Standard ECMA-234

December 1995

ECM

Standardizing Information and Communication Systems

Application Programming
Interface for Windows

Volume 2

Section 4 - System Services
Section 5 - Application Support Functions

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch

Standard ECMA-234

December 1995

ECM

Standardizing Information and Communication Systems

Application Programming
Interface for Windows

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
GL E-234-V2.DOC 07-03-96 1554

Brief History

The APIW Standard is a functional specification of the Microsoft Windows 3.1 application programming interface. It is bas
on existing implementations (including Microsoft and others) and behavior. The goal of writing this specification is to define
environment in which:

— applications written to this baseline will be portable to all implementations of the APIW Standard.
— the interface can be enriched through open standards processes to meet current and future user needs in a timely fashi

APIW uses the current C language binding, and reflects existing coding practices to ensure that current appiications
conform to this standard. The APIs documented in this standard shall accurately reflect existing implementations of
windows APIs. If an application that runs with an existing implementation uses one or more APIs contranyay ithis
described in the standard, the standard will be changed to accurately reflect the behavior.

The APIW Standard defines a set of application programming interfaces that allow for the creation of graphical applicati
spanning a wide range of capabilities. The standard groups these APIs into major functional areas inglndow manager
interface, a graphics device interface and interfaces necessary for accessing system resources and CepabRiks.
requirements of today’s major desktop applications are reflected in this specification and are the criteria for determining
APIW content.

The APIW Standard focuses on providing the necessary APIs for writing applications for the desktop, and also allc
additional APIs to be bound to an application. This feature enables services outside the scope of a standard desktop appli
to be provided, for example, database, networking or other system services.

The APIW Standard defines the basic graphical use interface objects, such as buttons, scrollbars, menus, static an
controls, and the painting functions to draw them, such as area fill, and line and rectangle drawing. Finally, a rich set of
routines in defined, from simple text output to more complex text output routines using multiple founts and font styles,
supporting the use of color.

The APIW Standard is documented in five sections, corresponding loosely to the four functional subsystems represented b
API and the conformance clause. The four APIW sections cawelow management, graphical interface, system services and
an application support services section. These functions cover window creation and management, graphics routines to pair
and other graphics objects in those windows, functions to access system resources such as files and timers, and finally, co
support functions to accelerate the development of graphical window-based applications.

The APIW Window Subsystem section of the standard covers the creation, deletion and management of the window, inclu
window positioning and sizing and the sending and receiving of messages. Within each of these window manager
subsections are routines that significantly extend the basic functions. With window creation, theseyatgpes of windows

that can be created including built-in classes and user-definable classes, that have the ability to modify the style of any ol
the built-in classes. Additional functions are defined to affect the display of a window, including functions to modify tf
windows menu, scrollbars, and the display of carets or cursors within the window. With multiple overlapped windows bel
displayed simultaneously, functions are defined to manage the position and size of those windows, as well as to contro
visibility of a window and its associated icon when it is minimized.

The APIW Window Subsystem section also defines a set of functions for managing a subset of the user interface, referred
dialog boxes. These functions allow for the creation and management of the dialog box, as well as the user interaction witt
dialog box up to its closure. Utility functions are defined to make designing and using a dialog box easier. These utili
provide common dialog box functions, such as group boxes and check boxes, as well as file interface functions to list files
directories. Each of these dialog boxes are controlled by the use of dialog box templates that are stored in resource files.

The APIW Graphics Subsystem section covers all aspects of actually drawing in a window. These aspects include line drav
text output, graphics primitives, such as rectangles and ellipses, as well as more sophisticated routineffoadfit()as
bitblts() and stretchblt() The Graphics Device Interface defines bitmaps, icons, cursors and carets, as well as functions
provide for a portable graphics file format called metafiles. The Graphics Device Interface defines a logical coordinate spac
further abstract the underlying hardware and has functions to map between the logical and physical coordinate space
Graphics Device Interface defines utility functions for all drawing routines that use pens, brushes and regions to get pre
control over how graphical objects will be drawn.

The APIW System Services section defines platform-independent routines for an application to query the system environn
and access system services. System servicesnthabeaccessed include memory, timers, the keyboard and the native file
system. There are subsections that de#i resources, device 1/0 and system diagnostic routines. Resource manageme

allows for the loading and unloading of user- and system-defined resources, such as icons, bitmaps and strings. Device I/O
includes both parallel and serial port input and output operat®ystem diagnostic routines enable an application or
diagnostic tool to examine the state of an application, including memory utilization, task information and stack usage.

The APIW Application Support Function section defines miscellaneous functions that can be used by a developer in an
application. These utility functions define built-in services that a developer does not have to rewrite with each application.
These service functions include debugging routines and simple user interface routines to provide graphical feedback to a user.
They also include routines for file compression and decompression, standardized routines to retrieve application version
information and routines to manage initialization files.

Adopted as an ECMA Standard by the General Assembly of December 1995.

Table of contents

Section 4 - System Services

305 GetFreeSystemResources

306 SystemParametersinfo

307 GetWinFlags

308 GetSystemMetrics

309 GetVersion

310 SetTimer, TimerProc, KillTimer

311 SetDoubleClickTime, GetDoubleClickTime
312 GetTickCount, GetCurrentTime

313 GetTimerResolution

314 LoadLibrary, FreeLibrary

315 LoadModule, FreeModule

316 GetModuleFileName, GetModuleHandle, GetModuleUsage
317 GetProcAddress

318 MakeProclnstance, FreeProclnstance
319 LibMain

320 WEP

321 GetinstanceData

322 GetFreeSpace

323 GlobalAlloc, GlobalFree, LocalAlloc, LocalFree
324 GlobalCompact, LocalCompact

325 GlobalFix, GlobalUnfix

326 GlobalFlags, LocalFlags

327 GlobalHandle, LocalHandle

328 GlobalLock, GlobalUnlock, LocalLock, LocalUnlock
329 GlobalLRUNewest, GlobalLRUOIldest
330 GlobalNotify, NotifyProc

331 GlobalReAlloc

332 GlobalSize, LocalSize

333 Locallnit, LocalShrink

334 Catch, Throw

335 Yield, DirectedYield

336 GetCurrentTask

337 GetNumTasks

338 GetWindowTask

339 IsTask

340 WinHelp

341 EnumTaskWindows, EnumTaskWndProc
342 WinExec

343 WinMain

344 ExitWindows

345 GetAsyncKeyState

346 gGetlnputState

W N O R R R

10
10
11
11

13
13
14

14
15
15
16

16

17
17
18
18

19

19
20
20
21
21
22
22
23
23
23
24
24

25

26
26
27
27
28

347 GetKeyboardState, SetKeyboardState
348 GetKeyNameText

349 GetKeyState

350 GetKBCodePage

351 OemKeyScan

352 MapVirtualKey

353 VkKeyScan

354 SwapMouseButton

355 GetKeyboardType

356 FindResource

357 LoadResource, FreeResource
358 LockResource

359 LoadString

360 Loadlcon

361 LoadBitmap

362 SetResourceHandler, LoadProc
363 SizeofResource

364 LoadMenu

365 LoadMenulndirect

366 LoadAccelerators

367 AllocResource

368 BuildCommDCB

369 ClearCommBreak, SetCommBreak
370 CloseComm, OpenComm

371 EnableCommNotification

372 EscapeCommFunction

373 FlushComm

374 GetCommError

375 GetCommEventMask, SetCommEventMask

376 GetCommState, SetCommState
377 ReadComm, WriteComm

378 TransmitCommChar, UngetCommChar
379 GetDriveType

380 GetSystemDirectory

381 GetTempDrive

382 GetTempFileName

383 GetWindowsDirectory

384 OpenFile

385 SetHandleCount

386 _Iclose

387 _lread

388 Icreat

389 lIseek

390 _lopen

29
29
30
30
31
31
32
32
33
34
35
35
35
36

38
38
38
39
39
39

40
41
42
43
44

47

48
48
49
49
50
50
52
52
52
53
53
54

28

37

40

45
46

47

391 _lwrite

392 RegCloseKey

393 RegCreateKey, RegOpenKey

394 RegDeleteKey

395 RegEnumKey

396 RegQueryValue, RegSetValue
397 IsBadCodePtr

398 IsBadHugeReadPtr

399 IsBadHugeWritePtr

400 IsBadReadPtr

401 IsBadStringPtr

402 IsBadWritePtr

Section 5 - Application Support Functions
403 Extractlcon

404 FindExecutable

405 GetPrivateProfileString, GetProfileString
406 WritePrivateProfileString, WriteProfileString
407 GetPrivateProfilelnt, GetProfilelnt
408 AnsiLower, AnsiLowerBuff

409 AnsiUpper, AnsiUpperBuff

410 AnsiNext, AnsiPrev

411 IsCharAlpha

412 IsCharAlphaNumeric

413 IsCharLower

414 IsCharUpper

415 Istrcmp, Istrcmpi

416 Istrcat, Istrcpy, Istrcpyn

417 Istrlen

418 wsprintf, wvsprintf

419 IsDBCSLeadByte

420 ToAscii

421 AnsiToOem, AnsiToOemBuff
422 OemToAnsi, OemToAnsiBuff

423 CopyRect, SetRect, SetRectEmpty, InflateRect, OffsetRect

424 EqualRect, IsRectEmpty, PtInRect

425 IntersectRect, UnionRect, SubtractRect
426 OutputDebugString

427 DebugOutput

428 FatalAppExit

429 FatalExit

430 QuerySendMessage

431 Lockinput

432 FlashWindow

433 MessageBeep

55
55
55
56
56

57
57
58
58
58
59
60
60
60

57

61
62

62

63
63
64
64
64
65
65
65
66
66
66
67
68

68

69

71
72
72
72
73
73
74
74

69

70

71

434 MessageBox

435 SetErrorMode

436 GetExpandedName

437 ChooseColor

438 ChooseFont

439 FindText, ReplaceText
440 GetOpenFileName, GetSaveFileName
441 GetFileTitle

442 PrintDlg

443 CommDIgExtendedError
444 MulDiv

iv -

74
76
76
77
78
80

85
85
86
87

82

Section 4 - System Services

305 GetFreeSystemResources
305.1 Synopsis
UINT GetFreeSystemResources(UINT ResourceType)
305.2 Description

The GetFreeSystemResourcefi(iction determines the percentage of free space available for all system resource
or a system resource of a specific type. An application should not use this function to determine if it is possible
create a hew resource object.

The resource type is specified in ResourceTypparameter and can be one of the following defined values:
GFSR_SYSTEMRESOURCES This value specifies all system resources.

GFSR_USERRESOURCES This value specifies USER resources; window and menu handles are
considered USER resources.

GFSR_GDIRESOURCES This value specifies GDI resources; device-context handles, brushes,
pens, regions, fonts, and bitmaps are considered GDI resources.

305.3 Returns

The GetFreeSystemResource$ifnction returns the percentage of free space available for the system resourc
indicated.

305.4 Errors
None.

305.5 Cross-References
None.

306 SystemParametersinfo
306.1 Synopsis
BOOL SystemParametersinfo(UINT Operation, UINT Datal,void *Data2, UINT UpdateFlag);
306.2 Description

The SystemParametersinfofunction gets or sets a specific type of system informafidre type ofsystem
information and the operation performed on that information is specified in the funQ@juerationparameter. The
function'sDatal andData2 parameters contain data unique to the operation being performed.

If the operation sets system information, the function usebpldateFlagparameter to determine if the change to
the system information should be saved toWH8l.INI file. The value of theJpdateFlagparameter can be zero to
indicate that the WIN.INI file should not be updated or it can be one or more of the following values OR'e
together:

SPIF_UPDATEINIFILE This value updates the WIN.INI file.

SPIF_SENDWININICHANGE This value broadcasts the WM_WININICHANGE message to all top-
level windows; valid only when used in combination with the
SPIF_UPDATEINIFILE value.

The following table contains the allowable values forGoenmancdarameter and a description of its function:

Beep Sound Value
SPI_GETBEEP This value determines if the warning beep is set to on or off.
SPI_SETBEEP This value sets the warning beep to on or off.

Window Border

Value

SPI_GETBORDER

This value gets the border multiplying factor that is ugezh
calculating the width of a window's sizing border.

SPI_SETBORDER

This value sets the border multiplying factor that is weth
calculating the width of a window's sizing border.

Task Switching

Value

SPI_GETFASTTASKSWITCH

This value determines if the fast task switching option is set
off.

on or

SPI_SETFASTTASKSWITCH

This value turns the fast task switching option on or off.

Desktop

Value

SPI_GETGRIDGRANULARITY

This value gets the granularity value for the desktop's sizing gri

.

SPI_SETGRIDGRANULARITY

This value sets the granularity value for the desktop's sizing gri

SPI_SETDESKPATTERN

This value sets the desktop pattern.

SPI_SETDESKWALLPAPER

This value sets the bitmap used for the desktop wallpaper.

Icons

Value

SPI_GETICONTITLELOGFONT

This value gets the font information for the current font used to| draw

icon titles.

SPI_SETICONTITLELOGFONT

This value sets the font that is used for drawing icon titles.

SPI_GETICONTITLEWRAP

This value determines if icon title word wrapping is set to on or

off.

SPI_SETICONTITLEWRAP

This value sets the icon title word wrapping option on or off.

SPI_ICONHORIZONTALSPACING

This value sets the number of pixels in an icon's cell width.

SPI_ICONVERTICALSPACING

This value sets the number of pixels in an icon's cell height.

Keyboard

Value

SPI_GETKEYBOARDDELAY

This value gets the keyboard's repeat-delay value

SPI_SETKEYBOARDDELAY

This value sets the keyboard's repeat-delay value.

SPI_GETKEYBOARDSPEED

This value gets the keyboard's repeat-speed value.

SPI_SETKEYBOARDSPEED

This value sets the keyboard's repeat-speed value.

Menus

Value

SPI_GETMENUDROPALIGNMENT

This value determines if pop-up menus are aligned to the left o right

of its menu-bar item. Sets how pop-up meatesaligned relative t
its menu-bar item.

D

SPI_SETMENUDROPALIGNMENT

This value sets how pop-up meargsaligned relative to ithenu-
bar item.

Mouse

Gets the mouse speed and the mouse threshold values.

SPI_GETMOUSE

This value gets the mouse speed and the mouse threshold val

ues.

SPI_SETMOUSE

This value sets the mouse speed and the mouse threshold valles.

SPI_SETDOUBLECLKHEIGHT

This value sets the height of the rectangle within which the spcond

click of the mouse button double-click must fall for it to
registered as a mouse double-click.

SPI_SETDOUBLECLICKTIME

This value sets timaximum number of milliseconds that caccur

be

between the first and second mouse button clicks of a mouse Iutton

double-click.

SPI_SETDOUBLECLKWIDTH

This value sets the width of the rectangle within which the s¢
click of a double-click.

SPI_SETMOUSEBUTTONSWAP

This value sets the meaning of the left and right mouse button

Screen Saver

Value

SPI_GETSCREENSAVEACTIVE

This value determines if screen saving is set to on or off.

SPI_SETSCREENSAVEACTIVE

This value sets the screen saver to on or off.

SPI_GETSCREENSAVETIMEOUT

This value retrieves the screen saver's time-out setting.

SPI_SETSCREENSAVETIMEOUT

This value sets the screen saver's time-out setting.

Language

Value

SPI_LANGDRIVER

This value forces the use of a new language driver.

cond

U7

The following table describes the use of fhatal and Data2 parameters for each of tli@ommandparameter's

values:

Command Datal Data2

SPI_GETBEEP Ignored. This value is a pointer to a BOOL variable. The
value of the variable is set to TRUE if the
warning beep is on or FALSE if it is off.

SPI_GETBORDER Ignored. This value is a pointer to an integer variable.
The value of the border multiplying factor| is
assigned to the variable.

SPI_GETFASTTASK- Ignored. This value is a pointer to a BOOL variable. [The

SWITCH value of the variable is set to TRUE if fast task
switching is on or FALSE if it is off.

SPI_GETGRIDGRAN- [Ignored. This value is a pointer to an integer variable.

ULARITY The value of the grid-granularity setting| is

assigned to the variable.

SPI_GETICONTITLE-

The size of the LOGFON

TThis value is a pointer to a LOGFONT structure

bnt

The
tle

LOGFONT structure pointed to by the DataRat is assigned the is filled with logical-f¢
parameter. information.
SPI_GETICONTITLE- Ignored. This value is a pointer to a BOOL variable.
WRAP value of the variable is set to TRUE if icon t
wrapping is on or FALSE if it is off.
SPI_GETKEYBOARD- |[Ignored. This value is a pointer to an integer varia

DELAY

The value of the keyboard repeat-delay se
is assigned to the variable.

ble.
ting

SPI_GETKEYBOARD-
SPEED

Ignored.

This value is a pointer to a WORD varig]
The value of the keyboard repeat-speed s€
is assigned to the variable.

SPI_GETMENUDROP-
ALIGNMENT

Ignored.

This value is a pointer to a BOOL variable.

value of the variable is set to TRUE if pop
menus are right-aligned or FALSE if they
left-aligned.

SPI_GETMOUSE

Ignored.

This value is a pointer to an array of
integers. The first integer is assigned the V|
of the MouseThresholdl WIN.INI entry. T
second integer is assigned the value of
MouseThreshold2 WIN.INI entry. The thi
integer is assigned the value of the MouseS
WINL.INI entry.

SPI_GETSCREENSAVE
CTIVE

Agnored.

This value is a pointer to a BOOL variable.

screen saver is active or FALSE if it is
active.

SPI_GETSCREENSAVE
IMEOUT

Mgnored.

This value is a pointer to an integer varié
The value, in milliseconds, of the screen sa
time-out is assigned to the variable.

SPI_ICONHORIZON-
TALSPACING

If the value of the Datd
parameter is NULL, thi
parameter's value should be
new width, in pixels, for th

value of the Data2 parameter
not NULL, this parameter
ignored.

horizontal spacing of icons. If the

af this value is a pointer to an integer varial
sthe value of the current icon horizontal spa
theereturned in the variable.

eIf this value is NULL

\ , the value in the Dat

ri')arameter is used to set the horizontal spg

of icons.
S

SPI_ICONVERTICAL-
SPACING

If the value of the Datd
parameter is NULL, thi
parameter's value should be
new height, in pixels, for th

not NULL,
ignored.

this parameter

vertical spacing of icons. If the
value of the Data2 parameter|is

af this value is a pointer to an integer varial
the value of the current icon vertical spacin
theturned in the variable.

Sf this value is NULL, the value in the Dat
ri')arameter is used to set the vertical spacirn

icons.
S

ble.
tting

The

up
are

three
alue
he
the
rd
peed

The

value of the variable is set to TRUE if the

not

able.
er's

ble,
ting

al
1cing

ble,
g is

al
g of

SPI_LANGDRIVER

Ignored.

This value is a pointer to an string conta
the file-
name of the new language driver.

ning

SPI_SETBEEP

TRUE turns the warning beep

FALSE turns the warning be
off.

dgnored.
p

D

SPI_SETBORDER

Thenew value of the windo
border multiplying factor.

Mgnored.

SPI_SETDESK-
PATTERN

If the value of the Datd
parameter is NULL, thi
parameter's value should be
Otherwise, this parameter
ignored.

af this value is NULL and the value of t
sDatal parameter is -1, the value of WIN.
{flle's desktop pattern is reread.

i this value is not NULL, it is assumed to b
pointer to a null-terminated string. The stn

he
NI

e a
ing

should contain eight RGB values represen

ting

the new pattern for the desktop.

SPI_SETDESKWALL-
PAPER

Ignored.

This value is a pointer to a string. The sf
contains the name of a bitmap file to be use
the desktop wallpaper.

ring
i for

SPI_SETDOUBLE-
CLKHEIGHT

Number of pixels to use for t
mouse button's double-cli
height.

negnored.
Ck

SPI_SETDOUBLE-

Number of milliseconds to u

segnored.

CLICKTIME for the mouse button's doubje-
click time.
SP|_SETDOUBLE- Number of pixels to use for thégnored.
CLKWIDTH mouse button's double-click
width.
SPI_SETFASTTASK- TRUE turns the fast taskgnored.
SWITCH switching on.
FALSE turns the fast task
switching off.

SPI_SETGRIDGRAN-
ULARITY

Number of pixels to use for gn
granularity.

idignored.

SPI_SETICONTITLE-
LOGFONT

If the value of the Datd
parameter is NULL, thi
parameter's value should be ze

Otherwise, the parameter sho
contain the size of th
LOGFONT structure pointed
by the Data2 parameter.

2f the value of the Datal parameter is zero
sthis parameter is set to NULL, the f
rinformation that was in effect when the ses
ps started is used to draw icon titles.

©ther, this parameter is a pointer to
i OGFONT structure that defines a logical-f
to use when drawing an icon's title.

and
nt
5ion

bnt

SPI_SETICONTITLE-
WRAP

TRUE turns the icon titl
wrapping feature on.
FALSE turns the icon titl

wrapping feature off.

glgnored.

SPI_SETKEYBOARD-
DELAY

The new value for the keyboarg
delay setting.

I'gnored.

SPI_SETKEYBOARD-
SPEED

The new value for the keyboarg
repeat-speed setting.

I'gnored.

SPI_SETMENUDROP-
ALIGNMENT

TRUE sets drop-dowmenus tq
be right-aligned.

FALSE sets drop-down menus
be left-aligned.

Ignored.

to

SPI_SETMOUSE

Ignored

This value is a pointer to an array of
integers. The MouseThreshold1 WIN.INI en
is set the value of the first integer. T

value of the first integer. The Moug
Speed WIN.INI entry is set the value of
third integer.

three

try
he

MouseThreshold2 WIN.INI entry is set the

e_
he

SPI_SETMOUSE-
BUTTONSWAP

TRUE sets the right mouse butt

to act as the left mouse but}on

and left mouse button to act

dgnored.

as

the right mouse button.

FALSE restores the mouse
buttons to their normal meanings.

SPI_SETSCREEN- TRUE activates the screen savitgnored.
SAVEACTIVE feature.

FALSE deactivates the scrgen
saving feature.

SPI_SETSCREEN- The new value, in seconds, fdgnored.
SAVETIMEOUT the screen saver's idle time-out

306.3 Returns
If the SystemParametersinfd{)nction is successful, it returns TRUE. Otherwise, it returns FALSE.

306.4 Errors
None.

306.5 Cross-References
None.

307 GetWinFlags
307.1 Synopsis
DWORD GetWinFlags(void);

307.2 Description
The GetWinFlags(function gets the system and memory configuration.

307.3 Returns
The GetWinFlags(function's return value can be a combination of the following values described below:

WF_80x87 The system contains a Intel math coprocessor.

WF_CPU286 The system contains a Intel 80286 or equivalent CPU.

WF_CPU386 The system contains a Intel 80386 or equivalent CPU.

WF_CPU486 The system contains a Intel 80486 or equivalent CPU.

WF_ENHANCED Windows is running in 386-enhanced mode; if the WF_ENHANCED is
set, the WF_PMODE flag is also set.

WF_WIN386 Same as WF_ENHANCED.

WF_STANDARD Windows is running in standard mode; if the WF_STANDARD is set, the
WF_PMODE flag is also set.

WF_WIN286 Same as WF_STANDARD.

WF_PMODE Windows is running in protected mode; this flag is always set.

WF_PAGING Windows is running on a system with paged memory.

