

This specification is developed on GitHub with the help of the ECMAScript community. There are a number of ways
to contribute to the development of this specification:

GitHub Repository: https://github.com/tc39/ecma262
Issues: All Issues, File a New Issue
Pull Requests: All Pull Requests, Create a New Pull Request
Test Suite: Test262
Editors:

Brian Terlson (@bterlson)
Bradley Farias (@bradleymeck)
Jordan Harband (@ljharb)

Community:

Mailing list: es-discuss
IRC: #tc39 on freenode

Refer to the colophon for more information on how this document is created.

This Ecma Standard defines the ECMAScript 2019 Language. It is the tenth edition of the ECMAScript Language
Specification. Since publication of the first edition in 1997, ECMAScript has grown to be one of the world's most widely
used general-purpose programming languages. It is best known as the language embedded in web browsers but has also
been widely adopted for server and embedded applications.

ECMAScript is based on several originating technologies, the most well-known being JavaScript (Netscape) and JScript
(Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company's Navigator 2.0
browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with
Internet Explorer 3.0.

ECMA-262, 10th edition, June 2019

ECMAScript® 2019
Language Specification

Contributing to this Specification

Introduction

☰

© Ecma International 2019

1

https://github.com/tc39/ecma262
https://github.com/tc39/ecma262/issues
https://github.com/tc39/ecma262/issues/new
https://github.com/tc39/ecma262/pulls
https://github.com/tc39/ecma262/pulls/new
https://github.com/tc39/test262
mailto:brian.terlson%20at%20microsoft%20dot%20com
https://twitter.com/bterlson
mailto:bradley.meck%20at%20gmail%20dot%20com
https://twitter.com/bradleymeck
mailto:ljharb%20at%20gmail%20dot%20com
https://twitter.com/ljharb
https://esdiscuss.org/
ircs://irc.freenode.net:6667
https://freenode.net/kb/answer/chat

The development of the ECMAScript Language Specification started in November 1996. The first edition of this Ecma
Standard was adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as
international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second
edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are
editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control statements,
try/catch exception handling, tighter definition of errors, formatting for numeric output and minor changes in anticipation
of future language growth. The third edition of the ECMAScript standard was adopted by the Ecma General Assembly of
December 1999 and published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World Wide Web
where it has become the programming language that is supported by essentially all web browsers. Significant work was
done to develop a fourth edition of ECMAScript. However, that work was not completed and not published as the fourth
edition of ECMAScript but some of it was incorporated into the development of the sixth edition.

The fifth edition of ECMAScript (published as ECMA-262 5th edition) codified de facto interpretations of the language
specification that have become common among browser implementations and added support for new features that had
emerged since the publication of the third edition. Such features include accessor properties, reflective creation and
inspection of objects, program control of property attributes, additional array manipulation functions, support for the
JSON object encoding format, and a strict mode that provides enhanced error checking and program security. The fifth
edition was adopted by the Ecma General Assembly of December 2009.

The fifth edition was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as
international standard ISO/IEC 16262:2011. Edition 5.1 of the ECMAScript Standard incorporated minor corrections and
is the same text as ISO/IEC 16262:2011. The 5.1 Edition was adopted by the Ecma General Assembly of June 2011.

Focused development of the sixth edition started in 2009, as the fifth edition was being prepared for publication.
However, this was preceded by significant experimentation and language enhancement design efforts dating to the
publication of the third edition in 1999. In a very real sense, the completion of the sixth edition is the culmination of a
fifteen year effort. The goals for this addition included providing better support for large applications, library creation,
and for use of ECMAScript as a compilation target for other languages. Some of its major enhancements included
modules, class declarations, lexical block scoping, iterators and generators, promises for asynchronous programming,
destructuring patterns, and proper tail calls. The ECMAScript library of built-ins was expanded to support additional data
abstractions including maps, sets, and arrays of binary numeric values as well as additional support for Unicode
supplemental characters in strings and regular expressions. The built-ins were also made extensible via subclassing. The
sixth edition provides the foundation for regular, incremental language and library enhancements. The sixth edition was
adopted by the General Assembly of June 2015.

ECMAScript 2016 was the first ECMAScript edition released under Ecma TC39's new yearly release cadence and open
development process. A plain-text source document was built from the ECMAScript 2015 source document to serve as
the base for further development entirely on GitHub. Over the year of this standard's development, hundreds of pull
requests and issues were filed representing thousands of bug fixes, editorial fixes and other improvements. Additionally,
numerous software tools were developed to aid in this effort including Ecmarkup, Ecmarkdown, and Grammarkdown.
ES2016 also included support for a new exponentiation operator and adds a new method to Array.prototype called
includes.

ECMAScript 2017 introduced Async Functions, Shared Memory, and Atomics along with smaller language and library
enhancements, bug fixes, and editorial updates. Async functions improve the asynchronous programming experience by

2

© Ecma International 2019

2

providing syntax for promise-returning functions. Shared Memory and Atomics introduce a new memory model that
allows multi-agent programs to communicate using atomic operations that ensure a well-defined execution order even on
parallel CPUs. This specification also includes new static methods on Object: Object.values, Object.entries,
and Object.getOwnPropertyDescriptors.

ECMAScript 2018 introduced support for asynchronous iteration via the AsyncIterator protocol and async generators. It
also included four new regular expression features: the dotAll flag, named capture groups, Unicode property escapes, and
look-behind assertions. Lastly it included rest parameter and spread operator support for object properties.

This specification, the 10th edition, introduces a few new built-in functions: flat and flatMap on
Array.prototype for flattening arrays, Object.fromEntries for directly turning the return value of
Object.entries into a new Object, and trimStart and trimEnd on String.prototype as better-named
alternatives to the widely implemented but non-standard String.prototype.trimLeft and trimRight built-
ins. In addition, this specification includes a few minor updates to syntax and semantics. Updated syntax includes
optional catch binding parameters and allowing U+2028 (LINE SEPARATOR) and U+2029 (PARAGRAPH
SEPARATOR) in string literals to align with JSON. Other updates include requiring that Array.prototype.sort
be a stable sort, requiring that JSON.stringify return well-formed UTF-8 regardless of input, and clarifying
Function.prototype.toString by requiring that it either return the corresponding original source text or a
standard placeholder.

Dozens of individuals representing many organizations have made very significant contributions within Ecma TC39 to
the development of this edition and to the prior editions. In addition, a vibrant community has emerged supporting
TC39's ECMAScript efforts. This community has reviewed numerous drafts, filed thousands of bug reports, performed
implementation experiments, contributed test suites, and educated the world-wide developer community about
ECMAScript. Unfortunately, it is impossible to identify and acknowledge every person and organization who has
contributed to this effort.

Allen Wirfs-Brock

ECMA-262, Project Editor, 6th Edition

Brian Terlson

ECMA-262, Project Editor, 7th through 10th Editions

This Standard defines the ECMAScript 2019 general-purpose programming language.

A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties,
functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret source text input in conformance with the latest version of
the Unicode Standard and ISO/IEC 10646.

A conforming implementation of ECMAScript that provides an application programming interface (API) that supports

1 Scope

2 Conformance

© Ecma International 2019

3

programs that need to adapt to the linguistic and cultural conventions used by different human languages and countries
must implement the interface defined by the most recent edition of ECMA-402 that is compatible with this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties, and functions
beyond those described in this specification. In particular, a conforming implementation of ECMAScript may provide
properties not described in this specification, and values for those properties, for objects that are described in this
specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not described in this
specification. In particular, a conforming implementation of ECMAScript may support program syntax that makes use of
the “future reserved words” listed in subclause 11.6.2.2 of this specification.

A conforming implementation of ECMAScript must not implement any extension that is listed as a Forbidden Extension
in subclause 16.2.

The following referenced documents are indispensable for the application of this document. For dated references, only
the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

ISO/IEC 10646 Information Technology – Universal Multiple-Octet Coded Character Set (UCS) plus Amendment
1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional amendments and corrigenda,
or successor

ECMA-402, ECMAScript 2015 Internationalization API Specification.
https://ecma-international.org/publications/standards/Ecma-402.htm

ECMA-404, The JSON Data Interchange Format.
https://ecma-international.org/publications/standards/Ecma-404.htm

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating computational
objects within a host environment. ECMAScript as defined here is not intended to be computationally self-sufficient;
indeed, there are no provisions in this specification for input of external data or output of computed results. Instead, it is
expected that the computational environment of an ECMAScript program will provide not only the objects and other
facilities described in this specification but also certain environment-specific objects, whose description and behaviour
are beyond the scope of this specification except to indicate that they may provide certain properties that can be accessed
and certain functions that can be called from an ECMAScript program.

ECMAScript was originally designed to be used as a scripting language, but has become widely used as a general-
purpose programming language. A scripting language is a programming language that is used to manipulate, customize,
and automate the facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this way, the
existing system is said to provide a host environment of objects and facilities, which completes the capabilities of the

3 Normative References

4 Overview

4

© Ecma International 2019

4

https://ecma-international.org/publications/standards/Ecma-402.htm
https://ecma-international.org/publications/standards/Ecma-404.htm

scripting language. A scripting language is intended for use by both professional and non-professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web pages in
browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript is now used
to provide core scripting capabilities for a variety of host environments. Therefore the core language is specified in this
document apart from any particular host environment.

ECMAScript usage has moved beyond simple scripting and it is now used for the full spectrum of programming tasks in
many different environments and scales. As the usage of ECMAScript has expanded, so has the features and facilities it
provides. ECMAScript is now a fully featured general-purpose programming language.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular C, Java™,
Self, and Scheme as described in:

ISO/IEC 9899:1996, Programming Languages – C.

Gosling, James, Bill Joy and Guy Steele. The Java™ Language Specification. Addison Wesley Publishing Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp. 227-241,
Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

A web browser provides an ECMAScript host environment for client-side computation including, for instance, objects
that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and input/output.
Further, the host environment provides a means to attach scripting code to events such as change of focus, page and
image loading, unloading, error and abort, selection, form submission, and mouse actions. Scripting code appears within
the HTML and the displayed page is a combination of user interface elements and fixed and computed text and images.
The scripting code is reactive to user interaction, and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing requests,
clients, and files; and mechanisms to lock and share data. By using browser-side and server-side scripting together, it is
possible to distribute computation between the client and server while providing a customized user interface for a Web-
based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview is not
part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript program is
a cluster of communicating objects. In ECMAScript, an object is a collection of zero or more properties each with
attributes that determine how each property can be used—for example, when the Writable attribute for a property is set
to false, any attempt by executed ECMAScript code to assign a different value to the property fails. Properties are
containers that hold other objects, primitive values, or functions. A primitive value is a member of one of the following

4.1 Web Scripting

4.2 ECMAScript Overview

© Ecma International 2019

5

built-in types: Undefined, Null, Boolean, Number, String, and Symbol; an object is a member of the built-in type
Object; and a function is a callable object. A function that is associated with an object via a property is called a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These built-in
objects include the global object; objects that are fundamental to the runtime semantics of the language including
Object, Function, Boolean, Symbol, and various Error objects; objects that represent and manipulate numeric
values including Math, Number, and Date; the text processing objects String and RegExp; objects that are indexed
collections of values including Array and nine different kinds of Typed Arrays whose elements all have a specific
numeric data representation; keyed collections including Map and Set objects; objects supporting structured data
including the JSON object, ArrayBuffer, SharedArrayBuffer, and DataView; objects supporting control
abstractions including generator functions and Promise objects; and reflection objects including Proxy and
Reflect.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators, binary bitwise
operators, binary logical operators, assignment operators, and the comma operator.

Large ECMAScript programs are supported by modules which allow a program to be divided into multiple sequences of
statements and declarations. Each module explicitly identifies declarations it uses that need to be provided by other
modules and which of its declarations are available for use by other modules.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as an easy-
to-use scripting language. For example, a variable is not required to have its type declared nor are types associated with
properties, and defined functions are not required to have their declarations appear textually before calls to them.

Even though ECMAScript includes syntax for class definitions, ECMAScript objects are not fundamentally class-based
such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via a literal notation
or via constructors which create objects and then execute code that initializes all or part of them by assigning initial
values to their properties. Each constructor is a function that has a property named "prototype" that is used to
implement prototype-based inheritance and shared properties. Objects are created by using constructors in new
expressions; for example, new Date(2009, 11) creates a new Date object. Invoking a constructor without using
new has consequences that depend on the constructor. For example, Date() produces a string representation of the
current date and time rather than an object.

Every object created by a constructor has an implicit reference (called the object's prototype) to the value of its
constructor's "prototype" property. Furthermore, a prototype may have a non-null implicit reference to its prototype,
and so on; this is called the prototype chain. When a reference is made to a property in an object, that reference is to the
property of that name in the first object in the prototype chain that contains a property of that name. In other words, first
the object mentioned directly is examined for such a property; if that object contains the named property, that is the
property to which the reference refers; if that object does not contain the named property, the prototype for that object is
examined next; and so on.

Figure 1: Object/Prototype Relationships

4.2.1 Objects

6

© Ecma International 2019

6

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by classes, and
inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried by objects, while
structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property and its value.
Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf1, cf2, cf3, cf4, and

cf5. Each of these objects contains properties named q1 and q2. The dashed lines represent the implicit prototype

relationship; so, for example, cf3's prototype is CFp. The constructor, CF, has two properties itself, named P1 and P2,

which are not visible to CFp, cf1, cf2, cf3, cf4, or cf5. The property named CFP1 in CFp is shared by cf1, cf2, cf3, cf4,

and cf5 (but not by CF), as are any properties found in CFp's implicit prototype chain that are not named q1, q2, or

CFP1. Notice that there is no implicit prototype link between CF and CFp.

Unlike most class-based object languages, properties can be added to objects dynamically by assigning values to them.
That is, constructors are not required to name or assign values to all or any of the constructed object's properties. In the
above diagram, one could add a new shared property for cf1, cf2, cf3, cf4, and cf5 by assigning a new value to the

property in CFp.

Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like abstractions based
upon a common pattern of constructor functions, prototype objects, and methods. The ECMAScript built-in objects
themselves follow such a class-like pattern. Beginning with ECMAScript 2015, the ECMAScript language includes
syntactic class definitions that permit programmers to concisely define objects that conform to the same class-like
abstraction pattern used by the built-in objects.

The ECMAScript Language recognizes the possibility that some users of the language may wish to restrict their usage of
some features available in the language. They might do so in the interests of security, to avoid what they consider to be
error-prone features, to get enhanced error checking, or for other reasons of their choosing. In support of this possibility,
ECMAScript defines a strict variant of the language. The strict variant of the language excludes some specific syntactic
and semantic features of the regular ECMAScript language and modifies the detailed semantics of some features. The
strict variant also specifies additional error conditions that must be reported by throwing error exceptions in situations
that are not specified as errors by the non-strict form of the language.

4.2.2 The Strict Variant of ECMAScript

© Ecma International 2019

7

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode selection and
use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of individual ECMAScript
source text units. Because strict mode is selected at the level of a syntactic source text unit, strict mode only imposes
restrictions that have local effect within such a source text unit. Strict mode does not restrict or modify any aspect of the
ECMAScript semantics that must operate consistently across multiple source text units. A complete ECMAScript
program may be composed of both strict mode and non-strict mode ECMAScript source text units. In this case, strict
mode only applies when actually executing code that is defined within a strict mode source text unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full unrestricted
ECMAScript language and the strict variant of the ECMAScript language as defined by this specification. In addition, an
implementation must support the combination of unrestricted and strict mode source text units into a single composite
program.

For the purposes of this document, the following terms and definitions apply.

set of data values as defined in clause 6 of this specification

member of one of the types Undefined, Null, Boolean, Number, Symbol, or String as defined in clause 6

NOTE
A primitive value is a datum that is represented directly at the lowest level of the language implementation.

member of the type Object

NOTE
An object is a collection of properties and has a single prototype object. The prototype may be the null value.

function object that creates and initializes objects

NOTE
The value of a constructor's prototype property is a prototype object that is used to implement inheritance and shared
properties.

4.3 Terms and Definitions

4.3.1 type

4.3.2 primitive value

4.3.3 object

4.3.4 constructor

4.3.5 prototype

8

© Ecma International 2019

8

object that provides shared properties for other objects

NOTE
When a constructor creates an object, that object implicitly references the constructor's prototype property for the
purpose of resolving property references. The constructor's prototype property can be referenced by the program
expression constructor.prototype, and properties added to an object's prototype are shared, through inheritance,
by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified prototype by
using the Object.create built-in function.

object that has the default behaviour for the essential internal methods that must be supported by all objects

object that does not have the default behaviour for one or more of the essential internal methods

NOTE
Any object that is not an ordinary object is an exotic object.

object whose semantics are defined by this specification

object specified and supplied by an ECMAScript implementation

NOTE
Standard built-in objects are defined in this specification. An ECMAScript implementation may specify and supply
additional kinds of built-in objects. A built-in constructor is a built-in object that is also a constructor.

primitive value used when a variable has not been assigned a value

type whose sole value is the undefined value

primitive value that represents the intentional absence of any object value

4.3.6 ordinary object

4.3.7 exotic object

4.3.8 standard object

4.3.9 built-in object

4.3.10 undefined value

4.3.11 Undefined type

4.3.12 null value

© Ecma International 2019

9

type whose sole value is the null value

member of the Boolean type

NOTE
There are only two Boolean values, true and false.

type consisting of the primitive values true and false

member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE
A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean value as an
argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object can be coerced to
a Boolean value.

primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer values

NOTE
A String value is a member of the String type. Each integer value in the sequence usually represents a single 16-bit unit
of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that they
must be 16-bit unsigned integers.

set of all possible String values

member of the Object type that is an instance of the standard built-in String constructor

NOTE
A String object is created by using the String constructor in a new expression, supplying a String value as an
argument. The resulting object has an internal slot whose value is the String value. A String object can be coerced to a
String value by calling the String constructor as a function (21.1.1.1).

4.3.13 Null type

4.3.14 Boolean value

4.3.15 Boolean type

4.3.16 Boolean object

4.3.17 String value

4.3.18 String type

4.3.19 String object

4.3.20 Number value

10

© Ecma International 2019

10

primitive value corresponding to a double-precision 64-bit binary format IEEE 754-2008 value

NOTE
A Number value is a member of the Number type and is a direct representation of a number.

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and negative
infinity

member of the Object type that is an instance of the standard built-in Number constructor

NOTE
A Number object is created by using the Number constructor in a new expression, supplying a number value as an
argument. The resulting object has an internal slot whose value is the number value. A Number object can be coerced to
a number value by calling the Number constructor as a function (20.1.1.1).

number value that is the positive infinite number value

number value that is an IEEE 754-2008 “Not-a-Number” value

primitive value that represents a unique, non-String Object property key

set of all possible Symbol values

member of the Object type that is an instance of the standard built-in Symbol constructor

member of the Object type that may be invoked as a subroutine

NOTE

4.3.20 Number value

4.3.21 Number type

4.3.22 Number object

4.3.23 Infinity

4.3.24 NaN

4.3.25 Symbol value

4.3.26 Symbol type

4.3.27 Symbol object

4.3.28 function

© Ecma International 2019

11

In addition to its properties, a function contains executable code and state that determine how it behaves when invoked.
A function's code may or may not be written in ECMAScript.

built-in object that is a function

NOTE
Examples of built-in functions include parseInt and Math.exp. An implementation may provide implementation-
dependent built-in functions that are not described in this specification.

part of an object that associates a key (either a String value or a Symbol value) and a value

NOTE
Depending upon the form of the property the value may be represented either directly as a data value (a primitive value,
an object, or a function object) or indirectly by a pair of accessor functions.

function that is the value of a property

NOTE
When a function is called as a method of an object, the object is passed to the function as its this value.

method that is a built-in function

NOTE
Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify and provide
other additional built-in methods.

internal value that defines some characteristic of a property

property that is directly contained by its object

4.3.29 built-in function

4.3.30 property

4.3.31 method

4.3.32 built-in method

4.3.33 attribute

4.3.34 own property

4.3.35 inherited property

12

© Ecma International 2019

12

property of an object that is not an own property but is a property (either own or inherited) of the object's prototype

The remainder of this specification is organized as follows:

Clause 5 defines the notational conventions used throughout the specification.

Clauses 6-9 define the execution environment within which ECMAScript programs operate.

Clauses 10-16 define the actual ECMAScript programming language including its syntactic encoding and the execution
semantics of all language features.

Clauses 17-26 define the ECMAScript standard library. They include the definitions of all of the standard objects that are
available for use by ECMAScript programs as they execute.

Clause 27 describes the memory consistency model of accesses on SharedArrayBuffer-backed memory and methods of
the Atomics object.

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its right-hand
side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with zero or
more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given context-free
grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of terminal symbols that can
result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the
nonterminal is the left-hand side.

A lexical grammar for ECMAScript is given in clause 11. This grammar has as its terminal symbols Unicode code points
that conform to the rules for SourceCharacter defined in 10.1. It defines a set of productions, starting from the goal
symbol InputElementDiv, InputElementTemplateTail, or InputElementRegExp, or InputElementRegExpOrTemplateTail,
that describe how sequences of such code points are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens, also become

4.4 Organization of This Specification

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

5.1.2 The Lexical and RegExp Grammars

© Ecma International 2019

13

part of the stream of input elements and guide the process of automatic semicolon insertion (11.9). Simple white space
and single-line comments are discarded and do not appear in the stream of input elements for the syntactic grammar. A
MultiLineComment (that is, a comment of the form /*…*/ regardless of whether it spans more than one line) is
likewise simply discarded if it contains no line terminator; but if a MultiLineComment contains one or more line
terminators, then it is replaced by a single line terminator, which becomes part of the stream of input elements for the
syntactic grammar.

A RegExp grammar for ECMAScript is given in 21.2.1. This grammar also has as its terminal symbols the code points as
defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern, that describe how
sequences of code points are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating punctuation.
The lexical and RegExp grammars share some productions.

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the lexical
grammar having to do with numeric literals and has as its terminal symbols SourceCharacter. This grammar appears in
7.1.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13, 14, and 15. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting from two
alternative goal symbols Script and Module, that describe how sequences of tokens form syntactically correct
independent components of ECMAScript programs.

When a stream of code points is to be parsed as an ECMAScript Script or Module, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a single
application of the syntactic grammar. The input stream is syntactically in error if the tokens in the stream of input
elements cannot be parsed as a single instance of the goal nonterminal (Script or Module), with no tokens left over.

When a parse is successful, it constructs a parse tree, a rooted tree structure in which each node is a Parse Node. Each
Parse Node is an instance of a symbol in the grammar; it represents a span of the source text that can be derived from
that symbol. The root node of the parse tree, representing the whole of the source text, is an instance of the parse's goal
symbol. When a Parse Node is an instance of a nonterminal, it is also an instance of some production that has that
nonterminal as its left-hand side. Moreover, it has zero or more children, one for each symbol on the production's right-
hand side: each child is a Parse Node that is an instance of the corresponding symbol.

New Parse Nodes are instantiated for each invocation of the parser and never reused between parses even of identical
source text. Parse Nodes are considered the same Parse Node if and only if they represent the same span of source text,
are instances of the same grammar symbol, and resulted from the same parser invocation.

NOTE 1
Parsing the same String multiple times will lead to different Parse Nodes, e.g., as occurs in:

eval(str); eval(str);

NOTE 2

5.1.3 The Numeric String Grammar

5.1.4 The Syntactic Grammar

14

© Ecma International 2019

14

Parse Nodes are specification artefacts, and implementations are not required to use an analogous data structure.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 12, 13, 14 and 15 is not a complete account of which token sequences are
accepted as a correct ECMAScript Script or Module. Certain additional token sequences are also accepted, namely, those
that would be described by the grammar if only semicolons were added to the sequence in certain places (such as before
line terminator characters). Furthermore, certain token sequences that are described by the grammar are not considered
acceptable if a line terminator character appears in certain “awkward” places.

In certain cases, in order to avoid ambiguities, the syntactic grammar uses generalized productions that permit token
sequences that do not form a valid ECMAScript Script or Module. For example, this technique is used for object literals
and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided that further restricts
the acceptable token sequences. Typically, an early error rule will then define an error condition if "P is not covering an
N", where P is a Parse Node (an instance of the generalized production) and N is a nonterminal from the supplemental
grammar. Here, the sequence of tokens originally matched by P is parsed again using N as the goal symbol. (If N takes
grammatical parameters, then they are set to the same values used when P was originally parsed.) An error occurs if the
sequence of tokens cannot be parsed as a single instance of N, with no tokens left over. Subsequently, algorithms access
the result of the parse using a phrase of the form "the N that is covered by P". This will always be a Parse Node (an
instance of N, unique for a given P), since any parsing failure would have been detected by an early error rule.

Terminal symbols of the lexical, RegExp, and numeric string grammars are shown in fixed width font, both in the
productions of the grammars and throughout this specification whenever the text directly refers to such a terminal
symbol. These are to appear in a script exactly as written. All terminal symbol code points specified in this way are to be
understood as the appropriate Unicode code points from the Basic Latin range, as opposed to any similar-looking code
points from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production”) is introduced
by the name of the nonterminal being defined followed by one or more colons. (The number of colons indicates to which
grammar the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on
succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token, followed by
an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of Expression and
Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by a
comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined in terms
of itself. The result is that an ArgumentList may contain any positive number of arguments, separated by commas, where
each argument expression is an AssignmentExpression. Such recursive definitions of nonterminals are common.

5.1.5 Grammar Notation

© Ecma International 2019

15

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional symbol. The

alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional element and
one that includes it. This means that:

VariableDeclaration :
BindingIdentifier Initializeropt

is a convenient abbreviation for:

VariableDeclaration :
BindingIdentifier
BindingIdentifier Initializer

and that:

IterationStatement :
for (LexicalDeclaration Expressionopt ; Expressionopt) Statement

is a convenient abbreviation for:

IterationStatement :
for (LexicalDeclaration ; Expressionopt) Statement

for (LexicalDeclaration Expression ; Expressionopt) Statement

which in turn is an abbreviation for:

IterationStatement :
for (LexicalDeclaration ;) Statement
for (LexicalDeclaration ; Expression) Statement
for (LexicalDeclaration Expression ;) Statement
for (LexicalDeclaration Expression ; Expression) Statement

so, in this example, the nonterminal IterationStatement actually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form “[parameters]”, which may appear as a suffix

to the nonterminal symbol defined by the production. “parameters” may be either a single name or a comma separated list

of names. A parameterized production is shorthand for a set of productions defining all combinations of the parameter
names, preceded by an underscore, appended to the parameterized nonterminal symbol. This means that:

StatementList[Return] :

ReturnStatement
ExpressionStatement

is a convenient abbreviation for:

StatementList :
ReturnStatement
ExpressionStatement

StatementList_Return :
ReturnStatement
ExpressionStatement

16

© Ecma International 2019

16

and that:

StatementList[Return, In] :

ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ReturnStatement
ExpressionStatement

StatementList_Return :
ReturnStatement
ExpressionStatement

StatementList_In :
ReturnStatement
ExpressionStatement

StatementList_Return_In :
ReturnStatement
ExpressionStatement

Multiple parameters produce a combinatory number of productions, not all of which are necessarily referenced in a
complete grammar.

References to nonterminals on the right-hand side of a production can also be parameterized. For example:

StatementList :
ReturnStatement
ExpressionStatement[+In]

is equivalent to saying:

StatementList :
ReturnStatement
ExpressionStatement_In

and:

StatementList :
ReturnStatement
ExpressionStatement[~In]

is equivalent to:

StatementList :
ReturnStatement
ExpressionStatement

A nonterminal reference may have both a parameter list and an “opt” suffix. For example:

© Ecma International 2019

17

VariableDeclaration :
BindingIdentifier Initializer[+In] opt

is an abbreviation for:

VariableDeclaration :
BindingIdentifier
BindingIdentifier Initializer_In

Prefixing a parameter name with “?” on a right-hand side nonterminal reference makes that parameter value dependent

upon the occurrence of the parameter name on the reference to the current production's left-hand side symbol. For
example:

VariableDeclaration[In] :

BindingIdentifier Initializer[?In]

is an abbreviation for:

VariableDeclaration :
BindingIdentifier Initializer

VariableDeclaration_In :
BindingIdentifier Initializer_In

If a right-hand side alternative is prefixed with “[+parameter]” that alternative is only available if the named parameter
was used in referencing the production's nonterminal symbol. If a right-hand side alternative is prefixed with
“[~parameter]” that alternative is only available if the named parameter was not used in referencing the production's
nonterminal symbol. This means that:

StatementList[Return] :

[+Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ExpressionStatement

StatementList_Return :
ReturnStatement
ExpressionStatement

and that:

StatementList[Return] :

[~Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ReturnStatement
ExpressionStatement

18

© Ecma International 2019

18

StatementList_Return :
ExpressionStatement

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal symbols on
the following line or lines is an alternative definition. For example, the lexical grammar for ECMAScript contains the
production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

NonZeroDigit ::
1
2
3
4
5
6
7
8
9

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-hand side
contains no terminals or nonterminals.

If the phrase “[lookahead ∉ set]” appears in the right-hand side of a production, it indicates that the production may not
be used if the immediately following input token sequence is a member of the given set. The set can be written as a
comma separated list of one or two element terminal sequences enclosed in curly brackets. For convenience, the set can
also be written as a nonterminal, in which case it represents the set of all terminals to which that nonterminal could
expand. If the set consists of a single terminal the phrase “[lookahead ≠ terminal]” may be used.

For example, given the definitions:

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition:

LookaheadExample ::
n [lookahead ∉ { 1 , 3 , 5 , 7 , 9 }] DecimalDigits
DecimalDigit [lookahead ∉ DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit not
followed by another decimal digit.

Similarly, if the phrase “[lookahead ∈ set]” appears in the right-hand side of a production, it indicates that the production
may only be used if the immediately following input token sequence is a member of the given set. If the set consists of a

© Ecma International 2019

19

single terminal the phrase “[lookahead = terminal]” may be used.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the input stream
at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw token and the
Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without affecting the
syntactic acceptability of the script.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a multi-code
point token, it represents the sequence of code points that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase “but not”
and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of code points that could replace IdentifierName
provided that the same sequence of code points could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it would be
impractical to list all the alternatives:

SourceCharacter ::
any Unicode code point

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to precisely
specify the required semantics of ECMAScript language constructs. The algorithms are not intended to imply the use of
any specific implementation technique. In practice, there may be more efficient algorithms available to implement a
given feature.

Algorithms may be explicitly parameterized, in which case the names and usage of the parameters must be provided as
part of the algorithm's definition.

Algorithm steps may be subdivided into sequential substeps. Substeps are indented and may themselves be further
divided into indented substeps. Outline numbering conventions are used to identify substeps with the first level of
substeps labelled with lower case alphabetic characters and the second level of substeps labelled with lower case roman
numerals. If more than three levels are required these rules repeat with the fourth level using numeric labels. For
example:

1. Top-level step
a. Substep.

5.2 Algorithm Conventions

20

© Ecma International 2019

20

b. Substep.
i. Subsubstep.

1. Subsubsubstep
a. Subsubsubsubstep

i. Subsubsubsubsubstep

A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the substeps are only
applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is the negation of the
preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step that begins with “Assert:” asserts an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic requirements and
hence need not be checked by an implementation. They are used simply to clarify algorithms.

Algorithm steps may declare named aliases for any value using the form “Let x be someValue”. These aliases are
reference-like in that both x and someValue refer to the same underlying data and modifications to either are visible to
both. Algorithm steps that want to avoid this reference-like behaviour should explicitly make a copy of the right-hand
side: “Let x be a copy of someValue” creates a shallow copy of someValue.

Once declared, an alias may be referenced in any subsequent steps and must not be referenced from steps prior to the
alias's declaration. Aliases may be modified using the form “Set x to someOtherValue”.

In order to facilitate their use in multiple parts of this specification, some algorithms, called abstract operations, are
named and written in parameterized functional form so that they may be referenced by name from within other
algorithms. Abstract operations are typically referenced using a functional application style such as OperationName(arg1,
arg2). Some abstract operations are treated as polymorphically dispatched methods of class-like specification
abstractions. Such method-like abstract operations are typically referenced using a method application style such as
someValue.OperationName(arg1, arg2).

A syntax-directed operation is a named operation whose definition consists of algorithms, each of which is associated
with one or more productions from one of the ECMAScript grammars. A production that has multiple alternative
definitions will typically have a distinct algorithm for each alternative. When an algorithm is associated with a grammar
production, it may reference the terminal and nonterminal symbols of the production alternative as if they were
parameters of the algorithm. When used in this manner, nonterminal symbols refer to the actual alternative definition that
is matched when parsing the source text. The source text matched by a grammar production is the portion of the source
text that starts at the beginning of the first terminal that participated in the match and ends at the end of the last terminal
that participated in the match.

When an algorithm is associated with a production alternative, the alternative is typically shown without any “[]”
grammar annotations. Such annotations should only affect the syntactic recognition of the alternative and have no effect
on the associated semantics for the alternative.

Syntax-directed operations are invoked with a parse node and, optionally, other parameters by using the conventions on
steps 1, 3, and 4 in the following algorithm:

5.2.1 Abstract Operations

5.2.2 Syntax-Directed Operations

© Ecma International 2019

21

1. Let status be the result of performing SyntaxDirectedOperation of SomeNonTerminal.
2. Let someParseNode be the parse of some source text.
3. Perform SyntaxDirectedOperation of someParseNode.
4. Perform SyntaxDirectedOperation of someParseNode passing "value" as the argument.

Unless explicitly specified otherwise, all chain productions have an implicit definition for every operation that might be
applied to that production's left-hand side nonterminal. The implicit definition simply reapplies the same operation with
the same parameters, if any, to the chain production's sole right-hand side nonterminal and then returns the result. For
example, assume that some algorithm has a step of the form: “Return the result of evaluating Block” and that there is a
production:

Block :
{ StatementList }

but the Evaluation operation does not associate an algorithm with that production. In that case, the Evaluation operation
implicitly includes an association of the form:

Runtime Semantics: Evaluation

Block : { StatementList }

1. Return the result of evaluating StatementList.

Algorithms which specify semantics that must be called at runtime are called runtime semantics. Runtime semantics are
defined by abstract operations or syntax-directed operations. Such algorithms always return a completion record.

The algorithms of this specification often implicitly return Completion Records whose [[Type]] is normal. Unless it is
otherwise obvious from the context, an algorithm statement that returns a value that is not a Completion Record, such as:

1. Return "Infinity".

means the same thing as:

1. Return NormalCompletion("Infinity").

However, if the value expression of a “return” statement is a Completion Record construction literal, the resulting
Completion Record is returned. If the value expression is a call to an abstract operation, the “return” statement simply
returns the Completion Record produced by the abstract operation.

The abstract operation Completion(completionRecord) is used to emphasize that a previously computed Completion
Record is being returned. The Completion abstract operation takes a single argument, completionRecord, and performs
the following steps:

1. Assert: completionRecord is a Completion Record.
2. Return completionRecord as the Completion Record of this abstract operation.

A “return” statement without a value in an algorithm step means the same thing as:

1. Return NormalCompletion(undefined).

5.2.3 Runtime Semantics

5.2.3.1 Implicit Completion Values

22

© Ecma International 2019

22

Any reference to a Completion Record value that is in a context that does not explicitly require a complete Completion
Record value is equivalent to an explicit reference to the [[Value]] field of the Completion Record value unless the
Completion Record is an abrupt completion.

Algorithms steps that say to throw an exception, such as

1. Throw a TypeError exception.

mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(argument).

mean the same thing as:

1. If argument is an abrupt completion, return argument.
2. Else if argument is a Completion Record, set argument to argument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. If hygienicTemp is an abrupt completion, return hygienicTemp.
3. Else if hygienicTemp is a Completion Record, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

1. Let result be AbstractOperation(ReturnIfAbrupt(argument)).

mean the same thing as:

1. If argument is an abrupt completion, return argument.
2. If argument is a Completion Record, set argument to argument.[[Value]].
3. Let result be AbstractOperation(argument).

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate that ReturnIfAbrupt
should be applied to the resulting Completion Record. For example, the step:

1. ? OperationName().

5.2.3.2 Throw an Exception

5.2.3.3 ReturnIfAbrupt

5.2.3.4 ReturnIfAbrupt Shorthands

© Ecma International 2019

23

is equivalent to the following step:

1. ReturnIfAbrupt(OperationName()).

Similarly, for method application style, the step:

1. ? someValue.OperationName().

is equivalent to:

1. ReturnIfAbrupt(someValue.OperationName()).

Similarly, prefix ! is used to indicate that the following invocation of an abstract or syntax-directed operation will never
return an abrupt completion and that the resulting Completion Record's [[Value]] field should be used in place of the
return value of the operation. For example, the step:

1. Let val be ! OperationName().

is equivalent to the following steps:

1. Let val be OperationName().
2. Assert: val is never an abrupt completion.
3. If val is a Completion Record, set val to val.[[Value]].

Syntax-directed operations for runtime semantics make use of this shorthand by placing ! or ? before the invocation of
the operation:

1. Perform ! SyntaxDirectedOperation of NonTerminal.

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of input
elements form a valid ECMAScript Script or Module that may be evaluated. In some situations additional rules are
needed that may be expressed using either ECMAScript algorithm conventions or prose requirements. Such rules are
always associated with a production of a grammar and are called the static semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic Rules are
associated with grammar productions and a production that has multiple alternative definitions will typically have for
each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition for a
static semantic rule named Contains which takes an argument named symbol whose value is a terminal or nonterminal of
the grammar that includes the associated production. The default definition of Contains is:

1. For each child node child of this Parse Node, do
a. If child is an instance of symbol, return true.
b. If child is an instance of a nonterminal, then

i. Let contained be the result of child Contains symbol.
ii. If contained is true, return true.

2. Return false.

The above definition is explicitly over-ridden for specific productions.

5.2.4 Static Semantics

24

© Ecma International 2019

24

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see clause
16) that are associated with specific grammar productions. Evaluation of most early error rules are not explicitly invoked
within the algorithms of this specification. A conforming implementation must, prior to the first evaluation of a Script or
Module, validate all of the early error rules of the productions used to parse that Script or Module. If any of the early
error rules are violated the Script or Module is invalid and cannot be evaluated.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical functions
defined later in this clause should always be understood as computing exact mathematical results on mathematical real
numbers, which unless otherwise noted do not include infinities and do not include a negative zero that is distinguished
from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit steps, where
necessary, to handle infinities and signed zero and to perform rounding. If a mathematical operation or function is
applied to a floating-point number, it should be understood as being applied to the exact mathematical value represented
by that floating-point number; such a floating-point number must be finite, and if it is +0 or -0 then the corresponding
mathematical value is simply 0.

The mathematical function abs(x) produces the absolute value of x, which is -x if x is negative (less than zero) and
otherwise is x itself.

The mathematical function min(x1, x2, ..., xN) produces the mathematically smallest of x1 through xN. The mathematical
function max(x1, x2, ..., xN) produces the mathematically largest of x1 through xN. The domain and range of these
mathematical functions include +∞ and -∞.

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or zero) such that
abs(k) < abs(y) and x - k = q × y for some integer q.

The mathematical function floor(x) produces the largest integer (closest to positive infinity) that is not larger than x.

NOTE
floor(x) = x - (x modulo 1).

Algorithms within this specification manipulate values each of which has an associated type. The possible value types are
exactly those defined in this clause. Types are further subclassified into ECMAScript language types and specification
types.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of x” where “type” refers to the
ECMAScript language and specification types defined in this clause. When the term “empty” is used as if it was naming
a value, it is equivalent to saying “no value of any type”.

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript programmer using
the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean, String, Symbol, Number,
and Object. An ECMAScript language value is a value that is characterized by an ECMAScript language type.

5.2.5 Mathematical Operations

6 ECMAScript Data Types and Values

6.1 ECMAScript Language Types

© Ecma International 2019

25

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value has the
value undefined.

The Null type has exactly one value, called null.

The Boolean type represents a logical entity having two values, called true and false.

The String type is the set of all ordered sequences of zero or more 16-bit unsigned integer values (“elements”) up to a

maximum length of 253 - 1 elements. The String type is generally used to represent textual data in a running
ECMAScript program, in which case each element in the String is treated as a UTF-16 code unit value. Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at index 0, the next element (if any) at index 1, and so on. The length of a String is the number of
elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no elements.

ECMAScript operations that do not interpret String contents apply no further semantics. Operations that do interpret
String values treat each element as a single UTF-16 code unit. However, ECMAScript does not restrict the value of or
relationships between these code units, so operations that further interpret String contents as sequences of Unicode code
points encoded in UTF-16 must account for ill-formed subsequences. Such operations apply special treatment to every
code unit with a numeric value in the inclusive range 0xD800 to 0xDBFF (defined by the Unicode Standard as a leading
surrogate, or more formally as a high-surrogate code unit) and every code unit with a numeric value in the inclusive
range 0xDC00 to 0xDFFF (defined as a trailing surrogate, or more formally as a low-surrogate code unit) using the
following rules:

A code unit that is not a leading surrogate and not a trailing surrogate is interpreted as a code point with the same
value.
A sequence of two code units, where the first code unit c1 is a leading surrogate and the second code unit c2 a
trailing surrogate, is a surrogate pair and is interpreted as a code point with the value (c1 - 0xD800) × 0x400 + (c2 -
0xDC00) + 0x10000. (See 10.1.2)
A code unit that is a leading surrogate or trailing surrogate, but is not part of a surrogate pair, is interpreted as a
code point with the same value.

The function String.prototype.normalize (see 21.1.3.12) can be used to explicitly normalize a String value.
String.prototype.localeCompare (see 21.1.3.10) internally normalizes String values, but no other operations
implicitly normalize the strings upon which they operate. Only operations that are explicitly specified to be language or
locale sensitive produce language-sensitive results.

NOTE
The rationale behind this design was to keep the implementation of Strings as simple and high-performing as possible. If
ECMAScript source text is in Normalized Form C, string literals are guaranteed to also be normalized, as long as they do

6.1.1 The Undefined Type

6.1.2 The Null Type

6.1.3 The Boolean Type

6.1.4 The String Type

26

© Ecma International 2019

26

not contain any Unicode escape sequences.

In this specification, the phrase "the string-concatenation of A, B, ..." (where each argument is a String value, a code unit,
or a sequence of code units) denotes the String value whose sequence of code units is the concatenation of the code units
(in order) of each of the arguments (in order).

The Symbol type is the set of all non-String values that may be used as the key of an Object property (6.1.7).

Each possible Symbol value is unique and immutable.

Each Symbol value immutably holds an associated value called [[Description]] that is either undefined or a String value.

Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this specification. They
are typically used as the keys of properties whose values serve as extension points of a specification algorithm. Unless
otherwise specified, well-known symbols values are shared by all realms (8.2).

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where “name” is
one of the values listed in Table 1.

Table 1: Well-known Symbols

Specification Name [[Description]] Value and Purpose

@@asyncIterator "Symbol.asyncIterator" A method that returns the default AsyncIterator
for an object. Called by the semantics of the
for-await-of statement.

@@hasInstance "Symbol.hasInstance" A method that determines if a constructor object
recognizes an object as one of the constructor's
instances. Called by the semantics of the
instanceof operator.

@@isConcatSpreadable "Symbol.isConcatSpreadable" A Boolean valued property that if true indicates
that an object should be flattened to its array
elements by Array.prototype.concat.

@@iterator "Symbol.iterator" A method that returns the default Iterator for an
object. Called by the semantics of the for-of
statement.

@@match "Symbol.match" A regular expression method that matches the
regular expression against a string. Called by the
String.prototype.match method.

@@replace "Symbol.replace" A regular expression method that replaces
matched substrings of a string. Called by the
String.prototype.replace method.

6.1.5 The Symbol Type

6.1.5.1 Well-Known Symbols

© Ecma International 2019

27

@@search "Symbol.search" A regular expression method that returns the
index within a string that matches the regular
expression. Called by the
String.prototype.search method.

@@species "Symbol.species" A function valued property that is the constructor
function that is used to create derived objects.

@@split "Symbol.split" A regular expression method that splits a string at
the indices that match the regular expression.
Called by the String.prototype.split
method.

@@toPrimitive "Symbol.toPrimitive" A method that converts an object to a
corresponding primitive value. Called by the
ToPrimitive abstract operation.

@@toStringTag "Symbol.toStringTag" A String valued property that is used in the
creation of the default string description of an
object. Accessed by the built-in method
Object.prototype.toString.

@@unscopables "Symbol.unscopables" An object valued property whose own and
inherited property names are property names that
are excluded from the with environment
bindings of the associated object.

The Number type has exactly 18437736874454810627 (that is, 264 - 253 + 3) values, representing the double-precision
64-bit format IEEE 754-2008 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic, except that

the 9007199254740990 (that is, 253 - 2) distinct “Not-a-Number” values of the IEEE Standard are represented in
ECMAScript as a single special NaN value. (Note that the NaN value is produced by the program expression NaN.) In
some implementations, external code might be able to detect a difference between various Not-a-Number values, but
such behaviour is implementation-dependent; to ECMAScript code, all NaN values are indistinguishable from each
other.

NOTE
The bit pattern that might be observed in an ArrayBuffer (see 24.1) or a SharedArrayBuffer (see 24.2) after a Number
value has been stored into it is not necessarily the same as the internal representation of that Number value used by the
ECMAScript implementation.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values are also
referred to for expository purposes by the symbols +∞ and -∞, respectively. (Note that these two infinite Number values
are produced by the program expressions +Infinity (or simply Infinity) and -Infinity.)

The other 18437736874454810624 (that is, 264 - 253) values are called the finite numbers. Half of these are positive
numbers and half are negative numbers; for every finite positive Number value there is a corresponding negative value
having the same magnitude.

6.1.6 The Number Type

28

© Ecma International 2019

28

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for expository
purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number values are produced by the
program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 264 - 253 - 2) finite nonzero values are of two kinds:

18428729675200069632 (that is, 264 - 254) of them are normalized, having the form

s × m × 2e

where s is +1 or -1, m is a positive integer less than 253 but not less than 252, and e is an integer ranging from -1074 to
971, inclusive.

The remaining 9007199254740990 (that is, 253 - 2) values are denormalized, having the form

s × m × 2e

where s is +1 or -1, m is a positive integer less than 252, and e is -1074.

Note that all the positive and negative integers whose magnitude is no greater than 253 are representable in the Number
type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two forms
shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents an exact real mathematical quantity (which
might even be an irrational number such as π) means a Number value chosen in the following manner. Consider the set
of all finite values of the Number type, with -0 removed and with two additional values added to it that are not

representable in the Number type, namely 21024 (which is +1 × 253 × 2971) and -21024 (which is -1 × 253 × 2971).
Choose the member of this set that is closest in value to x. If two values of the set are equally close, then the one with an

even significand is chosen; for this purpose, the two extra values 21024 and -21024 are considered to have even

significands. Finally, if 21024 was chosen, replace it with +∞; if -21024 was chosen, replace it with -∞; if +0 was chosen,
replace it with -0 if and only if x is less than zero; any other chosen value is used unchanged. The result is the Number
value for x. (This procedure corresponds exactly to the behaviour of the IEEE 754-2008 “round to nearest, ties to even”
mode.)

Some ECMAScript operators deal only with integers in specific ranges such as -231 through 231 - 1, inclusive, or in the

range 0 through 216 - 1, inclusive. These operators accept any value of the Number type but first convert each such value
to an integer value in the expected range. See the descriptions of the numeric conversion operations in 7.1.

An Object is logically a collection of properties. Each property is either a data property, or an accessor property:

A data property associates a key value with an ECMAScript language value and a set of Boolean attributes.
An accessor property associates a key value with one or two accessor functions, and a set of Boolean attributes. The
accessor functions are used to store or retrieve an ECMAScript language value that is associated with the property.

Properties are identified using key values. A property key value is either an ECMAScript String value or a Symbol value.
All String and Symbol values, including the empty string, are valid as property keys. A property name is a property key

6.1.7 The Object Type

© Ecma International 2019

29

that is a String value.

An integer index is a String-valued property key that is a canonical numeric String (see 7.1.16) and whose numeric value

is either +0 or a positive integer ≤ 253 - 1. An array index is an integer index whose numeric value i is in the range +0 ≤ i

< 232 - 1.

Property keys are used to access properties and their values. There are two kinds of access for properties: get and set,
corresponding to value retrieval and assignment, respectively. The properties accessible via get and set access includes
both own properties that are a direct part of an object and inherited properties which are provided by another associated
object via a property inheritance relationship. Inherited properties may be either own or inherited properties of the
associated object. Each own property of an object must each have a key value that is distinct from the key values of the
other own properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their semantics for
accessing and manipulating their properties. Ordinary objects are the most common form of objects and have the default
object semantics. An exotic object is any form of object whose property semantics differ in any way from the default
semantics.

Attributes are used in this specification to define and explain the state of Object properties. A data property associates a
key value with the attributes listed in Table 2.

Table 2: Attributes of a Data Property

Attribute
Name

Value
Domain

Description

[[Value]] Any
ECMAScript
language type

The value retrieved by a get access of the property.

[[Writable]] Boolean If false, attempts by ECMAScript code to change the property's [[Value]] attribute
using [[Set]] will not succeed.

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in enumeration (see 13.7.5).
Otherwise, the property is said to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the property to be an accessor
property, or change its attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 3.

Table 3: Attributes of an Accessor Property

Attribute
Name

Value
Domain

Description

[[Get]] Object |
Undefined

If the value is an Object it must be a function object. The function's [[Call]] internal
method (Table 6) is called with an empty arguments list to retrieve the property value
each time a get access of the property is performed.

6.1.7.1 Property Attributes

30

© Ecma International 2019

30

[[Set]] Object |
Undefined

If the value is an Object it must be a function object. The function's [[Call]] internal
method (Table 6) is called with an arguments list containing the assigned value as its
sole argument each time a set access of the property is performed. The effect of a
property's [[Set]] internal method may, but is not required to, have an effect on the
value returned by subsequent calls to the property's [[Get]] internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in enumeration (see 13.7.5).
Otherwise, the property is said to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the property to be a data property, or
change its attributes will fail.

If the initial values of a property's attributes are not explicitly specified by this specification, the default value defined in
Table 4 is used.

Table 4: Default Attribute Values

Attribute Name Default Value

[[Value]] undefined

[[Get]] undefined

[[Set]] undefined

[[Writable]] false

[[Enumerable]] false

[[Configurable]] false

The actual semantics of objects, in ECMAScript, are specified via algorithms called internal methods. Each object in an
ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour. These internal
methods are not part of the ECMAScript language. They are defined by this specification purely for expository purposes.
However, each object within an implementation of ECMAScript must behave as specified by the internal methods
associated with it. The exact manner in which this is accomplished is determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different algorithms when
a common internal method name is invoked upon them. That actual object upon which an internal method is invoked is
the “target” of the invocation. If, at runtime, the implementation of an algorithm attempts to use an internal method of an
object that the object does not support, a TypeError exception is thrown.

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript specification
algorithms. Internal slots are not object properties and they are not inherited. Depending upon the specific internal slot
specification, such state may consist of values of any ECMAScript language type or of specific ECMAScript
specification type values. Unless explicitly specified otherwise, internal slots are allocated as part of the process of

6.1.7.2 Object Internal Methods and Internal Slots

© Ecma International 2019

31

creating an object and may not be dynamically added to an object. Unless specified otherwise, the initial value of an
internal slot is the value undefined. Various algorithms within this specification create objects that have internal slots.
However, the ECMAScript language provides no direct way to associate internal slots with an object.

Internal methods and internal slots are identified within this specification using names enclosed in double square brackets
[[]].

Table 5 summarizes the essential internal methods used by this specification that are applicable to all objects created or
manipulated by ECMAScript code. Every object must have algorithms for all of the essential internal methods. However,
all objects do not necessarily use the same algorithms for those methods.

The “Signature” column of Table 5 and other similar tables describes the invocation pattern for each internal method.
The invocation pattern always includes a parenthesized list of descriptive parameter names. If a parameter name is the
same as an ECMAScript type name then the name describes the required type of the parameter value. If an internal
method explicitly returns a value, its parameter list is followed by the symbol “→” and the type name of the returned
value. The type names used in signatures refer to the types defined in clause 6 augmented by the following additional
names. “any” means the value may be any ECMAScript language type. An internal method implicitly returns a
Completion Record. In addition to its parameters, an internal method always has access to the object that is the target of
the method invocation.

Table 5: Essential Internal Methods

Internal Method Signature Description

[[GetPrototypeOf]] () → Object | Null Determine the object that provides inherited properties for this object.
A null value indicates that there are no inherited properties.

[[SetPrototypeOf]] (Object | Null) →
Boolean

Associate this object with another object that provides inherited
properties. Passing null indicates that there are no inherited properties.
Returns true indicating that the operation was completed successfully
or false indicating that the operation was not successful.

[[IsExtensible]] () → Boolean Determine whether it is permitted to add additional properties to this
object.

[[PreventExtensions]] () → Boolean Control whether new properties may be added to this object. Returns
true if the operation was successful or false if the operation was
unsuccessful.

[[GetOwnProperty]] (propertyKey) →
Undefined |
Property Descriptor

Return a Property Descriptor for the own property of this object whose
key is propertyKey, or undefined if no such property exists.

[[DefineOwnProperty]] (propertyKey,
PropertyDescriptor)
→ Boolean

Create or alter the own property, whose key is propertyKey, to have the
state described by PropertyDescriptor. Return true if that property was
successfully created/updated or false if the property could not be
created or updated.

[[HasProperty]] (propertyKey) →
Boolean

Return a Boolean value indicating whether this object already has
either an own or inherited property whose key is propertyKey.

32

© Ecma International 2019

32

[[Get]] (propertyKey,
Receiver) → any

Return the value of the property whose key is propertyKey from this
object. If any ECMAScript code must be executed to retrieve the
property value, Receiver is used as the this value when evaluating the
code.

[[Set]] (propertyKey,
value, Receiver) →
Boolean

Set the value of the property whose key is propertyKey to value. If any
ECMAScript code must be executed to set the property value, Receiver
is used as the this value when evaluating the code. Returns true if the
property value was set or false if it could not be set.

[[Delete]] (propertyKey) →
Boolean

Remove the own property whose key is propertyKey from this object.
Return false if the property was not deleted and is still present. Return
true if the property was deleted or is not present.

[[OwnPropertyKeys]] () → List of
propertyKey

Return a List whose elements are all of the own property keys for the
object.

Table 6 summarizes additional essential internal methods that are supported by objects that may be called as functions. A
function object is an object that supports the [[Call]] internal method. A constructor is an object that supports the
[[Construct]] internal method. Every object that supports [[Construct]] must support [[Call]]; that is, every constructor
must be a function object. Therefore, a constructor may also be referred to as a constructor function or constructor
function object.

Table 6: Additional Essential Internal Methods of Function Objects

Internal
Method

Signature Description

[[Call]] (any, a
List of
any) →
any

Executes code associated with this object. Invoked via a function call expression. The
arguments to the internal method are a this value and a list containing the arguments passed
to the function by a call expression. Objects that implement this internal method are
callable.

[[Construct]] (a List of
any,
Object)
→ Object

Creates an object. Invoked via the new or super operators. The first argument to the
internal method is a list containing the arguments of the operator. The second argument is
the object to which the new operator was initially applied. Objects that implement this
internal method are called constructors. A function object is not necessarily a constructor
and such non-constructor function objects do not have a [[Construct]] internal method.

The semantics of the essential internal methods for ordinary objects and standard exotic objects are specified in clause 9.
If any specified use of an internal method of an exotic object is not supported by an implementation, that usage must
throw a TypeError exception when attempted.

The Internal Methods of Objects of an ECMAScript engine must conform to the list of invariants specified below.
Ordinary ECMAScript Objects as well as all standard exotic objects in this specification maintain these invariants.
ECMAScript Proxy objects maintain these invariants by means of runtime checks on the result of traps invoked on the
[[ProxyHandler]] object.

6.1.7.3 Invariants of the Essential Internal Methods

© Ecma International 2019

33

Any implementation provided exotic objects must also maintain these invariants for those objects. Violation of these
invariants may cause ECMAScript code to have unpredictable behaviour and create security issues. However, violation
of these invariants must never compromise the memory safety of an implementation.

An implementation must not allow these invariants to be circumvented in any manner such as by providing alternative
interfaces that implement the functionality of the essential internal methods without enforcing their invariants.

The target of an internal method is the object upon which the internal method is called.
A target is non-extensible if it has been observed to return false from its [[IsExtensible]] internal method, or true
from its [[PreventExtensions]] internal method.
A non-existent property is a property that does not exist as an own property on a non-extensible target.
All references to SameValue are according to the definition of the SameValue algorithm.

The Type of the return value must be either Object or Null.
If target is non-extensible, and [[GetPrototypeOf]] returns a value V, then any future calls to [[GetPrototypeOf]]
should return the SameValue as V.

NOTE 1
An object's prototype chain should have finite length (that is, starting from any object, recursively applying the
[[GetPrototypeOf]] internal method to its result should eventually lead to the value null). However, this requirement is
not enforceable as an object level invariant if the prototype chain includes any exotic objects that do not use the ordinary
object definition of [[GetPrototypeOf]]. Such a circular prototype chain may result in infinite loops when accessing
object properties.

The Type of the return value must be Boolean.
If target is non-extensible, [[SetPrototypeOf]] must return false, unless V is the SameValue as the target's observed
[[GetPrototypeOf]] value.

The Type of the return value must be Boolean.
If [[IsExtensible]] returns false, all future calls to [[IsExtensible]] on the target must return false.

The Type of the return value must be Boolean.
If [[PreventExtensions]] returns true, all future calls to [[IsExtensible]] on the target must return false and the target
is now considered non-extensible.

The Type of the return value must be either Property Descriptor or Undefined.
If the Type of the return value is Property Descriptor, the return value must be a complete property descriptor.
If P is described as a non-configurable, non-writable own data property, all future calls to [[GetOwnProperty]] (P)
must return Property Descritor whose [[Value]] is SameValue as P's [[Value]] attribute.

Definitions:

[[GetPrototypeOf]] ()

[[SetPrototypeOf]] (V)

[[IsExtensible]] ()

[[PreventExtensions]] ()

[[GetOwnProperty]] (P)

34

© Ecma International 2019

34

If P's attributes other than [[Writable]] may change over time or if the property might be deleted, then P's
[[Configurable]] attribute must be true.
If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.
If the target is non-extensible and P is non-existent, then all future calls to [[GetOwnProperty]] (P) on the target
must describe P as non-existent (i.e. [[GetOwnProperty]] (P) must return undefined).

NOTE 2
As a consequence of the third invariant, if a property is described as a data property and it may return different values
over time, then either or both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to
change the value is exposed via the other internal methods.

The Type of the return value must be Boolean.
[[DefineOwnProperty]] must return false if P has previously been observed as a non-configurable own property of
the target, unless either:

1. P is a writable data property. A non-configurable writable data property can be changed into a non-
configurable non-writable data property.

2. All attributes of Desc are the SameValue as P's attributes.
[[DefineOwnProperty]] (P, Desc) must return false if target is non-extensible and P is a non-existent own property.
That is, a non-extensible target object cannot be extended with new properties.

The Type of the return value must be Boolean.
If P was previously observed as a non-configurable own data or accessor property of the target, [[HasProperty]]
must return true.

If P was previously observed as a non-configurable, non-writable own data property of the target with value V, then
[[Get]] must return the SameValue as V.
If P was previously observed as a non-configurable own accessor property of the target whose [[Get]] attribute is
undefined, the [[Get]] operation must return undefined.

The Type of the return value must be Boolean.
If P was previously observed as a non-configurable, non-writable own data property of the target, then [[Set]] must
return false unless V is the SameValue as P's [[Value]] attribute.
If P was previously observed as a non-configurable own accessor property of the target whose [[Set]] attribute is
undefined, the [[Set]] operation must return false.

The Type of the return value must be Boolean.
If P was previously observed as a non-configurable own data or accessor property of the target, [[Delete]] must
return false.

The return value must be a List.

[[DefineOwnProperty]] (P, Desc)

[[HasProperty]] (P)

[[Get]] (P, Receiver)

[[Set]] (P, V, Receiver)

[[Delete]] (P)

[[OwnPropertyKeys]] ()

© Ecma International 2019

35

The returned List must not contain any duplicate entries.
The Type of each element of the returned List is either String or Symbol.
The returned List must contain at least the keys of all non-configurable own properties that have previously been
observed.
If the object is non-extensible, the returned List must contain only the keys of all own properties of the object that
are observable using [[GetOwnProperty]].

The Type of the return value must be Object.

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification and which
usually have realm-specific identities. Unless otherwise specified each intrinsic object actually corresponds to a set of
similar objects, one per realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current realm,
corresponding to the name. Determination of the current realm and its intrinsics is described in 8.3. The well-known
intrinsics are listed in Table 7.

Table 7: Well-Known Intrinsic Objects

Intrinsic Name Global Name ECMAScript Language
Association

%Array% Array The Array constructor (22.1.1)

%ArrayBuffer% ArrayBuffer The ArrayBuffer constructor
(24.1.2)

%ArrayBufferPrototype% ArrayBuffer.prototype The initial value of the
prototype data property of
%ArrayBuffer%.

%ArrayIteratorPrototype% The prototype of Array iterator
objects (22.1.5)

%ArrayPrototype% Array.prototype The initial value of the
prototype data property of
%Array% (22.1.3)

%ArrayProto_entries% Array.prototype.entries The initial value of the entries
data property of %ArrayPrototype%
(22.1.3.4)

%ArrayProto_forEach% Array.prototype.forEach The initial value of the forEach
data property of %ArrayPrototype%
(22.1.3.12)

%ArrayProto_keys% Array.prototype.keys The initial value of the keys data
property of %ArrayPrototype%
(22.1.3.16)

[[Construct]] ()

6.1.7.4 Well-Known Intrinsic Objects

36

© Ecma International 2019

36

%ArrayProto_values% Array.prototype.values The initial value of the values
data property of %ArrayPrototype%
(22.1.3.32)

%AsyncFromSyncIteratorPrototype% The prototype of async-from-sync
iterator objects (25.1.4)

%AsyncFunction% The constructor of async function
objects (25.7.1)

%AsyncFunctionPrototype% The initial value of the
prototype data property of
%AsyncFunction%

%AsyncGenerator% The initial value of the
prototype property of
%AsyncGeneratorFunction%

%AsyncGeneratorFunction% The constructor of async iterator
objects (25.3.1)

%AsyncGeneratorPrototype% The initial value of the
prototype property of
%AsyncGenerator%

%AsyncIteratorPrototype% An object that all standard built-in
async iterator objects indirectly
inherit from

%Atomics% Atomics The Atomics object (24.4)

%Boolean% Boolean The Boolean constructor (19.3.1)

%BooleanPrototype% Boolean.prototype The initial value of the
prototype data property of
%Boolean% (19.3.3)

%DataView% DataView The DataView constructor
(24.3.2)

%DataViewPrototype% DataView.prototype The initial value of the
prototype data property of
%DataView%

%Date% Date The Date constructor (20.3.2)

%DatePrototype% Date.prototype The initial value of the
prototype data property of
%Date%.

%decodeURI% decodeURI The decodeURI function
(18.2.6.2)

© Ecma International 2019

37

%decodeURIComponent% decodeURIComponent The decodeURIComponent
function (18.2.6.3)

%encodeURI% encodeURI The encodeURI function
(18.2.6.4)

%encodeURIComponent% encodeURIComponent The encodeURIComponent
function (18.2.6.5)

%Error% Error The Error constructor (19.5.1)

%ErrorPrototype% Error.prototype The initial value of the
prototype data property of
%Error%

%eval% eval The eval function (18.2.1)

%EvalError% EvalError The EvalError constructor
(19.5.5.1)

%EvalErrorPrototype% EvalError.prototype The initial value of the
prototype data property of
%EvalError%

%Float32Array% Float32Array The Float32Array constructor
(22.2)

%Float32ArrayPrototype% Float32Array.prototype The initial value of the
prototype data property of
%Float32Array%

%Float64Array% Float64Array The Float64Array constructor
(22.2)

%Float64ArrayPrototype% Float64Array.prototype The initial value of the
prototype data property of
%Float64Array%

%Function% Function The Function constructor
(19.2.1)

%FunctionPrototype% Function.prototype The initial value of the
prototype data property of
%Function%

%Generator% The initial value of the
prototype data property of
%GeneratorFunction%

%GeneratorFunction% The constructor of generator objects
(25.2.1)

38

© Ecma International 2019

38

%GeneratorPrototype% The initial value of the
prototype data property of
%Generator%

%Int8Array% Int8Array The Int8Array constructor (22.2)

%Int8ArrayPrototype% Int8Array.prototype The initial value of the
prototype data property of
%Int8Array%

%Int16Array% Int16Array The Int16Array constructor
(22.2)

%Int16ArrayPrototype% Int16Array.prototype The initial value of the
prototype data property of
%Int16Array%

%Int32Array% Int32Array The Int32Array constructor
(22.2)

%Int32ArrayPrototype% Int32Array.prototype The initial value of the
prototype data property of
%Int32Array%

%isFinite% isFinite The isFinite function (18.2.2)

%isNaN% isNaN The isNaN function (18.2.3)

%IteratorPrototype% An object that all standard built-in
iterator objects indirectly inherit
from

%JSON% JSON The JSON object (24.5)

%JSONParse% JSON.parse The initial value of the parse data
property of %JSON%

%JSONStringify% JSON.stringify The initial value of the
stringify data property of
%JSON%

%Map% Map The Map constructor (23.1.1)

%MapIteratorPrototype% The prototype of Map iterator
objects (23.1.5)

%MapPrototype% Map.prototype The initial value of the
prototype data property of
%Map%

%Math% Math The Math object (20.2)

%Number% Number The Number constructor (20.1.1)

© Ecma International 2019

39

%NumberPrototype% Number.prototype The initial value of the
prototype data property of
%Number%

%Object% Object The Object constructor (19.1.1)

%ObjectPrototype% Object.prototype The initial value of the
prototype data property of
%Object% (19.1.3)

%ObjProto_toString% Object.prototype.toString The initial value of the toString
data property of %ObjectPrototype%
(19.1.3.6)

%ObjProto_valueOf% Object.prototype.valueOf The initial value of the valueOf
data property of %ObjectPrototype%
(19.1.3.7)

%parseFloat% parseFloat The parseFloat function
(18.2.4)

%parseInt% parseInt The parseInt function (18.2.5)

%Promise% Promise The Promise constructor (25.6.3)

%PromisePrototype% Promise.prototype The initial value of the
prototype data property of
%Promise%

%PromiseProto_then% Promise.prototype.then The initial value of the then data
property of %PromisePrototype%
(25.6.5.4)

%Promise_all% Promise.all The initial value of the all data
property of %Promise% (25.6.4.1)

%Promise_reject% Promise.reject The initial value of the reject
data property of %Promise%
(25.6.4.4)

%Promise_resolve% Promise.resolve The initial value of the resolve
data property of %Promise%
(25.6.4.5)

%Proxy% Proxy The Proxy constructor (26.2.1)

%RangeError% RangeError The RangeError constructor
(19.5.5.2)

%RangeErrorPrototype% RangeError.prototype The initial value of the
prototype data property of
%RangeError%

40

© Ecma International 2019

40

%ReferenceError% ReferenceError The ReferenceError
constructor (19.5.5.3)

%ReferenceErrorPrototype% ReferenceError.prototype The initial value of the
prototype data property of
%ReferenceError%

%Reflect% Reflect The Reflect object (26.1)

%RegExp% RegExp The RegExp constructor (21.2.3)

%RegExpPrototype% RegExp.prototype The initial value of the
prototype data property of
%RegExp%

%Set% Set The Set constructor (23.2.1)

%SetIteratorPrototype% The prototype of Set iterator objects
(23.2.5)

%SetPrototype% Set.prototype The initial value of the
prototype data property of
%Set%

%SharedArrayBuffer% SharedArrayBuffer The SharedArrayBuffer
constructor (24.2.2)

%SharedArrayBufferPrototype% SharedArrayBuffer.prototype The initial value of the
prototype data property of
%SharedArrayBuffer%

%String% String The String constructor (21.1.1)

%StringIteratorPrototype% The prototype of String iterator
objects (21.1.5)

%StringPrototype% String.prototype The initial value of the
prototype data property of
%String%

%Symbol% Symbol The Symbol constructor (19.4.1)

%SymbolPrototype% Symbol.prototype The initial value of the
prototype data property of
%Symbol% (19.4.3)

%SyntaxError% SyntaxError The SyntaxError constructor
(19.5.5.4)

%SyntaxErrorPrototype% SyntaxError.prototype The initial value of the
prototype data property of
%SyntaxError%

© Ecma International 2019

41

%ThrowTypeError% A function object that
unconditionally throws a new
instance of %TypeError%

%TypedArray% The super class of all typed Array
constructors (22.2.1)

%TypedArrayPrototype% The initial value of the
prototype data property of
%TypedArray%

%TypeError% TypeError The TypeError constructor
(19.5.5.5)

%TypeErrorPrototype% TypeError.prototype The initial value of the
prototype data property of
%TypeError%

%Uint8Array% Uint8Array The Uint8Array constructor
(22.2)

%Uint8ArrayPrototype% Uint8Array.prototype The initial value of the
prototype data property of
%Uint8Array%

%Uint8ClampedArray% Uint8ClampedArray The Uint8ClampedArray
constructor (22.2)

%Uint8ClampedArrayPrototype% Uint8ClampedArray.prototype The initial value of the
prototype data property of
%Uint8ClampedArray%

%Uint16Array% Uint16Array The Uint16Array constructor
(22.2)

%Uint16ArrayPrototype% Uint16Array.prototype The initial value of the
prototype data property of
%Uint16Array%

%Uint32Array% Uint32Array The Uint32Array constructor
(22.2)

%Uint32ArrayPrototype% Uint32Array.prototype The initial value of the
prototype data property of
%Uint32Array%

%URIError% URIError The URIError constructor
(19.5.5.6)

%URIErrorPrototype% URIError.prototype The initial value of the
prototype data property of
%URIError%

42

© Ecma International 2019

42

%WeakMap% WeakMap The WeakMap constructor (23.3.1)

%WeakMapPrototype% WeakMap.prototype The initial value of the
prototype data property of
%WeakMap%

%WeakSet% WeakSet The WeakSet constructor (23.4.1)

%WeakSetPrototype% WeakSet.prototype The initial value of the
prototype data property of
%WeakSet%

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of ECMAScript
language constructs and ECMAScript language types. The specification types include Reference, List, Completion,
Property Descriptor, Lexical Environment, Environment Record, and Data Block. Specification type values are
specification artefacts that do not necessarily correspond to any specific entity within an ECMAScript implementation.
Specification type values may be used to describe intermediate results of ECMAScript expression evaluation but such
values cannot be stored as properties of objects or values of ECMAScript language variables.

The List type is used to explain the evaluation of argument lists (see 12.3.6) in new expressions, in function calls, and in
other algorithms where a simple ordered list of values is needed. Values of the List type are simply ordered sequences of
list elements containing the individual values. These sequences may be of any length. The elements of a list may be
randomly accessed using 0-origin indices. For notational convenience an array-like syntax can be used to access List

elements. For example, arguments[2] is shorthand for saying the 3rd element of the List arguments.

For notational convenience within this specification, a literal syntax can be used to express a new List value. For
example, « 1, 2 » defines a List value that has two elements each of which is initialized to a specific value. A new empty
List can be expressed as « ».

The Record type is used to describe data aggregations within the algorithms of this specification. A Record type value
consists of one or more named fields. The value of each field is either an ECMAScript value or an abstract value
represented by a name associated with the Record type. Field names are always enclosed in double brackets, for example
[[Value]].

For notational convenience within this specification, an object literal-like syntax can be used to express a Record value.
For example, { [[Field1]]: 42, [[Field2]]: false, [[Field3]]: empty } defines a Record value that has three fields, each of
which is initialized to a specific value. Field name order is not significant. Any fields that are not explicitly listed are
considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For example,
if R is the record shown in the previous paragraph then R.[[Field2]] is shorthand for “the field of R named [[Field2]]”.

Schema for commonly used Record field combinations may be named, and that name may be used as a prefix to a literal
Record value to identify the specific kind of aggregations that is being described. For example: PropertyDescriptor {
[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true }.

6.2 ECMAScript Specification Types

6.2.1 The List and Record Specification Types

© Ecma International 2019

43

The Set type is used to explain a collection of unordered elements for use in the memory model. Values of the Set type
are simple collections of elements, where no element appears more than once. Elements may be added to and removed
from Sets. Sets may be unioned, intersected, or subtracted from each other.

The Relation type is used to explain constraints on Sets. Values of the Relation type are Sets of ordered pairs of values
from its value domain. For example, a Relation on events is a set of ordered pairs of events. For a Relation R and two
values a and b in the value domain of R, a R b is shorthand for saying the ordered pair (a, b) is a member of R. A
Relation is least with respect to some conditions when it is the smallest Relation that satisfies those conditions.

A strict partial order is a Relation value R that satisfies the following.

For all a, b, and c in R's domain:

It is not the case that a R a, and
If a R b and b R c, then a R c.

NOTE 1
The two properties above are called, in order, irreflexivity and transitivity.

A strict total order is a Relation value R that satisfies the following.

For all a, b, and c in R's domain:

a is identical to b or a R b or b R a, and
It is not the case that a R a, and
If a R b and b R c, then a R c.

NOTE 2
The three properties above are called, in order, totality, irreflexivity, and transitivity.

The Completion type is a Record used to explain the runtime propagation of values and control flow such as the
behaviour of statements (break, continue, return and throw) that perform nonlocal transfers of control.

Values of the Completion type are Record values whose fields are defined as by Table 8. Such values are referred to as
Completion Records.

Table 8: Completion Record Fields

Field Name Value Meaning

[[Type]] One of normal, break, continue, return, or throw The type of completion that occurred.

[[Value]] any ECMAScript language value or empty The value that was produced.

[[Target]] any ECMAScript string or empty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[Type]] value other than normal.

6.2.2 The Set and Relation Specification Types

6.2.3 The Completion Record Specification Type

6.2.3.1 Await

44

© Ecma International 2019

44

Algorithm steps that say

1. Let completion be Await(value).

mean the same thing as:

1. Let asyncContext be the running execution context.
2. Let promise be ? PromiseResolve(%Promise%, « value »).
3. Let stepsFulfilled be the algorithm steps defined in Await Fulfilled Functions.
4. Let onFulfilled be CreateBuiltinFunction(stepsFulfilled, « [[AsyncContext]] »).
5. Set onFulfilled.[[AsyncContext]] to asyncContext.
6. Let stepsRejected be the algorithm steps defined in Await Rejected Functions.
7. Let onRejected be CreateBuiltinFunction(stepsRejected, « [[AsyncContext]] »).
8. Set onRejected.[[AsyncContext]] to asyncContext.
9. Perform ! PerformPromiseThen(promise, onFulfilled, onRejected).

10. Remove asyncContext from the execution context stack and restore the execution context that is at the top of the
execution context stack as the running execution context.

11. Set the code evaluation state of asyncContext such that when evaluation is resumed with a Completion completion,
the following steps of the algorithm that invoked Await will be performed, with completion available.

12. Return.
13. NOTE: This returns to the evaluation of the operation that had most previously resumed evaluation of

asyncContext.

where all variables in the above steps, with the exception of completion, are ephemeral and visible only in the steps
pertaining to Await.

NOTE
Await can be combined with the ? and ! prefixes, so that for example

1. Let result be ? Await(value).

means the same thing as:

1. Let result be Await(value).
2. ReturnIfAbrupt(result).

An Await fulfilled function is an anonymous built-in function that is used as part of the Await specification device to
deliver the promise fulfillment value to the caller as a normal completion. Each Await fulfilled function has an
[[AsyncContext]] internal slot.

When an Await fulfilled function is called with argument value, the following steps are taken:

1. Let F be the active function object.
2. Let asyncContext be F.[[AsyncContext]].
3. Let prevContext be the running execution context.
4. Suspend prevContext.
5. Push asyncContext onto the execution context stack; asyncContext is now the running execution context.

6.2.3.1 Await

6.2.3.1.1 Await Fulfilled Functions

© Ecma International 2019

45

6. Resume the suspended evaluation of asyncContext using NormalCompletion(value) as the result of the operation
that suspended it.

7. Assert: When we reach this step, asyncContext has already been removed from the execution context stack and
prevContext is the currently running execution context.

8. Return undefined.

The "length" property of an Await fulfilled function is 1.

An Await rejected function is an anonymous built-in function that is used as part of the Await specification device to
deliver the promise rejection reason to the caller as an abrupt throw completion. Each Await rejected function has an
[[AsyncContext]] internal slot.

When an Await rejected function is called with argument reason, the following steps are taken:

1. Let F be the active function object.
2. Let asyncContext be F.[[AsyncContext]].
3. Let prevContext be the running execution context.
4. Suspend prevContext.
5. Push asyncContext onto the execution context stack; asyncContext is now the running execution context.
6. Resume the suspended evaluation of asyncContext using ThrowCompletion(reason) as the result of the operation

that suspended it.
7. Assert: When we reach this step, asyncContext has already been removed from the execution context stack and

prevContext is the currently running execution context.
8. Return undefined.

The "length" property of an Await rejected function is 1.

The abstract operation NormalCompletion with a single argument, such as:

1. Return NormalCompletion(argument).

Is a shorthand that is defined as follows:

1. Return Completion { [[Type]]: normal, [[Value]]: argument, [[Target]]: empty }.

The abstract operation ThrowCompletion with a single argument, such as:

1. Return ThrowCompletion(argument).

Is a shorthand that is defined as follows:

1. Return Completion { [[Type]]: throw, [[Value]]: argument, [[Target]]: empty }.

The abstract operation UpdateEmpty with arguments completionRecord and value performs the following steps:

6.2.3.1.2 Await Rejected Functions

6.2.3.2 NormalCompletion

6.2.3.3 ThrowCompletion

6.2.3.4 UpdateEmpty (completionRecord, value)

46

© Ecma International 2019

46

1. Assert: If completionRecord.[[Type]] is either return or throw, then completionRecord.[[Value]] is not empty.
2. If completionRecord.[[Value]] is not empty, return Completion(completionRecord).
3. Return Completion { [[Type]]: completionRecord.[[Type]], [[Value]]: value, [[Target]]: completionRecord.

[[Target]] }.

NOTE
The Reference type is used to explain the behaviour of such operators as delete, typeof, the assignment operators,
the super keyword and other language features. For example, the left-hand operand of an assignment is expected to
produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three components, the base value
component, the referenced name component, and the Boolean-valued strict reference flag. The base value component is
either undefined, an Object, a Boolean, a String, a Symbol, a Number, or an Environment Record. A base value
component of undefined indicates that the Reference could not be resolved to a binding. The referenced name
component is a String or Symbol value.

A Super Reference is a Reference that is used to represent a name binding that was expressed using the super keyword.
A Super Reference has an additional thisValue component, and its base value component will never be an Environment
Record.

The following abstract operations are used in this specification to operate on references:

1. Assert: Type(V) is Reference.
2. Return the base value component of V.

1. Assert: Type(V) is Reference.
2. Return the referenced name component of V.

1. Assert: Type(V) is Reference.
2. Return the strict reference flag of V.

1. Assert: Type(V) is Reference.
2. If Type(V's base value component) is Boolean, String, Symbol, or Number, return true; otherwise return false.

1. Assert: Type(V) is Reference.
2. If either the base value component of V is an Object or HasPrimitiveBase(V) is true, return true; otherwise return

false.

6.2.4 The Reference Specification Type

6.2.4.1 GetBase (V)

6.2.4.2 GetReferencedName (V)

6.2.4.3 IsStrictReference (V)

6.2.4.4 HasPrimitiveBase (V)

6.2.4.5 IsPropertyReference (V)

6.2.4.6 IsUnresolvableReference (V)

© Ecma International 2019

47

1. Assert: Type(V) is Reference.
2. If the base value component of V is undefined, return true; otherwise return false.

1. Assert: Type(V) is Reference.
2. If V has a thisValue component, return true; otherwise return false.

1. ReturnIfAbrupt(V).
2. If Type(V) is not Reference, return V.
3. Let base be GetBase(V).
4. If IsUnresolvableReference(V) is true, throw a ReferenceError exception.
5. If IsPropertyReference(V) is true, then

a. If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be undefined or null.

ii. Set base to ! ToObject(base).
b. Return ? base.[[Get]](GetReferencedName(V), GetThisValue(V)).

6. Else base must be an Environment Record,
a. Return ? base.GetBindingValue(GetReferencedName(V), IsStrictReference(V)) (see 8.1.1).

NOTE
The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and the ordinary
object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

1. ReturnIfAbrupt(V).
2. ReturnIfAbrupt(W).
3. If Type(V) is not Reference, throw a ReferenceError exception.
4. Let base be GetBase(V).
5. If IsUnresolvableReference(V) is true, then

a. If IsStrictReference(V) is true, then
i. Throw a ReferenceError exception.

b. Let globalObj be GetGlobalObject().
c. Return ? Set(globalObj, GetReferencedName(V), W, false).

6. Else if IsPropertyReference(V) is true, then
a. If HasPrimitiveBase(V) is true, then

i. Assert: In this case, base will never be undefined or null.
ii. Set base to ! ToObject(base).

b. Let succeeded be ? base.[[Set]](GetReferencedName(V), W, GetThisValue(V)).
c. If succeeded is false and IsStrictReference(V) is true, throw a TypeError exception.
d. Return.

7. Else base must be an Environment Record,
a. Return ? base.SetMutableBinding(GetReferencedName(V), W, IsStrictReference(V)) (see 8.1.1).

6.2.4.6 IsUnresolvableReference (V)

6.2.4.7 IsSuperReference (V)

6.2.4.8 GetValue (V)

6.2.4.9 PutValue (V, W)

48

© Ecma International 2019

48

NOTE
The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the ordinary object
[[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

1. Assert: IsPropertyReference(V) is true.
2. If IsSuperReference(V) is true, then

a. Return the value of the thisValue component of the reference V.
3. Return GetBase(V).

1. ReturnIfAbrupt(V).
2. ReturnIfAbrupt(W).
3. Assert: Type(V) is Reference.
4. Assert: IsUnresolvableReference(V) is false.
5. Let base be GetBase(V).
6. Assert: base is an Environment Record.
7. Return base.InitializeBinding(GetReferencedName(V), W).

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes. Values of
the Property Descriptor type are Records. Each field's name is an attribute name and its value is a corresponding attribute
value as specified in 6.1.7.1. In addition, any field may be present or absent. The schema name used within this
specification to tag literal descriptions of Property Descriptor records is “PropertyDescriptor”.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property Descriptors
based upon the existence or use of certain fields. A data Property Descriptor is one that includes any fields named either
[[Value]] or [[Writable]]. An accessor Property Descriptor is one that includes any fields named either [[Get]] or [[Set]].
Any Property Descriptor may have fields named [[Enumerable]] and [[Configurable]]. A Property Descriptor value may
not be both a data Property Descriptor and an accessor Property Descriptor; however, it may be neither. A generic
Property Descriptor is a Property Descriptor value that is neither a data Property Descriptor nor an accessor Property
Descriptor. A fully populated Property Descriptor is one that is either an accessor Property Descriptor or a data Property
Descriptor and that has all of the fields that correspond to the property attributes defined in either Table 2 or Table 3.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

When the abstract operation IsAccessorDescriptor is called with Property Descriptor Desc, the following steps are taken:

1. If Desc is undefined, return false.
2. If both Desc.[[Get]] and Desc.[[Set]] are absent, return false.
3. Return true.

6.2.4.10 GetThisValue (V)

6.2.4.11 InitializeReferencedBinding (V, W)

6.2.5 The Property Descriptor Specification Type

6.2.5.1 IsAccessorDescriptor (Desc)

6.2.5.2 IsDataDescriptor (Desc)

© Ecma International 2019

49

When the abstract operation IsDataDescriptor is called with Property Descriptor Desc, the following steps are taken:

1. If Desc is undefined, return false.
2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, return false.
3. Return true.

When the abstract operation IsGenericDescriptor is called with Property Descriptor Desc, the following steps are taken:

1. If Desc is undefined, return false.
2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, return true.
3. Return false.

When the abstract operation FromPropertyDescriptor is called with Property Descriptor Desc, the following steps are
taken:

1. If Desc is undefined, return undefined.
2. Let obj be ObjectCreate(%ObjectPrototype%).
3. Assert: obj is an extensible ordinary object with no own properties.
4. If Desc has a [[Value]] field, then

a. Perform CreateDataProperty(obj, "value", Desc.[[Value]]).
5. If Desc has a [[Writable]] field, then

a. Perform CreateDataProperty(obj, "writable", Desc.[[Writable]]).
6. If Desc has a [[Get]] field, then

a. Perform CreateDataProperty(obj, "get", Desc.[[Get]]).
7. If Desc has a [[Set]] field, then

a. Perform CreateDataProperty(obj, "set", Desc.[[Set]]).
8. If Desc has an [[Enumerable]] field, then

a. Perform CreateDataProperty(obj, "enumerable", Desc.[[Enumerable]]).
9. If Desc has a [[Configurable]] field, then

a. Perform CreateDataProperty(obj, "configurable", Desc.[[Configurable]]).
10. Assert: All of the above CreateDataProperty operations return true.
11. Return obj.

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1. If Type(Obj) is not Object, throw a TypeError exception.
2. Let desc be a new Property Descriptor that initially has no fields.
3. Let hasEnumerable be ? HasProperty(Obj, "enumerable").
4. If hasEnumerable is true, then

a. Let enumerable be ToBoolean(? Get(Obj, "enumerable")).
b. Set desc.[[Enumerable]] to enumerable.

5. Let hasConfigurable be ? HasProperty(Obj, "configurable").
6. If hasConfigurable is true, then

a. Let configurable be ToBoolean(? Get(Obj, "configurable")).

6.2.5.3 IsGenericDescriptor (Desc)

6.2.5.4 FromPropertyDescriptor (Desc)

6.2.5.5 ToPropertyDescriptor (Obj)

50

© Ecma International 2019

50

b. Set desc.[[Configurable]] to configurable.
7. Let hasValue be ? HasProperty(Obj, "value").
8. If hasValue is true, then

a. Let value be ? Get(Obj, "value").
b. Set desc.[[Value]] to value.

9. Let hasWritable be ? HasProperty(Obj, "writable").
10. If hasWritable is true, then

a. Let writable be ToBoolean(? Get(Obj, "writable")).
b. Set desc.[[Writable]] to writable.

11. Let hasGet be ? HasProperty(Obj, "get").
12. If hasGet is true, then

a. Let getter be ? Get(Obj, "get").
b. If IsCallable(getter) is false and getter is not undefined, throw a TypeError exception.
c. Set desc.[[Get]] to getter.

13. Let hasSet be ? HasProperty(Obj, "set").
14. If hasSet is true, then

a. Let setter be ? Get(Obj, "set").
b. If IsCallable(setter) is false and setter is not undefined, throw a TypeError exception.
c. Set desc.[[Set]] to setter.

15. If desc.[[Get]] is present or desc.[[Set]] is present, then
a. If desc.[[Value]] is present or desc.[[Writable]] is present, throw a TypeError exception.

16. Return desc.

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Desc, the following steps are
taken:

1. Assert: Desc is a Property Descriptor.
2. Let like be Record { [[Value]]: undefined, [[Writable]]: false, [[Get]]: undefined, [[Set]]: undefined,

[[Enumerable]]: false, [[Configurable]]: false }.
3. If IsGenericDescriptor(Desc) is true or IsDataDescriptor(Desc) is true, then

a. If Desc does not have a [[Value]] field, set Desc.[[Value]] to like.[[Value]].
b. If Desc does not have a [[Writable]] field, set Desc.[[Writable]] to like.[[Writable]].

4. Else,
a. If Desc does not have a [[Get]] field, set Desc.[[Get]] to like.[[Get]].
b. If Desc does not have a [[Set]] field, set Desc.[[Set]] to like.[[Set]].

5. If Desc does not have an [[Enumerable]] field, set Desc.[[Enumerable]] to like.[[Enumerable]].
6. If Desc does not have a [[Configurable]] field, set Desc.[[Configurable]] to like.[[Configurable]].
7. Return Desc.

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution in nested
functions and blocks. These types and the operations upon them are defined in 8.1.

6.2.5.6 CompletePropertyDescriptor (Desc)

6.2.6 The Lexical Environment and Environment Record Specification Types

6.2.7 Data Blocks

© Ecma International 2019

51

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8 bit) numeric
values. A Data Block value is created with a fixed number of bytes that each have the initial value 0.

For notational convenience within this specification, an array-like syntax can be used to access the individual bytes of a
Data Block value. This notation presents a Data Block value as a 0-origined integer-indexed sequence of bytes. For

example, if db is a 5 byte Data Block value then db[2] can be used to access its 3rd byte.

A data block that resides in memory that can be referenced from multiple agents concurrently is designated a Shared
Data Block. A Shared Data Block has an identity (for the purposes of equality testing Shared Data Block values) that is
address-free: it is tied not to the virtual addresses the block is mapped to in any process, but to the set of locations in
memory that the block represents. Two data blocks are equal only if the sets of the locations they contain are equal;
otherwise, they are not equal and the intersection of the sets of locations they contain is empty. Finally, Shared Data
Blocks can be distinguished from Data Blocks.

The semantics of Shared Data Blocks is defined using Shared Data Block events by the memory model. Abstract
operations below introduce Shared Data Block events and act as the interface between evaluation semantics and the event
semantics of the memory model. The events form a candidate execution, on which the memory model acts as a filter.
Please consult the memory model for full semantics.

Shared Data Block events are modeled by Records, defined in the memory model.

The following abstract operations are used in this specification to operate upon Data Block values:

When the abstract operation CreateByteDataBlock is called with integer argument size, the following steps are taken:

1. Assert: size ≥ 0.
2. Let db be a new Data Block value consisting of size bytes. If it is impossible to create such a Data Block, throw a

RangeError exception.
3. Set all of the bytes of db to 0.
4. Return db.

When the abstract operation CreateSharedByteDataBlock is called with integer argument size, the following steps are
taken:

1. Assert: size ≥ 0.
2. Let db be a new Shared Data Block value consisting of size bytes. If it is impossible to create such a Shared Data

Block, throw a RangeError exception.
3. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.
4. Let eventList be the [[EventList]] field of the element in execution.[[EventsRecords]] whose [[AgentSignifier]] is

AgentSignifier().
5. Let zero be « 0 ».
6. For each index i of db, do

a. Append WriteSharedMemory { [[Order]]: "Init", [[NoTear]]: true, [[Block]]: db, [[ByteIndex]]: i,
[[ElementSize]]: 1, [[Payload]]: zero } to eventList.

7. Return db.

6.2.7.1 CreateByteDataBlock (size)

6.2.7.2 CreateSharedByteDataBlock (size)

52

© Ecma International 2019

52

When the abstract operation CopyDataBlockBytes is called, the following steps are taken:

1. Assert: fromBlock and toBlock are distinct Data Block or Shared Data Block values.
2. Assert: fromIndex, toIndex, and count are integer values ≥ 0.
3. Let fromSize be the number of bytes in fromBlock.
4. Assert: fromIndex + count ≤ fromSize.
5. Let toSize be the number of bytes in toBlock.
6. Assert: toIndex + count ≤ toSize.
7. Repeat, while count > 0

a. If fromBlock is a Shared Data Block, then
i. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.

ii. Let eventList be the [[EventList]] field of the element in execution.[[EventsRecords]] whose
[[AgentSignifier]] is AgentSignifier().

iii. Let bytes be a List of length 1 that contains a nondeterministically chosen byte value.
iv. NOTE: In implementations, bytes is the result of a non-atomic read instruction on the underlying

hardware. The nondeterminism is a semantic prescription of the memory model to describe observable
behaviour of hardware with weak consistency.

v. Let readEvent be ReadSharedMemory { [[Order]]: "Unordered", [[NoTear]]: true, [[Block]]:
fromBlock, [[ByteIndex]]: fromIndex, [[ElementSize]]: 1 }.

vi. Append readEvent to eventList.
vii. Append Chosen Value Record { [[Event]]: readEvent, [[ChosenValue]]: bytes } to execution.

[[ChosenValues]].
viii. If toBlock is a Shared Data Block, then

1. Append WriteSharedMemory { [[Order]]: "Unordered", [[NoTear]]: true, [[Block]]: toBlock,
[[ByteIndex]]: toIndex, [[ElementSize]]: 1, [[Payload]]: bytes } to eventList.

ix. Else,
1. Set toBlock[toIndex] to bytes[0].

b. Else,
i. Assert: toBlock is not a Shared Data Block.

ii. Set toBlock[toIndex] to fromBlock[fromIndex].
c. Increment toIndex and fromIndex each by 1.
d. Decrement count by 1.

8. Return NormalCompletion(empty).

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the specification of
the semantics of the ECMAScript language. Other, more specialized abstract operations are defined throughout this
specification.

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics of certain
constructs it is useful to define a set of conversion abstract operations. The conversion abstract operations are
polymorphic; they can accept a value of any ECMAScript language type. But no other specification types are used with

6.2.7.3 CopyDataBlockBytes (toBlock, toIndex, fromBlock, fromIndex, count)

7 Abstract Operations

7.1 Type Conversion

© Ecma International 2019

53

these operations.

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The abstract
operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of converting to more than
one primitive type, it may use the optional hint PreferredType to favour that type. Conversion occurs according to the
following algorithm:

1. Assert: input is an ECMAScript language value.
2. If Type(input) is Object, then

a. If PreferredType is not present, let hint be "default".
b. Else if PreferredType is hint String, let hint be "string".
c. Else PreferredType is hint Number, let hint be "number".
d. Let exoticToPrim be ? GetMethod(input, @@toPrimitive).
e. If exoticToPrim is not undefined, then

i. Let result be ? Call(exoticToPrim, input, « hint »).
ii. If Type(result) is not Object, return result.

iii. Throw a TypeError exception.
f. If hint is "default", set hint to "number".
g. Return ? OrdinaryToPrimitive(input, hint).

3. Return input.

NOTE
When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However, objects may
over-ride this behaviour by defining a @@toPrimitive method. Of the objects defined in this specification only Date
objects (see 20.3.4.45) and Symbol objects (see 19.4.3.5) over-ride the default ToPrimitive behaviour. Date objects treat
no hint as if the hint were String.

When the abstract operation OrdinaryToPrimitive is called with arguments O and hint, the following steps are taken:

1. Assert: Type(O) is Object.
2. Assert: Type(hint) is String and its value is either "string" or "number".
3. If hint is "string", then

a. Let methodNames be « "toString", "valueOf" ».
4. Else,

a. Let methodNames be « "valueOf", "toString" ».
5. For each name in methodNames in List order, do

a. Let method be ? Get(O, name).
b. If IsCallable(method) is true, then

i. Let result be ? Call(method, O).
ii. If Type(result) is not Object, return result.

6. Throw a TypeError exception.

7.1.1 ToPrimitive (input [, PreferredType])

7.1.1.1 OrdinaryToPrimitive (O, hint)

7.1.2 ToBoolean (argument)

54

© Ecma International 2019

54

The abstract operation ToBoolean converts argument to a value of type Boolean according to Table 9:

Table 9: ToBoolean Conversions

Argument Type Result

Undefined Return false.

Null Return false.

Boolean Return argument.

Number If argument is +0, -0, or NaN, return false; otherwise return true.

String If argument is the empty String (its length is zero), return false; otherwise return true.

Symbol Return true.

Object Return true.

The abstract operation ToNumber converts argument to a value of type Number according to Table 10:

Table 10: ToNumber Conversions

Argument Type Result

Undefined Return NaN.

Null Return +0.

Boolean If argument is true, return 1. If argument is false, return +0.

Number Return argument (no conversion).

String See grammar and conversion algorithm below.

Symbol Throw a TypeError exception.

Object Apply the following steps:

1. Let primValue be ? ToPrimitive(argument, hint Number).
2. Return ? ToNumber(primValue).

ToNumber applied to Strings applies the following grammar to the input String interpreted as a sequence of UTF-16
encoded code points (6.1.4). If the grammar cannot interpret the String as an expansion of StringNumericLiteral, then the
result of ToNumber is NaN.

NOTE 1
The terminal symbols of this grammar are all composed of characters in the Unicode Basic Multilingual Plane (BMP).
Therefore, the result of ToNumber will be NaN if the string contains any leading surrogate or trailing surrogate code

7.1.3 ToNumber (argument)

7.1.3.1 ToNumber Applied to the String Type

© Ecma International 2019

55

units, whether paired or unpaired.

StringNumericLiteral :::
StrWhiteSpaceopt
StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
BinaryIntegerLiteral
OctalIntegerLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigitsopt ExponentPartopt
. DecimalDigits ExponentPartopt
DecimalDigits ExponentPartopt

All grammar symbols not explicitly defined above have the definitions used in the Lexical Grammar for numeric literals
(11.8.3)

NOTE 2
Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral:

A StringNumericLiteral may include leading and/or trailing white space and/or line terminators.
A StringNumericLiteral that is decimal may have any number of leading 0 digits.
A StringNumericLiteral that is decimal may include a + or - to indicate its sign.
A StringNumericLiteral that is empty or contains only white space is converted to +0.
Infinity and -Infinity are recognized as a StringNumericLiteral but not as a NumericLiteral.

The conversion of a String to a Number value is similar overall to the determination of the Number value for a numeric
literal (see 11.8.3), but some of the details are different, so the process for converting a String numeric literal to a value

Syntax

7.1.3.1.1 Runtime Semantics: MV

56

© Ecma International 2019

56

of Number type is given here. This value is determined in two steps: first, a mathematical value (MV) is derived from the
String numeric literal; second, this mathematical value is rounded as described below. The MV on any grammar symbol,
not provided below, is the MV for that symbol defined in 11.8.3.1.

The MV of StringNumericLiteral ::: [empty] is 0.
The MV of StringNumericLiteral ::: StrWhiteSpace is 0.
The MV of StringNumericLiteral ::: StrWhiteSpace StrNumericLiteral StrWhiteSpace is the MV of
StrNumericLiteral, no matter whether white space is present or not.
The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.
The MV of StrNumericLiteral ::: BinaryIntegerLiteral is the MV of BinaryIntegerLiteral.
The MV of StrNumericLiteral ::: OctalIntegerLiteral is the MV of OctalIntegerLiteral.
The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.
The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.
The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.
The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a floating-
point +0 or -0 as appropriate.)

The MV of StrUnsignedDecimalLiteral ::: Infinity is 1010000 (a value so large that it will round to +∞).
The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . is the MV of DecimalDigits.
The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits

plus (the MV of the second DecimalDigits times 10-n), where n is the number of code points in the second
DecimalDigits.
The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . ExponentPart is the MV of DecimalDigits times

10e, where e is the MV of ExponentPart.
The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . DecimalDigits ExponentPart is (the MV of the

first DecimalDigits plus (the MV of the second DecimalDigits times 10-n)) times 10e, where n is the number of
code points in the second DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral ::: . DecimalDigits is the MV of DecimalDigits times 10-n, where n is
the number of code points in DecimalDigits.
The MV of StrUnsignedDecimalLiteral ::: . DecimalDigits ExponentPart is the MV of DecimalDigits times

10e - n, where n is the number of code points in DecimalDigits and e is the MV of ExponentPart.
The MV of StrUnsignedDecimalLiteral ::: DecimalDigits is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral ::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10e,
where e is the MV of ExponentPart.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the Number type. If
the MV is 0, then the rounded value is +0 unless the first non white space code point in the String numeric literal is "-",
in which case the rounded value is -0. Otherwise, the rounded value must be the Number value for the MV (in the sense
defined in 6.1.6), unless the literal includes a StrUnsignedDecimalLiteral and the literal has more than 20 significant
digits, in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by replacing each
significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A digit is
significant if it is not part of an ExponentPart and

it is not 0; or
there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

© Ecma International 2019

57

The abstract operation ToInteger converts argument to an integral numeric value. This abstract operation functions as
follows:

1. Let number be ? ToNumber(argument).
2. If number is NaN, return +0.
3. If number is +0, -0, +∞, or -∞, return number.
4. Return the number value that is the same sign as number and whose magnitude is floor(abs(number)).

The abstract operation ToInt32 converts argument to one of 232 integer values in the range -231 through 231 - 1,
inclusive. This abstract operation functions as follows:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0, -0, +∞, or -∞, return +0.
3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

4. Let int32bit be int modulo 232.

5. If int32bit ≥ 231, return int32bit - 232; otherwise return int32bit.

NOTE
Given the above definition of ToInt32:

The ToInt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.
ToInt32(ToUint32(x)) is equal to ToInt32(x) for all values of x. (It is to preserve this latter property that +∞ and -∞
are mapped to +0.)
ToInt32 maps -0 to +0.

The abstract operation ToUint32 converts argument to one of 232 integer values in the range 0 through 232 - 1, inclusive.
This abstract operation functions as follows:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0, -0, +∞, or -∞, return +0.
3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

4. Let int32bit be int modulo 232.
5. Return int32bit.

NOTE
Given the above definition of ToUint32:

Step 5 is the only difference between ToUint32 and ToInt32.
The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.
ToUint32(ToInt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +∞ and -

7.1.4 ToInteger (argument)

7.1.5 ToInt32 (argument)

7.1.6 ToUint32 (argument)

58

© Ecma International 2019

58

∞ are mapped to +0.)
ToUint32 maps -0 to +0.

The abstract operation ToInt16 converts argument to one of 216 integer values in the range -32768 through 32767,
inclusive. This abstract operation functions as follows:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0, -0, +∞, or -∞, return +0.
3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

4. Let int16bit be int modulo 216.

5. If int16bit ≥ 215, return int16bit - 216; otherwise return int16bit.

The abstract operation ToUint16 converts argument to one of 216 integer values in the range 0 through 216 - 1, inclusive.
This abstract operation functions as follows:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0, -0, +∞, or -∞, return +0.
3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

4. Let int16bit be int modulo 216.
5. Return int16bit.

NOTE
Given the above definition of ToUint16:

The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUint16.
ToUint16 maps -0 to +0.

The abstract operation ToInt8 converts argument to one of 28 integer values in the range -128 through 127, inclusive.
This abstract operation functions as follows:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0, -0, +∞, or -∞, return +0.
3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

4. Let int8bit be int modulo 28.

5. If int8bit ≥ 27, return int8bit - 28; otherwise return int8bit.

7.1.7 ToInt16 (argument)

7.1.8 ToUint16 (argument)

7.1.9 ToInt8 (argument)

7.1.10 ToUint8 (argument)

© Ecma International 2019

59

The abstract operation ToUint8 converts argument to one of 28 integer values in the range 0 through 255, inclusive. This
abstract operation functions as follows:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0, -0, +∞, or -∞, return +0.
3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

4. Let int8bit be int modulo 28.
5. Return int8bit.

The abstract operation ToUint8Clamp converts argument to one of 28 integer values in the range 0 through 255,
inclusive. This abstract operation functions as follows:

1. Let number be ? ToNumber(argument).
2. If number is NaN, return +0.
3. If number ≤ 0, return +0.
4. If number ≥ 255, return 255.
5. Let f be floor(number).
6. If f + 0.5 < number, return f + 1.
7. If number < f + 0.5, return f.
8. If f is odd, return f + 1.
9. Return f.

NOTE
Unlike the other ECMAScript integer conversion abstract operation, ToUint8Clamp rounds rather than truncates non-
integer values and does not convert +∞ to 0. ToUint8Clamp does “round half to even” tie-breaking. This differs from
Math.round which does “round half up” tie-breaking.

The abstract operation ToString converts argument to a value of type String according to Table 11:

Table 11: ToString Conversions

Argument Type Result

Undefined Return "undefined".

Null Return "null".

Boolean If argument is true, return "true".

If argument is false, return "false".

Number Return NumberToString(argument).

String Return argument.

7.1.11 ToUint8Clamp (argument)

7.1.12 ToString (argument)

60

© Ecma International 2019

60

Symbol Throw a TypeError exception.

Object Apply the following steps:

1. Let primValue be ? ToPrimitive(argument, hint String).
2. Return ? ToString(primValue).

The abstract operation NumberToString converts a Number m to String format as follows:

1. If m is NaN, return the String "NaN".
2. If m is +0 or -0, return the String "0".
3. If m is less than zero, return the string-concatenation of "-" and ! NumberToString(-m).
4. If m is +∞, return the String "Infinity".

5. Otherwise, let n, k, and s be integers such that k ≥ 1, 10k - 1 ≤ s < 10k, the Number value for s × 10n - k is m, and k
is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is not divisible
by 10, and that the least significant digit of s is not necessarily uniquely determined by these criteria.

6. If k ≤ n ≤ 21, return the string-concatenation of:
the code units of the k digits of the decimal representation of s (in order, with no leading zeroes)
n - k occurrences of the code unit 0x0030 (DIGIT ZERO)

7. If 0 < n ≤ 21, return the string-concatenation of:
the code units of the most significant n digits of the decimal representation of s
the code unit 0x002E (FULL STOP)
the code units of the remaining k - n digits of the decimal representation of s

8. If -6 < n ≤ 0, return the string-concatenation of:
the code unit 0x0030 (DIGIT ZERO)
the code unit 0x002E (FULL STOP)
-n occurrences of the code unit 0x0030 (DIGIT ZERO)
the code units of the k digits of the decimal representation of s

9. Otherwise, if k = 1, return the string-concatenation of:
the code unit of the single digit of s
the code unit 0x0065 (LATIN SMALL LETTER E)
the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS) according to whether n - 1
is positive or negative
the code units of the decimal representation of the integer abs(n - 1) (with no leading zeroes)

10. Return the string-concatenation of:
the code units of the most significant digit of the decimal representation of s
the code unit 0x002E (FULL STOP)
the code units of the remaining k - 1 digits of the decimal representation of s
the code unit 0x0065 (LATIN SMALL LETTER E)
the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS) according to whether n - 1
is positive or negative
the code units of the decimal representation of the integer abs(n - 1) (with no leading zeroes)

NOTE 1
The following observations may be useful as guidelines for implementations, but are not part of the normative

7.1.12.1 NumberToString (m)

© Ecma International 2019

61

requirements of this Standard:

If x is any Number value other than -0, then ToNumber(ToString(x)) is exactly the same Number value as x.
The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2
For implementations that provide more accurate conversions than required by the rules above, it is recommended that the
following alternative version of step 5 be used as a guideline:

5. Otherwise, let n, k, and s be integers such that k ≥ 1, 10k - 1 ≤ s < 10k, the Number value for s × 10n - k is m, and k

is as small as possible. If there are multiple possibilities for s, choose the value of s for which s × 10n - k is closest
in value to m. If there are two such possible values of s, choose the one that is even. Note that k is the number of
digits in the decimal representation of s and that s is not divisible by 10.

NOTE 3
Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis, Manuscript
90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://ampl.com/REFS/abstracts.html#rounding. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as
http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

The abstract operation ToObject converts argument to a value of type Object according to Table 12:

Table 12: ToObject Conversions

Argument
Type

Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]] internal slot is set to argument. See 19.3 for a
description of Boolean objects.

Number Return a new Number object whose [[NumberData]] internal slot is set to argument. See 20.1 for a
description of Number objects.

String Return a new String object whose [[StringData]] internal slot is set to argument. See 21.1 for a
description of String objects.

Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set to argument. See 19.4 for a
description of Symbol objects.

Object Return argument.

7.1.13 ToObject (argument)

62

© Ecma International 2019

62

http://ampl.com/REFS/abstracts.html#rounding
http://netlib.sandia.gov/fp/dtoa.c
http://netlib.sandia.gov/fp/g_fmt.c

The abstract operation ToPropertyKey converts argument to a value that can be used as a property key by performing the
following steps:

1. Let key be ? ToPrimitive(argument, hint String).
2. If Type(key) is Symbol, then

a. Return key.
3. Return ! ToString(key).

The abstract operation ToLength converts argument to an integer suitable for use as the length of an array-like object. It
performs the following steps:

1. Let len be ? ToInteger(argument).
2. If len ≤ +0, return +0.

3. Return min(len, 253 - 1).

The abstract operation CanonicalNumericIndexString returns argument converted to a numeric value if it is a String
representation of a Number that would be produced by ToString, or the string "-0". Otherwise, it returns undefined.
This abstract operation functions as follows:

1. Assert: Type(argument) is String.
2. If argument is "-0", return -0.
3. Let n be ! ToNumber(argument).
4. If SameValue(! ToString(n), argument) is false, return undefined.
5. Return n.

A canonical numeric string is any String value for which the CanonicalNumericIndexString abstract operation does not
return undefined.

The abstract operation ToIndex returns value argument converted to a numeric value if it is a valid integer index value.
This abstract operation functions as follows:

1. If value is undefined, then
a. Let index be 0.

2. Else,
a. Let integerIndex be ? ToInteger(value).
b. If integerIndex < 0, throw a RangeError exception.
c. Let index be ! ToLength(integerIndex).
d. If SameValueZero(integerIndex, index) is false, throw a RangeError exception.

3. Return index.

7.1.14 ToPropertyKey (argument)

7.1.15 ToLength (argument)

7.1.16 CanonicalNumericIndexString (argument)

7.1.17 ToIndex (value)

© Ecma International 2019

63

The abstract operation RequireObjectCoercible throws an error if argument is a value that cannot be converted to an
Object using ToObject. It is defined by Table 13:

Table 13: RequireObjectCoercible Results

Argument Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return argument.

Number Return argument.

String Return argument.

Symbol Return argument.

Object Return argument.

The abstract operation IsArray takes one argument argument, and performs the following steps:

1. If Type(argument) is not Object, return false.
2. If argument is an Array exotic object, return true.
3. If argument is a Proxy exotic object, then

a. If argument.[[ProxyHandler]] is null, throw a TypeError exception.
b. Let target be argument.[[ProxyTarget]].
c. Return ? IsArray(target).

4. Return false.

The abstract operation IsCallable determines if argument, which must be an ECMAScript language value, is a callable
function with a [[Call]] internal method.

1. If Type(argument) is not Object, return false.
2. If argument has a [[Call]] internal method, return true.
3. Return false.

The abstract operation IsConstructor determines if argument, which must be an ECMAScript language value, is a
function object with a [[Construct]] internal method.

1. If Type(argument) is not Object, return false.

7.2 Testing and Comparison Operations

7.2.1 RequireObjectCoercible (argument)

7.2.2 IsArray (argument)

7.2.3 IsCallable (argument)

7.2.4 IsConstructor (argument)

64

© Ecma International 2019

64

2. If argument has a [[Construct]] internal method, return true.
3. Return false.

The abstract operation IsExtensible is used to determine whether additional properties can be added to the object that is
O. A Boolean value is returned. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Return ? O.[[IsExtensible]]().

The abstract operation IsInteger determines if argument is a finite integer numeric value.

1. If Type(argument) is not Number, return false.
2. If argument is NaN, +∞, or -∞, return false.
3. If floor(abs(argument)) ≠ abs(argument), return false.
4. Return true.

The abstract operation IsPropertyKey determines if argument, which must be an ECMAScript language value, is a value
that may be used as a property key.

1. If Type(argument) is String, return true.
2. If Type(argument) is Symbol, return true.
3. Return false.

The abstract operation IsRegExp with argument argument performs the following steps:

1. If Type(argument) is not Object, return false.
2. Let matcher be ? Get(argument, @@match).
3. If matcher is not undefined, return ToBoolean(matcher).
4. If argument has a [[RegExpMatcher]] internal slot, return true.
5. Return false.

The abstract operation IsStringPrefix determines if String p is a prefix of String q.

1. Assert: Type(p) is String.
2. Assert: Type(q) is String.
3. If q can be the string-concatenation of p and some other String r, return true. Otherwise, return false.
4. NOTE: Any String is a prefix of itself, because r may be the empty String.

7.2.5 IsExtensible (O)

7.2.6 IsInteger (argument)

7.2.7 IsPropertyKey (argument)

7.2.8 IsRegExp (argument)

7.2.9 IsStringPrefix (p, q)

© Ecma International 2019

65

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values, produces
true or false. Such a comparison is performed as follows:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Number, then

a. If x is NaN and y is NaN, return true.
b. If x is +0 and y is -0, return false.
c. If x is -0 and y is +0, return false.
d. If x is the same Number value as y, return true.
e. Return false.

3. Return SameValueNonNumber(x, y).

NOTE
This algorithm differs from the Strict Equality Comparison Algorithm in its treatment of signed zeroes and NaNs.

The internal comparison abstract operation SameValueZero(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Number, then

a. If x is NaN and y is NaN, return true.
b. If x is +0 and y is -0, return true.
c. If x is -0 and y is +0, return true.
d. If x is the same Number value as y, return true.
e. Return false.

3. Return SameValueNonNumber(x, y).

NOTE
SameValueZero differs from SameValue only in its treatment of +0 and -0.

The internal comparison abstract operation SameValueNonNumber(x, y), where neither x nor y are Number values,
produces true or false. Such a comparison is performed as follows:

1. Assert: Type(x) is not Number.
2. Assert: Type(x) is the same as Type(y).
3. If Type(x) is Undefined, return true.
4. If Type(x) is Null, return true.
5. If Type(x) is String, then

a. If x and y are exactly the same sequence of code units (same length and same code units at corresponding
indices), return true; otherwise, return false.

6. If Type(x) is Boolean, then
a. If x and y are both true or both false, return true; otherwise, return false.

7.2.10 SameValue (x, y)

7.2.11 SameValueZero (x, y)

7.2.12 SameValueNonNumber (x, y)

66

© Ecma International 2019

66

7. If Type(x) is Symbol, then
a. If x and y are both the same Symbol value, return true; otherwise, return false.

8. If x and y are the same Object value, return true. Otherwise, return false.

The comparison x < y, where x and y are values, produces true, false, or undefined (which indicates that at least one
operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a parameter. The flag is
used to control the order in which operations with potentially visible side-effects are performed upon x and y. It is
necessary because ECMAScript specifies left to right evaluation of expressions. The default value of LeftFirst is true and
indicates that the x parameter corresponds to an expression that occurs to the left of the y parameter's corresponding
expression. If LeftFirst is false, the reverse is the case and operations must be performed upon y before x. Such a
comparison is performed as follows:

1. If the LeftFirst flag is true, then
a. Let px be ? ToPrimitive(x, hint Number).
b. Let py be ? ToPrimitive(y, hint Number).

2. Else the order of evaluation needs to be reversed to preserve left to right evaluation,
a. Let py be ? ToPrimitive(y, hint Number).
b. Let px be ? ToPrimitive(x, hint Number).

3. If Type(px) is String and Type(py) is String, then
a. If IsStringPrefix(py, px) is true, return false.
b. If IsStringPrefix(px, py) is true, return true.
c. Let k be the smallest nonnegative integer such that the code unit at index k within px is different from the code

unit at index k within py. (There must be such a k, for neither String is a prefix of the other.)
d. Let m be the integer that is the numeric value of the code unit at index k within px.
e. Let n be the integer that is the numeric value of the code unit at index k within py.
f. If m < n, return true. Otherwise, return false.

4. Else,
a. NOTE: Because px and py are primitive values evaluation order is not important.
b. Let nx be ? ToNumber(px).
c. Let ny be ? ToNumber(py).
d. If nx is NaN, return undefined.
e. If ny is NaN, return undefined.
f. If nx and ny are the same Number value, return false.
g. If nx is +0 and ny is -0, return false.
h. If nx is -0 and ny is +0, return false.
i. If nx is +∞, return false.
j. If ny is +∞, return true.
k. If ny is -∞, return false.
l. If nx is -∞, return true.

m. If the mathematical value of nx is less than the mathematical value of ny—note that these mathematical values
are both finite and not both zero—return true. Otherwise, return false.

NOTE 1
Step 3 differs from step 7 in the algorithm for the addition operator + (12.8.3) by using the logical-and operation instead
of the logical-or operation.

NOTE 2
The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no attempt to

7.2.13 Abstract Relational Comparison

© Ecma International 2019

67

use the more complex, semantically oriented definitions of character or string equality and collating order defined in the
Unicode specification. Therefore String values that are canonically equal according to the Unicode standard could test as
unequal. In effect this algorithm assumes that both Strings are already in normalized form. Also, note that for strings
containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from that
on sequences of code point values.

The comparison x == y, where x and y are values, produces true or false. Such a comparison is performed as follows:

1. If Type(x) is the same as Type(y), then
a. Return the result of performing Strict Equality Comparison x === y.

2. If x is null and y is undefined, return true.
3. If x is undefined and y is null, return true.
4. If Type(x) is Number and Type(y) is String, return the result of the comparison x == ! ToNumber(y).
5. If Type(x) is String and Type(y) is Number, return the result of the comparison ! ToNumber(x) == y.
6. If Type(x) is Boolean, return the result of the comparison ! ToNumber(x) == y.
7. If Type(y) is Boolean, return the result of the comparison x == ! ToNumber(y).
8. If Type(x) is either String, Number, or Symbol and Type(y) is Object, return the result of the comparison x ==

ToPrimitive(y).
9. If Type(x) is Object and Type(y) is either String, Number, or Symbol, return the result of the comparison

ToPrimitive(x) == y.
10. Return false.

The comparison x === y, where x and y are values, produces true or false. Such a comparison is performed as follows:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Number, then

a. If x is NaN, return false.
b. If y is NaN, return false.
c. If x is the same Number value as y, return true.
d. If x is +0 and y is -0, return true.
e. If x is -0 and y is +0, return true.
f. Return false.

3. Return SameValueNonNumber(x, y).

NOTE
This algorithm differs from the SameValue Algorithm in its treatment of signed zeroes and NaNs.

7.2.14 Abstract Equality Comparison

7.2.15 Strict Equality Comparison

7.3 Operations on Objects

7.3.1 Get (O, P)

68

© Ecma International 2019

68

The abstract operation Get is used to retrieve the value of a specific property of an object. The operation is called with
arguments O and P where O is the object and P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return ? O.[[Get]](P, O).

The abstract operation GetV is used to retrieve the value of a specific property of an ECMAScript language value. If the
value is not an object, the property lookup is performed using a wrapper object appropriate for the type of the value. The
operation is called with arguments V and P where V is the value and P is the property key. This abstract operation
performs the following steps:

1. Assert: IsPropertyKey(P) is true.
2. Let O be ? ToObject(V).
3. Return ? O.[[Get]](P, V).

The abstract operation Set is used to set the value of a specific property of an object. The operation is called with
arguments O, P, V, and Throw where O is the object, P is the property key, V is the new value for the property and
Throw is a Boolean flag. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Assert: Type(Throw) is Boolean.
4. Let success be ? O.[[Set]](P, V, O).
5. If success is false and Throw is true, throw a TypeError exception.
6. Return success.

The abstract operation CreateDataProperty is used to create a new own property of an object. The operation is called with
arguments O, P, and V where O is the object, P is the property key, and V is the value for the property. This abstract
operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:

true }.
4. Return ? O.[[DefineOwnProperty]](P, newDesc).

NOTE
This abstract operation creates a property whose attributes are set to the same defaults used for properties created by the
ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and is not
configurable or if O is not extensible, [[DefineOwnProperty]] will return false.

7.3.2 GetV (V, P)

7.3.3 Set (O, P, V, Throw)

7.3.4 CreateDataProperty (O, P, V)

© Ecma International 2019

69

The abstract operation CreateMethodProperty is used to create a new own property of an object. The operation is called
with arguments O, P, and V where O is the object, P is the property key, and V is the value for the property. This
abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]:

true }.
4. Return ? O.[[DefineOwnProperty]](P, newDesc).

NOTE
This abstract operation creates a property whose attributes are set to the same defaults used for built-in methods and
methods defined using class declaration syntax. Normally, the property will not already exist. If it does exist and is not
configurable or if O is not extensible, [[DefineOwnProperty]] will return false.

The abstract operation CreateDataPropertyOrThrow is used to create a new own property of an object. It throws a
TypeError exception if the requested property update cannot be performed. The operation is called with arguments O,
P, and V where O is the object, P is the property key, and V is the value for the property. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Let success be ? CreateDataProperty(O, P, V).
4. If success is false, throw a TypeError exception.
5. Return success.

NOTE
This abstract operation creates a property whose attributes are set to the same defaults used for properties created by the
ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and is not
configurable or if O is not extensible, [[DefineOwnProperty]] will return false causing this operation to throw a
TypeError exception.

The abstract operation DefinePropertyOrThrow is used to call the [[DefineOwnProperty]] internal method of an object in
a manner that will throw a TypeError exception if the requested property update cannot be performed. The operation is
called with arguments O, P, and desc where O is the object, P is the property key, and desc is the Property Descriptor for
the property. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Let success be ? O.[[DefineOwnProperty]](P, desc).
4. If success is false, throw a TypeError exception.
5. Return success.

7.3.5 CreateMethodProperty (O, P, V)

7.3.6 CreateDataPropertyOrThrow (O, P, V)

7.3.7 DefinePropertyOrThrow (O, P, desc)

70

© Ecma International 2019

70

The abstract operation DeletePropertyOrThrow is used to remove a specific own property of an object. It throws an
exception if the property is not configurable. The operation is called with arguments O and P where O is the object and P
is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Let success be ? O.[[Delete]](P).
4. If success is false, throw a TypeError exception.
5. Return success.

The abstract operation GetMethod is used to get the value of a specific property of an ECMAScript language value when
the value of the property is expected to be a function. The operation is called with arguments V and P where V is the
ECMAScript language value, P is the property key. This abstract operation performs the following steps:

1. Assert: IsPropertyKey(P) is true.
2. Let func be ? GetV(V, P).
3. If func is either undefined or null, return undefined.
4. If IsCallable(func) is false, throw a TypeError exception.
5. Return func.

The abstract operation HasProperty is used to determine whether an object has a property with the specified property key.
The property may be either an own or inherited. A Boolean value is returned. The operation is called with arguments O
and P where O is the object and P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return ? O.[[HasProperty]](P).

The abstract operation HasOwnProperty is used to determine whether an object has an own property with the specified
property key. A Boolean value is returned. The operation is called with arguments O and P where O is the object and P
is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Let desc be ? O.[[GetOwnProperty]](P).
4. If desc is undefined, return false.
5. Return true.

The abstract operation Call is used to call the [[Call]] internal method of a function object. The operation is called with

7.3.8 DeletePropertyOrThrow (O, P)

7.3.9 GetMethod (V, P)

7.3.10 HasProperty (O, P)

7.3.11 HasOwnProperty (O, P)

7.3.12 Call (F, V [, argumentsList])

© Ecma International 2019

71

arguments F, V, and optionally argumentsList where F is the function object, V is an ECMAScript language value that is
the this value of the [[Call]], and argumentsList is the value passed to the corresponding argument of the internal
method. If argumentsList is not present, a new empty List is used as its value. This abstract operation performs the
following steps:

1. If argumentsList is not present, set argumentsList to a new empty List.
2. If IsCallable(F) is false, throw a TypeError exception.
3. Return ? F.[[Call]](V, argumentsList).

The abstract operation Construct is used to call the [[Construct]] internal method of a function object. The operation is
called with arguments F, and optionally argumentsList, and newTarget where F is the function object. argumentsList and
newTarget are the values to be passed as the corresponding arguments of the internal method. If argumentsList is not
present, a new empty List is used as its value. If newTarget is not present, F is used as its value. This abstract operation
performs the following steps:

1. If newTarget is not present, set newTarget to F.
2. If argumentsList is not present, set argumentsList to a new empty List.
3. Assert: IsConstructor(F) is true.
4. Assert: IsConstructor(newTarget) is true.
5. Return ? F.[[Construct]](argumentsList, newTarget).

NOTE
If newTarget is not present, this operation is equivalent to: new F(...argumentsList)

The abstract operation SetIntegrityLevel is used to fix the set of own properties of an object. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: level is either "sealed" or "frozen".
3. Let status be ? O.[[PreventExtensions]]().
4. If status is false, return false.
5. Let keys be ? O.[[OwnPropertyKeys]]().
6. If level is "sealed", then

a. For each element k of keys, do
i. Perform ? DefinePropertyOrThrow(O, k, PropertyDescriptor { [[Configurable]]: false }).

7. Else level is "frozen",
a. For each element k of keys, do

i. Let currentDesc be ? O.[[GetOwnProperty]](k).
ii. If currentDesc is not undefined, then

1. If IsAccessorDescriptor(currentDesc) is true, then
a. Let desc be the PropertyDescriptor { [[Configurable]]: false }.

2. Else,
a. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]: false }.

3. Perform ? DefinePropertyOrThrow(O, k, desc).

7.3.13 Construct (F [, argumentsList [, newTarget]])

7.3.14 SetIntegrityLevel (O, level)

72

© Ecma International 2019

72

8. Return true.

The abstract operation TestIntegrityLevel is used to determine if the set of own properties of an object are fixed. This
abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: level is either "sealed" or "frozen".
3. Let status be ? IsExtensible(O).
4. If status is true, return false.
5. NOTE: If the object is extensible, none of its properties are examined.
6. Let keys be ? O.[[OwnPropertyKeys]]().
7. For each element k of keys, do

a. Let currentDesc be ? O.[[GetOwnProperty]](k).
b. If currentDesc is not undefined, then

i. If currentDesc.[[Configurable]] is true, return false.
ii. If level is "frozen" and IsDataDescriptor(currentDesc) is true, then

1. If currentDesc.[[Writable]] is true, return false.
8. Return true.

The abstract operation CreateArrayFromList is used to create an Array object whose elements are provided by a List.
This abstract operation performs the following steps:

1. Assert: elements is a List whose elements are all ECMAScript language values.
2. Let array be ! ArrayCreate(0).
3. Let n be 0.
4. For each element e of elements, do

a. Let status be CreateDataProperty(array, ! ToString(n), e).
b. Assert: status is true.
c. Increment n by 1.

5. Return array.

The abstract operation CreateListFromArrayLike is used to create a List value whose elements are provided by the
indexed properties of an array-like object, obj. The optional argument elementTypes is a List containing the names of
ECMAScript Language Types that are allowed for element values of the List that is created. This abstract operation
performs the following steps:

1. If elementTypes is not present, set elementTypes to « Undefined, Null, Boolean, String, Symbol, Number, Object ».
2. If Type(obj) is not Object, throw a TypeError exception.
3. Let len be ? ToLength(? Get(obj, "length")).
4. Let list be a new empty List.
5. Let index be 0.
6. Repeat, while index < len

a. Let indexName be ! ToString(index).

7.3.15 TestIntegrityLevel (O, level)

7.3.16 CreateArrayFromList (elements)

7.3.17 CreateListFromArrayLike (obj [, elementTypes])

© Ecma International 2019

73

b. Let next be ? Get(obj, indexName).
c. If Type(next) is not an element of elementTypes, throw a TypeError exception.
d. Append next as the last element of list.
e. Increase index by 1.

7. Return list.

The abstract operation Invoke is used to call a method property of an ECMAScript language value. The operation is
called with arguments V, P, and optionally argumentsList where V serves as both the lookup point for the property and
the this value of the call, P is the property key, and argumentsList is the list of arguments values passed to the method. If
argumentsList is not present, a new empty List is used as its value. This abstract operation performs the following steps:

1. Assert: IsPropertyKey(P) is true.
2. If argumentsList is not present, set argumentsList to a new empty List.
3. Let func be ? GetV(V, P).
4. Return ? Call(func, V, argumentsList).

The abstract operation OrdinaryHasInstance implements the default algorithm for determining if an object O inherits
from the instance object inheritance path provided by constructor C. This abstract operation performs the following steps:

1. If IsCallable(C) is false, return false.
2. If C has a [[BoundTargetFunction]] internal slot, then

a. Let BC be C.[[BoundTargetFunction]].
b. Return ? InstanceofOperator(O, BC).

3. If Type(O) is not Object, return false.
4. Let P be ? Get(C, "prototype").
5. If Type(P) is not Object, throw a TypeError exception.
6. Repeat,

a. Set O to ? O.[[GetPrototypeOf]]().
b. If O is null, return false.
c. If SameValue(P, O) is true, return true.

The abstract operation SpeciesConstructor is used to retrieve the constructor that should be used to create new objects
that are derived from the argument object O. The defaultConstructor argument is the constructor to use if a constructor
@@species property cannot be found starting from O. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Let C be ? Get(O, "constructor").
3. If C is undefined, return defaultConstructor.
4. If Type(C) is not Object, throw a TypeError exception.
5. Let S be ? Get(C, @@species).
6. If S is either undefined or null, return defaultConstructor.
7. If IsConstructor(S) is true, return S.

7.3.18 Invoke (V, P [, argumentsList])

7.3.19 OrdinaryHasInstance (C, O)

7.3.20 SpeciesConstructor (O, defaultConstructor)

74

© Ecma International 2019

74

8. Throw a TypeError exception.

When the abstract operation EnumerableOwnPropertyNames is called with Object O and String kind the following steps
are taken:

1. Assert: Type(O) is Object.
2. Let ownKeys be ? O.[[OwnPropertyKeys]]().
3. Let properties be a new empty List.
4. For each element key of ownKeys in List order, do

a. If Type(key) is String, then
i. Let desc be ? O.[[GetOwnProperty]](key).

ii. If desc is not undefined and desc.[[Enumerable]] is true, then
1. If kind is "key", append key to properties.
2. Else,

a. Let value be ? Get(O, key).
b. If kind is "value", append value to properties.
c. Else,

i. Assert: kind is "key+value".
ii. Let entry be CreateArrayFromList(« key, value »).

iii. Append entry to properties.
5. Order the elements of properties so they are in the same relative order as would be produced by the Iterator that

would be returned if the EnumerateObjectProperties internal method were invoked with O.
6. Return properties.

The abstract operation GetFunctionRealm with argument obj performs the following steps:

1. Assert: obj is a callable object.
2. If obj has a [[Realm]] internal slot, then

a. Return obj.[[Realm]].
3. If obj is a Bound Function exotic object, then

a. Let target be obj.[[BoundTargetFunction]].
b. Return ? GetFunctionRealm(target).

4. If obj is a Proxy exotic object, then
a. If obj.[[ProxyHandler]] is null, throw a TypeError exception.
b. Let proxyTarget be obj.[[ProxyTarget]].
c. Return ? GetFunctionRealm(proxyTarget).

5. Return the current Realm Record.

NOTE
Step 5 will only be reached if obj is a non-standard function exotic object that does not have a [[Realm]] internal slot.

When the abstract operation CopyDataProperties is called with arguments target, source, and excludedItems, the

7.3.21 EnumerableOwnPropertyNames (O, kind)

7.3.22 GetFunctionRealm (obj)

7.3.23 CopyDataProperties (target, source, excludedItems)

© Ecma International 2019

75

following steps are taken:

1. Assert: Type(target) is Object.
2. Assert: excludedItems is a List of property keys.
3. If source is undefined or null, return target.
4. Let from be ! ToObject(source).
5. Let keys be ? from.[[OwnPropertyKeys]]().
6. For each element nextKey of keys in List order, do

a. Let excluded be false.
b. For each element e of excludedItems in List order, do

i. If SameValue(e, nextKey) is true, then
1. Set excluded to true.

c. If excluded is false, then
i. Let desc be ? from.[[GetOwnProperty]](nextKey).

ii. If desc is not undefined and desc.[[Enumerable]] is true, then
1. Let propValue be ? Get(from, nextKey).
2. Perform ! CreateDataProperty(target, nextKey, propValue).

7. Return target.

NOTE
The target passed in here is always a newly created object which is not directly accessible in case of an error being
thrown.

See Common Iteration Interfaces (25.1).

The abstract operation GetIterator with argument obj and optional arguments hint and method performs the following
steps:

1. If hint is not present, set hint to sync.
2. Assert: hint is either sync or async.
3. If method is not present, then

a. If hint is async, then
i. Set method to ? GetMethod(obj, @@asyncIterator).

ii. If method is undefined, then
1. Let syncMethod be ? GetMethod(obj, @@iterator).
2. Let syncIteratorRecord be ? GetIterator(obj, sync, syncMethod).
3. Return ? CreateAsyncFromSyncIterator(syncIteratorRecord).

b. Otherwise, set method to ? GetMethod(obj, @@iterator).
4. Let iterator be ? Call(method, obj).
5. If Type(iterator) is not Object, throw a TypeError exception.
6. Let nextMethod be ? GetV(iterator, "next").
7. Let iteratorRecord be Record { [[Iterator]]: iterator, [[NextMethod]]: nextMethod, [[Done]]: false }.
8. Return iteratorRecord.

7.4 Operations on Iterator Objects

7.4.1 GetIterator (obj [, hint [, method]])

76

© Ecma International 2019

76

The abstract operation IteratorNext with argument iteratorRecord and optional argument value performs the following
steps:

1. If value is not present, then
a. Let result be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]], « »).

2. Else,
a. Let result be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]], « value »).

3. If Type(result) is not Object, throw a TypeError exception.
4. Return result.

The abstract operation IteratorComplete with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Return ToBoolean(? Get(iterResult, "done")).

The abstract operation IteratorValue with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Return ? Get(iterResult, "value").

The abstract operation IteratorStep with argument iteratorRecord requests the next value from iteratorRecord.[[Iterator]]
by calling iteratorRecord.[[NextMethod]] and returns either false indicating that the iterator has reached its end or the
IteratorResult object if a next value is available. IteratorStep performs the following steps:

1. Let result be ? IteratorNext(iteratorRecord).
2. Let done be ? IteratorComplete(result).
3. If done is true, return false.
4. Return result.

The abstract operation IteratorClose with arguments iteratorRecord and completion is used to notify an iterator that it
should perform any actions it would normally perform when it has reached its completed state:

1. Assert: Type(iteratorRecord.[[Iterator]]) is Object.
2. Assert: completion is a Completion Record.
3. Let iterator be iteratorRecord.[[Iterator]].
4. Let return be ? GetMethod(iterator, "return").
5. If return is undefined, return Completion(completion).
6. Let innerResult be Call(return, iterator, « »).
7. If completion.[[Type]] is throw, return Completion(completion).
8. If innerResult.[[Type]] is throw, return Completion(innerResult).

7.4.2 IteratorNext (iteratorRecord [, value])

7.4.3 IteratorComplete (iterResult)

7.4.4 IteratorValue (iterResult)

7.4.5 IteratorStep (iteratorRecord)

7.4.6 IteratorClose (iteratorRecord, completion)

© Ecma International 2019

77

9. If Type(innerResult.[[Value]]) is not Object, throw a TypeError exception.
10. Return Completion(completion).

The abstract operation AsyncIteratorClose with arguments iteratorRecord and completion is used to notify an async
iterator that it should perform any actions it would normally perform when it has reached its completed state:

1. Assert: Type(iteratorRecord.[[Iterator]]) is Object.
2. Assert: completion is a Completion Record.
3. Let iterator be iteratorRecord.[[Iterator]].
4. Let return be ? GetMethod(iterator, "return").
5. If return is undefined, return Completion(completion).
6. Let innerResult be Call(return, iterator, « »).
7. If innerResult.[[Type]] is normal, set innerResult to Await(innerResult.[[Value]]).
8. If completion.[[Type]] is throw, return Completion(completion).
9. If innerResult.[[Type]] is throw, return Completion(innerResult).

10. If Type(innerResult.[[Value]]) is not Object, throw a TypeError exception.
11. Return Completion(completion).

The abstract operation CreateIterResultObject with arguments value and done creates an object that supports the
IteratorResult interface by performing the following steps:

1. Assert: Type(done) is Boolean.
2. Let obj be ObjectCreate(%ObjectPrototype%).
3. Perform CreateDataProperty(obj, "value", value).
4. Perform CreateDataProperty(obj, "done", done).
5. Return obj.

The abstract operation CreateListIteratorRecord with argument list creates an Iterator (25.1.1.2) object record whose next
method returns the successive elements of list. It performs the following steps:

1. Let iterator be ObjectCreate(%IteratorPrototype%, « [[IteratedList]], [[ListIteratorNextIndex]] »).
2. Set iterator.[[IteratedList]] to list.
3. Set iterator.[[ListIteratorNextIndex]] to 0.
4. Let steps be the algorithm steps defined in ListIterator next (7.4.9.1).
5. Let next be CreateBuiltinFunction(steps, « »).
6. Return Record { [[Iterator]]: iterator, [[NextMethod]]: next, [[Done]]: false }.

NOTE
The list iterator object is never directly accessible to ECMAScript code.

7.4.7 AsyncIteratorClose (iteratorRecord, completion)

7.4.8 CreateIterResultObject (value, done)

7.4.9 CreateListIteratorRecord (list)

7.4.9.1 ListIterator next ()

78

© Ecma International 2019

78

The ListIterator next method is a standard built-in function object (clause 17) that performs the following steps:

1. Let O be the this value.
2. Assert: Type(O) is Object.
3. Assert: O has an [[IteratedList]] internal slot.
4. Let list be O.[[IteratedList]].
5. Let index be O.[[ListIteratorNextIndex]].
6. Let len be the number of elements of list.
7. If index ≥ len, then

a. Return CreateIterResultObject(undefined, true).
8. Set O.[[ListIteratorNextIndex]] to index + 1.
9. Return CreateIterResultObject(list[index], false).

A Lexical Environment is a specification type used to define the association of Identifiers to specific variables and
functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of an
Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical Environment is
associated with some specific syntactic structure of ECMAScript code such as a FunctionDeclaration, a BlockStatement,
or a Catch clause of a TryStatement and a new Lexical Environment is created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated Lexical
Environment. It is referred to as the Lexical Environment's EnvironmentRecord.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The outer reference
of a (inner) Lexical Environment is a reference to the Lexical Environment that logically surrounds the inner Lexical
Environment. An outer Lexical Environment may, of course, have its own outer Lexical Environment. A Lexical
Environment may serve as the outer environment for multiple inner Lexical Environments. For example, if a
FunctionDeclaration contains two nested FunctionDeclarations then the Lexical Environments of each of the nested
functions will have as their outer Lexical Environment the Lexical Environment of the current evaluation of the
surrounding function.

A global environment is a Lexical Environment which does not have an outer environment. The global environment's
outer environment reference is null. A global environment's EnvironmentRecord may be prepopulated with identifier
bindings and includes an associated global object whose properties provide some of the global environment's identifier
bindings. As ECMAScript code is executed, additional properties may be added to the global object and the initial
properties may be modified.

A module environment is a Lexical Environment that contains the bindings for the top level declarations of a Module. It
also contains the bindings that are explicitly imported by the Module. The outer environment of a module environment is
a global environment.

A function environment is a Lexical Environment that corresponds to the invocation of an ECMAScript function object.
A function environment may establish a new this binding. A function environment also captures the state necessary to
support super method invocations.

8 Executable Code and Execution Contexts

8.1 Lexical Environments

© Ecma International 2019

79

Lexical Environments and Environment Record values are purely specification mechanisms and need not correspond to
any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript program to directly access
or manipulate such values.

There are two primary kinds of Environment Record values used in this specification: declarative Environment Records
and object Environment Records. Declarative Environment Records are used to define the effect of ECMAScript
language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch clauses that directly
associate identifier bindings with ECMAScript language values. Object Environment Records are used to define the
effect of ECMAScript elements such as WithStatement that associate identifier bindings with the properties of some
object. Global Environment Records and function Environment Records are specializations that are used for specifically
for Script global declarations and for top-level declarations within functions.

For specification purposes Environment Record values are values of the Record specification type and can be thought of
as existing in a simple object-oriented hierarchy where Environment Record is an abstract class with three concrete
subclasses, declarative Environment Record, object Environment Record, and global Environment Record. Function
Environment Records and module Environment Records are subclasses of declarative Environment Record. The abstract
class includes the abstract specification methods defined in Table 14. These abstract methods have distinct concrete
algorithms for each of the concrete subclasses.

Table 14: Abstract Methods of Environment Records

Method Purpose

HasBinding(N) Determine if an Environment Record has a binding for the String value N. Return true if
it does and false if it does not.

CreateMutableBinding(N,
D)

Create a new but uninitialized mutable binding in an Environment Record. The String
value N is the text of the bound name. If the Boolean argument D is true the binding
may be subsequently deleted.

CreateImmutableBinding(N,
S)

Create a new but uninitialized immutable binding in an Environment Record. The String
value N is the text of the bound name. If S is true then attempts to set it after it has been
initialized will always throw an exception, regardless of the strict mode setting of
operations that reference that binding.

InitializeBinding(N, V) Set the value of an already existing but uninitialized binding in an Environment Record.
The String value N is the text of the bound name. V is the value for the binding and is a
value of any ECMAScript language type.

SetMutableBinding(N, V,
S)

Set the value of an already existing mutable binding in an Environment Record. The
String value N is the text of the bound name. V is the value for the binding and may be a
value of any ECMAScript language type. S is a Boolean flag. If S is true and the
binding cannot be set throw a TypeError exception.

GetBindingValue(N, S) Returns the value of an already existing binding from an Environment Record. The
String value N is the text of the bound name. S is used to identify references originating
in strict mode code or that otherwise require strict mode reference semantics. If S is true
and the binding does not exist throw a ReferenceError exception. If the binding exists
but is uninitialized a ReferenceError is thrown, regardless of the value of S.

8.1.1 Environment Records

80

© Ecma International 2019

80

DeleteBinding(N) Delete a binding from an Environment Record. The String value N is the text of the
bound name. If a binding for N exists, remove the binding and return true. If the
binding exists but cannot be removed return false. If the binding does not exist return
true.

HasThisBinding() Determine if an Environment Record establishes a this binding. Return true if it does
and false if it does not.

HasSuperBinding() Determine if an Environment Record establishes a super method binding. Return true
if it does and false if it does not.

WithBaseObject() If this Environment Record is associated with a with statement, return the with object.
Otherwise, return undefined.

Each declarative Environment Record is associated with an ECMAScript program scope containing variable, constant,
let, class, module, import, and/or function declarations. A declarative Environment Record binds the set of identifiers
defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for declarative Environment Records is defined by the following
algorithms.

The concrete Environment Record method HasBinding for declarative Environment Records simply determines if the
argument identifier is one of the identifiers bound by the record:

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. If envRec has a binding for the name that is the value of N, return true.
3. Return false.

The concrete Environment Record method CreateMutableBinding for declarative Environment Records creates a new
mutable binding for the name N that is uninitialized. A binding must not already exist in this Environment Record for N.
If Boolean argument D has the value true the new binding is marked as being subject to deletion.

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Create a mutable binding in envRec for N and record that it is uninitialized. If D is true, record that the newly

created binding may be deleted by a subsequent DeleteBinding call.
4. Return NormalCompletion(empty).

The concrete Environment Record method CreateImmutableBinding for declarative Environment Records creates a new
immutable binding for the name N that is uninitialized. A binding must not already exist in this Environment Record for
N. If the Boolean argument S has the value true the new binding is marked as a strict binding.

1. Let envRec be the declarative Environment Record for which the method was invoked.

8.1.1.1 Declarative Environment Records

8.1.1.1.1 HasBinding (N)

8.1.1.1.2 CreateMutableBinding (N, D)

8.1.1.1.3 CreateImmutableBinding (N, S)

© Ecma International 2019

81

2. Assert: envRec does not already have a binding for N.
3. Create an immutable binding in envRec for N and record that it is uninitialized. If S is true, record that the newly

created binding is a strict binding.
4. Return NormalCompletion(empty).

The concrete Environment Record method InitializeBinding for declarative Environment Records is used to set the bound
value of the current binding of the identifier whose name is the value of the argument N to the value of argument V. An
uninitialized binding for N must already exist.

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. Assert: envRec must have an uninitialized binding for N.
3. Set the bound value for N in envRec to V.
4. Record that the binding for N in envRec has been initialized.
5. Return NormalCompletion(empty).

The concrete Environment Record method SetMutableBinding for declarative Environment Records attempts to change
the bound value of the current binding of the identifier whose name is the value of the argument N to the value of
argument V. A binding for N normally already exists, but in rare cases it may not. If the binding is an immutable binding,
a TypeError is thrown if S is true.

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. If envRec does not have a binding for N, then

a. If S is true, throw a ReferenceError exception.
b. Perform envRec.CreateMutableBinding(N, true).
c. Perform envRec.InitializeBinding(N, V).
d. Return NormalCompletion(empty).

3. If the binding for N in envRec is a strict binding, set S to true.
4. If the binding for N in envRec has not yet been initialized, throw a ReferenceError exception.
5. Else if the binding for N in envRec is a mutable binding, change its bound value to V.
6. Else,

a. Assert: This is an attempt to change the value of an immutable binding.
b. If S is true, throw a TypeError exception.

7. Return NormalCompletion(empty).

NOTE
An example of ECMAScript code that results in a missing binding at step 2 is:

function f(){eval("var x; x = (delete x, 0);")}

The concrete Environment Record method GetBindingValue for declarative Environment Records simply returns the
value of its bound identifier whose name is the value of the argument N. If the binding exists but is uninitialized a
ReferenceError is thrown, regardless of the value of S.

8.1.1.1.4 InitializeBinding (N, V)

8.1.1.1.5 SetMutableBinding (N, V, S)

8.1.1.1.6 GetBindingValue (N, S)

82

© Ecma International 2019

82

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. Assert: envRec has a binding for N.
3. If the binding for N in envRec is an uninitialized binding, throw a ReferenceError exception.
4. Return the value currently bound to N in envRec.

The concrete Environment Record method DeleteBinding for declarative Environment Records can only delete bindings
that have been explicitly designated as being subject to deletion.

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. Assert: envRec has a binding for the name that is the value of N.
3. If the binding for N in envRec cannot be deleted, return false.
4. Remove the binding for N from envRec.
5. Return true.

Regular declarative Environment Records do not provide a this binding.

1. Return false.

Regular declarative Environment Records do not provide a super binding.

1. Return false.

Declarative Environment Records always return undefined as their WithBaseObject.

1. Return undefined.

Each object Environment Record is associated with an object called its binding object. An object Environment Record
binds the set of string identifier names that directly correspond to the property names of its binding object. Property keys
that are not strings in the form of an IdentifierName are not included in the set of bound identifiers. Both own and
inherited properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because properties
can be dynamically added and deleted from objects, the set of identifiers bound by an object Environment Record may
potentially change as a side-effect of any operation that adds or deletes properties. Any bindings that are created as a
result of such a side-effect are considered to be a mutable binding even if the Writable attribute of the corresponding
property has the value false. Immutable bindings do not exist for object Environment Records.

Object Environment Records created for with statements (13.11) can provide their binding object as an implicit this
value for use in function calls. The capability is controlled by a withEnvironment Boolean value that is associated with
each object Environment Record. By default, the value of withEnvironment is false for any object Environment Record.

The behaviour of the concrete specification methods for object Environment Records is defined by the following
algorithms.

8.1.1.1.7 DeleteBinding (N)

8.1.1.1.8 HasThisBinding ()

8.1.1.1.9 HasSuperBinding ()

8.1.1.1.10 WithBaseObject ()

8.1.1.2 Object Environment Records

© Ecma International 2019

83

The concrete Environment Record method HasBinding for object Environment Records determines if its associated
binding object has a property whose name is the value of the argument N:

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Let foundBinding be ? HasProperty(bindings, N).
4. If foundBinding is false, return false.
5. If the withEnvironment flag of envRec is false, return true.
6. Let unscopables be ? Get(bindings, @@unscopables).
7. If Type(unscopables) is Object, then

a. Let blocked be ToBoolean(? Get(unscopables, N)).
b. If blocked is true, return false.

8. Return true.

The concrete Environment Record method CreateMutableBinding for object Environment Records creates in an
Environment Record's associated binding object a property whose name is the String value and initializes it to the value
undefined. If Boolean argument D has the value true the new property's [[Configurable]] attribute is set to true;
otherwise it is set to false.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return ? DefinePropertyOrThrow(bindings, N, PropertyDescriptor { [[Value]]: undefined, [[Writable]]: true,

[[Enumerable]]: true, [[Configurable]]: D }).

NOTE
Normally envRec will not have a binding for N but if it does, the semantics of DefinePropertyOrThrow may result in an
existing binding being replaced or shadowed or cause an abrupt completion to be returned.

The concrete Environment Record method CreateImmutableBinding is never used within this specification in association
with object Environment Records.

The concrete Environment Record method InitializeBinding for object Environment Records is used to set the bound
value of the current binding of the identifier whose name is the value of the argument N to the value of argument V. An
uninitialized binding for N must already exist.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Assert: envRec must have an uninitialized binding for N.
3. Record that the binding for N in envRec has been initialized.
4. Return ? envRec.SetMutableBinding(N, V, false).

NOTE
In this specification, all uses of CreateMutableBinding for object Environment Records are immediately followed by a

8.1.1.2.1 HasBinding (N)

8.1.1.2.2 CreateMutableBinding (N, D)

8.1.1.2.3 CreateImmutableBinding (N, S)

8.1.1.2.4 InitializeBinding (N, V)

84

© Ecma International 2019

84

call to InitializeBinding for the same name. Hence, implementations do not need to explicitly track the initialization state
of individual object Environment Record bindings.

The concrete Environment Record method SetMutableBinding for object Environment Records attempts to set the value
of the Environment Record's associated binding object's property whose name is the value of the argument N to the value
of argument V. A property named N normally already exists but if it does not or is not currently writable, error handling
is determined by the value of the Boolean argument S.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return ? Set(bindings, N, V, S).

The concrete Environment Record method GetBindingValue for object Environment Records returns the value of its
associated binding object's property whose name is the String value of the argument identifier N. The property should
already exist but if it does not the result depends upon the value of the S argument:

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Let value be ? HasProperty(bindings, N).
4. If value is false, then

a. If S is false, return the value undefined; otherwise throw a ReferenceError exception.
5. Return ? Get(bindings, N).

The concrete Environment Record method DeleteBinding for object Environment Records can only delete bindings that
correspond to properties of the environment object whose [[Configurable]] attribute have the value true.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return ? bindings.[[Delete]](N).

Regular object Environment Records do not provide a this binding.

1. Return false.

Regular object Environment Records do not provide a super binding.

1. Return false.

Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag is true.

8.1.1.2.5 SetMutableBinding (N, V, S)

8.1.1.2.6 GetBindingValue (N, S)

8.1.1.2.7 DeleteBinding (N)

8.1.1.2.8 HasThisBinding ()

8.1.1.2.9 HasSuperBinding ()

8.1.1.2.10 WithBaseObject ()

© Ecma International 2019

85

1. Let envRec be the object Environment Record for which the method was invoked.
2. If the withEnvironment flag of envRec is true, return the binding object for envRec.
3. Otherwise, return undefined.

A function Environment Record is a declarative Environment Record that is used to represent the top-level scope of a
function and, if the function is not an ArrowFunction, provides a this binding. If a function is not an ArrowFunction
function and references super, its function Environment Record also contains the state that is used to perform super
method invocations from within the function.

Function Environment Records have the additional state fields listed in Table 15.

Table 15: Additional Fields of Function Environment Records

Field Name Value Meaning

[[ThisValue]] Any This is the this value used for this invocation of the function.

[[ThisBindingStatus]] "lexical" |
"initialized" |
"uninitialized"

If the value is "lexical", this is an ArrowFunction and does not
have a local this value.

[[FunctionObject]] Object The function object whose invocation caused this Environment Record
to be created.

[[HomeObject]] Object | undefined If the associated function has super property accesses and is not an
ArrowFunction, [[HomeObject]] is the object that the function is
bound to as a method. The default value for [[HomeObject]] is
undefined.

[[NewTarget]] Object | undefined If this Environment Record was created by the [[Construct]] internal
method, [[NewTarget]] is the value of the [[Construct]] newTarget
parameter. Otherwise, its value is undefined.

Function Environment Records support all of the declarative Environment Record methods listed in Table 14 and share
the same specifications for all of those methods except for HasThisBinding and HasSuperBinding. In addition, function
Environment Records support the methods listed in Table 16:

Table 16: Additional Methods of Function Environment Records

Method Purpose

BindThisValue(V) Set the [[ThisValue]] and record that it has been initialized.

GetThisBinding() Return the value of this Environment Record's this binding. Throws a ReferenceError if the
this binding has not been initialized.

GetSuperBase() Return the object that is the base for super property accesses bound in this Environment Record.
The object is derived from this Environment Record's [[HomeObject]] field. The value undefined
indicates that super property accesses will produce runtime errors.

8.1.1.3 Function Environment Records

86

© Ecma International 2019

86

The behaviour of the additional concrete specification methods for function Environment Records is defined by the
following algorithms:

1. Let envRec be the function Environment Record for which the method was invoked.
2. Assert: envRec.[[ThisBindingStatus]] is not "lexical".
3. If envRec.[[ThisBindingStatus]] is "initialized", throw a ReferenceError exception.
4. Set envRec.[[ThisValue]] to V.
5. Set envRec.[[ThisBindingStatus]] to "initialized".
6. Return V.

1. Let envRec be the function Environment Record for which the method was invoked.
2. If envRec.[[ThisBindingStatus]] is "lexical", return false; otherwise, return true.

1. Let envRec be the function Environment Record for which the method was invoked.
2. If envRec.[[ThisBindingStatus]] is "lexical", return false.
3. If envRec.[[HomeObject]] has the value undefined, return false; otherwise, return true.

1. Let envRec be the function Environment Record for which the method was invoked.
2. Assert: envRec.[[ThisBindingStatus]] is not "lexical".
3. If envRec.[[ThisBindingStatus]] is "uninitialized", throw a ReferenceError exception.
4. Return envRec.[[ThisValue]].

1. Let envRec be the function Environment Record for which the method was invoked.
2. Let home be envRec.[[HomeObject]].
3. If home has the value undefined, return undefined.
4. Assert: Type(home) is Object.
5. Return ? home.[[GetPrototypeOf]]().

A global Environment Record is used to represent the outer most scope that is shared by all of the ECMAScript Script
elements that are processed in a common realm. A global Environment Record provides the bindings for built-in globals
(clause 18), properties of the global object, and for all top-level declarations (13.2.8, 13.2.10) that occur within a Script.

A global Environment Record is logically a single record but it is specified as a composite encapsulating an object
Environment Record and a declarative Environment Record. The object Environment Record has as its base object the
global object of the associated Realm Record. This global object is the value returned by the global Environment
Record's GetThisBinding concrete method. The object Environment Record component of a global Environment Record
contains the bindings for all built-in globals (clause 18) and all bindings introduced by a FunctionDeclaration,
GeneratorDeclaration, AsyncFunctionDeclaration, AsyncGeneratorDeclaration, or VariableStatement contained in

8.1.1.3.1 BindThisValue (V)

8.1.1.3.2 HasThisBinding ()

8.1.1.3.3 HasSuperBinding ()

8.1.1.3.4 GetThisBinding ()

8.1.1.3.5 GetSuperBase ()

8.1.1.4 Global Environment Records

© Ecma International 2019

87

global code. The bindings for all other ECMAScript declarations in global code are contained in the declarative
Environment Record component of the global Environment Record.

Properties may be created directly on a global object. Hence, the object Environment Record component of a global
Environment Record may contain both bindings created explicitly by FunctionDeclaration, GeneratorDeclaration,
AsyncFunctionDeclaration, AsyncGeneratorDeclaration, or VariableDeclaration declarations and bindings created
implicitly as properties of the global object. In order to identify which bindings were explicitly created using
declarations, a global Environment Record maintains a list of the names bound using its CreateGlobalVarBinding and
CreateGlobalFunctionBinding concrete methods.

Global Environment Records have the additional fields listed in Table 17 and the additional methods listed in Table 18.

Table 17: Additional Fields of Global Environment Records

Field Name Value Meaning

[[ObjectRecord]] Object
Environment
Record

Binding object is the global object. It contains global built-in bindings as well as
FunctionDeclaration, GeneratorDeclaration, AsyncFunctionDeclaration,
AsyncGeneratorDeclaration, and VariableDeclaration bindings in global code
for the associated realm.

[[GlobalThisValue]] Object The value returned by this in global scope. Hosts may provide any
ECMAScript Object value.

[[DeclarativeRecord]] Declarative
Environment
Record

Contains bindings for all declarations in global code for the associated realm
code except for FunctionDeclaration, GeneratorDeclaration,
AsyncFunctionDeclaration, AsyncGeneratorDeclaration, and
VariableDeclaration bindings.

[[VarNames]] List of
String

The string names bound by FunctionDeclaration, GeneratorDeclaration,
AsyncFunctionDeclaration, AsyncGeneratorDeclaration, and
VariableDeclaration declarations in global code for the associated realm.

Table 18: Additional Methods of Global Environment Records

Method Purpose

GetThisBinding() Return the value of this Environment Record's this binding.

HasVarDeclaration (N) Determines if the argument identifier has a binding in this Environment Record that
was created using a VariableDeclaration, FunctionDeclaration,
GeneratorDeclaration, AsyncFunctionDeclaration, or AsyncGeneratorDeclaration.

HasLexicalDeclaration (N) Determines if the argument identifier has a binding in this Environment Record that
was created using a lexical declaration such as a LexicalDeclaration or a
ClassDeclaration.

HasRestrictedGlobalProperty (N) Determines if the argument is the name of a global object property that may not be
shadowed by a global lexical binding.

CanDeclareGlobalVar (N) Determines if a corresponding CreateGlobalVarBinding call would succeed if called
for the same argument N.

88

© Ecma International 2019

88

CanDeclareGlobalFunction (N) Determines if a corresponding CreateGlobalFunctionBinding call would succeed if
called for the same argument N.

CreateGlobalVarBinding(N, D) Used to create and initialize to undefined a global var binding in the
[[ObjectRecord]] component of a global Environment Record. The binding will be
a mutable binding. The corresponding global object property will have attribute
values appropriate for a var. The String value N is the bound name. If D is true
the binding may be deleted. Logically equivalent to CreateMutableBinding
followed by a SetMutableBinding but it allows var declarations to receive special
treatment.

CreateGlobalFunctionBinding(N,
V, D)

Create and initialize a global function binding in the [[ObjectRecord]]
component of a global Environment Record. The binding will be a mutable binding.
The corresponding global object property will have attribute values appropriate for
a function. The String value N is the bound name. V is the initialization value.
If the Boolean argument D is true the binding may be deleted. Logically equivalent
to CreateMutableBinding followed by a SetMutableBinding but it allows function
declarations to receive special treatment.

