELENGTH
D.48.1 Description

An application sends an EM_LINEINDEX message to retrieve the character index of a line within a multiline
edit control. The character index is the number of characters from the beginning of the edit control to the
specified line. This message is processed only by multiline edit controls.

Parameter Description

wParam Specifies the character index of a character in the line whose length is to be retrieved when
EM_LINELENGTH is sent to a multiline edit control. If this parameter is -1, the message
returns the number of unselected characters on lines containing selected characters. For

- 87 -

example, if the selection extended from the fourth character of one line through the eighth
character from the end of the next line, the return value would be 10 (three characters on the
first line and seven on the next).

lParam Not used. Must be set to zero.

When EM_LINELENGTH is sent to a single-line edit control, the wParam parameter is ignored.

Use the EM_LINEINDEX message to retrieve a character index for a given line number within a multiline edit
control.

D.48.2 Returns
The return value is the length, in bytes, of the line specified by the wParam parameter when an
EM_LINELENGTH message is sent to a multiline edit control. The return value is the length, in bytes, of the
text in the edit control when an EM_LINELENGTH message is sent to a single-line edit control.

D.48.3 Cross-References
EM_GETLINE

D.49 EM_LINESCROLL
D.49.1 Description

An application sends an EM_LINESCROLL message to scroll the text of a multiline edit control. This message
is processed only by multiline edit controls.

Parameter Description

wParam Not used. Must be set to zero.

lParam The low-order word of lParam. Specifies the number of lines to scroll vertically. The high-
order word of lParam specifies the number of character positions to scroll horizontally. This
value is ignored if the edit control has either the ES_RIGHT or ES_CENTER style.

The edit control does not scroll vertically past the last line of text in the edit control. If the current line plus the
number of lines specified by the low-order word of lParam parameter exceeds the total number of lines in the
edit control, the value is adjusted so that the last line of the edit control is scrolled to the top of the edit-control
window.

The EM_LINESCROLL message can be used to scroll horizontally past the last character of any line.

D.49.2 Returns
The return value is non-zero if the message is sent to a multiline edit control, or it is zero if the message is sent
to a single-line edit control.

D.49.3 Cross-References
None.

D.50 EM_REPLACESEL
D.50.1 Description

An application sends an EM_REPLACESEL message to replace the current selection in an edit control with the
text specified by the value of the lParam parameter.

Parameter Description

wParam Not used. Must be set to zero.

lParam Points to a null-terminated string containing the replacement text.

Use the EM_REPLACESEL message when you want to replace only a portion of the text in an edit control. If
you want to replace all of the text, use the WM_SETTEXT message. If there is no current selection, the
replacement text is inserted at the current cursor location.

D.50.2 Returns
This message does not return a value.

- 88 -

D.50.3 Cross-References
EM_GETSEL, EM_SETSEL

D.51 EM_SETHANDLE
D.51.1 Description

The EM_SETHANDLE message is processed by multiline edit controls only, and is used to set a handle to local
memory that is used by the control.

Parameter Description

wParam Handle to local memory to be used by the multiline edit control.

lParam Not used. Must be 0L.

The handle to be used must be created using LocalAlloc() with the LMEM_MOVEABLE flag set. The memory
allocated must then contain a null-terminated string.

Because there may be a previous handle used by the multiline edit control before setting the new handle the old
handle should be freed. This can be done by sending an EM_GETHANDLE message to the control and then
freeing the returned handle via LocalFree().

Sending the EM_SETHANDLE message to a multiline edit control clears the undo buffer and clears the
EM_CANUNDO and EM_GETMODIFY flags. The control is also redrawn.

Note that multiline edit controls in dialog boxes only respond to this message if the dialog was created with the
DS_LOCALEDIT flag set.

D.51.1 Returns
None.

D.51.2 Cross-References
EM_GETHANDLE, LocalAlloc(), LocalFree()

D.52 EM_SETMODIFY
D.52.1 Description

The EM_SETMODIFY message sets the modification status of an edit control. This status indicates whether the
control has been modified.

Parameter Description

wParam The new modification status of either TRUE or FALSE.

lParam Not used. Must be 0L.

This flag is automatically set whenever the user of the application makes a change.

D.52.2 Returns
None.

D.52.3 Cross-References
EM_GETMODIFY

D.53 EM_SETPASSWORDCHAR
D.53.1 Description

The EM_SETPASSWORDCHAR message sets the character to be used for display instead of the actual
characters typed by the user.

Parameter Description

wParam New character.

lParam Not used. Must be 0L.

- 89 -

Upon processing this message the edit control, which cannot be multiline, redisplays the contents using the new
character. If the character is null, the actual characters are displayed.

D.53.2 Returns
If the message was sent to an edit control, the return value is non-zero.

D.53.3 Cross-References
EM_GETPASSWORDCHAR

D.54 EM_SETREADONLY
D.54.1 Description

The EM_SETREADONLY messages set a flag that indicates whether the user may modify an edit control.

Parameter Description

wParam New status of either TRUE or FALSE.

lParam Not used. Must be 0L.

D.54.2 Returns
A non-zero value indicates that the process was successful and zero indicates that an error occurred.

D.54.3 Cross-References
None.

D.55 EM_SETRECT
D.55.1 Description

The EM_SETRECT and EM_SETRECTNP messages modify the formatting rectangle of a multiline edit
control.

Parameter Description

wParam Not used. Must be set to zero.

lParam Pointer to a RECT structure.

This message is processed by multiline edit controls only. The difference between EM_SETRECT and
EM_SETRECTNP is that upon processing the message, the edit control will redraw itself if the message was
EM_SETRECT. The EM_SETRECTNP message will not cause a redraw. The original formatting rectangle is
the client area of the control. This message can change the formatting rectangle to be smaller or larger. If the
formatting rectangle is larger and the control does not have scroll bars, the excess is clipped instead of wrapped.

If the edit control has borders, the formatting rectangle is reduced by the size of the border.

D.55.2 Returns
None.

D.55.3 Cross-References
EM_GETRECT, EM_SETRECTNP, RECT

D.56 EM_SETRECTNP
D.56.1 Description

The EM_SETRECT and EM_SETRECTNP messages modify the formatting rectangle of a multiline edit
control.

Parameter Description

wParam Not used. Must be set to zero.

lParam Pointer to a RECT structure.

- 90 -

This message is processed by multiline edit controls only. The difference between EM_SETRECT and
EM_SETRECTNP is that when processing the message, the edit control redraws itself if the message was
EM_SETRECT. If the message is EM_SETRECTNP, no redraw occurs. The original formatting rectangle is the
client area of the control.

This message can change the formatting rectangle so it is either smaller or larger. If the formatting rectangle is
larger and the control has scroll bars, the excess is clipped instead of wrapped. If the edit control has borders, the
formatting rectangle is reduced by the size of the border.

D.56.2 Returns
None.

D.56.3 Cross-References
EM_GETRECT, EM_SETRECT, RECT

D.57 EM_SETSEL
D.57.1 Description

The EM_SETSEL message sets the selected text within an edit control.

Parameter Description

wParam If set to zero, the caret is scrolled into view. If set to one, the caret is not scrolled into view.

lParam The low-order word indicates the position of the first character and the high-order word
indicates the position of the last character.

If the starting position is zero and the ending position is -1, all of the text in the edit control is selected. If the
starting position is -1, the current selection is removed. The caret is placed at the end of the selection, which is
indicated by the greater positional value of the starting and ending positions.

D.57.2 Returns
Returns are non-zero if the message is sent to an edit control.

D.57.3 Cross-References
EM_GETSEL, EM_REPLACESEL

D.58 EM_SETTABSTOPS
D.58.1 Description

The EM_SETTABSTOPS message resets the tabs for a multiline edit control.

Parameter Description

wParam The number of tab stops.

lParam Pointer to an array of integers containing tab stop values.

If the number of tab stops is zero, a default tab value of every 32 dialog units is used. If the number of tab stops
is 1, tab stops are set to every n dialog units, where n is an integer pointed to by the lParam pointer. If the
number of tabstops is greater than or equal to 2, the tab stops are set, in dialog units, according to the integer
array pointed to by the lParam pointer. Note that this message does not alter the display of the control. In order
to update the display to the new tab stops, InvalidateRect() should be called.

D.58.2 Returns
If tabs are set, the return value is non-zero. Otherwise it is zero.

D.58.3 Cross-References
InvalidateRect()

- 91 -

D.59 EM_SETWORDBREAKPROC
D.59.1 Description

The EM_SETWORDBREAKPROC message allows the application to replace the default word break function.

Parameter Description

wParam Not used. Must be set to zero.

lParam Pointer to a user-defined callback function of the type EDITWORDBREAKPROC.

This is a form of subclassing in which the word break processes are subclassed.

D.59.2 Returns
None

D.59.3 Cross-References
EM_GETWORDBREAKPROC, EM_FMTLINES, GETWORDBREAKPROC, MAKEPROCINSTANCE,
WordBreakProc()

D.60 EM_UNDO
D.60.1 Description

The EM_UNDO message allows the application to undo the last change made to the control.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be 0L.

D.60.2 Returns
A multiline edit control returns a non-zero value if the operation was successful. Otherwise it returns zero. A
single line edit control always returns a non-zero value.

D.60.3 Cross-References
EM_CANUNDO

D.61 LB_ADDSTRING
D.61.1 Description

The LB_ADDSTRING message adds a string to the list box control.

Parameter Description

wParam Not used. Must be set to zero.

lParam Points to the string to be added.

If the list box was created with CBS_SORT, the string is added to the appropriate place in the list. Otherwise, it
is added to the end of the list. If the list box was created without LBS_HASSTRINGS, lParam is assumed to be
a value rather than a pointer. If the list box is owner-drawn and is created with LBS_SORT and without
LBS_HASTRINGS, the application has to be able to process one or more WM_COMPAREITEM messages.

D.61.2 Returns
A value greater than or equal to zero is the index position where the string was inserted. LB_ERRSPACE is
returned if there was not enough memory available to add the string. LB_ERR is returned if any other error
occurred.

D.61.3 Cross-References
LB_DELETESTRING, LB_INSERTSTRING, WM_COMPAREITEM

- 92 -

D.62 LB_DELETESTRING
D.62.1 Description

The LB_DELETESTRING message deletes a string to the list box control.

Parameter Description

wParam Index of the string to be deleted.

lParam Not used. Must be 0L.

If the list box is owner-drawn but was not created with LBS_HASSTRINGS, a WM_DELETEITEM is sent to
the owner so any data associated with the item can also be deleted at the same time.

D.62.2 Returns
The number of strings left in the list box is returned, or LB_ERR is returned, if an error occurred.

D.62.3 Cross-References
LB_INSERTSTRING, WM_DELETEITEM

D.63 LB_DIR
D.63.1 Description

The LB_DIR message adds a directory listing to a list box according to the parameters that are passed.

Parameter Description

wParam File attributes.

Value Description

0x0000 File is read/write.

0x0001 File is read only.

0x0002 File is hidden.

0x0004 File is a system file.

0x0010 The lParam points to a directory name.

0x0020 The file is archived.

0x4000 All drives that match the name specified by the
lParam are included.

0x8000 If the files with the specified attribute are
exclusively displayed.

lParam Pointer to a null-terminated string that specifies a file filter including wild card values as
required.

D.63.2 Returns
A value greater than or equal to zero is the number of items in the list. LB_ERRSPACE is returned if there was
not enough memory available to add the string. LB_ERR is returned if any other error occurred.

D.63.3 Cross-References
DlgDirList(), LB_ADDSTRING, LB_INSERTSTRING

- 93 -

D.64 LB_FINDSTRING
D.64.1 Description

The LB_FINDSTRING message searches the list for a matching entry and returns its index.

Parameter Description

wParam Index to begin the search.

lParam Pointer to a null-terminated string that is to be located.

The search performed is non-case-sensitive and begins with the index entry specified in the wParam. If the
search is unsuccessful by the time the end of the list is reached, the search is continued from the beginning. If the
index to begin searching is -1, the entire list is searched starting at index zero. If the list box is owner-drawn and
is created without LBS_HASTRINGS, the action taken depends upon whether the list box was created with
LBS_SORT. If the list box is sorted, the owner is sent a WM_COMPAREITEM message. Otherwise, lParam is
taken as a value and is directly compared to the values associated with each list box entry.

Note: If the string being searched for was "Abc," an entry of "ABCDEF" would be considered a match.

D.64.2 Returns
The index of the matching string is returned, or LB_ERR if the search failed or an error occurred.

D.64.3 Cross-References
LB_ADDSTRING, LB_INSERTSTRING, LB_FINDSTRINGEXACT

D.65 LB_FINDSTRINGEXACT
D.65.1 Description

The LB_FINDSTRINGEXACT message searches the list for a matching entry and returns its index.

Parameter Description

wParam Index to begin the search.

lParam Pointer to a null-terminated string that is to be located.

The search performed is non-case-sensitive and begins with the index entry specified in wParam. If the search is
unsuccessful by the time the end of the list is reached, the search is continued from the beginning. If the index to
begin searching is -1, the entire list is searched starting at index zero. If the list box is owner-drawn and was
created without LBS_HASTRINGS, the action taken depends on whether the list box is created with
LBS_SORT. If the list box is sorted, the owner is sent a WM_COMPAREITEM message. Otherwise, the
lParam is taken as a value and is directly compared to the values associated with each list box entry.

This message differs from LB_FINDSTRING in that the lengths of the strings must be similar.

D.65.2 Returns
The index of the matching string is returned or LB_ERR if the search failed or an error occurred.

D.65.3 Cross-References
LB_ADDSTRING, LB_INSERTSTRING, LB_FINDSTRING

D.66 LB_GETCARETINDEX
D.66.1 Description

The LB_GETCARETINDEX message finds the list item that currently has the focus, regardless of whether it is
selected.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

This message is used for multiselection list boxes.

- 94 -

D.66.2 Returns
The index of the item with focus is returned or LB_ERR if an error occurred.

D.66.3 Cross-References
LB_SETCARETINDEX

D.67 LB_GETCOUNT
D.67.1 Description

The LB_GETCOUNT message finds the number of items currently in the list.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.67.2 Returns
The number of items in the list or LB_ERR if an error occurred.

D.67.3 Cross-References
None.

D.68 LB_GETCURSEL
D.68.1 Description

The LB_GETCURSEL message finds the index of the currently selected item in the list.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

This message is used for single selection list boxes.

D.68.2 Returns
The index of the selected item is returned, or LB_ERR if no item is selected or if an error occurred.

D.68.3 Cross-References
LB_SETCURSEL

D.69 LB_GETHORIZONTALEXTENT
D.69.1 Description

The LB_GETHORIZONTALEXTENT message finds the number of pixels that can be horizontally scrolled
within the list box, if the list box has a horizontal scroll bar.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be 0L.

This message is used for list boxes created with the WS_HSCROLL style.

D.69.2 Returns
The width in pixels, is returned, or LB_ERR, if an error occurred.

D.69.3 Cross-References
LB_SETHORIZONTALEXTENT

- 95 -

D.70 LB_GETITEMDATA
D.70.1 Description

The LB_GETITEMDATA message retrieves data that the application has associated with a given item in the
list.

Parameter Description

wParam The index of the item of the data to be retrieved.

lParam Not used. Must be 0L.

The data retrieved is the lParam value that was passed when sending an LB_SETITEMDATA message to the
list box.

D.70.2 Returns
The data retrieved is the lParam value that was passed when sending an LB_SETITEMDATA message to the
list box, or LB_ERR if an error occurred.

D.70.3 Cross-References
LB_SETITEMDATA

D.71 LB_GETITEMHEIGHT
D.71.1 Description

The LB_GETITEMHEIGHT message retrieves the height of an item in a list box.

Parameter Description

wParam The index of the item for which the height is to be retrieved.

lParam Not used. Must be 0L.

If the list box has the style LBS_OWNERDRAW, only then should an index be passed in the wParam
parameter. Otherwise, wParam should be zero.

D.71.2 Returns
The height in pixels of the list item is returned, or LB_ERR, if an error occurred.

D.71.3 Cross-References
LB_SETITEMHEIGHT

D.72 LB_GETITEMRECT
D.72.1 Description

The LB_GETITEMRECT message retrieves the display rectangle of an item within the list box.

Parameter Description

wParam The index of the item for which the display rectangle is to be retrieved.

lParam Pointer to a RECT structure.

The rectangle is in client coordinates.

D.72.2 Returns
LB_ERR if an error occurred.

D.72.3 Cross-References
LB_GETITEMHEIGHT, LB_SETITEMHEIGHT, WM_MEASUREITEM, RECT

D.73 LB_GETSEL
D.73.1 Description

The LB_GETSEL message retrieves the selection status of an item in a list box.

- 96 -

Parameter Description

wParam The index of the item for which the selection status is to be retrieved.

lParam Not used. Must be 0L.

D.73.2 Returns
TRUE if the item is selected, FALSE if it is not selected, or LB_ERR if an error occurred.

D.73.3 Cross-References
LB_SETSEL, LB_GETCURSEL, LB_SELECTSTRING, LB_SETITEMRANGE

D.74 LB_GETSELCOUNT
D.74.1 Description

The LB_GETSELCOUNT message retrieves the number of items selected in a list box.

Parameter Description

wParam Not used, and must be 0.

lParam Not used. Must be 0L.

This message is for use with a multiselection list box.

D.74.2 Returns
The number of selected items, or LB_ERR if an error occurred.

D.74.3 Cross-References
LB_SETSEL, LB_GETSELITEMS

D.75 LB_GETSELITEMS
D.75.1 Description

The LB_GETSELITEMS message gets the index values for all selected items.

Parameter Description

wParam The maximum number of items that can be retrieved.

lParam Pointer to an integer array to hold item index values for selected items.

This message should be used with a multiselection list box.

D.75.2 Returns
The actual number of items that was placed in the array, or LB_ERR if an error occurred.

D.75.3 Cross-References
LB_SETSEL, LB_GETSELCOUNT

D.76 LB_GETTEXT
D.76.1 Description

An application sends an LB_GETTEXT message to retrieve a string from a list box.

Parameter Description

wParam Specifies the index of the string to retrieve in the list box.

lParam A pointer (LPCSTR) to the buffer to receive the string.

The buffer lParam must be large enough for the entire string and its terminating character. Use the
LB_GETTEXTLEN message prior to the LB_GETTEXT message to retrieve the length of the string.

D.76.2 Returns
The message returns the length of the string in bytes if successful. If an invalid index was specified, LB_ERR is
returned.

- 97 -

D.76.3 Cross-References
LB_GETTEXTLEN

D.77 LB_GETTEXTLEN
D.77.1 Description

An application sends an LB_GETTEXTLEN message to retrieve the length of a string from a list box.

Parameter Description

wParam Specifies the index of the string in the list box whose length is to be retrieved.

lParam Not used. Must be set to zero.

D.77.2 Returns
The message returns the length of the string in bytes, if successful. If an invalid index was specified, LB_ERR is
returned.

D.77.3 Cross-References
LB_GETTEXT

D.78 LB_GETTOPINDEX
D.78.1 Description

An application sends an LB_GETTOPINDEX message to retrieve the index of the first visible item in a list box.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

The first item in a list box is initially zero, but if the list box is scrolled, another item can be at the top of the list
box.

D.78.2 Returns
The message returns the index of the first visible item in the list box.

D.78.3 Cross-References
LB_SETOPINDEX

D.79 LB_INSERTSTRING
D.79.1 Description

An application sends an LB_INSERTSTRING message to insert a string into a list box.

Parameter Description

wParam Specifies the index where the string will inserted in the list box.

lParam A pointer (LPCSTR) to the string that is to be inserted.

If the list is an owner-drawn style without the LBS_HASSTRINGS style, the string pointer, rather than the string
itself, is stored.

The LB_INSERTSTRING message does not cause a list with a LBS_SORT style to be sorted. Use the
LB_ADDSTRING function for this capability.

D.79.2 Returns
The message returns the index where the string was actually inserted. If an error occurs, LB_ERR is returned. If
insufficient space is available to store the string, LB_ERRSPACE is returned.

D.79.3 Cross-References
LB_ADDSTRING

- 98 -

D.80 LB_RESETCONTENT
D.80.1 Description

An application sends an LB_RESETCONTENT message to all items in a list box.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

If the list box style is owner-drawn without the LBS_HASSTRINGS style, the owner receives a
WM_DELETEITEM message for each item in the list box.

D.80.2 Returns
None.

D.80.3 Cross-References
WM_DELETEITEM, LB_DELETESTRING

D.81 LB_SELECTSTRING
D.81.1 Description

An application sends an LB_SELECTSTRING message to search for an item in the list box that matches the
specified string, and if a match is found, selects the item.

Parameter Description

wParam The index of the item before the first item searched.

lParam A pointer (LPCSTR) to the string to be searched.

The search begins at the item after the one specified by wParam. When the end of the list is reached, the search
continues from the top of the list until the specified item is reached. To search from the beginning of the list,
pass -1 as the start index in wParam.