307.4 Errors
None.

307.5 Cross-References
None.

308 GetSystemMetrics
308.1 Synopsis
int GetSystemMetrics (int InfoType);

308.2 Description

The GetSystemMetricsfunction retrieves information about the width and height, in pixels, of the various elements
displayed by the system and also retrieves some other miscellaneous system infofithatiofoType parameter
specifies the type of information that is desired. TitieTypeparameter can be one of the following values:

SM_CXBORDER
SM_CYBORDER
SM_CYCAPTION

SM_CXCURSOR
SM_CYCURSOR
SM_CXDOUBLECLK

SM_CYDOUBLECLK

SM_CXDLGFRAME

SM_CYDLGFRAME

SM_CXFRAME
SM_CYFRAME
SM_CXFULLSCREEN

SM_CYFULLSCREEN

SM_CXICON

SM_CYICON
SM_CXICONSPACING

SM_CYICONSPACING

SM_CYKANJIWINDOW

SM_CYMENU

SM_CXMIN
SM_CYMIN

This value specifies the frame width of a window that cannot be sized.
This value specifies the frame height of a window that cannot be sized.

This value specifies the window title height; this is the title height plus
the height of the window frame that cannot be sized (SM_CYBORDER).

This value specifies the current cursor width.
This value specifies the current cursor height.

This value specifies the width of the rectangle around the location of the
first mouse button click in a mouse button double-click sequence; the
second mouse button click must occur within this rectangle for the system
to consider the two mouse button clicks a button double-click.

This value specifies the height of the rectangle around the location of the
first mouse button click in a mouse button double-click sequence; the
second mouse button click must occur within this rectangle for the system
to consider the two mouse button clicks a button double-click.

This value specifies the frame width of the window when the window has
the WS_DLGFRAME style.

This value specifies the frame height of the window when the window
has the WS_DLGFRAME style.

This value specifies the frame width of the window that can be sized.
This value specifies the frame height of the window that can be sized.

This value specifies the width of a window client area for a full-screen
window.

This value specifies the height of a window client area for a full-screen
window (the same value as the height of the screen minus the height of
the window title).

This value specifies the icon width.
This value specifies the icon height.

This value specifies the rectangle width used by the system to position
tiled icons.

This value specifies the rectangle height used by the system to position
tiled icons.

This value specifies the Kanji window height.

This value specifies the single-line menu bar height; this value is the
menu height minus the window frame height that cannot be sized
(SM_CYBORDER).

This value specifies the minimum window width.

This value specifies the minimum window height.

SM_CXMINTRACK This value specifies the minimum tracking window width.
SM_CYMINTRACK This value specifies the minimum tracking window height.
SM_CXSCREEN This value specifies the screen width.

SM_CYSCREEN This value specifies the screen height.

SM_CXHSCROLL This value specifies the arrow bitmap width on a horizontal scroll bar.
SM_CYHSCROLL This value specifies the arrow bitmap height on a horizontal scroll bar.
SM_CXVSCROLL This value specifies the arrow bitmap width on a vertical scroll bar.
SM_CYVSCROLL This value specifies the arrow bitmap height on a vertical scroll bar.
SM_CXSIZE This value specifies the width of bitmaps contained in the title bar.
SM_CYSIZE This value specifies the height of bitmaps contained in the title bar.
SM_CXHTHUMB This value specifies the thumb height on the vertical scroll bar.
SM_DBCSENABLED A non-zero value is returned if double-byte characters are being used;

zero is returned if double-byte characters are not being used.

SM_DEBUG A non-zero value is returned if a debug version of the system is being
used; zero is returned if a debug version of the system is not being used.

SM_MENUDROPALIGNMENT This value specifies the current alignment of pop-up menus to their
respective menu item. Zero is returned when pop-up menus are aligned to
the left of its menu-bar item; a non-zero value is returned when pop-up
menus are aligned to the right of its menu-bar item.

SM_MOUSEPRESENT Zero is returned when a mouse is not installed on the system; a non-zero
value is returned when a mouse is installed on the system.

SM_PENWINDOWS If Pen Windows is installed, a handle to the Pen Windows dynamic-link
library (DLL) is returned.

SM_SWAPBUTTON Zero is returned when the left and right mouse buttons are not swapped; a
non-zero value is returned when the left and right mouse buttons are
swapped.

308.3 Returns
If the GetSystemMetricsfunction is successful, the requested information is returned.
308.4 Errors

None.

308.5 Cross-References
GetWinFlag()

309 GetVersion
309.1 Synopsis
DWORD GetVersion(void);

309.2 Description
The GetVersion(function retrieves the current versions of both Windows and MS-DOS.

309.3 Returns
If successful, th&etVersion()function returns the Windows version number in the low-order word of the return
value and the MS-DOS version nhumber in the high-order word. The high-order byte in each word contains the major
version humber and the low-order byte contains the minor version number.

309.4 Errors
None.

309.5 Cross-References
None.

310 SetTimer, TimerProc, KillTimer
310.1 Synopsis
UINT SetTimer(HWND hWnd, UINT TimerID, UINT Notify, TIMERPROC TimerProc);

void CALLBACK TimerProc(HWND hWnd, UINT msg, UINT TimerID, DWORD Time);
BOOL KillTimer(HWND hWnd, UINT TimerID);

310.2 Description

The SetTimer(function creates a new system timer. TivaerID parameter is the identifier associated with the new
timer. If thehWndparameter is NULL, th&imerID parameter is ignored. Thsotify parameter's value defines at
what interval, in milliseconds, the application is sent?V&_TIMER message. If the value of thEémerProc
parameter is NULL, the WM_TIMER message is posted to the message queuavafditv given in thehWnd
parameter. Otherwise, the WM_TIMER is sent to the procedure given ifirttesProcparameter. Th&imeProc
parameter contains a procedure-instance address of a TIMERPROC callback function whose name has |
exported in the application's module-definition file.

TimerProc() is an application-defined callback function that processes WM_TIMER messagesh\Wirck
parameter contains the handle of a window associated with the filmemsg parameter contains the value
WM_TIMER. TheTimerID parameter contains the identifier of the system tiffilee Time parameter contains the
current system time.

KillTimer() removes a system timérhe TimerID parameter is the identifier of the timer to be removed.Wed
parameter is the handle of the window used when the timecneated by th&etTimer(function. When a timer is
removed, any unprocessé&M_TIMER messages for the timer are removed from the assoei@tddw's message
queue.

310.3 Returns

If the SetTimer()function is successful and the value ofhii&/nd parameter is NULL, it returns the new timer's
identifier. If theSetTimer(function is successful and the value oti¥&ndparameter is not NULL, it returns a non-
zero value. If thé&etTimer(¥unction is not successful, it returns zero.

TimerProc()does not return a value.

If KillTimer() is successful, it returns TRUE. Otherwise, it returns FALSE.
310.4 Errors

None.

310.5 Cross-References
None.

311 SetDoubleClickTime, GetDoubleClickTime
311.1 Synopsis
void SetDoubleClickTime(UINT Time);
UINT GetDoubleClickTime(void);
311.2 Description

The SetDoubleClickTime{unction sets the maximum number of milliseconds thatotaar between the first and
second mouse button clicks of a mouse button double-clickTitheparameter contains the maximum number of
milliseconds allowed.

311.3

311.4

311.5

- 10 -

GetDoubleClickTime(Jeturns the maximum number of milliseconds that cecur between the first and second
mouse button clicks of a mouse button double-click.

Returns
SetDoubleClickTime@oes not return a value.

GetDoubleClickTime(Jeturns the maximum number of milliseconds that cecur between the first and second
mouse button clicks of a mouse button double-click.

Errors
None.

Cross-References
None.

312 GetTickCount, GetCurrentTime

312.1

312.2

312.3

312.4

312.5

Synopsis
DWORD GetTickCount(void);
DWORD GetCurrentTime(void);

Description

The GetTickCount(¥unction returns the number of milliseconds that have elapsed since the session started. If the
session is run for approximately 49 days, the tick count value rolls back over to zero.

GetCurrentTime()s identical to th&etTickCount(function.

Returns

When GetTickCount()and GetCurrentTime()are successful, they return the number of milliseconds that have
elapsed since the session started.

Errors
None.

Cross-References
None.

313 GetTimerResolution

313.1

313.2

313.3

313.4

313.5

Synopsis

DWORD GetTimerResolution(void);

Description

The GetTimerResolutionfunction returns the number of microseconds for each timer tick.

Returns
GetTimerResolution(eturns the number of microseconds for each timer tick.

Errors
None.

Cross-References
None.

- 11 -

314 LoadLibrary, FreeLibrary
314.1 Synopsis
HINSTANCE LoadLibrary(LPCSTR IpszFileName);

void FreeLibrary(HINSTANCE hinst);

314.2 Description

The LoadLibrary() function is used to load a library module. The file name wgddthe function is specified in
IpszFileNamearameter.

If the IpszFileNamestring does not contain the full path, the following directories are searched:
- the current directory
- the Windows directory (retrieved I&etWindowsDirectoryf)
- the system directory (retrieved BetSystemDirectory))
- the directory containing the executable file for the current task (retrievegtdjoduleFileName))
- the directories listed in the PATH environment variable
- the directories mapped in the network

If the library module to be loaded already resides in memoryl. dhdLibrary() function increases the reference
count of the module.

FreeLibrary() decreases by 1 the reference count of the module identified thyrstgparameter. If the reference
count is decremented to zero, the module is removed, and all the memory associated with it is freed.

314.3 Returns

LoadLibrary() returns the instance handle of the loaded library module, if it is successful. If the function fails, i
returns the value less than HINSTANCE_ERROR.

FreeLibrary()does not return a value.

314.4 Errors
The cause of failure of tHeoadLibrary() function and the error codes can be:

0 There is insufficient memory to load the module or corrupted library file.
2 The file is not found.

4 The path is not found.

5 A sharing or network-protection error has occurred.

8 There is insufficient memory to start the application.

11 A library file is invalid.

14 The type of library file is unknown.

19 The file is compressed.

20 The DLL file is invalid or one of the DLLs it requires is corrupt.

21 The library module needs 32-bit extensions not provided by the system.

314.5 Cross-References
LoadModule(), FreeModule(), WinExec()

315 LoadModule, FreeModule
315.1 Synopsis
typedef struct tagLOADPARAMS {

WORD segEnv;
LPSTR IpszCmdLine;

-12 -

LPUINT IpShow;

LPUINT IpReserved;
} LOADPARAMS;
HINSTANCE LoadModule(LPCSTR IpszFileName, LPVOID IpvParamBlock);
BOOL FreeModule(HINSTANCE hinst);

315.2 Description
The LoadModule()function loads and executes an application module. The name of the application module is
provided inlpszFileNameyarameter. ThpvParamBlockparameter is a pointer to a LOADPARAMS structure.

ThesegEnWield in the LOADPARAMS structure contains the segment for the new application environment for the
application being launched. If it is set to 0, the new application receives a copy of the parent application's
environment block.

The IpszCommandLinparameter points to a null-terminated string (up to 120 characters long) that specifies the
command line string for the application being launched. It points to an empty string when no command line is
provided. It cannot be set to NULL.

The IpShowparameter is a pointer to an array of tidNT values. The first element of the arnayst be set to 2.
The second element is th€mdShowalue that is passed 8howWindow(When the main application window is
being shown.

If the IpszFileNamestring does not contain the full path, the following directories are searched:

- the current directory

- the Windows directory (retrieved l&etWindowsDirectory])

- the system directory (retrieved BetSystemDirectory))

- the directory containing the executable file for the current task (retrievéetdjoduleFileName))

- the directories listed in the PATH environment variable

- the directories mapped in the network
If the module to be loaded already resides in memoryl ¢tlaelModule()function creates another instance of the
application.

FreeModule()decreases by 1 the reference count of the module identified Irtstgparameter. If the reference
count is decremented to zero, the module is removed and all the memory associated with it is freed.

315.3 Returns

LoadModule()returns the instance handle of the loaded module, if it is successful. It returns the value less than
HINSTANCE_ERROR if it is unsuccessful.

FreeModule(returns TRUE if the module's memory has been freed. Otherwise, it returns FALSE.

315.4 Errors
The cause of failure of tHeoadLibrary() function and the error codes can be as follows:

- 13 -

0 There is insufficient memory to load the module or corrupted executable file.
2 The file is not found.

4 The path is not found.

5 A sharing or network-protection error has occurred.

8 There is insufficient memory to start the application.

11 An invalid executable file was discovered.

14 An unknown executable file type was discovered.

16 A second attempt was made to load an executable file with multiple data segments not
marked read-only.

19 The file is compressed.

20 A DLL file is invalid or one of the DLLs it requires is corrupt.

21 The library module needs 32-bit extensions not provided by the system.

315.5 Cross-References
LoadLibrary(), FreeLibrary(), WinExec()

316 GetModuleFileName, GetModuleHandle, GetModuleUsage
316.1 Synopsis
int GetModuleFileName(HINSTANCE hinst,LPSTR IpszFileName, int cbFileName);
HMODULE GetModuleHandle(LPCSTR IpszModule);
int GetModuleUsage(HINSTANCE hinst);

316.2 Description

GetModuleFileName(), GetModuleHandle(), and GetModuleUsage() are used to obtain information about a loac
module.

GetModuleFileName(Jetrieves the null-terminated filename, including the full path, of the file from which the
module specified byinst parameter has been loaded. Test parameter can be an instance handle or a module
handle.

ThelpszFileNamearameter points to a buffer to which the filename is copiedcBRgeNameparameter specifies
the length of the buffer. If the filename is longer than the buffer, it is truncated.

GetModuleHandle(pbtains a handle of the module specified by name itpzdloduleparameter.

GetModuleUsage(@eturns the reference count for the module specifiduitist parameter. Thilnstparameteran
be an instance handle or a module handle. The reference count of a module is increased by one by every c:
LoadLibrary() or LoadModule()and decreased by one by call$-teeModule()or FreeLibrary().

316.3 Returns

GetModuleFileName()returns the number of bytes copied to the buffer. Otherwise, it returns zero.
GetModuleHandle(yeturns the module handle. Otherwise, it returns ZeetModuleUsage()eturns the reference
handle of the given module. Otherwise, it returns zero.

316.4 Errors
None.

316.5 Cross-References
LoadLibrary(), LoadModule(), FreeLibrary(), FreeModule()

317 GetProcAddress
317.1 Synopsis
FARPROC GetProcAddress(HINSTANCE hinst, LPCSTR IpszProcName);

- 14 -

317.2 Description
The GetProcAddress(function retrieves the address of a function in the module specified itntparameter.
The hinstparameter can be either an instance handle or a module handle.

The IpszProcNameparameter specifies the function whose address must be obtained. If the function is to be
searched by name, tHpszProcNameparameter is a pointer to a null-terminated function name string. If the
function is identified by its ordinal, the high-order wordlp$zProcNamenust bezero and the low-order word

must contain the ordinal value of the function.

317.3 Returns

If the requested function exists in the module, the function returns it's address. If the function could not be located,
the return value is NULL.

317.4 Errors

None.

317.5 Cross-References
None.

318 MakeProclnstance, FreeProcinstance
318.1 Synopsis
FARPROC MakeProcinstance(FARPROC IpProc, HINSTANCE hinst);
void FreeProclnstance(FARPROC IpProc);

318.2 Description

The MakeProclnstance(junction creates a procedure instance of a given function. The address of the function is
specified inlpProc parameter.

The procedure instance binds an exported function to an instance data segment of the application identified by the
hinst parameter, so when the function is called, it has access tathein this segment. In thisay multiple
instances of an application can call the same function and the function is able to use instance-specific data.

Dynamic-link libraries (DLLs) cannot have multiple data instancesMakeProclnstance(yeturns the address
specified inlpProc parameter.

The procedure-instance address of the function should be used when passing the pointer of a callback function to the
system (for example, window procedure, enumeration procedure, etc.).

FreeProcInstance(frees the procedure instance specified in IpProc parameter. After the procedure instance has
been freed, it cannot be used to call the function.

318.3 Returns

The MakeProclInstance(Junction returns the procedure-instance address, if it is successful. Otherwise, it returns a
NULL.

318.4 Errors
None.

318.5 Cross-References
None.

319 LibMain
319.1 Synopsis
int CALLBACK LibMain(HINSTANCE hinst, WORD wDataSeg, WORD wHeapSize,

LPSTR IpszCmdLine);

- 15 -

319.2 Description
TheLibMain() function is an entry point of a dynamic-link library (DLL) and is called by the system at the time the
DLL is loaded. Every DLL should contain an exported procedure with this name.
Thehinst parameter is the instance handle of the DLL modulewibataSegparameter specifies the selector of the
data segment of the DLL. TheHeapSizgparameter provides the size of the local heap in that data segment. By the
time theLibMain() function is called, the local heap has already been initializedlpBa€mdLingoarameter is a
pointer to the command line string.

319.3 Returns
The function returns 1, if it is successful. Otherwise, it returns zero.

319.4 Errors
None.

319.5 Cross-References
WEP()

320 WEP

320.1 Synopsis
int CALLBACK WEP(int nExitType);

320.2 Description
The WEP()(Windows Exit Procedure) function in a dynamic-link library (DLL), is called bysifstem at the time
the DLL is unloaded. It performs whatever cleanup is needed. The DLL does not require an exported entry point.
ThenExitTypeparameter specifies the type of exit that is taking place. It can be one of the following:

WEP_FREE_DLL Only the given library task is being terminated.
WEP_SYSTEM_EXIT The whole system is shutting down.

320.3 Returns
The function returns 1, if it is successful. Otherwise, it returns zero.

320.4 Errors
None.

320.5 Cross-References
LibMain()

321 GetInstanceData

321.1 Synopsis
int GetlnstanceData(HINSTANCE hndlinst, BYTE *npDataBuff, int nbData);

321.2 Description
GetinstanceData(jnakes a copy of the previous instance of an application into the data area of the current instan
The parametehndlinst specifies a previous instance of the application which has to be cdpiedbarameter
npDataBuffcontains a pointer to the buffer that will contain the current instariee parametenbDataidentifies
the number of bytes to be copied.
The functionGetlinstanceData(if successful returns the number of bytes copied. Otherwise, it returns zero.

321.4 Errors

None.

- 16 -

321.5 Cross-References
None.

322 GetFreeSpace
322.1 Synopsis
DWORD GetFreeSpace(UINT uFlags);

322.2 Description
The GetFreeSpace(junction retrieves the number of bytes of free memory availdtle.uFlags parameter is
currently ignored. This function is not applicable to virtual memory systems.

322.3 Returns

GetFreeSpace(eturns the number of bytes of available memory, if it is successful.

322.4 Errors

None.

322.5 Cross-References

None.

323 GlobalAlloc, GlobalFree, LocalAlloc, LocalFree
323.1 Synopsis
HGLOBAL GlobalAlloc(UINT uFlags, DWORD dwBytes);
HANDLE GlobalFree(HANDLE hMem);
HLOCAL LocalAlloc(UINT uFlags, DWORD dwBytes);
HANDLE LocalFree(HANDLE hMem);

323.2 Description

The GlobalAlloc() function allocatesdlwBytesbytes and returns a handle to the memory segment that can be
accessed viglobalLock()

uFlags Values

GHND This value is
GMEM_ZEROINIT.

Description

equivalent to GMEM_MOVEABLE and

GMEM_DDESHARE

This value is used for DDE only; equivalent to GMEM_SHARE.

GMEM_DISCARDABLE"

This value marks the segment as discardable; can only bewitbe
GMEM_MOVEABLE.

GMEM_FIXED? This value marks the segment as fixed; GMEM_FIXED and
GMEM_MOVEABLE are mutually exclusive.

GMEM_GPTR This value is equivalent to GMEM_FIXED AND GMEM_ZEROINIT.

GMEM_LOWER This value is equivalent to GMEM_NOT_BANKED.

GMEM_MOVEABLE* This value marks the segment as moveable; GMEM_FIXED |and
GMEM_MOVEABLE are mutually exclusive.

GMEM_NOCOMPACT This value does not attempt to compact or discard memory.

GMEM_NODISCARD This value does not attempt to discard memory.

GMEM_NOT_BANKED? This value marks the segment as non-banked; cannot bewitheg
GMEM_NOTIFY.

GMEM_NOTIFY! This value calls the notification function if the segment is discarded.

GMEM_SHARE This value marks the segment as shared, accessible by | other

applications.

323.3

323.4

323.5

17 -

GMEM_ZEROINIT This value initializes the memory segment to zero.
GMEM_GPTR This value is equivalent to GMEM_FIXED and GMEM_ZEROINIT.

1 These flags are ignored in VM environments. However, this should not affect the functionality of your program.

2 These flags are non-portable and are currently ignored. Your code should not depend on these flags.

GlobalFree()frees the memory segment specified by the hamidiem GlobalFree()cannot free a lockeshemory
segment or a memory segment with a lock count greaterzran To find the number of locks onn@emory
segment, see th@&lobalFlags() function. Once a memory segment is freed, the handle to that memory segmer
should not be used again.

TheLocalAlloc() andLocalFree()functions call theslobalAlloc() andGlobalFree()functions respectively.

Returns

GlobalAlloc() and LocalAlloc() return a handle of the newdllocated memory segment, if thaye successful. If
unsuccessful, both functions return zero.

GlobalFree()andLocalFree()return zero, if they are successf@lobalFree()andLocalFree()also return zero, if
the handle passed to it does not exist. If unsucce&ihbalFree()andLocalFree()returnhMem

Errors
None.

Cross-References
GlobalLock(), GlobalUnlock(), GlobalFlags()

324 GlobalCompact, LocalCompact

324.1

324.2

324.3

324.4

324.5

Synopsis
DWORD GlobalCompact(DWORD MinFree);
DWORD LocalCompact(DWORD MinFree);

Description

The GlobalCompact(function rearranges the memory content ukftihFree bytes of memory can no longer be
rearranged.

LocalCompact() calls GlobalCompact().

Returns

GlobalCompact()and LocalCompact()return the number of bytes available in the largest contiguous memory
segment. IfMinFree is zero,GlobalCompact()returns the number of bytes available in the largest contiguous
memory segment if all discardable memory segments are removed.

GlobalCompact(andLocalCompact(currently do nothing and return 4194304 bytes.

Errors
None.

Cross-References
None.

325 GlobalFix, GlobalUnfix

325.1

Synopsis
void GlobalFix(HANDLE hMem);
void GlobalUnfix(HANDLE hMem);

- 18 -

325.2 Description

The GlobalFix() function prevents the global memory object specified ihthemparameter from moving in linear
memory.

The GlobalUnfix() function allows the global memoopject specified in thememparameter to be moved in linear
memory.

GlobalFix() andGlobalUnfix() are unnecessary in the virtual memory environment, and therefore, currently perform
no operation.

325.3 Returns
None.
325.4 Errors

None.

325.5 Cross-References
None.

326 GlobalFlags, LocalFlags
326.1 Synopsis
UINT GlobalFlags(HANDLE hMem);
UINT LocalFlags(HANDLE hMem);

326.2 Description

The GlobalFlags() function returns the flag associated with the global memory segment specified loyldhe
parameter.

TheLocalFlags()function callsGlobalFlags().

326.3 Returns

The functions return the flags and lock count of the speaifiechory segment, if thegre successful. The flags are
stored in the high-order byte and lock count in the low-order byte of the return value. Use the
GMEM_LOCKCOUNT mask on the return value to retrieve the lock count. If the harmdiey does not exist or is
invalid, GlobalFlags()andLocalFlags()return zero.

326.4 Errors
None.

326.5 Cross-References
None.

327 GlobalHandle, LocalHandle
327.1 Synopsis
DWORD GlobalHandle(LPVOID Ipaddress);

DWORD LocalHandle(LPVOID Ipaddress);

327.2 Description

The GlobalHandle()function searches for a memory segment that contpaddress and returns its associated
handle GlobalHandle()is functionally equivalent t&lobalHandle32()

The LocalHandle() function simply calls GlobalHandle().