The behaviour of the concrete specification methods for global Environment Records is defined by the following
algorithms.

The concrete Environment Record method HasBinding for global Environment Records simply determines if the
argument identifier is one of the identifiers bound by the record:

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, return true.
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ? ObjRec.HasBinding(N).

The concrete Environment Record method CreateMutableBinding for global Environment Records creates a new mutable
binding for the name N that is uninitialized. The binding is created in the associated DeclarativeRecord. A binding for N
must not already exist in the DeclarativeRecord. If Boolean argument D has the value true the new binding is marked as
being subject to deletion.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, throw a TypeError exception.
4. Return DclRec.CreateMutableBinding(N, D).

The concrete Environment Record method CreateImmutableBinding for global Environment Records creates a new
immutable binding for the name N that is uninitialized. A binding must not already exist in this Environment Record for

8.1.1.4.1 HasBinding (N)

8.1.1.4.2 CreateMutableBinding (N, D)

8.1.1.4.3 CreateImmutableBinding (N, S)

© Ecma International 2019

89

N. If the Boolean argument S has the value true the new binding is marked as a strict binding.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, throw a TypeError exception.
4. Return DclRec.CreateImmutableBinding(N, S).

The concrete Environment Record method InitializeBinding for global Environment Records is used to set the bound
value of the current binding of the identifier whose name is the value of the argument N to the value of argument V. An
uninitialized binding for N must already exist.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then

a. Return DclRec.InitializeBinding(N, V).
4. Assert: If the binding exists, it must be in the object Environment Record.
5. Let ObjRec be envRec.[[ObjectRecord]].
6. Return ? ObjRec.InitializeBinding(N, V).

The concrete Environment Record method SetMutableBinding for global Environment Records attempts to change the
bound value of the current binding of the identifier whose name is the value of the argument N to the value of argument
V. If the binding is an immutable binding, a TypeError is thrown if S is true. A property named N normally already
exists but if it does not or is not currently writable, error handling is determined by the value of the Boolean argument S.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then

a. Return DclRec.SetMutableBinding(N, V, S).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ? ObjRec.SetMutableBinding(N, V, S).

The concrete Environment Record method GetBindingValue for global Environment Records returns the value of its
bound identifier whose name is the value of the argument N. If the binding is an uninitialized binding throw a
ReferenceError exception. A property named N normally already exists but if it does not or is not currently writable,
error handling is determined by the value of the Boolean argument S.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then

a. Return DclRec.GetBindingValue(N, S).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ? ObjRec.GetBindingValue(N, S).

8.1.1.4.4 InitializeBinding (N, V)

8.1.1.4.5 SetMutableBinding (N, V, S)

8.1.1.4.6 GetBindingValue (N, S)

8.1.1.4.7 DeleteBinding (N)

90

© Ecma International 2019

90

The concrete Environment Record method DeleteBinding for global Environment Records can only delete bindings that
have been explicitly designated as being subject to deletion.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then

a. Return DclRec.DeleteBinding(N).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Let globalObject be the binding object for ObjRec.
6. Let existingProp be ? HasOwnProperty(globalObject, N).
7. If existingProp is true, then

a. Let status be ? ObjRec.DeleteBinding(N).
b. If status is true, then

i. Let varNames be envRec.[[VarNames]].
ii. If N is an element of varNames, remove that element from the varNames.

c. Return status.
8. Return true.

1. Return true.

1. Return false.

Global Environment Records always return undefined as their WithBaseObject.

1. Return undefined.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Return envRec.[[GlobalThisValue]].

The concrete Environment Record method HasVarDeclaration for global Environment Records determines if the
argument identifier has a binding in this record that was created using a VariableStatement or a FunctionDeclaration:

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let varDeclaredNames be envRec.[[VarNames]].
3. If varDeclaredNames contains N, return true.
4. Return false.

The concrete Environment Record method HasLexicalDeclaration for global Environment Records determines if the
argument identifier has a binding in this record that was created using a lexical declaration such as a LexicalDeclaration

8.1.1.4.8 HasThisBinding ()

8.1.1.4.9 HasSuperBinding ()

8.1.1.4.10 WithBaseObject ()

8.1.1.4.11 GetThisBinding ()

8.1.1.4.12 HasVarDeclaration (N)

8.1.1.4.13 HasLexicalDeclaration (N)

© Ecma International 2019

91

or a ClassDeclaration:

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. Return DclRec.HasBinding(N).

The concrete Environment Record method HasRestrictedGlobalProperty for global Environment Records determines if
the argument identifier is the name of a property of the global object that must not be shadowed by a global lexical
binding:

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let ObjRec be envRec.[[ObjectRecord]].
3. Let globalObject be the binding object for ObjRec.
4. Let existingProp be ? globalObject.[[GetOwnProperty]](N).
5. If existingProp is undefined, return false.
6. If existingProp.[[Configurable]] is true, return false.
7. Return true.

NOTE
Properties may exist upon a global object that were directly created rather than being declared using a var or function
declaration. A global lexical binding may not be created that has the same name as a non-configurable property of the
global object. The global property undefined is an example of such a property.

The concrete Environment Record method CanDeclareGlobalVar for global Environment Records determines if a
corresponding CreateGlobalVarBinding call would succeed if called for the same argument N. Redundant var
declarations and var declarations for pre-existing global object properties are allowed.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let ObjRec be envRec.[[ObjectRecord]].
3. Let globalObject be the binding object for ObjRec.
4. Let hasProperty be ? HasOwnProperty(globalObject, N).
5. If hasProperty is true, return true.
6. Return ? IsExtensible(globalObject).

The concrete Environment Record method CanDeclareGlobalFunction for global Environment Records determines if a
corresponding CreateGlobalFunctionBinding call would succeed if called for the same argument N.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let ObjRec be envRec.[[ObjectRecord]].
3. Let globalObject be the binding object for ObjRec.
4. Let existingProp be ? globalObject.[[GetOwnProperty]](N).
5. If existingProp is undefined, return ? IsExtensible(globalObject).
6. If existingProp.[[Configurable]] is true, return true.
7. If IsDataDescriptor(existingProp) is true and existingProp has attribute values { [[Writable]]: true, [[Enumerable]]:

8.1.1.4.14 HasRestrictedGlobalProperty (N)

8.1.1.4.15 CanDeclareGlobalVar (N)

8.1.1.4.16 CanDeclareGlobalFunction (N)

92

© Ecma International 2019

92

true }, return true.
8. Return false.

The concrete Environment Record method CreateGlobalVarBinding for global Environment Records creates and
initializes a mutable binding in the associated object Environment Record and records the bound name in the associated
[[VarNames]] List. If a binding already exists, it is reused and assumed to be initialized.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let ObjRec be envRec.[[ObjectRecord]].
3. Let globalObject be the binding object for ObjRec.
4. Let hasProperty be ? HasOwnProperty(globalObject, N).
5. Let extensible be ? IsExtensible(globalObject).
6. If hasProperty is false and extensible is true, then

a. Perform ? ObjRec.CreateMutableBinding(N, D).
b. Perform ? ObjRec.InitializeBinding(N, undefined).

7. Let varDeclaredNames be envRec.[[VarNames]].
8. If varDeclaredNames does not contain N, then

a. Append N to varDeclaredNames.
9. Return NormalCompletion(empty).

The concrete Environment Record method CreateGlobalFunctionBinding for global Environment Records creates and
initializes a mutable binding in the associated object Environment Record and records the bound name in the associated
[[VarNames]] List. If a binding already exists, it is replaced.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let ObjRec be envRec.[[ObjectRecord]].
3. Let globalObject be the binding object for ObjRec.
4. Let existingProp be ? globalObject.[[GetOwnProperty]](N).
5. If existingProp is undefined or existingProp.[[Configurable]] is true, then

a. Let desc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
D }.

6. Else,
a. Let desc be the PropertyDescriptor { [[Value]]: V }.

7. Perform ? DefinePropertyOrThrow(globalObject, N, desc).
8. Record that the binding for N in ObjRec has been initialized.
9. Perform ? Set(globalObject, N, V, false).

10. Let varDeclaredNames be envRec.[[VarNames]].
11. If varDeclaredNames does not contain N, then

a. Append N to varDeclaredNames.
12. Return NormalCompletion(empty).

NOTE
Global function declarations are always represented as own properties of the global object. If possible, an existing own
property is reconfigured to have a standard set of attribute values. Steps 8-9 are equivalent to what calling the
InitializeBinding concrete method would do and if globalObject is a Proxy will produce the same sequence of Proxy trap
calls.

8.1.1.4.17 CreateGlobalVarBinding (N, D)

8.1.1.4.18 CreateGlobalFunctionBinding (N, V, D)

© Ecma International 2019

93

A module Environment Record is a declarative Environment Record that is used to represent the outer scope of an
ECMAScript Module. In additional to normal mutable and immutable bindings, module Environment Records also
provide immutable import bindings which are bindings that provide indirect access to a target binding that exists in
another Environment Record.

Module Environment Records support all of the declarative Environment Record methods listed in Table 14 and share
the same specifications for all of those methods except for GetBindingValue, DeleteBinding, HasThisBinding and
GetThisBinding. In addition, module Environment Records support the methods listed in Table 19:

Table 19: Additional Methods of Module Environment Records

Method Purpose

CreateImportBinding(N,
M, N2)

Create an immutable indirect binding in a module Environment Record. The String value N
is the text of the bound name. M is a Module Record, and N2 is a binding that exists in M's
module Environment Record.

GetThisBinding() Return the value of this Environment Record's this binding.

The behaviour of the additional concrete specification methods for module Environment Records are defined by the
following algorithms:

The concrete Environment Record method GetBindingValue for module Environment Records returns the value of its
bound identifier whose name is the value of the argument N. However, if the binding is an indirect binding the value of
the target binding is returned. If the binding exists but is uninitialized a ReferenceError is thrown.

1. Assert: S is true.
2. Let envRec be the module Environment Record for which the method was invoked.
3. Assert: envRec has a binding for N.
4. If the binding for N is an indirect binding, then

a. Let M and N2 be the indirection values provided when this binding for N was created.
b. Let targetEnv be M.[[Environment]].
c. If targetEnv is undefined, throw a ReferenceError exception.
d. Let targetER be targetEnv's EnvironmentRecord.
e. Return ? targetER.GetBindingValue(N2, true).

5. If the binding for N in envRec is an uninitialized binding, throw a ReferenceError exception.
6. Return the value currently bound to N in envRec.

NOTE
S will always be true because a Module is always strict mode code.

The concrete Environment Record method DeleteBinding for module Environment Records refuses to delete bindings.

8.1.1.5 Module Environment Records

8.1.1.5.1 GetBindingValue (N, S)

8.1.1.5.2 DeleteBinding (N)

94

© Ecma International 2019

94

1. Assert: This method is never invoked. See 12.5.3.1.

NOTE
Module Environment Records are only used within strict code and an early error rule prevents the delete operator, in
strict code, from being applied to a Reference that would resolve to a module Environment Record binding. See 12.5.3.1.

Module Environment Records provide a this binding.

1. Return true.

1. Return undefined.

The concrete Environment Record method CreateImportBinding for module Environment Records creates a new
initialized immutable indirect binding for the name N. A binding must not already exist in this Environment Record for
N. M is a Module Record, and N2 is the name of a binding that exists in M's module Environment Record. Accesses to
the value of the new binding will indirectly access the bound value of the target binding.

1. Let envRec be the module Environment Record for which the method was invoked.
2. Assert: envRec does not already have a binding for N.
3. Assert: M is a Module Record.
4. Assert: When M.[[Environment]] is instantiated it will have a direct binding for N2.
5. Create an immutable indirect binding in envRec for N that references M and N2 as its target binding and record that

the binding is initialized.
6. Return NormalCompletion(empty).

The following abstract operations are used in this specification to operate upon lexical environments:

The abstract operation GetIdentifierReference is called with a Lexical Environment lex, a String name, and a Boolean
flag strict. The value of lex may be null. When called, the following steps are performed:

1. If lex is the value null, then
a. Return a value of type Reference whose base value component is undefined, whose referenced name

component is name, and whose strict reference flag is strict.
2. Let envRec be lex's EnvironmentRecord.
3. Let exists be ? envRec.HasBinding(name).
4. If exists is true, then

a. Return a value of type Reference whose base value component is envRec, whose referenced name component
is name, and whose strict reference flag is strict.

5. Else,

8.1.1.5.3 HasThisBinding ()

8.1.1.5.4 GetThisBinding ()

8.1.1.5.5 CreateImportBinding (N, M, N2)

8.1.2 Lexical Environment Operations

8.1.2.1 GetIdentifierReference (lex, name, strict)

© Ecma International 2019

95

a. Let outer be the value of lex's outer environment reference.
b. Return ? GetIdentifierReference(outer, name, strict).

When the abstract operation NewDeclarativeEnvironment is called with a Lexical Environment as argument E the
following steps are performed:

1. Let env be a new Lexical Environment.
2. Let envRec be a new declarative Environment Record containing no bindings.
3. Set env's EnvironmentRecord to envRec.
4. Set the outer lexical environment reference of env to E.
5. Return env.

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical Environment E as
arguments, the following steps are performed:

1. Let env be a new Lexical Environment.
2. Let envRec be a new object Environment Record containing O as the binding object.
3. Set env's EnvironmentRecord to envRec.
4. Set the outer lexical environment reference of env to E.
5. Return env.

When the abstract operation NewFunctionEnvironment is called with arguments F and newTarget the following steps are
performed:

1. Assert: F is an ECMAScript function.
2. Assert: Type(newTarget) is Undefined or Object.
3. Let env be a new Lexical Environment.
4. Let envRec be a new function Environment Record containing no bindings.
5. Set envRec.[[FunctionObject]] to F.
6. If F.[[ThisMode]] is lexical, set envRec.[[ThisBindingStatus]] to "lexical".
7. Else, set envRec.[[ThisBindingStatus]] to "uninitialized".
8. Let home be F.[[HomeObject]].
9. Set envRec.[[HomeObject]] to home.

10. Set envRec.[[NewTarget]] to newTarget.
11. Set env's EnvironmentRecord to envRec.
12. Set the outer lexical environment reference of env to F.[[Environment]].
13. Return env.

When the abstract operation NewGlobalEnvironment is called with arguments G and thisValue, the following steps are
performed:

1. Let env be a new Lexical Environment.

8.1.2.2 NewDeclarativeEnvironment (E)

8.1.2.3 NewObjectEnvironment (O, E)

8.1.2.4 NewFunctionEnvironment (F, newTarget)

8.1.2.5 NewGlobalEnvironment (G, thisValue)

96

© Ecma International 2019

96

2. Let objRec be a new object Environment Record containing G as the binding object.
3. Let dclRec be a new declarative Environment Record containing no bindings.
4. Let globalRec be a new global Environment Record.
5. Set globalRec.[[ObjectRecord]] to objRec.
6. Set globalRec.[[GlobalThisValue]] to thisValue.
7. Set globalRec.[[DeclarativeRecord]] to dclRec.
8. Set globalRec.[[VarNames]] to a new empty List.
9. Set env's EnvironmentRecord to globalRec.

10. Set the outer lexical environment reference of env to null.
11. Return env.

When the abstract operation NewModuleEnvironment is called with a Lexical Environment argument E the following
steps are performed:

1. Let env be a new Lexical Environment.
2. Let envRec be a new module Environment Record containing no bindings.
3. Set env's EnvironmentRecord to envRec.
4. Set the outer lexical environment reference of env to E.
5. Return env.

Before it is evaluated, all ECMAScript code must be associated with a realm. Conceptually, a realm consists of a set of
intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that is loaded within the scope of that
global environment, and other associated state and resources.

A realm is represented in this specification as a Realm Record with the fields specified in Table 20:

Table 20: Realm Record Fields

Field Name Value Meaning

[[Intrinsics]] Record whose field
names are intrinsic
keys and whose
values are objects

The intrinsic values used by code associated with this realm

[[GlobalObject]] Object The global object for this realm

[[GlobalEnv]] Lexical
Environment

The global environment for this realm

8.1.2.6 NewModuleEnvironment (E)

8.2 Realms

© Ecma International 2019

97

[[TemplateMap]] A List of Record {
[[Site]]: Parse
Node, [[Array]]:
Object }.

Template objects are canonicalized separately for each realm using its Realm
Record's [[TemplateMap]]. Each [[Site]] value is a Parse Node that is a
TemplateLiteral. The associated [[Array]] value is the corresponding
template object that is passed to a tag function.

NOTE
Once a Parse Node becomes unreachable, the corresponding [[Array]] is also
unreachable, and it would be unobservable if an implementation removed the
pair from the [[TemplateMap]] list.

[[HostDefined]] Any, default value
is undefined.

Field reserved for use by host environments that need to associate additional
information with a Realm Record.

The abstract operation CreateRealm with no arguments performs the following steps:

1. Let realmRec be a new Realm Record.
2. Perform CreateIntrinsics(realmRec).
3. Set realmRec.[[GlobalObject]] to undefined.
4. Set realmRec.[[GlobalEnv]] to undefined.
5. Set realmRec.[[TemplateMap]] to a new empty List.
6. Return realmRec.

The abstract operation CreateIntrinsics with argument realmRec performs the following steps:

1. Let intrinsics be a new Record.
2. Set realmRec.[[Intrinsics]] to intrinsics.
3. Let objProto be ObjectCreate(null).
4. Set intrinsics.[[%ObjectPrototype%]] to objProto.
5. Let throwerSteps be the algorithm steps specified in 9.2.9.1 for the %ThrowTypeError% function.
6. Let thrower be CreateBuiltinFunction(throwerSteps, « », realmRec, null).
7. Set intrinsics.[[%ThrowTypeError%]] to thrower.
8. Let noSteps be an empty sequence of algorithm steps.
9. Let funcProto be CreateBuiltinFunction(noSteps, « », realmRec, objProto).

10. Set intrinsics.[[%FunctionPrototype%]] to funcProto.
11. Call thrower.[[SetPrototypeOf]](funcProto).
12. Perform AddRestrictedFunctionProperties(funcProto, realmRec).
13. Set fields of intrinsics with the values listed in Table 7 that have not already been handled above. The field names

are the names listed in column one of the table. The value of each field is a new object value fully and recursively
populated with property values as defined by the specification of each object in clauses 18-26. All object property
values are newly created object values. All values that are built-in function objects are created by performing
CreateBuiltinFunction(<steps>, <slots>, realmRec, <prototype>) where <steps> is the definition of that function
provided by this specification, <slots> is a list of the names, if any, of the function's specified internal slots, and
<prototype> is the specified value of the function's [[Prototype]] internal slot. The creation of the intrinsics and

8.2.1 CreateRealm ()

8.2.2 CreateIntrinsics (realmRec)

98

© Ecma International 2019

98

their properties must be ordered to avoid any dependencies upon objects that have not yet been created.
14. Return intrinsics.

The abstract operation SetRealmGlobalObject with arguments realmRec, globalObj, and thisValue performs the
following steps:

1. If globalObj is undefined, then
a. Let intrinsics be realmRec.[[Intrinsics]].
b. Set globalObj to ObjectCreate(intrinsics.[[%ObjectPrototype%]]).

2. Assert: Type(globalObj) is Object.
3. If thisValue is undefined, set thisValue to globalObj.
4. Set realmRec.[[GlobalObject]] to globalObj.
5. Let newGlobalEnv be NewGlobalEnvironment(globalObj, thisValue).
6. Set realmRec.[[GlobalEnv]] to newGlobalEnv.
7. Return realmRec.

The abstract operation SetDefaultGlobalBindings with argument realmRec performs the following steps:

1. Let global be realmRec.[[GlobalObject]].
2. For each property of the Global Object specified in clause 18, do

a. Let name be the String value of the property name.
b. Let desc be the fully populated data property descriptor for the property containing the specified attributes for

the property. For properties listed in 18.2, 18.3, or 18.4 the value of the [[Value]] attribute is the
corresponding intrinsic object from realmRec.

c. Perform ? DefinePropertyOrThrow(global, name, desc).
3. Return global.

An execution context is a specification device that is used to track the runtime evaluation of code by an ECMAScript
implementation. At any point in time, there is at most one execution context per agent that is actually executing code.
This is known as the agent's running execution context. All references to the running execution context in this
specification denote the running execution context of the surrounding agent.

The execution context stack is used to track execution contexts. The running execution context is always the top element
of this stack. A new execution context is created whenever control is transferred from the executable code associated
with the currently running execution context to executable code that is not associated with that execution context. The
newly created execution context is pushed onto the stack and becomes the running execution context.

An execution context contains whatever implementation specific state is necessary to track the execution progress of its
associated code. Each execution context has at least the state components listed in Table 21.

Table 21: State Components for All Execution Contexts

Component Purpose

8.2.3 SetRealmGlobalObject (realmRec, globalObj, thisValue)

8.2.4 SetDefaultGlobalBindings (realmRec)

8.3 Execution Contexts

© Ecma International 2019

99

code evaluation
state

Any state needed to perform, suspend, and resume evaluation of the code associated with this
execution context.

Function If this execution context is evaluating the code of a function object, then the value of this component
is that function object. If the context is evaluating the code of a Script or Module, the value is null.

Realm The Realm Record from which associated code accesses ECMAScript resources.

ScriptOrModule The Module Record or Script Record from which associated code originates. If there is no
originating script or module, as is the case for the original execution context created in
InitializeHostDefinedRealm, the value is null.

Evaluation of code by the running execution context may be suspended at various points defined within this
specification. Once the running execution context has been suspended a different execution context may become the
running execution context and commence evaluating its code. At some later time a suspended execution context may
again become the running execution context and continue evaluating its code at the point where it had previously been
suspended. Transition of the running execution context status among execution contexts usually occurs in stack-like last-
in/first-out manner. However, some ECMAScript features require non-LIFO transitions of the running execution context.

The value of the Realm component of the running execution context is also called the current Realm Record. The value
of the Function component of the running execution context is also called the active function object.

Execution contexts for ECMAScript code have the additional state components listed in Table 22.

Table 22: Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references made by code within
this execution context.

VariableEnvironment Identifies the Lexical Environment whose EnvironmentRecord holds bindings created by
VariableStatements within this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical
Environments.

Execution contexts representing the evaluation of generator objects have the additional state components listed in Table
23.

Table 23: Additional State Components for Generator Execution Contexts

Component Purpose

Generator The GeneratorObject that this execution context is evaluating.

In most situations only the running execution context (the top of the execution context stack) is directly manipulated by
algorithms within this specification. Hence when the terms “LexicalEnvironment”, and “VariableEnvironment” are used
without qualification they are in reference to those components of the running execution context.

100

© Ecma International 2019

100

An execution context is purely a specification mechanism and need not correspond to any particular artefact of an
ECMAScript implementation. It is impossible for ECMAScript code to directly access or observe an execution context.

The GetActiveScriptOrModule abstract operation is used to determine the running script or module, based on the running
execution context. GetActiveScriptOrModule performs the following steps:

1. If the execution context stack is empty, return null.
2. Let ec be the topmost execution context on the execution context stack whose ScriptOrModule component is not

null.
3. If no such execution context exists, return null. Otherwise, return ec's ScriptOrModule component.

The ResolveBinding abstract operation is used to determine the binding of name passed as a String value. The optional
argument env can be used to explicitly provide the Lexical Environment that is to be searched for the binding. During
execution of ECMAScript code, ResolveBinding is performed using the following algorithm:

1. If env is not present or if env is undefined, then
a. Set env to the running execution context's LexicalEnvironment.

2. Assert: env is a Lexical Environment.
3. If the code matching the syntactic production that is being evaluated is contained in strict mode code, let strict be

true, else let strict be false.
4. Return ? GetIdentifierReference(env, name, strict).

NOTE
The result of ResolveBinding is always a Reference value with its referenced name component equal to the name
argument.

The abstract operation GetThisEnvironment finds the Environment Record that currently supplies the binding of the
keyword this. GetThisEnvironment performs the following steps:

1. Let lex be the running execution context's LexicalEnvironment.
2. Repeat,

a. Let envRec be lex's EnvironmentRecord.
b. Let exists be envRec.HasThisBinding().
c. If exists is true, return envRec.
d. Let outer be the value of lex's outer environment reference.
e. Assert: outer is not null.
f. Set lex to outer.

NOTE
The loop in step 2 will always terminate because the list of environments always ends with the global environment which
has a this binding.

8.3.1 GetActiveScriptOrModule ()

8.3.2 ResolveBinding (name [, env])

8.3.3 GetThisEnvironment ()

© Ecma International 2019

101

The abstract operation ResolveThisBinding determines the binding of the keyword this using the LexicalEnvironment
of the running execution context. ResolveThisBinding performs the following steps:

1. Let envRec be GetThisEnvironment().
2. Return ? envRec.GetThisBinding().

The abstract operation GetNewTarget determines the NewTarget value using the LexicalEnvironment of the running
execution context. GetNewTarget performs the following steps:

1. Let envRec be GetThisEnvironment().
2. Assert: envRec has a [[NewTarget]] field.
3. Return envRec.[[NewTarget]].

The abstract operation GetGlobalObject returns the global object used by the currently running execution context.
GetGlobalObject performs the following steps:

1. Let ctx be the running execution context.
2. Let currentRealm be ctx's Realm.
3. Return currentRealm.[[GlobalObject]].

A Job is an abstract operation that initiates an ECMAScript computation when no other ECMAScript computation is
currently in progress. A Job abstract operation may be defined to accept an arbitrary set of job parameters.

Execution of a Job can be initiated only when there is no running execution context and the execution context stack is
empty. A PendingJob is a request for the future execution of a Job. A PendingJob is an internal Record whose fields are
specified in Table 24. Once execution of a Job is initiated, the Job always executes to completion. No other Job may be
initiated until the currently running Job completes. However, the currently running Job or external events may cause the
enqueuing of additional PendingJobs that may be initiated sometime after completion of the currently running Job.

Table 24: PendingJob Record Fields

Field Name Value Meaning

[[Job]] The name of a Job
abstract operation

This is the abstract operation that is performed when execution of this
PendingJob is initiated.

[[Arguments]] A List The List of argument values that are to be passed to [[Job]] when it is
activated.

[[Realm]] A Realm Record The Realm Record for the initial execution context when this
PendingJob is initiated.

8.3.4 ResolveThisBinding ()

8.3.5 GetNewTarget ()

8.3.6 GetGlobalObject ()

8.4 Jobs and Job Queues

102

© Ecma International 2019

102

[[ScriptOrModule]] A Script Record or
Module Record

The script or module for the initial execution context when this
PendingJob is initiated.

[[HostDefined]] Any, default value is
undefined.

Field reserved for use by host environments that need to associate
additional information with a pending Job.

A Job Queue is a FIFO queue of PendingJob records. Each Job Queue has a name and the full set of available Job
Queues are defined by an ECMAScript implementation. Every ECMAScript implementation has at least the Job Queues
defined in Table 25.

Each agent has its own set of named Job Queues. All references to a named job queue in this specification denote the
named job queue of the surrounding agent.

Table 25: Required Job Queues

Name Purpose

ScriptJobs Jobs that validate and evaluate ECMAScript Script and Module source text. See clauses 10 and 15.

PromiseJobs Jobs that are responses to the settlement of a Promise (see 25.6).

A request for the future execution of a Job is made by enqueueing, on a Job Queue, a PendingJob record that includes a
Job abstract operation name and any necessary argument values. When there is no running execution context and the
execution context stack is empty, the ECMAScript implementation removes the first PendingJob from a Job Queue and
uses the information contained in it to create an execution context and starts execution of the associated Job abstract
operation.

The PendingJob records from a single Job Queue are always initiated in FIFO order. This specification does not define
the order in which multiple Job Queues are serviced. An ECMAScript implementation may interweave the FIFO
evaluation of the PendingJob records of a Job Queue with the evaluation of the PendingJob records of one or more other
Job Queues. An implementation must define what occurs when there are no running execution context and all Job
Queues are empty.

NOTE
Typically an ECMAScript implementation will have its Job Queues pre-initialized with at least one PendingJob and one
of those Jobs will be the first to be executed. An implementation might choose to free all resources and terminate if the
current Job completes and all Job Queues are empty. Alternatively, it might choose to wait for a some implementation
specific agent or mechanism to enqueue new PendingJob requests.

The following abstract operations are used to create and manage Jobs and Job Queues:

The EnqueueJob abstract operation requires three arguments: queueName, job, and arguments. It performs the following
steps:

1. Assert: Type(queueName) is String and its value is the name of a Job Queue recognized by this implementation.
2. Assert: job is the name of a Job.

8.4.1 EnqueueJob (queueName, job, arguments)

© Ecma International 2019

103

3. Assert: arguments is a List that has the same number of elements as the number of parameters required by job.
4. Let callerContext be the running execution context.
5. Let callerRealm be callerContext's Realm.
6. Let callerScriptOrModule be callerContext's ScriptOrModule.
7. Let pending be PendingJob { [[Job]]: job, [[Arguments]]: arguments, [[Realm]]: callerRealm, [[ScriptOrModule]]:

callerScriptOrModule, [[HostDefined]]: undefined }.
8. Perform any implementation or host environment defined processing of pending. This may include modifying the

[[HostDefined]] field or any other field of pending.
9. Add pending at the back of the Job Queue named by queueName.

10. Return NormalCompletion(empty).

The abstract operation InitializeHostDefinedRealm performs the following steps:

1. Let realm be CreateRealm().
2. Let newContext be a new execution context.
3. Set the Function of newContext to null.
4. Set the Realm of newContext to realm.
5. Set the ScriptOrModule of newContext to null.
6. Push newContext onto the execution context stack; newContext is now the running execution context.
7. If the host requires use of an exotic object to serve as realm's global object, let global be such an object created in

an implementation-defined manner. Otherwise, let global be undefined, indicating that an ordinary object should
be created as the global object.

8. If the host requires that the this binding in realm's global scope return an object other than the global object, let
thisValue be such an object created in an implementation-defined manner. Otherwise, let thisValue be undefined,
indicating that realm's global this binding should be the global object.

9. Perform SetRealmGlobalObject(realm, global, thisValue).
10. Let globalObj be ? SetDefaultGlobalBindings(realm).
11. Create any implementation-defined global object properties on globalObj.
12. Return NormalCompletion(empty).

The abstract operation RunJobs performs the following steps:

1. Perform ? InitializeHostDefinedRealm().
2. In an implementation-dependent manner, obtain the ECMAScript source texts (see clause 10) and any associated

host-defined values for zero or more ECMAScript scripts and/or ECMAScript modules. For each such sourceText
and hostDefined, do

a. If sourceText is the source code of a script, then
i. Perform EnqueueJob("ScriptJobs", ScriptEvaluationJob, « sourceText, hostDefined »).

b. Else sourceText is the source code of a module,
i. Perform EnqueueJob("ScriptJobs", TopLevelModuleEvaluationJob, « sourceText, hostDefined »).

3. Repeat,
a. Suspend the running execution context and remove it from the execution context stack.
b. Assert: The execution context stack is now empty.

8.5 InitializeHostDefinedRealm ()

8.6 RunJobs ()

104

© Ecma International 2019

104

c. Let nextQueue be a non-empty Job Queue chosen in an implementation-defined manner. If all Job Queues are
empty, the result is implementation-defined.

d. Let nextPending be the PendingJob record at the front of nextQueue. Remove that record from nextQueue.
e. Let newContext be a new execution context.
f. Set newContext's Function to null.
g. Set newContext's Realm to nextPending.[[Realm]].
h. Set newContext's ScriptOrModule to nextPending.[[ScriptOrModule]].
i. Push newContext onto the execution context stack; newContext is now the running execution context.
j. Perform any implementation or host environment defined job initialization using nextPending.
k. Let result be the result of performing the abstract operation named by nextPending.[[Job]] using the elements

of nextPending.[[Arguments]] as its arguments.
l. If result is an abrupt completion, perform HostReportErrors(« result.[[Value]] »).

An agent comprises a set of ECMAScript execution contexts, an execution context stack, a running execution context, a
set of named job queues, an Agent Record, and an executing thread. Except for the executing thread, the constituents of
an agent belong exclusively to that agent.

An agent's executing thread executes the jobs in the agent's job queues on the agent's execution contexts independently of
other agents, except that an executing thread may be used as the executing thread by multiple agents, provided none of
the agents sharing the thread have an Agent Record whose [[CanBlock]] property is true.

NOTE 1
Some web browsers share a single executing thread across multiple unrelated tabs of a browser window, for example.

While an agent's executing thread executes the jobs in the agent's job queues, the agent is the surrounding agent for the
code in those jobs. The code uses the surrounding agent to access the specification level execution objects held within the
agent: the running execution context, the execution context stack, the named job queues, and the Agent Record's fields.

Table 26: Agent Record Fields

Field Name Value Meaning

[[LittleEndian]] Boolean The default value computed for the isLittleEndian parameter when it is needed by
the algorithms GetValueFromBuffer and SetValueInBuffer. The choice is
implementation-dependent and should be the alternative that is most efficient for
the implementation. Once the value has been observed it cannot change.

[[CanBlock]] Boolean Determines whether the agent can block or not.

[[Signifier]] Any
globally-
unique
value

Uniquely identifies the agent within its agent cluster.

[[IsLockFree1]] Boolean true if atomic operations on one-byte values are lock-free, false otherwise.

[[IsLockFree2]] Boolean true if atomic operations on two-byte values are lock-free, false otherwise.

8.7 Agents

© Ecma International 2019

105

[[CandidateExecution]] A
candidate
execution
Record

See the memory model.

Once the values of [[Signifier]], [[IsLockFree1]], and [[IsLockFree2]] have been observed by any agent in the agent
cluster they cannot change.

NOTE 2
The values of [[IsLockFree1]] and [[IsLockFree2]] are not necessarily determined by the hardware, but may also reflect
implementation choices that can vary over time and between ECMAScript implementations.

There is no [[IsLockFree4]] property: 4-byte atomic operations are always lock-free.

In practice, if an atomic operation is implemented with any type of lock the operation is not lock-free. Lock-free does not
imply wait-free: there is no upper bound on how many machine steps may be required to complete a lock-free atomic
operation.

That an atomic access of size n is lock-free does not imply anything about the (perceived) atomicity of non-atomic
accesses of size n, specifically, non-atomic accesses may still be performed as a sequence of several separate memory
accesses. See ReadSharedMemory and WriteSharedMemory for details.

NOTE 3
An agent is a specification mechanism and need not correspond to any particular artefact of an ECMAScript
implementation.

The abstract operation AgentSignifier takes no arguments. It performs the following steps:

1. Let AR be the Agent Record of the surrounding agent.
2. Return AR.[[Signifier]].

The abstract operation AgentCanSuspend takes no arguments. It performs the following steps:

1. Let AR be the Agent Record of the surrounding agent.
2. Return AR.[[CanBlock]].

NOTE
In some environments it may not be reasonable for a given agent to suspend. For example, in a web browser
environment, it may be reasonable to disallow suspending a document's main event handling thread, while still allowing
workers' event handling threads to suspend.

8.7.1 AgentSignifier ()

8.7.2 AgentCanSuspend ()

8.8 Agent Clusters

106

© Ecma International 2019

106

An agent cluster is a maximal set of agents that can communicate by operating on shared memory.

NOTE 1
Programs within different agents may share memory by unspecified means. At a minimum, the backing memory for
SharedArrayBuffer objects can be shared among the agents in the cluster.

There may be agents that can communicate by message passing that cannot share memory; they are never in the same
agent cluster.

Every agent belongs to exactly one agent cluster.

NOTE 2
The agents in a cluster need not all be alive at some particular point in time. If agent A creates another agent B, after
which A terminates and B creates agent C, the three agents are in the same cluster if A could share some memory with B
and B could share some memory with C.

All agents within a cluster must have the same value for the [[LittleEndian]] property in their respective Agent Records.

NOTE 3
If different agents within an agent cluster have different values of [[LittleEndian]] it becomes hard to use shared memory
for multi-byte data.

All agents within a cluster must have the same values for the [[IsLockFree1]] property in their respective Agent Records;
similarly for the [[IsLockFree2]] property.

All agents within a cluster must have different values for the [[Signifier]] property in their respective Agent Records.

An embedding may deactivate (stop forward progress) or activate (resume forward progress) an agent without the agent's
knowledge or cooperation. If the embedding does so, it must not leave some agents in the cluster active while other
agents in the cluster are deactivated indefinitely.

NOTE 4
The purpose of the preceding restriction is to avoid a situation where an agent deadlocks or starves because another agent
has been deactivated. For example, if an HTML shared worker that has a lifetime independent of documents in any
windows were allowed to share memory with the dedicated worker of such an independent document, and the document
and its dedicated worker were to be deactivated while the dedicated worker holds a lock (say, the document is pushed
into its window's history), and the shared worker then tries to acquire the lock, then the shared worker will be blocked
until the dedicated worker is activated again, if ever. Meanwhile other workers trying to access the shared worker from
other windows will starve.

The implication of the restriction is that it will not be possible to share memory between agents that don't belong to the
same suspend/wake collective within the embedding.

An embedding may terminate an agent without any of the agent's cluster's other agents' prior knowledge or cooperation.
If an agent is terminated not by programmatic action of its own or of another agent in the cluster but by forces external to
the cluster, then the embedding must choose one of two strategies: Either terminate all the agents in the cluster, or
provide reliable APIs that allow the agents in the cluster to coordinate so that at least one remaining member of the
cluster will be able to detect the termination, with the termination data containing enough information to identify the

© Ecma International 2019

107

agent that was terminated.

NOTE 5
Examples of that type of termination are: operating systems or users terminating agents that are running in separate
processes; the embedding itself terminating an agent that is running in-process with the other agents when per-agent
resource accounting indicates that the agent is runaway.

Prior to any evaluation of any ECMAScript code by any agent in a cluster, the [[CandidateExecution]] field of the Agent
Record for all agents in the cluster is set to the initial candidate execution. The initial candidate execution is an empty
candidate execution whose [[EventsRecords]] field is a List containing, for each agent, an Agent Events Record whose
[[AgentSignifier]] field is that agent's signifier, and whose [[EventList]] and [[AgentSynchronizesWith]] fields are empty
Lists.

NOTE 6
All agents in an agent cluster share the same candidate execution in its Agent Record's [[CandidateExecution]] field. The
candidate execution is a specification mechanism used by the memory model.

NOTE 7
An agent cluster is a specification mechanism and need not correspond to any particular artefact of an ECMAScript
implementation.

For an agent to make forward progress is for it to perform an evaluation step according to this specification.

An agent becomes blocked when its running execution context waits synchronously and indefinitely for an external
event. Only agents whose Agent Record's [[CanBlock]] property is true can become blocked in this sense. An unblocked
agent is one that is not blocked.

Implementations must ensure that:

every unblocked agent with a dedicated executing thread eventually makes forward progress
in a set of agents that share an executing thread, one agent eventually makes forward progress
an agent does not cause another agent to become blocked except via explicit APIs that provide blocking.

NOTE
This, along with the liveness guarantee in the memory model, ensures that all "SeqCst" writes eventually become
observable to all agents.

All ordinary objects have an internal slot called [[Prototype]]. The value of this internal slot is either null or an object
and is used for implementing inheritance. Data properties of the [[Prototype]] object are inherited (and visible as

8.9 Forward Progress

9 Ordinary and Exotic Objects Behaviours

9.1 Ordinary Object Internal Methods and Internal Slots

108

© Ecma International 2019

108

properties of the child object) for the purposes of get access, but not for set access. Accessor properties are inherited for
both get access and set access.

Every ordinary object has a Boolean-valued [[Extensible]] internal slot which is used to fulfill the extensibility-related
internal method invariants specified in 6.1.7.3. Namely, once the value of an object's [[Extensible]] internal slot has been
set to false, it is no longer possible to add properties to the object, to modify the value of the object's [[Prototype]]
internal slot, or to subsequently change the value of [[Extensible]] to true.

In the following algorithm descriptions, assume O is an ordinary object, P is a property key value, V is any ECMAScript
language value, and Desc is a Property Descriptor record.

Each ordinary object internal method delegates to a similarly-named abstract operation. If such an abstract operation
depends on another internal method, then the internal method is invoked on O rather than calling the similarly-named
abstract operation directly. These semantics ensure that exotic objects have their overridden internal methods invoked
when ordinary object internal methods are applied to them.

When the [[GetPrototypeOf]] internal method of O is called, the following steps are taken:

1. Return ! OrdinaryGetPrototypeOf(O).

When the abstract operation OrdinaryGetPrototypeOf is called with Object O, the following steps are taken:

1. Return O.[[Prototype]].

When the [[SetPrototypeOf]] internal method of O is called with argument V, the following steps are taken:

1. Return ! OrdinarySetPrototypeOf(O, V).

When the abstract operation OrdinarySetPrototypeOf is called with Object O and value V, the following steps are taken:

1. Assert: Either Type(V) is Object or Type(V) is Null.
2. Let extensible be O.[[Extensible]].
3. Let current be O.[[Prototype]].
4. If SameValue(V, current) is true, return true.
5. If extensible is false, return false.
6. Let p be V.
7. Let done be false.
8. Repeat, while done is false,

a. If p is null, set done to true.
b. Else if SameValue(p, O) is true, return false.
c. Else,

i. If p.[[GetPrototypeOf]] is not the ordinary object internal method defined in 9.1.1, set done to true.
ii. Else, set p to p.[[Prototype]].

9.1.1 [[GetPrototypeOf]] ()

9.1.1.1 OrdinaryGetPrototypeOf (O)

9.1.2 [[SetPrototypeOf]] (V)

9.1.2.1 OrdinarySetPrototypeOf (O, V)

© Ecma International 2019

109

9. Set O.[[Prototype]] to V.
10. Return true.

NOTE
The loop in step 8 guarantees that there will be no circularities in any prototype chain that only includes objects that use
the ordinary object definitions for [[GetPrototypeOf]] and [[SetPrototypeOf]].

When the [[IsExtensible]] internal method of O is called, the following steps are taken:

1. Return ! OrdinaryIsExtensible(O).

When the abstract operation OrdinaryIsExtensible is called with Object O, the following steps are taken:

1. Return O.[[Extensible]].

When the [[PreventExtensions]] internal method of O is called, the following steps are taken:

1. Return ! OrdinaryPreventExtensions(O).

When the abstract operation OrdinaryPreventExtensions is called with Object O, the following steps are taken:

1. Set O.[[Extensible]] to false.
2. Return true.

When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Return ! OrdinaryGetOwnProperty(O, P).

When the abstract operation OrdinaryGetOwnProperty is called with Object O and with property key P, the following
steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If O does not have an own property with key P, return undefined.
3. Let D be a newly created Property Descriptor with no fields.
4. Let X be O's own property whose key is P.
5. If X is a data property, then

a. Set D.[[Value]] to the value of X's [[Value]] attribute.
b. Set D.[[Writable]] to the value of X's [[Writable]] attribute.

9.1.3 [[IsExtensible]] ()

9.1.3.1 OrdinaryIsExtensible (O)

9.1.4 [[PreventExtensions]] ()

9.1.4.1 OrdinaryPreventExtensions (O)

9.1.5 [[GetOwnProperty]] (P)

9.1.5.1 OrdinaryGetOwnProperty (O, P)

110

© Ecma International 2019

110

6. Else X is an accessor property,
a. Set D.[[Get]] to the value of X's [[Get]] attribute.
b. Set D.[[Set]] to the value of X's [[Set]] attribute.

7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
9. Return D.

When the [[DefineOwnProperty]] internal method of O is called with property key P and Property Descriptor Desc, the
following steps are taken:

1. Return ? OrdinaryDefineOwnProperty(O, P, Desc).

When the abstract operation OrdinaryDefineOwnProperty is called with Object O, property key P, and Property
Descriptor Desc, the following steps are taken:

1. Let current be ? O.[[GetOwnProperty]](P).
2. Let extensible be ? IsExtensible(O).
3. Return ValidateAndApplyPropertyDescriptor(O, P, extensible, Desc, current).

When the abstract operation IsCompatiblePropertyDescriptor is called with Boolean value Extensible, and Property
Descriptors Desc, and Current, the following steps are taken:

1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined, Extensible, Desc, Current).

When the abstract operation ValidateAndApplyPropertyDescriptor is called with Object O, property key P, Boolean
value extensible, and Property Descriptors Desc, and current, the following steps are taken:

NOTE
If undefined is passed as O, only validation is performed and no object updates are performed.

1. Assert: If O is not undefined, then IsPropertyKey(P) is true.
2. If current is undefined, then

a. If extensible is false, return false.
b. Assert: extensible is true.
c. If IsGenericDescriptor(Desc) is true or IsDataDescriptor(Desc) is true, then

i. If O is not undefined, create an own data property named P of object O whose [[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of an attribute
field of Desc is absent, the attribute of the newly created property is set to its default value.

d. Else Desc must be an accessor Property Descriptor,
i. If O is not undefined, create an own accessor property named P of object O whose [[Get]], [[Set]],

[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of an attribute

9.1.6 [[DefineOwnProperty]] (P, Desc)

9.1.6.1 OrdinaryDefineOwnProperty (O, P, Desc)

9.1.6.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

9.1.6.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

© Ecma International 2019

111

field of Desc is absent, the attribute of the newly created property is set to its default value.
e. Return true.

3. If every field in Desc is absent, return true.
4. If current.[[Configurable]] is false, then

a. If Desc.[[Configurable]] is present and its value is true, return false.
b. If Desc.[[Enumerable]] is present and the [[Enumerable]] fields of current and Desc are the Boolean negation

of each other, return false.
5. If IsGenericDescriptor(Desc) is true, no further validation is required.
6. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then

a. If current.[[Configurable]] is false, return false.
b. If IsDataDescriptor(current) is true, then

i. If O is not undefined, convert the property named P of object O from a data property to an accessor
property. Preserve the existing values of the converted property's [[Configurable]] and [[Enumerable]]
attributes and set the rest of the property's attributes to their default values.

c. Else,
i. If O is not undefined, convert the property named P of object O from an accessor property to a data

property. Preserve the existing values of the converted property's [[Configurable]] and [[Enumerable]]
attributes and set the rest of the property's attributes to their default values.

7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. If current.[[Configurable]] is false and current.[[Writable]] is false, then

i. If Desc.[[Writable]] is present and Desc.[[Writable]] is true, return false.
ii. If Desc.[[Value]] is present and SameValue(Desc.[[Value]], current.[[Value]]) is false, return false.

iii. Return true.
8. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true,

a. If current.[[Configurable]] is false, then
i. If Desc.[[Set]] is present and SameValue(Desc.[[Set]], current.[[Set]]) is false, return false.

ii. If Desc.[[Get]] is present and SameValue(Desc.[[Get]], current.[[Get]]) is false, return false.
iii. Return true.

9. If O is not undefined, then
a. For each field of Desc that is present, set the corresponding attribute of the property named P of object O to

the value of the field.
10. Return true.

When the [[HasProperty]] internal method of O is called with property key P, the following steps are taken:

1. Return ? OrdinaryHasProperty(O, P).

When the abstract operation OrdinaryHasProperty is called with Object O and with property key P, the following steps
are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let hasOwn be ? O.[[GetOwnProperty]](P).
3. If hasOwn is not undefined, return true.
4. Let parent be ? O.[[GetPrototypeOf]]().
5. If parent is not null, then

9.1.7 [[HasProperty]] (P)

9.1.7.1 OrdinaryHasProperty (O, P)

112

© Ecma International 2019

112

a. Return ? parent.[[HasProperty]](P).
6. Return false.

When the [[Get]] internal method of O is called with property key P and ECMAScript language value Receiver, the
following steps are taken:

1. Return ? OrdinaryGet(O, P, Receiver).

When the abstract operation OrdinaryGet is called with Object O, property key P, and ECMAScript language value
Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let desc be ? O.[[GetOwnProperty]](P).
3. If desc is undefined, then

a. Let parent be ? O.[[GetPrototypeOf]]().
b. If parent is null, return undefined.
c. Return ? parent.[[Get]](P, Receiver).

4. If IsDataDescriptor(desc) is true, return desc.[[Value]].
5. Assert: IsAccessorDescriptor(desc) is true.
6. Let getter be desc.[[Get]].
7. If getter is undefined, return undefined.
8. Return ? Call(getter, Receiver).

When the [[Set]] internal method of O is called with property key P, value V, and ECMAScript language value Receiver,
the following steps are taken:

1. Return ? OrdinarySet(O, P, V, Receiver).

When the abstract operation OrdinarySet is called with Object O, property key P, value V, and ECMAScript language
value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let ownDesc be ? O.[[GetOwnProperty]](P).
3. Return OrdinarySetWithOwnDescriptor(O, P, V, Receiver, ownDesc).

When the abstract operation OrdinarySetWithOwnDescriptor is called with Object O, property key P, value V,
ECMAScript language value Receiver, and Property Descriptor (or undefined) ownDesc, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If ownDesc is undefined, then

9.1.8 [[Get]] (P, Receiver)

9.1.8.1 OrdinaryGet (O, P, Receiver)

9.1.9 [[Set]] (P, V, Receiver)

9.1.9.1 OrdinarySet (O, P, V, Receiver)

9.1.9.2 OrdinarySetWithOwnDescriptor (O, P, V, Receiver, ownDesc)

© Ecma International 2019

113

a. Let parent be ? O.[[GetPrototypeOf]]().
b. If parent is not null, then

i. Return ? parent.[[Set]](P, V, Receiver).
c. Else,

i. Set ownDesc to the PropertyDescriptor { [[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true }.

3. If IsDataDescriptor(ownDesc) is true, then
a. If ownDesc.[[Writable]] is false, return false.
b. If Type(Receiver) is not Object, return false.
c. Let existingDescriptor be ? Receiver.[[GetOwnProperty]](P).
d. If existingDescriptor is not undefined, then

i. If IsAccessorDescriptor(existingDescriptor) is true, return false.
ii. If existingDescriptor.[[Writable]] is false, return false.

iii. Let valueDesc be the PropertyDescriptor { [[Value]]: V }.
iv. Return ? Receiver.[[DefineOwnProperty]](P, valueDesc).

e. Else Receiver does not currently have a property P,
i. Return ? CreateDataProperty(Receiver, P, V).

4. Assert: IsAccessorDescriptor(ownDesc) is true.
5. Let setter be ownDesc.[[Set]].
6. If setter is undefined, return false.
7. Perform ? Call(setter, Receiver, « V »).
8. Return true.

When the [[Delete]] internal method of O is called with property key P, the following steps are taken:

1. Return ? OrdinaryDelete(O, P).

When the abstract operation OrdinaryDelete is called with Object O and property key P, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let desc be ? O.[[GetOwnProperty]](P).
3. If desc is undefined, return true.
4. If desc.[[Configurable]] is true, then

a. Remove the own property with name P from O.
b. Return true.

5. Return false.

When the [[OwnPropertyKeys]] internal method of O is called, the following steps are taken:

1. Return ! OrdinaryOwnPropertyKeys(O).

9.1.10 [[Delete]] (P)

9.1.10.1 OrdinaryDelete (O, P)

9.1.11 [[OwnPropertyKeys]] ()

9.1.11.1 OrdinaryOwnPropertyKeys (O)

114

© Ecma International 2019

114

When the abstract operation OrdinaryOwnPropertyKeys is called with Object O, the following steps are taken:

1. Let keys be a new empty List.
2. For each own property key P of O that is an array index, in ascending numeric index order, do

a. Add P as the last element of keys.
3. For each own property key P of O that is a String but is not an array index, in ascending chronological order of

property creation, do
a. Add P as the last element of keys.

4. For each own property key P of O that is a Symbol, in ascending chronological order of property creation, do
a. Add P as the last element of keys.

5. Return keys.

The abstract operation ObjectCreate with argument proto (an object or null) is used to specify the runtime creation of
new ordinary objects. The optional argument internalSlotsList is a List of the names of additional internal slots that must
be defined as part of the object. If the list is not provided, a new empty List is used. This abstract operation performs the
following steps:

1. If internalSlotsList is not present, set internalSlotsList to a new empty List.
2. Let obj be a newly created object with an internal slot for each name in internalSlotsList.
3. Set obj's essential internal methods to the default ordinary object definitions specified in 9.1.
4. Set obj.[[Prototype]] to proto.
5. Set obj.[[Extensible]] to true.
6. Return obj.

The abstract operation OrdinaryCreateFromConstructor creates an ordinary object whose [[Prototype]] value is retrieved
from a constructor's prototype property, if it exists. Otherwise the intrinsic named by intrinsicDefaultProto is used
for [[Prototype]]. The optional internalSlotsList is a List of the names of additional internal slots that must be defined as
part of the object. If the list is not provided, a new empty List is used. This abstract operation performs the following
steps:

1. Assert: intrinsicDefaultProto is a String value that is this specification's name of an intrinsic object. The
corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.

2. Let proto be ? GetPrototypeFromConstructor(constructor, intrinsicDefaultProto).
3. Return ObjectCreate(proto, internalSlotsList).

The abstract operation GetPrototypeFromConstructor determines the [[Prototype]] value that should be used to create an
object corresponding to a specific constructor. The value is retrieved from the constructor's prototype property, if it
exists. Otherwise the intrinsic named by intrinsicDefaultProto is used for [[Prototype]]. This abstract operation performs
the following steps:

1. Assert: intrinsicDefaultProto is a String value that is this specification's name of an intrinsic object. The
corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.

9.1.12 ObjectCreate (proto [, internalSlotsList])

9.1.13 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto [,
internalSlotsList])

9.1.14 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)

© Ecma International 2019

115

2. Assert: IsCallable(constructor) is true.
3. Let proto be ? Get(constructor, "prototype").
4. If Type(proto) is not Object, then

a. Let realm be ? GetFunctionRealm(constructor).
b. Set proto to realm's intrinsic object named intrinsicDefaultProto.

5. Return proto.

NOTE
If constructor does not supply a [[Prototype]] value, the default value that is used is obtained from the realm of the
constructor function rather than from the running execution context.

ECMAScript function objects encapsulate parameterized ECMAScript code closed over a lexical environment and
support the dynamic evaluation of that code. An ECMAScript function object is an ordinary object and has the same
internal slots and the same internal methods as other ordinary objects. The code of an ECMAScript function object may
be either strict mode code (10.2.1) or non-strict code. An ECMAScript function object whose code is strict mode code is
called a strict function. One whose code is not strict mode code is called a non-strict function.

ECMAScript function objects have the additional internal slots listed in Table 27.

Table 27: Internal Slots of ECMAScript Function Objects

Internal Slot Type Description

[[Environment]] Lexical
Environment

The Lexical Environment that the function was closed over. Used as the outer
environment when evaluating the code of the function.

[[FormalParameters]] Parse Node The root parse node of the source text that defines the function's formal
parameter list.

[[FunctionKind]] String Either "normal", "classConstructor", "generator", "async", or
"async generator".

[[ECMAScriptCode]] Parse Node The root parse node of the source text that defines the function's body.

[[ConstructorKind]] String Either "base" or "derived".

[[Realm]] Realm
Record

The realm in which the function was created and which provides any intrinsic
objects that are accessed when evaluating the function.

[[ScriptOrModule]] Script
Record or
Module
Record

The script or module in which the function was created.

[[ThisMode]] (lexical,
strict,
global)

Defines how this references are interpreted within the formal parameters and
code body of the function. lexical means that this refers to the this value of a
lexically enclosing function. strict means that the this value is used exactly as
provided by an invocation of the function. global means that a this value of
undefined is interpreted as a reference to the global object.

9.2 ECMAScript Function Objects

116

© Ecma International 2019

116

[[Strict]] Boolean true if this is a strict function, false if this is a non-strict function.

[[HomeObject]] Object If the function uses super, this is the object whose [[GetPrototypeOf]]
provides the object where super property lookups begin.

[[SourceText]] String The source text that defines the function.

All ECMAScript function objects have the [[Call]] internal method defined here. ECMAScript functions that are also
constructors in addition have the [[Construct]] internal method.

The [[Call]] internal method for an ECMAScript function object F is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

1. Assert: F is an ECMAScript function object.
2. If F.[[FunctionKind]] is "classConstructor", throw a TypeError exception.
3. Let callerContext be the running execution context.
4. Let calleeContext be PrepareForOrdinaryCall(F, undefined).
5. Assert: calleeContext is now the running execution context.
6. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
7. Let result be OrdinaryCallEvaluateBody(F, argumentsList).
8. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
9. If result.[[Type]] is return, return NormalCompletion(result.[[Value]]).

10. ReturnIfAbrupt(result).
11. Return NormalCompletion(undefined).

NOTE
When calleeContext is removed from the execution context stack in step 8 it must not be destroyed if it is suspended and
retained for later resumption by an accessible generator object.

When the abstract operation PrepareForOrdinaryCall is called with function object F and ECMAScript language value
newTarget, the following steps are taken:

1. Assert: Type(newTarget) is Undefined or Object.
2. Let callerContext be the running execution context.
3. Let calleeContext be a new ECMAScript code execution context.
4. Set the Function of calleeContext to F.
5. Let calleeRealm be F.[[Realm]].
6. Set the Realm of calleeContext to calleeRealm.
7. Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]].
8. Let localEnv be NewFunctionEnvironment(F, newTarget).
9. Set the LexicalEnvironment of calleeContext to localEnv.

10. Set the VariableEnvironment of calleeContext to localEnv.
11. If callerContext is not already suspended, suspend callerContext.

9.2.1 [[Call]] (thisArgument, argumentsList)

9.2.1.1 PrepareForOrdinaryCall (F, newTarget)

© Ecma International 2019

117

12. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
13. NOTE: Any exception objects produced after this point are associated with calleeRealm.
14. Return calleeContext.

When the abstract operation OrdinaryCallBindThis is called with function object F, execution context calleeContext, and
ECMAScript value thisArgument, the following steps are taken:

1. Let thisMode be F.[[ThisMode]].
2. If thisMode is lexical, return NormalCompletion(undefined).
3. Let calleeRealm be F.[[Realm]].
4. Let localEnv be the LexicalEnvironment of calleeContext.
5. If thisMode is strict, let thisValue be thisArgument.
6. Else,

a. If thisArgument is undefined or null, then
i. Let globalEnv be calleeRealm.[[GlobalEnv]].

ii. Let globalEnvRec be globalEnv's EnvironmentRecord.
iii. Assert: globalEnvRec is a global Environment Record.
iv. Let thisValue be globalEnvRec.[[GlobalThisValue]].

b. Else,
i. Let thisValue be ! ToObject(thisArgument).

ii. NOTE: ToObject produces wrapper objects using calleeRealm.
7. Let envRec be localEnv's EnvironmentRecord.
8. Assert: envRec is a function Environment Record.
9. Assert: The next step never returns an abrupt completion because envRec.[[ThisBindingStatus]] is not

"initialized".
10. Return envRec.BindThisValue(thisValue).

When the abstract operation OrdinaryCallEvaluateBody is called with function object F and List argumentsList, the
following steps are taken:

1. Return the result of EvaluateBody of the parsed code that is F.[[ECMAScriptCode]] passing F and argumentsList
as the arguments.

The [[Construct]] internal method for an ECMAScript function object F is called with parameters argumentsList and
newTarget. argumentsList is a possibly empty List of ECMAScript language values. The following steps are taken:

1. Assert: F is an ECMAScript function object.
2. Assert: Type(newTarget) is Object.
3. Let callerContext be the running execution context.
4. Let kind be F.[[ConstructorKind]].
5. If kind is "base", then

a. Let thisArgument be ? OrdinaryCreateFromConstructor(newTarget, "%ObjectPrototype%").
6. Let calleeContext be PrepareForOrdinaryCall(F, newTarget).

9.2.1.2 OrdinaryCallBindThis (F, calleeContext, thisArgument)

9.2.1.3 OrdinaryCallEvaluateBody (F, argumentsList)

9.2.2 [[Construct]] (argumentsList, newTarget)

118

© Ecma International 2019

118

7. Assert: calleeContext is now the running execution context.
8. If kind is "base", perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
9. Let constructorEnv be the LexicalEnvironment of calleeContext.

10. Let envRec be constructorEnv's EnvironmentRecord.
11. Let result be OrdinaryCallEvaluateBody(F, argumentsList).
12. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
13. If result.[[Type]] is return, then

a. If Type(result.[[Value]]) is Object, return NormalCompletion(result.[[Value]]).
b. If kind is "base", return NormalCompletion(thisArgument).
c. If result.[[Value]] is not undefined, throw a TypeError exception.

14. Else, ReturnIfAbrupt(result).
15. Return ? envRec.GetThisBinding().

The abstract operation FunctionAllocate requires the three arguments functionPrototype, strict and functionKind.
FunctionAllocate performs the following steps:

1. Assert: Type(functionPrototype) is Object.
2. Assert: functionKind is either "normal", "non-constructor", "generator", "async", or

"async generator".
3. If functionKind is "normal", let needsConstruct be true.
4. Else, let needsConstruct be false.
5. If functionKind is "non-constructor", set functionKind to "normal".
6. Let F be a newly created ECMAScript function object with the internal slots listed in Table 27. All of those internal

slots are initialized to undefined.
7. Set F's essential internal methods to the default ordinary object definitions specified in 9.1.
8. Set F.[[Call]] to the definition specified in 9.2.1.
9. If needsConstruct is true, then

a. Set F.[[Construct]] to the definition specified in 9.2.2.
b. Set F.[[ConstructorKind]] to "base".

10. Set F.[[Strict]] to strict.
11. Set F.[[FunctionKind]] to functionKind.
12. Set F.[[Prototype]] to functionPrototype.
13. Set F.[[Extensible]] to true.
14. Set F.[[Realm]] to the current Realm Record.
15. Return F.

The abstract operation FunctionInitialize requires the arguments: a function object F, kind which is one of (Normal,
Method, Arrow), a parameter list Parse Node specified by ParameterList, a body Parse Node specified by Body, a
Lexical Environment specified by Scope. FunctionInitialize performs the following steps:

1. Let len be the ExpectedArgumentCount of ParameterList.
2. Perform ! SetFunctionLength(F, len).
3. Let Strict be F.[[Strict]].
4. Set F.[[Environment]] to Scope.

9.2.3 FunctionAllocate (functionPrototype, strict, functionKind)

9.2.4 FunctionInitialize (F, kind, ParameterList, Body, Scope)

© Ecma International 2019

119

5. Set F.[[FormalParameters]] to ParameterList.
6. Set F.[[ECMAScriptCode]] to Body.
7. Set F.[[ScriptOrModule]] to GetActiveScriptOrModule().
8. If kind is Arrow, set F.[[ThisMode]] to lexical.
9. Else if Strict is true, set F.[[ThisMode]] to strict.

10. Else, set F.[[ThisMode]] to global.
11. Return F.

The abstract operation FunctionCreate requires the arguments: kind which is one of (Normal, Method, Arrow), a
parameter list Parse Node specified by ParameterList, a body Parse Node specified by Body, a Lexical Environment
specified by Scope, a Boolean flag Strict, and optionally, an object prototype. FunctionCreate performs the following
steps:

1. If prototype is not present, then
a. Set prototype to the intrinsic object %FunctionPrototype%.

2. If kind is not Normal, let allocKind be "non-constructor".
3. Else, let allocKind be "normal".
4. Let F be FunctionAllocate(prototype, Strict, allocKind).
5. Return FunctionInitialize(F, kind, ParameterList, Body, Scope).

The abstract operation GeneratorFunctionCreate requires the arguments: kind which is one of (Normal, Method), a
parameter list Parse Node specified by ParameterList, a body Parse Node specified by Body, a Lexical Environment
specified by Scope, and a Boolean flag Strict. GeneratorFunctionCreate performs the following steps:

1. Let functionPrototype be the intrinsic object %Generator%.
2. Let F be FunctionAllocate(functionPrototype, Strict, "generator").
3. Return FunctionInitialize(F, kind, ParameterList, Body, Scope).

The abstract operation AsyncGeneratorFunctionCreate requires the arguments: kind which is one of (Normal, Method),
a parameter list Parse Node specified by ParameterList, a body Parse Node specified by Body, a Lexical Environment
specified by Scope, and a Boolean flag Strict. AsyncGeneratorFunctionCreate performs the following steps:

1. Let functionPrototype be the intrinsic object %AsyncGenerator%.
2. Let F be ! FunctionAllocate(functionPrototype, Strict, "generator").
3. Return ! FunctionInitialize(F, kind, ParameterList, Body, Scope).

The abstract operation AsyncFunctionCreate requires the arguments: kind which is one of (Normal, Method, Arrow), a
parameter list Parse Node specified by parameters, a body Parse Node specified by body, a Lexical Environment
specified by Scope, and a Boolean flag Strict. AsyncFunctionCreate performs the following steps:

1. Let functionPrototype be the intrinsic object %AsyncFunctionPrototype%.

9.2.5 FunctionCreate (kind, ParameterList, Body, Scope, Strict [, prototype])

9.2.6 GeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)

9.2.7 AsyncGeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)

9.2.8 AsyncFunctionCreate (kind, parameters, body, Scope, Strict)

120

© Ecma International 2019

120

2. Let F be ! FunctionAllocate(functionPrototype, Strict, "async").
3. Return ! FunctionInitialize(F, kind, parameters, body, Scope).

The abstract operation AddRestrictedFunctionProperties is called with a function object F and Realm Record realm as its
argument. It performs the following steps:

1. Assert: realm.[[Intrinsics]].[[%ThrowTypeError%]] exists and has been initialized.
2. Let thrower be realm.[[Intrinsics]].[[%ThrowTypeError%]].
3. Perform ! DefinePropertyOrThrow(F, "caller", PropertyDescriptor { [[Get]]: thrower, [[Set]]: thrower,

[[Enumerable]]: false, [[Configurable]]: true }).
4. Return ! DefinePropertyOrThrow(F, "arguments", PropertyDescriptor { [[Get]]: thrower, [[Set]]: thrower,

[[Enumerable]]: false, [[Configurable]]: true }).

The %ThrowTypeError% intrinsic is an anonymous built-in function object that is defined once for each realm. When
%ThrowTypeError% is called it performs the following steps:

1. Throw a TypeError exception.

The value of the [[Extensible]] internal slot of a %ThrowTypeError% function is false.

The "length" property of a %ThrowTypeError% function has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean writablePrototype and
an object prototype. If prototype is provided it is assumed to already contain, if needed, a "constructor" property
whose value is F. This operation converts F into a constructor by performing the following steps:

1. Assert: F is an ECMAScript function object.
2. Assert: IsConstructor(F) is true.
3. Assert: F is an extensible object that does not have a prototype own property.
4. If writablePrototype is not present, set writablePrototype to true.
5. If prototype is not present, then

a. Set prototype to ObjectCreate(%ObjectPrototype%).
b. Perform ! DefinePropertyOrThrow(prototype, "constructor", PropertyDescriptor { [[Value]]: F,

[[Writable]]: writablePrototype, [[Enumerable]]: false, [[Configurable]]: true }).
6. Perform ! DefinePropertyOrThrow(F, "prototype", PropertyDescriptor { [[Value]]: prototype, [[Writable]]:

writablePrototype, [[Enumerable]]: false, [[Configurable]]: false }).
7. Return NormalCompletion(undefined).

The abstract operation MakeClassConstructor with argument F performs the following steps:

1. Assert: F is an ECMAScript function object.

9.2.9 AddRestrictedFunctionProperties (F, realm)

9.2.9.1 %ThrowTypeError% ()

9.2.10 MakeConstructor (F [, writablePrototype [, prototype]])

9.2.11 MakeClassConstructor (F)

© Ecma International 2019

121

2. Assert: F.[[FunctionKind]] is "normal".
3. Set F.[[FunctionKind]] to "classConstructor".
4. Return NormalCompletion(undefined).

The abstract operation MakeMethod with arguments F and homeObject configures F as a method by performing the
following steps:

1. Assert: F is an ECMAScript function object.
2. Assert: Type(homeObject) is Object.
3. Set F.[[HomeObject]] to homeObject.
4. Return NormalCompletion(undefined).

The abstract operation SetFunctionName requires a Function argument F, a String or Symbol argument name and
optionally a String argument prefix. This operation adds a name property to F by performing the following steps:

1. Assert: F is an extensible object that does not have a name own property.
2. Assert: Type(name) is either Symbol or String.
3. Assert: If prefix is present, then Type(prefix) is String.
4. If Type(name) is Symbol, then

a. Let description be name's [[Description]] value.
b. If description is undefined, set name to the empty String.
c. Else, set name to the string-concatenation of "[", description, and "]".

5. If prefix is present, then
a. Set name to the string-concatenation of prefix, the code unit 0x0020 (SPACE), and name.

6. Return ! DefinePropertyOrThrow(F, "name", PropertyDescriptor { [[Value]]: name, [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: true }).

The abstract operation SetFunctionLength requires a Function argument F and a Number argument length. This operation
adds a "length" property to F by performing the following steps:

1. Assert: F is an extensible object that does not have a "length" own property.
2. Assert: Type(length) is Number.
3. Assert: length ≥ 0 and ! ToInteger(length) is equal to length.
4. Return ! DefinePropertyOrThrow(F, "length", PropertyDescriptor { [[Value]]: length, [[Writable]]: false,

[[Enumerable]]: false, [[Configurable]]: true }).

NOTE 1
When an execution context is established for evaluating an ECMAScript function a new function Environment Record is
created and bindings for each formal parameter are instantiated in that Environment Record. Each declaration in the
function body is also instantiated. If the function's formal parameters do not include any default value initializers then the
body declarations are instantiated in the same Environment Record as the parameters. If default value parameter

9.2.12 MakeMethod (F, homeObject)

9.2.13 SetFunctionName (F, name [, prefix])

9.2.14 SetFunctionLength (F, length)

9.2.15 FunctionDeclarationInstantiation (func, argumentsList)

122

© Ecma International 2019

122

initializers exist, a second Environment Record is created for the body declarations. Formal parameters and functions are
initialized as part of FunctionDeclarationInstantiation. All other bindings are initialized during evaluation of the function
body.

FunctionDeclarationInstantiation is performed as follows using arguments func and argumentsList. func is the function
object for which the execution context is being established.

1. Let calleeContext be the running execution context.
2. Let env be the LexicalEnvironment of calleeContext.
3. Let envRec be env's EnvironmentRecord.
4. Let code be func.[[ECMAScriptCode]].
5. Let strict be func.[[Strict]].
6. Let formals be func.[[FormalParameters]].
7. Let parameterNames be the BoundNames of formals.
8. If parameterNames has any duplicate entries, let hasDuplicates be true. Otherwise, let hasDuplicates be false.
9. Let simpleParameterList be IsSimpleParameterList of formals.

10. Let hasParameterExpressions be ContainsExpression of formals.
11. Let varNames be the VarDeclaredNames of code.
12. Let varDeclarations be the VarScopedDeclarations of code.
13. Let lexicalNames be the LexicallyDeclaredNames of code.
14. Let functionNames be a new empty List.
15. Let functionsToInitialize be a new empty List.
16. For each d in varDeclarations, in reverse list order, do

a. If d is neither a VariableDeclaration nor a ForBinding nor a BindingIdentifier, then
i. Assert: d is either a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an

AsyncGeneratorDeclaration.
ii. Let fn be the sole element of the BoundNames of d.

iii. If fn is not an element of functionNames, then
1. Insert fn as the first element of functionNames.
2. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
3. Insert d as the first element of functionsToInitialize.

17. Let argumentsObjectNeeded be true.
18. If func.[[ThisMode]] is lexical, then

a. NOTE: Arrow functions never have an arguments objects.
b. Set argumentsObjectNeeded to false.

19. Else if "arguments" is an element of parameterNames, then
a. Set argumentsObjectNeeded to false.

20. Else if hasParameterExpressions is false, then
a. If "arguments" is an element of functionNames or if "arguments" is an element of lexicalNames, then

i. Set argumentsObjectNeeded to false.
21. For each String paramName in parameterNames, do

a. Let alreadyDeclared be envRec.HasBinding(paramName).
b. NOTE: Early errors ensure that duplicate parameter names can only occur in non-strict functions that do not

have parameter default values or rest parameters.
c. If alreadyDeclared is false, then

i. Perform ! envRec.CreateMutableBinding(paramName, false).
ii. If hasDuplicates is true, then

1. Perform ! envRec.InitializeBinding(paramName, undefined).

© Ecma International 2019

123

22. If argumentsObjectNeeded is true, then
a. If strict is true or if simpleParameterList is false, then

i. Let ao be CreateUnmappedArgumentsObject(argumentsList).
b. Else,

i. NOTE: mapped argument object is only provided for non-strict functions that don't have a rest
parameter, any parameter default value initializers, or any destructured parameters.

ii. Let ao be CreateMappedArgumentsObject(func, formals, argumentsList, envRec).
c. If strict is true, then

i. Perform ! envRec.CreateImmutableBinding("arguments", false).
d. Else,

i. Perform ! envRec.CreateMutableBinding("arguments", false).
e. Call envRec.InitializeBinding("arguments", ao).
f. Let parameterBindings be a new List of parameterNames with "arguments" appended.

23. Else,
a. Let parameterBindings be parameterNames.

24. Let iteratorRecord be CreateListIteratorRecord(argumentsList).
25. If hasDuplicates is true, then

a. Perform ? IteratorBindingInitialization for formals with iteratorRecord and undefined as arguments.
26. Else,

a. Perform ? IteratorBindingInitialization for formals with iteratorRecord and env as arguments.
27. If hasParameterExpressions is false, then

a. NOTE: Only a single lexical environment is needed for the parameters and top-level vars.
b. Let instantiatedVarNames be a copy of the List parameterBindings.
c. For each n in varNames, do

i. If n is not an element of instantiatedVarNames, then
1. Append n to instantiatedVarNames.
2. Perform ! envRec.CreateMutableBinding(n, false).
3. Call envRec.InitializeBinding(n, undefined).

d. Let varEnv be env.
e. Let varEnvRec be envRec.

28. Else,
a. NOTE: A separate Environment Record is needed to ensure that closures created by expressions in the formal

parameter list do not have visibility of declarations in the function body.
b. Let varEnv be NewDeclarativeEnvironment(env).
c. Let varEnvRec be varEnv's EnvironmentRecord.
d. Set the VariableEnvironment of calleeContext to varEnv.
e. Let instantiatedVarNames be a new empty List.
f. For each n in varNames, do

i. If n is not an element of instantiatedVarNames, then
1. Append n to instantiatedVarNames.
2. Perform ! varEnvRec.CreateMutableBinding(n, false).
3. If n is not an element of parameterBindings or if n is an element of functionNames, let initialValue

be undefined.
4. Else,

a. Let initialValue be ! envRec.GetBindingValue(n, false).
5. Call varEnvRec.InitializeBinding(n, initialValue).
6. NOTE: vars whose names are the same as a formal parameter, initially have the same value as the

corresponding initialized parameter.

124

© Ecma International 2019

124

29. NOTE: Annex B.3.3.1 adds additional steps at this point.
30. If strict is false, then

a. Let lexEnv be NewDeclarativeEnvironment(varEnv).
b. NOTE: Non-strict functions use a separate lexical Environment Record for top-level lexical declarations so

that a direct eval can determine whether any var scoped declarations introduced by the eval code conflict with
pre-existing top-level lexically scoped declarations. This is not needed for strict functions because a strict
direct eval always places all declarations into a new Environment Record.

31. Else, let lexEnv be varEnv.
32. Let lexEnvRec be lexEnv's EnvironmentRecord.
33. Set the LexicalEnvironment of calleeContext to lexEnv.
34. Let lexDeclarations be the LexicallyScopedDeclarations of code.
35. For each element d in lexDeclarations, do

a. NOTE: A lexically declared name cannot be the same as a function/generator declaration, formal parameter,
or a var name. Lexically declared names are only instantiated here but not initialized.

b. For each element dn of the BoundNames of d, do
i. If IsConstantDeclaration of d is true, then

1. Perform ! lexEnvRec.CreateImmutableBinding(dn, true).
ii. Else,

1. Perform ! lexEnvRec.CreateMutableBinding(dn, false).
36. For each Parse Node f in functionsToInitialize, do

a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument lexEnv.
c. Perform ! varEnvRec.SetMutableBinding(fn, fo, false).

37. Return NormalCompletion(empty).

NOTE 2
B.3.3 provides an extension to the above algorithm that is necessary for backwards compatibility with web browser
implementations of ECMAScript that predate ECMAScript 2015.

NOTE 3
Parameter Initializers may contain direct eval expressions. Any top level declarations of such evals are only visible to the
eval code (10.2). The creation of the environment for such declarations is described in 14.1.19.

The built-in function objects defined in this specification may be implemented as either ECMAScript function objects
(9.2) whose behaviour is provided using ECMAScript code or as implementation provided function exotic objects whose
behaviour is provided in some other manner. In either case, the effect of calling such functions must conform to their
specifications. An implementation may also provide additional built-in function objects that are not defined in this
specification.

If a built-in function object is implemented as an exotic object it must have the ordinary object behaviour specified in
9.1. All such function exotic objects also have [[Prototype]], [[Extensible]], [[Realm]], and [[ScriptOrModule]] internal
slots.

Unless otherwise specified every built-in function object has the %FunctionPrototype% object as the initial value of its
[[Prototype]] internal slot.

The behaviour specified for each built-in function via algorithm steps or other means is the specification of the function

9.3 Built-in Function Objects

© Ecma International 2019

125

body behaviour for both [[Call]] and [[Construct]] invocations of the function. However, [[Construct]] invocation is not
supported by all built-in functions. For each built-in function, when invoked with [[Call]], the [[Call]] thisArgument
provides the this value, the [[Call]] argumentsList provides the named parameters, and the NewTarget value is
undefined. When invoked with [[Construct]], the this value is uninitialized, the [[Construct]] argumentsList provides the
named parameters, and the [[Construct]] newTarget parameter provides the NewTarget value. If the built-in function is
implemented as an ECMAScript function object then this specified behaviour must be implemented by the ECMAScript
code that is the body of the function. Built-in functions that are ECMAScript function objects must be strict functions. If
a built-in constructor has any [[Call]] behaviour other than throwing a TypeError exception, an ECMAScript
implementation of the function must be done in a manner that does not cause the function's [[FunctionKind]] internal slot
to have the value "classConstructor".

Built-in function objects that are not identified as constructors do not implement the [[Construct]] internal method unless
otherwise specified in the description of a particular function. When a built-in constructor is called as part of a new
expression the argumentsList parameter of the invoked [[Construct]] internal method provides the values for the built-in
constructor's named parameters.

Built-in functions that are not constructors do not have a prototype property unless otherwise specified in the
description of a particular function.

If a built-in function object is not implemented as an ECMAScript function it must provide [[Call]] and [[Construct]]
internal methods that conform to the following definitions:

The [[Call]] internal method for a built-in function object F is called with parameters thisArgument and argumentsList, a
List of ECMAScript language values. The following steps are taken:

1. Let callerContext be the running execution context.
2. If callerContext is not already suspended, suspend callerContext.
3. Let calleeContext be a new ECMAScript code execution context.
4. Set the Function of calleeContext to F.
5. Let calleeRealm be F.[[Realm]].
6. Set the Realm of calleeContext to calleeRealm.
7. Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]].
8. Perform any necessary implementation-defined initialization of calleeContext.
9. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.

10. Let result be the Completion Record that is the result of evaluating F in an implementation-defined manner that
conforms to the specification of F. thisArgument is the this value, argumentsList provides the named parameters,
and the NewTarget value is undefined.

11. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
12. Return result.

NOTE
When calleeContext is removed from the execution context stack it must not be destroyed if it has been suspended and
retained by an accessible generator object for later resumption.

9.3.1 [[Call]] (thisArgument, argumentsList)

9.3.2 [[Construct]] (argumentsList, newTarget)

126

© Ecma International 2019

126

The [[Construct]] internal method for built-in function object F is called with parameters argumentsList and newTarget.
The steps performed are the same as [[Call]] (see 9.3.1) except that step 10 is replaced by:

10. Let result be the Completion Record that is the result of evaluating F in an implementation-defined manner that
conforms to the specification of F. The this value is uninitialized, argumentsList provides the named parameters,
and newTarget provides the NewTarget value.

The abstract operation CreateBuiltinFunction takes arguments steps, internalSlotsList, realm, and prototype. The
argument internalSlotsList is a List of the names of additional internal slots that must be defined as part of the object.
CreateBuiltinFunction returns a built-in function object created by the following steps:

1. Assert: steps is either a set of algorithm steps or other definition of a function's behaviour provided in this
specification.

2. If realm is not present, set realm to the current Realm Record.
3. Assert: realm is a Realm Record.
4. If prototype is not present, set prototype to realm.[[Intrinsics]].[[%FunctionPrototype%]].
5. Let func be a new built-in function object that when called performs the action described by steps. The new

function object has internal slots whose names are the elements of internalSlotsList. The initial value of each of
those internal slots is undefined.

6. Set func.[[Realm]] to realm.
7. Set func.[[Prototype]] to prototype.
8. Set func.[[Extensible]] to true.
9. Set func.[[ScriptOrModule]] to null.

10. Return func.

Each built-in function defined in this specification is created by calling the CreateBuiltinFunction abstract operation.

This specification defines several kinds of built-in exotic objects. These objects generally behave similar to ordinary
objects except for a few specific situations. The following exotic objects use the ordinary object internal methods except
where it is explicitly specified otherwise below:

A bound function is an exotic object that wraps another function object. A bound function is callable (it has a [[Call]]
internal method and may have a [[Construct]] internal method). Calling a bound function generally results in a call of its
wrapped function.

Bound function objects do not have the internal slots of ECMAScript function objects defined in Table 27. Instead they
have the internal slots defined in Table 28.

Table 28: Internal Slots of Bound Function Exotic Objects

Internal Slot Type Description

9.3.3 CreateBuiltinFunction (steps, internalSlotsList [, realm [, prototype]])

9.4 Built-in Exotic Object Internal Methods and Slots

9.4.1 Bound Function Exotic Objects

© Ecma International 2019

127

[[BoundTargetFunction]] Callable
Object

The wrapped function object.

[[BoundThis]] Any The value that is always passed as the this value when calling the wrapped
function.

[[BoundArguments]] List of Any A list of values whose elements are used as the first arguments to any call to
the wrapped function.

Bound function objects provide all of the essential internal methods as specified in 9.1. However, they use the following
definitions for the essential internal methods of function objects.

When the [[Call]] internal method of a bound function exotic object, F, which was created using the bind function is
called with parameters thisArgument and argumentsList, a List of ECMAScript language values, the following steps are
taken:

1. Let target be F.[[BoundTargetFunction]].
2. Let boundThis be F.[[BoundThis]].
3. Let boundArgs be F.[[BoundArguments]].
4. Let args be a new list containing the same values as the list boundArgs in the same order followed by the same

values as the list argumentsList in the same order.
5. Return ? Call(target, boundThis, args).

When the [[Construct]] internal method of a bound function exotic object, F that was created using the bind function is
called with a list of arguments argumentsList and newTarget, the following steps are taken:

1. Let target be F.[[BoundTargetFunction]].
2. Assert: IsConstructor(target) is true.
3. Let boundArgs be F.[[BoundArguments]].
4. Let args be a new list containing the same values as the list boundArgs in the same order followed by the same

values as the list argumentsList in the same order.
5. If SameValue(F, newTarget) is true, set newTarget to target.
6. Return ? Construct(target, args, newTarget).

The abstract operation BoundFunctionCreate with arguments targetFunction, boundThis and boundArgs is used to
specify the creation of new Bound Function exotic objects. It performs the following steps:

1. Assert: Type(targetFunction) is Object.
2. Let proto be ? targetFunction.[[GetPrototypeOf]]().
3. Let obj be a newly created object.
4. Set obj's essential internal methods to the default ordinary object definitions specified in 9.1.
5. Set obj.[[Call]] as described in 9.4.1.1.
6. If IsConstructor(targetFunction) is true, then

9.4.1.1 [[Call]] (thisArgument, argumentsList)

9.4.1.2 [[Construct]] (argumentsList, newTarget)

9.4.1.3 BoundFunctionCreate (targetFunction, boundThis, boundArgs)

128

© Ecma International 2019

128

a. Set obj.[[Construct]] as described in 9.4.1.2.
7. Set obj.[[Prototype]] to proto.
8. Set obj.[[Extensible]] to true.
9. Set obj.[[BoundTargetFunction]] to targetFunction.

10. Set obj.[[BoundThis]] to boundThis.
11. Set obj.[[BoundArguments]] to boundArgs.
12. Return obj.

An Array object is an exotic object that gives special treatment to array index property keys (see 6.1.7). A property
whose property name is an array index is also called an element. Every Array object has a non-configurable "length"
property whose value is always a nonnegative integer less than 232. The value of the "length" property is numerically
greater than the name of every own property whose name is an array index; whenever an own property of an Array
object is created or changed, other properties are adjusted as necessary to maintain this invariant. Specifically, whenever
an own property is added whose name is an array index, the value of the "length" property is changed, if necessary,
to be one more than the numeric value of that array index; and whenever the value of the "length" property is
changed, every own property whose name is an array index whose value is not smaller than the new length is deleted.
This constraint applies only to own properties of an Array object and is unaffected by "length" or array index
properties that may be inherited from its prototypes.

NOTE
A String property name P is an array index if and only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not

equal to 232 - 1.

Array exotic objects provide an alternative definition for the [[DefineOwnProperty]] internal method. Except for that
internal method, Array exotic objects provide all of the other essential internal methods as specified in 9.1.

When the [[DefineOwnProperty]] internal method of an Array exotic object A is called with property key P, and Property
Descriptor Desc, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If P is "length", then

a. Return ? ArraySetLength(A, Desc).
3. Else if P is an array index, then

a. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
b. Assert: oldLenDesc will never be undefined or an accessor descriptor because Array objects are created with

a length data property that cannot be deleted or reconfigured.
c. Let oldLen be oldLenDesc.[[Value]].
d. Let index be ! ToUint32(P).
e. If index ≥ oldLen and oldLenDesc.[[Writable]] is false, return false.
f. Let succeeded be ! OrdinaryDefineOwnProperty(A, P, Desc).
g. If succeeded is false, return false.
h. If index ≥ oldLen, then

i. Set oldLenDesc.[[Value]] to index + 1.
ii. Let succeeded be OrdinaryDefineOwnProperty(A, "length", oldLenDesc).

9.4.2 Array Exotic Objects

9.4.2.1 [[DefineOwnProperty]] (P, Desc)

© Ecma International 2019

129

iii. Assert: succeeded is true.
i. Return true.

4. Return OrdinaryDefineOwnProperty(A, P, Desc).

The abstract operation ArrayCreate with argument length (either 0 or a positive integer) and optional argument proto is
used to specify the creation of new Array exotic objects. It performs the following steps:

1. Assert: length is an integer Number ≥ 0.
2. If length is -0, set length to +0.

3. If length > 232 - 1, throw a RangeError exception.
4. If proto is not present, set proto to the intrinsic object %ArrayPrototype%.
5. Let A be a newly created Array exotic object.
6. Set A's essential internal methods except for [[DefineOwnProperty]] to the default ordinary object definitions

specified in 9.1.
7. Set A.[[DefineOwnProperty]] as specified in 9.4.2.1.
8. Set A.[[Prototype]] to proto.
9. Set A.[[Extensible]] to true.

10. Perform ! OrdinaryDefineOwnProperty(A, "length", PropertyDescriptor { [[Value]]: length, [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: false }).

11. Return A.

The abstract operation ArraySpeciesCreate with arguments originalArray and length is used to specify the creation of a
new Array object using a constructor function that is derived from originalArray. It performs the following steps:

1. Assert: length is an integer Number ≥ 0.
2. If length is -0, set length to +0.
3. Let isArray be ? IsArray(originalArray).
4. If isArray is false, return ? ArrayCreate(length).
5. Let C be ? Get(originalArray, "constructor").
6. If IsConstructor(C) is true, then

a. Let thisRealm be the current Realm Record.
b. Let realmC be ? GetFunctionRealm(C).
c. If thisRealm and realmC are not the same Realm Record, then

i. If SameValue(C, realmC.[[Intrinsics]].[[%Array%]]) is true, set C to undefined.
7. If Type(C) is Object, then

a. Set C to ? Get(C, @@species).
b. If C is null, set C to undefined.

8. If C is undefined, return ? ArrayCreate(length).
9. If IsConstructor(C) is false, throw a TypeError exception.

10. Return ? Construct(C, « length »).

NOTE
If originalArray was created using the standard built-in Array constructor for a realm that is not the realm of the running
execution context, then a new Array is created using the realm of the running execution context. This maintains
compatibility with Web browsers that have historically had that behaviour for the Array.prototype methods that now are

9.4.2.2 ArrayCreate (length [, proto])

9.4.2.3 ArraySpeciesCreate (originalArray, length)

130

© Ecma International 2019

130

defined using ArraySpeciesCreate.

When the abstract operation ArraySetLength is called with an Array exotic object A, and Property Descriptor Desc, the
following steps are taken:

1. If Desc.[[Value]] is absent, then
a. Return OrdinaryDefineOwnProperty(A, "length", Desc).

2. Let newLenDesc be a copy of Desc.
3. Let newLen be ? ToUint32(Desc.[[Value]]).
4. Let numberLen be ? ToNumber(Desc.[[Value]]).
5. If newLen ≠ numberLen, throw a RangeError exception.
6. Set newLenDesc.[[Value]] to newLen.
7. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
8. Assert: oldLenDesc will never be undefined or an accessor descriptor because Array objects are created with a

length data property that cannot be deleted or reconfigured.
9. Let oldLen be oldLenDesc.[[Value]].

10. If newLen ≥ oldLen, then
a. Return OrdinaryDefineOwnProperty(A, "length", newLenDesc).

11. If oldLenDesc.[[Writable]] is false, return false.
12. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
13. Else,

a. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
b. Let newWritable be false.
c. Set newLenDesc.[[Writable]] to true.

14. Let succeeded be ! OrdinaryDefineOwnProperty(A, "length", newLenDesc).
15. If succeeded is false, return false.
16. Repeat, while newLen < oldLen,

a. Decrease oldLen by 1.
b. Let deleteSucceeded be ! A.[[Delete]](! ToString(oldLen)).
c. If deleteSucceeded is false, then

i. Set newLenDesc.[[Value]] to oldLen + 1.
ii. If newWritable is false, set newLenDesc.[[Writable]] to false.

iii. Perform ! OrdinaryDefineOwnProperty(A, "length", newLenDesc).
iv. Return false.

17. If newWritable is false, then
a. Return OrdinaryDefineOwnProperty(A, "length", PropertyDescriptor { [[Writable]]: false }). This call will

always return true.
18. Return true.

NOTE
In steps 3 and 4, if Desc.[[Value]] is an object then its valueOf method is called twice. This is legacy behaviour that

was specified with this effect starting with the 2nd Edition of this specification.

9.4.2.4 ArraySetLength (A, Desc)

9.4.3 String Exotic Objects

© Ecma International 2019

131

A String object is an exotic object that encapsulates a String value and exposes virtual integer-indexed data properties
corresponding to the individual code unit elements of the String value. String exotic objects always have a data property
named "length" whose value is the number of code unit elements in the encapsulated String value. Both the code unit
data properties and the "length" property are non-writable and non-configurable.

String exotic objects have the same internal slots as ordinary objects. They also have a [[StringData]] internal slot.

String exotic objects provide alternative definitions for the following internal methods. All of the other String exotic
object essential internal methods that are not defined below are as specified in 9.1.

When the [[GetOwnProperty]] internal method of a String exotic object S is called with property key P, the following
steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let desc be OrdinaryGetOwnProperty(S, P).
3. If desc is not undefined, return desc.
4. Return ! StringGetOwnProperty(S, P).

When the [[DefineOwnProperty]] internal method of a String exotic object S is called with property key P, and Property
Descriptor Desc, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let stringDesc be ! StringGetOwnProperty(S, P).
3. If stringDesc is not undefined, then

a. Let extensible be S.[[Extensible]].
b. Return ! IsCompatiblePropertyDescriptor(extensible, Desc, stringDesc).

4. Return ! OrdinaryDefineOwnProperty(S, P, Desc).

When the [[OwnPropertyKeys]] internal method of a String exotic object O is called, the following steps are taken:

1. Let keys be a new empty List.
2. Let str be O.[[StringData]].
3. Assert: Type(str) is String.
4. Let len be the length of str.
5. For each integer i starting with 0 such that i < len, in ascending order, do

a. Add ! ToString(i) as the last element of keys.
6. For each own property key P of O such that P is an array index and ToInteger(P) ≥ len, in ascending numeric index

order, do
a. Add P as the last element of keys.

7. For each own property key P of O such that Type(P) is String and P is not an array index, in ascending
chronological order of property creation, do

a. Add P as the last element of keys.
8. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property

creation, do

9.4.3.1 [[GetOwnProperty]] (P)

9.4.3.2 [[DefineOwnProperty]] (P, Desc)

9.4.3.3 [[OwnPropertyKeys]] ()

132

© Ecma International 2019

132

a. Add P as the last element of keys.
9. Return keys.

The abstract operation StringCreate with arguments value and prototype is used to specify the creation of new String
exotic objects. It performs the following steps:

1. Assert: Type(value) is String.
2. Let S be a newly created String exotic object.
3. Set S.[[StringData]] to value.
4. Set S's essential internal methods to the default ordinary object definitions specified in 9.1.
5. Set S.[[GetOwnProperty]] as specified in 9.4.3.1.
6. Set S.[[DefineOwnProperty]] as specified in 9.4.3.2.
7. Set S.[[OwnPropertyKeys]] as specified in 9.4.3.3.
8. Set S.[[Prototype]] to prototype.
9. Set S.[[Extensible]] to true.

10. Let length be the number of code unit elements in value.
11. Perform ! DefinePropertyOrThrow(S, "length", PropertyDescriptor { [[Value]]: length, [[Writable]]: false,

[[Enumerable]]: false, [[Configurable]]: false }).
12. Return S.

The abstract operation StringGetOwnProperty called with arguments S and P performs the following steps:

1. Assert: S is an Object that has a [[StringData]] internal slot.
2. Assert: IsPropertyKey(P) is true.
3. If Type(P) is not String, return undefined.
4. Let index be ! CanonicalNumericIndexString(P).
5. If index is undefined, return undefined.
6. If IsInteger(index) is false, return undefined.
7. If index = -0, return undefined.
8. Let str be S.[[StringData]].
9. Assert: Type(str) is String.

10. Let len be the length of str.
11. If index < 0 or len ≤ index, return undefined.
12. Let resultStr be the String value of length 1, containing one code unit from str, specifically the code unit at index

index.
13. Return a PropertyDescriptor { [[Value]]: resultStr, [[Writable]]: false, [[Enumerable]]: true, [[Configurable]]: false

}.

Most ECMAScript functions make an arguments object available to their code. Depending upon the characteristics of the
function definition, its arguments object is either an ordinary object or an arguments exotic object. An arguments exotic
object is an exotic object whose array index properties map to the formal parameters bindings of an invocation of its
associated ECMAScript function.

9.4.3.4 StringCreate (value, prototype)

9.4.3.5 StringGetOwnProperty (S, P)

9.4.4 Arguments Exotic Objects

© Ecma International 2019

133

Arguments exotic objects have the same internal slots as ordinary objects. They also have a [[ParameterMap]] internal
slot. Ordinary arguments objects also have a [[ParameterMap]] internal slot whose value is always undefined. For
ordinary argument objects the [[ParameterMap]] internal slot is only used by Object.prototype.toString
(19.1.3.6) to identify them as such.

Arguments exotic objects provide alternative definitions for the following internal methods. All of the other arguments
exotic object essential internal methods that are not defined below are as specified in 9.1

NOTE 1
The integer-indexed data properties of an arguments exotic object whose numeric name values are less than the number
of formal parameters of the corresponding function object initially share their values with the corresponding argument
bindings in the function's execution context. This means that changing the property changes the corresponding value of
the argument binding and vice-versa. This correspondence is broken if such a property is deleted and then redefined or if
the property is changed into an accessor property. If the arguments object is an ordinary object, the values of its
properties are simply a copy of the arguments passed to the function and there is no dynamic linkage between the
property values and the formal parameter values.

NOTE 2
The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are
not directly observable from ECMAScript code. An ECMAScript implementation does not need to actually create or use
such objects to implement the specified semantics.

NOTE 3
Ordinary arguments objects define a non-configurable accessor property named "callee" which throws a TypeError
exception on access. The "callee" property has a more specific meaning for arguments exotic objects, which are
created only for some class of non-strict functions. The definition of this property in the ordinary variant exists to ensure
that it is not defined in any other manner by conforming ECMAScript implementations.

NOTE 4
ECMAScript implementations of arguments exotic objects have historically contained an accessor property named
"caller". Prior to ECMAScript 2017, this specification included the definition of a throwing "caller" property on
ordinary arguments objects. Since implementations do not contain this extension any longer, ECMAScript 2017 dropped
the requirement for a throwing "caller" accessor.

The [[GetOwnProperty]] internal method of an arguments exotic object when called with a property key P performs the
following steps:

1. Let args be the arguments object.
2. Let desc be OrdinaryGetOwnProperty(args, P).
3. If desc is undefined, return desc.
4. Let map be args.[[ParameterMap]].
5. Let isMapped be ! HasOwnProperty(map, P).
6. If isMapped is true, then

a. Set desc.[[Value]] to Get(map, P).
7. Return desc.

9.4.4.1 [[GetOwnProperty]] (P)

9.4.4.2 [[DefineOwnProperty]] (P, Desc)

134

© Ecma International 2019

134

The [[DefineOwnProperty]] internal method of an arguments exotic object when called with a property key P and
Property Descriptor Desc performs the following steps:

1. Let args be the arguments object.
2. Let map be args.[[ParameterMap]].
3. Let isMapped be HasOwnProperty(map, P).
4. Let newArgDesc be Desc.
5. If isMapped is true and IsDataDescriptor(Desc) is true, then

a. If Desc.[[Value]] is not present and Desc.[[Writable]] is present and its value is false, then
i. Set newArgDesc to a copy of Desc.

ii. Set newArgDesc.[[Value]] to Get(map, P).
6. Let allowed be ? OrdinaryDefineOwnProperty(args, P, newArgDesc).
7. If allowed is false, return false.
8. If isMapped is true, then

a. If IsAccessorDescriptor(Desc) is true, then
i. Call map.[[Delete]](P).

b. Else,
i. If Desc.[[Value]] is present, then

1. Let setStatus be Set(map, P, Desc.[[Value]], false).
2. Assert: setStatus is true because formal parameters mapped by argument objects are always

writable.
ii. If Desc.[[Writable]] is present and its value is false, then

1. Call map.[[Delete]](P).
9. Return true.

The [[Get]] internal method of an arguments exotic object when called with a property key P and ECMAScript language
value Receiver performs the following steps:

1. Let args be the arguments object.
2. Let map be args.[[ParameterMap]].
3. Let isMapped be ! HasOwnProperty(map, P).
4. If isMapped is false, then

a. Return ? OrdinaryGet(args, P, Receiver).
5. Else map contains a formal parameter mapping for P,

a. Return Get(map, P).

The [[Set]] internal method of an arguments exotic object when called with property key P, value V, and ECMAScript
language value Receiver performs the following steps:

1. Let args be the arguments object.
2. If SameValue(args, Receiver) is false, then

a. Let isMapped be false.
3. Else,

a. Let map be args.[[ParameterMap]].
b. Let isMapped be ! HasOwnProperty(map, P).

9.4.4.3 [[Get]] (P, Receiver)

9.4.4.4 [[Set]] (P, V, Receiver)

© Ecma International 2019

135

4. If isMapped is true, then
a. Let setStatus be Set(map, P, V, false).
b. Assert: setStatus is true because formal parameters mapped by argument objects are always writable.

5. Return ? OrdinarySet(args, P, V, Receiver).

The [[Delete]] internal method of an arguments exotic object when called with a property key P performs the following
steps:

1. Let args be the arguments object.
2. Let map be args.[[ParameterMap]].
3. Let isMapped be ! HasOwnProperty(map, P).
4. Let result be ? OrdinaryDelete(args, P).
5. If result is true and isMapped is true, then

a. Call map.[[Delete]](P).
6. Return result.

The abstract operation CreateUnmappedArgumentsObject called with an argument argumentsList performs the following
steps:

1. Let len be the number of elements in argumentsList.
2. Let obj be ObjectCreate(%ObjectPrototype%, « [[ParameterMap]] »).
3. Set obj.[[ParameterMap]] to undefined.
4. Perform DefinePropertyOrThrow(obj, "length", PropertyDescriptor { [[Value]]: len, [[Writable]]: true,

[[Enumerable]]: false, [[Configurable]]: true }).
5. Let index be 0.
6. Repeat, while index < len,

a. Let val be argumentsList[index].
b. Perform CreateDataProperty(obj, ! ToString(index), val).
c. Increase index by 1.

7. Perform ! DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor { [[Value]]: %ArrayProto_values%,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }).

8. Perform ! DefinePropertyOrThrow(obj, "callee", PropertyDescriptor { [[Get]]: %ThrowTypeError%, [[Set]]:
%ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]: false }).

9. Return obj.

The abstract operation CreateMappedArgumentsObject is called with object func, Parse Node formals, List
argumentsList, and Environment Record env. The following steps are performed:

1. Assert: formals does not contain a rest parameter, any binding patterns, or any initializers. It may contain duplicate
identifiers.

2. Let len be the number of elements in argumentsList.
3. Let obj be a newly created arguments exotic object with a [[ParameterMap]] internal slot.
4. Set obj.[[GetOwnProperty]] as specified in 9.4.4.1.
5. Set obj.[[DefineOwnProperty]] as specified in 9.4.4.2.

9.4.4.5 [[Delete]] (P)

9.4.4.6 CreateUnmappedArgumentsObject (argumentsList)

9.4.4.7 CreateMappedArgumentsObject (func, formals, argumentsList, env)

136

© Ecma International 2019

136

6. Set obj.[[Get]] as specified in 9.4.4.3.
7. Set obj.[[Set]] as specified in 9.4.4.4.
8. Set obj.[[Delete]] as specified in 9.4.4.5.
9. Set the remainder of obj's essential internal methods to the default ordinary object definitions specified in 9.1.

10. Set obj.[[Prototype]] to %ObjectPrototype%.
11. Set obj.[[Extensible]] to true.
12. Let map be ObjectCreate(null).
13. Set obj.[[ParameterMap]] to map.
14. Let parameterNames be the BoundNames of formals.
15. Let numberOfParameters be the number of elements in parameterNames.
16. Let index be 0.
17. Repeat, while index < len,

a. Let val be argumentsList[index].
b. Perform CreateDataProperty(obj, ! ToString(index), val).
c. Increase index by 1.

18. Perform DefinePropertyOrThrow(obj, "length", PropertyDescriptor { [[Value]]: len, [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: true }).

19. Let mappedNames be a new empty List.
20. Let index be numberOfParameters - 1.
21. Repeat, while index ≥ 0,

a. Let name be parameterNames[index].
b. If name is not an element of mappedNames, then

i. Add name as an element of the list mappedNames.
ii. If index < len, then

1. Let g be MakeArgGetter(name, env).
2. Let p be MakeArgSetter(name, env).
3. Perform map.[[DefineOwnProperty]](! ToString(index), PropertyDescriptor { [[Set]]: p, [[Get]]: g,

[[Enumerable]]: false, [[Configurable]]: true }).
c. Decrease index by 1.

22. Perform ! DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor { [[Value]]: %ArrayProto_values%,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }).

23. Perform ! DefinePropertyOrThrow(obj, "callee", PropertyDescriptor { [[Value]]: func, [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: true }).

24. Return obj.

The abstract operation MakeArgGetter called with String name and Environment Record env creates a built-in function
object that when executed returns the value bound for name in env. It performs the following steps:

1. Let steps be the steps of an ArgGetter function as specified below.
2. Let getter be CreateBuiltinFunction(steps, « [[Name]], [[Env]] »).
3. Set getter.[[Name]] to name.
4. Set getter.[[Env]] to env.
5. Return getter.

An ArgGetter function is an anonymous built-in function with [[Name]] and [[Env]] internal slots. When an ArgGetter
function that expects no arguments is called it performs the following steps:

9.4.4.7.1 MakeArgGetter (name, env)

© Ecma International 2019

137

1. Let f be the active function object.
2. Let name be f.[[Name]].
3. Let env be f.[[Env]].
4. Return env.GetBindingValue(name, false).

NOTE
ArgGetter functions are never directly accessible to ECMAScript code.

The abstract operation MakeArgSetter called with String name and Environment Record env creates a built-in function
object that when executed sets the value bound for name in env. It performs the following steps:

1. Let steps be the steps of an ArgSetter function as specified below.
2. Let setter be CreateBuiltinFunction(steps, « [[Name]], [[Env]] »).
3. Set setter.[[Name]] to name.
4. Set setter.[[Env]] to env.
5. Return setter.

An ArgSetter function is an anonymous built-in function with [[Name]] and [[Env]] internal slots. When an ArgSetter
function is called with argument value it performs the following steps:

1. Let f be the active function object.
2. Let name be f.[[Name]].
3. Let env be f.[[Env]].
4. Return env.SetMutableBinding(name, value, false).

NOTE
ArgSetter functions are never directly accessible to ECMAScript code.

An Integer-Indexed exotic object is an exotic object that performs special handling of integer index property keys.

Integer-Indexed exotic objects have the same internal slots as ordinary objects and additionally [[ViewedArrayBuffer]],
[[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]] internal slots.

Integer-Indexed exotic objects provide alternative definitions for the following internal methods. All of the other Integer-
Indexed exotic object essential internal methods that are not defined below are as specified in 9.1.

When the [[GetOwnProperty]] internal method of an Integer-Indexed exotic object O is called with property key P, the
following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then

a. Let numericIndex be ! CanonicalNumericIndexString(P).

9.4.4.7.2 MakeArgSetter (name, env)

9.4.5 Integer-Indexed Exotic Objects

9.4.5.1 [[GetOwnProperty]] (P)

138

© Ecma International 2019

138

b. If numericIndex is not undefined, then
i. Let value be ? IntegerIndexedElementGet(O, numericIndex).

ii. If value is undefined, return undefined.
iii. Return a PropertyDescriptor { [[Value]]: value, [[Writable]]: true, [[Enumerable]]: true,

[[Configurable]]: false }.
4. Return OrdinaryGetOwnProperty(O, P).

When the [[HasProperty]] internal method of an Integer-Indexed exotic object O is called with property key P, the
following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then

a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericIndex is not undefined, then

i. Let buffer be O.[[ViewedArrayBuffer]].
ii. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.

iii. If IsInteger(numericIndex) is false, return false.
iv. If numericIndex = -0, return false.
v. If numericIndex < 0, return false.

vi. If numericIndex ≥ O.[[ArrayLength]], return false.
vii. Return true.

4. Return ? OrdinaryHasProperty(O, P).

When the [[DefineOwnProperty]] internal method of an Integer-Indexed exotic object O is called with property key P,
and Property Descriptor Desc, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then

a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericIndex is not undefined, then

i. If IsInteger(numericIndex) is false, return false.
ii. If numericIndex = -0, return false.

iii. If numericIndex < 0, return false.
iv. Let length be O.[[ArrayLength]].
v. If numericIndex ≥ length, return false.

vi. If IsAccessorDescriptor(Desc) is true, return false.
vii. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is true, return false.

viii. If Desc has an [[Enumerable]] field and if Desc.[[Enumerable]] is false, return false.
ix. If Desc has a [[Writable]] field and if Desc.[[Writable]] is false, return false.
x. If Desc has a [[Value]] field, then

1. Let value be Desc.[[Value]].
2. Return ? IntegerIndexedElementSet(O, numericIndex, value).

xi. Return true.

9.4.5.2 [[HasProperty]] (P)

9.4.5.3 [[DefineOwnProperty]] (P, Desc)

© Ecma International 2019

139

4. Return ! OrdinaryDefineOwnProperty(O, P, Desc).

When the [[Get]] internal method of an Integer-Indexed exotic object O is called with property key P and ECMAScript
language value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is String, then

a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericIndex is not undefined, then

i. Return ? IntegerIndexedElementGet(O, numericIndex).
3. Return ? OrdinaryGet(O, P, Receiver).

When the [[Set]] internal method of an Integer-Indexed exotic object O is called with property key P, value V, and
ECMAScript language value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is String, then

a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericIndex is not undefined, then

i. Return ? IntegerIndexedElementSet(O, numericIndex, V).
3. Return ? OrdinarySet(O, P, V, Receiver).

When the [[OwnPropertyKeys]] internal method of an Integer-Indexed exotic object O is called, the following steps are
taken:

1. Let keys be a new empty List.
2. Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]]

internal slots.
3. Let len be O.[[ArrayLength]].
4. For each integer i starting with 0 such that i < len, in ascending order, do

a. Add ! ToString(i) as the last element of keys.
5. For each own property key P of O such that Type(P) is String and P is not an integer index, in ascending

chronological order of property creation, do
a. Add P as the last element of keys.

6. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property
creation, do

a. Add P as the last element of keys.
7. Return keys.

The abstract operation IntegerIndexedObjectCreate with arguments prototype and internalSlotsList is used to specify the
creation of new Integer-Indexed exotic objects. The argument internalSlotsList is a List of the names of additional
internal slots that must be defined as part of the object. IntegerIndexedObjectCreate performs the following steps:

9.4.5.4 [[Get]] (P, Receiver)

9.4.5.5 [[Set]] (P, V, Receiver)

9.4.5.6 [[OwnPropertyKeys]] ()

9.4.5.7 IntegerIndexedObjectCreate (prototype, internalSlotsList)

140

© Ecma International 2019

140

1. Assert: internalSlotsList contains the names [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]].

2. Let A be a newly created object with an internal slot for each name in internalSlotsList.
3. Set A's essential internal methods to the default ordinary object definitions specified in 9.1.
4. Set A.[[GetOwnProperty]] as specified in 9.4.5.1.
5. Set A.[[HasProperty]] as specified in 9.4.5.2.
6. Set A.[[DefineOwnProperty]] as specified in 9.4.5.3.
7. Set A.[[Get]] as specified in 9.4.5.4.
8. Set A.[[Set]] as specified in 9.4.5.5.
9. Set A.[[OwnPropertyKeys]] as specified in 9.4.5.6.

10. Set A.[[Prototype]] to prototype.
11. Set A.[[Extensible]] to true.
12. Return A.

The abstract operation IntegerIndexedElementGet with arguments O and index performs the following steps:

1. Assert: Type(index) is Number.
2. Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]]

internal slots.
3. Let buffer be O.[[ViewedArrayBuffer]].
4. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
5. If IsInteger(index) is false, return undefined.
6. If index = -0, return undefined.
7. Let length be O.[[ArrayLength]].
8. If index < 0 or index ≥ length, return undefined.
9. Let offset be O.[[ByteOffset]].

10. Let arrayTypeName be the String value of O.[[TypedArrayName]].
11. Let elementSize be the Number value of the Element Size value specified in Table 59 for arrayTypeName.
12. Let indexedPosition be (index × elementSize) + offset.
13. Let elementType be the String value of the Element Type value in Table 59 for arrayTypeName.
14. Return GetValueFromBuffer(buffer, indexedPosition, elementType, true, "Unordered").

The abstract operation IntegerIndexedElementSet with arguments O, index, and value performs the following steps:

1. Assert: Type(index) is Number.
2. Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]]

internal slots.
3. Let numValue be ? ToNumber(value).
4. Let buffer be O.[[ViewedArrayBuffer]].
5. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
6. If IsInteger(index) is false, return false.
7. If index = -0, return false.
8. Let length be O.[[ArrayLength]].
9. If index < 0 or index ≥ length, return false.

10. Let offset be O.[[ByteOffset]].

9.4.5.8 IntegerIndexedElementGet (O, index)

9.4.5.9 IntegerIndexedElementSet (O, index, value)

© Ecma International 2019

141

11. Let arrayTypeName be the String value of O.[[TypedArrayName]].
12. Let elementSize be the Number value of the Element Size value specified in Table 59 for arrayTypeName.
13. Let indexedPosition be (index × elementSize) + offset.
14. Let elementType be the String value of the Element Type value in Table 59 for arrayTypeName.
15. Perform SetValueInBuffer(buffer, indexedPosition, elementType, numValue, true, "Unordered").
16. Return true.

A module namespace object is an exotic object that exposes the bindings exported from an ECMAScript Module (See
15.2.3). There is a one-to-one correspondence between the String-keyed own properties of a module namespace exotic
object and the binding names exported by the Module. The exported bindings include any bindings that are indirectly
exported using export * export items. Each String-valued own property key is the StringValue of the corresponding
exported binding name. These are the only String-keyed properties of a module namespace exotic object. Each such
property has the attributes { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: false }. Module namespace
objects are not extensible.

Module namespace objects have the internal slots defined in Table 29.

Table 29: Internal Slots of Module Namespace Exotic Objects

Internal
Slot

Type Description

[[Module]] Module
Record

The Module Record whose exports this namespace exposes.

[[Exports]] List of
String

A List containing the String values of the exported names exposed as own properties of this
object. The list is ordered as if an Array of those String values had been sorted using
Array.prototype.sort using undefined as comparefn.

[[Prototype]] Null This slot always contains the value null (see 9.4.6.1).

Module namespace exotic objects provide alternative definitions for all of the internal methods except
[[GetPrototypeOf]], which behaves as defined in 9.1.1.

When the [[SetPrototypeOf]] internal method of a module namespace exotic object O is called with argument V, the
following steps are taken:

1. Return ? SetImmutablePrototype(O, V).

When the [[IsExtensible]] internal method of a module namespace exotic object O is called, the following steps are
taken:

1. Return false.

9.4.6 Module Namespace Exotic Objects

9.4.6.1 [[SetPrototypeOf]] (V)

9.4.6.2 [[IsExtensible]] ()

142

© Ecma International 2019

142

When the [[PreventExtensions]] internal method of a module namespace exotic object O is called, the following steps are
taken:

1. Return true.

When the [[GetOwnProperty]] internal method of a module namespace exotic object O is called with property key P, the
following steps are taken:

1. If Type(P) is Symbol, return OrdinaryGetOwnProperty(O, P).
2. Let exports be O.[[Exports]].
3. If P is not an element of exports, return undefined.
4. Let value be ? O.[[Get]](P, O).
5. Return PropertyDescriptor { [[Value]]: value, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: false }.

When the [[DefineOwnProperty]] internal method of a module namespace exotic object O is called with property key P
and Property Descriptor Desc, the following steps are taken:

1. If Type(P) is Symbol, return OrdinaryDefineOwnProperty(O, P, Desc).
2. Let current be ? O.[[GetOwnProperty]](P).
3. If current is undefined, return false.
4. If IsAccessorDescriptor(Desc) is true, return false.
5. If Desc.[[Writable]] is present and has value false, return false.
6. If Desc.[[Enumerable]] is present and has value false, return false.
7. If Desc.[[Configurable]] is present and has value true, return false.
8. If Desc.[[Value]] is present, return SameValue(Desc.[[Value]], current.[[Value]]).
9. Return true.

When the [[HasProperty]] internal method of a module namespace exotic object O is called with property key P, the
following steps are taken:

1. If Type(P) is Symbol, return OrdinaryHasProperty(O, P).
2. Let exports be O.[[Exports]].
3. If P is an element of exports, return true.
4. Return false.

When the [[Get]] internal method of a module namespace exotic object O is called with property key P and ECMAScript
language value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is Symbol, then

a. Return ? OrdinaryGet(O, P, Receiver).

9.4.6.3 [[PreventExtensions]] ()

9.4.6.4 [[GetOwnProperty]] (P)

9.4.6.5 [[DefineOwnProperty]] (P, Desc)

9.4.6.6 [[HasProperty]] (P)

9.4.6.7 [[Get]] (P, Receiver)

© Ecma International 2019

143

3. Let exports be O.[[Exports]].
4. If P is not an element of exports, return undefined.
5. Let m be O.[[Module]].
6. Let binding be ! m.ResolveExport(P, « »).
7. Assert: binding is a ResolvedBinding Record.
8. Let targetModule be binding.[[Module]].
9. Assert: targetModule is not undefined.

10. Let targetEnv be targetModule.[[Environment]].
11. If targetEnv is undefined, throw a ReferenceError exception.
12. Let targetEnvRec be targetEnv's EnvironmentRecord.
13. Return ? targetEnvRec.GetBindingValue(binding.[[BindingName]], true).

NOTE
ResolveExport is idempotent and side-effect free. An implementation might choose to pre-compute or cache the
ResolveExport results for the [[Exports]] of each module namespace exotic object.

When the [[Set]] internal method of a module namespace exotic object O is called with property key P, value V, and
ECMAScript language value Receiver, the following steps are taken:

1. Return false.

When the [[Delete]] internal method of a module namespace exotic object O is called with property key P, the following
steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is Symbol, then

a. Return ? OrdinaryDelete(O, P).
3. Let exports be O.[[Exports]].
4. If P is an element of exports, return false.
5. Return true.

When the [[OwnPropertyKeys]] internal method of a module namespace exotic object O is called, the following steps are
taken:

1. Let exports be a copy of O.[[Exports]].
2. Let symbolKeys be ! OrdinaryOwnPropertyKeys(O).
3. Append all the entries of symbolKeys to the end of exports.
4. Return exports.

The abstract operation ModuleNamespaceCreate with arguments module, and exports is used to specify the creation of
new module namespace exotic objects. It performs the following steps:

9.4.6.8 [[Set]] (P, V, Receiver)

9.4.6.9 [[Delete]] (P)

9.4.6.10 [[OwnPropertyKeys]] ()

9.4.6.11 ModuleNamespaceCreate (module, exports)

144

© Ecma International 2019

144

1. Assert: module is a Module Record.
2. Assert: module.[[Namespace]] is undefined.
3. Assert: exports is a List of String values.
4. Let M be a newly created object.
5. Set M's essential internal methods to the definitions specified in 9.4.6.
6. Set M.[[Module]] to module.
7. Let sortedExports be a new List containing the same values as the list exports where the values are ordered as if an

Array of the same values had been sorted using Array.prototype.sort using undefined as comparefn.
8. Set M.[[Exports]] to sortedExports.
9. Create own properties of M corresponding to the definitions in 26.3.

10. Set module.[[Namespace]] to M.
11. Return M.

An immutable prototype exotic object is an exotic object that has a [[Prototype]] internal slot that will not change once it
is initialized.

Immutable prototype exotic objects have the same internal slots as ordinary objects. They are exotic only in the following
internal methods. All other internal methods of immutable prototype exotic objects that are not explicitly defined below
are instead defined as in ordinary objects.

When the [[SetPrototypeOf]] internal method of an immutable prototype exotic object O is called with argument V, the
following steps are taken:

1. Return ? SetImmutablePrototype(O, V).

When the SetImmutablePrototype abstract operation is called with arguments O and V, the following steps are taken:

1. Assert: Either Type(V) is Object or Type(V) is Null.
2. Let current be ? O.[[GetPrototypeOf]]().
3. If SameValue(V, current) is true, return true.
4. Return false.

A proxy object is an exotic object whose essential internal methods are partially implemented using ECMAScript code.
Every proxy object has an internal slot called [[ProxyHandler]]. The value of [[ProxyHandler]] is an object, called the
proxy's handler object, or null. Methods (see Table 30) of a handler object may be used to augment the implementation
for one or more of the proxy object's internal methods. Every proxy object also has an internal slot called [[ProxyTarget]]
whose value is either an object or the null value. This object is called the proxy's target object.

Table 30: Proxy Handler Methods

Internal Method Handler Method

9.4.7 Immutable Prototype Exotic Objects

9.4.7.1 [[SetPrototypeOf]] (V)

9.4.7.2 SetImmutablePrototype (O, V)

9.5 Proxy Object Internal Methods and Internal Slots

© Ecma International 2019

145

[[GetPrototypeOf]] getPrototypeOf

[[SetPrototypeOf]] setPrototypeOf

[[IsExtensible]] isExtensible

[[PreventExtensions]] preventExtensions

[[GetOwnProperty]] getOwnPropertyDescriptor

[[DefineOwnProperty]] defineProperty

[[HasProperty]] has

[[Get]] get

[[Set]] set

[[Delete]] deleteProperty

[[OwnPropertyKeys]] ownKeys

[[Call]] apply

[[Construct]] construct

When a handler method is called to provide the implementation of a proxy object internal method, the handler method is
passed the proxy's target object as a parameter. A proxy's handler object does not necessarily have a method
corresponding to every essential internal method. Invoking an internal method on the proxy results in the invocation of
the corresponding internal method on the proxy's target object if the handler object does not have a method
corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal slots of a proxy object are always initialized when the object is
created and typically may not be modified. Some proxy objects are created in a manner that permits them to be
subsequently revoked. When a proxy is revoked, its [[ProxyHandler]] and [[ProxyTarget]] internal slots are set to null
causing subsequent invocations of internal methods on that proxy object to throw a TypeError exception.

Because proxy objects permit the implementation of internal methods to be provided by arbitrary ECMAScript code, it is
possible to define a proxy object whose handler methods violates the invariants defined in 6.1.7.3. Some of the internal
method invariants defined in 6.1.7.3 are essential integrity invariants. These invariants are explicitly enforced by the
proxy object internal methods specified in this section. An ECMAScript implementation must be robust in the presence
of all possible invariant violations.

In the following algorithm descriptions, assume O is an ECMAScript proxy object, P is a property key value, V is any
ECMAScript language value and Desc is a Property Descriptor record.

When the [[GetPrototypeOf]] internal method of a Proxy exotic object O is called, the following steps are taken:

1. Let handler be O.[[ProxyHandler]].
2. If handler is null, throw a TypeError exception.
3. Assert: Type(handler) is Object.

9.5.1 [[GetPrototypeOf]] ()

146

© Ecma International 2019

146

4. Let target be O.[[ProxyTarget]].
5. Let trap be ? GetMethod(handler, "getPrototypeOf").
6. If trap is undefined, then

a. Return ? target.[[GetPrototypeOf]]().
7. Let handlerProto be ? Call(trap, handler, « target »).
8. If Type(handlerProto) is neither Object nor Null, throw a TypeError exception.
9. Let extensibleTarget be ? IsExtensible(target).

10. If extensibleTarget is true, return handlerProto.
11. Let targetProto be ? target.[[GetPrototypeOf]]().
12. If SameValue(handlerProto, targetProto) is false, throw a TypeError exception.
13. Return handlerProto.

NOTE
[[GetPrototypeOf]] for proxy objects enforces the following invariants:

The result of [[GetPrototypeOf]] must be either an Object or null.
If the target object is not extensible, [[GetPrototypeOf]] applied to the proxy object must return the same value as
[[GetPrototypeOf]] applied to the proxy object's target object.

When the [[SetPrototypeOf]] internal method of a Proxy exotic object O is called with argument V, the following steps
are taken:

1. Assert: Either Type(V) is Object or Type(V) is Null.
2. Let handler be O.[[ProxyHandler]].
3. If handler is null, throw a TypeError exception.
4. Assert: Type(handler) is Object.
5. Let target be O.[[ProxyTarget]].
6. Let trap be ? GetMethod(handler, "setPrototypeOf").
7. If trap is undefined, then

a. Return ? target.[[SetPrototypeOf]](V).
8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target, V »)).
9. If booleanTrapResult is false, return false.

10. Let extensibleTarget be ? IsExtensible(target).
11. If extensibleTarget is true, return true.
12. Let targetProto be ? target.[[GetPrototypeOf]]().
13. If SameValue(V, targetProto) is false, throw a TypeError exception.
14. Return true.

NOTE
[[SetPrototypeOf]] for proxy objects enforces the following invariants:

The result of [[SetPrototypeOf]] is a Boolean value.
If the target object is not extensible, the argument value must be the same as the result of [[GetPrototypeOf]]
applied to target object.

9.5.2 [[SetPrototypeOf]] (V)

© Ecma International 2019

147

When the [[IsExtensible]] internal method of a Proxy exotic object O is called, the following steps are taken:

1. Let handler be O.[[ProxyHandler]].
2. If handler is null, throw a TypeError exception.
3. Assert: Type(handler) is Object.
4. Let target be O.[[ProxyTarget]].
5. Let trap be ? GetMethod(handler, "isExtensible").
6. If trap is undefined, then

a. Return ? target.[[IsExtensible]]().
7. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target »)).
8. Let targetResult be ? target.[[IsExtensible]]().
9. If SameValue(booleanTrapResult, targetResult) is false, throw a TypeError exception.

10. Return booleanTrapResult.

NOTE
[[IsExtensible]] for proxy objects enforces the following invariants:

The result of [[IsExtensible]] is a Boolean value.
[[IsExtensible]] applied to the proxy object must return the same value as [[IsExtensible]] applied to the proxy
object's target object with the same argument.

When the [[PreventExtensions]] internal method of a Proxy exotic object O is called, the following steps are taken:

1. Let handler be O.[[ProxyHandler]].
2. If handler is null, throw a TypeError exception.
3. Assert: Type(handler) is Object.
4. Let target be O.[[ProxyTarget]].
5. Let trap be ? GetMethod(handler, "preventExtensions").
6. If trap is undefined, then

a. Return ? target.[[PreventExtensions]]().
7. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target »)).
8. If booleanTrapResult is true, then

a. Let targetIsExtensible be ? target.[[IsExtensible]]().
b. If targetIsExtensible is true, throw a TypeError exception.

9. Return booleanTrapResult.

NOTE
[[PreventExtensions]] for proxy objects enforces the following invariants:

The result of [[PreventExtensions]] is a Boolean value.
[[PreventExtensions]] applied to the proxy object only returns true if [[IsExtensible]] applied to the proxy object's
target object is false.

9.5.3 [[IsExtensible]] ()

9.5.4 [[PreventExtensions]] ()

148

© Ecma International 2019

148

When the [[GetOwnProperty]] internal method of a Proxy exotic object O is called with property key P, the following
steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let handler be O.[[ProxyHandler]].
3. If handler is null, throw a TypeError exception.
4. Assert: Type(handler) is Object.
5. Let target be O.[[ProxyTarget]].
6. Let trap be ? GetMethod(handler, "getOwnPropertyDescriptor").
7. If trap is undefined, then

a. Return ? target.[[GetOwnProperty]](P).
8. Let trapResultObj be ? Call(trap, handler, « target, P »).
9. If Type(trapResultObj) is neither Object nor Undefined, throw a TypeError exception.

10. Let targetDesc be ? target.[[GetOwnProperty]](P).
11. If trapResultObj is undefined, then

a. If targetDesc is undefined, return undefined.
b. If targetDesc.[[Configurable]] is false, throw a TypeError exception.
c. Let extensibleTarget be ? IsExtensible(target).
d. If extensibleTarget is false, throw a TypeError exception.
e. Return undefined.

12. Let extensibleTarget be ? IsExtensible(target).
13. Let resultDesc be ? ToPropertyDescriptor(trapResultObj).
14. Call CompletePropertyDescriptor(resultDesc).
15. Let valid be IsCompatiblePropertyDescriptor(extensibleTarget, resultDesc, targetDesc).
16. If valid is false, throw a TypeError exception.
17. If resultDesc.[[Configurable]] is false, then

a. If targetDesc is undefined or targetDesc.[[Configurable]] is true, then
i. Throw a TypeError exception.

18. Return resultDesc.

NOTE
[[GetOwnProperty]] for proxy objects enforces the following invariants:

The result of [[GetOwnProperty]] must be either an Object or undefined.
A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
A property cannot be reported as non-existent, if it exists as an own property of the target object and the target
object is not extensible.
A property cannot be reported as existent, if it does not exist as an own property of the target object and the target
object is not extensible.
A property cannot be reported as non-configurable, if it does not exist as an own property of the target object or if it
exists as a configurable own property of the target object.

When the [[DefineOwnProperty]] internal method of a Proxy exotic object O is called with property key P and Property
Descriptor Desc, the following steps are taken:

9.5.5 [[GetOwnProperty]] (P)

9.5.6 [[DefineOwnProperty]] (P, Desc)

© Ecma International 2019

149

1. Assert: IsPropertyKey(P) is true.
2. Let handler be O.[[ProxyHandler]].
3. If handler is null, throw a TypeError exception.
4. Assert: Type(handler) is Object.
5. Let target be O.[[ProxyTarget]].
6. Let trap be ? GetMethod(handler, "defineProperty").
7. If trap is undefined, then

a. Return ? target.[[DefineOwnProperty]](P, Desc).
8. Let descObj be FromPropertyDescriptor(Desc).
9. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target, P, descObj »)).

10. If booleanTrapResult is false, return false.
11. Let targetDesc be ? target.[[GetOwnProperty]](P).
12. Let extensibleTarget be ? IsExtensible(target).
13. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is false, then

a. Let settingConfigFalse be true.
14. Else, let settingConfigFalse be false.
15. If targetDesc is undefined, then

a. If extensibleTarget is false, throw a TypeError exception.
b. If settingConfigFalse is true, throw a TypeError exception.

16. Else targetDesc is not undefined,
a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc, targetDesc) is false, throw a TypeError

exception.
b. If settingConfigFalse is true and targetDesc.[[Configurable]] is true, throw a TypeError exception.

17. Return true.

NOTE
[[DefineOwnProperty]] for proxy objects enforces the following invariants:

The result of [[DefineOwnProperty]] is a Boolean value.
A property cannot be added, if the target object is not extensible.
A property cannot be non-configurable, unless there exists a corresponding non-configurable own property of the
target object.
If a property has a corresponding target object property then applying the Property Descriptor of the property to the
target object using [[DefineOwnProperty]] will not throw an exception.

When the [[HasProperty]] internal method of a Proxy exotic object O is called with property key P, the following steps
are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let handler be O.[[ProxyHandler]].
3. If handler is null, throw a TypeError exception.
4. Assert: Type(handler) is Object.
5. Let target be O.[[ProxyTarget]].
6. Let trap be ? GetMethod(handler, "has").
7. If trap is undefined, then

9.5.7 [[HasProperty]] (P)

150

© Ecma International 2019

150

a. Return ? target.[[HasProperty]](P).
8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target, P »)).
9. If booleanTrapResult is false, then

a. Let targetDesc be ? target.[[GetOwnProperty]](P).
b. If targetDesc is not undefined, then

i. If targetDesc.[[Configurable]] is false, throw a TypeError exception.
ii. Let extensibleTarget be ? IsExtensible(target).

iii. If extensibleTarget is false, throw a TypeError exception.
10. Return booleanTrapResult.

NOTE
[[HasProperty]] for proxy objects enforces the following invariants:

The result of [[HasProperty]] is a Boolean value.
A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
A property cannot be reported as non-existent, if it exists as an own property of the target object and the target
object is not extensible.

When the [[Get]] internal method of a Proxy exotic object O is called with property key P and ECMAScript language
value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let handler be O.[[ProxyHandler]].
3. If handler is null, throw a TypeError exception.
4. Assert: Type(handler) is Object.
5. Let target be O.[[ProxyTarget]].
6. Let trap be ? GetMethod(handler, "get").
7. If trap is undefined, then

a. Return ? target.[[Get]](P, Receiver).
8. Let trapResult be ? Call(trap, handler, « target, P, Receiver »).
9. Let targetDesc be ? target.[[GetOwnProperty]](P).

10. If targetDesc is not undefined and targetDesc.[[Configurable]] is false, then
a. If IsDataDescriptor(targetDesc) is true and targetDesc.[[Writable]] is false, then

i. If SameValue(trapResult, targetDesc.[[Value]]) is false, throw a TypeError exception.
b. If IsAccessorDescriptor(targetDesc) is true and targetDesc.[[Get]] is undefined, then

i. If trapResult is not undefined, throw a TypeError exception.
11. Return trapResult.

NOTE
[[Get]] for proxy objects enforces the following invariants:

The value reported for a property must be the same as the value of the corresponding target object property if the
target object property is a non-writable, non-configurable own data property.
The value reported for a property must be undefined if the corresponding target object property is a non-
configurable own accessor property that has undefined as its [[Get]] attribute.

9.5.8 [[Get]] (P, Receiver)

© Ecma International 2019

151

When the [[Set]] internal method of a Proxy exotic object O is called with property key P, value V, and ECMAScript
language value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let handler be O.[[ProxyHandler]].
3. If handler is null, throw a TypeError exception.
4. Assert: Type(handler) is Object.
5. Let target be O.[[ProxyTarget]].
6. Let trap be ? GetMethod(handler, "set").
7. If trap is undefined, then

a. Return ? target.[[Set]](P, V, Receiver).
8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target, P, V, Receiver »)).
9. If booleanTrapResult is false, return false.

10. Let targetDesc be ? target.[[GetOwnProperty]](P).
11. If targetDesc is not undefined and targetDesc.[[Configurable]] is false, then

a. If IsDataDescriptor(targetDesc) is true and targetDesc.[[Writable]] is false, then
i. If SameValue(V, targetDesc.[[Value]]) is false, throw a TypeError exception.

b. If IsAccessorDescriptor(targetDesc) is true, then
i. If targetDesc.[[Set]] is undefined, throw a TypeError exception.

12. Return true.

NOTE
[[Set]] for proxy objects enforces the following invariants:

The result of [[Set]] is a Boolean value.
Cannot change the value of a property to be different from the value of the corresponding target object property if
the corresponding target object property is a non-writable, non-configurable own data property.
Cannot set the value of a property if the corresponding target object property is a non-configurable own accessor
property that has undefined as its [[Set]] attribute.

When the [[Delete]] internal method of a Proxy exotic object O is called with property key P, the following steps are
taken:

1. Assert: IsPropertyKey(P) is true.
2. Let handler be O.[[ProxyHandler]].
3. If handler is null, throw a TypeError exception.
4. Assert: Type(handler) is Object.
5. Let target be O.[[ProxyTarget]].
6. Let trap be ? GetMethod(handler, "deleteProperty").
7. If trap is undefined, then

a. Return ? target.[[Delete]](P).

9.5.9 [[Set]] (P, V, Receiver)

9.5.10 [[Delete]] (P)

152

© Ecma International 2019

152

8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target, P »)).
9. If booleanTrapResult is false, return false.

10. Let targetDesc be ? target.[[GetOwnProperty]](P).
11. If targetDesc is undefined, return true.
12. If targetDesc.[[Configurable]] is false, throw a TypeError exception.
13. Return true.

NOTE
[[Delete]] for proxy objects enforces the following invariants:

The result of [[Delete]] is a Boolean value.
A property cannot be reported as deleted, if it exists as a non-configurable own property of the target object.

When the [[OwnPropertyKeys]] internal method of a Proxy exotic object O is called, the following steps are taken:

1. Let handler be O.[[ProxyHandler]].
2. If handler is null, throw a TypeError exception.
3. Assert: Type(handler) is Object.
4. Let target be O.[[ProxyTarget]].
5. Let trap be ? GetMethod(handler, "ownKeys").
6. If trap is undefined, then

a. Return ? target.[[OwnPropertyKeys]]().
7. Let trapResultArray be ? Call(trap, handler, « target »).
8. Let trapResult be ? CreateListFromArrayLike(trapResultArray, « String, Symbol »).
9. If trapResult contains any duplicate entries, throw a TypeError exception.

10. Let extensibleTarget be ? IsExtensible(target).
11. Let targetKeys be ? target.[[OwnPropertyKeys]]().
12. Assert: targetKeys is a List containing only String and Symbol values.
13. Assert: targetKeys contains no duplicate entries.
14. Let targetConfigurableKeys be a new empty List.
15. Let targetNonconfigurableKeys be a new empty List.
16. For each element key of targetKeys, do

a. Let desc be ? target.[[GetOwnProperty]](key).
b. If desc is not undefined and desc.[[Configurable]] is false, then

i. Append key as an element of targetNonconfigurableKeys.
c. Else,

i. Append key as an element of targetConfigurableKeys.
17. If extensibleTarget is true and targetNonconfigurableKeys is empty, then

a. Return trapResult.
18. Let uncheckedResultKeys be a new List which is a copy of trapResult.
19. For each key that is an element of targetNonconfigurableKeys, do

a. If key is not an element of uncheckedResultKeys, throw a TypeError exception.
b. Remove key from uncheckedResultKeys.

20. If extensibleTarget is true, return trapResult.
21. For each key that is an element of targetConfigurableKeys, do

9.5.11 [[OwnPropertyKeys]] ()

© Ecma International 2019

153

a. If key is not an element of uncheckedResultKeys, throw a TypeError exception.
b. Remove key from uncheckedResultKeys.

22. If uncheckedResultKeys is not empty, throw a TypeError exception.
23. Return trapResult.

NOTE
[[OwnPropertyKeys]] for proxy objects enforces the following invariants:

The result of [[OwnPropertyKeys]] is a List.
The returned List contains no duplicate entries.
The Type of each result List element is either String or Symbol.
The result List must contain the keys of all non-configurable own properties of the target object.
If the target object is not extensible, then the result List must contain all the keys of the own properties of the target
object and no other values.

The [[Call]] internal method of a Proxy exotic object O is called with parameters thisArgument and argumentsList, a List
of ECMAScript language values. The following steps are taken:

1. Let handler be O.[[ProxyHandler]].
2. If handler is null, throw a TypeError exception.
3. Assert: Type(handler) is Object.
4. Let target be O.[[ProxyTarget]].
5. Let trap be ? GetMethod(handler, "apply").
6. If trap is undefined, then

a. Return ? Call(target, thisArgument, argumentsList).
7. Let argArray be CreateArrayFromList(argumentsList).
8. Return ? Call(trap, handler, « target, thisArgument, argArray »).

NOTE
A Proxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]] internal slot is an
object that has a [[Call]] internal method.

The [[Construct]] internal method of a Proxy exotic object O is called with parameters argumentsList which is a possibly
empty List of ECMAScript language values and newTarget. The following steps are taken:

1. Let handler be O.[[ProxyHandler]].
2. If handler is null, throw a TypeError exception.
3. Assert: Type(handler) is Object.
4. Let target be O.[[ProxyTarget]].
5. Assert: IsConstructor(target) is true.
6. Let trap be ? GetMethod(handler, "construct").
7. If trap is undefined, then

a. Return ? Construct(target, argumentsList, newTarget).

9.5.12 [[Call]] (thisArgument, argumentsList)

9.5.13 [[Construct]] (argumentsList, newTarget)

154

© Ecma International 2019

154

8. Let argArray be CreateArrayFromList(argumentsList).
9. Let newObj be ? Call(trap, handler, « target, argArray, newTarget »).

10. If Type(newObj) is not Object, throw a TypeError exception.
11. Return newObj.

NOTE 1
A Proxy exotic object only has a [[Construct]] internal method if the initial value of its [[ProxyTarget]] internal slot is an
object that has a [[Construct]] internal method.

NOTE 2
[[Construct]] for proxy objects enforces the following invariants:

The result of [[Construct]] must be an Object.

The abstract operation ProxyCreate with arguments target and handler is used to specify the creation of new Proxy
exotic objects. It performs the following steps:

1. If Type(target) is not Object, throw a TypeError exception.
2. If target is a Proxy exotic object and target.[[ProxyHandler]] is null, throw a TypeError exception.
3. If Type(handler) is not Object, throw a TypeError exception.
4. If handler is a Proxy exotic object and handler.[[ProxyHandler]] is null, throw a TypeError exception.
5. Let P be a newly created object.
6. Set P's essential internal methods (except for [[Call]] and [[Construct]]) to the definitions specified in 9.5.
7. If IsCallable(target) is true, then

a. Set P.[[Call]] as specified in 9.5.12.
b. If IsConstructor(target) is true, then

i. Set P.[[Construct]] as specified in 9.5.13.
8. Set P.[[ProxyTarget]] to target.
9. Set P.[[ProxyHandler]] to handler.

10. Return P.

SourceCharacter ::
any Unicode code point

ECMAScript code is expressed using Unicode. ECMAScript source text is a sequence of code points. All Unicode code
point values from U+0000 to U+10FFFF, including surrogate code points, may occur in source text where permitted by
the ECMAScript grammars. The actual encodings used to store and interchange ECMAScript source text is not relevant
to this specification. Regardless of the external source text encoding, a conforming ECMAScript implementation

9.5.14 ProxyCreate (target, handler)

10 ECMAScript Language: Source Code

10.1 Source Text

Syntax

© Ecma International 2019

155

processes the source text as if it was an equivalent sequence of SourceCharacter values, each SourceCharacter being a
Unicode code point. Conforming ECMAScript implementations are not required to perform any normalization of source
text, or behave as though they were performing normalization of source text.

The components of a combining character sequence are treated as individual Unicode code points even though a user
might think of the whole sequence as a single character.

NOTE
In string literals, regular expression literals, template literals and identifiers, any Unicode code point may also be
expressed using Unicode escape sequences that explicitly express a code point's numeric value. Within a comment, such
an escape sequence is effectively ignored as part of the comment.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a Java
program, if the Unicode escape sequence \u000A, for example, occurs within a single-line comment, it is interpreted as
a line terminator (Unicode code point U+000A is LINE FEED (LF)) and therefore the next code point is not part of the
comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java program, it is
likewise interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of
\u000A to cause a LINE FEED (LF) to be part of the String value of a string literal. In an ECMAScript program, a
Unicode escape sequence occurring within a comment is never interpreted and therefore cannot contribute to termination
of the comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript program
always contributes to the literal and is never interpreted as a line terminator or as a code point that might terminate the
string literal.

The UTF16Encoding of a numeric code point value, cp, is determined as follows:

1. Assert: 0 ≤ cp ≤ 0x10FFFF.
2. If cp ≤ 0xFFFF, return cp.
3. Let cu1 be floor((cp - 0x10000) / 0x400) + 0xD800.
4. Let cu2 be ((cp - 0x10000) modulo 0x400) + 0xDC00.
5. Return the code unit sequence consisting of cu1 followed by cu2.

Two code units, lead and trail, that form a UTF-16 surrogate pair are converted to a code point by performing the
following steps:

1. Assert: lead is a leading surrogate and trail is a trailing surrogate.
2. Let cp be (lead - 0xD800) × 0x400 + (trail - 0xDC00) + 0x10000.
3. Return the code point cp.

There are four types of ECMAScript code:

Global code is source text that is treated as an ECMAScript Script. The global code of a particular Script does not
include any source text that is parsed as part of a FunctionDeclaration, FunctionExpression, GeneratorDeclaration,

10.1.1 Static Semantics: UTF16Encoding (cp)

10.1.2 Static Semantics: UTF16Decode (lead, trail)

10.2 Types of Source Code

156

© Ecma International 2019

156

GeneratorExpression, AsyncFunctionDeclaration, AsyncFunctionExpression, AsyncGeneratorDeclaration,
AsyncGeneratorExpression, MethodDefinition, ArrowFunction, AsyncArrowFunction, ClassDeclaration, or
ClassExpression.
Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter to the built-in
eval function is a String, it is treated as an ECMAScript Script. The eval code for a particular invocation of eval
is the global code portion of that Script.
Function code is source text that is parsed to supply the value of the [[ECMAScriptCode]] and
[[FormalParameters]] internal slots (see 9.2) of an ECMAScript function object. The function code of a particular
ECMAScript function does not include any source text that is parsed as the function code of a nested
FunctionDeclaration, FunctionExpression, GeneratorDeclaration, GeneratorExpression,
AsyncFunctionDeclaration, AsyncFunctionExpression, AsyncGeneratorDeclaration, AsyncGeneratorExpression,
MethodDefinition, ArrowFunction, AsyncArrowFunction, ClassDeclaration, or ClassExpression.
Module code is source text that is code that is provided as a ModuleBody. It is the code that is directly evaluated
when a module is initialized. The module code of a particular module does not include any source text that is
parsed as part of a nested FunctionDeclaration, FunctionExpression, GeneratorDeclaration, GeneratorExpression,
AsyncFunctionDeclaration, AsyncFunctionExpression, AsyncGeneratorDeclaration, AsyncGeneratorExpression,
MethodDefinition, ArrowFunction, AsyncArrowFunction, ClassDeclaration, or ClassExpression.

NOTE
Function code is generally provided as the bodies of Function Definitions (14.1), Arrow Function Definitions (14.2),
Method Definitions (14.3), Generator Function Definitions (14.4), Async Function Definitions (14.7), Async Generator
Function Definitions (14.5), and Async Arrow Functions (14.8). Function code is also derived from the arguments to the
Function constructor (19.2.1.1), the GeneratorFunction constructor (25.2.1.1), and the AsyncFunction
constructor (25.7.1.1).

An ECMAScript Script syntactic unit may be processed using either unrestricted or strict mode syntax and semantics.
Code is interpreted as strict mode code in the following situations:

Global code is strict mode code if it begins with a Directive Prologue that contains a Use Strict Directive.
Module code is always strict mode code.
All parts of a ClassDeclaration or a ClassExpression are strict mode code.
Eval code is strict mode code if it begins with a Directive Prologue that contains a Use Strict Directive or if the call
to eval is a direct eval that is contained in strict mode code.
Function code is strict mode code if the associated FunctionDeclaration, FunctionExpression,
GeneratorDeclaration, GeneratorExpression, AsyncFunctionDeclaration, AsyncFunctionExpression,
AsyncGeneratorDeclaration, AsyncGeneratorExpression, MethodDefinition, ArrowFunction, or
AsyncArrowFunction is contained in strict mode code or if the code that produces the value of the function's
[[ECMAScriptCode]] internal slot begins with a Directive Prologue that contains a Use Strict Directive.
Function code that is supplied as the arguments to the built-in Function, Generator, AsyncFunction, and
AsyncGenerator constructors is strict mode code if the last argument is a String that when processed is a
FunctionBody that begins with a Directive Prologue that contains a Use Strict Directive.

ECMAScript code that is not strict mode code is called non-strict code.

10.2.1 Strict Mode Code

10.2.2 Non-ECMAScript Functions

© Ecma International 2019

157

An ECMAScript implementation may support the evaluation of function exotic objects whose evaluative behaviour is
expressed in some implementation-defined form of executable code other than via ECMAScript code. Whether a function
object is an ECMAScript code function or a non-ECMAScript function is not semantically observable from the
perspective of an ECMAScript code function that calls or is called by such a non-ECMAScript function.

The source text of an ECMAScript Script or Module is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking the
longest possible sequence of code points as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic grammar
context that is consuming the input elements. This requires multiple goal symbols for the lexical grammar. The
InputElementRegExpOrTemplateTail goal is used in syntactic grammar contexts where a RegularExpressionLiteral, a
TemplateMiddle, or a TemplateTail is permitted. The InputElementRegExp goal symbol is used in all syntactic grammar
contexts where a RegularExpressionLiteral is permitted but neither a TemplateMiddle, nor a TemplateTail is permitted.
The InputElementTemplateTail goal is used in all syntactic grammar contexts where a TemplateMiddle or a TemplateTail
is permitted but a RegularExpressionLiteral is not permitted. In all other contexts, InputElementDiv is used as the lexical
goal symbol.

NOTE
The use of multiple lexical goals ensures that there are no lexical ambiguities that would affect automatic semicolon
insertion. For example, there are no syntactic grammar contexts where both a leading division or division-assignment,
and a leading RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see 11.9); in examples
such as the following:

a = b
/hi/g.exec(c).map(d);

where the first non-whitespace, non-comment code point after a LineTerminator is U+002F (SOLIDUS) and the syntactic
context allows division or division-assignment, no semicolon is inserted at the LineTerminator. That is, the above
example is interpreted in the same way as:

a = b / hi / g.exec(c).map(d);

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
CommonToken
DivPunctuator
RightBracePunctuator

InputElementRegExp ::

11 ECMAScript Language: Lexical Grammar

Syntax

158

© Ecma International 2019

158

WhiteSpace
LineTerminator
Comment
CommonToken
RightBracePunctuator
RegularExpressionLiteral

InputElementRegExpOrTemplateTail ::
WhiteSpace
LineTerminator
Comment
CommonToken
RegularExpressionLiteral
TemplateSubstitutionTail

InputElementTemplateTail ::
WhiteSpace
LineTerminator
Comment
CommonToken
DivPunctuator
TemplateSubstitutionTail

The Unicode format-control characters (i.e., the characters in category “Cf” in the Unicode Character Database such as
LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the formatting of a range of
text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control characters
may be used within comments, and within string literals, template literals, and regular expression literals.

U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER) are format-control characters that are
used to make necessary distinctions when forming words or phrases in certain languages. In ECMAScript source text
these code points may also be used in an IdentifierName after the first character.

U+FEFF (ZERO WIDTH NO-BREAK SPACE) is a format-control character used primarily at the start of a text to mark
it as Unicode and to allow detection of the text's encoding and byte order. <ZWNBSP> characters intended for this
purpose can sometimes also appear after the start of a text, for example as a result of concatenating files. In ECMAScript
source text <ZWNBSP> code points are treated as white space characters (see 11.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular expression
literals is summarized in Table 31.

Table 31: Format-Control Code Point Usage

Code Point Name Abbreviation Usage

U+200C ZERO WIDTH NON-JOINER <ZWNJ> IdentifierPart

U+200D ZERO WIDTH JOINER <ZWJ> IdentifierPart

11.1 Unicode Format-Control Characters

© Ecma International 2019

159

U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP> WhiteSpace

White space code points are used to improve source text readability and to separate tokens (indivisible lexical units) from
each other, but are otherwise insignificant. White space code points may occur between any two tokens and at the start or
end of input. White space code points may occur within a StringLiteral, a RegularExpressionLiteral, a Template, or a
TemplateSubstitutionTail where they are considered significant code points forming part of a literal value. They may also
occur within a Comment, but cannot appear within any other kind of token.

The ECMAScript white space code points are listed in Table 32.

Table 32: White Space Code Points

Code Point Name Abbreviation

U+0009 CHARACTER TABULATION <TAB>

U+000B LINE TABULATION <VT>

U+000C FORM FEED (FF) <FF>

U+0020 SPACE <SP>

U+00A0 NO-BREAK SPACE <NBSP>

U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP>

Other category “Zs” Any other Unicode “Space_Separator” code point <USP>

ECMAScript implementations must recognize as WhiteSpace code points listed in the “Space_Separator” (“Zs”)
category.

NOTE
Other than for the code points listed in Table 32, ECMAScript WhiteSpace intentionally excludes all code points that
have the Unicode “White_Space” property but which are not classified in category “Space_Separator” (“Zs”).

WhiteSpace ::
<TAB>
<VT>
<FF>
<SP>
<NBSP>
<ZWNBSP>
<USP>

11.2 White Space

Syntax

160

© Ecma International 2019

160

Like white space code points, line terminator code points are used to improve source text readability and to separate
tokens (indivisible lexical units) from each other. However, unlike white space code points, line terminators have some
influence over the behaviour of the syntactic grammar. In general, line terminators may occur between any two tokens,
but there are a few places where they are forbidden by the syntactic grammar. Line terminators also affect the process of
automatic semicolon insertion (11.9). A line terminator cannot occur within any token except a StringLiteral, Template,
or TemplateSubstitutionTail. <LF> and <CR> line terminators cannot occur within a StringLiteral token except as part of
a LineContinuation.

A line terminator can occur within a MultiLineComment but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space code points that are matched by the \s class in regular
expressions.

The ECMAScript line terminator code points are listed in Table 33.

Table 33: Line Terminator Code Points

Code Point Unicode Name Abbreviation

U+000A LINE FEED (LF) <LF>

U+000D CARRIAGE RETURN (CR) <CR>

U+2028 LINE SEPARATOR <LS>

U+2029 PARAGRAPH SEPARATOR <PS>

Only the Unicode code points in Table 33 are treated as line terminators. Other new line or line breaking Unicode code
points are not treated as line terminators but are treated as white space if they meet the requirements listed in Table 32.
The sequence <CR><LF> is commonly used as a line terminator. It should be considered a single SourceCharacter for
the purpose of reporting line numbers.

LineTerminator ::
<LF>
<CR>
<LS>
<PS>

LineTerminatorSequence ::
<LF>
<CR>[lookahead ≠ <LF>]
<LS>
<PS>
<CR><LF>

11.3 Line Terminators

Syntax

11.4 Comments

© Ecma International 2019

161

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode code point except a LineTerminator code point, and because of
the general rule that a token is always as long as possible, a single-line comment always consists of all code points from
the // marker to the end of the line. However, the LineTerminator at the end of the line is not considered to be part of
the single-line comment; it is recognized separately by the lexical grammar and becomes part of the stream of input
elements for the syntactic grammar. This point is very important, because it implies that the presence or absence of
single-line comments does not affect the process of automatic semicolon insertion (see 11.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line terminator code
point, then the entire comment is considered to be a LineTerminator for purposes of parsing by the syntactic grammar.

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsopt */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsopt
* PostAsteriskCommentCharsopt

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt
* PostAsteriskCommentCharsopt

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or *

SingleLineComment ::
// SingleLineCommentCharsopt

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

CommonToken ::
IdentifierName

Syntax

11.5 Tokens

Syntax

162

© Ecma International 2019

162

Punctuator
NumericLiteral
StringLiteral
Template

NOTE
The DivPunctuator, RegularExpressionLiteral, RightBracePunctuator, and TemplateSubstitutionTail productions derive
additional tokens that are not included in the CommonToken production.

IdentifierName and ReservedWord are tokens that are interpreted according to the Default Identifier Syntax given in
Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications. ReservedWord is an
enumerated subset of IdentifierName. The syntactic grammar defines Identifier as an IdentifierName that is not a
ReservedWord. The Unicode identifier grammar is based on character properties specified by the Unicode Standard. The
Unicode code points in the specified categories in the latest version of the Unicode standard must be treated as in those
categories by all conforming ECMAScript implementations. ECMAScript implementations may recognize identifier code
points defined in later editions of the Unicode Standard.

NOTE 1
This standard specifies specific code point additions: U+0024 (DOLLAR SIGN) and U+005F (LOW LINE) are permitted
anywhere in an IdentifierName, and the code points U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO
WIDTH JOINER) are permitted anywhere after the first code point of an IdentifierName.

Unicode escape sequences are permitted in an IdentifierName, where they contribute a single Unicode code point to the
IdentifierName. The code point is expressed by the CodePoint of the UnicodeEscapeSequence (see 11.8.4). The \
preceding the UnicodeEscapeSequence and the u and { } code units, if they appear, do not contribute code points to the
IdentifierName. A UnicodeEscapeSequence cannot be used to put a code point into an IdentifierName that would
otherwise be illegal. In other words, if a \ UnicodeEscapeSequence sequence were replaced by the SourceCharacter it
contributes, the result must still be a valid IdentifierName that has the exact same sequence of SourceCharacter elements
as the original IdentifierName. All interpretations of IdentifierName within this specification are based upon their actual
code points regardless of whether or not an escape sequence was used to contribute any particular code point.

Two IdentifierNames that are canonically equivalent according to the Unicode standard are not equal unless, after
replacement of each UnicodeEscapeSequence, they are represented by the exact same sequence of code points.

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
UnicodeIDStart
$
_
\ UnicodeEscapeSequence

11.6 Names and Keywords

Syntax

© Ecma International 2019

163

IdentifierPart ::
UnicodeIDContinue
$
\ UnicodeEscapeSequence
<ZWNJ>
<ZWJ>

UnicodeIDStart ::
any Unicode code point with the Unicode property “ID_Start”

UnicodeIDContinue ::
any Unicode code point with the Unicode property “ID_Continue”

The definitions of the nonterminal UnicodeEscapeSequence is given in 11.8.4.

NOTE 2
The nonterminal IdentifierPart derives _ via UnicodeIDContinue.

NOTE 3
The sets of code points with Unicode properties “ID_Start” and “ID_Continue” include, respectively, the code points
with Unicode properties “Other_ID_Start” and “Other_ID_Continue”.

IdentifierStart :: \ UnicodeEscapeSequence

It is a Syntax Error if SV(UnicodeEscapeSequence) is none of "$", or "_", or the UTF16Encoding of a code point
matched by the UnicodeIDStart lexical grammar production.

IdentifierPart :: \ UnicodeEscapeSequence

It is a Syntax Error if SV(UnicodeEscapeSequence) is none of "$", or "_", or the UTF16Encoding of either
<ZWNJ> or <ZWJ>, or the UTF16Encoding of a Unicode code point that would be matched by the
UnicodeIDContinue lexical grammar production.

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

1. Return the String value consisting of the sequence of code units corresponding to IdentifierName. In determining
the sequence any occurrences of \ UnicodeEscapeSequence are first replaced with the code point represented by
the UnicodeEscapeSequence and then the code points of the entire IdentifierName are converted to code units by
UTF16Encoding each code point.

A reserved word is an IdentifierName that cannot be used as an Identifier.

11.6.1 Identifier Names

11.6.1.1 Static Semantics: Early Errors

11.6.1.2 Static Semantics: StringValue

11.6.2 Reserved Words

164

© Ecma International 2019

164

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

NOTE
The ReservedWord definitions are specified as literal sequences of specific SourceCharacter elements. A code point in a
ReservedWord cannot be expressed by a \ UnicodeEscapeSequence.

The following tokens are ECMAScript keywords and may not be used as Identifiers in ECMAScript programs.

Keyword :: one of
await break case catch class const continue debugger default delete do

else export extends finally for function if import in instanceof new
return super switch this throw try typeof var void while with yield

NOTE
In some contexts yield and await are given the semantics of an Identifier. See 12.1.1. In strict mode code, let and
static are treated as reserved words through static semantic restrictions (see 12.1.1, 13.3.1.1, 13.7.5.1, and 14.6.1)
rather than the lexical grammar.

The following tokens are reserved for use as keywords in future language extensions.

FutureReservedWord ::
enum

NOTE
Use of the following tokens within strict mode code is also reserved. That usage is restricted using static semantic
restrictions (see 12.1.1) rather than the lexical grammar:

implements package protected
interface private public

Syntax

11.6.2.1 Keywords

Syntax

11.6.2.2 Future Reserved Words

Syntax

11.7 Punctuators

© Ecma International 2019

165

Punctuator :: one of
{ () [] ; , < > <= >= == != === !== + - * % ** ++ -- << >> >>> & | ^ ! ~

&& || ? : = += -= *= %= **= <<= >>= >>>= &= |= ^= =>

DivPunctuator ::
/
/=

RightBracePunctuator ::
}

NullLiteral ::
null

BooleanLiteral ::
true
false

NumericLiteral ::
DecimalLiteral
BinaryIntegerLiteral
OctalIntegerLiteral
HexIntegerLiteral

DecimalLiteral ::
DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt
. DecimalDigits ExponentPartopt
DecimalIntegerLiteral ExponentPartopt

DecimalIntegerLiteral ::
0
NonZeroDigit DecimalDigitsopt

Syntax

11.8 Literals

11.8.1 Null Literals

Syntax

11.8.2 Boolean Literals

Syntax

11.8.3 Numeric Literals

Syntax

166

© Ecma International 2019

166

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
ExponentIndicator SignedInteger

ExponentIndicator :: one of
e E

SignedInteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

BinaryIntegerLiteral ::
0b BinaryDigits
0B BinaryDigits

BinaryDigits ::
BinaryDigit
BinaryDigits BinaryDigit

BinaryDigit :: one of
0 1

OctalIntegerLiteral ::
0o OctalDigits
0O OctalDigits

OctalDigits ::
OctalDigit
OctalDigits OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

HexIntegerLiteral ::
0x HexDigits
0X HexDigits

HexDigits ::
HexDigit
HexDigits HexDigit

HexDigit :: one of

© Ecma International 2019

167

0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

The SourceCharacter immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.