The search is not case sensitive.

D.81.2 Returns
The message returns the index of the selected item, if a match is found. If a match is not found, LB_ERR is
returned.

D.81.3 Cross-Reference
LB_FINDSTRING, LB_ADDSTRING

D.82 LB_SELITEMRANGE
D.82.1 Description

An application sends an LB_SELITEMRANGE message to one or more items in a list box consecutively.

Parameter Description

wParam The selection flag.

lParam The low-order word specifies the first item and the high-order word the last item to select.

If the selection flag is TRUE, the string is selected and highlighted. If it is FALSE, the selection is unselected
and the highlighting is removed.

D.82.2 Returns
The message returns LB_ERR, if an error occurs.

D.82.3 Cross-References
LB_SELECTSTRING

- 99 -

D.83 LB_SETCARETINDEX
D.83.1 Description

An application sends an LB_SETCARETINDEX message to set the focus on an item in a multiple selection list
box.

Parameter Description

wParam Specifies the item to receive focus in the list box.

lParam The selection flag.

If the selection flag, lParam, is zero, the item is scrolled until it is fully visible. If it is non-zero, the selection is
scrolled until it is at least partially visible.

D.83.2 Returns
The message returns LB_ERR, if an error occurs.

D.83.3 Cross-References
LB_GETCARETINDEX

D.84 LB_SETCOLUMNWIDTH
D.84.1 Description

An application sends an LB_SETCOLUMNWIDTH message to set the column width in a multiple column list
box.

Parameter Description

wParam Specifies the width, in pixels, of all the columns.

lParam Not used. Must be set to zero.

D.84.2 Returns
None.

D.84.3 Cross-References
LB_SETHORIZONTALEXTENT

D.85 LB_SETCURSEL
D.85.1 Description

An application sends an LB_SETCURSEL message to select an item in a single selection list box.

Parameter Description

wParam Specifies the index of the item to be selected and scrolled into view.

lParam Not used. Must be set to zero.

The previously selected item in the list box is deselected.

If wParam is -1, the list box will have no current selection.

D.85.2 Returns
The message returns LB_ERR if an error occurs. If wParam is -1, LB_ERR is also returned, even though this is
a valid operation.

D.85.3 Cross-References
LB_GETCURSEL, LB_SELECTSTRING, LB_SETSEL

- 100 -

D.86 LB_SETHORIZONTALEXTENT
D.86.1 Description

An application sends an LB_SETHORIZONTALEXTENT message to set the width that a list box can be
scrolled horizontally.

Parameter Description

wParam Horizontal scroll width in pixels.

lParam Not used. Must be set to zero.

If the size of the list box is greater than the specified width, the horizontal scroll bar is enabled to horizontally
scroll items. If the size is smaller than list box, the horizontal scroll bar is hidden. The default size is set to zero,
so that a scroll bar is not drawn.

The list box must have the WS_HSCROLL style set for the message to be handled.

D.86.2 Retu rns
None.

D.86.3 Cross-References
LB_GETHORIZONTALEXTENT, LB_SETCOLUMNWIDTH

D.87 LB_SETITEMDATA
D.87.1 Description

An application sends an LB_SETITEMDATA message to set a value that is associated with a specific item in
the list box.

Parameter Description

wParam The index of the item associated with the data.

lParam The doubleword value to associate to a list box item.

D.87.2 Returns
The message returns LB_ERR, if an error occurs.

D.87.3 Cross-References
LB_ADDSTRING, LB_GETITEMDATA

D.88 LB_SETITEMHEIGHT
D.88.1 Description

An application sends an LB_SETITEMHEIGHT message to set the height of items in a list box.

Parameter Description

wParam The index of the item for which the height is being set.

lParam The low-order word specifies the height of the item in pixels.

If the list box has the LBS_OWNERDRAWVARIABLE style, only the height of the item specified is set.
Otherwise, all items in the list are set to the specified height and wParam is ignored.

D.88.2 Returns
If an invalid index or height was specified, LB_ERR is returned.

D.88.3 Cross-References
LB_GETITEMHEIGHT

- 101 -

D.89 LB_SETSEL
D.89.1 Description

An application sends an LB_SETSEL message to select a string in a multiple selection list box.

Parameter Description

wParam The selection flag.

lParam The low-order word specifies the index of the item to select.

If the selection flag is TRUE, the string is selected and highlighted. If it is FALSE, the selection is unselected
and the highlighting is removed.

D.89.2 Returns
The message returns LB_ERR if an error occurs.

D.89.3 Cross-References
LB_GETSEL

D.90 LB_SETTABSTOPS
D.90.1 Description

An application sends an LB_SETTABSTOPS message to set the tab stops in a list box.

Parameter Description

wParam The number of tab stops.

lParam A pointer to the tab stops array.

The tab stops array is an array of integers containing the tab stops in dialog box units. The tab stops are sorted in
increasing order. If the number of tab stops in wParam is zero, the default tab stop of two dialog units is used.

If wParam is 1, the list box will have tab stops separated by the distance specified by lParam. If wParam is
greater than one, a tab stop is set for each value in the tab stops array.

D.90.2 Returns
The message returns a non-zero value if all the tabs were set. Otherwise, zero is returned.

D.90.3 Cross-References
None.

D.91 LB_SETTOPINDEX
D.91.1 Description

An application sends an LB_SETTOPINDEX message to make sure an item in the list box is visible.

Parameter Description

wParam The index of the item in the list box.

lParam Not used. Must be set to zero.

If the specified item is not in the list box, the list is scrolled until it is in view.

D.91.2 Returns
The message returns LB_ERR if an error occurs.

D.91.3 Cross-References
LB_GETTOPINDEX

- 102 -

D.92 STM_GETICON
D.92.1 Description

An application sends an STM_GETICON message to get the handle of an icon associated with the icon
resource.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.92.2 Returns
The message returns the handle to the icon, if successful. If an error occurred or the icon has no associated icon
resource, zero is returned.

D.92.3 Cross-References
STM_SETICON

D.93 STM_SETICON
D.93.1 Description

An application sends an STM_SETICON message to associate an icon with an icon resource.

Parameter Description

wParam The icon to associate with the icon resource.

lParam Not used. Must be set to zero.

D.93.2 Returns
The message returns the handle of the previously associated icon, if successful. If an error occurred, zero is
returned.

D.93.3 Cross-References
STM_GETICON

D.94 WM_ACTIVATE
D.94.1 Description

A WM_ACTIVATE message is sent whenever a window is being activated or deactivated. The window being
deactivated is sent the message first. Then the message is sent to the window being activated.

Parameter Description

wParam Specifies whether the window is being activated or deactivated. If the window was activated
by a mouse click, the parameter is WA_CLICKACTIVE. If it was activated my a means
other than a mouse click, it is WA_ACTIVE. If the window is being deactivated, the
parameter is WA_INACTIVE.

lParam The high-order word specifies the minimized state of the window. A non-zero state means the
window is minimized. The low-order word is the HWND handle of the window, which can
be NULL.

D.94.2 Returns
The application should return zero if it processes the message.

D.94.3 Cross-References
WM_MOUSEACTIVATE, WM_NCACTIVATE

- 103 -

D.95 WM_ACTIVATEAPP
D.95.1 Description

A WM_ACTIVATEAPP message is sent to all top-level windows of the task that is being activated and the task
being deactivated.

Parameter Description

wParam Specifies whether the window is being activated or deactivated. The value is TRUE for
windows being activated, and FALSE for windows being deactivated.

lParam The low-order word is the task handle (HTASK) of the window.

D.95.2 Returns
The application should return zero if it processes the message.

D.95.3 Cross-References
WM_ACTIVATE

D.96 WM_ASKCBFORMATNAME
D.96.1 Description

A WM_ASKCBFORMATNAME message is used to query the clipboard owner for the format name of the data
in the clipboard. A clipboard viewer application sends the WM_ASKCBFORMATNAME message to a
clipboard owner when the clipboard contains data that the clipboard owner should display. This is specified
when the clipboard data handle is of the CF_OWNERDISPLAY format.

Parameter Description

wParam Specifies the maximum number of bytes to copy.

lParam A pointer to the buffer where the copy of the format name is to be stored.

The clipboard owner copies the name of the CF_OWNERDISPLAY format into the buffer pointed to by
lParam.

D.96.2 Returns
The application should return zero if it processes the message.

D.96.3 Cross-References
WM_PAINTCLIPBOARD

D.97 WM_CANCELMODE
D.97.1 Description

A WM_CANCELMODE message is sent to a window to cancel any internal modes, such as mouse capture, it
may be running.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.97.2 Returns
The application should return zero if it processes the message.

D.97.3 Cross-References
None.

- 104 -

D.98 WM_CHANGECBCHAIN
D.98.1 Description

A WM_CHANGECBCHAIN message is sent to the first window in the clipboard viewer chain, notifying it that
a window is being removed from the chain.

Parameter Description

wParam Specifies the window (HWND) being removed from the chain.

lParam The low-order word specifies the window that follows the one being removed from the chain.

Each window that receives the WM_CHANGECBCHAIN message should pass the message on to the next
window in the chain.

D.98.2 Returns
The application should return zero if it processes the message.

D.98.2 Cross-References
None.

D.99 WM_CHAR
D.99.1 Description

A WM_CHAR message is sent when a WM_KEYUP and a WM_KEYDOWN message are translated. The
WM_CHAR message contains the value of the key being pressed or released.

Parameter Description

wParam The virtual key code of the key.

lParam Provides the following additional information about the key:

Bits 0-15 Repeat count, indicating the number of times the keystroke is
repeated as a result of holding down the key.

Bits 16-23 Scan code, which is OEM dependent.

Bit 24 If 1, it is extended key. Otherwise, the value is zero.

Bits 25-26 Not used.

Bits 27-29 Reserved.

Bit 29 If 1, the ALT key is held down while the key is pressed; otherwise
the value is zero.

Bit 30 If 1, the key is down before the message is sent. Otherwise, the
value is zero.

Bit 31 If 1, the key is being released. Otherwise, the value is zero.

D.99.2 Returns
The application should return zero if it processes the message.

D.99.3 Cross-References
WM_KEYDOWN, WM_KEYUP

D.100 WM_CHARTOITEM
D.100.1 Description

A WM_CHARTOITEM message is sent by a list box with the LBS_WANTKEYBOARDINPUT style to its
owner after receiving a WM_CHAR message.

Parameter Description

wParam The value of the key that was pressed.

- 105 -

lParam The low-order word specifies the list box. The high-order word specifies the current list box
caret position.

The list box must be an owner-drawn style and must not have the LBS_HASSTRINGS style set to receive this
message.

D.100.2 Returns
The application returns a -2 if it handled all aspects of the selecting item and no further action is required of the
list box. A -1 is returned to indicate that the list box should perform the default action in response to the
keystroke. Returning a zero or greater indicates that the list box should perform the default action for the
keystroke on the specified item.

D.100.3 Cross-References
WM_CHAR, WM_VKEYTOITEM

D.101 WM_CHILDACTIVATE
D.101.1 Description

An application sends a WM_CHILDACTIVATE message to a multiple document interface child window when
the user clicks on the window's title bar or when the window is activated, moved or resized. The
WM_CHILDACTIVATE message has no parameters.

D.101.2 Returns
The application must return zero if it processes this message.

D.101.3 Cross-References
MoveWindow(), SetWindowPos()

D.102 WM_CHOOSEFONT_GETLOGFONT
D.102.1 Description

An application sends a WM_CHOOSEFONT_GETLOGFONT message to the Choose Font dialog (created by a
previous call to the ChooseFont() function) to get the current LOGFONT structure. The program uses this
message to get LOGFONT data when the Choose Font dialog is open.

Parameter Description

wParam Must be zero.

lParam Points to the LOGFONT structure, which receives information about the selected logical
font.

D.102.2 Returns
None.

D.102.3 Cross-References
WM_GETFONT, LOGFONT , ChooseFont()

D.103 WM_CLEAR
D.103.1 Description

An application sends a WM_CLEAR message to either standalone edit control or edit control in a combo box,
which alerts edit control to clear the current text selection, if any. To undo text deletion, the application can send
an EM_UNDO message. To delete the current selection and put it into the clipboard, the application should use
a WM_CUT message. A WM_CLEAR message has no parameters.

D.103.2 Returns
The return value is non-zero if this message is sent to edit control or to a combo box.

- 106 -

D.103.3 Cross-References
WM_UNDO, WM_COPY, WM_CUT, WM_PASTE

D.104 WM_CLOSE
D.104.1 Description

When an application receives a WM_CLOSE message, it terminates. The application usually destroys the
window by calling DestroyWindow() when processing this message. A WM_CLOSE message has no
parameters.

D.104.2 Returns
The application must return zero if it processes this message.

D.104.3 Cross-References
DestroyWindow(), PostQuitMessage(), WM_DESTROY, WM_QUERYENDSESSION, WM_QUIT

D.105 WM_COMMAND
D.105.1 Description

A WM_COMMAND message is sent to a window when an accelerator keystroke is translated, when a child
control sends a notification to its parent window, or when the user selects a menu item. If an accelerator
keystroke occurs that matches any menu item when the owning window is minimized, no WM_COMMAND
message is sent. If the accelerator keystroke does not match a menu item, a WM_COMMAND is sent to the
window regardless of its state.

Parameter Description

wParam Specifies the control or menu item identifier.

lParam The low-order word of lParam specifies control's handle. The high-order word of lParam
contains a notification message.

D.105.2 Returns
The application must return zero if it processes this message.

D.105.3 Cross-References
WM_SYSCOMMAND

D.106 WM_COMMNOTIFY
D.106.1 Description

A WM_COMMNOTIFY message is posted to a window by the communication device driver whenever a
communication port event occurs. The message contains information about the status of the window's input and
output queues. The application must clear each event to receive the next notification message.

Parameter Description

wParam Specifies the identifier of the communication device that is posting the message.

lParam The low-order word of lParam specifies notification status and may be one or more of the
following flags:

CN_EVENT Indicates that an event has occurred that was enabled previously
by a call to the SetComEventMask() function. The application
should call GetCommEventMask() to determine the specific event
and clear it.

CN_RECEIVE Indicates that at least cbInQueue bytes are in the input queue. The
cbInQueue value is a parameter of the EnableCommNotification()
function.

- 107 -

CN_TRANSMIT Indicates that at least cbOutQueue bytes are in the output queue.
The cbOutQueue value is a parameter of the
EnableCommNotification() function.

D.106.2 Returns
The application must return zero if it processes this message.

D.106.3 Cross-References
EnableCommNotification()

D.107 WM_COMPAREITEM
D.107.1 Description

A WM_COMPAREITEM message is sent to the owner of an owner-drawn combo box or list box to determine
the relative position of a new item in a sorted list. The owner-drawn combo box should be created with the
CBS_SORT style and the owner-drawn list box must contain the LBS_SORT style. When the owning window
receives a WM_COMPAREITEM message, it returns a value that indicates the position of the new item.

Parameter Description

wParam Specifies the identifier of the control that sent the message.

lParam Points to the COMPAREITEMSTRUCT structure.

D.107.2 Returns
If item 1 precedes item 2, this message returns -1.

If item 1 and 2 are equivalent, this messsage returns 0.

If item 1 follows item 2, this message returns 1.

D.107.3 Cross-References
COMPAREITEMSTRUCT

D.108 WM_COPY
D.108.1 Description

An application sends a WM_COPY message to standalone edit control or edit control in a combo box, which
notifies edit control to copy the current selection to the clipboard in CF_TEXT format. This message has no
parameters.

D.108.2 Returns
The return value is non-zero if this message is sent to edit control or to a combo box.

D.108.3 Cross-References
WM_CLEAR, WM_CUT, WM_PASTE

D.109 WM_CREATE
D.109.1 Description

A WM_CREATE message is sent when an application requests window creation by calling either
CreateWindow() or CreateWindowEx() functions. The message is sent to the window procedure before
CreateWindow() or CreateWindowEx() exits, and before the created window becomes visible.

Parameter Description

wParam Must be zero.

lParam Points to the CREATESTRUCT structure, which contains information about the window
being created.

- 108 -

D.109.2 Returns
The application must return zero if it processes this message. If it returns -1, the window is destroyed and the
CreateWindow() or CreateWindowEx() function returns NULL.

D.109.3 Cross-References
CreateWindow(), CreateWindowEx(), WM_NCCREATE, CREATESTRUCT

D.110 WM_CTLCOLOR
D.110.1 Description

A WM_CTLCOLOR message is sent to the parent of a predefined control class or a message box when the
control class or message box is ready to be drawn. The predefined control classes are combo boxes, edit
controls, list boxes, static controls, buttons or scroll bars. For dialog boxes, the WM_CTLCOLOR message is
sent to the dialog box procedure.

Parameter Description

wParam Identifies the display context for the child window.

lParam The low-order word of lParam specifies the child window. The high-order word specifies the
type of control and can be one of the following values:

CTLCOLOR_BTN button

CTLCOLOR_DLG dialog box

CTLCOLOR_EDIT edit control

CTLCOLOR_LISTBOX list box

CTLCOLOR_MSGBOX message box

CTLCOLOR_SCROLLBAR scroll bar

CTLCOLOR_STATIC static control

D.110.2 Returns
If an application processes a WM_CTLCOLOR message, it must return a handle to the brush that is to be used
to paint the control's background. Otherwise an application should return NULL.

D.110.3 Cross-References
SetBkColor()

D.111 WM_CUT
D.111.1 Description

An application sends a WM_CUT message to either stand-alone edit control or edit control in a combo box,
which notifies edit control to delete the current selection and put the deleted text to the clipboard in CF_TEXT
format. This message has no parameters.

D.111.2 Returns
The return value is non-zero if this message is sent to edit control or a combo box.

D.111.3 Cross-References
WM_CLEAR, WM_COPY, WM_PASTE

D.112 WM_DEADCHAR
D.112.1 Description

A WM_DEADCHAR message is sent to a window when WM_KEYUP or WM_KEYDOWN messages indicate
a dead key character value. A dead key is a key that is combined with another key to create a composite
character, such as an umlaut.

- 109 -

Parameter Description

wParam Specifies the value of a dead key.

lParam Provides the following additional information about the key:

Bits 0-15 Repeat count. The value is the number of times the keystroke is
repeated as a result of holding down the key.

Bits 16-23 Scan code, which is OEM dependent.

Bit 24 If 1, it is extended key. Otherwise, the value is zero.

Bits 25-26 Not used.

Bits 27-28 Reserved.

Bit 29 If 1, the ALT key is held down while the key is pressed.
Otherwise, the value is zero.

Bit 30 If 1, the key is down before the message is sent. Otherwise, the
value is zero.

Bit 31 If 1, the key is being released. Otherwise, the value is zero.

D.112.2 Returns
The application must return zero if it processes this message.

D.112.3 Cross-References
WM_KEYDOWN

D.113 WM_DELETEITEM
D.113.1 Description

A WM_DELETEITEM message is sent to the owner of an owner-drawn list box or combo box when it is about
to be destroyed or when items are removed as a result of a LB_DELETESTRING, LB_RESETCONTENT,
CB_DELETESTRING or CB_RESETCONTENT message.

Parameter Description

wParam Specifies the control that sent the WM_DELETEITEM message.

lParam Points to the DELETEITEM structure that contains information about the item being
deleted.

D.113.2 Returns
The application must return TRUE if it processes this message.

D.113 3 Cross-References
LB_DELETESTRING, LB_RESETCONTENT, CB_DELETESTRING, CB_RESETCONTENT

D.114 WM_DESTROY
D.114 1 Description

A WM_DESTROY message is sent to a window when it is destroyed. The message is sent after the window is
removed from the screen. The parent window receives the WM_DESTROY message before the child windows,
so it can assume that all child windows still exist. This message has no parameters.

D.114.2 Returns
The application must return zero if it processes this message.

D.114.3 Cross-References
DestroyWindow(), PostQuitMessage(), WM_CLOSE

- 110 -

D.115 WM_DESTROYCLIPBOARD
D.115.1 Description

A WM_DESTROYCLIPBOARD message is sent to the clipboard owner when the contents of the clipboard are
emptied by the EmptyClipboard() function call. This message has no parameters.

D.115.2 Returns
The application must return zero if it processes this message.

D.115.3 Cross-References
EmptyClipboard()

D.116 WM_DEVMODECHANGE
D.116.1 Description

A WM_DEVMODECHANGE message is sent to all top-level windows when the default device mode settings
have changed.

Parameter Description

wParam Not used. Must be set to zero.

lParam Points to the device name specified in Windows initialization file.

D.116.2 Returns
The application must return zero if it processes this message.

D.116.3 Cross-References
ExtDeviceMode(), WM_WININICHANGE

D.117 WM_DRAWCLIPBOARD
D.117.1 Description

A WM_DRAWCLIPBOARD message is sent to the first window in the clipboard viewing chain when the
contents of the clipboard change. An application can join the clipboard viewing chain by calling the
SetClipboardViewer() function. Each window that receives the WM_DRAWCLIPBOARD message should pass
the message on to the next window in the clipboard viewing chain. The handle of the next window is returned by
the SetClipboardViewer() function and can be modified in response to a WM_CHANGECBCHAIN message.
The WM_DRAWCLIPBOARD message has no parameters.