- 19 -

327.3 Returns

GlobalHandle()andLocalHandle()return the handle associated with the memory segment that cdptadidsess
(Note: Ipaddresscan be on the boundary or in the middle of the memory segn®labalHandle() and
LocalHandle()return zero, if they are unsuccessful.

327.4 Errors
None.

327.5 Cross-References
None.

328 GlobalLock, GlobalUnlock, LocalLock, LocalUnlock

328.1 Synopsis
LPVOID GlobalLock(HANDLE hMem);

BOOL GlobalUnlock(HANDLE hMem);
LPVOID LocalLock(HANDLE hMem);
BOOL LocalUnlock(HANDLE hMem);

328.2 Description

The GlobalLock()andLocalLock()functions increment the lock count and lock the memory specified bhyMben
parameter. Locked memory cannot be moved or discarded unless realloc&leddireAlloc()or LocalReAlloc()
The memory segment remains locked until its lock count decreases to zero.

The GlobalUnlock()andLocalUnlock()functions decrement the lock count and unlock the memory specified by the
hMemparameter. SeBlobalFlags()or LocalFlags()to find the number of locks on a memory segment.

328.3 Returns
GlobalLock()andLocalLock()return a pointer to the memory segment, if they are successful.

GlobalUnlock() and LocalUnlock() return FALSE if the lock count fohMem reaches zero. Otherwise,
GlobalUnlock()andLocalUnlock()return a TRUE value.

328.4 Errors
None.

328.5 Cross-References
None.

329 GlobalLRUNewest, GlobalLRUOIdest
329.1 Synopsis
HGLOBAL GlobalLRUNewest(HGLOBAL hglb);
HGLOBAL GlobalLRuOldest(HGLOBAL hglb);

329.2 Description

The GlobalLRUNewest(function moves a memory segment to the newest LRU (least-recently-used) position in
memory. This reduces the likelihood of it being discarded sB8tobhalLRUOIdest()moves a memory segment to
the oldest LRU position in memory. This increases the likelihood of it being discardedzobalLRUNewest()
andGlobalLRUOIdest(are unnecessary in a virtual memory environment. Therefore, they currently do nothing.

329.3 Returns
GlobalLRUNewest() and GlobalLRUOIdest() both return value of hgldb.

329.4 Errors
None.

329.5

- 20 -

Cross-References
None.

330 GlobalNotify, NotifyProc

330.1

330.2

330.3

330.4

330.5

Synopsis
void GlobalNotify(GNOTIFYPROC NotifyProc);
BOOL CALLBACK NotifyProc(HGLOBAL hMem);

Description

The GlobalNotify() function sets the callback function pointed to by MwifyProc parameter. If5lobalNotify() is
called more than once, only the last installed procedure is notified.

TheNotifyProc()function is a user-defined, exported callback function of type GNOTIFYPROC, which is called by
the system whenever a global memory segment, allocated wi@MIEV_NOTIFY flag, is about to be discarded.

The function is passed to theemory segment's handle in itMemparameterNotifyProc() should not assume its

using the same stack segment as the application, nor should it call any routine that might move in memory.
NotifyProc()must be in a fixed code segment in a DDL.

The system does not call the notification procedure when discarding memory belonging to a DLL.

If the memory segment is discarded, the application should useGHEM NOTIFY flag when calling
GlobalRealloc()so that it will be notified when the object is discarded again.

Returns

NotifyProc() returns TRUE, if thenemory segment should be discarded. If the function returns FALSE, the block
will not be discardedGlobalNotify()does not return a value.

Errors
None.

Cross-References
None.

331
331.1

331.2

GlobalReAlloc
Synopsis
HGLOBAL GlobalReAlloc(HGLOBAL hMem, DWORD dwBytes, UINT uFlags);
Description

The GlobalReAlloc()function modifies the size or other attributes in a memory segment, specified lboylehe
parameter. If GMEM_MODIFY is not flagged in th&lags parameterGlobalReAlloc()resizes the memory
segment talwBytes TheuFlagsparameter can be a combination of the following values:

uFlags values Description

GMEM_DISCARDABLE" | This flag makes a previously moveable memory segment
discardable. (Can only be used with GMEM_MODIFY.)

GMEM_MODIFY This flag allows modification of the memory segment’s flags
only (dwBytes is ignored); it can be usedwith
GMEM_DISCARDABLE and GMEM_MOVEABLE.

GMEM_MOVEABLE* If a moveable memory segment is locked, this flag allows
the segment to be moved to a new locked location without
invalidating the handle.

When it is used with GMEM_MODIFYGlobalReAlloc()
changes fixed memory to moveable memory.

- 21 -

If the dwBytes parameter is non-zero and the segm
specified byhMemis fixed, GlobalReAlloc()will relocate
the memory segment to a new fixed location.

A previously moveable and discardable segment will
discarded ifdwBytesand the memory segment's lock co
are both zero.

GlobalReAlloc()fails if dwBytesand the memory segment
not moveable and discardable.

ent

be
int

S

GMEM_NODISCARD

This flag prevents memory from being discarded if ther
insufficient memory available. (Cannot be usedth
GMEM_MODIFY.)

e is

GMEM_ZEROINIT

This flag initializes additional memory tero, ifmemory is
being added to the segment. GMEM_ZEROINIT canno
used with GMEM_MODIFY.

t be

1 - These options are not necessary in a VM environment. In most implementations, they will simply be ignored.

331.3 Returns

GlobalReAlloc() returns the handle of the reallocated memory segment, if it is successful. If unsuccessft
GlobalReAlloc()returns zero.

331.4 Errors
None.

331.5 Cross-References
GlobalAlloc()

332 GlobalSize, LocalSize
332.1 Synopsis

DWORD GlobalSize(HANDLE hMem);
DWORD LocalSize(HANDLE hMem);

332.2 Description

The GlobalSize()and LocalSize() functions return the size of the memory segment specified byhNem

parameter.

LocalSize(allsGlobalSize()

332.3 Returns

The GlobalSize()andLocalSize(functions return the size (in bytes) of the memory segment specified by hMem, if
they are successful. If the handii®lemis not valid or the memory segment has been discardelthalSize()

andLocalSize(functionsreturn zero.

332.4 Errors
None.

332.5 Cross-References
None.

333 Locallnit, LocalShrink

333.1 Synopsis
BOOL Locallnit(UINT)

333.2

333.3

333.4

333.5

- 22 .

BOOL LocalShrink(UINT)

Description

TheLocallnit() andLocalShrink()functions are provided as stub functions that perform no actions.
Returns

These functions return TRUE if they are successful. Otherwise, they return FALSE.

Errors
None.

Cross-References
None.

334 Catch, Throw

334.1

334.2

334.3

334.4

334.5

Synopsis
int Catch(LPINT IpCatchBuf);
void Throw(LPINT IpCatchBuf, int nReturnCode);

Description

The Catch()function saves the current execution environment and stores it in the buffépCEtehBufparameter
points to the bufferCatch()is similar to the C library functiosetjmp

Throw() restores the execution environment from the buffer specified byp@etchBufparameterThrow() is
similar to the C library functiotongjmp

The execution environment is composed of the contents afystém registers and the instruction pointer. The
execution environment is copied into the CATCHBUF structure itp@atchBufbuffer.

Returns

Catch()returns zero after being called. When Tieow() function is called, the environment is restored. Execution
resumes from the point where t@atch()function returns again. This time, the return value ofGa&h()function
is thenReturnCodevalue, passed fbhrow() as a parameter.

Throw() never returns, except to send requested valuattd()

Errors
None.

Cross-References
None.

335 Yield, DirectedYield

335.1

335.2

Synopsis
void Yield(void);
void DirectedYield(hTask);

Description
TheYield() andDirectedYield(Jfunctions are used to pass control between multiple running tasks.

Yield() suspends the execution of the current task and passes the control to a waiting task that has messages waiting
in the message queue.

DirectedYield()passes control to a task specified in hfi@skparameter. The task is activated only if there is an
event in its queue. If no events are queued for the specified task, the control is passed to another waiting task. To
force the task to be activated regardless of the event statuRBpshppMessagefunction should be calledith
WM_NULL as a message identifier before callDgectedYield() so that an event is placed into the task's queue.

- 23 -

These functions return when the task regains control.
335.3 Returns

None.
335.4 Errors

None.

335.5 Cross-References
PostAppMessage()

336 GetCurrentTask
336.1 Synopsis
HTASK GetCurrentTask(void);
336.2 Description
The GetCurrentTask(junction retrieves the handle of the currently running task.
336.3 Returns
This function returns the handle of the current task.

336.4 Errors
None.

336.5 Cross-References
GetWindowTask()

337 GetNumTasks
337.1 Synopsis
UINT GetNumTasks(void);
337.2 Description
The GetNumTasksfunction returns the number of tasks currently running in the system.
337.3 Returns
This function returns the number of running tasks.
337.4 Errors
None.

337.5 Cross-References
None.

338 GetWindowTask
338.1 Synopsis
HTASK GetWindowTask(HWND hWnd);
338.2 Description
The GetWindowTask() function retrieves the handle of a task that created the window specified in hwnd paramet
338.3 Returns
This function returns the task handle, if it is successful. Otherwise, it returns zero.

338.4

338.5

- 24 -

Errors
None.

Cross-References
EnumTaskWindows(), GetCurrentTask()

339 IsTask
339.1 Synopsis
BOOL IsTask(HTASK hTask);
339.2 Description
ThelsTask()function checks whether the task handle specifiédaskparameter is valid.
339.3 Returns
This function returns TRUE, if the task handle is valid. Otherwise, it returns FALSE.
339.4 Errors
None.
339.5 Cross-References
None.
340 WinHelp
340.1 Synopsis
BOOL WinHelp(HWND hwnd, LPCSTR IpszHelpFile, UINT fuCommand,
DWORD dwData);
340.2 Description

The WinHelp() function invokes the Windows Help facility and optionally requests the application specific help
topic. ThelpszHelpFileparameter specifies the name of the help file that the application is about to display. The
fuCommandarameter can be as follows:

HELP_CONTEXT This value displays the help for a particular topicgthieataparameter

should contain the context number for the topic requested.
HELP_CONTENTS This value displays the help contentsgthieataparameter is ignored.
HELP_SETCONTENTS This value determines the contents topic that should be displayed when a

user presses F1 key; tdeDataparameter should contain the context
number for the topic requested as the contents topic.

HELP_SETCONTEXTPOPUP This value displays a pop-up window with the particular help topic; the
dwDataparameter should contain the context number for the topic
requested

HELP_KEY This value displays the topic that matches one found in the help's
keyword list. ThedwDataparameter should point to a string with the
target keyword; if more than one keyword is found, the help displays the
Search dialog with the topics listed in the GoTo list box.

HELP_PARTIALKEY This value displays the topic found in the help's keyword list. If the
dwDataparameter points to a string with the target keyword and more
than one keyword is found, the help displays the Search dialog with the
topics listed in the GoTo list box. If tilevDataparameter points to an
empty string, the help brings up the empty Search dialog with no
keywords in it.

340.3

340.4

340.5

- 25 -

HELP_MULTIKEY This value displays the topic found in the alternate help's keyword list;
thedwDataparameter should point to MULTIKEYHELP structure,
which specifies the footnote character and the keyword.

HELP_COMMAND This value executes the help macro;divDataparameter should point
to the character string with the macro to be executed.

HELP_SETWINPOS This value displays and positions the help window according to the data
passed iMwDataparameter; thdwDataparameter should point to
HELPWININFO structure, which specifies the size and position of the
primary or secondary help windows.

HELP_FORCEFILE This value tries to open the correct help file; if the file is already open by
Help, there is no action and tde/Dataparameter is ignored.
HELP_QUIT If no other applications have requested help, the Help application is
closed and thdwDataparameter is ignored.
Returns

TheWinHelp()function returns TRUE if it is successful. Otherwise, it returns FALSE.

Errors
None.

Cross-References
None.

341
341.1

341.2

341.3

341.4

EnumTaskWindows, EnumTaskWndProc

Synopsis
BOOL EnumTaskWindows(HTASK htask, WNDENUMPROC EnumTaskWndProc, LPARAM IParam);
BOOL CALLBACK EnumTaskWndProc(HWND hWnd, LPARAM IParam);

Description

The EnumTaskWindowsgunction enumerates all windows associated with a fBlskhTaskparameter contains
the handle to the task. THearam parameter contains a user-defined value. HinemTaskWndProparameter is a
pointer to an exported, user-defined, callback function that is called each tirBauheraskWindowsfunction
finds a window associated with the ta3khe EnumTaskWindowsfunction passes the window's handle and the
value of thelParam parameter to the callback function. The process continues until all of thewasisvs are
enumerated or until thEnumTaskWndProcallback function returns FALSE. ThenumTaskWindowsfunction
enumerates all top-level windows and does not consider child windows during its search.

The EnumTaskWndProc(junction is an exported, user-defined, callback function of type WNDENUMPROC
whose address is passed to tBeumTaskWindows(junction. The EnumTaskWindows(junction calls the
EnumTaskWndProcfunction each time that it finds a window associated with the TaskhWndparameter is a
handle to a window associated with a tabke IParam parameter is a user-defined value that was passed to the
EnumTaskWindowsfyinction when it was called.

Returns

If the EnumTaskWindows(unction is successful it returns TRUE. If tBaumTaskWindows(unction is not
successful, it returns FALSE.

The EnumTaskWndProcfunction should return TRUE to inform tlEnumTaskWindowsfunction to continue
enumerating the task's windows. THeumTaskWndProc(function should return FALSE to inform the
EnumTaskWindowsf)inction to stop enumerating the task's windows.

Errors

None.

- 26 -

341.5 Cross-References
None.

342 WinExec
342.1 Synopsis
UINT WinExec(LPCSTR IpszCmdLine, UINT uiCmdShow);
342.2 Description
The WinExec(function starts an application. The functionality is simildcaadModule().

ThelpszCmdLingparameter is a pointer to the command line string, providing the name of the executable file and
optional command-line parameters.

The uiCmdShowparameter specifies the show style for the new application. It is similar to the argument used in the
ShowWindow(junction.

If the IpszCmdLinestring does not contain the full path, the following directories are searched:
- the current directory
- the Windows directory (retrieved l&yetWindowsDirectory})
- the system directory (retrieved BetSystemDirectoryX)
- the directory containing the executable file for the current task (retrievégthjoduleFileName))
- the directories listed in the PATH environment variable
- the directories mapped in the network

342.3 Returns

This function returns an instance handle of the loaded module, if successful. Otherwise, an error value less than
HINSTANCE_ERROR is returned.

342.4 Errors
The cause of failure of th&inExec()function and the error codes can be as follows:

0 There is insufficient memory to load the module or corrupted executable file.

2 The file is not found.

4 The path is not found.

5 A sharing or network-protection error has occurred.

8 There is insufficient memory to start the application.

11 An invalid executable file was discovered.

14 An unknown type of executable file was discovered.

16 A second attempt was made to load an executable file with multiple data segments not
marked read-only.

19 The file is compressed.

20 A DLL file is invalid or one of the DLLs it requires is corrupt.

21 The library module needs 32-bit extensions not provided by the system.

342.5 Cross-References
LoadModule(), FreeModule()

343 WinMain
343.1 Synopsis
int WinMain(HINSTANCE hinst, HINSTANCE hPrevinstance, LPSTR IpszCmdLine, int nCmdShow);

- 27 -

343.2 Description

The WinMain() function is an initial entry point of an application and is called by the system to start the progran
The hinst parameter specifies the data instance of the application hPhevinstanceparameter is a previous
instance of the application, if the application is already running. l[feeCmdLineparameter points to the
command-line string for the application. ThEmdShovparameter determines how the application's main window
will be shown. The options are the same as they are foiGheShovparameter of th&howWindow(junction.

WinMain() of the application performs all necessary instance-specific initialization. If the first instance of the
application is being started (thePrevinstanceparameter is 0), imight also need to do some application
initialization. After initialization it provides the message loop that drives the application's execution. This loop i
responsible for dispatching the messages and vyielding control to other tasks. The normal termination of the 1
happens when it receivesvdM_QUIT message. In response, fénMain() function exits with the return value
passed by thBostQuitMessagefunction.

343.3 Returns
WinMain() returns the value passed to tRestQuitMessage(Junction or zero if it returns before entering the
message loop.

343.4 Errors

None.

343.5 Cross-References
GetMessage(), PostQuitMessage(), ShowWindow()

344 ExitWindows
344.1 Synopsis
BOOL ExitWindows(DWORD dwRetCode, UINT reserved);

344.2 Description

The ExitWindows()function shuts down the runtime environment with an option to restarh&.dwRetCode
parameter specifies thveay the system should be shut dowrhe high-order word oflwRetCodeshould be zero.
The low-order word is the value to be returned by #ystem on exit. If the low-ordecode is
EW_RESTARTWINDOWS, the system runtime should be restarted. IEMMSsREBOOTSYSTEM, the requested
action is to restart the computer, which is implementation-dependent.

The reserved parameter is not used and should be set to zero.

In response to the call xitWindows()the system sends the WM_QUERYENDSESSION message to all running
tasks. If one or more tasks return 0, the system is not shut down. If all tasks return non-zero, the system send
WM_ENDSESSION message to all tasks and terminates.

344.3 Returns

The ExitWindows()function returns FALSE if one or more tasks will not terminate. If the system is being shut
down, the function does not return.

344.4 Errors
None.

344.5 Cross-References
None.

345 GetAsyncKeyState
345.1 Synopsis
int GetAsyncKeyState(int keycode);

345.2

345.3

345.4

345.5

- 28 -

Description

The GetAsyncKeyStatefunction indicates, at the time the function is called, whether a particular key is up or
down. It also indicates if the key was pressed since the last call @etdsyncKeyStatetunction The keycode
parameter can have one of the 256 possible virtual-key codes. In thehesisehe keycodparameter contains the
value VK_LBUTTON or VK_RBUTTON, the status of the left or right mouse button is returned respectively,
regardless of whether tt®vapMouseButtonfunction had been called to redefine the meaning of the left and right
mouse buttons.

Returns

The function return value indicates if thkey was pressed since the last calGetAsyncKeyState@nd the status of
the key(UP or DOWN) If the most significant bit is set then the key is down. If the least significant bit is set then
that particular key has been pressed since the last call to the fuBetiagyncKeyState().

Errors

None.

Cross-References

GetKeyboardState(), GetKeyState(), SetKeyboardState(), SwapMouseButton()

346 qGetlnputState

346.1

346.2

346.3

346.4

346.5

Synopsis
BOOL GetlnputState(void);
Description

The GetlnputState(Junction checks the system queue and identifies mouse clicks or keyboard events that need to
be processed. It should be mentioned here that the system stores keyboard events (whidieacone or more

keys are pressed) and mouse events isythem queue and determines whether therenouse clicks or keyboard
events in the system.

Returns

The function returns TRUE if mouse clicks or keyboard events are found $gsteen queue. Otherwise, it returns
FALSE.

Errors
None.

Cross-References
EnableHardwarelnput()

347 GetKeyboardState, SetKeyboardState

347.1

347.2

Synopsis
void GetKeyboardState(BYTE *IpKeyStateBuf);
void SetKeyboardState(BYTE *IpKeyStateBuf);

Description

The GetKeyboardState(function copies the status of the 256 virtual-keybokeys to the buffer. The
IpKeyStateBuparameter contains a pointer to the 256-byte buffer into which the function copies the virtual-key
codes.GetKeyboardState(s called when a keyboard-input message is generated and retrieves the state of the
keyboard at the time the message is generated. A key is considered to be down if the high-order bit is set to 1.
Otherwise, the key is considered to be up. If the low-order bit is set to 1, the key is considered to be toggled. In the
case of toggle keys like NUMLOCK, SCROLL LOCK and CAPSLOCK, it is considered toggled if the key has been
pressed an odd numbertofes since the system was started, and is considered untoggled if the low-order bit is set
to zero.

347.3

347.4

347.5

- 29 -

The SetKeyboardStatefunction copies the contents of the 256-byte array buffer pointed to HgKkgStateBuf
parameter into the system keyboard state taille.[pKeyStateBuparameter contains a pointer to the 256-byte
array that contains the keyboard key states. Typically an application calls the fuetiteyboardStatefp obtain

the keyboard key states and then modifies the desired bytes before callBefKegboardStatefunction. In the

case of the NUMLOCK, CAPSLOCK, and SCROLL LOCK keys, the BIOS flags and LED's are set according t
the values of the VK_NUMLOCK, VK_CAPITAL, and VK_SCROLL entries of the array, respectively.

Returns

GetKeyboardStateJoes not return a value.
SetKeyboardState¢loes not return a value.

Errors
None.

Cross-References
GetKeyState()

348 GetKeyNameText

348.1

348.2

348.3

348.4

348.5

Synopsis
int GetKeyNameText(LONG |IParam, LPSTR IpszKeyBuffer, int nbMaxKey);
Description

The GetKeyNameText(Junction retrieves a string representing the name of the key.|Rdram parameter
identifies the 32-bit parameter of the keyboard message that needs to be procesketKeBuffeparameter
contains a pointer to the buffer in which the key name will be stdileelnbMaxKeyparameter is thenaximum
length in bytes of the keyname less the null-terminating charddtervalue of this parameter is usually the size of
the buffer identified by thdpszKeyBufferparameterminus one.The current keyboard driver that is in use
determines the format of the key-name string. If the name of the key is longer than one character, the dri
maintains a list in the form of character strings. Kég name is translated into the principal language supported by
the keyboard driver depending on the layout of the currently installed keyboard device.

Returns

This function returns the length of the string in bytes that segéed to the buffer identified by tHpszKeyBuffer
parameter, if it is successful. Otherwise, it returns zero.

Errors
None.

Cross-References
None.

349 GetKeyState

349.1

349.2

Synopsis
int GetKeyState(int vidkey);

Description

The GetKeyState(function obtains the state of the virtual key identified byvidkeyparameter. The obtained state
identifies if the key state is up, down, or togglétie vidkeyparameter identifies the virtual key. This parameter
should be set to the ASCII value of the character if the virtual key is a letter or digit (A-Z or 1-9), otherwiste it
be set to the virtual-key code.

This function is called when the keyboard-input message is sent and obtains the state of the key at the time the i
message is generated.

349.3

349.4

349.5

- 30 -

Returns

The function returns a valughich identifies the state of the given virtual key. Depending on the value of the high
and low-order bits, the keyay be up or down doggled. Thekey is considered to be down if the high-order bit is

1. Otherwise, it is considered to be up. A key is considered to be in a toggled state if the low-order bit is 1.
Otherwise, it is considered to be untoggled. A key is considered to be toggled if it has been presdediaber

of times since the system was started.

Errors

None.

Cross-References
GetAsyncKeysState(), GetKeyboardState()

350 GetKBCodePage

350.1

350.2

350.3

350.4

350.5

Synopsis
int GetKBCodePage(void);
Description

The GetKBCodePage(junction returns the current systerade page. This function is actually provided by the
keyboard driver. Therefore, an application that intends to call this function should include the following two lines in
the module definition file (.DEF):

IMPORTS
KEYBOARD.GETKBCODEPAGE

The file OEMANSI.BIN, if present, resides in tegstem directory and i®ad by thesystem before it overwrites

the OEM/ANSI translation tables in the keyboard driver. If the language that is chosen by the Setup program does
not use the default code page then the corresponding file for that language is copied into the OEMANSI.BIN file in
the system directory. If the selected language uses the dedal@tpage then the file OEMANSI.BIN is deleted

from the system directory if one is present.