NOTE
For example: 3in is an error and not the two input elements 3 and in.

A conforming implementation, when processing strict mode code, must not extend, as described in B.1.1, the syntax of
NumericLiteral to include LegacyOctalIntegerLiteral, nor extend the syntax of DecimalIntegerLiteral to include
NonOctalDecimalIntegerLiteral.

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a mathematical
value (MV) is derived from the literal; second, this mathematical value is rounded as described below.

The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.
The MV of NumericLiteral :: BinaryIntegerLiteral is the MV of BinaryIntegerLiteral.
The MV of NumericLiteral :: OctalIntegerLiteral is the MV of OctalIntegerLiteral.
The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.
The MV of DecimalLiteral :: DecimalIntegerLiteral . is the MV of DecimalIntegerLiteral.
The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits is the MV of DecimalIntegerLiteral plus

(the MV of DecimalDigits × 10-n), where n is the number of code points in DecimalDigits.

The MV of DecimalLiteral :: DecimalIntegerLiteral . ExponentPart is the MV of DecimalIntegerLiteral × 10e,
where e is the MV of ExponentPart.
The MV of DecimalLiteral :: DecimalIntegerLiteral . DecimalDigits ExponentPart is (the MV of

DecimalIntegerLiteral plus (the MV of DecimalDigits × 10-n)) × 10e, where n is the number of code points in
DecimalDigits and e is the MV of ExponentPart.

The MV of DecimalLiteral :: . DecimalDigits is the MV of DecimalDigits × 10-n, where n is the number of
code points in DecimalDigits.

The MV of DecimalLiteral :: . DecimalDigits ExponentPart is the MV of DecimalDigits × 10e - n, where n is
the number of code points in DecimalDigits and e is the MV of ExponentPart.
The MV of DecimalLiteral :: DecimalIntegerLiteral is the MV of DecimalIntegerLiteral.

The MV of DecimalLiteral :: DecimalIntegerLiteral ExponentPart is the MV of DecimalIntegerLiteral × 10e,
where e is the MV of ExponentPart.
The MV of DecimalIntegerLiteral :: 0 is 0.
The MV of DecimalIntegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

The MV of DecimalIntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit × 10n) plus the
MV of DecimalDigits, where n is the number of code points in DecimalDigits.
The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.
The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits × 10) plus the MV of
DecimalDigit.
The MV of ExponentPart :: ExponentIndicator SignedInteger is the MV of SignedInteger.
The MV of SignedInteger :: DecimalDigits is the MV of DecimalDigits.
The MV of SignedInteger :: + DecimalDigits is the MV of DecimalDigits.
The MV of SignedInteger :: - DecimalDigits is the negative of the MV of DecimalDigits.
The MV of DecimalDigit :: 0 or of HexDigit :: 0 or of OctalDigit :: 0 or of BinaryDigit :: 0 is 0.

11.8.3.1 Static Semantics: MV

168

© Ecma International 2019

168

The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 or of OctalDigit :: 1 or of
BinaryDigit :: 1 is 1.

The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 or of OctalDigit :: 2 is 2.
The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 or of OctalDigit :: 3 is 3.
The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.
The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 or of OctalDigit :: 5 is 5.
The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.
The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit :: 7 is 7.
The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.
The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is 9.
The MV of HexDigit :: a or of HexDigit :: A is 10.
The MV of HexDigit :: b or of HexDigit :: B is 11.
The MV of HexDigit :: c or of HexDigit :: C is 12.
The MV of HexDigit :: d or of HexDigit :: D is 13.
The MV of HexDigit :: e or of HexDigit :: E is 14.
The MV of HexDigit :: f or of HexDigit :: F is 15.
The MV of BinaryIntegerLiteral :: 0b BinaryDigits is the MV of BinaryDigits.
The MV of BinaryIntegerLiteral :: 0B BinaryDigits is the MV of BinaryDigits.
The MV of BinaryDigits :: BinaryDigit is the MV of BinaryDigit.
The MV of BinaryDigits :: BinaryDigits BinaryDigit is (the MV of BinaryDigits × 2) plus the MV of
BinaryDigit.
The MV of OctalIntegerLiteral :: 0o OctalDigits is the MV of OctalDigits.
The MV of OctalIntegerLiteral :: 0O OctalDigits is the MV of OctalDigits.
The MV of OctalDigits :: OctalDigit is the MV of OctalDigit.
The MV of OctalDigits :: OctalDigits OctalDigit is (the MV of OctalDigits × 8) plus the MV of OctalDigit.
The MV of HexIntegerLiteral :: 0x HexDigits is the MV of HexDigits.
The MV of HexIntegerLiteral :: 0X HexDigits is the MV of HexDigits.
The MV of HexDigits :: HexDigit is the MV of HexDigit.
The MV of HexDigits :: HexDigits HexDigit is (the MV of HexDigits × 16) plus the MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type. If the
MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the MV (as specified
in 6.1.6), unless the literal is a DecimalLiteral and the literal has more than 20 significant digits, in which case the
Number value may be either the Number value for the MV of a literal produced by replacing each significant digit after
the 20th with a 0 digit or the Number value for the MV of a literal produced by replacing each significant digit after the
20th with a 0 digit and then incrementing the literal at the 20th significant digit position. A digit is significant if it is not
part of an ExponentPart and

it is not 0; or
there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

NOTE 1
A string literal is zero or more Unicode code points enclosed in single or double quotes. Unicode code points may also
be represented by an escape sequence. All code points may appear literally in a string literal except for the closing quote
code points, U+005C (REVERSE SOLIDUS), U+000D (CARRIAGE RETURN), and U+000A (LINE FEED). Any code
points may appear in the form of an escape sequence. String literals evaluate to ECMAScript String values. When

11.8.4 String Literals

© Ecma International 2019

169

generating these String values Unicode code points are UTF-16 encoded as defined in 10.1.1. Code points belonging to
the Basic Multilingual Plane are encoded as a single code unit element of the string. All other code points are encoded as
two code unit elements of the string.

StringLiteral ::
" DoubleStringCharactersopt "
' SingleStringCharactersopt '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::
SourceCharacter but not one of " or \ or LineTerminator
<LS>
<PS>
\ EscapeSequence
LineContinuation

SingleStringCharacter ::
SourceCharacter but not one of ' or \ or LineTerminator
<LS>
<PS>
\ EscapeSequence
LineContinuation

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ∉ DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

A conforming implementation, when processing strict mode code, must not extend the syntax of EscapeSequence to
include LegacyOctalEscapeSequence as described in B.1.2.

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b f n r t v

NonEscapeCharacter ::

Syntax

170

© Ecma International 2019

170

SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
x
u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u Hex4Digits
u{ CodePoint }

Hex4Digits ::
HexDigit HexDigit HexDigit HexDigit

The definition of the nonterminal HexDigit is given in 11.8.3. SourceCharacter is defined in 10.1.

NOTE 2
<LF> and <CR> cannot appear in a string literal, except as part of a LineContinuation to produce the empty code points
sequence. The proper way to include either in the String value of a string literal is to use an escape sequence such as \n
or \u000A.

StringLiteral ::
" DoubleStringCharactersopt "
' SingleStringCharactersopt '

1. Return the String value whose code units are the SV of this StringLiteral.

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of code unit
values contributed by the various parts of the string literal. As part of this process, some Unicode code points within the
string literal are interpreted as having a mathematical value (MV), as described below or in 11.8.3.

The SV of StringLiteral :: " " is the empty code unit sequence.
The SV of StringLiteral :: ' ' is the empty code unit sequence.
The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.
The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.
The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of up to two code units that is the
SV of DoubleStringCharacter.
The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of up to
two code units that is the SV of DoubleStringCharacter followed by the code units of the SV of
DoubleStringCharacters in order.
The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of up to two code units that is the SV

11.8.4.1 Static Semantics: StringValue

11.8.4.2 Static Semantics: SV

© Ecma International 2019

171

of SingleStringCharacter.
The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of up to two
code units that is the SV of SingleStringCharacter followed by the code units of the SV of SingleStringCharacters
in order.
The SV of DoubleStringCharacter :: SourceCharacter but not one of " or \ or LineTerminator is the
UTF16Encoding of the code point value of SourceCharacter.
The SV of DoubleStringCharacter :: <LS> is the code unit 0x2028 (LINE SEPARATOR).
The SV of DoubleStringCharacter :: <PS> is the code unit 0x2029 (PARAGRAPH SEPARATOR).
The SV of DoubleStringCharacter :: \ EscapeSequence is the SV of the EscapeSequence.
The SV of DoubleStringCharacter :: LineContinuation is the empty code unit sequence.
The SV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the
UTF16Encoding of the code point value of SourceCharacter.
The SV of SingleStringCharacter :: <LS> is the code unit 0x2028 (LINE SEPARATOR).
The SV of SingleStringCharacter :: <PS> is the code unit 0x2029 (PARAGRAPH SEPARATOR).
The SV of SingleStringCharacter :: \ EscapeSequence is the SV of the EscapeSequence.
The SV of SingleStringCharacter :: LineContinuation is the empty code unit sequence.
The SV of EscapeSequence :: CharacterEscapeSequence is the SV of the CharacterEscapeSequence.
The SV of EscapeSequence :: 0 is the code unit 0x0000 (NULL).
The SV of EscapeSequence :: HexEscapeSequence is the SV of the HexEscapeSequence.
The SV of EscapeSequence :: UnicodeEscapeSequence is the SV of the UnicodeEscapeSequence.
The SV of CharacterEscapeSequence :: SingleEscapeCharacter is the code unit whose value is determined by
the SingleEscapeCharacter according to Table 34.

Table 34: String Single Character Escape Sequences

Escape Sequence Code Unit Value Unicode Character Name Symbol

\b 0x0008 BACKSPACE <BS>

\t 0x0009 CHARACTER TABULATION <HT>

\n 0x000A LINE FEED (LF) <LF>

\v 0x000B LINE TABULATION <VT>

\f 0x000C FORM FEED (FF) <FF>

\r 0x000D CARRIAGE RETURN (CR) <CR>

\" 0x0022 QUOTATION MARK "

\' 0x0027 APOSTROPHE '

\\ 0x005C REVERSE SOLIDUS \

The SV of CharacterEscapeSequence :: NonEscapeCharacter is the SV of the NonEscapeCharacter.
The SV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the
UTF16Encoding of the code point value of SourceCharacter.
The SV of HexEscapeSequence :: x HexDigit HexDigit is the code unit whose value is (16 times the MV of the
first HexDigit) plus the MV of the second HexDigit.
The SV of UnicodeEscapeSequence :: u Hex4Digits is the SV of Hex4Digits.

172

© Ecma International 2019

172

The SV of Hex4Digits :: HexDigit HexDigit HexDigit HexDigit is the code unit whose value is (0x1000 times
the MV of the first HexDigit) plus (0x100 times the MV of the second HexDigit) plus (0x10 times the MV of the
third HexDigit) plus the MV of the fourth HexDigit.
The SV of UnicodeEscapeSequence :: u{ CodePoint } is the UTF16Encoding of the MV of CodePoint.

NOTE 1
A regular expression literal is an input element that is converted to a RegExp object (see 21.2) each time the literal is
evaluated. Two regular expression literals in a program evaluate to regular expression objects that never compare as ===
to each other even if the two literals' contents are identical. A RegExp object may also be created at runtime by
new RegExp or calling the RegExp constructor as a function (see 21.2.3).

The productions below describe the syntax for a regular expression literal and are used by the input element scanner to
find the end of the regular expression literal. The source text comprising the RegularExpressionBody and the
RegularExpressionFlags are subsequently parsed again using the more stringent ECMAScript Regular Expression
grammar (21.2.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 21.2.1, but it must not extend
the RegularExpressionBody and RegularExpressionFlags productions defined below or the productions used by these
productions.

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionClass ::

11.8.5 Regular Expression Literals

Syntax

© Ecma International 2019

173

[RegularExpressionClassChars]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of] or \
RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

NOTE 2
Regular expression literals may not be empty; instead of representing an empty regular expression literal, the code unit
sequence // starts a single-line comment. To specify an empty regular expression, use: /(?:)/.

RegularExpressionFlags :: RegularExpressionFlags IdentifierPart

It is a Syntax Error if IdentifierPart contains a Unicode escape sequence.

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source text that was recognized as RegularExpressionBody.

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source text that was recognized as RegularExpressionFlags.

Template ::
NoSubstitutionTemplate
TemplateHead

NoSubstitutionTemplate ::
` TemplateCharactersopt `

TemplateHead ::
` TemplateCharactersopt ${

TemplateSubstitutionTail ::
TemplateMiddle
TemplateTail

11.8.5.1 Static Semantics: Early Errors

11.8.5.2 Static Semantics: BodyText

11.8.5.3 Static Semantics: FlagText

11.8.6 Template Literal Lexical Components

Syntax

174

© Ecma International 2019

174

TemplateMiddle ::
} TemplateCharactersopt ${

TemplateTail ::
} TemplateCharactersopt `

TemplateCharacters ::
TemplateCharacter TemplateCharactersopt

TemplateCharacter ::
$ [lookahead ≠ {]
\ EscapeSequence
\ NotEscapeSequence
LineContinuation
LineTerminatorSequence
SourceCharacter but not one of ` or \ or $ or LineTerminator

NotEscapeSequence ::
0 DecimalDigit
DecimalDigit but not 0
x [lookahead ∉ HexDigit]
x HexDigit [lookahead ∉ HexDigit]
u [lookahead ∉ HexDigit] [lookahead ≠ {]
u HexDigit [lookahead ∉ HexDigit]
u HexDigit HexDigit [lookahead ∉ HexDigit]
u HexDigit HexDigit HexDigit [lookahead ∉ HexDigit]
u { [lookahead ∉ HexDigit]
u { NotCodePoint [lookahead ∉ HexDigit]
u { CodePoint [lookahead ∉ HexDigit] [lookahead ≠ }]

NotCodePoint ::
HexDigits but only if MV of HexDigits > 0x10FFFF

CodePoint ::
HexDigits but only if MV of HexDigits ≤ 0x10FFFF

A conforming implementation must not use the extended definition of EscapeSequence described in B.1.2 when parsing
a TemplateCharacter.

NOTE
TemplateSubstitutionTail is used by the InputElementTemplateTail alternative lexical goal.

A template literal component is interpreted as a sequence of Unicode code points. The Template Value (TV) of a literal
component is described in terms of code unit values (SV, 11.8.4) contributed by the various parts of the template literal
component. As part of this process, some Unicode code points within the template component are interpreted as having a
mathematical value (MV, 11.8.3). In determining a TV, escape sequences are replaced by the UTF-16 code unit(s) of the
Unicode code point represented by the escape sequence. The Template Raw Value (TRV) is similar to a Template Value

11.8.6.1 Static Semantics: TV and TRV

© Ecma International 2019

175

with the difference that in TRVs escape sequences are interpreted literally.

The TV and TRV of NoSubstitutionTemplate :: ` ` is the empty code unit sequence.
The TV and TRV of TemplateHead :: ` ${ is the empty code unit sequence.
The TV and TRV of TemplateMiddle :: } ${ is the empty code unit sequence.
The TV and TRV of TemplateTail :: } ` is the empty code unit sequence.
The TV of NoSubstitutionTemplate :: ` TemplateCharacters ` is the TV of TemplateCharacters.
The TV of TemplateHead :: ` TemplateCharacters ${ is the TV of TemplateCharacters.
The TV of TemplateMiddle :: } TemplateCharacters ${ is the TV of TemplateCharacters.
The TV of TemplateTail :: } TemplateCharacters ` is the TV of TemplateCharacters.
The TV of TemplateCharacters :: TemplateCharacter is the TV of TemplateCharacter.
The TV of TemplateCharacters :: TemplateCharacter TemplateCharacters is undefined if either the TV of
TemplateCharacter is undefined or the TV of TemplateCharacters is undefined. Otherwise, it is a sequence
consisting of the code units of the TV of TemplateCharacter followed by the code units of the TV of
TemplateCharacters.
The TV of TemplateCharacter :: SourceCharacter but not one of ` or \ or $ or LineTerminator is the
UTF16Encoding of the code point value of SourceCharacter.
The TV of TemplateCharacter :: $ is the code unit 0x0024 (DOLLAR SIGN).
The TV of TemplateCharacter :: \ EscapeSequence is the SV of EscapeSequence.
The TV of TemplateCharacter :: \ NotEscapeSequence is undefined.
The TV of TemplateCharacter :: LineContinuation is the TV of LineContinuation.
The TV of TemplateCharacter :: LineTerminatorSequence is the TRV of LineTerminatorSequence.
The TV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.
The TRV of NoSubstitutionTemplate :: ` TemplateCharacters ` is the TRV of TemplateCharacters.
The TRV of TemplateHead :: ` TemplateCharacters ${ is the TRV of TemplateCharacters.
The TRV of TemplateMiddle :: } TemplateCharacters ${ is the TRV of TemplateCharacters.
The TRV of TemplateTail :: } TemplateCharacters ` is the TRV of TemplateCharacters.
The TRV of TemplateCharacters :: TemplateCharacter is the TRV of TemplateCharacter.
The TRV of TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of the
code units of the TRV of TemplateCharacter followed by the code units of the TRV of TemplateCharacters.
The TRV of TemplateCharacter :: SourceCharacter but not one of ` or \ or $ or LineTerminator is the
UTF16Encoding of the code point value of SourceCharacter.
The TRV of TemplateCharacter :: $ is the code unit 0x0024 (DOLLAR SIGN).
The TRV of TemplateCharacter :: \ EscapeSequence is the sequence consisting of the code unit 0x005C
(REVERSE SOLIDUS) followed by the code units of TRV of EscapeSequence.
The TRV of TemplateCharacter :: \ NotEscapeSequence is the sequence consisting of the code unit 0x005C
(REVERSE SOLIDUS) followed by the code units of TRV of NotEscapeSequence.
The TRV of TemplateCharacter :: LineContinuation is the TRV of LineContinuation.
The TRV of TemplateCharacter :: LineTerminatorSequence is the TRV of LineTerminatorSequence.
The TRV of EscapeSequence :: CharacterEscapeSequence is the TRV of the CharacterEscapeSequence.
The TRV of EscapeSequence :: 0 is the code unit 0x0030 (DIGIT ZERO).
The TRV of EscapeSequence :: HexEscapeSequence is the TRV of the HexEscapeSequence.
The TRV of EscapeSequence :: UnicodeEscapeSequence is the TRV of the UnicodeEscapeSequence.
The TRV of NotEscapeSequence :: 0 DecimalDigit is the sequence consisting of the code unit 0x0030 (DIGIT
ZERO) followed by the code units of the TRV of DecimalDigit.
The TRV of NotEscapeSequence :: x [lookahead ∉ HexDigit] is the code unit 0x0078 (LATIN SMALL
LETTER X).

176

© Ecma International 2019

176

The TRV of NotEscapeSequence :: x HexDigit [lookahead ∉ HexDigit] is the sequence consisting of the code
unit 0x0078 (LATIN SMALL LETTER X) followed by the code units of the TRV of HexDigit.
The TRV of NotEscapeSequence :: u [lookahead ∉ HexDigit] [lookahead ≠ {] is the code unit 0x0075 (LATIN
SMALL LETTER U).
The TRV of NotEscapeSequence :: u HexDigit [lookahead ∉ HexDigit] is the sequence consisting of the code
unit 0x0075 (LATIN SMALL LETTER U) followed by the code units of the TRV of HexDigit.
The TRV of NotEscapeSequence :: u HexDigit HexDigit [lookahead ∉ HexDigit] is the sequence consisting of
the code unit 0x0075 (LATIN SMALL LETTER U) followed by the code units of the TRV of the first HexDigit
followed by the code units of the TRV of the second HexDigit.
The TRV of NotEscapeSequence :: u HexDigit HexDigit HexDigit [lookahead ∉ HexDigit] is the sequence
consisting of the code unit 0x0075 (LATIN SMALL LETTER U) followed by the code units of the TRV of the first
HexDigit followed by the code units of the TRV of the second HexDigit followed by the code units of the TRV of
the third HexDigit.
The TRV of NotEscapeSequence :: u { [lookahead ∉ HexDigit] is the sequence consisting of the code unit
0x0075 (LATIN SMALL LETTER U) followed by the code unit 0x007B (LEFT CURLY BRACKET).
The TRV of NotEscapeSequence :: u { NotCodePoint [lookahead ∉ HexDigit] is the sequence consisting of
the code unit 0x0075 (LATIN SMALL LETTER U) followed by the code unit 0x007B (LEFT CURLY
BRACKET) followed by the code units of the TRV of NotCodePoint.
The TRV of NotEscapeSequence :: u { CodePoint [lookahead ∉ HexDigit] [lookahead ≠ }] is the sequence
consisting of the code unit 0x0075 (LATIN SMALL LETTER U) followed by the code unit 0x007B (LEFT
CURLY BRACKET) followed by the code units of the TRV of CodePoint.
The TRV of DecimalDigit :: one of 0 1 2 3 4 5 6 7 8 9 is the SV of the SourceCharacter that is that
single code point.
The TRV of CharacterEscapeSequence :: SingleEscapeCharacter is the TRV of the SingleEscapeCharacter.
The TRV of CharacterEscapeSequence :: NonEscapeCharacter is the SV of the NonEscapeCharacter.
The TRV of SingleEscapeCharacter :: one of ' " \ b f n r t v is the SV of the SourceCharacter that is
that single code point.
The TRV of HexEscapeSequence :: x HexDigit HexDigit is the sequence consisting of the code unit 0x0078
(LATIN SMALL LETTER X) followed by TRV of the first HexDigit followed by the TRV of the second HexDigit.
The TRV of UnicodeEscapeSequence :: u Hex4Digits is the sequence consisting of the code unit 0x0075
(LATIN SMALL LETTER U) followed by TRV of Hex4Digits.
The TRV of UnicodeEscapeSequence :: u{ CodePoint } is the sequence consisting of the code unit 0x0075
(LATIN SMALL LETTER U) followed by the code unit 0x007B (LEFT CURLY BRACKET) followed by TRV of
CodePoint followed by the code unit 0x007D (RIGHT CURLY BRACKET).
The TRV of Hex4Digits :: HexDigit HexDigit HexDigit HexDigit is the sequence consisting of the TRV of the
first HexDigit followed by the TRV of the second HexDigit followed by the TRV of the third HexDigit followed by
the TRV of the fourth HexDigit.
The TRV of HexDigits :: HexDigit is the TRV of HexDigit.
The TRV of HexDigits :: HexDigits HexDigit is the sequence consisting of TRV of HexDigits followed by TRV
of HexDigit.
The TRV of a HexDigit is the SV of the SourceCharacter that is that HexDigit.
The TRV of LineContinuation :: \ LineTerminatorSequence is the sequence consisting of the code unit 0x005C
(REVERSE SOLIDUS) followed by the code units of TRV of LineTerminatorSequence.
The TRV of LineTerminatorSequence :: <LF> is the code unit 0x000A (LINE FEED).
The TRV of LineTerminatorSequence :: <CR> is the code unit 0x000A (LINE FEED).
The TRV of LineTerminatorSequence :: <LS> is the code unit 0x2028 (LINE SEPARATOR).
The TRV of LineTerminatorSequence :: <PS> is the code unit 0x2029 (PARAGRAPH SEPARATOR).

© Ecma International 2019

177

The TRV of LineTerminatorSequence :: <CR><LF> is the sequence consisting of the code unit 0x000A (LINE
FEED).

NOTE
TV excludes the code units of LineContinuation while TRV includes them. <CR><LF> and <CR>
LineTerminatorSequences are normalized to <LF> for both TV and TRV. An explicit EscapeSequence is needed to
include a <CR> or <CR><LF> sequence.

Most ECMAScript statements and declarations must be terminated with a semicolon. Such semicolons may always
appear explicitly in the source text. For convenience, however, such semicolons may be omitted from the source text in
certain situations. These situations are described by saying that semicolons are automatically inserted into the source
code token stream in those situations.

In the following rules, “token” means the actual recognized lexical token determined using the current lexical goal
symbol as described in clause 11.

There are three basic rules of semicolon insertion:

1. When, as the source text is parsed from left to right, a token (called the offending token) is encountered that is not
allowed by any production of the grammar, then a semicolon is automatically inserted before the offending token if
one or more of the following conditions is true:

The offending token is separated from the previous token by at least one LineTerminator.
The offending token is }.
The previous token is) and the inserted semicolon would then be parsed as the terminating semicolon of a
do-while statement (13.7.2).

2. When, as the source text is parsed from left to right, the end of the input stream of tokens is encountered and the
parser is unable to parse the input token stream as a single instance of the goal nonterminal, then a semicolon is
automatically inserted at the end of the input stream.

3. When, as the source text is parsed from left to right, a token is encountered that is allowed by some production of
the grammar, but the production is a restricted production and the token would be the first token for a terminal or
nonterminal immediately following the annotation “[no LineTerminator here]” within the restricted production (and
therefore such a token is called a restricted token), and the restricted token is separated from the previous token by
at least one LineTerminator, then a semicolon is automatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted automatically
if the semicolon would then be parsed as an empty statement or if that semicolon would become one of the two
semicolons in the header of a for statement (see 13.7.4).

NOTE
The following are the only restricted productions in the grammar:

UpdateExpression[Yield, Await] :

LeftHandSideExpression[?Yield, ?Await] [no LineTerminator here] ++

11.9 Automatic Semicolon Insertion

11.9.1 Rules of Automatic Semicolon Insertion

178

© Ecma International 2019

178

LeftHandSideExpression[?Yield, ?Await] [no LineTerminator here] --

ContinueStatement[Yield, Await] :

continue ;
continue [no LineTerminator here] LabelIdentifier[?Yield, ?Await] ;

BreakStatement[Yield, Await] :

break ;
break [no LineTerminator here] LabelIdentifier[?Yield, ?Await] ;

ReturnStatement[Yield, Await] :

return ;
return [no LineTerminator here] Expression[+In, ?Yield, ?Await] ;

ThrowStatement[Yield, Await] :

throw [no LineTerminator here] Expression[+In, ?Yield, ?Await] ;

ArrowFunction[In, Yield, Await] :

ArrowParameters[?Yield, ?Await] [no LineTerminator here] => ConciseBody[?In]

YieldExpression[In, Await] :

yield [no LineTerminator here] AssignmentExpression[?In, +Yield, ?Await]
yield [no LineTerminator here] * AssignmentExpression[?In, +Yield, ?Await]

The practical effect of these restricted productions is as follows:

When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminator occurred between the preceding token and the ++ or -- token, then a semicolon is automatically
inserted before the ++ or -- token.
When a continue, break, return, throw, or yield token is encountered and a LineTerminator is
encountered before the next token, a semicolon is automatically inserted after the continue, break, return,
throw, or yield token.

The resulting practical advice to ECMAScript programmers is:

A postfix ++ or -- operator should appear on the same line as its operand.
An Expression in a return or throw statement or an AssignmentExpression in a yield expression should start
on the same line as the return, throw, or yield token.
A LabelIdentifier in a break or continue statement should be on the same line as the break or continue
token.

The source

{ 1 2 } 3

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In contrast, the

11.9.2 Examples of Automatic Semicolon Insertion

© Ecma International 2019

179

source

{ 1
2 } 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the following:

{ 1
;2 ;} 3;

which is a valid ECMAScript sentence.

The source

for (a; b
)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the semicolon is needed
for the header of a for statement. Automatic semicolon insertion never inserts one of the two semicolons in the header
of a for statement.

The source

return
a + b

is transformed by automatic semicolon insertion into the following:

return;
a + b;

NOTE 1
The expression a + b is not treated as a value to be returned by the return statement, because a LineTerminator
separates it from the token return.

The source

a = b
++c

is transformed by automatic semicolon insertion into the following:

a = b;
++c;

NOTE 2
The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator occurs between b
and ++.

The source

if (a > b)

180

© Ecma International 2019

180

else c = d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token, even
though no production of the grammar applies at that point, because an automatically inserted semicolon would then be
parsed as an empty statement.

The source

a = b + c
(d + e).print()

is not transformed by automatic semicolon insertion, because the parenthesized expression that begins the second line can
be interpreted as an argument list for a function call:

a = b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the programmer
to provide an explicit semicolon at the end of the preceding statement rather than to rely on automatic semicolon
insertion.

IdentifierReference[Yield, Await] :

Identifier
[~Yield] yield
[~Await] await

BindingIdentifier[Yield, Await] :

Identifier
yield
await

LabelIdentifier[Yield, Await] :

Identifier
[~Yield] yield
[~Await] await

Identifier :
IdentifierName but not ReservedWord

NOTE
yield and await are permitted as BindingIdentifier in the grammar, and prohibited with static semantics below, to
prohibit automatic semicolon insertion in cases such as

let

12 ECMAScript Language: Expressions

12.1 Identifiers

Syntax

© Ecma International 2019

181

await 0;

BindingIdentifier : Identifier

It is a Syntax Error if the code matched by this production is contained in strict mode code and the StringValue of
Identifier is "arguments" or "eval".

IdentifierReference : yield
BindingIdentifier : yield
LabelIdentifier : yield

It is a Syntax Error if the code matched by this production is contained in strict mode code.

IdentifierReference : await
BindingIdentifier : await
LabelIdentifier : await

It is a Syntax Error if the goal symbol of the syntactic grammar is Module.

BindingIdentifier : yield

It is a Syntax Error if this production has a [Yield] parameter.

BindingIdentifier : await

It is a Syntax Error if this production has an [Await] parameter.

IdentifierReference : Identifier
BindingIdentifier : Identifier
LabelIdentifier : Identifier

It is a Syntax Error if this production has a [Yield] parameter and StringValue of Identifier is "yield".

It is a Syntax Error if this production has an [Await] parameter and StringValue of Identifier is "await".

Identifier : IdentifierName but not ReservedWord

It is a Syntax Error if this phrase is contained in strict mode code and the StringValue of IdentifierName is:
"implements", "interface", "let", "package", "private", "protected", "public",
"static", or "yield".
It is a Syntax Error if the goal symbol of the syntactic grammar is Module and the StringValue of IdentifierName is
"await".
It is a Syntax Error if StringValue of IdentifierName is the same String value as the StringValue of any
ReservedWord except for yield or await.

NOTE
StringValue of IdentifierName normalizes any Unicode escape sequences in IdentifierName hence such escapes cannot be
used to write an Identifier whose code point sequence is the same as a ReservedWord.

12.1.1 Static Semantics: Early Errors

182

© Ecma International 2019

182

BindingIdentifier : Identifier

1. Return a new List containing the StringValue of Identifier.

BindingIdentifier : yield

1. Return a new List containing "yield".

BindingIdentifier : await

1. Return a new List containing "await".

IdentifierReference : Identifier

1. If this IdentifierReference is contained in strict mode code and StringValue of Identifier is "eval" or
"arguments", return strict.

2. Return simple.

IdentifierReference : yield

1. Return simple.

IdentifierReference : await

1. Return simple.

IdentifierReference : yield
BindingIdentifier : yield
LabelIdentifier : yield

1. Return "yield".

IdentifierReference : await
BindingIdentifier : await
LabelIdentifier : await

1. Return "await".

Identifier : IdentifierName but not ReservedWord

1. Return the StringValue of IdentifierName.

With parameters value and environment.

NOTE
undefined is passed for environment to indicate that a PutValue operation should be used to assign the initialization
value. This is the case for var statements and formal parameter lists of some non-strict functions (See 9.2.15). In those

12.1.2 Static Semantics: BoundNames

12.1.3 Static Semantics: AssignmentTargetType

12.1.4 Static Semantics: StringValue

12.1.5 Runtime Semantics: BindingInitialization

© Ecma International 2019

183

cases a lexical binding is hoisted and preinitialized prior to evaluation of its initializer.

BindingIdentifier : Identifier

1. Let name be StringValue of Identifier.
2. Return ? InitializeBoundName(name, value, environment).

BindingIdentifier : yield

1. Return ? InitializeBoundName("yield", value, environment).

BindingIdentifier : await

1. Return ? InitializeBoundName("await", value, environment).

1. Assert: Type(name) is String.
2. If environment is not undefined, then

a. Let env be the EnvironmentRecord component of environment.
b. Perform env.InitializeBinding(name, value).
c. Return NormalCompletion(undefined).

3. Else,
a. Let lhs be ResolveBinding(name).
b. Return ? PutValue(lhs, value).

IdentifierReference : Identifier

1. Return ? ResolveBinding(StringValue of Identifier).

IdentifierReference : yield

1. Return ? ResolveBinding("yield").

IdentifierReference : await

1. Return ? ResolveBinding("await").

NOTE 1
The result of evaluating an IdentifierReference is always a value of type Reference.

NOTE 2
In non-strict code, the keyword yield may be used as an identifier. Evaluating the IdentifierReference resolves the
binding of yield as if it was an Identifier. Early Error restriction ensures that such an evaluation only can occur for
non-strict code.

12.1.5.1 Runtime Semantics: InitializeBoundName (name, value, environment)

12.1.6 Runtime Semantics: Evaluation

12.2 Primary Expression

Syntax

184

© Ecma International 2019

184

PrimaryExpression[Yield, Await] :

this
IdentifierReference[?Yield, ?Await]
Literal
ArrayLiteral[?Yield, ?Await]
ObjectLiteral[?Yield, ?Await]
FunctionExpression
ClassExpression[?Yield, ?Await]
GeneratorExpression
AsyncFunctionExpression
AsyncGeneratorExpression
RegularExpressionLiteral
TemplateLiteral[?Yield, ?Await, ~Tagged]
CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]

CoverParenthesizedExpressionAndArrowParameterList[Yield, Await] :

(Expression[+In, ?Yield, ?Await])
(Expression[+In, ?Yield, ?Await] ,)
()
(... BindingIdentifier[?Yield, ?Await])
(... BindingPattern[?Yield, ?Await])
(Expression[+In, ?Yield, ?Await] , ... BindingIdentifier[?Yield, ?Await])
(Expression[+In, ?Yield, ?Await] , ... BindingPattern[?Yield, ?Await])

When processing an instance of the production
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

the interpretation of CoverParenthesizedExpressionAndArrowParameterList is refined using the following grammar:

ParenthesizedExpression[Yield, Await] :

(Expression[+In, ?Yield, ?Await])

CoverParenthesizedExpressionAndArrowParameterList : (Expression)

1. Return the ParenthesizedExpression that is covered by CoverParenthesizedExpressionAndArrowParameterList.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. If IsFunctionDefinition of expr is false, return false.
3. Return HasName of expr.

Supplemental Syntax

12.2.1 Semantics

12.2.1.1 Static Semantics: CoveredParenthesizedExpression

12.2.1.2 Static Semantics: HasName

© Ecma International 2019

185

PrimaryExpression :
this
IdentifierReference
Literal
ArrayLiteral
ObjectLiteral
RegularExpressionLiteral
TemplateLiteral

1. Return false.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return IsFunctionDefinition of expr.

PrimaryExpression : IdentifierReference

1. Return true.

PrimaryExpression :
this
Literal
ArrayLiteral
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
AsyncFunctionExpression
AsyncGeneratorExpression
RegularExpressionLiteral
TemplateLiteral
CoverParenthesizedExpressionAndArrowParameterList

1. Return false.

PrimaryExpression :
this
Literal
ArrayLiteral
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
AsyncFunctionExpression

12.2.1.3 Static Semantics: IsFunctionDefinition

12.2.1.4 Static Semantics: IsIdentifierRef

12.2.1.5 Static Semantics: AssignmentTargetType

186

© Ecma International 2019

186

AsyncGeneratorExpression
RegularExpressionLiteral
TemplateLiteral

1. Return invalid.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return AssignmentTargetType of expr.

PrimaryExpression : this

1. Return ? ResolveThisBinding().

See 12.1 for IdentifierReference.

Literal :
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

Literal : NullLiteral

1. Return null.

Literal : BooleanLiteral

1. If BooleanLiteral is the token false, return false.
2. If BooleanLiteral is the token true, return true.

Literal : NumericLiteral

1. Return the number whose value is MV of NumericLiteral as defined in 11.8.3.

Literal : StringLiteral

1. Return the StringValue of StringLiteral as defined in 11.8.4.1.

12.2.2 The this Keyword

12.2.2.1 Runtime Semantics: Evaluation

12.2.3 Identifier Reference

12.2.4 Literals

Syntax

12.2.4.1 Runtime Semantics: Evaluation

© Ecma International 2019

187

NOTE
An ArrayLiteral is an expression describing the initialization of an Array object, using a list, of zero or more expressions
each of which represents an array element, enclosed in square brackets. The elements need not be literals; they are
evaluated each time the array initializer is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element list
is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another comma), the missing array
element contributes to the length of the Array and increases the index of subsequent elements. Elided array elements are
not defined. If an element is elided at the end of an array, that element does not contribute to the length of the Array.

ArrayLiteral[Yield, Await] :

[Elisionopt]
[ElementList[?Yield, ?Await]]
[ElementList[?Yield, ?Await] , Elisionopt]

ElementList[Yield, Await] :

Elisionopt AssignmentExpression[+In, ?Yield, ?Await]
Elisionopt SpreadElement[?Yield, ?Await]
ElementList[?Yield, ?Await] , Elisionopt AssignmentExpression[+In, ?Yield, ?Await]
ElementList[?Yield, ?Await] , Elisionopt SpreadElement[?Yield, ?Await]

Elision :
,
Elision ,

SpreadElement[Yield, Await] :

... AssignmentExpression[+In, ?Yield, ?Await]

Elision : ,

1. Return the numeric value 1.

Elision : Elision ,

1. Let preceding be the ElisionWidth of Elision.
2. Return preceding + 1.

With parameters array and nextIndex.

ElementList : Elision AssignmentExpression

1. Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
2. Let initResult be the result of evaluating AssignmentExpression.

12.2.5 Array Initializer

Syntax

12.2.5.1 Static Semantics: ElisionWidth

12.2.5.2 Runtime Semantics: ArrayAccumulation

188

© Ecma International 2019

188

3. Let initValue be ? GetValue(initResult).
4. Let created be CreateDataProperty(array, ToString(ToUint32(nextIndex + padding)), initValue).
5. Assert: created is true.
6. Return nextIndex + padding + 1.

ElementList : Elision SpreadElement

1. Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
2. Return the result of performing ArrayAccumulation for SpreadElement with arguments array and nextIndex +

padding.

ElementList : ElementList , Elision AssignmentExpression

1. Let postIndex be the result of performing ArrayAccumulation for ElementList with arguments array and nextIndex.
2. ReturnIfAbrupt(postIndex).
3. Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
4. Let initResult be the result of evaluating AssignmentExpression.
5. Let initValue be ? GetValue(initResult).
6. Let created be CreateDataProperty(array, ToString(ToUint32(postIndex + padding)), initValue).
7. Assert: created is true.
8. Return postIndex + padding + 1.

ElementList : ElementList , Elision SpreadElement

1. Let postIndex be the result of performing ArrayAccumulation for ElementList with arguments array and nextIndex.
2. ReturnIfAbrupt(postIndex).
3. Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
4. Return the result of performing ArrayAccumulation for SpreadElement with arguments array and postIndex +

padding.

SpreadElement : ... AssignmentExpression

1. Let spreadRef be the result of evaluating AssignmentExpression.
2. Let spreadObj be ? GetValue(spreadRef).
3. Let iteratorRecord be ? GetIterator(spreadObj).
4. Repeat,

a. Let next be ? IteratorStep(iteratorRecord).
b. If next is false, return nextIndex.
c. Let nextValue be ? IteratorValue(next).
d. Let status be CreateDataProperty(array, ToString(ToUint32(nextIndex)), nextValue).
e. Assert: status is true.
f. Increase nextIndex by 1.

NOTE
CreateDataProperty is used to ensure that own properties are defined for the array even if the standard built-in Array
prototype object has been modified in a manner that would preclude the creation of new own properties using [[Set]].

ArrayLiteral : [Elision]
12.2.5.3 Runtime Semantics: Evaluation

© Ecma International 2019

189

1. Let array be ! ArrayCreate(0).
2. Let pad be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
3. Perform Set(array, "length", ToUint32(pad), false).
4. NOTE: The above Set cannot fail because of the nature of the object returned by ArrayCreate.
5. Return array.

ArrayLiteral : [ElementList]

1. Let array be ! ArrayCreate(0).
2. Let len be the result of performing ArrayAccumulation for ElementList with arguments array and 0.
3. ReturnIfAbrupt(len).
4. Perform Set(array, "length", ToUint32(len), false).
5. NOTE: The above Set cannot fail because of the nature of the object returned by ArrayCreate.
6. Return array.

ArrayLiteral : [ElementList , Elision]

1. Let array be ! ArrayCreate(0).
2. Let len be the result of performing ArrayAccumulation for ElementList with arguments array and 0.
3. ReturnIfAbrupt(len).
4. Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
5. Perform Set(array, "length", ToUint32(padding + len), false).
6. NOTE: The above Set cannot fail because of the nature of the object returned by ArrayCreate.
7. Return array.

NOTE 1
An object initializer is an expression describing the initialization of an Object, written in a form resembling a literal. It is
a list of zero or more pairs of property keys and associated values, enclosed in curly brackets. The values need not be
literals; they are evaluated each time the object initializer is evaluated.

ObjectLiteral[Yield, Await] :

{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :

PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :

IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

12.2.6 Object Initializer

Syntax

190

© Ecma International 2019

190

PropertyName[Yield, Await] :

LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :

[AssignmentExpression[+In, ?Yield, ?Await]]

CoverInitializedName[Yield, Await] :

IdentifierReference[?Yield, ?Await] Initializer[+In, ?Yield, ?Await]

Initializer[In, Yield, Await] :

= AssignmentExpression[?In, ?Yield, ?Await]

NOTE 2
MethodDefinition is defined in 14.3.

NOTE 3
In certain contexts, ObjectLiteral is used as a cover grammar for a more restricted secondary grammar. The
CoverInitializedName production is necessary to fully cover these secondary grammars. However, use of this production
results in an early Syntax Error in normal contexts where an actual ObjectLiteral is expected.

PropertyDefinition : MethodDefinition

It is a Syntax Error if HasDirectSuper of MethodDefinition is true.

In addition to describing an actual object initializer the ObjectLiteral productions are also used as a cover grammar for
ObjectAssignmentPattern and may be recognized as part of a CoverParenthesizedExpressionAndArrowParameterList.
When ObjectLiteral appears in a context where ObjectAssignmentPattern is required the following Early Error rules are
not applied. In addition, they are not applied when initially parsing a
CoverParenthesizedExpressionAndArrowParameterList or CoverCallExpressionAndAsyncArrowHead.

PropertyDefinition : CoverInitializedName

Always throw a Syntax Error if code matches this production.

NOTE
This production exists so that ObjectLiteral can serve as a cover grammar for ObjectAssignmentPattern. It cannot occur
in an actual object initializer.

With parameter symbol.

PropertyName : LiteralPropertyName

12.2.6.1 Static Semantics: Early Errors

12.2.6.2 Static Semantics: ComputedPropertyContains

© Ecma International 2019

191

1. Return false.

PropertyName : ComputedPropertyName

1. Return the result of ComputedPropertyName Contains symbol.

With parameter symbol.

PropertyDefinition : MethodDefinition

1. If symbol is MethodDefinition, return true.
2. Return the result of ComputedPropertyContains for MethodDefinition with argument symbol.

NOTE
Static semantic rules that depend upon substructure generally do not look into function definitions.

LiteralPropertyName : IdentifierName

1. If symbol is a ReservedWord, return false.
2. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return

true.
3. Return false.

PropertyName : LiteralPropertyName

1. Return false.

PropertyName : ComputedPropertyName

1. Return true.

PropertyDefinition : IdentifierReference

1. Return StringValue of IdentifierReference.

PropertyDefinition : ... AssignmentExpression

1. Return empty.

PropertyDefinition : PropertyName : AssignmentExpression

1. Return PropName of PropertyName.

LiteralPropertyName : IdentifierName

1. Return StringValue of IdentifierName.

LiteralPropertyName : StringLiteral

1. Return the String value whose code units are the SV of the StringLiteral.

12.2.6.3 Static Semantics: Contains

12.2.6.4 Static Semantics: IsComputedPropertyKey

12.2.6.5 Static Semantics: PropName

192

© Ecma International 2019

192

LiteralPropertyName : NumericLiteral

1. Let nbr be the result of forming the value of the NumericLiteral.
2. Return ! ToString(nbr).

ComputedPropertyName : [AssignmentExpression]

1. Return empty.

PropertyDefinitionList : PropertyDefinition

1. If PropName of PropertyDefinition is empty, return a new empty List.
2. Return a new List containing PropName of PropertyDefinition.

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1. Let list be PropertyNameList of PropertyDefinitionList.
2. If PropName of PropertyDefinition is empty, return list.
3. Append PropName of PropertyDefinition to the end of list.
4. Return list.

ObjectLiteral : { }

1. Return ObjectCreate(%ObjectPrototype%).

ObjectLiteral :
{ PropertyDefinitionList }
{ PropertyDefinitionList , }

1. Let obj be ObjectCreate(%ObjectPrototype%).
2. Perform ? PropertyDefinitionEvaluation of PropertyDefinitionList with arguments obj and true.
3. Return obj.

LiteralPropertyName : IdentifierName

1. Return StringValue of IdentifierName.

LiteralPropertyName : StringLiteral

1. Return the String value whose code units are the SV of the StringLiteral.

LiteralPropertyName : NumericLiteral

1. Let nbr be the result of forming the value of the NumericLiteral.
2. Return ! ToString(nbr).

ComputedPropertyName : [AssignmentExpression]

1. Let exprValue be the result of evaluating AssignmentExpression.
2. Let propName be ? GetValue(exprValue).
3. Return ? ToPropertyKey(propName).

12.2.6.6 Static Semantics: PropertyNameList

12.2.6.7 Runtime Semantics: Evaluation

© Ecma International 2019

193

With parameters object and enumerable.

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1. Perform ? PropertyDefinitionEvaluation of PropertyDefinitionList with arguments object and enumerable.
2. Return the result of performing PropertyDefinitionEvaluation of PropertyDefinition with arguments object and

enumerable.

PropertyDefinition : ... AssignmentExpression

1. Let exprValue be the result of evaluating AssignmentExpression.
2. Let fromValue be ? GetValue(exprValue).
3. Let excludedNames be a new empty List.
4. Return ? CopyDataProperties(object, fromValue, excludedNames).

PropertyDefinition : IdentifierReference

1. Let propName be StringValue of IdentifierReference.
2. Let exprValue be the result of evaluating IdentifierReference.
3. Let propValue be ? GetValue(exprValue).
4. Assert: enumerable is true.
5. Assert: object is an ordinary, extensible object with no non-configurable properties.
6. Return ! CreateDataPropertyOrThrow(object, propName, propValue).

PropertyDefinition : PropertyName : AssignmentExpression

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).
3. If IsAnonymousFunctionDefinition(AssignmentExpression) is true, then

a. Let propValue be the result of performing NamedEvaluation for AssignmentExpression with argument
propKey.

4. Else,
a. Let exprValueRef be the result of evaluating AssignmentExpression.
b. Let propValue be ? GetValue(exprValueRef).

5. Assert: enumerable is true.
6. Assert: object is an ordinary, extensible object with no non-configurable properties.
7. Return ! CreateDataPropertyOrThrow(object, propKey, propValue).

NOTE
An alternative semantics for this production is given in B.3.1.

See 14.1 for PrimaryExpression : FunctionExpression .

See 14.4 for PrimaryExpression : GeneratorExpression .

See 14.6 for PrimaryExpression : ClassExpression .

12.2.6.8 Runtime Semantics: PropertyDefinitionEvaluation

12.2.7 Function Defining Expressions

194

© Ecma International 2019

194

See 14.7 for PrimaryExpression : AsyncFunctionExpression .

See 14.5 for PrimaryExpression : AsyncGeneratorExpression .

See 11.8.5.

PrimaryExpression : RegularExpressionLiteral

It is a Syntax Error if BodyText of RegularExpressionLiteral cannot be recognized using the goal symbol Pattern
of the ECMAScript RegExp grammar specified in 21.2.1.
It is a Syntax Error if FlagText of RegularExpressionLiteral contains any code points other than "g", "i", "m",
"s", "u", or "y", or if it contains the same code point more than once.

PrimaryExpression : RegularExpressionLiteral

1. Let pattern be the String value consisting of the UTF16Encoding of each code point of BodyText of
RegularExpressionLiteral.

2. Let flags be the String value consisting of the UTF16Encoding of each code point of FlagText of
RegularExpressionLiteral.

3. Return RegExpCreate(pattern, flags).

TemplateLiteral[Yield, Await, Tagged] :

NoSubstitutionTemplate
SubstitutionTemplate[?Yield, ?Await, ?Tagged]

SubstitutionTemplate[Yield, Await, Tagged] :

TemplateHead Expression[+In, ?Yield, ?Await] TemplateSpans[?Yield, ?Await, ?Tagged]

TemplateSpans[Yield, Await, Tagged] :

TemplateTail
TemplateMiddleList[?Yield, ?Await, ?Tagged] TemplateTail

TemplateMiddleList[Yield, Await, Tagged] :

TemplateMiddle Expression[+In, ?Yield, ?Await]
TemplateMiddleList[?Yield, ?Await, ?Tagged] TemplateMiddle Expression[+In, ?Yield, ?Await]

TemplateLiteral : NoSubstitutionTemplate

12.2.8 Regular Expression Literals

Syntax

12.2.8.1 Static Semantics: Early Errors

12.2.8.2 Runtime Semantics: Evaluation

12.2.9 Template Literals

Syntax

12.2.9.1 Static Semantics: Early Errors

© Ecma International 2019

195

It is a Syntax Error if the number of elements in the result of TemplateStrings of TemplateLiteral with argument

false is greater than 232 - 1.
It is a Syntax Error if the [Tagged] parameter was not set and NoSubstitutionTemplate Contains NotEscapeSequence.

SubstitutionTemplate : TemplateHead Expression TemplateSpans

It is a Syntax Error if the [Tagged] parameter was not set and TemplateHead Contains NotEscapeSequence.

TemplateSpans : TemplateTail

It is a Syntax Error if the [Tagged] parameter was not set and TemplateTail Contains NotEscapeSequence.

TemplateMiddleList[Yield, Await, Tagged] :

TemplateMiddle Expression[+In, ?Yield, ?Await]
TemplateMiddleList[?Yield, ?Await, ?Tagged] TemplateMiddle Expression[+In, ?Yield, ?Await]

It is a Syntax Error if the [Tagged] parameter was not set and TemplateMiddle Contains NotEscapeSequence.

With parameter raw.

TemplateLiteral : NoSubstitutionTemplate

1. If raw is false, then
a. Let string be the TV of NoSubstitutionTemplate.

2. Else,
a. Let string be the TRV of NoSubstitutionTemplate.

3. Return a List containing the single element, string.

SubstitutionTemplate : TemplateHead Expression TemplateSpans

1. If raw is false, then
a. Let head be the TV of TemplateHead.

2. Else,
a. Let head be the TRV of TemplateHead.

3. Let tail be TemplateStrings of TemplateSpans with argument raw.
4. Return a List containing head followed by the elements, in order, of tail.

TemplateSpans : TemplateTail

1. If raw is false, then
a. Let tail be the TV of TemplateTail.

2. Else,
a. Let tail be the TRV of TemplateTail.

3. Return a List containing the single element, tail.

TemplateSpans : TemplateMiddleList TemplateTail

1. Let middle be TemplateStrings of TemplateMiddleList with argument raw.
2. If raw is false, then

a. Let tail be the TV of TemplateTail.

12.2.9.2 Static Semantics: TemplateStrings

196

© Ecma International 2019

196

3. Else,
a. Let tail be the TRV of TemplateTail.

4. Return a List containing the elements, in order, of middle followed by tail.

TemplateMiddleList : TemplateMiddle Expression

1. If raw is false, then
a. Let string be the TV of TemplateMiddle.

2. Else,
a. Let string be the TRV of TemplateMiddle.

3. Return a List containing the single element, string.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

1. Let front be TemplateStrings of TemplateMiddleList with argument raw.
2. If raw is false, then

a. Let last be the TV of TemplateMiddle.
3. Else,

a. Let last be the TRV of TemplateMiddle.
4. Append last as the last element of the List front.
5. Return front.

TemplateLiteral : NoSubstitutionTemplate

1. Let templateLiteral be this TemplateLiteral.
2. Let siteObj be GetTemplateObject(templateLiteral).
3. Return a List containing the one element which is siteObj.

SubstitutionTemplate : TemplateHead Expression TemplateSpans

1. Let templateLiteral be this TemplateLiteral.
2. Let siteObj be GetTemplateObject(templateLiteral).
3. Let firstSubRef be the result of evaluating Expression.
4. Let firstSub be ? GetValue(firstSubRef).
5. Let restSub be SubstitutionEvaluation of TemplateSpans.
6. ReturnIfAbrupt(restSub).
7. Assert: restSub is a List.
8. Return a List whose first element is siteObj, whose second elements is firstSub, and whose subsequent elements are

the elements of restSub, in order. restSub may contain no elements.

The abstract operation GetTemplateObject is called with a Parse Node, templateLiteral, as an argument. It performs the
following steps:

1. Let rawStrings be TemplateStrings of templateLiteral with argument true.
2. Let realm be the current Realm Record.
3. Let templateRegistry be realm.[[TemplateMap]].
4. For each element e of templateRegistry, do

a. If e.[[Site]] is the same Parse Node as templateLiteral, then

12.2.9.3 Runtime Semantics: ArgumentListEvaluation

12.2.9.4 Runtime Semantics: GetTemplateObject (templateLiteral)

© Ecma International 2019

197

i. Return e.[[Array]].
5. Let cookedStrings be TemplateStrings of templateLiteral with argument false.
6. Let count be the number of elements in the List cookedStrings.

7. Assert: count ≤ 232 - 1.
8. Let template be ! ArrayCreate(count).
9. Let rawObj be ! ArrayCreate(count).

10. Let index be 0.
11. Repeat, while index < count

a. Let prop be ! ToString(index).
b. Let cookedValue be the String value cookedStrings[index].
c. Call template.[[DefineOwnProperty]](prop, PropertyDescriptor { [[Value]]: cookedValue, [[Writable]]: false,

[[Enumerable]]: true, [[Configurable]]: false }).
d. Let rawValue be the String value rawStrings[index].
e. Call rawObj.[[DefineOwnProperty]](prop, PropertyDescriptor { [[Value]]: rawValue, [[Writable]]: false,

[[Enumerable]]: true, [[Configurable]]: false }).
f. Increase index by 1.

12. Perform SetIntegrityLevel(rawObj, "frozen").
13. Call template.[[DefineOwnProperty]]("raw", PropertyDescriptor { [[Value]]: rawObj, [[Writable]]: false,

[[Enumerable]]: false, [[Configurable]]: false }).
14. Perform SetIntegrityLevel(template, "frozen").
15. Append the Record { [[Site]]: templateLiteral, [[Array]]: template } to templateRegistry.
16. Return template.

NOTE 1
The creation of a template object cannot result in an abrupt completion.

NOTE 2
Each TemplateLiteral in the program code of a realm is associated with a unique template object that is used in the
evaluation of tagged Templates (12.2.9.6). The template objects are frozen and the same template object is used each
time a specific tagged Template is evaluated. Whether template objects are created lazily upon first evaluation of the
TemplateLiteral or eagerly prior to first evaluation is an implementation choice that is not observable to ECMAScript
code.

NOTE 3
Future editions of this specification may define additional non-enumerable properties of template objects.

TemplateSpans : TemplateTail

1. Return a new empty List.

TemplateSpans : TemplateMiddleList TemplateTail

1. Return the result of SubstitutionEvaluation of TemplateMiddleList.

TemplateMiddleList : TemplateMiddle Expression

1. Let subRef be the result of evaluating Expression.
2. Let sub be ? GetValue(subRef).
3. Return a List containing only sub.

12.2.9.5 Runtime Semantics: SubstitutionEvaluation

198

© Ecma International 2019

198

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

1. Let preceding be the result of SubstitutionEvaluation of TemplateMiddleList.
2. ReturnIfAbrupt(preceding).
3. Let nextRef be the result of evaluating Expression.
4. Let next be ? GetValue(nextRef).
5. Append next as the last element of the List preceding.
6. Return preceding.

TemplateLiteral : NoSubstitutionTemplate

1. Return the String value whose code units are the elements of the TV of NoSubstitutionTemplate as defined in
11.8.6.

SubstitutionTemplate : TemplateHead Expression TemplateSpans

1. Let head be the TV of TemplateHead as defined in 11.8.6.
2. Let subRef be the result of evaluating Expression.
3. Let sub be ? GetValue(subRef).
4. Let middle be ? ToString(sub).
5. Let tail be the result of evaluating TemplateSpans.
6. ReturnIfAbrupt(tail).
7. Return the string-concatenation of head, middle, and tail.

NOTE 1
The string conversion semantics applied to the Expression value are like String.prototype.concat rather than
the + operator.

TemplateSpans : TemplateTail

1. Let tail be the TV of TemplateTail as defined in 11.8.6.
2. Return the String value consisting of the code units of tail.

TemplateSpans : TemplateMiddleList TemplateTail

1. Let head be the result of evaluating TemplateMiddleList.
2. ReturnIfAbrupt(head).
3. Let tail be the TV of TemplateTail as defined in 11.8.6.
4. Return the string-concatenation of head and tail.

TemplateMiddleList : TemplateMiddle Expression

1. Let head be the TV of TemplateMiddle as defined in 11.8.6.
2. Let subRef be the result of evaluating Expression.
3. Let sub be ? GetValue(subRef).
4. Let middle be ? ToString(sub).
5. Return the sequence of code units consisting of the code units of head followed by the elements of middle.

NOTE 2
The string conversion semantics applied to the Expression value are like String.prototype.concat rather than

12.2.9.6 Runtime Semantics: Evaluation

© Ecma International 2019

199

the + operator.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

1. Let rest be the result of evaluating TemplateMiddleList.
2. ReturnIfAbrupt(rest).
3. Let middle be the TV of TemplateMiddle as defined in 11.8.6.
4. Let subRef be the result of evaluating Expression.
5. Let sub be ? GetValue(subRef).
6. Let last be ? ToString(sub).
7. Return the sequence of code units consisting of the elements of rest followed by the code units of middle followed

by the elements of last.

NOTE 3
The string conversion semantics applied to the Expression value are like String.prototype.concat rather than
the + operator.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

It is a Syntax Error if CoverParenthesizedExpressionAndArrowParameterList is not covering a
ParenthesizedExpression.
All Early Error rules for ParenthesizedExpression and its derived productions also apply to
CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.

ParenthesizedExpression : (Expression)

1. Return IsFunctionDefinition of Expression.

ParenthesizedExpression : (Expression)

1. Return AssignmentTargetType of Expression.

With parameter name.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the result of performing NamedEvaluation for expr with argument name.

ParenthesizedExpression : (Expression)

1. Assert: IsAnonymousFunctionDefinition(Expression) is true.

12.2.10 The Grouping Operator

12.2.10.1 Static Semantics: Early Errors

12.2.10.2 Static Semantics: IsFunctionDefinition

12.2.10.3 Static Semantics: AssignmentTargetType

12.2.10.4 Runtime Semantics: NamedEvaluation

200

© Ecma International 2019

200

2. Return the result of performing NamedEvaluation for Expression with argument name.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the result of evaluating expr.

ParenthesizedExpression : (Expression)

1. Return the result of evaluating Expression. This may be of type Reference.

NOTE
This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this is so that
operators such as delete and typeof may be applied to parenthesized expressions.

MemberExpression[Yield, Await] :

PrimaryExpression[?Yield, ?Await]
MemberExpression[?Yield, ?Await] [Expression[+In, ?Yield, ?Await]]
MemberExpression[?Yield, ?Await] . IdentifierName

MemberExpression[?Yield, ?Await] TemplateLiteral[?Yield, ?Await, +Tagged]
SuperProperty[?Yield, ?Await]
MetaProperty
new MemberExpression[?Yield, ?Await] Arguments[?Yield, ?Await]

SuperProperty[Yield, Await] :

super [Expression[+In, ?Yield, ?Await]]
super . IdentifierName

MetaProperty :
NewTarget

NewTarget :
new . target

NewExpression[Yield, Await] :

MemberExpression[?Yield, ?Await]
new NewExpression[?Yield, ?Await]

CallExpression[Yield, Await] :

CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await]
SuperCall[?Yield, ?Await]
CallExpression[?Yield, ?Await] Arguments[?Yield, ?Await]

12.2.10.5 Runtime Semantics: Evaluation

12.3 Left-Hand-Side Expressions

Syntax

© Ecma International 2019

201

CallExpression[?Yield, ?Await] [Expression[+In, ?Yield, ?Await]]
CallExpression[?Yield, ?Await] . IdentifierName

CallExpression[?Yield, ?Await] TemplateLiteral[?Yield, ?Await, +Tagged]

SuperCall[Yield, Await] :

super Arguments[?Yield, ?Await]

Arguments[Yield, Await] :

()
(ArgumentList[?Yield, ?Await])
(ArgumentList[?Yield, ?Await] ,)

ArgumentList[Yield, Await] :

AssignmentExpression[+In, ?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]
ArgumentList[?Yield, ?Await] , AssignmentExpression[+In, ?Yield, ?Await]
ArgumentList[?Yield, ?Await] , ... AssignmentExpression[+In, ?Yield, ?Await]

LeftHandSideExpression[Yield, Await] :

NewExpression[?Yield, ?Await]
CallExpression[?Yield, ?Await]

When processing an instance of the production CallExpression : CoverCallExpressionAndAsyncArrowHead the
interpretation of CoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

CallMemberExpression[Yield, Await] :

MemberExpression[?Yield, ?Await] Arguments[?Yield, ?Await]

CallExpression : CoverCallExpressionAndAsyncArrowHead

1. Return the CallMemberExpression that is covered by CoverCallExpressionAndAsyncArrowHead.

With parameter symbol.

MemberExpression : MemberExpression . IdentifierName

1. If MemberExpression Contains symbol is true, return true.
2. If symbol is a ReservedWord, return false.
3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return

true.
4. Return false.

Supplemental Syntax

12.3.1 Static Semantics

12.3.1.1 Static Semantics: CoveredCallExpression

12.3.1.2 Static Semantics: Contains

202

© Ecma International 2019

202

SuperProperty : super . IdentifierName

1. If symbol is the ReservedWord super, return true.
2. If symbol is a ReservedWord, return false.
3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return

true.
4. Return false.

CallExpression : CallExpression . IdentifierName

1. If CallExpression Contains symbol is true, return true.
2. If symbol is a ReservedWord, return false.
3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return

true.
4. Return false.

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
SuperProperty
MetaProperty
new MemberExpression Arguments

NewExpression :
new NewExpression

LeftHandSideExpression :
CallExpression

1. Return false.

MemberExpression : PrimaryExpression

1. If PrimaryExpression is either an ObjectLiteral or an ArrayLiteral, return true.
2. Return false.

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
SuperProperty
MetaProperty
new MemberExpression Arguments

NewExpression :
new NewExpression

12.3.1.3 Static Semantics: IsFunctionDefinition

12.3.1.4 Static Semantics: IsDestructuring

© Ecma International 2019

203

LeftHandSideExpression :
CallExpression

1. Return false.

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
SuperProperty
MetaProperty
new MemberExpression Arguments

NewExpression :
new NewExpression

LeftHandSideExpression :
CallExpression

1. Return false.

CallExpression :
CallExpression [Expression]
CallExpression . IdentifierName

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
SuperProperty

1. Return simple.

CallExpression :
CoverCallExpressionAndAsyncArrowHead
SuperCall
CallExpression Arguments
CallExpression TemplateLiteral

NewExpression :
new NewExpression

MemberExpression :
MemberExpression TemplateLiteral
new MemberExpression Arguments

NewTarget :
new . target

12.3.1.5 Static Semantics: IsIdentifierRef

12.3.1.6 Static Semantics: AssignmentTargetType

204

© Ecma International 2019

204

1. Return invalid.

NOTE
Properties are accessed by name, using either the dot notation:

MemberExpression . IdentifierName
CallExpression . IdentifierName

or the bracket notation:

MemberExpression [Expression]
CallExpression [Expression]

The dot notation is explained by the following syntactic conversion:

MemberExpression . IdentifierName

is identical in its behaviour to

MemberExpression [<identifier-name-string>]

and similarly

CallExpression . IdentifierName

is identical in its behaviour to

CallExpression [<identifier-name-string>]

where <identifier-name-string> is the result of evaluating StringValue of IdentifierName.

MemberExpression : MemberExpression [Expression]

1. Let baseReference be the result of evaluating MemberExpression.
2. Let baseValue be ? GetValue(baseReference).
3. Let propertyNameReference be the result of evaluating Expression.
4. Let propertyNameValue be ? GetValue(propertyNameReference).
5. Let bv be ? RequireObjectCoercible(baseValue).
6. Let propertyKey be ? ToPropertyKey(propertyNameValue).
7. If the code matched by this MemberExpression is strict mode code, let strict be true, else let strict be false.
8. Return a value of type Reference whose base value component is bv, whose referenced name component is

propertyKey, and whose strict reference flag is strict.

MemberExpression : MemberExpression . IdentifierName

1. Let baseReference be the result of evaluating MemberExpression.
2. Let baseValue be ? GetValue(baseReference).
3. Let bv be ? RequireObjectCoercible(baseValue).
4. Let propertyNameString be StringValue of IdentifierName.

12.3.2 Property Accessors

12.3.2.1 Runtime Semantics: Evaluation

© Ecma International 2019

205

5. If the code matched by this MemberExpression is strict mode code, let strict be true, else let strict be false.
6. Return a value of type Reference whose base value component is bv, whose referenced name component is

propertyNameString, and whose strict reference flag is strict.

CallExpression : CallExpression [Expression]

Is evaluated in exactly the same manner as MemberExpression : MemberExpression [Expression] except that the
contained CallExpression is evaluated in step 1.

CallExpression : CallExpression . IdentifierName

Is evaluated in exactly the same manner as MemberExpression : MemberExpression . IdentifierName except that the
contained CallExpression is evaluated in step 1.

NewExpression : new NewExpression

1. Return ? EvaluateNew(NewExpression, empty).

MemberExpression : new MemberExpression Arguments

1. Return ? EvaluateNew(MemberExpression, Arguments).

The abstract operation EvaluateNew with arguments constructExpr, and arguments performs the following steps:

1. Assert: constructExpr is either a NewExpression or a MemberExpression.
2. Assert: arguments is either empty or an Arguments.
3. Let ref be the result of evaluating constructExpr.
4. Let constructor be ? GetValue(ref).
5. If arguments is empty, let argList be a new empty List.
6. Else,

a. Let argList be ArgumentListEvaluation of arguments.
b. ReturnIfAbrupt(argList).

7. If IsConstructor(constructor) is false, throw a TypeError exception.
8. Return ? Construct(constructor, argList).

CallExpression : CoverCallExpressionAndAsyncArrowHead

1. Let expr be CoveredCallExpression of CoverCallExpressionAndAsyncArrowHead.
2. Let memberExpr be the MemberExpression of expr.
3. Let arguments be the Arguments of expr.
4. Let ref be the result of evaluating memberExpr.
5. Let func be ? GetValue(ref).

12.3.3 The new Operator

12.3.3.1 Runtime Semantics: Evaluation

12.3.3.1.1 Runtime Semantics: EvaluateNew (constructExpr, arguments)

12.3.4 Function Calls

12.3.4.1 Runtime Semantics: Evaluation

206

© Ecma International 2019

206

6. If Type(ref) is Reference and IsPropertyReference(ref) is false and GetReferencedName(ref) is "eval", then
a. If SameValue(func, %eval%) is true, then

i. Let argList be ? ArgumentListEvaluation of arguments.
ii. If argList has no elements, return undefined.

iii. Let evalText be the first element of argList.
iv. If the source code matching this CallExpression is strict mode code, let strictCaller be true. Otherwise

let strictCaller be false.
v. Let evalRealm be the current Realm Record.

vi. Perform ? HostEnsureCanCompileStrings(evalRealm, evalRealm).
vii. Return ? PerformEval(evalText, evalRealm, strictCaller, true).

7. Let thisCall be this CallExpression.
8. Let tailCall be IsInTailPosition(thisCall).
9. Return ? EvaluateCall(func, ref, arguments, tailCall).

A CallExpression evaluation that executes step 6.a.vii is a direct eval.

CallExpression : CallExpression Arguments

1. Let ref be the result of evaluating CallExpression.
2. Let func be ? GetValue(ref).
3. Let thisCall be this CallExpression.
4. Let tailCall be IsInTailPosition(thisCall).
5. Return ? EvaluateCall(func, ref, Arguments, tailCall).

The abstract operation EvaluateCall takes as arguments a value func, a value ref, a Parse Node arguments, and a Boolean
argument tailPosition. It performs the following steps:

1. If Type(ref) is Reference, then
a. If IsPropertyReference(ref) is true, then

i. Let thisValue be GetThisValue(ref).
b. Else the base of ref is an Environment Record,

i. Let refEnv be GetBase(ref).
ii. Let thisValue be refEnv.WithBaseObject().

2. Else Type(ref) is not Reference,
a. Let thisValue be undefined.

3. Let argList be ArgumentListEvaluation of arguments.
4. ReturnIfAbrupt(argList).
5. If Type(func) is not Object, throw a TypeError exception.
6. If IsCallable(func) is false, throw a TypeError exception.
7. If tailPosition is true, perform PrepareForTailCall().
8. Let result be Call(func, thisValue, argList).
9. Assert: If tailPosition is true, the above call will not return here, but instead evaluation will continue as if the

following return has already occurred.
10. Assert: If result is not an abrupt completion, then Type(result) is an ECMAScript language type.
11. Return result.

12.3.4.2 Runtime Semantics: EvaluateCall (func, ref, arguments, tailPosition)

12.3.5 The super Keyword

© Ecma International 2019

207

SuperProperty : super [Expression]

1. Let env be GetThisEnvironment().
2. Let actualThis be ? env.GetThisBinding().
3. Let propertyNameReference be the result of evaluating Expression.
4. Let propertyNameValue be ? GetValue(propertyNameReference).
5. Let propertyKey be ? ToPropertyKey(propertyNameValue).
6. If the code matched by this SuperProperty is strict mode code, let strict be true, else let strict be false.
7. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).

SuperProperty : super . IdentifierName

1. Let env be GetThisEnvironment().
2. Let actualThis be ? env.GetThisBinding().
3. Let propertyKey be StringValue of IdentifierName.
4. If the code matched by this SuperProperty is strict mode code, let strict be true, else let strict be false.
5. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).

SuperCall : super Arguments

1. Let newTarget be GetNewTarget().
2. Assert: Type(newTarget) is Object.
3. Let func be ? GetSuperConstructor().
4. Let argList be ArgumentListEvaluation of Arguments.
5. ReturnIfAbrupt(argList).
6. Let result be ? Construct(func, argList, newTarget).
7. Let thisER be GetThisEnvironment().
8. Return ? thisER.BindThisValue(result).

The abstract operation GetSuperConstructor performs the following steps:

1. Let envRec be GetThisEnvironment().
2. Assert: envRec is a function Environment Record.
3. Let activeFunction be envRec.[[FunctionObject]].
4. Assert: activeFunction is an ECMAScript function object.
5. Let superConstructor be ! activeFunction.[[GetPrototypeOf]]().
6. If IsConstructor(superConstructor) is false, throw a TypeError exception.
7. Return superConstructor.

The abstract operation MakeSuperPropertyReference with arguments actualThis, propertyKey, and strict performs the
following steps:

1. Let env be GetThisEnvironment().
2. Assert: env.HasSuperBinding() is true.
3. Let baseValue be ? env.GetSuperBase().
4. Let bv be ? RequireObjectCoercible(baseValue).

12.3.5.1 Runtime Semantics: Evaluation

12.3.5.2 Runtime Semantics: GetSuperConstructor ()

12.3.5.3 Runtime Semantics: MakeSuperPropertyReference (actualThis, propertyKey, strict)

208

© Ecma International 2019

208

5. Return a value of type Reference that is a Super Reference whose base value component is bv, whose referenced
name component is propertyKey, whose thisValue component is actualThis, and whose strict reference flag is strict.

NOTE
The evaluation of an argument list produces a List of values.

Arguments : ()

1. Return a new empty List.

ArgumentList : AssignmentExpression

1. Let ref be the result of evaluating AssignmentExpression.
2. Let arg be ? GetValue(ref).
3. Return a List whose sole item is arg.

ArgumentList : ... AssignmentExpression

1. Let list be a new empty List.
2. Let spreadRef be the result of evaluating AssignmentExpression.
3. Let spreadObj be ? GetValue(spreadRef).
4. Let iteratorRecord be ? GetIterator(spreadObj).
5. Repeat,

a. Let next be ? IteratorStep(iteratorRecord).
b. If next is false, return list.
c. Let nextArg be ? IteratorValue(next).
d. Append nextArg as the last element of list.

ArgumentList : ArgumentList , AssignmentExpression

1. Let precedingArgs be ArgumentListEvaluation of ArgumentList.
2. ReturnIfAbrupt(precedingArgs).
3. Let ref be the result of evaluating AssignmentExpression.
4. Let arg be ? GetValue(ref).
5. Append arg to the end of precedingArgs.
6. Return precedingArgs.

ArgumentList : ArgumentList , ... AssignmentExpression

1. Let precedingArgs be ArgumentListEvaluation of ArgumentList.
2. ReturnIfAbrupt(precedingArgs).
3. Let spreadRef be the result of evaluating AssignmentExpression.
4. Let iteratorRecord be ? GetIterator(? GetValue(spreadRef)).
5. Repeat,

a. Let next be ? IteratorStep(iteratorRecord).
b. If next is false, return precedingArgs.
c. Let nextArg be ? IteratorValue(next).

12.3.6 Argument Lists

12.3.6.1 Runtime Semantics: ArgumentListEvaluation

© Ecma International 2019

209

d. Append nextArg as the last element of precedingArgs.

NOTE
A tagged template is a function call where the arguments of the call are derived from a TemplateLiteral (12.2.9). The
actual arguments include a template object (12.2.9.4) and the values produced by evaluating the expressions embedded
within the TemplateLiteral.

MemberExpression : MemberExpression TemplateLiteral

1. Let tagRef be the result of evaluating MemberExpression.
2. Let tagFunc be ? GetValue(tagRef).
3. Let thisCall be this MemberExpression.
4. Let tailCall be IsInTailPosition(thisCall).
5. Return ? EvaluateCall(tagFunc, tagRef, TemplateLiteral, tailCall).

CallExpression : CallExpression TemplateLiteral

1. Let tagRef be the result of evaluating CallExpression.
2. Let tagFunc be ? GetValue(tagRef).
3. Let thisCall be this CallExpression.
4. Let tailCall be IsInTailPosition(thisCall).
5. Return ? EvaluateCall(tagFunc, tagRef, TemplateLiteral, tailCall).

NewTarget : new . target

1. Return GetNewTarget().

UpdateExpression[Yield, Await] :

LeftHandSideExpression[?Yield, ?Await]
LeftHandSideExpression[?Yield, ?Await] [no LineTerminator here] ++
LeftHandSideExpression[?Yield, ?Await] [no LineTerminator here] --
++ UnaryExpression[?Yield, ?Await]
-- UnaryExpression[?Yield, ?Await]

12.3.7 Tagged Templates

12.3.7.1 Runtime Semantics: Evaluation

12.3.8 Meta Properties

12.3.8.1 Runtime Semantics: Evaluation

12.4 Update Expressions

Syntax

12.4.1 Static Semantics: Early Errors

210

© Ecma International 2019

210

UpdateExpression :
LeftHandSideExpression ++
LeftHandSideExpression --

It is an early Reference Error if AssignmentTargetType of LeftHandSideExpression is invalid.
It is an early Syntax Error if AssignmentTargetType of LeftHandSideExpression is strict.

UpdateExpression :
++ UnaryExpression
-- UnaryExpression

It is an early Reference Error if AssignmentTargetType of UnaryExpression is invalid.
It is an early Syntax Error if AssignmentTargetType of UnaryExpression is strict.

UpdateExpression :
LeftHandSideExpression ++
LeftHandSideExpression --
++ UnaryExpression
-- UnaryExpression

1. Return false.

UpdateExpression :
LeftHandSideExpression ++
LeftHandSideExpression --
++ UnaryExpression
-- UnaryExpression

1. Return invalid.

UpdateExpression : LeftHandSideExpression ++

1. Let lhs be the result of evaluating LeftHandSideExpression.
2. Let oldValue be ? ToNumber(? GetValue(lhs)).
3. Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see

12.8.5).
4. Perform ? PutValue(lhs, newValue).
5. Return oldValue.

12.4.2 Static Semantics: IsFunctionDefinition

12.4.3 Static Semantics: AssignmentTargetType

12.4.4 Postfix Increment Operator

12.4.4.1 Runtime Semantics: Evaluation

12.4.5 Postfix Decrement Operator

© Ecma International 2019

211

UpdateExpression : LeftHandSideExpression --

1. Let lhs be the result of evaluating LeftHandSideExpression.
2. Let oldValue be ? ToNumber(? GetValue(lhs)).
3. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the - operator (see

12.8.5).
4. Perform ? PutValue(lhs, newValue).
5. Return oldValue.

UpdateExpression : ++ UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ? ToNumber(? GetValue(expr)).
3. Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see

12.8.5).
4. Perform ? PutValue(expr, newValue).
5. Return newValue.

UpdateExpression : -- UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ? ToNumber(? GetValue(expr)).
3. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the - operator (see

12.8.5).
4. Perform ? PutValue(expr, newValue).
5. Return newValue.

UnaryExpression[Yield, Await] :

UpdateExpression[?Yield, ?Await]
delete UnaryExpression[?Yield, ?Await]
void UnaryExpression[?Yield, ?Await]
typeof UnaryExpression[?Yield, ?Await]
+ UnaryExpression[?Yield, ?Await]
- UnaryExpression[?Yield, ?Await]
~ UnaryExpression[?Yield, ?Await]

12.4.5.1 Runtime Semantics: Evaluation

12.4.6 Prefix Increment Operator

12.4.6.1 Runtime Semantics: Evaluation

12.4.7 Prefix Decrement Operator

12.4.7.1 Runtime Semantics: Evaluation

12.5 Unary Operators

Syntax

212

© Ecma International 2019

212

! UnaryExpression[?Yield, ?Await]
[+Await] AwaitExpression[?Yield]

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression
AwaitExpression

1. Return false.

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression
AwaitExpression

1. Return invalid.

UnaryExpression : delete UnaryExpression

It is a Syntax Error if the UnaryExpression is contained in strict mode code and the derived UnaryExpression is
PrimaryExpression : IdentifierReference .

It is a Syntax Error if the derived UnaryExpression is
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

and CoverParenthesizedExpressionAndArrowParameterList ultimately derives a phrase that, if used in place of
UnaryExpression, would produce a Syntax Error according to these rules. This rule is recursively applied.

NOTE
The last rule means that expressions such as delete (((foo))) produce early errors because of recursive
application of the first rule.

12.5.1 Static Semantics: IsFunctionDefinition

12.5.2 Static Semantics: AssignmentTargetType

12.5.3 The delete Operator

12.5.3.1 Static Semantics: Early Errors

© Ecma International 2019

213

UnaryExpression : delete UnaryExpression

1. Let ref be the result of evaluating UnaryExpression.
2. ReturnIfAbrupt(ref).
3. If Type(ref) is not Reference, return true.
4. If IsUnresolvableReference(ref) is true, then

a. Assert: IsStrictReference(ref) is false.
b. Return true.

5. If IsPropertyReference(ref) is true, then
a. If IsSuperReference(ref) is true, throw a ReferenceError exception.
b. Let baseObj be ! ToObject(GetBase(ref)).
c. Let deleteStatus be ? baseObj.[[Delete]](GetReferencedName(ref)).
d. If deleteStatus is false and IsStrictReference(ref) is true, throw a TypeError exception.
e. Return deleteStatus.

6. Else ref is a Reference to an Environment Record binding,
a. Let bindings be GetBase(ref).
b. Return ? bindings.DeleteBinding(GetReferencedName(ref)).

NOTE
When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its UnaryExpression is
a direct reference to a variable, function argument, or function name. In addition, if a delete operator occurs within
strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError exception is
thrown.

UnaryExpression : void UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Perform ? GetValue(expr).
3. Return undefined.

NOTE
GetValue must be called even though its value is not used because it may have observable side-effects.

UnaryExpression : typeof UnaryExpression

1. Let val be the result of evaluating UnaryExpression.
2. If Type(val) is Reference, then

a. If IsUnresolvableReference(val) is true, return "undefined".
3. Set val to ? GetValue(val).

12.5.3.2 Runtime Semantics: Evaluation

12.5.4 The void Operator

12.5.4.1 Runtime Semantics: Evaluation

12.5.5 The typeof Operator

12.5.5.1 Runtime Semantics: Evaluation

214

© Ecma International 2019

214

4. Return a String according to Table 35.

Table 35: typeof Operator Results

Type of val Result

Undefined "undefined"

Null "object"

Boolean "boolean"

Number "number"

String "string"

Symbol "symbol"

Object (ordinary and does not
implement [[Call]])

"object"

Object (standard exotic and does not
implement [[Call]])

"object"

Object (implements [[Call]]) "function"

Object (non-standard exotic and does
not implement [[Call]])

Implementation-defined. Must not be "undefined", "boolean",
"function", "number", "symbol", or "string".

NOTE
Implementations are discouraged from defining new typeof result values for non-standard exotic objects. If possible
"object" should be used for such objects.

NOTE
The unary + operator converts its operand to Number type.

UnaryExpression : + UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Return ? ToNumber(? GetValue(expr)).

NOTE
The unary - operator converts its operand to Number type and then negates it. Negating +0 produces -0, and negating -0
produces +0.

12.5.6 Unary + Operator

12.5.6.1 Runtime Semantics: Evaluation

12.5.7 Unary - Operator

© Ecma International 2019

215

UnaryExpression : - UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ? ToNumber(? GetValue(expr)).
3. If oldValue is NaN, return NaN.
4. Return the result of negating oldValue; that is, compute a Number with the same magnitude but opposite sign.

UnaryExpression : ~ UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ? ToInt32(? GetValue(expr)).
3. Return the result of applying bitwise complement to oldValue. The result is a signed 32-bit integer.

UnaryExpression : ! UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ToBoolean(? GetValue(expr)).
3. If oldValue is true, return false.
4. Return true.

ExponentiationExpression[Yield, Await] :

UnaryExpression[?Yield, ?Await]
UpdateExpression[?Yield, ?Await] ** ExponentiationExpression[?Yield, ?Await]

ExponentiationExpression :
UpdateExpression ** ExponentiationExpression

1. Return false.

ExponentiationExpression :
UpdateExpression ** ExponentiationExpression

12.5.7.1 Runtime Semantics: Evaluation

12.5.8 Bitwise NOT Operator (~)

12.5.8.1 Runtime Semantics: Evaluation

12.5.9 Logical NOT Operator (!)

12.5.9.1 Runtime Semantics: Evaluation

12.6 Exponentiation Operator

Syntax

12.6.1 Static Semantics: IsFunctionDefinition

12.6.2 Static Semantics: AssignmentTargetType

216

© Ecma International 2019

216

1. Return invalid.

ExponentiationExpression : UpdateExpression ** ExponentiationExpression

1. Let left be the result of evaluating UpdateExpression.
2. Let leftValue be ? GetValue(left).
3. Let right be the result of evaluating ExponentiationExpression.
4. Let rightValue be ? GetValue(right).
5. Let base be ? ToNumber(leftValue).
6. Let exponent be ? ToNumber(rightValue).
7. Return the result of Applying the ** operator with base and exponent as specified in 12.6.4.

Returns an implementation-dependent approximation of the result of raising base to the power exponent.

If exponent is NaN, the result is NaN.
If exponent is +0, the result is 1, even if base is NaN.
If exponent is -0, the result is 1, even if base is NaN.
If base is NaN and exponent is nonzero, the result is NaN.
If abs(base) > 1 and exponent is +∞, the result is +∞.
If abs(base) > 1 and exponent is -∞, the result is +0.
If abs(base) is 1 and exponent is +∞, the result is NaN.
If abs(base) is 1 and exponent is -∞, the result is NaN.
If abs(base) < 1 and exponent is +∞, the result is +0.
If abs(base) < 1 and exponent is -∞, the result is +∞.
If base is +∞ and exponent > 0, the result is +∞.
If base is +∞ and exponent < 0, the result is +0.
If base is -∞ and exponent > 0 and exponent is an odd integer, the result is -∞.
If base is -∞ and exponent > 0 and exponent is not an odd integer, the result is +∞.
If base is -∞ and exponent < 0 and exponent is an odd integer, the result is -0.
If base is -∞ and exponent < 0 and exponent is not an odd integer, the result is +0.
If base is +0 and exponent > 0, the result is +0.
If base is +0 and exponent < 0, the result is +∞.
If base is -0 and exponent > 0 and exponent is an odd integer, the result is -0.
If base is -0 and exponent > 0 and exponent is not an odd integer, the result is +0.
If base is -0 and exponent < 0 and exponent is an odd integer, the result is -∞.
If base is -0 and exponent < 0 and exponent is not an odd integer, the result is +∞.
If base < 0 and base is finite and exponent is finite and exponent is not an integer, the result is NaN.

NOTE
The result of base ** exponent when base is 1 or -1 and exponent is +Infinity or -Infinity differs from IEEE 754-2008.
The first edition of ECMAScript specified a result of NaN for this operation, whereas later versions of IEEE 754-2008
specified 1. The historical ECMAScript behaviour is preserved for compatibility reasons.

12.6.3 Runtime Semantics: Evaluation

12.6.4 Applying the ** Operator

12.7 Multiplicative Operators

© Ecma International 2019

217

MultiplicativeExpression[Yield, Await] :

ExponentiationExpression[?Yield, ?Await]
MultiplicativeExpression[?Yield, ?Await] MultiplicativeOperator

ExponentiationExpression[?Yield, ?Await]

MultiplicativeOperator : one of
* / %

MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator ExponentiationExpression

1. Return false.

MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator ExponentiationExpression

1. Return invalid.

MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator ExponentiationExpression

1. Let left be the result of evaluating MultiplicativeExpression.
2. Let leftValue be ? GetValue(left).
3. Let right be the result of evaluating ExponentiationExpression.
4. Let rightValue be ? GetValue(right).
5. Let lnum be ? ToNumber(leftValue).
6. Let rnum be ? ToNumber(rightValue).
7. Return the result of applying the MultiplicativeOperator (*, /, or %) to lnum and rnum as specified in 12.7.3.1,

12.7.3.2, or 12.7.3.3.

The * MultiplicativeOperator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754-2008 binary double-precision
arithmetic:

If either operand is NaN, the result is NaN.
The sign of the result is positive if both operands have the same sign, negative if the operands have different signs.
Multiplication of an infinity by a zero results in NaN.
Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule already stated
above.
Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is determined by the rule
already stated above.

12.7 Multiplicative Operators

Syntax

12.7.1 Static Semantics: IsFunctionDefinition

12.7.2 Static Semantics: AssignmentTargetType

12.7.3 Runtime Semantics: Evaluation

12.7.3.1 Applying the * Operator

218

© Ecma International 2019

218

In the remaining cases, where neither an infinity nor NaN is involved, the product is computed and rounded to the
nearest representable value using IEEE 754-2008 round to nearest, ties to even mode. If the magnitude is too large
to represent, the result is then an infinity of appropriate sign. If the magnitude is too small to represent, the result is
then a zero of appropriate sign. The ECMAScript language requires support of gradual underflow as defined by
IEEE 754-2008.

The / MultiplicativeOperator performs division, producing the quotient of its operands. The left operand is the dividend
and the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the specification
of IEEE 754-2008 arithmetic:

If either operand is NaN, the result is NaN.
The sign of the result is positive if both operands have the same sign, negative if the operands have different signs.
Division of an infinity by an infinity results in NaN.
Division of an infinity by a zero results in an infinity. The sign is determined by the rule already stated above.
Division of an infinity by a nonzero finite value results in a signed infinity. The sign is determined by the rule
already stated above.
Division of a finite value by an infinity results in zero. The sign is determined by the rule already stated above.
Division of a zero by a zero results in NaN; division of zero by any other finite value results in zero, with the sign
determined by the rule already stated above.
Division of a nonzero finite value by a zero results in a signed infinity. The sign is determined by the rule already
stated above.
In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is computed and
rounded to the nearest representable value using IEEE 754-2008 round to nearest, ties to even mode. If the
magnitude is too large to represent, the operation overflows; the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, the operation underflows and the result is a zero of the appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754-2008.

The % MultiplicativeOperator yields the remainder of its operands from an implied division; the left operand is the
dividend and the right operand is the divisor.

NOTE
In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-point
operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the “remainder”
operation defined by IEEE 754-2008. The IEEE 754-2008 “remainder” operation computes the remainder from a
rounding division, not a truncating division, and so its behaviour is not analogous to that of the usual integer remainder
operator. Instead the ECMAScript language defines % on floating-point operations to behave in a manner analogous to
that of the Java integer remainder operator; this may be compared with the C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:

If either operand is NaN, the result is NaN.
The sign of the result equals the sign of the dividend.

12.7.3.2 Applying the / Operator

12.7.3.3 Applying the % Operator

© Ecma International 2019

219

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
If the dividend is finite and the divisor is an infinity, the result equals the dividend.
If the dividend is a zero and the divisor is nonzero and finite, the result is the same as the dividend.
In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
from a dividend n and a divisor d is defined by the mathematical relation r = n - (d × q) where q is an integer that is
negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as possible
without exceeding the magnitude of the true mathematical quotient of n and d. r is computed and rounded to the
nearest representable value using IEEE 754-2008 round to nearest, ties to even mode.

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

AdditiveExpression :
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

1. Return false.

AdditiveExpression :
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

1. Return invalid.

NOTE
The addition operator either performs string concatenation or numeric addition.

AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Let lref be the result of evaluating AdditiveExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating MultiplicativeExpression.
4. Let rval be ? GetValue(rref).
5. Let lprim be ? ToPrimitive(lval).

12.8 Additive Operators

Syntax

12.8.1 Static Semantics: IsFunctionDefinition

12.8.2 Static Semantics: AssignmentTargetType

12.8.3 The Addition Operator (+)

12.8.3.1 Runtime Semantics: Evaluation

220

© Ecma International 2019

220

6. Let rprim be ? ToPrimitive(rval).
7. If Type(lprim) is String or Type(rprim) is String, then

a. Let lstr be ? ToString(lprim).
b. Let rstr be ? ToString(rprim).
c. Return the string-concatenation of lstr and rstr.

8. Let lnum be ? ToNumber(lprim).
9. Let rnum be ? ToNumber(rprim).

10. Return the result of applying the addition operation to lnum and rnum. See the Note below 12.8.5.

NOTE 1
No hint is provided in the calls to ToPrimitive in steps 5 and 6. All standard objects except Date objects handle the
absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the hint String were
given. Exotic objects may handle the absence of a hint in some other manner.

NOTE 2
Step 7 differs from step 3 of the Abstract Relational Comparison algorithm, by using the logical-or operation instead of
the logical-and operation.

AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Let lref be the result of evaluating AdditiveExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating MultiplicativeExpression.
4. Let rval be ? GetValue(rref).
5. Let lnum be ? ToNumber(lval).
6. Let rnum be ? ToNumber(rval).
7. Return the result of applying the subtraction operation to lnum and rnum. See the note below 12.8.5.

The + operator performs addition when applied to two operands of numeric type, producing the sum of the operands. The
- operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754-2008 binary double-precision arithmetic:

If either operand is NaN, the result is NaN.
The sum of two infinities of opposite sign is NaN.
The sum of two infinities of the same sign is the infinity of that sign.
The sum of an infinity and a finite value is equal to the infinite operand.
The sum of two negative zeroes is -0. The sum of two positive zeroes, or of two zeroes of opposite sign, is +0.
The sum of a zero and a nonzero finite value is equal to the nonzero operand.
The sum of two nonzero finite values of the same magnitude and opposite sign is +0.
In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands have the same
sign or have different magnitudes, the sum is computed and rounded to the nearest representable value using IEEE

12.8.4 The Subtraction Operator (-)

12.8.4.1 Runtime Semantics: Evaluation

12.8.5 Applying the Additive Operators to Numbers

© Ecma International 2019

221

754-2008 round to nearest, ties to even mode. If the magnitude is too large to represent, the operation overflows
and the result is then an infinity of appropriate sign. The ECMAScript language requires support of gradual
underflow as defined by IEEE 754-2008.

NOTE
The - operator performs subtraction when applied to two operands of numeric type, producing the difference of its
operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric operands a and b, it is
always the case that a - b produces the same result as a + (-b).

ShiftExpression[Yield, Await] :

AdditiveExpression[?Yield, ?Await]
ShiftExpression[?Yield, ?Await] << AdditiveExpression[?Yield, ?Await]
ShiftExpression[?Yield, ?Await] >> AdditiveExpression[?Yield, ?Await]
ShiftExpression[?Yield, ?Await] >>> AdditiveExpression[?Yield, ?Await]

ShiftExpression :
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

1. Return false.

ShiftExpression :
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

1. Return invalid.

NOTE
Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

ShiftExpression : ShiftExpression << AdditiveExpression

1. Let lref be the result of evaluating ShiftExpression.

12.9 Bitwise Shift Operators

Syntax

12.9.1 Static Semantics: IsFunctionDefinition

12.9.2 Static Semantics: AssignmentTargetType

12.9.3 The Left Shift Operator (<<)

12.9.3.1 Runtime Semantics: Evaluation

222

© Ecma International 2019

222

2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating AdditiveExpression.
4. Let rval be ? GetValue(rref).
5. Let lnum be ? ToInt32(lval).
6. Let rnum be ? ToUint32(rval).
7. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum &

0x1F.
8. Return the result of left shifting lnum by shiftCount bits. The result is a signed 32-bit integer.

NOTE
Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right operand.

ShiftExpression : ShiftExpression >> AdditiveExpression

1. Let lref be the result of evaluating ShiftExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating AdditiveExpression.
4. Let rval be ? GetValue(rref).
5. Let lnum be ? ToInt32(lval).
6. Let rnum be ? ToUint32(rval).
7. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum &

0x1F.
8. Return the result of performing a sign-extending right shift of lnum by shiftCount bits. The most significant bit is

propagated. The result is a signed 32-bit integer.

NOTE
Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right operand.

ShiftExpression : ShiftExpression >>> AdditiveExpression

1. Let lref be the result of evaluating ShiftExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating AdditiveExpression.
4. Let rval be ? GetValue(rref).
5. Let lnum be ? ToUint32(lval).
6. Let rnum be ? ToUint32(rval).
7. Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum &

0x1F.
8. Return the result of performing a zero-filling right shift of lnum by shiftCount bits. Vacated bits are filled with zero.

The result is an unsigned 32-bit integer.

12.9.4 The Signed Right Shift Operator (>>)

12.9.4.1 Runtime Semantics: Evaluation

12.9.5 The Unsigned Right Shift Operator (>>>)

12.9.5.1 Runtime Semantics: Evaluation

© Ecma International 2019

223

NOTE 1
The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship named by the
operator holds between its two operands.

RelationalExpression[In, Yield, Await] :

ShiftExpression[?Yield, ?Await]
RelationalExpression[?In, ?Yield, ?Await] < ShiftExpression[?Yield, ?Await]
RelationalExpression[?In, ?Yield, ?Await] > ShiftExpression[?Yield, ?Await]
RelationalExpression[?In, ?Yield, ?Await] <= ShiftExpression[?Yield, ?Await]
RelationalExpression[?In, ?Yield, ?Await] >= ShiftExpression[?Yield, ?Await]
RelationalExpression[?In, ?Yield, ?Await] instanceof ShiftExpression[?Yield, ?Await]
[+In] RelationalExpression[+In, ?Yield, ?Await] in ShiftExpression[?Yield, ?Await]

NOTE 2
The [In] grammar parameter is needed to avoid confusing the in operator in a relational expression with the in operator

in a for statement.

RelationalExpression :
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ShiftExpression
RelationalExpression in ShiftExpression

1. Return false.

RelationalExpression :
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ShiftExpression
RelationalExpression in ShiftExpression

1. Return invalid.

12.10 Relational Operators

Syntax

12.10.1 Static Semantics: IsFunctionDefinition

12.10.2 Static Semantics: AssignmentTargetType

12.10.3 Runtime Semantics: Evaluation

224

© Ecma International 2019

224

RelationalExpression : RelationalExpression < ShiftExpression

1. Let lref be the result of evaluating RelationalExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating ShiftExpression.
4. Let rval be ? GetValue(rref).
5. Let r be the result of performing Abstract Relational Comparison lval < rval.
6. ReturnIfAbrupt(r).
7. If r is undefined, return false. Otherwise, return r.

RelationalExpression : RelationalExpression > ShiftExpression

1. Let lref be the result of evaluating RelationalExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating ShiftExpression.
4. Let rval be ? GetValue(rref).
5. Let r be the result of performing Abstract Relational Comparison rval < lval with LeftFirst equal to false.
6. ReturnIfAbrupt(r).
7. If r is undefined, return false. Otherwise, return r.

RelationalExpression : RelationalExpression <= ShiftExpression

1. Let lref be the result of evaluating RelationalExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating ShiftExpression.
4. Let rval be ? GetValue(rref).
5. Let r be the result of performing Abstract Relational Comparison rval < lval with LeftFirst equal to false.
6. ReturnIfAbrupt(r).
7. If r is true or undefined, return false. Otherwise, return true.

RelationalExpression : RelationalExpression >= ShiftExpression

1. Let lref be the result of evaluating RelationalExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating ShiftExpression.
4. Let rval be ? GetValue(rref).
5. Let r be the result of performing Abstract Relational Comparison lval < rval.
6. ReturnIfAbrupt(r).
7. If r is true or undefined, return false. Otherwise, return true.

RelationalExpression : RelationalExpression instanceof ShiftExpression

1. Let lref be the result of evaluating RelationalExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating ShiftExpression.
4. Let rval be ? GetValue(rref).
5. Return ? InstanceofOperator(lval, rval).

RelationalExpression : RelationalExpression in ShiftExpression

1. Let lref be the result of evaluating RelationalExpression.
2. Let lval be ? GetValue(lref).

© Ecma International 2019

225

3. Let rref be the result of evaluating ShiftExpression.
4. Let rval be ? GetValue(rref).
5. If Type(rval) is not Object, throw a TypeError exception.
6. Return ? HasProperty(rval, ToPropertyKey(lval)).

The abstract operation InstanceofOperator(V, target) implements the generic algorithm for determining if ECMAScript
value V is an instance of object target either by consulting target's @@hasinstance method or, if absent, determining
whether the value of target's prototype property is present in V's prototype chain. This abstract operation performs
the following steps:

1. If Type(target) is not Object, throw a TypeError exception.
2. Let instOfHandler be ? GetMethod(target, @@hasInstance).
3. If instOfHandler is not undefined, then

a. Return ToBoolean(? Call(instOfHandler, target, « V »)).
4. If IsCallable(target) is false, throw a TypeError exception.
5. Return ? OrdinaryHasInstance(target, V).

NOTE
Steps 4 and 5 provide compatibility with previous editions of ECMAScript that did not use a @@hasInstance method to
define the instanceof operator semantics. If an object does not define or inherit @@hasInstance it uses the default
instanceof semantics.

NOTE
The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship named by the
operator holds between its two operands.

EqualityExpression[In, Yield, Await] :

RelationalExpression[?In, ?Yield, ?Await]
EqualityExpression[?In, ?Yield, ?Await] == RelationalExpression[?In, ?Yield, ?Await]
EqualityExpression[?In, ?Yield, ?Await] != RelationalExpression[?In, ?Yield, ?Await]
EqualityExpression[?In, ?Yield, ?Await] === RelationalExpression[?In, ?Yield, ?Await]
EqualityExpression[?In, ?Yield, ?Await] !== RelationalExpression[?In, ?Yield, ?Await]

EqualityExpression :
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression
EqualityExpression === RelationalExpression
EqualityExpression !== RelationalExpression

12.10.4 Runtime Semantics: InstanceofOperator (V, target)

12.11 Equality Operators

Syntax

12.11.1 Static Semantics: IsFunctionDefinition

226

© Ecma International 2019

226

1. Return false.

EqualityExpression :
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression
EqualityExpression === RelationalExpression
EqualityExpression !== RelationalExpression

1. Return invalid.

EqualityExpression : EqualityExpression == RelationalExpression

1. Let lref be the result of evaluating EqualityExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating RelationalExpression.
4. Let rval be ? GetValue(rref).
5. Return the result of performing Abstract Equality Comparison rval == lval.

EqualityExpression : EqualityExpression != RelationalExpression

1. Let lref be the result of evaluating EqualityExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating RelationalExpression.
4. Let rval be ? GetValue(rref).
5. Let r be the result of performing Abstract Equality Comparison rval == lval.
6. If r is true, return false. Otherwise, return true.

EqualityExpression : EqualityExpression === RelationalExpression

1. Let lref be the result of evaluating EqualityExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating RelationalExpression.
4. Let rval be ? GetValue(rref).
5. Return the result of performing Strict Equality Comparison rval === lval.

EqualityExpression : EqualityExpression !== RelationalExpression

1. Let lref be the result of evaluating EqualityExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating RelationalExpression.
4. Let rval be ? GetValue(rref).
5. Let r be the result of performing Strict Equality Comparison rval === lval.
6. If r is true, return false. Otherwise, return true.

NOTE 1
Given the above definition of equality:

12.11.2 Static Semantics: AssignmentTargetType

12.11.3 Runtime Semantics: Evaluation

© Ecma International 2019

227

String comparison can be forced by: "" + a == "" + b.
Numeric comparison can be forced by: +a == +b.
Boolean comparison can be forced by: !a == !b.

NOTE 2
The equality operators maintain the following invariants:

A != B is equivalent to !(A == B).
A == B is equivalent to B == A, except in the order of evaluation of A and B.

NOTE 3
The equality operator is not always transitive. For example, there might be two distinct String objects, each representing
the same String value; each String object would be considered equal to the String value by the == operator, but the two
String objects would not be equal to each other. For example:

new String("a") == "a" and "a" == new String("a") are both true.
new String("a") == new String("a") is false.

NOTE 4
Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to use the more
complex, semantically oriented definitions of character or string equality and collating order defined in the Unicode
specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as
unequal. In effect this algorithm assumes that both Strings are already in normalized form.

BitwiseANDExpression[In, Yield, Await] :

EqualityExpression[?In, ?Yield, ?Await]
BitwiseANDExpression[?In, ?Yield, ?Await] & EqualityExpression[?In, ?Yield, ?Await]

BitwiseXORExpression[In, Yield, Await] :

BitwiseANDExpression[?In, ?Yield, ?Await]
BitwiseXORExpression[?In, ?Yield, ?Await] ^ BitwiseANDExpression[?In, ?Yield, ?Await]

BitwiseORExpression[In, Yield, Await] :

BitwiseXORExpression[?In, ?Yield, ?Await]
BitwiseORExpression[?In, ?Yield, ?Await] | BitwiseXORExpression[?In, ?Yield, ?Await]

BitwiseANDExpression : BitwiseANDExpression & EqualityExpression
BitwiseXORExpression : BitwiseXORExpression ^ BitwiseANDExpression
BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression

1. Return false.

12.12 Binary Bitwise Operators

Syntax

12.12.1 Static Semantics: IsFunctionDefinition

228

© Ecma International 2019

228

BitwiseANDExpression : BitwiseANDExpression & EqualityExpression
BitwiseXORExpression : BitwiseXORExpression ^ BitwiseANDExpression
BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression

1. Return invalid.

The production A : A @ B , where @ is one of the bitwise operators in the productions above, is evaluated as follows:

1. Let lref be the result of evaluating A.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating B.
4. Let rval be ? GetValue(rref).
5. Let lnum be ? ToInt32(lval).
6. Let rnum be ? ToInt32(rval).
7. Return the result of applying the bitwise operator @ to lnum and rnum. The result is a signed 32-bit integer.

LogicalANDExpression[In, Yield, Await] :

BitwiseORExpression[?In, ?Yield, ?Await]
LogicalANDExpression[?In, ?Yield, ?Await] && BitwiseORExpression[?In, ?Yield, ?Await]

LogicalORExpression[In, Yield, Await] :

LogicalANDExpression[?In, ?Yield, ?Await]
LogicalORExpression[?In, ?Yield, ?Await] || LogicalANDExpression[?In, ?Yield, ?Await]

NOTE
The value produced by a && or || operator is not necessarily of type Boolean. The value produced will always be the
value of one of the two operand expressions.

LogicalANDExpression : LogicalANDExpression && BitwiseORExpression
LogicalORExpression : LogicalORExpression || LogicalANDExpression

1. Return false.

LogicalANDExpression : LogicalANDExpression && BitwiseORExpression
LogicalORExpression : LogicalORExpression || LogicalANDExpression

1. Return invalid.

12.12.2 Static Semantics: AssignmentTargetType

12.12.3 Runtime Semantics: Evaluation

12.13 Binary Logical Operators

Syntax

12.13.1 Static Semantics: IsFunctionDefinition

12.13.2 Static Semantics: AssignmentTargetType

© Ecma International 2019

229

LogicalANDExpression : LogicalANDExpression && BitwiseORExpression

1. Let lref be the result of evaluating LogicalANDExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ToBoolean(lval).
4. If lbool is false, return lval.
5. Let rref be the result of evaluating BitwiseORExpression.
6. Return ? GetValue(rref).

LogicalORExpression : LogicalORExpression || LogicalANDExpression

1. Let lref be the result of evaluating LogicalORExpression.
2. Let lval be ? GetValue(lref).
3. Let lbool be ToBoolean(lval).
4. If lbool is true, return lval.
5. Let rref be the result of evaluating LogicalANDExpression.
6. Return ? GetValue(rref).

ConditionalExpression[In, Yield, Await] :

LogicalORExpression[?In, ?Yield, ?Await]
LogicalORExpression[?In, ?Yield, ?Await] ? AssignmentExpression[+In, ?Yield, ?Await] :

AssignmentExpression[?In, ?Yield, ?Await]

NOTE
The grammar for a ConditionalExpression in ECMAScript is slightly different from that in C and Java, which each allow
the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression. The
motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a
conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression

1. Return false.

ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression

1. Return invalid.

ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression

12.13.3 Runtime Semantics: Evaluation

12.14 Conditional Operator (? :)

Syntax

12.14.1 Static Semantics: IsFunctionDefinition

12.14.2 Static Semantics: AssignmentTargetType

12.14.3 Runtime Semantics: Evaluation

230

© Ecma International 2019

230

1. Let lref be the result of evaluating LogicalORExpression.
2. Let lval be ToBoolean(? GetValue(lref)).
3. If lval is true, then

a. Let trueRef be the result of evaluating the first AssignmentExpression.
b. Return ? GetValue(trueRef).

4. Else,
a. Let falseRef be the result of evaluating the second AssignmentExpression.
b. Return ? GetValue(falseRef).

AssignmentExpression[In, Yield, Await] :

ConditionalExpression[?In, ?Yield, ?Await]
[+Yield] YieldExpression[?In, ?Await]
ArrowFunction[?In, ?Yield, ?Await]
AsyncArrowFunction[?In, ?Yield, ?Await]
LeftHandSideExpression[?Yield, ?Await] = AssignmentExpression[?In, ?Yield, ?Await]
LeftHandSideExpression[?Yield, ?Await] AssignmentOperator

AssignmentExpression[?In, ?Yield, ?Await]

AssignmentOperator : one of
*= /= %= += -= <<= >>= >>>= &= ^= |= **=

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

It is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and
LeftHandSideExpression is not covering an AssignmentPattern.
It is an early Reference Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and
AssignmentTargetType of LeftHandSideExpression is invalid.
It is an early Syntax Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and
AssignmentTargetType of LeftHandSideExpression is strict.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

It is an early Reference Error if AssignmentTargetType of LeftHandSideExpression is invalid.
It is an early Syntax Error if AssignmentTargetType of LeftHandSideExpression is strict.

AssignmentExpression :
ArrowFunction
AsyncArrowFunction

1. Return true.

12.15 Assignment Operators

Syntax

12.15.1 Static Semantics: Early Errors

12.15.2 Static Semantics: IsFunctionDefinition

© Ecma International 2019

231

AssignmentExpression :
YieldExpression
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Return false.

AssignmentExpression :
YieldExpression
ArrowFunction
AsyncArrowFunction
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Return invalid.

AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let lref be the result of evaluating LeftHandSideExpression.
b. ReturnIfAbrupt(lref).
c. If IsAnonymousFunctionDefinition(AssignmentExpression) and IsIdentifierRef of LeftHandSideExpression are

both true, then
i. Let rval be the result of performing NamedEvaluation for AssignmentExpression with argument

GetReferencedName(lref).
d. Else,

i. Let rref be the result of evaluating AssignmentExpression.
ii. Let rval be ? GetValue(rref).

e. Perform ? PutValue(lref, rval).
f. Return rval.

2. Let assignmentPattern be the AssignmentPattern that is covered by LeftHandSideExpression.
3. Let rref be the result of evaluating AssignmentExpression.
4. Let rval be ? GetValue(rref).
5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern using rval as the argument.
6. Return rval.

AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Let lref be the result of evaluating LeftHandSideExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating AssignmentExpression.
4. Let rval be ? GetValue(rref).
5. Let op be the @ where AssignmentOperator is @=.
6. Let r be the result of applying op to lval and rval as if evaluating the expression lval op rval.
7. Perform ? PutValue(lref, r).
8. Return r.

12.15.3 Static Semantics: AssignmentTargetType

12.15.4 Runtime Semantics: Evaluation

232

© Ecma International 2019

232

NOTE
When an assignment occurs within strict mode code, it is a runtime error if lref in step 1.f of the first algorithm or step 7
of the second algorithm it is an unresolvable reference. If it is, a ReferenceError exception is thrown. The
LeftHandSideExpression also may not be a reference to a data property with the attribute value { [[Writable]]: false }, to
an accessor property with the attribute value { [[Set]]: undefined }, nor to a non-existent property of an object for which
the IsExtensible predicate returns the value false. In these cases a TypeError exception is thrown.

In certain circumstances when processing an instance of the production AssignmentExpression :
LeftHandSideExpression = AssignmentExpression the following grammar is used to refine the interpretation of

LeftHandSideExpression.

AssignmentPattern[Yield, Await] :

ObjectAssignmentPattern[?Yield, ?Await]
ArrayAssignmentPattern[?Yield, ?Await]

ObjectAssignmentPattern[Yield, Await] :

{ }
{ AssignmentRestProperty[?Yield, ?Await] }
{ AssignmentPropertyList[?Yield, ?Await] }
{ AssignmentPropertyList[?Yield, ?Await] , AssignmentRestProperty[?Yield, ?Await] opt }

ArrayAssignmentPattern[Yield, Await] :

[Elisionopt AssignmentRestElement[?Yield, ?Await] opt]
[AssignmentElementList[?Yield, ?Await]]
[AssignmentElementList[?Yield, ?Await] , Elisionopt

AssignmentRestElement[?Yield, ?Await] opt]

AssignmentRestProperty[Yield, Await] :

... DestructuringAssignmentTarget[?Yield, ?Await]

AssignmentPropertyList[Yield, Await] :

AssignmentProperty[?Yield, ?Await]
AssignmentPropertyList[?Yield, ?Await] , AssignmentProperty[?Yield, ?Await]

AssignmentElementList[Yield, Await] :

AssignmentElisionElement[?Yield, ?Await]
AssignmentElementList[?Yield, ?Await] , AssignmentElisionElement[?Yield, ?Await]

AssignmentElisionElement[Yield, Await] :

Elisionopt AssignmentElement[?Yield, ?Await]

AssignmentProperty[Yield, Await] :

IdentifierReference[?Yield, ?Await] Initializer[+In, ?Yield, ?Await] opt

12.15.5 Destructuring Assignment

Supplemental Syntax

© Ecma International 2019

233

PropertyName[?Yield, ?Await] : AssignmentElement[?Yield, ?Await]

AssignmentElement[Yield, Await] :

DestructuringAssignmentTarget[?Yield, ?Await] Initializer[+In, ?Yield, ?Await] opt

AssignmentRestElement[Yield, Await] :

... DestructuringAssignmentTarget[?Yield, ?Await]

DestructuringAssignmentTarget[Yield, Await] :

LeftHandSideExpression[?Yield, ?Await]

AssignmentProperty : IdentifierReference Initializer

It is a Syntax Error if AssignmentTargetType of IdentifierReference is not simple.

AssignmentRestProperty : ... DestructuringAssignmentTarget

It is a Syntax Error if DestructuringAssignmentTarget is an ArrayLiteral or an ObjectLiteral.

DestructuringAssignmentTarget : LeftHandSideExpression

It is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if
LeftHandSideExpression is not covering an AssignmentPattern.
It is a Syntax Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and
AssignmentTargetType(LeftHandSideExpression) is not simple.

With parameter value.

ObjectAssignmentPattern : { }

1. Perform ? RequireObjectCoercible(value).
2. Return NormalCompletion(empty).

ObjectAssignmentPattern :
{ AssignmentPropertyList }
{ AssignmentPropertyList , }

1. Perform ? RequireObjectCoercible(value).
2. Perform ? PropertyDestructuringAssignmentEvaluation for AssignmentPropertyList using value as the argument.
3. Return NormalCompletion(empty).

ArrayAssignmentPattern : []

1. Let iteratorRecord be ? GetIterator(value).
2. Return ? IteratorClose(iteratorRecord, NormalCompletion(empty)).

ArrayAssignmentPattern : [Elision]

1. Let iteratorRecord be ? GetIterator(value).

12.15.5.1 Static Semantics: Early Errors

12.15.5.2 Runtime Semantics: DestructuringAssignmentEvaluation

234

© Ecma International 2019

234

2. Let result be the result of performing IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as
the argument.

3. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, result).
4. Return result.

ArrayAssignmentPattern : [Elision AssignmentRestElement]

1. Let iteratorRecord be ? GetIterator(value).
2. If Elision is present, then

a. Let status be the result of performing IteratorDestructuringAssignmentEvaluation of Elision with
iteratorRecord as the argument.

b. If status is an abrupt completion, then
i. Assert: iteratorRecord.[[Done]] is true.

ii. Return Completion(status).
3. Let result be the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentRestElement with

iteratorRecord as the argument.
4. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, result).
5. Return result.

ArrayAssignmentPattern : [AssignmentElementList]

1. Let iteratorRecord be ? GetIterator(value).
2. Let result be the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElementList using

iteratorRecord as the argument.
3. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, result).
4. Return result.

ArrayAssignmentPattern : [AssignmentElementList , Elision AssignmentRestElement]

1. Let iteratorRecord be ? GetIterator(value).
2. Let status be the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElementList using

iteratorRecord as the argument.
3. If status is an abrupt completion, then

a. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, status).
b. Return Completion(status).

4. If Elision is present, then
a. Set status to the result of performing IteratorDestructuringAssignmentEvaluation of Elision with

iteratorRecord as the argument.
b. If status is an abrupt completion, then

i. Assert: iteratorRecord.[[Done]] is true.
ii. Return Completion(status).

5. If AssignmentRestElement is present, then
a. Set status to the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentRestElement

with iteratorRecord as the argument.
6. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, status).
7. Return Completion(status).

ObjectAssignmentPattern : { AssignmentRestProperty }

1. Perform ? RequireObjectCoercible(value).
2. Let excludedNames be a new empty List.

© Ecma International 2019

235

3. Return the result of performing RestDestructuringAssignmentEvaluation of AssignmentRestProperty with value and
excludedNames as the arguments.

ObjectAssignmentPattern : { AssignmentPropertyList , AssignmentRestProperty }

1. Perform ? RequireObjectCoercible(value).
2. Let excludedNames be the result of performing ? PropertyDestructuringAssignmentEvaluation for

AssignmentPropertyList using value as the argument.
3. Return the result of performing RestDestructuringAssignmentEvaluation of AssignmentRestProperty with value and

excludedNames as the arguments.

With parameter value.

NOTE
The following operations collect a list of all destructured property names.

AssignmentPropertyList : AssignmentPropertyList , AssignmentProperty

1. Let propertyNames be the result of performing ? PropertyDestructuringAssignmentEvaluation for
AssignmentPropertyList using value as the argument.

2. Let nextNames be the result of performing ? PropertyDestructuringAssignmentEvaluation for AssignmentProperty
using value as the argument.

3. Append each item in nextNames to the end of propertyNames.
4. Return propertyNames.

AssignmentProperty : IdentifierReference Initializer

1. Let P be StringValue of IdentifierReference.
2. Let lref be ? ResolveBinding(P).
3. Let v be ? GetV(value, P).
4. If Initializeropt is present and v is undefined, then

a. If IsAnonymousFunctionDefinition(Initializer) is true, then
i. Set v to the result of performing NamedEvaluation for Initializer with argument P.

b. Else,
i. Let defaultValue be the result of evaluating Initializer.

ii. Set v to ? GetValue(defaultValue).
5. Perform ? PutValue(lref, v).
6. Return a new List containing P.

AssignmentProperty : PropertyName : AssignmentElement

1. Let name be the result of evaluating PropertyName.
2. ReturnIfAbrupt(name).
3. Perform ? KeyedDestructuringAssignmentEvaluation of AssignmentElement with value and name as the arguments.
4. Return a new List containing name.

With parameters value and excludedNames.

12.15.5.3 Runtime Semantics: PropertyDestructuringAssignmentEvaluation

12.15.5.4 Runtime Semantics: RestDestructuringAssignmentEvaluation

236

© Ecma International 2019

236

AssignmentRestProperty : ... DestructuringAssignmentTarget

1. Let lref be the result of evaluating DestructuringAssignmentTarget.
2. ReturnIfAbrupt(lref).
3. Let restObj be ObjectCreate(%ObjectPrototype%).
4. Perform ? CopyDataProperties(restObj, value, excludedNames).
5. Return PutValue(lref, restObj).

With parameter iteratorRecord.

AssignmentElementList : AssignmentElisionElement

1. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElisionElement using
iteratorRecord as the argument.

AssignmentElementList : AssignmentElementList , AssignmentElisionElement

1. Perform ? IteratorDestructuringAssignmentEvaluation of AssignmentElementList using iteratorRecord as the
argument.

2. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElisionElement using
iteratorRecord as the argument.

AssignmentElisionElement : AssignmentElement

1. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElement with
iteratorRecord as the argument.

AssignmentElisionElement : Elision AssignmentElement

1. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
2. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElement with

iteratorRecord as the argument.

Elision : ,

1. If iteratorRecord.[[Done]] is false, then
a. Let next be IteratorStep(iteratorRecord).
b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(next).
d. If next is false, set iteratorRecord.[[Done]] to true.

2. Return NormalCompletion(empty).

Elision : Elision ,

1. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
2. If iteratorRecord.[[Done]] is false, then

a. Let next be IteratorStep(iteratorRecord).
b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(next).
d. If next is false, set iteratorRecord.[[Done]] to true.

12.15.5.5 Runtime Semantics: IteratorDestructuringAssignmentEvaluation

© Ecma International 2019

237

3. Return NormalCompletion(empty).

AssignmentElement : DestructuringAssignmentTarget Initializer

1. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let lref be the result of evaluating DestructuringAssignmentTarget.
b. ReturnIfAbrupt(lref).

2. If iteratorRecord.[[Done]] is false, then
a. Let next be IteratorStep(iteratorRecord).
b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(next).
d. If next is false, set iteratorRecord.[[Done]] to true.
e. Else,

i. Let value be IteratorValue(next).
ii. If value is an abrupt completion, set iteratorRecord.[[Done]] to true.

iii. ReturnIfAbrupt(value).
3. If iteratorRecord.[[Done]] is true, let value be undefined.
4. If Initializer is present and value is undefined, then

a. If IsAnonymousFunctionDefinition(Initializer) and IsIdentifierRef of DestructuringAssignmentTarget are both
true, then

i. Let v be the result of performing NamedEvaluation for Initializer with argument
GetReferencedName(lref).

b. Else,
i. Let defaultValue be the result of evaluating Initializer.

ii. Let v be ? GetValue(defaultValue).
5. Else, let v be value.
6. If DestructuringAssignmentTarget is an ObjectLiteral or an ArrayLiteral, then

a. Let nestedAssignmentPattern be the AssignmentPattern that is covered by DestructuringAssignmentTarget.
b. Return the result of performing DestructuringAssignmentEvaluation of nestedAssignmentPattern with v as the

argument.
7. Return ? PutValue(lref, v).

NOTE
Left to right evaluation order is maintained by evaluating a DestructuringAssignmentTarget that is not a destructuring
pattern prior to accessing the iterator or evaluating the Initializer.

AssignmentRestElement : ... DestructuringAssignmentTarget

1. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let lref be the result of evaluating DestructuringAssignmentTarget.
b. ReturnIfAbrupt(lref).

2. Let A be ! ArrayCreate(0).
3. Let n be 0.
4. Repeat, while iteratorRecord.[[Done]] is false,

a. Let next be IteratorStep(iteratorRecord).
b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(next).
d. If next is false, set iteratorRecord.[[Done]] to true.
e. Else,

238

© Ecma International 2019

238

i. Let nextValue be IteratorValue(next).
ii. If nextValue is an abrupt completion, set iteratorRecord.[[Done]] to true.

iii. ReturnIfAbrupt(nextValue).
iv. Let status be CreateDataProperty(A, ! ToString(n), nextValue).
v. Assert: status is true.

vi. Increment n by 1.
5. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then

a. Return ? PutValue(lref, A).
6. Let nestedAssignmentPattern be the AssignmentPattern that is covered by DestructuringAssignmentTarget.
7. Return the result of performing DestructuringAssignmentEvaluation of nestedAssignmentPattern with A as the

argument.

With parameters value and propertyName.

AssignmentElement : DestructuringAssignmentTarget Initializer

1. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let lref be the result of evaluating DestructuringAssignmentTarget.
b. ReturnIfAbrupt(lref).

2. Let v be ? GetV(value, propertyName).
3. If Initializer is present and v is undefined, then

a. If IsAnonymousFunctionDefinition(Initializer) and IsIdentifierRef of DestructuringAssignmentTarget are both
true, then

i. Let rhsValue be the result of performing NamedEvaluation for Initializer with argument
GetReferencedName(lref).

b. Else,
i. Let defaultValue be the result of evaluating Initializer.

ii. Let rhsValue be ? GetValue(defaultValue).
4. Else, let rhsValue be v.
5. If DestructuringAssignmentTarget is an ObjectLiteral or an ArrayLiteral, then

a. Let assignmentPattern be the AssignmentPattern that is covered by DestructuringAssignmentTarget.
b. Return the result of performing DestructuringAssignmentEvaluation of assignmentPattern with rhsValue as

the argument.
6. Return ? PutValue(lref, rhsValue).

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Expression : Expression , AssignmentExpression

12.15.5.6 Runtime Semantics: KeyedDestructuringAssignmentEvaluation

12.16 Comma Operator (,)

Syntax

12.16.1 Static Semantics: IsFunctionDefinition

© Ecma International 2019

239

1. Return false.

Expression : Expression , AssignmentExpression

1. Return invalid.

Expression : Expression , AssignmentExpression

1. Let lref be the result of evaluating Expression.
2. Perform ? GetValue(lref).
3. Let rref be the result of evaluating AssignmentExpression.
4. Return ? GetValue(rref).

NOTE
GetValue must be called even though its value is not used because it may have observable side-effects.

Statement[Yield, Await, Return] :

BlockStatement[?Yield, ?Await, ?Return]
VariableStatement[?Yield, ?Await]
EmptyStatement
ExpressionStatement[?Yield, ?Await]
IfStatement[?Yield, ?Await, ?Return]
BreakableStatement[?Yield, ?Await, ?Return]
ContinueStatement[?Yield, ?Await]
BreakStatement[?Yield, ?Await]
[+Return] ReturnStatement[?Yield, ?Await]
WithStatement[?Yield, ?Await, ?Return]
LabelledStatement[?Yield, ?Await, ?Return]
ThrowStatement[?Yield, ?Await]
TryStatement[?Yield, ?Await, ?Return]
DebuggerStatement

Declaration[Yield, Await] :

HoistableDeclaration[?Yield, ?Await, ~Default]
ClassDeclaration[?Yield, ?Await, ~Default]
LexicalDeclaration[+In, ?Yield, ?Await]

12.16.2 Static Semantics: AssignmentTargetType

12.16.3 Runtime Semantics: Evaluation

13 ECMAScript Language: Statements and Declarations

Syntax

240

© Ecma International 2019

240

HoistableDeclaration[Yield, Await, Default] :

FunctionDeclaration[?Yield, ?Await, ?Default]
GeneratorDeclaration[?Yield, ?Await, ?Default]
AsyncFunctionDeclaration[?Yield, ?Await, ?Default]
AsyncGeneratorDeclaration[?Yield, ?Await, ?Default]

BreakableStatement[Yield, Await, Return] :

IterationStatement[?Yield, ?Await, ?Return]
SwitchStatement[?Yield, ?Await, ?Return]

With parameter labelSet.

Statement :
VariableStatement
EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return false.

With parameter labelSet.

Statement :
VariableStatement
EmptyStatement
ExpressionStatement
ContinueStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return false.

With parameters iterationSet and labelSet.

Statement :

13.1 Statement Semantics

13.1.1 Static Semantics: ContainsDuplicateLabels

13.1.2 Static Semantics: ContainsUndefinedBreakTarget

13.1.3 Static Semantics: ContainsUndefinedContinueTarget

© Ecma International 2019

241

VariableStatement
EmptyStatement
ExpressionStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return false.

BreakableStatement : IterationStatement

1. Let newIterationSet be a copy of iterationSet with all the elements of labelSet appended.
2. Return ContainsUndefinedContinueTarget of IterationStatement with arguments newIterationSet and « ».

HoistableDeclaration : FunctionDeclaration

1. Return FunctionDeclaration.

HoistableDeclaration : GeneratorDeclaration

1. Return GeneratorDeclaration.

HoistableDeclaration : AsyncFunctionDeclaration

1. Return AsyncFunctionDeclaration.

HoistableDeclaration : AsyncGeneratorDeclaration

1. Return AsyncGeneratorDeclaration.

Declaration : ClassDeclaration

1. Return ClassDeclaration.

Declaration : LexicalDeclaration

1. Return LexicalDeclaration.

Statement :
EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return a new empty List.

13.1.4 Static Semantics: DeclarationPart

13.1.5 Static Semantics: VarDeclaredNames

242

© Ecma International 2019

242

Statement :
EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return a new empty List.

With parameter labelSet.

BreakableStatement : IterationStatement

1. Let stmtResult be the result of performing LabelledEvaluation of IterationStatement with argument labelSet.
2. If stmtResult.[[Type]] is break, then

a. If stmtResult.[[Target]] is empty, then
i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).

ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
3. Return Completion(stmtResult).

BreakableStatement : SwitchStatement

1. Let stmtResult be the result of evaluating SwitchStatement.
2. If stmtResult.[[Type]] is break, then

a. If stmtResult.[[Target]] is empty, then
i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).

ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
3. Return Completion(stmtResult).

NOTE
A BreakableStatement is one that can be exited via an unlabelled BreakStatement.

HoistableDeclaration :
GeneratorDeclaration
AsyncFunctionDeclaration
AsyncGeneratorDeclaration

1. Return NormalCompletion(empty).

HoistableDeclaration : FunctionDeclaration

1. Return the result of evaluating FunctionDeclaration.

13.1.6 Static Semantics: VarScopedDeclarations

13.1.7 Runtime Semantics: LabelledEvaluation

13.1.8 Runtime Semantics: Evaluation

© Ecma International 2019

243

BreakableStatement :
IterationStatement
SwitchStatement

1. Let newLabelSet be a new empty List.
2. Return the result of performing LabelledEvaluation of this BreakableStatement with argument newLabelSet.

BlockStatement[Yield, Await, Return] :

Block[?Yield, ?Await, ?Return]

Block[Yield, Await, Return] :

{ StatementList[?Yield, ?Await, ?Return] opt }

StatementList[Yield, Await, Return] :

StatementListItem[?Yield, ?Await, ?Return]
StatementList[?Yield, ?Await, ?Return] StatementListItem[?Yield, ?Await, ?Return]

StatementListItem[Yield, Await, Return] :

Statement[?Yield, ?Await, ?Return]
Declaration[?Yield, ?Await]

Block : { StatementList }

It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the
VarDeclaredNames of StatementList.

With parameter labelSet.

Block : { }

1. Return false.

StatementList : StatementList StatementListItem

1. Let hasDuplicates be ContainsDuplicateLabels of StatementList with argument labelSet.
2. If hasDuplicates is true, return true.
3. Return ContainsDuplicateLabels of StatementListItem with argument labelSet.

StatementListItem : Declaration

1. Return false.

13.2 Block

Syntax

13.2.1 Static Semantics: Early Errors

13.2.2 Static Semantics: ContainsDuplicateLabels

244

© Ecma International 2019

244

With parameter labelSet.

Block : { }

1. Return false.

StatementList : StatementList StatementListItem

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of StatementList with argument labelSet.
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedBreakTarget of StatementListItem with argument labelSet.

StatementListItem : Declaration

1. Return false.

With parameters iterationSet and labelSet.

Block : { }

1. Return false.

StatementList : StatementList StatementListItem

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of StatementList with arguments iterationSet and «
».

2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedContinueTarget of StatementListItem with arguments iterationSet and « ».

StatementListItem : Declaration

1. Return false.

Block : { }

1. Return a new empty List.

StatementList : StatementList StatementListItem

1. Let names be LexicallyDeclaredNames of StatementList.
2. Append to names the elements of the LexicallyDeclaredNames of StatementListItem.
3. Return names.

StatementListItem : Statement

1. If Statement is Statement : LabelledStatement , return LexicallyDeclaredNames of LabelledStatement.
2. Return a new empty List.

StatementListItem : Declaration

13.2.3 Static Semantics: ContainsUndefinedBreakTarget

13.2.4 Static Semantics: ContainsUndefinedContinueTarget

13.2.5 Static Semantics: LexicallyDeclaredNames

© Ecma International 2019

245

1. Return the BoundNames of Declaration.

StatementList : StatementList StatementListItem

1. Let declarations be LexicallyScopedDeclarations of StatementList.
2. Append to declarations the elements of the LexicallyScopedDeclarations of StatementListItem.
3. Return declarations.

StatementListItem : Statement

1. If Statement is Statement : LabelledStatement , return LexicallyScopedDeclarations of LabelledStatement.
2. Return a new empty List.

StatementListItem : Declaration

1. Return a new List containing DeclarationPart of Declaration.

StatementList : StatementList StatementListItem

1. Let names be TopLevelLexicallyDeclaredNames of StatementList.
2. Append to names the elements of the TopLevelLexicallyDeclaredNames of StatementListItem.
3. Return names.

StatementListItem : Statement

1. Return a new empty List.

StatementListItem : Declaration

1. If Declaration is Declaration : HoistableDeclaration , then
a. Return « ».

2. Return the BoundNames of Declaration.

NOTE
At the top level of a function, or script, function declarations are treated like var declarations rather than like lexical
declarations.

Block : { }

1. Return a new empty List.

StatementList : StatementList StatementListItem

1. Let declarations be TopLevelLexicallyScopedDeclarations of StatementList.
2. Append to declarations the elements of the TopLevelLexicallyScopedDeclarations of StatementListItem.
3. Return declarations.

13.2.6 Static Semantics: LexicallyScopedDeclarations

13.2.7 Static Semantics: TopLevelLexicallyDeclaredNames

13.2.8 Static Semantics: TopLevelLexicallyScopedDeclarations

246

© Ecma International 2019

246

StatementListItem : Statement

1. Return a new empty List.

StatementListItem : Declaration

1. If Declaration is Declaration : HoistableDeclaration , then
a. Return « ».

2. Return a new List containing Declaration.

Block : { }

1. Return a new empty List.

StatementList : StatementList StatementListItem

1. Let names be TopLevelVarDeclaredNames of StatementList.
2. Append to names the elements of the TopLevelVarDeclaredNames of StatementListItem.
3. Return names.

StatementListItem : Declaration

1. If Declaration is Declaration : HoistableDeclaration , then
a. Return the BoundNames of HoistableDeclaration.

2. Return a new empty List.

StatementListItem : Statement

1. If Statement is Statement : LabelledStatement , return TopLevelVarDeclaredNames of Statement.
2. Return VarDeclaredNames of Statement.

NOTE
At the top level of a function or script, inner function declarations are treated like var declarations.

Block : { }

1. Return a new empty List.

StatementList : StatementList StatementListItem

1. Let declarations be TopLevelVarScopedDeclarations of StatementList.
2. Append to declarations the elements of the TopLevelVarScopedDeclarations of StatementListItem.
3. Return declarations.

StatementListItem : Statement

1. If Statement is Statement : LabelledStatement , return TopLevelVarScopedDeclarations of Statement.
2. Return VarScopedDeclarations of Statement.

StatementListItem : Declaration

13.2.9 Static Semantics: TopLevelVarDeclaredNames

13.2.10 Static Semantics: TopLevelVarScopedDeclarations

© Ecma International 2019

247

1. If Declaration is Declaration : HoistableDeclaration , then
a. Let declaration be DeclarationPart of HoistableDeclaration.
b. Return « declaration ».

2. Return a new empty List.

Block : { }

1. Return a new empty List.

StatementList : StatementList StatementListItem

1. Let names be VarDeclaredNames of StatementList.
2. Append to names the elements of the VarDeclaredNames of StatementListItem.
3. Return names.

StatementListItem : Declaration

1. Return a new empty List.

Block : { }

1. Return a new empty List.

StatementList : StatementList StatementListItem

1. Let declarations be VarScopedDeclarations of StatementList.
2. Append to declarations the elements of the VarScopedDeclarations of StatementListItem.
3. Return declarations.

StatementListItem : Declaration

1. Return a new empty List.

Block : { }

1. Return NormalCompletion(empty).

Block : { StatementList }

1. Let oldEnv be the running execution context's LexicalEnvironment.
2. Let blockEnv be NewDeclarativeEnvironment(oldEnv).
3. Perform BlockDeclarationInstantiation(StatementList, blockEnv).
4. Set the running execution context's LexicalEnvironment to blockEnv.
5. Let blockValue be the result of evaluating StatementList.
6. Set the running execution context's LexicalEnvironment to oldEnv.
7. Return blockValue.

NOTE 1

13.2.11 Static Semantics: VarDeclaredNames

13.2.12 Static Semantics: VarScopedDeclarations

13.2.13 Runtime Semantics: Evaluation

248

© Ecma International 2019

248

No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.

StatementList : StatementList StatementListItem

1. Let sl be the result of evaluating StatementList.
2. ReturnIfAbrupt(sl).
3. Let s be the result of evaluating StatementListItem.
4. Return Completion(UpdateEmpty(s, sl)).

NOTE 2
The value of a StatementList is the value of the last value-producing item in the StatementList. For example, the
following calls to the eval function all return the value 1:

eval("1;;;;;")
eval("1;{}")
eval("1;var a;")

NOTE
When a Block or CaseBlock is evaluated a new declarative Environment Record is created and bindings for each block
scoped variable, constant, function, or class declared in the block are instantiated in the Environment Record.

BlockDeclarationInstantiation is performed as follows using arguments code and env. code is the Parse Node
corresponding to the body of the block. env is the Lexical Environment in which bindings are to be created.

1. Let envRec be env's EnvironmentRecord.
2. Assert: envRec is a declarative Environment Record.
3. Let declarations be the LexicallyScopedDeclarations of code.
4. For each element d in declarations, do

a. For each element dn of the BoundNames of d, do
i. If IsConstantDeclaration of d is true, then

1. Perform ! envRec.CreateImmutableBinding(dn, true).
ii. Else,

1. Perform ! envRec.CreateMutableBinding(dn, false).
b. If d is a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an

AsyncGeneratorDeclaration, then
i. Let fn be the sole element of the BoundNames of d.

ii. Let fo be the result of performing InstantiateFunctionObject for d with argument env.
iii. Perform envRec.InitializeBinding(fn, fo).

NOTE
let and const declarations define variables that are scoped to the running execution context's LexicalEnvironment.

13.2.14 Runtime Semantics: BlockDeclarationInstantiation (code, env)

13.3 Declarations and the Variable Statement

13.3.1 Let and Const Declarations

© Ecma International 2019

249

The variables are created when their containing Lexical Environment is instantiated but may not be accessed in any way
until the variable's LexicalBinding is evaluated. A variable defined by a LexicalBinding with an Initializer is assigned the
value of its Initializer's AssignmentExpression when the LexicalBinding is evaluated, not when the variable is created. If
a LexicalBinding in a let declaration does not have an Initializer the variable is assigned the value undefined when the
LexicalBinding is evaluated.

LexicalDeclaration[In, Yield, Await] :

LetOrConst BindingList[?In, ?Yield, ?Await] ;

LetOrConst :
let
const

BindingList[In, Yield, Await] :

LexicalBinding[?In, ?Yield, ?Await]
BindingList[?In, ?Yield, ?Await] , LexicalBinding[?In, ?Yield, ?Await]

LexicalBinding[In, Yield, Await] :

BindingIdentifier[?Yield, ?Await] Initializer[?In, ?Yield, ?Await] opt
BindingPattern[?Yield, ?Await] Initializer[?In, ?Yield, ?Await]

LexicalDeclaration : LetOrConst BindingList ;

It is a Syntax Error if the BoundNames of BindingList contains "let".
It is a Syntax Error if the BoundNames of BindingList contains any duplicate entries.

LexicalBinding : BindingIdentifier Initializer

It is a Syntax Error if Initializer is not present and IsConstantDeclaration of the LexicalDeclaration containing this
LexicalBinding is true.

LexicalDeclaration : LetOrConst BindingList ;

1. Return the BoundNames of BindingList.

BindingList : BindingList , LexicalBinding

1. Let names be the BoundNames of BindingList.
2. Append to names the elements of the BoundNames of LexicalBinding.
3. Return names.

LexicalBinding : BindingIdentifier Initializer

1. Return the BoundNames of BindingIdentifier.

LexicalBinding : BindingPattern Initializer

Syntax

13.3.1.1 Static Semantics: Early Errors

13.3.1.2 Static Semantics: BoundNames

250

© Ecma International 2019

250

1. Return the BoundNames of BindingPattern.

LexicalDeclaration : LetOrConst BindingList ;

1. Return IsConstantDeclaration of LetOrConst.

LetOrConst : let

1. Return false.

LetOrConst : const

1. Return true.

LexicalDeclaration : LetOrConst BindingList ;

1. Let next be the result of evaluating BindingList.
2. ReturnIfAbrupt(next).
3. Return NormalCompletion(empty).

BindingList : BindingList , LexicalBinding

1. Let next be the result of evaluating BindingList.
2. ReturnIfAbrupt(next).
3. Return the result of evaluating LexicalBinding.

LexicalBinding : BindingIdentifier

1. Let lhs be ResolveBinding(StringValue of BindingIdentifier).
2. Return InitializeReferencedBinding(lhs, undefined).

NOTE
A static semantics rule ensures that this form of LexicalBinding never occurs in a const declaration.

LexicalBinding : BindingIdentifier Initializer

1. Let bindingId be StringValue of BindingIdentifier.
2. Let lhs be ResolveBinding(bindingId).
3. If IsAnonymousFunctionDefinition(Initializer) is true, then

a. Let value be the result of performing NamedEvaluation for Initializer with argument bindingId.
4. Else,

a. Let rhs be the result of evaluating Initializer.
b. Let value be ? GetValue(rhs).

5. Return InitializeReferencedBinding(lhs, value).

LexicalBinding : BindingPattern Initializer

1. Let rhs be the result of evaluating Initializer.
2. Let value be ? GetValue(rhs).
3. Let env be the running execution context's LexicalEnvironment.

13.3.1.3 Static Semantics: IsConstantDeclaration

13.3.1.4 Runtime Semantics: Evaluation

© Ecma International 2019

251

4. Return the result of performing BindingInitialization for BindingPattern using value and env as the arguments.

NOTE
A var statement declares variables that are scoped to the running execution context's VariableEnvironment. Var
variables are created when their containing Lexical Environment is instantiated and are initialized to undefined when
created. Within the scope of any VariableEnvironment a common BindingIdentifier may appear in more than one
VariableDeclaration but those declarations collectively define only one variable. A variable defined by a
VariableDeclaration with an Initializer is assigned the value of its Initializer's AssignmentExpression when the
VariableDeclaration is executed, not when the variable is created.

VariableStatement[Yield, Await] :

var VariableDeclarationList[+In, ?Yield, ?Await] ;

VariableDeclarationList[In, Yield, Await] :

VariableDeclaration[?In, ?Yield, ?Await]
VariableDeclarationList[?In, ?Yield, ?Await] , VariableDeclaration[?In, ?Yield, ?Await]

VariableDeclaration[In, Yield, Await] :

BindingIdentifier[?Yield, ?Await] Initializer[?In, ?Yield, ?Await] opt
BindingPattern[?Yield, ?Await] Initializer[?In, ?Yield, ?Await]

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of BoundNames of VariableDeclaration.
3. Return names.

VariableDeclaration : BindingIdentifier Initializer

1. Return the BoundNames of BindingIdentifier.

VariableDeclaration : BindingPattern Initializer

1. Return the BoundNames of BindingPattern.

VariableStatement : var VariableDeclarationList ;

1. Return BoundNames of VariableDeclarationList.

VariableDeclarationList : VariableDeclaration

1. Return a new List containing VariableDeclaration.

13.3.2 Variable Statement

Syntax

13.3.2.1 Static Semantics: BoundNames

13.3.2.2 Static Semantics: VarDeclaredNames

13.3.2.3 Static Semantics: VarScopedDeclarations

252

© Ecma International 2019

252

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let declarations be VarScopedDeclarations of VariableDeclarationList.
2. Append VariableDeclaration to declarations.
3. Return declarations.

VariableStatement : var VariableDeclarationList ;

1. Let next be the result of evaluating VariableDeclarationList.
2. ReturnIfAbrupt(next).
3. Return NormalCompletion(empty).

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let next be the result of evaluating VariableDeclarationList.
2. ReturnIfAbrupt(next).
3. Return the result of evaluating VariableDeclaration.

VariableDeclaration : BindingIdentifier

1. Return NormalCompletion(empty).

VariableDeclaration : BindingIdentifier Initializer

1. Let bindingId be StringValue of BindingIdentifier.
2. Let lhs be ? ResolveBinding(bindingId).
3. If IsAnonymousFunctionDefinition(Initializer) is true, then

a. Let value be the result of performing NamedEvaluation for Initializer with argument bindingId.
4. Else,

a. Let rhs be the result of evaluating Initializer.
b. Let value be ? GetValue(rhs).

5. Return ? PutValue(lhs, value).

NOTE
If a VariableDeclaration is nested within a with statement and the BindingIdentifier in the VariableDeclaration is the
same as a property name of the binding object of the with statement's object Environment Record, then step 6 will assign
value to the property instead of assigning to the VariableEnvironment binding of the Identifier.

VariableDeclaration : BindingPattern Initializer

1. Let rhs be the result of evaluating Initializer.
2. Let rval be ? GetValue(rhs).
3. Return the result of performing BindingInitialization for BindingPattern passing rval and undefined as arguments.

BindingPattern[Yield, Await] :

ObjectBindingPattern[?Yield, ?Await]

13.3.2.4 Runtime Semantics: Evaluation

13.3.3 Destructuring Binding Patterns

Syntax

© Ecma International 2019

253

ArrayBindingPattern[?Yield, ?Await]

ObjectBindingPattern[Yield, Await] :

{ }
{ BindingRestProperty[?Yield, ?Await] }
{ BindingPropertyList[?Yield, ?Await] }
{ BindingPropertyList[?Yield, ?Await] , BindingRestProperty[?Yield, ?Await] opt }

ArrayBindingPattern[Yield, Await] :

[Elisionopt BindingRestElement[?Yield, ?Await] opt]
[BindingElementList[?Yield, ?Await]]
[BindingElementList[?Yield, ?Await] , Elisionopt BindingRestElement[?Yield, ?Await] opt]

BindingRestProperty[Yield, Await] :

... BindingIdentifier[?Yield, ?Await]

BindingPropertyList[Yield, Await] :

BindingProperty[?Yield, ?Await]
BindingPropertyList[?Yield, ?Await] , BindingProperty[?Yield, ?Await]

BindingElementList[Yield, Await] :

BindingElisionElement[?Yield, ?Await]
BindingElementList[?Yield, ?Await] , BindingElisionElement[?Yield, ?Await]

BindingElisionElement[Yield, Await] :

Elisionopt BindingElement[?Yield, ?Await]

BindingProperty[Yield, Await] :

SingleNameBinding[?Yield, ?Await]
PropertyName[?Yield, ?Await] : BindingElement[?Yield, ?Await]

BindingElement[Yield, Await] :

SingleNameBinding[?Yield, ?Await]
BindingPattern[?Yield, ?Await] Initializer[+In, ?Yield, ?Await] opt

SingleNameBinding[Yield, Await] :

BindingIdentifier[?Yield, ?Await] Initializer[+In, ?Yield, ?Await] opt

BindingRestElement[Yield, Await] :

... BindingIdentifier[?Yield, ?Await]

... BindingPattern[?Yield, ?Await]

ObjectBindingPattern : { }

1. Return a new empty List.

ArrayBindingPattern : [Elision]

13.3.3.1 Static Semantics: BoundNames

254

© Ecma International 2019

254

1. Return a new empty List.

ArrayBindingPattern : [Elision BindingRestElement]

1. Return the BoundNames of BindingRestElement.

ArrayBindingPattern : [BindingElementList , Elision]

1. Return the BoundNames of BindingElementList.

ArrayBindingPattern : [BindingElementList , Elision BindingRestElement]

1. Let names be BoundNames of BindingElementList.
2. Append to names the elements of BoundNames of BindingRestElement.
3. Return names.

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let names be BoundNames of BindingPropertyList.
2. Append to names the elements of BoundNames of BindingProperty.
3. Return names.

BindingElementList : BindingElementList , BindingElisionElement

1. Let names be BoundNames of BindingElementList.
2. Append to names the elements of BoundNames of BindingElisionElement.
3. Return names.

BindingElisionElement : Elision BindingElement

1. Return BoundNames of BindingElement.

BindingProperty : PropertyName : BindingElement

1. Return the BoundNames of BindingElement.

SingleNameBinding : BindingIdentifier Initializer

1. Return the BoundNames of BindingIdentifier.

BindingElement : BindingPattern Initializer

1. Return the BoundNames of BindingPattern.

ObjectBindingPattern : { }

1. Return false.

ArrayBindingPattern : [Elision]

1. Return false.

ArrayBindingPattern : [Elision BindingRestElement]

13.3.3.2 Static Semantics: ContainsExpression

© Ecma International 2019

255

1. Return ContainsExpression of BindingRestElement.

ArrayBindingPattern : [BindingElementList , Elision]

1. Return ContainsExpression of BindingElementList.

ArrayBindingPattern : [BindingElementList , Elision BindingRestElement]

1. Let has be ContainsExpression of BindingElementList.
2. If has is true, return true.
3. Return ContainsExpression of BindingRestElement.

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let has be ContainsExpression of BindingPropertyList.
2. If has is true, return true.
3. Return ContainsExpression of BindingProperty.

BindingElementList : BindingElementList , BindingElisionElement

1. Let has be ContainsExpression of BindingElementList.
2. If has is true, return true.
3. Return ContainsExpression of BindingElisionElement.

BindingElisionElement : Elision BindingElement

1. Return ContainsExpression of BindingElement.

BindingProperty : PropertyName : BindingElement

1. Let has be IsComputedPropertyKey of PropertyName.
2. If has is true, return true.
3. Return ContainsExpression of BindingElement.

BindingElement : BindingPattern Initializer

1. Return true.

SingleNameBinding : BindingIdentifier

1. Return false.

SingleNameBinding : BindingIdentifier Initializer

1. Return true.

BindingRestElement : ... BindingIdentifier

1. Return false.

BindingRestElement : ... BindingPattern

1. Return ContainsExpression of BindingPattern.

13.3.3.3 Static Semantics: HasInitializer

256

© Ecma International 2019

256

BindingElement : BindingPattern

1. Return false.

BindingElement : BindingPattern Initializer

1. Return true.

SingleNameBinding : BindingIdentifier

1. Return false.

SingleNameBinding : BindingIdentifier Initializer

1. Return true.

BindingElement : BindingPattern

1. Return false.

BindingElement : BindingPattern Initializer

1. Return false.

SingleNameBinding : BindingIdentifier

1. Return true.

SingleNameBinding : BindingIdentifier Initializer

1. Return false.

With parameters value and environment.

NOTE
When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

BindingPattern : ObjectBindingPattern

1. Perform ? RequireObjectCoercible(value).
2. Return the result of performing BindingInitialization for ObjectBindingPattern using value and environment as

arguments.

BindingPattern : ArrayBindingPattern

1. Let iteratorRecord be ? GetIterator(value).
2. Let result be IteratorBindingInitialization for ArrayBindingPattern using iteratorRecord and environment as

arguments.
3. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, result).

13.3.3.4 Static Semantics: IsSimpleParameterList

13.3.3.5 Runtime Semantics: BindingInitialization

© Ecma International 2019

257

4. Return result.

ObjectBindingPattern : { }

1. Return NormalCompletion(empty).

ObjectBindingPattern :
{ BindingPropertyList }
{ BindingPropertyList , }

1. Perform ? PropertyBindingInitialization for BindingPropertyList using value and environment as the arguments.
2. Return NormalCompletion(empty).

ObjectBindingPattern : { BindingRestProperty }

1. Let excludedNames be a new empty List.
2. Return the result of performing RestBindingInitialization of BindingRestProperty with value, environment, and

excludedNames as the arguments.

ObjectBindingPattern : { BindingPropertyList , BindingRestProperty }

1. Let excludedNames be the result of performing ? PropertyBindingInitialization of BindingPropertyList using value
and environment as arguments.

2. Return the result of performing RestBindingInitialization of BindingRestProperty with value, environment, and
excludedNames as the arguments.

With parameters value and environment.

NOTE
These collect a list of all bound property names rather than just empty completion.

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let boundNames be the result of performing ? PropertyBindingInitialization for BindingPropertyList using value
and environment as arguments.

2. Let nextNames be the result of performing ? PropertyBindingInitialization for BindingProperty using value and
environment as arguments.

3. Append each item in nextNames to the end of boundNames.
4. Return boundNames.

BindingProperty : SingleNameBinding

1. Let name be the string that is the only element of BoundNames of SingleNameBinding.
2. Perform ? KeyedBindingInitialization for SingleNameBinding using value, environment, and name as the

arguments.
3. Return a new List containing name.

BindingProperty : PropertyName : BindingElement

1. Let P be the result of evaluating PropertyName.
2. ReturnIfAbrupt(P).

13.3.3.6 Runtime Semantics: PropertyBindingInitialization

258

© Ecma International 2019

258

3. Perform ? KeyedBindingInitialization of BindingElement with value, environment, and P as the arguments.
4. Return a new List containing P.

With parameters value, environment, and excludedNames.

BindingRestProperty : ... BindingIdentifier

1. Let lhs be ? ResolveBinding(StringValue of BindingIdentifier, environment).
2. Let restObj be ObjectCreate(%ObjectPrototype%).
3. Perform ? CopyDataProperties(restObj, value, excludedNames).
4. If environment is undefined, return PutValue(lhs, restObj).
5. Return InitializeReferencedBinding(lhs, restObj).

With parameters iteratorRecord and environment.

NOTE
When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

ArrayBindingPattern : []

1. Return NormalCompletion(empty).

ArrayBindingPattern : [Elision]

1. Return the result of performing IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the
argument.

ArrayBindingPattern : [Elision BindingRestElement]

1. If Elision is present, then
a. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.

2. Return the result of performing IteratorBindingInitialization for BindingRestElement with iteratorRecord and
environment as arguments.

ArrayBindingPattern : [BindingElementList]

1. Return the result of performing IteratorBindingInitialization for BindingElementList with iteratorRecord and
environment as arguments.

ArrayBindingPattern : [BindingElementList ,]

1. Return the result of performing IteratorBindingInitialization for BindingElementList with iteratorRecord and
environment as arguments.

ArrayBindingPattern : [BindingElementList , Elision]

1. Perform ? IteratorBindingInitialization for BindingElementList with iteratorRecord and environment as arguments.

13.3.3.7 Runtime Semantics: RestBindingInitialization

13.3.3.8 Runtime Semantics: IteratorBindingInitialization

© Ecma International 2019

259

2. Return the result of performing IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the
argument.

ArrayBindingPattern : [BindingElementList , Elision BindingRestElement]

1. Perform ? IteratorBindingInitialization for BindingElementList with iteratorRecord and environment as arguments.
2. If Elision is present, then

a. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
3. Return the result of performing IteratorBindingInitialization for BindingRestElement with iteratorRecord and

environment as arguments.

BindingElementList : BindingElisionElement

1. Return the result of performing IteratorBindingInitialization for BindingElisionElement with iteratorRecord and
environment as arguments.

BindingElementList : BindingElementList , BindingElisionElement

1. Perform ? IteratorBindingInitialization for BindingElementList with iteratorRecord and environment as arguments.
2. Return the result of performing IteratorBindingInitialization for BindingElisionElement using iteratorRecord and

environment as arguments.

BindingElisionElement : BindingElement

1. Return the result of performing IteratorBindingInitialization of BindingElement with iteratorRecord and
environment as the arguments.

BindingElisionElement : Elision BindingElement

1. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
2. Return the result of performing IteratorBindingInitialization of BindingElement with iteratorRecord and

environment as the arguments.

BindingElement : SingleNameBinding

1. Return the result of performing IteratorBindingInitialization for SingleNameBinding with iteratorRecord and
environment as the arguments.

SingleNameBinding : BindingIdentifier Initializer

1. Let bindingId be StringValue of BindingIdentifier.
2. Let lhs be ? ResolveBinding(bindingId, environment).
3. If iteratorRecord.[[Done]] is false, then

a. Let next be IteratorStep(iteratorRecord).
b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(next).
d. If next is false, set iteratorRecord.[[Done]] to true.
e. Else,

i. Let v be IteratorValue(next).
ii. If v is an abrupt completion, set iteratorRecord.[[Done]] to true.

iii. ReturnIfAbrupt(v).
4. If iteratorRecord.[[Done]] is true, let v be undefined.
5. If Initializer is present and v is undefined, then

260

© Ecma International 2019

260

a. If IsAnonymousFunctionDefinition(Initializer) is true, then
i. Set v to the result of performing NamedEvaluation for Initializer with argument bindingId.

b. Else,
i. Let defaultValue be the result of evaluating Initializer.

ii. Set v to ? GetValue(defaultValue).
6. If environment is undefined, return ? PutValue(lhs, v).
7. Return InitializeReferencedBinding(lhs, v).

BindingElement : BindingPattern Initializer

1. If iteratorRecord.[[Done]] is false, then
a. Let next be IteratorStep(iteratorRecord).
b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(next).
d. If next is false, set iteratorRecord.[[Done]] to true.
e. Else,

i. Let v be IteratorValue(next).
ii. If v is an abrupt completion, set iteratorRecord.[[Done]] to true.

iii. ReturnIfAbrupt(v).
2. If iteratorRecord.[[Done]] is true, let v be undefined.
3. If Initializer is present and v is undefined, then

a. Let defaultValue be the result of evaluating Initializer.
b. Set v to ? GetValue(defaultValue).

4. Return the result of performing BindingInitialization of BindingPattern with v and environment as the arguments.

BindingRestElement : ... BindingIdentifier

1. Let lhs be ? ResolveBinding(StringValue of BindingIdentifier, environment).
2. Let A be ! ArrayCreate(0).
3. Let n be 0.
4. Repeat,

a. If iteratorRecord.[[Done]] is false, then
i. Let next be IteratorStep(iteratorRecord).

ii. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
iii. ReturnIfAbrupt(next).
iv. If next is false, set iteratorRecord.[[Done]] to true.

b. If iteratorRecord.[[Done]] is true, then
i. If environment is undefined, return ? PutValue(lhs, A).

ii. Return InitializeReferencedBinding(lhs, A).
c. Let nextValue be IteratorValue(next).
d. If nextValue is an abrupt completion, set iteratorRecord.[[Done]] to true.
e. ReturnIfAbrupt(nextValue).
f. Let status be CreateDataProperty(A, ! ToString(n), nextValue).
g. Assert: status is true.
h. Increment n by 1.

BindingRestElement : ... BindingPattern

1. Let A be ! ArrayCreate(0).
2. Let n be 0.

© Ecma International 2019

261

3. Repeat,
a. If iteratorRecord.[[Done]] is false, then

i. Let next be IteratorStep(iteratorRecord).
ii. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.

iii. ReturnIfAbrupt(next).
iv. If next is false, set iteratorRecord.[[Done]] to true.

b. If iteratorRecord.[[Done]] is true, then
i. Return the result of performing BindingInitialization of BindingPattern with A and environment as the

arguments.
c. Let nextValue be IteratorValue(next).
d. If nextValue is an abrupt completion, set iteratorRecord.[[Done]] to true.
e. ReturnIfAbrupt(nextValue).
f. Let status be CreateDataProperty(A, ! ToString(n), nextValue).
g. Assert: status is true.
h. Increment n by 1.