D.117.2 Returns
The application must return zero if it processes this message.

D.117.3 Cross-References
SendMessage(), SetClipboardViewer(), WM_CHANGECBCHAIN

D.118 WM_DRAWITEM
D.118.1 Description

A WM_DRAWITEM message is sent to the owner of an owner-drawn button, combo box, list box, or menu
when the visual appearance of the button, combo box, list box, or menu has changed. Before returning from
processing this message, an application should put the device context identified by the hdc member of the
DRAWITEMSTRUCT structure back in the default state.

Parameter Description

wParam Specifies the control that sent the message, or zero if the message was sent by a menu.

lParam Points to a DRAWITEMSTRUCT structure that contains information about the item being
drawn.

- 111 -

D.118.2 Returns
The application must return TRUE if it processes this message.

D.118.3 Cross-References
WM_COMPAREITEM, WM_DELETEITEM, WM_INITDIALOG, WM_MEASUREITEM,
DRAWITEMSTRUCT

D.119 WM_DROPFILES
D.119.1 Description

A WM_DROPFILES message is sent to the window when the user releases the left mouse button while in the
window of an application that has registered itself as a recipient of dropped files. The WM_DROPFILES
message is posted rather than sent.

Parameter Description

wParam Specifies the internal data structure, which represents dropped files. The value is valid only
during the processing of a WM_DROPFILES message.

lparam Not used. Must be set to zero.

D.119.2 Returns
The application must return zero if it processes this message.

D.119.3 Cross-References
DragAcceptFiles(), DragFinish(), DragQueryFile(), DragQueryPoint()

D.120 WM_ENABLE
D.120.1 Description

A WM_ENABLE message is sent when an application enables or disables a window. This message is sent
before the EnableWindow() function returns, but after the WS_DISABLE style bit of the window has changed.

Parameter Description

wParam The value is TRUE if the window has been enabled, and FALSE if window has been
disabled.

lparam Not used. Must be set to zero.

D.120.2 Returns
The application must return zero if it processes this message.

D.120.3 Cross-References
EnableWindow()

D.121 WM_ENDSESSION
D.121.1 Description

A WM_ENDSESSION message is sent to an application that has returned a non-zero value in response to a
WM_QUERYENDSESSION message. The WM_ENDSESSION message notifies the application whether the
session is actually ending. The application does not need to call DestroyWindow() or PostQuitMessage() when
processing this message.

Parameter Description

wParam The value is TRUE if the session is being ended, and FALSE otherwise.

lparam Not used. Must be set to zero.

D.121.2 Returns
The application must return zero if it processes this message.

- 112 -

D.121.3 Cross-References
DestroyWindow(), ExitWindows(), PostQuitMessage(), WM_QUERYENDSESSION

D.122 WM_ENTERIDLE
D.122.1 Description

A WM_ENTERIDLE message is sent to an application's main window procedure when a modal dialog box or a
menu is entering an idle state. A modal dialog box or menu enters an idle state when no messages are waiting in
its message queue.

Parameter Description

wParam The value of this parameter can be MSGF_DIALOGBOX, which means the system is idle
because a dialog box is being displayed, or MSGF_MENU, which has the same meaning for
menu.

lParam The low-order word is either dialog box handle (if wParam is MSGF_DIALOGBOX) or the
handle of the window containing the displayed menu (if wParam is MSGF_MENU).

D.122.2 Returns
The application must return zero if it processes this message.

D.122.3 Cross-References
DefWindowProc()

D.123 WM_ERASEBKGND
D123.1 Description

A WM_ERASEBKGND message is sent when the window background needs to be erased. By default the
DefWindowProc() function erases the background by using the class background brush specified by the
hbrbackground member of the WNDCLASS structure. If the value of hbrbackground is NULL, the application
should process the WM_ERASEBKGND message and erase the background color itself. When processing this
message, the application must align the origin of the intended brush with the window coordinates by calling the
UnrealizeObject() function for the brush.

Parameter Description

wParam Identifies the device context of the window.

lParam Not used. Must be set to zero.

D.123.2 Returns
The application must return non-zero if it erases the background or zero otherwise.

D.123.3 Cross-References
UnrealizeObject(), WM_ICONERASEBKGND

D.124 WM_FONTCHANGE
D.124.1 Description

An application sends a WM_FONTCHANGE message to all top-level windows after changing the pool of
available font resources. To do this, an application can call the SendMessage() function with the hwnd parameter
set to HWND_BROADCAST. The WM_FONTCHANGE message has no parameters.

D.124.2 Returns
The application must return zero if it processes this message.

D.124.3 Cross-References
AddFontResource(), RemoveFontResource(), SendMessage()

- 113 -

D.125 WM_GETDLGCODE
D.125.1 Description

A WM_GETDLGCODE message is sent to the dialog box procedure associated with a control and contains
information about the type of input the application is about to process. By responding to the
WM_GETDLGCODE message, an application can trap a particular type of input and process the input itself.

D.125.2 Returns
The return value should be any combination of the following flags, indicating which type of input the application
processes:

DLGC_BUTTON Push button.

DLGC_DEFPUSHBUTTON Default push button.

DLGC_HASSETSEL Edit control's EM_SETSEL message.

DLGC_UNDEFPUSHBUTTON There is no default push button processing.

DLGC_RADIOBUTTON Radio button.

DLGC_STATIC Static control.

DLGC_WANTALLKEYS All keyboard input.

DLGC_WANTARROWKEYS All arrow keys.

DLGC_WANTCHARS WM_CHARS messages.

DLGC_WANTMESSAGE All keyboard input (the application passes this message on to the
 control).

DLGC_WANTTAB TAB key.

D.125.3 Cross-References
DefWindowProc()

D.126 WM_GETFONT
D.126.1 Description

An application sends a WM_GETFONT message to a control to get the current font associated with that control.
This message has no parameters.

D.126.2 Returns
The return value is either the HFONT value of the font or NULL if the control uses the default system font.

D.126.3 Cross-References
WM_SETFONT

D.127 WM_GETMINMAXINFO
D.127.1 Description

A WM_GETMINMAXINFO message is sent to a window whenever the system needs the maximized position
and dimensions of a window or a window's minimum/maximum tracking size. By default, the system fills in a
MINMAXINFO data structure, specifying default values for the all positions and dimensions. The application
can change these values when it processes this message.

Parameter Description

wParam Points to the MINMAXINFO data structure.

lParam Not used. Must be set to zero.

D.127.2 Returns
The application must return zero if it processes this message.

- 114 -

D.127.3 Cross-References
MINMAXINFO

D.128 WM_GETTEXT
D.128.1 Description

An application sends a WM_GETTEXT message to copy the text associated with a window into a buffer
provided by the caller. The window text depends on the type of window. For an edit control, the text to be
copied is the contents of the edit control. For a combo box, the text is the contents of the edit control or static-
text portion of the combo box. For a button, the text is the button name. For other windows, except list boxes,
the text is the window title.

Parameter Description

wParam Specifies the length of the buffer into which the string is to be copied, including the
terminating null character.

lParam Points to the buffer.

D.128.2 Returns
The return value is the number of bytes copied. In the case of a combo box with no edit control, the return value
is CB_ERR.

D.128.3 Cross-References
LB_GETTEXTLEN, WM_GETTEXT

D.129 WM_GETTEXTLENGTH
D.129.1 Description

An application sends a WM_GETTEXTLENGTH message to determine the length of text associated with a
window. The length of the window text depends on the type of window. For an edit control, the text to be copied
is the contents of the edit control. For a combo box, the text is the contents of the edit-control or static-text
portion of the combo box. For a button, the text is the button name. For other windows, except list boxes, the
text is the window title. The length is returned in bytes and the terminating null character is not included. The
WM_GETTEXTLENGTH message has no parameters.

D.129.2 Returns
The return value specifies the length (in bytes) of the text.

D.129.3 Cross-References
LB_GETTEXTLEN, WM_GETTEXT

D.130 WM_HSCROLL
D.130.1 Description

A WM_HSCROLL message is sent to a window when a user clicks on its horizontal scroll bar.

Parameter Description

wParam Specifies a scroll bar code that indicates a scrolling request. Scrolling requests can be one
of the following values:

SB_BOTTOM Scroll to the bottom.

SB_ENDSCROLL End scroll.

SB_LINEDOWN Scroll one line down.

SB_LINEUP Scroll one line up.

SB_PAGEDOWN Scroll one page down.

- 115 -

SB_PAGEUP Scroll one page up.

SB_THUMBPOSITION Scroll to the position specified by the low-order word of
lParam.

SB_THUMBTRACK Drag to the position specified by low-order word of lParam.

SB_TOP Scroll to the top.

lParam The low-order word of lParam, which specifies the current position of the scroll box when
wParam is either SB_THUMBPOSITION or SB_THUMBTRACK. Otherwise, the low-
order word is not used. The high-order word identifies the control if a WM_HSCROLL
message is sent by a scroll bar. Otherwise, the high-order word is not used.

D.130.2 Returns
The application must return zero if it processes this message.

D.130.3 Cross-References
SetScrollPos(), WM_VSCROLL

D.131 WM_HSCROLLCLIPBOARD
D.131.1 Description

A WM_HSCROLLCLIPBOARD message is sent to the owner of the clipboard when its data has the
CF_OWNERDISPLAY format and an event occurs in the clipboard viewer's horizontal scroll bar. The owner
should scroll the clipboard image, invalidate it and update the scroll bar values.

Parameter Description

wParam Specifies a window of the clipboard viewer.

lParam The low-order word of lParam specifies a scroll bar code that indicates a scrolling request.
Scrolling requests can be one of the following values:

SB_BOTTOM Scroll to the lower right.

SB_ENDSCROLL End scroll.

SB_LINEDOWN Scroll one line down.

SB_LINEUP Scroll one line up.

SB_PAGEDOWN Scroll one page down.

SB_PAGEUP Scroll one page up.

SB_THUMBPOSITION Scroll to the absolute position.

SB_TOP Scroll to the upper left.

The high-order word specifies the scroll position if the scroll bar code is SB_THUMBPOSITION. Otherwise, it
is not used.

D.131.2 Returns
The application must return zero if it processes this message.

D.131.3 Cross-References
InvalidateRect(), WM_VSCROLLCLIPBOARD

D.132 WM_ICONERASEBKGND
D.132.1 Description

A WM_ICONERASEBKGND message is sent to a minimized window when its background must be filled
before painting the icon. A window receives this message only if a class icon is defined for the window.

- 116 -

Otherwise, WM_ERASEBKGND is sent instead. By default, the DefWindowProc() function fills the icon
background with the background brush of the parent window.

Parameter Description

wParam Specifies the device context of the icon.

lParam Not used. Must be set to zero.

D.132.2 Returns
The application must return zero if it processes this message.

D.132.3 Cross-References
DefWindowProc(), WM_ERASEBKGND

D.133 WM_INITDIALOG
D.133.1 Description

A WM_INITDIALOG message is sent to a dialog box window procedure immediately before the dialog box is
displayed.

Parameter Description

wParam Specifies the first child control that can be given the input focus.

lParam Specifies the application specific data that can be passed by one of the following functions:
CreateDialogParam(), DialogBoxIndirectParam(), or DialogBoxParam().

D.133.2 Returns
An application must return non-zero if it wants to set the default input focus to the control identified by the
wParam.

If the dialog box procedure uses the SetFocus() function to set the input focus to a different child control, the
application should return zero.

D.133.3 Cross-References
CreateDialogParam(), DialogBoxIndirectParam(), DialogBoxParam(), SetFocus()

D.134 WM_INITMENU
D.134.1 Description

A WM_INITMENU message is sent when a menu associated with a window is about to become active. This
message occurs when a user clicks on the menu item or presses a menu hotkey. The WM_INITMENU message
allows an application to modify the menu before it is displayed.

Parameter Description

wParam Specifies the menu.

lParam Not used. Must be set to zero.

D.134.2 Returns
The application must return zero if it processes this message.

D.134.3 Cross-References
WM_INITMENUPOPUP

D.135 WM_INITMENUPOPUP
D.135.1 Description

A WM_INITMENUPOPUP message is sent when a pop-up menu associated with a window is about to become
active. This allows an application to modify the pop-up menu before it is displayed.

- 117 -

Parameter Description

wParam Specifies the pop-up menu.

lParam The low-order word specifies the index of the pop-up menu in the main menu. The high-
order word is non-zero if the pop-up menu is the System menu. Otherwise, the high-order
word is zero.

D.135.2 Returns
The application must return zero if it processes this message.

D.135.3 Cross-References
WM_INITMENU

D.136 WM_KEYDOWN
D.136.1 Description

The WM_KEYDOWN message is sent for non-system keys and keys pressed while the window has input focus.

Parameter Description

wParam The virtual key code

lParam Key data:

Bits 0 through 15 Specify the repeat count.

Bits 16 through 23 Specify the manufacturer's scan code.

Bit 24 Specifies whether the key was an extended key.

Bits 25 and 26 Not used.

Bits 27 and 28 Used internally by the OS.

Bit 29 Context code that indicates if the ALT key was pressed.

Bit 30 Indicates the previous state of the key. It is set if the key was
down before the message was sent, or clear if the key was up.

Bit 31 Indicates the transition status. It is set if the key is being released,
or clear if it is being pressed.

Note: For WM_KEYDOWN, bits 29 and 30 are clear, whereas bit 30 will indicate if this is the first
WM_KEYDOWN. For 101 and 102 keyboards, the following keys are considered to be enhanced keys: right
ALT, right CTRL, as well as the INSERT, DELETE, HOME, END, PAGE UP, PAGE DOWN, UP, DOWN,
LEFT and RIGHT keys, which are not part of the numeric keypad, and the / and ENTER keys, which are a part
of the numeric keypad.

D.136.2 Returns
If the application processes this message, it should return zero.

D.136.3 Cross-References
WM_CHAR, WM_KEYUP

D.137 WM_KEYUP
D.137.1 Description

The WM_KEYUP message is sent for non-system keys and keys released while the window has input focus.

Parameter Description

wParam The virtual key code

lParam Key data:

Bits 0-15 Specify the repeat count.

- 118 -

Bits 16-23 Specify the manufacturer’s scan code.

Bit 24 Specifies whether the key was an extended key.

Bits 25-26 Not used.

Bits 27-28 Used internally by the OS.

Bit 29 Context code that indicates if the ALT key was pressed.

Bit 30 Indicates the previous state of the key. It is set if the keywas down
before the message was sent, or clear if the keywas up.

Bit 31 Indicates the transition status. It is set if the key is being released,
or clear if it is being pressed.

Note: For WM_KEYUP, bit 29 is clear, whereas bit 31 is set. For 101 and 102 keyboards, the following keys
are considered to be enhanced keys: right ALT, right CTRL, as well as the INSERT, DELETE, HOME, END,
PAGE UP, PAGE DOWN, UP, DOWN, LEFT and RIGHT keys, which are not part of the numeric keypad, and
the / and ENTER keys, which are a part of the numeric keypad.

D.137.2 Returns
If the application processes this message, it should return zero.

D.137.3 Cross-References
WM_CHAR, WM_KEYDOWN

D.138 WM_KILLFOCUS
D.138.1 Description

The WM_KILLFOCUS message is sent when a window is about to lose input focus.

Parameter Description

wParam The window that will receive focus.

lParam Not used. Must be set to zero.

D.138.2 Returns
If the application processes this message, it should return zero.

D.138.3 Cross-References
SetFocus(), WM_SETFOCUS

D.139 WM_LBUTTONDBLCLK
D.139.1 Description

The WM_LBUTTONDBLCLK message is sent when the user double-clicks the left mouse button.

Parameter Description

wParam Key status, which can be one or more of the following values:

MK_CONTROL The CTRL key is pressed.

MK_LBUTTON The left button is pressed.

MK_MBUTTON The middle button is pressed.

MK_RBUTTON The right button is pressed.

MK_SHIFT The SHIFT key is pressed.

lParam LOWORD is the horizontal position and HIWORD is the vertical position.

Note: Only windows whose window class has the CS_DBLCLKS style receive double-click messages. Double-
clicks are generated when the user presses and releases the left mouse button twice within the system's time limit.

- 119 -

A double-click generates the following sequence of messages: WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_LBUTTONDBLCLK, and WM_LBUTTONUP.

D.139.2 Returns
If the application processes this message, it should return zero.

D.139.3 Cross-References
WM_LBUTTONDOWN, WM_LBUTTONUP

D.140 WM_LBUTTONDOWN
D.140.1 Description

The WM_LBUTTONDOWN message is sent when the user presses the left mouse button.

Parameter Description

wParam Key status, which can be one or more of the following values:

MK_CONTROL The CTRL key is pressed.

MK_MBUTTON The middle button is pressed.

MK_RBUTTON The right button is pressed.

MK_SHIFT The SHIFT key is pressed.

lParam LOWORD is the horizontal position and HIWORD is the vertical position.

D.140.2 Returns
If the application processes this message, it should return zero.

D.140.3 Cross-References
WM_LBUTTONDBLCLK, WM_LBUTTONUP

D.141 WM_LBUTTONUP
D.141.1 Description

The WM_LBUTTONUP message is sent when the user releases the left mouse button.

Parameter Description

wParam Key status, which can be one or more of the following values:

MK_CONTROL The CTRL key is pressed.

MK_MBUTTON The middle button is pressed.

MK_RBUTTON The right button is pressed.

MK_SHIFT The SHIFT key is pressed.

lParam LOWORD is the horizontal position and HIWORD is the vertical position.

D.141.2 Returns
If the application processes this message, it should return zero.

D.141.3 Cross-References
WM_LBUTTONDBLCLK, WM_LBUTTONDOWN

D.142 WM_MBUTTONDBLCLK
D.142.1 Description

The WM_MBUTTONDBLCLK message is sent when the user double-clicks the middle mouse button.

- 120 -

Parameter Description

wParam Key status, which can be one or more of the following values:

MK_CONTROL The CTRL key is pressed.

MK_LBUTTON The left button is pressed.

MK_MBUTTON The middle button is pressed.

MK_RBUTTON The right button is pressed.

MK_SHIFT The SHIFT key is pressed.

lParam LOWORD is the horizontal position and HIWORD is the vertical position.

Note: Only windows whose window class has the CS_DBLCLKS style receive double-click messages. Double-
clicks are generated when the user presses and releases the mouse twice within the system's time limit. A double-
click generates the following sequence of messages: WM_MBUTTONDOWN, WM_MBUTTONUP,
WM_MBUTTONDBLCLK, and WM_MBUTTONUP.

D.142.2 Returns
If the application processes this message, it should return zero.

D.142.3 Cross-References
WM_MBUTTONDOWN, WM_MBUTTONUP

D.143 WM_MBUTTONDOWN
D.143.1 Description

The WM_MBUTTONDOWN message is sent when the user presses the middle mouse button.

Parameter Description

wParam Key status, which can be one or more of the following values:

MK_CONTROL The CTRL key is pressed.

MK_LBUTTON The left button is pressed.

MK_RBUTTON The right button is pressed.

MK_SHIFT The SHIFT key is pressed.

lparam LOWORD is the horizontal position and HIWORD is the vertical position.

D.143.2 Returns
If the application processes this message, it should return zero.

D.143.3 Cross-References
WM_MBUTTONDBLCLK, WM_MBUTTONUP

D.144 WM_MBUTTONUP
D.144.1 Description

The WM_MBUTTONUP message is sent when the user releases the middle mouse button.

Parameter Description

wParam Key status, which can be one or more of the following values:

MK_CONTROL The CTRL key is pressed.

MK_LBUTTON The left button is pressed.

MK_RBUTTON The right button is pressed.

MK_SHIFT The SHIFT key is pressed.

lParam LOWORD is the horizontal position and HIWORD is the vertical position.

- 121 -

D.144.2 Returns
If the application processes this message, it should return zero.

D.144.3 Cross-References
WM_MBUTTONDBLCLK, WM_MBUTTONDOWN

D.145 WM_MDIACTIVATE
D.145.1 Description

The WM_MDIACTIVATE message is sent to MDI client windows to change the active MDI child window and
the MDI child windows to either activate or deactivate them.

Parameter Description

wParam Specifies the child window to activate for MDI client windows or the activation flag for MDI
child windows.

lParam Not used. Must be zero for MDI client windows, or LOWORD if a child window is being
activated and HIWORD if a child windows is being deactivated for MDI child windows.

If the frame window is being activated, the child window that was last active receives a WM_NACTIVATE
message, but does not receive a WM_MDIACTIVATE message.

D.145.2 Returns
If the application processes this message, it should return zero.

D.145.3 Cross-References
WM_MDIGETACTIVE, WM_NCACTIVATE, WM_MDINEXT

D.146 WM_MDICASCADE
D.146.1 Description

A WM_MDICASCADE message is sent to a MDI client window to arrange its windows in a cascade format.