Returns

If the functions is successful then it returns the code page that is currently in use by the system. The reilin value
identify which code page is being used as listed below.

437 Default (United States, used by most countries: indicates that there is no OEMANSI.BIN in
the Windows directory)
850 International (OEMANSI.BIN = XLAT850.BIN)
860 Portugal (OEMANSI.BIN = XLAT860.BIN)
861 Iceland (OEMANSI.BIN = XLAT861.BIN)
863 French Canadian (OEMANSI.BIN = XLAT863.BIN)
865 Norway/Denmark (OEMANSI.BIN = XLAT865.BIN)
Errors
None.
Cross-References
GetKeyboardType()

351 OemKeyScan

351.1

Synopsis
DWORD OemKeyScan(UINT idOemChar);

- 31 -

351.2 Description

The OemKeyScan(function converts OEM ASCII codes 0 through OxFF to their corresponding OEM scan code:
and shift states. ThdOemCharparameterdentifies the ASCII value of the OEM character. Characters that require
CTRL+ALT or deadkeys are not translated by this function, buist instead beopied by simulating the input
using the ALT+keypad mechanism, with the NUM LOCK key in the off position. In later versions of the keyboar
device drivers, this function calls thMkKeyScan(junction. TheOemKeyScan(unction is used primarily to send
OEM text to another application by simulating keyboard input.

351.3 Returns

The interpretation of the low-order and high-order word identifies the information returned. The low-order word c
the return value identifies the scan code of the specified OEM character. The high-order word contains the fl:
identifying the shift state:

- the SHIFT key has been pressed if bit 1 has been set
- the CTRL key has been pressed if bit 2 is set

If the character has not been defined in the OEM character tables then both the high- and low-ordeillwords
contain a value of -1.

351.4 Errors
None.

351.5 Cross-References
VkKeyScan()

352 MapVirtualKey
352.1 Synopsis
UINT MapVirtualKey(UINT idKkeyCode,UINT KeyMapType);
352.2 Description

TheMapVirtualKey()function converts the virtual-key code identified by ititeyCodeparameter to the scan code
or ASCII value, or vice-versa. ThdKeyCodeparameter identifies the virtual-key code or scan code fokdhe
The interpretation of this parameter depends on the value oKeliMapTypeparameter The KeyMapType
parameteidentifies the translation that has to be performed. If the value of this parameter isdKey@€odeis
identified as a scan code and is translated into a virtual-key code. If the value of the parameterdk&yGloele
is identified as a virtual-key code and is translated to an unshifted ASCII »alpether value that this parameter
can have is reserved.

352.3 Returns

The return value of this function depends on the value of the parandteyCodeandKeyMapType.
352.4 Errors

None.

352.5 Cross-References
OemKeyScan(), VkKeyScan()

353 VkKeyScan
353.1 Synopsis
UINT VkKeyScan(UINT idChar);
353.2 Description

The VkKeyScan(function converts a system character to a virtualdé@ye and shift state for the keyboard. The
idChar parameter identifies the character that needs to be converted. This function is most often used to fo
conversion for the main keyboard only. Therefore, the numeric keypad values (VK_NUMPADO througl

353.3

353.4

353.5

- 32 -

VK_DIVIDE) are ignored and not converted by this function. This function is also used by an application to send
characters, by using the WM_KEYUP and WM_KEYDOWN messages.

Returns

The virtual-key code is returned in the low-order byte and the shift state is returned in the high-order byte, if this
function is successful. The shift state can have on the following values:

1 The character is shifted.
2 The character is a control character.
3-5 A Shift-key combination that is not used for characters.
6 The character is generated by the CTRL+ALT key combination.
7 The character is generated by the SHIFT+CTRL+ALT key combination.
If no key is found that can be translated to the virtual key, the function returns -1.
Errors
None.
Cross-References
OemKeyScan()

354 SwapMouseButton

354.1

354.2

354.3

354.4

354.5

Synopsis
BOOL SwapMouseButton(BOOL bSwap);

Description

The SwapMouseButton(function sets the meaning of the right and left mouse buttonsb$h@apparameter
specifies the new meaning and can be one of the following values:

TRUE The left mouse button should generate right mouse button messages and the right mouse
button should generate left mouse button messages.
FALSE The right mouse button should generate right mouse button messages and the left mouse

button should generate left mouse button messages.
Note: The mouse is a shared resource and changing meaning of the mouse buttons affects all other applications.
Returns

SwapMouseButton(eturns TRUE if the meaning of the mouse buttons was reversed before the function was called.
The SwapMouseButtonfunction returns FALSE if the meaning of the mouse buttons was not reversed before the
function was called.

Errors
None.

Cross-References
None.

355 GetKeyboardType

355.1

355.2

Synopsis
int GetKeyboardType(int KbTypelnfo);
Description

The GetKeyboardType(function fetches the requested information about the keyboard that is currently in use. The
KbTypelnfoparameter identifies the type of keyboard information that has to be fetched by this function.

Note: It is the keyboard driver that makes this function available to the application. Hence, the following two lines
must be included in the application's module definition file (DEF).

- 33 -

IMPORTS
KEYBOARD.GETKEYBOARDTYPE

TheKbTypelnfoparameter can have one of the following values:

0 This value fetches the type of keyboard.
1 This value fetches the subtype of the keyboard.
2 This value fetches the total number of function keys on the keyboard.

When the subtype is fetched by this function, it can be one of the following values.
Note: The subtype value is OEM-dependent.

IBM PC/XT, or compatible (83-key) keyboard
Olivetti "ICO" (102-key) keyboard
IBM AT (84-key) or similar keyboard
IBM Enhanced (101- or 102-key) keyboard
Nokia 1050 and similar keyboards
Nokia 9140 and similar keyboards

7 Japanese keyboard
When the number of function keys is fetched by this function, it can be one of the following values, for each of t
seven keyboard types.

1 10
12 (sometimes 18)
10
12
10
24

7 This is a hardware-dependent value and must be specified by the OEM.
355.3 Returns
If the functionGetKeyboardType(¥s successful it returns the requested information. Otherwise, it returns zero.

355.4 Errors
None.

o OB~ W N P

o 01~ WN

355.5 Cross-References
None.

356 FindResource

356.1 Synopsis
HRSRC FindResource(HINSTANCE hinstance, LPCSTR Name, LPCSTR Type);

356.2 Description

The FindResource(junction returns a handle to a resource in a modulehlitstanceparameter is the instance of
the module whose that contains the resource. The parameter name is the pointer to a null-terminated st
containing the name of the desired resource. The type parameter is the resource type of the desired resource
type parameter can be one of the following system defined values:

RT_ACCELERATOR accelerator table resource
RT_BITMAP bitmap resource
RT_CURSOR cursor resource

RT_DIALOG dialog box resource

- 34 -

RT_FONT font resource
RT_FONTDIR font directory resource
RT_ICON icon resource
RT_MENU menu resource
RT_RCDATA user-defined resource
RT_STRING string resource

To reduce the amount of memory required for the resources used by an application, the application can refer to a
resource by its integer identifier instead of by its name. You can pass an identifieFitadiResource(junction in
two different ways.

If the name or type parameter's high-order word is zero, the integer identifier of the name or type of the resource can
be specified in the parameter's low-order word. If the name or type parameter's high-order word is not zero, it is
assumed to be a point to a string.

If the first character of the string is a pound sign (#), the other characters in the string can form a decimal humber
that is the integer identifier of the resource's name or type. The #8#8) for example, is the resource identifier,
343.

356.3 Returns
If the FindResource(junction is successful, it returns a handle to the resource. Find&esource(junction is not
successful, it returns NULL.

356.4 Errors
None.

356.5 Cross-References
None.

357 LoadResource, FreeResource

357.1 Synopsis
HGLOBAL LoadResource(HINSTANCE hinstance, HRSRC hResource);
BOOL FreeResource(HGLOBAL hGlobal);

357.2 Description
The LoadResource(function loads a resource into global memory and returns a handle to the memory. The
hinstance parameter is the instance of the module that contains the resouhteeStheceparameter is a handle of
the desired resource retrieved by usingRimelResource(junction.
The FreeResource(Junction frees a resource previously loaded by lthadResource(function. ThehGlobal
parameter is assumed to be the memory handle returned hpdt&esource(junction when the resource was
loaded.

357.3 Returns
If the LoadResource(function is successful, it returns a handle to the global memory containing the resource's data.
If the LoadResource(junction is not successful, it returns NULL. If theeeResource(junction is successful, it
returns TRUE. Otherwise, it returns FALSE.

357.4 Errors
None.

357.5 Cross-References

FindResource()

- 35 -

358 LockResource
358.1 Synopsis
void *LockResource(HGLOBAL hGlobal);
358.2 Description

The LockResource(function locks a resource that has been loaded into ghedadory and returns a pointer to the
resource's data. TheGlobal parameter is assumed to be the memory handle returned hyad&esource()
function when the resource was loaded. A resource's memory will not be discarded while it is locked.

358.3 Returns

If the LockResource(function is successful, it returns a pointer to the resource's data. Lothk&esource()
function is not successful, it returns NULL.

358.4 Errors
None.

358.5 Cross-References
LoadResource()

359 LoadString
359.1 Synopsis
int LoadString(HINSTANCE hinstance, UINT ResourcelD, LPSTR Buffer, int Count);
359.2 Description

The LoadString()function loads a string resource into a given buffer. flnstanceparameter is the instance of the
module that contains the resource. ResourcelDparameter contains the identifier associated with the resource.
The Buffer parameter is a pointer to a memory buffer where the striogpied. TheCountparameter contains the
size of the buffer.

359.3 Returns

If the LoadString()function is successful, it returns the number of bytes in the string that were copied into th
buffer. If theLoadString()function is not successful, it returns zero.

359.4 Errors
None.

359.5 Cross-References
LoadResource()

360 Loadlcon

360.1 Synopsis
HICON Loadlcon(HINSTANCE hinstance, LPCSTR ResourcelD);

360.2 Description
TheLoadlcon()function loads an icon resource from a module or one of the predefined system icons.

The hinstanceparameter is the instance of the module that contains the resource. If a system iconl@a8ethg
the value of thdlnstanceparameter should be NULL.

The ResourcelDparameteispecifies which icon resource to load and can be used in one of two differgntlf

you want to refer to the resource by name, the parameter can be a pointer to a null-terminated string containing
name of the icon resource. If you want to refer to the resource using an identifier, you can specify the icon resour
identifier in the parameter's low-word and its high-word should be set to zero. The MAKEINTRESOURCE macit
can be used to create this value.

- 36 -

The followingResourcelDvalues can be used to load a system icon:

IDI_APPLICATION generic application icon
IDI_ASTERISK asterisk icon
IDI_EXCLAMATION exclamation point icon
IDI_HAND hand-shaped icon
IDI_QUESTION guestion mark icon

An application should destroy any icons that it loads, by callin@p#stroylcon()function. System icons, however,
do not have to be destroyed.

360.3 Returns
If the Loadlcon()function is successful, it returns a handle to the loaded icon. Otherwise, it returns NULL.

360.4 Errors
None.

360.5 Cross-References
Destroylcon()

361 LoadBitmap

361.1 Synopsis
HBITMAP LoadBitmap(HINSTANCE hinstance, LPCSTR ResourcelD);

361.2 Description
The LoadBitmap()function loads a bitmap resource from a module or one of the predefined system bitmaps.

Thehlnstanceparameter is the instance of the module that contains the resource. If a system bitmagadadeing
the value of thdnInstanceparameter should be NULL.

The ResourcelDparameter specifies which bitmap resource to load from the file and can be used in one of two
different ways. If you want to refer to the resource by name, the parameter can be a pointer to a null-terminated
string containing the name of the bitmap resource. If you want to refer to the resource using an identifier, you can
specify the bitmap resource's identifier in the parameter's low-word and its high-word should be set to zero. The
MAKEINTRESOURCE macro can be used to create this value.

The followingResourcelDvalues can be used to load a system bitmap:

OBM_BTNCORNERS OBM_OLD_RESTORE
OBM_BTSIZE OBM_OLD_RGARROW
OBM_CHECK OBM_OLD_UPARROW
OBM_CHECKBOXES OBM_OLD_ZOOM
OBM_CLOSE OBM_REDUCE
OBM_COMBO OBM_REDUCED
OBM_DNARROW OBM_RESTORE
OBM_DNARROWD OBM_RESTORED
OBM_DNARROWI OBM_RGARROW
OBM_LFARROW OBM_RGARROWD
OBM_LFARROWD OBM_RGARROWI
OBM_LFARROWI OBM_SIZE

OBM_MNARROW OBM_UPARROW

361.3

361.4

361.5

- 37 -

OBM_OLD_CLOSE OBM_UPARROWD
OBM_OLD_DNARROW OBM_UPARROWI
OBM_OLD_LFARROW OBM_ZOOM
OBM_OLD_REDUCE OBM_ZOOMD

In order to use one of theystem bitmap values listed above, the constant OEMRESOURCE must be defined befol
the header file WINDOWS.H is included.

An application should destroy all bitmaps, even system bitmaps, that it loads by calldejateObject(function.

Returns
If LoadBitmap()is successful, it returns a handle to the loaded bitmap. Otherwise, it returns NULL.

Errors
None.

Cross-References
DeleteObject()

362 SetResourceHandler, LoadProc

362.1

362.2

362.3

362.4

362.5

Synopsis

RSRCHDLRPROC SetResourceHandler(HINSTANCE hinstance, LPCSTR ResourceType,
RSRCHDLRPROC LoadProc);

HGLOBAL CALLBACK LoadProc(HGLOBAL hResMem, HINSTANCE hinstance, HRSRC hResource);

Description

The SetResourceHandlerfunction can be used to install a callback function that loads resourceblnBlence
parameter is the instance of the module whose file contains the resouréesthece Typparameter specifies the
type of resource. For predefined resource types, the parameter's low-word should contain the resource type ar
high-word should be set to zero. The MAKEINTRESOURCE macro can be used to create this valoadPnec
parameter contains a procedure-instance addresRERCHDLRPROEallback function whose name has been
exported in the application's module-definition file.

A user-defined_oadProc() callback function receives information about a resource to be lockechRésMem
parametetis a handle to memory containing the resource. If the validReEMenis NULL, the resource is not
loaded into memory. If an error occusbien lockinghResMemthe resource has been discarded and needs to be
reloaded into memory. Theinstanceparameter is the instance of the module whose executable file contains the
resource. Th@Resourc@arameter is a handle of the resource created by usifgniti@esource(Junction.

Returns

If the SetResourceHandlerf)inction is successful, it returns a handle to the previously installed resource handler. |
no handler has been installed, 8&tResourceHandler(gturns a pointer to the system's default resource handler.

SetResourceHandlelg) return value is a global memory handle for memory that was allocated using the
GlobalAlloc() function's GMEM_DDESHARE flag.

Errors
None.

Cross-References
FindResource()

- 38 -

363 SizeofResource
363.1 Synopsis
DWORD SizeofResource(HINSTANCE hinstance, HRSRC hResource);
363.2 Description

The SizeofResourcefynction determines the size of a resource in byteshTitsanceparameter is the instance of
the module that contains the resource. MR&sourcegparameter is a handle of the resource created by using the
FindResource(junction.

363.3 Returns

If SizeofResource(} successful, it returns the size of the resource in bytes. Thermajubeadjusted to a larger
value due to memory alignment. If tB&zeofResourceflinction is not successful, it returns zero.

363.4 Errors
None.

363.5 Cross-References
FindResource()

364 LoadMenu
364.1 Synopsis
HMENU LoadMenu(HINSTANCE hinstance, LPCSTR ResourcelD);

364.2 Description

The LoadMenu()function loads an menu resource from a modUle hinstanceparameter is the instance of the
module that contains the resource. ResourcelDparameter specifies which menu resourcéoén and can be

used in one of two different ways. If you want to refer to the resource by name, the parameter can point to a null-
terminated string containing the name of the menu resource. If you want to refer to the resource using an identifier,
you can specify the menu resource's identifier in the parameter's low-word and its high-word should berset to

The MAKEINTRESOURCE macro can be used to create this value.

Before quitting, an application should use the functi@estroyMenu()to free any menus that have not been
associated with a window via ti&=tMenu(function.

364.3 Returns

If the LoadMenu()function is successful, it returns a handle to the loaded menu. Lbdd@Menu()function is not
successful, it returns NULL.

364.4 Errors
None.

364.5 Cross-References
DestroyMenu(), SetMenu()

365 LoadMenulndirect
365.1 Synopsis
HMENU LoadMenulndirect(const void *Menulnfo);

365.2 Description

The LoadMenulndirect()function creates a menu resource from the information supplied to the function. The
Menulnfoparameter is a pointer to a block of memory that contains information about the new menu resource. The
memory block contains aMENUITEMTEMPLATEHEADER structure followed by one or more
MENUITEMTEMPLATE structures.

-39 -

Before quitting, an application should use the funcbestroyMenu(}o free any menus that are not associafi¢ul
a window via thesetMenu(function.

365.3 Returns

If the LoadMenulndirect(¥unction is successful, it returns a handle to the loaded menu. Lb#dMenulndirect()
function is not successful, it returns NULL.

365.4 Errors
None.

365.5 Cross-References
None.

366 LoadAccelerators
366.1 Synopsis
HACCEL LoadAccelerators(HINSTANCE hinstance, LPCSTR AccelTableName);
366.2 Description

The LoadAccelerators(function loads an accelerator table into memory and returns a handle to the accelerat
table. Thehlnstanceparameter is the instance of the module that contains the resourcAcdédi@ableName
parameter is a pointer to a null-terminated string containing the name of the accelerator table.

366.3 Returns

If successful, theLoadAccelerators()function returns a handle to the accelerator table. If unsuccessful, the
LoadAccelerators(junction returns NULL.

366.4 Errors
None.

366.5 Cross-References
LoadResource()

367 AllocResource
367.1 Synopsis
HGLOBAL AllocResource(HINSTANCE hinst, HRSRC hrsrc, DWORD cbResource);
367.2 Description

The AllocResource(junction allocates uninitialized memory for the resource specified blyréne parameter. The
value ofhrsrc should have been created by callingFedResource(junction.

367.3 Returns

AllocResource(Jeturns the handle of the global memory block, if it is successful.
367.4 Errors

None.

367.5 Cross-References
FindResource(), LoadResource(), AccessResource()

368 BuildCommDCB

368.1 Synopsis
int BuildCommDCB(LPCSTR IpszDevcStr,DCB *IpDevcBIK);

368.2

368.3

368.4

368.5

- 40 -

Description

The BuildCommDCB(function converts the given device-definition control string into the appropriate serial device
control block codes. ThépszDevcStrparameter contains a pointer to a character string which specifies the
communication device control information. It should be noted that the format of the string should be the same as the
format of the "mode" command that is used in MSDOS, to setup the Serial Communications port (COM 1 through
COM 4).

ThelpDevcBlkparametecontainsa pointer to the Device Control Block structure (DCB).

Returns
If the BuildCommDCB(function is successful, it returns zero. Otherwise, it returns -1.

Errors
None.

Cross-References
SetComm()

369 ClearCommBreak, SetCommBreak

369.1

369.2

369.3

369.4

369.5

Synopsis
int ClearCommBreak (int NumComDev);
int SetCommBreak(int NumComDev);

Description

The ClearCommBreak(function returns the communications-device to nonbreak state and permits character
transmission to take place. This function resets the break state of the communication device that hawibieen set
the SetCommBreak(junction. TheNumComDevparameter specifies the communication device that is to be
restored. This parameter is the return value of the fun€jmenComm()

The SetCommBreakfunction puts the communication device specifiedNoynComDevn break state, suspending
the transmission of characters. TNemCombDevparameter which is returned by th®©penComm()function,
identifies the communication device that will be placed in the break Sthte.communication device can be
released by the application from this break (suspended) state by callDg#n€ommBreak(junction.

Returns

If ClearCommBreak(Js successful, the return value is zero. It returns -1 iNtmComDe\parameter contains an
invalid device.

If the functionSetCommBreak(¥ successful, the return value is zero. Otherwise, it is less than zero.

Errors
None.

Cross-References
OpenComm()

370 CloseComm, OpenComm

370.1

370.2

Synopsis
int CloseComm(int NumComDevV);
int OpenComm(LPCSTR IpszDevcstr, UINT nbinQueue, UINT nbOutQueue);

Description

The CloseComm(function closes the communications device identifiedNeynComDewvmaking sure that the
output queue is empty. If any characters are still in the output queue, these are sent before the communication device
is closed. Memory that was allocated for the device's transmission and receiving queues are fietCdmeDev

- 41 -

parameter is the device identification value that the fun@penComm(yeturns and identifies the device that has
to be closed.

The OpenComm(junction is used to open the communication device.lg$eDevcstparameter contains a pointer
to the null-terminated string which identifies the communication device €@ Serial communication port) or
LPTn (nth Parallel communication port).

The nbinQueuegparameteidentifies the number of bytes the receiving queue can contain in the case of the COM
devices. This parameter is ignored if the device is a parallel pornfLPT

ThenbOutQueugparameteidentifies the number of bytes the transmission queue can contain, in the case f COM
devices. This parameter is ignored if the device is a parallel pornfLPT

In the system, serial communication ports COM ports 1 through 9 and Parallel ports 1 through 3 are also suppor
OpenComm(Xails if the device driver does not support the communication port number that needs to be use
WhenOpenComm(js called, the communication device is initialized to the default settings for the dehick,
change these settings and initialize the device to the new settings use&biCtbmm State{linction.

Since the parallel communication port devices are not interrupt driven, the pararh&t€seueandnbOutQueue
are ignored and the queue size is set to zero.

370.3 Returns
If CloseComm()s successful, the return value is set to zero. Otherwise, it returns a negative number.
If OpenComm(js successful, the return value is set to zero. Otherwise, it returns a negative number.
370.4 Errors
Other than the return value, no other error information is provided yltiseComm(junction.

The OpenComm() function can return any of the following errors:

IE_BADID The device identifier is invalid or unsupported.
IE_BAUDRATE The device baud rate is unsupported.

IE_BYTESIZE The specified byte size is invalid.

IE_DEFAULT The default parameters are in error.

IE_HARDWARE The hardware is not available (is locked by another device).
IE_MEMORY The function cannot allocate the queues.

IE_NOPEN The device is not open.

IE_OPEN The device is already open.

If the OpenComm(Junction is called with both parametensinQueueandnbOutQueusset to zero, the return value
is set to IE_MEMORY if the device is already open. It is set to IE_OPEN, if the device is already open.

370.5 Cross-References
SetCommState()

371 EnableCommNotification
371.1 Synopsis
BOOL EnableCommNotification(int NumComDev, HWND hwnd, int nbWriteNotify, int nbOutQueue);

371.2 Description

The EnableCommNotification(junction toggles the state (Enable/Disable) of the WM_COMMNOTIFY message
that is posted to the given window. TReEmComDe\parameterwhich is returned by th®penComm(function,
identifies the communication device that posts notification messages to the given windolwvrithgarameter
specifies the handle of the window to which the message WM_COMMNOTIFY is sent. If this parameter is set
NULL, the function disables the posting of the messages to the current windombWhréeNotify parameter
specifies the number of bytes that are written by the COM driver to the application's input queue before sending

371.3

371.4

371.5

- 42 -

message that notifies the application that the input queue is ready to be read. If the value of this parameter is -1, the
WM_COMMNOTIFY message is sent to the window identified hwnd for CN_EVENT or CN_TRANSMIT
notification only.