With parameters value, environment, and propertyName.

NOTE
When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

BindingElement : BindingPattern Initializer

1. Let v be ? GetV(value, propertyName).
2. If Initializer is present and v is undefined, then

a. Let defaultValue be the result of evaluating Initializer.
b. Set v to ? GetValue(defaultValue).

3. Return the result of performing BindingInitialization for BindingPattern passing v and environment as arguments.

SingleNameBinding : BindingIdentifier Initializer

1. Let bindingId be StringValue of BindingIdentifier.
2. Let lhs be ? ResolveBinding(bindingId, environment).
3. Let v be ? GetV(value, propertyName).
4. If Initializer is present and v is undefined, then

a. If IsAnonymousFunctionDefinition(Initializer) is true, then
i. Set v to the result of performing NamedEvaluation for Initializer with argument bindingId.

b. Else,
i. Let defaultValue be the result of evaluating Initializer.

ii. Set v to ? GetValue(defaultValue).
5. If environment is undefined, return ? PutValue(lhs, v).
6. Return InitializeReferencedBinding(lhs, v).

13.3.3.9 Runtime Semantics: KeyedBindingInitialization

13.4 Empty Statement

262

© Ecma International 2019

262

EmptyStatement :
;

EmptyStatement : ;

1. Return NormalCompletion(empty).

ExpressionStatement[Yield, Await] :

[lookahead ∉ { { , function , async [no LineTerminator here] function , class , let [}]
Expression[+In, ?Yield, ?Await] ;

NOTE
An ExpressionStatement cannot start with a U+007B (LEFT CURLY BRACKET) because that might make it ambiguous
with a Block. An ExpressionStatement cannot start with the function or class keywords because that would make it
ambiguous with a FunctionDeclaration, a GeneratorDeclaration, or a ClassDeclaration. An ExpressionStatement cannot
start with async function because that would make it ambiguous with an AsyncFunctionDeclaration or a
AsyncGeneratorDeclaration. An ExpressionStatement cannot start with the two token sequence let [because that
would make it ambiguous with a let LexicalDeclaration whose first LexicalBinding was an ArrayBindingPattern.

ExpressionStatement : Expression ;

1. Let exprRef be the result of evaluating Expression.
2. Return ? GetValue(exprRef).

IfStatement[Yield, Await, Return] :

if (Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return] else
Statement[?Yield, ?Await, ?Return]

if (Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible if that
would otherwise have no corresponding else.

Syntax

13.4.1 Runtime Semantics: Evaluation

13.5 Expression Statement

Syntax

13.5.1 Runtime Semantics: Evaluation

13.6 The if Statement

Syntax

© Ecma International 2019

263

IfStatement :
if (Expression) Statement else Statement
if (Expression) Statement

It is a Syntax Error if IsLabelledFunction(Statement) is true.

NOTE
It is only necessary to apply this rule if the extension specified in B.3.2 is implemented.

With parameter labelSet.

IfStatement : if (Expression) Statement else Statement

1. Let hasDuplicate be ContainsDuplicateLabels of the first Statement with argument labelSet.
2. If hasDuplicate is true, return true.
3. Return ContainsDuplicateLabels of the second Statement with argument labelSet.

IfStatement : if (Expression) Statement

1. Return ContainsDuplicateLabels of Statement with argument labelSet.

With parameter labelSet.

IfStatement : if (Expression) Statement else Statement

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of the first Statement with argument labelSet.
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedBreakTarget of the second Statement with argument labelSet.

IfStatement : if (Expression) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

With parameters iterationSet and labelSet.

IfStatement : if (Expression) Statement else Statement

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of the first Statement with arguments iterationSet
and « ».

2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedContinueTarget of the second Statement with arguments iterationSet and « ».

IfStatement : if (Expression) Statement

13.6.1 Static Semantics: Early Errors

13.6.2 Static Semantics: ContainsDuplicateLabels

13.6.3 Static Semantics: ContainsUndefinedBreakTarget

13.6.4 Static Semantics: ContainsUndefinedContinueTarget

264

© Ecma International 2019

264

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

IfStatement : if (Expression) Statement else Statement

1. Let names be VarDeclaredNames of the first Statement.
2. Append to names the elements of the VarDeclaredNames of the second Statement.
3. Return names.

IfStatement : if (Expression) Statement

1. Return the VarDeclaredNames of Statement.

IfStatement : if (Expression) Statement else Statement

1. Let declarations be VarScopedDeclarations of the first Statement.
2. Append to declarations the elements of the VarScopedDeclarations of the second Statement.
3. Return declarations.

IfStatement : if (Expression) Statement

1. Return the VarScopedDeclarations of Statement.

IfStatement : if (Expression) Statement else Statement

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be ToBoolean(? GetValue(exprRef)).
3. If exprValue is true, then

a. Let stmtCompletion be the result of evaluating the first Statement.
4. Else,

a. Let stmtCompletion be the result of evaluating the second Statement.
5. Return Completion(UpdateEmpty(stmtCompletion, undefined)).

IfStatement : if (Expression) Statement

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be ToBoolean(? GetValue(exprRef)).
3. If exprValue is false, then

a. Return NormalCompletion(undefined).
4. Else,

a. Let stmtCompletion be the result of evaluating Statement.
b. Return Completion(UpdateEmpty(stmtCompletion, undefined)).

13.6.5 Static Semantics: VarDeclaredNames

13.6.6 Static Semantics: VarScopedDeclarations

13.6.7 Runtime Semantics: Evaluation

13.7 Iteration Statements

Syntax

© Ecma International 2019

265

IterationStatement[Yield, Await, Return] :

do Statement[?Yield, ?Await, ?Return] while (Expression[+In, ?Yield, ?Await]) ;
while (Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]
for ([lookahead ∉ { let [}] Expression[~In, ?Yield, ?Await] opt ;

Expression[+In, ?Yield, ?Await] opt ; Expression[+In, ?Yield, ?Await] opt)
Statement[?Yield, ?Await, ?Return]

for (var VariableDeclarationList[~In, ?Yield, ?Await] ;
Expression[+In, ?Yield, ?Await] opt ; Expression[+In, ?Yield, ?Await] opt)
Statement[?Yield, ?Await, ?Return]

for (LexicalDeclaration[~In, ?Yield, ?Await] Expression[+In, ?Yield, ?Await] opt ;
Expression[+In, ?Yield, ?Await] opt) Statement[?Yield, ?Await, ?Return]

for ([lookahead ∉ { let [}] LeftHandSideExpression[?Yield, ?Await] in
Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

for (var ForBinding[?Yield, ?Await] in Expression[+In, ?Yield, ?Await])
Statement[?Yield, ?Await, ?Return]

for (ForDeclaration[?Yield, ?Await] in Expression[+In, ?Yield, ?Await])
Statement[?Yield, ?Await, ?Return]

for ([lookahead ≠ let] LeftHandSideExpression[?Yield, ?Await] of
AssignmentExpression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

for (var ForBinding[?Yield, ?Await] of AssignmentExpression[+In, ?Yield, ?Await])
Statement[?Yield, ?Await, ?Return]

for (ForDeclaration[?Yield, ?Await] of AssignmentExpression[+In, ?Yield, ?Await])
Statement[?Yield, ?Await, ?Return]

[+Await] for await ([lookahead ≠ let] LeftHandSideExpression[?Yield, ?Await] of
AssignmentExpression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

[+Await] for await (var ForBinding[?Yield, ?Await] of
AssignmentExpression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

[+Await] for await (ForDeclaration[?Yield, ?Await] of
AssignmentExpression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

ForDeclaration[Yield, Await] :

LetOrConst ForBinding[?Yield, ?Await]

ForBinding[Yield, Await] :

BindingIdentifier[?Yield, ?Await]
BindingPattern[?Yield, ?Await]

NOTE
This section is extended by Annex B.3.6.

13.7.1 Semantics

13.7.1.1 Static Semantics: Early Errors

266

© Ecma International 2019

266

IterationStatement :
do Statement while (Expression) ;
while (Expression) Statement
for (Expressionopt ; Expressionopt ; Expressionopt) Statement

for (var VariableDeclarationList ; Expressionopt ; Expressionopt) Statement

for (LexicalDeclaration Expressionopt ; Expressionopt) Statement

for (LeftHandSideExpression in Expression) Statement
for (var ForBinding in Expression) Statement
for (ForDeclaration in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement
for (var ForBinding of AssignmentExpression) Statement
for (ForDeclaration of AssignmentExpression) Statement
for await (LeftHandSideExpression of AssignmentExpression) Statement
for await (var ForBinding of AssignmentExpression) Statement
for await (ForDeclaration of AssignmentExpression) Statement

It is a Syntax Error if IsLabelledFunction(Statement) is true.

NOTE
It is only necessary to apply this rule if the extension specified in B.3.2 is implemented.

The abstract operation LoopContinues with arguments completion and labelSet is defined by the following steps:

1. If completion.[[Type]] is normal, return true.
2. If completion.[[Type]] is not continue, return false.
3. If completion.[[Target]] is empty, return true.
4. If completion.[[Target]] is an element of labelSet, return true.
5. Return false.

NOTE
Within the Statement part of an IterationStatement a ContinueStatement may be used to begin a new iteration.

With parameter labelSet.

IterationStatement : do Statement while (Expression) ;

1. Return ContainsDuplicateLabels of Statement with argument labelSet.

With parameter labelSet.

13.7.1.2 Runtime Semantics: LoopContinues (completion, labelSet)

13.7.2 The do-while Statement

13.7.2.1 Static Semantics: ContainsDuplicateLabels

13.7.2.2 Static Semantics: ContainsUndefinedBreakTarget

© Ecma International 2019

267

IterationStatement : do Statement while (Expression) ;

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

With parameters iterationSet and labelSet.

IterationStatement : do Statement while (Expression) ;

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

IterationStatement : do Statement while (Expression) ;

1. Return the VarDeclaredNames of Statement.

IterationStatement : do Statement while (Expression) ;

1. Return the VarScopedDeclarations of Statement.

With parameter labelSet.

IterationStatement : do Statement while (Expression) ;

1. Let V be undefined.
2. Repeat,

a. Let stmtResult be the result of evaluating Statement.
b. If LoopContinues(stmtResult, labelSet) is false, return Completion(UpdateEmpty(stmtResult, V)).
c. If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].
d. Let exprRef be the result of evaluating Expression.
e. Let exprValue be ? GetValue(exprRef).
f. If ToBoolean(exprValue) is false, return NormalCompletion(V).

With parameter labelSet.

IterationStatement : while (Expression) Statement

1. Return ContainsDuplicateLabels of Statement with argument labelSet.

With parameter labelSet.

13.7.2.3 Static Semantics: ContainsUndefinedContinueTarget

13.7.2.4 Static Semantics: VarDeclaredNames

13.7.2.5 Static Semantics: VarScopedDeclarations

13.7.2.6 Runtime Semantics: LabelledEvaluation

13.7.3 The while Statement

13.7.3.1 Static Semantics: ContainsDuplicateLabels

13.7.3.2 Static Semantics: ContainsUndefinedBreakTarget

268

© Ecma International 2019

268

IterationStatement : while (Expression) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

With parameters iterationSet and labelSet.

IterationStatement : while (Expression) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

IterationStatement : while (Expression) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : while (Expression) Statement

1. Return the VarScopedDeclarations of Statement.

With parameter labelSet.

IterationStatement : while (Expression) Statement

1. Let V be undefined.
2. Repeat,

a. Let exprRef be the result of evaluating Expression.
b. Let exprValue be ? GetValue(exprRef).
c. If ToBoolean(exprValue) is false, return NormalCompletion(V).
d. Let stmtResult be the result of evaluating Statement.
e. If LoopContinues(stmtResult, labelSet) is false, return Completion(UpdateEmpty(stmtResult, V)).
f. If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].

IterationStatement : for (LexicalDeclaration Expression ; Expression) Statement

It is a Syntax Error if any element of the BoundNames of LexicalDeclaration also occurs in the VarDeclaredNames
of Statement.

With parameter labelSet.

IterationStatement :

13.7.3.3 Static Semantics: ContainsUndefinedContinueTarget

13.7.3.4 Static Semantics: VarDeclaredNames

13.7.3.5 Static Semantics: VarScopedDeclarations

13.7.3.6 Runtime Semantics: LabelledEvaluation

13.7.4 The for Statement

13.7.4.1 Static Semantics: Early Errors

13.7.4.2 Static Semantics: ContainsDuplicateLabels

© Ecma International 2019

269

for (Expressionopt ; Expressionopt ; Expressionopt) Statement

for (var VariableDeclarationList ; Expressionopt ; Expressionopt) Statement

for (LexicalDeclaration Expressionopt ; Expressionopt) Statement

1. Return ContainsDuplicateLabels of Statement with argument labelSet.

With parameter labelSet.

IterationStatement :
for (Expressionopt ; Expressionopt ; Expressionopt) Statement

for (var VariableDeclarationList ; Expressionopt ; Expressionopt) Statement

for (LexicalDeclaration Expressionopt ; Expressionopt) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

With parameters iterationSet and labelSet.

IterationStatement :
for (Expressionopt ; Expressionopt ; Expressionopt) Statement

for (var VariableDeclarationList ; Expressionopt ; Expressionopt) Statement

for (LexicalDeclaration Expressionopt ; Expressionopt) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

IterationStatement : for (Expression ; Expression ; Expression) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : for (var VariableDeclarationList ; Expression ; Expression) Statement

1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

IterationStatement : for (LexicalDeclaration Expression ; Expression) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : for (Expression ; Expression ; Expression) Statement

1. Return the VarScopedDeclarations of Statement.

IterationStatement : for (var VariableDeclarationList ; Expression ; Expression) Statement

1. Let declarations be VarScopedDeclarations of VariableDeclarationList.

13.7.4.3 Static Semantics: ContainsUndefinedBreakTarget

13.7.4.4 Static Semantics: ContainsUndefinedContinueTarget

13.7.4.5 Static Semantics: VarDeclaredNames

13.7.4.6 Static Semantics: VarScopedDeclarations

270

© Ecma International 2019

270

2. Append to declarations the elements of the VarScopedDeclarations of Statement.
3. Return declarations.

IterationStatement : for (LexicalDeclaration Expression ; Expression) Statement

1. Return the VarScopedDeclarations of Statement.

With parameter labelSet.

IterationStatement : for (Expression ; Expression ; Expression) Statement

1. If the first Expression is present, then
a. Let exprRef be the result of evaluating the first Expression.
b. Perform ? GetValue(exprRef).

2. Return ? ForBodyEvaluation(the second Expression, the third Expression, Statement, « », labelSet).

IterationStatement : for (var VariableDeclarationList ; Expression ; Expression) Statement

1. Let varDcl be the result of evaluating VariableDeclarationList.
2. ReturnIfAbrupt(varDcl).
3. Return ? ForBodyEvaluation(the first Expression, the second Expression, Statement, « », labelSet).

IterationStatement : for (LexicalDeclaration Expression ; Expression) Statement

1. Let oldEnv be the running execution context's LexicalEnvironment.
2. Let loopEnv be NewDeclarativeEnvironment(oldEnv).
3. Let loopEnvRec be loopEnv's EnvironmentRecord.
4. Let isConst be the result of performing IsConstantDeclaration of LexicalDeclaration.
5. Let boundNames be the BoundNames of LexicalDeclaration.
6. For each element dn of boundNames, do

a. If isConst is true, then
i. Perform ! loopEnvRec.CreateImmutableBinding(dn, true).

b. Else,
i. Perform ! loopEnvRec.CreateMutableBinding(dn, false).

7. Set the running execution context's LexicalEnvironment to loopEnv.
8. Let forDcl be the result of evaluating LexicalDeclaration.
9. If forDcl is an abrupt completion, then

a. Set the running execution context's LexicalEnvironment to oldEnv.
b. Return Completion(forDcl).

10. If isConst is false, let perIterationLets be boundNames; otherwise let perIterationLets be « ».
11. Let bodyResult be ForBodyEvaluation(the first Expression, the second Expression, Statement, perIterationLets,

labelSet).
12. Set the running execution context's LexicalEnvironment to oldEnv.
13. Return Completion(bodyResult).

The abstract operation ForBodyEvaluation with arguments test, increment, stmt, perIterationBindings, and labelSet is
performed as follows:

13.7.4.7 Runtime Semantics: LabelledEvaluation

13.7.4.8 Runtime Semantics: ForBodyEvaluation (test, increment, stmt, perIterationBindings, labelSet)

© Ecma International 2019

271

1. Let V be undefined.
2. Perform ? CreatePerIterationEnvironment(perIterationBindings).
3. Repeat,

a. If test is not [empty], then
i. Let testRef be the result of evaluating test.

ii. Let testValue be ? GetValue(testRef).
iii. If ToBoolean(testValue) is false, return NormalCompletion(V).

b. Let result be the result of evaluating stmt.
c. If LoopContinues(result, labelSet) is false, return Completion(UpdateEmpty(result, V)).
d. If result.[[Value]] is not empty, set V to result.[[Value]].
e. Perform ? CreatePerIterationEnvironment(perIterationBindings).
f. If increment is not [empty], then

i. Let incRef be the result of evaluating increment.
ii. Perform ? GetValue(incRef).

The abstract operation CreatePerIterationEnvironment with argument perIterationBindings is performed as follows:

1. If perIterationBindings has any elements, then
a. Let lastIterationEnv be the running execution context's LexicalEnvironment.
b. Let lastIterationEnvRec be lastIterationEnv's EnvironmentRecord.
c. Let outer be lastIterationEnv's outer environment reference.
d. Assert: outer is not null.
e. Let thisIterationEnv be NewDeclarativeEnvironment(outer).
f. Let thisIterationEnvRec be thisIterationEnv's EnvironmentRecord.
g. For each element bn of perIterationBindings, do

i. Perform ! thisIterationEnvRec.CreateMutableBinding(bn, false).
ii. Let lastValue be ? lastIterationEnvRec.GetBindingValue(bn, true).

iii. Perform thisIterationEnvRec.InitializeBinding(bn, lastValue).
h. Set the running execution context's LexicalEnvironment to thisIterationEnv.

2. Return undefined.

IterationStatement :
for (LeftHandSideExpression in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement
for await (LeftHandSideExpression of AssignmentExpression) Statement

It is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if
LeftHandSideExpression is not covering an AssignmentPattern.

If LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if LeftHandSideExpression is covering an
AssignmentPattern then the following rules are not applied. Instead, the Early Error rules for AssignmentPattern are
used.

13.7.4.9 Runtime Semantics: CreatePerIterationEnvironment (perIterationBindings)

13.7.5 The for-in, for-of, and for-await-of Statements

13.7.5.1 Static Semantics: Early Errors

272

© Ecma International 2019

272

It is a Syntax Error if AssignmentTargetType of LeftHandSideExpression is not simple.
It is a Syntax Error if the LeftHandSideExpression is CoverParenthesizedExpressionAndArrowParameterList : (
Expression) and Expression derives a phrase that would produce a Syntax Error according to these rules if that
phrase were substituted for LeftHandSideExpression. This rule is recursively applied.

NOTE
The last rule means that the other rules are applied even if parentheses surround Expression.

IterationStatement :
for (ForDeclaration in Expression) Statement
for (ForDeclaration of AssignmentExpression) Statement
for await (ForDeclaration of AssignmentExpression) Statement

It is a Syntax Error if the BoundNames of ForDeclaration contains "let".
It is a Syntax Error if any element of the BoundNames of ForDeclaration also occurs in the VarDeclaredNames of
Statement.
It is a Syntax Error if the BoundNames of ForDeclaration contains any duplicate entries.

ForDeclaration : LetOrConst ForBinding

1. Return the BoundNames of ForBinding.

With parameter labelSet.

IterationStatement :
for (LeftHandSideExpression in Expression) Statement
for (var ForBinding in Expression) Statement
for (ForDeclaration in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement
for (var ForBinding of AssignmentExpression) Statement
for (ForDeclaration of AssignmentExpression) Statement
for await (LeftHandSideExpression of AssignmentExpression) Statement
for await (var ForBinding of AssignmentExpression) Statement
for await (ForDeclaration of AssignmentExpression) Statement

1. Return ContainsDuplicateLabels of Statement with argument labelSet.

NOTE
This section is extended by Annex B.3.6.

With parameter labelSet.

IterationStatement :

13.7.5.2 Static Semantics: BoundNames

13.7.5.3 Static Semantics: ContainsDuplicateLabels

13.7.5.4 Static Semantics: ContainsUndefinedBreakTarget

© Ecma International 2019

273

for (LeftHandSideExpression in Expression) Statement
for (var ForBinding in Expression) Statement
for (ForDeclaration in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement
for (var ForBinding of AssignmentExpression) Statement
for (ForDeclaration of AssignmentExpression) Statement
for await (LeftHandSideExpression of AssignmentExpression) Statement
for await (var ForBinding of AssignmentExpression) Statement
for await (ForDeclaration of AssignmentExpression) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

NOTE
This section is extended by Annex B.3.6.

With parameters iterationSet and labelSet.

IterationStatement :
for (LeftHandSideExpression in Expression) Statement
for (var ForBinding in Expression) Statement
for (ForDeclaration in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement
for (var ForBinding of AssignmentExpression) Statement
for (ForDeclaration of AssignmentExpression) Statement
for await (LeftHandSideExpression of AssignmentExpression) Statement
for await (var ForBinding of AssignmentExpression) Statement
for await (ForDeclaration of AssignmentExpression) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

NOTE
This section is extended by Annex B.3.6.

ForDeclaration : LetOrConst ForBinding

1. Return IsDestructuring of ForBinding.

ForBinding : BindingIdentifier

1. Return false.

ForBinding : BindingPattern

1. Return true.

NOTE

13.7.5.5 Static Semantics: ContainsUndefinedContinueTarget

13.7.5.6 Static Semantics: IsDestructuring

274

© Ecma International 2019

274

This section is extended by Annex B.3.6.

IterationStatement : for (LeftHandSideExpression in Expression) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement : for (var ForBinding in Expression) Statement

1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

IterationStatement : for (ForDeclaration in Expression) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement :
for (LeftHandSideExpression of AssignmentExpression) Statement
for await (LeftHandSideExpression of AssignmentExpression) Statement

1. Return the VarDeclaredNames of Statement.

IterationStatement :
for (var ForBinding of AssignmentExpression) Statement
for await (var ForBinding of AssignmentExpression) Statement

1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

IterationStatement :
for (ForDeclaration of AssignmentExpression) Statement
for await (ForDeclaration of AssignmentExpression) Statement

1. Return the VarDeclaredNames of Statement.

NOTE
This section is extended by Annex B.3.6.

IterationStatement : for (LeftHandSideExpression in Expression) Statement

1. Return the VarScopedDeclarations of Statement.

IterationStatement : for (var ForBinding in Expression) Statement

1. Let declarations be a List containing ForBinding.
2. Append to declarations the elements of the VarScopedDeclarations of Statement.
3. Return declarations.

13.7.5.7 Static Semantics: VarDeclaredNames

13.7.5.8 Static Semantics: VarScopedDeclarations

© Ecma International 2019

275

IterationStatement :
for (ForDeclaration in Expression) Statement
for await (LeftHandSideExpression of AssignmentExpression) Statement

1. Return the VarScopedDeclarations of Statement.

IterationStatement :
for (LeftHandSideExpression of AssignmentExpression) Statement
for await (var ForBinding of AssignmentExpression) Statement

1. Return the VarScopedDeclarations of Statement.

IterationStatement :
for (var ForBinding of AssignmentExpression) Statement
for await (var ForBinding of AssignmentExpression) Statement

1. Let declarations be a List containing ForBinding.
2. Append to declarations the elements of the VarScopedDeclarations of Statement.
3. Return declarations.

IterationStatement :
for (ForDeclaration of AssignmentExpression) Statement
for await (ForDeclaration of AssignmentExpression) Statement

1. Return the VarScopedDeclarations of Statement.

NOTE
This section is extended by Annex B.3.6.

With parameters value and environment.

NOTE
undefined is passed for environment to indicate that a PutValue operation should be used to assign the initialization
value. This is the case for var statements and the formal parameter lists of some non-strict functions (see 9.2.15). In
those cases a lexical binding is hoisted and preinitialized prior to evaluation of its initializer.

ForDeclaration : LetOrConst ForBinding

1. Return the result of performing BindingInitialization for ForBinding passing value and environment as the
arguments.

With parameter environment.

ForDeclaration : LetOrConst ForBinding

1. Let envRec be environment's EnvironmentRecord.
2. Assert: envRec is a declarative Environment Record.

13.7.5.9 Runtime Semantics: BindingInitialization

13.7.5.10 Runtime Semantics: BindingInstantiation

276

© Ecma International 2019

276

3. For each element name of the BoundNames of ForBinding, do
a. If IsConstantDeclaration of LetOrConst is true, then

i. Perform ! envRec.CreateImmutableBinding(name, true).
b. Else,

i. Perform ! envRec.CreateMutableBinding(name, false).

With parameter labelSet.

IterationStatement : for (LeftHandSideExpression in Expression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », Expression, enumerate).
2. Return ? ForIn/OfBodyEvaluation(LeftHandSideExpression, Statement, keyResult, enumerate, assignment,

labelSet).

IterationStatement : for (var ForBinding in Expression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », Expression, enumerate).
2. Return ? ForIn/OfBodyEvaluation(ForBinding, Statement, keyResult, enumerate, varBinding, labelSet).

IterationStatement : for (ForDeclaration in Expression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(BoundNames of ForDeclaration, Expression, enumerate).
2. Return ? ForIn/OfBodyEvaluation(ForDeclaration, Statement, keyResult, enumerate, lexicalBinding, labelSet).

IterationStatement : for (LeftHandSideExpression of AssignmentExpression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, iterate).
2. Return ? ForIn/OfBodyEvaluation(LeftHandSideExpression, Statement, keyResult, iterate, assignment, labelSet).

IterationStatement : for (var ForBinding of AssignmentExpression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, iterate).
2. Return ? ForIn/OfBodyEvaluation(ForBinding, Statement, keyResult, iterate, varBinding, labelSet).

IterationStatement : for (ForDeclaration of AssignmentExpression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(BoundNames of ForDeclaration, AssignmentExpression, iterate).
2. Return ? ForIn/OfBodyEvaluation(ForDeclaration, Statement, keyResult, iterate, lexicalBinding, labelSet).

IterationStatement : for await (LeftHandSideExpression of AssignmentExpression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, async-iterate).
2. Return ? ForIn/OfBodyEvaluation(LeftHandSideExpression, Statement, keyResult, iterate, assignment, labelSet,

async).

IterationStatement : for await (var ForBinding of AssignmentExpression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, async-iterate).
2. Return ? ForIn/OfBodyEvaluation(ForBinding, Statement, keyResult, iterate, varBinding, labelSet, async).

IterationStatement : for await (ForDeclaration of AssignmentExpression) Statement

13.7.5.11 Runtime Semantics: LabelledEvaluation

© Ecma International 2019

277

1. Let keyResult be ? ForIn/OfHeadEvaluation(BoundNames of ForDeclaration, AssignmentExpression, async-
iterate).

2. Return ? ForIn/OfBodyEvaluation(ForDeclaration, Statement, keyResult, iterate, lexicalBinding, labelSet, async).

NOTE
This section is extended by Annex B.3.6.

The abstract operation ForIn/OfHeadEvaluation is called with arguments TDZnames, expr, and iterationKind. The value
of iterationKind is either enumerate, iterate, or async-iterate.

1. Let oldEnv be the running execution context's LexicalEnvironment.
2. If TDZnames is not an empty List, then

a. Assert: TDZnames has no duplicate entries.
b. Let TDZ be NewDeclarativeEnvironment(oldEnv).
c. Let TDZEnvRec be TDZ's EnvironmentRecord.
d. For each string name in TDZnames, do

i. Perform ! TDZEnvRec.CreateMutableBinding(name, false).
e. Set the running execution context's LexicalEnvironment to TDZ.

3. Let exprRef be the result of evaluating expr.
4. Set the running execution context's LexicalEnvironment to oldEnv.
5. Let exprValue be ? GetValue(exprRef).
6. If iterationKind is enumerate, then

a. If exprValue is undefined or null, then
i. Return Completion { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.

b. Let obj be ! ToObject(exprValue).
c. Return ? EnumerateObjectProperties(obj).

7. Else,
a. Assert: iterationKind is iterate.
b. If iterationKind is async-iterate, let iteratorHint be async.
c. Else, let iteratorHint be sync.
d. Return ? GetIterator(exprValue, iteratorHint).

The abstract operation ForIn/OfBodyEvaluation is called with arguments lhs, stmt, iteratorRecord, iterationKind,
lhsKind, labelSet, and optional argument iteratorKind. The value of lhsKind is either assignment, varBinding or
lexicalBinding. The value of iteratorKind is either sync or async.

1. If iteratorKind is not present, set iteratorKind to sync.
2. Let oldEnv be the running execution context's LexicalEnvironment.
3. Let V be undefined.
4. Let destructuring be IsDestructuring of lhs.
5. If destructuring is true and if lhsKind is assignment, then

a. Assert: lhs is a LeftHandSideExpression.
b. Let assignmentPattern be the AssignmentPattern that is covered by lhs.

6. Repeat,

13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation (TDZnames, expr, iterationKind)

13.7.5.13 Runtime Semantics: ForIn/OfBodyEvaluation (lhs, stmt, iteratorRecord, iterationKind,
lhsKind, labelSet [, iteratorKind])

278

© Ecma International 2019

278

a. Let nextResult be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]], « »).
b. If iteratorKind is async, then set nextResult to ? Await(nextResult).
c. If Type(nextResult) is not Object, throw a TypeError exception.
d. Let done be ? IteratorComplete(nextResult).
e. If done is true, return NormalCompletion(V).
f. Let nextValue be ? IteratorValue(nextResult).
g. If lhsKind is either assignment or varBinding, then

i. If destructuring is false, then
1. Let lhsRef be the result of evaluating lhs. (It may be evaluated repeatedly.)

h. Else,
i. Assert: lhsKind is lexicalBinding.

ii. Assert: lhs is a ForDeclaration.
iii. Let iterationEnv be NewDeclarativeEnvironment(oldEnv).
iv. Perform BindingInstantiation for lhs passing iterationEnv as the argument.
v. Set the running execution context's LexicalEnvironment to iterationEnv.

vi. If destructuring is false, then
1. Assert: lhs binds a single name.
2. Let lhsName be the sole element of BoundNames of lhs.
3. Let lhsRef be ! ResolveBinding(lhsName).

i. If destructuring is false, then
i. If lhsRef is an abrupt completion, then

1. Let status be lhsRef.
ii. Else if lhsKind is lexicalBinding, then

1. Let status be InitializeReferencedBinding(lhsRef, nextValue).
iii. Else,

1. Let status be PutValue(lhsRef, nextValue).
j. Else,

i. If lhsKind is assignment, then
1. Let status be the result of performing DestructuringAssignmentEvaluation of assignmentPattern

using nextValue as the argument.
ii. Else if lhsKind is varBinding, then

1. Assert: lhs is a ForBinding.
2. Let status be the result of performing BindingInitialization for lhs passing nextValue and

undefined as the arguments.
iii. Else,

1. Assert: lhsKind is lexicalBinding.
2. Assert: lhs is a ForDeclaration.
3. Let status be the result of performing BindingInitialization for lhs passing nextValue and

iterationEnv as arguments.
k. If status is an abrupt completion, then

i. Set the running execution context's LexicalEnvironment to oldEnv.
ii. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status).

iii. If iterationKind is enumerate, then
1. Return status.

iv. Else,
1. Assert: iterationKind is iterate.
2. Return ? IteratorClose(iteratorRecord, status).

l. Let result be the result of evaluating stmt.

© Ecma International 2019

279

m. Set the running execution context's LexicalEnvironment to oldEnv.
n. If LoopContinues(result, labelSet) is false, then

i. If iterationKind is enumerate, then
1. Return Completion(UpdateEmpty(result, V)).

ii. Else,
1. Assert: iterationKind is iterate.
2. Set status to UpdateEmpty(result, V).
3. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status).
4. Return ? IteratorClose(iteratorRecord, status).

o. If result.[[Value]] is not empty, set V to result.[[Value]].

ForBinding : BindingIdentifier

1. Let bindingId be StringValue of BindingIdentifier.
2. Return ? ResolveBinding(bindingId).

When the abstract operation EnumerateObjectProperties is called with argument O, the following steps are taken:

1. Assert: Type(O) is Object.
2. Return an Iterator object (25.1.1.2) whose next method iterates over all the String-valued keys of enumerable

properties of O. The iterator object is never directly accessible to ECMAScript code. The mechanics and order of
enumerating the properties is not specified but must conform to the rules specified below.

The iterator's throw and return methods are null and are never invoked. The iterator's next method processes
object properties to determine whether the property key should be returned as an iterator value. Returned property keys
do not include keys that are Symbols. Properties of the target object may be deleted during enumeration. A property that
is deleted before it is processed by the iterator's next method is ignored. If new properties are added to the target object
during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration. A property
name will be returned by the iterator's next method at most once in any enumeration.

Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the
prototype, and so on, recursively; but a property of a prototype is not processed if it has the same name as a property that
has already been processed by the iterator's next method. The values of [[Enumerable]] attributes are not considered
when determining if a property of a prototype object has already been processed. The enumerable property names of
prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument.
EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]]
internal method. Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal
method.

NOTE
The following is an informative definition of an ECMAScript generator function that conforms to these rules:

function* EnumerateObjectProperties(obj) {
 const visited = new Set();
 for (const key of Reflect.ownKeys(obj)) {
 if (typeof key === "symbol") continue;
 const desc = Reflect.getOwnPropertyDescriptor(obj, key);

13.7.5.14 Runtime Semantics: Evaluation

13.7.5.15 EnumerateObjectProperties (O)

280

© Ecma International 2019

280

 if (desc) {
 visited.add(key);
 if (desc.enumerable) yield key;
 }
 }
 const proto = Reflect.getPrototypeOf(obj);
 if (proto === null) return;
 for (const protoKey of EnumerateObjectProperties(proto)) {
 if (!visited.has(protoKey)) yield protoKey;
 }
}

ContinueStatement[Yield, Await] :

continue ;
continue [no LineTerminator here] LabelIdentifier[?Yield, ?Await] ;

ContinueStatement : continue ;
ContinueStatement : continue LabelIdentifier ;

It is a Syntax Error if this ContinueStatement is not nested, directly or indirectly (but not crossing function
boundaries), within an IterationStatement.

With parameters iterationSet and labelSet.

ContinueStatement : continue ;

1. Return false.

ContinueStatement : continue LabelIdentifier ;

1. If the StringValue of LabelIdentifier is not an element of iterationSet, return true.
2. Return false.

ContinueStatement : continue ;

1. Return Completion { [[Type]]: continue, [[Value]]: empty, [[Target]]: empty }.

ContinueStatement : continue LabelIdentifier ;

13.8 The continue Statement

Syntax

13.8.1 Static Semantics: Early Errors

13.8.2 Static Semantics: ContainsUndefinedContinueTarget

13.8.3 Runtime Semantics: Evaluation

© Ecma International 2019

281

1. Let label be the StringValue of LabelIdentifier.
2. Return Completion { [[Type]]: continue, [[Value]]: empty, [[Target]]: label }.

BreakStatement[Yield, Await] :

break ;
break [no LineTerminator here] LabelIdentifier[?Yield, ?Await] ;

BreakStatement : break ;

It is a Syntax Error if this BreakStatement is not nested, directly or indirectly (but not crossing function
boundaries), within an IterationStatement or a SwitchStatement.

With parameter labelSet.

BreakStatement : break ;

1. Return false.

BreakStatement : break LabelIdentifier ;

1. If the StringValue of LabelIdentifier is not an element of labelSet, return true.
2. Return false.

BreakStatement : break ;

1. Return Completion { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.

BreakStatement : break LabelIdentifier ;

1. Let label be the StringValue of LabelIdentifier.
2. Return Completion { [[Type]]: break, [[Value]]: empty, [[Target]]: label }.

ReturnStatement[Yield, Await] :

return ;
return [no LineTerminator here] Expression[+In, ?Yield, ?Await] ;

13.9 The break Statement

Syntax

13.9.1 Static Semantics: Early Errors

13.9.2 Static Semantics: ContainsUndefinedBreakTarget

13.9.3 Runtime Semantics: Evaluation

13.10 The return Statement

Syntax

282

© Ecma International 2019

282

NOTE
A return statement causes a function to cease execution and, in most cases, returns a value to the caller. If Expression
is omitted, the return value is undefined. Otherwise, the return value is the value of Expression. A return statement
may not actually return a value to the caller depending on surrounding context. For example, in a try block, a return
statement's completion record may be replaced with another completion record during evaluation of the finally block.

ReturnStatement : return ;

1. Return Completion { [[Type]]: return, [[Value]]: undefined, [[Target]]: empty }.

ReturnStatement : return Expression ;

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be ? GetValue(exprRef).
3. If ! GetGeneratorKind() is async, set exprValue to ? Await(exprValue).
4. Return Completion { [[Type]]: return, [[Value]]: exprValue, [[Target]]: empty }.

WithStatement[Yield, Await, Return] :

with (Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

NOTE
The with statement adds an object Environment Record for a computed object to the lexical environment of the running
execution context. It then executes a statement using this augmented lexical environment. Finally, it restores the original
lexical environment.

WithStatement : with (Expression) Statement

It is a Syntax Error if the code that matches this production is contained in strict mode code.
It is a Syntax Error if IsLabelledFunction(Statement) is true.

NOTE
It is only necessary to apply the second rule if the extension specified in B.3.2 is implemented.

With parameter labelSet.

WithStatement : with (Expression) Statement

13.10.1 Runtime Semantics: Evaluation

13.11 The with Statement

Syntax

13.11.1 Static Semantics: Early Errors

13.11.2 Static Semantics: ContainsDuplicateLabels

© Ecma International 2019

283

1. Return ContainsDuplicateLabels of Statement with argument labelSet.

With parameter labelSet.

WithStatement : with (Expression) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

With parameters iterationSet and labelSet.

WithStatement : with (Expression) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

WithStatement : with (Expression) Statement

1. Return the VarDeclaredNames of Statement.

WithStatement : with (Expression) Statement

1. Return the VarScopedDeclarations of Statement.

WithStatement : with (Expression) Statement

1. Let val be the result of evaluating Expression.
2. Let obj be ? ToObject(? GetValue(val)).
3. Let oldEnv be the running execution context's LexicalEnvironment.
4. Let newEnv be NewObjectEnvironment(obj, oldEnv).
5. Set the withEnvironment flag of newEnv's EnvironmentRecord to true.
6. Set the running execution context's LexicalEnvironment to newEnv.
7. Let C be the result of evaluating Statement.
8. Set the running execution context's LexicalEnvironment to oldEnv.
9. Return Completion(UpdateEmpty(C, undefined)).

NOTE
No matter how control leaves the embedded Statement, whether normally or by some form of abrupt completion or
exception, the LexicalEnvironment is always restored to its former state.

13.11.3 Static Semantics: ContainsUndefinedBreakTarget

13.11.4 Static Semantics: ContainsUndefinedContinueTarget

13.11.5 Static Semantics: VarDeclaredNames

13.11.6 Static Semantics: VarScopedDeclarations

13.11.7 Runtime Semantics: Evaluation

13.12 The switch Statement

284

© Ecma International 2019

284

SwitchStatement[Yield, Await, Return] :

switch (Expression[+In, ?Yield, ?Await]) CaseBlock[?Yield, ?Await, ?Return]

CaseBlock[Yield, Await, Return] :

{ CaseClauses[?Yield, ?Await, ?Return] opt }
{ CaseClauses[?Yield, ?Await, ?Return] opt DefaultClause[?Yield, ?Await, ?Return]

CaseClauses[?Yield, ?Await, ?Return] opt }

CaseClauses[Yield, Await, Return] :

CaseClause[?Yield, ?Await, ?Return]
CaseClauses[?Yield, ?Await, ?Return] CaseClause[?Yield, ?Await, ?Return]

CaseClause[Yield, Await, Return] :

case Expression[+In, ?Yield, ?Await] : StatementList[?Yield, ?Await, ?Return] opt

DefaultClause[Yield, Await, Return] :

default : StatementList[?Yield, ?Await, ?Return] opt

SwitchStatement : switch (Expression) CaseBlock

It is a Syntax Error if the LexicallyDeclaredNames of CaseBlock contains any duplicate entries.
It is a Syntax Error if any element of the LexicallyDeclaredNames of CaseBlock also occurs in the
VarDeclaredNames of CaseBlock.

With parameter labelSet.

SwitchStatement : switch (Expression) CaseBlock

1. Return ContainsDuplicateLabels of CaseBlock with argument labelSet.

CaseBlock : { }

1. Return false.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, then
a. Let hasDuplicates be ContainsDuplicateLabels of the first CaseClauses with argument labelSet.
b. If hasDuplicates is true, return true.

2. Let hasDuplicates be ContainsDuplicateLabels of DefaultClause with argument labelSet.
3. If hasDuplicates is true, return true.
4. If the second CaseClauses is not present, return false.
5. Return ContainsDuplicateLabels of the second CaseClauses with argument labelSet.

CaseClauses : CaseClauses CaseClause

Syntax

13.12.1 Static Semantics: Early Errors

13.12.2 Static Semantics: ContainsDuplicateLabels

© Ecma International 2019

285

1. Let hasDuplicates be ContainsDuplicateLabels of CaseClauses with argument labelSet.
2. If hasDuplicates is true, return true.
3. Return ContainsDuplicateLabels of CaseClause with argument labelSet.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return ContainsDuplicateLabels of StatementList with argument labelSet.
2. Return false.

DefaultClause : default : StatementList

1. If the StatementList is present, return ContainsDuplicateLabels of StatementList with argument labelSet.
2. Return false.

With parameter labelSet.

SwitchStatement : switch (Expression) CaseBlock

1. Return ContainsUndefinedBreakTarget of CaseBlock with argument labelSet.

CaseBlock : { }

1. Return false.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, then
a. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of the first CaseClauses with argument labelSet.
b. If hasUndefinedLabels is true, return true.

2. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of DefaultClause with argument labelSet.
3. If hasUndefinedLabels is true, return true.
4. If the second CaseClauses is not present, return false.
5. Return ContainsUndefinedBreakTarget of the second CaseClauses with argument labelSet.

CaseClauses : CaseClauses CaseClause

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of CaseClauses with argument labelSet.
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedBreakTarget of CaseClause with argument labelSet.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return ContainsUndefinedBreakTarget of StatementList with argument labelSet.
2. Return false.

DefaultClause : default : StatementList

1. If the StatementList is present, return ContainsUndefinedBreakTarget of StatementList with argument labelSet.
2. Return false.

13.12.3 Static Semantics: ContainsUndefinedBreakTarget

286

© Ecma International 2019

286

With parameters iterationSet and labelSet.

SwitchStatement : switch (Expression) CaseBlock

1. Return ContainsUndefinedContinueTarget of CaseBlock with arguments iterationSet and « ».

CaseBlock : { }

1. Return false.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, then
a. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of the first CaseClauses with arguments

iterationSet and « ».
b. If hasUndefinedLabels is true, return true.

2. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of DefaultClause with arguments iterationSet and «
».

3. If hasUndefinedLabels is true, return true.
4. If the second CaseClauses is not present, return false.
5. Return ContainsUndefinedContinueTarget of the second CaseClauses with arguments iterationSet and « ».

CaseClauses : CaseClauses CaseClause

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of CaseClauses with arguments iterationSet and « ».
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedContinueTarget of CaseClause with arguments iterationSet and « ».

CaseClause : case Expression : StatementList

1. If the StatementList is present, return ContainsUndefinedContinueTarget of StatementList with arguments
iterationSet and « ».

2. Return false.

DefaultClause : default : StatementList

1. If the StatementList is present, return ContainsUndefinedContinueTarget of StatementList with arguments
iterationSet and « ».

2. Return false.

CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, let names be the LexicallyDeclaredNames of the first CaseClauses.
2. Else, let names be a new empty List.
3. Append to names the elements of the LexicallyDeclaredNames of the DefaultClause.
4. If the second CaseClauses is not present, return names.

13.12.4 Static Semantics: ContainsUndefinedContinueTarget

13.12.5 Static Semantics: LexicallyDeclaredNames

© Ecma International 2019

287

5. Return the result of appending to names the elements of the LexicallyDeclaredNames of the second CaseClauses.

CaseClauses : CaseClauses CaseClause

1. Let names be LexicallyDeclaredNames of CaseClauses.
2. Append to names the elements of the LexicallyDeclaredNames of CaseClause.
3. Return names.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
2. Return a new empty List.

DefaultClause : default : StatementList

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
2. Return a new empty List.

CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, let declarations be the LexicallyScopedDeclarations of the first CaseClauses.
2. Else, let declarations be a new empty List.
3. Append to declarations the elements of the LexicallyScopedDeclarations of the DefaultClause.
4. If the second CaseClauses is not present, return declarations.
5. Return the result of appending to declarations the elements of the LexicallyScopedDeclarations of the second

CaseClauses.

CaseClauses : CaseClauses CaseClause

1. Let declarations be LexicallyScopedDeclarations of CaseClauses.
2. Append to declarations the elements of the LexicallyScopedDeclarations of CaseClause.
3. Return declarations.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return the LexicallyScopedDeclarations of StatementList.
2. Return a new empty List.

DefaultClause : default : StatementList

1. If the StatementList is present, return the LexicallyScopedDeclarations of StatementList.
2. Return a new empty List.

SwitchStatement : switch (Expression) CaseBlock

1. Return the VarDeclaredNames of CaseBlock.

13.12.6 Static Semantics: LexicallyScopedDeclarations

13.12.7 Static Semantics: VarDeclaredNames

288

© Ecma International 2019

288

CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, let names be the VarDeclaredNames of the first CaseClauses.
2. Else, let names be a new empty List.
3. Append to names the elements of the VarDeclaredNames of the DefaultClause.
4. If the second CaseClauses is not present, return names.
5. Return the result of appending to names the elements of the VarDeclaredNames of the second CaseClauses.

CaseClauses : CaseClauses CaseClause

1. Let names be VarDeclaredNames of CaseClauses.
2. Append to names the elements of the VarDeclaredNames of CaseClause.
3. Return names.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return the VarDeclaredNames of StatementList.
2. Return a new empty List.

DefaultClause : default : StatementList

1. If the StatementList is present, return the VarDeclaredNames of StatementList.
2. Return a new empty List.

SwitchStatement : switch (Expression) CaseBlock

1. Return the VarScopedDeclarations of CaseBlock.

CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, let declarations be the VarScopedDeclarations of the first CaseClauses.
2. Else, let declarations be a new empty List.
3. Append to declarations the elements of the VarScopedDeclarations of the DefaultClause.
4. If the second CaseClauses is not present, return declarations.
5. Return the result of appending to declarations the elements of the VarScopedDeclarations of the second

CaseClauses.

CaseClauses : CaseClauses CaseClause

1. Let declarations be VarScopedDeclarations of CaseClauses.
2. Append to declarations the elements of the VarScopedDeclarations of CaseClause.
3. Return declarations.

CaseClause : case Expression : StatementList

13.12.8 Static Semantics: VarScopedDeclarations

© Ecma International 2019

289

1. If the StatementList is present, return the VarScopedDeclarations of StatementList.
2. Return a new empty List.

DefaultClause : default : StatementList

1. If the StatementList is present, return the VarScopedDeclarations of StatementList.
2. Return a new empty List.

With parameter input.

CaseBlock : { }

1. Return NormalCompletion(undefined).

CaseBlock : { CaseClauses }

1. Let V be undefined.
2. Let A be the List of CaseClause items in CaseClauses, in source text order.
3. Let found be false.
4. For each CaseClause C in A, do

a. If found is false, then
i. Set found to ? CaseClauseIsSelected(C, input).

b. If found is true, then
i. Let R be the result of evaluating C.

ii. If R.[[Value]] is not empty, set V to R.[[Value]].
iii. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).

5. Return NormalCompletion(V).

CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. Let V be undefined.
2. If the first CaseClauses is present, then

a. Let A be the List of CaseClause items in the first CaseClauses, in source text order.
3. Else,

a. Let A be « ».
4. Let found be false.
5. For each CaseClause C in A, do

a. If found is false, then
i. Set found to ? CaseClauseIsSelected(C, input).

b. If found is true, then
i. Let R be the result of evaluating C.

ii. If R.[[Value]] is not empty, set V to R.[[Value]].
iii. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).

6. Let foundInB be false.
7. If the second CaseClauses is present, then

a. Let B be the List of CaseClause items in the second CaseClauses, in source text order.
8. Else,

a. Let B be « ».

13.12.9 Runtime Semantics: CaseBlockEvaluation

290

© Ecma International 2019

290

9. If found is false, then
a. For each CaseClause C in B, do

i. If foundInB is false, then
1. Set foundInB to ? CaseClauseIsSelected(C, input).

ii. If foundInB is true, then
1. Let R be the result of evaluating CaseClause C.
2. If R.[[Value]] is not empty, set V to R.[[Value]].
3. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).

10. If foundInB is true, return NormalCompletion(V).
11. Let R be the result of evaluating DefaultClause.
12. If R.[[Value]] is not empty, set V to R.[[Value]].
13. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
14. For each CaseClause C in B (NOTE: this is another complete iteration of the second CaseClauses), do

a. Let R be the result of evaluating CaseClause C.
b. If R.[[Value]] is not empty, set V to R.[[Value]].
c. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).

15. Return NormalCompletion(V).

The abstract operation CaseClauseIsSelected, given CaseClause C and value input, determines whether C matches input.

1. Assert: C is an instance of the production CaseClause : case Expression : StatementList .
2. Let exprRef be the result of evaluating the Expression of C.
3. Let clauseSelector be ? GetValue(exprRef).
4. Return the result of performing Strict Equality Comparison input === clauseSelector.

NOTE
This operation does not execute C's StatementList (if any). The CaseBlock algorithm uses its return value to determine
which StatementList to start executing.

SwitchStatement : switch (Expression) CaseBlock

1. Let exprRef be the result of evaluating Expression.
2. Let switchValue be ? GetValue(exprRef).
3. Let oldEnv be the running execution context's LexicalEnvironment.
4. Let blockEnv be NewDeclarativeEnvironment(oldEnv).
5. Perform BlockDeclarationInstantiation(CaseBlock, blockEnv).
6. Set the running execution context's LexicalEnvironment to blockEnv.
7. Let R be the result of performing CaseBlockEvaluation of CaseBlock with argument switchValue.
8. Set the running execution context's LexicalEnvironment to oldEnv.
9. Return R.

NOTE
No matter how control leaves the SwitchStatement the LexicalEnvironment is always restored to its former state.

CaseClause : case Expression :

13.12.10 Runtime Semantics: CaseClauseIsSelected (C, input)

13.12.11 Runtime Semantics: Evaluation

© Ecma International 2019

291

1. Return NormalCompletion(empty).

CaseClause : case Expression : StatementList

1. Return the result of evaluating StatementList.

DefaultClause : default :

1. Return NormalCompletion(empty).

DefaultClause : default : StatementList

1. Return the result of evaluating StatementList.

LabelledStatement[Yield, Await, Return] :

LabelIdentifier[?Yield, ?Await] : LabelledItem[?Yield, ?Await, ?Return]

LabelledItem[Yield, Await, Return] :

Statement[?Yield, ?Await, ?Return]
FunctionDeclaration[?Yield, ?Await, ~Default]

NOTE
A Statement may be prefixed by a label. Labelled statements are only used in conjunction with labelled break and
continue statements. ECMAScript has no goto statement. A Statement can be part of a LabelledStatement, which
itself can be part of a LabelledStatement, and so on. The labels introduced this way are collectively referred to as the
“current label set” when describing the semantics of individual statements.

LabelledItem : FunctionDeclaration

It is a Syntax Error if any source text matches this rule.

NOTE
An alternative definition for this rule is provided in B.3.2.

With parameter labelSet.

LabelledStatement : LabelIdentifier : LabelledItem

1. Let label be the StringValue of LabelIdentifier.
2. If label is an element of labelSet, return true.
3. Let newLabelSet be a copy of labelSet with label appended.

13.13 Labelled Statements

Syntax

13.13.1 Static Semantics: Early Errors

13.13.2 Static Semantics: ContainsDuplicateLabels

292

© Ecma International 2019

292

4. Return ContainsDuplicateLabels of LabelledItem with argument newLabelSet.

LabelledItem : FunctionDeclaration

1. Return false.

With parameter labelSet.

LabelledStatement : LabelIdentifier : LabelledItem

1. Let label be the StringValue of LabelIdentifier.
2. Let newLabelSet be a copy of labelSet with label appended.
3. Return ContainsUndefinedBreakTarget of LabelledItem with argument newLabelSet.

LabelledItem : FunctionDeclaration

1. Return false.

With parameters iterationSet and labelSet.

LabelledStatement : LabelIdentifier : LabelledItem

1. Let label be the StringValue of LabelIdentifier.
2. Let newLabelSet be a copy of labelSet with label appended.
3. Return ContainsUndefinedContinueTarget of LabelledItem with arguments iterationSet and newLabelSet.

LabelledItem : FunctionDeclaration

1. Return false.

The abstract operation IsLabelledFunction with argument stmt performs the following steps:

1. If stmt is not a LabelledStatement, return false.
2. Let item be the LabelledItem of stmt.
3. If item is LabelledItem : FunctionDeclaration , return true.
4. Let subStmt be the Statement of item.
5. Return IsLabelledFunction(subStmt).

LabelledStatement : LabelIdentifier : LabelledItem

1. Return the LexicallyDeclaredNames of LabelledItem.

LabelledItem : Statement

1. Return a new empty List.

13.13.3 Static Semantics: ContainsUndefinedBreakTarget

13.13.4 Static Semantics: ContainsUndefinedContinueTarget

13.13.5 Static Semantics: IsLabelledFunction (stmt)

13.13.6 Static Semantics: LexicallyDeclaredNames

© Ecma International 2019

293

LabelledItem : FunctionDeclaration

1. Return BoundNames of FunctionDeclaration.

LabelledStatement : LabelIdentifier : LabelledItem

1. Return the LexicallyScopedDeclarations of LabelledItem.

LabelledItem : Statement

1. Return a new empty List.

LabelledItem : FunctionDeclaration

1. Return a new List containing FunctionDeclaration.

LabelledStatement : LabelIdentifier : LabelledItem

1. Return a new empty List.

LabelledStatement : LabelIdentifier : LabelledItem

1. Return a new empty List.

LabelledStatement : LabelIdentifier : LabelledItem

1. Return the TopLevelVarDeclaredNames of LabelledItem.

LabelledItem : Statement

1. If Statement is Statement : LabelledStatement , return TopLevelVarDeclaredNames of Statement.
2. Return VarDeclaredNames of Statement.

LabelledItem : FunctionDeclaration

1. Return BoundNames of FunctionDeclaration.

LabelledStatement : LabelIdentifier : LabelledItem

1. Return the TopLevelVarScopedDeclarations of LabelledItem.

LabelledItem : Statement

1. If Statement is Statement : LabelledStatement , return TopLevelVarScopedDeclarations of Statement.
2. Return VarScopedDeclarations of Statement.

13.13.7 Static Semantics: LexicallyScopedDeclarations

13.13.8 Static Semantics: TopLevelLexicallyDeclaredNames

13.13.9 Static Semantics: TopLevelLexicallyScopedDeclarations

13.13.10 Static Semantics: TopLevelVarDeclaredNames

13.13.11 Static Semantics: TopLevelVarScopedDeclarations

294

© Ecma International 2019

294

LabelledItem : FunctionDeclaration

1. Return a new List containing FunctionDeclaration.

LabelledStatement : LabelIdentifier : LabelledItem

1. Return the VarDeclaredNames of LabelledItem.

LabelledItem : FunctionDeclaration

1. Return a new empty List.

LabelledStatement : LabelIdentifier : LabelledItem

1. Return the VarScopedDeclarations of LabelledItem.

LabelledItem : FunctionDeclaration

1. Return a new empty List.

With parameter labelSet.

LabelledStatement : LabelIdentifier : LabelledItem

1. Let label be the StringValue of LabelIdentifier.
2. Append label as an element of labelSet.
3. Let stmtResult be LabelledEvaluation of LabelledItem with argument labelSet.
4. If stmtResult.[[Type]] is break and SameValue(stmtResult.[[Target]], label) is true, then

a. Set stmtResult to NormalCompletion(stmtResult.[[Value]]).
5. Return Completion(stmtResult).

LabelledItem : Statement

1. If Statement is either a LabelledStatement or a BreakableStatement, then
a. Return LabelledEvaluation of Statement with argument labelSet.

2. Else,
a. Return the result of evaluating Statement.

LabelledItem : FunctionDeclaration

1. Return the result of evaluating FunctionDeclaration.

LabelledStatement : LabelIdentifier : LabelledItem

1. Let newLabelSet be a new empty List.
2. Return LabelledEvaluation of this LabelledStatement with argument newLabelSet.

13.13.12 Static Semantics: VarDeclaredNames

13.13.13 Static Semantics: VarScopedDeclarations

13.13.14 Runtime Semantics: LabelledEvaluation

13.13.15 Runtime Semantics: Evaluation

© Ecma International 2019

295

ThrowStatement[Yield, Await] :

throw [no LineTerminator here] Expression[+In, ?Yield, ?Await] ;

ThrowStatement : throw Expression ;

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be ? GetValue(exprRef).
3. Return ThrowCompletion(exprValue).

TryStatement[Yield, Await, Return] :

try Block[?Yield, ?Await, ?Return] Catch[?Yield, ?Await, ?Return]
try Block[?Yield, ?Await, ?Return] Finally[?Yield, ?Await, ?Return]
try Block[?Yield, ?Await, ?Return] Catch[?Yield, ?Await, ?Return]

Finally[?Yield, ?Await, ?Return]

Catch[Yield, Await, Return] :

catch (CatchParameter[?Yield, ?Await]) Block[?Yield, ?Await, ?Return]
catch Block[?Yield, ?Await, ?Return]

Finally[Yield, Await, Return] :

finally Block[?Yield, ?Await, ?Return]

CatchParameter[Yield, Await] :

BindingIdentifier[?Yield, ?Await]
BindingPattern[?Yield, ?Await]

NOTE
The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime error or a
throw statement. The catch clause provides the exception-handling code. When a catch clause catches an exception,
its CatchParameter is bound to that exception.

Catch : catch (CatchParameter) Block

It is a Syntax Error if BoundNames of CatchParameter contains any duplicate elements.
It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the
LexicallyDeclaredNames of Block.

13.14 The throw Statement

Syntax

13.14.1 Runtime Semantics: Evaluation

13.15 The try Statement

Syntax

13.15.1 Static Semantics: Early Errors

296

© Ecma International 2019

296

It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the VarDeclaredNames of
Block.

NOTE
An alternative static semantics for this production is given in B.3.5.

With parameter labelSet.

TryStatement : try Block Catch

1. Let hasDuplicates be ContainsDuplicateLabels of Block with argument labelSet.
2. If hasDuplicates is true, return true.
3. Return ContainsDuplicateLabels of Catch with argument labelSet.

TryStatement : try Block Finally

1. Let hasDuplicates be ContainsDuplicateLabels of Block with argument labelSet.
2. If hasDuplicates is true, return true.
3. Return ContainsDuplicateLabels of Finally with argument labelSet.

TryStatement : try Block Catch Finally

1. Let hasDuplicates be ContainsDuplicateLabels of Block with argument labelSet.
2. If hasDuplicates is true, return true.
3. Let hasDuplicates be ContainsDuplicateLabels of Catch with argument labelSet.
4. If hasDuplicates is true, return true.
5. Return ContainsDuplicateLabels of Finally with argument labelSet.

Catch : catch (CatchParameter) Block

1. Return ContainsDuplicateLabels of Block with argument labelSet.

With parameter labelSet.

TryStatement : try Block Catch

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of Block with argument labelSet.
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedBreakTarget of Catch with argument labelSet.

TryStatement : try Block Finally

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of Block with argument labelSet.
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedBreakTarget of Finally with argument labelSet.

TryStatement : try Block Catch Finally

13.15.2 Static Semantics: ContainsDuplicateLabels

13.15.3 Static Semantics: ContainsUndefinedBreakTarget

© Ecma International 2019

297

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of Block with argument labelSet.
2. If hasUndefinedLabels is true, return true.
3. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of Catch with argument labelSet.
4. If hasUndefinedLabels is true, return true.
5. Return ContainsUndefinedBreakTarget of Finally with argument labelSet.

Catch : catch (CatchParameter) Block

1. Return ContainsUndefinedBreakTarget of Block with argument labelSet.

With parameters iterationSet and labelSet.

TryStatement : try Block Catch

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of Block with arguments iterationSet and « ».
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedContinueTarget of Catch with arguments iterationSet and « ».

TryStatement : try Block Finally

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of Block with arguments iterationSet and « ».
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedContinueTarget of Finally with arguments iterationSet and « ».

TryStatement : try Block Catch Finally

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of Block with arguments iterationSet and « ».
2. If hasUndefinedLabels is true, return true.
3. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of Catch with arguments iterationSet and « ».
4. If hasUndefinedLabels is true, return true.
5. Return ContainsUndefinedContinueTarget of Finally with arguments iterationSet and « ».

Catch : catch (CatchParameter) Block

1. Return ContainsUndefinedContinueTarget of Block with arguments iterationSet and « ».

TryStatement : try Block Catch

1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Catch.
3. Return names.

TryStatement : try Block Finally

1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Finally.
3. Return names.

TryStatement : try Block Catch Finally

13.15.4 Static Semantics: ContainsUndefinedContinueTarget

13.15.5 Static Semantics: VarDeclaredNames

298

© Ecma International 2019

298

1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Catch.
3. Append to names the elements of the VarDeclaredNames of Finally.
4. Return names.

Catch : catch (CatchParameter) Block

1. Return the VarDeclaredNames of Block.

TryStatement : try Block Catch

1. Let declarations be VarScopedDeclarations of Block.
2. Append to declarations the elements of the VarScopedDeclarations of Catch.
3. Return declarations.

TryStatement : try Block Finally

1. Let declarations be VarScopedDeclarations of Block.
2. Append to declarations the elements of the VarScopedDeclarations of Finally.
3. Return declarations.

TryStatement : try Block Catch Finally

1. Let declarations be VarScopedDeclarations of Block.
2. Append to declarations the elements of the VarScopedDeclarations of Catch.
3. Append to declarations the elements of the VarScopedDeclarations of Finally.
4. Return declarations.

Catch : catch (CatchParameter) Block

1. Return the VarScopedDeclarations of Block.

With parameter thrownValue.

Catch : catch (CatchParameter) Block

1. Let oldEnv be the running execution context's LexicalEnvironment.
2. Let catchEnv be NewDeclarativeEnvironment(oldEnv).
3. Let catchEnvRec be catchEnv's EnvironmentRecord.
4. For each element argName of the BoundNames of CatchParameter, do

a. Perform ! catchEnvRec.CreateMutableBinding(argName, false).
5. Set the running execution context's LexicalEnvironment to catchEnv.
6. Let status be the result of performing BindingInitialization for CatchParameter passing thrownValue and catchEnv

as arguments.
7. If status is an abrupt completion, then

a. Set the running execution context's LexicalEnvironment to oldEnv.
b. Return Completion(status).

8. Let B be the result of evaluating Block.

13.15.6 Static Semantics: VarScopedDeclarations

13.15.7 Runtime Semantics: CatchClauseEvaluation

© Ecma International 2019

299

9. Set the running execution context's LexicalEnvironment to oldEnv.
10. Return Completion(B).

Catch : catch Block

1. Return the result of evaluating Block.

NOTE
No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.

TryStatement : try Block Catch

1. Let B be the result of evaluating Block.
2. If B.[[Type]] is throw, let C be CatchClauseEvaluation of Catch with argument B.[[Value]].
3. Else, let C be B.
4. Return Completion(UpdateEmpty(C, undefined)).

TryStatement : try Block Finally

1. Let B be the result of evaluating Block.
2. Let F be the result of evaluating Finally.
3. If F.[[Type]] is normal, set F to B.
4. Return Completion(UpdateEmpty(F, undefined)).

TryStatement : try Block Catch Finally

1. Let B be the result of evaluating Block.
2. If B.[[Type]] is throw, let C be CatchClauseEvaluation of Catch with argument B.[[Value]].
3. Else, let C be B.
4. Let F be the result of evaluating Finally.
5. If F.[[Type]] is normal, set F to C.
6. Return Completion(UpdateEmpty(F, undefined)).

DebuggerStatement :
debugger ;

NOTE
Evaluating a DebuggerStatement may allow an implementation to cause a breakpoint when run under a debugger. If a
debugger is not present or active this statement has no observable effect.

DebuggerStatement : debugger ;

13.15.8 Runtime Semantics: Evaluation

13.16 The debugger Statement

Syntax

13.16.1 Runtime Semantics: Evaluation

300

© Ecma International 2019

300

1. If an implementation-defined debugging facility is available and enabled, then
a. Perform an implementation-defined debugging action.
b. Let result be an implementation-defined Completion value.

2. Else,
a. Let result be NormalCompletion(empty).

3. Return result.

NOTE
Various ECMAScript language elements cause the creation of ECMAScript function objects (9.2). Evaluation of such
functions starts with the execution of their [[Call]] internal method (9.2.1).

FunctionDeclaration[Yield, Await, Default] :

function BindingIdentifier[?Yield, ?Await] (FormalParameters[~Yield, ~Await]) {
FunctionBody[~Yield, ~Await] }

[+Default] function (FormalParameters[~Yield, ~Await]) { FunctionBody[~Yield, ~Await] }

FunctionExpression :
function BindingIdentifier[~Yield, ~Await] opt (FormalParameters[~Yield, ~Await]) {

FunctionBody[~Yield, ~Await] }

UniqueFormalParameters[Yield, Await] :

FormalParameters[?Yield, ?Await]

FormalParameters[Yield, Await] :

[empty]
FunctionRestParameter[?Yield, ?Await]
FormalParameterList[?Yield, ?Await]
FormalParameterList[?Yield, ?Await] ,
FormalParameterList[?Yield, ?Await] , FunctionRestParameter[?Yield, ?Await]

FormalParameterList[Yield, Await] :

FormalParameter[?Yield, ?Await]
FormalParameterList[?Yield, ?Await] , FormalParameter[?Yield, ?Await]

FunctionRestParameter[Yield, Await] :

BindingRestElement[?Yield, ?Await]

FormalParameter[Yield, Await] :

BindingElement[?Yield, ?Await]

14 ECMAScript Language: Functions and Classes

14.1 Function Definitions

Syntax

© Ecma International 2019

301

FunctionBody[Yield, Await] :

FunctionStatementList[?Yield, ?Await]

FunctionStatementList[Yield, Await] :

StatementList[?Yield, ?Await, +Return] opt

A Directive Prologue is the longest sequence of ExpressionStatements occurring as the initial StatementListItems or
ModuleItems of a FunctionBody, a ScriptBody, or a ModuleBody and where each ExpressionStatement in the sequence
consists entirely of a StringLiteral token followed by a semicolon. The semicolon may appear explicitly or may be
inserted by automatic semicolon insertion. A Directive Prologue may be an empty sequence.

A Use Strict Directive is an ExpressionStatement in a Directive Prologue whose StringLiteral is either the exact code unit
sequences "use strict" or 'use strict'. A Use Strict Directive may not contain an EscapeSequence or
LineContinuation.

A Directive Prologue may contain more than one Use Strict Directive. However, an implementation may issue a warning
if this occurs.

NOTE
The ExpressionStatements of a Directive Prologue are evaluated normally during evaluation of the containing production.
Implementations may define implementation specific meanings for ExpressionStatements which are not a Use Strict
Directive and which occur in a Directive Prologue. If an appropriate notification mechanism exists, an implementation
should issue a warning if it encounters in a Directive Prologue an ExpressionStatement that is not a Use Strict Directive
and which does not have a meaning defined by the implementation.

FunctionDeclaration : function BindingIdentifier (FormalParameters) { FunctionBody }
FunctionDeclaration : function (FormalParameters) { FunctionBody }
FunctionExpression : function BindingIdentifier (FormalParameters) { FunctionBody }

If the source code matching this production is strict mode code, the Early Error rules for
UniqueFormalParameters : FormalParameters are applied.

If the source code matching this production is strict mode code, it is a Syntax Error if BindingIdentifier is present
and the StringValue of BindingIdentifier is "eval" or "arguments".
It is a Syntax Error if ContainsUseStrict of FunctionBody is true and IsSimpleParameterList of FormalParameters
is false.
It is a Syntax Error if any element of the BoundNames of FormalParameters also occurs in the
LexicallyDeclaredNames of FunctionBody.
It is a Syntax Error if FormalParameters Contains SuperProperty is true.
It is a Syntax Error if FunctionBody Contains SuperProperty is true.
It is a Syntax Error if FormalParameters Contains SuperCall is true.
It is a Syntax Error if FunctionBody Contains SuperCall is true.

NOTE 1
The LexicallyDeclaredNames of a FunctionBody does not include identifiers bound using var or function declarations.

14.1.1 Directive Prologues and the Use Strict Directive

14.1.2 Static Semantics: Early Errors

302

© Ecma International 2019

302

UniqueFormalParameters : FormalParameters

It is a Syntax Error if BoundNames of FormalParameters contains any duplicate elements.

FormalParameters : FormalParameterList

It is a Syntax Error if IsSimpleParameterList of FormalParameterList is false and BoundNames of
FormalParameterList contains any duplicate elements.

NOTE 2
Multiple occurrences of the same BindingIdentifier in a FormalParameterList is only allowed for functions which have
simple parameter lists and which are not defined in strict mode code.

FunctionBody : FunctionStatementList

It is a Syntax Error if the LexicallyDeclaredNames of FunctionStatementList contains any duplicate entries.
It is a Syntax Error if any element of the LexicallyDeclaredNames of FunctionStatementList also occurs in the
VarDeclaredNames of FunctionStatementList.
It is a Syntax Error if ContainsDuplicateLabels of FunctionStatementList with argument « » is true.
It is a Syntax Error if ContainsUndefinedBreakTarget of FunctionStatementList with argument « » is true.
It is a Syntax Error if ContainsUndefinedContinueTarget of FunctionStatementList with arguments « » and « » is
true.

FunctionDeclaration : function BindingIdentifier (FormalParameters) { FunctionBody }

1. Return the BoundNames of BindingIdentifier.

FunctionDeclaration : function (FormalParameters) { FunctionBody }

1. Return « "*default*" ».

NOTE
"*default*" is used within this specification as a synthetic name for hoistable anonymous functions that are defined
using export declarations.

FormalParameters : [empty]

1. Return a new empty List.

FormalParameters : FormalParameterList , FunctionRestParameter

1. Let names be BoundNames of FormalParameterList.
2. Append to names the BoundNames of FunctionRestParameter.
3. Return names.

FormalParameterList : FormalParameterList , FormalParameter

1. Let names be BoundNames of FormalParameterList.
2. Append to names the BoundNames of FormalParameter.
3. Return names.

14.1.3 Static Semantics: BoundNames

© Ecma International 2019

303

With parameter symbol.

FunctionDeclaration : function BindingIdentifier (FormalParameters) { FunctionBody }
FunctionDeclaration : function (FormalParameters) { FunctionBody }
FunctionExpression : function BindingIdentifier (FormalParameters) { FunctionBody }

1. Return false.

NOTE
Static semantic rules that depend upon substructure generally do not look into function definitions.

FormalParameters : [empty]

1. Return false.

FormalParameters : FormalParameterList , FunctionRestParameter

1. If ContainsExpression of FormalParameterList is true, return true.
2. Return ContainsExpression of FunctionRestParameter.

FormalParameterList : FormalParameterList , FormalParameter

1. If ContainsExpression of FormalParameterList is true, return true.
2. Return ContainsExpression of FormalParameter.

FunctionBody : FunctionStatementList

1. If the Directive Prologue of FunctionStatementList contains a Use Strict Directive, return true; otherwise, return
false.

FormalParameters : [empty]

1. Return 0.

FormalParameters : FormalParameterList , FunctionRestParameter

1. Return ExpectedArgumentCount of FormalParameterList.

NOTE
The ExpectedArgumentCount of a FormalParameterList is the number of FormalParameters to the left of either the rest
parameter or the first FormalParameter with an Initializer. A FormalParameter without an initializer is allowed after the
first parameter with an initializer but such parameters are considered to be optional with undefined as their default value.

FormalParameterList : FormalParameterList , FormalParameter

14.1.4 Static Semantics: Contains

14.1.5 Static Semantics: ContainsExpression

14.1.6 Static Semantics: ContainsUseStrict

14.1.7 Static Semantics: ExpectedArgumentCount

304

© Ecma International 2019

304

1. Let count be ExpectedArgumentCount of FormalParameterList.
2. If HasInitializer of FormalParameterList is true or HasInitializer of FormalParameter is true, return count.
3. Return count + 1.

FormalParameterList : FormalParameterList , FormalParameter

1. If HasInitializer of FormalParameterList is true, return true.
2. Return HasInitializer of FormalParameter.

FunctionExpression : function (FormalParameters) { FunctionBody }

1. Return false.

FunctionExpression : function BindingIdentifier (FormalParameters) { FunctionBody }

1. Return true.

The abstract operation IsAnonymousFunctionDefinition determines if its argument is a function definition that does not
bind a name. The argument expr is the result of parsing an AssignmentExpression or Initializer. The following steps are
taken:

1. If IsFunctionDefinition of expr is false, return false.
2. Let hasName be the result of HasName of expr.
3. If hasName is true, return false.
4. Return true.

FunctionDeclaration : function BindingIdentifier (FormalParameters) { FunctionBody }
FunctionDeclaration : function (FormalParameters) { FunctionBody }

1. Return false.

FunctionExpression : function BindingIdentifier (FormalParameters) { FunctionBody }

1. Return true.

FormalParameters : [empty]

1. Return true.

FormalParameters : FormalParameterList , FunctionRestParameter

1. Return false.

14.1.8 Static Semantics: HasInitializer

14.1.9 Static Semantics: HasName

14.1.10 Static Semantics: IsAnonymousFunctionDefinition (expr)

14.1.11 Static Semantics: IsConstantDeclaration

14.1.12 Static Semantics: IsFunctionDefinition

14.1.13 Static Semantics: IsSimpleParameterList

© Ecma International 2019

305

FormalParameterList : FormalParameterList , FormalParameter

1. If IsSimpleParameterList of FormalParameterList is false, return false.
2. Return IsSimpleParameterList of FormalParameter.

FormalParameter : BindingElement

1. Return IsSimpleParameterList of BindingElement.

FunctionStatementList : [empty]

1. Return a new empty List.

FunctionStatementList : StatementList

1. Return TopLevelLexicallyDeclaredNames of StatementList.

FunctionStatementList : [empty]

1. Return a new empty List.

FunctionStatementList : StatementList

1. Return the TopLevelLexicallyScopedDeclarations of StatementList.

FunctionStatementList : [empty]

1. Return a new empty List.

FunctionStatementList : StatementList

1. Return TopLevelVarDeclaredNames of StatementList.

FunctionStatementList : [empty]

1. Return a new empty List.

FunctionStatementList : StatementList

1. Return the TopLevelVarScopedDeclarations of StatementList.

With parameters functionObject and List argumentsList.

FunctionBody : FunctionStatementList

14.1.14 Static Semantics: LexicallyDeclaredNames

14.1.15 Static Semantics: LexicallyScopedDeclarations

14.1.16 Static Semantics: VarDeclaredNames

14.1.17 Static Semantics: VarScopedDeclarations

14.1.18 Runtime Semantics: EvaluateBody

306

© Ecma International 2019

306

1. Perform ? FunctionDeclarationInstantiation(functionObject, argumentsList).
2. Return the result of evaluating FunctionStatementList.

With parameters iteratorRecord and environment.

NOTE 1
When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

FormalParameters : [empty]

1. Return NormalCompletion(empty).

FormalParameters : FormalParameterList , FunctionRestParameter

1. Perform ? IteratorBindingInitialization for FormalParameterList using iteratorRecord and environment as the
arguments.

2. Return the result of performing IteratorBindingInitialization for FunctionRestParameter using iteratorRecord and
environment as the arguments.

FormalParameterList : FormalParameterList , FormalParameter

1. Perform ? IteratorBindingInitialization for FormalParameterList using iteratorRecord and environment as the
arguments.

2. Return the result of performing IteratorBindingInitialization for FormalParameter using iteratorRecord and
environment as the arguments.

FormalParameter : BindingElement

1. If ContainsExpression of BindingElement is false, return the result of performing IteratorBindingInitialization for
BindingElement using iteratorRecord and environment as the arguments.

2. Let currentContext be the running execution context.
3. Let originalEnv be the VariableEnvironment of currentContext.
4. Assert: The VariableEnvironment and LexicalEnvironment of currentContext are the same.
5. Assert: environment and originalEnv are the same.
6. Let paramVarEnv be NewDeclarativeEnvironment(originalEnv).
7. Set the VariableEnvironment of currentContext to paramVarEnv.
8. Set the LexicalEnvironment of currentContext to paramVarEnv.
9. Let result be the result of performing IteratorBindingInitialization for BindingElement using iteratorRecord and

environment as the arguments.
10. Set the VariableEnvironment of currentContext to originalEnv.
11. Set the LexicalEnvironment of currentContext to originalEnv.
12. Return result.

NOTE 2
The new Environment Record created in step 6 is only used if the BindingElement contains a direct eval.

FunctionRestParameter : BindingRestElement

14.1.19 Runtime Semantics: IteratorBindingInitialization

© Ecma International 2019

307

1. If ContainsExpression of BindingRestElement is false, return the result of performing IteratorBindingInitialization
for BindingRestElement using iteratorRecord and environment as the arguments.

2. Let currentContext be the running execution context.
3. Let originalEnv be the VariableEnvironment of currentContext.
4. Assert: The VariableEnvironment and LexicalEnvironment of currentContext are the same.
5. Assert: environment and originalEnv are the same.
6. Let paramVarEnv be NewDeclarativeEnvironment(originalEnv).
7. Set the VariableEnvironment of currentContext to paramVarEnv.
8. Set the LexicalEnvironment of currentContext to paramVarEnv.
9. Let result be the result of performing IteratorBindingInitialization for BindingRestElement using iteratorRecord and

environment as the arguments.
10. Set the VariableEnvironment of currentContext to originalEnv.
11. Set the LexicalEnvironment of currentContext to originalEnv.
12. Return result.

NOTE 3
The new Environment Record created in step 6 is only used if the BindingRestElement contains a direct eval.

With parameter scope.

FunctionDeclaration : function BindingIdentifier (FormalParameters) { FunctionBody }

1. If the function code for FunctionDeclaration is strict mode code, let strict be true. Otherwise let strict be false.
2. Let name be StringValue of BindingIdentifier.
3. Let F be FunctionCreate(Normal, FormalParameters, FunctionBody, scope, strict).
4. Perform MakeConstructor(F).
5. Perform SetFunctionName(F, name).
6. Set F.[[SourceText]] to the source text matched by FunctionDeclaration.
7. Return F.

FunctionDeclaration : function (FormalParameters) { FunctionBody }

1. Let F be FunctionCreate(Normal, FormalParameters, FunctionBody, scope, true).
2. Perform MakeConstructor(F).
3. Perform SetFunctionName(F, "default").
4. Set F.[[SourceText]] to the source text matched by FunctionDeclaration.
5. Return F.

NOTE
An anonymous FunctionDeclaration can only occur as part of an export default declaration, and its function code
is therefore always strict mode code.

With parameter name.

14.1.20 Runtime Semantics: InstantiateFunctionObject

14.1.21 Runtime Semantics: NamedEvaluation

308

© Ecma International 2019

308

FunctionExpression : function (FormalParameters) { FunctionBody }

1. Let closure be the result of evaluating this FunctionExpression.
2. Perform SetFunctionName(closure, name).
3. Return closure.

FunctionDeclaration : function BindingIdentifier (FormalParameters) { FunctionBody }

1. Return NormalCompletion(empty).

NOTE 1
An alternative semantics is provided in B.3.3.

FunctionDeclaration : function (FormalParameters) { FunctionBody }

1. Return NormalCompletion(empty).

FunctionExpression : function (FormalParameters) { FunctionBody }

1. If the function code for FunctionExpression is strict mode code, let strict be true. Otherwise let strict be false.
2. Let scope be the LexicalEnvironment of the running execution context.
3. Let closure be FunctionCreate(Normal, FormalParameters, FunctionBody, scope, strict).
4. Perform MakeConstructor(closure).
5. Set closure.[[SourceText]] to the source text matched by FunctionExpression.
6. Return closure.

FunctionExpression : function BindingIdentifier (FormalParameters) { FunctionBody }

1. If the function code for FunctionExpression is strict mode code, let strict be true. Otherwise let strict be false.
2. Let scope be the running execution context's LexicalEnvironment.
3. Let funcEnv be NewDeclarativeEnvironment(scope).
4. Let envRec be funcEnv's EnvironmentRecord.
5. Let name be StringValue of BindingIdentifier.
6. Perform envRec.CreateImmutableBinding(name, false).
7. Let closure be FunctionCreate(Normal, FormalParameters, FunctionBody, funcEnv, strict).
8. Perform MakeConstructor(closure).
9. Perform SetFunctionName(closure, name).

10. Set closure.[[SourceText]] to the source text matched by FunctionExpression.
11. Perform envRec.InitializeBinding(name, closure).
12. Return closure.

NOTE 2
The BindingIdentifier in a FunctionExpression can be referenced from inside the FunctionExpression's FunctionBody to
allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the BindingIdentifier in a
FunctionExpression cannot be referenced from and does not affect the scope enclosing the FunctionExpression.

NOTE 3
A prototype property is automatically created for every function defined using a FunctionDeclaration or
FunctionExpression, to allow for the possibility that the function will be used as a constructor.

14.1.22 Runtime Semantics: Evaluation

© Ecma International 2019

309

FunctionStatementList : [empty]

1. Return NormalCompletion(undefined).

ArrowFunction[In, Yield, Await] :

ArrowParameters[?Yield, ?Await] [no LineTerminator here] => ConciseBody[?In]

ArrowParameters[Yield, Await] :

BindingIdentifier[?Yield, ?Await]
CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]

ConciseBody[In] :

[lookahead ≠ {] AssignmentExpression[?In, ~Yield, ~Await]
{ FunctionBody[~Yield, ~Await] }

When the production
ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

is recognized the following grammar is used to refine the interpretation of
CoverParenthesizedExpressionAndArrowParameterList:

ArrowFormalParameters[Yield, Await] :

(UniqueFormalParameters[?Yield, ?Await])

ArrowFunction : ArrowParameters => ConciseBody

It is a Syntax Error if ArrowParameters Contains YieldExpression is true.
It is a Syntax Error if ArrowParameters Contains AwaitExpression is true.
It is a Syntax Error if ContainsUseStrict of ConciseBody is true and IsSimpleParameterList of ArrowParameters is
false.
It is a Syntax Error if any element of the BoundNames of ArrowParameters also occurs in the
LexicallyDeclaredNames of ConciseBody.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

It is a Syntax Error if CoverParenthesizedExpressionAndArrowParameterList is not covering an
ArrowFormalParameters.
All early error rules for ArrowFormalParameters and its derived productions also apply to CoveredFormalsList of
CoverParenthesizedExpressionAndArrowParameterList.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

14.2 Arrow Function Definitions

Syntax

Supplemental Syntax

14.2.1 Static Semantics: Early Errors

14.2.2 Static Semantics: BoundNames

310

© Ecma International 2019

310

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the BoundNames of formals.

With parameter symbol.

ArrowFunction : ArrowParameters => ConciseBody

1. If symbol is not one of NewTarget, SuperProperty, SuperCall, super or this, return false.
2. If ArrowParameters Contains symbol is true, return true.
3. Return ConciseBody Contains symbol.

NOTE
Normally, Contains does not look inside most function forms. However, Contains is used to detect new.target,
this, and super usage within an ArrowFunction.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return formals Contains symbol.

ArrowParameters : BindingIdentifier

1. Return false.

ConciseBody : AssignmentExpression

1. Return false.

ArrowParameters : BindingIdentifier

1. Return 1.

ArrowFunction : ArrowParameters => ConciseBody

1. Return false.

ArrowParameters : BindingIdentifier

1. Return true.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

14.2.3 Static Semantics: Contains

14.2.4 Static Semantics: ContainsExpression

14.2.5 Static Semantics: ContainsUseStrict

14.2.6 Static Semantics: ExpectedArgumentCount

14.2.7 Static Semantics: HasName

14.2.8 Static Semantics: IsSimpleParameterList

© Ecma International 2019

311

1. Let formals be CoveredFormalsList of CoverParenthesizedExpressionAndArrowParameterList.
2. Return IsSimpleParameterList of formals.

ArrowParameters : BindingIdentifier

1. Return this ArrowParameters.

CoverParenthesizedExpressionAndArrowParameterList :
(Expression)
()
(... BindingIdentifier)
(... BindingPattern)
(Expression , ... BindingIdentifier)
(Expression , ... BindingPattern)

1. Return the ArrowFormalParameters that is covered by CoverParenthesizedExpressionAndArrowParameterList.

ConciseBody : AssignmentExpression

1. Return a new empty List.

ConciseBody : AssignmentExpression

1. Return a new empty List.

ConciseBody : AssignmentExpression

1. Return a new empty List.

ConciseBody : AssignmentExpression

1. Return a new empty List.

With parameters iteratorRecord and environment.

NOTE
When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter
bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

ArrowParameters : BindingIdentifier

14.2.9 Static Semantics: CoveredFormalsList

14.2.10 Static Semantics: LexicallyDeclaredNames

14.2.11 Static Semantics: LexicallyScopedDeclarations

14.2.12 Static Semantics: VarDeclaredNames

14.2.13 Static Semantics: VarScopedDeclarations

14.2.14 Runtime Semantics: IteratorBindingInitialization

312

© Ecma International 2019

312

1. Assert: iteratorRecord.[[Done]] is false.
2. Let next be IteratorStep(iteratorRecord).
3. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
4. ReturnIfAbrupt(next).
5. If next is false, set iteratorRecord.[[Done]] to true.
6. Else,

a. Let v be IteratorValue(next).
b. If v is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(v).

7. If iteratorRecord.[[Done]] is true, let v be undefined.
8. Return the result of performing BindingInitialization for BindingIdentifier using v and environment as the

arguments.

With parameters functionObject and List argumentsList.

ConciseBody : AssignmentExpression

1. Perform ? FunctionDeclarationInstantiation(functionObject, argumentsList).
2. Let exprRef be the result of evaluating AssignmentExpression.
3. Let exprValue be ? GetValue(exprRef).
4. Return Completion { [[Type]]: return, [[Value]]: exprValue, [[Target]]: empty }.

With parameter name.

ArrowFunction : ArrowParameters => ConciseBody

1. Let closure be the result of evaluating this ArrowFunction.
2. Perform SetFunctionName(closure, name).
3. Return closure.

ArrowFunction : ArrowParameters => ConciseBody

1. If the function code for this ArrowFunction is strict mode code, let strict be true. Otherwise let strict be false.
2. Let scope be the LexicalEnvironment of the running execution context.
3. Let parameters be CoveredFormalsList of ArrowParameters.
4. Let closure be FunctionCreate(Arrow, parameters, ConciseBody, scope, strict).
5. Set closure.[[SourceText]] to the source text matched by ArrowFunction.
6. Return closure.

NOTE
An ArrowFunction does not define local bindings for arguments, super, this, or new.target. Any reference to
arguments, super, this, or new.target within an ArrowFunction must resolve to a binding in a lexically
enclosing environment. Typically this will be the Function Environment of an immediately enclosing function. Even
though an ArrowFunction may contain references to super, the function object created in step 4 is not made into a

14.2.15 Runtime Semantics: EvaluateBody

14.2.16 Runtime Semantics: NamedEvaluation

14.2.17 Runtime Semantics: Evaluation

© Ecma International 2019

313

method by performing MakeMethod. An ArrowFunction that references super is always contained within a non-
ArrowFunction and the necessary state to implement super is accessible via the scope that is captured by the function
object of the ArrowFunction.

MethodDefinition[Yield, Await] :

PropertyName[?Yield, ?Await] (UniqueFormalParameters[~Yield, ~Await]) {
FunctionBody[~Yield, ~Await] }

GeneratorMethod[?Yield, ?Await]
AsyncMethod[?Yield, ?Await]
AsyncGeneratorMethod[?Yield, ?Await]
get PropertyName[?Yield, ?Await] () { FunctionBody[~Yield, ~Await] }
set PropertyName[?Yield, ?Await] (PropertySetParameterList) {

FunctionBody[~Yield, ~Await] }

PropertySetParameterList :
FormalParameter[~Yield, ~Await]

MethodDefinition : PropertyName (UniqueFormalParameters) { FunctionBody }

It is a Syntax Error if ContainsUseStrict of FunctionBody is true and IsSimpleParameterList of
UniqueFormalParameters is false.
It is a Syntax Error if any element of the BoundNames of UniqueFormalParameters also occurs in the
LexicallyDeclaredNames of FunctionBody.

MethodDefinition : set PropertyName (PropertySetParameterList) { FunctionBody }

It is a Syntax Error if BoundNames of PropertySetParameterList contains any duplicate elements.
It is a Syntax Error if ContainsUseStrict of FunctionBody is true and IsSimpleParameterList of
PropertySetParameterList is false.
It is a Syntax Error if any element of the BoundNames of PropertySetParameterList also occurs in the
LexicallyDeclaredNames of FunctionBody.

With parameter symbol.

MethodDefinition :
PropertyName (UniqueFormalParameters) { FunctionBody }
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

14.3 Method Definitions

Syntax

14.3.1 Static Semantics: Early Errors

14.3.2 Static Semantics: ComputedPropertyContains

314

© Ecma International 2019

314

1. Return the result of ComputedPropertyContains for PropertyName with argument symbol.

PropertySetParameterList : FormalParameter

1. If HasInitializer of FormalParameter is true, return 0.
2. Return 1.

MethodDefinition : PropertyName (UniqueFormalParameters) { FunctionBody }

1. If UniqueFormalParameters Contains SuperCall is true, return true.
2. Return FunctionBody Contains SuperCall.

MethodDefinition : get PropertyName () { FunctionBody }

1. Return FunctionBody Contains SuperCall.

MethodDefinition : set PropertyName (PropertySetParameterList) { FunctionBody }

1. If PropertySetParameterList Contains SuperCall is true, return true.
2. Return FunctionBody Contains SuperCall.

MethodDefinition :
PropertyName (UniqueFormalParameters) { FunctionBody }
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

1. Return PropName of PropertyName.

MethodDefinition : PropertyName (UniqueFormalParameters) { FunctionBody }

1. Return false.

MethodDefinition :
GeneratorMethod
AsyncMethod
AsyncGeneratorMethod
get PropertyName () { FunctionBody }
set PropertyName (PropertySetParameterList) { FunctionBody }

1. Return true.

With parameters object and optional parameter functionPrototype.

14.3.3 Static Semantics: ExpectedArgumentCount

14.3.4 Static Semantics: HasDirectSuper

14.3.5 Static Semantics: PropName

14.3.6 Static Semantics: SpecialMethod

14.3.7 Runtime Semantics: DefineMethod

© Ecma International 2019

315

MethodDefinition : PropertyName (UniqueFormalParameters) { FunctionBody }

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).
3. If the function code for this MethodDefinition is strict mode code, let strict be true. Otherwise let strict be false.
4. Let scope be the running execution context's LexicalEnvironment.
5. If functionPrototype is present as a parameter, then

a. Let kind be Normal.
b. Let prototype be functionPrototype.

6. Else,
a. Let kind be Method.
b. Let prototype be the intrinsic object %FunctionPrototype%.

7. Let closure be FunctionCreate(kind, UniqueFormalParameters, FunctionBody, scope, strict, prototype).
8. Perform MakeMethod(closure, object).
9. Set closure.[[SourceText]] to the source text matched by MethodDefinition.

10. Return the Record { [[Key]]: propKey, [[Closure]]: closure }.

With parameters object and enumerable.

MethodDefinition : PropertyName (UniqueFormalParameters) { FunctionBody }

1. Let methodDef be DefineMethod of MethodDefinition with argument object.
2. ReturnIfAbrupt(methodDef).
3. Perform SetFunctionName(methodDef.[[Closure]], methodDef.[[Key]]).
4. Let desc be the PropertyDescriptor { [[Value]]: methodDef.[[Closure]], [[Writable]]: true, [[Enumerable]]:

enumerable, [[Configurable]]: true }.
5. Return ? DefinePropertyOrThrow(object, methodDef.[[Key]], desc).

MethodDefinition : get PropertyName () { FunctionBody }

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).
3. If the function code for this MethodDefinition is strict mode code, let strict be true. Otherwise let strict be false.
4. Let scope be the running execution context's LexicalEnvironment.
5. Let formalParameterList be an instance of the production FormalParameters : [empty] .
6. Let closure be FunctionCreate(Method, formalParameterList, FunctionBody, scope, strict).
7. Perform MakeMethod(closure, object).
8. Perform SetFunctionName(closure, propKey, "get").
9. Set closure.[[SourceText]] to the source text matched by MethodDefinition.

10. Let desc be the PropertyDescriptor { [[Get]]: closure, [[Enumerable]]: enumerable, [[Configurable]]: true }.
11. Return ? DefinePropertyOrThrow(object, propKey, desc).

MethodDefinition : set PropertyName (PropertySetParameterList) { FunctionBody }

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).
3. If the function code for this MethodDefinition is strict mode code, let strict be true. Otherwise let strict be false.
4. Let scope be the running execution context's LexicalEnvironment.

14.3.8 Runtime Semantics: PropertyDefinitionEvaluation

316

© Ecma International 2019

316

5. Let closure be FunctionCreate(Method, PropertySetParameterList, FunctionBody, scope, strict).
6. Perform MakeMethod(closure, object).
7. Perform SetFunctionName(closure, propKey, "set").
8. Set closure.[[SourceText]] to the source text matched by MethodDefinition.
9. Let desc be the PropertyDescriptor { [[Set]]: closure, [[Enumerable]]: enumerable, [[Configurable]]: true }.

10. Return ? DefinePropertyOrThrow(object, propKey, desc).

GeneratorMethod[Yield, Await] :

* PropertyName[?Yield, ?Await] (UniqueFormalParameters[+Yield, ~Await]) {
GeneratorBody }

GeneratorDeclaration[Yield, Await, Default] :

function * BindingIdentifier[?Yield, ?Await] (FormalParameters[+Yield, ~Await]) {
GeneratorBody }

[+Default] function * (FormalParameters[+Yield, ~Await]) { GeneratorBody }

GeneratorExpression :
function * BindingIdentifier[+Yield, ~Await] opt (FormalParameters[+Yield, ~Await]) {

GeneratorBody }

GeneratorBody :
FunctionBody[+Yield, ~Await]

YieldExpression[In, Await] :

yield
yield [no LineTerminator here] AssignmentExpression[?In, +Yield, ?Await]
yield [no LineTerminator here] * AssignmentExpression[?In, +Yield, ?Await]

NOTE 1
The syntactic context immediately following yield requires use of the InputElementRegExpOrTemplateTail lexical
goal.

NOTE 2
YieldExpression cannot be used within the FormalParameters of a generator function because any expressions that are
part of FormalParameters are evaluated before the resulting generator object is in a resumable state.

NOTE 3
Abstract operations relating to generator objects are defined in 25.4.3.

GeneratorMethod : * PropertyName (UniqueFormalParameters) { GeneratorBody }

It is a Syntax Error if HasDirectSuper of GeneratorMethod is true.
It is a Syntax Error if UniqueFormalParameters Contains YieldExpression is true.

14.4 Generator Function Definitions

Syntax

14.4.1 Static Semantics: Early Errors

© Ecma International 2019

317

It is a Syntax Error if ContainsUseStrict of GeneratorBody is true and IsSimpleParameterList of
UniqueFormalParameters is false.
It is a Syntax Error if any element of the BoundNames of UniqueFormalParameters also occurs in the
LexicallyDeclaredNames of GeneratorBody.

GeneratorDeclaration : function * BindingIdentifier (FormalParameters) { GeneratorBody }
GeneratorDeclaration : function * (FormalParameters) { GeneratorBody }
GeneratorExpression : function * BindingIdentifier (FormalParameters) { GeneratorBody }

If the source code matching this production is strict mode code, the Early Error rules for
UniqueFormalParameters : FormalParameters are applied.

If the source code matching this production is strict mode code, it is a Syntax Error if BindingIdentifier is present
and the StringValue of BindingIdentifier is "eval" or "arguments".
It is a Syntax Error if ContainsUseStrict of GeneratorBody is true and IsSimpleParameterList of FormalParameters
is false.
It is a Syntax Error if any element of the BoundNames of FormalParameters also occurs in the
LexicallyDeclaredNames of GeneratorBody.
It is a Syntax Error if FormalParameters Contains YieldExpression is true.
It is a Syntax Error if FormalParameters Contains SuperProperty is true.
It is a Syntax Error if GeneratorBody Contains SuperProperty is true.
It is a Syntax Error if FormalParameters Contains SuperCall is true.
It is a Syntax Error if GeneratorBody Contains SuperCall is true.

GeneratorDeclaration : function * BindingIdentifier (FormalParameters) { GeneratorBody }

1. Return the BoundNames of BindingIdentifier.

GeneratorDeclaration : function * (FormalParameters) { GeneratorBody }

1. Return « "*default*" ».

NOTE
"*default*" is used within this specification as a synthetic name for hoistable anonymous functions that are defined
using export declarations.

With parameter symbol.

GeneratorMethod : * PropertyName (UniqueFormalParameters) { GeneratorBody }

1. Return the result of ComputedPropertyContains for PropertyName with argument symbol.

With parameter symbol.

GeneratorDeclaration : function * BindingIdentifier (FormalParameters) { GeneratorBody }

14.4.2 Static Semantics: BoundNames

14.4.3 Static Semantics: ComputedPropertyContains

14.4.4 Static Semantics: Contains

318

© Ecma International 2019

318

GeneratorDeclaration : function * (FormalParameters) { GeneratorBody }
GeneratorExpression : function * BindingIdentifier (FormalParameters) { GeneratorBody }

1. Return false.

NOTE
Static semantic rules that depend upon substructure generally do not look into function definitions.

GeneratorMethod : * PropertyName (UniqueFormalParameters) { GeneratorBody }

1. If UniqueFormalParameters Contains SuperCall is true, return true.
2. Return GeneratorBody Contains SuperCall.

GeneratorExpression : function * (FormalParameters) { GeneratorBody }

1. Return false.

GeneratorExpression : function * BindingIdentifier (FormalParameters) { GeneratorBody }

1. Return true.

GeneratorDeclaration : function * BindingIdentifier (FormalParameters) { GeneratorBody }
GeneratorDeclaration : function * (FormalParameters) { GeneratorBody }

1. Return false.

GeneratorExpression : function * BindingIdentifier (FormalParameters) { GeneratorBody }

1. Return true.

GeneratorMethod : * PropertyName (UniqueFormalParameters) { GeneratorBody }

1. Return PropName of PropertyName.

With parameters functionObject and List argumentsList.

GeneratorBody : FunctionBody

1. Perform ? FunctionDeclarationInstantiation(functionObject, argumentsList).
2. Let G be ? OrdinaryCreateFromConstructor(functionObject, "%GeneratorPrototype%", « [[GeneratorState]],

[[GeneratorContext]] »).

14.4.5 Static Semantics: HasDirectSuper

14.4.6 Static Semantics: HasName

14.4.7 Static Semantics: IsConstantDeclaration

14.4.8 Static Semantics: IsFunctionDefinition

14.4.9 Static Semantics: PropName

14.4.10 Runtime Semantics: EvaluateBody

© Ecma International 2019

319

3. Perform GeneratorStart(G, FunctionBody).
4. Return Completion { [[Type]]: return, [[Value]]: G, [[Target]]: empty }.

With parameter scope.

GeneratorDeclaration : function * BindingIdentifier (FormalParameters) { GeneratorBody }

1. If the function code for GeneratorDeclaration is strict mode code, let strict be true. Otherwise let strict be false.
2. Let name be StringValue of BindingIdentifier.
3. Let F be GeneratorFunctionCreate(Normal, FormalParameters, GeneratorBody, scope, strict).
4. Let prototype be ObjectCreate(%GeneratorPrototype%).
5. Perform DefinePropertyOrThrow(F, "prototype", PropertyDescriptor { [[Value]]: prototype, [[Writable]]:

true, [[Enumerable]]: false, [[Configurable]]: false }).
6. Perform SetFunctionName(F, name).
7. Set F.[[SourceText]] to the source text matched by GeneratorDeclaration.
8. Return F.

GeneratorDeclaration : function * (FormalParameters) { GeneratorBody }

1. Let F be GeneratorFunctionCreate(Normal, FormalParameters, GeneratorBody, scope, true).
2. Let prototype be ObjectCreate(%GeneratorPrototype%).
3. Perform DefinePropertyOrThrow(F, "prototype", PropertyDescriptor { [[Value]]: prototype, [[Writable]]:

true, [[Enumerable]]: false, [[Configurable]]: false }).
4. Perform SetFunctionName(F, "default").
5. Set F.[[SourceText]] to the source text matched by GeneratorDeclaration.
6. Return F.

NOTE
An anonymous GeneratorDeclaration can only occur as part of an export default declaration, and its function
code is therefore always strict mode code.

With parameters object and enumerable.

GeneratorMethod : * PropertyName (UniqueFormalParameters) { GeneratorBody }

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).
3. If the function code for this GeneratorMethod is strict mode code, let strict be true. Otherwise let strict be false.
4. Let scope be the running execution context's LexicalEnvironment.
5. Let closure be GeneratorFunctionCreate(Method, UniqueFormalParameters, GeneratorBody, scope, strict).
6. Perform MakeMethod(closure, object).
7. Let prototype be ObjectCreate(%GeneratorPrototype%).
8. Perform DefinePropertyOrThrow(closure, "prototype", PropertyDescriptor { [[Value]]: prototype,

[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }).
9. Perform SetFunctionName(closure, propKey).

14.4.11 Runtime Semantics: InstantiateFunctionObject

14.4.12 Runtime Semantics: PropertyDefinitionEvaluation

320

© Ecma International 2019

320

10. Set closure.[[SourceText]] to the source text matched by GeneratorMethod.
11. Let desc be the PropertyDescriptor { [[Value]]: closure, [[Writable]]: true, [[Enumerable]]: enumerable,

[[Configurable]]: true }.
12. Return ? DefinePropertyOrThrow(object, propKey, desc).

With parameter name.

GeneratorExpression : function * (FormalParameters) { GeneratorBody }

1. Let closure be the result of evaluating this GeneratorExpression.
2. Perform SetFunctionName(closure, name).
3. Return closure.

GeneratorExpression : function * (FormalParameters) { GeneratorBody }

1. If the function code for this GeneratorExpression is strict mode code, let strict be true. Otherwise let strict be
false.

2. Let scope be the LexicalEnvironment of the running execution context.
3. Let closure be GeneratorFunctionCreate(Normal, FormalParameters, GeneratorBody, scope, strict).
4. Let prototype be ObjectCreate(%GeneratorPrototype%).
5. Perform DefinePropertyOrThrow(closure, "prototype", PropertyDescriptor { [[Value]]: prototype,

[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }).
6. Set closure.[[SourceText]] to the source text matched by GeneratorExpression.
7. Return closure.

GeneratorExpression : function * BindingIdentifier (FormalParameters) { GeneratorBody }

1. If the function code for this GeneratorExpression is strict mode code, let strict be true. Otherwise let strict be
false.

2. Let scope be the running execution context's LexicalEnvironment.
3. Let funcEnv be NewDeclarativeEnvironment(scope).
4. Let envRec be funcEnv's EnvironmentRecord.
5. Let name be StringValue of BindingIdentifier.
6. Perform envRec.CreateImmutableBinding(name, false).
7. Let closure be GeneratorFunctionCreate(Normal, FormalParameters, GeneratorBody, funcEnv, strict).
8. Let prototype be ObjectCreate(%GeneratorPrototype%).
9. Perform DefinePropertyOrThrow(closure, "prototype", PropertyDescriptor { [[Value]]: prototype,

[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }).
10. Perform SetFunctionName(closure, name).
11. Perform envRec.InitializeBinding(name, closure).
12. Set closure.[[SourceText]] to the source text matched by GeneratorExpression.
13. Return closure.

NOTE
The BindingIdentifier in a GeneratorExpression can be referenced from inside the GeneratorExpression's FunctionBody
to allow the generator code to call itself recursively. However, unlike in a GeneratorDeclaration, the BindingIdentifier in

14.4.13 Runtime Semantics: NamedEvaluation

14.4.14 Runtime Semantics: Evaluation

© Ecma International 2019

321

a GeneratorExpression cannot be referenced from and does not affect the scope enclosing the GeneratorExpression.

YieldExpression : yield

1. Let generatorKind be ! GetGeneratorKind().
2. If generatorKind is async, then return ? AsyncGeneratorYield(undefined).
3. Otherwise, return ? GeneratorYield(CreateIterResultObject(undefined, false)).

YieldExpression : yield AssignmentExpression

1. Let generatorKind be ! GetGeneratorKind().
2. Let exprRef be the result of evaluating AssignmentExpression.
3. Let value be ? GetValue(exprRef).
4. If generatorKind is async, then return ? AsyncGeneratorYield(value).
5. Otherwise, return ? GeneratorYield(CreateIterResultObject(value, false)).

YieldExpression : yield * AssignmentExpression

1. Let generatorKind be ! GetGeneratorKind().
2. Let exprRef be the result of evaluating AssignmentExpression.
3. Let value be ? GetValue(exprRef).
4. Let iteratorRecord be ? GetIterator(value, generatorKind).
5. Let iterator be iteratorRecord.[[Iterator]].
6. Let received be NormalCompletion(undefined).
7. Repeat,

a. If received.[[Type]] is normal, then
i. Let innerResult be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]], « received.

[[Value]] »).
ii. If generatorKind is async, then set innerResult to ? Await(innerResult).

iii. If Type(innerResult) is not Object, throw a TypeError exception.
iv. Let done be ? IteratorComplete(innerResult).
v. If done is true, then

1. Return ? IteratorValue(innerResult).
vi. If generatorKind is async, then set received to AsyncGeneratorYield(? IteratorValue(innerResult)).

vii. Else, set received to GeneratorYield(innerResult).
b. Else if received.[[Type]] is throw, then

i. Let throw be ? GetMethod(iterator, "throw").
ii. If throw is not undefined, then

1. Let innerResult be ? Call(throw, iterator, « received.[[Value]] »).
2. If generatorKind is async, then set innerResult to ? Await(innerResult).
3. NOTE: Exceptions from the inner iterator throw method are propagated. Normal completions

from an inner throw method are processed similarly to an inner next.
4. If Type(innerResult) is not Object, throw a TypeError exception.
5. Let done be ? IteratorComplete(innerResult).
6. If done is true, then

a. Return ? IteratorValue(innerResult).
7. If generatorKind is async, then set received to AsyncGeneratorYield(?

IteratorValue(innerResult)).
8. Else, set received to GeneratorYield(innerResult).

iii. Else,

322

© Ecma International 2019

322

1. NOTE: If iterator does not have a throw method, this throw is going to terminate the yield*
loop. But first we need to give iterator a chance to clean up.

2. Let closeCompletion be Completion { [[Type]]: normal, [[Value]]: empty, [[Target]]: empty }.
3. If generatorKind is async, perform ? AsyncIteratorClose(iteratorRecord, closeCompletion).
4. Else, perform ? IteratorClose(iteratorRecord, closeCompletion).
5. NOTE: The next step throws a TypeError to indicate that there was a yield* protocol violation:

iterator does not have a throw method.
6. Throw a TypeError exception.

c. Else,
i. Assert: received.[[Type]] is return.

ii. Let return be ? GetMethod(iterator, "return").
iii. If return is undefined, then

1. If generatorKind is async, then set received.[[Value]] to ? Await(received.[[Value]]).
2. Return Completion(received).

iv. Let innerReturnResult be ? Call(return, iterator, « received.[[Value]] »).
v. If generatorKind is async, then set innerReturnResult to ? Await(innerReturnResult).

vi. If Type(innerReturnResult) is not Object, throw a TypeError exception.
vii. Let done be ? IteratorComplete(innerReturnResult).

viii. If done is true, then
1. Let value be ? IteratorValue(innerReturnResult).
2. Return Completion { [[Type]]: return, [[Value]]: value, [[Target]]: empty }.

ix. If generatorKind is async, then set received to AsyncGeneratorYield(?
IteratorValue(innerReturnResult)).

x. Else, set received to GeneratorYield(innerReturnResult).

AsyncGeneratorMethod[Yield, Await] :

async [no LineTerminator here] * PropertyName[?Yield, ?Await] (
UniqueFormalParameters[+Yield, +Await]) { AsyncGeneratorBody }

AsyncGeneratorDeclaration[Yield, Await, Default] :

async [no LineTerminator here] function * BindingIdentifier[?Yield, ?Await] (
FormalParameters[+Yield, +Await]) { AsyncGeneratorBody }

[+Default] async [no LineTerminator here] function * (FormalParameters[+Yield, +Await]) {
AsyncGeneratorBody }

AsyncGeneratorExpression :
async [no LineTerminator here] function * BindingIdentifier[+Yield, +Await] opt (

FormalParameters[+Yield, +Await]) { AsyncGeneratorBody }

AsyncGeneratorBody :
FunctionBody[+Yield, +Await]

NOTE 1

14.5 Async Generator Function Definitions

Syntax

© Ecma International 2019

323

YieldExpression and AwaitExpression cannot be used within the FormalParameters of an async generator function
because any expressions that are part of FormalParameters are evaluated before the resulting async generator object is in
a resumable state.

NOTE 2
Abstract operations relating to async generator objects are defined in 25.5.3.

AsyncGeneratorMethod : async * PropertyName (UniqueFormalParameters) { AsyncGeneratorBody }

It is a Syntax Error if HasDirectSuper of AsyncGeneratorMethod is true.
It is a Syntax Error if UniqueFormalParameters Contains YieldExpression is true.
It is a Syntax Error if UniqueFormalParameters Contains AwaitExpression is true.
It is a Syntax Error if ContainsUseStrict of AsyncGeneratorBody is true and IsSimpleParameterList of
UniqueFormalParameters is false.
It is a Syntax Error if any element of the BoundNames of UniqueFormalParameters also occurs in the
LexicallyDeclaredNames of AsyncGeneratorBody.

AsyncGeneratorDeclaration : async function * BindingIdentifier (FormalParameters) {
AsyncGeneratorBody }
AsyncGeneratorDeclaration : async function * (FormalParameters) { AsyncGeneratorBody }
AsyncGeneratorExpression : async function * BindingIdentifier (FormalParameters) {
AsyncGeneratorBody }

If the source code matching this production is strict mode code, the Early Error rules for
UniqueFormalParameters : FormalParameters are applied.

If the source code matching this production is strict mode code, it is a Syntax Error if BindingIdentifier is the
IdentifierName eval or the IdentifierName arguments.
It is a Syntax Error if ContainsUseStrict of AsyncGeneratorBody is true and IsSimpleParameterList of
FormalParameters is false.
It is a Syntax Error if any element of the BoundNames of FormalParameters also occurs in the
LexicallyDeclaredNames of AsyncGeneratorBody.
It is a Syntax Error if FormalParameters Contains YieldExpression is true.
It is a Syntax Error if FormalParameters Contains AwaitExpression is true.
It is a Syntax Error if FormalParameters Contains SuperProperty is true.
It is a Syntax Error if AsyncGeneratorBody Contains SuperProperty is true.
It is a Syntax Error if FormalParameters Contains SuperCall is true.
It is a Syntax Error if AsyncGeneratorBody Contains SuperCall is true.

AsyncGeneratorDeclaration : async function * BindingIdentifier (FormalParameters) {
AsyncGeneratorBody }

1. Return the BoundNames of BindingIdentifier.

AsyncGeneratorDeclaration : async function * (FormalParameters) { AsyncGeneratorBody }

1. Return « "*default*" ».

14.5.1 Static Semantics: Early Errors

14.5.2 Static Semantics: BoundNames

324

© Ecma International 2019

324

NOTE
"*default*" is used within this specification as a synthetic name for hoistable anonymous functions that are defined
using export declarations.

With parameter symbol.

AsyncGeneratorMethod : async * PropertyName (UniqueFormalParameters) { AsyncGeneratorBody }

1. Return the result of ComputedPropertyContains for PropertyName with argument symbol.

With parameter symbol.

AsyncGeneratorDeclaration : async function * BindingIdentifier (FormalParameters) {
AsyncGeneratorBody }
AsyncGeneratorDeclaration : async function * (FormalParameters) { AsyncGeneratorBody }
AsyncGeneratorExpression : async function * BindingIdentifier (FormalParameters) {
AsyncGeneratorBody }

1. Return false.

NOTE
Static semantic rules that depend upon substructure generally do not look into function definitions.

AsyncGeneratorMethod : async * PropertyName (UniqueFormalParameters) { AsyncGeneratorBody }

1. If UniqueFormalParameters Contains SuperCall is true, return true.
2. Return AsyncGeneratorBody Contains SuperCall.

AsyncGeneratorExpression : async function * (FormalParameters) { AsyncGeneratorBody }

1. Return false.

AsyncGeneratorExpression : async function * BindingIdentifier (FormalParameters) {
AsyncGeneratorBody }

1. Return true.

AsyncGeneratorDeclaration : async function * BindingIdentifier (FormalParameters) {
AsyncGeneratorBody }
AsyncGeneratorDeclaration : async function * (FormalParameters) { AsyncGeneratorBody }

14.5.3 Static Semantics: ComputedPropertyContains

14.5.4 Static Semantics: Contains

14.5.5 Static Semantics: HasDirectSuper

14.5.6 Static Semantics: HasName

14.5.7 Static Semantics: IsConstantDeclaration

© Ecma International 2019

325

1. Return false.

AsyncGeneratorExpression : async function * BindingIdentifier (FormalParameters) {
AsyncGeneratorBody }

1. Return true.

AsyncGeneratorMethod : async * PropertyName (UniqueFormalParameters) { AsyncGeneratorBody }

1. Return PropName of PropertyName.

With parameters functionObject and List argumentsList.

AsyncGeneratorBody : FunctionBody

1. Perform ? FunctionDeclarationInstantiation(functionObject, argumentsList).
2. Let generator be ? OrdinaryCreateFromConstructor(functionObject, "%AsyncGeneratorPrototype%", «

[[AsyncGeneratorState]], [[AsyncGeneratorContext]], [[AsyncGeneratorQueue]] »).
3. Perform ! AsyncGeneratorStart(generator, FunctionBody).
4. Return Completion { [[Type]]: return, [[Value]]: generator, [[Target]]: empty }.

With parameter scope.

AsyncGeneratorDeclaration : async function * BindingIdentifier (FormalParameters) {
AsyncGeneratorBody }

1. If the function code for AsyncGeneratorDeclaration is strict mode code, let strict be true. Otherwise let strict be
false.

2. Let name be StringValue of BindingIdentifier.
3. Let F be ! AsyncGeneratorFunctionCreate(Normal, FormalParameters, AsyncGeneratorBody, scope, strict).
4. Let prototype be ! ObjectCreate(%AsyncGeneratorPrototype%).
5. Perform ! DefinePropertyOrThrow(F, "prototype", PropertyDescriptor { [[Value]]: prototype, [[Writable]]:

true, [[Enumerable]]: false, [[Configurable]]: false }).
6. Perform ! SetFunctionName(F, name).
7. Set F.[[SourceText]] to the source text matched by AsyncGeneratorDeclaration.
8. Return F.

AsyncGeneratorDeclaration : async function * (FormalParameters) { AsyncGeneratorBody }

1. If the function code for AsyncGeneratorDeclaration is strict mode code, let strict be true. Otherwise let strict be
false.

2. Let F be AsyncGeneratorFunctionCreate(Normal, FormalParameters, AsyncGeneratorBody, scope, strict).
3. Let prototype be ObjectCreate(%AsyncGeneratorPrototype%).

14.5.8 Static Semantics: IsFunctionDefinition

14.5.9 Static Semantics: PropName

14.5.10 Runtime Semantics: EvaluateBody

14.5.11 Runtime Semantics: InstantiateFunctionObject

326

© Ecma International 2019

326

4. Perform DefinePropertyOrThrow(F, "prototype", PropertyDescriptor { [[Value]]: prototype, [[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: false }).

5. Perform SetFunctionName(F, "default").
6. Set F.[[SourceText]] to the source text matched by AsyncGeneratorDeclaration.
7. Return F.

NOTE
An anonymous AsyncGeneratorDeclaration can only occur as part of an export default declaration.

With parameter object and enumerable.

AsyncGeneratorMethod : async * PropertyName (UniqueFormalParameters) { AsyncGeneratorBody }

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).
3. If the function code for this AsyncGeneratorMethod is strict mode code, let strict be true. Otherwise let strict be

false.
4. Let scope be the running execution context's LexicalEnvironment.
5. Let closure be ! AsyncGeneratorFunctionCreate(Method, UniqueFormalParameters, AsyncGeneratorBody, scope,

strict).
6. Perform ! MakeMethod(closure, object).
7. Let prototype be ! ObjectCreate(%AsyncGeneratorPrototype%).
8. Perform ! DefinePropertyOrThrow(closure, "prototype", PropertyDescriptor { [[Value]]: prototype,

[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }).
9. Perform ! SetFunctionName(closure, propKey).

10. Set closure.[[SourceText]] to the source text matched by AsyncGeneratorMethod.
11. Let desc be PropertyDescriptor { [[Value]]: closure, [[Writable]]: true, [[Enumerable]]: enumerable,

[[Configurable]]: true }.
12. Return ? DefinePropertyOrThrow(object, propKey, desc).

With parameter name.

AsyncGeneratorExpression : async function * (FormalParameters) { AsyncGeneratorBody }

1. Let closure be the result of evaluating this AsyncGeneratorExpression.
2. Perform SetFunctionName(closure, name).
3. Return closure.

AsyncGeneratorExpression : async function * (FormalParameters) { AsyncGeneratorBody }

1. If the function code for this AsyncGeneratorExpression is strict mode code, let strict be true. Otherwise let strict be
false.

2. Let scope be the LexicalEnvironment of the running execution context.

14.5.12 Runtime Semantics: PropertyDefinitionEvaluation

14.5.13 Runtime Semantics: NamedEvaluation

14.5.14 Runtime Semantics: Evaluation

© Ecma International 2019

327

3. Let closure be ! AsyncGeneratorFunctionCreate(Normal, FormalParameters, AsyncGeneratorBody, scope, strict).
4. Let prototype be ! ObjectCreate(%AsyncGeneratorPrototype%).
5. Perform ! DefinePropertyOrThrow(closure, "prototype", PropertyDescriptor { [[Value]]: prototype,

[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }).
6. Set closure.[[SourceText]] to the source text matched by AsyncGeneratorExpression.
7. Return closure.

AsyncGeneratorExpression : async function * BindingIdentifier (FormalParameters) {
AsyncGeneratorBody }

1. If the function code for this AsyncGeneratorExpression is strict mode code, let strict be true. Otherwise let strict be
false.

2. Let scope be the running execution context's LexicalEnvironment.
3. Let funcEnv be ! NewDeclarativeEnvironment(scope).
4. Let envRec be funcEnv's EnvironmentRecord.
5. Let name be StringValue of BindingIdentifier.
6. Perform ! envRec.CreateImmutableBinding(name).
7. Let closure be ! AsyncGeneratorFunctionCreate(Normal, FormalParameters, AsyncGeneratorBody, funcEnv,

strict).
8. Let prototype be ! ObjectCreate(%AsyncGeneratorPrototype%).
9. Perform ! DefinePropertyOrThrow(closure, "prototype", PropertyDescriptor { [[Value]]: prototype,

[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }).
10. Perform ! SetFunctionName(closure, name).
11. Perform ! envRec.InitializeBinding(name, closure).
12. Set closure.[[SourceText]] to the source text matched by AsyncGeneratorExpression.
13. Return closure.

NOTE
The BindingIdentifier in an AsyncGeneratorExpression can be referenced from inside the AsyncGeneratorExpression's
AsyncGeneratorBody to allow the generator code to call itself recursively. However, unlike in an
AsyncGeneratorDeclaration, the BindingIdentifier in an AsyncGeneratorExpression cannot be referenced from and does
not affect the scope enclosing the AsyncGeneratorExpression.

ClassDeclaration[Yield, Await, Default] :

class BindingIdentifier[?Yield, ?Await] ClassTail[?Yield, ?Await]
[+Default] class ClassTail[?Yield, ?Await]

ClassExpression[Yield, Await] :

class BindingIdentifier[?Yield, ?Await] opt ClassTail[?Yield, ?Await]

ClassTail[Yield, Await] :

ClassHeritage[?Yield, ?Await] opt { ClassBody[?Yield, ?Await] opt }

14.6 Class Definitions

Syntax

328

© Ecma International 2019

328

ClassHeritage[Yield, Await] :

extends LeftHandSideExpression[?Yield, ?Await]

ClassBody[Yield, Await] :

ClassElementList[?Yield, ?Await]

ClassElementList[Yield, Await] :

ClassElement[?Yield, ?Await]
ClassElementList[?Yield, ?Await] ClassElement[?Yield, ?Await]

ClassElement[Yield, Await] :

MethodDefinition[?Yield, ?Await]
static MethodDefinition[?Yield, ?Await]
;

NOTE
A class definition is always strict mode code.

ClassTail : ClassHeritage { ClassBody }

It is a Syntax Error if ClassHeritage is not present and the following algorithm evaluates to true:

1. Let constructor be ConstructorMethod of ClassBody.
2. If constructor is empty, return false.
3. Return HasDirectSuper of constructor.

ClassBody : ClassElementList

It is a Syntax Error if PrototypePropertyNameList of ClassElementList contains more than one occurrence of
"constructor".

ClassElement : MethodDefinition

It is a Syntax Error if PropName of MethodDefinition is not "constructor" and HasDirectSuper of
MethodDefinition is true.
It is a Syntax Error if PropName of MethodDefinition is "constructor" and SpecialMethod of
MethodDefinition is true.

ClassElement : static MethodDefinition

It is a Syntax Error if HasDirectSuper of MethodDefinition is true.
It is a Syntax Error if PropName of MethodDefinition is "prototype".

ClassDeclaration : class BindingIdentifier ClassTail

1. Return the BoundNames of BindingIdentifier.

14.6.1 Static Semantics: Early Errors

14.6.2 Static Semantics: BoundNames

© Ecma International 2019

329

ClassDeclaration : class ClassTail

1. Return « "*default*" ».

ClassElementList : ClassElement

1. If ClassElement is ClassElement : ; , return empty.
2. If IsStatic of ClassElement is true, return empty.
3. If PropName of ClassElement is not "constructor", return empty.
4. Return ClassElement.

ClassElementList : ClassElementList ClassElement

1. Let head be ConstructorMethod of ClassElementList.
2. If head is not empty, return head.
3. If ClassElement is ClassElement : ; , return empty.
4. If IsStatic of ClassElement is true, return empty.
5. If PropName of ClassElement is not "constructor", return empty.
6. Return ClassElement.

NOTE
Early Error rules ensure that there is only one method definition named "constructor" and that it is not an accessor
property or generator definition.

With parameter symbol.

ClassTail : ClassHeritage { ClassBody }

1. If symbol is ClassBody, return true.
2. If symbol is ClassHeritage, then

a. If ClassHeritage is present, return true; otherwise return false.
3. Let inHeritage be ClassHeritage Contains symbol.
4. If inHeritage is true, return true.
5. Return the result of ComputedPropertyContains for ClassBody with argument symbol.

NOTE
Static semantic rules that depend upon substructure generally do not look into class bodies except for PropertyNames.

With parameter symbol.

ClassElementList : ClassElementList ClassElement

1. Let inList be the result of ComputedPropertyContains for ClassElementList with argument symbol.

14.6.3 Static Semantics: ConstructorMethod

14.6.4 Static Semantics: Contains

14.6.5 Static Semantics: ComputedPropertyContains

330

© Ecma International 2019

330

2. If inList is true, return true.
3. Return the result of ComputedPropertyContains for ClassElement with argument symbol.

ClassElement : MethodDefinition

1. Return the result of ComputedPropertyContains for MethodDefinition with argument symbol.

ClassElement : static MethodDefinition

1. Return the result of ComputedPropertyContains for MethodDefinition with argument symbol.

ClassElement : ;

1. Return false.

ClassExpression : class ClassTail

1. Return false.

ClassExpression : class BindingIdentifier ClassTail

1. Return true.

ClassDeclaration : class BindingIdentifier ClassTail
ClassDeclaration : class ClassTail

1. Return false.

ClassExpression : class BindingIdentifier ClassTail

1. Return true.

ClassElement : MethodDefinition

1. Return false.

ClassElement : static MethodDefinition

1. Return true.

ClassElement : ;

1. Return false.

ClassElementList : ClassElement

14.6.6 Static Semantics: HasName

14.6.7 Static Semantics: IsConstantDeclaration

14.6.8 Static Semantics: IsFunctionDefinition

14.6.9 Static Semantics: IsStatic

14.6.10 Static Semantics: NonConstructorMethodDefinitions

© Ecma International 2019

331

1. If ClassElement is ClassElement : ; , return a new empty List.
2. If IsStatic of ClassElement is false and PropName of ClassElement is "constructor", return a new empty List.
3. Return a List containing ClassElement.

ClassElementList : ClassElementList ClassElement

1. Let list be NonConstructorMethodDefinitions of ClassElementList.
2. If ClassElement is ClassElement : ; , return list.
3. If IsStatic of ClassElement is false and PropName of ClassElement is "constructor", return list.
4. Append ClassElement to the end of list.
5. Return list.

ClassElementList : ClassElement

1. If PropName of ClassElement is empty, return a new empty List.
2. If IsStatic of ClassElement is true, return a new empty List.
3. Return a List containing PropName of ClassElement.

ClassElementList : ClassElementList ClassElement

1. Let list be PrototypePropertyNameList of ClassElementList.
2. If PropName of ClassElement is empty, return list.
3. If IsStatic of ClassElement is true, return list.
4. Append PropName of ClassElement to the end of list.
5. Return list.

ClassElement : ;

1. Return empty.

With parameters classBinding and className.

ClassTail : ClassHeritage { ClassBody }

1. Let lex be the LexicalEnvironment of the running execution context.
2. Let classScope be NewDeclarativeEnvironment(lex).
3. Let classScopeEnvRec be classScope's EnvironmentRecord.
4. If classBinding is not undefined, then

a. Perform classScopeEnvRec.CreateImmutableBinding(classBinding, true).
5. If ClassHeritageopt is not present, then

a. Let protoParent be the intrinsic object %ObjectPrototype%.
b. Let constructorParent be the intrinsic object %FunctionPrototype%.

6. Else,
a. Set the running execution context's LexicalEnvironment to classScope.
b. Let superclassRef be the result of evaluating ClassHeritage.

14.6.11 Static Semantics: PrototypePropertyNameList

14.6.12 Static Semantics: PropName

14.6.13 Runtime Semantics: ClassDefinitionEvaluation

332

© Ecma International 2019

332

c. Set the running execution context's LexicalEnvironment to lex.
d. Let superclass be ? GetValue(superclassRef).
e. If superclass is null, then

i. Let protoParent be null.
ii. Let constructorParent be the intrinsic object %FunctionPrototype%.

f. Else if IsConstructor(superclass) is false, throw a TypeError exception.
g. Else,

i. Let protoParent be ? Get(superclass, "prototype").
ii. If Type(protoParent) is neither Object nor Null, throw a TypeError exception.

iii. Let constructorParent be superclass.
7. Let proto be ObjectCreate(protoParent).
8. If ClassBodyopt is not present, let constructor be empty.

9. Else, let constructor be ConstructorMethod of ClassBody.
10. If constructor is empty, then

a. If ClassHeritageopt is present, then

i. Set constructor to the result of parsing the source text

constructor(... args){ super (...args);}

using the syntactic grammar with the goal symbol MethodDefinition[~Yield, ~Await] .

b. Else,
i. Set constructor to the result of parsing the source text

constructor(){ }

using the syntactic grammar with the goal symbol MethodDefinition[~Yield, ~Await] .

11. Set the running execution context's LexicalEnvironment to classScope.
12. Let constructorInfo be the result of performing DefineMethod for constructor with arguments proto and

constructorParent as the optional functionPrototype argument.
13. Assert: constructorInfo is not an abrupt completion.
14. Let F be constructorInfo.[[Closure]].
15. If ClassHeritageopt is present, set F.[[ConstructorKind]] to "derived".

16. Perform MakeConstructor(F, false, proto).
17. Perform MakeClassConstructor(F).
18. If className is not undefined, then

a. Perform SetFunctionName(F, className).
19. Perform CreateMethodProperty(proto, "constructor", F).
20. If ClassBodyopt is not present, let methods be a new empty List.

21. Else, let methods be NonConstructorMethodDefinitions of ClassBody.
22. For each ClassElement m in order from methods, do

a. If IsStatic of m is false, then
i. Let status be the result of performing PropertyDefinitionEvaluation for m with arguments proto and

false.
b. Else,

i. Let status be the result of performing PropertyDefinitionEvaluation for m with arguments F and false.
c. If status is an abrupt completion, then

i. Set the running execution context's LexicalEnvironment to lex.
ii. Return Completion(status).

23. Set the running execution context's LexicalEnvironment to lex.

© Ecma International 2019

333

24. If classBinding is not undefined, then
a. Perform classScopeEnvRec.InitializeBinding(classBinding, F).

25. Return F.

ClassDeclaration : class BindingIdentifier ClassTail

1. Let className be StringValue of BindingIdentifier.
2. Let value be the result of ClassDefinitionEvaluation of ClassTail with arguments className and className.
3. ReturnIfAbrupt(value).
4. Set value.[[SourceText]] to the source text matched by ClassDeclaration.
5. Let env be the running execution context's LexicalEnvironment.
6. Perform ? InitializeBoundName(className, value, env).
7. Return value.

ClassDeclaration : class ClassTail

1. Let value be the result of ClassDefinitionEvaluation of ClassTail with arguments undefined and "default".
2. ReturnIfAbrupt(value).
3. Set value.[[SourceText]] to the source text matched by ClassDeclaration.
4. Return value.

NOTE
ClassDeclaration : class ClassTail only occurs as part of an ExportDeclaration and establishing its binding is

handled as part of the evaluation action for that production. See 15.2.3.11.

With parameter name.

ClassExpression : class ClassTail

1. Return the result of ClassDefinitionEvaluation of ClassTail with arguments undefined and name.

ClassDeclaration : class BindingIdentifier ClassTail

1. Perform ? BindingClassDeclarationEvaluation of this ClassDeclaration.
2. Return NormalCompletion(empty).

NOTE
ClassDeclaration : class ClassTail only occurs as part of an ExportDeclaration and is never directly evaluated.

ClassExpression : class BindingIdentifier ClassTail

1. If BindingIdentifieropt is not present, let className be undefined.

2. Else, let className be StringValue of BindingIdentifier.
3. Let value be the result of ClassDefinitionEvaluation of ClassTail with arguments className and className.
4. ReturnIfAbrupt(value).

14.6.14 Runtime Semantics: BindingClassDeclarationEvaluation

14.6.15 Runtime Semantics: NamedEvaluation

14.6.16 Runtime Semantics: Evaluation

334

© Ecma International 2019

334

5. Set value.[[SourceText]] to the source text matched by ClassExpression.
6. Return value.

AsyncFunctionDeclaration[Yield, Await, Default] :

async [no LineTerminator here] function BindingIdentifier[?Yield, ?Await] (
FormalParameters[~Yield, +Await]) { AsyncFunctionBody }

[+Default] async [no LineTerminator here] function (FormalParameters[~Yield, +Await]) {
AsyncFunctionBody }

AsyncFunctionExpression :
async [no LineTerminator here] function (FormalParameters[~Yield, +Await]) {

AsyncFunctionBody }
async [no LineTerminator here] function BindingIdentifier[~Yield, +Await] (

FormalParameters[~Yield, +Await]) { AsyncFunctionBody }

AsyncMethod[Yield, Await] :

async [no LineTerminator here] PropertyName[?Yield, ?Await] (
UniqueFormalParameters[~Yield, +Await]) { AsyncFunctionBody }

AsyncFunctionBody :
FunctionBody[~Yield, +Await]

AwaitExpression[Yield] :

await UnaryExpression[?Yield, +Await]

NOTE 1
await is parsed as an AwaitExpression when the [Await] parameter is present. The [Await] parameter is present in the

following contexts:

In an AsyncFunctionBody.
In the FormalParameters of an AsyncFunctionDeclaration, AsyncFunctionExpression, AsyncGeneratorDeclaration,
or AsyncGeneratorExpression. AwaitExpression in this position is a Syntax error via static semantics.

When Module is the syntactic goal symbol and the [Await] parameter is absent, await is parsed as a keyword and will be

a Syntax error. When Script is the syntactic goal symbol, await may be parsed as an identifier when the [Await]

parameter is absent. This includes the following contexts:

Anywhere outside of an AsyncFunctionBody or FormalParameters of an AsyncFunctionDeclaration,
AsyncFunctionExpression, AsyncGeneratorDeclaration, or AsyncGeneratorExpression.
In the BindingIdentifier of a FunctionExpression, GeneratorExpression, or AsyncGeneratorExpression.

NOTE 2
Unlike YieldExpression, it is a Syntax Error to omit the operand of an AwaitExpression. You must await something.

14.7 Async Function Definitions

Syntax

© Ecma International 2019

335

AsyncMethod : async PropertyName (UniqueFormalParameters) { AsyncFunctionBody }

It is a Syntax Error if ContainsUseStrict of AsyncFunctionBody is true and IsSimpleParameterList of
UniqueFormalParameters is false.
It is a Syntax Error if HasDirectSuper of AsyncMethod is true.
It is a Syntax Error if UniqueFormalParameters Contains AwaitExpression is true.
It is a Syntax Error if any element of the BoundNames of UniqueFormalParameters also occurs in the
LexicallyDeclaredNames of AsyncFunctionBody.

AsyncFunctionDeclaration : async function BindingIdentifier (FormalParameters) { AsyncFunctionBody }
AsyncFunctionDeclaration : async function (FormalParameters) { AsyncFunctionBody }
AsyncFunctionExpression : async function (FormalParameters) { AsyncFunctionBody }
AsyncFunctionExpression : async function BindingIdentifier (FormalParameters) { AsyncFunctionBody }

It is a Syntax Error if ContainsUseStrict of AsyncFunctionBody is true and IsSimpleParameterList of
FormalParameters is false.
It is a Syntax Error if FormalParameters Contains AwaitExpression is true.
If the source code matching this production is strict code, the Early Error rules for UniqueFormalParameters :
FormalParameters are applied.

If the source code matching this production is strict code, it is a Syntax Error if BindingIdentifier is present and the
StringValue of BindingIdentifier is "eval" or "arguments".
It is a Syntax Error if any element of the BoundNames of FormalParameters also occurs in the
LexicallyDeclaredNames of AsyncFunctionBody.
It is a Syntax Error if FormalParameters Contains SuperProperty is true.
It is a Syntax Error if AsyncFunctionBody Contains SuperProperty is true.
It is a Syntax Error if FormalParameters Contains SuperCall is true.
It is a Syntax Error if AsyncFunctionBody Contains SuperCall is true.

AsyncFunctionDeclaration : async function BindingIdentifier (FormalParameters) { AsyncFunctionBody }

1. Return the BoundNames of BindingIdentifier.

AsyncFunctionDeclaration : async function (FormalParameters) { AsyncFunctionBody }

1. Return « "*default*" ».

NOTE
"*default*" is used within this specification as a synthetic name for hoistable anonymous functions that are defined
using export declarations.

With parameter symbol.

AsyncMethod : async PropertyName (UniqueFormalParameters) { AsyncFunctionBody }

1. Return the result of ComputedPropertyContains for PropertyName with argument symbol.

14.7.1 Static Semantics: Early Errors

14.7.2 Static Semantics: BoundNames

14.7.3 Static Semantics: ComputedPropertyContains

336

© Ecma International 2019

336

With parameter symbol.

AsyncFunctionDeclaration : async function BindingIdentifier (FormalParameters) { AsyncFunctionBody }
AsyncFunctionDeclaration : async function (FormalParameters) { AsyncFunctionBody }
AsyncFunctionExpression : async function (FormalParameters) { AsyncFunctionBody }
AsyncFunctionExpression : async function BindingIdentifier (FormalParameters) { AsyncFunctionBody }

1. Return false.

AsyncMethod : async PropertyName (UniqueFormalParameters) { AsyncFunctionBody }

1. If UniqueFormalParameters Contains SuperCall is true, return true.
2. Return AsyncFunctionBody Contains SuperCall.

AsyncFunctionExpression : async function (FormalParameters) { AsyncFunctionBody }

1. Return false.

AsyncFunctionExpression : async function BindingIdentifier (FormalParameters) { AsyncFunctionBody }

1. Return true.

AsyncFunctionDeclaration : async function BindingIdentifier (FormalParameters) { AsyncFunctionBody }
AsyncFunctionDeclaration : async function (FormalParameters) { AsyncFunctionBody }

1. Return false.

AsyncFunctionExpression : async function (FormalParameters) { AsyncFunctionBody }
AsyncFunctionExpression : async function BindingIdentifier (FormalParameters) { AsyncFunctionBody }

1. Return true.

AsyncMethod : async PropertyName (UniqueFormalParameters) { AsyncFunctionBody }

1. Return PropName of PropertyName.

With parameter scope.

AsyncFunctionDeclaration : async function BindingIdentifier (FormalParameters) { AsyncFunctionBody }

14.7.4 Static Semantics: Contains

14.7.5 Static Semantics: HasDirectSuper

14.7.6 Static Semantics: HasName

14.7.7 Static Semantics: IsConstantDeclaration

14.7.8 Static Semantics: IsFunctionDefinition

14.7.9 Static Semantics: PropName

14.7.10 Runtime Semantics: InstantiateFunctionObject

© Ecma International 2019

337

1. If the function code for AsyncFunctionDeclaration is strict mode code, let strict be true. Otherwise, let strict be
false.

2. Let name be StringValue of BindingIdentifier.
3. Let F be ! AsyncFunctionCreate(Normal, FormalParameters, AsyncFunctionBody, scope, strict).
4. Perform ! SetFunctionName(F, name).
5. Set F.[[SourceText]] to the source text matched by AsyncFunctionDeclaration.
6. Return F.

AsyncFunctionDeclaration : async function (FormalParameters) { AsyncFunctionBody }

1. If the function code for AsyncFunctionDeclaration is strict mode code, let strict be true. Otherwise, let strict be
false.

2. Let F be ! AsyncFunctionCreate(Normal, FormalParameters, AsyncFunctionBody, scope, strict).
3. Perform ! SetFunctionName(F, "default").
4. Set F.[[SourceText]] to the source text matched by AsyncFunctionDeclaration.
5. Return F.

With parameters functionObject and List argumentsList.

AsyncFunctionBody : FunctionBody

1. Let promiseCapability be ! NewPromiseCapability(%Promise%).
2. Let declResult be FunctionDeclarationInstantiation(functionObject, argumentsList).
3. If declResult is not an abrupt completion, then

a. Perform ! AsyncFunctionStart(promiseCapability, FunctionBody).
4. Else declResult is an abrupt completion,

a. Perform ! Call(promiseCapability.[[Reject]], undefined, « declResult.[[Value]] »).
5. Return Completion { [[Type]]: return, [[Value]]: promiseCapability.[[Promise]], [[Target]]: empty }.

With parameters object and enumerable.

AsyncMethod : async PropertyName (UniqueFormalParameters) { AsyncFunctionBody }

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).
3. If the function code for this AsyncMethod is strict mode code, let strict be true. Otherwise let strict be false.
4. Let scope be the LexicalEnvironment of the running execution context.
5. Let closure be ! AsyncFunctionCreate(Method, UniqueFormalParameters, AsyncFunctionBody, scope, strict).
6. Perform ! MakeMethod(closure, object).
7. Perform ! SetFunctionName(closure, propKey).
8. Set closure.[[SourceText]] to the source text matched by AsyncMethod.
9. Let desc be the PropertyDescriptor { [[Value]]: closure, [[Writable]]: true, [[Enumerable]]: enumerable,

[[Configurable]]: true }.
10. Return ? DefinePropertyOrThrow(object, propKey, desc).

14.7.11 Runtime Semantics: EvaluateBody

14.7.12 Runtime Semantics: PropertyDefinitionEvaluation

338

© Ecma International 2019

338

With parameter name.

AsyncFunctionExpression : async function (FormalParameters) { AsyncFunctionBody }

1. Let closure be the result of evaluating this AsyncFunctionExpression.
2. Perform SetFunctionName(closure, name).
3. Return closure.

AsyncFunctionDeclaration : async function BindingIdentifier (FormalParameters) { AsyncFunctionBody }

1. Return NormalCompletion(empty).

AsyncFunctionDeclaration : async function (FormalParameters) { AsyncFunctionBody }

1. Return NormalCompletion(empty).

AsyncFunctionExpression : async function (FormalParameters) { AsyncFunctionBody }

1. If the function code for AsyncFunctionExpression is strict mode code, let strict be true. Otherwise let strict be
false.

2. Let scope be the LexicalEnvironment of the running execution context.
3. Let closure be ! AsyncFunctionCreate(Normal, FormalParameters, AsyncFunctionBody, scope, strict).
4. Set closure.[[SourceText]] to the source text matched by AsyncFunctionExpression.
5. Return closure.

AsyncFunctionExpression : async function BindingIdentifier (FormalParameters) { AsyncFunctionBody }

1. If the function code for AsyncFunctionExpression is strict mode code, let strict be true. Otherwise let strict be
false.

2. Let scope be the LexicalEnvironment of the running execution context.
3. Let funcEnv be ! NewDeclarativeEnvironment(scope).
4. Let envRec be funcEnv's EnvironmentRecord.
5. Let name be StringValue of BindingIdentifier.
6. Perform ! envRec.CreateImmutableBinding(name).
7. Let closure be ! AsyncFunctionCreate(Normal, FormalParameters, AsyncFunctionBody, funcEnv, strict).
8. Perform ! SetFunctionName(closure, name).
9. Perform ! envRec.InitializeBinding(name, closure).

10. Set closure.[[SourceText]] to the source text matched by AsyncFunctionExpression.
11. Return closure.

AwaitExpression : await UnaryExpression

1. Let exprRef be the result of evaluating UnaryExpression.
2. Let value be ? GetValue(exprRef).
3. Return ? Await(value).

14.7.13 Runtime Semantics: NamedEvaluation

14.7.14 Runtime Semantics: Evaluation

14.8 Async Arrow Function Definitions

© Ecma International 2019

339

AsyncArrowFunction[In, Yield, Await] :

async [no LineTerminator here] AsyncArrowBindingIdentifier[?Yield] [no LineTerminator here] =>
AsyncConciseBody[?In]

CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await] [no LineTerminator here] =>
AsyncConciseBody[?In]

AsyncConciseBody[In] :

[lookahead ≠ {] AssignmentExpression[?In, ~Yield, +Await]
{ AsyncFunctionBody }

AsyncArrowBindingIdentifier[Yield] :

BindingIdentifier[?Yield, +Await]

CoverCallExpressionAndAsyncArrowHead[Yield, Await] :

MemberExpression[?Yield, ?Await] Arguments[?Yield, ?Await]

When processing an instance of the production AsyncArrowFunction : CoverCallExpressionAndAsyncArrowHead =>
AsyncConciseBody the interpretation of CoverCallExpressionAndAsyncArrowHead is refined using the following
grammar:

AsyncArrowHead :
async [no LineTerminator here] ArrowFormalParameters[~Yield, +Await]

AsyncArrowFunction : async AsyncArrowBindingIdentifier => AsyncConciseBody

It is a Syntax Error if any element of the BoundNames of AsyncArrowBindingIdentifier also occurs in the
LexicallyDeclaredNames of AsyncConciseBody.

AsyncArrowFunction : CoverCallExpressionAndAsyncArrowHead => AsyncConciseBody

It is a Syntax Error if CoverCallExpressionAndAsyncArrowHead Contains YieldExpression is true.
It is a Syntax Error if CoverCallExpressionAndAsyncArrowHead Contains AwaitExpression is true.
It is a Syntax Error if CoverCallExpressionAndAsyncArrowHead is not covering an AsyncArrowHead.
It is a Syntax Error if any element of the BoundNames of CoverCallExpressionAndAsyncArrowHead also occurs in
the LexicallyDeclaredNames of AsyncConciseBody.
It is a Syntax Error if ContainsUseStrict of AsyncConciseBody is true and IsSimpleParameterList of
CoverCallExpressionAndAsyncArrowHead is false.
All Early Error rules for AsyncArrowHead and its derived productions apply to CoveredAsyncArrowHead of
CoverCallExpressionAndAsyncArrowHead.

CoverCallExpressionAndAsyncArrowHead : MemberExpression Arguments

1. Return the AsyncArrowHead that is covered by CoverCallExpressionAndAsyncArrowHead.

Syntax

Supplemental Syntax

14.8.1 Static Semantics: Early Errors

14.8.2 Static Semantics: CoveredAsyncArrowHead

340

© Ecma International 2019

340

CoverCallExpressionAndAsyncArrowHead : MemberExpression Arguments

1. Let head be CoveredAsyncArrowHead of CoverCallExpressionAndAsyncArrowHead.
2. Return the BoundNames of head.

With parameter symbol.

AsyncArrowFunction : async AsyncArrowBindingIdentifier => AsyncConciseBody

1. If symbol is not one of NewTarget, SuperProperty, SuperCall, super, or this, return false.
2. Return AsyncConciseBody Contains symbol.

AsyncArrowFunction : CoverCallExpressionAndAsyncArrowHead => AsyncConciseBody

1. If symbol is not one of NewTarget, SuperProperty, SuperCall, super, or this, return false.
2. Let head be CoveredAsyncArrowHead of CoverCallExpressionAndAsyncArrowHead.
3. If head Contains symbol is true, return true.
4. Return AsyncConciseBody Contains symbol.

NOTE
Normally, Contains does not look inside most function forms. However, Contains is used to detect new.target,
this, and super usage within an AsyncArrowFunction.

AsyncArrowBindingIdentifier : BindingIdentifier

1. Return false.

AsyncArrowBindingIdentifier : BindingIdentifier

1. Return 1.

AsyncArrowFunction : async AsyncArrowBindingIdentifier => AsyncConciseBody
AsyncArrowFunction : CoverCallExpressionAndAsyncArrowHead => AsyncConciseBody

1. Return false.

AsyncArrowBindingIdentifier : BindingIdentifier

1. Return true.

CoverCallExpressionAndAsyncArrowHead : MemberExpression Arguments

14.8.3 Static Semantics: BoundNames

14.8.4 Static Semantics: Contains

14.8.5 Static Semantics: ContainsExpression

14.8.6 Static Semantics: ExpectedArgumentCount

14.8.7 Static Semantics: HasName

14.8.8 Static Semantics: IsSimpleParameterList

© Ecma International 2019

341

1. Let head be CoveredAsyncArrowHead of CoverCallExpressionAndAsyncArrowHead.
2. Return IsSimpleParameterList of head.

AsyncConciseBody : AssignmentExpression

1. Return a new empty List.

AsyncConciseBody : AssignmentExpression

1. Return a new empty List.

AsyncConciseBody : AssignmentExpression

1. Return a new empty List.

AsyncConciseBody : AssignmentExpression

1. Return a new empty List.

With parameters iteratorRecord and environment.

AsyncArrowBindingIdentifier : BindingIdentifier

1. Assert: iteratorRecord.[[Done]] is false.
2. Let next be IteratorStep(iteratorRecord).
3. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
4. ReturnIfAbrupt(next).
5. If next is false, set iteratorRecord.[[Done]] to true.
6. Else,

a. Let v be IteratorValue(next).
b. If v is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(v).

7. If iteratorRecord.[[Done]] is true, let v be undefined.
8. Return the result of performing BindingInitialization for BindingIdentifier using v and environment as the

arguments.

With parameters functionObject and List argumentsList.

AsyncConciseBody : AssignmentExpression

1. Let promiseCapability be ! NewPromiseCapability(%Promise%).

14.8.9 Static Semantics: LexicallyDeclaredNames

14.8.10 Static Semantics: LexicallyScopedDeclarations

14.8.11 Static Semantics: VarDeclaredNames

14.8.12 Static Semantics: VarScopedDeclarations

14.8.13 Runtime Semantics: IteratorBindingInitialization

14.8.14 Runtime Semantics: EvaluateBody

342

© Ecma International 2019

342

2. Let declResult be FunctionDeclarationInstantiation(functionObject, argumentsList).
3. If declResult is not an abrupt completion, then

a. Perform ! AsyncFunctionStart(promiseCapability, AssignmentExpression).
4. Else declResult is an abrupt completion,

a. Perform ! Call(promiseCapability.[[Reject]], undefined, « declResult.[[Value]] »).
5. Return Completion { [[Type]]: return, [[Value]]: promiseCapability.[[Promise]], [[Target]]: empty }.

AsyncConciseBody : { AsyncFunctionBody }

1. Return the result of EvaluateBody of AsyncFunctionBody passing functionObject and argumentsList as the
arguments.

With parameter name.

AsyncArrowFunction : async AsyncArrowBindingIdentifier => AsyncConciseBody
AsyncArrowFunction : CoverCallExpressionAndAsyncArrowHead => AsyncConciseBody

1. Let closure be the result of evaluating this AsyncArrowFunction.
2. Perform SetFunctionName(closure, name).
3. Return closure.

AsyncArrowFunction : async AsyncArrowBindingIdentifier => AsyncConciseBody

1. If the function code for this AsyncArrowFunction is strict mode code, let strict be true. Otherwise, let strict be
false.

2. Let scope be the LexicalEnvironment of the running execution context.
3. Let parameters be AsyncArrowBindingIdentifier.
4. Let closure be ! AsyncFunctionCreate(Arrow, parameters, AsyncConciseBody, scope, strict).
5. Return closure.

AsyncArrowFunction : CoverCallExpressionAndAsyncArrowHead => AsyncConciseBody

1. If the function code for this AsyncArrowFunction is strict mode code, let strict be true. Otherwise, let strict be
false.

2. Let scope be the LexicalEnvironment of the running execution context.
3. Let head be CoveredAsyncArrowHead of CoverCallExpressionAndAsyncArrowHead.
4. Let parameters be the ArrowFormalParameters of head.
5. Let closure be ! AsyncFunctionCreate(Arrow, parameters, AsyncConciseBody, scope, strict).
6. Return closure.

The abstract operation IsInTailPosition with argument call performs the following steps:

14.8.15 Runtime Semantics: NamedEvaluation

14.8.16 Runtime Semantics: Evaluation

14.9 Tail Position Calls

14.9.1 Static Semantics: IsInTailPosition (call)

© Ecma International 2019

343

1. Assert: call is a Parse Node.
2. If the source code matching call is non-strict code, return false.
3. If call is not contained within a FunctionBody, ConciseBody, or AsyncConciseBody, return false.
4. Let body be the FunctionBody, ConciseBody, or AsyncConciseBody that most closely contains call.
5. If body is the FunctionBody of a GeneratorBody, return false.
6. If body is the FunctionBody of an AsyncFunctionBody, return false.
7. If body is the FunctionBody of an AsyncGeneratorBody, return false.
8. If body is an AsyncConciseBody, return false.
9. Return the result of HasCallInTailPosition of body with argument call.

NOTE
Tail Position calls are only defined in strict mode code because of a common non-standard language extension (see 9.2.9)
that enables observation of the chain of caller contexts.

With parameter call.

NOTE
call is a Parse Node that represents a specific range of source text. When the following algorithms compare call to
another Parse Node, it is a test of whether they represent the same source text.

ConciseBody : AssignmentExpression

1. Return HasCallInTailPosition of AssignmentExpression with argument call.

StatementList : StatementList StatementListItem

1. Let has be HasCallInTailPosition of StatementList with argument call.
2. If has is true, return true.
3. Return HasCallInTailPosition of StatementListItem with argument call.

FunctionStatementList : [empty]
StatementListItem : Declaration

Statement :
VariableStatement
EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ThrowStatement
DebuggerStatement

Block : { }
ReturnStatement : return ;
LabelledItem : FunctionDeclaration

14.9.2 Static Semantics: HasCallInTailPosition

14.9.2.1 Statement Rules

344

© Ecma International 2019

344

IterationStatement :
for (LeftHandSideExpression of AssignmentExpression) Statement
for (var ForBinding of AssignmentExpression) Statement
for (ForDeclaration of AssignmentExpression) Statement

CaseBlock : { }

1. Return false.

IfStatement : if (Expression) Statement else Statement

1. Let has be HasCallInTailPosition of the first Statement with argument call.
2. If has is true, return true.
3. Return HasCallInTailPosition of the second Statement with argument call.

IfStatement : if (Expression) Statement

IterationStatement :
do Statement while (Expression) ;
while (Expression) Statement
for (Expressionopt ; Expressionopt ; Expressionopt) Statement

for (var VariableDeclarationList ; Expressionopt ; Expressionopt) Statement

for (LexicalDeclaration Expressionopt ; Expressionopt) Statement

for (LeftHandSideExpression in Expression) Statement
for (var ForBinding in Expression) Statement
for (ForDeclaration in Expression) Statement

WithStatement : with (Expression) Statement

1. Return HasCallInTailPosition of Statement with argument call.

LabelledStatement :
LabelIdentifier : LabelledItem

1. Return HasCallInTailPosition of LabelledItem with argument call.

ReturnStatement : return Expression ;

1. Return HasCallInTailPosition of Expression with argument call.

SwitchStatement : switch (Expression) CaseBlock

1. Return HasCallInTailPosition of CaseBlock with argument call.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. Let has be false.
2. If the first CaseClauses is present, let has be HasCallInTailPosition of the first CaseClauses with argument call.
3. If has is true, return true.
4. Let has be HasCallInTailPosition of the DefaultClause with argument call.
5. If has is true, return true.
6. If the second CaseClauses is present, let has be HasCallInTailPosition of the second CaseClauses with argument

call.

© Ecma International 2019

345

7. Return has.

CaseClauses : CaseClauses CaseClause

1. Let has be HasCallInTailPosition of CaseClauses with argument call.
2. If has is true, return true.
3. Return HasCallInTailPosition of CaseClause with argument call.

CaseClause : case Expression : StatementList
DefaultClause : default : StatementList

1. If StatementList is present, return HasCallInTailPosition of StatementList with argument call.
2. Return false.

TryStatement : try Block Catch

1. Return HasCallInTailPosition of Catch with argument call.

TryStatement : try Block Finally
TryStatement : try Block Catch Finally

1. Return HasCallInTailPosition of Finally with argument call.

Catch : catch (CatchParameter) Block

1. Return HasCallInTailPosition of Block with argument call.

NOTE
A potential tail position call that is immediately followed by return GetValue of the call result is also a possible tail
position call. Function calls cannot return reference values, so such a GetValue operation will always return the same
value as the actual function call result.

AssignmentExpression :
YieldExpression
ArrowFunction
AsyncArrowFunction
LeftHandSideExpression = AssignmentExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

BitwiseANDExpression : BitwiseANDExpression & EqualityExpression
BitwiseXORExpression : BitwiseXORExpression ^ BitwiseANDExpression
BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression

EqualityExpression :
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression
EqualityExpression === RelationalExpression
EqualityExpression !== RelationalExpression

RelationalExpression :

14.9.2.2 Expression Rules

346

© Ecma International 2019

346

RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ShiftExpression
RelationalExpression in ShiftExpression

ShiftExpression :
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

AdditiveExpression :
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

MultiplicativeExpression :
MultiplicativeExpression MultiplicativeOperator ExponentiationExpression

ExponentiationExpression :
UpdateExpression ** ExponentiationExpression

UpdateExpression :
LeftHandSideExpression ++
LeftHandSideExpression --
++ UnaryExpression
-- UnaryExpression

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression
AwaitExpression

CallExpression :
SuperCall
CallExpression [Expression]
CallExpression . IdentifierName

NewExpression : new NewExpression

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
SuperProperty
MetaProperty

© Ecma International 2019

347

new MemberExpression Arguments

PrimaryExpression :
this
IdentifierReference
Literal
ArrayLiteral
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
AsyncFunctionExpression
AsyncGeneratorExpression
RegularExpressionLiteral
TemplateLiteral

1. Return false.

Expression :
AssignmentExpression
Expression , AssignmentExpression

1. Return HasCallInTailPosition of AssignmentExpression with argument call.

ConditionalExpression : LogicalORExpression ? AssignmentExpression : AssignmentExpression

1. Let has be HasCallInTailPosition of the first AssignmentExpression with argument call.
2. If has is true, return true.
3. Return HasCallInTailPosition of the second AssignmentExpression with argument call.

LogicalANDExpression : LogicalANDExpression && BitwiseORExpression

1. Return HasCallInTailPosition of BitwiseORExpression with argument call.

LogicalORExpression : LogicalORExpression || LogicalANDExpression

1. Return HasCallInTailPosition of LogicalANDExpression with argument call.

CallExpression :
CoverCallExpressionAndAsyncArrowHead
CallExpression Arguments
CallExpression TemplateLiteral

1. If this CallExpression is call, return true.
2. Return false.

MemberExpression :
MemberExpression TemplateLiteral

1. If this MemberExpression is call, return true.
2. Return false.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

348

© Ecma International 2019

348

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return HasCallInTailPosition of expr with argument call.

ParenthesizedExpression :
(Expression)

1. Return HasCallInTailPosition of Expression with argument call.

The abstract operation PrepareForTailCall performs the following steps:

1. Let leafContext be the running execution context.
2. Suspend leafContext.
3. Pop leafContext from the execution context stack. The execution context now on the top of the stack becomes the

running execution context.
4. Assert: leafContext has no further use. It will never be activated as the running execution context.