Parameter Description

wParam Specifies the cascade flag.

lParam Not used. Must be set to zero.

The cascade flag MDITILE_SKIPDISABLED prevents disabled child windows from being cascaded.

D.146.2 Returns
The application should return zero if it processes the message.

D.146.3 Cross-References
WM_MDIICONARRANGE, WM_MDITILE

D.147 WM_MDICREATE
D.147.1 Description

An application sends a WM_MDICREATE message to a MDI client window to create a child window.

Parameter Description

wParam Not used. Must be set to zero.

lParam A pointer to an MDICREATESTRUCT structure.

The child window will have the style bits WM_CHILD, WS_CLIPSIBLINGS, WS_CLIPCHILDREN,
WS_SYSMENU, WS_CAPTION, WS_THICKFRAME, WS_MINIMIZEBOX and WS_MAXIMIZEBOX in
addition to the style bits in the MDICREATESTRUCT structure.

If the MDIS_ALLCHLDSTYLES style is set when the client window was created, CreateWindow() will
override the default style bits.

- 122 -

When the MDI child window is created, it receives a WM_CREATE message, where the
MDICREATESTRUCT structure is referenced by the lpCreateParams pointer in the CREATESTRUCT
structure. A second WM_MDICREATE message must not be sent while the WM_MDICREATE message is still
being processed.

D.147.2 Returns
The low-order word contains the handle of the new child window.

D.147.3 Cross-References
WM_MDIDESTROY, MDICREATESTRUCT

D.148 WM_MDIDESTROY
D.148.1 Description

An application sends a WM_MDIDESTROY message to a MDI client window to destroy a child window.

Parameter Description

wParam Specifies the child window (HWND) to be destroyed.

lParam Not used. Must be set to zero.

D.148.2 Returns
The application should return zero if it processes the message.

D.148.3 Cross-References
WM_MDIDESTROY

D.149 WM_MDIGETACTIVE
D.149.1 Description

The WM_MDIGETACTIVE message gets the MDI child window that is active.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.149.2 Returns
The low-order word contains the handle to the active MDI child window. The high-order word is 1 if the
window is maximized. Otherwise, it is zero.

D.149.3 Cross-References
WM_MDIACTIVATE

D.150 WM_MDIICONARRANGE
D.150.1 Description

The WM_MDIICONARRANGE message instructs an MDI client window to arrange all of its minimized child
window icons.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.150.2 Returns
The application should return zero if it processes the message.

D.150.3 Cross-References
WM_MDICASCADE, WM_MDITILE

- 123 -

D.151 WM_MDIMAXIMIZE
D.151.1 Description

The WM_MDIMAXIMIZE message instructs an MDI client window to maximize the specified child window.

Parameter Description

wParam Specifies the child window (HWND) to maximize.

lParam Not used. Must be set to zero.

D.151.2 Returns
The application should return zero if it processes the message.

D.151.3 Cross-References
None.

D.152 WM_MDINEXT
D.152.1 Description

The WM_MDINEXT message instructs an MDI client window to activate the child window behind the currently
active child window and send the currently active window behind all other child windows.

Parameter Description

wParam Specifies the child window (HWND).

lParam If the value is zero, the next child window is activated. If the value is non-zero, the previous
child window is activated.

D.152.2 Returns
The application should return zero if it processes the message.

D.152.3 Cross-References
None.

D.153 WM_MDIRESTORE
D.153.1 Description

The WM_MDIRESTORE message instructs an MDI client window to restore a child window from the
minimized or maximized size.

Parameter Description

wParam Specifies the child window (HWND).

lParam Not used. Must be set to zero.

D.153.2 Returns
The application should return zero if it processes the message.

D.153.3 Cross-References
WM_MDIMAXIMIZE

D.154 WM_MDISETMENU
D.154.1 Description

The WM_MDISETMENU message is sent to replace the menu of an MDI frame window, the window pop-up
menu, or both.

Parameter Description

wParam Refresh flag. If TRUE, the menus are refreshed. If FALSE, the lParam specifies new menus
for the window.

- 124 -

lParam The low-order word specifies the new frame window menu. The high-order word specifies
the new Window pop-up menu. If either parameter is zero, the respective menu is left
untouched.

D.154.2 Returns
The handle of the frame window menu replaced with this message.

D.154.3 Cross-References
None.

D.155 WM_MDITILE
D155.1 Description

A WM_MDITILE message is sent to a MDI client window to arrange its windows in a tile format.

Parameter Description

wParam Specifies the tile flag. If the flag is MDITILE_HORIZONTAL, the child windows are tiled
wide. If the flag is MDITILE_VERTICAL, the child windows are tiled tall. If the flag is
MDITILE_SKIPDISABLED, disabled child windows are not tiled.

lParam Not used. Must be set to zero.

D.155.2 Returns
The application should return zero if it processes the message.

D.155.3 Cross-References
WM_MDICASCADE

D.156 WM_MEASUREITEM
D.156.1 Description

A WM_MEASUREITEM message is sent to an owner-drawn control to obtain its dimensions. The control can
be a button, combo box, list box, or menu item.

Parameter Description

wParam Specifies the control that sent the WM_MEASUREITEM message. If the parameter is zero,
the request was sent by a menu. If it is -1, the system is requesting dimensions of an edit
control in a owner-drawn combo box.

lParam A pointer to a MEASUREITEMSTRUCT structure to be filled by the owner of the control.

D.156.2 Returns
The application should return TRUE if it processes the message.

D.156.3 Cross-References
WM_COMPAREITEM, WM_DELTEITEM, WM_DRAWITEM

D.157 WM_MENUCHAR
D.157.1 Description

A WM_MENUCHAR message is sent when a key is pressed corresponding to a menu mnemonic character that
does not match any predefined mnemonics in the menu. The message is sent to the window that owns the menu.

Parameter Description

wParam Specifies the ASCII character of the key pressed.

lParam The low-order word specifies the type of selected menu. The type MF_POPUP indicates a
pop-up menu, and MF_SYSMENU indicates a system menu. The high-order word identifies
the selected menu.

- 125 -

D.157.2 Returns
The application should return TRUE if it processes the message.

D.157.3 Cross-References
WM_COMPAREITEM, WM_DELTEITEM, WM_DRAWITEM

D.158 WM_MENUSELECT
D.158.1 Description

A WM_MENUSELECT message is sent to the window that owns the menu, when a menu item has been
selected.

Parameter Description

wParam Specifies the menu item identifier if it is a menu item. If the item is a pop-up menu, it
specifies the pop-up menu's handle.

lParam The high-order word specifies the system menu handle if the MF_SYSMENU flag is set in
the low-order word. The low-order word specifies one or more of the following flags.

MF_BITMAP Menu item is a bitmap.

MF_CHECKED Menu item is checked.

MF_DISABLED Menu item is disabled.

MF_GRAYED Menu item is grayed out.

MF_MOUESELECT Menu item was selected using the mouse.

MF_OWNERDRAW Menu item is owner draw.

MF_POPUP Menu item contains a pop-up menu.

MF_SEPARATOR Menu item is a separator.

MF_SYSMENU Menu item is in the system menu.

D.158.2 Returns
The application should return zero if it processes the message.

D.158.3 Cross-References
None.

D.159 WM_MOUSEACTIVATE
D.159.1 Description

A WM_MOUSEACTIVATE message is sent when the mouse is pressed in an inactive window.

Parameter Description

wParam Specifies the top-level parent window (HWND) of the window being activated.

lParam The low-order word specifies the hit test area code. The high-order word specifies the
identifier of the message.

D.159.2 Returns
The application return value determines the systems handling of the mouse event. If MA_ACTIVATE is
returned, the window is activated. If it is MA_NOACTIVATE, the window is not activated. If
MA_ACTIVATEANDEAT, the window is activated and the mouse event discarded. If
MA_NOACTIVATEANDEAT is specified, the window is not activated and the mouse event is discarded.

D.159.3 Cross-References
None.

- 126 -

D.160 WM_MOUSEMOVE
D.160.1 Description

A WM_MOUSEMOVE message is sent when the mouse is moved within a window.

Parameter Description

wParam Specifies the status of several keys and can be any combination of these values:

MK_CONTROL Control key is down.

MK_LBUTTON Left button is down.

MK_MBUTTON Middle button is down.

MK_RBUTTON Right button is down.

MK_SHIFT Shift key is down.

lParam The low-order word specifies the x screen coordinate of the mouse. The high-order word
specifies the y screen coordinate of the mouse.

If the mouse is captured, the message goes to the window holding the capture. Otherwise, it will go to the
window directly under the cursor.

D.160.2 Returns
The application should return zero if it processes the message.

D.160.3 Cross-References
WM_NCHITTEST

D.161 WM_MOVE
D.160.1 Description

The WM_MOVE message is sent after a window has been moved.

Parameter Description

wParam Not used. Must be set to zero.

lParam The low-order word of lParam specifies the new x-coordinate of the upper-left corner of the
window's client area.

The high-order word of lParam specifies the new y-coordinate of the upper-left corner of the
window's client area.

The low-order and high-order words of lParam are given in screen coordinates for
overlapped and pop-up windows and in parent-client coordinates for child windows.

An application can use the MAKEPOINT macro to convert the lParam parameter to a
POINT data structure.

D.160.2 Returns
The application should return zero if it processes this message.

D.160.3 Cross-References
MAKEPOINT, POINT

D.161 WM_NCACTIVATE
D.161.1 Description

The WM_NCACTIVATE message is sent to a window when its non-client area needs to be changed to indicate
an active or inactive state.

- 127 -

Parameter Description

wParam Specifies when a title bar or icon needs to be changed to indicate an active or inactive state.
The wParam parameter is TRUE if an active title bar or icon is to be drawn. It is FALSE for
an inactive title bar or icon.

lParam Not used. Must be set to zero.

The DefWindowProc() function draws the title bar and title bar text in their active colors when the wParam
parameter is TRUE and in their inactive colors when wParam is FALSE.

D.161.2 Returns
When the wParam parameter is FALSE, an application should return TRUE to indicate that Windows should
proceed with the default processing or FALSE to prevent the caption bar or icon from being deactivated. When
wParam is TRUE, the return value is ignored.

D.161.3 Cross-References
DefWindowProc()

D.162 WM_NCCALCSIZE
D.162.1 Description

The WM_NCCALCSIZE message is sent when the size and position of a window's client area needs to be
calculated. By processing this message, an application can control the contents of the window's client area when
the size or position of the window changes.

Parameter Description

wParam Specifies whether the application should specify which part of the client area contains valid
information. Windows copies the valid information to the specified area within the new client
area. If this parameter is TRUE, the application should specify which part of the client area is
valid.

LParam Points to an NCCALCSIZE_PARAMS data structure that contains information an
application can use to calculate the new size and position of the client rectangle.

Regardless of the value of wParam, the first rectangle in the array specified by the rgrc member contains the
coordinates of the window. For a child window, the coordinates are relative to the parent window's client area.
For top-level windows, the coordinates are screen coordinates. An application should process
WM_NCCALCSIZE by modifying the rgrc[0] rectangle to reflect the size and position of the client area. The
rgrc[1] and rgrc[2] rectangles are valid only if wParam is TRUE. In this case, the rgrc[1] rectangle contains
the coordinates of the window before it was moved or resized. The rgrc[2] rectangle contains the coordinates of
the window's client area before the window was moved. All coordinates are relative to the parent window or
screen.

Redrawing of the window can occur, depending on whether CS_HREDRAW or CS_VREDRAW is specified,
which is the default, backward-compatible DefWindowProc() processing of this message (in addition to the usual
client rectangle calculation described in the following table).

D.162.2 Returns
An application should return zero if wParam is FALSE.

An application can return zero or a valid combination of the following values if wParam is TRUE:

Value Meaning

WVR_ALIGNTOP, WVR_ALIGNLEFT, WVR_ALIGNBOTTOM, WVR_ALIGNRIGHT

These values, used in combination, specify that the client area of the window is to be
preserved and aligned appropriately relative to the new location of the client window. For
example, to align the client area to the lower-left, return WVR_ALIGNLEFT |
WVR_ALIGNTOP.

WVR_HREDRAW, WVR_VREDRAW
These values, used in combination with any other values, cause the window to be completely

- 128 -

redrawn if the client rectangle changed size horizontally or vertically. These values are
similar to the CS_HREDRAW and CS_VREDRAWclass styles.

WVR_REDRAW
This value causes the entire window to be redrawn. It is a combination of WVR_HREDRAW
and WVR_VREDRAW.

WVR_VALIDRECTS
This value indicates that, upon return from WM_NCCALCSIZE, the rgrc[1] and rgrc[2]
rectangles contain valid source and destination area rectangles, respectively. Windows
combines these rectangles to calculate the area of the window that can be preserved.
Windows copies any part of the window image that is within the source rectangle and clips
the image to the destination rectangle. Both rectangles are in parent-relative or screen-
relative coordinates.

This return value allows an application to implement more elaborate client-area preservation
strategies, such as centering or preserving a subset of the client area.

If wParam is TRUE and an application returns zero, the old client area is preserved and is aligned with the
upper-left corner of the new client area.

D.162.3 Cross-References
DefWindowProc(), MoveWindow(), SetWindowPos(), RECT, WM_NCCALCSIZE

D.163 WM_NCCREATE
D.163.1 Description

The WM_NCCREATE message is sent prior to the WM_CREATE message when a window is first created.

Parameter Description

wParam Not used. Must be set to zero.

lParam Points to the CREATESTRUCT data structure for the window.

Scroll bars are initialized (the scroll bar position and range are set), and the window text is set. Memory used
internally to create and maintain the window is allocated.

D.163.2 Returns
The return value is non-zero if the non-client area is created. It is zero if an error occurs. In this case, the
CreateWindow() or CreateWindowEx() functions returns NULL.

D.163.3 Cross-References
CreateWindow(), WM_CREATE, CREATESTRUCT

D.164 WM_NCDESTROY
D.164.1 Description

The WM_NCDESTROY message informs a window that its non-client area is being destroyed. The
DestroyWindow() function sends the WM_NCDESTROY message to the window following the
WM_DESTROY message. WM_NCDESTROY is used to free the allocated memory object associated with the
window.

This message frees any memory internally allocated for the window, and has no parameters.

D.164.2 Returns
An application should return zero if it processes this message.

D.164.3 Cross-References
DestroyWindow(), WM_NCCREATE

- 129 -

D.165 WM_NCHITTEST
D.165.1 Description

The WM_NCHITTEST message is sent to the window that contains the cursor or to the window that uses the
SetCapture() function to capture the mouse input. It is sent every time the mouse is moved.

Parameter Description

wParam Not used. Must be set to zero.

lParam The low-order word of lParam specifies the x-coordinate of the cursor, in screen coordinates.

The high-order word of lParam specifies the y-coordinate of the cursor, in screen
coordinates.

The MAKEPOINT macro can be used to convert the lParam parameter to a POINT
structure.

D.165.2 Returns
The return value of the DefWindowProc() function is one of the following values indicating the position of the
cursor:

Value Meaning

HTBORDER The cursor is located in the border of a window that does not have a
sizing border.

HTBOTTOM The cursor is located in the lower horizontal border of a window.

HTBOTTOMLEFT The cursor is located in the lower-left corner of a window border.

HTBOTTOMRIGHT The cursor is located in the lower-right corner of a window border.

HTCAPTION The cursor is located in a title bar area.

HTCLIENT The cursor is located in a client area.

HTERROR The cursor is located in the screen background or on a dividing line
between windows (same as HTNOWHERE, except that the
DefWindowProc() function produces a system beep to indicate an error).

HTGROWBOX The cursor is located in a size box (same as HTSIZE).

HTHSCROLL The cursor is located in the horizontal scroll bar.

HTLEFT The cursor is located in the left border of a window.

HTMAXBUTTON The cursor is located in a Maximize button.

HTMENU The cursor is located in a menu area.

HTMINBUTTON The cursor is located in a Minimize button.

HTNOWHERE The cursor is located on the screen background or on a dividing line
between windows.

HTREDUCE The cursor is located in a Minimize button.

HTRIGHT The cursor is located in the right border of a window.

HTSIZE The cursor is located in a size box (same as HTGROWBOX).

HTSYSMENU The cursor is located in a System menu (sometimes referred to as a
Control menu) or in a close button in a child window.

HTTOP The cursor is located in the upper horizontal border of a window.

HTTOPLEFT The cursor is located in the upper-left corner of a window border.

HTTOPRIGHT The cursor is located in the upper-right corner of a window border.

HTTRANSPARENT The cursor is located in a window currently covered by another window.

- 130 -

HTVSCROLL The cursor is located in the vertical scroll bar.

HTZOOM The cursor is located in a Maximize button.

D.165.3 Cross-References
DefWindowProc(), GetCapture(), MAKEPOINT, POINT

D.166 WM_NCLBUTTONDBLCLK
D.166.1 Description

The WM_NCLBUTTONDBLCLK message is sent when the user double-clicks the left mouse button while the
cursor is within a non-client area of the window.

Parameter Description

wParam Specifies the code returned by WM_NCHITTEST. For more information, see the description
of the WM_NCHITTEST message.

lParam The low-order word of lParam specifies the horizontal position of the cursor, in screen
coordinates.

The high-order word of lParam specifies the vertical position of the cursor, in screen
coordinates.

If appropriate, WM_SYSCOMMAND messages are sent.

D.166.2 Returns
An application should return zero if it processes this message.

D.166.3 Cross-References
WM_NCHITTEST, WM_SYSCOMMAND, POINT , WM_NCLBUTTONDBLCLK

D.167 WM_NCLBUTTONDOWN
D.167.1 Description

The WM_NCLBUTTONDOWN message is sent to a window when the user presses the left mouse button while
the cursor is within a non-client area of the window.

Parameter Description

wParam Specifies the code returned by WM_NCHITTEST.

lParam The low-order word of lParam specifies the x-coordinate of the cursor, in screen coordinates.

The high-order word of lParam specifies the y-coordinate of the cursor, in screen
coordinates.

If appropriate, WM_SYSCOMMAND messages are sent.

D.167.2 Returns
An application should return zero if it processes this message.

D.167.3 Cross-References
WM_NCHITTEST, WM_NCLBUTTONDBLCLK, WM_NCLBUTTONUP, WM_SYSCOMMAND, POINT

D.168 WM_NCLBUTTONUP
D.168.1 Description

The WM_NCLBUTTONUP message is sent to a window when the user releases the left mouse button while the
cursor is within a non-client area of the window.

Parameter Description

wParam Specifies the code returned by WM_NCHITTEST.

lParam The low-order word of lParam specifies the x-coordinate of the cursor, in screen coordinates.

- 131 -

The high-order word of lParam specifies the y-coordinate of the cursor, in screen
coordinates.

If appropriate, WM_SYSCOMMAND messages are sent.

D.168.2 Returns
An application should return zero if it processes this message.

D.168.3 Cross-References
WM_NCHITTEST, WM_NCLBUTTONDOWN, WM_NCLBUTTONUP, WM_SYSCOMMAND

D.169 WM_NCMBUTTONDBLCLK
D.169.1 Description

The WM_NCMBUTTONDBLCLK message is sent to a window when the user double-clicks the middle mouse
button while the cursor is within a non-client area of the window.

Parameter Description

wParam Specifies the code returned by WM_NCHITTEST.

lParam The low-order word of lParam specifies the x-coordinate of the cursor, in screen coordinates.

The high-order word of lParam specifies the y-coordinate of the cursor, in screen
coordinates.

If appropriate, WM_SYSCOMMAND messages are sent.

D.169.2 Returns
An application should return zero if it processes this message.

D.169.3 Cross-References
WM_NCHITTEST, WM_NCMBUTTONDOWN, WM_NCMBUTTONUP, POINT

D.170 WM_NCMBUTTONDOWN
D.170.1 Description

The WM_NCMBUTTONDOWN message is sent to a window when the user double-clicks the middle mouse
button while the cursor is within a non-client area of the window.

Parameter Description

wParam Specifies the code returned by WM_NCHITTEST.

lParam The low-order word of lParam specifies the x-coordinate of the cursor, in screen coordinates.

The high-order word of lParam specifies the y-coordinate of the cursor, in screen
coordinates.

If appropriate, WM_SYSCOMMAND messages are sent.

D.170.2 Returns
An application should return zero if it processes this message.

D.170.3 Cross-References
WM_NCHITTEST, WM_NCMBUTTONDBLCLK, WM_NCMBUTTONUP

D.171 WM_NCMBUTTONUP
D.171.1 Description

The WM_NCMBUTTONUP message is sent to a window when the user presses the middle mouse button while
the cursor is within a non-client area of the window.

Parameter Description

- 132 -

wParam Specifies the code returned by WM_NCHITTEST.

lParam The low-order word of lParam specifies the x-coordinate of the cursor, in screen coordinates.

The high-order word of lParam specifies the y-coordinate of the cursor, in screen
coordinates.