When a timeout occurs before the number of bytes identified inmnlivgriteNotify parameter are sent, the
CN_RECEIVE flag is set before the WM_COMMNOTIFY message is sent. If in a message, the CN_RECEIVE
flag is set, the message is sent only when the size of the output queue is larger than the vahlEOoft(heeue
parameter. ThabOutQueugarameter specifies tmeinimum number of bytes thate there in the output queue. If
the value of this parameter is -1, the WM_COMMNOTIFY message is sent to the window identifiechdbgnly
on a CN_EVENT or CN_RECEIVE notification. If the number of bytes in the output queue decreases to a value
below the minimum value, theOM driver notifies the application by sending the notification message indicating
that more information needs to be written to the output queue.
Returns
If the function is successful, TRUE is returned. A return value of FALSE indicates one of the following:

- the COM port identified by NumCombDev is invalid

- an unopened port

- an unsupported function in COMM.DRV has been called

Errors
None.

Cross-References
WM_COMMNOTIFY

372 EscapeCommFunction

372.1

372.2

Synopsis
LONG EscapeCommFunction(int NumComDev, int NumFunction);
Description

The EscapeCommFunctionflnction requests the specified communication device to carry an extended function.
OpenComm(Jeturns theNumCombDeparameter that identifies the device used to carry out the extended function.
The NumFunctionparameter identifies the function code of the extended function. The possible values are listed
below:

CLRDTR This value clears the DTR (data-terminal-ready) signal.
CLRRTS This value clears the RTS (request-to-send) signal.
GETMAXCOM This value returns the maximum COM port identifier supported by the

system; this value ranges from 0x00 to Ox7F, such that 0x00 corresponds
to COM1, 0x01 to COM2, 0x02 to COM3, and so on .

GETMAXLPT This value returns the maximum LPT port identifier supported by the
system; this value ranges from 0x80 to OxFF, such that 0x80 corresponds
to LPT1, 0x81 to LPT2, 0x82 to LPT3, and so on.

RESETDEV This value resets the printer device if the idComDev parameter specifies
an LPT port; no function is performed if idComDev specifies a COM
port.

SETDTR This value sends the DTR (data-terminal-ready) signal.

SETRTS This value sends the RTS (request-to-send) signal.

SETXOFF This value causes transmission to act as if an XOFF character has been
received.

SETXON This value causes transmission to act as if an XON character has been

received.

- 43 -

372.3 Returns
If the function successful, the return value is zero. Otherwise, the value is less than zero.

372.4 Errors
None.

372.5 Cross-References
None.

373 FlushComm
373.1 Synopsis

typedef struct tagCOMSTAT {
BYTE status;
UINT cbinQue;
UINT cbOutQue;

} COMSTAT;

int FlushComm(int NumComDeyv, int idQueue);

373.2 Description

The FlushComm()function flushes all characters from either the transmission or receiving queue of the devic
identified by theNumComDeparameter. NumComDev, which is returned by@penComm(Junction, identifies

the communication device to be flushed. Td@ueueparameter identifies which queue is to be flushed. If the value
of theidQueueparameter is zero, the transmission queue is flushed. If the value is 1, the receiving queue is flushe

373.3 Returns

If the function is successful, it returns zero. If MiemComDeparameter is not a valid communication device, or if
theidQueueparameter is not a valid queue, the function returns a value less than zero. The function returns a ve
greater than zero if there is an error for the communication device identifddrbg€omDey

373.4 Errors
The list of all possible error values greater than zero returned by this function are listed below.
CE_BREAK The hardware detected a break condition.

CE_CTSTO A CTS (clear-to-send) timeout occurred; while a character was being
transmitted, CTS was low for the duration specified byf@tsHold
member of th&€ OMSTAT structure.

CE_DNS A parallel device was not selected.

CE_DSRTO A DSR (data-set-ready) timeout occurred; while a character was being
transmitted, DSR was low for the duration specified byfErsHold
member oCOMSTAT.

CE_FRAME The hardware detected a framing error.

CE_IOE An 1/O error occurred during an attempt to communicate with a parallel
device.

CE_MODE The requested mode is not supported, oNttrmComDeparameter is
invalid if set, CE_MODE is the only valid error.

CE_OOP A parallel device signaled that it is out of paper.

CE_OVERRUN A character was not read from the hardware before the next character

arrived; the character was lost.

- 44 -

CE_PTO A timeout occurred during an attempt to communicate with a parallel
device.
CE_RLSDTO An RLSD (receive-line-signal-detect) timeout occurred; while a character

was being transmitted, RLSD was low for the duration specified by the
fRIsdHold member o COMSTAT .

CE_RXOVER The receiving queue overflowed; there was either no room in the input
gueue or a character was received after the end-of-file character was
received.

CE_RXPARITY The hardware detected a parity error.

CE_TXFULL The transmission queue was full when a function attempted to queue a
character.

373.5 Cross-References

GetCommeError(), OpenComm()

374 GetCommError
374.1 Synopsis

374.2

374.3

374.4

typedef struct tagCOMSTAT {
BYTE status;
UINT cbinQue;
UINT cbOutQue;
} COMSTAT;
int GetCommError(int NumComDev, COMSTAT *devStat);

Description

The GetCommError()function returns the most recent error value for the communication device specified by the
NumCombDevparameter. It also returns the current status for the communication device specified by the
NumComDewarameter. When an error occurs, fiystem locks the communicatigrort until the error can be
cleared by this function. ThlumComDewarameter identifies the communication device to be examined. The
devStaiparameter is a pointer to t@OMSTAT structure, which receives the status of the communication device.

If this parameter is set to NULL, then only the error values are returned by this function

Returns

If the function is successful, the return value indicates the error value for the most recent communication function
call that was made to the device identified byNluenComDeparameter.

Errors
The return value for the function can be a combination of the following values:
CE_BREAK The hardware detected a break condition.
CE_CTSTO A CTS (clear-to-send) timeout occurred; while a character is transmitted,
CTS is low for the duration specified by tf&tsHold member of the
COMSTAT structure.
CE_DNS A parallel device was not selected.
CE_DSRTO A DSR (data-set-ready) timeout occurred; while a character is
transmitted, DSR is low for the duration specified byffberHold
member o COMSTAT.
CE_FRAME The hardware detected a framing error.
CE_IOE An I/O error occurred during an attempt to communicate with a parallel

device.

374.5

- 45 -

CE_MODE The requested mode is not supported, odtBemDewparameter is
invalid; if set, CE_MODE is the only valid error.

CE_OOP A parallel device signaled that it is out of paper.

CE_OVERRUN A character was not read from the hardware before the next character
arrived; the character was lost.

CE_PTO A timeout occurred during an attempt to communicate with a parallel
device.

CE_RLSDTO An RLSD (receive-line-signal-detect) timeout occurred; while a character

is being transmitted, RLSD is low for the duration specified by the
fRIsdHold member o COMSTAT .

CE_RXOVER The receiving queue overflowed; there is either no room in the input
gqueue or a character is received after the end-of-file character is received

CE_RXPARITY The hardware detected a parity error.

CE_TXFULL The transmission queue was full when a function attempted to queue a
character.

Cross-References
OpenComm()

375 GetCommEventMask, SetCommEventMask

375.1

375.2

Synopsis
UINT GetCommEventMask(int NumCombDev, int idEvtClear);
UINT *SetCommEventMask(int NumComDev, int idEvtMask);

Description

The GetCommEventMask{linction clears the event word of a communications device after retrieving this value.
NumComDevdentifies the communication device being examimdamCombDens returned by th©penComm()
function. TheidEvtClearparameter identifies the events cleared in the event word. The list of event values are :
outlined below in the functiosetCommEventMask(The application callSetCommEventMask{p enable the
event before this function can record the occurrence of an event. Where the communication device event is a
status or printer error, then the application should @GaiCommEventMaskfefore callingGetCommError()to
retrieve the error.

SetCommEventMaskénables the event word of the specified communications déioeComDevdentifies the
communication device to be enabled. This parameter is returned yp#r@Comm(function. TheidEvtMask
parameter identifies the events to be enabled. This parameter can have any of the following values:

EV_BREAK This value is set when a break is detected on input.

EV_CTS This value is set when the CTS (clear-to-send) signal changes state.
EV_CTSS This value is set to indicate the current state of the CTS signal.
EV_DSR This value is set when the DSR (data-set-ready) signal changes state.
EV_ERR This value is set when a line-status error occurs; line-status errors are

CE_FRAME, CE_OVERRUN, and CE_RXPARITY.

EV_PERR This value is set when a printer error is detected on a parallel device;
errors are CE_DNS, CE_IOE, CE_LOOP, and CE_PTO.

EV_RING This value is set to indicate the state of ring indicator during the last
modem interrupt.

EV_RLSD This value is set when the RLSD (receive-line-signal-detect) signal
changes state.

375.3

375.4

375.5

- 46 -

EV_RLSDS This value is set to indicate the current state of the RLSD signal.

EV_RXCHAR This value is set when any character is received and placed in the
receiving queue.

EV_RXFLAG This value is set when the event character is received and placed in the
receiving queue; the event character is specified in the device's control
block.

EV_TXEMPTY This value is set when the last character in the transmission queue is sent.

Returns

If GetCommEventMask{} successful, its return value is the current event-word for the communications device
specified byNumComDevThe bits in the event-word identifies whether a given event has occurred or not. The bit
is set to 1, if the event has occurred.

If SetCommEventMaskf successful, it returns a pointer to the event word for the communication device identified
by theNumCombDeparameterThe bits in the event word indicate whether a given event has occurred or not. A bit
is set to 1, if the event has occurred.

It should be noted that only events that are enabled are recorded. The f@ettommEventMask@lears the
event word after retrieving it.

Errors

None.

Cross-References

GetCommeError(), OpenComm()

376 GetCommState, SetCommsState

376.1

376.2

376.3

376.4

376.5

Synopsis
int GetCommState(int NumComDev, DCB *iddcb);
int SetCommState(DCB *iddcb);

Description

The GetCommStatefunction gets the device control block for the device identified bjNtmComDeyparameter.
The NumCombDeparameter identifies the communication device. This parameter is returned @ggh€omm()
function. Theiddcb parameter contains a pointer to th€B (Device Control Block) structure that defines the
different control settings for the communication device identifiedlbsnComDev

The SetCommStatefunction is used to set the communications device to the state specified by the settings in the
DCB structure. Theddcb parameter contains a pointer to fD€B structure, which defines the different control
settings for the communication device. It should be noted thadtheember of this structure should specify the
device.

This function reinitializes the hardware and controls of the communication device as identified BZBhe
structure but does not empty the transmission or receiving queues.

Returns
If GetCommStatef¥ successful, it returns zero. Otherwise, it returns a value of less than zero.

If SetCommState($ successful, it returns zero. Otherwise, it returns a value of less than zero.
Errors
None.

Cross-References
OpenComm()

- 47 -

377
377.1

377.2

377.3

377.4

377.5

ReadComm, WriteComm

Synopsis
int ReadComm(int NumComDev, void *IpdBuf,int nbRead);
int WriteComm(int NumComDeyv, void *IpdBuf, int nbWrite);

Description

The ReadComm(junction reads up to an indicated number of bytes from the communication device specified b
the NumComDevparameter. TheNumComDevparameter which is returned by th@penComm()function,
identifies the communication device. TipelBufparameter contains a pointer to the buffer that contains the bytes to
be read. ThebReadparameter identifies the number of bytes that are read from the buffer.

The WriteComm()function writes up to an indicated number of bytes to the communication device specified by th
NumComDewparameter. Th&lumComDeparameterwhich is returned by th©penComm(function, identifies

the communication device. ThedBuf parametecontains a pointer to the buffer containing the bytes to be written.
ThenbWriteparameter identifies the number of bytes to be written to the buffer.

Returns

If the functionReadComm()s successful, the return value contains the number of bytes that were read. If th
function is unsuccessful, the return value is less than zero and its absolute value identifies the number of bytes
were read. If the communication device is a parallel port, the return vadiwaigszero. It is good practice to call

the GetCommeError()function to check the error state even though the return value is zero, since errors can occ
when the number of bytes is zero. When an error occurs, the fu@at@ommError()is called to retrieve the error
state. If the return value is zero, there are no bytes present. If the return value is lessrhReddearameterthe
number of bytes in the receiving queue is less than that specified by this parameter. If the return value is eque
nbReadthere may be additional bytes that are queued for the device.

If the WriteComm()function is successful, the return value contains the number of bytes written. If the function i
unsuccessful, the return value is less than zero and its absolute value identifies the number of bytes written. In
of an error, th&etCommError(¥unction should be used to retrieve the error state.

If the communication device is a serial port then WeteComm()function deletes the data in the transmission
queue, if there is not enough room in the queue for the additional bytes. It is a good practice to check the avail:
space in the queue by calling tBetCommError()function before calling thgvriteComm()function. The size of

the transmission queue that is set whenQpenComm(junction is called, should be larger or at least equal to the
size of the largest expected output string that will be written.

Errors

None.

Cross-References
GetCommeError(), OpenComm(), TransmitCommChar()

378 TransmitCommChar, UngetCommChar

378.1

378.2

Synopsis
int TransmitCommChar(int NumComDev, char TransCh);
int UngetCommcChar(int NumCombDev, char UngetCh);

Description

The TransmitCommChar(function puts the specified character contained irnTlamsChparameteat the head of

the transmission queue of the device identified by MuenComDevparameter. TheNumComDevparameter
returned by théOpenComm(function, identifies the communication device. ThransChparameter contains the
character to be transmitted. This function cannot be called repeatedly if the device spedifiemdCiymDevs not
transmitting. If the function has placed a character in the transmission queue, this character should be transm
before the function is called again. This is done by checking the return value of this function.

378.3

378.4

378.5

- 48 -

The UngetCommChar(junction puts the specified character containedriigetChback in the receiving queue of

the device identified by thBlumCombDeparameterThe NumComDeparametereturned by theOpenComm()
function identifies the communication device. ThegetChparameter contains the character that is placed in the
receiving queue to be read bagken the nextead operation takes place. Once this function places a character in
the receiving queue, a read has to happen before this function can be called again.

Returns

The functionTransmitCommChar@eturns zero, if it is successful. The return value is less than zero if the character
could not be transmitted.

UngetCommChar(Jeturns zero, if it is successful. Otherwise, the return value is less than zero.

Errors
None.

Cross-References
OpenComm()

379 GetDriveType

379.1

379.2

379.2

379.4

379.5

Synopsis
UINT GetDriveType(int nDriveNumber);

Description

The GetDriveType(function reports whether the drive specified inBweveNumbermparameter is removable, fixed,
or remote. ThériveNumberparameteof value 0 is considered to specify drive A, a value of 1 specifies drive B,
and so on.

Returns
DRIVE_REMOVABLE removable media (for example, floppy disk drives)
DRIVE_FIXED fixed media (for example, hard disk drives)
DRIVE_REMOTE network drives

Errors

None.

Cross-References

None.

380 GetSystemDirectory

380.1

380.2

380.3

Synopsis
UINT GetSystemDirectory(LPSTR IpBuffer, UINT nSize);

Description

The GetSystemDirectoryunction retrieves the system directory that contains drivers, libraries, font files, and so
on.

The IpBuffer parameter points to a buffer which will contain a null-terminated string specifying the path to the
system directory. OninSizebytes will be copied to this bufféeFhe recommendehinimum valuefor nSizeis 144
bytes.

Returns

GetSystemDirectoryfeturns the number of bytes required (excluding the null-terminator) to store the full pathname
to the System directory, if it is successful.

- 49 -

380.4 Errors

380.5

None.

Cross-References
GetWindowsDirectory()

381
381.1

381.2

381.3

381.4

381.5

GetTempDrive

Synopsis
BYTE GetTempDrive(char cDrive Letter);
Description

The GetTempDrive(function returns a drive letter that can be used as temporary spacried etterparameter
is currently ignored.

Returns

The letter returned can range from A-Z. The case is not guaranteed. The drive letter A is assiboiabede
number 0, B with 1, and so on. If no drive letters are available, this function returns the letter of the current drive.

Errors
None.

Cross-References
None.

382 GetTempFileName

382.1

382.2

Synopsis

int GetTempFileName(BYTE cDrivelLetter, LPCSTR IpPrefixString, UINT uUnique,
LPSTR IpTempFileName);

Description

The GetTempFileName(junction creates a file name that can be used for temporary storage. These are tl
parameters associated with tAetTempFileNameunction

cDrivelLetter This parameter suggests a drive number for the temporary file to reside;
if zero, the default (current) drive is used.

IpPrefixString This parameter is a pointer to a NULL-terminated string to be used as the
prefix to the filename; the string must consist of OEM-defined characters.

uUnique If non-zero, this number will be appended to the temporary filename;
otherwise, the current system time will be used.

IpTempFilename This parameter is a pointer to a buffer, where the temporary filename will
be stored; this should be at least 144 bytes long. The application should
expect the filename to consist of only OEM-defined characters.

The file returned byGetTempFileName()s not deletedwhen the application exits. It is the application's
responsibility to remove the file on exit.

To avoid problems with OEM character strings and the system stringen()and_Iclose()should be used.
The following is the order of precedence (from highest to lowest) in which the drive letter is determined:
- TEMP environment variable
- alocal fixed disk

- thecDrivelLetterparameter

- 50 -

If the uUniqueparameter is zero, the function constructs a unique name for the temporary file, and thus attempts to
create the file. If the file already exists, it increments the unique identifier value and tries again. After it succeeds in
finding the filename, it closes the file and returns.

382.3 Returns

This function returns the unique number that is used to create the filename ulfniguie parameter is zero.
Otherwise GetTempFileNamegeturns theiUniqueparameter. ThipszTempFileNamparameter contains a string
of the form:

d:\path\prefixuuu.tmp

where

d: This value is a drive letter on which the temporary file will reside.

path This value is a path to the directory containing the temporary file; this is either the system
directory (sed&setWindowsDirectory})or the value of the TEMP environment variable.

prefix This value is a prefix to append to the file name. All letters of the string are used, however,
prefix is no longer than 3 letters.

uuu This value is a hexadecimal valueuddnique or a unique number based on the system
clock.

382.4 Errors
None.

382.5 Cross-References
lopen(), Iclose(), GetWindowsDirectory()

383 GetWindowsDirectory
383.1 Synopsis
UINT GetWindowsDirectory(LPSTR IpBuffer, UINT nSize);

383.2 Description

The GetWindowsDirectory(Junction returns the path to the system directory, which contains the applicaibn's
files, temporary files, and so on.

The IpBufferparameter is a pointer to a buffer that receives the path name. No monSibebytes are copied to
this buffer. A size of 144 bytes is the recommended minimum size for this buffer.

383.3 Returns
This function returns the number of bytes required to hold the entire path name (excluding the null-terminator).

383.4 Errors

None.

383.5 Cross-References
None.

384 OpenFile
384.1 Synopsis
HFILE OpenFile(LPCSTR IpFileName, OFSTRUCT *IpOfs, UINT wMode);

384.2 Description

The OpenFile() function creates, opens, reopens, or deletes a file. The following table describes the function's
parameters.

- 51 -

IpFileName This value is a pointer to a null-terminated string to the filename.

IpOfs This value is a pointer to structure that contains information about the opened file; that
structure can then be used in subsequent calpémFile()to refer to the opened file.

wMode This value specifies any special actions taken as well as the attributes of the file.

Values forwModecan be a combination of the following flags:

OF_CANCEL

OF_CREATE

OF_DELETE
OF_EXIST

OF_PARSE
OF_PROMPT

OF_READ
OF_READWRITE
OF_REOPEN
OF_SEARCH

OF_SHARE_COMPAT

OF_SHARE_DENY_NONE

OF_SHARE_DENY_READ

OF_SHARE_DENY_WRITE

OF_SHARE_EXCLUSIVE

OF_VERIFY

OF_WRITE

384.3 Returns
The Openfile()function returns a file handle that can be used with the standard C libraries, if it is successful.

When used in conjunction with OF_PROMPT, this flag adds a Cancel
button to the dialog box; pressing Cancel ca@msnFile()to return a
file-not-found error.

This flag creates a new file, or truncates the file if the file already exists.
Sharing flags are ignored when this flag is present; if sharing options are
required, the file is closed and reopened with the proper parameters.

This flag deletes the file.

This flag checks to see if the file exists; file and date/time stamp are not
modified.

This flag fills thgpOfs structure; no other action is performed.

This flag displays a dialog box if the requested file does not exist and
prompts the user to insert the disk containing the file in drive A.

This flag opens file for read only.
This flag opens file for read and write.
This flag reopens file with new parameters.

This flag searches in directories specified in the path as well as the
Windows and System directories ($&etWindowsDirectory(and
GetSystemDirectory)) even when given a full path.

This flag opens the file in compatibility mode; any other program can
open the file any number of timeé3penFile()fails if it has been opened
with any other sharing options.

This flag opens the file and allows any other program to open the file for
reading or writingOpenFile()fails if it has already been opened in
compatibility mode (OF _SHARE_COMPAT) or read-only mode by any
other program.

This flag opens the file and denies read access by any other program.
OpenFile()fails if it has already been opened in compatibility mode or
read access by any other program.

This flag opens the file and denies write access by any other program.
OpenFile()fails if it has already been opened in compatibility mode or
write access by any other program.

This flag opens the file with exclusive mode; it denies read or writes to
the file by all other program@penFile()fails if the file has already been
opened for read or write access by any program, including the current
one.

This flag compares the time and date in IpOfs with the one in the
specified file.OpenFile()returns HFILE_ ERROR if the dates and times
do not match.

This flag opens the file for writing only.

384.4

384.5

- 52 -

Note: This handlemaynot be valid. In particular, the OF _EXIST and OF_DELETE functions return a meaningless
value.

Errors
None.

Cross-References
None.

385
385.1

385.2

SetHandleCount
Synopsis
UINT SetHandleCount(UINT nHandles);
Description
The SetHandleCount(unction sets the number of file handles available to an application.

The nHandlesparameter sets the number of file handles available to an application. This value cannot be greater
than 255.

385.3 Returns
This function returns the number of file handles available to the application, if it is successful.
385.4 Errors
None.
385.5 Cross-References
None.
386 _Iclose
386.1 Synopsis

386.2

HFILE _Iclose(HFILE FileHandle);

Description

The_lIclose()function closes the file described by the file handle, FileHandle, which is of type HBJL&osing a
file, described byrileHandle with the_Iclose()function, the file becomes unusable for further read/write activities
until it is reopened.

386.3 Returns
If the function is successfuljclose()returns a value of zero. Otherwise, it will return a value of HFILE_ ERROR.
386.4 Errors
None.
386.5 Cross-References
_lopen()
387 _Iread
387.1 Synopsis

387.2

UINT _lIread(HFILE hFile, const void *BufferPtr, UINT NumBytes);

Description

The _lread() functionreads a specified number of bytes from a file into memory. The function supports objects that
are larger than 64K. ThHe~ile parameter contains a handle to an open file.BuféerPtrparameter is a pointer to a

- 53 -

memory buffer that will be used to store the datad from the file. Th&lumBytegparameter specifies the number
of bytes to read from the file.

387.3 Returns

If the function is successful, it returns the number of bytes read from the file. If the function encounters a fi
reading error other than the an end-of-file (EOF) error, it returns HFILE_ERROR.