A tail position call must either release any transient internal resources associated with the currently executing function
execution context before invoking the target function or reuse those resources in support of the target function.

NOTE
For example, a tail position call should only grow an implementation's activation record stack by the amount that the size
of the target function's activation record exceeds the size of the calling function's activation record. If the target function's
activation record is smaller, then the total size of the stack should decrease.

Script :
ScriptBodyopt

ScriptBody :
StatementList[~Yield, ~Await, ~Return]

Script : ScriptBody

It is a Syntax Error if the LexicallyDeclaredNames of ScriptBody contains any duplicate entries.
It is a Syntax Error if any element of the LexicallyDeclaredNames of ScriptBody also occurs in the
VarDeclaredNames of ScriptBody.

ScriptBody : StatementList

14.9.3 Runtime Semantics: PrepareForTailCall ()

15 ECMAScript Language: Scripts and Modules

15.1 Scripts

Syntax

15.1.1 Static Semantics: Early Errors

© Ecma International 2019

349

It is a Syntax Error if StatementList Contains super unless the source code containing super is eval code that is
being processed by a direct eval. Additional early error rules for super within direct eval are defined in 18.2.1.1.
It is a Syntax Error if StatementList Contains NewTarget unless the source code containing NewTarget is eval code
that is being processed by a direct eval. Additional early error rules for NewTarget in direct eval are defined in
18.2.1.1.
It is a Syntax Error if ContainsDuplicateLabels of StatementList with argument « » is true.
It is a Syntax Error if ContainsUndefinedBreakTarget of StatementList with argument « » is true.
It is a Syntax Error if ContainsUndefinedContinueTarget of StatementList with arguments « » and « » is true.

ScriptBody : StatementList

1. If the Directive Prologue of StatementList contains a Use Strict Directive, return true; otherwise, return false.

ScriptBody : StatementList

1. Return TopLevelLexicallyDeclaredNames of StatementList.

NOTE
At the top level of a Script, function declarations are treated like var declarations rather than like lexical declarations.

ScriptBody : StatementList

1. Return TopLevelLexicallyScopedDeclarations of StatementList.

ScriptBody : StatementList

1. Return TopLevelVarDeclaredNames of StatementList.

ScriptBody : StatementList

1. Return TopLevelVarScopedDeclarations of StatementList.

Script : [empty]

1. Return NormalCompletion(undefined).

A Script Record encapsulates information about a script being evaluated. Each script record contains the fields listed in
Table 36.

15.1.2 Static Semantics: IsStrict

15.1.3 Static Semantics: LexicallyDeclaredNames

15.1.4 Static Semantics: LexicallyScopedDeclarations

15.1.5 Static Semantics: VarDeclaredNames

15.1.6 Static Semantics: VarScopedDeclarations

15.1.7 Runtime Semantics: Evaluation

15.1.8 Script Records

350

© Ecma International 2019

350

Table 36: Script Record Fields

Field Name Value Type Meaning

[[Realm]] Realm Record |
undefined

The realm within which this script was created. undefined if not yet
assigned.

[[Environment]] Lexical
Environment |
undefined

The Lexical Environment containing the top level bindings for this script.
This field is set when the script is instantiated.

[[ECMAScriptCode]] a Parse Node The result of parsing the source text of this module using Script as the
goal symbol.

[[HostDefined]] Any, default value
is undefined.

Field reserved for use by host environments that need to associate
additional information with a script.

The abstract operation ParseScript with arguments sourceText, realm, and hostDefined creates a Script Record based
upon the result of parsing sourceText as a Script. ParseScript performs the following steps:

1. Assert: sourceText is an ECMAScript source text (see clause 10).
2. Parse sourceText using Script as the goal symbol and analyse the parse result for any Early Error conditions. If the

parse was successful and no early errors were found, let body be the resulting parse tree. Otherwise, let body be a
List of one or more SyntaxError or ReferenceError objects representing the parsing errors and/or early errors.
Parsing and early error detection may be interweaved in an implementation-dependent manner. If more than one
parsing error or early error is present, the number and ordering of error objects in the list is implementation-
dependent, but at least one must be present.

3. If body is a List of errors, return body.
4. Return Script Record { [[Realm]]: realm, [[Environment]]: undefined, [[ECMAScriptCode]]: body,

[[HostDefined]]: hostDefined }.

NOTE
An implementation may parse script source text and analyse it for Early Error conditions prior to evaluation of
ParseScript for that script source text. However, the reporting of any errors must be deferred until the point where this
specification actually performs ParseScript upon that source text.

1. Let globalEnv be scriptRecord.[[Realm]].[[GlobalEnv]].
2. Let scriptCxt be a new ECMAScript code execution context.
3. Set the Function of scriptCxt to null.
4. Set the Realm of scriptCxt to scriptRecord.[[Realm]].
5. Set the ScriptOrModule of scriptCxt to scriptRecord.
6. Set the VariableEnvironment of scriptCxt to globalEnv.
7. Set the LexicalEnvironment of scriptCxt to globalEnv.
8. Suspend the currently running execution context.
9. Push scriptCxt on to the execution context stack; scriptCxt is now the running execution context.

15.1.9 ParseScript (sourceText, realm, hostDefined)

15.1.10 ScriptEvaluation (scriptRecord)

© Ecma International 2019

351

10. Let scriptBody be scriptRecord.[[ECMAScriptCode]].
11. Let result be GlobalDeclarationInstantiation(scriptBody, globalEnv).
12. If result.[[Type]] is normal, then

a. Set result to the result of evaluating scriptBody.
13. If result.[[Type]] is normal and result.[[Value]] is empty, then

a. Set result to NormalCompletion(undefined).
14. Suspend scriptCxt and remove it from the execution context stack.
15. Assert: The execution context stack is not empty.
16. Resume the context that is now on the top of the execution context stack as the running execution context.
17. Return Completion(result).

NOTE 1
When an execution context is established for evaluating scripts, declarations are instantiated in the current global
environment. Each global binding declared in the code is instantiated.

GlobalDeclarationInstantiation is performed as follows using arguments script and env. script is the ScriptBody for which
the execution context is being established. env is the global lexical environment in which bindings are to be created.

1. Let envRec be env's EnvironmentRecord.
2. Assert: envRec is a global Environment Record.
3. Let lexNames be the LexicallyDeclaredNames of script.
4. Let varNames be the VarDeclaredNames of script.
5. For each name in lexNames, do

a. If envRec.HasVarDeclaration(name) is true, throw a SyntaxError exception.
b. If envRec.HasLexicalDeclaration(name) is true, throw a SyntaxError exception.
c. Let hasRestrictedGlobal be ? envRec.HasRestrictedGlobalProperty(name).
d. If hasRestrictedGlobal is true, throw a SyntaxError exception.

6. For each name in varNames, do
a. If envRec.HasLexicalDeclaration(name) is true, throw a SyntaxError exception.

7. Let varDeclarations be the VarScopedDeclarations of script.
8. Let functionsToInitialize be a new empty List.
9. Let declaredFunctionNames be a new empty List.

10. For each d in varDeclarations, in reverse list order, do
a. If d is neither a VariableDeclaration nor a ForBinding nor a BindingIdentifier, then

i. Assert: d is either a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an
AsyncGeneratorDeclaration.

ii. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
iii. Let fn be the sole element of the BoundNames of d.
iv. If fn is not an element of declaredFunctionNames, then

1. Let fnDefinable be ? envRec.CanDeclareGlobalFunction(fn).
2. If fnDefinable is false, throw a TypeError exception.
3. Append fn to declaredFunctionNames.
4. Insert d as the first element of functionsToInitialize.

11. Let declaredVarNames be a new empty List.
12. For each d in varDeclarations, do

a. If d is a VariableDeclaration, a ForBinding, or a BindingIdentifier, then

15.1.11 Runtime Semantics: GlobalDeclarationInstantiation (script, env)

352

© Ecma International 2019

352

i. For each String vn in the BoundNames of d, do
1. If vn is not an element of declaredFunctionNames, then

a. Let vnDefinable be ? envRec.CanDeclareGlobalVar(vn).
b. If vnDefinable is false, throw a TypeError exception.
c. If vn is not an element of declaredVarNames, then

i. Append vn to declaredVarNames.
13. NOTE: No abnormal terminations occur after this algorithm step if the global object is an ordinary object.

However, if the global object is a Proxy exotic object it may exhibit behaviours that cause abnormal terminations in
some of the following steps.

14. NOTE: Annex B.3.3.2 adds additional steps at this point.
15. Let lexDeclarations be the LexicallyScopedDeclarations of script.
16. For each element d in lexDeclarations, do

a. NOTE: Lexically declared names are only instantiated here but not initialized.
b. For each element dn of the BoundNames of d, do

i. If IsConstantDeclaration of d is true, then
1. Perform ? envRec.CreateImmutableBinding(dn, true).

ii. Else,
1. Perform ? envRec.CreateMutableBinding(dn, false).

17. For each Parse Node f in functionsToInitialize, do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument env.
c. Perform ? envRec.CreateGlobalFunctionBinding(fn, fo, false).

18. For each String vn in declaredVarNames, in list order, do
a. Perform ? envRec.CreateGlobalVarBinding(vn, false).

19. Return NormalCompletion(empty).

NOTE 2
Early errors specified in 15.1.1 prevent name conflicts between function/var declarations and let/const/class declarations
as well as redeclaration of let/const/class bindings for declaration contained within a single Script. However, such
conflicts and redeclarations that span more than one Script are detected as runtime errors during
GlobalDeclarationInstantiation. If any such errors are detected, no bindings are instantiated for the script. However, if the
global object is defined using Proxy exotic objects then the runtime tests for conflicting declarations may be unreliable
resulting in an abrupt completion and some global declarations not being instantiated. If this occurs, the code for the
Script is not evaluated.

Unlike explicit var or function declarations, properties that are directly created on the global object result in global
bindings that may be shadowed by let/const/class declarations.

The job ScriptEvaluationJob with parameters sourceText and hostDefined parses, validates, and evaluates sourceText as a
Script.

1. Assert: sourceText is an ECMAScript source text (see clause 10).
2. Let realm be the current Realm Record.
3. Let s be ParseScript(sourceText, realm, hostDefined).
4. If s is a List of errors, then

a. Perform HostReportErrors(s).

15.1.12 Runtime Semantics: ScriptEvaluationJob (sourceText, hostDefined)

© Ecma International 2019

353

b. Return NormalCompletion(undefined).
5. Return ? ScriptEvaluation(s).

Module :
ModuleBodyopt

ModuleBody :
ModuleItemList

ModuleItemList :
ModuleItem
ModuleItemList ModuleItem

ModuleItem :
ImportDeclaration
ExportDeclaration
StatementListItem[~Yield, ~Await, ~Return]

ModuleBody : ModuleItemList

It is a Syntax Error if the LexicallyDeclaredNames of ModuleItemList contains any duplicate entries.
It is a Syntax Error if any element of the LexicallyDeclaredNames of ModuleItemList also occurs in the
VarDeclaredNames of ModuleItemList.
It is a Syntax Error if the ExportedNames of ModuleItemList contains any duplicate entries.
It is a Syntax Error if any element of the ExportedBindings of ModuleItemList does not also occur in either the
VarDeclaredNames of ModuleItemList, or the LexicallyDeclaredNames of ModuleItemList.
It is a Syntax Error if ModuleItemList Contains super.
It is a Syntax Error if ModuleItemList Contains NewTarget.
It is a Syntax Error if ContainsDuplicateLabels of ModuleItemList with argument « » is true.
It is a Syntax Error if ContainsUndefinedBreakTarget of ModuleItemList with argument « » is true.
It is a Syntax Error if ContainsUndefinedContinueTarget of ModuleItemList with arguments « » and « » is true.

NOTE
The duplicate ExportedNames rule implies that multiple export default ExportDeclaration items within a
ModuleBody is a Syntax Error. Additional error conditions relating to conflicting or duplicate declarations are checked
during module linking prior to evaluation of a Module. If any such errors are detected the Module is not evaluated.

With parameter labelSet.

15.2 Modules

Syntax

15.2.1 Module Semantics

15.2.1.1 Static Semantics: Early Errors

15.2.1.2 Static Semantics: ContainsDuplicateLabels

354

© Ecma International 2019

354

ModuleItemList : ModuleItemList ModuleItem

1. Let hasDuplicates be ContainsDuplicateLabels of ModuleItemList with argument labelSet.
2. If hasDuplicates is true, return true.
3. Return ContainsDuplicateLabels of ModuleItem with argument labelSet.

ModuleItem :
ImportDeclaration
ExportDeclaration

1. Return false.

With parameter labelSet.

ModuleItemList : ModuleItemList ModuleItem

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of ModuleItemList with argument labelSet.
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedBreakTarget of ModuleItem with argument labelSet.

ModuleItem :
ImportDeclaration
ExportDeclaration

1. Return false.

With parameters iterationSet and labelSet.

ModuleItemList : ModuleItemList ModuleItem

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of ModuleItemList with arguments iterationSet and
« ».

2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedContinueTarget of ModuleItem with arguments iterationSet and « ».

ModuleItem :
ImportDeclaration
ExportDeclaration

1. Return false.

NOTE
ExportedBindings are the locally bound names that are explicitly associated with a Module's ExportedNames.

ModuleItemList : ModuleItemList ModuleItem

1. Let names be ExportedBindings of ModuleItemList.

15.2.1.3 Static Semantics: ContainsUndefinedBreakTarget

15.2.1.4 Static Semantics: ContainsUndefinedContinueTarget

15.2.1.5 Static Semantics: ExportedBindings

© Ecma International 2019

355

2. Append to names the elements of the ExportedBindings of ModuleItem.
3. Return names.

ModuleItem :
ImportDeclaration
StatementListItem

1. Return a new empty List.

NOTE
ExportedNames are the externally visible names that a Module explicitly maps to one of its local name bindings.

ModuleItemList : ModuleItemList ModuleItem

1. Let names be ExportedNames of ModuleItemList.
2. Append to names the elements of the ExportedNames of ModuleItem.
3. Return names.

ModuleItem : ExportDeclaration

1. Return the ExportedNames of ExportDeclaration.

ModuleItem :
ImportDeclaration
StatementListItem

1. Return a new empty List.

Module : [empty]

1. Return a new empty List.

ModuleItemList : ModuleItemList ModuleItem

1. Let entries be ExportEntries of ModuleItemList.
2. Append to entries the elements of the ExportEntries of ModuleItem.
3. Return entries.

ModuleItem :
ImportDeclaration
StatementListItem

1. Return a new empty List.

Module : [empty]

1. Return a new empty List.

ModuleItemList : ModuleItemList ModuleItem

15.2.1.6 Static Semantics: ExportedNames

15.2.1.7 Static Semantics: ExportEntries

15.2.1.8 Static Semantics: ImportEntries

356

© Ecma International 2019

356

1. Let entries be ImportEntries of ModuleItemList.
2. Append to entries the elements of the ImportEntries of ModuleItem.
3. Return entries.

ModuleItem :
ExportDeclaration
StatementListItem

1. Return a new empty List.

The abstract operation ImportedLocalNames with argument importEntries creates a List of all of the local name bindings
defined by a List of ImportEntry Records (see Table 42). ImportedLocalNames performs the following steps:

1. Let localNames be a new empty List.
2. For each ImportEntry Record i in importEntries, do

a. Append i.[[LocalName]] to localNames.
3. Return localNames.

Module : [empty]

1. Return a new empty List.

ModuleItemList : ModuleItem

1. Return ModuleRequests of ModuleItem.

ModuleItemList : ModuleItemList ModuleItem

1. Let moduleNames be ModuleRequests of ModuleItemList.
2. Let additionalNames be ModuleRequests of ModuleItem.
3. Append to moduleNames each element of additionalNames that is not already an element of moduleNames.
4. Return moduleNames.

ModuleItem : StatementListItem

1. Return a new empty List.

NOTE 1
The LexicallyDeclaredNames of a Module includes the names of all of its imported bindings.

ModuleItemList : ModuleItemList ModuleItem

1. Let names be LexicallyDeclaredNames of ModuleItemList.
2. Append to names the elements of the LexicallyDeclaredNames of ModuleItem.
3. Return names.

ModuleItem : ImportDeclaration

15.2.1.9 Static Semantics: ImportedLocalNames (importEntries)

15.2.1.10 Static Semantics: ModuleRequests

15.2.1.11 Static Semantics: LexicallyDeclaredNames

© Ecma International 2019

357

1. Return the BoundNames of ImportDeclaration.

ModuleItem : ExportDeclaration

1. If ExportDeclaration is export VariableStatement, return a new empty List.
2. Return the BoundNames of ExportDeclaration.

ModuleItem : StatementListItem

1. Return LexicallyDeclaredNames of StatementListItem.

NOTE 2
At the top level of a Module, function declarations are treated like lexical declarations rather than like var declarations.

Module : [empty]

1. Return a new empty List.

ModuleItemList : ModuleItemList ModuleItem

1. Let declarations be LexicallyScopedDeclarations of ModuleItemList.
2. Append to declarations the elements of the LexicallyScopedDeclarations of ModuleItem.
3. Return declarations.

ModuleItem : ImportDeclaration

1. Return a new empty List.

Module : [empty]

1. Return a new empty List.

ModuleItemList : ModuleItemList ModuleItem

1. Let names be VarDeclaredNames of ModuleItemList.
2. Append to names the elements of the VarDeclaredNames of ModuleItem.
3. Return names.

ModuleItem : ImportDeclaration

1. Return a new empty List.

ModuleItem : ExportDeclaration

1. If ExportDeclaration is export VariableStatement, return BoundNames of ExportDeclaration.
2. Return a new empty List.

Module : [empty]

1. Return a new empty List.

15.2.1.12 Static Semantics: LexicallyScopedDeclarations

15.2.1.13 Static Semantics: VarDeclaredNames

15.2.1.14 Static Semantics: VarScopedDeclarations

358

© Ecma International 2019

358

ModuleItemList : ModuleItemList ModuleItem

1. Let declarations be VarScopedDeclarations of ModuleItemList.
2. Append to declarations the elements of the VarScopedDeclarations of ModuleItem.
3. Return declarations.

ModuleItem : ImportDeclaration

1. Return a new empty List.

ModuleItem : ExportDeclaration

1. If ExportDeclaration is export VariableStatement, return VarScopedDeclarations of VariableStatement.
2. Return a new empty List.

A Module Record encapsulates structural information about the imports and exports of a single module. This information
is used to link the imports and exports of sets of connected modules. A Module Record includes four fields that are only
used when evaluating a module.

For specification purposes Module Record values are values of the Record specification type and can be thought of as
existing in a simple object-oriented hierarchy where Module Record is an abstract class with both abstract and concrete
subclasses. This specification defines the abstract subclass named Cyclic Module Record and its concrete subclass named
Source Text Module Record. Other specifications and implementations may define additional Module Record subclasses
corresponding to alternative module definition facilities that they defined.

Module Record defines the fields listed in Table 37. All Module Definition subclasses include at least those fields.
Module Record also defines the abstract method list in Table 38. All Module definition subclasses must provide concrete
implementations of these abstract methods.

Table 37: Module Record Fields

Field Name Value Type Meaning

[[Realm]] Realm Record |
undefined

The Realm within which this module was created. undefined if not yet
assigned.

[[Environment]] Lexical
Environment |
undefined

The Lexical Environment containing the top level bindings for this module.
This field is set when the module is instantiated.

[[Namespace]] Object | undefined The Module Namespace Object (26.3) if one has been created for this module.
Otherwise undefined.

[[HostDefined]] Any, default value
is undefined.

Field reserved for use by host environments that need to associate additional
information with a module.

Table 38: Abstract Methods of Module Records

Method Purpose

15.2.1.15 Abstract Module Records

© Ecma International 2019

359

GetExportedNames(exportStarSet) Return a list of all names that are either directly or indirectly exported from this
module.

ResolveExport(exportName,
resolveSet)

Return the binding of a name exported by this module. Bindings are represented
by a ResolvedBinding Record, of the form { [[Module]]: Module Record,
[[BindingName]]: String }. Return null if the name cannot be resolved, or
"ambiguous" if multiple bindings were found.

This operation must be idempotent if it completes normally. Each time it is called
with a specific exportName, resolveSet pair as arguments it must return the same
result.

Instantiate() Prepare the module for evaluation by transitively resolving all module
dependencies and creating a module Environment Record.

Evaluate() If this module has already been evaluated successfully, return undefined; if it has
already been evaluated unsuccessfully, throw the exception that was produced.
Otherwise, transitively evaluate all module dependencies of this module and then
evaluate this module.

Instantiate must have completed successfully prior to invoking this method.

A Cyclic Module Record is used to represent information about a module that can participate in dependency cycles with
other modules that are subclasses of the Cyclic Module Record type. Module Records that are not subclasses of the
Cyclic Module Record type must not participate in dependency cycles with Source Text Module Records.

In addition to the fields defined in Table 37 Cyclic Module Records have the additional fields listed in Table 39

Table 39: Additional Fields of Cyclic Module Records

Field Name Value
Type

Meaning

[[Status]] String Initially "uninstantiated". Transitions to "instantiating",
"instantiated", "evaluating", "evaluated" (in that order) as the
module progresses throughout its lifecycle.

[[EvaluationError]] An abrupt
completion
|
undefined

A completion of type throw representing the exception that occurred during
evaluation. undefined if no exception occurred or if [[Status]] is not
"evaluated".

15.2.1.16 Cyclic Module Records

360

© Ecma International 2019

360

[[DFSIndex]] Integer |
undefined

Auxiliary field used during Instantiate and Evaluate only. If [[Status]] is
"instantiating" or "evaluating", this nonnegative number records the
point at which the module was first visited during the ongoing depth-first
traversal of the dependency graph.

[[DFSAncestorIndex]] Integer |
undefined

Auxiliary field used during Instantiate and Evaluate only. If [[Status]] is
"instantiating" or "evaluating", this is either the module's own
[[DFSIndex]] or that of an "earlier" module in the same strongly connected
component.

[[RequestedModules]] List of
String

A List of all the ModuleSpecifier strings used by the module represented by this
record to request the importation of a module. The List is source code occurrence
ordered.

In addition to the methods defined in Table 38 Cyclic Module Records have the additional methods listed in Table 40

Table 40: Additional Abstract Methods of Cyclic Module Records

Method Purpose

InitializeEnvironment() Initialize the Lexical Environment of the module, including resolving all imported bindings.

ExecuteModule() Initialize the execution context of the module and evaluate the module's code within it.

The Instantiate concrete method of a Cyclic Module Record implements the corresponding Module Record abstract
method.

On success, Instantiate transitions this module's [[Status]] from "uninstantiated" to "instantiated". On
failure, an exception is thrown and this module's [[Status]] remains "uninstantiated".

This abstract method performs the following steps (most of the work is done by the auxiliary function
InnerModuleInstantiation):

1. Let module be this Cyclic Module Record.
2. Assert: module.[[Status]] is not "instantiating" or "evaluating".
3. Let stack be a new empty List.
4. Let result be InnerModuleInstantiation(module, stack, 0).
5. If result is an abrupt completion, then

a. For each module m in stack, do
i. Assert: m.[[Status]] is "instantiating".

ii. Set m.[[Status]] to "uninstantiated".
iii. Set m.[[Environment]] to undefined.
iv. Set m.[[DFSIndex]] to undefined.
v. Set m.[[DFSAncestorIndex]] to undefined.

b. Assert: module.[[Status]] is "uninstantiated".
c. Return result.

6. Assert: module.[[Status]] is "instantiated" or "evaluated".

15.2.1.16.1 Instantiate () Concrete Method

© Ecma International 2019

361

7. Assert: stack is empty.
8. Return undefined.

The InnerModuleInstantiation abstract operation is used by Instantiate to perform the actual instantiation process for the
Cyclic Module Record module, as well as recursively on all other modules in the dependency graph. The stack and index
parameters, as well as a module's [[DFSIndex]] and [[DFSAncestorIndex]] fields, keep track of the depth-first search
(DFS) traversal. In particular, [[DFSAncestorIndex]] is used to discover strongly connected components (SCCs), such
that all modules in an SCC transition to "instantiated" together.

This abstract operation performs the following steps:

1. If module is not a Cyclic Module Record, then
a. Perform ? module.Instantiate().
b. Return index.

2. If module.[[Status]] is "instantiating", "instantiated", or "evaluated", then
a. Return index.

3. Assert: module.[[Status]] is "uninstantiated".
4. Set module.[[Status]] to "instantiating".
5. Set module.[[DFSIndex]] to index.
6. Set module.[[DFSAncestorIndex]] to index.
7. Increase index by 1.
8. Append module to stack.
9. For each String required that is an element of module.[[RequestedModules]], do

a. Let requiredModule be ? HostResolveImportedModule(module, required).
b. Set index to ? InnerModuleInstantiation(requiredModule, stack, index).
c. Assert: requiredModule.[[Status]] is either "instantiating", "instantiated", or "evaluated".
d. Assert: requiredModule.[[Status]] is "instantiating" if and only if requiredModule is in stack.
e. If requiredModule.[[Status]] is "instantiating", then

i. Assert: requiredModule is a Cyclic Module Record.
ii. Set module.[[DFSAncestorIndex]] to min(module.[[DFSAncestorIndex]], requiredModule.

[[DFSAncestorIndex]]).
10. Perform ? module.InitializeEnvironment().
11. Assert: module occurs exactly once in stack.
12. Assert: module.[[DFSAncestorIndex]] is less than or equal to module.[[DFSIndex]].
13. If module.[[DFSAncestorIndex]] equals module.[[DFSIndex]], then

a. Let done be false.
b. Repeat, while done is false,

i. Let requiredModule be the last element in stack.
ii. Remove the last element of stack.

iii. Set requiredModule.[[Status]] to "instantiated".
iv. If requiredModule and module are the same Module Record, set done to true.

14. Return index.

The Evaluate concrete method of a Cyclic Module Record implements the corresponding Module Record abstract
method.

15.2.1.16.1.1 InnerModuleInstantiation (module, stack, index)

15.2.1.16.2 Evaluate () Concrete Method

362

© Ecma International 2019

362

Evaluate transitions this module's [[Status]] from "instantiated" to "evaluated".

If execution results in an exception, that exception is recorded in the [[EvaluationError]] field and rethrown by future
invocations of Evaluate.

This abstract method performs the following steps (most of the work is done by the auxiliary function
InnerModuleEvaluation):

1. Let module be this Cyclic Module Record.
2. Assert: module.[[Status]] is "instantiated" or "evaluated".
3. Let stack be a new empty List.
4. Let result be InnerModuleEvaluation(module, stack, 0).
5. If result is an abrupt completion, then

a. For each module m in stack, do
i. Assert: m.[[Status]] is "evaluating".

ii. Set m.[[Status]] to "evaluated".
iii. Set m.[[EvaluationError]] to result.

b. Assert: module.[[Status]] is "evaluated" and module.[[EvaluationError]] is result.
c. Return result.

6. Assert: module.[[Status]] is "evaluated" and module.[[EvaluationError]] is undefined.
7. Assert: stack is empty.
8. Return undefined.

The InnerModuleEvaluation abstract operation is used by Evaluate to perform the actual evaluation process for the
Source Text Module Record module, as well as recursively on all other modules in the dependency graph. The stack and
index parameters, as well as module's [[DFSIndex]] and [[DFSAncestoreIndex]] fields, are used the same way as in
InnerModuleInstantiation.

This abstract operation performs the following steps:

1. If module is not a Cyclic Module Record, then
a. Perform ? module.Evaluate().
b. Return index.

2. If module.[[Status]] is "evaluated", then
a. If module.[[EvaluationError]] is undefined, return index.
b. Otherwise return module.[[EvaluationError]].

3. If module.[[Status]] is "evaluating", return index.
4. Assert: module.[[Status]] is "instantiated".
5. Set module.[[Status]] to "evaluating".
6. Set module.[[DFSIndex]] to index.
7. Set module.[[DFSAncestorIndex]] to index.
8. Increase index by 1.
9. Append module to stack.

10. For each String required that is an element of module.[[RequestedModules]], do
a. Let requiredModule be ! HostResolveImportedModule(module, required).
b. NOTE: Instantiate must be completed successfully prior to invoking this method, so every requested module

is guaranteed to resolve successfully.
c. Set index to ? InnerModuleEvaluation(requiredModule, stack, index).

15.2.1.16.2.1 InnerModuleEvaluation (module, stack, index)

© Ecma International 2019

363

d. Assert: requiredModule.[[Status]] is either "evaluating" or "evaluated".
e. Assert: requiredModule.[[Status]] is "evaluating" if and only if requiredModule is in stack.
f. If requiredModule.[[Status]] is "evaluating", then

i. Assert: requiredModule is a Cyclic Module Record.
ii. Set module.[[DFSAncestorIndex]] to min(module.[[DFSAncestorIndex]], requiredModule.

[[DFSAncestorIndex]]).
11. Perform ? module.ExecuteModule().
12. Assert: module occurs exactly once in stack.
13. Assert: module.[[DFSAncestorIndex]] is less than or equal to module.[[DFSIndex]].
14. If module.[[DFSAncestorIndex]] equals module.[[DFSIndex]], then

a. Let done be false.
b. Repeat, while done is false,

i. Let requiredModule be the last element in stack.
ii. Remove the last element of stack.

iii. Set requiredModule.[[Status]] to "evaluated".
iv. If requiredModule and module are the same Module Record, set done to true.

15. Return index.

This non-normative section gives a series of examples of the instantiation and evaluation of a few common module
graphs, with a specific focus on how errors can occur.

First consider the following simple module graph:

Figure 2: A simple module graph

Let's first assume that there are no error conditions. When a host first calls A.Instantiate(), this will complete successfully
by assumption, and recursively instantiate modules B and C as well, such that A.[[Status]] = B.[[Status]] = C.[[Status]] =
"instantiated". This preparatory step can be performed at any time. Later, when the host is ready to incur any
possible side effects of the modules, it can call A.Evaluate(), which will complete successfully (again by assumption),
recursively having evaluated first C and then B. Each module's [[Status]] at this point will be "evaluated".

Consider then cases involving instantiation errors. If InnerModuleInstantiation of C succeeds but, thereafter, fails for B,
for example because it imports something that C does not provide, then the original A.Instantiate() will fail, and both A
and B's [[Status]] remain "uninstantiated". C's [[Status]] has become "instantiated", though.

Finally, consider a case involving evaluation errors. If InnerModuleEvaluation of C succeeds but, thereafter, fails for B,
for example because B contains code that throws an exception, then the original A.Evaluate() will fail. The resulting
exception will be recorded in both A and B's [[EvaluationError]] fields, and their [[Status]] will become "evaluated".

15.2.1.16.3 Example Cyclic Module Record Graphs

364

© Ecma International 2019

364

C will also become "evaluated" but, in contrast to A and B, will remain without an [[EvaluationError]], as it
successfully completed evaluation. Storing the exception ensures that any time a host tries to reuse A or B by calling their
Evaluate() method, it will encounter the same exception. (Hosts are not required to reuse Cyclic Module Records;
similarly, hosts are not required to expose the exception objects thrown by these methods. However, the specification
enables such uses.)

The difference here between instantiation and evaluation errors is due to how evaluation must be only performed once, as
it can cause side effects; it is thus important to remember whether evaluation has already been performed, even if
unsuccessfully. (In the error case, it makes sense to also remember the exception because otherwise subsequent
Evaluate() calls would have to synthesize a new one.) Instantiation, on the other hand, is side-effect-free, and thus even if
it fails, it can be retried at a later time with no issues.

Now consider a different type of error condition:

Figure 3: A module graph with an unresolvable module

In this scenario, module A declares a dependency on some other module, but no Module Record exists for that module,
i.e. HostResolveImportedModule throws an exception when asked for it. This could occur for a variety of reasons, such
as the corresponding resource not existing, or the resource existing but ParseModule throwing an exception when trying
to parse the resulting source text. Hosts can choose to expose the cause of failure via the exception they throw from
HostResolveImportedModule. In any case, this exception causes an instantiation failure, which as before results in A's
[[Status]] remaining "uninstantiated".

Lastly, consider a module graph with a cycle:

Figure 4: A cyclic module graph

Here we assume that the entry point is module A, so that the host proceeds by calling A.Instantiate(), which performs
InnerModuleInstantiation on A. This in turn calls InnerModuleInstantiation on B. Because of the cycle, this again triggers
InnerModuleInstantiation on A, but at this point it is a no-op since A.[[Status]] is already "instantiating". B.
[[Status]] itself remains "instantiating" when control gets back to A and InnerModuleInstantiation is triggered on
C. After this returns with C.[[Status]] being "instantiated" , both A and B transition from "instantiating"
to "instantiated" together; this is by design, since they form a strongly connected component.

An analogous story occurs for the evaluation phase of a cyclic module graph, in the success case.

Now consider a case where A has an instantiation error; for example, it tries to import a binding from C that does not
exist. In that case, the above steps still occur, including the early return from the second call to InnerModuleInstantiation
on A. However, once we unwind back to the original InnerModuleInstantiation on A, it fails during

© Ecma International 2019

365

InitializeEnvironment, namely right after C.ResolveExport(). The thrown SyntaxError exception propagates up to
A.Instantiate, which resets all modules that are currently on its stack (these are always exactly the modules that are still
"instantiating"). Hence both A and B become "uninstantiated". Note that C is left as
"instantiated".

Finally, consider a case where A has an evaluation error; for example, its source code throws an exception. In that case,
the evaluation-time analog of the above steps still occurs, including the early return from the second call to
InnerModuleEvaluation on A. However, once we unwind back to the original InnerModuleEvaluation on A, it fails by
assumption. The exception thrown propagates up to A.Evaluate(), which records the error in all modules that are
currently on its stack (i.e., the modules that are still "evaluating"). Hence both A and B become "evaluated"
and the exception is recorded in both A and B's [[EvaluationError]] fields, while C is left as "evaluated" with no
[[EvaluationError]].

A Source Text Module Record is used to represent information about a module that was defined from ECMAScript
source text (10) that was parsed using the goal symbol Module. Its fields contain digested information about the names
that are imported by the module and its concrete methods use this digest to link, instantiate, and evaluate the module.

A Source Text Module Record can exist in a module graph with other subclasses of the abstract Module Record type,
and can participate in cycles with other subclasses of the Cyclic Module Record type.

In addition to the fields defined in Table 39, Source Text Module Records have the additional fields listed in Table 41.
Each of these fields is initially set in ParseModule.

Table 41: Additional Fields of Source Text Module Records

Field Name Value Type Meaning

[[ECMAScriptCode]] a Parse Node The result of parsing the source text of this module using Module as the
goal symbol.

[[ImportEntries]] List of
ImportEntry
Records

A List of ImportEntry records derived from the code of this module.

[[LocalExportEntries]] List of
ExportEntry
Records

A List of ExportEntry records derived from the code of this module that
correspond to declarations that occur within the module.

[[IndirectExportEntries]] List of
ExportEntry
Records

A List of ExportEntry records derived from the code of this module that
correspond to reexported imports that occur within the module.

[[StarExportEntries]] List of
ExportEntry
Records

A List of ExportEntry records derived from the code of this module that
correspond to export * declarations that occur within the module.

An ImportEntry Record is a Record that digests information about a single declarative import. Each ImportEntry Record
has the fields defined in Table 42:

Table 42: ImportEntry Record Fields

15.2.1.17 Source Text Module Records

366

© Ecma International 2019

366

Field Name Value
Type

Meaning

[[ModuleRequest]] String String value of the ModuleSpecifier of the ImportDeclaration.

[[ImportName]] String The name under which the desired binding is exported by the module identified by
[[ModuleRequest]]. The value "*" indicates that the import request is for the target
module's namespace object.

[[LocalName]] String The name that is used to locally access the imported value from within the importing
module.

NOTE 1
Table 43 gives examples of ImportEntry records fields used to represent the syntactic import forms:

Table 43 (Informative): Import Forms Mappings to ImportEntry Records

Import Statement Form [[ModuleRequest]] [[ImportName]] [[LocalName]]

import v from "mod"; "mod" "default" "v"

import * as ns from "mod"; "mod" "*" "ns"

import {x} from "mod"; "mod" "x" "x"

import {x as v} from "mod"; "mod" "x" "v"

import "mod"; An ImportEntry Record is not created.

An ExportEntry Record is a Record that digests information about a single declarative export. Each ExportEntry Record
has the fields defined in Table 44:

Table 44: ExportEntry Record Fields

Field Name Value
Type

Meaning

[[ExportName]] String
| null

The name used to export this binding by this module.

[[ModuleRequest]] String
| null

The String value of the ModuleSpecifier of the ExportDeclaration. null if the
ExportDeclaration does not have a ModuleSpecifier.

[[ImportName]] String
| null

The name under which the desired binding is exported by the module identified by
[[ModuleRequest]]. null if the ExportDeclaration does not have a ModuleSpecifier. "*"
indicates that the export request is for all exported bindings.

[[LocalName]] String
| null

The name that is used to locally access the exported value from within the importing
module. null if the exported value is not locally accessible from within the module.

© Ecma International 2019

367

NOTE 2
Table 45 gives examples of the ExportEntry record fields used to represent the syntactic export forms:

Table 45 (Informative): Export Forms Mappings to ExportEntry Records

Export Statement Form [[ExportName]] [[ModuleRequest]] [[ImportName]] [[LocalName]]

export var v; "v" null null "v"

export default function f(){} "default" null null "f"

export default function(){} "default" null null "*default*"

export default 42; "default" null null "*default*"

export {x}; "x" null null "x"

export {v as x}; "x" null null "v"

export {x} from "mod"; "x" "mod" "x" null

export {v as x} from "mod"; "x" "mod" "v" null

export * from "mod"; null "mod" "*" null

The following definitions specify the required concrete methods and other abstract operations for Source Text Module
Records

The abstract operation ParseModule with arguments sourceText, realm, and hostDefined creates a Source Text Module
Record based upon the result of parsing sourceText as a Module. ParseModule performs the following steps:

1. Assert: sourceText is an ECMAScript source text (see clause 10).
2. Parse sourceText using Module as the goal symbol and analyse the parse result for any Early Error conditions. If the

parse was successful and no early errors were found, let body be the resulting parse tree. Otherwise, let body be a
List of one or more SyntaxError or ReferenceError objects representing the parsing errors and/or early errors.
Parsing and early error detection may be interweaved in an implementation-dependent manner. If more than one
parsing error or early error is present, the number and ordering of error objects in the list is implementation-
dependent, but at least one must be present.

3. If body is a List of errors, return body.
4. Let requestedModules be the ModuleRequests of body.
5. Let importEntries be ImportEntries of body.
6. Let importedBoundNames be ImportedLocalNames(importEntries).
7. Let indirectExportEntries be a new empty List.
8. Let localExportEntries be a new empty List.
9. Let starExportEntries be a new empty List.

10. Let exportEntries be ExportEntries of body.
11. For each ExportEntry Record ee in exportEntries, do

a. If ee.[[ModuleRequest]] is null, then

15.2.1.17.1 ParseModule (sourceText, realm, hostDefined)

368

© Ecma International 2019

368

i. If ee.[[LocalName]] is not an element of importedBoundNames, then
1. Append ee to localExportEntries.

ii. Else,
1. Let ie be the element of importEntries whose [[LocalName]] is the same as ee.[[LocalName]].
2. If ie.[[ImportName]] is "*", then

a. Assert: This is a re-export of an imported module namespace object.
b. Append ee to localExportEntries.

3. Else this is a re-export of a single name,
a. Append the ExportEntry Record { [[ModuleRequest]]: ie.[[ModuleRequest]],

[[ImportName]]: ie.[[ImportName]], [[LocalName]]: null, [[ExportName]]: ee.
[[ExportName]] } to indirectExportEntries.

b. Else if ee.[[ImportName]] is "*", then
i. Append ee to starExportEntries.

c. Else,
i. Append ee to indirectExportEntries.

12. Return Source Text Module Record { [[Realm]]: realm, [[Environment]]: undefined, [[Namespace]]: undefined,
[[Status]]: "uninstantiated", [[EvaluationError]]: undefined, [[HostDefined]]: hostDefined,
[[ECMAScriptCode]]: body, [[RequestedModules]]: requestedModules, [[ImportEntries]]: importEntries,
[[LocalExportEntries]]: localExportEntries, [[IndirectExportEntries]]: indirectExportEntries, [[StarExportEntries]]:
starExportEntries, [[DFSIndex]]: undefined, [[DFSAncestorIndex]]: undefined }.

NOTE
An implementation may parse module source text and analyse it for Early Error conditions prior to the evaluation of
ParseModule for that module source text. However, the reporting of any errors must be deferred until the point where
this specification actually performs ParseModule upon that source text.

The GetExportedNames concrete method of a Source Text Module Record implements the corresponding Module Record
abstract method.

It performs the following steps:

1. Let module be this Source Text Module Record.
2. If exportStarSet contains module, then

a. Assert: We've reached the starting point of an import * circularity.
b. Return a new empty List.

3. Append module to exportStarSet.
4. Let exportedNames be a new empty List.
5. For each ExportEntry Record e in module.[[LocalExportEntries]], do

a. Assert: module provides the direct binding for this export.
b. Append e.[[ExportName]] to exportedNames.

6. For each ExportEntry Record e in module.[[IndirectExportEntries]], do
a. Assert: module imports a specific binding for this export.
b. Append e.[[ExportName]] to exportedNames.

7. For each ExportEntry Record e in module.[[StarExportEntries]], do
a. Let requestedModule be ? HostResolveImportedModule(module, e.[[ModuleRequest]]).
b. Let starNames be ? requestedModule.GetExportedNames(exportStarSet).

15.2.1.17.2 GetExportedNames (exportStarSet) Concrete Method

© Ecma International 2019

369

c. For each element n of starNames, do
i. If SameValue(n, "default") is false, then

1. If n is not an element of exportedNames, then
a. Append n to exportedNames.

8. Return exportedNames.

NOTE
GetExportedNames does not filter out or throw an exception for names that have ambiguous star export bindings.

The ResolveExport concrete method of a Source Text Module Record implements the corresponding Module Record
abstract method.

ResolveExport attempts to resolve an imported binding to the actual defining module and local binding name. The
defining module may be the module represented by the Module Record this method was invoked on or some other
module that is imported by that module. The parameter resolveSet is used to detect unresolved circular import/export
paths. If a pair consisting of specific Module Record and exportName is reached that is already in resolveSet, an import
circularity has been encountered. Before recursively calling ResolveExport, a pair consisting of module and exportName
is added to resolveSet.

If a defining module is found, a ResolvedBinding Record { [[Module]], [[BindingName]] } is returned. This record
identifies the resolved binding of the originally requested export. If no definition was found or the request is found to be
circular, null is returned. If the request is found to be ambiguous, the string "ambiguous" is returned.

This abstract method performs the following steps:

1. Let module be this Source Text Module Record.
2. For each Record { [[Module]], [[ExportName]] } r in resolveSet, do

a. If module and r.[[Module]] are the same Module Record and SameValue(exportName, r.[[ExportName]]) is
true, then

i. Assert: This is a circular import request.
ii. Return null.

3. Append the Record { [[Module]]: module, [[ExportName]]: exportName } to resolveSet.
4. For each ExportEntry Record e in module.[[LocalExportEntries]], do

a. If SameValue(exportName, e.[[ExportName]]) is true, then
i. Assert: module provides the direct binding for this export.

ii. Return ResolvedBinding Record { [[Module]]: module, [[BindingName]]: e.[[LocalName]] }.
5. For each ExportEntry Record e in module.[[IndirectExportEntries]], do

a. If SameValue(exportName, e.[[ExportName]]) is true, then
i. Assert: module imports a specific binding for this export.

ii. Let importedModule be ? HostResolveImportedModule(module, e.[[ModuleRequest]]).
iii. Return importedModule.ResolveExport(e.[[ImportName]], resolveSet).

6. If SameValue(exportName, "default") is true, then
a. Assert: A default export was not explicitly defined by this module.
b. Return null.
c. NOTE: A default export cannot be provided by an export *.

7. Let starResolution be null.
8. For each ExportEntry Record e in module.[[StarExportEntries]], do

15.2.1.17.3 ResolveExport (exportName, resolveSet) Concrete Method

370

© Ecma International 2019

370

a. Let importedModule be ? HostResolveImportedModule(module, e.[[ModuleRequest]]).
b. Let resolution be ? importedModule.ResolveExport(exportName, resolveSet).
c. If resolution is "ambiguous", return "ambiguous".
d. If resolution is not null, then

i. Assert: resolution is a ResolvedBinding Record.
ii. If starResolution is null, set starResolution to resolution.

iii. Else,
1. Assert: There is more than one * import that includes the requested name.
2. If resolution.[[Module]] and starResolution.[[Module]] are not the same Module Record or

SameValue(resolution.[[BindingName]], starResolution.[[BindingName]]) is false, return
"ambiguous".

9. Return starResolution.

The InitializeEnvironment concrete method of a Source Text Module Record implements the corresponding Cyclic
Module Record abstract method.

This abstract method performs the following steps:

1. Let module be this Source Text Module Record.
2. For each ExportEntry Record e in module.[[IndirectExportEntries]], do

a. Let resolution be ? module.ResolveExport(e.[[ExportName]], « »).
b. If resolution is null or "ambiguous", throw a SyntaxError exception.
c. Assert: resolution is a ResolvedBinding Record.

3. Assert: All named exports from module are resolvable.
4. Let realm be module.[[Realm]].
5. Assert: realm is not undefined.
6. Let env be NewModuleEnvironment(realm.[[GlobalEnv]]).
7. Set module.[[Environment]] to env.
8. Let envRec be env's EnvironmentRecord.
9. For each ImportEntry Record in in module.[[ImportEntries]], do

a. Let importedModule be ! HostResolveImportedModule(module, in.[[ModuleRequest]]).
b. NOTE: The above call cannot fail because imported module requests are a subset of module.

[[RequestedModules]], and these have been resolved earlier in this algorithm.
c. If in.[[ImportName]] is "*", then

i. Let namespace be ? GetModuleNamespace(importedModule).
ii. Perform ! envRec.CreateImmutableBinding(in.[[LocalName]], true).

iii. Call envRec.InitializeBinding(in.[[LocalName]], namespace).
d. Else,

i. Let resolution be ? importedModule.ResolveExport(in.[[ImportName]], « »).
ii. If resolution is null or "ambiguous", throw a SyntaxError exception.

iii. Call envRec.CreateImportBinding(in.[[LocalName]], resolution.[[Module]], resolution.
[[BindingName]]).

10. Let code be module.[[ECMAScriptCode]].
11. Let varDeclarations be the VarScopedDeclarations of code.
12. Let declaredVarNames be a new empty List.
13. For each element d in varDeclarations, do

a. For each element dn of the BoundNames of d, do

15.2.1.17.4 InitializeEnvironment () Concrete Method

© Ecma International 2019

371

i. If dn is not an element of declaredVarNames, then
1. Perform ! envRec.CreateMutableBinding(dn, false).
2. Call envRec.InitializeBinding(dn, undefined).
3. Append dn to declaredVarNames.

14. Let lexDeclarations be the LexicallyScopedDeclarations of code.
15. For each element d in lexDeclarations, do

a. For each element dn of the BoundNames of d, do
i. If IsConstantDeclaration of d is true, then

1. Perform ! envRec.CreateImmutableBinding(dn, true).
ii. Else,

1. Perform ! envRec.CreateMutableBinding(dn, false).
iii. If d is a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an

AsyncGeneratorDeclaration, then
1. Let fo be the result of performing InstantiateFunctionObject for d with argument env.
2. Call envRec.InitializeBinding(dn, fo).

16. Return NormalCompletion(empty).

The ExecuteModule concrete method of a Source Text Module Record implements the corresponding Cyclic Module
Record abstract method.

This abstract method performs the following steps:

1. Let module be this Source Text Module Record.
2. Let moduleCxt be a new ECMAScript code execution context.
3. Set the Function of moduleCxt to null.
4. Assert: module.[[Realm]] is not undefined.
5. Set the Realm of moduleCxt to module.[[Realm]].
6. Set the ScriptOrModule of moduleCxt to module.
7. Assert: module has been linked and declarations in its module environment have been instantiated.
8. Set the VariableEnvironment of moduleCxt to module.[[Environment]].
9. Set the LexicalEnvironment of moduleCxt to module.[[Environment]].

10. Suspend the currently running execution context.
11. Push moduleCxt on to the execution context stack; moduleCxt is now the running execution context.
12. Let result be the result of evaluating module.[[ECMAScriptCode]].
13. Suspend moduleCxt and remove it from the execution context stack.
14. Resume the context that is now on the top of the execution context stack as the running execution context.
15. Return Completion(result).

HostResolveImportedModule is an implementation-defined abstract operation that provides the concrete Module Record
subclass instance that corresponds to the ModuleSpecifier String, specifier, occurring within the context of the module
represented by the Module Record referencingModule.

The implementation of HostResolveImportedModule must conform to the following requirements:

The normal return value must be an instance of a concrete subclass of Module Record.
If a Module Record corresponding to the pair referencingModule, specifier does not exist or cannot be created, an

15.2.1.17.5 ExecuteModule () Concrete Method

15.2.1.18 Runtime Semantics: HostResolveImportedModule (referencingModule, specifier)

372

© Ecma International 2019

372

exception must be thrown.
This operation must be idempotent if it completes normally. Each time it is called with a specific
referencingModule, specifier pair as arguments it must return the same Module Record instance.

Multiple different referencingModule, specifier pairs may map to the same Module Record instance. The actual mapping
semantic is implementation-defined but typically a normalization process is applied to specifier as part of the mapping
process. A typical normalization process would include actions such as alphabetic case folding and expansion of relative
and abbreviated path specifiers.

The GetModuleNamespace abstract operation retrieves the Module Namespace Exotic object representing module's
exports, lazily creating it the first time it was requested, and storing it in module.[[Namespace]] for future retrieval.

This abstract operation performs the following steps:

1. Assert: module is an instance of a concrete subclass of Module Record.
2. Assert: module.[[Status]] is not "uninstantiated".
3. Let namespace be module.[[Namespace]].
4. If namespace is undefined, then

a. Let exportedNames be ? module.GetExportedNames(« »).
b. Let unambiguousNames be a new empty List.
c. For each name that is an element of exportedNames, do

i. Let resolution be ? module.ResolveExport(name, « »).
ii. If resolution is a ResolvedBinding Record, append name to unambiguousNames.

d. Set namespace to ModuleNamespaceCreate(module, unambiguousNames).
5. Return namespace.

NOTE
The only way GetModuleNamespace can throw is via one of the triggered HostResolveImportedModule calls.
Unresolvable names are simply excluded from the namespace at this point. They will lead to a real instantiation error
later unless they are all ambiguous star exports that are not explicitly requested anywhere.

A TopLevelModuleEvaluationJob with parameters sourceText and hostDefined is a job that parses, validates, and
evaluates sourceText as a Module.

1. Assert: sourceText is an ECMAScript source text (see clause 10).
2. Let realm be the current Realm Record.
3. Let m be ParseModule(sourceText, realm, hostDefined).
4. If m is a List of errors, then

a. Perform HostReportErrors(m).
b. Return NormalCompletion(undefined).

5. Perform ? m.Instantiate().
6. Assert: All dependencies of m have been transitively resolved and m is ready for evaluation.
7. Return ? m.Evaluate().

NOTE

15.2.1.19 Runtime Semantics: GetModuleNamespace (module)

15.2.1.20 Runtime Semantics: TopLevelModuleEvaluationJob (sourceText, hostDefined)

© Ecma International 2019

373

An implementation may parse a sourceText as a Module, analyse it for Early Error conditions, and instantiate it prior to
the execution of the TopLevelModuleEvaluationJob for that sourceText. An implementation may also resolve, pre-parse
and pre-analyse, and pre-instantiate module dependencies of sourceText. However, the reporting of any errors detected
by these actions must be deferred until the TopLevelModuleEvaluationJob is actually executed.

Module : [empty]

1. Return NormalCompletion(undefined).

ModuleBody : ModuleItemList

1. Let result be the result of evaluating ModuleItemList.
2. If result.[[Type]] is normal and result.[[Value]] is empty, then

a. Return NormalCompletion(undefined).
3. Return Completion(result).

ModuleItemList : ModuleItemList ModuleItem

1. Let sl be the result of evaluating ModuleItemList.
2. ReturnIfAbrupt(sl).
3. Let s be the result of evaluating ModuleItem.
4. Return Completion(UpdateEmpty(s, sl)).

NOTE
The value of a ModuleItemList is the value of the last value-producing item in the ModuleItemList.

ModuleItem : ImportDeclaration

1. Return NormalCompletion(empty).

ImportDeclaration :
import ImportClause FromClause ;
import ModuleSpecifier ;

ImportClause :
ImportedDefaultBinding
NameSpaceImport
NamedImports
ImportedDefaultBinding , NameSpaceImport
ImportedDefaultBinding , NamedImports

ImportedDefaultBinding :
ImportedBinding

NameSpaceImport :

15.2.1.21 Runtime Semantics: Evaluation

15.2.2 Imports

Syntax

374

© Ecma International 2019

374

* as ImportedBinding

NamedImports :
{ }
{ ImportsList }
{ ImportsList , }

FromClause :
from ModuleSpecifier

ImportsList :
ImportSpecifier
ImportsList , ImportSpecifier

ImportSpecifier :
ImportedBinding
IdentifierName as ImportedBinding

ModuleSpecifier :
StringLiteral

ImportedBinding :
BindingIdentifier[~Yield, ~Await]

ModuleItem : ImportDeclaration

It is a Syntax Error if the BoundNames of ImportDeclaration contains any duplicate entries.

ImportDeclaration : import ImportClause FromClause ;

1. Return the BoundNames of ImportClause.

ImportDeclaration : import ModuleSpecifier ;

1. Return a new empty List.

ImportClause : ImportedDefaultBinding , NameSpaceImport

1. Let names be the BoundNames of ImportedDefaultBinding.
2. Append to names the elements of the BoundNames of NameSpaceImport.
3. Return names.

ImportClause : ImportedDefaultBinding , NamedImports

1. Let names be the BoundNames of ImportedDefaultBinding.
2. Append to names the elements of the BoundNames of NamedImports.
3. Return names.

NamedImports : { }

1. Return a new empty List.

15.2.2.1 Static Semantics: Early Errors

15.2.2.2 Static Semantics: BoundNames

© Ecma International 2019

375

ImportsList : ImportsList , ImportSpecifier

1. Let names be the BoundNames of ImportsList.
2. Append to names the elements of the BoundNames of ImportSpecifier.
3. Return names.

ImportSpecifier : IdentifierName as ImportedBinding

1. Return the BoundNames of ImportedBinding.

ImportDeclaration : import ImportClause FromClause ;

1. Let module be the sole element of ModuleRequests of FromClause.
2. Return ImportEntriesForModule of ImportClause with argument module.

ImportDeclaration : import ModuleSpecifier ;

1. Return a new empty List.

With parameter module.

ImportClause : ImportedDefaultBinding , NameSpaceImport

1. Let entries be ImportEntriesForModule of ImportedDefaultBinding with argument module.
2. Append to entries the elements of the ImportEntriesForModule of NameSpaceImport with argument module.
3. Return entries.

ImportClause : ImportedDefaultBinding , NamedImports

1. Let entries be ImportEntriesForModule of ImportedDefaultBinding with argument module.
2. Append to entries the elements of the ImportEntriesForModule of NamedImports with argument module.
3. Return entries.

ImportedDefaultBinding : ImportedBinding

1. Let localName be the sole element of BoundNames of ImportedBinding.
2. Let defaultEntry be the ImportEntry Record { [[ModuleRequest]]: module, [[ImportName]]: "default",

[[LocalName]]: localName }.
3. Return a new List containing defaultEntry.

NameSpaceImport : * as ImportedBinding

1. Let localName be the StringValue of ImportedBinding.
2. Let entry be the ImportEntry Record { [[ModuleRequest]]: module, [[ImportName]]: "*", [[LocalName]]:

localName }.
3. Return a new List containing entry.

NamedImports : { }

15.2.2.3 Static Semantics: ImportEntries

15.2.2.4 Static Semantics: ImportEntriesForModule

376

© Ecma International 2019

376

1. Return a new empty List.

ImportsList : ImportsList , ImportSpecifier

1. Let specs be the ImportEntriesForModule of ImportsList with argument module.
2. Append to specs the elements of the ImportEntriesForModule of ImportSpecifier with argument module.
3. Return specs.

ImportSpecifier : ImportedBinding

1. Let localName be the sole element of BoundNames of ImportedBinding.
2. Let entry be the ImportEntry Record { [[ModuleRequest]]: module, [[ImportName]]: localName, [[LocalName]]:

localName }.
3. Return a new List containing entry.

ImportSpecifier : IdentifierName as ImportedBinding

1. Let importName be the StringValue of IdentifierName.
2. Let localName be the StringValue of ImportedBinding.
3. Let entry be the ImportEntry Record { [[ModuleRequest]]: module, [[ImportName]]: importName, [[LocalName]]:

localName }.
4. Return a new List containing entry.

ImportDeclaration : import ImportClause FromClause ;

1. Return ModuleRequests of FromClause.

ModuleSpecifier : StringLiteral

1. Return a List containing the StringValue of StringLiteral.

ExportDeclaration :
export * FromClause ;
export ExportClause FromClause ;
export ExportClause ;
export VariableStatement[~Yield, ~Await]
export Declaration[~Yield, ~Await]
export default HoistableDeclaration[~Yield, ~Await, +Default]
export default ClassDeclaration[~Yield, ~Await, +Default]
export default [lookahead ∉ { function , async [no LineTerminator here] function ,

class }] AssignmentExpression[+In, ~Yield, ~Await] ;

ExportClause :
{ }
{ ExportsList }

15.2.2.5 Static Semantics: ModuleRequests

15.2.3 Exports

Syntax

© Ecma International 2019

377

{ ExportsList , }

ExportsList :
ExportSpecifier
ExportsList , ExportSpecifier

ExportSpecifier :
IdentifierName
IdentifierName as IdentifierName

ExportDeclaration : export ExportClause ;

For each IdentifierName n in ReferencedBindings of ExportClause: It is a Syntax Error if StringValue of n is a
ReservedWord or if the StringValue of n is one of: "implements", "interface", "let", "package",
"private", "protected", "public", or "static".

NOTE
The above rule means that each ReferencedBindings of ExportClause is treated as an IdentifierReference.

ExportDeclaration :
export * FromClause ;
export ExportClause FromClause ;
export ExportClause ;

1. Return a new empty List.

ExportDeclaration : export VariableStatement

1. Return the BoundNames of VariableStatement.

ExportDeclaration : export Declaration

1. Return the BoundNames of Declaration.

ExportDeclaration : export default HoistableDeclaration

1. Let declarationNames be the BoundNames of HoistableDeclaration.
2. If declarationNames does not include the element "*default*", append "*default*" to declarationNames.
3. Return declarationNames.

ExportDeclaration : export default ClassDeclaration

1. Let declarationNames be the BoundNames of ClassDeclaration.
2. If declarationNames does not include the element "*default*", append "*default*" to declarationNames.
3. Return declarationNames.

ExportDeclaration : export default AssignmentExpression ;

1. Return « "*default*" ».

15.2.3.1 Static Semantics: Early Errors

15.2.3.2 Static Semantics: BoundNames

378

© Ecma International 2019

378

ExportDeclaration :
export * FromClause ;
export ExportClause FromClause ;

1. Return a new empty List.

ExportDeclaration : export ExportClause ;

1. Return the ExportedBindings of ExportClause.

ExportDeclaration : export VariableStatement

1. Return the BoundNames of VariableStatement.

ExportDeclaration : export Declaration

1. Return the BoundNames of Declaration.

ExportDeclaration : export default HoistableDeclaration
ExportDeclaration : export default ClassDeclaration
ExportDeclaration : export default AssignmentExpression ;

1. Return the BoundNames of this ExportDeclaration.

ExportClause : { }

1. Return a new empty List.

ExportsList : ExportsList , ExportSpecifier

1. Let names be the ExportedBindings of ExportsList.
2. Append to names the elements of the ExportedBindings of ExportSpecifier.
3. Return names.

ExportSpecifier : IdentifierName

1. Return a List containing the StringValue of IdentifierName.

ExportSpecifier : IdentifierName as IdentifierName

1. Return a List containing the StringValue of the first IdentifierName.

ExportDeclaration : export * FromClause ;

1. Return a new empty List.

ExportDeclaration : export ExportClause FromClause ;
ExportDeclaration : export ExportClause ;

1. Return the ExportedNames of ExportClause.

15.2.3.3 Static Semantics: ExportedBindings

15.2.3.4 Static Semantics: ExportedNames

© Ecma International 2019

379

ExportDeclaration : export VariableStatement

1. Return the BoundNames of VariableStatement.

ExportDeclaration : export Declaration

1. Return the BoundNames of Declaration.

ExportDeclaration : export default HoistableDeclaration
ExportDeclaration : export default ClassDeclaration
ExportDeclaration : export default AssignmentExpression ;

1. Return « "default" ».

ExportClause : { }

1. Return a new empty List.

ExportsList : ExportsList , ExportSpecifier

1. Let names be the ExportedNames of ExportsList.
2. Append to names the elements of the ExportedNames of ExportSpecifier.
3. Return names.

ExportSpecifier : IdentifierName

1. Return a List containing the StringValue of IdentifierName.

ExportSpecifier : IdentifierName as IdentifierName

1. Return a List containing the StringValue of the second IdentifierName.

ExportDeclaration : export * FromClause ;

1. Let module be the sole element of ModuleRequests of FromClause.
2. Let entry be the ExportEntry Record { [[ModuleRequest]]: module, [[ImportName]]: "*", [[LocalName]]: null,

[[ExportName]]: null }.
3. Return a new List containing entry.

ExportDeclaration : export ExportClause FromClause ;

1. Let module be the sole element of ModuleRequests of FromClause.
2. Return ExportEntriesForModule of ExportClause with argument module.

ExportDeclaration : export ExportClause ;

1. Return ExportEntriesForModule of ExportClause with argument null.

ExportDeclaration : export VariableStatement

1. Let entries be a new empty List.
2. Let names be the BoundNames of VariableStatement.
3. For each name in names, do

15.2.3.5 Static Semantics: ExportEntries

380

© Ecma International 2019

380

a. Append the ExportEntry Record { [[ModuleRequest]]: null, [[ImportName]]: null, [[LocalName]]: name,
[[ExportName]]: name } to entries.

4. Return entries.

ExportDeclaration : export Declaration

1. Let entries be a new empty List.
2. Let names be the BoundNames of Declaration.
3. For each name in names, do

a. Append the ExportEntry Record { [[ModuleRequest]]: null, [[ImportName]]: null, [[LocalName]]: name,
[[ExportName]]: name } to entries.

4. Return entries.

ExportDeclaration : export default HoistableDeclaration

1. Let names be BoundNames of HoistableDeclaration.
2. Let localName be the sole element of names.
3. Return a new List containing the ExportEntry Record { [[ModuleRequest]]: null, [[ImportName]]: null,

[[LocalName]]: localName, [[ExportName]]: "default" }.

ExportDeclaration : export default ClassDeclaration

1. Let names be BoundNames of ClassDeclaration.
2. Let localName be the sole element of names.
3. Return a new List containing the ExportEntry Record { [[ModuleRequest]]: null, [[ImportName]]: null,

[[LocalName]]: localName, [[ExportName]]: "default" }.

ExportDeclaration : export default AssignmentExpression ;

1. Let entry be the ExportEntry Record { [[ModuleRequest]]: null, [[ImportName]]: null, [[LocalName]]:
"*default*", [[ExportName]]: "default" }.

2. Return a new List containing entry.

NOTE
"*default*" is used within this specification as a synthetic name for anonymous default export values.

With parameter module.

ExportClause : { }

1. Return a new empty List.

ExportsList : ExportsList , ExportSpecifier

1. Let specs be the ExportEntriesForModule of ExportsList with argument module.
2. Append to specs the elements of the ExportEntriesForModule of ExportSpecifier with argument module.
3. Return specs.

ExportSpecifier : IdentifierName

15.2.3.6 Static Semantics: ExportEntriesForModule

© Ecma International 2019

381

1. Let sourceName be the StringValue of IdentifierName.
2. If module is null, then

a. Let localName be sourceName.
b. Let importName be null.

3. Else,
a. Let localName be null.
b. Let importName be sourceName.

4. Return a new List containing the ExportEntry Record { [[ModuleRequest]]: module, [[ImportName]]: importName,
[[LocalName]]: localName, [[ExportName]]: sourceName }.

ExportSpecifier : IdentifierName as IdentifierName

1. Let sourceName be the StringValue of the first IdentifierName.
2. Let exportName be the StringValue of the second IdentifierName.
3. If module is null, then

a. Let localName be sourceName.
b. Let importName be null.

4. Else,
a. Let localName be null.
b. Let importName be sourceName.

5. Return a new List containing the ExportEntry Record { [[ModuleRequest]]: module, [[ImportName]]: importName,
[[LocalName]]: localName, [[ExportName]]: exportName }.

ExportDeclaration :
export * FromClause ;
export ExportClause FromClause ;
export ExportClause ;
export default AssignmentExpression ;

1. Return false.

NOTE
It is not necessary to treat export default AssignmentExpression as a constant declaration because there is no
syntax that permits assignment to the internal bound name used to reference a module's default object.

ExportDeclaration :
export * FromClause ;
export ExportClause FromClause ;
export ExportClause ;
export VariableStatement

1. Return a new empty List.

ExportDeclaration : export Declaration

15.2.3.7 Static Semantics: IsConstantDeclaration

15.2.3.8 Static Semantics: LexicallyScopedDeclarations

382

© Ecma International 2019

382

1. Return a new List containing DeclarationPart of Declaration.

ExportDeclaration : export default HoistableDeclaration

1. Return a new List containing DeclarationPart of HoistableDeclaration.

ExportDeclaration : export default ClassDeclaration

1. Return a new List containing ClassDeclaration.

ExportDeclaration : export default AssignmentExpression ;

1. Return a new List containing this ExportDeclaration.

ExportDeclaration : export * FromClause ;
ExportDeclaration : export ExportClause FromClause ;

1. Return the ModuleRequests of FromClause.

ExportDeclaration :
export ExportClause ;
export VariableStatement
export Declaration
export default HoistableDeclaration
export default ClassDeclaration
export default AssignmentExpression ;

1. Return a new empty List.

ExportClause : { }

1. Return a new empty List.

ExportsList : ExportsList , ExportSpecifier

1. Let names be the ReferencedBindings of ExportsList.
2. Append to names the elements of the ReferencedBindings of ExportSpecifier.
3. Return names.

ExportSpecifier : IdentifierName

1. Return a List containing the IdentifierName.

ExportSpecifier : IdentifierName as IdentifierName

1. Return a List containing the first IdentifierName.

ExportDeclaration :
export * FromClause ;

15.2.3.9 Static Semantics: ModuleRequests

15.2.3.10 Static Semantics: ReferencedBindings

15.2.3.11 Runtime Semantics: Evaluation

© Ecma International 2019

383

export ExportClause FromClause ;
export ExportClause ;

1. Return NormalCompletion(empty).

ExportDeclaration : export VariableStatement

1. Return the result of evaluating VariableStatement.

ExportDeclaration : export Declaration

1. Return the result of evaluating Declaration.

ExportDeclaration : export default HoistableDeclaration

1. Return the result of evaluating HoistableDeclaration.

ExportDeclaration : export default ClassDeclaration

1. Let value be the result of BindingClassDeclarationEvaluation of ClassDeclaration.
2. ReturnIfAbrupt(value).
3. Let className be the sole element of BoundNames of ClassDeclaration.
4. If className is "*default*", then

a. Let env be the running execution context's LexicalEnvironment.
b. Perform ? InitializeBoundName("*default*", value, env).

5. Return NormalCompletion(empty).

ExportDeclaration : export default AssignmentExpression ;

1. If IsAnonymousFunctionDefinition(AssignmentExpression) is true, then
a. Let value be the result of performing NamedEvaluation for AssignmentExpression with argument

"default".
2. Else,

a. Let rhs be the result of evaluating AssignmentExpression.
b. Let value be ? GetValue(rhs).

3. Let env be the running execution context's LexicalEnvironment.
4. Perform ? InitializeBoundName("*default*", value, env).
5. Return NormalCompletion(empty).

An implementation must report most errors at the time the relevant ECMAScript language construct is evaluated. An
early error is an error that can be detected and reported prior to the evaluation of any construct in the Script containing
the error. The presence of an early error prevents the evaluation of the construct. An implementation must report early
errors in a Script as part of parsing that Script in ParseScript. Early errors in a Module are reported at the point when the
Module would be evaluated and the Module is never initialized. Early errors in eval code are reported at the time eval
is called and prevent evaluation of the eval code. All errors that are not early errors are runtime errors.

An implementation must report as an early error any occurrence of a condition that is listed in a “Static Semantics: Early
Errors” subclause of this specification.

16 Error Handling and Language Extensions

384

© Ecma International 2019

384

An implementation shall not treat other kinds of errors as early errors even if the compiler can prove that a construct
cannot execute without error under any circumstances. An implementation may issue an early warning in such a case, but
it should not report the error until the relevant construct is actually executed.

An implementation shall report all errors as specified, except for the following:

Except as restricted in 16.2, an implementation may extend Script syntax, Module syntax, and regular expression
pattern or flag syntax. To permit this, all operations (such as calling eval, using a regular expression literal, or
using the Function or RegExp constructor) that are allowed to throw SyntaxError are permitted to exhibit
implementation-defined behaviour instead of throwing SyntaxError when they encounter an implementation-
defined extension to the script syntax or regular expression pattern or flag syntax.
Except as restricted in 16.2, an implementation may provide additional types, values, objects, properties, and
functions beyond those described in this specification. This may cause constructs (such as looking up a variable in
the global scope) to have implementation-defined behaviour instead of throwing an error (such as
ReferenceError).

HostReportErrors is an implementation-defined abstract operation that allows host environments to report parsing errors,
early errors, and runtime errors.

An implementation of HostReportErrors must complete normally in all cases. The default implementation of
HostReportErrors is to unconditionally return an empty normal completion.

NOTE
errorList will be a List of ECMAScript language values. If the errors are parsing errors or early errors, these will always
be SyntaxError or ReferenceError objects. Runtime errors, however, can be any ECMAScript value.

An implementation must not extend this specification in the following ways:

ECMAScript function objects defined using syntactic constructors in strict mode code must not be created with own
properties named "caller" or "arguments". Such own properties also must not be created for function
objects defined using an ArrowFunction, MethodDefinition, GeneratorDeclaration, GeneratorExpression,
AsyncGeneratorDeclaration, AsyncGeneratorExpression, ClassDeclaration, ClassExpression,
AsyncFunctionDeclaration, AsyncFunctionExpression, or AsyncArrowFunction regardless of whether the definition
is contained in strict mode code. Built-in functions, strict functions created using the Function constructor,
generator functions created using the Generator constructor, async functions created using the
AsyncFunction constructor, and functions created using the bind method also must not be created with such
own properties.
If an implementation extends any function object with an own property named "caller" the value of that
property, as observed using [[Get]] or [[GetOwnProperty]], must not be a strict function object. If it is an accessor
property, the function that is the value of the property's [[Get]] attribute must never return a strict function when
called.
Neither mapped nor unmapped arguments objects may be created with an own property named "caller".
The behaviour of the following methods must not be extended except as specified in ECMA-402:

16.1 HostReportErrors (errorList)

16.2 Forbidden Extensions

© Ecma International 2019

385

Object.prototype.toLocaleString, Array.prototype.toLocaleString,
Number.prototype.toLocaleString, Date.prototype.toLocaleDateString,
Date.prototype.toLocaleString, Date.prototype.toLocaleTimeString,
String.prototype.localeCompare, %TypedArray%.prototype.toLocaleString.
The RegExp pattern grammars in 21.2.1 and B.1.4 must not be extended to recognize any of the source characters
A-Z or a-z as IdentityEscape[+U] when the [U] grammar parameter is present.

The Syntactic Grammar must not be extended in any manner that allows the token : to immediately follow source
text that matches the BindingIdentifier nonterminal symbol.
When processing strict mode code, the syntax of NumericLiteral must not be extended to include
LegacyOctalIntegerLiteral and the syntax of DecimalIntegerLiteral must not be extended to include
NonOctalDecimalIntegerLiteral as described in B.1.1.
TemplateCharacter must not be extended to include LegacyOctalEscapeSequence as defined in B.1.2.
When processing strict mode code, the extensions defined in B.3.2, B.3.3, B.3.4, and B.3.6 must not be supported.
When parsing for the Module goal symbol, the lexical grammar extensions defined in B.1.3 must not be supported.

There are certain built-in objects available whenever an ECMAScript Script or Module begins execution. One, the global
object, is part of the lexical environment of the executing program. Others are accessible as initial properties of the
global object or indirectly as properties of accessible built-in objects.

Unless specified otherwise, a built-in object that is callable as a function is a built-in function object with the
characteristics described in 9.3. Unless specified otherwise, the [[Extensible]] internal slot of a built-in object initially has
the value true. Every built-in function object has a [[Realm]] internal slot whose value is the Realm Record of the realm
for which the object was initially created.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are constructors:
they are functions intended for use with the new operator. For each built-in function, this specification describes the
arguments required by that function and the properties of that function object. For each built-in constructor, this
specification furthermore describes properties of the prototype object of that constructor and properties of specific object
instances returned by a new expression that invokes that constructor.

Unless otherwise specified in the description of a particular function, if a built-in function or constructor is given fewer
arguments than the function is specified to require, the function or constructor shall behave exactly as if it had been given
sufficient additional arguments, each such argument being the undefined value. Such missing arguments are considered
to be “not present” and may be identified in that manner by specification algorithms. In the description of a particular
function, the terms “this value” and “NewTarget” have the meanings given in 9.3.

Unless otherwise specified in the description of a particular function, if a built-in function or constructor described is
given more arguments than the function is specified to allow, the extra arguments are evaluated by the call and then
ignored by the function. However, an implementation may define implementation specific behaviour relating to such
arguments as long as the behaviour is not the throwing of a TypeError exception that is predicated simply on the
presence of an extra argument.

NOTE 1
Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by adding new
functions rather than adding new parameters to existing functions.

17 ECMAScript Standard Built-in Objects

386

© Ecma International 2019

386

Unless otherwise specified every built-in function and every built-in constructor has the Function prototype object, which
is the initial value of the expression Function.prototype (19.2.3), as the value of its [[Prototype]] internal slot.

Unless otherwise specified every built-in prototype object has the Object prototype object, which is the initial value of
the expression Object.prototype (19.1.3), as the value of its [[Prototype]] internal slot, except the Object
prototype object itself.

Built-in function objects that are not identified as constructors do not implement the [[Construct]] internal method unless
otherwise specified in the description of a particular function.

Each built-in function defined in this specification is created by calling the CreateBuiltinFunction abstract operation
(9.3.3).

Every built-in function object, including constructors, has a "length" property whose value is an integer. Unless
otherwise specified, this value is equal to the largest number of named arguments shown in the subclause headings for
the function description. Optional parameters (which are indicated with brackets: []) or rest parameters (which are
shown using the form «...name») are not included in the default argument count.

NOTE 2
For example, the function object that is the initial value of the map property of the Array prototype object is described
under the subclause heading «Array.prototype.map (callbackFn [, thisArg])» which shows the two named arguments
callbackFn and thisArg, the latter being optional; therefore the value of the "length" property of that function object
is 1.

Unless otherwise specified, the "length" property of a built-in function object has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: true }.

Every built-in function object, including constructors, that is not identified as an anonymous function has a name
property whose value is a String. Unless otherwise specified, this value is the name that is given to the function in this
specification. For functions that are specified as properties of objects, the name value is the property name string used to
access the function. Functions that are specified as get or set accessor functions of built-in properties have "get " or
"set " prepended to the property name string. The value of the name property is explicitly specified for each built-in
functions whose property key is a Symbol value.

Unless otherwise specified, the name property of a built-in function object, if it exists, has the attributes { [[Writable]]:
false, [[Enumerable]]: false, [[Configurable]]: true }.

Every other data property described in clauses 18 through 26 and in Annex B.2 has the attributes { [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: true } unless otherwise specified.

Every accessor property described in clauses 18 through 26 and in Annex B.2 has the attributes { [[Enumerable]]: false,
[[Configurable]]: true } unless otherwise specified. If only a get accessor function is described, the set accessor function
is the default value, undefined. If only a set accessor is described the get accessor is the default value, undefined.

The global object:

is created before control enters any execution context.

18 The Global Object

© Ecma International 2019

387

does not have a [[Construct]] internal method; it cannot be used as a constructor with the new operator.
does not have a [[Call]] internal method; it cannot be invoked as a function.
has a [[Prototype]] internal slot whose value is implementation-dependent.
may have host defined properties in addition to the properties defined in this specification. This may include a
property whose value is the global object itself.

The value of Infinity is +∞ (see 6.1.6). This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }.

The value of NaN is NaN (see 6.1.6). This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }.

The value of undefined is undefined (see 6.1.1). This property has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

The eval function is the %eval% intrinsic object. When the eval function is called with one argument x, the following
steps are taken:

1. Assert: The execution context stack has at least two elements.
2. Let callerContext be the second to top element of the execution context stack.
3. Let callerRealm be callerContext's Realm.
4. Let calleeRealm be the current Realm Record.
5. Perform ? HostEnsureCanCompileStrings(callerRealm, calleeRealm).
6. Return ? PerformEval(x, calleeRealm, false, false).

The abstract operation PerformEval with arguments x, evalRealm, strictCaller, and direct performs the following steps:

1. Assert: If direct is false, then strictCaller is also false.
2. If Type(x) is not String, return x.
3. Let thisEnvRec be ! GetThisEnvironment().
4. If thisEnvRec is a function Environment Record, then

a. Let F be thisEnvRec.[[FunctionObject]].

18.1 Value Properties of the Global Object

18.1.1 Infinity

18.1.2 NaN

18.1.3 undefined

18.2 Function Properties of the Global Object

18.2.1 eval (x)

18.2.1.1 Runtime Semantics: PerformEval (x, evalRealm, strictCaller, direct)

388

© Ecma International 2019

388

b. Let inFunction be true.
c. Let inMethod be thisEnvRec.HasSuperBinding().
d. If F.[[ConstructorKind]] is "derived", let inDerivedConstructor be true; otherwise, let

inDerivedConstructor be false.
5. Else,

a. Let inFunction be false.
b. Let inMethod be false.
c. Let inDerivedConstructor be false.

6. Let script be the ECMAScript code that is the result of parsing x, interpreted as UTF-16 encoded Unicode text as
described in 6.1.4, for the goal symbol Script. If inFunction is false, additional early error rules from 18.2.1.1.1 are
applied. If inMethod is false, additional early error rules from 18.2.1.1.2 are applied. If inDerivedConstructor is
false, additional early error rules from 18.2.1.1.3 are applied. If the parse fails, throw a SyntaxError exception. If
any early errors are detected, throw a SyntaxError or a ReferenceError exception, depending on the type of the
error (but see also clause 16). Parsing and early error detection may be interweaved in an implementation-
dependent manner.

7. If script Contains ScriptBody is false, return undefined.
8. Let body be the ScriptBody of script.
9. If strictCaller is true, let strictEval be true.

10. Else, let strictEval be IsStrict of script.
11. Let ctx be the running execution context.
12. NOTE: If direct is true, ctx will be the execution context that performed the direct eval. If direct is false, ctx will

be the execution context for the invocation of the eval function.
13. If direct is true, then

a. Let lexEnv be NewDeclarativeEnvironment(ctx's LexicalEnvironment).
b. Let varEnv be ctx's VariableEnvironment.

14. Else,
a. Let lexEnv be NewDeclarativeEnvironment(evalRealm.[[GlobalEnv]]).
b. Let varEnv be evalRealm.[[GlobalEnv]].

15. If strictEval is true, set varEnv to lexEnv.
16. If ctx is not already suspended, suspend ctx.
17. Let evalCxt be a new ECMAScript code execution context.
18. Set the evalCxt's Function to null.
19. Set the evalCxt's Realm to evalRealm.
20. Set the evalCxt's ScriptOrModule to ctx's ScriptOrModule.
21. Set the evalCxt's VariableEnvironment to varEnv.
22. Set the evalCxt's LexicalEnvironment to lexEnv.
23. Push evalCxt on to the execution context stack; evalCxt is now the running execution context.
24. Let result be EvalDeclarationInstantiation(body, varEnv, lexEnv, strictEval).
25. If result.[[Type]] is normal, then

a. Set result to the result of evaluating body.
26. If result.[[Type]] is normal and result.[[Value]] is empty, then

a. Set result to NormalCompletion(undefined).
27. Suspend evalCxt and remove it from the execution context stack.
28. Resume the context that is now on the top of the execution context stack as the running execution context.
29. Return Completion(result).

NOTE
The eval code cannot instantiate variable or function bindings in the variable environment of the calling context that

© Ecma International 2019

389

invoked the eval if the calling context is evaluating formal parameter initializers or if either the code of the calling
context or the eval code is strict mode code. Instead such bindings are instantiated in a new VariableEnvironment that is
only accessible to the eval code. Bindings introduced by let, const, or class declarations are always instantiated in
a new LexicalEnvironment.

These static semantics are applied by PerformEval when a direct eval call occurs outside of any function.

ScriptBody : StatementList

It is a Syntax Error if StatementList Contains NewTarget.

These static semantics are applied by PerformEval when a direct eval call occurs outside of a MethodDefinition.

ScriptBody : StatementList

It is a Syntax Error if StatementList Contains SuperProperty.

These static semantics are applied by PerformEval when a direct eval call occurs outside of the constructor method of a
ClassDeclaration or ClassExpression.

ScriptBody : StatementList

It is a Syntax Error if StatementList Contains SuperCall.

HostEnsureCanCompileStrings is an implementation-defined abstract operation that allows host environments to block
certain ECMAScript functions which allow developers to compile strings into ECMAScript code.

An implementation of HostEnsureCanCompileStrings may complete normally or abruptly. Any abrupt completions will
be propagated to its callers. The default implementation of HostEnsureCanCompileStrings is to unconditionally return an
empty normal completion.

When the abstract operation EvalDeclarationInstantiation is called with arguments body, varEnv, lexEnv, and strict, the
following steps are taken:

1. Let varNames be the VarDeclaredNames of body.
2. Let varDeclarations be the VarScopedDeclarations of body.
3. Let lexEnvRec be lexEnv's EnvironmentRecord.
4. Let varEnvRec be varEnv's EnvironmentRecord.
5. If strict is false, then

a. If varEnvRec is a global Environment Record, then
i. For each name in varNames, do

18.2.1.1.1 Additional Early Error Rules for Eval Outside Functions

18.2.1.1.2 Additional Early Error Rules for Eval Outside Methods

18.2.1.1.3 Additional Early Error Rules for Eval Outside Constructor Methods

18.2.1.2 HostEnsureCanCompileStrings (callerRealm, calleeRealm)

18.2.1.3 Runtime Semantics: EvalDeclarationInstantiation (body, varEnv, lexEnv, strict)

390

© Ecma International 2019

390

1. If varEnvRec.HasLexicalDeclaration(name) is true, throw a SyntaxError exception.
2. NOTE: eval will not create a global var declaration that would be shadowed by a global lexical

declaration.
b. Let thisLex be lexEnv.
c. Assert: The following loop will terminate.
d. Repeat, while thisLex is not the same as varEnv,

i. Let thisEnvRec be thisLex's EnvironmentRecord.
ii. If thisEnvRec is not an object Environment Record, then

1. NOTE: The environment of with statements cannot contain any lexical declaration so it doesn't
need to be checked for var/let hoisting conflicts.

2. For each name in varNames, do
a. If thisEnvRec.HasBinding(name) is true, then

i. Throw a SyntaxError exception.
ii. NOTE: Annex B.3.5 defines alternate semantics for the above step.

b. NOTE: A direct eval will not hoist var declaration over a like-named lexical declaration.
iii. Set thisLex to thisLex's outer environment reference.

6. Let functionsToInitialize be a new empty List.
7. Let declaredFunctionNames be a new empty List.
8. For each d in varDeclarations, in reverse list order, do

a. If d is neither a VariableDeclaration nor a ForBinding nor a BindingIdentifier, then
i. Assert: d is either a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an

AsyncGeneratorDeclaration.
ii. NOTE: If there are multiple function declarations for the same name, the last declaration is used.

iii. Let fn be the sole element of the BoundNames of d.
iv. If fn is not an element of declaredFunctionNames, then

1. If varEnvRec is a global Environment Record, then
a. Let fnDefinable be ? varEnvRec.CanDeclareGlobalFunction(fn).
b. If fnDefinable is false, throw a TypeError exception.

2. Append fn to declaredFunctionNames.
3. Insert d as the first element of functionsToInitialize.

9. NOTE: Annex B.3.3.3 adds additional steps at this point.
10. Let declaredVarNames be a new empty List.
11. For each d in varDeclarations, do

a. If d is a VariableDeclaration, a ForBinding, or a BindingIdentifier, then
i. For each String vn in the BoundNames of d, do

1. If vn is not an element of declaredFunctionNames, then
a. If varEnvRec is a global Environment Record, then

i. Let vnDefinable be ? varEnvRec.CanDeclareGlobalVar(vn).
ii. If vnDefinable is false, throw a TypeError exception.

b. If vn is not an element of declaredVarNames, then
i. Append vn to declaredVarNames.

12. NOTE: No abnormal terminations occur after this algorithm step unless varEnvRec is a global Environment Record
and the global object is a Proxy exotic object.

13. Let lexDeclarations be the LexicallyScopedDeclarations of body.
14. For each element d in lexDeclarations, do

a. NOTE: Lexically declared names are only instantiated here but not initialized.
b. For each element dn of the BoundNames of d, do

i. If IsConstantDeclaration of d is true, then

© Ecma International 2019

391

1. Perform ? lexEnvRec.CreateImmutableBinding(dn, true).
ii. Else,

1. Perform ? lexEnvRec.CreateMutableBinding(dn, false).
15. For each Parse Node f in functionsToInitialize, do

a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument lexEnv.
c. If varEnvRec is a global Environment Record, then

i. Perform ? varEnvRec.CreateGlobalFunctionBinding(fn, fo, true).
d. Else,

i. Let bindingExists be varEnvRec.HasBinding(fn).
ii. If bindingExists is false, then

1. Let status be ! varEnvRec.CreateMutableBinding(fn, true).
2. Assert: status is not an abrupt completion because of validation preceding step 12.
3. Perform ! varEnvRec.InitializeBinding(fn, fo).

iii. Else,
1. Perform ! varEnvRec.SetMutableBinding(fn, fo, false).

16. For each String vn in declaredVarNames, in list order, do
a. If varEnvRec is a global Environment Record, then

i. Perform ? varEnvRec.CreateGlobalVarBinding(vn, true).
b. Else,

i. Let bindingExists be varEnvRec.HasBinding(vn).
ii. If bindingExists is false, then

1. Let status be ! varEnvRec.CreateMutableBinding(vn, true).
2. Assert: status is not an abrupt completion because of validation preceding step 12.
3. Perform ! varEnvRec.InitializeBinding(vn, undefined).

17. Return NormalCompletion(empty).

NOTE
An alternative version of this algorithm is described in B.3.5.

The isFinite function is the %isFinite% intrinsic object. When the isFinite function is called with one argument
number, the following steps are taken:

1. Let num be ? ToNumber(number).
2. If num is NaN, +∞, or -∞, return false.
3. Otherwise, return true.

The isNaN function is the %isNaN% intrinsic object. When the isNaN function is called with one argument number,
the following steps are taken:

1. Let num be ? ToNumber(number).
2. If num is NaN, return true.
3. Otherwise, return false.

18.2.2 isFinite (number)

18.2.3 isNaN (number)

392

© Ecma International 2019

392

NOTE
A reliable way for ECMAScript code to test if a value X is a NaN is an expression of the form X !== X. The result will
be true if and only if X is a NaN.

The parseFloat function produces a Number value dictated by interpretation of the contents of the string argument as
a decimal literal.

The parseFloat function is the %parseFloat% intrinsic object. When the parseFloat function is called with one
argument string, the following steps are taken:

1. Let inputString be ? ToString(string).
2. Let trimmedString be a substring of inputString consisting of the leftmost code unit that is not a StrWhiteSpaceChar

and all code units to the right of that code unit. (In other words, remove leading white space.) If inputString does
not contain any such code units, let trimmedString be the empty string.

3. If neither trimmedString nor any prefix of trimmedString satisfies the syntax of a StrDecimalLiteral (see 7.1.3.1),
return NaN.

4. Let numberString be the longest prefix of trimmedString, which might be trimmedString itself, that satisfies the
syntax of a StrDecimalLiteral.

5. Let mathFloat be MV of numberString.
6. If mathFloat = 0, then

a. If the first code unit of trimmedString is the code unit 0x002D (HYPHEN-MINUS), return -0.
b. Return +0.

7. Return the Number value for mathFloat.

NOTE
parseFloat may interpret only a leading portion of string as a Number value; it ignores any code units that cannot be
interpreted as part of the notation of a decimal literal, and no indication is given that any such code units were ignored.

The parseInt function produces an integer value dictated by interpretation of the contents of the string argument
according to the specified radix. Leading white space in string is ignored. If radix is undefined or 0, it is assumed to be
10 except when the number begins with the code unit pairs 0x or 0X, in which case a radix of 16 is assumed. If radix is
16, the number may also optionally begin with the code unit pairs 0x or 0X.

The parseInt function is the %parseInt% intrinsic object. When the parseInt function is called, the following
steps are taken:

1. Let inputString be ? ToString(string).
2. Let S be a newly created substring of inputString consisting of the first code unit that is not a StrWhiteSpaceChar

and all code units following that code unit. (In other words, remove leading white space.) If inputString does not
contain any such code unit, let S be the empty string.

3. Let sign be 1.
4. If S is not empty and the first code unit of S is the code unit 0x002D (HYPHEN-MINUS), set sign to -1.
5. If S is not empty and the first code unit of S is the code unit 0x002B (PLUS SIGN) or the code unit 0x002D

18.2.4 parseFloat (string)

18.2.5 parseInt (string, radix)

© Ecma International 2019

393

(HYPHEN-MINUS), remove the first code unit from S.
6. Let R be ? ToInt32(radix).
7. Let stripPrefix be true.
8. If R ≠ 0, then

a. If R < 2 or R > 36, return NaN.
b. If R ≠ 16, set stripPrefix to false.

9. Else R = 0,
a. Set R to 10.

10. If stripPrefix is true, then
a. If the length of S is at least 2 and the first two code units of S are either "0x" or "0X", then

i. Remove the first two code units from S.
ii. Set R to 16.

11. If S contains a code unit that is not a radix-R digit, let Z be the substring of S consisting of all code units before the
first such code unit; otherwise, let Z be S.

12. If Z is empty, return NaN.
13. Let mathInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters A-Z and

a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant digits, every
significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation; and if R is not 2, 4,
8, 10, 16, or 32, then mathInt may be an implementation-dependent approximation to the mathematical integer
value that is represented by Z in radix-R notation.)

14. If mathInt = 0, then
a. If sign = -1, return -0.
b. Return +0.

15. Let number be the Number value for mathInt.
16. Return sign × number.

NOTE
parseInt may interpret only a leading portion of string as an integer value; it ignores any code units that cannot be
interpreted as part of the notation of an integer, and no indication is given that any such code units were ignored.

Uniform Resource Identifiers, or URIs, are Strings that identify resources (e.g. web pages or files) and transport
protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language itself does not provide
any support for using URIs except for functions that encode and decode URIs as described in 18.2.6.2, 18.2.6.3, 18.2.6.4
and 18.2.6.5

NOTE
Many implementations of ECMAScript provide additional functions and methods that manipulate web pages; these
functions are beyond the scope of this standard.

A URI is composed of a sequence of components separated by component separators. The general form is:

Scheme : First / Second ; Third ? Fourth

18.2.6 URI Handling Functions

18.2.6.1 URI Syntax and Semantics

394

© Ecma International 2019

394

where the italicized names represent components and “:”, “/”, “;” and “?” are reserved for use as separators. The
encodeURI and decodeURI functions are intended to work with complete URIs; they assume that any reserved code
units in the URI are intended to have special meaning and so are not encoded. The encodeURIComponent and
decodeURIComponent functions are intended to work with the individual component parts of a URI; they assume
that any reserved code units represent text and so must be encoded so that they are not interpreted as reserved code units
when the component is part of a complete URI.

The following lexical grammar specifies the form of encoded URIs.

uri :::
uriCharactersopt

uriCharacters :::
uriCharacter uriCharactersopt

uriCharacter :::
uriReserved
uriUnescaped
uriEscaped

uriReserved ::: one of
; / ? : @ & = + $,

uriUnescaped :::
uriAlpha
DecimalDigit
uriMark

uriEscaped :::
% HexDigit HexDigit

uriAlpha ::: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z

uriMark ::: one of
- _ . ! ~ * ' ()

NOTE
The above syntax is based upon RFC 2396 and does not reflect changes introduced by the more recent RFC 3986.

When a code unit to be included in a URI is not listed above or is not intended to have the special meaning sometimes
given to the reserved code units, that code unit must be encoded. The code unit is transformed into its UTF-8 encoding,
with surrogate pairs first converted from UTF-16 to the corresponding code point value. (Note that for code units in the
range [0, 127] this results in a single octet with the same value.) The resulting sequence of octets is then transformed into
a String with each octet represented by an escape sequence of the form "%xx".

Syntax

Runtime Semantics

© Ecma International 2019

395

The encoding and escaping process is described by the abstract operation Encode taking two String arguments string and
unescapedSet.

1. Let strLen be the number of code units in string.
2. Let R be the empty String.
3. Let k be 0.
4. Repeat,

a. If k equals strLen, return R.
b. Let C be the code unit at index k within string.
c. If C is in unescapedSet, then

i. Let S be the String value containing only the code unit C.
ii. Set R to the string-concatenation of the previous value of R and S.

d. Else C is not in unescapedSet,
i. If C is a trailing surrogate, throw a URIError exception.

ii. If C is not a leading surrogate, then
1. Let V be the code point with the same numeric value as code unit C.

iii. Else,
1. Increase k by 1.
2. If k equals strLen, throw a URIError exception.
3. Let kChar be the code unit at index k within string.
4. If kChar is not a trailing surrogate, throw a URIError exception.
5. Let V be UTF16Decode(C, kChar).

iv. Let Octets be the List of octets resulting by applying the UTF-8 transformation to V.
v. For each element octet of Octets in List order, do

1. Let S be the string-concatenation of:
"%"
the String representation of octet, formatted as a two-digit uppercase hexadecimal number,
padded to the left with a zero if necessary

2. Set R to the string-concatenation of the previous value of R and S.
e. Increase k by 1.

The unescaping and decoding process is described by the abstract operation Decode taking two String arguments string
and reservedSet.

1. Let strLen be the number of code units in string.
2. Let R be the empty String.
3. Let k be 0.
4. Repeat,

a. If k equals strLen, return R.
b. Let C be the code unit at index k within string.
c. If C is not the code unit 0x0025 (PERCENT SIGN), then

i. Let S be the String value containing only the code unit C.
d. Else C is the code unit 0x0025 (PERCENT SIGN),

i. Let start be k.
ii. If k + 2 is greater than or equal to strLen, throw a URIError exception.

iii. If the code units at index (k + 1) and (k + 2) within string do not represent hexadecimal digits, throw a

18.2.6.1.1 Runtime Semantics: Encode (string, unescapedSet)

18.2.6.1.2 Runtime Semantics: Decode (string, reservedSet)

396

© Ecma International 2019

396

URIError exception.
iv. Let B be the 8-bit value represented by the two hexadecimal digits at index (k + 1) and (k + 2).
v. Increment k by 2.

vi. If the most significant bit in B is 0, then
1. Let C be the code unit whose value is B.
2. If C is not in reservedSet, then

a. Let S be the String value containing only the code unit C.
3. Else C is in reservedSet,

a. Let S be the substring of string from index start to index k inclusive.
vii. Else the most significant bit in B is 1,

1. Let n be the smallest nonnegative integer such that (B << n) & 0x80 is equal to 0.
2. If n equals 1 or n is greater than 4, throw a URIError exception.
3. Let Octets be a List of 8-bit integers of size n.
4. Set Octets[0] to B.
5. If k + (3 × (n - 1)) is greater than or equal to strLen, throw a URIError exception.
6. Let j be 1.
7. Repeat, while j < n

a. Increment k by 1.
b. If the code unit at index k within string is not the code unit 0x0025 (PERCENT SIGN), throw

a URIError exception.
c. If the code units at index (k + 1) and (k + 2) within string do not represent hexadecimal digits,

throw a URIError exception.
d. Let B be the 8-bit value represented by the two hexadecimal digits at index (k + 1) and (k +

2).
e. If the two most significant bits in B are not 10, throw a URIError exception.
f. Increment k by 2.
g. Set Octets[j] to B.
h. Increment j by 1.

8. If Octets does not contain a valid UTF-8 encoding of a Unicode code point, throw a URIError
exception.

9. Let V be the value obtained by applying the UTF-8 transformation to Octets, that is, from a List of
octets into a 21-bit value.

10. Let S be the String value whose code units are, in order, the elements in UTF16Encoding(V).
e. Set R to the string-concatenation of the previous value of R and S.
f. Increase k by 1.

NOTE
This syntax of Uniform Resource Identifiers is based upon RFC 2396 and does not reflect the more recent RFC 3986
which replaces RFC 2396. A formal description and implementation of UTF-8 is given in RFC 3629.

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a sequence of one has the higher-
order bit set to 0, the remaining 7 bits being used to encode the character value. In a sequence of n octets, n > 1, the
initial octet has the n higher-order bits set to 1, followed by a bit set to 0. The remaining bits of that octet contain bits
from the value of the character to be encoded. The following octets all have the higher-order bit set to 1 and the
following bit set to 0, leaving 6 bits in each to contain bits from the character to be encoded. The possible UTF-8
encodings of ECMAScript characters are specified in Table 46.

Table 46 (Informative): UTF-8 Encodings

© Ecma International 2019

397

Code Unit Value Representation 1st Octet 2nd Octet 3rd Octet 4th Octet

0x0000 - 0x007F 00000000 0zzzzzzz 0zzzzzzz

0x0080 - 0x07FF 00000yyy yyzzzzzz 110yyyyy 10zzzzzz

0x0800 - 0xD7FF xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz

0xD800 - 0xDBFF
followed by
0xDC00 - 0xDFFF

110110vv vvwwwwxx
followed by
110111yy yyzzzzzz

11110uuu 10uuwwww 10xxyyyy 10zzzzzz

0xD800 - 0xDBFF
not followed by
0xDC00 - 0xDFFF

causes URIError

0xDC00 - 0xDFFF causes URIError

0xE000 - 0xFFFF xxxxyyyy yyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz

Where
uuuuu = vvvv + 1
to account for the addition of 0x10000 as in section 3.8 of the Unicode Standard (Surrogates).

The above transformation combines each surrogate pair (for which code unit values in the inclusive range 0xD800 to
0xDFFF are reserved) into a UTF-32 representation and encodes the resulting 21-bit value into UTF-8. Decoding
reconstructs the surrogate pair.

RFC 3629 prohibits the decoding of invalid UTF-8 octet sequences. For example, the invalid sequence C0 80 must not
decode into the code unit 0x0000. Implementations of the Decode algorithm are required to throw a URIError when
encountering such invalid sequences.

The decodeURI function computes a new version of a URI in which each escape sequence and UTF-8 encoding of the
sort that might be introduced by the encodeURI function is replaced with the UTF-16 encoding of the code points that
it represents. Escape sequences that could not have been introduced by encodeURI are not replaced.

The decodeURI function is the %decodeURI% intrinsic object. When the decodeURI function is called with one
argument encodedURI, the following steps are taken:

1. Let uriString be ? ToString(encodedURI).
2. Let reservedURISet be a String containing one instance of each code unit valid in uriReserved plus "#".
3. Return ? Decode(uriString, reservedURISet).

NOTE
The code point "#" is not decoded from escape sequences even though it is not a reserved URI code point.

18.2.6.2 decodeURI (encodedURI)

398

© Ecma International 2019

398

The decodeURIComponent function computes a new version of a URI in which each escape sequence and UTF-8
encoding of the sort that might be introduced by the encodeURIComponent function is replaced with the UTF-16
encoding of the code points that it represents.

The decodeURIComponent function is the %decodeURIComponent% intrinsic object. When the
decodeURIComponent function is called with one argument encodedURIComponent, the following steps are taken:

1. Let componentString be ? ToString(encodedURIComponent).
2. Let reservedURIComponentSet be the empty String.
3. Return ? Decode(componentString, reservedURIComponentSet).

The encodeURI function computes a new version of a UTF-16 encoded (6.1.4) URI in which each instance of certain
code points is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the code points.

The encodeURI function is the %encodeURI% intrinsic object. When the encodeURI function is called with one
argument uri, the following steps are taken:

1. Let uriString be ? ToString(uri).
2. Let unescapedURISet be a String containing one instance of each code unit valid in uriReserved and uriUnescaped

plus "#".
3. Return ? Encode(uriString, unescapedURISet).

NOTE
The code unit "#" is not encoded to an escape sequence even though it is not a reserved or unescaped URI code point.

The encodeURIComponent function computes a new version of a UTF-16 encoded (6.1.4) URI in which each
instance of certain code points is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding
of the code point.

The encodeURIComponent function is the %encodeURIComponent% intrinsic object. When the
encodeURIComponent function is called with one argument uriComponent, the following steps are taken:

1. Let componentString be ? ToString(uriComponent).
2. Let unescapedURIComponentSet be a String containing one instance of each code unit valid in uriUnescaped.
3. Return ? Encode(componentString, unescapedURIComponentSet).

See 22.1.1.

18.2.6.3 decodeURIComponent (encodedURIComponent)

18.2.6.4 encodeURI (uri)

18.2.6.5 encodeURIComponent (uriComponent)

18.3 Constructor Properties of the Global Object

18.3.1 Array (. . .)

© Ecma International 2019

399

See 24.1.2.

See 19.3.1.

See 24.3.2.

See 20.3.2.

See 19.5.1.

See 19.5.5.1.

See 22.2.4.

See 22.2.4.

See 19.2.1.

See 22.2.4.

See 22.2.4.

See 22.2.4.

18.3.2 ArrayBuffer (. . .)

18.3.3 Boolean (. . .)

18.3.4 DataView (. . .)

18.3.5 Date (. . .)

18.3.6 Error (. . .)

18.3.7 EvalError (. . .)

18.3.8 Float32Array (. . .)

18.3.9 Float64Array (. . .)

18.3.10 Function (. . .)

18.3.11 Int8Array (. . .)

18.3.12 Int16Array (. . .)

18.3.13 Int32Array (. . .)

400

© Ecma International 2019

400

See 23.1.1.

See 20.1.1.

See 19.1.1.

See 25.6.3.

See 26.2.1.

See 19.5.5.2.

See 19.5.5.3.

See 21.2.3.

See 23.2.1.

See 24.2.2.

See 21.1.1.

See 19.4.1.

18.3.14 Map (. . .)

18.3.15 Number (. . .)

18.3.16 Object (. . .)

18.3.17 Promise (. . .)

18.3.18 Proxy (. . .)

18.3.19 RangeError (. . .)

18.3.20 ReferenceError (. . .)

18.3.21 RegExp (. . .)

18.3.22 Set (. . .)

18.3.23 SharedArrayBuffer (. . .)

18.3.24 String (. . .)

18.3.25 Symbol (. . .)

© Ecma International 2019

401

See 19.5.5.4.

See 19.5.5.5.

See 22.2.4.

See 22.2.4.

See 22.2.4.

See 22.2.4.

See 19.5.5.6.

See 23.3.1.

See 23.4.

See 24.4.

See 24.5.

18.3.26 SyntaxError (. . .)

18.3.27 TypeError (. . .)

18.3.28 Uint8Array (. . .)

18.3.29 Uint8ClampedArray (. . .)

18.3.30 Uint16Array (. . .)

18.3.31 Uint32Array (. . .)

18.3.32 URIError (. . .)

18.3.33 WeakMap (. . .)

18.3.34 WeakSet (. . .)

18.4 Other Properties of the Global Object

18.4.1 Atomics

18.4.2 JSON

402

© Ecma International 2019

402

See 20.2.

See 26.1.

The Object constructor:

is the intrinsic object %Object%.
is the initial value of the Object property of the global object.
creates a new ordinary object when called as a constructor.
performs a type conversion when called as a function rather than as a constructor.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition.

When the Object function is called with optional argument value, the following steps are taken:

1. If NewTarget is neither undefined nor the active function, then
a. Return ? OrdinaryCreateFromConstructor(NewTarget, "%ObjectPrototype%").

2. If value is null, undefined or not supplied, return ObjectCreate(%ObjectPrototype%).
3. Return ! ToObject(value).

The "length" property of the Object constructor function is 1.

The Object constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has a "length" property.
has the following additional properties:

The assign function is used to copy the values of all of the enumerable own properties from one or more source
objects to a target object. When the assign function is called, the following steps are taken:

1. Let to be ? ToObject(target).

18.4.3 Math

18.4.4 Reflect

19 Fundamental Objects

19.1 Object Objects

19.1.1 The Object Constructor

19.1.1.1 Object ([value])

19.1.2 Properties of the Object Constructor

19.1.2.1 Object.assign (target, ...sources)

© Ecma International 2019

403

2. If only one argument was passed, return to.
3. Let sources be the List of argument values starting with the second argument.
4. For each element nextSource of sources, in ascending index order, do

a. If nextSource is neither undefined nor null, then
i. Let from be ! ToObject(nextSource).

ii. Let keys be ? from.[[OwnPropertyKeys]]().
iii. For each element nextKey of keys in List order, do

1. Let desc be ? from.[[GetOwnProperty]](nextKey).
2. If desc is not undefined and desc.[[Enumerable]] is true, then

a. Let propValue be ? Get(from, nextKey).
b. Perform ? Set(to, nextKey, propValue, true).

5. Return to.

The "length" property of the assign function is 2.

The create function creates a new object with a specified prototype. When the create function is called, the
following steps are taken:

1. If Type(O) is neither Object nor Null, throw a TypeError exception.
2. Let obj be ObjectCreate(O).
3. If Properties is not undefined, then

a. Return ? ObjectDefineProperties(obj, Properties).
4. Return obj.

The defineProperties function is used to add own properties and/or update the attributes of existing own
properties of an object. When the defineProperties function is called, the following steps are taken:

1. Return ? ObjectDefineProperties(O, Properties).

The abstract operation ObjectDefineProperties with arguments O and Properties performs the following steps:

1. If Type(O) is not Object, throw a TypeError exception.
2. Let props be ? ToObject(Properties).
3. Let keys be ? props.[[OwnPropertyKeys]]().
4. Let descriptors be a new empty List.
5. For each element nextKey of keys in List order, do

a. Let propDesc be ? props.[[GetOwnProperty]](nextKey).
b. If propDesc is not undefined and propDesc.[[Enumerable]] is true, then

i. Let descObj be ? Get(props, nextKey).
ii. Let desc be ? ToPropertyDescriptor(descObj).

iii. Append the pair (a two element List) consisting of nextKey and desc to the end of descriptors.
6. For each pair from descriptors in list order, do

a. Let P be the first element of pair.
b. Let desc be the second element of pair.

19.1.2.2 Object.create (O, Properties)

19.1.2.3 Object.defineProperties (O, Properties)

19.1.2.3.1 Runtime Semantics: ObjectDefineProperties (O, Properties)

404

© Ecma International 2019

404

c. Perform ? DefinePropertyOrThrow(O, P, desc).
7. Return O.

The defineProperty function is used to add an own property and/or update the attributes of an existing own
property of an object. When the defineProperty function is called, the following steps are taken:

1. If Type(O) is not Object, throw a TypeError exception.
2. Let key be ? ToPropertyKey(P).
3. Let desc be ? ToPropertyDescriptor(Attributes).
4. Perform ? DefinePropertyOrThrow(O, key, desc).
5. Return O.

When the entries function is called with argument O, the following steps are taken:

1. Let obj be ? ToObject(O).
2. Let nameList be ? EnumerableOwnPropertyNames(obj, "key+value").
3. Return CreateArrayFromList(nameList).

When the freeze function is called, the following steps are taken:

1. If Type(O) is not Object, return O.
2. Let status be ? SetIntegrityLevel(O, "frozen").
3. If status is false, throw a TypeError exception.
4. Return O.

When the fromEntries method is called with argument iterable, the following steps are taken:

1. Perform ? RequireObjectCoercible(iterable).
2. Let obj be ObjectCreate(%ObjectPrototype%).
3. Assert: obj is an extensible ordinary object with no own properties.
4. Let stepsDefine be the algorithm steps defined in CreateDataPropertyOnObject Functions.
5. Let adder be CreateBuiltinFunction(stepsDefine, « »).
6. Return ? AddEntriesFromIterable(obj, iterable, adder).

NOTE
The function created for adder is never directly accessible to ECMAScript code.

A CreateDataPropertyOnObject function is an anonymous built-in function. When a CreateDataPropertyOnObject
function is called with arguments key and value, the following steps are taken:

19.1.2.4 Object.defineProperty (O, P, Attributes)

19.1.2.5 Object.entries (O)

19.1.2.6 Object.freeze (O)

19.1.2.7 Object.fromEntries (iterable)

19.1.2.7.1 CreateDataPropertyOnObject Functions

© Ecma International 2019

405

1. Let O be the this value.
2. Assert: Type(O) is Object.
3. Assert: O is an extensible ordinary object.
4. Let propertyKey be ? ToPropertyKey(key).
5. Perform ! CreateDataPropertyOrThrow(O, propertyKey, value).
6. Return undefined.

When the getOwnPropertyDescriptor function is called, the following steps are taken:

1. Let obj be ? ToObject(O).
2. Let key be ? ToPropertyKey(P).
3. Let desc be ? obj.[[GetOwnProperty]](key).
4. Return FromPropertyDescriptor(desc).

When the getOwnPropertyDescriptors function is called, the following steps are taken:

1. Let obj be ? ToObject(O).
2. Let ownKeys be ? obj.[[OwnPropertyKeys]]().
3. Let descriptors be ! ObjectCreate(%ObjectPrototype%).
4. For each element key of ownKeys in List order, do

a. Let desc be ? obj.[[GetOwnProperty]](key).
b. Let descriptor be ! FromPropertyDescriptor(desc).
c. If descriptor is not undefined, perform ! CreateDataProperty(descriptors, key, descriptor).

5. Return descriptors.

When the getOwnPropertyNames function is called, the following steps are taken:

1. Return ? GetOwnPropertyKeys(O, String).

When the getOwnPropertySymbols function is called with argument O, the following steps are taken:

1. Return ? GetOwnPropertyKeys(O, Symbol).

The abstract operation GetOwnPropertyKeys is called with arguments O and type where O is an Object and type is one of
the ECMAScript specification types String or Symbol. The following steps are taken:

1. Let obj be ? ToObject(O).
2. Let keys be ? obj.[[OwnPropertyKeys]]().
3. Let nameList be a new empty List.
4. For each element nextKey of keys in List order, do

a. If Type(nextKey) is type, then

19.1.2.8 Object.getOwnPropertyDescriptor (O, P)

19.1.2.9 Object.getOwnPropertyDescriptors (O)

19.1.2.10 Object.getOwnPropertyNames (O)

19.1.2.11 Object.getOwnPropertySymbols (O)

19.1.2.11.1 Runtime Semantics: GetOwnPropertyKeys (O, type)

406

© Ecma International 2019

406

i. Append nextKey as the last element of nameList.
5. Return CreateArrayFromList(nameList).

When the getPrototypeOf function is called with argument O, the following steps are taken:

1. Let obj be ? ToObject(O).
2. Return ? obj.[[GetPrototypeOf]]().

When the is function is called with arguments value1 and value2, the following steps are taken:

1. Return SameValue(value1, value2).

When the isExtensible function is called with argument O, the following steps are taken:

1. If Type(O) is not Object, return false.
2. Return ? IsExtensible(O).

When the isFrozen function is called with argument O, the following steps are taken:

1. If Type(O) is not Object, return true.
2. Return ? TestIntegrityLevel(O, "frozen").

When the isSealed function is called with argument O, the following steps are taken:

1. If Type(O) is not Object, return true.
2. Return ? TestIntegrityLevel(O, "sealed").

When the keys function is called with argument O, the following steps are taken:

1. Let obj be ? ToObject(O).
2. Let nameList be ? EnumerableOwnPropertyNames(obj, "key").
3. Return CreateArrayFromList(nameList).

When the preventExtensions function is called, the following steps are taken:

1. If Type(O) is not Object, return O.
2. Let status be ? O.[[PreventExtensions]]().

19.1.2.12 Object.getPrototypeOf (O)

19.1.2.13 Object.is (value1, value2)

19.1.2.14 Object.isExtensible (O)

19.1.2.15 Object.isFrozen (O)

19.1.2.16 Object.isSealed (O)

19.1.2.17 Object.keys (O)

19.1.2.18 Object.preventExtensions (O)

© Ecma International 2019

407

3. If status is false, throw a TypeError exception.
4. Return O.

The initial value of Object.prototype is the intrinsic object %ObjectPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

When the seal function is called, the following steps are taken:

1. If Type(O) is not Object, return O.
2. Let status be ? SetIntegrityLevel(O, "sealed").
3. If status is false, throw a TypeError exception.
4. Return O.

When the setPrototypeOf function is called with arguments O and proto, the following steps are taken:

1. Set O to ? RequireObjectCoercible(O).
2. If Type(proto) is neither Object nor Null, throw a TypeError exception.
3. If Type(O) is not Object, return O.
4. Let status be ? O.[[SetPrototypeOf]](proto).
5. If status is false, throw a TypeError exception.
6. Return O.

When the values function is called with argument O, the following steps are taken:

1. Let obj be ? ToObject(O).
2. Let nameList be ? EnumerableOwnPropertyNames(obj, "value").
3. Return CreateArrayFromList(nameList).

The Object prototype object:

is the intrinsic object %ObjectPrototype%.
is an immutable prototype exotic object.
has a [[Prototype]] internal slot whose value is null.

The initial value of Object.prototype.constructor is the intrinsic object %Object%.

19.1.2.19 Object.prototype

19.1.2.20 Object.seal (O)

19.1.2.21 Object.setPrototypeOf (O, proto)

19.1.2.22 Object.values (O)

19.1.3 Properties of the Object Prototype Object

19.1.3.1 Object.prototype.constructor

19.1.3.2 Object.prototype.hasOwnProperty (V)

408

© Ecma International 2019

408

When the hasOwnProperty method is called with argument V, the following steps are taken:

1. Let P be ? ToPropertyKey(V).
2. Let O be ? ToObject(this value).
3. Return ? HasOwnProperty(O, P).

NOTE
The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1 in previous
editions of this specification will continue to be thrown even if the this value is undefined or null.

When the isPrototypeOf method is called with argument V, the following steps are taken:

1. If Type(V) is not Object, return false.
2. Let O be ? ToObject(this value).
3. Repeat,

a. Set V to ? V.[[GetPrototypeOf]]().
b. If V is null, return false.
c. If SameValue(O, V) is true, return true.

NOTE
The ordering of steps 1 and 2 preserves the behaviour specified by previous editions of this specification for the case
where V is not an object and the this value is undefined or null.

When the propertyIsEnumerable method is called with argument V, the following steps are taken:

1. Let P be ? ToPropertyKey(V).
2. Let O be ? ToObject(this value).
3. Let desc be ? O.[[GetOwnProperty]](P).
4. If desc is undefined, return false.
5. Return desc.[[Enumerable]].

NOTE 1
This method does not consider objects in the prototype chain.

NOTE 2
The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1 in previous
editions of this specification will continue to be thrown even if the this value is undefined or null.

When the toLocaleString method is called, the following steps are taken:

1. Let O be the this value.
2. Return ? Invoke(O, "toString").

19.1.3.3 Object.prototype.isPrototypeOf (V)

19.1.3.4 Object.prototype.propertyIsEnumerable (V)

19.1.3.5 Object.prototype.toLocaleString ([reserved1 [, reserved2]])

© Ecma International 2019

409

The optional parameters to this function are not used but are intended to correspond to the parameter pattern used by
ECMA-402 toLocaleString functions. Implementations that do not include ECMA-402 support must not use those
parameter positions for other purposes.

NOTE 1
This function provides a generic toLocaleString implementation for objects that have no locale-specific
toString behaviour. Array, Number, Date, and Typed Arrays provide their own locale-sensitive
toLocaleString methods.

NOTE 2
ECMA-402 intentionally does not provide an alternative to this default implementation.

When the toString method is called, the following steps are taken:

1. If the this value is undefined, return "[object Undefined]".
2. If the this value is null, return "[object Null]".
3. Let O be ! ToObject(this value).
4. Let isArray be ? IsArray(O).
5. If isArray is true, let builtinTag be "Array".
6. Else if O is a String exotic object, let builtinTag be "String".
7. Else if O has a [[ParameterMap]] internal slot, let builtinTag be "Arguments".
8. Else if O has a [[Call]] internal method, let builtinTag be "Function".
9. Else if O has an [[ErrorData]] internal slot, let builtinTag be "Error".

10. Else if O has a [[BooleanData]] internal slot, let builtinTag be "Boolean".
11. Else if O has a [[NumberData]] internal slot, let builtinTag be "Number".
12. Else if O has a [[DateValue]] internal slot, let builtinTag be "Date".
13. Else if O has a [[RegExpMatcher]] internal slot, let builtinTag be "RegExp".
14. Else, let builtinTag be "Object".
15. Let tag be ? Get(O, @@toStringTag).
16. If Type(tag) is not String, set tag to builtinTag.
17. Return the string-concatenation of "[object ", tag, and "]".

This function is the %ObjProto_toString% intrinsic object.

NOTE
Historically, this function was occasionally used to access the String value of the [[Class]] internal slot that was used in
previous editions of this specification as a nominal type tag for various built-in objects. The above definition of
toString preserves compatibility for legacy code that uses toString as a test for those specific kinds of built-in
objects. It does not provide a reliable type testing mechanism for other kinds of built-in or program defined objects. In
addition, programs can use @@toStringTag in ways that will invalidate the reliability of such legacy type tests.

When the valueOf method is called, the following steps are taken:

1. Return ? ToObject(this value).

19.1.3.6 Object.prototype.toString ()

19.1.3.7 Object.prototype.valueOf ()

410

© Ecma International 2019

410

This function is the %ObjProto_valueOf% intrinsic object.

Object instances have no special properties beyond those inherited from the Object prototype object.

The Function constructor:

is the intrinsic object %Function%.
is the initial value of the Function property of the global object.
creates and initializes a new function object when called as a function rather than as a constructor. Thus the
function call Function(…) is equivalent to the object creation expression new Function(…) with the same
arguments.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified Function behaviour must include a super call to the
Function constructor to create and initialize a subclass instance with the internal slots necessary for built-in
function behaviour. All ECMAScript syntactic forms for defining function objects create instances of Function.
There is no syntactic means to create instances of Function subclasses except for the built-in
GeneratorFunction, AsyncFunction, and AsyncGeneratorFunction subclasses.

The last argument specifies the body (executable code) of a function; any preceding arguments specify formal
parameters.

When the Function function is called with some arguments p1, p2, … , pn, body (where n might be 0, that is, there
are no “ p ” arguments, and where body might also not be provided), the following steps are taken:

1. Let C be the active function object.
2. Let args be the argumentsList that was passed to this function by [[Call]] or [[Construct]].
3. Return ? CreateDynamicFunction(C, NewTarget, "normal", args).

NOTE
It is permissible but not necessary to have one argument for each formal parameter to be specified. For example, all three
of the following expressions produce the same result:

new Function("a", "b", "c", "return a+b+c")
new Function("a, b, c", "return a+b+c")
new Function("a,b", "c", "return a+b+c")

The abstract operation CreateDynamicFunction is called with arguments constructor, newTarget, kind, and args.

19.1.4 Properties of Object Instances

19.2 Function Objects

19.2.1 The Function Constructor

19.2.1.1 Function (p1, p2, … , pn, body)

19.2.1.1.1 Runtime Semantics: CreateDynamicFunction (constructor, newTarget, kind, args)

© Ecma International 2019

411

constructor is the constructor function that is performing this action, newTarget is the constructor that new was initially
applied to, kind is either "normal", "generator", "async", or "async generator", and args is a List
containing the actual argument values that were passed to constructor. The following steps are taken:

1. Assert: The execution context stack has at least two elements.
2. Let callerContext be the second to top element of the execution context stack.
3. Let callerRealm be callerContext's Realm.
4. Let calleeRealm be the current Realm Record.
5. Perform ? HostEnsureCanCompileStrings(callerRealm, calleeRealm).
6. If newTarget is undefined, set newTarget to constructor.
7. If kind is "normal", then

a. Let goal be the grammar symbol FunctionBody[~Yield, ~Await] .

b. Let parameterGoal be the grammar symbol FormalParameters[~Yield, ~Await] .

c. Let fallbackProto be "%FunctionPrototype%".
8. Else if kind is "generator", then

a. Let goal be the grammar symbol GeneratorBody.
b. Let parameterGoal be the grammar symbol FormalParameters[+Yield, ~Await] .

c. Let fallbackProto be "%Generator%".
9. Else if kind is "async", then

a. Let goal be the grammar symbol AsyncFunctionBody.
b. Let parameterGoal be the grammar symbol FormalParameters[~Yield, +Await] .

c. Let fallbackProto be "%AsyncFunctionPrototype%".
10. Else,

a. Assert: kind is "async generator".
b. Let goal be the grammar symbol AsyncGeneratorBody.
c. Let parameterGoal be the grammar symbol FormalParameters[+Yield, +Await] .

d. Let fallbackProto be "%AsyncGenerator%".
11. Let argCount be the number of elements in args.
12. Let P be the empty String.
13. If argCount = 0, let bodyText be the empty String.
14. Else if argCount = 1, let bodyText be args[0].
15. Else argCount > 1,

a. Let firstArg be args[0].
b. Set P to ? ToString(firstArg).
c. Let k be 1.
d. Repeat, while k < argCount - 1

i. Let nextArg be args[k].
ii. Let nextArgString be ? ToString(nextArg).

iii. Set P to the string-concatenation of the previous value of P, "," (a comma), and nextArgString.
iv. Increase k by 1.

e. Let bodyText be args[k].
16. Set bodyText to ? ToString(bodyText).
17. Let parameters be the result of parsing P, interpreted as UTF-16 encoded Unicode text as described in 6.1.4, using

parameterGoal as the goal symbol. Throw a SyntaxError exception if the parse fails.
18. Let body be the result of parsing bodyText, interpreted as UTF-16 encoded Unicode text as described in 6.1.4, using

goal as the goal symbol. Throw a SyntaxError exception if the parse fails.
19. Let strict be ContainsUseStrict of body.
20. If any static semantics errors are detected for parameters or body, throw a SyntaxError or a ReferenceError

412

© Ecma International 2019

412

exception, depending on the type of the error. If strict is true, the Early Error rules for UniqueFormalParameters
: FormalParameters are applied. Parsing and early error detection may be interweaved in an implementation-

dependent manner.
21. If strict is true and IsSimpleParameterList of parameters is false, throw a SyntaxError exception.
22. If any element of the BoundNames of parameters also occurs in the LexicallyDeclaredNames of body, throw a

SyntaxError exception.
23. If body Contains SuperCall is true, throw a SyntaxError exception.
24. If parameters Contains SuperCall is true, throw a SyntaxError exception.
25. If body Contains SuperProperty is true, throw a SyntaxError exception.
26. If parameters Contains SuperProperty is true, throw a SyntaxError exception.
27. If kind is "generator" or "async generator", then

a. If parameters Contains YieldExpression is true, throw a SyntaxError exception.
28. If kind is "async" or "async generator", then

a. If parameters Contains AwaitExpression is true, throw a SyntaxError exception.
29. If strict is true, then

a. If BoundNames of parameters contains any duplicate elements, throw a SyntaxError exception.
30. Let proto be ? GetPrototypeFromConstructor(newTarget, fallbackProto).
31. Let F be FunctionAllocate(proto, strict, kind).
32. Let realmF be F.[[Realm]].
33. Let scope be realmF.[[GlobalEnv]].
34. Perform FunctionInitialize(F, Normal, parameters, body, scope).
35. If kind is "generator", then

a. Let prototype be ObjectCreate(%GeneratorPrototype%).
b. Perform DefinePropertyOrThrow(F, "prototype", PropertyDescriptor { [[Value]]: prototype, [[Writable]]:

true, [[Enumerable]]: false, [[Configurable]]: false }).
36. Else if kind is "async generator", then

a. Let prototype be ObjectCreate(%AsyncGeneratorPrototype%).
b. Perform DefinePropertyOrThrow(F, "prototype", PropertyDescriptor { [[Value]]: prototype, [[Writable]]:

true, [[Enumerable]]: false, [[Configurable]]: false }).
37. Else if kind is "normal", perform MakeConstructor(F).
38. NOTE: Async functions are not constructable and do not have a [[Construct]] internal method or a "prototype"

property.
39. Perform SetFunctionName(F, "anonymous").
40. Let prefix be the prefix associated with kind in Table 47.
41. Let sourceText be the string-concatenation of prefix, " anonymous(", P, 0x000A (LINE FEED), ") {",

0x000A (LINE FEED), bodyText, 0x000A (LINE FEED), and "}".
42. Set F.[[SourceText]] to sourceText.
43. Return F.

NOTE
A prototype property is created for every non-async function created using CreateDynamicFunction to provide for
the possibility that the function will be used as a constructor.

Table 47: Dynamic Function SourceText Prefixes

Kind Prefix

"normal" "function"

© Ecma International 2019

413

"generator" "function*"

"async" "async function"

"async generator" "async function*"

The Function constructor:

is itself a built-in function object.
has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: true }.

The value of Function.prototype is %FunctionPrototype%, the intrinsic Function prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The Function prototype object:

is the intrinsic object %FunctionPrototype%.
is itself a built-in function object.
accepts any arguments and returns undefined when invoked.
does not have a [[Construct]] internal method; it cannot be used as a constructor with the new operator.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
does not have a prototype property.
has a "length" property whose value is 0.
has a name property whose value is the empty String.

NOTE
The Function prototype object is specified to be a function object to ensure compatibility with ECMAScript code that
was created prior to the ECMAScript 2015 specification.

When the apply method is called with arguments thisArg and argArray, the following steps are taken:

1. Let func be the this value.
2. If IsCallable(func) is false, throw a TypeError exception.
3. If argArray is undefined or null, then

19.2.2 Properties of the Function Constructor

19.2.2.1 Function.length

19.2.2.2 Function.prototype

19.2.3 Properties of the Function Prototype Object

19.2.3.1 Function.prototype.apply (thisArg, argArray)

414

© Ecma International 2019

414

a. Perform PrepareForTailCall().
b. Return ? Call(func, thisArg).

4. Let argList be ? CreateListFromArrayLike(argArray).
5. Perform PrepareForTailCall().
6. Return ? Call(func, thisArg, argList).

NOTE 1
The thisArg value is passed without modification as the this value. This is a change from Edition 3, where an undefined
or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is passed as
the this value. Even though the thisArg is passed without modification, non-strict functions still perform these
transformations upon entry to the function.

NOTE 2
If func is an arrow function or a bound function then the thisArg will be ignored by the function [[Call]] in step 5.

When the bind method is called with argument thisArg and zero or more args, it performs the following steps:

1. Let Target be the this value.
2. If IsCallable(Target) is false, throw a TypeError exception.
3. Let args be a new (possibly empty) List consisting of all of the argument values provided after thisArg in order.
4. Let F be ? BoundFunctionCreate(Target, thisArg, args).
5. Let targetHasLength be ? HasOwnProperty(Target, "length").
6. If targetHasLength is true, then

a. Let targetLen be ? Get(Target, "length").
b. If Type(targetLen) is not Number, let L be 0.
c. Else,

i. Set targetLen to ! ToInteger(targetLen).
ii. Let L be the larger of 0 and the result of targetLen minus the number of elements of args.

7. Else, let L be 0.
8. Perform ! SetFunctionLength(F, L).
9. Let targetName be ? Get(Target, "name").

10. If Type(targetName) is not String, set targetName to the empty string.
11. Perform SetFunctionName(F, targetName, "bound").
12. Return F.

NOTE 1
Function objects created using Function.prototype.bind are exotic objects. They also do not have a
prototype property.

NOTE 2
If Target is an arrow function or a bound function then the thisArg passed to this method will not be used by subsequent
calls to F.

When the call method is called with argument thisArg and zero or more args, the following steps are taken:

1. Let func be the this value.

19.2.3.2 Function.prototype.bind (thisArg, ...args)

19.2.3.3 Function.prototype.call (thisArg, ...args)

© Ecma International 2019

415

2. If IsCallable(func) is false, throw a TypeError exception.
3. Let argList be a new empty List.
4. If this method was called with more than one argument, then in left to right order, starting with the second

argument, append each argument as the last element of argList.
5. Perform PrepareForTailCall().
6. Return ? Call(func, thisArg, argList).

NOTE 1
The thisArg value is passed without modification as the this value. This is a change from Edition 3, where an undefined
or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is passed as
the this value. Even though the thisArg is passed without modification, non-strict functions still perform these
transformations upon entry to the function.

NOTE 2
If func is an arrow function or a bound function then the thisArg will be ignored by the function [[Call]] in step 5.

The initial value of Function.prototype.constructor is the intrinsic object %Function%.

When the toString method is called, the following steps are taken:

1. Let func be the this value.
2. If func is a Bound Function exotic object or a built-in function object, then return an implementation-dependent

String source code representation of func. The representation must have the syntax of a NativeFunction.
Additionally, if func is a Well-known Intrinsic Object and is not identified as an anonymous function, the portion of
the returned String that would be matched by PropertyName must be the initial value of the name property of func.

3. If Type(func) is Object and func has a [[SourceText]] internal slot and Type(func.[[SourceText]]) is String and
! HostHasSourceTextAvailable(func) is true, then return func.[[SourceText]].

4. If Type(func) is Object and IsCallable(func) is true, then return an implementation-dependent String source code
representation of func. The representation must have the syntax of a NativeFunction.

5. Throw a TypeError exception.

NativeFunction :
function PropertyName[~Yield, ~Await] opt (FormalParameters[~Yield, ~Await]) { [

native code] }

When the @@hasInstance method of an object F is called with value V, the following steps are taken:

1. Let F be the this value.
2. Return ? OrdinaryHasInstance(F, V).

The value of the name property of this function is "[Symbol.hasInstance]".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE

19.2.3.4 Function.prototype.constructor

19.2.3.5 Function.prototype.toString ()

19.2.3.6 Function.prototype [@@hasInstance] (V)

416

© Ecma International 2019

416

This is the default implementation of @@hasInstance that most functions inherit. @@hasInstance is called by the
instanceof operator to determine whether a value is an instance of a specific constructor. An expression such as

v instanceof F

evaluates as

F[@@hasInstance](v)

A constructor function can control which objects are recognized as its instances by instanceof by exposing a
different @@hasInstance method on the function.

This property is non-writable and non-configurable to prevent tampering that could be used to globally expose the target
function of a bound function.

Every Function instance is an ECMAScript function object and has the internal slots listed in Table 27. Function objects
created using the Function.prototype.bind method (19.2.3.2) have the internal slots listed in Table 28.

Function instances have the following properties:

The value of the "length" property is an integer that indicates the typical number of arguments expected by the
function. However, the language permits the function to be invoked with some other number of arguments. The
behaviour of a function when invoked on a number of arguments other than the number specified by its "length"
property depends on the function. This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: true }.

The value of the name property is a String that is descriptive of the function. The name has no semantic significance but
is typically a variable or property name that is used to refer to the function at its point of definition in ECMAScript code.
This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Anonymous functions objects that do not have a contextual name associated with them by this specification do not have a
name own property but inherit the name property of %FunctionPrototype%.

Function instances that can be used as a constructor have a prototype property. Whenever such a Function instance is
created another ordinary object is also created and is the initial value of the function's prototype property. Unless
otherwise specified, the value of the prototype property is used to initialize the [[Prototype]] internal slot of the
object created when that function is invoked as a constructor.

This property has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE
Function objects created using Function.prototype.bind, or by evaluating a MethodDefinition (that is not a

19.2.4 Function Instances

19.2.4.1 length

19.2.4.2 name

19.2.4.3 prototype

© Ecma International 2019

417

GeneratorMethod or AsyncGeneratorMethod) or an ArrowFunction do not have a prototype property.

HostHasSourceTextAvailable is an implementation-defined abstract operation that allows host environments to prevent
the source text from being provided for a given function.

An implementation of HostHasSourceTextAvailable must complete normally in all cases. This operation must be
deterministic with respect to its parameters. Each time it is called with a specific func as its argument, it must return the
same completion record. The default implementation of HostHasSourceTextAvailable is to unconditionally return a
normal completion with a value of true.

The Boolean constructor:

is the intrinsic object %Boolean%.
is the initial value of the Boolean property of the global object.
creates and initializes a new Boolean object when called as a constructor.
performs a type conversion when called as a function rather than as a constructor.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified Boolean behaviour must include a super call to the Boolean
constructor to create and initialize the subclass instance with a [[BooleanData]] internal slot.

When Boolean is called with argument value, the following steps are taken:

1. Let b be ToBoolean(value).
2. If NewTarget is undefined, return b.
3. Let O be ? OrdinaryCreateFromConstructor(NewTarget, "%BooleanPrototype%", « [[BooleanData]] »).
4. Set O.[[BooleanData]] to b.
5. Return O.

The Boolean constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The initial value of Boolean.prototype is the intrinsic object %BooleanPrototype%.

19.2.5 HostHasSourceTextAvailable (func)

19.3 Boolean Objects

19.3.1 The Boolean Constructor

19.3.1.1 Boolean (value)

19.3.2 Properties of the Boolean Constructor

19.3.2.1 Boolean.prototype

418

© Ecma International 2019

418

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The Boolean prototype object:

is the intrinsic object %BooleanPrototype%.
is an ordinary object.
is itself a Boolean object; it has a [[BooleanData]] internal slot with the value false.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.

The abstract operation thisBooleanValue(value) performs the following steps:

1. If Type(value) is Boolean, return value.
2. If Type(value) is Object and value has a [[BooleanData]] internal slot, then

a. Let b be value.[[BooleanData]].
b. Assert: Type(b) is Boolean.
c. Return b.

3. Throw a TypeError exception.

The initial value of Boolean.prototype.constructor is the intrinsic object %Boolean%.

The following steps are taken:

1. Let b be ? thisBooleanValue(this value).
2. If b is true, return "true"; else return "false".

The following steps are taken:

1. Return ? thisBooleanValue(this value).

Boolean instances are ordinary objects that inherit properties from the Boolean prototype object. Boolean instances have
a [[BooleanData]] internal slot. The [[BooleanData]] internal slot is the Boolean value represented by this Boolean
object.

The Symbol constructor:

19.3.3 Properties of the Boolean Prototype Object

19.3.3.1 Boolean.prototype.constructor

19.3.3.2 Boolean.prototype.toString ()

19.3.3.3 Boolean.prototype.valueOf ()

19.3.4 Properties of Boolean Instances

19.4 Symbol Objects

19.4.1 The Symbol Constructor

© Ecma International 2019

419

https://tc39.github.io/ecma262/#sec-thisbooleanvalue
https://tc39.github.io/ecma262/#sec-thisbooleanvalue

is the intrinsic object %Symbol%.
is the initial value of the Symbol property of the global object.
returns a new Symbol value when called as a function.
is not intended to be used with the new operator.
is not intended to be subclassed.
may be used as the value of an extends clause of a class definition but a super call to it will cause an
exception.

When Symbol is called with optional argument description, the following steps are taken:

1. If NewTarget is not undefined, throw a TypeError exception.
2. If description is undefined, let descString be undefined.
3. Else, let descString be ? ToString(description).
4. Return a new unique Symbol value whose [[Description]] value is descString.

The Symbol constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The initial value of Symbol.asyncIterator is the well known symbol @@asyncIterator (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

When Symbol.for is called with argument key it performs the following steps:

1. Let stringKey be ? ToString(key).
2. For each element e of the GlobalSymbolRegistry List, do

a. If SameValue(e.[[Key]], stringKey) is true, return e.[[Symbol]].
3. Assert: GlobalSymbolRegistry does not currently contain an entry for stringKey.
4. Let newSymbol be a new unique Symbol value whose [[Description]] value is stringKey.
5. Append the Record { [[Key]]: stringKey, [[Symbol]]: newSymbol } to the GlobalSymbolRegistry List.
6. Return newSymbol.

The GlobalSymbolRegistry is a List that is globally available. It is shared by all realms. Prior to the evaluation of any
ECMAScript code it is initialized as a new empty List. Elements of the GlobalSymbolRegistry are Records with the
structure defined in Table 48.

Table 48: GlobalSymbolRegistry Record Fields

Field Name Value Usage

[[Key]] A String A string key used to globally identify a Symbol.

19.4.1.1 Symbol ([description])

19.4.2 Properties of the Symbol Constructor

19.4.2.1 Symbol.asyncIterator

19.4.2.2 Symbol.for (key)

420

© Ecma International 2019

420

[[Symbol]] A Symbol A symbol that can be retrieved from any realm.

The initial value of Symbol.hasInstance is the well-known symbol @@hasInstance (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of Symbol.isConcatSpreadable is the well-known symbol @@isConcatSpreadable (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of Symbol.iterator is the well-known symbol @@iterator (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

When Symbol.keyFor is called with argument sym it performs the following steps:

1. If Type(sym) is not Symbol, throw a TypeError exception.
2. For each element e of the GlobalSymbolRegistry List (see 19.4.2.2), do

a. If SameValue(e.[[Symbol]], sym) is true, return e.[[Key]].
3. Assert: GlobalSymbolRegistry does not currently contain an entry for sym.
4. Return undefined.

The initial value of Symbol.match is the well-known symbol @@match (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of Symbol.prototype is the intrinsic object %SymbolPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of Symbol.replace is the well-known symbol @@replace (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

19.4.2.3 Symbol.hasInstance

19.4.2.4 Symbol.isConcatSpreadable

19.4.2.5 Symbol.iterator

19.4.2.6 Symbol.keyFor (sym)

19.4.2.7 Symbol.match

19.4.2.8 Symbol.prototype

19.4.2.9 Symbol.replace

19.4.2.10 Symbol.search

© Ecma International 2019

421

The initial value of Symbol.search is the well-known symbol @@search (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of Symbol.species is the well-known symbol @@species (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of Symbol.split is the well-known symbol @@split (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of Symbol.toPrimitive is the well-known symbol @@toPrimitive (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of Symbol.toStringTag is the well-known symbol @@toStringTag (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of Symbol.unscopables is the well-known symbol @@unscopables (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The Symbol prototype object:

is the intrinsic object %SymbolPrototype%.
is an ordinary object.
is not a Symbol instance and does not have a [[SymbolData]] internal slot.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.

The abstract operation thisSymbolValue(value) performs the following steps:

1. If Type(value) is Symbol, return value.
2. If Type(value) is Object and value has a [[SymbolData]] internal slot, then

a. Let s be value.[[SymbolData]].
b. Assert: Type(s) is Symbol.
c. Return s.

3. Throw a TypeError exception.

19.4.2.11 Symbol.species

19.4.2.12 Symbol.split

19.4.2.13 Symbol.toPrimitive

19.4.2.14 Symbol.toStringTag

19.4.2.15 Symbol.unscopables

19.4.3 Properties of the Symbol Prototype Object

422

© Ecma International 2019

422

The initial value of Symbol.prototype.constructor is the intrinsic object %Symbol%.

Symbol.prototype.description is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

1. Let s be the this value.
2. Let sym be ? thisSymbolValue(s).
3. Return sym.[[Description]].

The following steps are taken:

1. Let sym be ? thisSymbolValue(this value).
2. Return SymbolDescriptiveString(sym).

When the abstract operation SymbolDescriptiveString is called with argument sym, the following steps are taken:

1. Assert: Type(sym) is Symbol.
2. Let desc be sym's [[Description]] value.
3. If desc is undefined, set desc to the empty string.
4. Assert: Type(desc) is String.
5. Return the string-concatenation of "Symbol(", desc, and ")".

The following steps are taken:

1. Return ? thisSymbolValue(this value).

This function is called by ECMAScript language operators to convert a Symbol object to a primitive value. The allowed
values for hint are "default", "number", and "string".

When the @@toPrimitive method is called with argument hint, the following steps are taken:

1. Return ? thisSymbolValue(this value).

The value of the name property of this function is "[Symbol.toPrimitive]".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

The initial value of the @@toStringTag property is the String value "Symbol".

19.4.3.1 Symbol.prototype.constructor

19.4.3.2 get Symbol.prototype.description

19.4.3.3 Symbol.prototype.toString ()

19.4.3.3.1 Runtime Semantics: SymbolDescriptiveString (sym)

19.4.3.4 Symbol.prototype.valueOf ()

19.4.3.5 Symbol.prototype [@@toPrimitive] (hint)

19.4.3.6 Symbol.prototype [@@toStringTag]

© Ecma International 2019

423

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Symbol instances are ordinary objects that inherit properties from the Symbol prototype object. Symbol instances have a
[[SymbolData]] internal slot. The [[SymbolData]] internal slot is the Symbol value represented by this Symbol object.

Instances of Error objects are thrown as exceptions when runtime errors occur. The Error objects may also serve as base
objects for user-defined exception classes.

The Error constructor:

is the intrinsic object %Error%.
is the initial value of the Error property of the global object.
creates and initializes a new Error object when called as a function rather than as a constructor. Thus the function
call Error(…) is equivalent to the object creation expression new Error(…) with the same arguments.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified Error behaviour must include a super call to the Error
constructor to create and initialize subclass instances with an [[ErrorData]] internal slot.

When the Error function is called with argument message, the following steps are taken:

1. If NewTarget is undefined, let newTarget be the active function object, else let newTarget be NewTarget.
2. Let O be ? OrdinaryCreateFromConstructor(newTarget, "%ErrorPrototype%", « [[ErrorData]] »).
3. If message is not undefined, then

a. Let msg be ? ToString(message).
b. Let msgDesc be the PropertyDescriptor { [[Value]]: msg, [[Writable]]: true, [[Enumerable]]: false,

[[Configurable]]: true }.
c. Perform ! DefinePropertyOrThrow(O, "message", msgDesc).

4. Return O.

The Error constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The initial value of Error.prototype is the intrinsic object %ErrorPrototype%.

19.4.4 Properties of Symbol Instances

19.5 Error Objects

19.5.1 The Error Constructor

19.5.1.1 Error (message)

19.5.2 Properties of the Error Constructor

19.5.2.1 Error.prototype

424

© Ecma International 2019

424

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The Error prototype object:

is the intrinsic object %ErrorPrototype%.
is an ordinary object.
is not an Error instance and does not have an [[ErrorData]] internal slot.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.

The initial value of Error.prototype.constructor is the intrinsic object %Error%.

The initial value of Error.prototype.message is the empty String.

The initial value of Error.prototype.name is "Error".

The following steps are taken:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. Let name be ? Get(O, "name").
4. If name is undefined, set name to "Error"; otherwise set name to ? ToString(name).
5. Let msg be ? Get(O, "message").
6. If msg is undefined, set msg to the empty String; otherwise set msg to ? ToString(msg).
7. If name is the empty String, return msg.
8. If msg is the empty String, return name.
9. Return the string-concatenation of name, the code unit 0x003A (COLON), the code unit 0x0020 (SPACE), and

msg.

Error instances are ordinary objects that inherit properties from the Error prototype object and have an [[ErrorData]]
internal slot whose value is undefined. The only specified uses of [[ErrorData]] is to identify Error and NativeError
instances as Error objects within Object.prototype.toString.

A new instance of one of the NativeError objects below is thrown when a runtime error is detected. All of these objects
share the same structure, as described in 19.5.6.

19.5.3 Properties of the Error Prototype Object

19.5.3.1 Error.prototype.constructor

19.5.3.2 Error.prototype.message

19.5.3.3 Error.prototype.name

19.5.3.4 Error.prototype.toString ()

19.5.4 Properties of Error Instances

19.5.5 Native Error Types Used in This Standard

© Ecma International 2019

425

This exception is not currently used within this specification. This object remains for compatibility with previous editions
of this specification.

Indicates a value that is not in the set or range of allowable values.

Indicate that an invalid reference value has been detected.

Indicates that a parsing error has occurred.

TypeError is used to indicate an unsuccessful operation when none of the other NativeError objects are an appropriate
indication of the failure cause.

Indicates that one of the global URI handling functions was used in a way that is incompatible with its definition.

When an ECMAScript implementation detects a runtime error, it throws a new instance of one of the NativeError objects
defined in 19.5.5. Each of these objects has the structure described below, differing only in the name used as the
constructor name instead of NativeError, in the name property of the prototype object, and in the implementation-
defined message property of the prototype object.

For each error object, references to NativeError in the definition should be replaced with the appropriate error object
name from 19.5.5.

Each NativeError constructor:

creates and initializes a new NativeError object when called as a function rather than as a constructor. A call of the
object as a function is equivalent to calling it as a constructor with the same arguments. Thus the function call
NativeError(…) is equivalent to the object creation expression new NativeError(…) with the same
arguments.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified NativeError behaviour must include a super call to the
NativeError constructor to create and initialize subclass instances with an [[ErrorData]] internal slot.

19.5.5.1 EvalError

19.5.5.2 RangeError

19.5.5.3 ReferenceError

19.5.5.4 SyntaxError

19.5.5.5 TypeError

19.5.5.6 URIError

19.5.6 NativeError Object Structure

19.5.6.1 The NativeError Constructors

19.5.6.1.1 NativeError (message)

426

© Ecma International 2019

426

When a NativeError function is called with argument message, the following steps are taken:

1. If NewTarget is undefined, let newTarget be the active function object, else let newTarget be NewTarget.
2. Let O be ? OrdinaryCreateFromConstructor(newTarget, "%NativeErrorPrototype%", « [[ErrorData]] »).
3. If message is not undefined, then

a. Let msg be ? ToString(message).
b. Let msgDesc be the PropertyDescriptor { [[Value]]: msg, [[Writable]]: true, [[Enumerable]]: false,

[[Configurable]]: true }.
c. Perform ! DefinePropertyOrThrow(O, "message", msgDesc).

4. Return O.

The actual value of the string passed in step 2 is either "%EvalErrorPrototype%",
"%RangeErrorPrototype%", "%ReferenceErrorPrototype%", "%SyntaxErrorPrototype%",
"%TypeErrorPrototype%", or "%URIErrorPrototype%" corresponding to which NativeError constructor is
being defined.

Each NativeError constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %Error%.
has a name property whose value is the String value `"NativeError"`.
has the following properties:

The initial value of NativeError.prototype is a NativeError prototype object (19.5.6.3). Each NativeError
constructor has a distinct prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

Each NativeError prototype object:

is an ordinary object.
is not an Error instance and does not have an [[ErrorData]] internal slot.
has a [[Prototype]] internal slot whose value is the intrinsic object %ErrorPrototype%.

The initial value of the constructor property of the prototype for a given NativeError constructor is the
corresponding intrinsic object %NativeError% (19.5.6.1).

The initial value of the message property of the prototype for a given NativeError constructor is the empty String.

The initial value of the name property of the prototype for a given NativeError constructor is the String value consisting

19.5.6.2 Properties of the NativeError Constructors

19.5.6.2.1 NativeError.prototype

19.5.6.3 Properties of the NativeError Prototype Objects

19.5.6.3.1 NativeError.prototype.constructor

19.5.6.3.2 NativeError.prototype.message

19.5.6.3.3 NativeError.prototype.name

© Ecma International 2019

427

of the name of the constructor (the name used instead of NativeError).

NativeError instances are ordinary objects that inherit properties from their NativeError prototype object and have an
[[ErrorData]] internal slot whose value is undefined. The only specified use of [[ErrorData]] is by
Object.prototype.toString (19.1.3.6) to identify Error or NativeError instances.

The Number constructor:

is the intrinsic object %Number%.
is the initial value of the Number property of the global object.
creates and initializes a new Number object when called as a constructor.
performs a type conversion when called as a function rather than as a constructor.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified Number behaviour must include a super call to the Number
constructor to create and initialize the subclass instance with a [[NumberData]] internal slot.

When Number is called with argument value, the following steps are taken:

1. If no arguments were passed to this function invocation, let n be +0.
2. Else, let n be ? ToNumber(value).
3. If NewTarget is undefined, return n.
4. Let O be ? OrdinaryCreateFromConstructor(NewTarget, "%NumberPrototype%", « [[NumberData]] »).
5. Set O.[[NumberData]] to n.
6. Return O.

The Number constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The value of Number.EPSILON is the difference between 1 and the smallest value greater than 1 that is representable as

a Number value, which is approximately 2.2204460492503130808472633361816 x 10 - 16.

19.5.6.4 Properties of NativeError Instances

20 Numbers and Dates

20.1 Number Objects

20.1.1 The Number Constructor

20.1.1.1 Number (value)

20.1.2 Properties of the Number Constructor

20.1.2.1 Number.EPSILON

428

© Ecma International 2019

428

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

When Number.isFinite is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. If number is NaN, +∞, or -∞, return false.
3. Otherwise, return true.

When Number.isInteger is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. If number is NaN, +∞, or -∞, return false.
3. Let integer be ! ToInteger(number).
4. If integer is not equal to number, return false.
5. Otherwise, return true.

When Number.isNaN is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. If number is NaN, return true.
3. Otherwise, return false.

NOTE
This function differs from the global isNaN function (18.2.3) in that it does not convert its argument to a Number before
determining whether it is NaN.

When Number.isSafeInteger is called with one argument number, the following steps are taken:

1. If Type(number) is not Number, return false.
2. If number is NaN, +∞, or -∞, return false.
3. Let integer be ! ToInteger(number).
4. If integer is not equal to number, return false.

5. If abs(integer) ≤ 253 - 1, return true.
6. Otherwise, return false.

NOTE
The value of Number.MAX_SAFE_INTEGER is the largest integer n such that n and n + 1 are both exactly
representable as a Number value.

20.1.2.2 Number.isFinite (number)

20.1.2.3 Number.isInteger (number)

20.1.2.4 Number.isNaN (number)

20.1.2.5 Number.isSafeInteger (number)

20.1.2.6 Number.MAX_SAFE_INTEGER

© Ecma International 2019

429

The value of Number.MAX_SAFE_INTEGER is 9007199254740991 (253 - 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The value of Number.MAX_VALUE is the largest positive finite value of the Number type, which is approximately

1.7976931348623157 × 10308.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE
The value of Number.MIN_SAFE_INTEGER is the smallest integer n such that n and n - 1 are both exactly
representable as a Number value.

The value of Number.MIN_SAFE_INTEGER is -9007199254740991 (-(253 - 1)).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The value of Number.MIN_VALUE is the smallest positive value of the Number type, which is approximately 5 × 10-

324.

In the IEEE 754-2008 double precision binary representation, the smallest possible value is a denormalized number. If an
implementation does not support denormalized values, the value of Number.MIN_VALUE must be the smallest non-
zero positive value that can actually be represented by the implementation.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The value of Number.NaN is NaN.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The value of Number.NEGATIVE_INFINITY is -∞.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The value of the Number.parseFloat data property is the same built-in function object that is the value of the
parseFloat property of the global object defined in 18.2.4.

20.1.2.7 Number.MAX_VALUE

20.1.2.8 Number.MIN_SAFE_INTEGER

20.1.2.9 Number.MIN_VALUE

20.1.2.10 Number.NaN

20.1.2.11 Number.NEGATIVE_INFINITY

20.1.2.12 Number.parseFloat (string)

20.1.2.13 Number.parseInt (string, radix)

430

© Ecma International 2019

430

The value of the Number.parseInt data property is the same built-in function object that is the value of the
parseInt property of the global object defined in 18.2.5.

The value of Number.POSITIVE_INFINITY is +∞.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of Number.prototype is the intrinsic object %NumberPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The Number prototype object:

is the intrinsic object %NumberPrototype%.
is an ordinary object.
is itself a Number object; it has a [[NumberData]] internal slot with the value +0.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.

Unless explicitly stated otherwise, the methods of the Number prototype object defined below are not generic and the
this value passed to them must be either a Number value or an object that has a [[NumberData]] internal slot that has
been initialized to a Number value.

The abstract operation thisNumberValue(value) performs the following steps:

1. If Type(value) is Number, return value.
2. If Type(value) is Object and value has a [[NumberData]] internal slot, then

a. Let n be value.[[NumberData]].
b. Assert: Type(n) is Number.
c. Return n.

3. Throw a TypeError exception.

The phrase “this Number value” within the specification of a method refers to the result returned by calling the abstract
operation thisNumberValue with the this value of the method invocation passed as the argument.

The initial value of Number.prototype.constructor is the intrinsic object %Number%.

Return a String containing this Number value represented in decimal exponential notation with one digit before the
significand's decimal point and fractionDigits digits after the significand's decimal point. If fractionDigits is undefined,
include as many significand digits as necessary to uniquely specify the Number (just like in ToString except that in this
case the Number is always output in exponential notation). Specifically, perform the following steps:

20.1.2.14 Number.POSITIVE_INFINITY

20.1.2.15 Number.prototype

20.1.3 Properties of the Number Prototype Object

20.1.3.1 Number.prototype.constructor

20.1.3.2 Number.prototype.toExponential (fractionDigits)

© Ecma International 2019

431

1. Let x be ? thisNumberValue(this value).
2. Let f be ? ToInteger(fractionDigits).
3. Assert: If fractionDigits is undefined, then f is 0.
4. If x is NaN, return the String "NaN".
5. Let s be the empty String.
6. If x < 0, then

a. Set s to "-".
b. Set x to -x.

7. If x = +∞, then
a. Return the string-concatenation of s and "Infinity".

8. If f < 0 or f > 100, throw a RangeError exception.
9. If x = 0, then

a. Let m be the String value consisting of f + 1 occurrences of the code unit 0x0030 (DIGIT ZERO).
b. Let e be 0.

10. Else x ≠ 0,
a. If fractionDigits is not undefined, then

i. Let e and n be integers such that 10f ≤ n < 10f + 1 and for which the exact mathematical value of n × 10e

- f - x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for which n ×

10e - f is larger.
b. Else fractionDigits is undefined,

i. Let e, n, and f be integers such that f ≥ 0, 10f ≤ n < 10f + 1, the Number value for n × 10e - f is x, and f is
as small as possible. Note that the decimal representation of n has f + 1 digits, n is not divisible by 10,
and the least significant digit of n is not necessarily uniquely determined by these criteria.

c. Let m be the String value consisting of the digits of the decimal representation of n (in order, with no leading
zeroes).

11. If f ≠ 0, then
a. Let a be the first code unit of m, and let b be the remaining f code units of m.
b. Set m to the string-concatenation of a, ".", and b.

12. If e = 0, then
a. Let c be "+".
b. Let d be "0".

13. Else,
a. If e > 0, let c be "+".
b. Else e ≤ 0,

i. Let c be "-".
ii. Set e to -e.

c. Let d be the String value consisting of the digits of the decimal representation of e (in order, with no leading
zeroes).

14. Set m to the string-concatenation of m, "e", c, and d.
15. Return the string-concatenation of s and m.

NOTE
For implementations that provide more accurate conversions than required by the rules above, it is recommended that the
following alternative version of step 10.b.i be used as a guideline:

1. Let e, n, and f be integers such that f ≥ 0, 10f ≤ n < 10f + 1, the Number value for n × 10e - f is x, and f is as small as

possible. If there are multiple possibilities for n, choose the value of n for which n × 10e - f is closest in value to x.
If there are two such possible values of n, choose the one that is even.

432

© Ecma International 2019

432

NOTE 1
toFixed returns a String containing this Number value represented in decimal fixed-point notation with fractionDigits
digits after the decimal point. If fractionDigits is undefined, 0 is assumed.

The following steps are performed:

1. Let x be ? thisNumberValue(this value).
2. Let f be ? ToInteger(fractionDigits).
3. Assert: If fractionDigits is undefined, then f is 0.
4. If f < 0 or f > 100, throw a RangeError exception.
5. If x is NaN, return the String "NaN".
6. Let s be the empty String.
7. If x < 0, then

a. Set s to "-".
b. Set x to -x.

8. If x ≥ 1021, then
a. Let m be ! ToString(x).

9. Else x < 1021,

a. Let n be an integer for which the exact mathematical value of n ÷ 10f - x is as close to zero as possible. If
there are two such n, pick the larger n.

b. If n = 0, let m be the String "0". Otherwise, let m be the String value consisting of the digits of the decimal
representation of n (in order, with no leading zeroes).

c. If f ≠ 0, then
i. Let k be the length of m.

ii. If k ≤ f, then
1. Let z be the String value consisting of f + 1 - k occurrences of the code unit 0x0030 (DIGIT

ZERO).
2. Set m to the string-concatenation of z and m.
3. Set k to f + 1.

iii. Let a be the first k - f code units of m, and let b be the remaining f code units of m.
iv. Set m to the string-concatenation of a, ".", and b.

10. Return the string-concatenation of s and m.

NOTE 2
The output of toFixed may be more precise than toString for some values because toString only prints enough
significant digits to distinguish the number from adjacent number values. For example,

(1000000000000000128).toString() returns "1000000000000000100", while
(1000000000000000128).toFixed(0) returns "1000000000000000128".

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement the

20.1.3.3 Number.prototype.toFixed (fractionDigits)

20.1.3.4 Number.prototype.toLocaleString ([reserved1 [, reserved2]])

© Ecma International 2019

433

Number.prototype.toLocaleString method as specified in the ECMA-402 specification. If an ECMAScript
implementation does not include the ECMA-402 API the following specification of the toLocaleString method is
used.

Produces a String value that represents this Number value formatted according to the conventions of the host
environment's current locale. This function is implementation-dependent, and it is permissible, but not encouraged, for it
to return the same thing as toString.

The meanings of the optional parameters to this method are defined in the ECMA-402 specification; implementations
that do not include ECMA-402 support must not use those parameter positions for anything else.