If appropriate, WM_SYSCOMMAND messages are sent.

D.171.2 Returns
An application should return zero if it processes this message.

D.171.3 Cross-References
WM_NCHITTEST, WM_NCMBUTTONDBLCLK, WM_NCMBUTTONDOWN

D.172 WM_NCMOUSEMOVE
D.172.1 Description

The WM_NCMOUSEMOVE message is sent to a window when the cursor is moved within a non-client area of
the window.

Parameter Description

wParam Specifies the code returned by WM_NCHITTEST.

lParam The low-order word of lParam specifies the x-coordinate of the cursor, in screen coordinates.

The high-order word of lParam specifies the y-coordinate of the cursor, in screen
coordinates.

If appropriate, WM_SYSCOMMAND messages are sent.

D.172.2 Returns
An application should return zero if it processes this message.

D.172.3 Cross-References
WM_NCHITTEST, WM_SYSCOMMAND, POINT

D.173 WM_NCPAINT
D.173.1 Description

The WM_NCPAINT message is sent to a window when its frame needs painting.

This message has no parameters.

The DefWindowProc() function paints the window frame. An application can intercept this message and paint its
own custom window frame. The clipping region for a window is always rectangular, even if the shape of the
frame is altered.

D.173.2 Returns
An application should return zero if it processes this message.

D.173.3 Cross-References
DefWindowProc()

D.174 WM_NCRBUTTONDBLCLK
D.174.1 Description

The WM_NCRBUTTONDBLCLK message is sent to a window when the user double-clicks the right mouse
button while the cursor is within a non-client area of the window.

Parameter Description

wParam Specifies the code returned by WM_NCHITTEST.

- 133 -

lParam The low-order word of lParam specifies the x-coordinate of the cursor, in screen coordinates.

The high-order word of lParam specifies the y-coordinate of the cursor, in screen
coordinates.

If appropriate, WM_SYSCOMMAND messages are sent.

D.174.2 Returns
An application should return zero if it processes this message.

D.174.3 Cross-References
WM_NCHITTEST, WM_NCRBUTTONDOWN, WM_NCRBUTTONUP, POINT

D.175 WM_NCRBUTTONDOWN
D.175.1 Description

The WM_NCRBUTTONDOWN message is sent to a window when the user presses the right mouse button
while the cursor is within a non-client area of the window.

Parameter Description

wParam Specifies the code returned by WM_NCHITTEST.

lParam The low-order word of lParam specifies the x-coordinate of the cursor, in screen coordinates.

The high-order word of lParam specifies the y-coordinate of the cursor, in screen
coordinates.

If appropriate, WM_SYSCOMMAND messages are sent.

D.175.2 Returns
An application should return zero if it processes this message.

D.175.3 Cross-References
WM_NCHITTEST, WM_NCRBUTTONDBLCLK, WM_NCRBUTTONUP, POINT

D.176 WM_NCRBUTTONUP
D.176.1 Description

The WM_NCRBUTTONUP message is sent to a window when the user releases the right mouse button while
the cursor is within a non-client area of the window.

Parameter Description

wParam Specifies the code returned by WM_NCHITTEST.

lParam The low-order word of lParam specifies the x-coordinate of the cursor, in screen coordinates.

The high-order word of lParam specifies the y-coordinate of the cursor, in screen
coordinates.

If appropriate, WM_SYSCOMMAND messages are sent.

D.176.2 Returns
An application should return zero if it processes this message.

D.176.3 Cross-References
WM_NCHITTEST, WM_NCRBUTTONDBLCLK, WM_NCRBUTTONDOWN, POINT

D.177 WM_NEXTDLGCTL
D.177.1 Description

An application sends the WM_NEXTDLGCTL message to a dialog box procedure to set the focus to a different
control in a dialog box.

- 134 -

Parameter Description

wParam If the value of the wParam parameter is non-zero, the wParam parameter is the handle of the
control that receives the focus. If the low-order word of lParam is zero, wParam is a flag that
indicates whether the next or previous control with the WS_TABSTOP style receives the
focus. If wParam is zero, the next control receives the focus. Otherwise, the previous control
with the WS_TABSTOP style receives the focus.

lParam The low-order word of lParam indicates how Windows uses the wParam parameter. If the
low-order word of lParam is non-zero, wParam is a handle associated with the control that
receives the focus. Otherwise, wParam is a flag that indicates whether the next or previous
control with the WS_TABSTOP style receives the focus.

The effect of this message differs from that of the SetFocus() function because WM_NEXTDLGCTL modifies
the border around the default button. Do not use the SendMessage() function to send a WM_NEXTDLGCTL
message if your application will concurrently process other messages that set the control focus. In this case, use
the PostMessage() function instead.

D.177.2 Returns
An application should return zero if it processes this message.

D.177.3 Cross-References
PostMessage(), SendMessage(), SetFocus()

D.178 WM_PAINT
D.178.1 Description

The WM_PAINT message is sent when Windows or an application makes a request to repaint a portion of an
application's window. The message is sent when the UpdateWindow() or RedrawWindow() function is called or
by the DispatchMessage() function when the application obtains a WM_PAINT message by using the
GetMessage() or PeekMessage() function.

This message has no parameters.

The DispatchMessage() function sends this message when there are no other messages in the application's
message queue.

A window may receive internal paint messages as a result of calling the RedrawWindow() function with the
RDW_INTERNALPAINT flag set. In this case, the window cannot have an update region. An application
should call the GetUpdateRect() function to determine whether the window has an update region. If
GetUpdateRect() returns zero, the application should not call the BeginPaint() and EndPaint() functions. A
WM_PAINT message may have been caused by both an invalid area and a call to the RedrawWindow() function
with the RDW_INTERNALPAINT flag set. For this reason, an application must check each WM_PAINT
message for any necessary internal repainting or updating by looking at its internal data structures. An internal
WM_PAINT message is sent only once by Windows. After an internal WM_PAINT message is returned from
the GetMessage() or PeekMessage() function or is sent to a window by the UpdateWindow() function, no further
WM_PAINT messages are sent or posted until the window is invalidated or until the RedrawWindow() function
is called again with the RDW_INTERNALPAINT flag set.

D.178.2 Returns
An application should return zero if it processes this message.

D.178.3 Cross-References
BeginPaint(), DispatchMessage(), EndPaint(), GetMessage(), PeekMessage(), RedrawWindow(),
UpdateWindow()

- 135 -

D.179 WM_PAINTCLIPBOARD
D.179.1 Description

The WM_PAINTCLIPBOARD message is sent by a clipboard viewer to the clipboard owner when the owner
has placed data on the clipboard in the CF_OWNERDISPLAY format and the clipboard viewer's client area
needs repainting.

Parameter Description

wParam Specifies a handle to the clipboard viewer window.

lParam The low-order word of lParam points to a PAINTSTRUCT data structure that defines which
part of the client area to paint.

To determine whether the entire client area or just a portion of it needs repainting, the clipboard owner must
compare the dimensions of the drawing area given in the rcPaint member of the PAINTSTRUCT structure to
the dimensions given in the most recent WM_SIZECLIPBOARD message.

An application must use the GlobalLock() function to lock the memory that contains the PAINTSTRUCT data
structure. The application should unlock that memory by using the GlobalUnlock() function before it yields or
returns control.

D.179.2 Returns
An application should return zero if it processes this message.

D.179.3 Cross-References
GlobalLock(), GlobalUnlock(), WM_SIZECLIPBOARD, PAINTSTRUCT

D.180 WM_PALETTECHANGED
D.180.1 Description

The WM_PALETTECHANGED message is sent to all top-level and overlapped windows after the window with
the input focus has realized its logical palette, thereby changing the system palette. This message allows a
window without the input focus that uses a color palette to realize its logical palette and update its client area.

Parameter Description

wParam Specifies the handle of the window that caused the system palette to change.

lParam Not used. Must be set to zero.

In addition to being sent to all top-level and overlapped windows, this message is also sent to the window that
changed the system palette and caused this message to be sent. If any child windows use a color palette, this
message must be passed on to them. To avoid an infinite loop, a window that receives this message should not
realize its palette unless it determines that wParam does not contain its own window handle.

D.180.2 Returns
An application should return zero if it processes this message.

D.180.3 Cross-References
WM_PALETTEISCHANGING, WM_QUERYNEWPALETTE, RealizePalette()

D.181 WM_PALETTEISCHANGING
D.181.1 Description

The WM_PALETTEISCHANGING message informs applications that an application is going to realize its
logical palette.

Parameter Description

wParam Specifies the handle of the window that is going to realize its logical palette.

lParam Not used. Must be set to zero.

- 136 -

D.181.2 Returns
An application should return zero if it processes this message.

D.181.3 Cross-References
WM_PALETTECHANGED, WM_QUERYNEWPALETTE

D.182 WM_PARENTNOTIFY
D.182.1 Description

The WM_PARENTNOTIFY message is sent to the parent of a child window when the child window is created
or destroyed, or when the user clicks a mouse button while the cursor is over the child window. When the child
window is being created, the system sends WM_PARENTNOTIFY just before the CreateWindow() or
CreateWindowEx() function that creates the window returns. When the child window is destroyed, the system
sends the message before any processing to destroy the window takes place.

Parameter Description

wParam Specifies the event for which the parent is being notified. It can be any of the following
values:

Value Description

WM_CREATE The child window will be created.

WM_DESTROY The child window will be destroyed.

WM_LBUTTONDOWN The user has placed the mouse cursor over the child window and
clicked the left mouse button.

WM_MBUTTONDOWN The user has placed the mouse cursor over the child window and
clicked the middle mouse button.

WM_RBUTTONDOWN The user has placed the mouse cursor over the child window and
clicked the right mouse button.

lParam If the low-order word of lParam is WM_CREATE or WM_DESTROY, this parameter
specifies the handle of the child window. Otherwise, it specifies the x-coordinate of the
cursor.

If the high-order word of lParam is WM_CREATE or WM_DESTROY, this parameter specifies the identifier
of the child window. Otherwise, it specifies the y-coordinate of the cursor.

This message is also sent to all ancestor windows of the child window, including the top-level window. All child
windows except those that have the WS_EX_NOPARENTNOTIFY send this message to their parent windows.
By default, child windows in a dialog box have the WS_EX_NOPARENTNOTIFY style unless the
CreateWindowEx() function was called to create the child window without this style.

D.182.2 Returns
An application should return zero if it processes this message.

D.182.3 Cross-References
WM_CREATE, WM_DESTROY, WM_LBUTTONDOWN, WM_MBUTTONDOWN,
WM_RBUTTONDOWN

D.183 WM_PASTE
D.183.1 Description

An application sends the WM_PASTE message to an edit control or combo box to insert the data from the
clipboard into the edit control at the current cursor position. Data is inserted only if the clipboard contains data
in CF_TEXT format.

- 137 -

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.183.2 Returns
The return value is non-zero if this message is sent to an edit control or a combo box.

D.183.3 Cross-References
WM_CLEAR, WM_COPY, WM_CUT

D.184 WM_POWER
D.184.1 Description

The WM_POWER message is sent when the system, typically a battery-powered personal computer, is about to
enter the suspended mode.

Parameter Description

wParam Specifies a power-event notification message. This parameter may be one of the following
values:

Value Meaning

PWR_SUSPENDREQUEST
Indicates that the system is about to enter the suspended mode.

PWR_SUSPENDRESUME
Indicates that the system is resuming operation after entering the
suspended mode normally – that is, the system sent a
PWR_SUSPENDREQUEST notification message to the
application before the system was suspended. An application
should perform any necessary recovery actions.

PWR_CRITICALRESUME
Indicates that the system is resuming operation after entering the
suspended mode without first sending a
PWR_SUSPENDREQUEST notification message to the
application. An application should perform any necessary
recovery actions.

lParam Not used. Must be set to zero.

This message is sent only to an application that is running on a system that conforms to the advanced power
management (APM) basic input-and-output system (BIOS) specification. The message is sent by the power-
management driver to each window returned by the EnumWindows() function.

The suspended mode is the state in which the greatest amount of power savings occurs, but all operational data
and parameters are preserved. Random-access memory (RAM) contents are preserved, but many devices are
likely to be turned off.

D.184.2 Returns
The value an application returns depends on the value of the wParam parameter, which may be one of the
following:

PWR_SUSPENDREQUEST
PWR_FAIL to prevent the system from entering the suspended state. Otherwise, the value is
PWR_OK.

PWR_SUSPENDRESUME 0

PWR_CRITICALRESUME 0

D.184.3 Cross-References
EnumWindows()

- 138 -

D.185 WM_QUERYDRAGICON
D.185.1 Description

The WM_QUERYDRAGICON message is sent to a minimized (iconic) window that does not have an icon
defined for its class. The system sends this message whenever it needs to display an icon for the window.

This message has no parameters.

If an application returns the handle of an icon or cursor, the system converts it to black-and-white. The
application can call the LoadCursor() or LoadIcon() functions to load a cursor or icon from the resources in its
executable file and to obtain this handle.

D.185.2 Returns
An application should return a double-word value that contains a cursor or icon handle in the low-order word.
The cursor or icon must be compatible with the display driver's resolution. If the application returns NULL, the
system displays the default cursor. The default return value is NULL.

D.185.3 Cross-References
LoadCursor(), LoadIcon()

D.186 WM_QUERYENDSESSION
D.186.1 Description

The WM_QUERYENDSESSION message is sent when the user chooses to end the Windows session, or when
an application calls the ExitWindows() function. If any application returns zero, the Windows session is not
ended. Windows stops sending WM_QUERYENDSESSION messages as soon as one application returns zero,
and sends WM_ENDSESSION messages, with the wParam parameter set to FALSE, to any applications that
have already returned non-zero.

This message has no parameters.

The DefWindowProc() function returns non-zero when it processes this message.

D.186.2 Returns
An application should return non-zero if it can conveniently terminate. Otherwise, it should return zero.

D.186.3 Cross-References
DefWindowProc(), ExitWindows(), WM_ENDSESSION

D.187 WM_QUERYNEWPALETTE
D.187.1 Description

The WM_QUERYNEWPALETTE message informs an application that it is about to receive the input focus,
giving the application an opportunity to realize its logical palette when it receives the focus.

This message has no parameters.

D.187.2 Returns
An application should return non-zero if it realizes its logical palette. Otherwise, it should return zero.

D.187.3 Cross-References
WM_PALETTECHANGED, WM_PALETTEISCHANGING

D.188 WM_QUERYOPEN
D.188.1 Description

The WM_QUERYOPEN message is sent to a minimized window when the user requests that the window be
restored to its preminimized size and position.

This message has no parameters.

- 139 -

While processing this message, the application should not perform any action that would cause an activation or
focus change. The DefWindowProc() function returns non-zero when it processes this message.

D.188.2 Returns
An application that processes this message should return a non-zero value if the icon can be opened, or zero to
prevent the icon from being opened.

D.188.3 Cross-References
DefWindowProc()

D.189 WM_QUIT
D.189.1 Description

The WM_QUIT message indicates a request to terminate an application and is generated when the application
calls the PostQuitMessage() function. It causes the GetMessage() function to return zero.

Parameter Description

wParam Specifies the exit code given in the PostQuitMessage() function.

lParam Not used. Must be set to zero.

D.189.2 Returns
This message does not have a return value, because it causes the message loop to terminate before the message is
sent to the application's window procedure.

D.189.3 Cross-References
GetMessage(), PostQuitMessage()

D.190 WM_RBUTTONDBLCLK
D.190.1 Description

The WM_RBUTTONDBLCLK message is sent when the user double-clicks the right mouse button.

Parameter Description

wParam Key status, which can be one or more of the following values:

MK_CONTROL The CTRL key is pressed.

MK_LBUTTON The left button is pressed.

MK_MBUTTON The middle button is pressed.

MK_RBUTTON The right button is pressed.

MK_SHIFT The SHIFT key is pressed.

lParam LOWORD is the horizontal position and HIWORD is the vertical position.

Note: Only windows whose window class has the CS_DBLCLKS style receives double-click messages. Double-
clicks are generated when the user presses and releases the mouse twice within the system's time limit. A double-
click generates the following sequence of messages: WM_RBUTTONDOWN, WM_RBUTTONUP,
WM_RBUTTONDBLCLK, followed by another WM_RBUTTONUP.

D.190.2 Returns
If the application processes this message, it should return zero.

D.190.3 Cross-References
WM_RBUTTONDOWN, WM_RBUTTONUP

- 140 -

D.191 WM_RBUTTONDOWN
D.191.1 Description

The WM_RBUTTONDOWN message is sent when the user presses the right mouse button.

Parameter Description

wParam Key status, which can be one or more of the following values:

MK_CONTROL The CTRL key is pressed.

MK_LBUTTON The left button is pressed.

MK_MBUTTON The middle button is pressed.

MK_SHIFT The SHIFT key is pressed.

lParam LOWORD is the horizontal position and HIWORD is the vertical position.

D.191.2 Returns
If the application processes this message, it should return zero.

D.191.3 Cross-References
WM_RBUTTONDBLCLK, WM_RBUTTONUP

D.192 WM_RBUTTONUP
D.192.1 Description

The WM_RBUTTONUP message is sent when the user releases the right mouse button.

Parameter Description

wParam Key status, which can be one or more of the following values:

MK_CONTROL The CTRL key is pressed.

MK_LBUTTON The left button is pressed.

MK_MBUTTON The middle button is pressed.

MK_SHIFT The SHIFT key is pressed.

lParam LOWORD is the horizontal position and HIWORD is the vertical position.

D.192.2 Returns
If the application processes this message, it should return zero.

D.192.3 Cross-References
WM_RBUTTONDBLCLK, WM_RBUTTONDOWN

D.193 WM_RENDERALLFORMATS
D.193.1 Description

The WM_RENDERALLFORMATS message is sent to the clipboard owner when the owner application is being
destroyed.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

Each clipboard owner should pass a data handle to SetClipboardData() for each format it supports, thereby
ensuring valid data even though the application is being destroyed.

D.193.2 Returns
If the application processes this message, it should return zero.

- 141 -

D.193.2 Cross-References
SetClipboardData(), WM_RENDERFORMAT

D.194 WM_RENDERFORMAT
D.194.1 Description

The WM_RENDERFORMAT message is sent to the clipboard owner when a particular data format needs to be
rendered.

Parameter Description

wParam Clipboard data format.

lParam Not used. Must be set to zero.

To process this message, data must be rendered using SetClipboardData() for the particular data type.

Note: During processing, the application should not call OpenClipboard() or CloseClipboard().

D.194.2 Returns
If the application processes this message, it should return zero.

D.194.3 Cross-References
SetClipboardData(), OpenClipboard(), CloseClipboard(), WM_RENDERFORMAT

D.195 WM_SETCURSOR
D.195.1 Description

The WM_SETCURSOR message is sent when the mouse causes cursor movement within a window and the
mouse input is not captured.

Parameter Description

wParam The window that contains the cursor.

lParam LOWORD is the hit-test area code, and HIWORD is the number of the mouse message.

When used by DefWindowProc(), WM_SETCURSOR is sent to the parent window before processing begins.
This allows the parent window an opportunity to control the cursor's settings within a child window. If the
application returns TRUE, processing is stopped.

DefWindowProc() uses this message to set the cursor to a pointer if it is not in the client area, or to set the cursor
as registered for the class of the window if it is within the client area.

When a dialog box is going to set the cursor for one of its child window controls, it must force DefDlgProc() to
return TRUE when processing WM_SETCURSOR. For the standard dialog box class, DefDlgProc() provides
default processing. A dialog box procedure can return TRUE when processing the WM_SETCURSOR message
by using SetWindowLong() and the DWL_MSGRESULT offset.

Note: If the hit-test code is HTERROR and the mouse message is a button-down message, it means that
MessageBeep() was called.

D.195.2 Returns
TRUE stops further processing, while FALSE allows processing to continue.

D.195.3 Cross-References
DefWindowProc(), MessageBeep(), SetWindowLong()

D.196 WM_SETFOCUS
D.196.1 Description

The WM_SETFOCUS message is sent when a window has just gained focus.

Parameter Description

wParam The window that lost the focus.

- 142 -

lParam Not used. Must be set to zero.

D.196.2 Returns
If the application processes this message, it should return zero.

D.196.3 Cross-References
SetFocus()

D.197 WM_SETFONT
D.197.1 Description

The WM_SETFONT message is sent by an application to a control to tell the control what font to use when
drawing.

Parameter Description

wParam Handle to the font to be used.

lParam LOWORD is TRUE if the control should be redrawn. The HIWORD is not used.

This message applies to dialog box controls, as well as other controls. When setting a new font, the old font
should be deleted using DeleteObject(). The control is not resized by changing the font. The control should
resize before drawing. A dialog box with the DS_SETFONT style that is created using CreateDialogIndirect(),
CreateDialogIndirectParam(), DialogBoxIndirect(), or DialogBoxIndirectParam() is sent a WM_SETFONT
message.

D.197.2 Returns
If the application processes this message, it should return zero.