387.4 Errors
None.

387.5 Cross-References
None.

388 Icreat

388.1 Synopsis
HFILE _Icreat(LPCSTR FileName, int FileAttr);

388.2 Description

The_lcreat() function opens a file, described BiteName for reading and/or writing. If the file to be opened does
not exist,_lcreat() will attempt to create the file first. THeleAttr parameter is used to describe how the file is to be
opened and/or created bicreat() The values valid foFileAttr are the following:

0 This value indicates a normal file; this file can be read and written to by anyone.

1 This value indicates a read-only file; this file can only be written to and cannot be opened fol
writing.

2 This value indicates a hidden file; this file has the hidden attribute and will not show up in
directory listings.

3 This value indicates a system file; this file is a system file and will not show up in directory
listings.

388.3 Returns

If _Icreat()is successful, it returns a file handle to the file nexwbated or opened. If there is an error in opening or
creating the file, an error value of HFILE_ERROR is returned.

388.4 Errors
None.

388.5 Cross-References
None.

389 lIseek

389.1 Synopsis
LONG _llseek(HFILE FileHandle, LONG OffsetFromCurrent, int StartPos);

389.2 Description

The _llseek()function moves the current file position pointer of the file describeBiley{andle (of type HFILE),
an offset ofOffsetFromCurrenfrom the position described I8tartPos() StartPos()contains a value describing the
place in the file from which to begin offsettir§tartPos()can have the following values:

- 54 -

0 Begin offsetting from beginning of the file.
1 Begin offsetting from current position in the file.
2 Begin offsetting from the end of the file.

389.3 Returns

The return value ofllseek()is the final offset, from the beginning of the file, to which the pointer is now aimed. If
the function was unsuccessful in completing the offset, the return value is HFILE_ ERROR.

389.4 Errors
None.

389.5 Cross-References
None.

390 _lopen
390.1 Synopsis

HFILE _lopen(LPCSTR FileName, int FileMode);

390.2 Description

The _lopen()function is used to open up a file as describedrilBName with the open options as described by
FileMode FileModecan have the following values:

REQUIRED:
READ
READ_WRITE
WRITE

OPTIONAL:
OF_SHARE_COMPAT
OF _SHARE_DENY_NONE
OF_SHARE_DENY_READ
OF_SHARE_DENY_WRITE

OF_SHARE_EXCLUSIVE

390.3 Returns

File is opened for read access only.
File is opened for read/write access.

File is opened for write access only.

Compatibility mode allows any process to open the file as many times as
they want; an error occurs when the file is opened with any other share
flag.

Do not deny read/write access to any other process; an error occurs if the
file was opened in compatibility mode.

Deny read access to any other process; an error occurs if the file was
opened in compatibility mode or any other mode allowing read access.

Deny write access to any other process; an error occurs if the file was
opened in compatibility mode or any other mode allowing write access.

Deny access completely to any other process; an error occurs if the file
was opened in any mode by any other process.

If _lopen()is successful, a file handle to the newlgened file is returned. If the function is unsuccessful, a

HFILE_ERROR is returned.

390.4 Errors
None.

390.5 Cross-References
None.

- 55 -

391
391.1

391.2

391.3

391.4

391.5

lwrite

Synopsis

UINT _Iwrite(HFILE hFile, const void *BufferPtr, UINT NumBytes);
Description

The _Iwrite() function writes a specified number of bytes of memory to aTle. function supports objects that are
larger than 64K. ThéFile parameter contains a handle to an open file. BlfferPtr parameter is a pointer to a
memory buffer that contains the bytes of data to write to theTfile NumBytegparameter specifies the number of
bytes in the memory buffer to write to the file. If the value of khemBytegparameter is zero, the functiovill
expand or truncate the file to the current file pointer position.

Returns

If the function is successful, it returns the number of bytes written to the file. If the function is not successful,
returns an error value of HFILE_ERROR.

Errors

None.

Cross-References
None.

392 RegCloseKey

392.1

392.2

392.3

392.4

392.5

Synopsis
LONG RegCloseKey (HKEY hkey);
Description

The RegCloseKey(function releases the handle of the key specified bykiesgparameter by closing the key. The
Registration Database is updated when all keys are closed.

Returns

If successful, the function returns ERROR_SUCCESS. Otherwise, it returns an error value.
Errors

None.

Cross-References
None.

393 RegCreateKey, RegOpenKey

393.1

393.2

Synopsis
LONG RegCreateKey(HKEY hkey, LPCSTR szSubKey, HKEY *IpResult);
LONG RegOpenKey(HKEY hkey, LPCSTR szSubKey, HKEY *IpResult);

Description

The RegCreateKey(junction either creates a Registration Database key or opens the specified key if it alreac
exists. TheszSubKeyarameter points to the string that specifies the name of the key to open or crejdBeshk
parameter is the address of the handle of the key created or opbabteyparameter is the handle of the parent
key which can be HKEY_CLASSES_ROOQT. It cannot be NULL.

The RegOpenKey(junction opens a Registration Database key. S2&ubKeyarameter points to the string that
specifies the name of the key to op&he IpResultparameter is the address of the handle of the key opened. The
hkeyparameter is the handle of the parent key which may be HKEY_CLASSES ROOT and cannot be NULL.

- 56 -

393.3 Returns
The RegCreateKey(function returns ERROR_SUCCESS, if it is successful. Otherwise, it returns an error value.
The RegOpenKey(function returns ERROR_SUCCESS, if it is successful. Otherwise, it returns an error value.
393.4 Errors
None.

393.5 Cross-References
None.

394 RegDeleteKey
394.1 Synopsis
LONG RegDeleteKey(HKEY hkey, LPCSTR szSubKey);
394.2 Description

The RegDeleteKey(junction deletes the Registration Database subkey specified sz $ubKeyparameter. The
hkey parameter defines the handle of the key whose subkey is to be ddlktetikey parameter can be
HKEY_CLASSES_ROOT.

394.3 Returns
If successfulRegDeleteKey(@eturns ERROR_SUCCESS. Otherwise, it returns an error value.

394.4 Errors

RegDeleteKey(Jeturns an error value if it fails. If the returned error is ERROR_ACCESS_DENIED, either the
application does not have the permission to delete the specified subkey or another application has the specified
subkey open.

394.5 Cross-References
None.

395 RegEnumKey
395.1 Synopsis
LONG RegEnumKey(HKEY hkey, DWORD iSubKey, LPSTR szBuffer, DIWORD cbBuffer);
395.2 Description

The RegEnumKey(function enumerates the subkeys of the Registration Database entry specifiedhixgythe
parameter, an open handle (which can be HKEY_CLASSES_ROOT)iStb&eyparameter is the index of the
subkey to be retrieved. It should be set to zero the firstRegEnumKey(is called. TheszBufferparameter is a
buffer of sizecbBufferinto which the name of the subkey is copiedR@gEnumKey()

395.3 Returns

If successfulRegEnumKey@eturns ERROR_SUCCESS. Otherwise it returns an error value.
395.4 Errors

None.

395.5 Cross-References
None.

- 57 -

396 RegQueryValue, RegSetValue
396.1 Synopsis
LONG RegQueryValue(HKEY hkey, LPCSTR szSubKey, LPSTR szValue, LONG *Ipchb);
LONG RegSetValue(HKEY hkey, LPCSTR szSubKey, DWORD fdwType, LPCSTR szValue,
DWORD cb);

396.2 Description

RegQueryValue(ueries the Registration Database and returns the vaiz&obKeyTheszSubKeyparameter is a
child of the Registration Database entry whose handikey RegQueryValue(Jeturns the value in thezValue
buffer, and the length of the value string in ipeb parameter.

RegSetValue(3ets the subkey specified bgSubKeyo a value stored iszValue If the szSubKeyarameter is
NULL or is a pointer to an empty strinBegSetValue@ets the value of tHekeyparameter. Thakeyparameter is
the non-NULL handle of the key whose subkey is to be modifibd fdwTypeparameter must be set to REG_SZ
for Windows 3.1. Theb parameteis the size ozValuein bytes. It is ignored biRegQueryValue(in Windows
3.1

396.3 Returns
RegQueryValue@eturns ERROR_SUCCESS, if it is successful.

RegSetValuefeturns ERROR_SUCCESS, if it is successful.

396.4 Errors
None.

396.5 Cross-References
None.

397 IsBadCodePtr
397.1 Synopsis
BOOL IsBadCodePtr(FARPROC FunctPtr);

397.2 Description

The IsBadCodePtr(¥unction validates the given pointer to executable code FlinetPtr parameter points to the
entry point of a function.

397.3 Returns

If the pointer is correct, thisBadCodePtr(function returns FALSE. If the pointer is incorrect, taBadCodePtr()
function returns TRUE.

397.4 Errors
None.

397.5 Cross-References
IsBadHugeReadPtr(), IsBadHugeWritePtr(), IsBadReadPtr(), IsBadStringPtr(), IsBadWritePtr()

398 IsBadHugeReadPtr
398.1 Synopsis
BOOL IsBadHugeReadPtr(const void _huge *MemPtr, DWORD Size);

398.2 Description

The IsBadHugeReadPtr(junction determines whether a huge pointer to readable memory is MadidMemPtr
parameter is a huge pointer to the first byte of the readable memory Bhecklock size can be bigger than 64k.
The Sizeparameter is the total number of bytes in the memory block.

-58 -

398.3 Returns

If the pointer is correct, thésBadHugeReadPtr(¥unction returns FALSE. If the pointer is incorrect, the
IsBadHugeReadPtrfunction returns TRUE.

398.4 Errors
None.

398.5 Cross-References
IsBadCodePtr(), IsBadHugeWritePtr(), IsBadReadPtr(), IsBadStringPtr(), IsBadWritePtr()

399 IsBadHugeWritePtr
399.1 Synopsis
BOOL IsBadHugeWritePtr(void _huge* MemPtr, DWORD Size);
399.2 Description

The IsBadHugeWritePtr()function validates the given huge pointer to a writable memory bibo&.MemPtr
parameter is a huge pointer to the first byte of the writable block. The block size can be bigger than 8i#de The
parameter is the total number of bytes in the memory block.

399.3 Returns

If the pointer is correct, thésBadHugeWritePtr()function returns FALSE. If the pointer is incorrect, the
IsBadHugeWritePtr(junction returns TRUE.

399.4 Errors
None.

399.5 Cross-References
IsBadCodePtr(), IsBadHugeReadPtr(), IsBadReadPtr(), IsBadStringPtr(), IsBadWritePtr()

400 IsBadReadPtr
400.1 Synopsis
BOOL IsBadReadPtr(const void *MemPtr, UINT Size);
400.2 Description

ThelsBadReadPtr(Junction validates the given pointer to readable memory MémPtrparameter is a pointer to
the first byte of the readable memory block. Hizeparameter is the total number of bytes in the memory block.

400.3 Returns

If the pointer is correct, thsBadReadPtr(function returns FALSE. If the pointer is incorrect, taBadReadPtr()
function returns TRUE.

400.4 Errors
None.

400.5 Cross-References
IsBadCodePtr(), IsBadHugeReadPtr(), IsBadHugeWritePtr(), IsBadStringPtr(), IsBadWritePtr()

401 IsBadStringPtr
401.1 Synopsis
BOOL IsBadStringPtr(const void *MemPtr, UINT Size);

- 59 -

401.2 Description

The IsBadStringPtr()function validates the given pointer to a string. MemPtr parameter is the pointer to the
first byte of the string.

Note: The string is null-terminated.
The Sizeparameter is the total number of bytes in the string.

401.3 Returns

If the pointer is correct, thdsBadStringPtr() function returns FALSE. If the pointer is incorrect, the
IsBadStringPtr(function returns TRUE.

401.4 Errors
None.

401.5 Cross-References
IsBadCodePtr(), IsBadHugeReadPtr(), IsBadHugeWritePtr(), IsBadReadPtr(), IsBadWritePtr()

402 IsBadWritePtr
402.1 Synopsis
BOOL IsBadWritePtr(void *MemPtr, UINT Size);

402.2 Description

ThelsBadWritePtr()function validates a given pointer to writable memory. MigenPtrparameter is the pointer to
the first byte of the writable block. Tt&zeparameter is the total number of bytes in the memory block.

402.3 Returns

If the pointer is correct, thsBadWritePtr()function returns FALSE. If the pointer is incorrect, teBadWritePtr()
function returns TRUE.

402.4 Errors
None.

402.5 Cross-References
IsBadCodePtr(), IsBadHugeReadPtr(), IsBadHugeWritePtr(), IsBadReadPtr(), IsBadStringPtr()

- 60 -

Section 5 - Application Support Functions

403 Extracticon

403.1

403.2

403.3

403.4

403.5

Synopsis
HICON Extracticon (HINSTANCE hinst, LPCSTR szBinary, UINT ilcon)
Description

The Extractlcon()function returns a handle to an icon stored insidesti&naryexecutable, DLL, or icon file. The
application that calls the functions is identified by kst parameter. Thalcon parameter specifies the index of
the icon to be retrieved. If the value ldtonis zero, the handle to the first icon is returned. If the value is -1, the
total number of icons in the file is returned.

Returns

If successfulExtractlcon()returns the handle to the requested icon. It returns the NULL value if the specified file
contains no iconExtracticon()returns 1 if the specified file in not an executable file, DLL, or icon file.

Errors
None.

Cross-References
None.

404 FindExecutable

404.1

404.2

404.3

404.4

Synopsis
HINSTANCE FindExecutable (LPCSTR IpszFile, LPCSTR IpszDir, LPCSTR IpszResult)
Description

FindExecutable()finds and retrieves the executable filename that is associated with a specified filename. The
IpszFile parameter points to a null-terminated string that specifies a filename (which can be a document or an
executable file). ThépszDir parameter points to a null-terminated string that specifies a full directory path for the
default directory. ThépszResulparameter points to a null-terminated string of an executable file.

Returns
If successfulFindExecutable(yeturns a value greater than 32.

Errors
If unsuccessfullFindExecutable(yeturns one of the following error codes:

404.5

- 61 -

Value Meaning

0 The system was out of memory, executable file was corrupt, or relocations were invalid.
2 The file was not found.

3 The path was not found.

5 An attempt was made to dynamically link to a task, or there was a sharing or network-

protection error.

6 A library required separate data segments for each task.

8 There was insufficient memory to start the application.

10 The Windows version was incorrect.

11 An executable file was invalid. Either it was not a Windows application or there was an error
in the .EXE image.

12 The application was designed for a different operating system.

13 The application was designed for MS-DOS 4.0.

14 The type of executable file was unknown.

15 An attempt was made to load a real-mode application (developed for an earlier version of
Windows)

16 An attempt was made to load a second instance of an executable file containing multiple
data. segments that were not marked read-only.

19 An attempt was made to load a compressed executable file. The file must be decompressec
before it can be loaded.

20 A dynamic-link library (DLL) file was invalid. One of the DLLs required to run this
application was corrupt.

21 An application requires Microsoft Windows 32-bit extensions.

31 There is no association for the specified file type.

Cross-References
None.

405 GetPrivateProfileString, GetProfileString

405.1

405.2

Synopsis
int GetPrivateProfileString(LPCSTR IpSect, LPCSTR IpKey, LPCSTR IpDefault, LPSTR IpReturn,
int nSize, LPCSTR IpFile);
int GetProfileString(LPCSTR IpSect, LPCSTR IpKey, LPCSTR IpDefault, LPSTR IpReturn, int nSize);

Description

The GetPrivateProfileString(Jand GetProfileString()functions return a string of data from an initialization file.
GetProfileString()is equivalent to the alternatigetPrivateProfileString(with the default windows initialization
file, WIN.INI.

A system initialization file consists of lines of text broken into named sections consisting of a string of characte
starting with the'[" character aneénding with the']" character,continuing to the next section delimited by the "["
and "]" characters. Lines starting with th&" or ";" character areomments strings, as are blank lines and are not
included in processing by the profile functions.

Data lines within a named section consist of a key string followed bY=theharacter followed by the key data.
Section names and key strings are case insensitive, and any leading and trailing blanks removed before
processing occurs.

The profile functions parameters consist of a section name, without the leading and trailing braces, the desired
string and a default string to return if the key string cannot be found, a buffer to store the requested key string dai
provided as well as a parameter specifying the length of the buffer. The default string is returned if the specified
cannot be found, the section does not exist or the key string cannot beTthandturned string is truncated to fit

405.3

405.4

405.5

- 62 -

into the user specified buffer if it too long. The default strimgy point to a zero length string which will have the
effect of copying an empty string to the users return buffer.

If no key string is provided, all key strings in the named section are returned separated by a NULL terminator, and
terminated by two NULL terminators. If the user specified return buffer is too smalluels data as possible is
copied including the two terminating NULL characters.

Returns

The profile functions return the number of characters copied into the return buffer, not including the terminating null
character. The user supplied buffer is filledwith the requested data, or the default string up to the size of the
buffer.

The functionswill return default data in the event that the file cannot be found or read, or the section or key data
cannot be found.

Errors
None.

Cross-References
WritePrivateProfileString(), WriteProfileString()

406 WritePrivateProfileString, WriteProfileString

406.1

406.2

406.3

406.4

406.5

Synopsis
BOOL WritePrivateProfileString(LPCSTR IpSect, LPCSTR IpKey, LPCSTR IpData, LPCSTR IpFile);
BOOL WriteProfileString(LPCSTR IpSect, LPCSTR IpKey, LPCSTR IpData);

Description

The WritePrivateProfileString(Jand WriteProfile String()functions write out a key string and its associated data to
the requested section of the specified file, or the default win.ini file. If the file does not exist, it is created. If the
section does not exist, it is created. If the key data exists, it is overwritten.

A system initialization file consists of lines of text broken into hamed sections consisting of a string of characters
starting with the'[" character angnding with the']" character,continuing to the next section delimited by the "["

and "]" characters. Lines starting with the" or ";" character areomments strings as are blank lines and are not
included in processing by the profile functions.

Data lines within a named section consist of a key string followed by=theharacterfollowed by the key data.
Section names and key strings are case insensitive and any leading and trailing blanks are removed before
processing occurs.

The write profile functions allow a givekey string and its data to be deleted if the key string data supplied is
NULL. A named section can be deleted along with all its associated key strings and key data, if the key string is
NULL.

Returns

The function returns TRUE, if it is successful. If it fails because the file is not writable or cannot be found, it returns
FALSE.

Errors

None.

Cross-References
GetPrivateProfileString(), GetProfileString()

407 GetPrivateProfilelnt, GetProfilelnt

407.1

Synopsis
UINT GetPrivateProfileInt(LPCSTR IpSect, LPCSTR IpKey, int nDefault, LPCSTR IpFile);

- 63 -

UINT GetProfileInt(LPCSTR ISect, LPCSTR IpKey, int nDefault);

407.2 Description
The GetPrivateProfileInt() and GetProfilelnt() functions return an integer value from the corresponding
initialization file. A default value can be supplied in case the key string in the requested named section cannot
found. Thekey string datamay beprecededvith the"+" and "-" characters, aran be given in hexadecimal format.
If the key string data is not a valid number, these functions return zero.

407.3 Returns
The return value is either an unsigned integer value retrieved from the specified initialization file or the defal
value supplied if the key string is not found in the appropriate section.
The functionswill return default data in the event that the file cannot be found or read, or the section or key da
cannot be found.

407.4 Errors
None.

407.5 Cross-References
GetPrivateProfileString(), GetProfileString()

408 AnsiLower, AnsiLowerBuff

408.1 Synopsis
LPSTR WINAPI AnsiLower(LPSTR IpszStr);
UINT WINAPI AnsiLowerBuff(LPSTR IpszString, UINT cbStr);

408.2 Description
The AnsiLower()andAnsiLowerBuff(¥unctions convert character strings to lowercaseiLower()converts all the
characters in the zero-terminated string. If a single character is passed whppeahword is zero, the character is
converted.AnsiLowerBuff()converts the number of characters specifiedcb$tr If cbStris zero, the length
defaults to 65,536.

408.3 Returns
AnsiLower()returns a pointer to the converted character string. If unsuccessful, it returns a value that contains
converted character in the low byte of the low wakdsiLowerBuff()returns the length of the converted string. If
unsuccessful, it returns zero.

408.4 Errors
None.

408.5 Cross-References

AnsiUpper()

409 AnsiUpper, AnsiUpperBuff

409.1

409.2

Synopsis
LPSTR WINAPI AnsiLower(LPSTR IpszStr);
UINT WINAPI AnsiLowerBuff(LPSTR IpszString, UINT cbStr);

Description

The AnsiUpper()andAnsiUpperBuff(functions convert character strings to uppercaassiUpper()converts all the
characters in the zero-terminated string. If a single character is passed whppeathword is zero, the character is
converted.

AnsiUpperBuff(converts the number of characters specifiedd$tr If cbStris zero, the length defaults to 65,536.

- 64 -

409.3 Returns

AnsiUpper()returns a pointer to the converted character string. If unsuccessful, it returns a value that contains the
converted character in the low byte of the low wdkdsiUpperBuff(returns the length of the converted string. If
unsuccessful, it returns zero.

409.4 Errors
None.

409.5 Cross-References
AnsiLower()

410 AnsiNext, AnsiPrev
410.1 Synopsis
LPSTR WINAPI AnsiNext(LPCSTR IpchCurrentChar);
LPSTR WINAPI AnsiPrev(LPCSTR IpchStartChar, LPCSTR IpchCurrentChar);

410.2 Description

The AnsiNext() and AnsiPrev() functions move to the next or previous characters in the string respectively.
AnsiPrev(requires a pointer to the starting character for reference.

410.3 Returns

These function return a pointer to the next or previous character in the simsijlext()returns a pointer to the
NULL character if it is encounterednsiPrev()returns a pointer to the starting character, iflgolaCurrentChar
parameter is equal to thechStartChamparameter.

410.4 Errors
None.

410.5 Cross-References
AnsiLower(), AnsiUpper()

411 IsCharAlpha
411.1 Synopsis
BOOL WINAPI IsCharAlpha(char chTest);

411.2 Description
ThelsCharAlpha()function tests if the character is in the set of alphabetic characters.

411.3 Returns
The function returns TRUE if the character is in the set. Otherwise, it returns FALSE.

411.4 Errors
None.

411.5 Cross-References
IsCharAlphaNumeric(), IsCharLower(), IsCharUpper

412 IsCharAlphaNumeric
412.1 Synopsis
BOOL WINAPI IsCharAlphaNumeric(char chTest);

412.2 Description
ThelsCharAlphaNumeric(junction tests if the character is in the set of alphabetic or numeric characters.

- 65 -

412.3 Returns

This function returns TRUE if the character is in the set. Otherwise, it returns FALSE.
412.4 Errors

None.

412.5 Cross-References
IsCharAlpha(), IsCharLower(), IsCharUpper

413 IsCharLower
413.1 Synopsis
BOOL WINAPI IsCharLower(char chTest);

413.2 Description

ThelsCharLower()function tests if the character is lower case.
413.3 Returns

This function returns TRUE if the character is lower case. Otherwise, it returns FALSE.
413.4 Errors

None.

413.5 Cross-References
IsCharUpper()

414 |sCharUpper
414.1 Synopsis
BOOL WINAPI IsCharUpper(chTest);
414.2 Description
ThelsCharUpper()function tests if the character is upper case.
414.3 Returns
This function returns TRUE if the character is upper case. Otherwise, it returns FALSE.
414.4 Errors
None.

414.5 Cross-References
IsCharLower()

415 Istrcmp, Istrcmpi
415.1 Synopsis
int WINAPI Istrcmp(LPCSTR IpszStrl, LPCSTR IpszStr2);
int WINAPI Istrcmpi(LPCSTR IpszStrl, LPCSTR IpszStrl);

415.2 Description

The Istrcmp() and Istrcmpi() functions compare two strings. Thetrcmp() function is case sensitive, while the
Istrcmpi()function is not.