Return a String containing this Number value represented either in decimal exponential notation with one digit before the
significand's decimal point and precision - 1 digits after the significand's decimal point or in decimal fixed notation with
precision significant digits. If precision is undefined, call ToString instead. Specifically, perform the following steps:

1. Let x be ? thisNumberValue(this value).
2. If precision is undefined, return ! ToString(x).
3. Let p be ? ToInteger(precision).
4. If x is NaN, return the String "NaN".
5. Let s be the empty String.
6. If x < 0, then

a. Set s to the code unit 0x002D (HYPHEN-MINUS).
b. Set x to -x.

7. If x = +∞, then
a. Return the string-concatenation of s and "Infinity".

8. If p < 1 or p > 100, throw a RangeError exception.
9. If x = 0, then

a. Let m be the String value consisting of p occurrences of the code unit 0x0030 (DIGIT ZERO).
b. Let e be 0.

10. Else x ≠ 0,

a. Let e and n be integers such that 10p - 1 ≤ n < 10p and for which the exact mathematical value of n × 10e - p +

1 - x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for which n × 10e - p

+ 1 is larger.
b. Let m be the String value consisting of the digits of the decimal representation of n (in order, with no leading

zeroes).
c. If e < -6 or e ≥ p, then

i. Assert: e ≠ 0.
ii. If p ≠ 1, then

1. Let a be the first code unit of m, and let b be the remaining p - 1 code units of m.
2. Set m to the string-concatenation of a, ".", and b.

iii. If e > 0, then
1. Let c be the code unit 0x002B (PLUS SIGN).

iv. Else e < 0,
1. Let c be the code unit 0x002D (HYPHEN-MINUS).
2. Set e to -e.

v. Let d be the String value consisting of the digits of the decimal representation of e (in order, with no
leading zeroes).

20.1.3.5 Number.prototype.toPrecision (precision)

434

© Ecma International 2019

434

vi. Return the string-concatenation of s, m, the code unit 0x0065 (LATIN SMALL LETTER E), c, and d.
11. If e = p - 1, return the string-concatenation of s and m.
12. If e ≥ 0, then

a. Set m to the string-concatenation of the first e + 1 code units of m, the code unit 0x002E (FULL STOP), and
the remaining p - (e + 1) code units of m.

13. Else e < 0,
a. Set m to the string-concatenation of the code unit 0x0030 (DIGIT ZERO), the code unit 0x002E (FULL

STOP), -(e + 1) occurrences of the code unit 0x0030 (DIGIT ZERO), and the String m.
14. Return the string-concatenation of s and m.

NOTE
The optional radix should be an integer value in the inclusive range 2 to 36. If radix is not present or is undefined the
Number 10 is used as the value of radix.

The following steps are performed:

1. Let x be ? thisNumberValue(this value).
2. If radix is not present, let radixNumber be 10.
3. Else if radix is undefined, let radixNumber be 10.
4. Else, let radixNumber be ? ToInteger(radix).
5. If radixNumber < 2 or radixNumber > 36, throw a RangeError exception.
6. If radixNumber = 10, return ! ToString(x).
7. Return the String representation of this Number value using the radix specified by radixNumber. Letters a-z are

used for digits with values 10 through 35. The precise algorithm is implementation-dependent, however the
algorithm should be a generalization of that specified in 7.1.12.1.

The toString function is not generic; it throws a TypeError exception if its this value is not a Number or a Number
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

The "length" property of the toString method is 1.

1. Return ? thisNumberValue(this value).

Number instances are ordinary objects that inherit properties from the Number prototype object. Number instances also
have a [[NumberData]] internal slot. The [[NumberData]] internal slot is the Number value represented by this Number
object.

The Math object:

is the intrinsic object %Math%.
is the initial value of the Math property of the global object.

20.1.3.6 Number.prototype.toString ([radix])

20.1.3.7 Number.prototype.valueOf ()

20.1.4 Properties of Number Instances

20.2 The Math Object

© Ecma International 2019

435

is an ordinary object.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is not a function object.
does not have a [[Construct]] internal method; it cannot be used as a constructor with the new operator.
does not have a [[Call]] internal method; it cannot be invoked as a function.

NOTE
In this specification, the phrase “the Number value for x” has a technical meaning defined in 6.1.6.

The Number value for e, the base of the natural logarithms, which is approximately 2.7182818284590452354.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The Number value for the natural logarithm of 10, which is approximately 2.302585092994046.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The Number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The Number value for the base-10 logarithm of e, the base of the natural logarithms; this value is approximately
0.4342944819032518.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE
The value of Math.LOG10E is approximately the reciprocal of the value of Math.LN10.

The Number value for the base-2 logarithm of e, the base of the natural logarithms; this value is approximately
1.4426950408889634.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE
The value of Math.LOG2E is approximately the reciprocal of the value of Math.LN2.

20.2.1 Value Properties of the Math Object

20.2.1.1 Math.E

20.2.1.2 Math.LN10

20.2.1.3 Math.LN2

20.2.1.4 Math.LOG10E

20.2.1.5 Math.LOG2E

436

© Ecma International 2019

436

The Number value for π, the ratio of the circumference of a circle to its diameter, which is approximately
3.1415926535897932.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The Number value for the square root of ½, which is approximately 0.7071067811865476.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE
The value of Math.SQRT1_2 is approximately the reciprocal of the value of Math.SQRT2.

The Number value for the square root of 2, which is approximately 1.4142135623730951.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of the @@toStringTag property is the String value "Math".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Each of the following Math object functions applies the ToNumber abstract operation to each of its arguments (in left-
to-right order if there is more than one). If ToNumber returns an abrupt completion, that Completion Record is
immediately returned. Otherwise, the function performs a computation on the resulting Number value(s). The value
returned by each function is a Number.

In the function descriptions below, the symbols NaN, -0, +0, -∞ and +∞ refer to the Number values described in 6.1.6.

NOTE
The behaviour of the functions acos, acosh, asin, asinh, atan, atanh, atan2, cbrt, cos, cosh, exp,
expm1, hypot, log,log1p, log2, log10, pow, random, sin, sinh, sqrt, tan, and tanh is not precisely
specified here except to require specific results for certain argument values that represent boundary cases of interest. For
other argument values, these functions are intended to compute approximations to the results of familiar mathematical
functions, but some latitude is allowed in the choice of approximation algorithms. The general intent is that an
implementer should be able to use the same mathematical library for ECMAScript on a given hardware platform that is
available to C programmers on that platform.

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by this standard)
that implementations use the approximation algorithms for IEEE 754-2008 arithmetic contained in fdlibm, the freely
distributable mathematical library from Sun Microsystems (http://www.netlib.org/fdlibm).

20.2.1.6 Math.PI

20.2.1.7 Math.SQRT1_2

20.2.1.8 Math.SQRT2

20.2.1.9 Math [@@toStringTag]

20.2.2 Function Properties of the Math Object

© Ecma International 2019

437

http://www.netlib.org/fdlibm

Returns the absolute value of x; the result has the same magnitude as x but has positive sign.

If x is NaN, the result is NaN.
If x is -0, the result is +0.
If x is -∞, the result is +∞.

Returns an implementation-dependent approximation to the arc cosine of x. The result is expressed in radians and ranges
from +0 to +π.

If x is NaN, the result is NaN.
If x is greater than 1, the result is NaN.
If x is less than -1, the result is NaN.
If x is exactly 1, the result is +0.

Returns an implementation-dependent approximation to the inverse hyperbolic cosine of x.

If x is NaN, the result is NaN.
If x is less than 1, the result is NaN.
If x is 1, the result is +0.
If x is +∞, the result is +∞.

Returns an implementation-dependent approximation to the arc sine of x. The result is expressed in radians and ranges
from -π / 2 to +π / 2.

If x is NaN, the result is NaN.
If x is greater than 1, the result is NaN.
If x is less than -1, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.

Returns an implementation-dependent approximation to the inverse hyperbolic sine of x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞, the result is +∞.
If x is -∞, the result is -∞.

Returns an implementation-dependent approximation to the arc tangent of x. The result is expressed in radians and ranges

20.2.2.1 Math.abs (x)

20.2.2.2 Math.acos (x)

20.2.2.3 Math.acosh (x)

20.2.2.4 Math.asin (x)

20.2.2.5 Math.asinh (x)

20.2.2.6 Math.atan (x)

438

© Ecma International 2019

438

from -π / 2 to +π / 2.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞, the result is an implementation-dependent approximation to +π / 2.
If x is -∞, the result is an implementation-dependent approximation to -π / 2.

Returns an implementation-dependent approximation to the inverse hyperbolic tangent of x.

If x is NaN, the result is NaN.
If x is less than -1, the result is NaN.
If x is greater than 1, the result is NaN.
If x is -1, the result is -∞.
If x is +1, the result is +∞.
If x is +0, the result is +0.
If x is -0, the result is -0.

Returns an implementation-dependent approximation to the arc tangent of the quotient y / x of the arguments y and x,
where the signs of y and x are used to determine the quadrant of the result. Note that it is intentional and traditional for
the two-argument arc tangent function that the argument named y be first and the argument named x be second. The
result is expressed in radians and ranges from -π to +π.

If either x or y is NaN, the result is NaN.
If y > 0 and x is +0, the result is an implementation-dependent approximation to +π / 2.
If y > 0 and x is -0, the result is an implementation-dependent approximation to +π / 2.
If y is +0 and x > 0, the result is +0.
If y is +0 and x is +0, the result is +0.
If y is +0 and x is -0, the result is an implementation-dependent approximation to +π.
If y is +0 and x < 0, the result is an implementation-dependent approximation to +π.
If y is -0 and x > 0, the result is -0.
If y is -0 and x is +0, the result is -0.
If y is -0 and x is -0, the result is an implementation-dependent approximation to -π.
If y is -0 and x < 0, the result is an implementation-dependent approximation to -π.
If y < 0 and x is +0, the result is an implementation-dependent approximation to -π / 2.
If y < 0 and x is -0, the result is an implementation-dependent approximation to -π / 2.
If y > 0 and y is finite and x is +∞, the result is +0.
If y > 0 and y is finite and x is -∞, the result is an implementation-dependent approximation to +π.
If y < 0 and y is finite and x is +∞, the result is -0.
If y < 0 and y is finite and x is -∞, the result is an implementation-dependent approximation to -π.
If y is +∞ and x is finite, the result is an implementation-dependent approximation to +π / 2.
If y is -∞ and x is finite, the result is an implementation-dependent approximation to -π / 2.
If y is +∞ and x is +∞, the result is an implementation-dependent approximation to +π / 4.
If y is +∞ and x is -∞, the result is an implementation-dependent approximation to +3π / 4.
If y is -∞ and x is +∞, the result is an implementation-dependent approximation to -π / 4.
If y is -∞ and x is -∞, the result is an implementation-dependent approximation to -3π / 4.

20.2.2.7 Math.atanh (x)

20.2.2.8 Math.atan2 (y, x)

© Ecma International 2019

439

Returns an implementation-dependent approximation to the cube root of x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞, the result is +∞.
If x is -∞, the result is -∞.

Returns the smallest (closest to -∞) Number value that is not less than x and is equal to a mathematical integer. If x is
already an integer, the result is x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞, the result is +∞.
If x is -∞, the result is -∞.
If x is less than 0 but greater than -1, the result is -0.

The value of Math.ceil(x) is the same as the value of -Math.floor(-x).

When Math.clz32 is called with one argument x, the following steps are taken:

1. Let n be ? ToUint32(x).
2. Let p be the number of leading zero bits in the 32-bit binary representation of n.
3. Return p.

NOTE
If n is 0, p will be 32. If the most significant bit of the 32-bit binary encoding of n is 1, p will be 0.

Returns an implementation-dependent approximation to the cosine of x. The argument is expressed in radians.

If x is NaN, the result is NaN.
If x is +0, the result is 1.
If x is -0, the result is 1.
If x is +∞, the result is NaN.
If x is -∞, the result is NaN.

Returns an implementation-dependent approximation to the hyperbolic cosine of x.

20.2.2.9 Math.cbrt (x)

20.2.2.10 Math.ceil (x)

20.2.2.11 Math.clz32 (x)

20.2.2.12 Math.cos (x)

20.2.2.13 Math.cosh (x)

440

© Ecma International 2019

440

If x is NaN, the result is NaN.
If x is +0, the result is 1.
If x is -0, the result is 1.
If x is +∞, the result is +∞.
If x is -∞, the result is +∞.

NOTE
The value of cosh(x) is the same as (exp(x) + exp(-x)) / 2.

Returns an implementation-dependent approximation to the exponential function of x (e raised to the power of x, where e
is the base of the natural logarithms).

If x is NaN, the result is NaN.
If x is +0, the result is 1.
If x is -0, the result is 1.
If x is +∞, the result is +∞.
If x is -∞, the result is +0.

Returns an implementation-dependent approximation to subtracting 1 from the exponential function of x (e raised to the
power of x, where e is the base of the natural logarithms). The result is computed in a way that is accurate even when the
value of x is close 0.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞, the result is +∞.
If x is -∞, the result is -1.

Returns the greatest (closest to +∞) Number value that is not greater than x and is equal to a mathematical integer. If x is
already an integer, the result is x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞, the result is +∞.
If x is -∞, the result is -∞.
If x is greater than 0 but less than 1, the result is +0.

NOTE
The value of Math.floor(x) is the same as the value of -Math.ceil(-x).

20.2.2.14 Math.exp (x)

20.2.2.15 Math.expm1 (x)

20.2.2.16 Math.floor (x)

20.2.2.17 Math.fround (x)

© Ecma International 2019

441

When Math.fround is called with argument x, the following steps are taken:

1. If x is NaN, return NaN.
2. If x is one of +0, -0, +∞, -∞, return x.
3. Let x32 be the result of converting x to a value in IEEE 754-2008 binary32 format using roundTiesToEven.
4. Let x64 be the result of converting x32 to a value in IEEE 754-2008 binary64 format.
5. Return the ECMAScript Number value corresponding to x64.

Math.hypot returns an implementation-dependent approximation of the square root of the sum of squares of its
arguments.

If no arguments are passed, the result is +0.
If any argument is +∞, the result is +∞.
If any argument is -∞, the result is +∞.
If no argument is +∞ or -∞, and any argument is NaN, the result is NaN.
If all arguments are either +0 or -0, the result is +0.

NOTE
Implementations should take care to avoid the loss of precision from overflows and underflows that are prone to occur in
naive implementations when this function is called with two or more arguments.

When Math.imul is called with arguments x and y, the following steps are taken:

1. Let a be ? ToUint32(x).
2. Let b be ? ToUint32(y).

3. Let product be (a × b) modulo 232.

4. If product ≥ 231, return product - 232; otherwise return product.

Returns an implementation-dependent approximation to the natural logarithm of x.

If x is NaN, the result is NaN.
If x is less than 0, the result is NaN.
If x is +0 or -0, the result is -∞.
If x is 1, the result is +0.
If x is +∞, the result is +∞.

Returns an implementation-dependent approximation to the natural logarithm of 1 + x. The result is computed in a way
that is accurate even when the value of x is close to zero.

If x is NaN, the result is NaN.
If x is less than -1, the result is NaN.

20.2.2.18 Math.hypot (value1, value2, ...values)

20.2.2.19 Math.imul (x, y)

20.2.2.20 Math.log (x)

20.2.2.21 Math.log1p (x)

442

© Ecma International 2019

442

If x is -1, the result is -∞.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞, the result is +∞.

Returns an implementation-dependent approximation to the base 10 logarithm of x.

If x is NaN, the result is NaN.
If x is less than 0, the result is NaN.
If x is +0, the result is -∞.
If x is -0, the result is -∞.
If x is 1, the result is +0.
If x is +∞, the result is +∞.

Returns an implementation-dependent approximation to the base 2 logarithm of x.

If x is NaN, the result is NaN.
If x is less than 0, the result is NaN.
If x is +0, the result is -∞.
If x is -0, the result is -∞.
If x is 1, the result is +0.
If x is +∞, the result is +∞.

Given zero or more arguments, calls ToNumber on each of the arguments and returns the largest of the resulting values.

If no arguments are given, the result is -∞.
If any value is NaN, the result is NaN.
The comparison of values to determine the largest value is done using the Abstract Relational Comparison
algorithm except that +0 is considered to be larger than -0.

Given zero or more arguments, calls ToNumber on each of the arguments and returns the smallest of the resulting values.

If no arguments are given, the result is +∞.
If any value is NaN, the result is NaN.
The comparison of values to determine the smallest value is done using the Abstract Relational Comparison
algorithm except that +0 is considered to be larger than -0.

1. Return the result of Applying the ** operator with base and exponent as specified in 12.6.4.

20.2.2.22 Math.log10 (x)

20.2.2.23 Math.log2 (x)

20.2.2.24 Math.max (value1, value2, ...values)

20.2.2.25 Math.min (value1, value2, ...values)

20.2.2.26 Math.pow (base, exponent)

20.2.2.27 Math.random ()

© Ecma International 2019

443

Returns a Number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly or pseudo
randomly with approximately uniform distribution over that range, using an implementation-dependent algorithm or
strategy. This function takes no arguments.

Each Math.random function created for distinct realms must produce a distinct sequence of values from successive
calls.

Returns the Number value that is closest to x and is equal to a mathematical integer. If two integer Number values are
equally close to x, then the result is the Number value that is closer to +∞. If x is already an integer, the result is x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞, the result is +∞.
If x is -∞, the result is -∞.
If x is greater than 0 but less than 0.5, the result is +0.
If x is less than 0 but greater than or equal to -0.5, the result is -0.

NOTE 1
Math.round(3.5) returns 4, but Math.round(-3.5) returns -3.

NOTE 2
The value of Math.round(x) is not always the same as the value of Math.floor(x + 0.5). When x is -0 or is
less than 0 but greater than or equal to -0.5, Math.round(x) returns -0, but Math.floor(x + 0.5) returns +0.
Math.round(x) may also differ from the value of Math.floor(x + 0.5)because of internal rounding when
computing x + 0.5.

Returns the sign of x, indicating whether x is positive, negative, or zero.

If x is NaN, the result is NaN.
If x is -0, the result is -0.
If x is +0, the result is +0.
If x is negative and not -0, the result is -1.
If x is positive and not +0, the result is +1.

Returns an implementation-dependent approximation to the sine of x. The argument is expressed in radians.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞ or -∞, the result is NaN.

20.2.2.28 Math.round (x)

20.2.2.29 Math.sign (x)

20.2.2.30 Math.sin (x)

20.2.2.31 Math.sinh (x)

444

© Ecma International 2019

444

Returns an implementation-dependent approximation to the hyperbolic sine of x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞, the result is +∞.
If x is -∞, the result is -∞.

NOTE
The value of sinh(x) is the same as (exp(x) - exp(-x)) / 2.

Returns an implementation-dependent approximation to the square root of x.

If x is NaN, the result is NaN.
If x is less than 0, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞, the result is +∞.

Returns an implementation-dependent approximation to the tangent of x. The argument is expressed in radians.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞ or -∞, the result is NaN.

Returns an implementation-dependent approximation to the hyperbolic tangent of x.

If x is NaN, the result is NaN.
If x is +0, the result is +0.
If x is -0, the result is -0.
If x is +∞, the result is +1.
If x is -∞, the result is -1.

NOTE
The value of tanh(x) is the same as (exp(x) - exp(-x))/(exp(x) + exp(-x)).

Returns the integral part of the number x, removing any fractional digits. If x is already an integer, the result is x.

If x is NaN, the result is NaN.
If x is -0, the result is -0.

20.2.2.32 Math.sqrt (x)

20.2.2.33 Math.tan (x)

20.2.2.34 Math.tanh (x)

20.2.2.35 Math.trunc (x)

© Ecma International 2019

445

If x is +0, the result is +0.
If x is +∞, the result is +∞.
If x is -∞, the result is -∞.
If x is greater than 0 but less than 1, the result is +0.
If x is less than 0 but greater than -1, the result is -0.

The following functions are abstract operations that operate on time values (defined in 20.3.1.1). Note that, in every case,
if any argument to one of these functions is NaN, the result will be NaN.

A Date object contains a Number representing an instant in time with millisecond precision. Such a Number is called a
time value. A time value may also be NaN, indicating that the Date object does not represent a specific instant in time.

Time is measured in ECMAScript as milliseconds since midnight at the beginning of 01 January, 1970 UTC. Time in
ECMAScript does not observe leap seconds; they are ignored. Time calculations assume each and every day contains
exactly 60 × 60 × 24 × 1000 = 86,400,000 milliseconds, to align with the POSIX specification of each and every day
containing exactly 86,400 seconds.

A Number can exactly represent all integers from -9,007,199,254,740,992 to 9,007,199,254,740,992 (20.1.2.8 and
20.1.2.6). A time value supports a slightly smaller range of exactly -100,000,000 days to 100,000,000 days measured
relative to midnight at the beginning of 01 January, 1970 UTC. This yields an exact supported time value range of -
8,640,000,000,000,000 to 8,640,000,000,000,000 milliseconds relative to midnight at the beginning of 01 January, 1970
UTC.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the time value +0.

NOTE
The 400 year cycle of the Gregorian calendar contains 97 leap years. This yields an average of 365.2425 days per year,
or an average of 31,556,952,000 milliseconds per year under the Gregorian calendar. ECMAScript applies a proleptic
Gregorian calendar for all time computations.

As specified by this section, the maximum year range a Number can represent exactly with millisecond precision is
approximately -285,426 to 285,426 years relative to midnight at the beginning of 01 January, 1970 UTC.

As specified by this section, the maximum year range a time value can represent is approximately -273,790 to 273,790
years relative to midnight at the beginning of 01 January, 1970 UTC.

A given time value t belongs to day number

Day(t) = floor(t / msPerDay)

where the number of milliseconds per day is

20.3 Date Objects

20.3.1 Overview of Date Objects and Definitions of Abstract Operations

20.3.1.1 Time Values and Time Range

20.3.1.2 Day Number and Time within Day

446

© Ecma International 2019

446

msPerDay = 86400000

The remainder is called the time within the day:

TimeWithinDay(t) = t modulo msPerDay

ECMAScript uses a proleptic Gregorian calendar to map a day number to a year number and to determine the month and
date within that year. In this calendar, leap years are precisely those which are (divisible by 4) and ((not divisible by 100)
or (divisible by 400)). The number of days in year number y is therefore defined by

DaysInYear(y)
= 365 if (y modulo 4) ≠ 0
= 366 if (y modulo 4) = 0 and (y modulo 100) ≠ 0
= 365 if (y modulo 100) = 0 and (y modulo 400) ≠ 0
= 366 if (y modulo 400) = 0

All non-leap years have 365 days with the usual number of days per month and leap years have an extra day in February.
The day number of the first day of year y is given by:

DayFromYear(y) = 365 × (y - 1970) + floor((y - 1969) / 4) - floor((y - 1901) / 100) + floor((y - 1601) / 400)

The time value of the start of a year is:

TimeFromYear(y) = msPerDay × DayFromYear(y)

A time value determines a year by:

YearFromTime(t) = the largest integer y (closest to positive infinity) such that TimeFromYear(y) ≤ t

The leap-year function is 1 for a time within a leap year and otherwise is zero:

InLeapYear(t)
= 0 if DaysInYear(YearFromTime(t)) = 365
= 1 if DaysInYear(YearFromTime(t)) = 366

Months are identified by an integer in the range 0 to 11, inclusive. The mapping MonthFromTime(t) from a time value t
to a month number is defined by:

MonthFromTime(t)
= 0 if 0 ≤ DayWithinYear(t) < 31
= 1 if 31 ≤ DayWithinYear(t) < 59 + InLeapYear(t)
= 2 if 59 + InLeapYear(t) ≤ DayWithinYear(t) < 90 + InLeapYear(t)
= 3 if 90 + InLeapYear(t) ≤ DayWithinYear(t) < 120 + InLeapYear(t)
= 4 if 120 + InLeapYear(t) ≤ DayWithinYear(t) < 151 + InLeapYear(t)
= 5 if 151 + InLeapYear(t) ≤ DayWithinYear(t) < 181 + InLeapYear(t)
= 6 if 181 + InLeapYear(t) ≤ DayWithinYear(t) < 212 + InLeapYear(t)
= 7 if 212 + InLeapYear(t) ≤ DayWithinYear(t) < 243 + InLeapYear(t)
= 8 if 243 + InLeapYear(t) ≤ DayWithinYear(t) < 273 + InLeapYear(t)

20.3.1.3 Year Number

20.3.1.4 Month Number

© Ecma International 2019

447

= 9 if 273 + InLeapYear(t) ≤ DayWithinYear(t) < 304 + InLeapYear(t)
= 10 if 304 + InLeapYear(t) ≤ DayWithinYear(t) < 334 + InLeapYear(t)
= 11 if 334 + InLeapYear(t) ≤ DayWithinYear(t) < 365 + InLeapYear(t)

where

DayWithinYear(t) = Day(t) - DayFromYear(YearFromTime(t))

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April; 4 specifies May; 5
specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9 specifies October; 10 specifies November;
and 11 specifies December. Note that MonthFromTime(0) = 0, corresponding to Thursday, 01 January, 1970.

A date number is identified by an integer in the range 1 through 31, inclusive. The mapping DateFromTime(t) from a
time value t to a date number is defined by:

DateFromTime(t)
= DayWithinYear(t) + 1 if MonthFromTime(t) = 0
= DayWithinYear(t) - 30 if MonthFromTime(t) = 1
= DayWithinYear(t) - 58 - InLeapYear(t) if MonthFromTime(t) = 2
= DayWithinYear(t) - 89 - InLeapYear(t) if MonthFromTime(t) = 3
= DayWithinYear(t) - 119 - InLeapYear(t) if MonthFromTime(t) = 4
= DayWithinYear(t) - 150 - InLeapYear(t) if MonthFromTime(t) = 5
= DayWithinYear(t) - 180 - InLeapYear(t) if MonthFromTime(t) = 6
= DayWithinYear(t) - 211 - InLeapYear(t) if MonthFromTime(t) = 7
= DayWithinYear(t) - 242 - InLeapYear(t) if MonthFromTime(t) = 8
= DayWithinYear(t) - 272 - InLeapYear(t) if MonthFromTime(t) = 9
= DayWithinYear(t) - 303 - InLeapYear(t) if MonthFromTime(t) = 10
= DayWithinYear(t) - 333 - InLeapYear(t) if MonthFromTime(t) = 11

The weekday for a particular time value t is defined as

WeekDay(t) = (Day(t) + 4) modulo 7

A weekday value of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies Wednesday; 4 specifies
Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0) = 4, corresponding to Thursday, 01
January, 1970.

LocalTZA(t, isUTC) is an implementation-defined algorithm that must return a number representing milliseconds
suitable for adding to a Time Value. The local political rules for standard time and daylight saving time in effect at t
should be used to determine the result in the way specified in the following three paragraphs.

When isUTC is true, LocalTZA(t, true) should return the offset of the local time zone from UTC measured in
milliseconds at time represented by time value t (UTC). When the result is added to t (UTC), it should yield the local
time.

20.3.1.5 Date Number

20.3.1.6 Week Day

20.3.1.7 LocalTZA (t, isUTC)

448

© Ecma International 2019

448

When isUTC is false, LocalTZA(t, false) should return the offset of the local time zone from UTC measured in
milliseconds at local time represented by time value tlocal = t. When the result is subtracted from the local time tlocal, it

should yield the corresponding UTC.

When tlocal represents local time repeating multiple times at a negative time zone transition (e.g. when the daylight

saving time ends or the time zone adjustment is decreased due to a time zone rule change) or skipped local time at a
positive time zone transitions (e.g. when the daylight saving time starts or the time zone adjustment is increased due to a
time zone rule change), tlocal must be interpreted with the time zone adjustment before the transition.

If an implementation does not support a conversion described above or if political rules for time t are not available within
the implementation, the result must be 0.

NOTE
It is recommended that implementations use the time zone information of the IANA Time Zone Database
https://www.iana.org/time-zones/.

1:30 AM on November 5, 2017 in America/New_York is repeated twice (fall backward), but it must be interpreted as
1:30 AM UTC-04 instead of 1:30 AM UTC-05. LocalTZA(TimeClip(MakeDate(MakeDay(2017, 10, 5), MakeTime(1,
30, 0, 0))), false) is -4 × msPerHour.

2:30 AM on March 12, 2017 in America/New_York does not exist, but it must be interpreted as 2:30 AM UTC-05
(equivalent to 3:30 AM UTC-04). LocalTZA(TimeClip(MakeDate(MakeDay(2017, 2, 12), MakeTime(2, 30, 0, 0))),
false) is -5 × msPerHour.

The abstract operation LocalTime with argument t converts t from UTC to local time by performing the following steps:

1. Return t + LocalTZA(t, true).

NOTE
Two different time values (t (UTC)) are converted to the same local time tlocal at a negative time zone transition when

there are repeated times (e.g. the daylight saving time ends or the time zone adjustment is decreased.).

The abstract operation UTC with argument t converts t from local time to UTC. It performs the following steps:

1. Return t - LocalTZA(t, false).

NOTE
UTC(LocalTime(t)) is not necessarily always equal to t. LocalTime(UTC(tlocal)) is not necessarily always equal to tlocal,

either.

The following abstract operations are useful in decomposing time values:

HourFromTime(t) = floor(t / msPerHour) modulo HoursPerDay

20.3.1.8 LocalTime (t)

20.3.1.9 UTC (t)

20.3.1.10 Hours, Minutes, Second, and Milliseconds

© Ecma International 2019

449

https://www.iana.org/time-zones/

MinFromTime(t) = floor(t / msPerMinute) modulo MinutesPerHour
SecFromTime(t) = floor(t / msPerSecond) modulo SecondsPerMinute
msFromTime(t) = t modulo msPerSecond

where

HoursPerDay = 24
MinutesPerHour = 60
SecondsPerMinute = 60
msPerSecond = 1000
msPerMinute = 60000 = msPerSecond × SecondsPerMinute
msPerHour = 3600000 = msPerMinute × MinutesPerHour

The abstract operation MakeTime calculates a number of milliseconds from its four arguments, which must be
ECMAScript Number values. This operator functions as follows:

1. If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.
2. Let h be ! ToInteger(hour).
3. Let m be ! ToInteger(min).
4. Let s be ! ToInteger(sec).
5. Let milli be ! ToInteger(ms).
6. Let t be h * msPerHour + m * msPerMinute + s * msPerSecond + milli, performing the arithmetic according to

IEEE 754-2008 rules (that is, as if using the ECMAScript operators * and +).
7. Return t.

The abstract operation MakeDay calculates a number of days from its three arguments, which must be ECMAScript
Number values. This operator functions as follows:

1. If year is not finite or month is not finite or date is not finite, return NaN.
2. Let y be ! ToInteger(year).
3. Let m be ! ToInteger(month).
4. Let dt be ! ToInteger(date).
5. Let ym be y + floor(m / 12).
6. Let mn be m modulo 12.
7. Find a value t such that YearFromTime(t) is ym and MonthFromTime(t) is mn and DateFromTime(t) is 1; but if this

is not possible (because some argument is out of range), return NaN.
8. Return Day(t) + dt - 1.

The abstract operation MakeDate calculates a number of milliseconds from its two arguments, which must be
ECMAScript Number values. This operator functions as follows:

1. If day is not finite or time is not finite, return NaN.
2. Return day × msPerDay + time.

20.3.1.11 MakeTime (hour, min, sec, ms)

20.3.1.12 MakeDay (year, month, date)

20.3.1.13 MakeDate (day, time)

450

© Ecma International 2019

450

The abstract operation TimeClip calculates a number of milliseconds from its argument, which must be an ECMAScript
Number value. This operator functions as follows:

1. If time is not finite, return NaN.

2. If abs(time) > 8.64 × 1015, return NaN.
3. Let clippedTime be ! ToInteger(time).
4. If clippedTime is -0, set clippedTime to +0.
5. Return clippedTime.

NOTE
The point of step 4 is that an implementation is permitted a choice of internal representations of time values, for example
as a 64-bit signed integer or as a 64-bit floating-point value. Depending on the implementation, this internal
representation may or may not distinguish -0 and +0.

ECMAScript defines a string interchange format for date-times based upon a simplification of the ISO 8601 calendar
date extended format. The format is as follows: YYYY-MM-DDTHH:mm:ss.sssZ

Where the fields are as follows:

YYYY is the decimal digits of the year 0000 to 9999 in the proleptic Gregorian calendar.
- "-" (hyphen) appears literally twice in the string.
MM is the month of the year from 01 (January) to 12 (December).
DD is the day of the month from 01 to 31.
T "T" appears literally in the string, to indicate the beginning of the time element.
HH is the number of complete hours that have passed since midnight as two decimal digits from 00 to 24.
: ":" (colon) appears literally twice in the string.
mm is the number of complete minutes since the start of the hour as two decimal digits from 00 to 59.
ss is the number of complete seconds since the start of the minute as two decimal digits from 00 to 59.
. "." (dot) appears literally in the string.
sss is the number of complete milliseconds since the start of the second as three decimal digits.
Z is the time zone offset specified as "Z" (for UTC) or either "+" or "-" followed by a time expression

HH:mm

This format includes date-only forms:

YYYY
YYYY-MM
YYYY-MM-DD

It also includes “date-time” forms that consist of one of the above date-only forms immediately followed by one of the
following time forms with an optional time zone offset appended:

THH:mm

20.3.1.14 TimeClip (time)

20.3.1.15 Date Time String Format

© Ecma International 2019

451

THH:mm:ss
THH:mm:ss.sss

All numbers must be base 10. If the MM or DD fields are absent "01" is used as the value. If the HH, mm, or ss fields are
absent "00" is used as the value and the value of an absent sss field is "000". When the time zone offset is absent,
date-only forms are interpreted as a UTC time and date-time forms are interpreted as a local time.

A string containing out-of-bounds or nonconforming fields is not a valid instance of this format.

NOTE 1
As every day both starts and ends with midnight, the two notations 00:00 and 24:00 are available to distinguish the
two midnights that can be associated with one date. This means that the following two notations refer to exactly the same
point in time: 1995-02-04T24:00 and 1995-02-05T00:00. This interpretation of the latter form as "end of a
calendar day" is consistent with ISO 8601, even though that specification reserves it for describing time intervals and
does not permit it within representations of single points in time.

NOTE 2
There exists no international standard that specifies abbreviations for civil time zones like CET, EST, etc. and sometimes
the same abbreviation is even used for two very different time zones. For this reason, both ISO 8601 and this format
specify numeric representations of time zone offsets.

Covering the full time value range of approximately 273,790 years forward or backward from 01 January, 1970
(20.3.1.1) requires representing years before 0 or after 9999. ISO 8601 permits expansion of the year representation, but
only by mutual agreement of the partners in information interchange. In the simplified ECMAScript format, such an
expanded year representation shall have 6 digits and is always prefixed with a + or - sign. The year 0 is considered
positive and hence prefixed with a + sign. Strings matching the Date Time String Format with expanded years
representing instants in time outside the range of a time value are treated as unrecognizable by Date.parse and cause
that function to return NaN without falling back to implementation-specific behavior or heuristics.

NOTE
Examples of date-time values with expanded years:

-271821-04-20T00:00:00Z 271822 B.C.
-000001-01-01T00:00:00Z 2 B.C.
+000000-01-01T00:00:00Z 1 B.C.
+000001-01-01T00:00:00Z 1 A.D.
+001970-01-01T00:00:00Z 1970 A.D.
+002009-12-15T00:00:00Z 2009 A.D.
+275760-09-13T00:00:00Z 275760 A.D.

The Date constructor:

20.3.1.15.1 Expanded Years

20.3.2 The Date Constructor

452

© Ecma International 2019

452

is the intrinsic object %Date%.
is the initial value of the Date property of the global object.
creates and initializes a new Date object when called as a constructor.
returns a String representing the current time (UTC) when called as a function rather than as a constructor.
is a single function whose behaviour is overloaded based upon the number and types of its arguments.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified Date behaviour must include a super call to the Date
constructor to create and initialize the subclass instance with a [[DateValue]] internal slot.
has a "length" property whose value is 7.

This description applies only if the Date constructor is called with at least two arguments.

When the Date function is called, the following steps are taken:

1. Let numberOfArgs be the number of arguments passed to this function call.
2. Assert: numberOfArgs ≥ 2.
3. If NewTarget is undefined, then

a. Let now be the Number that is the time value (UTC) identifying the current time.
b. Return ToDateString(now).

4. Else,
a. Let y be ? ToNumber(year).
b. Let m be ? ToNumber(month).
c. If date is present, let dt be ? ToNumber(date); else let dt be 1.
d. If hours is present, let h be ? ToNumber(hours); else let h be 0.
e. If minutes is present, let min be ? ToNumber(minutes); else let min be 0.
f. If seconds is present, let s be ? ToNumber(seconds); else let s be 0.
g. If ms is present, let milli be ? ToNumber(ms); else let milli be 0.
h. If y is NaN, let yr be NaN.
i. Else,

i. Let yi be ! ToInteger(y).
ii. If 0 ≤ yi ≤ 99, let yr be 1900 + yi; otherwise, let yr be y.

j. Let finalDate be MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli)).
k. Let O be ? OrdinaryCreateFromConstructor(NewTarget, "%DatePrototype%", « [[DateValue]] »).
l. Set O.[[DateValue]] to TimeClip(UTC(finalDate)).

m. Return O.

This description applies only if the Date constructor is called with exactly one argument.

When the Date function is called, the following steps are taken:

1. Let numberOfArgs be the number of arguments passed to this function call.
2. Assert: numberOfArgs = 1.
3. If NewTarget is undefined, then

a. Let now be the Number that is the time value (UTC) identifying the current time.
b. Return ToDateString(now).

4. Else,

20.3.2.1 Date (year, month [, date [, hours [, minutes [, seconds [, ms]]]]])

20.3.2.2 Date (value)

© Ecma International 2019

453

a. If Type(value) is Object and value has a [[DateValue]] internal slot, then
i. Let tv be thisTimeValue(value).

b. Else,
i. Let v be ? ToPrimitive(value).

ii. If Type(v) is String, then
1. Assert: The next step never returns an abrupt completion because Type(v) is String.
2. Let tv be the result of parsing v as a date, in exactly the same manner as for the parse method

(20.3.3.2).
iii. Else,

1. Let tv be ? ToNumber(v).
c. Let O be ? OrdinaryCreateFromConstructor(NewTarget, "%DatePrototype%", « [[DateValue]] »).
d. Set O.[[DateValue]] to TimeClip(tv).
e. Return O.

This description applies only if the Date constructor is called with no arguments.

When the Date function is called, the following steps are taken:

1. Let numberOfArgs be the number of arguments passed to this function call.
2. Assert: numberOfArgs = 0.
3. If NewTarget is undefined, then

a. Let now be the Number that is the time value (UTC) identifying the current time.
b. Return ToDateString(now).

4. Else,
a. Let O be ? OrdinaryCreateFromConstructor(NewTarget, "%DatePrototype%", « [[DateValue]] »).
b. Set O.[[DateValue]] to the time value (UTC) identifying the current time.
c. Return O.

The Date constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The now function returns a Number value that is the time value designating the UTC date and time of the occurrence of
the call to now.

The parse function applies the ToString operator to its argument. If ToString results in an abrupt completion the
Completion Record is immediately returned. Otherwise, parse interprets the resulting String as a date and time; it
returns a Number, the UTC time value corresponding to the date and time. The String may be interpreted as a local time,
a UTC time, or a time in some other time zone, depending on the contents of the String. The function first attempts to
parse the String according to the format described in Date Time String Format (20.3.1.15), including expanded years. If

20.3.2.3 Date ()

20.3.3 Properties of the Date Constructor

20.3.3.1 Date.now ()

20.3.3.2 Date.parse (string)

454

© Ecma International 2019

454

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

the String does not conform to that format the function may fall back to any implementation-specific heuristics or
implementation-specific date formats. Strings that are unrecognizable or contain out-of-bounds format field values shall
cause Date.parse to return NaN.

If x is any Date object whose milliseconds amount is zero within a particular implementation of ECMAScript, then all of
the following expressions should produce the same numeric value in that implementation, if all the properties referenced
have their initial values:

x.valueOf()
Date.parse(x.toString())
Date.parse(x.toUTCString())
Date.parse(x.toISOString())

However, the expression

Date.parse(x.toLocaleString())

is not required to produce the same Number value as the preceding three expressions and, in general, the value produced
by Date.parse is implementation-dependent when given any String value that does not conform to the Date Time
String Format (20.3.1.15) and that could not be produced in that implementation by the toString or toUTCString
method.

The initial value of Date.prototype is the intrinsic object %DatePrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

When the UTC function is called, the following steps are taken:

1. Let y be ? ToNumber(year).
2. If month is present, let m be ? ToNumber(month); else let m be 0.
3. If date is present, let dt be ? ToNumber(date); else let dt be 1.
4. If hours is present, let h be ? ToNumber(hours); else let h be 0.
5. If minutes is present, let min be ? ToNumber(minutes); else let min be 0.
6. If seconds is present, let s be ? ToNumber(seconds); else let s be 0.
7. If ms is present, let milli be ? ToNumber(ms); else let milli be 0.
8. If y is NaN, let yr be NaN.
9. Else,

a. Let yi be ! ToInteger(y).
b. If 0 ≤ yi ≤ 99, let yr be 1900 + yi; otherwise, let yr be y.

10. Return TimeClip(MakeDate(MakeDay(yr, m, dt), MakeTime(h, min, s, milli))).

The "length" property of the UTC function is 7.

NOTE
The UTC function differs from the Date constructor in two ways: it returns a time value as a Number, rather than
creating a Date object, and it interprets the arguments in UTC rather than as local time.

20.3.3.3 Date.prototype

20.3.3.4 Date.UTC (year [, month [, date [, hours [, minutes [, seconds [, ms]]]]]])

© Ecma International 2019

455

The Date prototype object:

is the intrinsic object %DatePrototype%.
is itself an ordinary object.
is not a Date instance and does not have a [[DateValue]] internal slot.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.

Unless explicitly defined otherwise, the methods of the Date prototype object defined below are not generic and the this
value passed to them must be an object that has a [[DateValue]] internal slot that has been initialized to a time value.

The abstract operation thisTimeValue(value) performs the following steps:

1. If Type(value) is Object and value has a [[DateValue]] internal slot, then
a. Return value.[[DateValue]].

2. Throw a TypeError exception.

In following descriptions of functions that are properties of the Date prototype object, the phrase “this Date object” refers
to the object that is the this value for the invocation of the function. If the Type of the this value is not Object, a
TypeError exception is thrown. The phrase “this time value” within the specification of a method refers to the result
returned by calling the abstract operation thisTimeValue with the this value of the method invocation passed as the
argument.

The initial value of Date.prototype.constructor is the intrinsic object %Date%.

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return DateFromTime(LocalTime(t)).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return WeekDay(LocalTime(t)).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return YearFromTime(LocalTime(t)).

20.3.4 Properties of the Date Prototype Object

20.3.4.1 Date.prototype.constructor

20.3.4.2 Date.prototype.getDate ()

20.3.4.3 Date.prototype.getDay ()

20.3.4.4 Date.prototype.getFullYear ()

456

© Ecma International 2019

456

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return HourFromTime(LocalTime(t)).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return msFromTime(LocalTime(t)).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return MinFromTime(LocalTime(t)).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return MonthFromTime(LocalTime(t)).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return SecFromTime(LocalTime(t)).

The following steps are performed:

1. Return ? thisTimeValue(this value).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.

20.3.4.5 Date.prototype.getHours ()

20.3.4.6 Date.prototype.getMilliseconds ()

20.3.4.7 Date.prototype.getMinutes ()

20.3.4.8 Date.prototype.getMonth ()

20.3.4.9 Date.prototype.getSeconds ()

20.3.4.10 Date.prototype.getTime ()

20.3.4.11 Date.prototype.getTimezoneOffset ()

© Ecma International 2019

457

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

3. Return (t - LocalTime(t)) / msPerMinute.

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return DateFromTime(t).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return WeekDay(t).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return YearFromTime(t).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return HourFromTime(t).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return msFromTime(t).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return MinFromTime(t).

20.3.4.12 Date.prototype.getUTCDate ()

20.3.4.13 Date.prototype.getUTCDay ()

20.3.4.14 Date.prototype.getUTCFullYear ()

20.3.4.15 Date.prototype.getUTCHours ()

20.3.4.16 Date.prototype.getUTCMilliseconds ()

20.3.4.17 Date.prototype.getUTCMinutes ()

20.3.4.18 Date.prototype.getUTCMonth ()

458

© Ecma International 2019

458

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return MonthFromTime(t).

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return SecFromTime(t).

The following steps are performed:

1. Let t be LocalTime(? thisTimeValue(this value)).
2. Let dt be ? ToNumber(date).
3. Let newDate be MakeDate(MakeDay(YearFromTime(t), MonthFromTime(t), dt), TimeWithinDay(t)).
4. Let u be TimeClip(UTC(newDate)).
5. Set the [[DateValue]] internal slot of this Date object to u.
6. Return u.

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, set t to +0; otherwise, set t to LocalTime(t).
3. Let y be ? ToNumber(year).
4. If month is not present, let m be MonthFromTime(t); otherwise, let m be ? ToNumber(month).
5. If date is not present, let dt be DateFromTime(t); otherwise, let dt be ? ToNumber(date).
6. Let newDate be MakeDate(MakeDay(y, m, dt), TimeWithinDay(t)).
7. Let u be TimeClip(UTC(newDate)).
8. Set the [[DateValue]] internal slot of this Date object to u.
9. Return u.

The "length" property of the setFullYear method is 3.

NOTE
If month is not present, this method behaves as if month was present with the value getMonth(). If date is not present,
it behaves as if date was present with the value getDate().

The following steps are performed:

1. Let t be LocalTime(? thisTimeValue(this value)).

20.3.4.19 Date.prototype.getUTCSeconds ()

20.3.4.20 Date.prototype.setDate (date)

20.3.4.21 Date.prototype.setFullYear (year [, month [, date]])

20.3.4.22 Date.prototype.setHours (hour [, min [, sec [, ms]]])

© Ecma International 2019

459

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

2. Let h be ? ToNumber(hour).
3. If min is not present, let m be MinFromTime(t); otherwise, let m be ? ToNumber(min).
4. If sec is not present, let s be SecFromTime(t); otherwise, let s be ? ToNumber(sec).
5. If ms is not present, let milli be msFromTime(t); otherwise, let milli be ? ToNumber(ms).
6. Let date be MakeDate(Day(t), MakeTime(h, m, s, milli)).
7. Let u be TimeClip(UTC(date)).
8. Set the [[DateValue]] internal slot of this Date object to u.
9. Return u.

The "length" property of the setHours method is 4.

NOTE
If min is not present, this method behaves as if min was present with the value getMinutes(). If sec is not present, it
behaves as if sec was present with the value getSeconds(). If ms is not present, it behaves as if ms was present with
the value getMilliseconds().

The following steps are performed:

1. Let t be LocalTime(? thisTimeValue(this value)).
2. Set ms to ? ToNumber(ms).
3. Let time be MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), ms).
4. Let u be TimeClip(UTC(MakeDate(Day(t), time))).
5. Set the [[DateValue]] internal slot of this Date object to u.
6. Return u.

The following steps are performed:

1. Let t be LocalTime(? thisTimeValue(this value)).
2. Let m be ? ToNumber(min).
3. If sec is not present, let s be SecFromTime(t); otherwise, let s be ? ToNumber(sec).
4. If ms is not present, let milli be msFromTime(t); otherwise, let milli be ? ToNumber(ms).
5. Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), m, s, milli)).
6. Let u be TimeClip(UTC(date)).
7. Set the [[DateValue]] internal slot of this Date object to u.
8. Return u.

The "length" property of the setMinutes method is 3.

NOTE
If sec is not present, this method behaves as if sec was present with the value getSeconds(). If ms is not present, this
behaves as if ms was present with the value getMilliseconds().

20.3.4.23 Date.prototype.setMilliseconds (ms)

20.3.4.24 Date.prototype.setMinutes (min [, sec [, ms]])

20.3.4.25 Date.prototype.setMonth (month [, date])

460

© Ecma International 2019

460

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

The following steps are performed:

1. Let t be LocalTime(? thisTimeValue(this value)).
2. Let m be ? ToNumber(month).
3. If date is not present, let dt be DateFromTime(t); otherwise, let dt be ? ToNumber(date).
4. Let newDate be MakeDate(MakeDay(YearFromTime(t), m, dt), TimeWithinDay(t)).
5. Let u be TimeClip(UTC(newDate)).
6. Set the [[DateValue]] internal slot of this Date object to u.
7. Return u.

The "length" property of the setMonth method is 2.

NOTE
If date is not present, this method behaves as if date was present with the value getDate().

The following steps are performed:

1. Let t be LocalTime(? thisTimeValue(this value)).
2. Let s be ? ToNumber(sec).
3. If ms is not present, let milli be msFromTime(t); otherwise, let milli be ? ToNumber(ms).
4. Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), MinFromTime(t), s, milli)).
5. Let u be TimeClip(UTC(date)).
6. Set the [[DateValue]] internal slot of this Date object to u.
7. Return u.

The "length" property of the setSeconds method is 2.

NOTE
If ms is not present, this method behaves as if ms was present with the value getMilliseconds().

The following steps are performed:

1. Perform ? thisTimeValue(this value).
2. Let t be ? ToNumber(time).
3. Let v be TimeClip(t).
4. Set the [[DateValue]] internal slot of this Date object to v.
5. Return v.

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. Let dt be ? ToNumber(date).
3. Let newDate be MakeDate(MakeDay(YearFromTime(t), MonthFromTime(t), dt), TimeWithinDay(t)).

20.3.4.26 Date.prototype.setSeconds (sec [, ms])

20.3.4.27 Date.prototype.setTime (time)

20.3.4.28 Date.prototype.setUTCDate (date)

© Ecma International 2019

461

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

4. Let v be TimeClip(newDate).
5. Set the [[DateValue]] internal slot of this Date object to v.
6. Return v.

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, set t to +0.
3. Let y be ? ToNumber(year).
4. If month is not present, let m be MonthFromTime(t); otherwise, let m be ? ToNumber(month).
5. If date is not present, let dt be DateFromTime(t); otherwise, let dt be ? ToNumber(date).
6. Let newDate be MakeDate(MakeDay(y, m, dt), TimeWithinDay(t)).
7. Let v be TimeClip(newDate).
8. Set the [[DateValue]] internal slot of this Date object to v.
9. Return v.

The "length" property of the setUTCFullYear method is 3.

NOTE
If month is not present, this method behaves as if month was present with the value getUTCMonth(). If date is not
present, it behaves as if date was present with the value getUTCDate().

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. Let h be ? ToNumber(hour).
3. If min is not present, let m be MinFromTime(t); otherwise, let m be ? ToNumber(min).
4. If sec is not present, let s be SecFromTime(t); otherwise, let s be ? ToNumber(sec).
5. If ms is not present, let milli be msFromTime(t); otherwise, let milli be ? ToNumber(ms).
6. Let newDate be MakeDate(Day(t), MakeTime(h, m, s, milli)).
7. Let v be TimeClip(newDate).
8. Set the [[DateValue]] internal slot of this Date object to v.
9. Return v.

The "length" property of the setUTCHours method is 4.

NOTE
If min is not present, this method behaves as if min was present with the value getUTCMinutes(). If sec is not
present, it behaves as if sec was present with the value getUTCSeconds(). If ms is not present, it behaves as if ms
was present with the value getUTCMilliseconds().

The following steps are performed:

20.3.4.29 Date.prototype.setUTCFullYear (year [, month [, date]])

20.3.4.30 Date.prototype.setUTCHours (hour [, min [, sec [, ms]]])

20.3.4.31 Date.prototype.setUTCMilliseconds (ms)

462

© Ecma International 2019

462

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

1. Let t be ? thisTimeValue(this value).
2. Let milli be ? ToNumber(ms).
3. Let time be MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), milli).
4. Let v be TimeClip(MakeDate(Day(t), time)).
5. Set the [[DateValue]] internal slot of this Date object to v.
6. Return v.

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. Let m be ? ToNumber(min).
3. If sec is not present, let s be SecFromTime(t).
4. Else,

a. Let s be ? ToNumber(sec).
5. If ms is not present, let milli be msFromTime(t).
6. Else,

a. Let milli be ? ToNumber(ms).
7. Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), m, s, milli)).
8. Let v be TimeClip(date).
9. Set the [[DateValue]] internal slot of this Date object to v.

10. Return v.

The "length" property of the setUTCMinutes method is 3.

NOTE
If sec is not present, this method behaves as if sec was present with the value getUTCSeconds(). If ms is not present,
it function behaves as if ms was present with the value return by getUTCMilliseconds().

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. Let m be ? ToNumber(month).
3. If date is not present, let dt be DateFromTime(t).
4. Else,

a. Let dt be ? ToNumber(date).
5. Let newDate be MakeDate(MakeDay(YearFromTime(t), m, dt), TimeWithinDay(t)).
6. Let v be TimeClip(newDate).
7. Set the [[DateValue]] internal slot of this Date object to v.
8. Return v.

The "length" property of the setUTCMonth method is 2.

NOTE
If date is not present, this method behaves as if date was present with the value getUTCDate().

20.3.4.32 Date.prototype.setUTCMinutes (min [, sec [, ms]])

20.3.4.33 Date.prototype.setUTCMonth (month [, date])

© Ecma International 2019

463

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

The following steps are performed:

1. Let t be ? thisTimeValue(this value).
2. Let s be ? ToNumber(sec).
3. If ms is not present, let milli be msFromTime(t).
4. Else,

a. Let milli be ? ToNumber(ms).
5. Let date be MakeDate(Day(t), MakeTime(HourFromTime(t), MinFromTime(t), s, milli)).
6. Let v be TimeClip(date).
7. Set the [[DateValue]] internal slot of this Date object to v.
8. Return v.

The "length" property of the setUTCSeconds method is 2.

NOTE
If ms is not present, this method behaves as if ms was present with the value getUTCMilliseconds().

The following steps are performed:

1. Let O be this Date object.
2. Let tv be ? thisTimeValue(O).
3. If tv is NaN, return "Invalid Date".
4. Let t be LocalTime(tv).
5. Return DateString(t).

This function returns a String value representing the instance in time corresponding to this time value. The format of the
String is the Date Time string format defined in 20.3.1.15. All fields are present in the String. The time zone is always
UTC, denoted by the suffix Z. If this time value is not a finite Number or if the year is not a value that can be
represented in that format (if necessary using expanded year format), a RangeError exception is thrown.

This function provides a String representation of a Date object for use by JSON.stringify (24.5.2).

When the toJSON method is called with argument key, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let tv be ? ToPrimitive(O, hint Number).
3. If Type(tv) is Number and tv is not finite, return null.
4. Return ? Invoke(O, "toISOString").

NOTE 1
The argument is ignored.

NOTE 2

20.3.4.34 Date.prototype.setUTCSeconds (sec [, ms])

20.3.4.35 Date.prototype.toDateString ()

20.3.4.36 Date.prototype.toISOString ()

20.3.4.37 Date.prototype.toJSON (key)

464

© Ecma International 2019

464

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

The toJSON function is intentionally generic; it does not require that its this value be a Date object. Therefore, it can be
transferred to other kinds of objects for use as a method. However, it does require that any such object have a
toISOString method.

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement the
Date.prototype.toLocaleDateString method as specified in the ECMA-402 specification. If an
ECMAScript implementation does not include the ECMA-402 API the following specification of the
toLocaleDateString method is used.

This function returns a String value. The contents of the String are implementation-dependent, but are intended to
represent the “date” portion of the Date in the current time zone in a convenient, human-readable form that corresponds
to the conventions of the host environment's current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that
do not include ECMA-402 support must not use those parameter positions for anything else.

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement the
Date.prototype.toLocaleString method as specified in the ECMA-402 specification. If an ECMAScript
implementation does not include the ECMA-402 API the following specification of the toLocaleString method is
used.

This function returns a String value. The contents of the String are implementation-dependent, but are intended to
represent the Date in the current time zone in a convenient, human-readable form that corresponds to the conventions of
the host environment's current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that
do not include ECMA-402 support must not use those parameter positions for anything else.

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement the
Date.prototype.toLocaleTimeString method as specified in the ECMA-402 specification. If an
ECMAScript implementation does not include the ECMA-402 API the following specification of the
toLocaleTimeString method is used.

This function returns a String value. The contents of the String are implementation-dependent, but are intended to
represent the “time” portion of the Date in the current time zone in a convenient, human-readable form that corresponds
to the conventions of the host environment's current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that
do not include ECMA-402 support must not use those parameter positions for anything else.

The following steps are performed:

20.3.4.38 Date.prototype.toLocaleDateString ([reserved1 [, reserved2]])

20.3.4.39 Date.prototype.toLocaleString ([reserved1 [, reserved2]])

20.3.4.40 Date.prototype.toLocaleTimeString ([reserved1 [, reserved2]])

20.3.4.41 Date.prototype.toString ()

© Ecma International 2019

465

1. Let tv be ? thisTimeValue(this value).
2. Return ToDateString(tv).

NOTE 1
For any Date object d whose milliseconds amount is zero, the result of Date.parse(d.toString()) is equal to
d.valueOf(). See 20.3.3.2.

NOTE 2
The toString function is not generic; it throws a TypeError exception if its this value is not a Date object.
Therefore, it cannot be transferred to other kinds of objects for use as a method.

The following steps are performed:

1. Assert: Type(tv) is Number.
2. Assert: tv is not NaN.
3. Let hour be the String representation of HourFromTime(tv), formatted as a two-digit decimal number, padded to the

left with a zero if necessary.
4. Let minute be the String representation of MinFromTime(tv), formatted as a two-digit decimal number, padded to

the left with a zero if necessary.
5. Let second be the String representation of SecFromTime(tv), formatted as a two-digit decimal number, padded to

the left with a zero if necessary.
6. Return the string-concatenation of hour, ":", minute, ":", second, the code unit 0x0020 (SPACE), and "GMT".

The following steps are performed:

1. Assert: Type(tv) is Number.
2. Assert: tv is not NaN.
3. Let weekday be the Name of the entry in Table 49 with the Number WeekDay(tv).
4. Let month be the Name of the entry in Table 50 with the Number MonthFromTime(tv).
5. Let day be the String representation of DateFromTime(tv), formatted as a two-digit decimal number, padded to the

left with a zero if necessary.
6. Let year be the String representation of YearFromTime(tv), formatted as a decimal number of at least four digits,

padded to the left with zeroes if necessary.
7. Return the string-concatenation of weekday, the code unit 0x0020 (SPACE), month, the code unit 0x0020

(SPACE), day, the code unit 0x0020 (SPACE), and year.

Table 49: Names of days of the week

Number Name

0 "Sun"

1 "Mon"

2 "Tue"

3 "Wed"

20.3.4.41.1 Runtime Semantics: TimeString (tv)

20.3.4.41.2 Runtime Semantics: DateString (tv)

466

© Ecma International 2019

466

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

4 "Thu"

5 "Fri"

6 "Sat"

Table 50: Names of months of the year

Number Name

0 "Jan"

1 "Feb"

2 "Mar"

3 "Apr"

4 "May"

5 "Jun"

6 "Jul"

7 "Aug"

8 "Sep"

9 "Oct"

10 "Nov"

11 "Dec"

The following steps are performed:

1. Assert: Type(tv) is Number.
2. Assert: tv is not NaN.
3. Let offset be LocalTZA(tv, true).
4. If offset ≥ 0, let offsetSign be "+"; otherwise, let offsetSign be "-".
5. Let offsetMin be the String representation of MinFromTime(abs(offset)), formatted as a two-digit decimal number,

padded to the left with a zero if necessary.
6. Let offsetHour be the String representation of HourFromTime(abs(offset)), formatted as a two-digit decimal

number, padded to the left with a zero if necessary.
7. Let tzName be an implementation-defined string that is either the empty string or the string-concatenation of the

code unit 0x0020 (SPACE), the code unit 0x0028 (LEFT PARENTHESIS), an implementation-dependent timezone
name, and the code unit 0x0029 (RIGHT PARENTHESIS).

8. Return the string-concatenation of offsetSign, offsetHour, offsetMin, and tzName.

20.3.4.41.3 Runtime Semantics: TimeZoneString (tv)

20.3.4.41.4 Runtime Semantics: ToDateString (tv)

© Ecma International 2019

467

The following steps are performed:

1. Assert: Type(tv) is Number.
2. If tv is NaN, return "Invalid Date".
3. Let t be LocalTime(tv).
4. Return the string-concatenation of DateString(t), the code unit 0x0020 (SPACE), TimeString(t), and

TimeZoneString(tv).

The following steps are performed:

1. Let O be this Date object.
2. Let tv be ? thisTimeValue(O).
3. If tv is NaN, return "Invalid Date".
4. Let t be LocalTime(tv).
5. Return the string-concatenation of TimeString(t) and TimeZoneString(tv).

The following steps are performed:

1. Let O be this Date object.
2. Let tv be ? thisTimeValue(O).
3. If tv is NaN, return "Invalid Date".
4. Let weekday be the Name of the entry in Table 49 with the Number WeekDay(tv).
5. Let month be the Name of the entry in Table 50 with the Number MonthFromTime(tv).
6. Let day be the String representation of DateFromTime(tv), formatted as a two-digit decimal number, padded to the

left with a zero if necessary.
7. Let year be the String representation of YearFromTime(tv), formatted as a decimal number of at least four digits,

padded to the left with zeroes if necessary.
8. Return the string-concatenation of weekday, ",", the code unit 0x0020 (SPACE), day, the code unit 0x0020

(SPACE), month, the code unit 0x0020 (SPACE), year, the code unit 0x0020 (SPACE), and TimeString(tv).

The following steps are performed:

1. Return ? thisTimeValue(this value).

This function is called by ECMAScript language operators to convert a Date object to a primitive value. The allowed
values for hint are "default", "number", and "string". Date objects, are unique among built-in ECMAScript
object in that they treat "default" as being equivalent to "string", All other built-in ECMAScript objects treat
"default" as being equivalent to "number".

When the @@toPrimitive method is called with argument hint, the following steps are taken:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.

20.3.4.42 Date.prototype.toTimeString ()

20.3.4.43 Date.prototype.toUTCString ()

20.3.4.44 Date.prototype.valueOf ()

20.3.4.45 Date.prototype [@@toPrimitive] (hint)

468

© Ecma International 2019

468

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

3. If hint is the String value "string" or the String value "default", then
a. Let tryFirst be "string".

4. Else if hint is the String value "number", then
a. Let tryFirst be "number".

5. Else, throw a TypeError exception.
6. Return ? OrdinaryToPrimitive(O, tryFirst).

The value of the name property of this function is "[Symbol.toPrimitive]".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Date instances are ordinary objects that inherit properties from the Date prototype object. Date instances also have a
[[DateValue]] internal slot. The [[DateValue]] internal slot is the time value represented by this Date object.

The String constructor:

is the intrinsic object %String%.
is the initial value of the String property of the global object.
creates and initializes a new String object when called as a constructor.
performs a type conversion when called as a function rather than as a constructor.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified String behaviour must include a super call to the String
constructor to create and initialize the subclass instance with a [[StringData]] internal slot.

When String is called with argument value, the following steps are taken:

1. If no arguments were passed to this function invocation, let s be "".
2. Else,

a. If NewTarget is undefined and Type(value) is Symbol, return SymbolDescriptiveString(value).
b. Let s be ? ToString(value).

3. If NewTarget is undefined, return s.
4. Return ! StringCreate(s, ? GetPrototypeFromConstructor(NewTarget, "%StringPrototype%")).

The String constructor:

20.3.5 Properties of Date Instances

21 Text Processing

21.1 String Objects

21.1.1 The String Constructor

21.1.1.1 String (value)

21.1.2 Properties of the String Constructor

© Ecma International 2019

469

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The String.fromCharCode function may be called with any number of arguments which form the rest parameter
codeUnits. The following steps are taken:

1. Let codeUnits be a List containing the arguments passed to this function.
2. Let length be the number of elements in codeUnits.
3. Let elements be a new empty List.
4. Let nextIndex be 0.
5. Repeat, while nextIndex < length

a. Let next be codeUnits[nextIndex].
b. Let nextCU be ? ToUint16(next).
c. Append nextCU to the end of elements.
d. Increase nextIndex by 1.

6. Return the String value whose code units are, in order, the elements in the List elements. If length is 0, the empty
string is returned.

The "length" property of the fromCharCode function is 1.

The String.fromCodePoint function may be called with any number of arguments which form the rest parameter
codePoints. The following steps are taken:

1. Let codePoints be a List containing the arguments passed to this function.
2. Let length be the number of elements in codePoints.
3. Let elements be a new empty List.
4. Let nextIndex be 0.
5. Repeat, while nextIndex < length

a. Let next be codePoints[nextIndex].
b. Let nextCP be ? ToNumber(next).
c. If SameValue(nextCP, ! ToInteger(nextCP)) is false, throw a RangeError exception.
d. If nextCP < 0 or nextCP > 0x10FFFF, throw a RangeError exception.
e. Append the elements of the UTF16Encoding of nextCP to the end of elements.
f. Increase nextIndex by 1.

6. Return the String value whose code units are, in order, the elements in the List elements. If length is 0, the empty
string is returned.

The "length" property of the fromCodePoint function is 1.

The initial value of String.prototype is the intrinsic object %StringPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

21.1.2.1 String.fromCharCode (...codeUnits)

21.1.2.2 String.fromCodePoint (...codePoints)

21.1.2.3 String.prototype

470

© Ecma International 2019

470

The String.raw function may be called with a variable number of arguments. The first argument is template and the
remainder of the arguments form the List substitutions. The following steps are taken:

1. Let substitutions be a List consisting of all of the arguments passed to this function, starting with the second
argument. If fewer than two arguments were passed, the List is empty.

2. Let numberOfSubstitutions be the number of elements in substitutions.
3. Let cooked be ? ToObject(template).
4. Let raw be ? ToObject(? Get(cooked, "raw")).
5. Let literalSegments be ? ToLength(? Get(raw, "length")).
6. If literalSegments ≤ 0, return the empty string.
7. Let stringElements be a new empty List.
8. Let nextIndex be 0.
9. Repeat,

a. Let nextKey be ! ToString(nextIndex).
b. Let nextSeg be ? ToString(? Get(raw, nextKey)).
c. Append in order the code unit elements of nextSeg to the end of stringElements.
d. If nextIndex + 1 = literalSegments, then

i. Return the String value whose code units are, in order, the elements in the List stringElements. If
stringElements has no elements, the empty string is returned.

e. If nextIndex < numberOfSubstitutions, let next be substitutions[nextIndex].
f. Else, let next be the empty String.
g. Let nextSub be ? ToString(next).
h. Append in order the code unit elements of nextSub to the end of stringElements.
i. Increase nextIndex by 1.

NOTE
String.raw is intended for use as a tag function of a Tagged Template (12.3.7). When called as such, the first argument
will be a well formed template object and the rest parameter will contain the substitution values.

The String prototype object:

is the intrinsic object %StringPrototype%.
is a String exotic object and has the internal methods specified for such objects.
has a [[StringData]] internal slot whose value is the empty String.
has a "length" property whose initial value is 0 and whose attributes are { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.

Unless explicitly stated otherwise, the methods of the String prototype object defined below are not generic and the this
value passed to them must be either a String value or an object that has a [[StringData]] internal slot that has been
initialized to a String value.

The abstract operation thisStringValue(value) performs the following steps:

1. If Type(value) is String, return value.

21.1.2.4 String.raw (template, ...substitutions)

21.1.3 Properties of the String Prototype Object

© Ecma International 2019

471

2. If Type(value) is Object and value has a [[StringData]] internal slot, then
a. Let s be value.[[StringData]].
b. Assert: Type(s) is String.
c. Return s.

3. Throw a TypeError exception.

NOTE 1
Returns a single element String containing the code unit at index pos within the String value resulting from converting
this object to a String. If there is no element at that index, the result is the empty String. The result is a String value, not
a String object.

If pos is a value of Number type that is an integer, then the result of x.charAt(pos) is equal to the result of
x.substring(pos, pos + 1).

When the charAt method is called with one argument pos, the following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let position be ? ToInteger(pos).
4. Let size be the length of S.
5. If position < 0 or position ≥ size, return the empty String.
6. Return the String value of length 1, containing one code unit from S, namely the code unit at index position.

NOTE 2
The charAt function is intentionally generic; it does not require that its this value be a String object. Therefore, it can
be transferred to other kinds of objects for use as a method.

NOTE 1

Returns a Number (a nonnegative integer less than 216) that is the numeric value of the code unit at index pos within the
String resulting from converting this object to a String. If there is no element at that index, the result is NaN.

When the charCodeAt method is called with one argument pos, the following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let position be ? ToInteger(pos).
4. Let size be the length of S.
5. If position < 0 or position ≥ size, return NaN.
6. Return a value of Number type, whose value is the numeric value of the code unit at index position within the

String S.

NOTE 2
The charCodeAt function is intentionally generic; it does not require that its this value be a String object. Therefore it
can be transferred to other kinds of objects for use as a method.

21.1.3.1 String.prototype.charAt (pos)

21.1.3.2 String.prototype.charCodeAt (pos)

472

© Ecma International 2019

472

NOTE 1
Returns a nonnegative integer Number less than 0x110000 that is the code point value of the UTF-16 encoded code point
(6.1.4) starting at the string element at index pos within the String resulting from converting this object to a String. If
there is no element at that index, the result is undefined. If a valid UTF-16 surrogate pair does not begin at pos, the
result is the code unit at pos.

When the codePointAt method is called with one argument pos, the following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let position be ? ToInteger(pos).
4. Let size be the length of S.
5. If position < 0 or position ≥ size, return undefined.
6. Let first be the numeric value of the code unit at index position within the String S.
7. If first < 0xD800 or first > 0xDBFF or position + 1 = size, return first.
8. Let second be the numeric value of the code unit at index position + 1 within the String S.
9. If second < 0xDC00 or second > 0xDFFF, return first.

10. Return UTF16Decode(first, second).

NOTE 2
The codePointAt function is intentionally generic; it does not require that its this value be a String object. Therefore
it can be transferred to other kinds of objects for use as a method.

NOTE 1
When the concat method is called it returns the String value consisting of the code units of the this object (converted
to a String) followed by the code units of each of the arguments converted to a String. The result is a String value, not a
String object.

When the concat method is called with zero or more arguments, the following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let args be a List whose elements are the arguments passed to this function.
4. Let R be S.
5. Repeat, while args is not empty

a. Remove the first element from args and let next be the value of that element.
b. Let nextString be ? ToString(next).
c. Set R to the string-concatenation of the previous value of R and nextString.

6. Return R.

The "length" property of the concat method is 1.

NOTE 2
The concat function is intentionally generic; it does not require that its this value be a String object. Therefore it can
be transferred to other kinds of objects for use as a method.

21.1.3.3 String.prototype.codePointAt (pos)

21.1.3.4 String.prototype.concat (...args)

© Ecma International 2019

473

The initial value of String.prototype.constructor is the intrinsic object %String%.

The following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let isRegExp be ? IsRegExp(searchString).
4. If isRegExp is true, throw a TypeError exception.
5. Let searchStr be ? ToString(searchString).
6. Let len be the length of S.
7. If endPosition is undefined, let pos be len, else let pos be ? ToInteger(endPosition).
8. Let end be min(max(pos, 0), len).
9. Let searchLength be the length of searchStr.

10. Let start be end - searchLength.
11. If start is less than 0, return false.
12. If the sequence of code units of S starting at start of length searchLength is the same as the full code unit sequence

of searchStr, return true.
13. Otherwise, return false.

NOTE 1
Returns true if the sequence of code units of searchString converted to a String is the same as the corresponding code
units of this object (converted to a String) starting at endPosition - length(this). Otherwise returns false.

NOTE 2
Throwing an exception if the first argument is a RegExp is specified in order to allow future editions to define extensions
that allow such argument values.

NOTE 3
The endsWith function is intentionally generic; it does not require that its this value be a String object. Therefore, it
can be transferred to other kinds of objects for use as a method.

The includes method takes two arguments, searchString and position, and performs the following steps:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let isRegExp be ? IsRegExp(searchString).
4. If isRegExp is true, throw a TypeError exception.
5. Let searchStr be ? ToString(searchString).
6. Let pos be ? ToInteger(position).
7. Assert: If position is undefined, then pos is 0.
8. Let len be the length of S.
9. Let start be min(max(pos, 0), len).

10. Let searchLen be the length of searchStr.

21.1.3.5 String.prototype.constructor

21.1.3.6 String.prototype.endsWith (searchString [, endPosition])

21.1.3.7 String.prototype.includes (searchString [, position])

474

© Ecma International 2019

474

11. If there exists any integer k not smaller than start such that k + searchLen is not greater than len, and for all
nonnegative integers j less than searchLen, the code unit at index k + j within S is the same as the code unit at index
j within searchStr, return true; but if there is no such integer k, return false.

NOTE 1
If searchString appears as a substring of the result of converting this object to a String, at one or more indices that are
greater than or equal to position, return true; otherwise, returns false. If position is undefined, 0 is assumed, so as to
search all of the String.

NOTE 2
Throwing an exception if the first argument is a RegExp is specified in order to allow future editions to define extensions
that allow such argument values.

NOTE 3
The includes function is intentionally generic; it does not require that its this value be a String object. Therefore, it
can be transferred to other kinds of objects for use as a method.

NOTE 1
If searchString appears as a substring of the result of converting this object to a String, at one or more indices that are
greater than or equal to position, then the smallest such index is returned; otherwise, -1 is returned. If position is
undefined, 0 is assumed, so as to search all of the String.

The indexOf method takes two arguments, searchString and position, and performs the following steps:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let searchStr be ? ToString(searchString).
4. Let pos be ? ToInteger(position).
5. Assert: If position is undefined, then pos is 0.
6. Let len be the length of S.
7. Let start be min(max(pos, 0), len).
8. Let searchLen be the length of searchStr.
9. Return the smallest possible integer k not smaller than start such that k + searchLen is not greater than len, and for

all nonnegative integers j less than searchLen, the code unit at index k + j within S is the same as the code unit at
index j within searchStr; but if there is no such integer k, return the value -1.

NOTE 2
The indexOf function is intentionally generic; it does not require that its this value be a String object. Therefore, it can
be transferred to other kinds of objects for use as a method.

NOTE 1
If searchString appears as a substring of the result of converting this object to a String at one or more indices that are
smaller than or equal to position, then the greatest such index is returned; otherwise, -1 is returned. If position is
undefined, the length of the String value is assumed, so as to search all of the String.

21.1.3.8 String.prototype.indexOf (searchString [, position])

21.1.3.9 String.prototype.lastIndexOf (searchString [, position])

© Ecma International 2019

475

The lastIndexOf method takes two arguments, searchString and position, and performs the following steps:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let searchStr be ? ToString(searchString).
4. Let numPos be ? ToNumber(position).
5. Assert: If position is undefined, then numPos is NaN.
6. If numPos is NaN, let pos be +∞; otherwise, let pos be ! ToInteger(numPos).
7. Let len be the length of S.
8. Let start be min(max(pos, 0), len).
9. Let searchLen be the length of searchStr.

10. Return the largest possible nonnegative integer k not larger than start such that k + searchLen is not greater than
len, and for all nonnegative integers j less than searchLen, the code unit at index k + j within S is the same as the
code unit at index j within searchStr; but if there is no such integer k, return the value -1.

NOTE 2
The lastIndexOf function is intentionally generic; it does not require that its this value be a String object. Therefore,
it can be transferred to other kinds of objects for use as a method.

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement the
localeCompare method as specified in the ECMA-402 specification. If an ECMAScript implementation does not
include the ECMA-402 API the following specification of the localeCompare method is used.

When the localeCompare method is called with argument that, it returns a Number other than NaN that represents
the result of a locale-sensitive String comparison of the this value (converted to a String) with that (converted to a
String). The two Strings are S and That. The two Strings are compared in an implementation-defined fashion. The result
is intended to order String values in the sort order specified by a host default locale, and will be negative, zero, or
positive, depending on whether S comes before That in the sort order, the Strings are equal, or S comes after That in the
sort order, respectively.

Before performing the comparisons, the following steps are performed to prepare the Strings:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let That be ? ToString(that).

The meaning of the optional second and third parameters to this method are defined in the ECMA-402 specification;
implementations that do not include ECMA-402 support must not assign any other interpretation to those parameter
positions.

The localeCompare method, if considered as a function of two arguments this and that, is a consistent comparison
function (as defined in 22.1.3.27) on the set of all Strings.

The actual return values are implementation-defined to permit implementers to encode additional information in the
value, but the function is required to define a total ordering on all Strings. This function must treat Strings that are
canonically equivalent according to the Unicode standard as identical and must return 0 when comparing Strings that are
considered canonically equivalent.

21.1.3.10 String.prototype.localeCompare (that [, reserved1 [, reserved2]])

476

© Ecma International 2019

476

NOTE 1
The localeCompare method itself is not directly suitable as an argument to Array.prototype.sort because
the latter requires a function of two arguments.

NOTE 2
This function is intended to rely on whatever language-sensitive comparison functionality is available to the ECMAScript
environment from the host environment, and to compare according to the rules of the host environment's current locale.
However, regardless of the host provided comparison capabilities, this function must treat Strings that are canonically
equivalent according to the Unicode standard as identical. It is recommended that this function should not honour
Unicode compatibility equivalences or decompositions. For a definition and discussion of canonical equivalence see the
Unicode Standard, chapters 2 and 3, as well as Unicode Standard Annex #15, Unicode Normalization Forms
(https://unicode.org/reports/tr15/) and Unicode Technical Note #5, Canonical Equivalence in Applications
(https://www.unicode.org/notes/tn5/). Also see Unicode Technical Standard #10, Unicode Collation Algorithm
(https://unicode.org/reports/tr10/).

NOTE 3
The localeCompare function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

When the match method is called with argument regexp, the following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. If regexp is neither undefined nor null, then

a. Let matcher be ? GetMethod(regexp, @@match).
b. If matcher is not undefined, then

i. Return ? Call(matcher, regexp, « O »).
3. Let S be ? ToString(O).
4. Let rx be ? RegExpCreate(regexp, undefined).
5. Return ? Invoke(rx, @@match, « S »).

NOTE
The match function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be
transferred to other kinds of objects for use as a method.

When the normalize method is called with one argument form, the following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. If form is not present or form is undefined, set form to "NFC".
4. Let f be ? ToString(form).
5. If f is not one of "NFC", "NFD", "NFKC", or "NFKD", throw a RangeError exception.
6. Let ns be the String value that is the result of normalizing S into the normalization form named by f as specified in

https://unicode.org/reports/tr15/.
7. Return ns.

NOTE

21.1.3.11 String.prototype.match (regexp)

21.1.3.12 String.prototype.normalize ([form])

© Ecma International 2019

477

https://unicode.org/reports/tr15/
https://unicode.org/notes/tn5/
https://unicode.org/reports/tr10/
https://unicode.org/reports/tr15/

The normalize function is intentionally generic; it does not require that its this value be a String object. Therefore it
can be transferred to other kinds of objects for use as a method.

When the padEnd method is called, the following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let intMaxLength be ? ToLength(maxLength).
4. Let stringLength be the length of S.
5. If intMaxLength is not greater than stringLength, return S.
6. If fillString is undefined, let filler be the String value consisting solely of the code unit 0x0020 (SPACE).
7. Else, let filler be ? ToString(fillString).
8. If filler is the empty String, return S.
9. Let fillLen be intMaxLength - stringLength.

10. Let truncatedStringFiller be the String value consisting of repeated concatenations of filler truncated to length
fillLen.

11. Return the string-concatenation of S and truncatedStringFiller.

NOTE 1
The first argument maxLength will be clamped such that it can be no smaller than the length of the this value.

NOTE 2
The optional second argument fillString defaults to " " (the String value consisting of the code unit 0x0020 SPACE).

When the padStart method is called, the following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let intMaxLength be ? ToLength(maxLength).
4. Let stringLength be the length of S.
5. If intMaxLength is not greater than stringLength, return S.
6. If fillString is undefined, let filler be the String value consisting solely of the code unit 0x0020 (SPACE).
7. Else, let filler be ? ToString(fillString).
8. If filler is the empty String, return S.
9. Let fillLen be intMaxLength - stringLength.

10. Let truncatedStringFiller be the String value consisting of repeated concatenations of filler truncated to length
fillLen.

11. Return the string-concatenation of truncatedStringFiller and S.

NOTE 1
The first argument maxLength will be clamped such that it can be no smaller than the length of the this value.

NOTE 2
The optional second argument fillString defaults to " " (the String value consisting of the code unit 0x0020 SPACE).

21.1.3.13 String.prototype.padEnd (maxLength [, fillString])

21.1.3.14 String.prototype.padStart (maxLength [, fillString])

478

© Ecma International 2019

478

The following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let n be ? ToInteger(count).
4. If n < 0, throw a RangeError exception.
5. If n is +∞, throw a RangeError exception.
6. If n is 0, return the empty String.
7. Return the String value that is made from n copies of S appended together.

NOTE 1
This method creates the String value consisting of the code units of the this object (converted to String) repeated count
times.

NOTE 2
The repeat function is intentionally generic; it does not require that its this value be a String object. Therefore, it can
be transferred to other kinds of objects for use as a method.

When the replace method is called with arguments searchValue and replaceValue, the following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. If searchValue is neither undefined nor null, then

a. Let replacer be ? GetMethod(searchValue, @@replace).
b. If replacer is not undefined, then

i. Return ? Call(replacer, searchValue, « O, replaceValue »).
3. Let string be ? ToString(O).
4. Let searchString be ? ToString(searchValue).
5. Let functionalReplace be IsCallable(replaceValue).
6. If functionalReplace is false, then

a. Set replaceValue to ? ToString(replaceValue).
7. Search string for the first occurrence of searchString and let pos be the index within string of the first code unit of

the matched substring and let matched be searchString. If no occurrences of searchString were found, return string.
8. If functionalReplace is true, then

a. Let replValue be ? Call(replaceValue, undefined, « matched, pos, string »).
b. Let replStr be ? ToString(replValue).

9. Else,
a. Let captures be a new empty List.
b. Let replStr be GetSubstitution(matched, string, pos, captures, undefined, replaceValue).

10. Let tailPos be pos + the number of code units in matched.
11. Let newString be the string-concatenation of the first pos code units of string, replStr, and the trailing substring of

string starting at index tailPos. If pos is 0, the first element of the concatenation will be the empty String.
12. Return newString.

NOTE
The replace function is intentionally generic; it does not require that its this value be a String object. Therefore, it can
be transferred to other kinds of objects for use as a method.

21.1.3.15 String.prototype.repeat (count)

21.1.3.16 String.prototype.replace (searchValue, replaceValue)

© Ecma International 2019

479

The abstract operation GetSubstitution performs the following steps:

1. Assert: Type(matched) is String.
2. Let matchLength be the number of code units in matched.
3. Assert: Type(str) is String.
4. Let stringLength be the number of code units in str.
5. Assert: position is a nonnegative integer.
6. Assert: position ≤ stringLength.
7. Assert: captures is a possibly empty List of Strings.
8. Assert: Type(replacement) is String.
9. Let tailPos be position + matchLength.

10. Let m be the number of elements in captures.
11. If namedCaptures is not undefined, then

a. Set namedCaptures to ? ToObject(namedCaptures).
12. Let result be the String value derived from replacement by copying code unit elements from replacement to result

while performing replacements as specified in Table 51. These $ replacements are done left-to-right, and, once
such a replacement is performed, the new replacement text is not subject to further replacements.

13. Return result.

Table 51: Replacement Text Symbol Substitutions

Code
units

Unicode Characters Replacement text

0x0024,
0x0024

$$ $

0x0024,
0x0026

$& matched

0x0024,
0x0060

$` If position is 0, the replacement is the empty String. Otherwise the
replacement is the substring of str that starts at index 0 and whose last code
unit is at index position - 1.

0x0024,
0x0027

$' If tailPos ≥ stringLength, the replacement is the empty String. Otherwise the
replacement is the substring of str that starts at index tailPos and continues to
the end of str.

0x0024,
N
Where
0x0031
≤ N ≤
0x0039

$n where
n is one of
1 2 3 4 5 6 7 8 9
and $n is not followed by a
decimal digit

The nth element of captures, where n is a single digit in the range 1 to 9. If n

≤ m and the nth element of captures is undefined, use the empty String
instead. If n > m, no replacement is done.

21.1.3.16.1 Runtime Semantics: GetSubstitution (matched, str, position, captures, namedCaptures, replacement)

480

© Ecma International 2019

480

0x0024,
N, N
Where
0x0030
≤ N ≤
0x0039

$nn where
n is one of
0 1 2 3 4 5 6 7 8 9

The nnth element of captures, where nn is a two-digit decimal number in the

range 01 to 99. If nn ≤ m and the nnth element of captures is undefined, use
the empty String instead. If nn is 00 or nn > m, no replacement is done.

0x0024,
0x003C

$< 1. If namedCaptures is undefined, the replacement text is the String
"$<".

2. Else,
a. Scan until the next > U+003E (GREATER-THAN SIGN).
b. If none is found, the replacement text is the String "$<".
c. Else,

i. Let groupName be the enclosed substring.
ii. Let capture be ? Get(namedCaptures, groupName).

iii. If capture is undefined, replace the text through > with the
empty string.

iv. Otherwise, replace the text through > with
? ToString(capture).

0x0024 $ in any context that does
not match any of the above.

$

When the search method is called with argument regexp, the following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. If regexp is neither undefined nor null, then

a. Let searcher be ? GetMethod(regexp, @@search).
b. If searcher is not undefined, then

i. Return ? Call(searcher, regexp, « O »).
3. Let string be ? ToString(O).
4. Let rx be ? RegExpCreate(regexp, undefined).
5. Return ? Invoke(rx, @@search, « string »).

NOTE
The search function is intentionally generic; it does not require that its this value be a String object. Therefore, it can
be transferred to other kinds of objects for use as a method.

The slice method takes two arguments, start and end, and returns a substring of the result of converting this object to
a String, starting from index start and running to, but not including, index end (or through the end of the String if end is
undefined). If start is negative, it is treated as sourceLength + start where sourceLength is the length of the String. If
end is negative, it is treated as sourceLength + end where sourceLength is the length of the String. The result is a String

21.1.3.17 String.prototype.search (regexp)

21.1.3.18 String.prototype.slice (start, end)

© Ecma International 2019

481

value, not a String object. The following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let len be the length of S.
4. Let intStart be ? ToInteger(start).
5. If end is undefined, let intEnd be len; else let intEnd be ? ToInteger(end).
6. If intStart < 0, let from be max(len + intStart, 0); otherwise let from be min(intStart, len).
7. If intEnd < 0, let to be max(len + intEnd, 0); otherwise let to be min(intEnd, len).
8. Let span be max(to - from, 0).
9. Return the String value containing span consecutive code units from S beginning with the code unit at index from.

NOTE
The slice function is intentionally generic; it does not require that its this value be a String object. Therefore it can be
transferred to other kinds of objects for use as a method.

Returns an Array object into which substrings of the result of converting this object to a String have been stored. The
substrings are determined by searching from left to right for occurrences of separator; these occurrences are not part of
any substring in the returned array, but serve to divide up the String value. The value of separator may be a String of any
length or it may be an object, such as a RegExp, that has a @@split method.

When the split method is called, the following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. If separator is neither undefined nor null, then

a. Let splitter be ? GetMethod(separator, @@split).
b. If splitter is not undefined, then

i. Return ? Call(splitter, separator, « O, limit »).
3. Let S be ? ToString(O).
4. Let A be ! ArrayCreate(0).
5. Let lengthA be 0.

6. If limit is undefined, let lim be 232 - 1; else let lim be ? ToUint32(limit).
7. Let s be the length of S.
8. Let p be 0.
9. Let R be ? ToString(separator).

10. If lim = 0, return A.
11. If separator is undefined, then

a. Perform ! CreateDataProperty(A, "0", S).
b. Return A.

12. If s = 0, then
a. Let z be SplitMatch(S, 0, R).
b. If z is not false, return A.
c. Perform ! CreateDataProperty(A, "0", S).
d. Return A.

13. Let q be p.
14. Repeat, while q ≠ s

21.1.3.19 String.prototype.split (separator, limit)

482

© Ecma International 2019

482

a. Let e be SplitMatch(S, q, R).
b. If e is false, increase q by 1.
c. Else e is an integer index ≤ s,

i. If e = p, increase q by 1.
ii. Else e ≠ p,

1. Let T be the String value equal to the substring of S consisting of the code units at indices p
(inclusive) through q (exclusive).

2. Perform ! CreateDataProperty(A, ! ToString(lengthA), T).
3. Increment lengthA by 1.
4. If lengthA = lim, return A.
5. Set p to e.
6. Set q to p.

15. Let T be the String value equal to the substring of S consisting of the code units at indices p (inclusive) through s
(exclusive).

16. Perform ! CreateDataProperty(A, ! ToString(lengthA), T).
17. Return A.

NOTE 1
The value of separator may be an empty String. In this case, separator does not match the empty substring at the
beginning or end of the input String, nor does it match the empty substring at the end of the previous separator match. If
separator is the empty String, the String is split up into individual code unit elements; the length of the result array
equals the length of the String, and each substring contains one code unit.

If the this object is (or converts to) the empty String, the result depends on whether separator can match the empty
String. If it can, the result array contains no elements. Otherwise, the result array contains one element, which is the
empty String.

If separator is undefined, then the result array contains just one String, which is the this value (converted to a String). If
limit is not undefined, then the output array is truncated so that it contains no more than limit elements.

NOTE 2
The split function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be
transferred to other kinds of objects for use as a method.

The abstract operation SplitMatch takes three parameters, a String S, an integer q, and a String R, and performs the
following steps in order to return either false or the end index of a match:

1. Assert: Type(R) is String.
2. Let r be the number of code units in R.
3. Let s be the number of code units in S.
4. If q + r > s, return false.
5. If there exists an integer i between 0 (inclusive) and r (exclusive) such that the code unit at index q + i within S is

different from the code unit at index i within R, return false.
6. Return q + r.

The following steps are taken:

21.1.3.19.1 Runtime Semantics: SplitMatch (S, q, R)

21.1.3.20 String.prototype.startsWith (searchString [, position])

© Ecma International 2019

483

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let isRegExp be ? IsRegExp(searchString).
4. If isRegExp is true, throw a TypeError exception.
5. Let searchStr be ? ToString(searchString).
6. Let pos be ? ToInteger(position).
7. Assert: If position is undefined, then pos is 0.
8. Let len be the length of S.
9. Let start be min(max(pos, 0), len).

10. Let searchLength be the length of searchStr.
11. If searchLength + start is greater than len, return false.
12. If the sequence of code units of S starting at start of length searchLength is the same as the full code unit sequence

of searchStr, return true.
13. Otherwise, return false.

NOTE 1
This method returns true if the sequence of code units of searchString converted to a String is the same as the
corresponding code units of this object (converted to a String) starting at index position. Otherwise returns false.

NOTE 2
Throwing an exception if the first argument is a RegExp is specified in order to allow future editions to define extensions
that allow such argument values.

NOTE 3
The startsWith function is intentionally generic; it does not require that its this value be a String object. Therefore, it
can be transferred to other kinds of objects for use as a method.

The substring method takes two arguments, start and end, and returns a substring of the result of converting this
object to a String, starting from index start and running to, but not including, index end of the String (or through the end
of the String if end is undefined). The result is a String value, not a String object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the length of the String, it
is replaced with the length of the String.

If start is larger than end, they are swapped.

The following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let len be the length of S.
4. Let intStart be ? ToInteger(start).
5. If end is undefined, let intEnd be len; else let intEnd be ? ToInteger(end).
6. Let finalStart be min(max(intStart, 0), len).
7. Let finalEnd be min(max(intEnd, 0), len).
8. Let from be min(finalStart, finalEnd).
9. Let to be max(finalStart, finalEnd).

10. Return the String value whose length is to - from, containing code units from S, namely the code units with indices
from through to - 1, in ascending order.

21.1.3.21 String.prototype.substring (start, end)

484

© Ecma International 2019

484

NOTE
The substring function is intentionally generic; it does not require that its this value be a String object. Therefore, it
can be transferred to other kinds of objects for use as a method.

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement the
toLocaleLowerCase method as specified in the ECMA-402 specification. If an ECMAScript implementation does
not include the ECMA-402 API the following specification of the toLocaleLowerCase method is used.

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in 6.1.4.

This function works exactly the same as toLowerCase except that its result is intended to yield the correct result for
the host environment's current locale, rather than a locale-independent result. There will only be a difference in the few
cases (such as Turkish) where the rules for that language conflict with the regular Unicode case mappings.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that
do not include ECMA-402 support must not use those parameter positions for anything else.

NOTE
The toLocaleLowerCase function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement the
toLocaleUpperCase method as specified in the ECMA-402 specification. If an ECMAScript implementation does
not include the ECMA-402 API the following specification of the toLocaleUpperCase method is used.

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in 6.1.4.

This function works exactly the same as toUpperCase except that its result is intended to yield the correct result for
the host environment's current locale, rather than a locale-independent result. There will only be a difference in the few
cases (such as Turkish) where the rules for that language conflict with the regular Unicode case mappings.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that
do not include ECMA-402 support must not use those parameter positions for anything else.

NOTE
The toLocaleUpperCase function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in 6.1.4. The
following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).

21.1.3.22 String.prototype.toLocaleLowerCase ([reserved1 [, reserved2]])

21.1.3.23 String.prototype.toLocaleUpperCase ([reserved1 [, reserved2]])

21.1.3.24 String.prototype.toLowerCase ()

© Ecma International 2019

485

2. Let S be ? ToString(O).
3. Let cpList be a List containing in order the code points as defined in 6.1.4 of S, starting at the first element of S.
4. Let cuList be a List where the elements are the result of toLowercase(cpList), according to the Unicode Default

Case Conversion algorithm.
5. Let L be the String value whose code units are the UTF16Encoding of the code points of cuList.
6. Return L.

The result must be derived according to the locale-insensitive case mappings in the Unicode Character Database (this
explicitly includes not only the UnicodeData.txt file, but also all locale-insensitive mappings in the SpecialCasings.txt
file that accompanies it).

NOTE 1
The case mapping of some code points may produce multiple code points. In this case the result String may not be the
same length as the source String. Because both toUpperCase and toLowerCase have context-sensitive behaviour,
the functions are not symmetrical. In other words, s.toUpperCase().toLowerCase() is not necessarily equal to
s.toLowerCase().

NOTE 2
The toLowerCase function is intentionally generic; it does not require that its this value be a String object. Therefore,
it can be transferred to other kinds of objects for use as a method.

When the toString method is called, the following steps are taken:

1. Return ? thisStringValue(this value).

NOTE
For a String object, the toString method happens to return the same thing as the valueOf method.

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in 6.1.4.

This function behaves in exactly the same way as String.prototype.toLowerCase, except that the String is
mapped using the toUppercase algorithm of the Unicode Default Case Conversion.

NOTE
The toUpperCase function is intentionally generic; it does not require that its this value be a String object. Therefore,
it can be transferred to other kinds of objects for use as a method.

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in 6.1.4.

The following steps are taken:

1. Let S be this value.
2. Return ? TrimString(S, "start+end").

21.1.3.25 String.prototype.toString ()

21.1.3.26 String.prototype.toUpperCase ()

21.1.3.27 String.prototype.trim ()

486

© Ecma International 2019

486

NOTE
The trim function is intentionally generic; it does not require that its this value be a String object. Therefore, it can be
transferred to other kinds of objects for use as a method.

The abstract operation TrimString is called with arguments string and where, and interprets the String value string as a
sequence of UTF-16 encoded code points, as described in 6.1.4. It performs the following steps:

1. Let str be ? RequireObjectCoercible(string).
2. Let S be ? ToString(str).
3. If where is "start", let T be the String value that is a copy of S with leading white space removed.
4. Else if where is "end", let T be the String value that is a copy of S with trailing white space removed.
5. Else,

a. Assert: where is "start+end".
b. Let T be the String value that is a copy of S with both leading and trailing white space removed.

6. Return T.

The definition of white space is the union of WhiteSpace and LineTerminator. When determining whether a Unicode
code point is in Unicode general category “Space_Separator” (“Zs”), code unit sequences are interpreted as UTF-16
encoded code point sequences as specified in 6.1.4.

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in 6.1.4.

The following steps are taken:

1. Let S be this value.
2. Return ? TrimString(S, "end").

NOTE
The trimEnd function is intentionally generic; it does not require that its this value be a String object. Therefore, it can
be transferred to other kinds of objects for use as a method.

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in 6.1.4.

The following steps are taken:

1. Let S be this value.
2. Return ? TrimString(S, "start").

NOTE
The trimStart function is intentionally generic; it does not require that its this value be a String object. Therefore, it
can be transferred to other kinds of objects for use as a method.

21.1.3.27.1 Runtime Semantics: TrimString (string, where)

21.1.3.28 String.prototype.trimEnd ()

21.1.3.29 String.prototype.trimStart ()

© Ecma International 2019

487

When the valueOf method is called, the following steps are taken:

1. Return ? thisStringValue(this value).

When the @@iterator method is called it returns an Iterator object (25.1.1.2) that iterates over the code points of a
String value, returning each code point as a String value. The following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Return CreateStringIterator(S).

The value of the name property of this function is "[Symbol.iterator]".

String instances are String exotic objects and have the internal methods specified for such objects. String instances inherit
properties from the String prototype object. String instances also have a [[StringData]] internal slot.

String instances have a "length" property, and a set of enumerable properties with integer-indexed names.

The number of elements in the String value represented by this String object.

Once a String object is initialized, this property is unchanging. It has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

A String Iterator is an object, that represents a specific iteration over some specific String instance object. There is not a
named constructor for String Iterator objects. Instead, String iterator objects are created by calling certain methods of
String instance objects.

Several methods of String objects return Iterator objects. The abstract operation CreateStringIterator with argument string
is used to create such iterator objects. It performs the following steps:

1. Assert: Type(string) is String.
2. Let iterator be ObjectCreate(%StringIteratorPrototype%, « [[IteratedString]], [[StringIteratorNextIndex]] »).
3. Set iterator.[[IteratedString]] to string.
4. Set iterator.[[StringIteratorNextIndex]] to 0.
5. Return iterator.

The %StringIteratorPrototype% object:

21.1.3.30 String.prototype.valueOf ()

21.1.3.31 String.prototype [@@iterator] ()

21.1.4 Properties of String Instances

21.1.4.1 length

21.1.5 String Iterator Objects

21.1.5.1 CreateStringIterator (string)

21.1.5.2 The %StringIteratorPrototype% Object

488

© Ecma International 2019

488

has properties that are inherited by all String Iterator Objects.
is an ordinary object.
has a [[Prototype]] internal slot whose value is the intrinsic object %IteratorPrototype%.
has the following properties:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have all of the internal slots of a String Iterator Instance (21.1.5.3), throw a TypeError exception.
4. Let s be O.[[IteratedString]].
5. If s is undefined, return CreateIterResultObject(undefined, true).
6. Let position be O.[[StringIteratorNextIndex]].
7. Let len be the length of s.
8. If position ≥ len, then

a. Set O.[[IteratedString]] to undefined.
b. Return CreateIterResultObject(undefined, true).

9. Let first be the numeric value of the code unit at index position within s.
10. If first < 0xD800 or first > 0xDBFF or position + 1 = len, let resultString be the String value consisting of the

single code unit first.
11. Else,

a. Let second be the numeric value of the code unit at index position + 1 within the String s.
b. If second < 0xDC00 or second > 0xDFFF, let resultString be the String value consisting of the single code

unit first.
c. Else, let resultString be the string-concatenation of the code unit first and the code unit second.

12. Let resultSize be the number of code units in resultString.
13. Set O.[[StringIteratorNextIndex]] to position + resultSize.
14. Return CreateIterResultObject(resultString, false).

The initial value of the @@toStringTag property is the String value "String Iterator".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

String Iterator instances are ordinary objects that inherit properties from the %StringIteratorPrototype% intrinsic object.
String Iterator instances are initially created with the internal slots listed in Table 52.

Table 52: Internal Slots of String Iterator Instances

Internal Slot Description

[[IteratedString]] The String value whose code units are being iterated.

[[StringIteratorNextIndex]] The integer index of the next string index to be examined by this iteration.

21.1.5.2.1 %StringIteratorPrototype%.next ()

21.1.5.2.2 %StringIteratorPrototype% [@@toStringTag]

21.1.5.3 Properties of String Iterator Instances

21.2 RegExp (Regular Expression) Objects

© Ecma International 2019

489

A RegExp object contains a regular expression and the associated flags.

NOTE
The form and functionality of regular expressions is modelled after the regular expression facility in the Perl 5
programming language.

The RegExp constructor applies the following grammar to the input pattern String. An error occurs if the grammar
cannot interpret the String as an expansion of Pattern.

Pattern[U, N] ::

Disjunction[?U, ?N]

Disjunction[U, N] ::

Alternative[?U, ?N]
Alternative[?U, ?N] | Disjunction[?U, ?N]

Alternative[U, N] ::

[empty]
Alternative[?U, ?N] Term[?U, ?N]

Term[U, N] ::

Assertion[?U, ?N]
Atom[?U, ?N]
Atom[?U, ?N] Quantifier

Assertion[U, N] ::

^
$
\ b
\ B
(? = Disjunction[?U, ?N])
(? ! Disjunction[?U, ?N])
(? <= Disjunction[?U, ?N])
(? <! Disjunction[?U, ?N])

Quantifier ::
QuantifierPrefix
QuantifierPrefix ?

QuantifierPrefix ::
*
+
?
{ DecimalDigits }

21.2.1 Patterns

Syntax

490

© Ecma International 2019

490

{ DecimalDigits , }
{ DecimalDigits , DecimalDigits }

Atom[U, N] ::

PatternCharacter
.
\ AtomEscape[?U, ?N]
CharacterClass[?U]
(GroupSpecifier[?U] Disjunction[?U, ?N])
(? : Disjunction[?U, ?N])

SyntaxCharacter :: one of
^ $ \ . * + ? () [] { } |

PatternCharacter ::
SourceCharacter but not SyntaxCharacter

AtomEscape[U, N] ::

DecimalEscape
CharacterClassEscape[?U]
CharacterEscape[?U]
[+N] k GroupName[?U]

CharacterEscape[U] ::

ControlEscape
c ControlLetter
0 [lookahead ∉ DecimalDigit]
HexEscapeSequence
RegExpUnicodeEscapeSequence[?U]
IdentityEscape[?U]

ControlEscape :: one of
f n r t v

ControlLetter :: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z

GroupSpecifier[U] ::

[empty]
? GroupName[?U]

GroupName[U] ::

< RegExpIdentifierName[?U] >

RegExpIdentifierName[U] ::

RegExpIdentifierStart[?U]
RegExpIdentifierName[?U] RegExpIdentifierPart[?U]

© Ecma International 2019

491

RegExpIdentifierStart[U] ::

UnicodeIDStart
$
_
\ RegExpUnicodeEscapeSequence[?U]

RegExpIdentifierPart[U] ::

UnicodeIDContinue
$
\ RegExpUnicodeEscapeSequence[?U]
<ZWNJ>
<ZWJ>

RegExpUnicodeEscapeSequence[U] ::

[+U] u LeadSurrogate \u TrailSurrogate
[+U] u LeadSurrogate
[+U] u TrailSurrogate
[+U] u NonSurrogate
[~U] u Hex4Digits
[+U] u{ CodePoint }

Each \u TrailSurrogate for which the choice of associated u LeadSurrogate is ambiguous shall be associated with the
nearest possible u LeadSurrogate that would otherwise have no corresponding \u TrailSurrogate.

LeadSurrogate ::
Hex4Digits but only if the SV of Hex4Digits is in the inclusive range 0xD800 to 0xDBFF

TrailSurrogate ::
Hex4Digits but only if the SV of Hex4Digits is in the inclusive range 0xDC00 to 0xDFFF

NonSurrogate ::
Hex4Digits but only if the SV of Hex4Digits is not in the inclusive range 0xD800 to 0xDFFF

IdentityEscape[U] ::

[+U] SyntaxCharacter
[+U] /
[~U] SourceCharacter but not UnicodeIDContinue

DecimalEscape ::
NonZeroDigit DecimalDigitsopt [lookahead ∉ DecimalDigit]

CharacterClassEscape[U] ::

d
D
s
S
w
W
[+U] p{ UnicodePropertyValueExpression }

492

© Ecma International 2019

492

[+U] P{ UnicodePropertyValueExpression }

UnicodePropertyValueExpression ::
UnicodePropertyName = UnicodePropertyValue
LoneUnicodePropertyNameOrValue

UnicodePropertyName ::
UnicodePropertyNameCharacters

UnicodePropertyNameCharacters ::
UnicodePropertyNameCharacter UnicodePropertyNameCharactersopt

UnicodePropertyValue ::
UnicodePropertyValueCharacters

LoneUnicodePropertyNameOrValue ::
UnicodePropertyValueCharacters

UnicodePropertyValueCharacters ::
UnicodePropertyValueCharacter UnicodePropertyValueCharactersopt

UnicodePropertyValueCharacter ::
UnicodePropertyNameCharacter
0
1
2
3
4
5
6
7
8
9

UnicodePropertyNameCharacter ::
ControlLetter
_

CharacterClass[U] ::

[[lookahead ∉ { ^ }] ClassRanges[?U]]
[^ ClassRanges[?U]]

ClassRanges[U] ::

[empty]
NonemptyClassRanges[?U]

NonemptyClassRanges[U] ::

ClassAtom[?U]
ClassAtom[?U] NonemptyClassRangesNoDash[?U]
ClassAtom[?U] - ClassAtom[?U] ClassRanges[?U]

© Ecma International 2019

493

NonemptyClassRangesNoDash[U] ::

ClassAtom[?U]
ClassAtomNoDash[?U] NonemptyClassRangesNoDash[?U]
ClassAtomNoDash[?U] - ClassAtom[?U] ClassRanges[?U]

ClassAtom[U] ::

-
ClassAtomNoDash[?U]

ClassAtomNoDash[U] ::

SourceCharacter but not one of \ or] or -
\ ClassEscape[?U]

ClassEscape[U] ::

b
[+U] -
CharacterClassEscape[?U]
CharacterEscape[?U]

Pattern :: Disjunction

It is a Syntax Error if NcapturingParens ≥ 232 - 1.
It is a Syntax Error if Pattern contains multiple GroupSpecifiers whose enclosed RegExpIdentifierNames have the
same StringValue.

QuantifierPrefix :: { DecimalDigits , DecimalDigits }

It is a Syntax Error if the MV of the first DecimalDigits is larger than the MV of the second DecimalDigits.

AtomEscape :: k GroupName

It is a Syntax Error if the enclosing Pattern does not contain a GroupSpecifier with an enclosed
RegExpIdentifierName whose StringValue equals the StringValue of the RegExpIdentifierName of this production's
GroupName.

AtomEscape :: DecimalEscape

It is a Syntax Error if the CapturingGroupNumber of DecimalEscape is larger than NcapturingParens (21.2.2.1).

NonemptyClassRanges :: ClassAtom - ClassAtom ClassRanges

It is a Syntax Error if IsCharacterClass of the first ClassAtom is true or IsCharacterClass of the second ClassAtom
is true.
It is a Syntax Error if IsCharacterClass of the first ClassAtom is false and IsCharacterClass of the second ClassAtom
is false and the CharacterValue of the first ClassAtom is larger than the CharacterValue of the second ClassAtom.

NonemptyClassRangesNoDash :: ClassAtomNoDash - ClassAtom ClassRanges

It is a Syntax Error if IsCharacterClass of ClassAtomNoDash is true or IsCharacterClass of ClassAtom is true.
It is a Syntax Error if IsCharacterClass of ClassAtomNoDash is false and IsCharacterClass of ClassAtom is false

21.2.1.1 Static Semantics: Early Errors

494

© Ecma International 2019

494

and the CharacterValue of ClassAtomNoDash is larger than the CharacterValue of ClassAtom.

RegExpIdentifierStart :: \ RegExpUnicodeEscapeSequence

It is a Syntax Error if SV(RegExpUnicodeEscapeSequence) is none of "$", or "_", or the UTF16Encoding of a
code point matched by the UnicodeIDStart lexical grammar production.

RegExpIdentifierPart :: \ RegExpUnicodeEscapeSequence

It is a Syntax Error if SV(RegExpUnicodeEscapeSequence) is none of "$", or "_", or the UTF16Encoding of
either <ZWNJ> or <ZWJ>, or the UTF16Encoding of a Unicode code point that would be matched by the
UnicodeIDContinue lexical grammar production.

UnicodePropertyValueExpression :: UnicodePropertyName = UnicodePropertyValue

It is a Syntax Error if the List of Unicode code points that is SourceText of UnicodePropertyName is not identical
to a List of Unicode code points that is a Unicode property name or property alias listed in the “Property name and
aliases” column of Table 54.
It is a Syntax Error if the List of Unicode code points that is SourceText of UnicodePropertyValue is not identical
to a List of Unicode code points that is a value or value alias for the Unicode property or property alias given by
SourceText of UnicodePropertyName listed in the “Property value and aliases” column of the corresponding tables
Table 56 or Table 57.

UnicodePropertyValueExpression :: LoneUnicodePropertyNameOrValue

It is a Syntax Error if the List of Unicode code points that is SourceText of LoneUnicodePropertyNameOrValue is
not identical to a List of Unicode code points that is a Unicode general category or general category alias listed in
the “Property value and aliases” column of Table 56, nor a binary property or binary property alias listed in the
“Property name and aliases” column of Table 55.

DecimalEscape :: NonZeroDigit

1. Return the MV of NonZeroDigit.

DecimalEscape :: NonZeroDigit DecimalDigits

1. Let n be the number of code points in DecimalDigits.

2. Return (the MV of NonZeroDigit × 10n) plus the MV of DecimalDigits.

The definitions of “the MV of NonZeroDigit” and “the MV of DecimalDigits” are in 11.8.3.

ClassAtom :: -
ClassAtomNoDash :: SourceCharacter but not one of \ or] or -
ClassEscape :: b
ClassEscape :: -
ClassEscape :: CharacterEscape

1. Return false.

ClassEscape :: CharacterClassEscape

21.2.1.2 Static Semantics: CapturingGroupNumber

21.2.1.3 Static Semantics: IsCharacterClass

© Ecma International 2019

495

1. Return true.

ClassAtom :: -

1. Return the code point value of U+002D (HYPHEN-MINUS).

ClassAtomNoDash :: SourceCharacter but not one of \ or] or -

1. Let ch be the code point matched by SourceCharacter.
2. Return the code point value of ch.

ClassEscape :: b

1. Return the code point value of U+0008 (BACKSPACE).

ClassEscape :: -

1. Return the code point value of U+002D (HYPHEN-MINUS).

CharacterEscape :: ControlEscape

1. Return the code point value according to Table 53.

Table 53: ControlEscape Code Point Values

ControlEscape Code Point Value Code Point Unicode Name Symbol

t 9 U+0009 CHARACTER TABULATION <HT>

n 10 U+000A LINE FEED (LF) <LF>

v 11 U+000B LINE TABULATION <VT>

f 12 U+000C FORM FEED (FF) <FF>

r 13 U+000D CARRIAGE RETURN (CR) <CR>

CharacterEscape :: c ControlLetter

1. Let ch be the code point matched by ControlLetter.
2. Let i be ch's code point value.
3. Return the remainder of dividing i by 32.

CharacterEscape :: 0 [lookahead ∉ DecimalDigit]

1. Return the code point value of U+0000 (NULL).

NOTE
\0 represents the <NUL> character and cannot be followed by a decimal digit.

CharacterEscape :: HexEscapeSequence

1. Return the numeric value of the code unit that is the SV of HexEscapeSequence.

21.2.1.4 Static Semantics: CharacterValue

496

© Ecma International 2019

496

RegExpUnicodeEscapeSequence :: u LeadSurrogate \u TrailSurrogate

1. Let lead be the CharacterValue of LeadSurrogate.
2. Let trail be the CharacterValue of TrailSurrogate.
3. Let cp be UTF16Decode(lead, trail).
4. Return the code point value of cp.

RegExpUnicodeEscapeSequence :: u LeadSurrogate

1. Return the CharacterValue of LeadSurrogate.

RegExpUnicodeEscapeSequence :: u TrailSurrogate

1. Return the CharacterValue of TrailSurrogate.

RegExpUnicodeEscapeSequence :: u NonSurrogate

1. Return the CharacterValue of NonSurrogate.

RegExpUnicodeEscapeSequence :: u Hex4Digits

1. Return the MV of Hex4Digits.

RegExpUnicodeEscapeSequence :: u{ CodePoint }

1. Return the MV of CodePoint.

LeadSurrogate :: Hex4Digits
TrailSurrogate :: Hex4Digits
NonSurrogate :: Hex4Digits

1. Return the MV of HexDigits.

CharacterEscape :: IdentityEscape

1. Let ch be the code point matched by IdentityEscape.
2. Return the code point value of ch.

UnicodePropertyNameCharacters :: UnicodePropertyNameCharacter UnicodePropertyNameCharacters
UnicodePropertyValueCharacters :: UnicodePropertyValueCharacter UnicodePropertyValueCharacters

1. Return the List, in source text order, of Unicode code points in the source text matched by this production.

RegExpIdentifierName[U] ::

RegExpIdentifierStart[?U]
RegExpIdentifierName[?U] RegExpIdentifierPart[?U]

1. Return the String value consisting of the sequence of code units corresponding to RegExpIdentifierName. In
determining the sequence any occurrences of \ RegExpUnicodeEscapeSequence are first replaced with the code
point represented by the RegExpUnicodeEscapeSequence and then the code points of the entire

21.2.1.5 Static Semantics: SourceText

21.2.1.6 Static Semantics: StringValue

© Ecma International 2019

497

RegExpIdentifierName are converted to code units by UTF16Encoding each code point.

A regular expression pattern is converted into an internal procedure using the process described below. An
implementation is encouraged to use more efficient algorithms than the ones listed below, as long as the results are the
same. The internal procedure is used as the value of a RegExp object's [[RegExpMatcher]] internal slot.

A Pattern is either a BMP pattern or a Unicode pattern depending upon whether or not its associated flags contain a
"u". A BMP pattern matches against a String interpreted as consisting of a sequence of 16-bit values that are Unicode
code points in the range of the Basic Multilingual Plane. A Unicode pattern matches against a String interpreted as
consisting of Unicode code points encoded using UTF-16. In the context of describing the behaviour of a BMP pattern
“character” means a single 16-bit Unicode BMP code point. In the context of describing the behaviour of a Unicode
pattern “character” means a UTF-16 encoded code point (6.1.4). In either context, “character value” means the numeric
value of the corresponding non-encoded code point.

The syntax and semantics of Pattern is defined as if the source code for the Pattern was a List of SourceCharacter
values where each SourceCharacter corresponds to a Unicode code point. If a BMP pattern contains a non-BMP
SourceCharacter the entire pattern is encoded using UTF-16 and the individual code units of that encoding are used as
the elements of the List.

NOTE
For example, consider a pattern expressed in source text as the single non-BMP character U+1D11E (MUSICAL
SYMBOL G CLEF). Interpreted as a Unicode pattern, it would be a single element (character) List consisting of the
single code point 0x1D11E. However, interpreted as a BMP pattern, it is first UTF-16 encoded to produce a two element
List consisting of the code units 0xD834 and 0xDD1E.

Patterns are passed to the RegExp constructor as ECMAScript String values in which non-BMP characters are UTF-16
encoded. For example, the single character MUSICAL SYMBOL G CLEF pattern, expressed as a String value, is a
String of length 2 whose elements were the code units 0xD834 and 0xDD1E. So no further translation of the string
would be necessary to process it as a BMP pattern consisting of two pattern characters. However, to process it as a
Unicode pattern UTF16Decode must be used in producing a List consisting of a single pattern character, the code point
U+1D11E.

An implementation may not actually perform such translations to or from UTF-16, but the semantics of this specification
requires that the result of pattern matching be as if such translations were performed.

The descriptions below use the following variables:

Input is a List consisting of all of the characters, in order, of the String being matched by the regular expression
pattern. Each character is either a code unit or a code point, depending upon the kind of pattern involved. The

notation Input[n] means the nth character of Input, where n can range between 0 (inclusive) and InputLength
(exclusive).
InputLength is the number of characters in Input.
NcapturingParens is the total number of left-capturing parentheses (i.e. the total number of Atom :: (
GroupSpecifier Disjunction) Parse Nodes) in the pattern. A left-capturing parenthesis is any (pattern character
that is matched by the (terminal of the Atom :: (GroupSpecifier Disjunction) production.

21.2.2 Pattern Semantics

21.2.2.1 Notation

498

© Ecma International 2019

498

DotAll is true if the RegExp object's [[OriginalFlags]] internal slot contains "s" and otherwise is false.
IgnoreCase is true if the RegExp object's [[OriginalFlags]] internal slot contains "i" and otherwise is false.
Multiline is true if the RegExp object's [[OriginalFlags]] internal slot contains "m" and otherwise is false.
Unicode is true if the RegExp object's [[OriginalFlags]] internal slot contains "u" and otherwise is false.

Furthermore, the descriptions below use the following internal data structures:

A CharSet is a mathematical set of characters, either code units or code points depending up the state of the
Unicode flag. “All characters” means either all code unit values or all code point values also depending upon the
state of Unicode.
A State is an ordered pair (endIndex, captures) where endIndex is an integer and captures is a List of
NcapturingParens values. States are used to represent partial match states in the regular expression matching
algorithms. The endIndex is one plus the index of the last input character matched so far by the pattern, while

captures holds the results of capturing parentheses. The nth element of captures is either a List that represents the

value obtained by the nth set of capturing parentheses or undefined if the nth set of capturing parentheses hasn't
been reached yet. Due to backtracking, many States may be in use at any time during the matching process.
A MatchResult is either a State or the special token failure that indicates that the match failed.
A Continuation procedure is an internal closure (i.e. an internal procedure with some arguments already bound to
values) that takes one State argument and returns a MatchResult result. If an internal closure references variables
which are bound in the function that creates the closure, the closure uses the values that these variables had at the
time the closure was created. The Continuation attempts to match the remaining portion (specified by the closure's
already-bound arguments) of the pattern against Input, starting at the intermediate state given by its State argument.
If the match succeeds, the Continuation returns the final State that it reached; if the match fails, the Continuation
returns failure.
A Matcher procedure is an internal closure that takes two arguments — a State and a Continuation — and returns a
MatchResult result. A Matcher attempts to match a middle subpattern (specified by the closure's already-bound
arguments) of the pattern against Input, starting at the intermediate state given by its State argument. The
Continuation argument should be a closure that matches the rest of the pattern. After matching the subpattern of a
pattern to obtain a new State, the Matcher then calls Continuation on that new State to test if the rest of the pattern
can match as well. If it can, the Matcher returns the State returned by Continuation; if not, the Matcher may try
different choices at its choice points, repeatedly calling Continuation until it either succeeds or all possibilities have
been exhausted.
An AssertionTester procedure is an internal closure that takes a State argument and returns a Boolean result. The
assertion tester tests a specific condition (specified by the closure's already-bound arguments) against the current
place in Input and returns true if the condition matched or false if not.

The production Pattern :: Disjunction evaluates as follows:

1. Evaluate Disjunction with +1 as its direction argument to obtain a Matcher m.
2. Return an internal closure that takes two arguments, a String str and an integer index, and performs the following

steps:
a. Assert: index ≤ the length of str.
b. If Unicode is true, let Input be a List consisting of the sequence of code points of str interpreted as a UTF-16

encoded (6.1.4) Unicode string. Otherwise, let Input be a List consisting of the sequence of code units that are
the elements of str. Input will be used throughout the algorithms in 21.2.2. Each element of Input is
considered to be a character.

c. Let InputLength be the number of characters contained in Input. This variable will be used throughout the

21.2.2.2 Pattern

© Ecma International 2019

499

algorithms in 21.2.2.
d. Let listIndex be the index into Input of the character that was obtained from element index of str.
e. Let c be a Continuation that always returns its State argument as a successful MatchResult.
f. Let cap be a List of NcapturingParens undefined values, indexed 1 through NcapturingParens.
g. Let x be the State (listIndex, cap).
h. Call m(x, c) and return its result.

NOTE
A Pattern evaluates (“compiles”) to an internal procedure value. RegExpBuiltinExec can then apply this procedure to a
String and an offset within the String to determine whether the pattern would match starting at exactly that offset within
the String, and, if it does match, what the values of the capturing parentheses would be. The algorithms in 21.2.2 are
designed so that compiling a pattern may throw a SyntaxError exception; on the other hand, once the pattern is
successfully compiled, applying the resulting internal procedure to find a match in a String cannot throw an exception
(except for any host-defined exceptions that can occur anywhere such as out-of-memory).

With parameter direction.

The production Disjunction :: Alternative evaluates as follows:

1. Evaluate Alternative with argument direction to obtain a Matcher m.
2. Return m.

The production Disjunction :: Alternative | Disjunction evaluates as follows:

1. Evaluate Alternative with argument direction to obtain a Matcher m1.
2. Evaluate Disjunction with argument direction to obtain a Matcher m2.
3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the

following steps when evaluated:
a. Call m1(x, c) and let r be its result.
b. If r is not failure, return r.
c. Call m2(x, c) and return its result.

NOTE
The | regular expression operator separates two alternatives. The pattern first tries to match the left Alternative (followed
by the sequel of the regular expression); if it fails, it tries to match the right Disjunction (followed by the sequel of the
regular expression). If the left Alternative, the right Disjunction, and the sequel all have choice points, all choices in the
sequel are tried before moving on to the next choice in the left Alternative. If choices in the left Alternative are
exhausted, the right Disjunction is tried instead of the left Alternative. Any capturing parentheses inside a portion of the
pattern skipped by | produce undefined values instead of Strings. Thus, for example,

/a|ab/.exec("abc")

returns the result "a" and not "ab". Moreover,

/((a)|(ab))((c)|(bc))/.exec("abc")

returns the array

["abc", "a", "a", undefined, "bc", undefined, "bc"]

21.2.2.3 Disjunction

500

© Ecma International 2019

500

and not

["abc", "ab", undefined, "ab", "c", "c", undefined]

The order in which the two alternatives are tried is independent of the value of direction.

With parameter direction.

The production Alternative :: [empty] evaluates as follows:

1. Return a Matcher that takes two arguments, a State x and a Continuation c, and returns the result of calling c(x).

The production Alternative :: Alternative Term evaluates as follows:

1. Evaluate Alternative with argument direction to obtain a Matcher m1.
2. Evaluate Term with argument direction to obtain a Matcher m2.
3. If direction is equal to +1, then

a. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the
following steps when evaluated:

i. Let d be a Continuation that takes a State argument y and returns the result of calling m2(y, c).
ii. Call m1(x, d) and return its result.

4. Else,
a. Assert: direction is equal to -1.
b. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the

following steps when evaluated:
i. Let d be a Continuation that takes a State argument y and returns the result of calling m1(y, c).

ii. Call m2(x, d) and return its result.

NOTE
Consecutive Terms try to simultaneously match consecutive portions of Input. When direction is equal to +1, if the left
Alternative, the right Term, and the sequel of the regular expression all have choice points, all choices in the sequel are
tried before moving on to the next choice in the right Term, and all choices in the right Term are tried before moving on
to the next choice in the left Alternative. When direction is equal to -1, the evaluation order of Alternative and Term are
reversed.

With parameter direction.

The production Term :: Assertion evaluates as follows:

1. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the
following steps when evaluated:

a. Evaluate Assertion to obtain an AssertionTester t.
b. Call t(x) and let r be the resulting Boolean value.
c. If r is false, return failure.
d. Call c(x) and return its result.

21.2.2.4 Alternative

21.2.2.5 Term

© Ecma International 2019

501

NOTE
The AssertionTester is independent of direction.

The production Term :: Atom evaluates as follows:

1. Return the Matcher that is the result of evaluating Atom with argument direction.

The production Term :: Atom Quantifier evaluates as follows:

1. Evaluate Atom with argument direction to obtain a Matcher m.
2. Evaluate Quantifier to obtain the three results: an integer min, an integer (or ∞) max, and Boolean greedy.
3. Assert: If max is finite, then max is not less than min.
4. Let parenIndex be the number of left-capturing parentheses in the entire regular expression that occur to the left of

this Term. This is the total number of Atom :: (GroupSpecifier Disjunction) Parse Nodes prior to or
enclosing this Term.

5. Let parenCount be the number of left-capturing parentheses in Atom. This is the total number of Atom :: (
GroupSpecifier Disjunction) Parse Nodes enclosed by Atom.

6. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the
following steps when evaluated:

a. Call RepeatMatcher(m, min, max, greedy, x, c, parenIndex, parenCount) and return its result.

The abstract operation RepeatMatcher takes eight parameters, a Matcher m, an integer min, an integer (or ∞) max, a
Boolean greedy, a State x, a Continuation c, an integer parenIndex, and an integer parenCount, and performs the
following steps:

1. If max is zero, return c(x).
2. Let d be an internal Continuation closure that takes one State argument y and performs the following steps when

evaluated:
a. If min is zero and y's endIndex is equal to x's endIndex, return failure.
b. If min is zero, let min2 be zero; otherwise let min2 be min - 1.
c. If max is ∞, let max2 be ∞; otherwise let max2 be max - 1.
d. Call RepeatMatcher(m, min2, max2, greedy, y, c, parenIndex, parenCount) and return its result.

3. Let cap be a copy of x's captures List.
4. For each integer k that satisfies parenIndex < k and k ≤ parenIndex + parenCount, set cap[k] to undefined.
5. Let e be x's endIndex.
6. Let xr be the State (e, cap).
7. If min is not zero, return m(xr, d).
8. If greedy is false, then

a. Call c(x) and let z be its result.
b. If z is not failure, return z.
c. Call m(xr, d) and return its result.

9. Call m(xr, d) and let z be its result.
10. If z is not failure, return z.
11. Call c(x) and return its result.

NOTE 1
An Atom followed by a Quantifier is repeated the number of times specified by the Quantifier. A Quantifier can be non-

21.2.2.5.1 Runtime Semantics: RepeatMatcher (m, min, max, greedy, x, c, parenIndex, parenCount)

502

© Ecma International 2019

502

greedy, in which case the Atom pattern is repeated as few times as possible while still matching the sequel, or it can be
greedy, in which case the Atom pattern is repeated as many times as possible while still matching the sequel. The Atom
pattern is repeated rather than the input character sequence that it matches, so different repetitions of the Atom can match
different input substrings.

NOTE 2
If the Atom and the sequel of the regular expression all have choice points, the Atom is first matched as many (or as few,
if non-greedy) times as possible. All choices in the sequel are tried before moving on to the next choice in the last

repetition of Atom. All choices in the last (nth) repetition of Atom are tried before moving on to the next choice in the

next-to-last (n - 1)st repetition of Atom; at which point it may turn out that more or fewer repetitions of Atom are now
possible; these are exhausted (again, starting with either as few or as many as possible) before moving on to the next

choice in the (n - 1)st repetition of Atom and so on.

Compare

/a[a-z]{2,4}/.exec("abcdefghi")

which returns "abcde" with

/a[a-z]{2,4}?/.exec("abcdefghi")

which returns "abc".

Consider also

/(aa|aabaac|ba|b|c)*/.exec("aabaac")

which, by the choice point ordering above, returns the array

["aaba", "ba"]

and not any of:

["aabaac", "aabaac"]
["aabaac", "c"]

The above ordering of choice points can be used to write a regular expression that calculates the greatest common divisor
of two numbers (represented in unary notation). The following example calculates the gcd of 10 and 15:

"aaaaaaaaaa,aaaaaaaaaaaaaaa".replace(/^(a+)\1*,\1+$/, "$1")

which returns the gcd in unary notation "aaaaa".
NOTE 3

Step 4 of the RepeatMatcher clears Atom's captures each time Atom is repeated. We can see its behaviour in the regular
expression

/(z)((a+)?(b+)?(c))*/.exec("zaacbbbcac")

which returns the array

["zaacbbbcac", "z", "ac", "a", undefined, "c"]

and not

["zaacbbbcac", "z", "ac", "a", "bbb", "c"]

© Ecma International 2019

503

because each iteration of the outermost * clears all captured Strings contained in the quantified Atom, which in this case
includes capture Strings numbered 2, 3, 4, and 5.

NOTE 4
Step 1 of the RepeatMatcher's d closure states that, once the minimum number of repetitions has been satisfied, any more
expansions of Atom that match the empty character sequence are not considered for further repetitions. This prevents the
regular expression engine from falling into an infinite loop on patterns such as:

/(a*)*/.exec("b")

or the slightly more complicated:

/(a*)b\1+/.exec("baaaac")

which returns the array

["b", ""]

The production Assertion :: ^ evaluates as follows:

1. Return an internal AssertionTester closure that takes a State argument x and performs the following steps when
evaluated:

a. Let e be x's endIndex.
b. If e is zero, return true.
c. If Multiline is false, return false.
d. If the character Input[e - 1] is one of LineTerminator, return true.
e. Return false.

NOTE
Even when the y flag is used with a pattern, ^ always matches only at the beginning of Input, or (if Multiline is true) at
the beginning of a line.

The production Assertion :: $ evaluates as follows:

1. Return an internal AssertionTester closure that takes a State argument x and performs the following steps when
evaluated:

a. Let e be x's endIndex.
b. If e is equal to InputLength, return true.
c. If Multiline is false, return false.
d. If the character Input[e] is one of LineTerminator, return true.
e. Return false.

The production Assertion :: \ b evaluates as follows:

1. Return an internal AssertionTester closure that takes a State argument x and performs the following steps when
evaluated:

a. Let e be x's endIndex.
b. Call IsWordChar(e - 1) and let a be the Boolean result.

21.2.2.6 Assertion

504

© Ecma International 2019

504

c. Call IsWordChar(e) and let b be the Boolean result.
d. If a is true and b is false, return true.
e. If a is false and b is true, return true.
f. Return false.

The production Assertion :: \ B evaluates as follows:

1. Return an internal AssertionTester closure that takes a State argument x and performs the following steps when
evaluated:

a. Let e be x's endIndex.
b. Call IsWordChar(e - 1) and let a be the Boolean result.
c. Call IsWordChar(e) and let b be the Boolean result.
d. If a is true and b is false, return false.
e. If a is false and b is true, return false.
f. Return true.

The production Assertion :: (? = Disjunction) evaluates as follows:

1. Evaluate Disjunction with +1 as its direction argument to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the

following steps:
a. Let d be a Continuation that always returns its State argument as a successful MatchResult.
b. Call m(x, d) and let r be its result.
c. If r is failure, return failure.
d. Let y be r's State.
e. Let cap be y's captures List.
f. Let xe be x's endIndex.
g. Let z be the State (xe, cap).
h. Call c(z) and return its result.

The production Assertion :: (? ! Disjunction) evaluates as follows:

1. Evaluate Disjunction with +1 as its direction argument to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the

following steps:
a. Let d be a Continuation that always returns its State argument as a successful MatchResult.
b. Call m(x, d) and let r be its result.
c. If r is not failure, return failure.
d. Call c(x) and return its result.

The production Assertion :: (? <= Disjunction) evaluates as follows:

1. Evaluate Disjunction with -1 as its direction argument to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the

following steps:
a. Let d be a Continuation that always returns its State argument as a successful MatchResult.
b. Call m(x, d) and let r be its result.
c. If r is failure, return failure.
d. Let y be r's State.
e. Let cap be y's captures List.
f. Let xe be x's endIndex.

© Ecma International 2019

505

g. Let z be the State (xe, cap).
h. Call c(z) and return its result.

The production Assertion :: (? <! Disjunction) evaluates as follows:

1. Evaluate Disjunction with -1 as its direction argument to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the

following steps:
a. Let d be a Continuation that always returns its State argument as a successful MatchResult.
b. Call m(x, d) and let r be its result.
c. If r is not failure, return failure.
d. Call c(x) and return its result.

The abstract operation WordCharacters performs the following steps:

1. Let A be a set of characters containing the sixty-three characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

2. Let U be an empty set.
3. For each character c not in set A where Canonicalize(c) is in A, add c to U.
4. Assert: Unless Unicode and IgnoreCase are both true, U is empty.
5. Add the characters in set U to set A.
6. Return A.

The abstract operation IsWordChar takes an integer parameter e and performs the following steps:

1. If e is -1 or e is InputLength, return false.
2. Let c be the character Input[e].
3. Let wordChars be the result of ! WordCharacters().
4. If c is in wordChars, return true.
5. Return false.

The production Quantifier :: QuantifierPrefix evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or ∞) max.
2. Return the three results min, max, and true.

The production Quantifier :: QuantifierPrefix ? evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or ∞) max.
2. Return the three results min, max, and false.

21.2.2.6.1 Runtime Semantics: WordCharacters ()

21.2.2.6.2 Runtime Semantics: IsWordChar (e)

21.2.2.7 Quantifier

506

© Ecma International 2019

506

The production QuantifierPrefix :: * evaluates as follows:

1. Return the two results 0 and ∞.

The production QuantifierPrefix :: + evaluates as follows:

1. Return the two results 1 and ∞.

The production QuantifierPrefix :: ? evaluates as follows:

1. Return the two results 0 and 1.

The production QuantifierPrefix :: { DecimalDigits } evaluates as follows:

1. Let i be the MV of DecimalDigits (see 11.8.3).
2. Return the two results i and i.

The production QuantifierPrefix :: { DecimalDigits , } evaluates as follows:

1. Let i be the MV of DecimalDigits.
2. Return the two results i and ∞.

The production QuantifierPrefix :: { DecimalDigits , DecimalDigits } evaluates as follows:

1. Let i be the MV of the first DecimalDigits.
2. Let j be the MV of the second DecimalDigits.
3. Return the two results i and j.

With parameter direction.

The production Atom :: PatternCharacter evaluates as follows:

1. Let ch be the character matched by PatternCharacter.
2. Let A be a one-element CharSet containing the character ch.
3. Call CharacterSetMatcher(A, false, direction) and return its Matcher result.

The production Atom :: . evaluates as follows:

1. If DotAll is true, then
a. Let A be the set of all characters.

2. Otherwise, let A be the set of all characters except LineTerminator.
3. Call CharacterSetMatcher(A, false, direction) and return its Matcher result.

The production Atom :: \ AtomEscape evaluates as follows:

1. Return the Matcher that is the result of evaluating AtomEscape with argument direction.

The production Atom :: CharacterClass evaluates as follows:

1. Evaluate CharacterClass to obtain a CharSet A and a Boolean invert.
2. Call CharacterSetMatcher(A, invert, direction) and return its Matcher result.

21.2.2.8 Atom

© Ecma International 2019

507

The production Atom :: (GroupSpecifier Disjunction) evaluates as follows:

1. Evaluate Disjunction with argument direction to obtain a Matcher m.
2. Let parenIndex be the number of left-capturing parentheses in the entire regular expression that occur to the left of

this Atom. This is the total number of Atom :: (GroupSpecifier Disjunction) Parse Nodes prior to or
enclosing this Atom.

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the
following steps:

a. Let d be an internal Continuation closure that takes one State argument y and performs the following steps:
i. Let cap be a copy of y's captures List.

ii. Let xe be x's endIndex.
iii. Let ye be y's endIndex.
iv. If direction is equal to +1, then

1. Assert: xe ≤ ye.
2. Let s be a new List whose elements are the characters of Input at indices xe (inclusive) through ye

(exclusive).
v. Else,

1. Assert: direction is equal to -1.
2. Assert: ye ≤ xe.
3. Let s be a new List whose elements are the characters of Input at indices ye (inclusive) through xe

(exclusive).
vi. Set cap[parenIndex + 1] to s.

vii. Let z be the State (ye, cap).
viii. Call c(z) and return its result.

b. Call m(x, d) and return its result.

The production Atom :: (? : Disjunction) evaluates as follows:

1. Return the Matcher that is the result of evaluating Disjunction with argument direction.

The abstract operation CharacterSetMatcher takes three arguments, a CharSet A, a Boolean flag invert, and an integer
direction, and performs the following steps:

1. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the
following steps when evaluated:

a. Let e be x's endIndex.
b. Let f be e + direction.
c. If f < 0 or f > InputLength, return failure.
d. Let index be min(e, f).
e. Let ch be the character Input[index].
f. Let cc be Canonicalize(ch).
g. If invert is false, then

i. If there does not exist a member a of set A such that Canonicalize(a) is cc, return failure.
h. Else,

i. Assert: invert is true.
ii. If there exists a member a of set A such that Canonicalize(a) is cc, return failure.

i. Let cap be x's captures List.
j. Let y be the State (f, cap).

21.2.2.8.1 Runtime Semantics: CharacterSetMatcher (A, invert, direction)

508

© Ecma International 2019

508

k. Call c(y) and return its result.

The abstract operation Canonicalize takes a character parameter ch and performs the following steps:

1. If IgnoreCase is false, return ch.
2. If Unicode is true, then

a. If the file CaseFolding.txt of the Unicode Character Database provides a simple or common case folding
mapping for ch, return the result of applying that mapping to ch.

b. Return ch.
3. Else,

a. Assert: ch is a UTF-16 code unit.
b. Let s be the String value consisting of the single code unit ch.
c. Let u be the same result produced as if by performing the algorithm for

String.prototype.toUpperCase using s as the this value.
d. Assert: Type(u) is String.
e. If u does not consist of a single code unit, return ch.
f. Let cu be u's single code unit element.
g. If the numeric value of ch ≥ 128 and the numeric value of cu < 128, return ch.
h. Return cu.

NOTE 1
Parentheses of the form (Disjunction) serve both to group the components of the Disjunction pattern together and to
save the result of the match. The result can be used either in a backreference (\ followed by a nonzero decimal number),
referenced in a replace String, or returned as part of an array from the regular expression matching internal procedure. To
inhibit the capturing behaviour of parentheses, use the form (?: Disjunction) instead.

NOTE 2
The form (?= Disjunction) specifies a zero-width positive lookahead. In order for it to succeed, the pattern inside
Disjunction must match at the current position, but the current position is not advanced before matching the sequel. If
Disjunction can match at the current position in several ways, only the first one is tried. Unlike other regular expression
operators, there is no backtracking into a (?= form (this unusual behaviour is inherited from Perl). This only matters
when the Disjunction contains capturing parentheses and the sequel of the pattern contains backreferences to those
captures.

For example,

/(?=(a+))/.exec("baaabac")

matches the empty String immediately after the first b and therefore returns the array:

["", "aaa"]

To illustrate the lack of backtracking into the lookahead, consider:

/(?=(a+))a*b\1/.exec("baaabac")

This expression returns

["aba", "a"]

and not:

21.2.2.8.2 Runtime Semantics: Canonicalize (ch)

© Ecma International 2019

509

["aaaba", "a"]

NOTE 3
The form (?! Disjunction) specifies a zero-width negative lookahead. In order for it to succeed, the pattern inside
Disjunction must fail to match at the current position. The current position is not advanced before matching the sequel.
Disjunction can contain capturing parentheses, but backreferences to them only make sense from within Disjunction
itself. Backreferences to these capturing parentheses from elsewhere in the pattern always return undefined because the
negative lookahead must fail for the pattern to succeed. For example,

/(.*?)a(?!(a+)b\2c)\2(.*)/.exec("baaabaac")

looks for an a not immediately followed by some positive number n of a's, a b, another n a's (specified by the first \2)
and a c. The second \2 is outside the negative lookahead, so it matches against undefined and therefore always
succeeds. The whole expression returns the array:

["baaabaac", "ba", undefined, "abaac"]

NOTE 4
In case-insignificant matches when Unicode is true, all characters are implicitly case-folded using the simple mapping
provided by the Unicode standard immediately before they are compared. The simple mapping always maps to a single
code point, so it does not map, for example, "ß" (U+00DF) to "SS". It may however map a code point outside the
Basic Latin range to a character within, for example, "ſ" (U+017F) to "s". Such characters are not mapped if Unicode
is false. This prevents Unicode code points such as U+017F and U+212A from matching regular expressions such as
/[a-z]/i, but they will match /[a-z]/ui.

The abstract operation UnicodeMatchProperty takes a parameter p that is a List of Unicode code points and performs the
following steps:

1. Assert: p is a List of Unicode code points that is identical to a List of Unicode code points that is a Unicode
property name or property alias listed in the “Property name and aliases” column of Table 54 or Table 55.

2. Let c be the canonical property name of p as given in the “Canonical property name” column of the corresponding
row.

3. Return the List of Unicode code points of c.

Implementations must support the Unicode property names and aliases listed in Table 54 and Table 55. To ensure
interoperability, implementations must not support any other property names or aliases.

NOTE 1
For example, Script_Extensions (property name) and scx (property alias) are valid, but
script_extensions or Scx aren't.

NOTE 2
The listed properties form a superset of what UTS18 RL1.2 requires.

Table 54: Non-binary Unicode property aliases and their canonical property names
Property name and aliases Canonical property name

21.2.2.8.3 Runtime Semantics: UnicodeMatchProperty (p)

510

© Ecma International 2019

510

https://unicode.org/reports/tr18/#RL1.2

General_Category
gc

General_Category

Script
sc

Script

Script_Extensions
scx

Script_Extensions

Property name and aliases Canonical property name

Table 55: Binary Unicode property aliases and their canonical property names
Property name and aliases Canonical property name

ASCII ASCII

ASCII_Hex_Digit
AHex

ASCII_Hex_Digit

Alphabetic
Alpha

Alphabetic

Any Any

Assigned Assigned

Bidi_Control
Bidi_C

Bidi_Control

Bidi_Mirrored
Bidi_M

Bidi_Mirrored

Case_Ignorable
CI

Case_Ignorable

Cased Cased

Changes_When_Casefolded
CWCF

Changes_When_Casefolded

Changes_When_Casemapped
CWCM

Changes_When_Casemapped

Changes_When_Lowercased
CWL

Changes_When_Lowercased

Changes_When_NFKC_Casefolded
CWKCF

Changes_When_NFKC_Casefolded

© Ecma International 2019

511

https://unicode.org/reports/tr18/#General_Category_Property
https://unicode.org/reports/tr24/#Script
https://unicode.org/reports/tr24/#Script_Extensions
https://unicode.org/reports/tr18/#General_Category_Property
https://unicode.org/reports/tr44/#ASCII_Hex_Digit
https://unicode.org/reports/tr44/#Alphabetic
https://unicode.org/reports/tr18/#General_Category_Property
https://unicode.org/reports/tr18/#General_Category_Property
https://unicode.org/reports/tr44/#Bidi_Control
https://unicode.org/reports/tr44/#Bidi_Mirrored
https://unicode.org/reports/tr44/#Case_Ignorable
https://unicode.org/reports/tr44/#Cased
https://unicode.org/reports/tr44/#CWCF
https://unicode.org/reports/tr44/#CWCM
https://unicode.org/reports/tr44/#CWL
https://unicode.org/reports/tr44/#CWKCF

Changes_When_Titlecased
CWT

Changes_When_Titlecased

Changes_When_Uppercased
CWU

Changes_When_Uppercased

Dash Dash

Default_Ignorable_Code_Point
DI

Default_Ignorable_Code_Point

Deprecated
Dep

Deprecated

Diacritic
Dia

Diacritic

Emoji Emoji

Emoji_Component Emoji_Component

Emoji_Modifier Emoji_Modifier

Emoji_Modifier_Base Emoji_Modifier_Base

Emoji_Presentation Emoji_Presentation

Extended_Pictographic Extended_Pictographic

Extender
Ext

Extender

Grapheme_Base
Gr_Base

Grapheme_Base

Grapheme_Extend
Gr_Ext

Grapheme_Extend

Hex_Digit
Hex

Hex_Digit

IDS_Binary_Operator
IDSB

IDS_Binary_Operator

IDS_Trinary_Operator
IDST

IDS_Trinary_Operator

ID_Continue
IDC

ID_Continue

Property name and aliases Canonical property name

512

© Ecma International 2019

512

https://unicode.org/reports/tr44/#CWT
https://unicode.org/reports/tr44/#CWU
https://unicode.org/reports/tr44/#Dash
https://unicode.org/reports/tr44/#Default_Ignorable_Code_Point
https://unicode.org/reports/tr44/#Deprecated
https://unicode.org/reports/tr44/#Diacritic
https://unicode.org/reports/tr51/#Emoji_Properties
https://unicode.org/reports/tr51/#Emoji_Properties
https://unicode.org/reports/tr51/#Emoji_Properties
https://unicode.org/reports/tr51/#Emoji_Properties
https://unicode.org/reports/tr51/#Emoji_Properties
https://unicode.org/reports/tr51/#Emoji_Properties
https://unicode.org/reports/tr44/#Extender
https://unicode.org/reports/tr44/#Grapheme_Base
https://unicode.org/reports/tr44/#Grapheme_Extend
https://unicode.org/reports/tr44/#Hex_Digit
https://unicode.org/reports/tr44/#IDS_Binary_Operator
https://unicode.org/reports/tr44/#IDS_Trinary_Operator
https://unicode.org/reports/tr44/#ID_Continue

ID_Start
IDS

ID_Start

Ideographic
Ideo

Ideographic

Join_Control
Join_C

Join_Control

Logical_Order_Exception
LOE

Logical_Order_Exception

Lowercase
Lower

Lowercase

Math Math

Noncharacter_Code_Point
NChar

Noncharacter_Code_Point

Pattern_Syntax
Pat_Syn

Pattern_Syntax

Pattern_White_Space
Pat_WS

Pattern_White_Space

Quotation_Mark
QMark

Quotation_Mark

Radical Radical

Regional_Indicator
RI

Regional_Indicator

Sentence_Terminal
STerm

Sentence_Terminal

Soft_Dotted
SD

Soft_Dotted

Terminal_Punctuation
Term

Terminal_Punctuation

Unified_Ideograph
UIdeo

Unified_Ideograph

Property name and aliases Canonical property name

© Ecma International 2019

513

https://unicode.org/reports/tr44/#ID_Start
https://unicode.org/reports/tr44/#Ideographic
https://unicode.org/reports/tr44/#Join_Control
https://unicode.org/reports/tr44/#Logical_Order_Exception
https://unicode.org/reports/tr44/#Lowercase
https://unicode.org/reports/tr44/#Math
https://unicode.org/reports/tr44/#Noncharacter_Code_Point
https://unicode.org/reports/tr44/#Pattern_Syntax
https://unicode.org/reports/tr44/#Pattern_White_Space
https://unicode.org/reports/tr44/#Quotation_Mark
https://unicode.org/reports/tr44/#Radical
https://unicode.org/reports/tr44/#Regional_Indicator
https://unicode.org/reports/tr44/#STerm
https://unicode.org/reports/tr44/#Soft_Dotted
https://unicode.org/reports/tr44/#Terminal_Punctuation
https://unicode.org/reports/tr44/#Unified_Ideograph

Uppercase
Upper

Uppercase

Variation_Selector
VS

Variation_Selector

White_Space
space

White_Space

XID_Continue
XIDC

XID_Continue

XID_Start
XIDS

XID_Start

Property name and aliases Canonical property name

The abstract operation UnicodeMatchPropertyValue takes two parameters p and v, each of which is a List of Unicode
code points, and performs the following steps:

1. Assert: p is a List of Unicode code points that is identical to a List of Unicode code points that is a canonical,
unaliased Unicode property name listed in the “Canonical property name” column of Table 54.

2. Assert: v is a List of Unicode code points that is identical to a List of Unicode code points that is a property value
or property value alias for Unicode property p listed in the “Property value and aliases” column of Table 56 or
Table 57.

3. Let value be the canonical property value of v as given in the “Canonical property value” column of the
corresponding row.

4. Return the List of Unicode code points of value.

Implementations must support the Unicode property value names and aliases listed in Table 56 and Table 57. To ensure
interoperability, implementations must not support any other property value names or aliases.

NOTE 1
For example, Xpeo and Old_Persian are valid Script_Extensions values, but xpeo and Old Persian
aren't.

NOTE 2
This algorithm differs from the matching rules for symbolic values listed in UAX44: case, white space, U+002D
(HYPHEN-MINUS), and U+005F (LOW LINE) are not ignored, and the Is prefix is not supported.

Table 56: Value aliases and canonical values for the Unicode property General_Category
Property value and aliases Canonical property value

Cased_Letter
LC

Cased_Letter

21.2.2.8.4 Runtime Semantics: UnicodeMatchPropertyValue (p, v)

514

© Ecma International 2019

514

https://unicode.org/reports/tr44/#Uppercase
https://unicode.org/reports/tr44/#Variation_Selector
https://unicode.org/reports/tr44/#White_Space
https://unicode.org/reports/tr44/#XID_Continue
https://unicode.org/reports/tr44/#XID_Start
https://unicode.org/reports/tr44/#Matching_Symbolic
https://unicode.org/reports/tr18/#General_Category_Property

Close_Punctuation
Pe

Close_Punctuation

Connector_Punctuation
Pc

Connector_Punctuation

Control
Cc
cntrl

Control

Currency_Symbol
Sc

Currency_Symbol

Dash_Punctuation
Pd

Dash_Punctuation

Decimal_Number
Nd
digit

Decimal_Number

Enclosing_Mark
Me

Enclosing_Mark

Final_Punctuation
Pf

Final_Punctuation

Format
Cf

Format

Initial_Punctuation
Pi

Initial_Punctuation

Letter
L

Letter

Letter_Number
Nl

Letter_Number

Line_Separator
Zl

Line_Separator

Lowercase_Letter
Ll

Lowercase_Letter

Property value and aliases Canonical property value

© Ecma International 2019

515

Mark
M
Combining_Mark

Mark

Math_Symbol
Sm

Math_Symbol

Modifier_Letter
Lm

Modifier_Letter

Modifier_Symbol
Sk

Modifier_Symbol

Nonspacing_Mark
Mn

Nonspacing_Mark

Number
N

Number

Open_Punctuation
Ps

Open_Punctuation

Other
C

Other

Other_Letter
Lo

Other_Letter

Other_Number
No

Other_Number

Other_Punctuation
Po

Other_Punctuation

Other_Symbol
So

Other_Symbol

Paragraph_Separator
Zp

Paragraph_Separator

Private_Use
Co

Private_Use

Property value and aliases Canonical property value

516

© Ecma International 2019

516

Punctuation
P
punct

Punctuation

Separator
Z

Separator

Space_Separator
Zs

Space_Separator

Spacing_Mark
Mc

Spacing_Mark

Surrogate
Cs

Surrogate

Symbol
S

Symbol

Titlecase_Letter
Lt

Titlecase_Letter

Unassigned
Cn

Unassigned

Uppercase_Letter
Lu

Uppercase_Letter

Property value and aliases Canonical property value

Table 57: Value aliases and canonical values for the Unicode properties Script and Script_Extensions
Property value and aliases Canonical property value

Adlam
Adlm

Adlam

Ahom
Ahom

Ahom

Anatolian_Hieroglyphs
Hluw

Anatolian_Hieroglyphs

Arabic
Arab

Arabic

© Ecma International 2019

517

https://unicode.org/reports/tr24/#Script
https://unicode.org/reports/tr24/#Script_Extensions

Armenian
Armn

Armenian

Avestan
Avst

Avestan

Balinese
Bali

Balinese

Bamum
Bamu

Bamum

Bassa_Vah
Bass

Bassa_Vah

Batak
Batk

Batak

Bengali
Beng

Bengali

Bhaiksuki
Bhks

Bhaiksuki

Bopomofo
Bopo

Bopomofo

Brahmi
Brah

Brahmi

Braille
Brai

Braille

Buginese
Bugi

Buginese

Buhid
Buhd

Buhid

Canadian_Aboriginal
Cans

Canadian_Aboriginal

Carian
Cari

Carian

Property value and aliases Canonical property value

518

© Ecma International 2019

518

Caucasian_Albanian
Aghb

Caucasian_Albanian

Chakma
Cakm

Chakma

Cham
Cham

Cham

Cherokee
Cher

Cherokee

Common
Zyyy

Common

Coptic
Copt
Qaac

Coptic

Cuneiform
Xsux

Cuneiform

Cypriot
Cprt

Cypriot

Cyrillic
Cyrl

Cyrillic

Deseret
Dsrt

Deseret

Devanagari
Deva

Devanagari

Dogra
Dogr

Dogra

Duployan
Dupl

Duployan

Egyptian_Hieroglyphs
Egyp

Egyptian_Hieroglyphs

Elbasan
Elba

Elbasan

Property value and aliases Canonical property value

© Ecma International 2019

519

Ethiopic
Ethi

Ethiopic

Georgian
Geor

Georgian

Glagolitic
Glag

Glagolitic

Gothic
Goth

Gothic

Grantha
Gran

Grantha

Greek
Grek

Greek

Gujarati
Gujr

Gujarati

Gunjala_Gondi
Gong

Gunjala_Gondi

Gurmukhi
Guru

Gurmukhi

Han
Hani

Han

Hangul
Hang

Hangul

Hanifi_Rohingya
Rohg

Hanifi_Rohingya

Hanunoo
Hano

Hanunoo

Hatran
Hatr

Hatran

Hebrew
Hebr

Hebrew

Property value and aliases Canonical property value

520

© Ecma International 2019

520

Hiragana
Hira

Hiragana

Imperial_Aramaic
Armi

Imperial_Aramaic

Inherited
Zinh
Qaai

Inherited

Inscriptional_Pahlavi
Phli

Inscriptional_Pahlavi

Inscriptional_Parthian
Prti

Inscriptional_Parthian

Javanese
Java

Javanese

Kaithi
Kthi

Kaithi

Kannada
Knda

Kannada

Katakana
Kana

Katakana

Kayah_Li
Kali

Kayah_Li

Kharoshthi
Khar

Kharoshthi

Khmer
Khmr

Khmer

Khojki
Khoj

Khojki

Khudawadi
Sind

Khudawadi

Lao
Laoo

Lao

Property value and aliases Canonical property value

© Ecma International 2019

521

Latin
Latn

Latin

Lepcha
Lepc

Lepcha

Limbu
Limb

Limbu

Linear_A
Lina

Linear_A

Linear_B
Linb

Linear_B

Lisu
Lisu

Lisu

Lycian
Lyci

Lycian

Lydian
Lydi

Lydian

Mahajani
Mahj

Mahajani

Makasar
Maka

Makasar

Malayalam
Mlym

Malayalam

Mandaic
Mand

Mandaic

Manichaean
Mani

Manichaean

Marchen
Marc

Marchen

Medefaidrin
Medf

Medefaidrin

Property value and aliases Canonical property value

522

© Ecma International 2019

522

Masaram_Gondi
Gonm

Masaram_Gondi

Meetei_Mayek
Mtei

Meetei_Mayek

Mende_Kikakui
Mend

Mende_Kikakui

Meroitic_Cursive
Merc

Meroitic_Cursive

Meroitic_Hieroglyphs
Mero

Meroitic_Hieroglyphs

Miao
Plrd

Miao

Modi
Modi

Modi

Mongolian
Mong

Mongolian

Mro
Mroo

Mro

Multani
Mult

Multani

Myanmar
Mymr

Myanmar

Nabataean
Nbat

Nabataean

New_Tai_Lue
Talu

New_Tai_Lue

Newa
Newa

Newa

Nko
Nkoo

Nko

Property value and aliases Canonical property value

© Ecma International 2019

523

Nushu
Nshu

Nushu

Ogham
Ogam

Ogham

Ol_Chiki
Olck

Ol_Chiki

Old_Hungarian
Hung

Old_Hungarian

Old_Italic
Ital

Old_Italic

Old_North_Arabian
Narb

Old_North_Arabian

Old_Permic
Perm

Old_Permic

Old_Persian
Xpeo

Old_Persian

Old_Sogdian
Sogo

Old_Sogdian

Old_South_Arabian
Sarb

Old_South_Arabian

Old_Turkic
Orkh

Old_Turkic

Oriya
Orya

Oriya

Osage
Osge

Osage

Osmanya
Osma

Osmanya

Pahawh_Hmong
Hmng

Pahawh_Hmong

Property value and aliases Canonical property value

524

© Ecma International 2019

524

Palmyrene
Palm

Palmyrene

Pau_Cin_Hau
Pauc

Pau_Cin_Hau

Phags_Pa
Phag

Phags_Pa

Phoenician
Phnx

Phoenician

Psalter_Pahlavi
Phlp

Psalter_Pahlavi

Rejang
Rjng

Rejang

Runic
Runr

Runic

Samaritan
Samr

Samaritan

Saurashtra
Saur

Saurashtra

Sharada
Shrd

Sharada

Shavian
Shaw

Shavian

Siddham
Sidd

Siddham

SignWriting
Sgnw

SignWriting

Sinhala
Sinh

Sinhala

Sogdian
Sogd

Sogdian

Property value and aliases Canonical property value

© Ecma International 2019

525

Sora_Sompeng
Sora

Sora_Sompeng

Soyombo
Soyo

Soyombo

Sundanese
Sund

Sundanese

Syloti_Nagri
Sylo

Syloti_Nagri

Syriac
Syrc

Syriac

Tagalog
Tglg

Tagalog

Tagbanwa
Tagb

Tagbanwa

Tai_Le
Tale

Tai_Le

Tai_Tham
Lana

Tai_Tham

Tai_Viet
Tavt

Tai_Viet

Takri
Takr

Takri

Tamil
Taml

Tamil

Tangut
Tang

Tangut

Telugu
Telu

Telugu

Thaana
Thaa

Thaana

Property value and aliases Canonical property value

526

© Ecma International 2019

526

Thai
Thai

Thai

Tibetan
Tibt

Tibetan

Tifinagh
Tfng

Tifinagh

Tirhuta
Tirh

Tirhuta

Ugaritic
Ugar

Ugaritic

Vai
Vaii

Vai

Warang_Citi
Wara

Warang_Citi

Yi
Yiii

Yi

Zanabazar_Square
Zanb

Zanabazar_Square

Property value and aliases Canonical property value

With parameter direction.

The production AtomEscape :: DecimalEscape evaluates as follows:

1. Evaluate DecimalEscape to obtain an integer n.
2. Assert: n ≤ NcapturingParens.
3. Call BackreferenceMatcher(n, direction) and return its Matcher result.