D.197.3 Cross-References
DeleteObject(), CreateDialogIndirect(), CreateDialogIndirectParam(), DialogBoxIndirect(),
DialogBoxIndirectParam()

D.198 WM_SETREDRAW
D.198.1 Description

The WM_SETREDRAW message is sent to a window to allow changes to be drawn or to prevent the drawing of
changes.

Parameter Description

wParam Redraw flag.

lParam Not used. Must be 0L.

This message is used most often when several processing steps are anticipated, which would cause the window
to draw and then redraw itself. This appears as flickering to the user. To avoid this condition, an application
sends a WM_SETREDRAW message, where wParam is FALSE to ensure that changes that would affect the
display of that window will not generate messages telling the window to redraw itself. Once the processing is
complete, the application sends another WM_SETREDRAW message, except where wParam is TRUE. The
message in itself does not cause the window to be drawn. To cause the window to be drawn, the application
should call InvalidateRect().

D.198.2 Returns
If the application processes this message, it should return zero.

D.198.3 Cross-References
InvalidateRect()

- 143 -

D.199 WM_SETTEXT
D.199.1 Description

The WM_SETTEXT message is sent to a window to set its text.

Parameter Description

wParam Not used. Must be 0L.

lParam Pointer to NULL terminated text string.

Note: For a combo or list box, setting the text does not change the selection.

D.199.2 Returns
The application returns LB_ERRSPACE or CB_ERRSPACE if there is insufficient space in a list box or combo
box respectively, or CB_ERR if a combo box has no edit control.

D.199.3 Cross-References
SetWindowText(), WM_GETTEXT

D.200 WM_SHOWWINDOW
D.200.1 Description

The WM_SHOWWINDOW message is sent to a window when it is going to be shown or hidden.

Parameter Description

wParam Flag to indicate if the window is to be shown.

lParam Status.

If the window is an overlapped window and it is going to be minimized, all of its pop-up windows are hidden.
Conversely, if it is maximized or restored, then the pop-up windows are shown. If the status is zero, the message
is due to a ShowWindow() function call. Otherwise, it is due to the receipt of a SW_PARENTCLOSING or
SW_PARENTOPENING message that indicates the action of the parent window.

Note: A. WM_SHOWWINDOW message is not generated when the main window has either WS_MINIMIZE
or WS_MAXIMIZE styles or ShowWindow() was called with SW_SHOWNORMAL.

D.200.2 Returns
If the application processes this message, it should return zero.

D.200.3 Cross-References
ShowWindow()

D.201 WM_SIZE
D.201.1 Description

The WM_SIZE message is sent to a window after its size has changed.

Parameter Description

wParam Sizing status, which can be one of the following values:

SIZE_MAXIMIZED The window was maximized.

SIZE_MINIMIZED The window was minimized.

SIZE_RESTORED The window was resized but not maximized or minimized.

SIZE_MAXHIDE Sent to pop-up windows to be hidden due to another window
being maximized.

SIZE_MAXSHOW Sent to pop-up windows to be shown due to another window
being restored.

lParam LOWORD is width and HIWORD is height.

- 144 -

Note: If a WM_SIZE message is received causing SetScrollPos() or MoveWindow() to be called for a child
window, the repaint parameter should be TRUE (non-zero) so the window is repainted.

D.201.2 Returns
If the application processes this message, it should return zero.

D.201.3 Cross-References
SetScrollPos(), MoveWindow()

D.202 WM_SIZECLIPBOARD
D.202.1 Description

The WM_SIZECLIPBOARD message is sent to a clipboard owner of CF_OWNERDISPLAY data when the
clipboard viewer's client area is resized.

Parameter Description

wParam Window handle of clipboard viewer.

lParam Handle of global object.

The global object is a RECT. If the RECT is at location zero and of size zero, then the view will be minimized
or destroyed.

D.202.2 Returns
If the application processes this message, it should return zero.

D.202.3 Cross-References
SetClipboardData(), SetClipboardViewer()

D.203 WM_SPOOLERSTATUS
D.203.1 Description

The WM_SPOOLERSTATUS message is sent by the printer manager whenever the print queue size changes.

Parameter Description

wParam Print job status.

lParam Number of jobs in the queue.

The status indicates the SP_JOBSTATUS flag.

D.203.2 Returns
If the application processes this message, it should return zero.

D.203.3 Cross-References
SP_JOBSTATUS

D.204 WM_SYSCHAR
D.204.1 Description

The WM_SYSCHAR message is sent to the window with input focus when WM_SYSKEYDOWN and
WM_SYSKEYUP messages are translated.

Parameter Description

wParam Virtual key code.

lParam Key data:

Bits 0-15 Specify the repeat count.

Bits 16-23 Specify the manufacturer’s scan code.

Bit 24 Specifies whether the key was an extended key.

- 145 -

Bits 25-26 Not used.

Bits 27-28 Used internally by the OS.

Bit 29 Context code that indicates if the ALT key was pressed.

Bit 30 Indicates the previous state of the key. It is set if the keywas down
before the message was sent, or clear if the keywas up.

Bit 31 Indicates the transition status. It is set if the key is being released,
or clear if it is being pressed.

The virtual key code is the one for a system menu key. If bit 29 is zero, TranslateAccelerator() can handle the
message as though it were a normal key message, instead of one for the system menu. In this way, accelerator
keys can be used by the active window, even though it does not have input focus.

D.204.2 Returns
If the application processes this message, it should return zero.

D.204.3 Cross-References
WM_SYSKEYDOWN, WM_SYSKEYUP, TranslateAccelerator()

D.205 WM_SYSCOLORCHANGE
D.205.1 Description

A WM_SYSCOLORCHANGE message is sent to all top-level windows after a system color change is made.

Parameter Description

wParam Not used. Must be set to zero.

lParam Not used. Must be set to zero.

D.205.2 Returns
If the application processes this message, it should return zero.

D.205.3 Cross-References
WM_PAINT

D.206 WM_SYSCOMMAND
D.206.1 Description

A WM_SYSCOMMAND message is sent when a system menu item is selected. The message is also sent when
the minimize or maximize buttons are pressed.

Parameter Description

wParam Specifies the selected command and is one of the following values:

SC_CLOSE Close window.

SC_HOTKEY Activate a window associated with the hot key.

SC_HSCROLL Horizontal scroll.

SC_VSCROLL Vertical scroll.

SC_KEYMENU Get a menu through a keystroke.

SC_MAXIMZE Maximize the window.

SC_ZOOM Same as SC_MAXIMIZE.

SC_MINIMIZE Minimize the window.

SC_ICON Same as SC_MINIMIZE.

SC_MOUSEMENU Get a menu through a mouse click.

- 146 -

SC_MOVE Move the window.

SC_NEXTWINDOW Select the next window.

SC_PREVWINDOW Select the previous window.

SC_RESTORE Restore window to its normal size and location.

SC_SCREENSAVE Execute the screen saver application.

SC_SIZE Size the window.

SC_TASKLIST Execute the Task Manager application.

lParam The low-order word contains the x-coordinate if the system menu was chosen with the
mouse. If the message is SC_HOTKEY, the low-order word identifies the window to
activate. Otherwise, it is unused. The high-order word contains the y-coordinate if the system
menu was chosen with the mouse. Otherwise, it is unused.

The four low-order bits of wParam are reserved and must be masked of using the value 0xFFF0 for the results to
be interpreted correctly.

D.206.2 Returns
If the application processes this message, it should return zero.

D.206.3 Cross-References
WM_COMMAND

D.207 WM_SYSDEADCHAR
D.207.1 Description

A WM_SYSDEADCHAR message is sent to the window with focus whenever the WM_SYSKEYDOWN or
WM_SYSKEYUP messages are translated to specify the dead key character.

Parameter Description

wParam Specifies the dead key character.

lParam The low-order word indicates the repeat count. The high-order word indicates the auto repeat
count.

D.207.2 Returns
If the application processes this message, it should return zero.

D.207.3 Cross-References
WM_SYSKEYDOWN, WM_SYSKEYUP

D.208 WM_SYSKEYDOWN
D.208.1 Description

A WM_SYSKEYDOWN message is sent to the window with focus whenever a key is pressed in combination
with the ALT key. If no window has focus, the message is sent to the active window.

Parameter Description

wParam The virtual key code of the key pressed.

lParam Bits 0-15 specify the repeat count.

Bit 24 is set if the key is extended.

Bits 25-26 are unused.

Bits 27-28 are reserved by the system.

Bit 29 is set if the ALT key was held down. Otherwise, it indicates that the message was sent
to the active window because no windows had focus.

Bit 30 is set if the key was down before the message was sent. Otherwise, it was up.

- 147 -

Bit 31 is unused for the WM_SYSKEYDOWN message.

D.208.2 Returns
If the application processes this message, it should return zero.

D.208.3 Cross-References
WM_SYSKEYUP

D.209 WM_SYSKEYUP
D.209.1 Description

A WM_SYSKEYUP message is sent to the window with focus whenever a key is pressed in combination with
the ALT key. If no window has focus, the message is sent to the active window.

Parameter Description

wParam The virtual key code of the key pressed.

lParam Bits 0-15 specify the repeat count.

Bits 16-23 specify the scan code.

Bit 24 is set if the key is extended.

Bits 25-26 are unused.

Bits 27-28 are reserved by the system.

Bit 29 is set if the ALT key was held down. Otherwise, it indicates that the message was sent
to the active window because no windows had focus.

Bit 30 is set if the key was down before the message was sent. Otherwise, it was up.

Bit 31 is set if the key is being released; otherwise, it is being pressed.

D.209.2 Returns
If the application processes this message, it should return zero.

D.209.3 Cross-References
WM_SYSKEYDOWN

D.210 WM_TIMER
D.210.1 Description

A WM_TIMER message is sent to an application's message queue or an installed TimerProc() callback function
after the specified timer interval is reached.

Parameter Description

wParam Specifies the identifier of the timer.

lParam A pointer to a callback function that was passed to the SetTimer() function when the timer
was installed. If lParam is not NULL, the callback function is called, as opposed to posting
to the application's message queue.

D.210.2 Returns
If the application processes this message, it should return zero.

D.210.3 Cross-References
None.

D.211 WM_UNDO
D.211.1 Description

A WM_UNDO message is sent to an edit control to instruct it to undo the previous action.

- 148 -

Parameter Description

wParam Unused. Must be set to zero.

lParam Unused. Must be set to zero.

D.211.2 Returns
The message returns TRUE if successful. If an error occurs, FALSE is returned.

D.211.3 Cross-References
WM_CLEAR, WM_COPY, WM_CUT, WM_PASTE

D.212 WM_VKEYTOITEM
D.212.1 Description

A WM_VKEYTOITEM message is sent by a list box to its owner after it receives a WM_KEYDOWN message.
The WM_VKEYTOITEM is only sent by a list box that has the LBS_WANTKEYBOARDINPUT style.

Parameter Description

wParam Specifies the virtual key code.

lParam The low-order word identifies the list box. The high-order word specifies the current location
of the cursor.

The list box must have the LBS_HASSTRINGS style to receive this message.

D.212.2 Returns
The application returns -2 if it handled all aspects of the selecting item. It returns a -1 if the list box needs to
perform the default action. It returns zero or greater if the item in the list box should perform the default action
for the key on the specified item.

D.212.3 Cross-References
WM_KEYDOWN, WM_CHARTOITEM

D.213 WM_VSCROLL
D.213.1 Description

A WM_VSCROLL message is sent when the vertical scroll bar has been clicked.

Parameter Description

wParam Specifies the scroll bar code and is one of the following.

SB_BOTTOM Scroll to bottom.

SB_TOP Scroll to top.

SB_ENDSCROLL Scroll to end.

SB_LINEDOWN Scroll down one line.

SB_LINEUP Scroll up one line.

SB_PAGEDOWN Scroll down one page.

SB_PAGEUP Scroll up one page.

SB_THUMBPOSITION Scroll to a position specified in lParam.

SB_THUMBTRACK Move scroll box thumb to the position specified in lParam.

lParam The low-order word specifies the position of the scroll box for the SB_THUMBPOSITION
and SB_THUMBTRACK scroll bar codes. The high-order word specifies the control if
VM_VSCROLL is the scroll bar code.

D.213.2 Returns
The application should return zero if it processes the message.

- 149 -

D.213.3 Cross-References
WM_HSCROLL

D.214 WM_VSCROLLCLIPBOARD
D.214.1 Description

A WM_VSCROLLCLIPBOARD message is sent by the clipboard viewer to the clipboard owner for clipboard
image scrolling and updating. The message is only sent to the owner if the clipboard data had the
CF_OWNERDISPLAY format.

Parameter Description

wParam Specifies the clipboard viewer's handle.

lParam The high-order word specifies the position of the scroll box for the SB_THUMBPOSITION
scroll bar code. The low-order word specifies the scroll bar code and is one of the following:

SB_BOTTOM Scroll to the lower right.

SB_TOP Scroll to the upper left.

SB_ENDSCROLL Scroll to end.

SB_LINEDOWN Scroll down one line.

SB_LINEUP Scroll up one line.

SB_PAGEDOWN Scroll down one page.

SB_PAGEUP Scroll up one page.

SB_THUMBPOSITION Scroll to a position specified in lParam.

D.214.2 Returns
The application should return zero if it processes the message.

D.214.3 Cross-References
WM_HSCROLLCLIPBOARD

D.215 WM_WINDOWPOSCHANGED
D.215.1 Description

A WM_WINDOWPOSCHANGED message is sent to a window whose position or size has changed.

Parameter Description

wParam Not used. Must be set to zero.

lParam A pointer to a WINDOWPOS structure containing information about the new size and
position of the window.

D.215.2 Returns
The application should return zero if it processes the message.

D.215.3 Cross-References
WM_MOVE, WM_SIZE, WM_WINDOWPOSCHANGING

D.216 WM_WINDOWPOSCHANGING
D.216.1 Description

A WM_WINDOWPOSCHANGING message is sent to a window whose position or size is about to be changed.

Parameter Description

wParam Not used. Must be set to zero.

- 150 -

lParam A pointer to a WINDOWPOS structure containing information about the new size and
position of the window.

The fields in the WINDOWPOS structure can be modified to affect the windows size and position.

D.216.2 Returns
The application should return zero if it processes the message.

D.216.3 Cross-References
WM_WINDOWPOSCHANGED

D.217 WM_WININICHANGE
D.217.1 Description

An application sends the WM_WININICHANGE message after making a change to the WIN.INI file.

Parameter Description

wParam Not used. Must be set to zero.

lParam A pointer to a string with the name of the section that was changed. If multiple sections were
changed, the parameter is NULL.

D.217.2 Returns
The application should return zero if it processes the message.

D.217.3 Cross-References
WM_WINDOWPOSCHANGED

- 151 -

Annex E

Control Notifications

Description
This annex describes control notification messages.

E.1 BN_CLICKED
E.1.1 Description

The BN_CLICKED notification message is sent to the parent window when the user clicks a button.

Parameter Description

wParam Specifies the button control identifier.

lParam The low-order word contains the button window handle and the high-order word contains
BN_CLICKED notification code.

E.1.2 Cross-References
DRAWITEMSTRUCT , WM_DRAWITEM

E.2 BN_DISABLE
E.2.1 Description

The BN_DISABLE notification message is sent to the parent window when a button is disabled. This message
has no parameters.

E.2.2 Cross-References
DRAWITEMSTRUCT , WM_DRAWITEM

E.3 BN_DOUBLECLICKED
E.3.1 Description

The BN_DOUBLECLICKED notification message is sent to the parent window when the user double-clicks a
button. This message has no parameters.

E.3.2 Cross-References
DRAWITEMSTRUCT , WM_DRAWITEM

E.4 BN_HILITE
E.4.1 Description

The BN_HILITE notification message is sent to the parent window when the user highlights a button. This
message has no parameters.

E.4.2 Cross-References
DRAWITEMSTRUCT , WM_DRAWITEM

E.5 BN_PAINT
E.5.1 Description

The BN_PAINT notification message is sent to the parent window when a button should be painted. This
message has no parameters.

- 152 -

E.5.2 Cross-References
DRAWITEMSTRUCT , WM_DRAWITEM

E.6 BN_UNHILITE
E.6.1 Description

The BN_UNHILITE notification message is sent to the parent window when the highlight should be removed
from a button. This message has no parameters.

E.6.2 Cross-References
DRAWITEMSTRUCT , WM_DRAWITEM

E.7 CBN_CLOSEUP
E.7.1 Description

The CBN_CLOSEUP notification message is sent when the list box of a combo box is about to be hidden. It is
not sent to a combo box that has the CBS_SIMPLE style, since its list box is always visible.

Parameter Description

wParam Specifies the combo box control identifier.

lParam The low-order word contains combo box window handle and high-order word contains
CBN_CLOSEUP notification code.

E.7.2 Cross-References
CBN_DROPDOWN, CBN_SELCHANGE, WM_COMMAND

E.8 CBN_DBLCLCK
E.8.1 Description

The CBN_DBLCLK notification message is sent to the parent window when the user double-clicks a string in
the list box of a combo box. This applies only to combo boxes created with CBS_SIMPLE window style.

Parameter Description

wParam Specifies the combo box control identifier.

lParam The low-order word contains the combo box window handle and the high-order word
contains the CBN_DBLCLK notification code.

E.8.2 Cross-References
CBN_SELCHANGE, WM_COMMAND

E.9 CBN_DROPDOWN
E.9.1 Description

The CBN_DROPDOWN notification message is sent when the list box of a combo box is about to be dropped
down. This applies only to combo boxes created with the CBS_DROPDOWN or CBS_DROPDOWNLIST
window style.

Parameter Description

wParam Specifies the combo box control identifier.

lParam The low-order word contains combo box window handle and high-order word contains the
CBN_DROPDOWN notification code.

E.9.2 Cross-References
CBN_CLOSEUP, WM_COMMAND

- 153 -

E.10 CBN_EDITCHANGE
E.10.1 Description

The CBN_EDITCHANGE notification message is sent after the user has altered the text in the edit-control
portion of a combo box. Unlike the CBN_EDITUPDATE notification message, this notification message is sent
after the screen is updated. This notification is not sent to a combo box created with the
CBS_DROPDOWNLIST window style.

Parameter Description

wParam Specifies the combo box control identifier.

lParam The low-order word contains the combo box window handle and the high-order word
contains the CBN_EDITCHANGE notification code.

E.10.2 Cross-References
CBN_EDITUPDATE, WM_COMMAND

E.11 CBN_EDITUPDATE
E.11.1 Description

The CBN_EDITUPDATE notification message is sent to the parent window when the edit-control portion of a
combo box is about to display altered text. This notification is sent after the text has been formatted, but before
it is displayed in a window. This notification is not sent to a combo box created with CBS_DROPDOWNLOST
window style.

Parameter Description

wParam Specifies the combo box control identifier.

lParam The low-order word contains the combo box window handle and the high-order word
contains the CBN_EDITUPDATE notification code.

E.11.2 Cross-References
CBN_EDITCHANGE, WM_COMMAND

E.12 CBN_ERRSPACE
E.12.1 Description

The CBN_ERRSPACE notification message is sent to the parent window when a combo box cannot allocate
enough memory to process a request.

Parameter Description

wParam Specifies the combo box control identifier.

lParam The low-order word contains the combo box window handle and the high-order word
contains the CBN_ERRSPACE notification code.

E.12.2 Cross-References
WM_COMMAND

E.13 CBN_KILLFOCUS
E.13.1 Description

The CBN_KILLFOCUS notification message is sent to the parent window when a combo box loses the input
focus.

Parameter Description

wParam Specifies the combo box control identifier.

lParam The low-order word contains the combo box window handle and the high-order word
contains the CBN_KILLFOCUS notification code.

- 154 -

E.13.2 Cross-References
CBN_SETFOCUS, WM_COMMAND

E.14 CBN_SELCHANGE
E.14.1 Description

The CBN_SELCHANGE notification message is sent to the parent window when the selection in the list box of
a combo box is about to be changed as a result of the user either clicking in the list box or changing the selection
by using the arrow keys.

Parameter Description

wParam Specifies the combo box control identifier.

lParam The low-order word contains the combo box window handle and the high-order word
contains the CBN_SELCHANGE notification code.

E.14.2 Cross-References
CBN_DBLCLK, CB_SETCURSEL, WM_COMMAND

E.15 CBN_SELENDCANCEL
E.15.1 Description

The CBN_SELENDCANCEL notification message is sent to the parent window when the user clicks an item,
then clicks somewhere else and the list box of a combo box gets hidden. This notification message is sent before
the CBN_CLOSEUP notification message and indicates that the user's selection should be ignored. It is sent
always, even if the combo box has the CBS_SIMPLE window style.

Parameter Description

wParam Specifies the combo box control identifier.

lParam The low-order word contains the combo box window handle and the high-order word
contains the CBN_SELENDCANCEL notification code.