415.3 Returns

These functions return a value less than zelmsiStrlis less thapszStr2 It returns zero if the strings are equal,
and greater than zerolfszStrlis greater thalpszStr2

- 66 -

415.4 Errors
None.

415.5 Cross-References
Istrcpy()

416 lIstrcat, Istrcpy, Istrcpyn
416.1 Synopsis
LPSTR WINAPI Istrcat(LPSTR IpszDest, LPCSTR IpszSrc);
LPSTR WINAPI Istrcpy(LPSTR IpszDest, LPCSTR IpszSrc);
LPSTR WINAPI Istrcpyn(LPSTR IpszDest, LPCSTR IpszSrc, int cChars);

416.2 Description

Thelstrcat() function concatenates the strilpgzSrcto the end ofpszDest Thelstrcpy() andIstrcpyn() functions
copy the contents from the stritigszSrcto the stringlpszDest including the NULL character. Thistrcpyn()
function only copiesCharsof string IpszSrcto IpszDest It pads the string with NULL characters to the end of
stringlpszSrc

416.3 Returns
These functions return a pointerdpszDestjf they are successful. Otherwise, they return NULL.
416.4 Errors

None.

416.5 Cross-References
Istrcmp()

417 Istrlen
417.1 Synopsis
int WINAPI Istrlen(LPCSTR IpszString);

417.2 Description
Thelstrlen() function determines the length of the string.

417.3 Returns
Thelstrlen() function returns the number of characters contained in the string, not including the NULL terminator.

417.4 Errors
None.

417.5 Cross-References
Istrcpy()

418 wsprintf, wvsprintf
418.1 Synopsis
int CDECL wsprintf(LPSTR IpszOut, LPCSTR IpszFmt, ...);
int WINAPI wvsprintf(LPSTR IpszOut, LPCSTR IpszFmt, const void * [pParams);

418.2 Description

The wsprintf() and wvsprintf() functions format and convert the characters and values into thelps#igut The
IpszFmtstring contains the objects that control the conversion.

- 67 -

Thewvsprintf()functionis equivalent to thevsprintf() function except that the variable argument list is replaced by
an array of values, specifying the arguments for the format string.

The format string has two types of objects, normal characters and conversion specifications. Normal characters
copied directly to the output string. A conversion specification begitls the character % and ends with a
conversion character. The conversion process is performed on the next consecutive argument in the argument li
the character following the % is not a valid format character, the single character is output to thesz@ing

Between the % and the conversion character, there may be one of the following:

- This object pads the output with blanks or zeros to left justify the output; if omitted, the
output is right justified.

0 This object pads the output with zeros to fill the field width.

This object prefaces hexadecimal values with Ox for lowercase, or 0X for upper case.

width This object is the minimum field width; the converted argument will be printed at least this
wide or wider.

precision This object is the minimum number of digits to be converted; if there are few digits, then the

output is padded on the left with zeros.
For strings, this object is the maximum number of characters to be converted.
type This object formats the argument as a character, a string or a number as shown below.
The following are valid conversion types:

d,i This type inserts a sighed decimal integer argument.

Id, li This type inserts a long signed decimal integer argument.

Ix, IX This type inserts a long unsigned hexadecimal integer argument in lower case or upper case
u This type inserts an unsigned integer argument.

lu This type inserts a long unsigned integer argument.

This type inserts a single character after conversion to an unsigned character.

This type inserts characters from the string until a NULL is reached or characters indicated
by the precision have been output.

% No argument is output; this type outputs a % character.
418.3 Returns

wsprintf() andwvsprintf() return the number of characters contained in the djpsrDut not including the NULL
terminator.

418.4 Errors
None.

418.5 Cross-References
Istrcpy()

419 IsDBCSLeadByte
419.1 Synopsis
BOOL IsDBCSLeadByte(BYTE TestChar);

419.2 Description

ThelsDBCSLeadBytefunction identifies whether the character specified bylégsCharparameter is a lead byte,
meaning it is the first character in a double-byte character set (DBCS).

The TestCharparameteiidentifies the character that needs to be tested. The current language driver determin
whether the character is in the set. However, if no language driver is set then an internal function is used by
system. It should be pointed out here, that each double-byte character in a character set has unique lead bytes
lead byte by themselves do not have any value, but the lead byte and the following byte, called a trailing by
together represent a single character.

- 68 -

419.3 Returns

The functionlsDBCSLeadByte(jeturns TRUE if the character is indeed a DBCS lead byte. Otherwise, it returns
FALSE.

419.4 Errors
None.

419.5 Cross-References
GetKeyboardType()

420 ToAscii
420.1 Synopsis
int TOAsCIii(UINT VirtkeyCode, UINT ScanCode, BYTE * IpKeyStateBuff, DWORD * IpTransKeyBulff,

UINT FlagState);

420.2 Description

The ToAscii() function converts the specified virtual-keycode and keyboard state to the corresponding windows
character or characters. ThetKeyCodeparameteidentifies the virtual-keycode to be converted. BeanCode
parameter identifies the hardware scan code okélyeto be converted. If the key is not in the pressed state, the
high-order bit of this value is set. ThegKeyStateBufjparametercontains a pointer to a 256-byte arnahich

contains the current keyboard state. Each element of the array contains the state of one key, with the high-order byte
indicating whether the key is in the pressed statee IpTransKeyBuffparameter contains a pointer to the
doubleword buffer, which will hold the translated system character or characteFagBéateparameter identifies

if the menu is active. If this value is set to 1, the menu is active. It is set to zero, if inactive.

ToAscii()does the conversion based on the virtual-key code, but in some caSearnf®dgarameter can be used
to differentiate between a key in the pressed state and the release@ilgatean-code is used in converting the
ALT+number key combinations. Where a previaigsadkey is stored in the keyboard buffer, the parameters to the
function ToAscii()may not be sufficient to convert the given virtual-key code.

420.3 Returns

If the function returns a negative value, the specified keydsad key. Otherwise, the return value can have one of
the following values and meaning.

2 Two characters were copied to the buffer; this is usually an accent and a dead-key character,
when the dead key cannot be translated.
1 One system character was copied to the buffer.
0 The specified virtual key has no translation for the current state of the keyboard.
420.4 Errors
None.

420.5 Cross-References
OemKeyScan(), VkKeyScan()

421 AnsiToOem, AnsiToOemBuff
421.1 Synopsis
void AnsiToOem(constr char _huge *WindowsSet, char _huge *OemSet);
void AnsiToOemBuff(LPCSTR WindowsSet, LPSTR OemSet, UINT BufferSize);

421.2 Description

The AnsiToOem(function takes the string defined lyindowsSeand converts it into the OEM format specified.
The resultant string is stored in the buffer pointed t@bynSet.

421.3

421.4

421.5

- 69 -

The AnsiToOemBuff(junction performs the same functionAassiToOem()but has the buffer size contained in the
BufferSizeparameterBufferSizedefaults to 64K, if it is given the value zero.

Returns
None.

Errors
None.

Cross-References
OemToAnsi(), OemToAnsiBuff()

422 OemToAnsi, OemToAnsiBuff

422.1

422.2

422.3

422.4

422.5

Synopsis

void OemToAnsi(const char _huge *OemBuffer, char _huge *WindowsBuffer);

void OemToAnsiBuff(LPCSTR OemBuffer, LPSTR WindowsBuffer, UINT BufferSize);
Description

The OemToAnsi(function takes an OEM-defined strin@emBuffer and converts it into a window string, placing
the resultant string in the buffal/indowsBuffer

The OemToAnsiBuff(function performs the same function @emToAnsi() however, the size ddemBufferis
specified byBufferSize. BufferSiaiefaults to 64K, if it is given the value zero.

Returns
None.

Errors
None.

Cross-References
OemToAnsi(), OemToAnsiBuff()

423 CopyRect, SetRect, SetRectEmpty, InflateRect, OffsetRect

423.1

423.2

Synopsis
typedef struct tagRECT {
int left;
int top;
int right;
int bottom;
} RECT, *LPRECT;
void CopyRect(LPRECT IprcDest, LPRECT lprcSrc);
void SetRect(LPRECT Iprc, int nLeft, int nTop, int nRight, int nBottom);
void SetRectEmpty(LRECT lprc);
void InflateRect(LRECT Iprc, int X, int y);
void OffsetRect(LPRECT Iprc, int X, int y);

Description
These functions modify the contents of the specified rectangle.

- 70 -

The CopyRect(function copies the elements from the source rectangle to the destination rectangle.

The SetRect()function copies the given parameterd,eft nTop nRight and nBottom to the corresponding
elements in the specified rectangle.

The SetRectEmptyfunction sets each of the elements in the specified rectangle to zero.

The InflateRect()function addsx to theright andleft elements, ang to thetop and bottom elements of the
specified triangle. Negative valuesxobr y shrink the rectangle in that dimension, while positive values increase the
size of the rectangle in that direction.

The OffsetRect(function moves the specified rectangle by the amounts giverx Valeie is added to both theft
andright element, while thg value is added to both thep andbottom elements of the given rectangle. Either of
thex ory values can be negative to move the rectangle up or left, or positive to move the rectangle right or down.

423.3 Returns
None.

423.4 Errors
None.
423.5 Cross-References

EqualRect(), IsRectEmpty(), PtinRect(), InflateRect(), OffsetRect(), IntersectRect(), UnionRect(), SubtractRect(),
RECT

424 EqualRect, IsRectEmpty, PtinRect
424.1 Synopsis
typedef struct tagRECT {

int left;
int top;
int right;
int bottom;
} RECT, *LPRECT;
type struct tagPOINT {
int x;
inty;
} POINT, *LPPOINT;
BOOL EqualRect(LPRECT Iprcl, LPRECT Iprc2);
BOOL IsRectEmpty(LPRECT Iprc);
BOOL PtinRect(LPRECT lIprc, LPPOINT Ippt);

424.2 Description

These functions test various conditions about a rectaiglealRect()compares each element of the first rectangle
to its corresponding element in the second rectangle. If they are the same, the rectangles &sRexiEahpty()
checks to see if the given rectangle is empty. A rectangle is empty if eitheigine(bottom- top), or width (right

- left), is less than or equal to zero.

PtinRect()checks to see if the poiltre lies within the rectangle.

424.3 Returns

EqualRect()returns TRUE if the two rectangles are equal. Otherwise, it returns FAERECtEmpty(returns
TRUE if the rectangle is empty. Otherwise it returns FALBERect()returns TRUE if the point is the rectangle,
otherwise it returns FALSE.

- 71 -

PtinRect()returns TRUE if the point Ippt iwithin the rectangle. It also returiRUE if the point is on the top or
left side. OtherwiseRtinRect()returns FALSE.

424.4 Errors

None.

4245 Cross-References

CopyRect(), SetRect(), SetRectEmpty(), InflateRect(), OffsetRect(), IntersectRect(), UnionRect(), SubtractRect()

425
425.1

425.2

425.3

425.4

425.5

IntersectRect, UnionRect, SubtractRect
Synopsis
BOOL IntersectRect(LPRECT IprcDest, LPRECT IprcSrc, LPRECT IpreDiff);
BOOL UnionRect(LPRECT IprcDest, LPRECT IprcSrc, LPRECT IprcDiff);
BOOL SubtractRect(LPRECT IprcDest, LPRECT IprcSrc, LPRECT IpreDiff);
Description

These functions combine two source rectandfesSrc andlprcDiff, to generate a new rectangle, whicktisred in
IprcDest

IntersectRect(freates a new rectangle consisting of the largest rectangle that is contained in both source rectang
UnionRect()creates the minimum rectangle that completely encloses both of the two source rectangles.

SubtractRect(kreates a new rectangle that is the result of subtracting one rectangle from arteghessulting
rectangle is identical to the source rectangle if the subtraction rectangle does not completely contain the heigh
width of the source rectangle.

Returns

If the result of the operation creates an empty rectangle, the result is FALSE. If it is not empty, the result is TRUE
Errors

None.

Cross-References

CopyRect(), SetRect(), SetRectEmpty(), InflateRect(), OffsetRect(), EqualRect(), IsRectEmpty(), FREBREct(),

426 OutputDebugString

426.1

426.2

426.3

426.4

426.5

Synopsis
void OutputDebugString(LPCSTR IpszStr);

Description

The OutputDebugString(junction outputs the null-terminated strilpgzStrto the debugger. The debuggeust be
running for the output to appear.

Returns
None.

Errors
None.

Cross-References
DebugOutput()

- 72 -

427 DebugOutput
427.1 Synopsis
void _cdecl DebugOutput(UINT flags, LPCSTR IpszFmt, ...);
427.2 Description

The DebugOutput(function outputs a message to the debugger. The deboggtrbe running for the output to
appear. Thélags parameter controls the type of message the debugger receives and is one of the following:

DBF_TRACE This value reports that no error has occurred.
DBF_WARNING This value reports a warning that may or may not be an error.
DBF_ERROR This value reports an error resulting from an API function call.
DBF_FATAL This value reports an error that will terminate the application.

The application formats the output in the same mannerspsntf(). ThelpszFmtstring contains the objects that
control the conversion. See the descriptionAfisprintf() for detailed formatting information.

The... argument is for zero or more arguments, the number and type of which are determined by the format string
I[pszFmt

427.3 Returns
None.

427.4 Errors
None.

427.5 Cross-References
OutputDebugString()

428 FatalAppExit
428.1 Synopsis
void FatalAppEXxit(UINT action, LPCSTR IpszMessage);
428.2 Description

The FatalAppEXxit() function displays the null-terminated strifigszMessagen a message box. The message is
displayed on a single line, so it should not be longer than 35 characters. When the user acknowledges the message
the application is terminated.

The action parameter is reserved and must be zero.
428.3 Returns

None.

428.4 Errors
None.

428.5 Cross-References
FatalExit()

429 FatalExit
429.1 Synopsis
void FatalExit(int nErrCode);

429.2

429.3

429.4

429.5

- 73 -

Description

The FatalExit() function displays the error coaérrCodein the debugger and halts execution. If the debugger is
running, the user can terminate the application or continue. If the debugger is not running, the application
terminated.

Returns
None.

Errors
None.

Cross-References
FatalAppEXxit()

430 QuerySendMessage

430.1 Synopsis
BOOL QuerySendMessage(HANDLE hOne, HANDLE hTwo, HANDLE hThree, LPMSG IpMsg);

430.2 Description
The QuerySendMessageflunction determines whether a message sent byS#mdMessage(junction was
originally sent by the current task. If the message is being sent along with other tagkgey®endMessage()
function puts it into the MSG structure, specified bylfiddsg parameter. Parametdr®ne hTwoandhThreemust
be NULL.

430.3 Returns
The QuerySendMessagef{)nction returns FALSE if the message originates within the current task. Otherwise, it
returns TRUE.

430.4 Errors
None.

430.5 Cross-References
SendMessage(), PostMessage(), ReplyMessage()

431 Lockinput

431.1 Synopsis
BOOL Lockinput(HANDLE hOne, HWND hwndinput, BOOL fLock);

431.2 Description
If the fLock parameter is TRUE, thieockinput()function locks keyboard and mouse input to all tasks except the
current one. The lockedindow becomes system modal, that is it receives all input events flfdtieparameter is
FALSE, all locked windows are unlocked. Th@®neparameter should be NULL.

431.3 Returns
TheLocklinput()function returns TRUE if it is successful. Otherwise, it returns FALSE.

431.4 Errors
None.

431.5 Cross-References

Yield(), DirectedYield()

- 74 -

432 FlashWindow
432.1 Synopsis
BOOL FlashwWindow(HWND hWnd, BOOL blinvert);

432.2 Description

The FlashWindow()function flashes a window by toggling its tithar. This toggle effect is the same as if the
window was activated and deactivated, or vice versa.

The binvert parameter specifies to flash the window or restore it to its original stabénvértis TRUE, the
window is flashed from one state to another. If it is FALSE, the window is restored to its original state.

If the window is minimized, thblnvertflag is ignored and its icon is flashed.
432.3 Returns

The function returns TRUE if the window was active before the call, and FALSE if it was inactive.
432.4 Errors

None.

432.5 Cross-References
MessageBeep()

433 MessageBeep
433.1 Synopsis
void MessageBeep(UINT uAlert);

433.2 Description

The MessageBeepfunction plays a sound corresponding to the alert level specifiedleyt The sound played at
each alert level is determined by the entry in the [sounds] section of the WIN.INI file.

The alert leveluAlert can be one of the following. The entry specified is located in the [sounds] section of the

WIN.INI file.
-1 Standard beep.
MB_ICONASTERISK Sound in the SystemAsterisk entry.
MB_ICONEXCLAMATION Sound in the SystemExclamation entry.
MB_ICONHAND Sound in the SystemHand entry.
MB_ICONQUESTION Sound in the SystemQuestion entry.
MB_OK Sound in the SystemDefault entry.
433.3 Returns
None.
433.4 Errors
None.

433.5 Cross-References
MessageBox()

434 MessageBox

434.1 Synopsis
int MessageBox(HWND hWndParent, LPCSTR IpszMessage, LPCSTR IpszTitle, UINT uStyle);

- 75 -

434.2 Description

The MessageBox(function displays the null-terminated stripgzMessagé a dialog box window. The dialog box
title is set to the null-terminated strimgszTitle The hwWndParentparameter is the parent of the dialog box, this
parameter may be set to NULL for no parent. BiSgyleparameter allows control over the contents and behavior of
the dialog box. It can be a combination of the following values:

MB_ABORTRETRYIGNORE
MB_OK

The dialog has Abort, Retry, and Ignore push buttons.
The dialog only contains the OK push button.

MB_OKCANCEL
MB_RETRYCANCEL
MB_YESNO
MB_YESNOCANCEL
MB_DEFBUTTON1

MB_DEFBUTTON2
MB_DEFBUTTON3
MB_ICONINFORMATION
MB_ICONASTERISK
MB_ICONEXCLAMATION
MB_ICONHAND
MB_ICONSTOP
MB_ICONQUESTION

The dialog has OK and Cancel push buttons.

The dialog has Retry and Cancel push buttons.
The dialog has Yes and No push buttons.

The dialog has Yes, No and Cancel push buttons.

The first button will be the default; this is the default case if no other
buttons are specified as default.

The second button is the default.

The third button is the default.

The information icon appears in the dialog box.

This value is the same as the MB_ICONINFORMATION option.
The exclamation or caution icon appears in the dialog box.

The stop icon appears in the dialog box.

This value is the same as the MB_ICONHAND.

The question icon appears in the dialog box.

MB_APPLMODAL The user must respond to the dialog before any of the current application
windows can be accessed; the windows of separate applications may be

accessed.

MB_SYSTEMMODAL All applications are suspended until the user responds to the dialog; the

user cannot access any other windows.

This value is the same as MB_APPLMODAL, except thitifndParent
is NULL, all top-level windows are disabled.

The default handling of the dialog is MB_APPLMODAL if neither the MB_SYSTEMMODAL nor the
MB_TASKMODAL options are used.

434.3 Returns
This function returns zero, if the dialog box fails to display. If successful, the return value is one of the following:

MB_TASKMODAL

IDABORT The Abort button was selected.
IDCANCEL The Cancel button was selected.
IDIGNORE The Ignore button was selected.
IDNO The No button was selected.
IDOK The OK button was selected.
IDRETRY The Retry button was selected.
IDYES The Yes button was selected.

If the dialog has a Cancel button and the Esc key is pressed, the dialog returns IDCANCEL.

- 76 -

434.4 Errors
None.

4345 Cross-References
MessageBeep()

435 SetErrorMode
435.1 Synopsis
UINT SetErrorMode(UINT fuErrorMode);

435.2 Description

The SetErrorMode(¥unction allows the application to control the appearance of MS-DOS interrupt error messages.
ThefuErrorModeparameter can be a combination of the following values:

SEM_FAILCRITICALERRORS Do not display the critical-error-handler message box and return the
error to the calling application.

SEM_NOGPFAULTERRORBOX Do not display the general-protection-fault message box.
SEM_NOOPENFILEERRORBOX Do not display a message box when the system fails to find a file.
435.3 Returns
The SetErrorMode(¥unction returns the previous value of error-mode flag, if it is successful.
435.4 Errors

None.

4355 Cross-References
None.

436 GetExpandedName
436.1 Synopsis
int GetExpandedName(LPCSTR SourceFile, LPSTR OriginalName);

436.2 Description

The GetExpandedNamegunction is used to return the name of the original compressedShilgrceFile The
extracted filename is placed @riginalName The prerequisites of using this function are:

- The file be compressed with COMPRESS.EXE.
- The file be compressed with the /r option.
If SourceFileis not compresse@riginalNameis extracted fronsourceFile
436.3 Returns
If GetExpandedNamei§ completed successfully, then TRUE is returned.

If GetExpandedNamei$ unsuccessful, an error code is returned (a value less than zero). One of themnooe
error messages to be returned is LZERROR_BADINHANDWEich means that th8ourceFileis an incorrect file
handle. This can happen in many situations, most likely, not having used the /r option in compressing the file.

436.4 Errors
None.

436.5 Cross-References
None.

- 77 -

437 ChooseColor
437.1 Synopsis
typedef struct tagCHOOSECOLOR {

DWORD IStructSize;
HWND hwndOwner;
HINSTANCE hinstance;
COLORREF rgbResult;
COLORRE *IpCustColors;
DWORD Flags;
LPARAM ICustData;
UINT (CALLBACK *IpfnHook)(HWND,UINT,WPARAM,LPARAM);
LPCSTR IpTemplateName;
} CHOOSECOLOR, *LPCHOOSECOLOR;
BOOL ChooseColor(LPCHOOSECOLOR lIpcc);

437.2 Description

The ChooseColor(function provides the user with a modal dialog box, under the control ¢ggdabparameter, to
allow for the interactive selection of a color or colors. The operation of the dialog box is controlledFigghe
member of th€ HOOSECOLOR structure. Constant values for thkags member are the following:

CC_ENABLEHOOK
CC_ENABLETEMPLATE
CC_ENABLETEMPLATEHANDLE
CC_FULLOPEN
CC_PREVENTFULLOPEN
CC_RGBINIT

CC_SHOWHELP

The layout of the dialog box controls are defined by a built-in CHOOSECOLOR dialog box template or by value
passed into th€hooseColor(function.

The default layout consists of a simple array of colors for the user to select, while the expanded layout allows
user to define and select customized colors. The expanded view can be selected by specifying CC_FULLOPEN,
can be disabled by setting the CC_PREVENTFULLOPEN flag.

Alternative dialog box control layouts can be specified by setting either the CC_ENABLETEMPLATE or
CC_ENABLETEMPLATEHANDLE flags. The CC_ENABLETEMPLATE selects a user defined dialog box
template resource that is accessed by using the values bfngtance and thelpTemplateName members. If
CC_ENABLETEMPLATEHANDLE is specified, the value bfnstanceis a handle to a block of memory defining
the in-memory instance of the dialog box template.

If the CC_ENABLEHOOK flag is set, the hook function pointed to byIgfieHook member is called for any
message that is processed by @teooseColor()function. If the hook function processes the message, then the
function should return TRUE, to prevent tlidooseColor()dialog box procedure from further processing the
message. Th&CustData parameter is used to pass data throughGheoseColor()function to the user defined
hook function.

If the CC_SHOWHELP flag is set, the dialog box procedure adds a HELP button that can be pressed by the use
receive user defined help.HiWndOwneis specified, it denotes the window that owns the dialog box, and receives
any help messages generated during the operatiohaafseColor()when the user presses HELP.