The production AtomEscape :: CharacterEscape evaluates as follows:

1. Evaluate CharacterEscape to obtain a character ch.
2. Let A be a one-element CharSet containing the character ch.
3. Call CharacterSetMatcher(A, false, direction) and return its Matcher result.

The production AtomEscape :: CharacterClassEscape evaluates as follows:

1. Evaluate CharacterClassEscape to obtain a CharSet A.
2. Call CharacterSetMatcher(A, false, direction) and return its Matcher result.

21.2.2.9 AtomEscape

© Ecma International 2019

527

NOTE
An escape sequence of the form \ followed by a nonzero decimal number n matches the result of the nth set of capturing
parentheses (21.2.2.1). It is an error if the regular expression has fewer than n capturing parentheses. If the regular
expression has n or more capturing parentheses but the nth one is undefined because it has not captured anything, then
the backreference always succeeds.

The production AtomEscape :: k GroupName evaluates as follows:

1. Search the enclosing Pattern for an instance of a GroupSpecifier for a RegExpIdentifierName which has a
StringValue equal to the StringValue of the RegExpIdentifierName contained in GroupName.

2. Assert: A unique such GroupSpecifier is found.
3. Let parenIndex be the number of left-capturing parentheses in the entire regular expression that occur to the left of

the located GroupSpecifier. This is the total number of Atom :: (GroupSpecifier Disjunction) Parse Nodes
prior to or enclosing the located GroupSpecifier.

4. Call BackreferenceMatcher(parenIndex, direction) and return its Matcher result.

The abstract operation BackreferenceMatcher takes two arguments, an integer n and an integer direction, and performs
the following steps:

1. Return an internal Matcher closure that takes two arguments, a State x and a Continuation c, and performs the
following steps:

a. Let cap be x's captures List.
b. Let s be cap[n].
c. If s is undefined, return c(x).
d. Let e be x's endIndex.
e. Let len be the number of elements in s.
f. Let f be e + direction × len.
g. If f < 0 or f > InputLength, return failure.
h. Let g be min(e, f).
i. If there exists an integer i between 0 (inclusive) and len (exclusive) such that Canonicalize(s[i]) is not the

same character value as Canonicalize(Input[g + i]), return failure.
j. Let y be the State (f, cap).
k. Call c(y) and return its result.

The CharacterEscape productions evaluate as follows:

CharacterEscape ::
ControlEscape
c ControlLetter
0 [lookahead ∉ DecimalDigit]
HexEscapeSequence
RegExpUnicodeEscapeSequence
IdentityEscape

1. Let cv be the CharacterValue of this CharacterEscape.

21.2.2.9.1 Runtime Semantics: BackreferenceMatcher (n, direction)

21.2.2.10 CharacterEscape

528

© Ecma International 2019

528

2. Return the character whose character value is cv.

The DecimalEscape productions evaluate as follows:

DecimalEscape :: NonZeroDigit DecimalDigits

1. Return the CapturingGroupNumber of this DecimalEscape.

NOTE
If \ is followed by a decimal number n whose first digit is not 0, then the escape sequence is considered to be a
backreference. It is an error if n is greater than the total number of left-capturing parentheses in the entire regular
expression.

The production CharacterClassEscape :: d evaluates as follows:

1. Return the ten-element set of characters containing the characters 0 through 9 inclusive.

The production CharacterClassEscape :: D evaluates as follows:

1. Return the set of all characters not included in the set returned by CharacterClassEscape :: d .

The production CharacterClassEscape :: s evaluates as follows:

1. Return the set of characters containing the characters that are on the right-hand side of the WhiteSpace or
LineTerminator productions.

The production CharacterClassEscape :: S evaluates as follows:

1. Return the set of all characters not included in the set returned by CharacterClassEscape :: s .

The production CharacterClassEscape :: w evaluates as follows:

1. Return the set of all characters returned by WordCharacters().

The production CharacterClassEscape :: W evaluates as follows:

1. Return the set of all characters not included in the set returned by CharacterClassEscape :: w .

The production CharacterClassEscape :: p{ UnicodePropertyValueExpression } evaluates by returning the CharSet
containing all Unicode code points included in the CharSet returned by UnicodePropertyValueExpression.

The production CharacterClassEscape :: P{ UnicodePropertyValueExpression } evaluates by returning the CharSet
containing all Unicode code points not included in the CharSet returned by UnicodePropertyValueExpression.

The production UnicodePropertyValueExpression :: UnicodePropertyName = UnicodePropertyValue evaluates as
follows:

1. Let ps be SourceText of UnicodePropertyName.
2. Let p be ! UnicodeMatchProperty(ps).

21.2.2.11 DecimalEscape

21.2.2.12 CharacterClassEscape

© Ecma International 2019

529

3. Assert: p is a Unicode property name or property alias listed in the “Property name and aliases” column of Table
54.

4. Let vs be SourceText of UnicodePropertyValue.
5. Let v be ! UnicodeMatchPropertyValue(p, vs).
6. Return the CharSet containing all Unicode code points whose character database definition includes the property p

with value v.

The production UnicodePropertyValueExpression :: LoneUnicodePropertyNameOrValue evaluates as follows:

1. Let s be SourceText of LoneUnicodePropertyNameOrValue.
2. If ! UnicodeMatchPropertyValue("General_Category", s) is identical to a List of Unicode code points that is

the name of a Unicode general category or general category alias listed in the “Property value and aliases” column
of Table 56, then

a. Return the CharSet containing all Unicode code points whose character database definition includes the
property “General_Category” with value s.

3. Let p be ! UnicodeMatchProperty(s).
4. Assert: p is a binary Unicode property or binary property alias listed in the “Property name and aliases” column of

Table 55.
5. Return the CharSet containing all Unicode code points whose character database definition includes the property p

with value “True”.

The production CharacterClass :: [ClassRanges] evaluates as follows:

1. Evaluate ClassRanges to obtain a CharSet A.
2. Return the two results A and false.

The production CharacterClass :: [^ ClassRanges] evaluates as follows:

1. Evaluate ClassRanges to obtain a CharSet A.
2. Return the two results A and true.

The production ClassRanges :: [empty] evaluates as follows:

1. Return the empty CharSet.

The production ClassRanges :: NonemptyClassRanges evaluates as follows:

1. Return the CharSet that is the result of evaluating NonemptyClassRanges.

The production NonemptyClassRanges :: ClassAtom evaluates as follows:

1. Return the CharSet that is the result of evaluating ClassAtom.

The production NonemptyClassRanges :: ClassAtom NonemptyClassRangesNoDash evaluates as follows:

1. Evaluate ClassAtom to obtain a CharSet A.

21.2.2.13 CharacterClass

21.2.2.14 ClassRanges

21.2.2.15 NonemptyClassRanges

530

© Ecma International 2019

530

2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRanges :: ClassAtom - ClassAtom ClassRanges evaluates as follows:

1. Evaluate the first ClassAtom to obtain a CharSet A.
2. Evaluate the second ClassAtom to obtain a CharSet B.
3. Evaluate ClassRanges to obtain a CharSet C.
4. Call CharacterRange(A, B) and let D be the resulting CharSet.
5. Return the union of CharSets D and C.

The abstract operation CharacterRange takes two CharSet parameters A and B and performs the following steps:

1. Assert: A and B each contain exactly one character.
2. Let a be the one character in CharSet A.
3. Let b be the one character in CharSet B.
4. Let i be the character value of character a.
5. Let j be the character value of character b.
6. Assert: i ≤ j.
7. Return the set containing all characters numbered i through j, inclusive.

The production NonemptyClassRangesNoDash :: ClassAtom evaluates as follows:

1. Return the CharSet that is the result of evaluating ClassAtom.

The production NonemptyClassRangesNoDash :: ClassAtomNoDash NonemptyClassRangesNoDash evaluates as
follows:

1. Evaluate ClassAtomNoDash to obtain a CharSet A.
2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRangesNoDash :: ClassAtomNoDash - ClassAtom ClassRanges evaluates as follows:

1. Evaluate ClassAtomNoDash to obtain a CharSet A.
2. Evaluate ClassAtom to obtain a CharSet B.
3. Evaluate ClassRanges to obtain a CharSet C.
4. Call CharacterRange(A, B) and let D be the resulting CharSet.
5. Return the union of CharSets D and C.

NOTE 1
ClassRanges can expand into a single ClassAtom and/or ranges of two ClassAtom separated by dashes. In the latter case
the ClassRanges includes all characters between the first ClassAtom and the second ClassAtom, inclusive; an error occurs
if either ClassAtom does not represent a single character (for example, if one is \w) or if the first ClassAtom's character
value is greater than the second ClassAtom's character value.

NOTE 2
Even if the pattern ignores case, the case of the two ends of a range is significant in determining which characters belong
to the range. Thus, for example, the pattern /[E-F]/i matches only the letters E, F, e, and f, while the pattern

21.2.2.15.1 Runtime Semantics: CharacterRange (A, B)

21.2.2.16 NonemptyClassRangesNoDash

© Ecma International 2019

531

/[E-f]/i matches all upper and lower-case letters in the Unicode Basic Latin block as well as the symbols [, \,], ^,
_, and `.

NOTE 3
A - character can be treated literally or it can denote a range. It is treated literally if it is the first or last character of
ClassRanges, the beginning or end limit of a range specification, or immediately follows a range specification.

The production ClassAtom :: - evaluates as follows:

1. Return the CharSet containing the single character - U+002D (HYPHEN-MINUS).

The production ClassAtom :: ClassAtomNoDash evaluates as follows:

1. Return the CharSet that is the result of evaluating ClassAtomNoDash.

The production ClassAtomNoDash :: SourceCharacter but not one of \ or] or - evaluates as follows:

1. Return the CharSet containing the character matched by SourceCharacter.

The production ClassAtomNoDash :: \ ClassEscape evaluates as follows:

1. Return the CharSet that is the result of evaluating ClassEscape.

The ClassEscape productions evaluate as follows:

ClassEscape :: b
ClassEscape :: -
ClassEscape :: CharacterEscape

1. Let cv be the CharacterValue of this ClassEscape.
2. Let c be the character whose character value is cv.
3. Return the CharSet containing the single character c.

ClassEscape :: CharacterClassEscape

1. Return the CharSet that is the result of evaluating CharacterClassEscape.

NOTE
A ClassAtom can use any of the escape sequences that are allowed in the rest of the regular expression except for \b,
\B, and backreferences. Inside a CharacterClass, \b means the backspace character, while \B and backreferences raise
errors. Using a backreference inside a ClassAtom causes an error.

The RegExp constructor:

21.2.2.17 ClassAtom

21.2.2.18 ClassAtomNoDash

21.2.2.19 ClassEscape

21.2.3 The RegExp Constructor

532

© Ecma International 2019

532

is the intrinsic object %RegExp%.
is the initial value of the RegExp property of the global object.
creates and initializes a new RegExp object when called as a function rather than as a constructor. Thus the function
call RegExp(…) is equivalent to the object creation expression new RegExp(…) with the same arguments.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified RegExp behaviour must include a super call to the RegExp
constructor to create and initialize subclass instances with the necessary internal slots.

The following steps are taken:

1. Let patternIsRegExp be ? IsRegExp(pattern).
2. If NewTarget is undefined, then

a. Let newTarget be the active function object.
b. If patternIsRegExp is true and flags is undefined, then

i. Let patternConstructor be ? Get(pattern, "constructor").
ii. If SameValue(newTarget, patternConstructor) is true, return pattern.

3. Else, let newTarget be NewTarget.
4. If Type(pattern) is Object and pattern has a [[RegExpMatcher]] internal slot, then

a. Let P be pattern.[[OriginalSource]].
b. If flags is undefined, let F be pattern.[[OriginalFlags]].
c. Else, let F be flags.

5. Else if patternIsRegExp is true, then
a. Let P be ? Get(pattern, "source").
b. If flags is undefined, then

i. Let F be ? Get(pattern, "flags").
c. Else, let F be flags.

6. Else,
a. Let P be pattern.
b. Let F be flags.

7. Let O be ? RegExpAlloc(newTarget).
8. Return ? RegExpInitialize(O, P, F).

NOTE
If pattern is supplied using a StringLiteral, the usual escape sequence substitutions are performed before the String is
processed by RegExp. If pattern must contain an escape sequence to be recognized by RegExp, any U+005C (REVERSE
SOLIDUS) code points must be escaped within the StringLiteral to prevent them being removed when the contents of the
StringLiteral are formed.

When the abstract operation RegExpAlloc with argument newTarget is called, the following steps are taken:

1. Let obj be ? OrdinaryCreateFromConstructor(newTarget, "%RegExpPrototype%", « [[RegExpMatcher]],

21.2.3.1 RegExp (pattern, flags)

21.2.3.2 Abstract Operations for the RegExp Constructor

21.2.3.2.1 Runtime Semantics: RegExpAlloc (newTarget)

© Ecma International 2019

533

[[OriginalSource]], [[OriginalFlags]] »).
2. Perform ! DefinePropertyOrThrow(obj, "lastIndex", PropertyDescriptor { [[Writable]]: true, [[Enumerable]]:

false, [[Configurable]]: false }).
3. Return obj.

When the abstract operation RegExpInitialize with arguments obj, pattern, and flags is called, the following steps are
taken:

1. If pattern is undefined, let P be the empty String.
2. Else, let P be ? ToString(pattern).
3. If flags is undefined, let F be the empty String.
4. Else, let F be ? ToString(flags).
5. If F contains any code unit other than "g", "i", "m", "s", "u", or "y" or if it contains the same code unit more

than once, throw a SyntaxError exception.
6. If F contains "u", let BMP be false; else let BMP be true.
7. If BMP is true, then

a. Parse P using the grammars in 21.2.1 and interpreting each of its 16-bit elements as a Unicode BMP code
point. UTF-16 decoding is not applied to the elements. The goal symbol for the parse is Pattern[~U, ~N] . If

the result of parsing contains a GroupName, reparse with the goal symbol Pattern[~U, +N] and use this

result instead. Throw a SyntaxError exception if P did not conform to the grammar, if any elements of P
were not matched by the parse, or if any Early Error conditions exist.

b. Let patternCharacters be a List whose elements are the code unit elements of P.
8. Else,

a. Parse P using the grammars in 21.2.1 and interpreting P as UTF-16 encoded Unicode code points (6.1.4). The
goal symbol for the parse is Pattern[+U, +N] . Throw a SyntaxError exception if P did not conform to the

grammar, if any elements of P were not matched by the parse, or if any Early Error conditions exist.
b. Let patternCharacters be a List whose elements are the code points resulting from applying UTF-16 decoding

to P's sequence of elements.
9. Set obj.[[OriginalSource]] to P.

10. Set obj.[[OriginalFlags]] to F.
11. Set obj.[[RegExpMatcher]] to the internal procedure that evaluates the above parse of P by applying the semantics

provided in 21.2.2 using patternCharacters as the pattern's List of SourceCharacter values and F as the flag
parameters.

12. Perform ? Set(obj, "lastIndex", 0, true).
13. Return obj.

When the abstract operation RegExpCreate with arguments P and F is called, the following steps are taken:

1. Let obj be ? RegExpAlloc(%RegExp%).
2. Return ? RegExpInitialize(obj, P, F).

When the abstract operation EscapeRegExpPattern with arguments P and F is called, the following occurs:

21.2.3.2.2 Runtime Semantics: RegExpInitialize (obj, pattern, flags)

21.2.3.2.3 Runtime Semantics: RegExpCreate (P, F)

21.2.3.2.4 Runtime Semantics: EscapeRegExpPattern (P, F)

534

© Ecma International 2019

534

1. Let S be a String in the form of a Pattern[~U] (Pattern[+U] if F contains "u") equivalent to P interpreted as

UTF-16 encoded Unicode code points (6.1.4), in which certain code points are escaped as described below. S may
or may not be identical to P; however, the internal procedure that would result from evaluating S as a Pattern[~U]
(Pattern[+U] if F contains "u") must behave identically to the internal procedure given by the constructed object's

[[RegExpMatcher]] internal slot. Multiple calls to this abstract operation using the same values for P and F must
produce identical results.

2. The code points / or any LineTerminator occurring in the pattern shall be escaped in S as necessary to ensure that
the string-concatenation of "/", S, "/", and F can be parsed (in an appropriate lexical context) as a
RegularExpressionLiteral that behaves identically to the constructed regular expression. For example, if P is "/",
then S could be "\/" or "\u002F", among other possibilities, but not "/", because /// followed by F would
be parsed as a SingleLineComment rather than a RegularExpressionLiteral. If P is the empty String, this
specification can be met by letting S be "(?:)".

3. Return S.

The RegExp constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The initial value of RegExp.prototype is the intrinsic object %RegExpPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

RegExp[@@species] is an accessor property whose set accessor function is undefined. Its get accessor function
performs the following steps:

1. Return the this value.

The value of the name property of this function is "get [Symbol.species]".

NOTE
RegExp prototype methods normally use their this object's constructor to create a derived object. However, a subclass
constructor may over-ride that default behaviour by redefining its @@species property.

The RegExp prototype object:

is the intrinsic object %RegExpPrototype%.
is an ordinary object.
is not a RegExp instance and does not have a [[RegExpMatcher]] internal slot or any of the other internal slots of
RegExp instance objects.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.

21.2.4 Properties of the RegExp Constructor

21.2.4.1 RegExp.prototype

21.2.4.2 get RegExp [@@species]

21.2.5 Properties of the RegExp Prototype Object

© Ecma International 2019

535

NOTE
The RegExp prototype object does not have a valueOf property of its own; however, it inherits the valueOf property
from the Object prototype object.

The initial value of RegExp.prototype.constructor is the intrinsic object %RegExp%.

Performs a regular expression match of string against the regular expression and returns an Array object containing the
results of the match, or null if string did not match.

The String ToString(string) is searched for an occurrence of the regular expression pattern as follows:

1. Let R be the this value.
2. If Type(R) is not Object, throw a TypeError exception.
3. If R does not have a [[RegExpMatcher]] internal slot, throw a TypeError exception.
4. Let S be ? ToString(string).
5. Return ? RegExpBuiltinExec(R, S).

The abstract operation RegExpExec with arguments R and S performs the following steps:

1. Assert: Type(R) is Object.
2. Assert: Type(S) is String.
3. Let exec be ? Get(R, "exec").
4. If IsCallable(exec) is true, then

a. Let result be ? Call(exec, R, « S »).
b. If Type(result) is neither Object or Null, throw a TypeError exception.
c. Return result.

5. If R does not have a [[RegExpMatcher]] internal slot, throw a TypeError exception.
6. Return ? RegExpBuiltinExec(R, S).

NOTE
If a callable exec property is not found this algorithm falls back to attempting to use the built-in RegExp matching
algorithm. This provides compatible behaviour for code written for prior editions where most built-in algorithms that use
regular expressions did not perform a dynamic property lookup of exec.

The abstract operation RegExpBuiltinExec with arguments R and S performs the following steps:

1. Assert: R is an initialized RegExp instance.
2. Assert: Type(S) is String.
3. Let length be the number of code units in S.
4. Let lastIndex be ? ToLength(? Get(R, "lastIndex")).

21.2.5.1 RegExp.prototype.constructor

21.2.5.2 RegExp.prototype.exec (string)

21.2.5.2.1 Runtime Semantics: RegExpExec (R, S)

21.2.5.2.2 Runtime Semantics: RegExpBuiltinExec (R, S)

536

© Ecma International 2019

536

5. Let flags be R.[[OriginalFlags]].
6. If flags contains "g", let global be true, else let global be false.
7. If flags contains "y", let sticky be true, else let sticky be false.
8. If global is false and sticky is false, set lastIndex to 0.
9. Let matcher be R.[[RegExpMatcher]].

10. If flags contains "u", let fullUnicode be true, else let fullUnicode be false.
11. Let matchSucceeded be false.
12. Repeat, while matchSucceeded is false

a. If lastIndex > length, then
i. If global is true or sticky is true, then

1. Perform ? Set(R, "lastIndex", 0, true).
ii. Return null.

b. Let r be matcher(S, lastIndex).
c. If r is failure, then

i. If sticky is true, then
1. Perform ? Set(R, "lastIndex", 0, true).
2. Return null.

ii. Set lastIndex to AdvanceStringIndex(S, lastIndex, fullUnicode).
d. Else,

i. Assert: r is a State.
ii. Set matchSucceeded to true.

13. Let e be r's endIndex value.
14. If fullUnicode is true, then

a. e is an index into the Input character list, derived from S, matched by matcher. Let eUTF be the smallest
index into S that corresponds to the character at element e of Input. If e is greater than or equal to the number
of elements in Input, then eUTF is the number of code units in S.

b. Set e to eUTF.
15. If global is true or sticky is true, then

a. Perform ? Set(R, "lastIndex", e, true).
16. Let n be the number of elements in r's captures List. (This is the same value as 21.2.2.1's NcapturingParens.)

17. Assert: n < 232 - 1.
18. Let A be ! ArrayCreate(n + 1).
19. Assert: The value of A's "length" property is n + 1.
20. Perform ! CreateDataProperty(A, "index", lastIndex).
21. Perform ! CreateDataProperty(A, "input", S).
22. Let matchedSubstr be the matched substring (i.e. the portion of S between offset lastIndex inclusive and offset e

exclusive).
23. Perform ! CreateDataProperty(A, "0", matchedSubstr).
24. If R contains any GroupName, then

a. Let groups be ObjectCreate(null).
25. Else,

a. Let groups be undefined.
26. Perform ! CreateDataProperty(A, "groups", groups).
27. For each integer i such that i > 0 and i ≤ n, do

a. Let captureI be ith element of r's captures List.
b. If captureI is undefined, let capturedValue be undefined.
c. Else if fullUnicode is true, then

i. Assert: captureI is a List of code points.

© Ecma International 2019

537

ii. Let capturedValue be the String value whose code units are the UTF16Encoding of the code points of
captureI.

d. Else fullUnicode is false,
i. Assert: captureI is a List of code units.

ii. Let capturedValue be the String value consisting of the code units of captureI.
e. Perform ! CreateDataProperty(A, ! ToString(i), capturedValue).
f. If the ith capture of R was defined with a GroupName, then

i. Let s be the StringValue of the corresponding RegExpIdentifierName.
ii. Perform ! CreateDataProperty(groups, s, capturedValue).

28. Return A.

The abstract operation AdvanceStringIndex with arguments S, index, and unicode performs the following steps:

1. Assert: Type(S) is String.

2. Assert: index is an integer such that 0 ≤ index ≤ 253 - 1.
3. Assert: Type(unicode) is Boolean.
4. If unicode is false, return index + 1.
5. Let length be the number of code units in S.
6. If index + 1 ≥ length, return index + 1.
7. Let first be the numeric value of the code unit at index index within S.
8. If first < 0xD800 or first > 0xDBFF, return index + 1.
9. Let second be the numeric value of the code unit at index index + 1 within S.

10. If second < 0xDC00 or second > 0xDFFF, return index + 1.
11. Return index + 2.

RegExp.prototype.dotAll is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Let R be the this value.
2. If Type(R) is not Object, throw a TypeError exception.
3. If R does not have an [[OriginalFlags]] internal slot, then

a. If SameValue(R, %RegExpPrototype%) is true, return undefined.
b. Otherwise, throw a TypeError exception.

4. Let flags be R.[[OriginalFlags]].
5. If flags contains the code unit 0x0073 (LATIN SMALL LETTER S), return true.
6. Return false.

RegExp.prototype.flags is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Let R be the this value.
2. If Type(R) is not Object, throw a TypeError exception.
3. Let result be the empty String.

21.2.5.2.3 AdvanceStringIndex (S, index, unicode)

21.2.5.3 get RegExp.prototype.dotAll

21.2.5.4 get RegExp.prototype.flags

538

© Ecma International 2019

538

4. Let global be ToBoolean(? Get(R, "global")).
5. If global is true, append the code unit 0x0067 (LATIN SMALL LETTER G) as the last code unit of result.
6. Let ignoreCase be ToBoolean(? Get(R, "ignoreCase")).
7. If ignoreCase is true, append the code unit 0x0069 (LATIN SMALL LETTER I) as the last code unit of result.
8. Let multiline be ToBoolean(? Get(R, "multiline")).
9. If multiline is true, append the code unit 0x006D (LATIN SMALL LETTER M) as the last code unit of result.

10. Let dotAll be ToBoolean(? Get(R, "dotAll")).
11. If dotAll is true, append the code unit 0x0073 (LATIN SMALL LETTER S) as the last code unit of result.
12. Let unicode be ToBoolean(? Get(R, "unicode")).
13. If unicode is true, append the code unit 0x0075 (LATIN SMALL LETTER U) as the last code unit of result.
14. Let sticky be ToBoolean(? Get(R, "sticky")).
15. If sticky is true, append the code unit 0x0079 (LATIN SMALL LETTER Y) as the last code unit of result.
16. Return result.

RegExp.prototype.global is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Let R be the this value.
2. If Type(R) is not Object, throw a TypeError exception.
3. If R does not have an [[OriginalFlags]] internal slot, then

a. If SameValue(R, %RegExpPrototype%) is true, return undefined.
b. Otherwise, throw a TypeError exception.

4. Let flags be R.[[OriginalFlags]].
5. If flags contains the code unit 0x0067 (LATIN SMALL LETTER G), return true.
6. Return false.

RegExp.prototype.ignoreCase is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

1. Let R be the this value.
2. If Type(R) is not Object, throw a TypeError exception.
3. If R does not have an [[OriginalFlags]] internal slot, then

a. If SameValue(R, %RegExpPrototype%) is true, return undefined.
b. Otherwise, throw a TypeError exception.

4. Let flags be R.[[OriginalFlags]].
5. If flags contains the code unit 0x0069 (LATIN SMALL LETTER I), return true.
6. Return false.

When the @@match method is called with argument string, the following steps are taken:

1. Let rx be the this value.
2. If Type(rx) is not Object, throw a TypeError exception.
3. Let S be ? ToString(string).

21.2.5.5 get RegExp.prototype.global

21.2.5.6 get RegExp.prototype.ignoreCase

21.2.5.7 RegExp.prototype [@@match] (string)

© Ecma International 2019

539

4. Let global be ToBoolean(? Get(rx, "global")).
5. If global is false, then

a. Return ? RegExpExec(rx, S).
6. Else global is true,

a. Let fullUnicode be ToBoolean(? Get(rx, "unicode")).
b. Perform ? Set(rx, "lastIndex", 0, true).
c. Let A be ! ArrayCreate(0).
d. Let n be 0.
e. Repeat,

i. Let result be ? RegExpExec(rx, S).
ii. If result is null, then

1. If n = 0, return null.
2. Return A.

iii. Else result is not null,
1. Let matchStr be ? ToString(? Get(result, "0")).
2. Let status be CreateDataProperty(A, ! ToString(n), matchStr).
3. Assert: status is true.
4. If matchStr is the empty String, then

a. Let thisIndex be ? ToLength(? Get(rx, "lastIndex")).
b. Let nextIndex be AdvanceStringIndex(S, thisIndex, fullUnicode).
c. Perform ? Set(rx, "lastIndex", nextIndex, true).

5. Increment n.

The value of the name property of this function is "[Symbol.match]".

NOTE
The @@match property is used by the IsRegExp abstract operation to identify objects that have the basic behaviour of
regular expressions. The absence of a @@match property or the existence of such a property whose value does not
Boolean coerce to true indicates that the object is not intended to be used as a regular expression object.

RegExp.prototype.multiline is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Let R be the this value.
2. If Type(R) is not Object, throw a TypeError exception.
3. If R does not have an [[OriginalFlags]] internal slot, then

a. If SameValue(R, %RegExpPrototype%) is true, return undefined.
b. Otherwise, throw a TypeError exception.

4. Let flags be R.[[OriginalFlags]].
5. If flags contains the code unit 0x006D (LATIN SMALL LETTER M), return true.
6. Return false.

When the @@replace method is called with arguments string and replaceValue, the following steps are taken:

21.2.5.8 get RegExp.prototype.multiline

21.2.5.9 RegExp.prototype [@@replace] (string, replaceValue)

540

© Ecma International 2019

540

1. Let rx be the this value.
2. If Type(rx) is not Object, throw a TypeError exception.
3. Let S be ? ToString(string).
4. Let lengthS be the number of code unit elements in S.
5. Let functionalReplace be IsCallable(replaceValue).
6. If functionalReplace is false, then

a. Set replaceValue to ? ToString(replaceValue).
7. Let global be ToBoolean(? Get(rx, "global")).
8. If global is true, then

a. Let fullUnicode be ToBoolean(? Get(rx, "unicode")).
b. Perform ? Set(rx, "lastIndex", 0, true).

9. Let results be a new empty List.
10. Let done be false.
11. Repeat, while done is false

a. Let result be ? RegExpExec(rx, S).
b. If result is null, set done to true.
c. Else result is not null,

i. Append result to the end of results.
ii. If global is false, set done to true.

iii. Else,
1. Let matchStr be ? ToString(? Get(result, "0")).
2. If matchStr is the empty String, then

a. Let thisIndex be ? ToLength(? Get(rx, "lastIndex")).
b. Let nextIndex be AdvanceStringIndex(S, thisIndex, fullUnicode).
c. Perform ? Set(rx, "lastIndex", nextIndex, true).

12. Let accumulatedResult be the empty String value.
13. Let nextSourcePosition be 0.
14. For each result in results, do

a. Let nCaptures be ? ToLength(? Get(result, "length")).
b. Set nCaptures to max(nCaptures - 1, 0).
c. Let matched be ? ToString(? Get(result, "0")).
d. Let matchLength be the number of code units in matched.
e. Let position be ? ToInteger(? Get(result, "index")).
f. Set position to max(min(position, lengthS), 0).
g. Let n be 1.
h. Let captures be a new empty List.
i. Repeat, while n ≤ nCaptures

i. Let capN be ? Get(result, ! ToString(n)).
ii. If capN is not undefined, then

1. Set capN to ? ToString(capN).
iii. Append capN as the last element of captures.
iv. Increase n by 1.

j. Let namedCaptures be ? Get(result, "groups").
k. If functionalReplace is true, then

i. Let replacerArgs be « matched ».
ii. Append in list order the elements of captures to the end of the List replacerArgs.

iii. Append position and S to replacerArgs.
iv. If namedCaptures is not undefined, then

© Ecma International 2019

541

1. Append namedCaptures as the last element of replacerArgs.
v. Let replValue be ? Call(replaceValue, undefined, replacerArgs).

vi. Let replacement be ? ToString(replValue).
l. Else,

i. Let replacement be GetSubstitution(matched, S, position, captures, namedCaptures, replaceValue).
m. If position ≥ nextSourcePosition, then

i. NOTE: position should not normally move backwards. If it does, it is an indication of an ill-behaving
RegExp subclass or use of an access triggered side-effect to change the global flag or other
characteristics of rx. In such cases, the corresponding substitution is ignored.

ii. Set accumulatedResult to the string-concatenation of the current value of accumulatedResult, the
substring of S consisting of the code units from nextSourcePosition (inclusive) up to position (exclusive),
and replacement.

iii. Set nextSourcePosition to position + matchLength.
15. If nextSourcePosition ≥ lengthS, return accumulatedResult.
16. Return the string-concatenation of accumulatedResult and the substring of S consisting of the code units from

nextSourcePosition (inclusive) up through the final code unit of S (inclusive).

The value of the name property of this function is "[Symbol.replace]".

When the @@search method is called with argument string, the following steps are taken:

1. Let rx be the this value.
2. If Type(rx) is not Object, throw a TypeError exception.
3. Let S be ? ToString(string).
4. Let previousLastIndex be ? Get(rx, "lastIndex").
5. If SameValue(previousLastIndex, 0) is false, then

a. Perform ? Set(rx, "lastIndex", 0, true).
6. Let result be ? RegExpExec(rx, S).
7. Let currentLastIndex be ? Get(rx, "lastIndex").
8. If SameValue(currentLastIndex, previousLastIndex) is false, then

a. Perform ? Set(rx, "lastIndex", previousLastIndex, true).
9. If result is null, return -1.

10. Return ? Get(result, "index").

The value of the name property of this function is "[Symbol.search]".

NOTE
The lastIndex and global properties of this RegExp object are ignored when performing the search. The
lastIndex property is left unchanged.

RegExp.prototype.source is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Let R be the this value.
2. If Type(R) is not Object, throw a TypeError exception.

21.2.5.10 RegExp.prototype [@@search] (string)

21.2.5.11 get RegExp.prototype.source

542

© Ecma International 2019

542

3. If R does not have an [[OriginalSource]] internal slot, then
a. If SameValue(R, %RegExpPrototype%) is true, return "(?:)".
b. Otherwise, throw a TypeError exception.

4. Assert: R has an [[OriginalFlags]] internal slot.
5. Let src be R.[[OriginalSource]].
6. Let flags be R.[[OriginalFlags]].
7. Return EscapeRegExpPattern(src, flags).

NOTE 1
Returns an Array object into which substrings of the result of converting string to a String have been stored. The
substrings are determined by searching from left to right for matches of the this value regular expression; these
occurrences are not part of any substring in the returned array, but serve to divide up the String value.

The this value may be an empty regular expression or a regular expression that can match an empty String. In this case,
the regular expression does not match the empty substring at the beginning or end of the input String, nor does it match
the empty substring at the end of the previous separator match. (For example, if the regular expression matches the
empty String, the String is split up into individual code unit elements; the length of the result array equals the length of
the String, and each substring contains one code unit.) Only the first match at a given index of the String is considered,
even if backtracking could yield a non-empty-substring match at that index. (For example,
/a*?/[Symbol.split]("ab") evaluates to the array ["a", "b"], while /a*/[Symbol.split]("ab")
evaluates to the array ["","b"].)

If the string is (or converts to) the empty String, the result depends on whether the regular expression can match the
empty String. If it can, the result array contains no elements. Otherwise, the result array contains one element, which is
the empty String.

If the regular expression contains capturing parentheses, then each time separator is matched the results (including any
undefined results) of the capturing parentheses are spliced into the output array. For example,

/<(\/)?([^<>]+)>/[Symbol.split]("Aboldand<CODE>coded</CODE>")

evaluates to the array

["A", undefined, "B", "bold", "/", "B", "and", undefined, "CODE", "coded", "/", "CODE"

If limit is not undefined, then the output array is truncated so that it contains no more than limit elements.

When the @@split method is called, the following steps are taken:

1. Let rx be the this value.
2. If Type(rx) is not Object, throw a TypeError exception.
3. Let S be ? ToString(string).
4. Let C be ? SpeciesConstructor(rx, %RegExp%).
5. Let flags be ? ToString(? Get(rx, "flags")).
6. If flags contains "u", let unicodeMatching be true.
7. Else, let unicodeMatching be false.
8. If flags contains "y", let newFlags be flags.
9. Else, let newFlags be the string-concatenation of flags and "y".

10. Let splitter be ? Construct(C, « rx, newFlags »).

21.2.5.12 RegExp.prototype [@@split] (string, limit)

© Ecma International 2019

543

11. Let A be ! ArrayCreate(0).
12. Let lengthA be 0.

13. If limit is undefined, let lim be 232 - 1; else let lim be ? ToUint32(limit).
14. Let size be the length of S.
15. Let p be 0.
16. If lim = 0, return A.
17. If size = 0, then

a. Let z be ? RegExpExec(splitter, S).
b. If z is not null, return A.
c. Perform ! CreateDataProperty(A, "0", S).
d. Return A.

18. Let q be p.
19. Repeat, while q < size

a. Perform ? Set(splitter, "lastIndex", q, true).
b. Let z be ? RegExpExec(splitter, S).
c. If z is null, set q to AdvanceStringIndex(S, q, unicodeMatching).
d. Else z is not null,

i. Let e be ? ToLength(? Get(splitter, "lastIndex")).
ii. Set e to min(e, size).

iii. If e = p, set q to AdvanceStringIndex(S, q, unicodeMatching).
iv. Else e ≠ p,

1. Let T be the String value equal to the substring of S consisting of the code units at indices p
(inclusive) through q (exclusive).

2. Perform ! CreateDataProperty(A, ! ToString(lengthA), T).
3. Increase lengthA by 1.
4. If lengthA = lim, return A.
5. Set p to e.
6. Let numberOfCaptures be ? ToLength(? Get(z, "length")).
7. Set numberOfCaptures to max(numberOfCaptures - 1, 0).
8. Let i be 1.
9. Repeat, while i ≤ numberOfCaptures,

a. Let nextCapture be ? Get(z, ! ToString(i)).
b. Perform ! CreateDataProperty(A, ! ToString(lengthA), nextCapture).
c. Increase i by 1.
d. Increase lengthA by 1.
e. If lengthA = lim, return A.

10. Set q to p.
20. Let T be the String value equal to the substring of S consisting of the code units at indices p (inclusive) through size

(exclusive).
21. Perform ! CreateDataProperty(A, ! ToString(lengthA), T).
22. Return A.

The value of the name property of this function is "[Symbol.split]".

NOTE 2
The @@split method ignores the value of the global and sticky properties of this RegExp object.

544

© Ecma International 2019

544

RegExp.prototype.sticky is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Let R be the this value.
2. If Type(R) is not Object, throw a TypeError exception.
3. If R does not have an [[OriginalFlags]] internal slot, then

a. If SameValue(R, %RegExpPrototype%) is true, return undefined.
b. Otherwise, throw a TypeError exception.

4. Let flags be R.[[OriginalFlags]].
5. If flags contains the code unit 0x0079 (LATIN SMALL LETTER Y), return true.
6. Return false.

The following steps are taken:

1. Let R be the this value.
2. If Type(R) is not Object, throw a TypeError exception.
3. Let string be ? ToString(S).
4. Let match be ? RegExpExec(R, string).
5. If match is not null, return true; else return false.

1. Let R be the this value.
2. If Type(R) is not Object, throw a TypeError exception.
3. Let pattern be ? ToString(? Get(R, "source")).
4. Let flags be ? ToString(? Get(R, "flags")).
5. Let result be the string-concatenation of "/", pattern, "/", and flags.
6. Return result.

NOTE
The returned String has the form of a RegularExpressionLiteral that evaluates to another RegExp object with the same
behaviour as this object.

RegExp.prototype.unicode is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Let R be the this value.
2. If Type(R) is not Object, throw a TypeError exception.
3. If R does not have an [[OriginalFlags]] internal slot, then

a. If SameValue(R, %RegExpPrototype%) is true, return undefined.
b. Otherwise, throw a TypeError exception.

4. Let flags be R.[[OriginalFlags]].
5. If flags contains the code unit 0x0075 (LATIN SMALL LETTER U), return true.

21.2.5.13 get RegExp.prototype.sticky

21.2.5.14 RegExp.prototype.test (S)

21.2.5.15 RegExp.prototype.toString ()

21.2.5.16 get RegExp.prototype.unicode

© Ecma International 2019

545

6. Return false.

RegExp instances are ordinary objects that inherit properties from the RegExp prototype object. RegExp instances have
internal slots [[RegExpMatcher]], [[OriginalSource]], and [[OriginalFlags]]. The value of the [[RegExpMatcher]] internal
slot is an implementation-dependent representation of the Pattern of the RegExp object.

NOTE
Prior to ECMAScript 2015, RegExp instances were specified as having the own data properties source, global,
ignoreCase, and multiline. Those properties are now specified as accessor properties of RegExp.prototype.

RegExp instances also have the following property:

The value of the lastIndex property specifies the String index at which to start the next match. It is coerced to an
integer when used (see 21.2.5.2.2). This property shall have the attributes { [[Writable]]: true, [[Enumerable]]: false,
[[Configurable]]: false }.

Array objects are exotic objects that give special treatment to a certain class of property names. See 9.4.2 for a definition
of this special treatment.

The Array constructor:

is the intrinsic object %Array%.
is the initial value of the Array property of the global object.
creates and initializes a new Array exotic object when called as a constructor.
also creates and initializes a new Array object when called as a function rather than as a constructor. Thus the
function call Array(…) is equivalent to the object creation expression new Array(…) with the same
arguments.
is a single function whose behaviour is overloaded based upon the number and types of its arguments.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the exotic Array behaviour must include a super call to the Array
constructor to initialize subclass instances that are Array exotic objects. However, most of the
Array.prototype methods are generic methods that are not dependent upon their this value being an Array
exotic object.
has a "length" property whose value is 1.

21.2.6 Properties of RegExp Instances

21.2.6.1 lastIndex

22 Indexed Collections

22.1 Array Objects

22.1.1 The Array Constructor

546

© Ecma International 2019

546

This description applies if and only if the Array constructor is called with no arguments.

1. Let numberOfArgs be the number of arguments passed to this function call.
2. Assert: numberOfArgs = 0.
3. If NewTarget is undefined, let newTarget be the active function object, else let newTarget be NewTarget.
4. Let proto be ? GetPrototypeFromConstructor(newTarget, "%ArrayPrototype%").
5. Return ! ArrayCreate(0, proto).

This description applies if and only if the Array constructor is called with exactly one argument.

1. Let numberOfArgs be the number of arguments passed to this function call.
2. Assert: numberOfArgs = 1.
3. If NewTarget is undefined, let newTarget be the active function object, else let newTarget be NewTarget.
4. Let proto be ? GetPrototypeFromConstructor(newTarget, "%ArrayPrototype%").
5. Let array be ! ArrayCreate(0, proto).
6. If Type(len) is not Number, then

a. Let defineStatus be CreateDataProperty(array, "0", len).
b. Assert: defineStatus is true.
c. Let intLen be 1.

7. Else,
a. Let intLen be ToUint32(len).
b. If intLen ≠ len, throw a RangeError exception.

8. Perform ! Set(array, "length", intLen, true).
9. Return array.

This description applies if and only if the Array constructor is called with at least two arguments.

When the Array function is called, the following steps are taken:

1. Let numberOfArgs be the number of arguments passed to this function call.
2. Assert: numberOfArgs ≥ 2.
3. If NewTarget is undefined, let newTarget be the active function object, else let newTarget be NewTarget.
4. Let proto be ? GetPrototypeFromConstructor(newTarget, "%ArrayPrototype%").
5. Let array be ? ArrayCreate(numberOfArgs, proto).
6. Let k be 0.
7. Let items be a zero-origined List containing the argument items in order.
8. Repeat, while k < numberOfArgs

a. Let Pk be ! ToString(k).
b. Let itemK be items[k].
c. Let defineStatus be CreateDataProperty(array, Pk, itemK).
d. Assert: defineStatus is true.
e. Increase k by 1.

9. Assert: The value of array's "length" property is numberOfArgs.
10. Return array.

22.1.1.1 Array ()

22.1.1.2 Array (len)

22.1.1.3 Array (...items)

© Ecma International 2019

547

The Array constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

When the from method is called with argument items and optional arguments mapfn and thisArg, the following steps are
taken:

1. Let C be the this value.
2. If mapfn is undefined, let mapping be false.
3. Else,

a. If IsCallable(mapfn) is false, throw a TypeError exception.
b. If thisArg is present, let T be thisArg; else let T be undefined.
c. Let mapping be true.

4. Let usingIterator be ? GetMethod(items, @@iterator).
5. If usingIterator is not undefined, then

a. If IsConstructor(C) is true, then
i. Let A be ? Construct(C).

b. Else,
i. Let A be ! ArrayCreate(0).

c. Let iteratorRecord be ? GetIterator(items, sync, usingIterator).
d. Let k be 0.
e. Repeat,

i. If k ≥ 253 - 1, then
1. Let error be ThrowCompletion(a newly created TypeError object).
2. Return ? IteratorClose(iteratorRecord, error).

ii. Let Pk be ! ToString(k).
iii. Let next be ? IteratorStep(iteratorRecord).
iv. If next is false, then

1. Perform ? Set(A, "length", k, true).
2. Return A.

v. Let nextValue be ? IteratorValue(next).
vi. If mapping is true, then

1. Let mappedValue be Call(mapfn, T, « nextValue, k »).
2. If mappedValue is an abrupt completion, return ? IteratorClose(iteratorRecord, mappedValue).
3. Set mappedValue to mappedValue.[[Value]].

vii. Else, let mappedValue be nextValue.
viii. Let defineStatus be CreateDataPropertyOrThrow(A, Pk, mappedValue).

ix. If defineStatus is an abrupt completion, return ? IteratorClose(iteratorRecord, defineStatus).
x. Increase k by 1.

6. NOTE: items is not an Iterable so assume it is an array-like object.
7. Let arrayLike be ! ToObject(items).
8. Let len be ? ToLength(? Get(arrayLike, "length")).
9. If IsConstructor(C) is true, then

a. Let A be ? Construct(C, « len »).

22.1.2 Properties of the Array Constructor

22.1.2.1 Array.from (items [, mapfn [, thisArg]])

548

© Ecma International 2019

548

10. Else,
a. Let A be ? ArrayCreate(len).

11. Let k be 0.
12. Repeat, while k < len

a. Let Pk be ! ToString(k).
b. Let kValue be ? Get(arrayLike, Pk).
c. If mapping is true, then

i. Let mappedValue be ? Call(mapfn, T, « kValue, k »).
d. Else, let mappedValue be kValue.
e. Perform ? CreateDataPropertyOrThrow(A, Pk, mappedValue).
f. Increase k by 1.

13. Perform ? Set(A, "length", len, true).
14. Return A.

NOTE
The from function is an intentionally generic factory method; it does not require that its this value be the Array
constructor. Therefore it can be transferred to or inherited by any other constructors that may be called with a single
numeric argument.

The isArray function takes one argument arg, and performs the following steps:

1. Return ? IsArray(arg).

When the of method is called with any number of arguments, the following steps are taken:

1. Let len be the actual number of arguments passed to this function.
2. Let items be the List of arguments passed to this function.
3. Let C be the this value.
4. If IsConstructor(C) is true, then

a. Let A be ? Construct(C, « len »).
5. Else,

a. Let A be ? ArrayCreate(len).
6. Let k be 0.
7. Repeat, while k < len

a. Let kValue be items[k].
b. Let Pk be ! ToString(k).
c. Perform ? CreateDataPropertyOrThrow(A, Pk, kValue).
d. Increase k by 1.

8. Perform ? Set(A, "length", len, true).
9. Return A.

NOTE 1
The items argument is assumed to be a well-formed rest argument value.

NOTE 2
The of function is an intentionally generic factory method; it does not require that its this value be the Array

22.1.2.2 Array.isArray (arg)

22.1.2.3 Array.of (...items)

© Ecma International 2019

549

constructor. Therefore it can be transferred to or inherited by other constructors that may be called with a single numeric
argument.

The value of Array.prototype is %ArrayPrototype%, the intrinsic Array prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

Array[@@species] is an accessor property whose set accessor function is undefined. Its get accessor function
performs the following steps:

1. Return the this value.

The value of the name property of this function is "get [Symbol.species]".

NOTE
Array prototype methods normally use their this object's constructor to create a derived object. However, a subclass
constructor may over-ride that default behaviour by redefining its @@species property.

The Array prototype object:

is the intrinsic object %ArrayPrototype%.
is an Array exotic object and has the internal methods specified for such objects.
has a "length" property whose initial value is 0 and whose attributes are { [[Writable]]: true, [[Enumerable]]:
false, [[Configurable]]: false }.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.

NOTE
The Array prototype object is specified to be an Array exotic object to ensure compatibility with ECMAScript code that
was created prior to the ECMAScript 2015 specification.

When the concat method is called with zero or more arguments, it returns an array containing the array elements of the
object followed by the array elements of each argument in order.

The following steps are taken:

1. Let O be ? ToObject(this value).
2. Let A be ? ArraySpeciesCreate(O, 0).
3. Let n be 0.
4. Let items be a List whose first element is O and whose subsequent elements are, in left to right order, the arguments

that were passed to this function invocation.

22.1.2.4 Array.prototype

22.1.2.5 get Array [@@species]

22.1.3 Properties of the Array Prototype Object

22.1.3.1 Array.prototype.concat (...arguments)

550

© Ecma International 2019

550

5. Repeat, while items is not empty
a. Remove the first element from items and let E be the value of the element.
b. Let spreadable be ? IsConcatSpreadable(E).
c. If spreadable is true, then

i. Let k be 0.
ii. Let len be ? ToLength(? Get(E, "length")).

iii. If n + len > 253 - 1, throw a TypeError exception.
iv. Repeat, while k < len

1. Let P be ! ToString(k).
2. Let exists be ? HasProperty(E, P).
3. If exists is true, then

a. Let subElement be ? Get(E, P).
b. Perform ? CreateDataPropertyOrThrow(A, ! ToString(n), subElement).

4. Increase n by 1.
5. Increase k by 1.

d. Else E is added as a single item rather than spread,

i. If n ≥ 253 - 1, throw a TypeError exception.
ii. Perform ? CreateDataPropertyOrThrow(A, ! ToString(n), E).

iii. Increase n by 1.
6. Perform ? Set(A, "length", n, true).
7. Return A.

The "length" property of the concat method is 1.

NOTE 1
The explicit setting of the "length" property in step 6 is necessary to ensure that its value is correct in situations
where the trailing elements of the result Array are not present.

NOTE 2
The concat function is intentionally generic; it does not require that its this value be an Array object. Therefore it can
be transferred to other kinds of objects for use as a method.

The abstract operation IsConcatSpreadable with argument O performs the following steps:

1. If Type(O) is not Object, return false.
2. Let spreadable be ? Get(O, @@isConcatSpreadable).
3. If spreadable is not undefined, return ToBoolean(spreadable).
4. Return ? IsArray(O).

The initial value of Array.prototype.constructor is the intrinsic object %Array%.

The copyWithin method takes up to three arguments target, start and end.

NOTE 1

22.1.3.1.1 Runtime Semantics: IsConcatSpreadable (O)

22.1.3.2 Array.prototype.constructor

22.1.3.3 Array.prototype.copyWithin (target, start [, end])

© Ecma International 2019

551

The end argument is optional with the length of the this object as its default value. If target is negative, it is treated as
length + target where length is the length of the array. If start is negative, it is treated as length + start. If end is
negative, it is treated as length + end.

The following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. Let relativeTarget be ? ToInteger(target).
4. If relativeTarget < 0, let to be max((len + relativeTarget), 0); else let to be min(relativeTarget, len).
5. Let relativeStart be ? ToInteger(start).
6. If relativeStart < 0, let from be max((len + relativeStart), 0); else let from be min(relativeStart, len).
7. If end is undefined, let relativeEnd be len; else let relativeEnd be ? ToInteger(end).
8. If relativeEnd < 0, let final be max((len + relativeEnd), 0); else let final be min(relativeEnd, len).
9. Let count be min(final - from, len - to).

10. If from < to and to < from + count, then
a. Let direction be -1.
b. Set from to from + count - 1.
c. Set to to to + count - 1.

11. Else,
a. Let direction be 1.

12. Repeat, while count > 0
a. Let fromKey be ! ToString(from).
b. Let toKey be ! ToString(to).
c. Let fromPresent be ? HasProperty(O, fromKey).
d. If fromPresent is true, then

i. Let fromVal be ? Get(O, fromKey).
ii. Perform ? Set(O, toKey, fromVal, true).

e. Else fromPresent is false,
i. Perform ? DeletePropertyOrThrow(O, toKey).

f. Set from to from + direction.
g. Set to to to + direction.
h. Decrease count by 1.

13. Return O.

NOTE 2
The copyWithin function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method.

The following steps are taken:

1. Let O be ? ToObject(this value).
2. Return CreateArrayIterator(O, "key+value").

This function is the %ArrayProto_entries% intrinsic object.

22.1.3.4 Array.prototype.entries ()

552

© Ecma International 2019

552

NOTE 1
callbackfn should be a function that accepts three arguments and returns a value that is coercible to the Boolean value
true or false. every calls callbackfn once for each element present in the array, in ascending order, until it finds one
where callbackfn returns false. If such an element is found, every immediately returns false. Otherwise, if callbackfn
returned true for all elements, every will return true. callbackfn is called only for elements of the array which actually
exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not provided,
undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being
traversed.

every does not directly mutate the object on which it is called but the object may be mutated by the calls to callbackfn.

The range of elements processed by every is set before the first call to callbackfn. Elements which are appended to the
array after the call to every begins will not be visited by callbackfn. If existing elements of the array are changed, their
value as passed to callbackfn will be the value at the time every visits them; elements that are deleted after the call to
every begins and before being visited are not visited. every acts like the "for all" quantifier in mathematics. In
particular, for an empty array, it returns true.

When the every method is called with one or two arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If IsCallable(callbackfn) is false, throw a TypeError exception.
4. If thisArg is present, let T be thisArg; else let T be undefined.
5. Let k be 0.
6. Repeat, while k < len

a. Let Pk be ! ToString(k).
b. Let kPresent be ? HasProperty(O, Pk).
c. If kPresent is true, then

i. Let kValue be ? Get(O, Pk).
ii. Let testResult be ToBoolean(? Call(callbackfn, T, « kValue, k, O »)).

iii. If testResult is false, return false.
d. Increase k by 1.

7. Return true.

NOTE 2
The every function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be
transferred to other kinds of objects for use as a method.

The fill method takes up to three arguments value, start and end.

NOTE 1
The start and end arguments are optional with default values of 0 and the length of the this object. If start is negative, it

22.1.3.5 Array.prototype.every (callbackfn [, thisArg])

22.1.3.6 Array.prototype.fill (value [, start [, end]])

© Ecma International 2019

553

is treated as length + start where length is the length of the array. If end is negative, it is treated as length + end.

The following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. Let relativeStart be ? ToInteger(start).
4. If relativeStart < 0, let k be max((len + relativeStart), 0); else let k be min(relativeStart, len).
5. If end is undefined, let relativeEnd be len; else let relativeEnd be ? ToInteger(end).
6. If relativeEnd < 0, let final be max((len + relativeEnd), 0); else let final be min(relativeEnd, len).
7. Repeat, while k < final

a. Let Pk be ! ToString(k).
b. Perform ? Set(O, Pk, value, true).
c. Increase k by 1.

8. Return O.

NOTE 2
The fill function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be
transferred to other kinds of objects for use as a method.

NOTE 1
callbackfn should be a function that accepts three arguments and returns a value that is coercible to the Boolean value
true or false. filter calls callbackfn once for each element in the array, in ascending order, and constructs a new
array of all the values for which callbackfn returns true. callbackfn is called only for elements of the array which
actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not provided,
undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being
traversed.

filter does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by filter is set before the first call to callbackfn. Elements which are appended to
the array after the call to filter begins will not be visited by callbackfn. If existing elements of the array are changed
their value as passed to callbackfn will be the value at the time filter visits them; elements that are deleted after the
call to filter begins and before being visited are not visited.

When the filter method is called with one or two arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If IsCallable(callbackfn) is false, throw a TypeError exception.
4. If thisArg is present, let T be thisArg; else let T be undefined.
5. Let A be ? ArraySpeciesCreate(O, 0).

22.1.3.7 Array.prototype.filter (callbackfn [, thisArg])

554

© Ecma International 2019

554

6. Let k be 0.
7. Let to be 0.
8. Repeat, while k < len

a. Let Pk be ! ToString(k).
b. Let kPresent be ? HasProperty(O, Pk).
c. If kPresent is true, then

i. Let kValue be ? Get(O, Pk).
ii. Let selected be ToBoolean(? Call(callbackfn, T, « kValue, k, O »)).

iii. If selected is true, then
1. Perform ? CreateDataPropertyOrThrow(A, ! ToString(to), kValue).
2. Increase to by 1.

d. Increase k by 1.
9. Return A.

NOTE 2
The filter function is intentionally generic; it does not require that its this value be an Array object. Therefore it can
be transferred to other kinds of objects for use as a method.

The find method is called with one or two arguments, predicate and thisArg.

NOTE 1
predicate should be a function that accepts three arguments and returns a value that is coercible to a Boolean value.
find calls predicate once for each element of the array, in ascending order, until it finds one where predicate returns
true. If such an element is found, find immediately returns that element value. Otherwise, find returns undefined.

If a thisArg parameter is provided, it will be used as the this value for each invocation of predicate. If it is not provided,
undefined is used instead.

predicate is called with three arguments: the value of the element, the index of the element, and the object being
traversed.

find does not directly mutate the object on which it is called but the object may be mutated by the calls to predicate.

The range of elements processed by find is set before the first call to predicate. Elements that are appended to the array
after the call to find begins will not be visited by predicate. If existing elements of the array are changed, their value as
passed to predicate will be the value at the time that find visits them.

When the find method is called, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If IsCallable(predicate) is false, throw a TypeError exception.
4. If thisArg is present, let T be thisArg; else let T be undefined.
5. Let k be 0.
6. Repeat, while k < len

a. Let Pk be ! ToString(k).
b. Let kValue be ? Get(O, Pk).

22.1.3.8 Array.prototype.find (predicate [, thisArg])

© Ecma International 2019

555

c. Let testResult be ToBoolean(? Call(predicate, T, « kValue, k, O »)).
d. If testResult is true, return kValue.
e. Increase k by 1.

7. Return undefined.

NOTE 2
The find function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be
transferred to other kinds of objects for use as a method.

NOTE 1
predicate should be a function that accepts three arguments and returns a value that is coercible to the Boolean value
true or false. findIndex calls predicate once for each element of the array, in ascending order, until it finds one
where predicate returns true. If such an element is found, findIndex immediately returns the index of that element
value. Otherwise, findIndex returns -1.

If a thisArg parameter is provided, it will be used as the this value for each invocation of predicate. If it is not provided,
undefined is used instead.

predicate is called with three arguments: the value of the element, the index of the element, and the object being
traversed.

findIndex does not directly mutate the object on which it is called but the object may be mutated by the calls to
predicate.

The range of elements processed by findIndex is set before the first call to predicate. Elements that are appended to
the array after the call to findIndex begins will not be visited by predicate. If existing elements of the array are
changed, their value as passed to predicate will be the value at the time that findIndex visits them.

When the findIndex method is called with one or two arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If IsCallable(predicate) is false, throw a TypeError exception.
4. If thisArg is present, let T be thisArg; else let T be undefined.
5. Let k be 0.
6. Repeat, while k < len

a. Let Pk be ! ToString(k).
b. Let kValue be ? Get(O, Pk).
c. Let testResult be ToBoolean(? Call(predicate, T, « kValue, k, O »)).
d. If testResult is true, return k.
e. Increase k by 1.

7. Return -1.

NOTE 2
The findIndex function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method.

22.1.3.9 Array.prototype.findIndex (predicate [, thisArg])

556

© Ecma International 2019

556

When the flat method is called with zero or one arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let sourceLen be ? ToLength(? Get(O, "length")).
3. Let depthNum be 1.
4. If depth is not undefined, then

a. Set depthNum to ? ToInteger(depth).
5. Let A be ? ArraySpeciesCreate(O, 0).
6. Perform ? FlattenIntoArray(A, O, sourceLen, 0, depthNum).
7. Return A.

1. Let targetIndex be start.
2. Let sourceIndex be 0.
3. Repeat, while sourceIndex < sourceLen

a. Let P be ! ToString(sourceIndex).
b. Let exists be ? HasProperty(source, P).
c. If exists is true, then

i. Let element be ? Get(source, P).
ii. If mapperFunction is present, then

1. Assert: thisArg is present.
2. Set element to ? Call(mapperFunction, thisArg , « element, sourceIndex, source »).

iii. Let shouldFlatten be false.
iv. If depth > 0, then

1. Set shouldFlatten to ? IsArray(element).
v. If shouldFlatten is true, then

1. Let elementLen be ? ToLength(? Get(element, "length")).
2. Set targetIndex to ? FlattenIntoArray(target, element, elementLen, targetIndex, depth - 1).

vi. Else,

1. If targetIndex ≥ 253-1, throw a TypeError exception.
2. Perform ? CreateDataPropertyOrThrow(target, ! ToString(targetIndex), element).
3. Increase targetIndex by 1.

d. Increase sourceIndex by 1.
4. Return targetIndex.

When the flatMap method is called with one or two arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let sourceLen be ? ToLength(? Get(O, "length")).
3. If IsCallable(mapperFunction) is false, throw a TypeError exception.
4. If thisArg is present, let T be thisArg; else let T be undefined.
5. Let A be ? ArraySpeciesCreate(O, 0).
6. Perform ? FlattenIntoArray(A, O, sourceLen, 0, 1, mapperFunction, T).
7. Return A.

22.1.3.10 Array.prototype.flat([depth])

22.1.3.10.1 FlattenIntoArray(target, source, sourceLen, start, depth [, mapperFunction, thisArg])

22.1.3.11 Array.prototype.flatMap (mapperFunction [, thisArg])

© Ecma International 2019

557

NOTE 1
callbackfn should be a function that accepts three arguments. forEach calls callbackfn once for each element present in
the array, in ascending order. callbackfn is called only for elements of the array which actually exist; it is not called for
missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not provided,
undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being
traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

When the forEach method is called with one or two arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If IsCallable(callbackfn) is false, throw a TypeError exception.
4. If thisArg is present, let T be thisArg; else let T be undefined.
5. Let k be 0.
6. Repeat, while k < len

a. Let Pk be ! ToString(k).
b. Let kPresent be ? HasProperty(O, Pk).
c. If kPresent is true, then

i. Let kValue be ? Get(O, Pk).
ii. Perform ? Call(callbackfn, T, « kValue, k, O »).

d. Increase k by 1.
7. Return undefined.

This function is the %ArrayProto_forEach% intrinsic object.

NOTE 2
The forEach function is intentionally generic; it does not require that its this value be an Array object. Therefore it can
be transferred to other kinds of objects for use as a method.

NOTE 1
includes compares searchElement to the elements of the array, in ascending order, using the SameValueZero
algorithm, and if found at any position, returns true; otherwise, false is returned.

The optional second argument fromIndex defaults to 0 (i.e. the whole array is searched). If it is greater than or equal to
the length of the array, false is returned, i.e. the array will not be searched. If it is negative, it is used as the offset from
the end of the array to compute fromIndex. If the computed index is less than 0, the whole array will be searched.

When the includes method is called, the following steps are taken:

22.1.3.12 Array.prototype.forEach (callbackfn [, thisArg])

22.1.3.13 Array.prototype.includes (searchElement [, fromIndex])

558

© Ecma International 2019

558

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If len is 0, return false.
4. Let n be ? ToInteger(fromIndex).
5. Assert: If fromIndex is undefined, then n is 0.
6. If n ≥ 0, then

a. Let k be n.
7. Else n < 0,

a. Let k be len + n.
b. If k < 0, set k to 0.

8. Repeat, while k < len
a. Let elementK be the result of ? Get(O, ! ToString(k)).
b. If SameValueZero(searchElement, elementK) is true, return true.
c. Increase k by 1.

9. Return false.

NOTE 2
The includes function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method.

NOTE 3
The includes method intentionally differs from the similar indexOf method in two ways. First, it uses the
SameValueZero algorithm, instead of Strict Equality Comparison, allowing it to detect NaN array elements. Second, it
does not skip missing array elements, instead treating them as undefined.

NOTE 1
indexOf compares searchElement to the elements of the array, in ascending order, using the Strict Equality
Comparison algorithm, and if found at one or more indices, returns the smallest such index; otherwise, -1 is returned.

The optional second argument fromIndex defaults to 0 (i.e. the whole array is searched). If it is greater than or equal to
the length of the array, -1 is returned, i.e. the array will not be searched. If it is negative, it is used as the offset from the
end of the array to compute fromIndex. If the computed index is less than 0, the whole array will be searched.

When the indexOf method is called with one or two arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If len is 0, return -1.
4. Let n be ? ToInteger(fromIndex).
5. Assert: If fromIndex is undefined, then n is 0.
6. If n ≥ len, return -1.
7. If n ≥ 0, then

a. If n is -0, let k be +0; else let k be n.
8. Else n < 0,

a. Let k be len + n.
b. If k < 0, set k to 0.

9. Repeat, while k < len

22.1.3.14 Array.prototype.indexOf (searchElement [, fromIndex])

© Ecma International 2019

559

a. Let kPresent be ? HasProperty(O, ! ToString(k)).
b. If kPresent is true, then

i. Let elementK be ? Get(O, ! ToString(k)).
ii. Let same be the result of performing Strict Equality Comparison searchElement === elementK.

iii. If same is true, return k.
c. Increase k by 1.

10. Return -1.

NOTE 2
The indexOf function is intentionally generic; it does not require that its this value be an Array object. Therefore it can
be transferred to other kinds of objects for use as a method.

NOTE 1
The elements of the array are converted to Strings, and these Strings are then concatenated, separated by occurrences of
the separator. If no separator is provided, a single comma is used as the separator.

The join method takes one argument, separator, and performs the following steps:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If separator is undefined, let sep be the single-element String ",".
4. Else, let sep be ? ToString(separator).
5. Let R be the empty String.
6. Let k be 0.
7. Repeat, while k < len

a. If k > 0, set R to the string-concatenation of R and sep.
b. Let element be ? Get(O, ! ToString(k)).
c. If element is undefined or null, let next be the empty String; otherwise, let next be ? ToString(element).
d. Set R to the string-concatenation of R and next.
e. Increase k by 1.

8. Return R.

NOTE 2
The join function is intentionally generic; it does not require that its this value be an Array object. Therefore, it can be
transferred to other kinds of objects for use as a method.

The following steps are taken:

1. Let O be ? ToObject(this value).
2. Return CreateArrayIterator(O, "key").

This function is the %ArrayProto_keys% intrinsic object.

22.1.3.15 Array.prototype.join (separator)

22.1.3.16 Array.prototype.keys ()

22.1.3.17 Array.prototype.lastIndexOf (searchElement [, fromIndex])

560

© Ecma International 2019

560

NOTE 1
lastIndexOf compares searchElement to the elements of the array in descending order using the Strict Equality
Comparison algorithm, and if found at one or more indices, returns the largest such index; otherwise, -1 is returned.

The optional second argument fromIndex defaults to the array's length minus one (i.e. the whole array is searched). If it is
greater than or equal to the length of the array, the whole array will be searched. If it is negative, it is used as the offset
from the end of the array to compute fromIndex. If the computed index is less than 0, -1 is returned.

When the lastIndexOf method is called with one or two arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If len is 0, return -1.
4. If fromIndex is present, let n be ? ToInteger(fromIndex); else let n be len - 1.
5. If n ≥ 0, then

a. If n is -0, let k be +0; else let k be min(n, len - 1).
6. Else n < 0,

a. Let k be len + n.
7. Repeat, while k ≥ 0

a. Let kPresent be ? HasProperty(O, ! ToString(k)).
b. If kPresent is true, then

i. Let elementK be ? Get(O, ! ToString(k)).
ii. Let same be the result of performing Strict Equality Comparison searchElement === elementK.

iii. If same is true, return k.
c. Decrease k by 1.

8. Return -1.

NOTE 2
The lastIndexOf function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method.

NOTE 1
callbackfn should be a function that accepts three arguments. map calls callbackfn once for each element in the array, in
ascending order, and constructs a new Array from the results. callbackfn is called only for elements of the array which
actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not provided,
undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being
traversed.

map does not directly mutate the object on which it is called but the object may be mutated by the calls to callbackfn.

The range of elements processed by map is set before the first call to callbackfn. Elements which are appended to the
array after the call to map begins will not be visited by callbackfn. If existing elements of the array are changed, their
value as passed to callbackfn will be the value at the time map visits them; elements that are deleted after the call to map

22.1.3.18 Array.prototype.map (callbackfn [, thisArg])

© Ecma International 2019

561

begins and before being visited are not visited.

When the map method is called with one or two arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If IsCallable(callbackfn) is false, throw a TypeError exception.
4. If thisArg is present, let T be thisArg; else let T be undefined.
5. Let A be ? ArraySpeciesCreate(O, len).
6. Let k be 0.
7. Repeat, while k < len

a. Let Pk be ! ToString(k).
b. Let kPresent be ? HasProperty(O, Pk).
c. If kPresent is true, then

i. Let kValue be ? Get(O, Pk).
ii. Let mappedValue be ? Call(callbackfn, T, « kValue, k, O »).

iii. Perform ? CreateDataPropertyOrThrow(A, Pk, mappedValue).
d. Increase k by 1.

8. Return A.

NOTE 2
The map function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be
transferred to other kinds of objects for use as a method.

NOTE 1
The last element of the array is removed from the array and returned.

When the pop method is called, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If len is zero, then

a. Perform ? Set(O, "length", 0, true).
b. Return undefined.

4. Else len > 0,
a. Let newLen be len - 1.
b. Let index be ! ToString(newLen).
c. Let element be ? Get(O, index).
d. Perform ? DeletePropertyOrThrow(O, index).
e. Perform ? Set(O, "length", newLen, true).
f. Return element.

NOTE 2
The pop function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be
transferred to other kinds of objects for use as a method.

22.1.3.19 Array.prototype.pop ()

562

© Ecma International 2019

562

NOTE 1
The arguments are appended to the end of the array, in the order in which they appear. The new length of the array is
returned as the result of the call.

When the push method is called with zero or more arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. Let items be a List whose elements are, in left to right order, the arguments that were passed to this function

invocation.
4. Let argCount be the number of elements in items.

5. If len + argCount > 253 - 1, throw a TypeError exception.
6. Repeat, while items is not empty

a. Remove the first element from items and let E be the value of the element.
b. Perform ? Set(O, ! ToString(len), E, true).
c. Increase len by 1.

7. Perform ? Set(O, "length", len, true).
8. Return len.

The "length" property of the push method is 1.

NOTE 2
The push function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be
transferred to other kinds of objects for use as a method.

NOTE 1
callbackfn should be a function that takes four arguments. reduce calls the callback, as a function, once for each
element after the first element present in the array, in ascending order.

callbackfn is called with four arguments: the previousValue (value from the previous call to callbackfn), the currentValue
(value of the current element), the currentIndex, and the object being traversed. The first time that callback is called, the
previousValue and currentValue can be one of two values. If an initialValue was supplied in the call to reduce, then
previousValue will be equal to initialValue and currentValue will be equal to the first value in the array. If no
initialValue was supplied, then previousValue will be equal to the first value in the array and currentValue will be equal
to the second. It is a TypeError if the array contains no elements and initialValue is not provided.

reduce does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by reduce is set before the first call to callbackfn. Elements that are appended to the
array after the call to reduce begins will not be visited by callbackfn. If existing elements of the array are changed,
their value as passed to callbackfn will be the value at the time reduce visits them; elements that are deleted after the
call to reduce begins and before being visited are not visited.

When the reduce method is called with one or two arguments, the following steps are taken:

22.1.3.20 Array.prototype.push (...items)

22.1.3.21 Array.prototype.reduce (callbackfn [, initialValue])

© Ecma International 2019

563

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If IsCallable(callbackfn) is false, throw a TypeError exception.
4. If len is 0 and initialValue is not present, throw a TypeError exception.
5. Let k be 0.
6. Let accumulator be undefined.
7. If initialValue is present, then

a. Set accumulator to initialValue.
8. Else initialValue is not present,

a. Let kPresent be false.
b. Repeat, while kPresent is false and k < len

i. Let Pk be ! ToString(k).
ii. Set kPresent to ? HasProperty(O, Pk).

iii. If kPresent is true, then
1. Set accumulator to ? Get(O, Pk).

iv. Increase k by 1.
c. If kPresent is false, throw a TypeError exception.

9. Repeat, while k < len
a. Let Pk be ! ToString(k).
b. Let kPresent be ? HasProperty(O, Pk).
c. If kPresent is true, then

i. Let kValue be ? Get(O, Pk).
ii. Set accumulator to ? Call(callbackfn, undefined, « accumulator, kValue, k, O »).

d. Increase k by 1.
10. Return accumulator.

NOTE 2
The reduce function is intentionally generic; it does not require that its this value be an Array object. Therefore it can
be transferred to other kinds of objects for use as a method.

NOTE 1
callbackfn should be a function that takes four arguments. reduceRight calls the callback, as a function, once for
each element after the first element present in the array, in descending order.

callbackfn is called with four arguments: the previousValue (value from the previous call to callbackfn), the currentValue
(value of the current element), the currentIndex, and the object being traversed. The first time the function is called, the
previousValue and currentValue can be one of two values. If an initialValue was supplied in the call to reduceRight,
then previousValue will be equal to initialValue and currentValue will be equal to the last value in the array. If no
initialValue was supplied, then previousValue will be equal to the last value in the array and currentValue will be equal
to the second-to-last value. It is a TypeError if the array contains no elements and initialValue is not provided.

reduceRight does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

The range of elements processed by reduceRight is set before the first call to callbackfn. Elements that are appended
to the array after the call to reduceRight begins will not be visited by callbackfn. If existing elements of the array are
changed by callbackfn, their value as passed to callbackfn will be the value at the time reduceRight visits them;

22.1.3.22 Array.prototype.reduceRight (callbackfn [, initialValue])

564

© Ecma International 2019

564

elements that are deleted after the call to reduceRight begins and before being visited are not visited.

When the reduceRight method is called with one or two arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If IsCallable(callbackfn) is false, throw a TypeError exception.
4. If len is 0 and initialValue is not present, throw a TypeError exception.
5. Let k be len - 1.
6. Let accumulator be undefined.
7. If initialValue is present, then

a. Set accumulator to initialValue.
8. Else initialValue is not present,

a. Let kPresent be false.
b. Repeat, while kPresent is false and k ≥ 0

i. Let Pk be ! ToString(k).
ii. Set kPresent to ? HasProperty(O, Pk).

iii. If kPresent is true, then
1. Set accumulator to ? Get(O, Pk).

iv. Decrease k by 1.
c. If kPresent is false, throw a TypeError exception.

9. Repeat, while k ≥ 0
a. Let Pk be ! ToString(k).
b. Let kPresent be ? HasProperty(O, Pk).
c. If kPresent is true, then

i. Let kValue be ? Get(O, Pk).
ii. Set accumulator to ? Call(callbackfn, undefined, « accumulator, kValue, k, O »).

d. Decrease k by 1.
10. Return accumulator.

NOTE 2
The reduceRight function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method.

NOTE 1
The elements of the array are rearranged so as to reverse their order. The object is returned as the result of the call.

When the reverse method is called, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. Let middle be floor(len / 2).
4. Let lower be 0.
5. Repeat, while lower ≠ middle

a. Let upper be len - lower - 1.
b. Let upperP be ! ToString(upper).

22.1.3.23 Array.prototype.reverse ()

© Ecma International 2019

565

c. Let lowerP be ! ToString(lower).
d. Let lowerExists be ? HasProperty(O, lowerP).
e. If lowerExists is true, then

i. Let lowerValue be ? Get(O, lowerP).
f. Let upperExists be ? HasProperty(O, upperP).
g. If upperExists is true, then

i. Let upperValue be ? Get(O, upperP).
h. If lowerExists is true and upperExists is true, then

i. Perform ? Set(O, lowerP, upperValue, true).
ii. Perform ? Set(O, upperP, lowerValue, true).

i. Else if lowerExists is false and upperExists is true, then
i. Perform ? Set(O, lowerP, upperValue, true).

ii. Perform ? DeletePropertyOrThrow(O, upperP).
j. Else if lowerExists is true and upperExists is false, then

i. Perform ? DeletePropertyOrThrow(O, lowerP).
ii. Perform ? Set(O, upperP, lowerValue, true).

k. Else both lowerExists and upperExists are false,
i. No action is required.

l. Increase lower by 1.
6. Return O.

NOTE 2
The reverse function is intentionally generic; it does not require that its this value be an Array object. Therefore, it
can be transferred to other kinds of objects for use as a method.

NOTE 1
The first element of the array is removed from the array and returned.

When the shift method is called, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If len is zero, then

a. Perform ? Set(O, "length", 0, true).
b. Return undefined.

4. Let first be ? Get(O, "0").
5. Let k be 1.
6. Repeat, while k < len

a. Let from be ! ToString(k).
b. Let to be ! ToString(k - 1).
c. Let fromPresent be ? HasProperty(O, from).
d. If fromPresent is true, then

i. Let fromVal be ? Get(O, from).
ii. Perform ? Set(O, to, fromVal, true).

e. Else fromPresent is false,
i. Perform ? DeletePropertyOrThrow(O, to).

22.1.3.24 Array.prototype.shift ()

566

© Ecma International 2019

566

f. Increase k by 1.
7. Perform ? DeletePropertyOrThrow(O, ! ToString(len - 1)).
8. Perform ? Set(O, "length", len - 1, true).
9. Return first.

NOTE 2
The shift function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be
transferred to other kinds of objects for use as a method.

NOTE 1
The slice method takes two arguments, start and end, and returns an array containing the elements of the array from
element start up to, but not including, element end (or through the end of the array if end is undefined). If start is
negative, it is treated as length + start where length is the length of the array. If end is negative, it is treated as length +
end where length is the length of the array.

The following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. Let relativeStart be ? ToInteger(start).
4. If relativeStart < 0, let k be max((len + relativeStart), 0); else let k be min(relativeStart, len).
5. If end is undefined, let relativeEnd be len; else let relativeEnd be ? ToInteger(end).
6. If relativeEnd < 0, let final be max((len + relativeEnd), 0); else let final be min(relativeEnd, len).
7. Let count be max(final - k, 0).
8. Let A be ? ArraySpeciesCreate(O, count).
9. Let n be 0.

10. Repeat, while k < final
a. Let Pk be ! ToString(k).
b. Let kPresent be ? HasProperty(O, Pk).
c. If kPresent is true, then

i. Let kValue be ? Get(O, Pk).
ii. Perform ? CreateDataPropertyOrThrow(A, ! ToString(n), kValue).

d. Increase k by 1.
e. Increase n by 1.

11. Perform ? Set(A, "length", n, true).
12. Return A.

NOTE 2
The explicit setting of the "length" property of the result Array in step 11 was necessary in previous editions of
ECMAScript to ensure that its length was correct in situations where the trailing elements of the result Array were not
present. Setting "length" became unnecessary starting in ES2015 when the result Array was initialized to its proper
length rather than an empty Array but is carried forward to preserve backward compatibility.

NOTE 3
The slice function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be
transferred to other kinds of objects for use as a method.

22.1.3.25 Array.prototype.slice (start, end)

© Ecma International 2019

567

NOTE 1
callbackfn should be a function that accepts three arguments and returns a value that is coercible to the Boolean value
true or false. some calls callbackfn once for each element present in the array, in ascending order, until it finds one
where callbackfn returns true. If such an element is found, some immediately returns true. Otherwise, some returns
false. callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the
array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not provided,
undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being
traversed.

some does not directly mutate the object on which it is called but the object may be mutated by the calls to callbackfn.

The range of elements processed by some is set before the first call to callbackfn. Elements that are appended to the
array after the call to some begins will not be visited by callbackfn. If existing elements of the array are changed, their
value as passed to callbackfn will be the value at the time that some visits them; elements that are deleted after the call
to some begins and before being visited are not visited. some acts like the "exists" quantifier in mathematics. In
particular, for an empty array, it returns false.

When the some method is called with one or two arguments, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. If IsCallable(callbackfn) is false, throw a TypeError exception.
4. If thisArg is present, let T be thisArg; else let T be undefined.
5. Let k be 0.
6. Repeat, while k < len

a. Let Pk be ! ToString(k).
b. Let kPresent be ? HasProperty(O, Pk).
c. If kPresent is true, then

i. Let kValue be ? Get(O, Pk).
ii. Let testResult be ToBoolean(? Call(callbackfn, T, « kValue, k, O »)).

iii. If testResult is true, return true.
d. Increase k by 1.

7. Return false.

NOTE 2
The some function is intentionally generic; it does not require that its this value be an Array object. Therefore it can be
transferred to other kinds of objects for use as a method.

The elements of this array are sorted. The sort must be stable (that is, elements that compare equal must remain in their
original order). If comparefn is not undefined, it should be a function that accepts two arguments x and y and returns a
negative value if x < y, zero if x = y, or a positive value if x > y.

22.1.3.26 Array.prototype.some (callbackfn [, thisArg])

22.1.3.27 Array.prototype.sort (comparefn)

568

© Ecma International 2019

568

Upon entry, the following steps are performed to initialize evaluation of the sort function:

1. If comparefn is not undefined and IsCallable(comparefn) is false, throw a TypeError exception.
2. Let obj be ? ToObject(this value).
3. Let len be ? ToLength(? Get(obj, "length")).

Within this specification of the sort method, an object, obj, is said to be sparse if the following algorithm returns true:

1. For each integer i in the range 0 ≤ i < len, do
a. Let elem be obj.[[GetOwnProperty]](! ToString(i)).
b. If elem is undefined, return true.

2. Return false.

The sort order is the ordering, after completion of this function, of the integer-indexed property values of obj whose
integer indexes are less than len. The result of the sort function is then determined as follows:

If comparefn is not undefined and is not a consistent comparison function for the elements of this array (see below), the
sort order is implementation-defined. The sort order is also implementation-defined if comparefn is undefined and
SortCompare does not act as a consistent comparison function.

Let proto be obj.[[GetPrototypeOf]](). If proto is not null and there exists an integer j such that all of the conditions
below are satisfied then the sort order is implementation-defined:

obj is sparse
0 ≤ j < len
HasProperty(proto, ToString(j)) is true.

The sort order is also implementation-defined if obj is sparse and any of the following conditions are true:

IsExtensible(obj) is false.
Any integer index property of obj whose name is a nonnegative integer less than len is a data property whose
[[Configurable]] attribute is false.

The sort order is also implementation-defined if any of the following conditions are true:

If obj is an exotic object (including Proxy exotic objects) whose behaviour for [[Get]], [[Set]], [[Delete]], and
[[GetOwnProperty]] is not the ordinary object implementation of these internal methods.
If any index property of obj whose name is a nonnegative integer less than len is an accessor property or is a data
property whose [[Writable]] attribute is false.
If comparefn is undefined and the application of ToString to any value passed as an argument to SortCompare
modifies obj or any object on obj's prototype chain.
If comparefn is undefined and all applications of ToString, to any specific value passed as an argument to
SortCompare, do not produce the same result.

The following steps are taken:

1. Perform an implementation-dependent sequence of calls to the [[Get]] and [[Set]] internal methods of obj, to the
DeletePropertyOrThrow and HasOwnProperty abstract operation with obj as the first argument, and to SortCompare
(described below), such that:

The property key argument for each call to [[Get]], [[Set]], HasOwnProperty, or DeletePropertyOrThrow is
the string representation of a nonnegative integer less than len.
The arguments for calls to SortCompare are values returned by a previous call to the [[Get]] internal method,

© Ecma International 2019

569

unless the properties accessed by those previous calls did not exist according to HasOwnProperty. If both
prospective arguments to SortCompare correspond to non-existent properties, use +0 instead of calling
SortCompare. If only the first prospective argument is non-existent use +1. If only the second prospective
argument is non-existent use -1.
If obj is not sparse then DeletePropertyOrThrow must not be called.
If any [[Set]] call returns false a TypeError exception is thrown.
If an abrupt completion is returned from any of these operations, it is immediately returned as the value of this
function.

2. Return obj.

Unless the sort order is specified above to be implementation-defined, the returned object must have the following two
characteristics:

There must be some mathematical permutation π of the nonnegative integers less than len, such that for every
nonnegative integer j less than len, if property old[j] existed, then new[π(j)] is exactly the same value as old[j]. But
if property old[j] did not exist, then new[π(j)] does not exist.
Then for all nonnegative integers j and k, each less than len, if SortCompare(old[j], old[k]) < 0 (see SortCompare
below), then new[π(j)] < new[π(k)].

Here the notation old[j] is used to refer to the hypothetical result of calling obj.[[Get]](j) before this function is executed,
and the notation new[j] to refer to the hypothetical result of calling obj.[[Get]](j) after this function has been executed.

A function comparefn is a consistent comparison function for a set of values S if all of the requirements below are met
for all values a, b, and c (possibly the same value) in the set S: The notation a <CF b means comparefn(a, b) < 0; a =CF b

means comparefn(a, b) = 0 (of either sign); and a >CF b means comparefn(a, b) > 0.

Calling comparefn(a, b) always returns the same value v when given a specific pair of values a and b as its two
arguments. Furthermore, Type(v) is Number, and v is not NaN. Note that this implies that exactly one of a <CF b, a

=CF b, and a >CF b will be true for a given pair of a and b.

Calling comparefn(a, b) does not modify obj or any object on obj's prototype chain.
a =CF a (reflexivity)

If a =CF b, then b =CF a (symmetry)

If a =CF b and b =CF c, then a =CF c (transitivity of =CF)

If a <CF b and b <CF c, then a <CF c (transitivity of <CF)

If a >CF b and b >CF c, then a >CF c (transitivity of >CF)

NOTE 1
The above conditions are necessary and sufficient to ensure that comparefn divides the set S into equivalence classes and
that these equivalence classes are totally ordered.

NOTE 2
The sort function is intentionally generic; it does not require that its this value be an Array object. Therefore, it can be
transferred to other kinds of objects for use as a method.

The SortCompare abstract operation is called with two arguments x and y. It also has access to the comparefn argument
passed to the current invocation of the sort method. The following steps are taken:

1. If x and y are both undefined, return +0.

22.1.3.27.1 Runtime Semantics: SortCompare (x, y)

570

© Ecma International 2019

570

2. If x is undefined, return 1.
3. If y is undefined, return -1.
4. If comparefn is not undefined, then

a. Let v be ? ToNumber(? Call(comparefn, undefined, « x, y »)).
b. If v is NaN, return +0.
c. Return v.

5. Let xString be ? ToString(x).
6. Let yString be ? ToString(y).
7. Let xSmaller be the result of performing Abstract Relational Comparison xString < yString.
8. If xSmaller is true, return -1.
9. Let ySmaller be the result of performing Abstract Relational Comparison yString < xString.

10. If ySmaller is true, return 1.
11. Return +0.

NOTE 1
Because non-existent property values always compare greater than undefined property values, and undefined always
compares greater than any other value, undefined property values always sort to the end of the result, followed by non-
existent property values.

NOTE 2
Method calls performed by the ToString abstract operations in steps 5 and 7 have the potential to cause SortCompare to
not behave as a consistent comparison function.

NOTE 1
When the splice method is called with two or more arguments start, deleteCount and zero or more items, the
deleteCount elements of the array starting at integer index start are replaced by the arguments items. An Array object
containing the deleted elements (if any) is returned.

The following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. Let relativeStart be ? ToInteger(start).
4. If relativeStart < 0, let actualStart be max((len + relativeStart), 0); else let actualStart be min(relativeStart, len).
5. If the number of actual arguments is 0, then

a. Let insertCount be 0.
b. Let actualDeleteCount be 0.

6. Else if the number of actual arguments is 1, then
a. Let insertCount be 0.
b. Let actualDeleteCount be len - actualStart.

7. Else,
a. Let insertCount be the number of actual arguments minus 2.
b. Let dc be ? ToInteger(deleteCount).
c. Let actualDeleteCount be min(max(dc, 0), len - actualStart).

8. If len + insertCount - actualDeleteCount > 253 - 1, throw a TypeError exception.
9. Let A be ? ArraySpeciesCreate(O, actualDeleteCount).

10. Let k be 0.

22.1.3.28 Array.prototype.splice (start, deleteCount, ...items)

© Ecma International 2019

571

11. Repeat, while k < actualDeleteCount
a. Let from be ! ToString(actualStart + k).
b. Let fromPresent be ? HasProperty(O, from).
c. If fromPresent is true, then

i. Let fromValue be ? Get(O, from).
ii. Perform ? CreateDataPropertyOrThrow(A, ! ToString(k), fromValue).

d. Increment k by 1.
12. Perform ? Set(A, "length", actualDeleteCount, true).
13. Let items be a List whose elements are, in left to right order, the portion of the actual argument list starting with the

third argument. The list is empty if fewer than three arguments were passed.
14. Let itemCount be the number of elements in items.
15. If itemCount < actualDeleteCount, then

a. Set k to actualStart.
b. Repeat, while k < (len - actualDeleteCount)

i. Let from be ! ToString(k + actualDeleteCount).
ii. Let to be ! ToString(k + itemCount).

iii. Let fromPresent be ? HasProperty(O, from).
iv. If fromPresent is true, then

1. Let fromValue be ? Get(O, from).
2. Perform ? Set(O, to, fromValue, true).

v. Else fromPresent is false,
1. Perform ? DeletePropertyOrThrow(O, to).

vi. Increase k by 1.
c. Set k to len.
d. Repeat, while k > (len - actualDeleteCount + itemCount)

i. Perform ? DeletePropertyOrThrow(O, ! ToString(k - 1)).
ii. Decrease k by 1.

16. Else if itemCount > actualDeleteCount, then
a. Set k to (len - actualDeleteCount).
b. Repeat, while k > actualStart

i. Let from be ! ToString(k + actualDeleteCount - 1).
ii. Let to be ! ToString(k + itemCount - 1).

iii. Let fromPresent be ? HasProperty(O, from).
iv. If fromPresent is true, then

1. Let fromValue be ? Get(O, from).
2. Perform ? Set(O, to, fromValue, true).

v. Else fromPresent is false,
1. Perform ? DeletePropertyOrThrow(O, to).

vi. Decrease k by 1.
17. Set k to actualStart.
18. Repeat, while items is not empty

a. Remove the first element from items and let E be the value of that element.
b. Perform ? Set(O, ! ToString(k), E, true).
c. Increase k by 1.

19. Perform ? Set(O, "length", len - actualDeleteCount + itemCount, true).
20. Return A.

NOTE 2

572

© Ecma International 2019

572

The explicit setting of the "length" property of the result Array in step 19 was necessary in previous editions of
ECMAScript to ensure that its length was correct in situations where the trailing elements of the result Array were not
present. Setting "length" became unnecessary starting in ES2015 when the result Array was initialized to its proper
length rather than an empty Array but is carried forward to preserve backward compatibility.

NOTE 3
The splice function is intentionally generic; it does not require that its this value be an Array object. Therefore it can
be transferred to other kinds of objects for use as a method.

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement the
Array.prototype.toLocaleString method as specified in the ECMA-402 specification. If an ECMAScript
implementation does not include the ECMA-402 API the following specification of the toLocaleString method is
used.

NOTE 1
The first edition of ECMA-402 did not include a replacement specification for the
Array.prototype.toLocaleString method.

The meanings of the optional parameters to this method are defined in the ECMA-402 specification; implementations
that do not include ECMA-402 support must not use those parameter positions for anything else.

The following steps are taken:

1. Let array be ? ToObject(this value).
2. Let len be ? ToLength(? Get(array, "length")).
3. Let separator be the String value for the list-separator String appropriate for the host environment's current locale

(this is derived in an implementation-defined way).
4. Let R be the empty String.
5. Let k be 0.
6. Repeat, while k < len

a. If k > 0, then
i. Set R to the string-concatenation of R and separator.

b. Let nextElement be ? Get(array, ! ToString(k)).
c. If nextElement is not undefined or null, then

i. Let S be ? ToString(? Invoke(nextElement, "toLocaleString")).
ii. Set R to the string-concatenation of R and S.

d. Increase k by 1.
7. Return R.

NOTE 2
The elements of the array are converted to Strings using their toLocaleString methods, and these Strings are then
concatenated, separated by occurrences of a separator String that has been derived in an implementation-defined locale-
specific way. The result of calling this function is intended to be analogous to the result of toString, except that the
result of this function is intended to be locale-specific.

NOTE 3
The toLocaleString function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method.

22.1.3.29 Array.prototype.toLocaleString ([reserved1 [, reserved2]])

© Ecma International 2019

573

When the toString method is called, the following steps are taken:

1. Let array be ? ToObject(this value).
2. Let func be ? Get(array, "join").
3. If IsCallable(func) is false, set func to the intrinsic function %ObjProto_toString%.
4. Return ? Call(func, array).

NOTE
The toString function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method.

NOTE 1
The arguments are prepended to the start of the array, such that their order within the array is the same as the order in
which they appear in the argument list.

When the unshift method is called with zero or more arguments item1, item2, etc., the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let len be ? ToLength(? Get(O, "length")).
3. Let argCount be the number of actual arguments.
4. If argCount > 0, then

a. If len + argCount > 253 - 1, throw a TypeError exception.
b. Let k be len.
c. Repeat, while k > 0,

i. Let from be ! ToString(k - 1).
ii. Let to be ! ToString(k + argCount - 1).

iii. Let fromPresent be ? HasProperty(O, from).
iv. If fromPresent is true, then

1. Let fromValue be ? Get(O, from).
2. Perform ? Set(O, to, fromValue, true).

v. Else fromPresent is false,
1. Perform ? DeletePropertyOrThrow(O, to).

vi. Decrease k by 1.
d. Let j be 0.
e. Let items be a List whose elements are, in left to right order, the arguments that were passed to this function

invocation.
f. Repeat, while items is not empty

i. Remove the first element from items and let E be the value of that element.
ii. Perform ? Set(O, ! ToString(j), E, true).

iii. Increase j by 1.
5. Perform ? Set(O, "length", len + argCount, true).
6. Return len + argCount.

22.1.3.30 Array.prototype.toString ()

22.1.3.31 Array.prototype.unshift (...items)

574

© Ecma International 2019

574

The "length" property of the unshift method is 1.

NOTE 2
The unshift function is intentionally generic; it does not require that its this value be an Array object. Therefore it can
be transferred to other kinds of objects for use as a method.

The following steps are taken:

1. Let O be ? ToObject(this value).
2. Return CreateArrayIterator(O, "value").

This function is the %ArrayProto_values% intrinsic object.

The initial value of the @@iterator property is the same function object as the initial value of the
Array.prototype.values property.

The initial value of the @@unscopables data property is an object created by the following steps:

1. Let unscopableList be ObjectCreate(null).
2. Perform CreateDataProperty(unscopableList, "copyWithin", true).
3. Perform CreateDataProperty(unscopableList, "entries", true).
4. Perform CreateDataProperty(unscopableList, "fill", true).
5. Perform CreateDataProperty(unscopableList, "find", true).
6. Perform CreateDataProperty(unscopableList, "findIndex", true).
7. Perform CreateDataProperty(unscopableList, "flat", true).
8. Perform CreateDataProperty(unscopableList, "flatMap", true).
9. Perform CreateDataProperty(unscopableList, "includes", true).

10. Perform CreateDataProperty(unscopableList, "keys", true).
11. Perform CreateDataProperty(unscopableList, "values", true).
12. Assert: Each of the above calls returns true.
13. Return unscopableList.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

NOTE
The own property names of this object are property names that were not included as standard properties of
Array.prototype prior to the ECMAScript 2015 specification. These names are ignored for with statement
binding purposes in order to preserve the behaviour of existing code that might use one of these names as a binding in an
outer scope that is shadowed by a with statement whose binding object is an Array object.

22.1.3.32 Array.prototype.values ()

22.1.3.33 Array.prototype [@@iterator] ()

22.1.3.34 Array.prototype [@@unscopables]

22.1.4 Properties of Array Instances

© Ecma International 2019

575

Array instances are Array exotic objects and have the internal methods specified for such objects. Array instances inherit
properties from the Array prototype object.

Array instances have a "length" property, and a set of enumerable properties with array index names.

The "length" property of an Array instance is a data property whose value is always numerically greater than the
name of every configurable own property whose name is an array index.

The "length" property initially has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE
Reducing the value of the "length" property has the side-effect of deleting own array elements whose array index is
between the old and new length values. However, non-configurable properties can not be deleted. Attempting to set the
"length" property of an Array object to a value that is numerically less than or equal to the largest numeric own
property name of an existing non-configurable array-indexed property of the array will result in the length being set to a
numeric value that is one greater than that non-configurable numeric own property name. See 9.4.2.1.

An Array Iterator is an object, that represents a specific iteration over some specific Array instance object. There is not a
named constructor for Array Iterator objects. Instead, Array iterator objects are created by calling certain methods of
Array instance objects.

Several methods of Array objects return Iterator objects. The abstract operation CreateArrayIterator with arguments array
and kind is used to create such iterator objects. It performs the following steps:

1. Assert: Type(array) is Object.
2. Let iterator be ObjectCreate(%ArrayIteratorPrototype%, « [[IteratedObject]], [[ArrayIteratorNextIndex]],

[[ArrayIterationKind]] »).
3. Set iterator.[[IteratedObject]] to array.
4. Set iterator.[[ArrayIteratorNextIndex]] to 0.
5. Set iterator.[[ArrayIterationKind]] to kind.
6. Return iterator.

The %ArrayIteratorPrototype% object:

has properties that are inherited by all Array Iterator Objects.
is an ordinary object.
has a [[Prototype]] internal slot whose value is the intrinsic object %IteratorPrototype%.
has the following properties:

22.1.4.1 length

22.1.5 Array Iterator Objects

22.1.5.1 CreateArrayIterator (array, kind)

22.1.5.2 The %ArrayIteratorPrototype% Object

22.1.5.2.1 %ArrayIteratorPrototype%.next ()

576

© Ecma International 2019

576

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have all of the internal slots of an Array Iterator Instance (22.1.5.3), throw a TypeError exception.
4. Let a be O.[[IteratedObject]].
5. If a is undefined, return CreateIterResultObject(undefined, true).
6. Let index be O.[[ArrayIteratorNextIndex]].
7. Let itemKind be O.[[ArrayIterationKind]].
8. If a has a [[TypedArrayName]] internal slot, then

a. If IsDetachedBuffer(a.[[ViewedArrayBuffer]]) is true, throw a TypeError exception.
b. Let len be a.[[ArrayLength]].

9. Else,
a. Let len be ? ToLength(? Get(a, "length")).

10. If index ≥ len, then
a. Set O.[[IteratedObject]] to undefined.
b. Return CreateIterResultObject(undefined, true).

11. Set O.[[ArrayIteratorNextIndex]] to index + 1.
12. If itemKind is "key", return CreateIterResultObject(index, false).
13. Let elementKey be ! ToString(index).
14. Let elementValue be ? Get(a, elementKey).
15. If itemKind is "value", let result be elementValue.
16. Else,

a. Assert: itemKind is "key+value".
b. Let result be CreateArrayFromList(« index, elementValue »).

17. Return CreateIterResultObject(result, false).

The initial value of the @@toStringTag property is the String value "Array Iterator".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Array Iterator instances are ordinary objects that inherit properties from the %ArrayIteratorPrototype% intrinsic object.
Array Iterator instances are initially created with the internal slots listed in Table 58.

Table 58: Internal Slots of Array Iterator Instances

Internal Slot Description

[[IteratedObject]] The object whose array elements are being iterated.

[[ArrayIteratorNextIndex]] The integer index of the next integer index to be examined by this iteration.

[[ArrayIterationKind]] A String value that identifies what is returned for each element of the iteration. The
possible values are: "key", "value", "key+value".

TypedArray objects present an array-like view of an underlying binary data buffer (24.1). Each element of a TypedArray

22.1.5.2.2 %ArrayIteratorPrototype% [@@toStringTag]

22.1.5.3 Properties of Array Iterator Instances

22.2 TypedArray Objects

© Ecma International 2019

577

instance has the same underlying binary scalar data type. There is a distinct TypedArray constructor, listed in Table 59,
for each of the nine supported element types. Each constructor in Table 59 has a corresponding distinct prototype object.

Table 59: The TypedArray Constructors

Constructor Name and
Intrinsic

Element
Type

Element
Size

Conversion
Operation

Description Equivalent C
Type

Int8Array
%Int8Array%

Int8 1 ToInt8 8-bit 2's complement signed
integer

signed char

Uint8Array
%Uint8Array%

Uint8 1 ToUint8 8-bit unsigned integer unsigned char

Uint8ClampedArray
%Uint8ClampedArray%

Uint8C 1 ToUint8Clamp 8-bit unsigned integer (clamped
conversion)

unsigned char

Int16Array
%Int16Array%

Int16 2 ToInt16 16-bit 2's complement signed
integer

short

Uint16Array
%Uint16Array%

Uint16 2 ToUint16 16-bit unsigned integer unsigned short

Int32Array
%Int32Array%

Int32 4 ToInt32 32-bit 2's complement signed
integer

int

Uint32Array
%Uint32Array%

Uint32 4 ToUint32 32-bit unsigned integer unsigned int

Float32Array
%Float32Array%

Float32 4 32-bit IEEE floating point float

Float64Array
%Float64Array%

Float64 8 64-bit IEEE floating point double

In the definitions below, references to TypedArray should be replaced with the appropriate constructor name from the
above table. The phrase “the element size in bytes” refers to the value in the Element Size column of the table in the row
corresponding to the constructor. The phrase “element Type” refers to the value in the Element Type column for that
row.

The %TypedArray% intrinsic object:

is a constructor function object that all of the TypedArray constructor objects inherit from.
along with its corresponding prototype object, provides common properties that are inherited by all TypedArray
constructors and their instances.
does not have a global name or appear as a property of the global object.
acts as the abstract superclass of the various TypedArray constructors.
will throw an error when invoked, because it is an abstract class constructor. The TypedArray constructors do not
perform a super call to it.

22.2.1 The %TypedArray% Intrinsic Object

578

© Ecma International 2019

578

The %TypedArray% constructor performs the following steps:

1. Throw a TypeError exception.

The "length" property of the %TypedArray% constructor function is 0.

The %TypedArray% intrinsic object:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has a name property whose value is "TypedArray".
has the following properties:

When the from method is called with argument source, and optional arguments mapfn and thisArg, the following steps
are taken:

1. Let C be the this value.
2. If IsConstructor(C) is false, throw a TypeError exception.
3. If mapfn is present and mapfn is not undefined, then

a. If IsCallable(mapfn) is false, throw a TypeError exception.
b. Let mapping be true.

4. Else, let mapping be false.
5. If thisArg is present, let T be thisArg; else let T be undefined.
6. Let usingIterator be ? GetMethod(source, @@iterator).
7. If usingIterator is not undefined, then

a. Let values be ? IterableToList(source, usingIterator).
b. Let len be the number of elements in values.
c. Let targetObj be ? TypedArrayCreate(C, « len »).
d. Let k be 0.
e. Repeat, while k < len

i. Let Pk be ! ToString(k).
ii. Let kValue be the first element of values and remove that element from values.

iii. If mapping is true, then
1. Let mappedValue be ? Call(mapfn, T, « kValue, k »).

iv. Else, let mappedValue be kValue.
v. Perform ? Set(targetObj, Pk, mappedValue, true).

vi. Increase k by 1.
f. Assert: values is now an empty List.
g. Return targetObj.

8. NOTE: source is not an Iterable so assume it is already an array-like object.
9. Let arrayLike be ! ToObject(source).

10. Let len be ? ToLength(? Get(arrayLike, "length")).
11. Let targetObj be ? TypedArrayCreate(C, « len »).
12. Let k be 0.
13. Repeat, while k < len

22.2.1.1 %TypedArray% ()

22.2.2 Properties of the %TypedArray% Intrinsic Object

22.2.2.1 %TypedArray%.from (source [, mapfn [, thisArg]])

© Ecma International 2019

579

a. Let Pk be ! ToString(k).
b. Let kValue be ? Get(arrayLike, Pk).
c. If mapping is true, then

i. Let mappedValue be ? Call(mapfn, T, « kValue, k »).
d. Else, let mappedValue be kValue.
e. Perform ? Set(targetObj, Pk, mappedValue, true).
f. Increase k by 1.

14. Return targetObj.

The abstract operation IterableToList performs the following steps:

1. Let iteratorRecord be ? GetIterator(items, sync, method).
2. Let values be a new empty List.
3. Let next be true.
4. Repeat, while next is not false

a. Set next to ? IteratorStep(iteratorRecord).
b. If next is not false, then

i. Let nextValue be ? IteratorValue(next).
ii. Append nextValue to the end of the List values.

5. Return values.

When the of method is called with any number of arguments, the following steps are taken:

1. Let len be the actual number of arguments passed to this function.
2. Let items be the List of arguments passed to this function.
3. Let C be the this value.
4. If IsConstructor(C) is false, throw a TypeError exception.
5. Let newObj be ? TypedArrayCreate(C, « len »).
6. Let k be 0.
7. Repeat, while k < len

a. Let kValue be items[k].
b. Let Pk be ! ToString(k).
c. Perform ? Set(newObj, Pk, kValue, true).
d. Increase k by 1.

8. Return newObj.

NOTE
The items argument is assumed to be a well-formed rest argument value.

The initial value of %TypedArray%.prototype is the %TypedArrayPrototype% intrinsic object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

22.2.2.1.1 Runtime Semantics: IterableToList (items, method)

22.2.2.2 %TypedArray%.of (...items)

22.2.2.3 %TypedArray%.prototype

580

© Ecma International 2019

580

%TypedArray%[@@species] is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Return the this value.

The value of the name property of this function is "get [Symbol.species]".

NOTE
%TypedArrayPrototype% methods normally use their this object's constructor to create a derived object. However, a
subclass constructor may over-ride that default behaviour by redefining its @@species property.

The %TypedArrayPrototype% object:

has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is an ordinary object.
does not have a [[ViewedArrayBuffer]] or any other of the internal slots that are specific to TypedArray instance
objects.

%TypedArray%.prototype.buffer is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have a [[TypedArrayName]] internal slot, throw a TypeError exception.
4. Assert: O has a [[ViewedArrayBuffer]] internal slot.
5. Let buffer be O.[[ViewedArrayBuffer]].
6. Return buffer.

%TypedArray%.prototype.byteLength is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have a [[TypedArrayName]] internal slot, throw a TypeError exception.
4. Assert: O has a [[ViewedArrayBuffer]] internal slot.
5. Let buffer be O.[[ViewedArrayBuffer]].
6. If IsDetachedBuffer(buffer) is true, return 0.
7. Let size be O.[[ByteLength]].
8. Return size.

22.2.2.4 get %TypedArray% [@@species]

22.2.3 Properties of the %TypedArrayPrototype% Object

22.2.3.1 get %TypedArray%.prototype.buffer

22.2.3.2 get %TypedArray%.prototype.byteLength

22.2.3.3 get %TypedArray%.prototype.byteOffset

© Ecma International 2019

581

%TypedArray%.prototype.byteOffset is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have a [[TypedArrayName]] internal slot, throw a TypeError exception.
4. Assert: O has a [[ViewedArrayBuffer]] internal slot.
5. Let buffer be O.[[ViewedArrayBuffer]].
6. If IsDetachedBuffer(buffer) is true, return 0.
7. Let offset be O.[[ByteOffset]].
8. Return offset.

The initial value of %TypedArray%.prototype.constructor is the %TypedArray% intrinsic object.

The interpretation and use of the arguments of %TypedArray%.prototype.copyWithin are the same as for
Array.prototype.copyWithin as defined in 22.1.3.3.

The following steps are taken:

1. Let O be this value.
2. Perform ? ValidateTypedArray(O).
3. Let len be O.[[ArrayLength]].
4. Let relativeTarget be ? ToInteger(target).
5. If relativeTarget < 0, let to be max((len + relativeTarget), 0); else let to be min(relativeTarget, len).
6. Let relativeStart be ? ToInteger(start).
7. If relativeStart < 0, let from be max((len + relativeStart), 0); else let from be min(relativeStart, len).
8. If end is undefined, let relativeEnd be len; else let relativeEnd be ? ToInteger(end).
9. If relativeEnd < 0, let final be max((len + relativeEnd), 0); else let final be min(relativeEnd, len).

10. Let count be min(final - from, len - to).
11. If count > 0, then

a. NOTE: The copying must be performed in a manner that preserves the bit-level encoding of the source data.
b. Let buffer be O.[[ViewedArrayBuffer]].
c. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
d. Let typedArrayName be the String value of O.[[TypedArrayName]].
e. Let elementSize be the Number value of the Element Size value specified in Table 59 for typedArrayName.
f. Let byteOffset be O.[[ByteOffset]].
g. Let toByteIndex be to × elementSize + byteOffset.
h. Let fromByteIndex be from × elementSize + byteOffset.
i. Let countBytes be count × elementSize.
j. If fromByteIndex < toByteIndex and toByteIndex < fromByteIndex + countBytes, then

i. Let direction be -1.
ii. Set fromByteIndex to fromByteIndex + countBytes - 1.

iii. Set toByteIndex to toByteIndex + countBytes - 1.
k. Else,

i. Let direction be 1.

22.2.3.4 %TypedArray%.prototype.constructor

22.2.3.5 %TypedArray%.prototype.copyWithin (target, start [, end])

582

© Ecma International 2019

582

l. Repeat, while countBytes > 0
i. Let value be GetValueFromBuffer(buffer, fromByteIndex, "Uint8", true, "Unordered").

ii. Perform SetValueInBuffer(buffer, toByteIndex, "Uint8", value, true, "Unordered").
iii. Set fromByteIndex to fromByteIndex + direction.
iv. Set toByteIndex to toByteIndex + direction.
v. Decrease countBytes by 1.

12. Return O.

When called with argument O, the following steps are taken:

1. If Type(O) is not Object, throw a TypeError exception.
2. If O does not have a [[TypedArrayName]] internal slot, throw a TypeError exception.
3. Assert: O has a [[ViewedArrayBuffer]] internal slot.
4. Let buffer be O.[[ViewedArrayBuffer]].
5. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
6. Return buffer.

The following steps are taken:

1. Let O be the this value.
2. Perform ? ValidateTypedArray(O).
3. Return CreateArrayIterator(O, "key+value").

%TypedArray%.prototype.every is a distinct function that implements the same algorithm as
Array.prototype.every as defined in 22.1.3.5 except that the this object's [[ArrayLength]] internal slot is
accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with
the knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.
However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm and
must take into account the possibility that calls to callbackfn may cause the this value to become detached.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

The interpretation and use of the arguments of %TypedArray%.prototype.fill are the same as for
Array.prototype.fill as defined in 22.1.3.6.

The following steps are taken:

1. Let O be the this value.
2. Perform ? ValidateTypedArray(O).
3. Let len be O.[[ArrayLength]].
4. Set value to ? ToNumber(value).

22.2.3.5.1 Runtime Semantics: ValidateTypedArray (O)

22.2.3.6 %TypedArray%.prototype.entries ()

22.2.3.7 %TypedArray%.prototype.every (callbackfn [, thisArg])

22.2.3.8 %TypedArray%.prototype.fill (value [, start [, end]])

© Ecma International 2019

583

5. Let relativeStart be ? ToInteger(start).
6. If relativeStart < 0, let k be max((len + relativeStart), 0); else let k be min(relativeStart, len).
7. If end is undefined, let relativeEnd be len; else let relativeEnd be ? ToInteger(end).
8. If relativeEnd < 0, let final be max((len + relativeEnd), 0); else let final be min(relativeEnd, len).
9. If IsDetachedBuffer(O.[[ViewedArrayBuffer]]) is true, throw a TypeError exception.

10. Repeat, while k < final
a. Let Pk be ! ToString(k).
b. Perform ! Set(O, Pk, value, true).
c. Increase k by 1.

11. Return O.

The interpretation and use of the arguments of %TypedArray%.prototype.filter are the same as for
Array.prototype.filter as defined in 22.1.3.7.

When the filter method is called with one or two arguments, the following steps are taken:

1. Let O be the this value.
2. Perform ? ValidateTypedArray(O).
3. Let len be O.[[ArrayLength]].
4. If IsCallable(callbackfn) is false, throw a TypeError exception.
5. If thisArg is present, let T be thisArg; else let T be undefined.
6. Let kept be a new empty List.
7. Let k be 0.
8. Let captured be 0.
9. Repeat, while k < len

a. Let Pk be ! ToString(k).
b. Let kValue be ? Get(O, Pk).
c. Let selected be ToBoolean(? Call(callbackfn, T, « kValue, k, O »)).
d. If selected is true, then

i. Append kValue to the end of kept.
ii. Increase captured by 1.

e. Increase k by 1.
10. Let A be ? TypedArraySpeciesCreate(O, « captured »).
11. Let n be 0.
12. For each element e of kept, do

a. Perform ! Set(A, ! ToString(n), e, true).
b. Increment n by 1.

13. Return A.

This function is not generic. The this value must be an object with a [[TypedArrayName]] internal slot.

%TypedArray%.prototype.find is a distinct function that implements the same algorithm as
Array.prototype.find as defined in 22.1.3.8 except that the this object's [[ArrayLength]] internal slot is accessed
in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with the
knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.

22.2.3.9 %TypedArray%.prototype.filter (callbackfn [, thisArg])

22.2.3.10 %TypedArray%.prototype.find (predicate [, thisArg])

584

© Ecma International 2019

584

However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm and
must take into account the possibility that calls to predicate may cause the this value to become detached.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

%TypedArray%.prototype.findIndex is a distinct function that implements the same algorithm as
Array.prototype.findIndex as defined in 22.1.3.9 except that the this object's [[ArrayLength]] internal slot is
accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with
the knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.
However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm and
must take into account the possibility that calls to predicate may cause the this value to become detached.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

%TypedArray%.prototype.forEach is a distinct function that implements the same algorithm as
Array.prototype.forEach as defined in 22.1.3.12 except that the this object's [[ArrayLength]] internal slot is
accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with
the knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.
However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm and
must take into account the possibility that calls to callbackfn may cause the this value to become detached.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

%TypedArray%.prototype.includes is a distinct function that implements the same algorithm as
Array.prototype.includes as defined in 22.1.3.13 except that the this object's [[ArrayLength]] internal slot is
accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with
the knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.
However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

%TypedArray%.prototype.indexOf is a distinct function that implements the same algorithm as
Array.prototype.indexOf as defined in 22.1.3.14 except that the this object's [[ArrayLength]] internal slot is
accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with
the knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.
However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its

22.2.3.11 %TypedArray%.prototype.findIndex (predicate [, thisArg])

22.2.3.12 %TypedArray%.prototype.forEach (callbackfn [, thisArg])

22.2.3.13 %TypedArray%.prototype.includes (searchElement [, fromIndex])

22.2.3.14 %TypedArray%.prototype.indexOf (searchElement [, fromIndex])

© Ecma International 2019

585

result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

%TypedArray%.prototype.join is a distinct function that implements the same algorithm as
Array.prototype.join as defined in 22.1.3.15 except that the this object's [[ArrayLength]] internal slot is
accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with
the knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.
However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

The following steps are taken:

1. Let O be the this value.
2. Perform ? ValidateTypedArray(O).
3. Return CreateArrayIterator(O, "key").

%TypedArray%.prototype.lastIndexOf is a distinct function that implements the same algorithm as
Array.prototype.lastIndexOf as defined in 22.1.3.17 except that the this object's [[ArrayLength]] internal slot
is accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with
the knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.
However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

%TypedArray%.prototype.length is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have a [[TypedArrayName]] internal slot, throw a TypeError exception.
4. Assert: O has [[ViewedArrayBuffer]] and [[ArrayLength]] internal slots.
5. Let buffer be O.[[ViewedArrayBuffer]].
6. If IsDetachedBuffer(buffer) is true, return 0.
7. Let length be O.[[ArrayLength]].
8. Return length.

This function is not generic. The this value must be an object with a [[TypedArrayName]] internal slot.

22.2.3.15 %TypedArray%.prototype.join (separator)

22.2.3.16 %TypedArray%.prototype.keys ()

22.2.3.17 %TypedArray%.prototype.lastIndexOf (searchElement [, fromIndex])

22.2.3.18 get %TypedArray%.prototype.length

22.2.3.19 %TypedArray%.prototype.map (callbackfn [, thisArg])

586

© Ecma International 2019

586

The interpretation and use of the arguments of %TypedArray%.prototype.map are the same as for
Array.prototype.map as defined in 22.1.3.18.

When the map method is called with one or two arguments, the following steps are taken:

1. Let O be the this value.
2. Perform ? ValidateTypedArray(O).
3. Let len be O.[[ArrayLength]].
4. If IsCallable(callbackfn) is false, throw a TypeError exception.
5. If thisArg is present, let T be thisArg; else let T be undefined.
6. Let A be ? TypedArraySpeciesCreate(O, « len »).
7. Let k be 0.
8. Repeat, while k < len

a. Let Pk be ! ToString(k).
b. Let kValue be ? Get(O, Pk).
c. Let mappedValue be ? Call(callbackfn, T, « kValue, k, O »).
d. Perform ? Set(A, Pk, mappedValue, true).
e. Increase k by 1.

9. Return A.

This function is not generic. The this value must be an object with a [[TypedArrayName]] internal slot.

%TypedArray%.prototype.reduce is a distinct function that implements the same algorithm as
Array.prototype.reduce as defined in 22.1.3.21 except that the this object's [[ArrayLength]] internal slot is
accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with
the knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.
However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm and
must take into account the possibility that calls to callbackfn may cause the this value to become detached.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

%TypedArray%.prototype.reduceRight is a distinct function that implements the same algorithm as
Array.prototype.reduceRight as defined in 22.1.3.22 except that the this object's [[ArrayLength]] internal slot
is accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with
the knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.
However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm and
must take into account the possibility that calls to callbackfn may cause the this value to become detached.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

%TypedArray%.prototype.reverse is a distinct function that implements the same algorithm as
Array.prototype.reverse as defined in 22.1.3.23 except that the this object's [[ArrayLength]] internal slot is

22.2.3.20 %TypedArray%.prototype.reduce (callbackfn [, initialValue])

22.2.3.21 %TypedArray%.prototype.reduceRight (callbackfn [, initialValue])

22.2.3.22 %TypedArray%.prototype.reverse ()

© Ecma International 2019

587

accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with
the knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.
However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

%TypedArray%.prototype.set is a single function whose behaviour is overloaded based upon the type of its first
argument.

This function is not generic. The this value must be an object with a [[TypedArrayName]] internal slot.

Sets multiple values in this TypedArray, reading the values from the object array. The optional offset value indicates the
first element index in this TypedArray where values are written. If omitted, it is assumed to be 0.

1. Assert: array is any ECMAScript language value other than an Object with a [[TypedArrayName]] internal slot. If
it is such an Object, the definition in 22.2.3.23.2 applies.

2. Let target be the this value.
3. If Type(target) is not Object, throw a TypeError exception.
4. If target does not have a [[TypedArrayName]] internal slot, throw a TypeError exception.
5. Assert: target has a [[ViewedArrayBuffer]] internal slot.
6. Let targetOffset be ? ToInteger(offset).
7. If targetOffset < 0, throw a RangeError exception.
8. Let targetBuffer be target.[[ViewedArrayBuffer]].
9. If IsDetachedBuffer(targetBuffer) is true, throw a TypeError exception.

10. Let targetLength be target.[[ArrayLength]].
11. Let targetName be the String value of target.[[TypedArrayName]].
12. Let targetElementSize be the Number value of the Element Size value specified in Table 59 for targetName.
13. Let targetType be the String value of the Element Type value in Table 59 for targetName.
14. Let targetByteOffset be target.[[ByteOffset]].
15. Let src be ? ToObject(array).
16. Let srcLength be ? ToLength(? Get(src, "length")).
17. If srcLength + targetOffset > targetLength, throw a RangeError exception.
18. Let targetByteIndex be targetOffset × targetElementSize + targetByteOffset.
19. Let k be 0.
20. Let limit be targetByteIndex + targetElementSize × srcLength.
21. Repeat, while targetByteIndex < limit

a. Let Pk be ! ToString(k).
b. Let kNumber be ? ToNumber(? Get(src, Pk)).
c. If IsDetachedBuffer(targetBuffer) is true, throw a TypeError exception.
d. Perform SetValueInBuffer(targetBuffer, targetByteIndex, targetType, kNumber, true, "Unordered").
e. Increase k by 1.
f. Set targetByteIndex to targetByteIndex + targetElementSize.

22. Return undefined.

22.2.3.23 %TypedArray%.prototype.set (overloaded [, offset])

22.2.3.23.1 %TypedArray%.prototype.set (array [, offset])

588

© Ecma International 2019

588

Sets multiple values in this TypedArray, reading the values from the typedArray argument object. The optional offset
value indicates the first element index in this TypedArray where values are written. If omitted, it is assumed to be 0.

1. Assert: typedArray has a [[TypedArrayName]] internal slot. If it does not, the definition in 22.2.3.23.1 applies.
2. Let target be the this value.
3. If Type(target) is not Object, throw a TypeError exception.
4. If target does not have a [[TypedArrayName]] internal slot, throw a TypeError exception.
5. Assert: target has a [[ViewedArrayBuffer]] internal slot.
6. Let targetOffset be ? ToInteger(offset).
7. If targetOffset < 0, throw a RangeError exception.
8. Let targetBuffer be target.[[ViewedArrayBuffer]].
9. If IsDetachedBuffer(targetBuffer) is true, throw a TypeError exception.

10. Let targetLength be target.[[ArrayLength]].
11. Let srcBuffer be typedArray.[[ViewedArrayBuffer]].
12. If IsDetachedBuffer(srcBuffer) is true, throw a TypeError exception.
13. Let targetName be the String value of target.[[TypedArrayName]].
14. Let targetType be the String value of the Element Type value in Table 59 for targetName.
15. Let targetElementSize be the Number value of the Element Size value specified in Table 59 for targetName.
16. Let targetByteOffset be target.[[ByteOffset]].
17. Let srcName be the String value of typedArray.[[TypedArrayName]].
18. Let srcType be the String value of the Element Type value in Table 59 for srcName.
19. Let srcElementSize be the Number value of the Element Size value specified in Table 59 for srcName.
20. Let srcLength be typedArray.[[ArrayLength]].
21. Let srcByteOffset be typedArray.[[ByteOffset]].
22. If srcLength + targetOffset > targetLength, throw a RangeError exception.
23. If both IsSharedArrayBuffer(srcBuffer) and IsSharedArrayBuffer(targetBuffer) are true, then

a. If srcBuffer.[[ArrayBufferData]] and targetBuffer.[[ArrayBufferData]] are the same Shared Data Block values,
let same be true; else let same be false.

24. Else, let same be SameValue(srcBuffer, targetBuffer).
25. If same is true, then

a. Let srcByteLength be typedArray.[[ByteLength]].
b. Set srcBuffer to ? CloneArrayBuffer(srcBuffer, srcByteOffset, srcByteLength, %ArrayBuffer%).
c. NOTE: %ArrayBuffer% is used to clone srcBuffer because is it known to not have any observable side-

effects.
d. Let srcByteIndex be 0.

26. Else, let srcByteIndex be srcByteOffset.
27. Let targetByteIndex be targetOffset × targetElementSize + targetByteOffset.
28. Let limit be targetByteIndex + targetElementSize × srcLength.
29. If SameValue(srcType, targetType) is true, then

a. NOTE: If srcType and targetType are the same, the transfer must be performed in a manner that preserves the
bit-level encoding of the source data.

b. Repeat, while targetByteIndex < limit
i. Let value be GetValueFromBuffer(srcBuffer, srcByteIndex, "Uint8", true, "Unordered").

ii. Perform SetValueInBuffer(targetBuffer, targetByteIndex, "Uint8", value, true, "Unordered").
iii. Increase srcByteIndex by 1.
iv. Increase targetByteIndex by 1.

30. Else,

22.2.3.23.2 %TypedArray%.prototype.set (typedArray [, offset])

© Ecma International 2019

589

a. Repeat, while targetByteIndex < limit
i. Let value be GetValueFromBuffer(srcBuffer, srcByteIndex, srcType, true, "Unordered").

ii. Perform SetValueInBuffer(targetBuffer, targetByteIndex, targetType, value, true, "Unordered").
iii. Set srcByteIndex to srcByteIndex + srcElementSize.
iv. Set targetByteIndex to targetByteIndex + targetElementSize.

31. Return undefined.

The interpretation and use of the arguments of %TypedArray%.prototype.slice are the same as for
Array.prototype.slice as defined in 22.1.3.25. The following steps are taken:

1. Let O be the this value.
2. Perform ? ValidateTypedArray(O).
3. Let len be O.[[ArrayLength]].
4. Let relativeStart be ? ToInteger(start).
5. If relativeStart < 0, let k be max((len + relativeStart), 0); else let k be min(relativeStart, len).
6. If end is undefined, let relativeEnd be len; else let relativeEnd be ? ToInteger(end).
7. If relativeEnd < 0, let final be max((len + relativeEnd), 0); else let final be min(relativeEnd, len).
8. Let count be max(final - k, 0).
9. Let A be ? TypedArraySpeciesCreate(O, « count »).

10. Let srcName be the String value of O.[[TypedArrayName]].
11. Let srcType be the String value of the Element Type value in Table 59 for srcName.
12. Let targetName be the String value of A.[[TypedArrayName]].
13. Let targetType be the String value of the Element Type value in Table 59 for targetName.
14. If SameValue(srcType, targetType) is false, then

a. Let n be 0.
b. Repeat, while k < final

i. Let Pk be ! ToString(k).
ii. Let kValue be ? Get(O, Pk).

iii. Perform ! Set(A, ! ToString(n), kValue, true).
iv. Increase k by 1.
v. Increase n by 1.

15. Else if count > 0, then
a. Let srcBuffer be O.[[ViewedArrayBuffer]].
b. If IsDetachedBuffer(srcBuffer) is true, throw a TypeError exception.
c. Let targetBuffer be A.[[ViewedArrayBuffer]].
d. Let elementSize be the Number value of the Element Size value specified in Table 59 for srcType.
e. NOTE: If srcType and targetType are the same, the transfer must be performed in a manner that preserves the

bit-level encoding of the source data.
f. Let srcByteOffet be O.[[ByteOffset]].
g. Let targetByteIndex be A.[[ByteOffset]].
h. Let srcByteIndex be (k × elementSize) + srcByteOffet.
i. Let limit be targetByteIndex + count × elementSize.
j. Repeat, while targetByteIndex < limit

i. Let value be GetValueFromBuffer(srcBuffer, srcByteIndex, "Uint8", true, "Unordered").
ii. Perform SetValueInBuffer(targetBuffer, targetByteIndex, "Uint8", value, true, "Unordered").

iii. Increase srcByteIndex by 1.

22.2.3.24 %TypedArray%.prototype.slice (start, end)

590

© Ecma International 2019

590

iv. Increase targetByteIndex by 1.
16. Return A.

This function is not generic. The this value must be an object with a [[TypedArrayName]] internal slot.

%TypedArray%.prototype.some is a distinct function that implements the same algorithm as
Array.prototype.some as defined in 22.1.3.26 except that the this object's [[ArrayLength]] internal slot is
accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be optimized with
the knowledge that the this value is an object that has a fixed length and whose integer-indexed properties are not sparse.
However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm and
must take into account the possibility that calls to callbackfn may cause the this value to become detached.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

%TypedArray%.prototype.sort is a distinct function that, except as described below, implements the same
requirements as those of Array.prototype.sort as defined in 22.1.3.27. The implementation of the
%TypedArray%.prototype.sort specification may be optimized with the knowledge that the this value is an
object that has a fixed length and whose integer-indexed properties are not sparse. The only internal methods of the this
object that the algorithm may call are [[Get]] and [[Set]].

This function is not generic. The this value must be an object with a [[TypedArrayName]] internal slot.

Upon entry, the following steps are performed to initialize evaluation of the sort function. These steps are used instead
of the entry steps in 22.1.3.27:

1. If comparefn is not undefined and IsCallable(comparefn) is false, throw a TypeError exception.
2. Let obj be the this value.
3. Let buffer be ? ValidateTypedArray(obj).
4. Let len be obj.[[ArrayLength]].

The implementation-defined sort order condition for exotic objects is not applied by
%TypedArray%.prototype.sort.

The following version of SortCompare is used by %TypedArray%.prototype.sort. It performs a numeric
comparison rather than the string comparison used in 22.1.3.27. SortCompare has access to the comparefn and buffer
values of the current invocation of the sort method.

When the TypedArray SortCompare abstract operation is called with two arguments x and y, the following steps are
taken:

1. Assert: Both Type(x) and Type(y) is Number.
2. If comparefn is not undefined, then

a. Let v be ? ToNumber(? Call(comparefn, undefined, « x, y »)).
b. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
c. If v is NaN, return +0.
d. Return v.

22.2.3.25 %TypedArray%.prototype.some (callbackfn [, thisArg])

22.2.3.26 %TypedArray%.prototype.sort (comparefn)

© Ecma International 2019

591

3. If x and y are both NaN, return +0.
4. If x is NaN, return 1.
5. If y is NaN, return -1.
6. If x < y, return -1.
7. If x > y, return 1.
8. If x is -0 and y is +0, return -1.
9. If x is +0 and y is -0, return 1.

10. Return +0.

NOTE
Because NaN always compares greater than any other value, NaN property values always sort to the end of the result
when comparefn is not provided.

Returns a new TypedArray object whose element type is the same as this TypedArray and whose ArrayBuffer is the same
as the ArrayBuffer of this TypedArray, referencing the elements at begin, inclusive, up to end, exclusive. If either begin
or end is negative, it refers to an index from the end of the array, as opposed to from the beginning.

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have a [[TypedArrayName]] internal slot, throw a TypeError exception.
4. Assert: O has a [[ViewedArrayBuffer]] internal slot.
5. Let buffer be O.[[ViewedArrayBuffer]].
6. Let srcLength be O.[[ArrayLength]].
7. Let relativeBegin be ? ToInteger(begin).
8. If relativeBegin < 0, let beginIndex be max((srcLength + relativeBegin), 0); else let beginIndex be

min(relativeBegin, srcLength).
9. If end is undefined, let relativeEnd be srcLength; else, let relativeEnd be ? ToInteger(end).

10. If relativeEnd < 0, let endIndex be max((srcLength + relativeEnd), 0); else let endIndex be min(relativeEnd,
srcLength).

11. Let newLength be max(endIndex - beginIndex, 0).
12. Let constructorName be the String value of O.[[TypedArrayName]].
13. Let elementSize be the Number value of the Element Size value specified in Table 59 for constructorName.
14. Let srcByteOffset be O.[[ByteOffset]].
15. Let beginByteOffset be srcByteOffset + beginIndex × elementSize.
16. Let argumentsList be « buffer, beginByteOffset, newLength ».
17. Return ? TypedArraySpeciesCreate(O, argumentsList).

This function is not generic. The this value must be an object with a [[TypedArrayName]] internal slot.

%TypedArray%.prototype.toLocaleString is a distinct function that implements the same algorithm as
Array.prototype.toLocaleString as defined in 22.1.3.29 except that the this object's [[ArrayLength]]
internal slot is accessed in place of performing a [[Get]] of "length". The implementation of the algorithm may be
optimized with the knowledge that the this value is an object that has a fixed length and whose integer-indexed
properties are not sparse. However, such optimization must not introduce any observable changes in the specified

22.2.3.27 %TypedArray%.prototype.subarray (begin, end)

22.2.3.28 %TypedArray%.prototype.toLocaleString ([reserved1 [, reserved2]])

592

© Ecma International 2019

592

behaviour of the algorithm.

This function is not generic. ValidateTypedArray is applied to the this value prior to evaluating the algorithm. If its
result is an abrupt completion that exception is thrown instead of evaluating the algorithm.

NOTE
If the ECMAScript implementation includes the ECMA-402 Internationalization API this function is based upon the
algorithm for Array.prototype.toLocaleString that is in the ECMA-402 specification.

The initial value of the %TypedArray%.prototype.toString data property is the same built-in function object as
the Array.prototype.toString method defined in 22.1.3.30.

The following steps are taken:

1. Let O be the this value.
2. Perform ? ValidateTypedArray(O).
3. Return CreateArrayIterator(O, "value").

The initial value of the @@iterator property is the same function object as the initial value of the
%TypedArray%.prototype.values property.

%TypedArray%.prototype[@@toStringTag] is an accessor property whose set accessor function is undefined.
Its get accessor function performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object, return undefined.
3. If O does not have a [[TypedArrayName]] internal slot, return undefined.
4. Let name be O.[[TypedArrayName]].
5. Assert: Type(name) is String.
6. Return name.

This property has the attributes { [[Enumerable]]: false, [[Configurable]]: true }.

The initial value of the name property of this function is "get [Symbol.toStringTag]".

Each TypedArray constructor:

is an intrinsic object that has the structure described below, differing only in the name used as the constructor name
instead of TypedArray, in Table 59.
is a single function whose behaviour is overloaded based upon the number and types of its arguments. The actual

22.2.3.29 %TypedArray%.prototype.toString ()

22.2.3.30 %TypedArray%.prototype.values ()

22.2.3.31 %TypedArray%.prototype [@@iterator] ()

22.2.3.32 get %TypedArray%.prototype [@@toStringTag]

22.2.4 The TypedArray Constructors

© Ecma International 2019

593

behaviour of a call of TypedArray depends upon the number and kind of arguments that are passed to it.
is not intended to be called as a function and will throw an exception when called in that manner.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified TypedArray behaviour must include a super call to the TypedArray
constructor to create and initialize the subclass instance with the internal state necessary to support the
%TypedArray%.prototype built-in methods.
has a "length" property whose value is 3.

This description applies only if the TypedArray function is called with no arguments.

1. If NewTarget is undefined, throw a TypeError exception.
2. Let constructorName be the String value of the Constructor Name value specified in Table 59 for this TypedArray

constructor.
3. Return ? AllocateTypedArray(constructorName, NewTarget, "%TypedArrayPrototype%", 0).

This description applies only if the TypedArray function is called with at least one argument and the Type of the first
argument is not Object.

TypedArray called with argument length performs the following steps:

1. Assert: Type(length) is not Object.
2. If NewTarget is undefined, throw a TypeError exception.
3. Let elementLength be ? ToIndex(length).
4. Let constructorName be the String value of the Constructor Name value specified in Table 59 for this TypedArray

constructor.
5. Return ? AllocateTypedArray(constructorName, NewTarget, "%TypedArrayPrototype%", elementLength).

The abstract operation AllocateTypedArray with arguments constructorName, newTarget, defaultProto and optional
argument length is used to validate and create an instance of a TypedArray constructor. constructorName is required to
be the name of a TypedArray constructor in Table 59. If the length argument is passed, an ArrayBuffer of that length is
also allocated and associated with the new TypedArray instance. AllocateTypedArray provides common semantics that is
used by all of the TypedArray overloads. AllocateTypedArray performs the following steps:

1. Let proto be ? GetPrototypeFromConstructor(newTarget, defaultProto).
2. Let obj be IntegerIndexedObjectCreate(proto, « [[ViewedArrayBuffer]], [[TypedArrayName]], [[ByteLength]],

[[ByteOffset]], [[ArrayLength]] »).
3. Assert: obj.[[ViewedArrayBuffer]] is undefined.
4. Set obj.[[TypedArrayName]] to constructorName.
5. If length is not present, then

a. Set obj.[[ByteLength]] to 0.
b. Set obj.[[ByteOffset]] to 0.
c. Set obj.[[ArrayLength]] to 0.

6. Else,
a. Perform ? AllocateTypedArrayBuffer(obj, length).

22.2.4.1 TypedArray ()

22.2.4.2 TypedArray (length)

22.2.4.2.1 Runtime Semantics: AllocateTypedArray (constructorName, newTarget, defaultProto [, length])

594

© Ecma International 2019

594

7. Return obj.

The abstract operation AllocateTypedArrayBuffer with arguments O and length allocates and associates an ArrayBuffer
with the TypedArray instance O. It performs the following steps:

1. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
2. Assert: O.[[ViewedArrayBuffer]] is undefined.
3. Assert: length ≥ 0.
4. Let constructorName be the String value of O.[[TypedArrayName]].
5. Let elementSize be the Element Size value in Table 59 for constructorName.
6. Let byteLength be elementSize × length.
7. Let data be ? AllocateArrayBuffer(%ArrayBuffer%, byteLength).
8. Set O.[[ViewedArrayBuffer]] to data.
9. Set O.[[ByteLength]] to byteLength.

10. Set O.[[ByteOffset]] to 0.
11. Set O.[[ArrayLength]] to length.
12. Return O.

This description applies only if the TypedArray function is called with at least one argument and the Type of the first
argument is Object and that object has a [[TypedArrayName]] internal slot.

TypedArray called with argument typedArray performs the following steps:

1. Assert: Type(typedArray) is Object and typedArray has a [[TypedArrayName]] internal slot.
2. If NewTarget is undefined, throw a TypeError exception.
3. Let constructorName be the String value of the Constructor Name value specified in Table 59 for this TypedArray

constructor.
4. Let O be ? AllocateTypedArray(constructorName, NewTarget, "%TypedArrayPrototype%").
5. Let srcArray be typedArray.
6. Let srcData be srcArray.[[ViewedArrayBuffer]].
7. If IsDetachedBuffer(srcData) is true, throw a TypeError exception.
8. Let elementType be the String value of the Element Type value in Table 59 for constructorName.
9. Let elementLength be srcArray.[[ArrayLength]].

10. Let srcName be the String value of srcArray.[[TypedArrayName]].
11. Let srcType be the String value of the Element Type value in Table 59 for srcName.
12. Let srcElementSize be the Element Size value in Table 59 for srcName.
13. Let srcByteOffset be srcArray.[[ByteOffset]].
14. Let elementSize be the Element Size value in Table 59 for constructorName.
15. Let byteLength be elementSize × elementLength.
16. If IsSharedArrayBuffer(srcData) is false, then

a. Let bufferConstructor be ? SpeciesConstructor(srcData, %ArrayBuffer%).
17. Else,

a. Let bufferConstructor be %ArrayBuffer%.
18. If SameValue(elementType, srcType) is true, then

a. Let data be ? CloneArrayBuffer(srcData, srcByteOffset, byteLength, bufferConstructor).
19. Else,

22.2.4.2.2 Runtime Semantics: AllocateTypedArrayBuffer (O, length)

22.2.4.3 TypedArray (typedArray)

© Ecma International 2019

595

a. Let data be ? AllocateArrayBuffer(bufferConstructor, byteLength).
b. If IsDetachedBuffer(srcData) is true, throw a TypeError exception.
c. Let srcByteIndex be srcByteOffset.
d. Let targetByteIndex be 0.
e. Let count be elementLength.
f. Repeat, while count > 0

i. Let value be GetValueFromBuffer(srcData, srcByteIndex, srcType, true, "Unordered").
ii. Perform SetValueInBuffer(data, targetByteIndex, elementType, value, true, "Unordered").

iii. Set srcByteIndex to srcByteIndex + srcElementSize.
iv. Set targetByteIndex to targetByteIndex + elementSize.
v. Decrement count by 1.

20. Set O.[[ViewedArrayBuffer]] to data.
21. Set O.[[ByteLength]] to byteLength.
22. Set O.[[ByteOffset]] to 0.
23. Set O.[[ArrayLength]] to elementLength.
24. Return O.

This description applies only if the TypedArray function is called with at least one argument and the Type of the first
argument is Object and that object does not have either a [[TypedArrayName]] or an [[ArrayBufferData]] internal slot.

TypedArray called with argument object performs the following steps:

1. Assert: Type(object) is Object and object does not have either a [[TypedArrayName]] or an [[ArrayBufferData]]
internal slot.

2. If NewTarget is undefined, throw a TypeError exception.
3. Let constructorName be the String value of the Constructor Name value specified in Table 59 for this TypedArray

constructor.
4. Let O be ? AllocateTypedArray(constructorName, NewTarget, "%TypedArrayPrototype%").
5. Let usingIterator be ? GetMethod(object, @@iterator).
6. If usingIterator is not undefined, then

a. Let values be ? IterableToList(object, usingIterator).
b. Let len be the number of elements in values.
c. Perform ? AllocateTypedArrayBuffer(O, len).
d. Let k be 0.
e. Repeat, while k < len

i. Let Pk be ! ToString(k).
ii. Let kValue be the first element of values and remove that element from values.

iii. Perform ? Set(O, Pk, kValue, true).
iv. Increase k by 1.

f. Assert: values is now an empty List.
g. Return O.

7. NOTE: object is not an Iterable so assume it is already an array-like object.
8. Let arrayLike be object.
9. Let len be ? ToLength(? Get(arrayLike, "length")).

10. Perform ? AllocateTypedArrayBuffer(O, len).
11. Let k be 0.
12. Repeat, while k < len

22.2.4.4 TypedArray (object)

596

© Ecma International 2019

596

a. Let Pk be ! ToString(k).
b. Let kValue be ? Get(arrayLike, Pk).
c. Perform ? Set(O, Pk, kValue, true).
d. Increase k by 1.

13. Return O.

This description applies only if the TypedArray function is called with at least one argument and the Type of the first
argument is Object and that object has an [[ArrayBufferData]] internal slot.

TypedArray called with at least one argument buffer performs the following steps:

1. Assert: Type(buffer) is Object and buffer has an [[ArrayBufferData]] internal slot.
2. If NewTarget is undefined, throw a TypeError exception.
3. Let constructorName be the String value of the Constructor Name value specified in Table 59 for this TypedArray

constructor.
4. Let O be ? AllocateTypedArray(constructorName, NewTarget, "%TypedArrayPrototype%").
5. Let elementSize be the Number value of the Element Size value in Table 59 for constructorName.
6. Let offset be ? ToIndex(byteOffset).
7. If offset modulo elementSize ≠ 0, throw a RangeError exception.
8. If length is present and length is not undefined, then

a. Let newLength be ? ToIndex(length).
9. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.

10. Let bufferByteLength be buffer.[[ArrayBufferByteLength]].
11. If length is either not present or undefined, then

a. If bufferByteLength modulo elementSize ≠ 0, throw a RangeError exception.
b. Let newByteLength be bufferByteLength - offset.
c. If newByteLength < 0, throw a RangeError exception.

12. Else,
a. Let newByteLength be newLength × elementSize.
b. If offset + newByteLength > bufferByteLength, throw a RangeError exception.

13. Set O.[[ViewedArrayBuffer]] to buffer.
14. Set O.[[ByteLength]] to newByteLength.
15. Set O.[[ByteOffset]] to offset.
16. Set O.[[ArrayLength]] to newByteLength / elementSize.
17. Return O.

The abstract operation TypedArrayCreate with arguments constructor and argumentList is used to specify the creation of
a new TypedArray object using a constructor function. It performs the following steps:

1. Let newTypedArray be ? Construct(constructor, argumentList).
2. Perform ? ValidateTypedArray(newTypedArray).
3. If argumentList is a List of a single Number, then

a. If newTypedArray.[[ArrayLength]] < argumentList[0], throw a TypeError exception.
4. Return newTypedArray.

22.2.4.5 TypedArray (buffer [, byteOffset [, length]])

22.2.4.6 TypedArrayCreate (constructor, argumentList)

© Ecma International 2019

597

The abstract operation TypedArraySpeciesCreate with arguments exemplar and argumentList is used to specify the
creation of a new TypedArray object using a constructor function that is derived from exemplar. It performs the
following steps:

1. Assert: exemplar is an Object that has a [[TypedArrayName]] internal slot.
2. Let defaultConstructor be the intrinsic object listed in column one of Table 59 for exemplar.[[TypedArrayName]].
3. Let constructor be ? SpeciesConstructor(exemplar, defaultConstructor).
4. Return ? TypedArrayCreate(constructor, argumentList).

Each TypedArray constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %TypedArray%.
has a name property whose value is the String value of the constructor name specified for it in Table 59.
has the following properties:

The value of TypedArray.BYTES_PER_ELEMENT is the Number value of the Element Size value specified in Table 59
for TypedArray.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of TypedArray.prototype is the corresponding TypedArray prototype intrinsic object (22.2.6).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

Each TypedArray prototype object:

has a [[Prototype]] internal slot whose value is the intrinsic object %TypedArrayPrototype%.
is an ordinary object.
does not have a [[ViewedArrayBuffer]] or any other of the internal slots that are specific to TypedArray instance
objects.

The value of TypedArray.prototype.BYTES_PER_ELEMENT is the Number value of the Element Size value
specified in Table 59 for TypedArray.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The initial value of a TypedArray.prototype.constructor is the corresponding %TypedArray% intrinsic

22.2.4.7 TypedArraySpeciesCreate (exemplar, argumentList)

22.2.5 Properties of the TypedArray Constructors

22.2.5.1 TypedArray.BYTES_PER_ELEMENT

22.2.5.2 TypedArray.prototype

22.2.6 Properties of the TypedArray Prototype Objects

22.2.6.1 TypedArray.prototype.BYTES_PER_ELEMENT

22.2.6.2 TypedArray.prototype.constructor

598

© Ecma International 2019

598

object.

TypedArray instances are Integer-Indexed exotic objects. Each TypedArray instance inherits properties from the
corresponding TypedArray prototype object. Each TypedArray instance has the following internal slots:
[[TypedArrayName]], [[ViewedArrayBuffer]], [[ByteLength]], [[ByteOffset]], and [[ArrayLength]].

Map objects are collections of key/value pairs where both the keys and values may be arbitrary ECMAScript language
values. A distinct key value may only occur in one key/value pair within the Map's collection. Distinct key values are
discriminated using the SameValueZero comparison algorithm.

Map object must be implemented using either hash tables or other mechanisms that, on average, provide access times
that are sublinear on the number of elements in the collection. The data structures used in this Map objects specification
is only intended to describe the required observable semantics of Map objects. It is not intended to be a viable
implementation model.

The Map constructor:

is the intrinsic object %Map%.
is the initial value of the Map property of the global object.
creates and initializes a new Map object when called as a constructor.
is not intended to be called as a function and will throw an exception when called in that manner.
is designed to be subclassable. It may be used as the value in an extends clause of a class definition. Subclass
constructors that intend to inherit the specified Map behaviour must include a super call to the Map constructor to
create and initialize the subclass instance with the internal state necessary to support the Map.prototype built-in
methods.

When the Map function is called with optional argument iterable, the following steps are taken:

1. If NewTarget is undefined, throw a TypeError exception.
2. Let map be ? OrdinaryCreateFromConstructor(NewTarget, "%MapPrototype%", « [[MapData]] »).
3. Set map.[[MapData]] to a new empty List.
4. If iterable is not present, or is either undefined or null, return map.
5. Let adder be ? Get(map, "set").
6. Return ? AddEntriesFromIterable(map, iterable, adder).

NOTE

22.2.7 Properties of TypedArray Instances

23 Keyed Collections

23.1 Map Objects

23.1.1 The Map Constructor

23.1.1.1 Map ([iterable])

© Ecma International 2019

599

If the parameter iterable is present, it is expected to be an object that implements an @@iterator method that returns an
iterator object that produces a two element array-like object whose first element is a value that will be used as a Map key
and whose second element is the value to associate with that key.

The abstract operation AddEntriesFromIterable accepts a target object, an iterable of entries, and an adder function to be
invoked, with target as the receiver.

1. If IsCallable(adder) is false, throw a TypeError exception.
2. Assert: iterable is present, and is neither undefined nor null.
3. Let iteratorRecord be ? GetIterator(iterable).
4. Repeat,

a. Let next be ? IteratorStep(iteratorRecord).
b. If next is false, return target.
c. Let nextItem be ? IteratorValue(next).
d. If Type(nextItem) is not Object, then

i. Let error be ThrowCompletion(a newly created TypeError object).
ii. Return ? IteratorClose(iteratorRecord, error).

e. Let k be Get(nextItem, "0").
f. If k is an abrupt completion, return ? IteratorClose(iteratorRecord, k).
g. Let v be Get(nextItem, "1").
h. If v is an abrupt completion, return ? IteratorClose(iteratorRecord, v).
i. Let status be Call(adder, target, « k.[[Value]], v.[[Value]] »).
j. If status is an abrupt completion, return ? IteratorClose(iteratorRecord, status).

NOTE
The parameter iterable is expected to be an object that implements an @@iterator method that returns an iterator object
that produces a two element array-like object whose first element is a value that will be used as a Map key and whose
second element is the value to associate with that key.

The Map constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The initial value of Map.prototype is the intrinsic object %MapPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

Map[@@species] is an accessor property whose set accessor function is undefined. Its get accessor function
performs the following steps:

23.1.1.2 AddEntriesFromIterable (target, iterable, adder)

23.1.2 Properties of the Map Constructor

23.1.2.1 Map.prototype

23.1.2.2 get Map [@@species]

600

© Ecma International 2019

600

1. Return the this value.

The value of the name property of this function is "get [Symbol.species]".

NOTE
Methods that create derived collection objects should call @@species to determine the constructor to use to create the
derived objects. Subclass constructor may over-ride @@species to change the default constructor assignment.

The Map prototype object:

is the intrinsic object %MapPrototype%.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is an ordinary object.
does not have a [[MapData]] internal slot.

The following steps are taken:

1. Let M be the this value.
2. If Type(M) is not Object, throw a TypeError exception.
3. If M does not have a [[MapData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is M.[[MapData]].
5. For each Record { [[Key]], [[Value]] } p that is an element of entries, do

a. Set p.[[Key]] to empty.
b. Set p.[[Value]] to empty.

6. Return undefined.

NOTE
The existing [[MapData]] List is preserved because there may be existing Map Iterator objects that are suspended
midway through iterating over that List.

The initial value of Map.prototype.constructor is the intrinsic object %Map%.

The following steps are taken:

1. Let M be the this value.
2. If Type(M) is not Object, throw a TypeError exception.
3. If M does not have a [[MapData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is M.[[MapData]].
5. For each Record { [[Key]], [[Value]] } p that is an element of entries, do

a. If p.[[Key]] is not empty and SameValueZero(p.[[Key]], key) is true, then

23.1.3 Properties of the Map Prototype Object

23.1.3.1 Map.prototype.clear ()

23.1.3.2 Map.prototype.constructor

23.1.3.3 Map.prototype.delete (key)

© Ecma International 2019

601

i. Set p.[[Key]] to empty.
ii. Set p.[[Value]] to empty.

iii. Return true.
6. Return false.

NOTE
The value empty is used as a specification device to indicate that an entry has been deleted. Actual implementations may
take other actions such as physically removing the entry from internal data structures.

The following steps are taken:

1. Let M be the this value.
2. Return ? CreateMapIterator(M, "key+value").

When the forEach method is called with one or two arguments, the following steps are taken:

1. Let M be the this value.
2. If Type(M) is not Object, throw a TypeError exception.
3. If M does not have a [[MapData]] internal slot, throw a TypeError exception.
4. If IsCallable(callbackfn) is false, throw a TypeError exception.
5. If thisArg is present, let T be thisArg; else let T be undefined.
6. Let entries be the List that is M.[[MapData]].
7. For each Record { [[Key]], [[Value]] } e that is an element of entries, in original key insertion order, do

a. If e.[[Key]] is not empty, then
i. Perform ? Call(callbackfn, T, « e.[[Value]], e.[[Key]], M »).

8. Return undefined.

NOTE
callbackfn should be a function that accepts three arguments. forEach calls callbackfn once for each key/value pair
present in the map object, in key insertion order. callbackfn is called only for keys of the map which actually exist; it is
not called for keys that have been deleted from the map.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not provided,
undefined is used instead.

callbackfn is called with three arguments: the value of the item, the key of the item, and the Map object being traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn. Each entry of a map's [[MapData]] is only visited once. New keys added after the call to forEach begins
are visited. A key will be revisited if it is deleted after it has been visited and then re-added before the forEach call
completes. Keys that are deleted after the call to forEach begins and before being visited are not visited unless the key
is added again before the forEach call completes.

23.1.3.4 Map.prototype.entries ()

23.1.3.5 Map.prototype.forEach (callbackfn [, thisArg])

23.1.3.6 Map.prototype.get (key)

602

© Ecma International 2019

602

The following steps are taken:

1. Let M be the this value.
2. If Type(M) is not Object, throw a TypeError exception.
3. If M does not have a [[MapData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is M.[[MapData]].
5. For each Record { [[Key]], [[Value]] } p that is an element of entries, do

a. If p.[[Key]] is not empty and SameValueZero(p.[[Key]], key) is true, return p.[[Value]].
6. Return undefined.

The following steps are taken:

1. Let M be the this value.
2. If Type(M) is not Object, throw a TypeError exception.
3. If M does not have a [[MapData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is M.[[MapData]].
5. For each Record { [[Key]], [[Value]] } p that is an element of entries, do

a. If p.[[Key]] is not empty and SameValueZero(p.[[Key]], key) is true, return true.
6. Return false.

The following steps are taken:

1. Let M be the this value.
2. Return ? CreateMapIterator(M, "key").

The following steps are taken:

1. Let M be the this value.
2. If Type(M) is not Object, throw a TypeError exception.
3. If M does not have a [[MapData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is M.[[MapData]].
5. For each Record { [[Key]], [[Value]] } p that is an element of entries, do

a. If p.[[Key]] is not empty and SameValueZero(p.[[Key]], key) is true, then
i. Set p.[[Value]] to value.

ii. Return M.
6. If key is -0, set key to +0.
7. Let p be the Record { [[Key]]: key, [[Value]]: value }.
8. Append p as the last element of entries.
9. Return M.

Map.prototype.size is an accessor property whose set accessor function is undefined. Its get accessor function
performs the following steps:

23.1.3.7 Map.prototype.has (key)

23.1.3.8 Map.prototype.keys ()

23.1.3.9 Map.prototype.set (key, value)

23.1.3.10 get Map.prototype.size

© Ecma International 2019

603

1. Let M be the this value.
2. If Type(M) is not Object, throw a TypeError exception.
3. If M does not have a [[MapData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is M.[[MapData]].
5. Let count be 0.
6. For each Record { [[Key]], [[Value]] } p that is an element of entries, do

a. If p.[[Key]] is not empty, increase count by 1.
7. Return count.

The following steps are taken:

1. Let M be the this value.
2. Return ? CreateMapIterator(M, "value").

The initial value of the @@iterator property is the same function object as the initial value of the entries property.

The initial value of the @@toStringTag property is the String value "Map".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Map instances are ordinary objects that inherit properties from the Map prototype. Map instances also have a
[[MapData]] internal slot.

A Map Iterator is an object, that represents a specific iteration over some specific Map instance object. There is not a
named constructor for Map Iterator objects. Instead, map iterator objects are created by calling certain methods of Map
instance objects.

Several methods of Map objects return Iterator objects. The abstract operation CreateMapIterator with arguments map
and kind is used to create such iterator objects. It performs the following steps:

1. If Type(map) is not Object, throw a TypeError exception.
2. If map does not have a [[MapData]] internal slot, throw a TypeError exception.
3. Let iterator be ObjectCreate(%MapIteratorPrototype%, « [[Map]], [[MapNextIndex]], [[MapIterationKind]] »).
4. Set iterator.[[Map]] to map.
5. Set iterator.[[MapNextIndex]] to 0.
6. Set iterator.[[MapIterationKind]] to kind.
7. Return iterator.

23.1.3.11 Map.prototype.values ()

23.1.3.12 Map.prototype [@@iterator] ()

23.1.3.13 Map.prototype [@@toStringTag]

23.1.4 Properties of Map Instances

23.1.5 Map Iterator Objects

23.1.5.1 CreateMapIterator (map, kind)

604

© Ecma International 2019

604

The %MapIteratorPrototype% object:

has properties that are inherited by all Map Iterator Objects.
is an ordinary object.
has a [[Prototype]] internal slot whose value is the intrinsic object %IteratorPrototype%.
has the following properties:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have all of the internal slots of a Map Iterator Instance (23.1.5.3), throw a TypeError exception.
4. Let m be O.[[Map]].
5. Let index be O.[[MapNextIndex]].
6. Let itemKind be O.[[MapIterationKind]].
7. If m is undefined, return CreateIterResultObject(undefined, true).
8. Assert: m has a [[MapData]] internal slot.
9. Let entries be the List that is m.[[MapData]].

10. Let numEntries be the number of elements of entries.
11. NOTE: numEntries must be redetermined each time this method is evaluated.
12. Repeat, while index is less than numEntries,

a. Let e be the Record { [[Key]], [[Value]] } that is the value of entries[index].
b. Increase index by 1.
c. Set O.[[MapNextIndex]] to index.
d. If e.[[Key]] is not empty, then

i. If itemKind is "key", let result be e.[[Key]].
ii. Else if itemKind is "value", let result be e.[[Value]].

iii. Else,
1. Assert: itemKind is "key+value".
2. Let result be CreateArrayFromList(« e.[[Key]], e.[[Value]] »).

iv. Return CreateIterResultObject(result, false).
13. Set O.[[Map]] to undefined.
14. Return CreateIterResultObject(undefined, true).

The initial value of the @@toStringTag property is the String value "Map Iterator".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Map Iterator instances are ordinary objects that inherit properties from the %MapIteratorPrototype% intrinsic object. Map
Iterator instances are initially created with the internal slots described in Table 60.

Table 60: Internal Slots of Map Iterator Instances

Internal Slot Description

23.1.5.2 The %MapIteratorPrototype% Object

23.1.5.2.1 %MapIteratorPrototype%.next ()

23.1.5.2.2 %MapIteratorPrototype% [@@toStringTag]

23.1.5.3 Properties of Map Iterator Instances

© Ecma International 2019

605

[[Map]] The Map object that is being iterated.

[[MapNextIndex]] The integer index of the next Map data element to be examined by this iterator.

[[MapIterationKind]] A String value that identifies what is to be returned for each element of the iteration. The
possible values are: "key", "value", "key+value".

Set objects are collections of ECMAScript language values. A distinct value may only occur once as an element of a
Set's collection. Distinct values are discriminated using the SameValueZero comparison algorithm.

Set objects must be implemented using either hash tables or other mechanisms that, on average, provide access times that
are sublinear on the number of elements in the collection. The data structures used in this Set objects specification is only
intended to describe the required observable semantics of Set objects. It is not intended to be a viable implementation
model.

The Set constructor:

is the intrinsic object %Set%.
is the initial value of the Set property of the global object.
creates and initializes a new Set object when called as a constructor.
is not intended to be called as a function and will throw an exception when called in that manner.
is designed to be subclassable. It may be used as the value in an extends clause of a class definition. Subclass
constructors that intend to inherit the specified Set behaviour must include a super call to the Set constructor to
create and initialize the subclass instance with the internal state necessary to support the Set.prototype built-in
methods.

When the Set function is called with optional argument iterable, the following steps are taken:

1. If NewTarget is undefined, throw a TypeError exception.
2. Let set be ? OrdinaryCreateFromConstructor(NewTarget, "%SetPrototype%", « [[SetData]] »).
3. Set set.[[SetData]] to a new empty List.
4. If iterable is not present, set iterable to undefined.
5. If iterable is either undefined or null, return set.
6. Let adder be ? Get(set, "add").
7. If IsCallable(adder) is false, throw a TypeError exception.
8. Let iteratorRecord be ? GetIterator(iterable).
9. Repeat,

a. Let next be ? IteratorStep(iteratorRecord).
b. If next is false, return set.
c. Let nextValue be ? IteratorValue(next).
d. Let status be Call(adder, set, « nextValue »).
e. If status is an abrupt completion, return ? IteratorClose(iteratorRecord, status).