E.15.2 Cross-References
CBN_SELENDOK, WM_COMMAND

E.16 CBN_SELENDOK
E.16.1 Description

The CBN_SELENDOK notification message is sent to the parent window when the user selects an item and then
presses the ENTER or the DOWN ARROW key to hide the list box of a combo box. This notification message
is sent before the CBN_CLOSEUP notification message to indicate that the user's selection should be considered
valid. It is sent always, even if the combo box has the CBS_SIMPLE window style.

Parameter Description

wParam Specifies the combo box control identifier.

lParam The low-order word contains the combo box window handle and the high-order word
contains the CBN_SELENDOK notification code.

E.16.2 Cross-References
CBN_SELENDCANCEL, WM_COMMAND

E.17 CBN_SETFOCUS
E.17.1 Description

The CBN_SETFOCUS notification message is sent to the parent window when a combo box receives the input
focus.

- 155 -

Parameter Description

wParam Specifies the combo box control identifier.

lParam The low-order word contains the combo box window handle and the high-order word
contains the CBN_SETFOCUS notification code.

E.17.2 Cross-References
CBN_KILLFOCUS, WM_COMMAND

E.18 EN_CHANGE
E.18.1 Description

The EN_CHANGE notification message is sent to the parent window when the user has altered text in an edit
control. Unlike the EN_UPDATE notification message, this notification message is sent after the edit control is
updated on the screen.

Parameter Description

wParam Specifies the edit window identifier.

lParam The low-order word contains the edit window handle and the high-order word contains the
EN_CHANGE notification code.

E.18.2 Cross-References
EN_UPDATE, WM_COMMAND

E.19 EN_ERRSPACE
E.19.1 Description

The EN_ERRSPACE notification message is sent to the parent window when an edit control cannot allocate
enough memory to process a request.

Parameter Description

wParam Specifies the edit window identifier.

lParam The low-order word contains the edit window handle and the high-order word contains the
EN_ERRSPACE notification code.

E.19.2 Cross-References
WM_COMMAND

E.20 EN_HSCROLL
E.20.1 Description

The parent window of an edit control is sent an EN_HSCROLL notification after the user has clicked the
horizontal scroll bar. The WM_COMMAND message containing the notification is sent before the screen is
updated.

Parameter Description

wParam Contains the edit control identifier.

lParam Combines the EN_HSCROLL notification value in the high-order 16-bits and the 16-bit
handle of the edit control in the low-order word.

E.20.2 Cross-References
EN_VSCROLL, WM_COMMAND

- 156 -

E.21 EN_KILLFOCUS
E.21.1 Description

The parent window of an edit control is sent an EN_KILLFOCUS notification in a WM_COMMAND message
when the control loses focus.

Parameter Description

wParam Contains the edit control identifier.

lParam Combines the EN_KILLFOCUS notification value in the high-order 16-bits and the 16-bit
handle of the edit control in the low-order word.

E.21.2 Cross-References
EN_SETFOCUS, WM_COMMAND

E.22 EN_MAXTEXT
E.22.1 Description

The parent window of an edit control is sent an EN_MAXTEXT notification in a WM_COMMAND message
after one of three conditions has occurred: 1) the current insertion exceeds the character limit of the control; 2)
the current insertion exceeds the width of a control that does not have the ES_AUTOHSCROLL style; or 3) the
current insertion exceeds the height of a control which does not have the ES_AUTOVSCROLL style.

Parameter Description

wParam Contains the edit control identifier.

lParam Combines the EN_MAXTEXT notification value in the high-order 16-bits and the 16-bit
handle of the edit control in the low-order word.

E.22.2 Cross-References
EM_LIMITTEXT, WM_COMMAND

E.23 EN_SETFOCUS
E.23.1 Description

The parent window of an edit control is sent an EN_SETFOCUS notification in a WM_COMMAND message
when the control receives input focus.

Parameter Description

wParam Contains the edit control identifier.

lParam Combines the EN_SETFOCUS notification value in the high-order 16-bits and the 16-bit
handle of the edit control in the low-order word.

E.23.2 Cross-References
EN_KILLFOCUS, WM_COMMAND

E.24 EN_UPDATE
E.24.1 Description

The parent window of an edit control is sent an EN_UPDATE notification before a text change is displayed. The
notification is sent after the text has been formatted, but before it has been displayed. This provides for the
possibility of a resulting window size change.

Parameter Description

wParam Contains the edit control identifier.

lParam Combines the EN_UPDATE notification value in the high-order 16-bits and the 16-bit
handle of the edit control in the low-order word.

- 157 -

E.24.2 Cross-References
EN_CHANGE, WM_COMMAND

E.25 EN_VSCROLL
E.25.1 Description

The parent window of an edit control is sent an EN_VSCROLL notification after the user has clicked the vertical
scroll bar. The WM_COMMAND message containing the notification is sent before the screen is updated.

Parameter Description

wParam Contains the edit control identifier.

lParam Combines the EN_VSCROLL notification value in the high-order 16-bits and the 16-bit
handle of the edit control in the low-order word.

E.25.2 Cross-References
EN_HSCROLL, WM_COMMAND

E.26 LBN_DBLCLK
E.26.1 Description

The parent window of a list box control is sent an LBN_DBLCLK notification in a WM_COMMAND message
after the user has double-clicked a string in a list box. This notification is only sent if the list box control has the
LBS_NOTIFY style.

Parameter Description

wParam Contains the list box control identifier.

lParam Combines the LBN_DBLCLK notification value in the high-order 16-bits and the 16-bit
handle of the list box control in the low-order word.

E.26.2 Cross-References
LBN_SELCHANGE, WM_COMMAND

E.27 LBN_ERRSPACE
E.27.1 Description

The parent window of a list box control is sent an LBN_ERRSPACE notification in a WM_COMMAND
message when insufficient memory is available to meet the requirements of a list box operation.

Parameter Description

wParam Contains the list box control identifier.

lParam Combines the LBN_ERRSPACE notification value in the high-order 16-bits and the 16-bit
handle of the list box control in the low-order word.

E.27.2 Cross-References
WM_COMMAND

E.28 LBN_KILLFOCUS
E.28.1 Description

The parent window of a list box control is sent an LBN_KILLFOCUS notification in a WM_COMMAND
message when the control loses focus.

Parameter Description

wParam Contains the list box control identifier.

lParam Combines the LBN_KILLFOCUS notification value in the high-order 16-bits and the 16-bit
handle of the list box control in the low-order word.

- 158 -

E.28.2 Cross-References
LBN_SETFOCUS, WM_COMMAND

E.29 LBN_SELCANCEL
E.29.1 Description

The parent window of a list box control is sent an LBN_SELCANCEL notification in a WM_COMMAND
message when the user cancels the selection of an item in a list box. This notification is only sent if the list box
control has the LBS_NOTIFY style.

Parameter Description

wParam Contains the list box control identifier.

lParam Combines the LBN_ERRSPACE notification value in the high-order 16-bits and the 16-bit
handle of the list box control in the low-order word.

E.29.2 Cross-References
LBN_DBLCLK, LBN_SELCHANGE, LB_SETCURSEL, WM_COMMAND

E.30 LBN_SELCHANGE
E.30.1 Description

The parent window of a list box control is sent an LBN_SELCHANGE notification in a WM_COMMAND
message when the user changes the selection of an item in a list box. This notification is only sent if the list box
control has the LBS_NOTIFY style, but is not sent if the selection changes in response to an LB_SETCURSEL
message. For a multiple-selection list box, this notification is sent whenever the user presses an arrow key,
regardless of whether the selection actually changes.

Parameter Description

wParam Contains the list box control identifier.

lParam Combines the LBN_ERRSPACE notification value in the high-order 16-bits and the 16-bit
handle of the list box control in the low-order word.

E.30.2 Cross-References
LBN_DBLCLK, LBN_SELCANCEL, LB_SETCURSEL, WM_COMMAND

E.31 LBN_SETFOCUS
E.31.1 Description

The parent window of a list box control is sent an LBN_SETFOCUS notification in a WM_COMMAND
message when the control receives input focus.

Parameter Description

wParam Contains the list box control identifier.

lParam Combines the LBN_ERRSPACE notification value in the high-order 16-bits and the 16-bit
handle of the list box control in the low-order word.

E.31.2 Cross-References
LBN_KILLFOCUS, WM_COMMAND

- 159 -

Annex F

Window Styles

Description
This annex describes the following window styles: general window styles, button styles, combo box styles, edit control styles,
list box styles, scroll bar styles, and static control styles.

F.1 GENERAL WINDOW STYLES
The CreateWindow() function's dwStyle parameter specifies the window styles of the new window being created.
The value of the dwStyle parameter can be one or more of the following constant values OR'ed together:

Style Meaning

MDIS_ALLCHILDSTYLES Window is a multilple document interface (MDI) client window that can
have any combination of window styles. If this style is not used, an MDI
child window will have by default only the WS_MINIMIZE,
WS_MAXIMIZE, WS_HSCROLL, and WS_VSCROLL styles set.

WS_BORDER Window has a border.

WS_CAPTION Window has a title bar and uses the WS_BORDER style. This style
cannot be combined with the WS_DLGFRAME style.

WS_CHILD Window is a child window. This style cannot be combined with the
WS_POPUP style. Same as the WS_CHILDWINDOW style.

WS_CHILDWINDOW Same as the WS_CHILD style.

WS_CLIPCHILDREN When drawing within the parent window, the area occupied by child
windows is excluded. This style is typically used when creating a parent
window.

WS_CLIPSIBLINGS When a child window receives a paint message and needs to be updated,
this style clips all other overlapped child windows out of the child
window's update region. If this style is not used and child windows
overlap, it is possible to unintentionally draw within the client area of
other neighboring, overlapping child windows. This style should only be
used with the WS_CHILD style.

WS_DISABLED Window is initially disabled.

WS_DLGFRAME Window has a double border but no title.

WS_GROUP This style is only used for dialog boxes. The style designates a control (a
window) as being the first control in a group of controls. When a control
in the group is selected, the arrow keys can be used to move from one
control to any other control in the same group. If another control in the
dialog box is encountered and it has the WS_GROUP style also set, it
marks the end of the current group and the start of another group.

WS_MAXIMIZE This style creates a window that has a maximum size.

WS_MAXIMIZEBOX This style creates a window that has a Maximize box.

WS_MINIMIZE This style creates a window that has a minimum size.

WS_MINIMIZEBOX This style creates a window that has a Minimize box.

WS_OVERLAPPED This style creates an overlapped window. An overlapped window is one
that has a caption and a border.

- 160 -

WS_OVERLAPPEDWINDOW This style creates an overlapped window that has the
WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU,
WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX
styles.

WS_POPUP This style creates a pop-up window. This cannot be used with the
WS_CHILD style.

WS_POPUPWINDOW This style creates a pop-up window that has the WS_POPUP,
WS_BORDER, and WS_SYSMENU styles. To make the System menu
visible WS_CAPTION style must be combined with the
WS_POPUPWINDOW style.

WS_SYSMENU Creates a window that has a System-menu box in its title bar. This is used
only for windows with title bars. If it is used with a child window, then
this style creates a Close box instead of a System-menu box.

F.2 BUTTON STYLES
The following are styles used in the dwStyle parameter in CreateWindow() when creating buttons.

Style Meaning

BS_3STATE Creates a check box button that can be either checked, unchecked or
grayed. The grayed state implies that the state of the check is undefined.

BS_AUTO3STATE Same as BS_3STATE, except each time the user clicks on it the state
changes to the next state in the cycle: checked, grayed, or unchecked.

BS_AUTOCHECKBOX This check box alternates between being checked and unchecked each
time the user clicks it.

BS_AUTORADIOBUTTON This button highlights itself when a user clicks it and causes any other
button in the same group to become unhighlighted.

BS_CHECKBOX Creates a small square that can have an "X" within it, indicating that it is
selected. It also has text displayed to the right of the square unless
BS_LEFTTEXT is used.

BS_DEFPUSHBUTTON Causes the button to have a heavy border and is automatically pushed if
the user presses the ENTER key.

BS_GROUPBOX Creates a rectangle to group other buttons. Any associated text is placed
in the upper left corner of the rectangle.

BS_LEFTTEXT Causes text to be placed on the left side of a radio button or check box.

BS_OWNERDRAW Creates an owner-drawn button. Cannot be combined with any other
button styles.

BS_PUSHBUTTON Creates a rounded rectangle push button.

BS_RADIOBUTTON Creates a radio button that is a small circle with text displayed to the right
or left of the circle.

F.3 COMBO BOX STYLES
This section describes combo box styles.

Style Meaning

CBS_AUTOHSCROLL If the combo box's edit control is completely filled with text and the user
enters more text at the end of the edit control line, the existing text is
automatically scrolled. If this style is not set and the edit control is
completely filled with text, no more text is allowed to be entered into the
edit control.

- 161 -

CBS_DISABLENOSCROLL A scroll bar is always shown in the combo box's list box. When the list
box does not contain enough items to require scrolling, the scroll bar is
disabled but still visible. If this style is not set, the scroll bar is only
visible when there are enough items in the list box to require scrolling.

CBS_DROPDOWN Similar to the CBS_SIMPLE style, the CBS_DROPDOWN style causes
the combo box's list box to be hidden until the user presses the Arrow
button located next to the combo box's edit control.

CBS_DROPDOWNLIST Similar to the CBS_DROPDOWN style, the CBS_DROPDOWNLIST
style causes the combo box's edit control to be set to read-only. The user
cannot edit the contents of the edit control.

CBS_HASSTRINGS Declares that the entries in an owner-drawn combo box are strings. When
this style is set for an owner-drawn combo box, memory and pointer
information is maintained for each entry in the combo box and thus allow
an application to use the CB_GETLBTEXT message.

CBS_NOINTEGRALHEIGHT If this style is not used, the system automatically resizes the height of the
combo box so that none of its items are partially displayed. If this style is
used, the system is prevented from automatically resizing the height of
the combo box.

CBS_OEMCONVERT When this style is used, text that is entered into the combo box's edit
control is automatically converted from the system's character set to the
OEM character set and then back again to the system's character set. This
sequence ensures that proper character conversion can occur when an
application calls the AnsiToOem() function to convert a string in the
combo box's edit control to OEM characters.

This style should only be used in combination with the CBS_SIMPLE or
CBS_DROPDOWN styles.

This style is best used on combo boxes that contain filenames.

CBS_OWNERDRAWFIXED When this style is used, the system makes the owner of the combo box
responsible for drawing its contents and the height of all of the list box's
items is the same.

When the combo box is created, the owner of the combo box receives a
WM_MEASUREITEM message.

Whenever a visible aspect of the combo box changes, the owner of the
combo box receives a WM_DRAWITEM message.

CBS_OWNERDRAWVARIABLE When this style is used, the system makes the owner of the combo box
responsible for drawing its contents and the height of each of the list
box's items is not the same.

When the combo box is created, the owner of the combo box receives a
WM_MEASUREITEM message.

Whenever a visible aspect of the combo box changes, the owner of the
combo box receives a WM_DRAWITEM message.

CBS_SIMPLE When this style is used, the combo box's list box is always displayed.
When an item is selected in the combo box's list box, the item's text is
shown in the combo box's edit control.

CBS_SORT The combo box's list box entries are automatically sorted.

F.4 EDIT CONTROL STYLES
This section describes edit control styles.

- 162 -

Style Meaning

ES_AUTOHSCROLL Creates an edit control that automatically scrolls horizontally as text is
entered. With this style off, only the text within the visible area is valid
for single-line edit controls. For multiline edit controls, without this style,
the text is wrapped to the next line. If an edit control has a
WS_HSCROLL style, the ES_AUTOHSCROLL style is applied
automatically. This style cannot be used with center or right justified edit
controls.

ES_AUTOVSCROLL Creates an edit control that automatically scrolls vertically when there is
more text than can be displayed within the control. This style is
applicable to multiline edit controls only. With this style off, the edit
control ignores input that cannot be displayed. If an edit control has a
WS_VSCROLL style, the ES_AUTOVSCROLL style is applied
automatically.

ES_CENTER Specifies that multiline edit controls center justify text. Cannot be used
for single-line edit controls. Also cannot be used in combination with the
ES_AUTOHSCROLL or WS_HSCROLL styles.

ES_LEFT Specifies that the edit control left justify its text.

ES_LOWERCASE All uppercase characters entered into the edit control is displayed as
lowercase.

ES_MULTILINE Causes the edit control to be a multiline control.

ES_NOHIDESEL Negates the default behavior for an edit control, which is to hide the
selection when the control loses the input focus and invert the selection
when the control receives the input focus.

ES_OEMCONVERT Converts text entered in the edit control from the default character set to
the OEM character set and then back to the default character set. This
ensures proper character conversion for the AnsiToOem() function to
convert a string in the edit control to OEM characters.

ES_PASSWORD Hides all characters and displays them as an asterisk as they are typed
into the edit control. An application can use the
EM_SETPASSWORDCHAR message to change the default asterisk
character.

ES_READONLY Prevents the user from typing or editing text in the edit control.

ES_RIGHT Right aligns text in a multiline edit control.

ES_UPPERCASE Converts all characters to uppercase as they are typed into the edit
control.

ES_WANTRETURN Specifies that a carriage return be inserted when the user presses the
ENTER key while entering text into a multiline edit control. Otherwise,
pressing the ENTER key has the same effect as pressing the dialog box's
default push button.

F.5 LIST BOX STYLES
The following are list box styles that an application can specify in the dwStyle parameter.

Style Meaning

LBS_DISABLENOSCROLL Shows a disabled vertical scroll bar for the list box when the box does
not contain enough items to scroll. If this style is not specified, the scroll
bar is hidden rather than displayed as disabled.

- 163 -

LBS_EXTENDEDSEL Allows multiple items to be selected by using the SHIFT key and the
mouse, or special key combinations.

LBS_HASSTRINGS Specifies that a list box contains items consisting of strings. By default,
all list boxes except owner-drawn list boxes, have this style. An
application can create an owner-drawn list box either with or without this
style.

LBS_MULTICOLUMN Specifies a multicolumn list box that is scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets the width of the columns.

LBS_MULTIPLESEL This list box style allows for the selection of any number of strings.
Selection or deselection is made with each click or double-click.

LBS_NOINTEGRALHEIGHT This list box style prevents the height of a list box from being adjusted so
that partial items are not displayed.

LBS_NOREDRAW This list box style suppresses screen updates when changes are made. An
application can set or reset this style by sending a WM_SETREDRAW
message to the list box control.

LBS_NOTIFY This list box style enables the notification of the parent window when a
string in the list box is clicked or double-clicked.

LBS_OWNERDRAWFIXED This list box style specifies that the application is responsible for drawing
the list box and that all the items have the same height. When the control
is created, the owner is sent a WM_MEASUREITEM message. When
the control changes its appearance, the owner is sent a
WM_DRAWITEM message.

LBS_OWNERDRAWVARIABLE This list box style specifies that the application is responsible for drawing
the list box and that the items in the list box vary in height. When the
control is created, the owner is sent a WM_MEASUREITEM message
for each item. When the control changes its appearance, the owner is sent
a WM_DRAWITEM message.

LBS_SORT This list box style causes the list box strings to be sorted alphabetically.

LBS_STANDARD This list box style combines the LBS_NOTIFY and LBS_SORT list box
styles with the windows styles WS_BORDER and WS_VSCROLL.

LBS_USETABSTOPS This list box style expands tab characters within its content strings. Tab
positions may be set with an LB_SETTABSTOPS message. Otherwise,
the default tab positions are 32 dialog box units.

LBS_WANTKEYBOARDINPUT This list box style indicates that the owner receives
WM_VKEYTOITEM or WM_CHARTOITEM messages when the list
box has input focus and the user presses a key. If the control also has the
LBS_HASSTRINGS style, only the WM_KEYTOITEM messages are
sent. Otherwise, only WM_CHARTOITEM messages are sent.

F.6 SCROLL BAR STYLES
The CreateWindow() function's dwStyle parameter specifies the window styles of a new predefined control that is
being created. The value of the dwStyle parameter can be one or more of the following scroll bar styles OR'ed
together:

Style Meaning

SBS_BOTTOMALIGN The bottom edge of the scroll bar is aligned with the bottom edge of the
rectangle given by the CreateWindow() function's x, y, nWidth, and
nHeight parameters. The scroll bar has the default height for system
scroll bars. This style should only be used with the SBS_HORZ style.

- 164 -

SBS_HORZ Has a horizontal scroll bar. If the SBS_BOTTOMALIGN and
SBS_TOPALIGN styles are not used, the scroll bar has the height, width,
and position given by the CreateWindow() function's parameters.

SBS_LEFTALIGN The left edge of the scroll bar is aligned with the left edge of the
rectangle given by the CreateWindow() function's parameters. The scroll
bar has the default width for system scroll bars. This style should only be
used with the SBS_VERT style.

SBS_RIGHTALIGN The right edge of the scroll bar is aligned with the right edge of the
rectangle given by the CreateWindow() function's parameters. The scroll
bar has the default width for system scroll bars. This style should only be
used with the SBS_VERT style.