- 78 -

ThergbResultandipCustColormembers are set on input and define the initial values to be selected when the dialog
box is initialized, provided the CC_RGBINIT flag is set. On output, these values contain the selected color values,
if the function is successful.

437.3 Returns

The function returns TRUE if it is successful. The function returns FALSE if it is aborted by the user, or if an error
is encountered. If the function is successfihposeColor(updates thegbResult with the users selectemblor. If
custom colors are defined, thECustColors array is filled out with 16 customized colors defined by the user.

437.4 Errors

If the ChooseColor(¥unction is unsuccessful, or encounters a failure, a common dialog box error value is set. This
error value can be retrieved by using @@mmDIgExtendedErrorfunction. The defined errors area:

CDERR-INITIALIZATION ChooseColor(encountered an error during the dialog box initialization,
such as not enough memory, unable to create a control, or missing
components specified by Flags.

CDERR_FINDRESFAILURE ChooseColor(Wwas unable to find one of the required resource templates.
CDERR_LOADRESFAILURE ChooseColor(Wwas unable to load the required dialog box template.

CDERR_LOCKRESFAILURE ChooseColor(Wwas unable to lock the dialog box template resource
needed to build the dialog box.

CDERR_LOADSTRFAILURE One of the required string resources was unable to be loaded.

CDERR_NOHINSTANCE Flags required a valid hinstance member to be specified.
CDERR_NOHOOK Flags required a hook function to be specified.
CDERR_NOTEMPLATE Flags required a valid template to be specified.
CDERR_STRUCTSIZE The size specified for BHOOSECOLOR structure was incorrect.

437.5 Cross-References
CommDIgExtendedError(CHOOSECOLOR

438 ChooseFont
438.1 Synopsis
typedef struct tagCHOOSEFONT {

DWORD IStructSize;
HWND hwndOwner;
HDC hdc;
LPLOGFONT IpLogFont;
int iPointSize;

DWORD Flags;
COLORREF rgbColors;
LPARAM ICustData;

UINT (CALLBACK *IpfnHook)(HWND, UINT, WPARAM, LPARAM);
HINSTANCE hinstance;

LPSTR IpszStyle;

UINT nFontType;

int nSizeMin;

438.2

438.3

- 79 -

int nSizeMax;
} CHOOSEFONT, *LPCHOOSEFONT;
BOOL ChooseFont(LPCHOOSEFONT Ipcf);

Description

The ChooseFont(function provides the user with a modal dialog box, under the control dpe¢h@arameter,
which allows for the interactive selection of a fohihe dialog box allows all the aspects of a font to be modified.
This includes the size, as well as typeface and special effects such as bold, italics, underline, strikethrough,
color. The operation of the dialog box is controlled by Ftegs member of theCHOOSEFONT structure. The
layout of the dialog box controls are defined by a built-in CHOOSEFONT dialog box template or by values pass
to theChooseFont(junction.

Alternative dialog box control layouts can be specified by setting either the CF_ENABLETEMPLATE or
CF_ENABLETEMPLATEHANDLE flags. The CF_ENABLETEMPLATE selects a user defined dialog box
template resource that is accessed by using the values bfnigtance and thelpTemplateName members. If
CF_ENABLETEMPLATEHANDLE is specified, thalnstance value is a handle to a block of memory defining
the in-memory instance of the dialog box template. If the CF_ENABLEHOOK flag is set, then a hook function i
called (by thdpfnHook member) for any message that is processed bghlbeseFont(dialog box procedure. If

the hook function processes the message, then it should return a TRUE value to pre@bobsieé-ont(dialog

box procedure from further processing the message.lQhstData member is used to pass data through the
ChooseFont()unction to the user-defined hook function. On the WM_INITDIALOG message, a pointer to the
CHOOSEFONT structure is passed in LPARAM. From the pointer locationlGstData member is available.

If the CF_SHOWHELP flag is set, the dialog box procedure adds a HELP button that can be pressed to rece
user-defined help. IwndOwner is specified, it denotes the window that owns the dialog box and receives any
help messages that are generated during the operat@iooseFont()when the user presses HELP.

ThelpLogFont andrgbhColors members are set on input to define the initial values seledted the dialodpox is
initialized, if the CF_INITTOLOGFONTSTRUCT and CF_EFFECTS flags are set. If the function runs
successfully, the following happens; on output, the structure specified Iplthgf-ont member is updatedith

the selected logical font and thgbColors value is updated to the color chosen by the user. If the CF_USESTYLE
flag is set and the dialog box procedure is successful, thdpgh®tyle member describes the initial style to use
and it sets the style that is selected by the user. The following flags are used to control the types of fauiits dealt
during the execution d@hooseFont()

CF_FIXEDPITCHONLY Allow only fixed pitch fonts to be displayed.

CF_FORCEFONTEXIST Make sure that the user selected font actually exists.

CF_LIMITSIZE Use thenSizeMin andnSizeMax fields to limit the users selection to
fonts in that range.

CF_PRINTERFONTS Allow only fonts that are supported by the currently selected printer
identified by the hdc parameter.

CF_SCALABLEONLY Allow only scaleable fonts to be selected.

CF_WYSIWYG Allow only the selection of those fonts that can be displayed on the
screen and the printer.

CF_BOTH Allow both printer and screen fonts to be displayed.

CF_ANSIONLY Allow only fonts that are compatible with the ANSI character set.

If the CF_APPLY flag is set, thehooseFont(Hlialog box procedure enables the APPLY button. If the user presses
this button, the selected font, text colors, and special effects are appliechtictimember and are returned to the
user in the appropriate fields of taéIOOSEFONT structure.

Returns

The function returns TRUE if the function is successful. The function returns FALSE if the function is aborted &
the user or if an error is encountered. If the function is succe€sfagseFont(updates the structure specified by

- 80 -

thelpLogFont member with the selected logical font information. If requested by the user and enabled by the caller,
the function updates the hdc member with the desired font and selected font color.

438.4 Errors

If the ChooseFont(function is unsuccessful, it returns FALSE. The error code fronCtimemDIgExtendedError()
function returns one of the following:

CDERR_DIALOGFAILURE The dialog box cannot be created.

CDERR_INITIALIZATION A common dialog function encountered an error during initialization of
the dialog box; for example, not enough memory, unable to create a
control.

CDERR_FINDRESFAILURE A common dialog function is unable to find one of the required resource
templates.

CDERR_LOADRESFAILURE The dialog box procedure is unable to load the required dialog box
template.

CDERR_LOCKRESFAILURE The dialog box procedure is unable to lock the dialog box template
resource needed to build the dialog box
(CDERR_LOADSTRFAILURE). One of the string resources required is
unable to be loaded.

CDERR_NOHINSTANCE Flags required the specification of a valid hinstance member.
CDERR_NOHOOK Flags required the specification of a hook function.
CDERR_NOTEMPLATE Flags required the specification of a valid template.

CDERR_REGISTERMSGFAIL The functidrRegisterWindowMessagd@iled to register the defined
help string message.

CDERR_STRUCTSIZE The size specified for BHOOSEFONT structure is incorrect.

CFERR_NOFONTS No fonts are found that match the user request.

CFERR_MAXLESSTHANMIN The maximum size of the font specified is less than the minimum sized
specified.

438.5 Cross-References
CommDIgExtendedError(JCHOOSEFONT

439 FindText, ReplaceText

439.1 Synopsis
typedef struct tagFINDREPLACE({

439.2

- 81 -

DWORD [StructSize;
HWND hwndOwner;
HINSTANCE hinstance;
DWORD Flags;

LPSTR IpstrFindWhat;

LPSTR IpstrReplaceWith;

UINT wFindWhatLen

UINT wReplaceWithLen;

LPARAM ICustData;

UINT (CALLBACK *IpfnHook)(HWND, UINT, WPARAM, LPARAM)
LPCSTR IpTemplateName;

} FINDREPLACE, *LPFINDREPLACE;
HWND FindText(LPFINDREPLACE Ipfr);
HWND ReplaceText(LPFINDREPLACE Ipfr);

Description

The FindText()andReplaceText(junctions create modeless dialaog boxes, under the control ipfitherameter,
that make it possible for users to find text within a document.

Alternative dialog box control layouts can be specified either by setting the FR_ENABLETEMPLATE or
FR_ENABLETEMPLATEHANDLE flag. The FR_ENABLETEMPLATE flag selects a user defined dialog box
template resource that is accessed by using the values bfnigtance and thelpTemplateName members. If
FR_ENABLETEMPLATEHANDLE is specified, thalnstance value is a handle to a block of memory defining
the in-memory instance of the dialog box template. If the FR_ENABLEHOOK flag is set, thdpfrtHeok
function is called for any message that will be processed by the dialog box procedure. If the hook function proces
the message, then it should return a non-zero value to prevent the dialog box procedure from further processinc
message. ThiCustData member is available to pass data through the dialog box function to the user-defined hoc
function. On the WM_INITDIALOG message, a pointer to HBEDREPLACE structure is passed in LPARAM.
From the pointer location, tHEustData member is available.

If the FR_SHOWHELP flag is set, the dialog box procedure adds a HELP button that can be pressed to receive |
defined help. If thdawndOwner member is specified, it denotes the window that owns the dialog box, and receive:
any help messages that are generated while operating the dialog box.

The following flags can be set to further configure the dialog box layout:

FR_HIDEMATCHCASE This flag causes the Match Case checkbox to be disabled by hiding the
control, thus preventing the user from changing its value.
FR_NOMATCHCASE This flag causes the Match Case checkbox to be disabled.
FR_HIDEWHOLEWORLD This flag causes the Whole Word checkbox to be disabled by hiding the
control, thus preventing the user from changing its value.
FR_NOWHOLEWORLD This flag causes the Whole Word check box to be disabled.
FR_HIDEUPDOWN This flag causes the Up Down buttons to be disabled by hiding the
control, thus preventing the user from changing its value.
FR_NOUPDOWN This flag causes the Up Down buttons to be disabled.

After the dialog box is created, it communicates with its parent window through the use of the special registel
messages, FINDMSGSTRING and REPLACEMSGSTRING. The dialog box procedure fills out the
IpstrFindWhat and IpstrReplaceWith buffers and updates tHdags member to reflect the current dialog box
values before sending the messagehtwndOwner. The LPARAM of this message is a pointer to the
FINDREPLACE structure where thElags value has been modified to contain the following bits:

- 82 -

FR_FINDNEXT The application should search for the next occurrence of the string
specified by thépstrFindWhat member; the search should use the
additional flag bits to determine what direction to search, whether to
match upper and lower case, and whether a wholeword should be

matched.

FR_REPLACE The application should replace the current selection string given by
IpstrFindWhat with the string given bipstrReplaceWith.

FR_REPLACEALL Similar to FR_REPLACE, this replaces all occurrences of the string
given bylpstrFindWhat with IpstrReplaceWith.

FR_DOWN The search should proceed downward in the document.

FR_MATCHCASE The match for a string should be identical to the string given by
IpstrFindWhat .

FR_WHOLEWORD The match for a string should be identical to a whole word only and not

parts of a word.

439.3 Returns

FindText()andReplaceText(Jeturn the handle of the system modeless dialog box, or NULL, if thereeis@nin
creating the dialog box.

439.4 Errors

If the FindText() or ReplaceText(function is unsuccessful, it returns NULL. The error code can be retrieved by
calling theCommDIgExtendedError(junction. The value returned by the function is one of the following error
codes:

CDERR_DIALOGFAILURE The dialog box could not be created.

CDERR_INITIALIZATION A common dialog function encountered an error during initialization of
the dialog box, such as not enough memory, unable to create a control.

CDERR_FINDRESFAILURE A common dialog function was unable to find one of the resource
templates that are required to function.

CDERR_LOADRESFAILURE The dialog box procedure was unable to load the required dialog box
template.

CDERR_LOCKRESFAILURE The dialog box procedure was unable to lock the dialog box template
resource needed to build the dialog box.

CDERR_LOADSTRFAILURE One of the string resources required was unable to be loaded.

CDERR_NOHINSTANCE Flags required a valid hinstance member to be specified.
CDERR_NOHOOK Flags required a hook function to be specified.
CDERR_NOTEMPLATE Flags required a valid template to be specified.

CDERR_REGISTERMSGFAIL The functidrRegisterWindowMessagéd@iled to register the defined
help string message.

CDERR_STRUCTSIZE The size specified for FIRIDREPLACE structure was incorrect.

439.5 Cross-References
IsDialogMessage(), RegisterWindowMessage(), CommDIgExtendedERNDREPLACE

440 GetOpenFileName, GetSaveFileName

440.1 Synopsis
typedef struct tagOPENFILENAME{

DWORD IStructSize;

440.2

- 83 -

HWND hwndOwner;
HINSTANCE hinstance;
LPCSTR IpstrFilter;

LPSTR IpstrCustomFilter;

DWORD nMaxCustFilter;
DWORD nFilterindex;

LPSTR IpstrFile;
DWORD nMakeFile
LPSTR IpstrFileTitle;
DWORD nMaxFileTitle;
LPCSTR IpstrinitialDir;
LPCSTR IpstrTitle;
DWORD Flags;

UINT nFileOffset;

UINT nFileExtension;
LPCSTR IpstrDefExt;
LPARAM ICustData;

UINT (CALLBACK *IpfnHook)(HWND, UINT, WPARAM, LPARAM);
LPCSTR IpTemplateName;

} OPENFILENAME, *LPOPENFILENAME;
BOOL GetOpenFileName(LPOPENFILENAME Ipof);
BOOL GetSaveFileName(LPOPENFILENAME Ipof);

Description

The GetOpenFileName(and GetSaveFileName(@unctions provide the user with a modal dialog box, under the
control of the Ipof parameter, which allows for the interactive selection of a file, with the ability to open, create ar
verify the file. The operation of the dialog box is controlled by Fregs member of theOPENFILENAME
structure. The layout of the dialog box controls are defined by the built-in GETOPENFILENAME and
GETSAVEFILENAME dialog box template or by values passed it B@PENFILENAME structure.

Alternative dialog box control layouts can be specified by setting either the OFN_ENABLETEMPLATE or
OFN_ENABLETEMPLATEHANDLE flags. The OFN_ENABLETEMPLATE selects a user defined dialog box
template resource that is accessed by using the values bfngtance and thelpTemplateName members. If
OFN_ENABLETEMPLATEHANDLE is specified, thelnstance value is a handle to a block of memory defining
the in-memory instance of the dialog box template. If the OFN_ENABLEHOOK flag is set, thgpfriHeok
function is called for any message that is processed by the dialog box procedure. If the hook function processes
message, it should return a non-zero value to prevent the dialog box procedure from further processing the mes:
ThelCustData member is available to pass data through the dialog box function to the user defined hook functio
A pointer to theOPENFILENAME structure is passed iIRaram of the WM_INITDIALOG message. From there
thelCustData member is available.

If the OFN_SHOWHELP flag is set, the dialog box procedure adds a HELP button that is pressed by the usel
receive user-defined help. HWndOwner is specified, it denotes the window that owns the dialog box, and
receives any help messages generated during the operation of modal dialog box prategutbe user presses
HELP.

-84 -

If the OFN_HIDEREADONLY flag is set, then the Read Only check box is hidden during dialog box initialization.
If the OFN_READONLY flag is set, then the Read Only check box is initialized and displayed. When the dialog
box procedure completes successfully, this bit will contain the last state of the Read Only check box.

The dialog box procedures use the following flags to control the operation of the file dialog boxes:

OFN_FILEMUSTEXIST Only files listed in the file list box may be entered by the user in the
filename edit control; filenames that do not match bring up a message
box indicating that only matching names are allowed.

OFN_PATHMUSTEXIST Similar to the OFN_FILEMUSTEXIST flag, the user may enter valid
pathnames in the filename edit control.
OFN_NOCHANGEDIR On exiting from the dialog box procedure, the dialog box restores the

current working directory to its first initialized state.

OFN_NOREADONLYRETURN This ensures that the selected filename cannot be read-only or in a read-
only directory.

OFN_NOTESTFILECREATE For th&etSaveFileName(unction, this flag prevents the function from
creating the file specified by the user.

OFN_NOVALIDATE If a hook procedure is used, the filename selected by the user is validated
by filling out theOPENFILENAME structure and sending the register
message FILEOKSTRING; this flag prevents the dialog box from
attempting to validate the filename.

OFN_OVERWRITEPROMPT This flag causes tBetSaveFileNamegunction to prompt the user if an
attempt is made to select an existing file.

440.3 Returns

The function returns TRUE if it is successful, or if the OK button is pressed to exit the dialog, or a filename is
selected with a double-clickhe function returns FALSE if the function is aborted by the user or if an error is
encountered. If the function is successful, the following fields are updated by the dialog box procedure:

nFilterindex This field represents the index of the filters that were last active.

IpstrFile This field is filled out with the complete pathname of the desired
filename; its size is limited by theMaxFile member.

IpstrFileTitle This field represents just the filename and any extension, with no path
information; it either contains the filename and any extension or it is
NULL. Its size is limited in length by th@MaxFileTitle member.

Flags The OFN_EXTENSIONDIFFERENT and OFN_READONLY flags are
updated to reflect the current settings.

nFileOffset This field is set to the index iIpstrFile that starts the actual filename;
this field excludes all path information.

nFileExtension This field is set to the index iIpstrFile that starts the actual extension of
the filename; this filed excludes all path information.

440.4 Errors

If GetOpenFileName(dr GetSaveFileName@re unsuccessful, they return NULL. The error code is determined
from CommDIgExtendedError(Wwhich returns one of the following:

CDERR_DIALOGFAILURE The dialog box cannot be created.

CDERR_INITIALIZATION A common dialog function encountered an error during initialization of
the dialog box, such as not enough memory or unable to create a control.

CDERR_FINDRESFAILURE A common dialog function is unable to find one of the required resource
templates.

- 85 -

CDERR_LOADRESFAILURE The dialog box procedure is unable to load the required dialog box
template.

CDERR_LOCKRESFAILURE The dialog box procedure is unable to lock the dialog box template
resource needed to build the dialog box.

CDERR_LOADSTRFAILURE One of the string resources required cannot be loaded.

CDERR_NOHINSTANCE Flagsrequired a validhinstance member to be specified.
CDERR_NOHOOK Flagsrequired a hook function to be specified.
CDERR_NOTEMPLATE Flagsrequired a valid template to be specified.

CDERR_REGISTERMSGFAIL The functioRegisterWindowMessagdéiled to register the defined
help string message.

CDERR_STRUCTSIZE The size specified for @PENFILENAME structure is incorrect.
FNERR_INVALIDFILENAME The filename is not a legal filename.

440.5 Cross-References
RegisterWindowMessage(), CommDIgExtendedErr@PENFILENAME

441 GetFileTitle

441.1 Synopsis
int GetFileTitle(LPCSTR IpszFile, LPSTR IpszTitle, UINT nSize);

441.2 Description

The GetFileTitle()function is a utility that extracts the actual filename from a filename specificgigrkile that
includes path information. The filename specificatioast be a valid filename or amror occurs. To be valid the
function must be non-null and contain no wildcard characters. It also must not be a directory referenceisind it
fit into the file title buffer. The actual filename is stored in the bufierTitle The nSizeparameter is the size of
IpszTitlein bytes.

441.3 Returns

GetFileTitle() returns zero if successful. If the filename supplied is not a valid flename, a negative number
returned. If the buffer is too small, a positive number is returned that identifies the required size of the file tit
buffer including a null terminator.

441.4 Errors
None.

441.5 Cross-References
None.

442 PrintDlg
442.1 Synopsis
BOOL PrintDIg(PRINTDLG *PrintDIgPtr);

442.2 Description

The PrintDIg() function shows the Print or Print Setup common dialog box.PrimeDIgPtr parameter is a pointer
to aPRINTDLG structure that contains initialization information for the dialog box.

442.3 Returns

If the PrintDIg() function configures the printer, it returns TRUE. If the user closes the dialog box by pressing th
Cancel button or by selecting the System menu's Close menu itefrinti2lg() function returns FALSE. If the
following sequence of steps are performedRhptDIg() function will also return FALSE:

- 86 -

1) The user presses the Setup button.

2) The user presses the OK button in the Print Setup dialog box.

3) The user presses the Cancel button in the Print dialog box.

The functionCommDIgExtendedError@an be used to retrieve an error value.

442 .4 Errors
None.

442.5 Cross-References
PRINTDLG

443 CommDIlgExtendedError
443.1 Synopsis
DWORD CommDIgExtendedError(void);
443.2 Description

The last error encountered during execution of one of the common dialog functions is saved and can be retrieved by
this function. Executing any common dialog box procedure successfully will clear the saved value.

443.3 Returns

If the last common dialog function was successful,@GbenmDIgExtendedErrorfunction returns zero. Otherwise,
the CommonDIgExtendedErrorfunction returns one of the following:

CDERR_DIALOGFAILURE The dialog box could not be created.

CDERR_INITIALIZATION A common dialog function encountered an error during initialization of
the dialog box, such as not enough memory, or unable to create a control.

CDERR_FINDRESFAILURE A common dialog function was unable to find one of the resource
templates that are required to function.

CDERR_LOADRESFAILURE The dialog box procedure was unable to load the required dialog box
template.

CDERR_LOCKRESFAILURE The dialog box procedure was unable to lock the dialog box template
resource needed to build the dialog box.

CDERR_LOADSTRFAILURE One of the string resources required was unable to be loaded.

CDERR_NOHINSTANCE Flagsrequired a valid hinstance parameter to be specified.
CDERR_NOHOOK Flagsrequired a hook function to be specified.
CDERR_NOTEMPLATE Flagsrequired a valid template to be specified.

CDERR_REGISTERMSGFAIL The functidRegisterWindowMessagd§iled to register the defined
help string message.

CDERR_STRUCTSIZE The size specified for the structure was incorrect.
443.4 Errors

None.

4435 Cross-References

ChooseColor(), ChooseFont(), FindText(), ReplaceText(), GetFileTitle(), GetOpenFileName(), GetSaveFileName(),
PrintDIg()

- 87 -

444 MulDiv
444.1 Synopsis
int MulDiv(int Multiplicand, int Multiplier, int Divisor);
444.2 Description
TheMulDiv() function performs the following operation:
(Multiplicand * Multiplier) / Divisor = return value

444.3 Returns

This function returns the result of the multiplication and division. If either an overflow occurs or the divisor is zerc
(the system is trying to divide by zero) the return value will be -32,768.

444.4 Errors
None.

4445 Cross-References
None.

Printed copies can be ordered from:

ECMA
114 Rue du Rhéne
CH-1204 Geneva

Switzerland
Fax: +41 22 849.60.01
Internet: helpdesk@ecma.ch

Files can be downloaded from oBWP site,ftp.ecma.ch, logging in asanonymous and giving your E-mail address as
password This Standard is available from librdBCMA-ST as MSWord 6.0 files (E-234-V1.DOC, E-234-V2.DOC, E-234-
V3.DOC), as PostScript files (E-234-V1.PSC, E-234-V2.PSC, E-234-V3.PSC) and as Acrobat files (E-234-V1.PDF, E-2:
V2.PDF, E-234-V3.PDF).

The ECMA site can be reached also via a modem. The phone number is +41 22 735.33.29, modem settings are 8/n/1. -
(at ftp.ecma.ch) can also be used.

Our web site, http://www.ecma.ch, gives full information on ECMA, ECMA activities, ECMA Standards and Technica
Reports.

ECMA

114 Rue du Rhone
CH-1204 Geneva
Switzerland

This Standard ECMA-234 is available free of charge in printed form and as a file.

See inside cover page for instructions