SBS_SIZEBOX Has a size box. If the SBS_SIZEBOXBOTTOMRIGHTALIGN and
SBS_SIZEBOXTOPLEFTALIGN styles are not used, the size box has
the height, width, and position given by the CreateWindow() function's
parameters.

SBS_SIZEBOXBOTTOMRIGHTALIGN
The lower-right corner of the size box is aligned with the lower-right
corner of the rectangle given by the CreateWindow() function's
parameters. The size box has the default size for system size boxes. This
style should only be used with the SBS_SIZEBOX style.

SBS_ SIZEBOXTOPLEFTALIGN The upper-left corner of the size box is aligned with the upper-left corner
of the rectangle given by the CreateWindow() function's parameters. The
size box has the default size for system size boxes. This style should only
be used with the SBS_SIZEBOX style.

SBS_TOPALIGN The top edge of the scroll bar is aligned with the top edge of the
rectangle given by the CreateWindow() parameters. The scroll bar has the
default height for system scroll bars. This style should only be used with
the SBS_HORZ style.

SBS_VERT Has a vertical scroll bar. If the SBS_RIGHTALIGN and
SBS_LEFTALIGN styles are not used, the scroll bar has the height,
width, and position given by the CreateWindow() function's parameters.

F.7 STATIC CONTROL STYLES
The CreateWindow() function's dwStyle parameter specifies the window styles of a new predefined control that is
being created. The value of the dwStyle parameter can be one or more of the following static control styles OR'ed
together:

Style Meaning

SS_BLACKFRAME Specifies a box with a frame drawn with the same color as window
frames. By default, the color is black.

SS_BLACKRECT Specifies a rectangle filled with the same color as window frames. By
default, the color is black.

SS_CENTER Specifies a simple rectangle and aligns the displayed text in the center.
The text is formatted before it is displayed in the rectangle. Lines that are
too long to fit in the rectangle are automatically wrapped to the beginning
of the next line.

SS_GRAYFRAME Specifies a box with a frame drawn with the same color as the desktop.
By default, the color is gray.

SS_GRAYRECT Specifies a rectangle filled with the color used to fill the screen
background. This color is gray if the default Windows color scheme is
selected

- 165 -

SS_ICON Designates an icon displayed in the dialog box. The given text is the
name of an icon (not a filename) defined elsewhere in the resource file.
The nWidth and nHeight parameters are ignored; the icon auto sizes
itself.

SS_LEFT Designates a simple rectangle and left-aligns the displayed text. The text
is formatted before it is displayed. Words that would extend past the end
of a line are automatically wrapped to the beginning of the next left-
aligned line.

SS_LEFTNOWORDWRAP Designates a simple rectangle and left-aligns the displayed text in the
rectangle. Tabs are expanded, but words are not wrapped. Text that
extends past the end of a line is clipped.

SS_NOPREFIX Prevents interpretation of any ampersand (&) characters in the control's
text as accelerator prefix characters (which are displayed with the &
character removed and the next character in the string underlined). This
static control style may be included with any of the defined static
controls. You can combine SS_NOPREFIX with other styles by using the
bitwise OR operator. This style is most often used when filenames or
other strings that may contain an & character need to be displayed in a
static control in a dialog box.

SS_RIGHT Designates a simple rectangle and right-aligns the displayed text in the
rectangle. The text is formatted before it is displayed. Words that would
extend past the end of a line are automatically wrapped to the beginning
of the next right-aligned line.

SS_SIMPLE Designates a simple rectangle and displays a single line of text left-
aligned in the rectangle. The line of text cannot be shortened or altered in
any way. (The control's parent window or dialog box must not process
the WM_CTLCOLOR message.)

SS_WHITEFRAME Designates a frame drawn in the same color as the window background.
(The default color is white.)

SS_WHITERECT Designates a rectangle filled with the window background color. (The
default color is white.)

F.8 DIALOG BOX STYLES
The following are styles used in the dwStyle parameter in CreateWindow() when creating dialogs.

Style Meaning

DS_MODALFRAME Creates a dialog box with a modal frame.

DS_NOIDLEMSG Tells the system not to send WM_ENTERIDLE messages to the owner
of the dialog box while the dialog box is displayed.

DS_SYSMODAL Creates a system modal dialog box.

- 166 -

- 167 -

Annex G

Macros

Description
This annex describes supported macros.

G.1 DECLARE_HANDLE
G.1.1 Synopsis

void DECLARE_HANDLE(char *DataTypeName);

G.1.2 Description
DECLARE_HANDLE is used to define a data type that has the name specified in the parameter DataTypeName
and is a 16-bit handle.

G.1.3 Returns
None.

G.1.4 Errors
None.

G.1.5 Cross-References
DECLARE_HANDLE32

G.2 DECLARE_HANDLE32
G.2.1 Synopsis

DECLARE_HANDLE32(DataTypeName)

G.2.2 Description
DECLARE_HANDLE is used to define a data type that has the name specified in the parameter DataTypeName
and is a 32-bit handle.

G.2.3 Returns
None.

G.2.4 Errors
None.

G.2.5 Cross-References
DECLARE_HANDLE

G.3 FIELDOFFSET
G.3.1 Synopsis

int FIELDOFFSET(char *StructureName, char *ElementName);

G.3.2 Description
FIELDOFFSET retrieves the address offset of an element that is inside of a structure. The parameter
StructureName specifies the name of the structure. The parameter ElementName specifies the name of the
element that is inside of the structure.

G.3.3 Returns
Returns the address offset of the specified element.

- 168 -

G.3.4 Errors
None.

G.3.5 Cross-References
None.

G.4 GetBValue
G.4.1 Synopsis

BYTE GetBValue(DWORD RGBValue);

G.4.2 Description
The macro returns a value that represents the intensity of blue color in a red-green-blue (RGB) value. The
parameter RGBValue is a 32-bit RGB value whose intensity of blue color will be returned.

G.4.3 Returns
Returns a value that represents the intensity of blue color in a RGB value.

G.4.4 Errors
None.

G.4.5 Cross-References
None.

G.5 GetGValue
G.5.1 Synopsis

BYTE GetGValue(DWORD RGBValue);

G.5.2 Description
The macro returns a value that represents the intensity of green color in a red-green-blue (RGB) value. The
parameter RGBValue is a 32-bit RGB value whose intensity of green color will be returned.

G.5.3 Returns
Returns a value that represents the intensity of green color in a RGB value.

G.5.4 Errors
None.

G.5.5 Cross-References
None.

G.6 GetRValue
G.6.1 Synopsis

BYTE GetRValue(DWORD RGBValue);

G.6.2 Description
The macro returns a value that represents the intensity of red color in a red-green-blue (RGB) value. The
parameter RGBValue is a 32-bit RGB value whose intensity of red color will be returned.

G.6.3 Returns
Returns a value that represents the intensity of red color in a RGB value.

G.6.4 Errors
None.

- 169 -

G.6.5 Cross-References
None.

G.7 HIBYTE
G.7.1 Synopsis

BYTE HIBYTE(WORD Number);

G.7.2 Description
HIBYTE returns the value of the hi-order byte of a WORD value. The parameter Number is a WORD value
whose high-order byte value will be returned.

G.7.3 Returns
Returns the value of the high-order byte of a WORD value.

G.7.4 Errors
None.

G.7.5 Cross-References
LOBYTE

G.8 HIWORD
G.8.1 Synopsis

WORD HIWORD(DWORD Number);

G.8.2 Description
HIWORD returns the value of the high-order WORD of a DWORD value. The parameter Number is a DWORD
value whose high-order WORD value will be returned.

G.8.3 Returns
Returns the value of the high-order WORD of the specified DWORD value.

G.8.4 Errors
None.

G.8.5 Cross-References
LOWORD

G.9 LOBYTE
G.9.1 Synopsis

BYTE LOBYTE(WORD Number);

G.9.2 Description
LOBYTE returns the value of the low-order byte of a WORD value. The parameter Number is a WORD value
whose low-order byte value will be returned.

G.9.3 Returns
Returns the value of the low-order byte of the specified WORD value.

G.9.4 Errors
None.

G.9.5 Cross-References
HIBYTE

- 170 -

G.10 LockData
G.10.1 Synopsis

HANDLE LockData(Unused);

G.10.2 Description
The macro locks the current data segment in memory and returns a handle to it. The parameter Unused is not
used.

G.10.3 Returns
If the macro is successful, it returns a handle to the locked data segment. If the macro is not successful, it returns
the value NULL.

G.10.4 Errors
None.

G.10.5 Cross-References
None.

G.11 LOWORD
G.11.1 Synopsis

WORD LOWORD(DWORD Number);

G.11.2 Description
LOWORD returns the value of the low-order WORD of a DWORD value. The parameter Number is a DWORD
value whose low-order WORD value will be returned.

G.11.3 Returns
Returns the value of the low-order WORD of the specified DWORD value.

G.11.4 Errors
None.

G.11.5 Cross-References
HIWORD

G.12 MAKEINTATOM
G.12.1 Synopsis

LPCSTR MAKEINTATOM(WORD wValue);

G.12.2 Description
MAKEINTATOM creates an integer atom from a given WORD value. The parameter wValue is the value to use
when creating the integer atom. The integer atom that is returned by the macro should only be used with one of
the API’s atom-management functions.

G.12.3 Returns
The macro returns a pointer to the integer atom created from the given WORD value.

G.12.4 Errors
Other than a return value, no other error information is provided by the macro.

G.12.5 Cross-References
AddAtom(), DeleteAtom(), GetAtomName()

- 171 -

G.13 MAKEINTRESOURCE
G.13.1 Synopsis

LPCSTR MAKEINTRESOURCE(WORD wResourceID);

G.13.2 Description
MAKEINTRESOURCE processed a resource’s identifier and returns it in a form that will be understood by the
API’s resource-management functions. An application can use this macro instead of passing the name of the
resource to one of the API’s resource-management functions. The parameter wResourceID is the identifier of the
resource to be processed.

G.13.3 Returns
The macro returns the resource’s identifier in a form that will be understood by the API’s resource management
functions.

G.13.4 Errors
Other than a return value, no other error information is provided by the macro.

G.13.5 Cross-References
MAKELP

G.14 MAKELONG
G.14.1 Synopsis

DWORD MAKELONG(WORD wLowValue, WORD wHighValue);

G.14.2 Description
MAKELONG returns a DWORD value with the specified high-order and low-order WORD values.

G.14.3 Returns
A DWORD value with the specified high-order and low-order WORD values.

G.14.4 Errors
Other than a return value, no other error information is provided by the macro.

G.14.5 Cross-References
MAKELP

G.15 MAKELP
G.15.1 Synopsis

void *MAKELP(WORD wSelector, WORD wOffset);

G.15.2 Description
MAKELP returns a pointer to the memory address specified by a specified segment selector and an address
offset. The parameter wSelector specifies the segment selector. The parameter wOffset specifies the address
offset.

G.15.3 Returns
A pointer to the memory address.

G.15.4 Errors
Other than a return value, no other error information is provided by the macro.

G.15.5 Cross-References
None.

- 172 -

G.16 MAKELPARAM
G.16.1 Synopsis

LPARAM MAKELPARAM(WORD wLowValue, WORD wHighValue);

G.16.2 Description
MAKELPARAM returns a value of type LPARAM with the specified high-order and low-order WORD values.
The parameter wLowValue specifies the low-order value of the LPARAM value. The parameter wHighValue
specifies the high-order value of the LPARAM value.

G.16.3 Returns
A value of type LPARAM with the specified high-order and low-order WORD values.

G.16.4 Errors
Other than a return value, no other error information is provided by the macro.

G.16.5 Cross-References
None.

G.17 MAKELRESULT
G.17.1 Synopsis

LRESULT MAKELRESULT(WORD wLowValue, WORD wHighValue);

G.17.2 Description
MAKELRESULT returns a value of type LRESULT with the specified high-order and low-order WORD values.
The parameter wLowValue specifies the low-order value of the LRESULT value. The parameter wHighValue
specifies the high-order value of the LRESULT value.

G.17.3 Returns
A value of type LRESULT with the specified high-order and low-order WORD values.

G.17.4 Errors
Other than a return value, no other error information is provided by the macro.

G.17.5 Cross-References
None.

G.18 MAKEPOINT
G.18.1 Synopsis

POINT MAKEPOINT(DWORD dwCoord);

G.18.2 Description
MAKEPOINT converts a specified DWORD value into a point’s coordinates and returns the coordinates in a
POINT structure. The low-order word of the dwCoord parameter should contain the x-coordinate of the point.
The high-order word of the dwCoord parameter should contain the y-coordinate of the point.

This macro can be used to convert a mouse message’s lParam value into mouse coordinates or to convert the
value returned by the GetMessagePos() function into a POINT structure.

G.18.3 Returns
The MAKEPOINT macro returns a pointer to a POINT structure.

G.18.4 Errors
Other than a return value, no other error information is provided by the macro.

- 173 -

G.18.5 Cross-References
POINT

G.19 max
G.19.1 Synopsis

int max(FirstValue, SecondValue);

G.19.2 Description
The macro compares two values and returns the larger of the two values. The two values are specified in the
parameters FirstValue and SecondValue. The types of the two values and the type of the return value will be the
same. A numerical type can be passed to the macro.

G.19.3 Returns
The larger of the two values is returned.

G.19.4 Errors
Other than a return value, no other error information is provided by the macro.

G.19.5 Cross-References
min

G.20 min
G.20.1 Synopsis

int min(FirstValue, SecondValue);

G.20.2 Description
The macro compares two values and returns the lesser of the two values. The two values are specified in the
parameters FirstValue and SecondValue. The types of the two values and the type of the return value will be the
same. An numerical type can be passed to the macro.

G.20.3 Returns
The larger of the two values is returned.

G.20.4 Errors
Other than a return value, no other error information is provided by the macro.

G.20.5 Cross-References
max

G.21 OFFSETOF
G.21.1 Synopsis

WORD OFFSETOF(void *Pointer);

G.21.2 Description
The OFFSETOF macro retrieves the address offset of the given pointer. The parameter Pointer is the pointer
whose address offset should be retrieved.

G.21.3 Returns
Retrieves the address offset of the given pointer.

G.21.4 Errors
Other than a return value, no other error information is provided by the macro.

- 174 -

G.21.5 Cross-References
SELECTOROF

G.22 PALETTEINDEX
G.22.1 Synopsis

COLORREF PALETTERGB(BYTE RedValue, BYTE GreenValue, BYTE BlueValue);

G.22.2 Description
PALETTERGB creates a palette-relative RGB specifier from the specified red, green, and blue relative intensity
values passed to the macro. The parameter RedValue contains the level of red intensity desired. The parameter
GreenValue contains the level of green intensity desired. The parameter BlueValue contains the level of blue
intensity desired.

A palette-relative RGB specifier is a value of type COLORREF that contains an RGB value in the low-order
byte and the value 2 in the high-order byte. An application can pass a palette-entry value instead of an RGB
value to any graphics device interface (GDI) function that accepts an RGB value as one of its function
arguments.

G.22.3 Returns
A palette-entry specifier is a value containing the index of the logical-color palette entry.

G.22.4 Errors
Other than a return value, no other error information is provided by the macro.

G.22.5 Cross-References
PALETTERGB, RGB

G.23 PALETTERGB
G.23.1 Synopsis

COLORREF PALETTERGB(WORD wIndexNum)

G.23.2 Description
PALETTERGB creates a palette-entry specifier using the index of a logical-color palette entry. The parameter
wIndexNum is the index of a logical-color palette entry.

A palette-entry specifier is a value of type COLORREF that contains the index of a logical-color palette entry in
the low-order byte and the value 1 in the high-order byte. An application can pass a palette-entry value instead of
an RGB value to any API function that accepts an RGB value as one of its function arguments.

G.23.3 Returns
A palette-entry specifier is a value containing the index of the logical-color palette entry.

G.23.4 Errors
Other than a return value, no other error information is provided by the macro.

G.23.5 Cross-References
PALETTERGB, RGB

G.24 RGB
G.24.1 Synopsis

COLORREF RGB(BYTE RedValue, BYTE GreenValue, BYTE BlueValue);

- 175 -

G.24.2 Description
RGB returns a value of type COLORREF that contains the specified red, green, and blue relative intensity
values passed to the macro. The parameter RedValue contains the level of red intensity desired. The parameter
GreenValue contains the level of green intensity desired. The parameter BlueValue contains the level of blue
intensity desired.

G.24.3 Returns
A value of type COLORREF that contains the specified red, green, and blue relative intensity values passed to
the macro.

G.24.4 Errors
Other than a return value, no other error information is provided by the macro.

G.24.5 Cross-References
PALETTEINDEX, PALETTERGB

G.25 SELECTOROF
G.25.1 Synopsis

WORD SELECTOROF(void *Pointer);

G.25.2 Description
SELECTOROF retrieves the segment selector of the given pointer. The parameter Pointer is the pointer whose
segment selector should be retrieved.

G.25.3 Returns
Retrieves the segment selector of the given pointer.

G.25.4 Errors
Other than a return value, no other error information is provided by the macro.

G.25.5 Cross-References
OFFSETOF

G.26 UnlockData
G.26.1 Synopsis

HANDLE UnlockData(Unused);

G.26.2 Description
The macro unlocks the current data segment. The parameter Unused is not used.

G.26.3 Returns
The macro returns the data segment’s lock count after the data segment’s lock count is decreased by one.

G.26.4 Errors
Other than a return value, no other error information is provided by the macro.

G.26.5 Cross-References
LockData, LockSegment(), UnlockSegment()

G.27 UnlockResource
G.27.1 Synopsis

BOOL UnlockResource(HGLOBAL hResource);

- 176 -

G.27.2 Description
The macro unlocks the handle of a resource. The parameter hResource is the handle of the resource to unlock.

G.27.3 Returns
The macro returns FALSE if the resource’s reference count is zero after the macro is executed. The macro
returns TRUE if the resource’s reference count is not zero after the macro is executed.

G.27.4 Errors
Other than a return value, no other error information is provided by the macro.

G.27.5 Cross-References
GlobalUnlock()

- 177 -

Annex H

Binary Raster Operations

Raster Operation Meaning

R2_BLACK Sets the pixel value in the destination bitmap to black.

R2_WHITE Sets the pixel value in the destination bitmap to white.

R2_COPYPEN Replaces the pixel value in the destination with the pixel value of the pen.

R2_MASKNOTPEN Replaces the pixel value of the destination with the result of the
destination AND’ed with the INVERSE pixel value of the pen.

R2_MASKPEN Replaces the pixel value of the destination with the result of the
destination bitmap AND’ed with the pixel value of the pen.

R2_MASKPENNOT Replaces the pixel value of the destination with the INVERSE of the
destination bitmap pixel value AND’ed with the pixel value of the pen.

R2_MERGETNOTPEN Replaces the pixel value of the destination with the result of the
destination bitmap OR’ed with the INVERSE pixel value of the pen.

R2_MERGEPEN Replaces the pixel value of the destination with the result of the
destination OR’ed with the pixel value of the pen.

R2_MERGEPENNOT Replaces the pixel value of the destination with the INVERSE of the
destination bitmap pixel value OR’ed with the pixel value of the pen.

R2_NOP The destination bitmap is not altered.

R2_NOT INVERTs the value of the destination bitmap pixel value.

R2_NOTCOPYPEN Replaces the pixel value in the destination bitmap with the INVERSE of
the pixel value of the pen.

R2_NOTMASKPEN Replaces the pixel value in the destination bitmap with the INVERSE
result of the destination bitmap AND’ed with the pixel value of the pen.

R2_NOTMERGEPEN Replaces the pixel value of the destination bitmap with the INVERSE
result of the destination bitmap OR’ed with the pixel value of the pen.

R2_NOTXORPEN Replaces the pixel value of the destination bitmap with the INVERSE
result of the destination bitmap XOR’ed with the pixel value of the pen.

R2_XORPEN Replaces the pixel value of the destination bitmap with the result of the
destination bitmap XOR’ed with the pixel value of the pen.

- 178 -

Printed copies can be ordered from:

ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

Fax: +41 22 849.60.01
Internet: helpdesk@ecma.ch

Files can be downloaded from our FTP site, ftp.ecma.ch, logging in as anonymous and giving your E-mail address as
password. This Standard is available from library ECMA-ST as MSWord 6.0 files (E-234-V1.DOC, E-234-V2.DOC, E-234-
V3.DOC), as PostScript files (E-234-V1.PSC, E-234-V2.PSC, E-234-V3.PSC) and as Acrobat files (E-234-V1.PDF, E-234-
V2.PDF, E-234-V3.PDF).

The ECMA site can be reached also via a modem. The phone number is +41 22 735.33.29, modem settings are 8/n/1. Telnet
(at ftp.ecma.ch) can also be used.

Our web site, http://www.ecma.ch, gives full information on ECMA, ECMA activities, ECMA Standards and Technical
Reports.

ECMA

114 Rue du Rhône
CH-1204 Geneva
Switzerland

This Standard ECMA-234 is available free of charge in printed form and as files.

See inside cover page for instructions