23.2 Set Objects

23.2.1 The Set Constructor

23.2.1.1 Set ([iterable])

606

© Ecma International 2019

606

The Set constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The initial value of Set.prototype is the intrinsic %SetPrototype% object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

Set[@@species] is an accessor property whose set accessor function is undefined. Its get accessor function
performs the following steps:

1. Return the this value.

The value of the name property of this function is "get [Symbol.species]".

NOTE
Methods that create derived collection objects should call @@species to determine the constructor to use to create the
derived objects. Subclass constructor may over-ride @@species to change the default constructor assignment.

The Set prototype object:

is the intrinsic object %SetPrototype%.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is an ordinary object.
does not have a [[SetData]] internal slot.

The following steps are taken:

1. Let S be the this value.
2. If Type(S) is not Object, throw a TypeError exception.
3. If S does not have a [[SetData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is S.[[SetData]].
5. For each e that is an element of entries, do

a. If e is not empty and SameValueZero(e, value) is true, then
i. Return S.

6. If value is -0, set value to +0.
7. Append value as the last element of entries.
8. Return S.

23.2.2 Properties of the Set Constructor

23.2.2.1 Set.prototype

23.2.2.2 get Set [@@species]

23.2.3 Properties of the Set Prototype Object

23.2.3.1 Set.prototype.add (value)

© Ecma International 2019

607

The following steps are taken:

1. Let S be the this value.
2. If Type(S) is not Object, throw a TypeError exception.
3. If S does not have a [[SetData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is S.[[SetData]].
5. For each e that is an element of entries, do

a. Replace the element of entries whose value is e with an element whose value is empty.
6. Return undefined.

NOTE
The existing [[SetData]] List is preserved because there may be existing Set Iterator objects that are suspended midway
through iterating over that List.

The initial value of Set.prototype.constructor is the intrinsic object %Set%.

The following steps are taken:

1. Let S be the this value.
2. If Type(S) is not Object, throw a TypeError exception.
3. If S does not have a [[SetData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is S.[[SetData]].
5. For each e that is an element of entries, do

a. If e is not empty and SameValueZero(e, value) is true, then
i. Replace the element of entries whose value is e with an element whose value is empty.

ii. Return true.
6. Return false.

NOTE
The value empty is used as a specification device to indicate that an entry has been deleted. Actual implementations may
take other actions such as physically removing the entry from internal data structures.

The following steps are taken:

1. Let S be the this value.
2. Return ? CreateSetIterator(S, "key+value").

NOTE
For iteration purposes, a Set appears similar to a Map where each entry has the same value for its key and value.

23.2.3.2 Set.prototype.clear ()

23.2.3.3 Set.prototype.constructor

23.2.3.4 Set.prototype.delete (value)

23.2.3.5 Set.prototype.entries ()

608

© Ecma International 2019

608

When the forEach method is called with one or two arguments, the following steps are taken:

1. Let S be the this value.
2. If Type(S) is not Object, throw a TypeError exception.
3. If S does not have a [[SetData]] internal slot, throw a TypeError exception.
4. If IsCallable(callbackfn) is false, throw a TypeError exception.
5. If thisArg is present, let T be thisArg; else let T be undefined.
6. Let entries be the List that is S.[[SetData]].
7. For each e that is an element of entries, in original insertion order, do

a. If e is not empty, then
i. Perform ? Call(callbackfn, T, « e, e, S »).

8. Return undefined.

NOTE
callbackfn should be a function that accepts three arguments. forEach calls callbackfn once for each value present in
the set object, in value insertion order. callbackfn is called only for values of the Set which actually exist; it is not called
for keys that have been deleted from the set.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn. If it is not provided,
undefined is used instead.

callbackfn is called with three arguments: the first two arguments are a value contained in the Set. The same value is
passed for both arguments. The Set object being traversed is passed as the third argument.

The callbackfn is called with three arguments to be consistent with the call back functions used by forEach methods
for Map and Array. For Sets, each item value is considered to be both the key and the value.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn.

Each value is normally visited only once. However, a value will be revisited if it is deleted after it has been visited and
then re-added before the forEach call completes. Values that are deleted after the call to forEach begins and before
being visited are not visited unless the value is added again before the forEach call completes. New values added after
the call to forEach begins are visited.

The following steps are taken:

1. Let S be the this value.
2. If Type(S) is not Object, throw a TypeError exception.
3. If S does not have a [[SetData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is S.[[SetData]].
5. For each e that is an element of entries, do

a. If e is not empty and SameValueZero(e, value) is true, return true.
6. Return false.

23.2.3.6 Set.prototype.forEach (callbackfn [, thisArg])

23.2.3.7 Set.prototype.has (value)

23.2.3.8 Set.prototype.keys ()

© Ecma International 2019

609

The initial value of the keys property is the same function object as the initial value of the values property.

NOTE
For iteration purposes, a Set appears similar to a Map where each entry has the same value for its key and value.

Set.prototype.size is an accessor property whose set accessor function is undefined. Its get accessor function
performs the following steps:

1. Let S be the this value.
2. If Type(S) is not Object, throw a TypeError exception.
3. If S does not have a [[SetData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is S.[[SetData]].
5. Let count be 0.
6. For each e that is an element of entries, do

a. If e is not empty, increase count by 1.
7. Return count.

The following steps are taken:

1. Let S be the this value.
2. Return ? CreateSetIterator(S, "value").

The initial value of the @@iterator property is the same function object as the initial value of the values property.

The initial value of the @@toStringTag property is the String value "Set".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Set instances are ordinary objects that inherit properties from the Set prototype. Set instances also have a [[SetData]]
internal slot.

A Set Iterator is an ordinary object, with the structure defined below, that represents a specific iteration over some
specific Set instance object. There is not a named constructor for Set Iterator objects. Instead, set iterator objects are
created by calling certain methods of Set instance objects.

23.2.3.9 get Set.prototype.size

23.2.3.10 Set.prototype.values ()

23.2.3.11 Set.prototype [@@iterator] ()

23.2.3.12 Set.prototype [@@toStringTag]

23.2.4 Properties of Set Instances

23.2.5 Set Iterator Objects

23.2.5.1 CreateSetIterator (set, kind)

610

© Ecma International 2019

610

Several methods of Set objects return Iterator objects. The abstract operation CreateSetIterator with arguments set and
kind is used to create such iterator objects. It performs the following steps:

1. If Type(set) is not Object, throw a TypeError exception.
2. If set does not have a [[SetData]] internal slot, throw a TypeError exception.
3. Let iterator be ObjectCreate(%SetIteratorPrototype%, « [[IteratedSet]], [[SetNextIndex]], [[SetIterationKind]] »).
4. Set iterator.[[IteratedSet]] to set.
5. Set iterator.[[SetNextIndex]] to 0.
6. Set iterator.[[SetIterationKind]] to kind.
7. Return iterator.

The %SetIteratorPrototype% object:

has properties that are inherited by all Set Iterator Objects.
is an ordinary object.
has a [[Prototype]] internal slot whose value is the intrinsic object %IteratorPrototype%.
has the following properties:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have all of the internal slots of a Set Iterator Instance (23.2.5.3), throw a TypeError exception.
4. Let s be O.[[IteratedSet]].
5. Let index be O.[[SetNextIndex]].
6. Let itemKind be O.[[SetIterationKind]].
7. If s is undefined, return CreateIterResultObject(undefined, true).
8. Assert: s has a [[SetData]] internal slot.
9. Let entries be the List that is s.[[SetData]].

10. Let numEntries be the number of elements of entries.
11. NOTE: numEntries must be redetermined each time this method is evaluated.
12. Repeat, while index is less than numEntries,

a. Let e be entries[index].
b. Increase index by 1.
c. Set O.[[SetNextIndex]] to index.
d. If e is not empty, then

i. If itemKind is "key+value", then
1. Return CreateIterResultObject(CreateArrayFromList(« e, e »), false).

ii. Return CreateIterResultObject(e, false).
13. Set O.[[IteratedSet]] to undefined.
14. Return CreateIterResultObject(undefined, true).

The initial value of the @@toStringTag property is the String value "Set Iterator".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

23.2.5.2 The %SetIteratorPrototype% Object

23.2.5.2.1 %SetIteratorPrototype%.next ()

23.2.5.2.2 %SetIteratorPrototype% [@@toStringTag]

© Ecma International 2019

611

Set Iterator instances are ordinary objects that inherit properties from the %SetIteratorPrototype% intrinsic object. Set
Iterator instances are initially created with the internal slots specified in Table 61.

Table 61: Internal Slots of Set Iterator Instances

Internal Slot Description

[[IteratedSet]] The Set object that is being iterated.

[[SetNextIndex]] The integer index of the next Set data element to be examined by this iterator

[[SetIterationKind]] A String value that identifies what is to be returned for each element of the iteration. The
possible values are: "key", "value", "key+value". "key" and "value" have the same
meaning.

WeakMap objects are collections of key/value pairs where the keys are objects and values may be arbitrary ECMAScript
language values. A WeakMap may be queried to see if it contains a key/value pair with a specific key, but no mechanism
is provided for enumerating the objects it holds as keys. If an object that is being used as the key of a WeakMap
key/value pair is only reachable by following a chain of references that start within that WeakMap, then that key/value
pair is inaccessible and is automatically removed from the WeakMap. WeakMap implementations must detect and
remove such key/value pairs and any associated resources.

An implementation may impose an arbitrarily determined latency between the time a key/value pair of a WeakMap
becomes inaccessible and the time when the key/value pair is removed from the WeakMap. If this latency was
observable to ECMAScript program, it would be a source of indeterminacy that could impact program execution. For
that reason, an ECMAScript implementation must not provide any means to observe a key of a WeakMap that does not
require the observer to present the observed key.

WeakMap objects must be implemented using either hash tables or other mechanisms that, on average, provide access
times that are sublinear on the number of key/value pairs in the collection. The data structure used in this WeakMap
objects specification are only intended to describe the required observable semantics of WeakMap objects. It is not
intended to be a viable implementation model.

NOTE
WeakMap and WeakSets are intended to provide mechanisms for dynamically associating state with an object in a
manner that does not “leak” memory resources if, in the absence of the WeakMap or WeakSet, the object otherwise
became inaccessible and subject to resource reclamation by the implementation's garbage collection mechanisms. This
characteristic can be achieved by using an inverted per-object mapping of weak map instances to keys. Alternatively each
weak map may internally store its key to value mappings but this approach requires coordination between the WeakMap
or WeakSet implementation and the garbage collector. The following references describe mechanism that may be useful
to implementations of WeakMap and WeakSets:

Barry Hayes. 1997. Ephemerons: a new finalization mechanism. In Proceedings of the 12th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications (OOPSLA '97), A. Michael Berman (Ed.). ACM,
New York, NY, USA, 176-183, http://doi.acm.org/10.1145/263698.263733.

Alexandra Barros, Roberto Ierusalimschy, Eliminating Cycles in Weak Tables. Journal of Universal Computer Science -
J.UCS, vol. 14, no. 21, pp. 3481-3497, 2008, http://www.jucs.org/jucs_14_21/eliminating_cycles_in_weak

23.2.5.3 Properties of Set Iterator Instances

23.3 WeakMap Objects

612

© Ecma International 2019

612

http://doi.acm.org/10.1145/263698.263733
http://www.jucs.org/jucs_14_21/eliminating_cycles_in_weak

The WeakMap constructor:

is the intrinsic object %WeakMap%.
is the initial value of the WeakMap property of the global object.
creates and initializes a new WeakMap object when called as a constructor.
is not intended to be called as a function and will throw an exception when called in that manner.
is designed to be subclassable. It may be used as the value in an extends clause of a class definition. Subclass
constructors that intend to inherit the specified WeakMap behaviour must include a super call to the WeakMap
constructor to create and initialize the subclass instance with the internal state necessary to support the
WeakMap.prototype built-in methods.

When the WeakMap function is called with optional argument iterable, the following steps are taken:

1. If NewTarget is undefined, throw a TypeError exception.
2. Let map be ? OrdinaryCreateFromConstructor(NewTarget, "%WeakMapPrototype%", « [[WeakMapData]] »).
3. Set map.[[WeakMapData]] to a new empty List.
4. If iterable is not present, or is either undefined or null, return map.
5. Let adder be ? Get(map, "set").
6. Return ? AddEntriesFromIterable(map, iterable, adder).

NOTE
If the parameter iterable is present, it is expected to be an object that implements an @@iterator method that returns an
iterator object that produces a two element array-like object whose first element is a value that will be used as a
WeakMap key and whose second element is the value to associate with that key.

The WeakMap constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The initial value of WeakMap.prototype is the intrinsic object %WeakMapPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The WeakMap prototype object:

is the intrinsic object %WeakMapPrototype%.

23.3.1 The WeakMap Constructor

23.3.1.1 WeakMap ([iterable])

23.3.2 Properties of the WeakMap Constructor

23.3.2.1 WeakMap.prototype

23.3.3 Properties of the WeakMap Prototype Object

© Ecma International 2019

613

has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is an ordinary object.
does not have a [[WeakMapData]] internal slot.

The initial value of WeakMap.prototype.constructor is the intrinsic object %WeakMap%.

The following steps are taken:

1. Let M be the this value.
2. If Type(M) is not Object, throw a TypeError exception.
3. If M does not have a [[WeakMapData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is M.[[WeakMapData]].
5. If Type(key) is not Object, return false.
6. For each Record { [[Key]], [[Value]] } p that is an element of entries, do

a. If p.[[Key]] is not empty and SameValue(p.[[Key]], key) is true, then
i. Set p.[[Key]] to empty.

ii. Set p.[[Value]] to empty.
iii. Return true.

7. Return false.

NOTE
The value empty is used as a specification device to indicate that an entry has been deleted. Actual implementations may
take other actions such as physically removing the entry from internal data structures.

The following steps are taken:

1. Let M be the this value.
2. If Type(M) is not Object, throw a TypeError exception.
3. If M does not have a [[WeakMapData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is M.[[WeakMapData]].
5. If Type(key) is not Object, return undefined.
6. For each Record { [[Key]], [[Value]] } p that is an element of entries, do

a. If p.[[Key]] is not empty and SameValue(p.[[Key]], key) is true, return p.[[Value]].
7. Return undefined.

The following steps are taken:

1. Let M be the this value.
2. If Type(M) is not Object, throw a TypeError exception.
3. If M does not have a [[WeakMapData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is M.[[WeakMapData]].

23.3.3.1 WeakMap.prototype.constructor

23.3.3.2 WeakMap.prototype.delete (key)

23.3.3.3 WeakMap.prototype.get (key)

23.3.3.4 WeakMap.prototype.has (key)

614

© Ecma International 2019

614

5. If Type(key) is not Object, return false.
6. For each Record { [[Key]], [[Value]] } p that is an element of entries, do

a. If p.[[Key]] is not empty and SameValue(p.[[Key]], key) is true, return true.
7. Return false.

The following steps are taken:

1. Let M be the this value.
2. If Type(M) is not Object, throw a TypeError exception.
3. If M does not have a [[WeakMapData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is M.[[WeakMapData]].
5. If Type(key) is not Object, throw a TypeError exception.
6. For each Record { [[Key]], [[Value]] } p that is an element of entries, do

a. If p.[[Key]] is not empty and SameValue(p.[[Key]], key) is true, then
i. Set p.[[Value]] to value.

ii. Return M.
7. Let p be the Record { [[Key]]: key, [[Value]]: value }.
8. Append p as the last element of entries.
9. Return M.

The initial value of the @@toStringTag property is the String value "WeakMap".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

WeakMap instances are ordinary objects that inherit properties from the WeakMap prototype. WeakMap instances also
have a [[WeakMapData]] internal slot.

WeakSet objects are collections of objects. A distinct object may only occur once as an element of a WeakSet's
collection. A WeakSet may be queried to see if it contains a specific object, but no mechanism is provided for
enumerating the objects it holds. If an object that is contained by a WeakSet is only reachable by following a chain of
references that start within that WeakSet, then that object is inaccessible and is automatically removed from the
WeakSet. WeakSet implementations must detect and remove such objects and any associated resources.

An implementation may impose an arbitrarily determined latency between the time an object contained in a WeakSet
becomes inaccessible and the time when the object is removed from the WeakSet. If this latency was observable to
ECMAScript program, it would be a source of indeterminacy that could impact program execution. For that reason, an
ECMAScript implementation must not provide any means to determine if a WeakSet contains a particular object that
does not require the observer to present the observed object.

WeakSet objects must be implemented using either hash tables or other mechanisms that, on average, provide access
times that are sublinear on the number of elements in the collection. The data structure used in this WeakSet objects

23.3.3.5 WeakMap.prototype.set (key, value)

23.3.3.6 WeakMap.prototype [@@toStringTag]

23.3.4 Properties of WeakMap Instances

23.4 WeakSet Objects

© Ecma International 2019

615

specification is only intended to describe the required observable semantics of WeakSet objects. It is not intended to be a
viable implementation model.

NOTE
See the NOTE in 23.3.

The WeakSet constructor:

is the intrinsic object %WeakSet%.
is the initial value of the WeakSet property of the global object.
creates and initializes a new WeakSet object when called as a constructor.
is not intended to be called as a function and will throw an exception when called in that manner.
is designed to be subclassable. It may be used as the value in an extends clause of a class definition. Subclass
constructors that intend to inherit the specified WeakSet behaviour must include a super call to the WeakSet
constructor to create and initialize the subclass instance with the internal state necessary to support the
WeakSet.prototype built-in methods.

When the WeakSet function is called with optional argument iterable, the following steps are taken:

1. If NewTarget is undefined, throw a TypeError exception.
2. Let set be ? OrdinaryCreateFromConstructor(NewTarget, "%WeakSetPrototype%", « [[WeakSetData]] »).
3. Set set.[[WeakSetData]] to a new empty List.
4. If iterable is not present, set iterable to undefined.
5. If iterable is either undefined or null, return set.
6. Let adder be ? Get(set, "add").
7. If IsCallable(adder) is false, throw a TypeError exception.
8. Let iteratorRecord be ? GetIterator(iterable).
9. Repeat,

a. Let next be ? IteratorStep(iteratorRecord).
b. If next is false, return set.
c. Let nextValue be ? IteratorValue(next).
d. Let status be Call(adder, set, « nextValue »).
e. If status is an abrupt completion, return ? IteratorClose(iteratorRecord, status).

The WeakSet constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The initial value of WeakSet.prototype is the intrinsic %WeakSetPrototype% object.

23.4.1 The WeakSet Constructor

23.4.1.1 WeakSet ([iterable])

23.4.2 Properties of the WeakSet Constructor

23.4.2.1 WeakSet.prototype

616

© Ecma International 2019

616

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The WeakSet prototype object:

is the intrinsic object %WeakSetPrototype%.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is an ordinary object.
does not have a [[WeakSetData]] internal slot.

The following steps are taken:

1. Let S be the this value.
2. If Type(S) is not Object, throw a TypeError exception.
3. If S does not have a [[WeakSetData]] internal slot, throw a TypeError exception.
4. If Type(value) is not Object, throw a TypeError exception.
5. Let entries be the List that is S.[[WeakSetData]].
6. For each e that is an element of entries, do

a. If e is not empty and SameValue(e, value) is true, then
i. Return S.

7. Append value as the last element of entries.
8. Return S.

The initial value of WeakSet.prototype.constructor is the %WeakSet% intrinsic object.

The following steps are taken:

1. Let S be the this value.
2. If Type(S) is not Object, throw a TypeError exception.
3. If S does not have a [[WeakSetData]] internal slot, throw a TypeError exception.
4. If Type(value) is not Object, return false.
5. Let entries be the List that is S.[[WeakSetData]].
6. For each e that is an element of entries, do

a. If e is not empty and SameValue(e, value) is true, then
i. Replace the element of entries whose value is e with an element whose value is empty.

ii. Return true.
7. Return false.

NOTE
The value empty is used as a specification device to indicate that an entry has been deleted. Actual implementations may
take other actions such as physically removing the entry from internal data structures.

23.4.3 Properties of the WeakSet Prototype Object

23.4.3.1 WeakSet.prototype.add (value)

23.4.3.2 WeakSet.prototype.constructor

23.4.3.3 WeakSet.prototype.delete (value)

© Ecma International 2019

617

The following steps are taken:

1. Let S be the this value.
2. If Type(S) is not Object, throw a TypeError exception.
3. If S does not have a [[WeakSetData]] internal slot, throw a TypeError exception.
4. Let entries be the List that is S.[[WeakSetData]].
5. If Type(value) is not Object, return false.
6. For each e that is an element of entries, do

a. If e is not empty and SameValue(e, value) is true, return true.
7. Return false.

The initial value of the @@toStringTag property is the String value "WeakSet".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

WeakSet instances are ordinary objects that inherit properties from the WeakSet prototype. WeakSet instances also have
a [[WeakSetData]] internal slot.

The abstract operation AllocateArrayBuffer with arguments constructor and byteLength is used to create an ArrayBuffer
object. It performs the following steps:

1. Let obj be ? OrdinaryCreateFromConstructor(constructor, "%ArrayBufferPrototype%", «
[[ArrayBufferData]], [[ArrayBufferByteLength]], [[ArrayBufferDetachKey]] »).

2. Assert: byteLength is an integer value ≥ 0.
3. Let block be ? CreateByteDataBlock(byteLength).
4. Set obj.[[ArrayBufferData]] to block.
5. Set obj.[[ArrayBufferByteLength]] to byteLength.
6. Return obj.

The abstract operation IsDetachedBuffer with argument arrayBuffer performs the following steps:

23.4.3.4 WeakSet.prototype.has (value)

23.4.3.5 WeakSet.prototype [@@toStringTag]

23.4.4 Properties of WeakSet Instances

24 Structured Data

24.1 ArrayBuffer Objects

24.1.1 Abstract Operations For ArrayBuffer Objects

24.1.1.1 AllocateArrayBuffer (constructor, byteLength)

24.1.1.2 IsDetachedBuffer (arrayBuffer)

618

© Ecma International 2019

618

1. Assert: Type(arrayBuffer) is Object and it has an [[ArrayBufferData]] internal slot.
2. If arrayBuffer.[[ArrayBufferData]] is null, return true.
3. Return false.

The abstract operation DetachArrayBuffer with argument arrayBuffer and optional argument key performs the following
steps:

1. Assert: Type(arrayBuffer) is Object and it has [[ArrayBufferData]], [[ArrayBufferByteLength]], and
[[ArrayBufferDetachKey]] internal slots.

2. Assert: IsSharedArrayBuffer(arrayBuffer) is false.
3. If key is not present, set key to undefined.
4. If SameValue(arrayBuffer.[[ArrayBufferDetachKey]], key) is false, throw a TypeError exception.
5. Set arrayBuffer.[[ArrayBufferData]] to null.
6. Set arrayBuffer.[[ArrayBufferByteLength]] to 0.
7. Return NormalCompletion(null).

NOTE
Detaching an ArrayBuffer instance disassociates the Data Block used as its backing store from the instance and sets the
byte length of the buffer to 0. No operations defined by this specification use the DetachArrayBuffer abstract operation.
However, an ECMAScript implementation or host environment may define such operations.

The abstract operation CloneArrayBuffer takes four parameters, an ArrayBuffer srcBuffer, an integer offset
srcByteOffset, an integer length srcLength, and a constructor function cloneConstructor. It creates a new ArrayBuffer
whose data is a copy of srcBuffer's data over the range starting at srcByteOffset and continuing for srcLength bytes. This
operation performs the following steps:

1. Assert: Type(srcBuffer) is Object and it has an [[ArrayBufferData]] internal slot.
2. Assert: IsConstructor(cloneConstructor) is true.
3. Let targetBuffer be ? AllocateArrayBuffer(cloneConstructor, srcLength).
4. If IsDetachedBuffer(srcBuffer) is true, throw a TypeError exception.
5. Let srcBlock be srcBuffer.[[ArrayBufferData]].
6. Let targetBlock be targetBuffer.[[ArrayBufferData]].
7. Perform CopyDataBlockBytes(targetBlock, 0, srcBlock, srcByteOffset, srcLength).
8. Return targetBuffer.

The abstract operation RawBytesToNumber takes three parameters, a String type, a List rawBytes, and a Boolean
isLittleEndian. This operation performs the following steps:

1. Let elementSize be the Number value of the Element Size value specified in Table 59 for Element Type type.
2. If isLittleEndian is false, reverse the order of the elements of rawBytes.
3. If type is "Float32", then

a. Let value be the byte elements of rawBytes concatenated and interpreted as a little-endian bit string encoding
of an IEEE 754-2008 binary32 value.

24.1.1.3 DetachArrayBuffer (arrayBuffer [, key])

24.1.1.4 CloneArrayBuffer (srcBuffer, srcByteOffset, srcLength, cloneConstructor)

24.1.1.5 RawBytesToNumber (type, rawBytes, isLittleEndian)

© Ecma International 2019

619

b. If value is an IEEE 754-2008 binary32 NaN value, return the NaN Number value.
c. Return the Number value that corresponds to value.

4. If type is "Float64", then
a. Let value be the byte elements of rawBytes concatenated and interpreted as a little-endian bit string encoding

of an IEEE 754-2008 binary64 value.
b. If value is an IEEE 754-2008 binary64 NaN value, return the NaN Number value.
c. Return the Number value that corresponds to value.

5. If the first code unit of type is the code unit 0x0055 (LATIN CAPITAL LETTER U), then
a. Let intValue be the byte elements of rawBytes concatenated and interpreted as a bit string encoding of an

unsigned little-endian binary number.
6. Else,

a. Let intValue be the byte elements of rawBytes concatenated and interpreted as a bit string encoding of a
binary little-endian 2's complement number of bit length elementSize × 8.

7. Return the Number value that corresponds to intValue.

The abstract operation GetValueFromBuffer takes six parameters, an ArrayBuffer or SharedArrayBuffer arrayBuffer, an
integer byteIndex, a String type, a Boolean isTypedArray, a String order, and optionally a Boolean isLittleEndian. This
operation performs the following steps:

1. Assert: IsDetachedBuffer(arrayBuffer) is false.
2. Assert: There are sufficient bytes in arrayBuffer starting at byteIndex to represent a value of type.
3. Assert: byteIndex is an integer value ≥ 0.
4. Let block be arrayBuffer.[[ArrayBufferData]].
5. Let elementSize be the Number value of the Element Size value specified in Table 59 for Element Type type.
6. If IsSharedArrayBuffer(arrayBuffer) is true, then

a. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.
b. Let eventList be the [[EventList]] field of the element in execution.[[EventsRecords]] whose [[AgentSignifier]]

is AgentSignifier().
c. If isTypedArray is true and type is "Int8", "Uint8", "Int16", "Uint16", "Int32", or "Uint32",

let noTear be true; otherwise let noTear be false.
d. Let rawValue be a List of length elementSize of nondeterministically chosen byte values.
e. NOTE: In implementations, rawValue is the result of a non-atomic or atomic read instruction on the

underlying hardware. The nondeterminism is a semantic prescription of the memory model to describe
observable behaviour of hardware with weak consistency.

f. Let readEvent be ReadSharedMemory { [[Order]]: order, [[NoTear]]: noTear, [[Block]]: block, [[ByteIndex]]:
byteIndex, [[ElementSize]]: elementSize }.

g. Append readEvent to eventList.
h. Append Chosen Value Record { [[Event]]: readEvent, [[ChosenValue]]: rawValue } to execution.

[[ChosenValues]].
7. Else, let rawValue be a List of elementSize containing, in order, the elementSize sequence of bytes starting with

block[byteIndex].
8. If isLittleEndian is not present, set isLittleEndian to the value of the [[LittleEndian]] field of the surrounding agent's

Agent Record.
9. Return RawBytesToNumber(type, rawValue, isLittleEndian).

24.1.1.6 GetValueFromBuffer (arrayBuffer, byteIndex, type, isTypedArray, order [, isLittleEndian])

24.1.1.7 NumberToRawBytes (type, value, isLittleEndian)

620

© Ecma International 2019

620

The abstract operation NumberToRawBytes takes three parameters, a String type, a Number value, and a Boolean
isLittleEndian. This operation performs the following steps:

1. If type is "Float32", then
a. Let rawBytes be a List containing the 4 bytes that are the result of converting value to IEEE 754-2008

binary32 format using “Round to nearest, ties to even” rounding mode. If isLittleEndian is false, the bytes are
arranged in big endian order. Otherwise, the bytes are arranged in little endian order. If value is NaN,
rawBytes may be set to any implementation chosen IEEE 754-2008 binary32 format Not-a-Number encoding.
An implementation must always choose the same encoding for each implementation distinguishable NaN
value.

2. Else if type is "Float64", then
a. Let rawBytes be a List containing the 8 bytes that are the IEEE 754-2008 binary64 format encoding of value.

If isLittleEndian is false, the bytes are arranged in big endian order. Otherwise, the bytes are arranged in little
endian order. If value is NaN, rawBytes may be set to any implementation chosen IEEE 754-2008 binary64
format Not-a-Number encoding. An implementation must always choose the same encoding for each
implementation distinguishable NaN value.

3. Else,
a. Let n be the Number value of the Element Size specified in Table 59 for Element Type type.
b. Let convOp be the abstract operation named in the Conversion Operation column in Table 59 for Element

Type type.
c. Let intValue be convOp(value).
d. If intValue ≥ 0, then

i. Let rawBytes be a List containing the n-byte binary encoding of intValue. If isLittleEndian is false, the
bytes are ordered in big endian order. Otherwise, the bytes are ordered in little endian order.

e. Else,
i. Let rawBytes be a List containing the n-byte binary 2's complement encoding of intValue. If

isLittleEndian is false, the bytes are ordered in big endian order. Otherwise, the bytes are ordered in
little endian order.

4. Return rawBytes.

The abstract operation SetValueInBuffer takes seven parameters, an ArrayBuffer or SharedArrayBuffer arrayBuffer, an
integer byteIndex, a String type, a Number value, a Boolean isTypedArray, a String order, and optionally a Boolean
isLittleEndian. This operation performs the following steps:

1. Assert: IsDetachedBuffer(arrayBuffer) is false.
2. Assert: There are sufficient bytes in arrayBuffer starting at byteIndex to represent a value of type.
3. Assert: byteIndex is an integer value ≥ 0.
4. Assert: Type(value) is Number.
5. Let block be arrayBuffer.[[ArrayBufferData]].
6. Let elementSize be the Number value of the Element Size value specified in Table 59 for Element Type type.
7. If isLittleEndian is not present, set isLittleEndian to the value of the [[LittleEndian]] field of the surrounding agent's

Agent Record.
8. Let rawBytes be NumberToRawBytes(type, value, isLittleEndian).
9. If IsSharedArrayBuffer(arrayBuffer) is true, then

a. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.
b. Let eventList be the [[EventList]] field of the element in execution.[[EventsRecords]] whose [[AgentSignifier]]

is AgentSignifier().

24.1.1.8 SetValueInBuffer (arrayBuffer, byteIndex, type, value, isTypedArray, order [, isLittleEndian])

© Ecma International 2019

621

c. If isTypedArray is true and type is "Int8", "Uint8", "Int16", "Uint16", "Int32", or "Uint32",
let noTear be true; otherwise let noTear be false.

d. Append WriteSharedMemory { [[Order]]: order, [[NoTear]]: noTear, [[Block]]: block, [[ByteIndex]]:
byteIndex, [[ElementSize]]: elementSize, [[Payload]]: rawBytes } to eventList.

10. Else, store the individual bytes of rawBytes into block, in order, starting at block[byteIndex].
11. Return NormalCompletion(undefined).

The abstract operation GetModifySetValueInBuffer takes six parameters, a SharedArrayBuffer arrayBuffer, a
nonnegative integer byteIndex, a String type, a Number value, a semantic function op, and optionally a Boolean
isLittleEndian. This operation performs the following steps:

1. Assert: IsSharedArrayBuffer(arrayBuffer) is true.
2. Assert: There are sufficient bytes in arrayBuffer starting at byteIndex to represent a value of type.
3. Assert: byteIndex is an integer value ≥ 0.
4. Assert: Type(value) is Number.
5. Let block be arrayBuffer.[[ArrayBufferData]].
6. Let elementSize be the Number value of the Element Size value specified in Table 59 for Element Type type.
7. If isLittleEndian is not present, set isLittleEndian to the value of the [[LittleEndian]] field of the surrounding agent's

Agent Record.
8. Let rawBytes be NumberToRawBytes(type, value, isLittleEndian).
9. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.

10. Let eventList be the [[EventList]] field of the element in execution.[[EventsRecords]] whose [[AgentSignifier]] is
AgentSignifier().

11. Let rawBytesRead be a List of length elementSize of nondeterministically chosen byte values.
12. NOTE: In implementations, rawBytesRead is the result of a load-link, of a load-exclusive, or of an operand of a

read-modify-write instruction on the underlying hardware. The nondeterminism is a semantic prescription of the
memory model to describe observable behaviour of hardware with weak consistency.

13. Let rmwEvent be ReadModifyWriteSharedMemory { [[Order]]: "SeqCst", [[NoTear]]: true, [[Block]]: block,
[[ByteIndex]]: byteIndex, [[ElementSize]]: elementSize, [[Payload]]: rawBytes, [[ModifyOp]]: op }.

14. Append rmwEvent to eventList.
15. Append Chosen Value Record { [[Event]]: rmwEvent, [[ChosenValue]]: rawBytesRead } to execution.

[[ChosenValues]].
16. Return RawBytesToNumber(type, rawBytesRead, isLittleEndian).

The ArrayBuffer constructor:

is the intrinsic object %ArrayBuffer%.
is the initial value of the ArrayBuffer property of the global object.
creates and initializes a new ArrayBuffer object when called as a constructor.
is not intended to be called as a function and will throw an exception when called in that manner.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified ArrayBuffer behaviour must include a super call to the
ArrayBuffer constructor to create and initialize subclass instances with the internal state necessary to support
the ArrayBuffer.prototype built-in methods.

24.1.1.9 GetModifySetValueInBuffer (arrayBuffer, byteIndex, type, value, op [, isLittleEndian])

24.1.2 The ArrayBuffer Constructor

622

© Ecma International 2019

622

When the ArrayBuffer function is called with argument length, the following steps are taken:

1. If NewTarget is undefined, throw a TypeError exception.
2. Let byteLength be ? ToIndex(length).
3. Return ? AllocateArrayBuffer(NewTarget, byteLength).

The ArrayBuffer constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The isView function takes one argument arg, and performs the following steps:

1. If Type(arg) is not Object, return false.
2. If arg has a [[ViewedArrayBuffer]] internal slot, return true.
3. Return false.

The initial value of ArrayBuffer.prototype is the intrinsic object %ArrayBufferPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

ArrayBuffer[@@species] is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Return the this value.

The value of the name property of this function is "get [Symbol.species]".

NOTE
ArrayBuffer prototype methods normally use their this object's constructor to create a derived object. However, a
subclass constructor may over-ride that default behaviour by redefining its @@species property.

The ArrayBuffer prototype object:

is the intrinsic object %ArrayBufferPrototype%.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is an ordinary object.
does not have an [[ArrayBufferData]] or [[ArrayBufferByteLength]] internal slot.

24.1.2.1 ArrayBuffer (length)

24.1.3 Properties of the ArrayBuffer Constructor

24.1.3.1 ArrayBuffer.isView (arg)

24.1.3.2 ArrayBuffer.prototype

24.1.3.3 get ArrayBuffer [@@species]

24.1.4 Properties of the ArrayBuffer Prototype Object

© Ecma International 2019

623

ArrayBuffer.prototype.byteLength is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have an [[ArrayBufferData]] internal slot, throw a TypeError exception.
4. If IsSharedArrayBuffer(O) is true, throw a TypeError exception.
5. If IsDetachedBuffer(O) is true, throw a TypeError exception.
6. Let length be O.[[ArrayBufferByteLength]].
7. Return length.

The initial value of ArrayBuffer.prototype.constructor is the intrinsic object %ArrayBuffer%.

The following steps are taken:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have an [[ArrayBufferData]] internal slot, throw a TypeError exception.
4. If IsSharedArrayBuffer(O) is true, throw a TypeError exception.
5. If IsDetachedBuffer(O) is true, throw a TypeError exception.
6. Let len be O.[[ArrayBufferByteLength]].
7. Let relativeStart be ? ToInteger(start).
8. If relativeStart < 0, let first be max((len + relativeStart), 0); else let first be min(relativeStart, len).
9. If end is undefined, let relativeEnd be len; else let relativeEnd be ? ToInteger(end).

10. If relativeEnd < 0, let final be max((len + relativeEnd), 0); else let final be min(relativeEnd, len).
11. Let newLen be max(final - first, 0).
12. Let ctor be ? SpeciesConstructor(O, %ArrayBuffer%).
13. Let new be ? Construct(ctor, « newLen »).
14. If new does not have an [[ArrayBufferData]] internal slot, throw a TypeError exception.
15. If IsSharedArrayBuffer(new) is true, throw a TypeError exception.
16. If IsDetachedBuffer(new) is true, throw a TypeError exception.
17. If SameValue(new, O) is true, throw a TypeError exception.
18. If new.[[ArrayBufferByteLength]] < newLen, throw a TypeError exception.
19. NOTE: Side-effects of the above steps may have detached O.
20. If IsDetachedBuffer(O) is true, throw a TypeError exception.
21. Let fromBuf be O.[[ArrayBufferData]].
22. Let toBuf be new.[[ArrayBufferData]].
23. Perform CopyDataBlockBytes(toBuf, 0, fromBuf, first, newLen).
24. Return new.

The initial value of the @@toStringTag property is the String value "ArrayBuffer".

24.1.4.1 get ArrayBuffer.prototype.byteLength

24.1.4.2 ArrayBuffer.prototype.constructor

24.1.4.3 ArrayBuffer.prototype.slice (start, end)

24.1.4.4 ArrayBuffer.prototype [@@toStringTag]

624

© Ecma International 2019

624

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

ArrayBuffer instances inherit properties from the ArrayBuffer prototype object. ArrayBuffer instances each have an
[[ArrayBufferData]] internal slot, an [[ArrayBufferByteLength]] internal slot, and an [[ArrayBufferDetachKey]] internal
slot.

ArrayBuffer instances whose [[ArrayBufferData]] is null are considered to be detached and all operators to access or
modify data contained in the ArrayBuffer instance will fail.

ArrayBuffer instances whose [[ArrayBufferDetachKey]] is set to a value other than undefined need to have all
DetachArrayBuffer calls passing that same "detach key" as an argument, otherwise a TypeError will result. This internal
slot is only ever set by certain embedding environments, not by algorithms in this specification.

The abstract operation AllocateSharedArrayBuffer with arguments constructor and byteLength is used to create a
SharedArrayBuffer object. It performs the following steps:

1. Let obj be ? OrdinaryCreateFromConstructor(constructor, "%SharedArrayBufferPrototype%", «
[[ArrayBufferData]], [[ArrayBufferByteLength]] »).

2. Assert: byteLength is a nonnegative integer.
3. Let block be ? CreateSharedByteDataBlock(byteLength).
4. Set obj.[[ArrayBufferData]] to block.
5. Set obj.[[ArrayBufferByteLength]] to byteLength.
6. Return obj.

IsSharedArrayBuffer tests whether an object is an ArrayBuffer, a SharedArrayBuffer, or a subtype of either. It performs
the following steps:

1. Assert: Type(obj) is Object and it has an [[ArrayBufferData]] internal slot.
2. Let bufferData be obj.[[ArrayBufferData]].
3. If bufferData is null, return false.
4. If bufferData is a Data Block, return false.
5. Assert: bufferData is a Shared Data Block.
6. Return true.

The SharedArrayBuffer constructor:

24.1.5 Properties of ArrayBuffer Instances

24.2 SharedArrayBuffer Objects

24.2.1 Abstract Operations for SharedArrayBuffer Objects

24.2.1.1 AllocateSharedArrayBuffer (constructor, byteLength)

24.2.1.2 IsSharedArrayBuffer (obj)

24.2.2 The SharedArrayBuffer Constructor

© Ecma International 2019

625

is the intrinsic object %SharedArrayBuffer%.
is the initial value of the SharedArrayBuffer property of the global object.
creates and initializes a new SharedArrayBuffer object when called as a constructor.
is not intended to be called as a function and will throw an exception when called in that manner.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified SharedArrayBuffer behaviour must include a super call to
the SharedArrayBuffer constructor to create and initialize subclass instances with the internal state necessary
to support the SharedArrayBuffer.prototype built-in methods.

NOTE
Unlike an ArrayBuffer, a SharedArrayBuffer cannot become detached, and its internal [[ArrayBufferData]]
slot is never null.

When the SharedArrayBuffer function is called with optional argument length, the following steps are taken:

1. If NewTarget is undefined, throw a TypeError exception.
2. Let byteLength be ? ToIndex(length).
3. Return ? AllocateSharedArrayBuffer(NewTarget, byteLength).

The SharedArrayBuffer constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The initial value of SharedArrayBuffer.prototype is the intrinsic object %SharedArrayBufferPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

SharedArrayBuffer[@@species] is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

1. Return the this value.

The value of the name property of this function is "get [Symbol.species]".

The SharedArrayBuffer prototype object:

is the intrinsic object %SharedArrayBufferPrototype%.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.

24.2.2.1 SharedArrayBuffer ([length])

24.2.3 Properties of the SharedArrayBuffer Constructor

24.2.3.1 SharedArrayBuffer.prototype

24.2.3.2 get SharedArrayBuffer [@@species]

24.2.4 Properties of the SharedArrayBuffer Prototype Object

626

© Ecma International 2019

626

is an ordinary object.
does not have an [[ArrayBufferData]] or [[ArrayBufferByteLength]] internal slot.

SharedArrayBuffer.prototype.byteLength is an accessor property whose set accessor function is
undefined. Its get accessor function performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have an [[ArrayBufferData]] internal slot, throw a TypeError exception.
4. If IsSharedArrayBuffer(O) is false, throw a TypeError exception.
5. Let length be O.[[ArrayBufferByteLength]].
6. Return length.

The initial value of SharedArrayBuffer.prototype.constructor is the intrinsic object
%SharedArrayBuffer%.

The following steps are taken:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have an [[ArrayBufferData]] internal slot, throw a TypeError exception.
4. If IsSharedArrayBuffer(O) is false, throw a TypeError exception.
5. Let len be O.[[ArrayBufferByteLength]].
6. Let relativeStart be ? ToInteger(start).
7. If relativeStart < 0, let first be max((len + relativeStart), 0); else let first be min(relativeStart, len).
8. If end is undefined, let relativeEnd be len; else let relativeEnd be ? ToInteger(end).
9. If relativeEnd < 0, let final be max((len + relativeEnd), 0); else let final be min(relativeEnd, len).

10. Let newLen be max(final - first, 0).
11. Let ctor be ? SpeciesConstructor(O, %SharedArrayBuffer%).
12. Let new be ? Construct(ctor, « newLen »).
13. If new does not have an [[ArrayBufferData]] internal slot, throw a TypeError exception.
14. If IsSharedArrayBuffer(new) is false, throw a TypeError exception.
15. If new.[[ArrayBufferData]] and O.[[ArrayBufferData]] are the same Shared Data Block values, throw a TypeError

exception.
16. If new.[[ArrayBufferByteLength]] < newLen, throw a TypeError exception.
17. Let fromBuf be O.[[ArrayBufferData]].
18. Let toBuf be new.[[ArrayBufferData]].
19. Perform CopyDataBlockBytes(toBuf, 0, fromBuf, first, newLen).
20. Return new.

The initial value of the @@toStringTag property is the String value "SharedArrayBuffer".

24.2.4.1 get SharedArrayBuffer.prototype.byteLength

24.2.4.2 SharedArrayBuffer.prototype.constructor

24.2.4.3 SharedArrayBuffer.prototype.slice (start, end)

24.2.4.4 SharedArrayBuffer.prototype [@@toStringTag]

© Ecma International 2019

627

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

SharedArrayBuffer instances inherit properties from the SharedArrayBuffer prototype object. SharedArrayBuffer
instances each have an [[ArrayBufferData]] internal slot and an [[ArrayBufferByteLength]] internal slot.

NOTE
SharedArrayBuffer instances, unlike ArrayBuffer instances, are never detached.

The abstract operation GetViewValue with arguments view, requestIndex, isLittleEndian, and type is used by functions
on DataView instances to retrieve values from the view's buffer. It performs the following steps:

1. If Type(view) is not Object, throw a TypeError exception.
2. If view does not have a [[DataView]] internal slot, throw a TypeError exception.
3. Assert: view has a [[ViewedArrayBuffer]] internal slot.
4. Let getIndex be ? ToIndex(requestIndex).
5. Set isLittleEndian to ToBoolean(isLittleEndian).
6. Let buffer be view.[[ViewedArrayBuffer]].
7. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
8. Let viewOffset be view.[[ByteOffset]].
9. Let viewSize be view.[[ByteLength]].

10. Let elementSize be the Number value of the Element Size value specified in Table 59 for Element Type type.
11. If getIndex + elementSize > viewSize, throw a RangeError exception.
12. Let bufferIndex be getIndex + viewOffset.
13. Return GetValueFromBuffer(buffer, bufferIndex, type, false, "Unordered", isLittleEndian).

The abstract operation SetViewValue with arguments view, requestIndex, isLittleEndian, type, and value is used by
functions on DataView instances to store values into the view's buffer. It performs the following steps:

1. If Type(view) is not Object, throw a TypeError exception.
2. If view does not have a [[DataView]] internal slot, throw a TypeError exception.
3. Assert: view has a [[ViewedArrayBuffer]] internal slot.
4. Let getIndex be ? ToIndex(requestIndex).
5. Let numberValue be ? ToNumber(value).
6. Set isLittleEndian to ToBoolean(isLittleEndian).
7. Let buffer be view.[[ViewedArrayBuffer]].
8. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
9. Let viewOffset be view.[[ByteOffset]].

24.2.5 Properties of SharedArrayBuffer Instances

24.3 DataView Objects

24.3.1 Abstract Operations For DataView Objects

24.3.1.1 GetViewValue (view, requestIndex, isLittleEndian, type)

24.3.1.2 SetViewValue (view, requestIndex, isLittleEndian, type, value)

628

© Ecma International 2019

628

10. Let viewSize be view.[[ByteLength]].
11. Let elementSize be the Number value of the Element Size value specified in Table 59 for Element Type type.
12. If getIndex + elementSize > viewSize, throw a RangeError exception.
13. Let bufferIndex be getIndex + viewOffset.
14. Return SetValueInBuffer(buffer, bufferIndex, type, numberValue, false, "Unordered", isLittleEndian).

The DataView constructor:

is the intrinsic object %DataView%.
is the initial value of the DataView property of the global object.
creates and initializes a new DataView object when called as a constructor.
is not intended to be called as a function and will throw an exception when called in that manner.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified DataView behaviour must include a super call to the
DataView constructor to create and initialize subclass instances with the internal state necessary to support the
DataView.prototype built-in methods.

When the DataView function is called with at least one argument buffer, the following steps are taken:

1. If NewTarget is undefined, throw a TypeError exception.
2. If Type(buffer) is not Object, throw a TypeError exception.
3. If buffer does not have an [[ArrayBufferData]] internal slot, throw a TypeError exception.
4. Let offset be ? ToIndex(byteOffset).
5. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
6. Let bufferByteLength be buffer.[[ArrayBufferByteLength]].
7. If offset > bufferByteLength, throw a RangeError exception.
8. If byteLength is either not present or undefined, then

a. Let viewByteLength be bufferByteLength - offset.
9. Else,

a. Let viewByteLength be ? ToIndex(byteLength).
b. If offset + viewByteLength > bufferByteLength, throw a RangeError exception.

10. Let O be ? OrdinaryCreateFromConstructor(NewTarget, "%DataViewPrototype%", « [[DataView]],
[[ViewedArrayBuffer]], [[ByteLength]], [[ByteOffset]] »).

11. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
12. Set O.[[ViewedArrayBuffer]] to buffer.
13. Set O.[[ByteLength]] to viewByteLength.
14. Set O.[[ByteOffset]] to offset.
15. Return O.

The DataView constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

24.3.2 The DataView Constructor

24.3.2.1 DataView (buffer [, byteOffset [, byteLength]])

24.3.3 Properties of the DataView Constructor

© Ecma International 2019

629

The initial value of DataView.prototype is the intrinsic object %DataViewPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The DataView prototype object:

is the intrinsic object %DataViewPrototype%.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is an ordinary object.
does not have a [[DataView]], [[ViewedArrayBuffer]], [[ByteLength]], or [[ByteOffset]] internal slot.

DataView.prototype.buffer is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have a [[DataView]] internal slot, throw a TypeError exception.
4. Assert: O has a [[ViewedArrayBuffer]] internal slot.
5. Let buffer be O.[[ViewedArrayBuffer]].
6. Return buffer.

DataView.prototype.byteLength is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have a [[DataView]] internal slot, throw a TypeError exception.
4. Assert: O has a [[ViewedArrayBuffer]] internal slot.
5. Let buffer be O.[[ViewedArrayBuffer]].
6. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
7. Let size be O.[[ByteLength]].
8. Return size.

DataView.prototype.byteOffset is an accessor property whose set accessor function is undefined. Its get
accessor function performs the following steps:

1. Let O be the this value.
2. If Type(O) is not Object, throw a TypeError exception.
3. If O does not have a [[DataView]] internal slot, throw a TypeError exception.
4. Assert: O has a [[ViewedArrayBuffer]] internal slot.
5. Let buffer be O.[[ViewedArrayBuffer]].

24.3.3.1 DataView.prototype

24.3.4 Properties of the DataView Prototype Object

24.3.4.1 get DataView.prototype.buffer

24.3.4.2 get DataView.prototype.byteLength

24.3.4.3 get DataView.prototype.byteOffset

630

© Ecma International 2019

630

6. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
7. Let offset be O.[[ByteOffset]].
8. Return offset.

The initial value of DataView.prototype.constructor is the intrinsic object %DataView%.

When the getFloat32 method is called with argument byteOffset and optional argument littleEndian, the following
steps are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? GetViewValue(v, byteOffset, littleEndian, "Float32").

When the getFloat64 method is called with argument byteOffset and optional argument littleEndian, the following
steps are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? GetViewValue(v, byteOffset, littleEndian, "Float64").

When the getInt8 method is called with argument byteOffset, the following steps are taken:

1. Let v be the this value.
2. Return ? GetViewValue(v, byteOffset, true, "Int8").

When the getInt16 method is called with argument byteOffset and optional argument littleEndian, the following steps
are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? GetViewValue(v, byteOffset, littleEndian, "Int16").

When the getInt32 method is called with argument byteOffset and optional argument littleEndian, the following steps
are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? GetViewValue(v, byteOffset, littleEndian, "Int32").

24.3.4.4 DataView.prototype.constructor

24.3.4.5 DataView.prototype.getFloat32 (byteOffset [, littleEndian])

24.3.4.6 DataView.prototype.getFloat64 (byteOffset [, littleEndian])

24.3.4.7 DataView.prototype.getInt8 (byteOffset)

24.3.4.8 DataView.prototype.getInt16 (byteOffset [, littleEndian])

24.3.4.9 DataView.prototype.getInt32 (byteOffset [, littleEndian])

© Ecma International 2019

631

When the getUint8 method is called with argument byteOffset, the following steps are taken:

1. Let v be the this value.
2. Return ? GetViewValue(v, byteOffset, true, "Uint8").

When the getUint16 method is called with argument byteOffset and optional argument littleEndian, the following
steps are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? GetViewValue(v, byteOffset, littleEndian, "Uint16").

When the getUint32 method is called with argument byteOffset and optional argument littleEndian, the following
steps are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? GetViewValue(v, byteOffset, littleEndian, "Uint32").

When the setFloat32 method is called with arguments byteOffset and value and optional argument littleEndian, the
following steps are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? SetViewValue(v, byteOffset, littleEndian, "Float32", value).

When the setFloat64 method is called with arguments byteOffset and value and optional argument littleEndian, the
following steps are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? SetViewValue(v, byteOffset, littleEndian, "Float64", value).

When the setInt8 method is called with arguments byteOffset and value, the following steps are taken:

1. Let v be the this value.
2. Return ? SetViewValue(v, byteOffset, true, "Int8", value).

24.3.4.10 DataView.prototype.getUint8 (byteOffset)

24.3.4.11 DataView.prototype.getUint16 (byteOffset [, littleEndian])

24.3.4.12 DataView.prototype.getUint32 (byteOffset [, littleEndian])

24.3.4.13 DataView.prototype.setFloat32 (byteOffset, value [, littleEndian])

24.3.4.14 DataView.prototype.setFloat64 (byteOffset, value [, littleEndian])

24.3.4.15 DataView.prototype.setInt8 (byteOffset, value)

24.3.4.16 DataView.prototype.setInt16 (byteOffset, value [, littleEndian])

632

© Ecma International 2019

632

When the setInt16 method is called with arguments byteOffset and value and optional argument littleEndian, the
following steps are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? SetViewValue(v, byteOffset, littleEndian, "Int16", value).

When the setInt32 method is called with arguments byteOffset and value and optional argument littleEndian, the
following steps are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? SetViewValue(v, byteOffset, littleEndian, "Int32", value).

When the setUint8 method is called with arguments byteOffset and value, the following steps are taken:

1. Let v be the this value.
2. Return ? SetViewValue(v, byteOffset, true, "Uint8", value).

When the setUint16 method is called with arguments byteOffset and value and optional argument littleEndian, the
following steps are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? SetViewValue(v, byteOffset, littleEndian, "Uint16", value).

When the setUint32 method is called with arguments byteOffset and value and optional argument littleEndian, the
following steps are taken:

1. Let v be the this value.
2. If littleEndian is not present, set littleEndian to false.
3. Return ? SetViewValue(v, byteOffset, littleEndian, "Uint32", value).

The initial value of the @@toStringTag property is the String value "DataView".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

DataView instances are ordinary objects that inherit properties from the DataView prototype object. DataView instances

24.3.4.17 DataView.prototype.setInt32 (byteOffset, value [, littleEndian])

24.3.4.18 DataView.prototype.setUint8 (byteOffset, value)

24.3.4.19 DataView.prototype.setUint16 (byteOffset, value [, littleEndian])

24.3.4.20 DataView.prototype.setUint32 (byteOffset, value [, littleEndian])

24.3.4.21 DataView.prototype [@@toStringTag]

24.3.5 Properties of DataView Instances

© Ecma International 2019

633

each have [[DataView]], [[ViewedArrayBuffer]], [[ByteLength]], and [[ByteOffset]] internal slots.

NOTE
The value of the [[DataView]] internal slot is not used within this specification. The simple presence of that internal slot
is used within the specification to identify objects created using the DataView constructor.

The Atomics object:

is the intrinsic object %Atomics%.
is the initial value of the Atomics property of the global object.
is an ordinary object.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
does not have a [[Construct]] internal method; it cannot be used as a constructor with the new operator.
does not have a [[Call]] internal method; it cannot be invoked as a function.

The Atomics object provides functions that operate indivisibly (atomically) on shared memory array cells as well as
functions that let agents wait for and dispatch primitive events. When used with discipline, the Atomics functions allow
multi-agent programs that communicate through shared memory to execute in a well-understood order even on parallel
CPUs. The rules that govern shared-memory communication are provided by the memory model, defined below.

NOTE
For informative guidelines for programming and implementing shared memory in ECMAScript, please see the notes at
the end of the memory model section.

The abstract operation ValidateSharedIntegerTypedArray takes one argument typedArray and an optional Boolean
onlyInt32. It performs the following steps:

1. If onlyInt32 is not present, set onlyInt32 to false.
2. If Type(typedArray) is not Object, throw a TypeError exception.
3. If typedArray does not have a [[TypedArrayName]] internal slot, throw a TypeError exception.
4. Let typeName be typedArray.[[TypedArrayName]].
5. If onlyInt32 is true, then

a. If typeName is not "Int32Array", throw a TypeError exception.
6. Else,

a. If typeName is not "Int8Array", "Uint8Array", "Int16Array", "Uint16Array",
"Int32Array", or "Uint32Array", throw a TypeError exception.

7. Assert: typedArray has a [[ViewedArrayBuffer]] internal slot.
8. Let buffer be typedArray.[[ViewedArrayBuffer]].
9. If IsSharedArrayBuffer(buffer) is false, throw a TypeError exception.

10. Return buffer.

24.4 The Atomics Object

24.4.1 Abstract Operations for Atomics

24.4.1.1 ValidateSharedIntegerTypedArray (typedArray [, onlyInt32])

634

© Ecma International 2019

634

The abstract operation ValidateAtomicAccess takes two arguments, typedArray and requestIndex. It performs the
following steps:

1. Assert: typedArray is an Object that has a [[ViewedArrayBuffer]] internal slot.
2. Let accessIndex be ? ToIndex(requestIndex).
3. Let length be typedArray.[[ArrayLength]].
4. Assert: accessIndex ≥ 0.
5. If accessIndex ≥ length, throw a RangeError exception.
6. Return accessIndex.

A WaiterList is a semantic object that contains an ordered list of those agents that are waiting on a location (block, i) in
shared memory; block is a Shared Data Block and i a byte offset into the memory of block.

The agent cluster has a store of WaiterList objects; the store is indexed by (block, i). WaiterLists are agent-independent:
a lookup in the store of WaiterLists by (block, i) will result in the same WaiterList object in any agent in the agent
cluster.

Operations on a WaiterList -- adding and removing waiting agents, traversing the list of agents, suspending and notifying
agents on the list -- may only be performed by agents that have entered the WaiterList's critical section.

The abstract operation GetWaiterList takes two arguments, a Shared Data Block block and a nonnegative integer i. It
performs the following steps:

1. Assert: block is a Shared Data Block.
2. Assert: i and i + 3 are valid byte offsets within the memory of block.
3. Assert: i is divisible by 4.
4. Return the WaiterList that is referenced by the pair (block, i).

The abstract operation EnterCriticalSection takes one argument, a WaiterList WL. It performs the following steps:

1. Assert: The calling agent is not in the critical section for any WaiterList.
2. Wait until no agent is in the critical section for WL, then enter the critical section for WL (without allowing any

other agent to enter).

The abstract operation LeaveCriticalSection takes one argument, a WaiterList WL. It performs the following steps:

1. Assert: The calling agent is in the critical section for WL.
2. Leave the critical section for WL.

The abstract operation AddWaiter takes two arguments, a WaiterList WL and an agent signifier W. It performs the
following steps:

24.4.1.2 ValidateAtomicAccess (typedArray, requestIndex)

24.4.1.3 GetWaiterList (block, i)

24.4.1.4 EnterCriticalSection (WL)

24.4.1.5 LeaveCriticalSection (WL)

24.4.1.6 AddWaiter (WL, W)

© Ecma International 2019

635

1. Assert: The calling agent is in the critical section for WL.
2. Assert: W is not on the list of waiters in any WaiterList.
3. Add W to the end of the list of waiters in WL.

The abstract operation RemoveWaiter takes two arguments, a WaiterList WL and an agent signifier W. It performs the
following steps:

1. Assert: The calling agent is in the critical section for WL.
2. Assert: W is on the list of waiters in WL.
3. Remove W from the list of waiters in WL.

The abstract operation RemoveWaiters takes two arguments, a WaiterList WL and nonnegative integer c. It performs the
following steps:

1. Assert: The calling agent is in the critical section for WL.
2. Let L be a new empty List.
3. Let S be a reference to the list of waiters in WL.
4. Repeat, while c > 0 and S is not an empty List,

a. Let W be the first waiter in S.
b. Add W to the end of L.
c. Remove W from S.
d. Subtract 1 from c.

5. Return L.

The abstract operation Suspend takes three arguments, a WaiterList WL, an agent signifier W, and a nonnegative,
non-NaN Number timeout. It performs the following steps:

1. Assert: The calling agent is in the critical section for WL.
2. Assert: W is equal to AgentSignifier().
3. Assert: W is on the list of waiters in WL.
4. Assert: AgentCanSuspend() is true.
5. Perform LeaveCriticalSection(WL) and suspend W for up to timeout milliseconds, performing the combined

operation in such a way that a notification that arrives after the critical section is exited but before the suspension
takes effect is not lost. W can notify either because the timeout expired or because it was notified explicitly by
another agent calling NotifyWaiter(WL, W), and not for any other reasons at all.

6. Perform EnterCriticalSection(WL).
7. If W was notified explicitly by another agent calling NotifyWaiter(WL, W), return true.
8. Return false.

The abstract operation NotifyWaiter takes two arguments, a WaiterList WL and an agent signifier W. It performs the
following steps:

24.4.1.7 RemoveWaiter (WL, W)

24.4.1.8 RemoveWaiters (WL, c)

24.4.1.9 Suspend (WL, W, timeout)

24.4.1.10 NotifyWaiter (WL, W)

636

© Ecma International 2019

636

1. Assert: The calling agent is in the critical section for WL.
2. Assert: W is on the list of waiters in WL.
3. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.
4. Let eventsRecord be the Agent Events Record in execution.[[EventsRecords]] whose [[AgentSignifier]] is

AgentSignifier().
5. Let agentSynchronizesWith be eventsRecord.[[AgentSynchronizesWith]].
6. Let notifierEventList be eventsRecord.[[EventList]].
7. Let waiterEventList be the [[EventList]] field of the element in execution.[[EventsRecords]] whose

[[AgentSignifier]] is W.
8. Let notifyEvent and waitEvent be new Synchronize events.
9. Append notifyEvent to notifierEventList.

10. Append waitEvent to waiterEventList.
11. Append (notifyEvent, waitEvent) to agentSynchronizesWith.
12. Notify the agent W.

NOTE
The embedding may delay notifying W, e.g. for resource management reasons, but W must eventually be notified in
order to guarantee forward progress.

The abstract operation AtomicReadModifyWrite takes four arguments, typedArray, index, value, and a pure combining
operation op. The pure combining operation op takes two List of byte values arguments and returns a List of byte values.
The operation atomically loads a value, combines it with another value, and stores the result of the combination. It
returns the loaded value. It performs the following steps:

1. Let buffer be ? ValidateSharedIntegerTypedArray(typedArray).
2. Let i be ? ValidateAtomicAccess(typedArray, index).
3. Let v be ? ToInteger(value).
4. Let arrayTypeName be typedArray.[[TypedArrayName]].
5. Let elementSize be the Number value of the Element Size value specified in Table 59 for arrayTypeName.
6. Let elementType be the String value of the Element Type value in Table 59 for arrayTypeName.
7. Let offset be typedArray.[[ByteOffset]].
8. Let indexedPosition be (i × elementSize) + offset.
9. Return GetModifySetValueInBuffer(buffer, indexedPosition, elementType, v, op).

The abstract operation AtomicLoad takes two arguments, typedArray, index. The operation atomically loads a value and
returns the loaded value. It performs the following steps:

1. Let buffer be ? ValidateSharedIntegerTypedArray(typedArray).
2. Let i be ? ValidateAtomicAccess(typedArray, index).
3. Let arrayTypeName be typedArray.[[TypedArrayName]].
4. Let elementSize be the Number value of the Element Size value specified in Table 59 for arrayTypeName.
5. Let elementType be the String value of the Element Type value in Table 59 for arrayTypeName.
6. Let offset be typedArray.[[ByteOffset]].
7. Let indexedPosition be (i × elementSize) + offset.

24.4.1.11 AtomicReadModifyWrite (typedArray, index, value, op)

24.4.1.12 AtomicLoad (typedArray, index)

© Ecma International 2019

637

8. Return GetValueFromBuffer(buffer, indexedPosition, elementType, true, "SeqCst").

Let add denote a semantic function of two List of byte values arguments that applies the addition operation to the
Number values corresponding to the List of byte values arguments and returns a List of byte values corresponding to the
result of that operation.

The following steps are taken:

1. Return ? AtomicReadModifyWrite(typedArray, index, value, add).

Let and denote a semantic function of two List of byte values arguments that applies the bitwise-and operation element-
wise to the two arguments and returns a List of byte values corresponding to the result of that operation.

The following steps are taken:

1. Return ? AtomicReadModifyWrite(typedArray, index, value, and).

The following steps are taken:

1. Let buffer be ? ValidateSharedIntegerTypedArray(typedArray).
2. Let i be ? ValidateAtomicAccess(typedArray, index).
3. Let expected be ? ToInteger(expectedValue).
4. Let replacement be ? ToInteger(replacementValue).
5. Let arrayTypeName be typedArray.[[TypedArrayName]].
6. Let elementType be the String value of the Element Type value in Table 59 for arrayTypeName.
7. Let isLittleEndian be the value of the [[LittleEndian]] field of the surrounding agent's Agent Record.
8. Let expectedBytes be NumberToRawBytes(elementType, expected, isLittleEndian).
9. Let elementSize be the Number value of the Element Size value specified in Table 59 for arrayTypeName.

10. Let offset be typedArray.[[ByteOffset]].
11. Let indexedPosition be (i × elementSize) + offset.
12. Let compareExchange denote a semantic function of two List of byte values arguments that returns the second

argument if the first argument is element-wise equal to expectedBytes.
13. Return GetModifySetValueInBuffer(buffer, indexedPosition, elementType, replacement, compareExchange).

Let second denote a semantic function of two List of byte values arguments that returns its second argument.

The following steps are taken:

1. Return ? AtomicReadModifyWrite(typedArray, index, value, second).

24.4.2 Atomics.add (typedArray, index, value)

24.4.3 Atomics.and (typedArray, index, value)

24.4.4 Atomics.compareExchange (typedArray, index, expectedValue, replacementValue)

24.4.5 Atomics.exchange (typedArray, index, value)

24.4.6 Atomics.isLockFree (size)

638

© Ecma International 2019

638

The following steps are taken:

1. Let n be ? ToInteger(size).
2. Let AR be the Agent Record of the surrounding agent.
3. If n equals 1, return AR.[[IsLockFree1]].
4. If n equals 2, return AR.[[IsLockFree2]].
5. If n equals 4, return true.
6. Return false.

NOTE
Atomics.isLockFree() is an optimization primitive. The intuition is that if the atomic step of an atomic primitive
(compareExchange, load, store, add, sub, and, or, xor, or exchange) on a datum of size n bytes will be
performed without the calling agent acquiring a lock outside the n bytes comprising the datum, then
Atomics.isLockFree(n) will return true. High-performance algorithms will use Atomics.isLockFree to determine
whether to use locks or atomic operations in critical sections. If an atomic primitive is not lock-free then it is often more
efficient for an algorithm to provide its own locking.

Atomics.isLockFree(4) always returns true as that can be supported on all known relevant hardware. Being able
to assume this will generally simplify programs.

The following steps are taken:

1. Return ? AtomicLoad(typedArray, index).

Let or denote a semantic function of two List of byte values arguments that applies the bitwise-or operation element-
wise to the two arguments and returns a List of byte values corresponding to the result of that operation.

The following steps are taken:

1. Return ? AtomicReadModifyWrite(typedArray, index, value, or).

The following steps are taken:

1. Let buffer be ? ValidateSharedIntegerTypedArray(typedArray).
2. Let i be ? ValidateAtomicAccess(typedArray, index).
3. Let v be ? ToInteger(value).
4. Let arrayTypeName be typedArray.[[TypedArrayName]].
5. Let elementSize be the Number value of the Element Size value specified in Table 59 for arrayTypeName.
6. Let elementType be the String value of the Element Type value in Table 59 for arrayTypeName.
7. Let offset be typedArray.[[ByteOffset]].
8. Let indexedPosition be (i × elementSize) + offset.
9. Perform SetValueInBuffer(buffer, indexedPosition, elementType, v, true, "SeqCst").

10. Return v.

24.4.7 Atomics.load (typedArray, index)

24.4.8 Atomics.or (typedArray, index, value)

24.4.9 Atomics.store (typedArray, index, value)

© Ecma International 2019

639

Let subtract denote a semantic function of two List of byte values arguments that applies the subtraction operation to
the Number values corresponding to the List of byte values arguments and returns a List of byte values corresponding to
the result of that operation.

The following steps are taken:

1. Return ? AtomicReadModifyWrite(typedArray, index, value, subtract).

Atomics.wait puts the calling agent in a wait queue and puts it to sleep until it is notified or the sleep times out. The
following steps are taken:

1. Let buffer be ? ValidateSharedIntegerTypedArray(typedArray, true).
2. Let i be ? ValidateAtomicAccess(typedArray, index).
3. Let v be ? ToInt32(value).
4. Let q be ? ToNumber(timeout).
5. If q is NaN, let t be +∞, else let t be max(q, 0).
6. Let B be AgentCanSuspend().
7. If B is false, throw a TypeError exception.
8. Let block be buffer.[[ArrayBufferData]].
9. Let offset be typedArray.[[ByteOffset]].

10. Let indexedPosition be (i × 4) + offset.
11. Let WL be GetWaiterList(block, indexedPosition).
12. Perform EnterCriticalSection(WL).
13. Let w be ! AtomicLoad(typedArray, i).
14. If v is not equal to w, then

a. Perform LeaveCriticalSection(WL).
b. Return the String "not-equal".

15. Let W be AgentSignifier().
16. Perform AddWaiter(WL, W).
17. Let notified be Suspend(WL, W, t).
18. If notified is true, then

a. Assert: W is not on the list of waiters in WL.
19. Else,

a. Perform RemoveWaiter(WL, W).
20. Perform LeaveCriticalSection(WL).
21. If notified is true, return the String "ok".
22. Return the String "timed-out".

Atomics.notify notifies some agents that are sleeping in the wait queue. The following steps are taken:

1. Let buffer be ? ValidateSharedIntegerTypedArray(typedArray, true).
2. Let i be ? ValidateAtomicAccess(typedArray, index).
3. If count is undefined, let c be +∞.

24.4.10 Atomics.sub (typedArray, index, value)

24.4.11 Atomics.wait (typedArray, index, value, timeout)

24.4.12 Atomics.notify (typedArray, index, count)

640

© Ecma International 2019

640

4. Else,
a. Let intCount be ? ToInteger(count).
b. Let c be max(intCount, 0).

5. Let block be buffer.[[ArrayBufferData]].
6. Let offset be typedArray.[[ByteOffset]].
7. Let indexedPosition be (i × 4) + offset.
8. Let WL be GetWaiterList(block, indexedPosition).
9. Let n be 0.

10. Perform EnterCriticalSection(WL).
11. Let S be RemoveWaiters(WL, c).
12. Repeat, while S is not an empty List,

a. Let W be the first agent in S.
b. Remove W from the front of S.
c. Perform NotifyWaiter(WL, W).
d. Add 1 to n.

13. Perform LeaveCriticalSection(WL).
14. Return n.

Let xor denote a semantic function of two List of byte values arguments that applies the bitwise-xor operation element-
wise to the two arguments and returns a List of byte values corresponding to the result of that operation.

The following steps are taken:

1. Return ? AtomicReadModifyWrite(typedArray, index, value, xor).

The initial value of the @@toStringTag property is the String value "Atomics".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

The JSON object:

is the intrinsic object %JSON%.
is the initial value of the JSON property of the global object.
is an ordinary object.
contains two functions, parse and stringify, that are used to parse and construct JSON texts.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
does not have a [[Construct]] internal method; it cannot be used as a constructor with the new operator.
does not have a [[Call]] internal method; it cannot be invoked as a function.

The JSON Data Interchange Format is defined in ECMA-404. The JSON interchange format used in this specification is
exactly that described by ECMA-404. Conforming implementations of JSON.parse and JSON.stringify must
support the exact interchange format described in the ECMA-404 specification without any deletions or extensions to the

24.4.13 Atomics.xor (typedArray, index, value)

24.4.14 Atomics [@@toStringTag]

24.5 The JSON Object

© Ecma International 2019

641

format.

The parse function parses a JSON text (a JSON-formatted String) and produces an ECMAScript value. The JSON
format represents literals, arrays, and objects with a syntax similar to the syntax for ECMAScript literals, Array
Initializers, and Object Initializers. After parsing, JSON objects are realized as ECMAScript objects. JSON arrays are
realized as ECMAScript Array instances. JSON strings, numbers, booleans, and null are realized as ECMAScript Strings,
Numbers, Booleans, and null.

The optional reviver parameter is a function that takes two parameters, key and value. It can filter and transform the
results. It is called with each of the key/value pairs produced by the parse, and its return value is used instead of the
original value. If it returns what it received, the structure is not modified. If it returns undefined then the property is
deleted from the result.

1. Let JText be ? ToString(text).
2. Parse JText interpreted as UTF-16 encoded Unicode points (6.1.4) as a JSON text as specified in ECMA-404.

Throw a SyntaxError exception if JText is not a valid JSON text as defined in that specification.
3. Let scriptText be the string-concatenation of "(", JText, and ");".
4. Let completion be the result of parsing and evaluating scriptText as if it was the source text of an ECMAScript

Script. The extended PropertyDefinitionEvaluation semantics defined in B.3.1 must not be used during the
evaluation.

5. Let unfiltered be completion.[[Value]].
6. Assert: unfiltered is either a String, Number, Boolean, Null, or an Object that is defined by either an ArrayLiteral

or an ObjectLiteral.
7. If IsCallable(reviver) is true, then

a. Let root be ObjectCreate(%ObjectPrototype%).
b. Let rootName be the empty String.
c. Let status be CreateDataProperty(root, rootName, unfiltered).
d. Assert: status is true.
e. Return ? InternalizeJSONProperty(root, rootName).

8. Else,
a. Return unfiltered.

This function is the %JSONParse% intrinsic object.

The "length" property of the parse function is 2.

NOTE
Valid JSON text is a subset of the ECMAScript PrimaryExpression syntax as modified by Step 4 above. Step 2 verifies
that JText conforms to that subset, and step 6 verifies that that parsing and evaluation returns a value of an appropriate
type.

The abstract operation InternalizeJSONProperty is a recursive abstract operation that takes two parameters: a holder
object and the String name of a property in that object. InternalizeJSONProperty uses the value of reviver that was
originally passed to the above parse function.

24.5.1 JSON.parse (text [, reviver])

24.5.1.1 Runtime Semantics: InternalizeJSONProperty (holder, name)

642

© Ecma International 2019

642

1. Let val be ? Get(holder, name).
2. If Type(val) is Object, then

a. Let isArray be ? IsArray(val).
b. If isArray is true, then

i. Let I be 0.
ii. Let len be ? ToLength(? Get(val, "length")).

iii. Repeat, while I < len,
1. Let newElement be ? InternalizeJSONProperty(val, ! ToString(I)).
2. If newElement is undefined, then

a. Perform ? val.[[Delete]](! ToString(I)).
3. Else,

a. Perform ? CreateDataProperty(val, ! ToString(I), newElement).
b. NOTE: This algorithm intentionally does not throw an exception if CreateDataProperty

returns false.
4. Add 1 to I.

c. Else,
i. Let keys be ? EnumerableOwnPropertyNames(val, "key").

ii. For each String P in keys, do
1. Let newElement be ? InternalizeJSONProperty(val, P).
2. If newElement is undefined, then

a. Perform ? val.[[Delete]](P).
3. Else,

a. Perform ? CreateDataProperty(val, P, newElement).
b. NOTE: This algorithm intentionally does not throw an exception if CreateDataProperty

returns false.
3. Return ? Call(reviver, holder, « name, val »).

It is not permitted for a conforming implementation of JSON.parse to extend the JSON grammars. If an
implementation wishes to support a modified or extended JSON interchange format it must do so by defining a different
parse function.

NOTE
In the case where there are duplicate name Strings within an object, lexically preceding values for the same key shall be
overwritten.

The stringify function returns a String in UTF-16 encoded JSON format representing an ECMAScript value, or
undefined. It can take three parameters. The value parameter is an ECMAScript value, which is usually an object or
array, although it can also be a String, Boolean, Number or null. The optional replacer parameter is either a function that
alters the way objects and arrays are stringified, or an array of Strings and Numbers that acts as an inclusion list for
selecting the object properties that will be stringified. The optional space parameter is a String or Number that allows the
result to have white space injected into it to improve human readability.

These are the steps in stringifying an object:

1. Let stack be a new empty List.
2. Let indent be the empty String.

24.5.2 JSON.stringify (value [, replacer [, space]])

© Ecma International 2019

643

3. Let PropertyList and ReplacerFunction be undefined.
4. If Type(replacer) is Object, then

a. If IsCallable(replacer) is true, then
i. Set ReplacerFunction to replacer.

b. Else,
i. Let isArray be ? IsArray(replacer).

ii. If isArray is true, then
1. Set PropertyList to a new empty List.
2. Let len be ? ToLength(? Get(replacer, "length")).
3. Let k be 0.
4. Repeat, while k < len,

a. Let v be ? Get(replacer, ! ToString(k)).
b. Let item be undefined.
c. If Type(v) is String, set item to v.
d. Else if Type(v) is Number, set item to ! ToString(v).
e. Else if Type(v) is Object, then

i. If v has a [[StringData]] or [[NumberData]] internal slot, set item to ? ToString(v).
f. If item is not undefined and item is not currently an element of PropertyList, then

i. Append item to the end of PropertyList.
g. Increase k by 1.

5. If Type(space) is Object, then
a. If space has a [[NumberData]] internal slot, then

i. Set space to ? ToNumber(space).
b. Else if space has a [[StringData]] internal slot, then

i. Set space to ? ToString(space).
6. If Type(space) is Number, then

a. Set space to min(10, ! ToInteger(space)).
b. Let gap be the String value containing space occurrences of the code unit 0x0020 (SPACE). This will be the

empty String if space is less than 1.
7. Else if Type(space) is String, then

a. If the length of space is 10 or less, let gap be space; otherwise let gap be the String value consisting of the
first 10 code units of space.

8. Else,
a. Let gap be the empty String.

9. Let wrapper be ObjectCreate(%ObjectPrototype%).
10. Let status be CreateDataProperty(wrapper, the empty String, value).
11. Assert: status is true.
12. Return ? SerializeJSONProperty(the empty String, wrapper).

The "length" property of the stringify function is 3.

NOTE 1
JSON structures are allowed to be nested to any depth, but they must be acyclic. If value is or contains a cyclic structure,
then the stringify function must throw a TypeError exception. This is an example of a value that cannot be stringified:

a = [];
a[0] = a;
my_text = JSON.stringify(a); // This must throw a TypeError.

644

© Ecma International 2019

644

NOTE 2
Symbolic primitive values are rendered as follows:

The null value is rendered in JSON text as the String null.
The undefined value is not rendered.
The true value is rendered in JSON text as the String true.
The false value is rendered in JSON text as the String false.

NOTE 3
String values are wrapped in QUOTATION MARK (") code units. The code units " and \ are escaped with \ prefixes.
Control characters code units are replaced with escape sequences \uHHHH, or with the shorter forms, \b
(BACKSPACE), \f (FORM FEED), \n (LINE FEED), \r (CARRIAGE RETURN), \t (CHARACTER
TABULATION).

NOTE 4
Finite numbers are stringified as if by calling ToString(number). NaN and Infinity regardless of sign are represented as
the String null.

NOTE 5
Values that do not have a JSON representation (such as undefined and functions) do not produce a String. Instead they
produce the undefined value. In arrays these values are represented as the String null. In objects an unrepresentable
value causes the property to be excluded from stringification.

NOTE 6
An object is rendered as U+007B (LEFT CURLY BRACKET) followed by zero or more properties, separated with a
U+002C (COMMA), closed with a U+007D (RIGHT CURLY BRACKET). A property is a quoted String representing
the key or property name, a U+003A (COLON), and then the stringified property value. An array is rendered as an
opening U+005B (LEFT SQUARE BRACKET followed by zero or more values, separated with a U+002C (COMMA),
closed with a U+005D (RIGHT SQUARE BRACKET).

The abstract operation SerializeJSONProperty with arguments key, and holder has access to ReplacerFunction from the
invocation of the stringify method. Its algorithm is as follows:

1. Let value be ? Get(holder, key).
2. If Type(value) is Object, then

a. Let toJSON be ? Get(value, "toJSON").
b. If IsCallable(toJSON) is true, then

i. Set value to ? Call(toJSON, value, « key »).
3. If ReplacerFunction is not undefined, then

a. Set value to ? Call(ReplacerFunction, holder, « key, value »).
4. If Type(value) is Object, then

a. If value has a [[NumberData]] internal slot, then
i. Set value to ? ToNumber(value).

b. Else if value has a [[StringData]] internal slot, then
i. Set value to ? ToString(value).

c. Else if value has a [[BooleanData]] internal slot, then
i. Set value to value.[[BooleanData]].

5. If value is null, return "null".
6. If value is true, return "true".

24.5.2.1 Runtime Semantics: SerializeJSONProperty (key, holder)

© Ecma International 2019

645

7. If value is false, return "false".
8. If Type(value) is String, return QuoteJSONString(value).
9. If Type(value) is Number, then

a. If value is finite, return ! ToString(value).
b. Return "null".

10. If Type(value) is Object and IsCallable(value) is false, then
a. Let isArray be ? IsArray(value).
b. If isArray is true, return ? SerializeJSONArray(value).
c. Return ? SerializeJSONObject(value).

11. Return undefined.

The abstract operation QuoteJSONString with argument value wraps a String value in QUOTATION MARK code units
and escapes certain other code units within it.

This operation interprets a String value as a sequence of UTF-16 encoded code points, as described in 6.1.4.

1. Let product be the String value consisting solely of the code unit 0x0022 (QUOTATION MARK).
2. Let cpList be a List containing in order the code points of value when interpreted as a sequence of UTF-16 encoded

code points as described in 6.1.4.
3. For each code point C in cpList, do

a. If C is listed in the Code Point column of Table 62, then
i. Set product to the string-concatenation of product and the Escape Sequence for C as specified in Table

62.
b. Else if C has a numeric value less than 0x0020 (SPACE), or if C has the same numeric value as a leading

surrogate or trailing surrogate, then
i. Let unit be the code unit whose numeric value is that of C.

ii. Set product to the string-concatenation of product and UnicodeEscape(unit).
c. Else,

i. Set product to the string-concatenation of product and the UTF16Encoding of C.
4. Set product to the string-concatenation of product and the code unit 0x0022 (QUOTATION MARK).
5. Return product.

Table 62: JSON Single Character Escape Sequences

Code Point Unicode Character Name Escape Sequence

U+0008 BACKSPACE \b

U+0009 CHARACTER TABULATION \t

U+000A LINE FEED (LF) \n

U+000C FORM FEED (FF) \f

U+000D CARRIAGE RETURN (CR) \r

U+0022 QUOTATION MARK \"

U+005C REVERSE SOLIDUS \\

24.5.2.2 Runtime Semantics: QuoteJSONString (value)

646

© Ecma International 2019

646

The abstract operation UnicodeEscape takes a code unit argument C and represents it as a Unicode escape sequence.

1. Let n be the numeric value of C.
2. Assert: n ≤ 0xFFFF.
3. Return the string-concatenation of:

the code unit 0x005C (REVERSE SOLIDUS)
"u"
the String representation of n, formatted as a four-digit lowercase hexadecimal number, padded to the left with
zeroes if necessary

The abstract operation SerializeJSONObject with argument value serializes an object. It has access to the stack, indent,
gap, and PropertyList values of the current invocation of the stringify method.

1. If stack contains value, throw a TypeError exception because the structure is cyclical.
2. Append value to stack.
3. Let stepback be indent.
4. Set indent to the string-concatenation of indent and gap.
5. If PropertyList is not undefined, then

a. Let K be PropertyList.
6. Else,

a. Let K be ? EnumerableOwnPropertyNames(value, "key").
7. Let partial be a new empty List.
8. For each element P of K, do

a. Let strP be ? SerializeJSONProperty(P, value).
b. If strP is not undefined, then

i. Let member be QuoteJSONString(P).
ii. Set member to the string-concatenation of member and ":".

iii. If gap is not the empty String, then
1. Set member to the string-concatenation of member and the code unit 0x0020 (SPACE).

iv. Set member to the string-concatenation of member and strP.
v. Append member to partial.

9. If partial is empty, then
a. Let final be "{}".

10. Else,
a. If gap is the empty String, then

i. Let properties be the String value formed by concatenating all the element Strings of partial with each
adjacent pair of Strings separated with the code unit 0x002C (COMMA). A comma is not inserted either
before the first String or after the last String.

ii. Let final be the string-concatenation of "{", properties, and "}".
b. Else gap is not the empty String,

i. Let separator be the string-concatenation of the code unit 0x002C (COMMA), the code unit 0x000A
(LINE FEED), and indent.

ii. Let properties be the String value formed by concatenating all the element Strings of partial with each
adjacent pair of Strings separated with separator. The separator String is not inserted either before the
first String or after the last String.

24.5.2.3 Runtime Semantics: UnicodeEscape (C)

24.5.2.4 Runtime Semantics: SerializeJSONObject (value)

© Ecma International 2019

647

iii. Let final be the string-concatenation of "{", the code unit 0x000A (LINE FEED), indent, properties,
the code unit 0x000A (LINE FEED), stepback, and "}".

11. Remove the last element of stack.
12. Set indent to stepback.
13. Return final.

The abstract operation SerializeJSONArray with argument value serializes an array. It has access to the stack, indent, and
gap values of the current invocation of the stringify method.

1. If stack contains value, throw a TypeError exception because the structure is cyclical.
2. Append value to stack.
3. Let stepback be indent.
4. Set indent to the string-concatenation of indent and gap.
5. Let partial be a new empty List.
6. Let len be ? ToLength(? Get(value, "length")).
7. Let index be 0.
8. Repeat, while index < len

a. Let strP be ? SerializeJSONProperty(! ToString(index), value).
b. If strP is undefined, then

i. Append "null" to partial.
c. Else,

i. Append strP to partial.
d. Increment index by 1.

9. If partial is empty, then
a. Let final be "[]".

10. Else,
a. If gap is the empty String, then

i. Let properties be the String value formed by concatenating all the element Strings of partial with each
adjacent pair of Strings separated with the code unit 0x002C (COMMA). A comma is not inserted either
before the first String or after the last String.

ii. Let final be the string-concatenation of "[", properties, and "]".
b. Else,

i. Let separator be the string-concatenation of the code unit 0x002C (COMMA), the code unit 0x000A
(LINE FEED), and indent.

ii. Let properties be the String value formed by concatenating all the element Strings of partial with each
adjacent pair of Strings separated with separator. The separator String is not inserted either before the
first String or after the last String.

iii. Let final be the string-concatenation of "[", the code unit 0x000A (LINE FEED), indent, properties,
the code unit 0x000A (LINE FEED), stepback, and "]".

11. Remove the last element of stack.
12. Set indent to stepback.
13. Return final.

NOTE
The representation of arrays includes only the elements between zero and array.length - 1 inclusive. Properties
whose keys are not array indexes are excluded from the stringification. An array is stringified as an opening LEFT
SQUARE BRACKET, elements separated by COMMA, and a closing RIGHT SQUARE BRACKET.

24.5.2.5 Runtime Semantics: SerializeJSONArray (value)

648

© Ecma International 2019

648

The initial value of the @@toStringTag property is the String value "JSON".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

An interface is a set of property keys whose associated values match a specific specification. Any object that provides all
the properties as described by an interface's specification conforms to that interface. An interface is not represented by a
distinct object. There may be many separately implemented objects that conform to any interface. An individual object
may conform to multiple interfaces.

The Iterable interface includes the property described in Table 63:

Table 63: Iterable Interface Required Properties

Property Value Requirements

@@iterator A function that returns an Iterator object. The returned object must conform to the Iterator interface.

An object that implements the Iterator interface must include the property in Table 64. Such objects may also implement
the properties in Table 65.

Table 64: Iterator Interface Required Properties

Property Value Requirements

next A function
that returns
an
IteratorResult
object.

The returned object must conform to the IteratorResult interface. If a previous call to the
next method of an Iterator has returned an IteratorResult object whose done property is
true, then all subsequent calls to the next method of that object should also return an
IteratorResult object whose done property is true. However, this requirement is not
enforced.

NOTE 1
Arguments may be passed to the next function but their interpretation and validity is dependent upon the target Iterator.

24.5.3 JSON [@@toStringTag]

25 Control Abstraction Objects

25.1 Iteration

25.1.1 Common Iteration Interfaces

25.1.1.1 The Iterable Interface

25.1.1.2 The Iterator Interface

© Ecma International 2019

649

The for-of statement and other common users of Iterators do not pass any arguments, so Iterator objects that expect to be
used in such a manner must be prepared to deal with being called with no arguments.

Table 65: Iterator Interface Optional Properties

Property Value Requirements

return A function
that returns
an
IteratorResult
object.

The returned object must conform to the IteratorResult interface. Invoking this method
notifies the Iterator object that the caller does not intend to make any more next method
calls to the Iterator. The returned IteratorResult object will typically have a done property
whose value is true, and a value property with the value passed as the argument of the
return method. However, this requirement is not enforced.

throw A function
that returns
an
IteratorResult
object.

The returned object must conform to the IteratorResult interface. Invoking this method
notifies the Iterator object that the caller has detected an error condition. The argument
may be used to identify the error condition and typically will be an exception object. A
typical response is to throw the value passed as the argument. If the method does not
throw, the returned IteratorResult object will typically have a done property whose value
is true.

NOTE 2
Typically callers of these methods should check for their existence before invoking them. Certain ECMAScript language
features including for-of, yield*, and array destructuring call these methods after performing an existence check.
Most ECMAScript library functions that accept Iterable objects as arguments also conditionally call them.

The AsyncIterable interface includes the properties described in Table 66:

Table 66: AsyncIterable Interface Required Properties

Property Value Requirements

@@asyncIterator A function that returns an
AsyncIterator object.

The returned object must conform to the
AsyncIterator interface.

An object that implements the AsyncIterator interface must include the properties in Table 67. Such objects may also
implement the properties in Table 68.

Table 67: AsyncIterator Interface Required Properties

Property Value Requirements

25.1.1.3 The AsyncIterable Interface

25.1.1.4 The AsyncIterator Interface

650

© Ecma International 2019

650

next A function
that returns a
promise for
an
IteratorResult
object.

The returned promise, when fulfilled, must fulfill with an object which conforms to the
IteratorResult interface. If a previous call to the next method of an AsyncIterator has
returned a promise for an IteratorResult object whose done property is true, then all
subsequent calls to the next method of that object should also return a promise for an
IteratorResult object whose done property is true. However, this requirement is not
enforced.

Additionally, the IteratorResult object that serves as a fulfillment value should have a
value property whose value is not a promise (or "thenable"). However, this requirement is
also not enforced.

NOTE 1
Arguments may be passed to the next function but their interpretation and validity is dependent upon the target
AsyncIterator. The for-await-of statement and other common users of AsyncIterators do not pass any arguments, so
AsyncIterator objects that expect to be used in such a manner must be prepared to deal with being called with no
arguments.

Table 68: AsyncIterator Interface Optional Properties

Property Value Requirements

return A function
that returns a
promise for
an
IteratorResult
object.

The returned promise, when fulfilled, must fulfill with an object which conforms to the
IteratorResult interface. Invoking this method notifies the AsyncIterator object that the
caller does not intend to make any more next method calls to the AsyncIterator. The
returned promise will fulfill with an IteratorResult object which will typically have a done
property whose value is true, and a value property with the value passed as the argument
of the return method. However, this requirement is not enforced.

Additionally, the IteratorResult object that serves as a fulfillment value should have a
value property whose value is not a promise (or "thenable"). If the argument value is used
in the typical manner, then if it is a rejected promise, a promise rejected with the same
reason should be returned; if it is a fulfilled promise, then its fulfillment value should be
used as the value property of the returned promise's IteratorResult object fulfillment
value. However, these requirements are also not enforced.

© Ecma International 2019

651

throw A function
that returns a
promise for
an
IteratorResult
object.

The returned promise, when fulfilled, must fulfill with an object which conforms to the
IteratorResult interface. Invoking this method notifies the AsyncIterator object that the
caller has detected an error condition. The argument may be used to identify the error
condition and typically will be an exception object. A typical response is to return a
rejected promise which rejects with the value passed as the argument.

If the returned promise is fulfilled, the IteratorResult fulfillment value will typically have a
done property whose value is true. Additionally, it should have a value property whose
value is not a promise (or "thenable"), but this requirement is not enforced.

NOTE 2
Typically callers of these methods should check for their existence before invoking them. Certain ECMAScript language
features including for-await-of and yield* call these methods after performing an existence check.

The IteratorResult interface includes the properties listed in Table 69:

Table 69: IteratorResult Interface Properties

Property Value Requirements

done Either true
or false.

This is the result status of an iterator next method call. If the end of the iterator was
reached done is true. If the end was not reached done is false and a value is available. If
a done property (either own or inherited) does not exist, it is consider to have the value
false.

value Any
ECMAScript
language
value.

If done is false, this is the current iteration element value. If done is true, this is the return
value of the iterator, if it supplied one. If the iterator does not have a return value, value is
undefined. In that case, the value property may be absent from the conforming object if it
does not inherit an explicit value property.

The %IteratorPrototype% object:

has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is an ordinary object.

NOTE
All objects defined in this specification that implement the Iterator interface also inherit from %IteratorPrototype%.
ECMAScript code may also define objects that inherit from %IteratorPrototype%.The %IteratorPrototype% object
provides a place where additional methods that are applicable to all iterator objects may be added.

The following expression is one way that ECMAScript code can access the %IteratorPrototype% object:

Object.getPrototypeOf(Object.getPrototypeOf([][Symbol.iterator]()))

25.1.1.5 The IteratorResult Interface

25.1.2 The %IteratorPrototype% Object

652

© Ecma International 2019

652

The following steps are taken:

1. Return the this value.

The value of the name property of this function is "[Symbol.iterator]".

The %AsyncIteratorPrototype% object:

has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is an ordinary object.

NOTE
All objects defined in this specification that implement the AsyncIterator interface also inherit from
%AsyncIteratorPrototype%. ECMAScript code may also define objects that inherit from %AsyncIteratorPrototype%.The
%AsyncIteratorPrototype% object provides a place where additional methods that are applicable to all async iterator
objects may be added.

The following steps are taken:

1. Return the this value.

The value of the name property of this function is "[Symbol.asyncIterator]".

An Async-from-Sync Iterator object is an async iterator that adapts a specific synchronous iterator. There is not a named
constructor for Async-from-Sync Iterator objects. Instead, Async-from-Sync iterator objects are created by the
CreateAsyncFromSyncIterator abstract operation as needed.

The abstract operation CreateAsyncFromSyncIterator is used to create an async iterator Record from a synchronous
iterator Record. It performs the following steps:

1. Let asyncIterator be ! ObjectCreate(%AsyncFromSyncIteratorPrototype%, « [[SyncIteratorRecord]] »).
2. Set asyncIterator.[[SyncIteratorRecord]] to syncIteratorRecord.
3. Return ? GetIterator(asyncIterator, async).

The %AsyncFromSyncIteratorPrototype% object:

25.1.2.1 %IteratorPrototype% [@@iterator] ()

25.1.3 The %AsyncIteratorPrototype% Object

25.1.3.1 %AsyncIteratorPrototype% [@@asyncIterator] ()

25.1.4 Async-from-Sync Iterator Objects

25.1.4.1 CreateAsyncFromSyncIterator (syncIteratorRecord)

25.1.4.2 The %AsyncFromSyncIteratorPrototype% Object

© Ecma International 2019

653

has properties that are inherited by all Async-from-Sync Iterator Objects.
is an ordinary object.
has a [[Prototype]] internal slot whose value is the intrinsic object %AsyncIteratorPrototype%.
has the following properties:

1. Let O be the this value.
2. Let promiseCapability be ! NewPromiseCapability(%Promise%).
3. If Type(O) is not Object, or if O does not have a [[SyncIteratorRecord]] internal slot, then

a. Let invalidIteratorError be a newly created TypeError object.
b. Perform ! Call(promiseCapability.[[Reject]], undefined, « invalidIteratorError »).
c. Return promiseCapability.[[Promise]].

4. Let syncIteratorRecord be O.[[SyncIteratorRecord]].
5. Let result be IteratorNext(syncIteratorRecord, value).
6. IfAbruptRejectPromise(result, promiseCapability).
7. Return ! AsyncFromSyncIteratorContinuation(result, promiseCapability).

1. Let O be the this value.
2. Let promiseCapability be ! NewPromiseCapability(%Promise%).
3. If Type(O) is not Object, or if O does not have a [[SyncIteratorRecord]] internal slot, then

a. Let invalidIteratorError be a newly created TypeError object.
b. Perform ! Call(promiseCapability.[[Reject]], undefined, « invalidIteratorError »).
c. Return promiseCapability.[[Promise]].

4. Let syncIterator be O.[[SyncIteratorRecord]].[[Iterator]].
5. Let return be GetMethod(syncIterator, "return").
6. IfAbruptRejectPromise(return, promiseCapability).
7. If return is undefined, then

a. Let iterResult be ! CreateIterResultObject(value, true).
b. Perform ! Call(promiseCapability.[[Resolve]], undefined, « iterResult »).
c. Return promiseCapability.[[Promise]].

8. Let result be Call(return, syncIterator, « value »).
9. IfAbruptRejectPromise(result, promiseCapability).

10. If Type(result) is not Object, then
a. Perform ! Call(promiseCapability.[[Reject]], undefined, « a newly created TypeError object »).
b. Return promiseCapability.[[Promise]].

11. Return ! AsyncFromSyncIteratorContinuation(result, promiseCapability).

1. Let O be the this value.
2. Let promiseCapability be ! NewPromiseCapability(%Promise%).
3. If Type(O) is not Object, or if O does not have a [[SyncIteratorRecord]] internal slot, then

a. Let invalidIteratorError be a newly created TypeError object.
b. Perform ! Call(promiseCapability.[[Reject]], undefined, « invalidIteratorError »).
c. Return promiseCapability.[[Promise]].

4. Let syncIterator be O.[[SyncIteratorRecord]].[[Iterator]].

25.1.4.2.1 %AsyncFromSyncIteratorPrototype%.next (value)

25.1.4.2.2 %AsyncFromSyncIteratorPrototype%.return (value)

25.1.4.2.3 %AsyncFromSyncIteratorPrototype%.throw (value)

654

© Ecma International 2019

654

5. Let throw be GetMethod(syncIterator, "throw").
6. IfAbruptRejectPromise(throw, promiseCapability).
7. If throw is undefined, then

a. Perform ! Call(promiseCapability.[[Reject]], undefined, « value »).
b. Return promiseCapability.[[Promise]].

8. Let result be Call(throw, syncIterator, « value »).
9. IfAbruptRejectPromise(result, promiseCapability).

10. If Type(result) is not Object, then
a. Perform ! Call(promiseCapability.[[Reject]], undefined, « a newly created TypeError object »).
b. Return promiseCapability.[[Promise]].

11. Return ! AsyncFromSyncIteratorContinuation(result, promiseCapability).

The initial value of the @@toStringTag property is the String value "Async-from-Sync Iterator".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

An async-from-sync iterator value unwrap function is an anonymous built-in function that is used by methods of
%AsyncFromSyncIteratorPrototype% when processing the value field of an IteratorResult object, in order to wait for
its value if it is a promise and re-package the result in a new "unwrapped" IteratorResult object. Each async iterator value
unwrap function has a [[Done]] internal slot.

When an async-from-sync iterator value unwrap function is called with argument value, the following steps are taken:

1. Let F be the active function object.
2. Return ! CreateIterResultObject(value, F.[[Done]]).

Async-from-Sync Iterator instances are ordinary objects that inherit properties from the
%AsyncFromSyncIteratorPrototype% intrinsic object. Async-from-Sync Iterator instances are initially created with the
internal slots listed in Table 70.

Table 70: Internal Slots of Async-from-Sync Iterator Instances

Internal Slot Description

[[SyncIteratorRecord]] A Record, of the type returned by GetIterator, representing the original synchronous iterator
which is being adapted.

1. Let done be IteratorComplete(result).
2. IfAbruptRejectPromise(done, promiseCapability).
3. Let value be IteratorValue(result).
4. IfAbruptRejectPromise(value, promiseCapability).
5. Let valueWrapper be ? PromiseResolve(%Promise%, « value »).
6. Let steps be the algorithm steps defined in Async-from-Sync Iterator Value Unwrap Functions.

25.1.4.2.4 %AsyncFromSyncIteratorPrototype% [@@toStringTag]

25.1.4.2.5 Async-from-Sync Iterator Value Unwrap Functions

25.1.4.3 Properties of Async-from-Sync Iterator Instances

25.1.4.4 AsyncFromSyncIteratorContinuation (result, promiseCapability)

© Ecma International 2019

655

7. Let onFulfilled be CreateBuiltinFunction(steps, « [[Done]] »).
8. Set onFulfilled.[[Done]] to done.
9. Perform ! PerformPromiseThen(valueWrapper, onFulfilled, undefined, promiseCapability).

10. Return promiseCapability.[[Promise]].

GeneratorFunction objects are functions that are usually created by evaluating GeneratorDeclarations,
GeneratorExpressions, and GeneratorMethods. They may also be created by calling the %GeneratorFunction% intrinsic.

Figure 5 (Informative): Generator Objects Relationships

The GeneratorFunction constructor:

is the intrinsic object %GeneratorFunction%.
creates and initializes a new GeneratorFunction object when called as a function rather than as a constructor. Thus
the function call GeneratorFunction (…) is equivalent to the object creation expression
new GeneratorFunction (…) with the same arguments.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified GeneratorFunction behaviour must include a super call to
the GeneratorFunction constructor to create and initialize subclass instances with the internal slots necessary
for built-in GeneratorFunction behaviour. All ECMAScript syntactic forms for defining generator function objects
create direct instances of GeneratorFunction. There is no syntactic means to create instances of
GeneratorFunction subclasses.

The last argument specifies the body (executable code) of a generator function; any preceding arguments specify formal
parameters.

When the GeneratorFunction function is called with some arguments p1, p2, … , pn, body (where n might be 0,
that is, there are no “p” arguments, and where body might also not be provided), the following steps are taken:

1. Let C be the active function object.
2. Let args be the argumentsList that was passed to this function by [[Call]] or [[Construct]].
3. Return ? CreateDynamicFunction(C, NewTarget, "generator", args).

NOTE
See NOTE for 19.2.1.1.

The GeneratorFunction constructor:

25.2 GeneratorFunction Objects

25.2.1 The GeneratorFunction Constructor

25.2.1.1 GeneratorFunction (p1, p2, … , pn, body)

25.2.2 Properties of the GeneratorFunction Constructor

656

© Ecma International 2019

656

is a standard built-in function object that inherits from the Function constructor.
has a [[Prototype]] internal slot whose value is the intrinsic object %Function%.
has a name property whose value is "GeneratorFunction".
has the following properties:

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: true }.

The initial value of GeneratorFunction.prototype is the intrinsic object %Generator%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The GeneratorFunction prototype object:

is an ordinary object.
is not a function object and does not have an [[ECMAScriptCode]] internal slot or any other of the internal slots
listed in Table 27 or Table 71.
is the value of the prototype property of the intrinsic object %GeneratorFunction%.
is the intrinsic object %Generator% (see Figure 2).
has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.

The initial value of GeneratorFunction.prototype.constructor is the intrinsic object
%GeneratorFunction%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

The value of GeneratorFunction.prototype.prototype is the %GeneratorPrototype% intrinsic object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

The initial value of the @@toStringTag property is the String value "GeneratorFunction".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Every GeneratorFunction instance is an ECMAScript function object and has the internal slots listed in Table 27. The
value of the [[FunctionKind]] internal slot for all such instances is "generator".

25.2.2.1 GeneratorFunction.length

25.2.2.2 GeneratorFunction.prototype

25.2.3 Properties of the GeneratorFunction Prototype Object

25.2.3.1 GeneratorFunction.prototype.constructor

25.2.3.2 GeneratorFunction.prototype.prototype

25.2.3.3 GeneratorFunction.prototype [@@toStringTag]

25.2.4 GeneratorFunction Instances

© Ecma International 2019

657

Each GeneratorFunction instance has the following own properties:

The specification for the "length" property of Function instances given in 19.2.4.1 also applies to GeneratorFunction
instances.

The specification for the name property of Function instances given in 19.2.4.2 also applies to GeneratorFunction
instances.

Whenever a GeneratorFunction instance is created another ordinary object is also created and is the initial value of the
generator function's prototype property. The value of the prototype property is used to initialize the [[Prototype]]
internal slot of a newly created Generator object when the generator function object is invoked using [[Call]].

This property has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE
Unlike Function instances, the object that is the value of the a GeneratorFunction's prototype property does not have
a constructor property whose value is the GeneratorFunction instance.

AsyncGeneratorFunction objects are functions that are usually created by evaluating AsyncGeneratorDeclaration,
AsyncGeneratorExpression, and AsyncGeneratorMethod syntactic productions. They may also be created by calling the
%AsyncGeneratorFunction% intrinsic.

The AsyncGeneratorFunction constructor:

is the intrinsic object %AsyncGeneratorFunction%.
creates and initializes a new AsyncGeneratorFunction object when called as a function rather than as a constructor.
Thus the function call AsyncGeneratorFunction (...) is equivalent to the object creation expression
new AsyncGeneratorFunction (...) with the same arguments.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified AsyncGeneratorFunction behaviour must include a super
call to the AsyncGeneratorFunction constructor to create and initialize subclass instances with the internal
slots necessary for built-in AsyncGeneratorFunction behaviour. All ECMAScript syntactic forms for defining async
generator function objects create direct instances of AsyncGeneratorFunction. There is no syntactic means
to create instances of AsyncGeneratorFunction subclasses.

25.2.4.1 length

25.2.4.2 name

25.2.4.3 prototype

25.3 AsyncGeneratorFunction Objects

25.3.1 The AsyncGeneratorFunction Constructor

25.3.1.1 AsyncGeneratorFunction (p1, p2, ..., pn, body)

658

© Ecma International 2019

658

The last argument specifies the body (executable code) of an async generator function; any preceding arguments specify
formal parameters.

When the AsyncGeneratorFunction function is called with some arguments p1, p2, … , pn, body (where n might
be 0, that is, there are no "p" arguments, and where body might also not be provided), the following steps are taken:

1. Let C be the active function object.
2. Let args be the argumentsList that was passed to this function by [[Call]] or [[Construct]].
3. Return ? CreateDynamicFunction(C, NewTarget, "async generator", args).

NOTE
See NOTE for 19.2.1.1.

The AsyncGeneratorFunction constructor:

is a standard built-in function object that inherits from the Function constructor.
has a [[Prototype]] internal slot whose value is the intrinsic object %Function%.
has a name property whose value is "AsyncGeneratorFunction".
has the following properties:

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: true }.

The initial value of AsyncGeneratorFunction.prototype is the intrinsic object %AsyncGenerator%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The AsyncGeneratorFunction prototype object:

is an ordinary object.
is not a function object and does not have an [[ECMAScriptCode]] internal slot or any other of the internal slots
listed in Table 27 or Table 72.
is the value of the prototype property of the intrinsic object %AsyncGeneratorFunction%.
is the intrinsic object %AsyncGenerator%.
has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.

The initial value of AsyncGeneratorFunction.prototype.constructor is the intrinsic object
%AsyncGeneratorFunction%.

25.3.2 Properties of the AsyncGeneratorFunction Constructor

25.3.2.1 AsyncGeneratorFunction.length

25.3.2.2 AsyncGeneratorFunction.prototype

25.3.3 Properties of the AsyncGeneratorFunction Prototype Object

25.3.3.1 AsyncGeneratorFunction.prototype.constructor

© Ecma International 2019

659

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

The value of AsyncGeneratorFunction.prototype.prototype is the %AsyncGeneratorPrototype%
intrinsic object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

The initial value of the @@toStringTag property is the String value "AsyncGeneratorFunction".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Every AsyncGeneratorFunction instance is an ECMAScript function object and has the internal slots listed in Table 27.
The value of the [[FunctionKind]] internal slot for all such instances is "generator".

Each AsyncGeneratorFunction instance has the following own properties:

The value of the "length" property is an integer that indicates the typical number of arguments expected by the
AsyncGeneratorFunction. However, the language permits the function to be invoked with some other number of
arguments. The behaviour of an AsyncGeneratorFunction when invoked on a number of arguments other than the
number specified by its "length" property depends on the function.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

The specification for the name property of Function instances given in 19.2.4.2 also applies to AsyncGeneratorFunction
instances.

Whenever an AsyncGeneratorFunction instance is created another ordinary object is also created and is the initial value
of the async generator function's prototype property. The value of the prototype property is used to initialize the
[[Prototype]] internal slot of a newly created AsyncGenerator object when the generator function object is invoked using
[[Call]].

This property has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE
Unlike function instances, the object that is the value of the an AsyncGeneratorFunction's prototype property does
not have a constructor property whose value is the AsyncGeneratorFunction instance.

25.3.3.2 AsyncGeneratorFunction.prototype.prototype

25.3.3.3 AsyncGeneratorFunction.prototype [@@toStringTag]

25.3.4 AsyncGeneratorFunction Instances

25.3.4.1 length

25.3.4.2 name

25.3.4.3 prototype

25.4 Generator Objects

660

© Ecma International 2019

660

A Generator object is an instance of a generator function and conforms to both the Iterator and Iterable interfaces.

Generator instances directly inherit properties from the object that is the value of the prototype property of the
Generator function that created the instance. Generator instances indirectly inherit properties from the Generator
Prototype intrinsic, %GeneratorPrototype%.

The Generator prototype object:

is the intrinsic object %GeneratorPrototype%.
is the initial value of the prototype property of the intrinsic object %Generator% (the
GeneratorFunction.prototype).
is an ordinary object.
is not a Generator instance and does not have a [[GeneratorState]] internal slot.
has a [[Prototype]] internal slot whose value is the intrinsic object %IteratorPrototype%.
has properties that are indirectly inherited by all Generator instances.

The initial value of Generator.prototype.constructor is the intrinsic object %Generator%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

The next method performs the following steps:

1. Let g be the this value.
2. Return ? GeneratorResume(g, value).

The return method performs the following steps:

1. Let g be the this value.
2. Let C be Completion { [[Type]]: return, [[Value]]: value, [[Target]]: empty }.
3. Return ? GeneratorResumeAbrupt(g, C).

The throw method performs the following steps:

1. Let g be the this value.
2. Let C be ThrowCompletion(exception).
3. Return ? GeneratorResumeAbrupt(g, C).

25.4 Generator Objects

25.4.1 Properties of the Generator Prototype Object

25.4.1.1 Generator.prototype.constructor

25.4.1.2 Generator.prototype.next (value)

25.4.1.3 Generator.prototype.return (value)

25.4.1.4 Generator.prototype.throw (exception)

25.4.1.5 Generator.prototype [@@toStringTag]

© Ecma International 2019

661

The initial value of the @@toStringTag property is the String value "Generator".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Generator instances are initially created with the internal slots described in Table 71.

Table 71: Internal Slots of Generator Instances

Internal Slot Description

[[GeneratorState]] The current execution state of the generator. The possible values are: undefined,
"suspendedStart", "suspendedYield", "executing", and "completed".

[[GeneratorContext]] The execution context that is used when executing the code of this generator.

The abstract operation GeneratorStart with arguments generator and generatorBody performs the following steps:

1. Assert: The value of generator.[[GeneratorState]] is undefined.
2. Let genContext be the running execution context.
3. Set the Generator component of genContext to generator.
4. Set the code evaluation state of genContext such that when evaluation is resumed for that execution context the

following steps will be performed:
a. Let result be the result of evaluating generatorBody.
b. Assert: If we return here, the generator either threw an exception or performed either an implicit or explicit

return.
c. Remove genContext from the execution context stack and restore the execution context that is at the top of the

execution context stack as the running execution context.
d. Set generator.[[GeneratorState]] to "completed".
e. Once a generator enters the "completed" state it never leaves it and its associated execution context is

never resumed. Any execution state associated with generator can be discarded at this point.
f. If result.[[Type]] is normal, let resultValue be undefined.
g. Else if result.[[Type]] is return, let resultValue be result.[[Value]].
h. Else,

i. Assert: result.[[Type]] is throw.
ii. Return Completion(result).

i. Return CreateIterResultObject(resultValue, true).
5. Set generator.[[GeneratorContext]] to genContext.
6. Set generator.[[GeneratorState]] to "suspendedStart".
7. Return NormalCompletion(undefined).

The abstract operation GeneratorValidate with argument generator performs the following steps:

25.4.2 Properties of Generator Instances

25.4.3 Generator Abstract Operations

25.4.3.1 GeneratorStart (generator, generatorBody)

25.4.3.2 GeneratorValidate (generator)

662

© Ecma International 2019

662

1. If Type(generator) is not Object, throw a TypeError exception.
2. If generator does not have a [[GeneratorState]] internal slot, throw a TypeError exception.
3. Assert: generator also has a [[GeneratorContext]] internal slot.
4. Let state be generator.[[GeneratorState]].
5. If state is "executing", throw a TypeError exception.
6. Return state.

The abstract operation GeneratorResume with arguments generator and value performs the following steps:

1. Let state be ? GeneratorValidate(generator).
2. If state is "completed", return CreateIterResultObject(undefined, true).
3. Assert: state is either "suspendedStart" or "suspendedYield".
4. Let genContext be generator.[[GeneratorContext]].
5. Let methodContext be the running execution context.
6. Suspend methodContext.
7. Set generator.[[GeneratorState]] to "executing".
8. Push genContext onto the execution context stack; genContext is now the running execution context.
9. Resume the suspended evaluation of genContext using NormalCompletion(value) as the result of the operation that

suspended it. Let result be the value returned by the resumed computation.
10. Assert: When we return here, genContext has already been removed from the execution context stack and

methodContext is the currently running execution context.
11. Return Completion(result).

The abstract operation GeneratorResumeAbrupt with arguments generator and abruptCompletion performs the following
steps:

1. Let state be ? GeneratorValidate(generator).
2. If state is "suspendedStart", then

a. Set generator.[[GeneratorState]] to "completed".
b. Once a generator enters the "completed" state it never leaves it and its associated execution context is

never resumed. Any execution state associated with generator can be discarded at this point.
c. Set state to "completed".

3. If state is "completed", then
a. If abruptCompletion.[[Type]] is return, then

i. Return CreateIterResultObject(abruptCompletion.[[Value]], true).
b. Return Completion(abruptCompletion).

4. Assert: state is "suspendedYield".
5. Let genContext be generator.[[GeneratorContext]].
6. Let methodContext be the running execution context.
7. Suspend methodContext.
8. Set generator.[[GeneratorState]] to "executing".
9. Push genContext onto the execution context stack; genContext is now the running execution context.

10. Resume the suspended evaluation of genContext using abruptCompletion as the result of the operation that
suspended it. Let result be the completion record returned by the resumed computation.

11. Assert: When we return here, genContext has already been removed from the execution context stack and

25.4.3.3 GeneratorResume (generator, value)

25.4.3.4 GeneratorResumeAbrupt (generator, abruptCompletion)

© Ecma International 2019

663

methodContext is the currently running execution context.
12. Return Completion(result).

1. Let genContext be the running execution context.
2. If genContext does not have a Generator component, return non-generator.
3. Let generator be the Generator component of genContext.
4. If generator has an [[AsyncGeneratorState]] internal slot, return async.
5. Else, return sync.

The abstract operation GeneratorYield with argument iterNextObj performs the following steps:

1. Assert: iterNextObj is an Object that implements the IteratorResult interface.
2. Let genContext be the running execution context.
3. Assert: genContext is the execution context of a generator.
4. Let generator be the value of the Generator component of genContext.
5. Assert: GetGeneratorKind() is sync.
6. Set generator.[[GeneratorState]] to "suspendedYield".
7. Remove genContext from the execution context stack and restore the execution context that is at the top of the

execution context stack as the running execution context.
8. Set the code evaluation state of genContext such that when evaluation is resumed with a Completion

resumptionValue the following steps will be performed:
a. Return resumptionValue.
b. NOTE: This returns to the evaluation of the YieldExpression that originally called this abstract operation.

9. Return NormalCompletion(iterNextObj).
10. NOTE: This returns to the evaluation of the operation that had most previously resumed evaluation of genContext.

An AsyncGenerator object is an instance of an async generator function and conforms to both the AsyncIterator and
AsyncIterable interfaces.

AsyncGenerator instances directly inherit properties from the object that is the value of the prototype property of the
AsyncGenerator function that created the instance. AsyncGenerator instances indirectly inherit properties from the
AsyncGenerator Prototype intrinsic, %AsyncGeneratorPrototype%.

The AsyncGenerator prototype object:

is the intrinsic object %AsyncGeneratorPrototype%.
is the initial value of the prototype property of the intrinsic object %AsyncGenerator% (the
AsyncGeneratorFunction.prototype).
is an ordinary object.
is not an AsyncGenerator instance and does not have an [[AsyncGeneratorState]] internal slot.
has a [[Prototype]] internal slot whose value is the intrinsic object %AsyncIteratorPrototype%.

25.4.3.5 GetGeneratorKind ()

25.4.3.6 GeneratorYield (iterNextObj)

25.5 AsyncGenerator Objects

25.5.1 Properties of the AsyncGenerator Prototype Object

664

© Ecma International 2019

664

has properties that are indirectly inherited by all AsyncGenerator instances.

The initial value of AsyncGenerator.prototype.constructor is the intrinsic object %AsyncGenerator%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

1. Let generator be the this value.
2. Let completion be NormalCompletion(value).
3. Return ! AsyncGeneratorEnqueue(generator, completion).

1. Let generator be the this value.
2. Let completion be Completion { [[Type]]: return, [[Value]]: value, [[Target]]: empty }.
3. Return ! AsyncGeneratorEnqueue(generator, completion).

1. Let generator be the this value.
2. Let completion be ThrowCompletion(exception).
3. Return ! AsyncGeneratorEnqueue(generator, completion).

The initial value of the @@toStringTag property is the String value "AsyncGenerator".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

AsyncGenerator instances are initially created with the internal slots described below:

Table 72: Internal Slots of AsyncGenerator Instances

Internal Slot Description

[[AsyncGeneratorState]] The current execution state of the async generator. The possible values are: undefined,
"suspendedStart", "suspendedYield", "executing",
"awaiting-return", and "completed".

[[AsyncGeneratorContext]] The execution context that is used when executing the code of this async generator.

[[AsyncGeneratorQueue]] A List of AsyncGeneratorRequest records which represent requests to resume the async
generator.

25.5.1.1 AsyncGenerator.prototype.constructor

25.5.1.2 AsyncGenerator.prototype.next (value)

25.5.1.3 AsyncGenerator.prototype.return (value)

25.5.1.4 AsyncGenerator.prototype.throw (exception)

25.5.1.5 AsyncGenerator.prototype [@@toStringTag]

25.5.2 Properties of AsyncGenerator Instances

25.5.3 AsyncGenerator Abstract Operations

© Ecma International 2019

665

The AsyncGeneratorRequest is a Record value used to store information about how an async generator should be
resumed and contains capabilities for fulfilling or rejecting the corresponding promise.

They have the following fields:

Table 73: AsyncGeneratorRequest Record Fields

Field Name Value Meaning

[[Completion]] A Completion record The completion which should be used to resume the async generator.

[[Capability]] A PromiseCapability record The promise capabilities associated with this request.

1. Assert: generator is an AsyncGenerator instance.
2. Assert: generator.[[AsyncGeneratorState]] is undefined.
3. Let genContext be the running execution context.
4. Set the Generator component of genContext to generator.
5. Set the code evaluation state of genContext such that when evaluation is resumed for that execution context the

following steps will be performed:
a. Let result be the result of evaluating generatorBody.
b. Assert: If we return here, the async generator either threw an exception or performed either an implicit or

explicit return.
c. Remove genContext from the execution context stack and restore the execution context that is at the top of the

execution context stack as the running execution context.
d. Set generator.[[AsyncGeneratorState]] to "completed".
e. If result is a normal completion, let resultValue be undefined.
f. Else,

i. Let resultValue be result.[[Value]].
ii. If result.[[Type]] is not return, then

1. Return ! AsyncGeneratorReject(generator, resultValue).
g. Return ! AsyncGeneratorResolve(generator, resultValue, true).

6. Set generator.[[AsyncGeneratorContext]] to genContext.
7. Set generator.[[AsyncGeneratorState]] to "suspendedStart".
8. Set generator.[[AsyncGeneratorQueue]] to a new empty List.
9. Return undefined.

1. Assert: generator is an AsyncGenerator instance.
2. Let queue be generator.[[AsyncGeneratorQueue]].
3. Assert: queue is not an empty List.
4. Remove the first element from queue and let next be the value of that element.
5. Let promiseCapability be next.[[Capability]].
6. Let iteratorResult be ! CreateIterResultObject(value, done).
7. Perform ! Call(promiseCapability.[[Resolve]], undefined, « iteratorResult »).
8. Perform ! AsyncGeneratorResumeNext(generator).

25.5.3.1 AsyncGeneratorRequest Records

25.5.3.2 AsyncGeneratorStart (generator, generatorBody)

25.5.3.3 AsyncGeneratorResolve (generator, value, done)

666

© Ecma International 2019

666

9. Return undefined.

1. Assert: generator is an AsyncGenerator instance.
2. Let queue be generator.[[AsyncGeneratorQueue]].
3. Assert: queue is not an empty List.
4. Remove the first element from queue and let next be the value of that element.
5. Let promiseCapability be next.[[Capability]].
6. Perform ! Call(promiseCapability.[[Reject]], undefined, « exception »).
7. Perform ! AsyncGeneratorResumeNext(generator).
8. Return undefined.

1. Assert: generator is an AsyncGenerator instance.
2. Let state be generator.[[AsyncGeneratorState]].
3. Assert: state is not "executing".
4. If state is "awaiting-return", return undefined.
5. Let queue be generator.[[AsyncGeneratorQueue]].
6. If queue is an empty List, return undefined.
7. Let next be the value of the first element of queue.
8. Assert: next is an AsyncGeneratorRequest record.
9. Let completion be next.[[Completion]].

10. If completion is an abrupt completion, then
a. If state is "suspendedStart", then

i. Set generator.[[AsyncGeneratorState]] to "completed".
ii. Set state to "completed".

b. If state is "completed", then
i. If completion.[[Type]] is return, then

1. Set generator.[[AsyncGeneratorState]] to "awaiting-return".
2. Let promise be ? PromiseResolve(%Promise%, « completion.[[Value]] »).
3. Let stepsFulfilled be the algorithm steps defined in AsyncGeneratorResumeNext Return Processor

Fulfilled Functions.
4. Let onFulfilled be CreateBuiltinFunction(stepsFulfilled, « [[Generator]] »).
5. Set onFulfilled.[[Generator]] to generator.
6. Let stepsRejected be the algorithm steps defined in AsyncGeneratorResumeNext Return Processor

Rejected Functions.
7. Let onRejected be CreateBuiltinFunction(stepsRejected, « [[Generator]] »).
8. Set onRejected.[[Generator]] to generator.
9. Perform ! PerformPromiseThen(promise, onFulfilled, onRejected).

10. Return undefined.
ii. Else,

1. Assert: completion.[[Type]] is throw.
2. Perform ! AsyncGeneratorReject(generator, completion.[[Value]]).
3. Return undefined.

11. Else if state is "completed", return ! AsyncGeneratorResolve(generator, undefined, true).
12. Assert: state is either "suspendedStart" or "suspendedYield".

25.5.3.4 AsyncGeneratorReject (generator, exception)

25.5.3.5 AsyncGeneratorResumeNext (generator)

© Ecma International 2019

667

13. Let genContext be generator.[[AsyncGeneratorContext]].
14. Let callerContext be the running execution context.
15. Suspend callerContext.
16. Set generator.[[AsyncGeneratorState]] to "executing".
17. Push genContext onto the execution context stack; genContext is now the running execution context.
18. Resume the suspended evaluation of genContext using completion as the result of the operation that suspended it.

Let result be the completion record returned by the resumed computation.
19. Assert: result is never an abrupt completion.
20. Assert: When we return here, genContext has already been removed from the execution context stack and

callerContext is the currently running execution context.
21. Return undefined.

An AsyncGeneratorResumeNext return processor fulfilled function is an anonymous built-in function that is used as part
of the AsyncGeneratorResumeNext specification device to unwrap promises passed in to the
AsyncGenerator.prototype.return (value) method. Each AsyncGeneratorResumeNext return processor fulfilled function
has a [[Generator]] internal slot.

When an AsyncGeneratorResumeNext return processor fulfilled function is called with argument value, the following
steps are taken:

1. Let F be the active function object.
2. Set F.[[Generator]].[[AsyncGeneratorState]] to "completed".
3. Return ! AsyncGeneratorResolve(F.[[Generator]], value, true).

The "length" property of an AsyncGeneratorResumeNext return processor fulfilled function is 1.

An AsyncGeneratorResumeNext return processor rejected function is an anonymous built-in function that is used as part
of the AsyncGeneratorResumeNext specification device to unwrap promises passed in to the
AsyncGenerator.prototype.return (value) method. Each AsyncGeneratorResumeNext return processor rejected function
has a [[Generator]] internal slot.

When an AsyncGeneratorResumeNext return processor rejected function is called with argument reason, the following
steps are taken:

1. Let F be the active function object.
2. Set F.[[Generator]].[[AsyncGeneratorState]] to "completed".
3. Return ! AsyncGeneratorReject(F.[[Generator]], reason).

The "length" property of an AsyncGeneratorResumeNext return processor rejected function is 1.

1. Assert: completion is a Completion Record.
2. Let promiseCapability be ! NewPromiseCapability(%Promise%).
3. If Type(generator) is not Object, or if generator does not have an [[AsyncGeneratorState]] internal slot, then

a. Let badGeneratorError be a newly created TypeError object.
b. Perform ! Call(promiseCapability.[[Reject]], undefined, « badGeneratorError »).

25.5.3.5.1 AsyncGeneratorResumeNext Return Processor Fulfilled Functions

25.5.3.5.2 AsyncGeneratorResumeNext Return Processor Rejected Functions

25.5.3.6 AsyncGeneratorEnqueue (generator, completion)

668

© Ecma International 2019

668

c. Return promiseCapability.[[Promise]].
4. Let queue be generator.[[AsyncGeneratorQueue]].
5. Let request be AsyncGeneratorRequest { [[Completion]]: completion, [[Capability]]: promiseCapability }.
6. Append request to the end of queue.
7. Let state be generator.[[AsyncGeneratorState]].
8. If state is not "executing", then

a. Perform ! AsyncGeneratorResumeNext(generator).
9. Return promiseCapability.[[Promise]].

The abstract operation AsyncGeneratorYield with argument value performs the following steps:

1. Let genContext be the running execution context.
2. Assert: genContext is the execution context of a generator.
3. Let generator be the value of the Generator component of genContext.
4. Assert: GetGeneratorKind() is async.
5. Set value to ? Await(value).
6. Set generator.[[AsyncGeneratorState]] to "suspendedYield".
7. Remove genContext from the execution context stack and restore the execution context that is at the top of the

execution context stack as the running execution context.
8. Set the code evaluation state of genContext such that when evaluation is resumed with a Completion

resumptionValue the following steps will be performed:
a. If resumptionValue.[[Type]] is not return, return Completion(resumptionValue).
b. Let awaited be Await(resumptionValue.[[Value]]).
c. If awaited.[[Type]] is throw, return Completion(awaited).
d. Assert: awaited.[[Type]] is normal.
e. Return Completion { [[Type]]: return, [[Value]]: awaited.[[Value]], [[Target]]: empty }.
f. NOTE: When one of the above steps returns, it returns to the evaluation of the YieldExpression production

that originally called this abstract operation.
9. Return ! AsyncGeneratorResolve(generator, value, false).

10. NOTE: This returns to the evaluation of the operation that had most previously resumed evaluation of genContext.

A Promise is an object that is used as a placeholder for the eventual results of a deferred (and possibly asynchronous)
computation.

Any Promise object is in one of three mutually exclusive states: fulfilled, rejected, and pending:

A promise p is fulfilled if p.then(f, r) will immediately enqueue a Job to call the function f.
A promise p is rejected if p.then(f, r) will immediately enqueue a Job to call the function r.
A promise is pending if it is neither fulfilled nor rejected.

A promise is said to be settled if it is not pending, i.e. if it is either fulfilled or rejected.

A promise is resolved if it is settled or if it has been “locked in” to match the state of another promise. Attempting to
resolve or reject a resolved promise has no effect. A promise is unresolved if it is not resolved. An unresolved promise is
always in the pending state. A resolved promise may be pending, fulfilled or rejected.

25.5.3.7 AsyncGeneratorYield (value)

25.6 Promise Objects

25.6.1 Promise Abstract Operations

© Ecma International 2019

669

A PromiseCapability is a Record value used to encapsulate a promise object along with the functions that are capable of
resolving or rejecting that promise object. PromiseCapability Records are produced by the NewPromiseCapability
abstract operation.

PromiseCapability Records have the fields listed in Table 74.

Table 74: PromiseCapability Record Fields

Field Name Value Meaning

[[Promise]] An object An object that is usable as a promise.

[[Resolve]] A function object The function that is used to resolve the given promise object.

[[Reject]] A function object The function that is used to reject the given promise object.

IfAbruptRejectPromise is a shorthand for a sequence of algorithm steps that use a PromiseCapability Record. An
algorithm step of the form:

1. IfAbruptRejectPromise(value, capability).

means the same thing as:

1. If value is an abrupt completion, then
a. Perform ? Call(capability.[[Reject]], undefined, « value.[[Value]] »).
b. Return capability.[[Promise]].

2. Else if value is a Completion Record, set value to value.[[Value]].

The PromiseReaction is a Record value used to store information about how a promise should react when it becomes
resolved or rejected with a given value. PromiseReaction records are created by the PerformPromiseThen abstract
operation, and are used by a PromiseReactionJob.

PromiseReaction records have the fields listed in Table 75.

Table 75: PromiseReaction Record Fields

Field Name Value Meaning

[[Capability]] A
PromiseCapability
Record, or
undefined

The capabilities of the promise for which this record provides a reaction handler.

[[Type]] Either
"Fulfill" or
"Reject".

The [[Type]] is used when [[Handler]] is undefined to allow for behaviour specific
to the settlement type.

25.6.1 Promise Abstract Operations

25.6.1.1 PromiseCapability Records

25.6.1.1.1 IfAbruptRejectPromise (value, capability)

25.6.1.2 PromiseReaction Records

670

© Ecma International 2019

670

[[Handler]] A function object
or undefined.

The function that should be applied to the incoming value, and whose return value
will govern what happens to the derived promise. If [[Handler]] is undefined, a
function that depends on the value of [[Type]] will be used instead.

When CreateResolvingFunctions is performed with argument promise, the following steps are taken:

1. Let alreadyResolved be a new Record { [[Value]]: false }.
2. Let stepsResolve be the algorithm steps defined in Promise Resolve Functions (25.6.1.3.2).
3. Let resolve be CreateBuiltinFunction(stepsResolve, « [[Promise]], [[AlreadyResolved]] »).
4. Set resolve.[[Promise]] to promise.
5. Set resolve.[[AlreadyResolved]] to alreadyResolved.
6. Let stepsReject be the algorithm steps defined in Promise Reject Functions (25.6.1.3.1).
7. Let reject be CreateBuiltinFunction(stepsReject, « [[Promise]], [[AlreadyResolved]] »).
8. Set reject.[[Promise]] to promise.
9. Set reject.[[AlreadyResolved]] to alreadyResolved.

10. Return a new Record { [[Resolve]]: resolve, [[Reject]]: reject }.

A promise reject function is an anonymous built-in function that has [[Promise]] and [[AlreadyResolved]] internal slots.

When a promise reject function is called with argument reason, the following steps are taken:

1. Let F be the active function object.
2. Assert: F has a [[Promise]] internal slot whose value is an Object.
3. Let promise be F.[[Promise]].
4. Let alreadyResolved be F.[[AlreadyResolved]].
5. If alreadyResolved.[[Value]] is true, return undefined.
6. Set alreadyResolved.[[Value]] to true.
7. Return RejectPromise(promise, reason).

The "length" property of a promise reject function is 1.

A promise resolve function is an anonymous built-in function that has [[Promise]] and [[AlreadyResolved]] internal slots.

When a promise resolve function is called with argument resolution, the following steps are taken:

1. Let F be the active function object.
2. Assert: F has a [[Promise]] internal slot whose value is an Object.
3. Let promise be F.[[Promise]].
4. Let alreadyResolved be F.[[AlreadyResolved]].
5. If alreadyResolved.[[Value]] is true, return undefined.

25.6.1.3 CreateResolvingFunctions (promise)

25.6.1.3.1 Promise Reject Functions

25.6.1.3.2 Promise Resolve Functions

© Ecma International 2019

671

6. Set alreadyResolved.[[Value]] to true.
7. If SameValue(resolution, promise) is true, then

a. Let selfResolutionError be a newly created TypeError object.
b. Return RejectPromise(promise, selfResolutionError).

8. If Type(resolution) is not Object, then
a. Return FulfillPromise(promise, resolution).

9. Let then be Get(resolution, "then").
10. If then is an abrupt completion, then

a. Return RejectPromise(promise, then.[[Value]]).
11. Let thenAction be then.[[Value]].
12. If IsCallable(thenAction) is false, then

a. Return FulfillPromise(promise, resolution).
13. Perform EnqueueJob("PromiseJobs", PromiseResolveThenableJob, « promise, resolution, thenAction »).
14. Return undefined.

The "length" property of a promise resolve function is 1.

When the FulfillPromise abstract operation is called with arguments promise and value, the following steps are taken:

1. Assert: The value of promise.[[PromiseState]] is "pending".
2. Let reactions be promise.[[PromiseFulfillReactions]].
3. Set promise.[[PromiseResult]] to value.
4. Set promise.[[PromiseFulfillReactions]] to undefined.
5. Set promise.[[PromiseRejectReactions]] to undefined.
6. Set promise.[[PromiseState]] to "fulfilled".
7. Return TriggerPromiseReactions(reactions, value).

The abstract operation NewPromiseCapability takes a constructor function, and attempts to use that constructor function
in the fashion of the built-in Promise constructor to create a Promise object and extract its resolve and reject functions.
The promise plus the resolve and reject functions are used to initialize a new PromiseCapability Record which is returned
as the value of this abstract operation.

1. If IsConstructor(C) is false, throw a TypeError exception.
2. NOTE: C is assumed to be a constructor function that supports the parameter conventions of the Promise

constructor (see 25.6.3.1).
3. Let promiseCapability be a new PromiseCapability { [[Promise]]: undefined, [[Resolve]]: undefined, [[Reject]]:

undefined }.
4. Let steps be the algorithm steps defined in GetCapabilitiesExecutor Functions.
5. Let executor be CreateBuiltinFunction(steps, « [[Capability]] »).
6. Set executor.[[Capability]] to promiseCapability.
7. Let promise be ? Construct(C, « executor »).
8. If IsCallable(promiseCapability.[[Resolve]]) is false, throw a TypeError exception.
9. If IsCallable(promiseCapability.[[Reject]]) is false, throw a TypeError exception.

10. Set promiseCapability.[[Promise]] to promise.
11. Return promiseCapability.

25.6.1.4 FulfillPromise (promise, value)

25.6.1.5 NewPromiseCapability (C)

672

© Ecma International 2019

672

NOTE
This abstract operation supports Promise subclassing, as it is generic on any constructor that calls a passed executor
function argument in the same way as the Promise constructor. It is used to generalize static methods of the Promise
constructor to any subclass.

A GetCapabilitiesExecutor function is an anonymous built-in function that has a [[Capability]] internal slot.

When a GetCapabilitiesExecutor function is called with arguments resolve and reject, the following steps are taken:

1. Let F be the active function object.
2. Assert: F has a [[Capability]] internal slot whose value is a PromiseCapability Record.
3. Let promiseCapability be F.[[Capability]].
4. If promiseCapability.[[Resolve]] is not undefined, throw a TypeError exception.
5. If promiseCapability.[[Reject]] is not undefined, throw a TypeError exception.
6. Set promiseCapability.[[Resolve]] to resolve.
7. Set promiseCapability.[[Reject]] to reject.
8. Return undefined.

The "length" property of a GetCapabilitiesExecutor function is 2.

The abstract operation IsPromise checks for the promise brand on an object.

1. If Type(x) is not Object, return false.
2. If x does not have a [[PromiseState]] internal slot, return false.
3. Return true.

When the RejectPromise abstract operation is called with arguments promise and reason, the following steps are taken:

1. Assert: The value of promise.[[PromiseState]] is "pending".
2. Let reactions be promise.[[PromiseRejectReactions]].
3. Set promise.[[PromiseResult]] to reason.
4. Set promise.[[PromiseFulfillReactions]] to undefined.
5. Set promise.[[PromiseRejectReactions]] to undefined.
6. Set promise.[[PromiseState]] to "rejected".
7. If promise.[[PromiseIsHandled]] is false, perform HostPromiseRejectionTracker(promise, "reject").
8. Return TriggerPromiseReactions(reactions, reason).

The abstract operation TriggerPromiseReactions takes a collection of PromiseReactionRecords and enqueues a new Job
for each record. Each such Job processes the [[Type]] and [[Handler]] of the PromiseReactionRecord, and if the
[[Handler]] is a function, calls it passing the given argument. If the [[Handler]] is undefined, the behaviour is determined
by the [[Type]].

25.6.1.5.1 GetCapabilitiesExecutor Functions

25.6.1.6 IsPromise (x)

25.6.1.7 RejectPromise (promise, reason)

25.6.1.8 TriggerPromiseReactions (reactions, argument)

© Ecma International 2019

673

1. For each reaction in reactions, in original insertion order, do
a. Perform EnqueueJob("PromiseJobs", PromiseReactionJob, « reaction, argument »).

2. Return undefined.

HostPromiseRejectionTracker is an implementation-defined abstract operation that allows host environments to track
promise rejections.

An implementation of HostPromiseRejectionTracker must complete normally in all cases. The default implementation of
HostPromiseRejectionTracker is to unconditionally return an empty normal completion.

NOTE 1
HostPromiseRejectionTracker is called in two scenarios:

When a promise is rejected without any handlers, it is called with its operation argument set to "reject".
When a handler is added to a rejected promise for the first time, it is called with its operation argument set to
"handle".

A typical implementation of HostPromiseRejectionTracker might try to notify developers of unhandled rejections, while
also being careful to notify them if such previous notifications are later invalidated by new handlers being attached.

NOTE 2
If operation is "handle", an implementation should not hold a reference to promise in a way that would interfere with
garbage collection. An implementation may hold a reference to promise if operation is "reject", since it is expected
that rejections will be rare and not on hot code paths.

The job PromiseReactionJob with parameters reaction and argument applies the appropriate handler to the incoming
value, and uses the handler's return value to resolve or reject the derived promise associated with that handler.

1. Assert: reaction is a PromiseReaction Record.
2. Let promiseCapability be reaction.[[Capability]].
3. Let type be reaction.[[Type]].
4. Let handler be reaction.[[Handler]].
5. If handler is undefined, then

a. If type is "Fulfill", let handlerResult be NormalCompletion(argument).
b. Else,

i. Assert: type is "Reject".
ii. Let handlerResult be ThrowCompletion(argument).

6. Else, let handlerResult be Call(handler, undefined, « argument »).
7. If promiseCapability is undefined, then

a. Assert: handlerResult is not an abrupt completion.
b. Return NormalCompletion(empty).

8. If handlerResult is an abrupt completion, then
a. Let status be Call(promiseCapability.[[Reject]], undefined, « handlerResult.[[Value]] »).

25.6.1.9 HostPromiseRejectionTracker (promise, operation)

25.6.2 Promise Jobs

25.6.2.1 PromiseReactionJob (reaction, argument)

674

© Ecma International 2019

674

9. Else,
a. Let status be Call(promiseCapability.[[Resolve]], undefined, « handlerResult.[[Value]] »).

10. Return Completion(status).

The job PromiseResolveThenableJob with parameters promiseToResolve, thenable, and then performs the following
steps:

1. Let resolvingFunctions be CreateResolvingFunctions(promiseToResolve).
2. Let thenCallResult be Call(then, thenable, « resolvingFunctions.[[Resolve]], resolvingFunctions.[[Reject]] »).
3. If thenCallResult is an abrupt completion, then

a. Let status be Call(resolvingFunctions.[[Reject]], undefined, « thenCallResult.[[Value]] »).
b. Return Completion(status).

4. Return Completion(thenCallResult).

NOTE
This Job uses the supplied thenable and its then method to resolve the given promise. This process must take place as a
Job to ensure that the evaluation of the then method occurs after evaluation of any surrounding code has completed.

The Promise constructor:

is the intrinsic object %Promise%.
is the initial value of the Promise property of the global object.
creates and initializes a new Promise object when called as a constructor.
is not intended to be called as a function and will throw an exception when called in that manner.
is designed to be subclassable. It may be used as the value in an extends clause of a class definition. Subclass
constructors that intend to inherit the specified Promise behaviour must include a super call to the Promise
constructor to create and initialize the subclass instance with the internal state necessary to support the Promise
and Promise.prototype built-in methods.

When the Promise function is called with argument executor, the following steps are taken:

1. If NewTarget is undefined, throw a TypeError exception.
2. If IsCallable(executor) is false, throw a TypeError exception.
3. Let promise be ? OrdinaryCreateFromConstructor(NewTarget, "%PromisePrototype%", « [[PromiseState]],

[[PromiseResult]], [[PromiseFulfillReactions]], [[PromiseRejectReactions]], [[PromiseIsHandled]] »).
4. Set promise.[[PromiseState]] to "pending".
5. Set promise.[[PromiseFulfillReactions]] to a new empty List.
6. Set promise.[[PromiseRejectReactions]] to a new empty List.
7. Set promise.[[PromiseIsHandled]] to false.
8. Let resolvingFunctions be CreateResolvingFunctions(promise).
9. Let completion be Call(executor, undefined, « resolvingFunctions.[[Resolve]], resolvingFunctions.[[Reject]] »).

10. If completion is an abrupt completion, then

25.6.2.2 PromiseResolveThenableJob (promiseToResolve, thenable, then)

25.6.3 The Promise Constructor

25.6.3.1 Promise (executor)

© Ecma International 2019

675

a. Perform ? Call(resolvingFunctions.[[Reject]], undefined, « completion.[[Value]] »).
11. Return promise.

NOTE
The executor argument must be a function object. It is called for initiating and reporting completion of the possibly
deferred action represented by this Promise object. The executor is called with two arguments: resolve and reject. These
are functions that may be used by the executor function to report eventual completion or failure of the deferred
computation. Returning from the executor function does not mean that the deferred action has been completed but only
that the request to eventually perform the deferred action has been accepted.

The resolve function that is passed to an executor function accepts a single argument. The executor code may eventually
call the resolve function to indicate that it wishes to resolve the associated Promise object. The argument passed to the
resolve function represents the eventual value of the deferred action and can be either the actual fulfillment value or
another Promise object which will provide the value if it is fulfilled.

The reject function that is passed to an executor function accepts a single argument. The executor code may eventually
call the reject function to indicate that the associated Promise is rejected and will never be fulfilled. The argument passed
to the reject function is used as the rejection value of the promise. Typically it will be an Error object.

The resolve and reject functions passed to an executor function by the Promise constructor have the capability to actually
resolve and reject the associated promise. Subclasses may have different constructor behaviour that passes in customized
values for resolve and reject.

The Promise constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
has the following properties:

The all function returns a new promise which is fulfilled with an array of fulfillment values for the passed promises, or
rejects with the reason of the first passed promise that rejects. It resolves all elements of the passed iterable to promises
as it runs this algorithm.

1. Let C be the this value.
2. If Type(C) is not Object, throw a TypeError exception.
3. Let promiseCapability be ? NewPromiseCapability(C).
4. Let iteratorRecord be GetIterator(iterable).
5. IfAbruptRejectPromise(iteratorRecord, promiseCapability).
6. Let result be PerformPromiseAll(iteratorRecord, C, promiseCapability).
7. If result is an abrupt completion, then

a. If iteratorRecord.[[Done]] is false, set result to IteratorClose(iteratorRecord, result).
b. IfAbruptRejectPromise(result, promiseCapability).

8. Return Completion(result).

This function is the %Promise_all% intrinsic object.

NOTE

25.6.4 Properties of the Promise Constructor

25.6.4.1 Promise.all (iterable)

676

© Ecma International 2019

676

The all function requires its this value to be a constructor function that supports the parameter conventions of the
Promise constructor.

When the PerformPromiseAll abstract operation is called with arguments iteratorRecord, constructor, and
resultCapability, the following steps are taken:

1. Assert: IsConstructor(constructor) is true.
2. Assert: resultCapability is a PromiseCapability Record.
3. Let values be a new empty List.
4. Let remainingElementsCount be a new Record { [[Value]]: 1 }.
5. Let index be 0.
6. Repeat,

a. Let next be IteratorStep(iteratorRecord).
b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(next).
d. If next is false, then

i. Set iteratorRecord.[[Done]] to true.
ii. Set remainingElementsCount.[[Value]] to remainingElementsCount.[[Value]] - 1.

iii. If remainingElementsCount.[[Value]] is 0, then
1. Let valuesArray be CreateArrayFromList(values).
2. Perform ? Call(resultCapability.[[Resolve]], undefined, « valuesArray »).

iv. Return resultCapability.[[Promise]].
e. Let nextValue be IteratorValue(next).
f. If nextValue is an abrupt completion, set iteratorRecord.[[Done]] to true.
g. ReturnIfAbrupt(nextValue).
h. Append undefined to values.
i. Let nextPromise be ? Invoke(constructor, "resolve", « nextValue »).
j. Let steps be the algorithm steps defined in Promise.all Resolve Element Functions.
k. Let resolveElement be CreateBuiltinFunction(steps, « [[AlreadyCalled]], [[Index]], [[Values]], [[Capability]],

[[RemainingElements]] »).
l. Set resolveElement.[[AlreadyCalled]] to a new Record { [[Value]]: false }.

m. Set resolveElement.[[Index]] to index.
n. Set resolveElement.[[Values]] to values.
o. Set resolveElement.[[Capability]] to resultCapability.
p. Set resolveElement.[[RemainingElements]] to remainingElementsCount.
q. Set remainingElementsCount.[[Value]] to remainingElementsCount.[[Value]] + 1.
r. Perform ? Invoke(nextPromise, "then", « resolveElement, resultCapability.[[Reject]] »).
s. Increase index by 1.

A Promise.all resolve element function is an anonymous built-in function that is used to resolve a specific
Promise.all element. Each Promise.all resolve element function has [[Index]], [[Values]], [[Capability]],
[[RemainingElements]], and [[AlreadyCalled]] internal slots.

When a Promise.all resolve element function is called with argument x, the following steps are taken:

25.6.4.1.1 Runtime Semantics: PerformPromiseAll (iteratorRecord, constructor, resultCapability)

25.6.4.1.2 Promise.all Resolve Element Functions

© Ecma International 2019

677

1. Let F be the active function object.
2. Let alreadyCalled be F.[[AlreadyCalled]].
3. If alreadyCalled.[[Value]] is true, return undefined.
4. Set alreadyCalled.[[Value]] to true.
5. Let index be F.[[Index]].
6. Let values be F.[[Values]].
7. Let promiseCapability be F.[[Capability]].
8. Let remainingElementsCount be F.[[RemainingElements]].
9. Set values[index] to x.

10. Set remainingElementsCount.[[Value]] to remainingElementsCount.[[Value]] - 1.
11. If remainingElementsCount.[[Value]] is 0, then

a. Let valuesArray be CreateArrayFromList(values).
b. Return ? Call(promiseCapability.[[Resolve]], undefined, « valuesArray »).

12. Return undefined.

The "length" property of a Promise.all resolve element function is 1.

The initial value of Promise.prototype is the intrinsic object %PromisePrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The race function returns a new promise which is settled in the same way as the first passed promise to settle. It
resolves all elements of the passed iterable to promises as it runs this algorithm.

1. Let C be the this value.
2. If Type(C) is not Object, throw a TypeError exception.
3. Let promiseCapability be ? NewPromiseCapability(C).
4. Let iteratorRecord be GetIterator(iterable).
5. IfAbruptRejectPromise(iteratorRecord, promiseCapability).
6. Let result be PerformPromiseRace(iteratorRecord, C, promiseCapability).
7. If result is an abrupt completion, then

a. If iteratorRecord.[[Done]] is false, set result to IteratorClose(iteratorRecord, result).
b. IfAbruptRejectPromise(result, promiseCapability).

8. Return Completion(result).

NOTE 1
If the iterable argument is empty or if none of the promises in iterable ever settle then the pending promise returned by
this method will never be settled.

NOTE 2
The race function expects its this value to be a constructor function that supports the parameter conventions of the
Promise constructor. It also expects that its this value provides a resolve method.

When the PerformPromiseRace abstract operation is called with arguments iteratorRecord, constructor, and

25.6.4.2 Promise.prototype

25.6.4.3 Promise.race (iterable)

25.6.4.3.1 Runtime Semantics: PerformPromiseRace (iteratorRecord, constructor, resultCapability)

678

© Ecma International 2019

678

resultCapability, the following steps are taken:

1. Assert: IsConstructor(constructor) is true.
2. Assert: resultCapability is a PromiseCapability Record.
3. Repeat,

a. Let next be IteratorStep(iteratorRecord).
b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(next).
d. If next is false, then

i. Set iteratorRecord.[[Done]] to true.
ii. Return resultCapability.[[Promise]].

e. Let nextValue be IteratorValue(next).
f. If nextValue is an abrupt completion, set iteratorRecord.[[Done]] to true.
g. ReturnIfAbrupt(nextValue).
h. Let nextPromise be ? Invoke(constructor, "resolve", « nextValue »).
i. Perform ? Invoke(nextPromise, "then", « resultCapability.[[Resolve]], resultCapability.[[Reject]] »).

The reject function returns a new promise rejected with the passed argument.

1. Let C be the this value.
2. If Type(C) is not Object, throw a TypeError exception.
3. Let promiseCapability be ? NewPromiseCapability(C).
4. Perform ? Call(promiseCapability.[[Reject]], undefined, « r »).
5. Return promiseCapability.[[Promise]].

This function is the %Promise_reject% intrinsic object.

NOTE
The reject function expects its this value to be a constructor function that supports the parameter conventions of the
Promise constructor.

The resolve function returns either a new promise resolved with the passed argument, or the argument itself if the
argument is a promise produced by this constructor.

1. Let C be the this value.
2. If Type(C) is not Object, throw a TypeError exception.
3. Return ? PromiseResolve(C, x).

This function is the %Promise_resolve% intrinsic object.

NOTE
The resolve function expects its this value to be a constructor function that supports the parameter conventions of the
Promise constructor.

25.6.4.4 Promise.reject (r)

25.6.4.5 Promise.resolve (x)

© Ecma International 2019

679

The abstract operation PromiseResolve, given a constructor and a value, returns a new promise resolved with that value.

1. Assert: Type(C) is Object.
2. If IsPromise(x) is true, then

a. Let xConstructor be ? Get(x, "constructor").
b. If SameValue(xConstructor, C) is true, return x.

3. Let promiseCapability be ? NewPromiseCapability(C).
4. Perform ? Call(promiseCapability.[[Resolve]], undefined, « x »).
5. Return promiseCapability.[[Promise]].

Promise[@@species] is an accessor property whose set accessor function is undefined. Its get accessor function
performs the following steps:

1. Return the this value.

The value of the name property of this function is "get [Symbol.species]".

NOTE
Promise prototype methods normally use their this object's constructor to create a derived object. However, a subclass
constructor may over-ride that default behaviour by redefining its @@species property.

The Promise prototype object:

is the intrinsic object %PromisePrototype%.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is an ordinary object.
does not have a [[PromiseState]] internal slot or any of the other internal slots of Promise instances.

When the catch method is called with argument onRejected, the following steps are taken:

1. Let promise be the this value.
2. Return ? Invoke(promise, "then", « undefined, onRejected »).

The initial value of Promise.prototype.constructor is the intrinsic object %Promise%.

When the finally method is called with argument onFinally, the following steps are taken:

1. Let promise be the this value.

25.6.4.5.1 PromiseResolve (C, x)

25.6.4.6 get Promise [@@species]

25.6.5 Properties of the Promise Prototype Object

25.6.5.1 Promise.prototype.catch (onRejected)

25.6.5.2 Promise.prototype.constructor

25.6.5.3 Promise.prototype.finally (onFinally)

680

© Ecma International 2019

680

2. If Type(promise) is not Object, throw a TypeError exception.
3. Let C be ? SpeciesConstructor(promise, %Promise%).
4. Assert: IsConstructor(C) is true.
5. If IsCallable(onFinally) is false, then

a. Let thenFinally be onFinally.
b. Let catchFinally be onFinally.

6. Else,
a. Let stepsThenFinally be the algorithm steps defined in Then Finally Functions.
b. Let thenFinally be CreateBuiltinFunction(stepsThenFinally, « [[Constructor]], [[OnFinally]] »).
c. Set thenFinally.[[Constructor]] to C.
d. Set thenFinally.[[OnFinally]] to onFinally.
e. Let stepsCatchFinally be the algorithm steps defined in Catch Finally Functions.
f. Let catchFinally be CreateBuiltinFunction(stepsCatchFinally, « [[Constructor]], [[OnFinally]] »).
g. Set catchFinally.[[Constructor]] to C.
h. Set catchFinally.[[OnFinally]] to onFinally.

7. Return ? Invoke(promise, "then", « thenFinally, catchFinally »).

A Then Finally function is an anonymous built-in function that has a [[Constructor]] and an [[OnFinally]] internal slot.
The value of the [[Constructor]] internal slot is a Promise-like constructor function object, and the value of the
[[OnFinally]] internal slot is a function object.

When a Then Finally function is called with argument value, the following steps are taken:

1. Let F be the active function object.
2. Let onFinally be F.[[OnFinally]].
3. Assert: IsCallable(onFinally) is true.
4. Let result be ? Call(onFinally, undefined).
5. Let C be F.[[Constructor]].
6. Assert: IsConstructor(C) is true.
7. Let promise be ? PromiseResolve(C, result).
8. Let valueThunk be equivalent to a function that returns value.
9. Return ? Invoke(promise, "then", « valueThunk »).

The "length" property of a Then Finally function is 1.

A Catch Finally function is an anonymous built-in function that has a [[Constructor]] and an [[OnFinally]] internal slot.
The value of the [[Constructor]] internal slot is a Promise-like constructor function object, and the value of the
[[OnFinally]] internal slot is a function object.

When a Catch Finally function is called with argument reason, the following steps are taken:

1. Let F be the active function object.
2. Let onFinally be F.[[OnFinally]].
3. Assert: IsCallable(onFinally) is true.
4. Let result be ? Call(onFinally, undefined).
5. Let C be F.[[Constructor]].

25.6.5.3.1 Then Finally Functions

25.6.5.3.2 Catch Finally Functions

© Ecma International 2019

681

6. Assert: IsConstructor(C) is true.
7. Let promise be ? PromiseResolve(C, result).
8. Let thrower be equivalent to a function that throws reason.
9. Return ? Invoke(promise, "then", « thrower »).

The "length" property of a Catch Finally function is 1.

When the then method is called with arguments onFulfilled and onRejected, the following steps are taken:

1. Let promise be the this value.
2. If IsPromise(promise) is false, throw a TypeError exception.
3. Let C be ? SpeciesConstructor(promise, %Promise%).
4. Let resultCapability be ? NewPromiseCapability(C).
5. Return PerformPromiseThen(promise, onFulfilled, onRejected, resultCapability).

This function is the %PromiseProto_then% intrinsic object.

The abstract operation PerformPromiseThen performs the “then” operation on promise using onFulfilled and onRejected
as its settlement actions. If resultCapability is passed, the result is stored by updating resultCapability's promise. (If it is
not passed, then PerformPromiseThen is being called by a specification-internal operation where the result does not
matter.)

1. Assert: IsPromise(promise) is true.
2. If resultCapability is present, then

a. Assert: resultCapability is a PromiseCapability Record.
3. Else,

a. Set resultCapability to undefined.
4. If IsCallable(onFulfilled) is false, then

a. Set onFulfilled to undefined.
5. If IsCallable(onRejected) is false, then

a. Set onRejected to undefined.
6. Let fulfillReaction be the PromiseReaction { [[Capability]]: resultCapability, [[Type]]: "Fulfill", [[Handler]]:

onFulfilled }.
7. Let rejectReaction be the PromiseReaction { [[Capability]]: resultCapability, [[Type]]: "Reject", [[Handler]]:

onRejected }.
8. If promise.[[PromiseState]] is "pending", then

a. Append fulfillReaction as the last element of the List that is promise.[[PromiseFulfillReactions]].
b. Append rejectReaction as the last element of the List that is promise.[[PromiseRejectReactions]].

9. Else if promise.[[PromiseState]] is "fulfilled", then
a. Let value be promise.[[PromiseResult]].
b. Perform EnqueueJob("PromiseJobs", PromiseReactionJob, « fulfillReaction, value »).

10. Else,
a. Assert: The value of promise.[[PromiseState]] is "rejected".
b. Let reason be promise.[[PromiseResult]].
c. If promise.[[PromiseIsHandled]] is false, perform HostPromiseRejectionTracker(promise, "handle").
d. Perform EnqueueJob("PromiseJobs", PromiseReactionJob, « rejectReaction, reason »).

25.6.5.4 Promise.prototype.then (onFulfilled, onRejected)

25.6.5.4.1 PerformPromiseThen (promise, onFulfilled, onRejected [, resultCapability])

682

© Ecma International 2019

682

11. Set promise.[[PromiseIsHandled]] to true.
12. If resultCapability is undefined, then

a. Return undefined.
13. Else,

a. Return resultCapability.[[Promise]].

The initial value of the @@toStringTag property is the String value "Promise".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Promise instances are ordinary objects that inherit properties from the Promise prototype object (the intrinsic,
%PromisePrototype%). Promise instances are initially created with the internal slots described in Table 76.

Table 76: Internal Slots of Promise Instances

Internal Slot Description

[[PromiseState]] A String value that governs how a promise will react to incoming calls to its then
method. The possible values are: "pending", "fulfilled", and "rejected".

[[PromiseResult]] The value with which the promise has been fulfilled or rejected, if any. Only meaningful
if [[PromiseState]] is not "pending".

[[PromiseFulfillReactions]] A List of PromiseReaction records to be processed when/if the promise transitions from
the "pending" state to the "fulfilled" state.

[[PromiseRejectReactions]] A List of PromiseReaction records to be processed when/if the promise transitions from
the "pending" state to the "rejected" state.

[[PromiseIsHandled]] A boolean indicating whether the promise has ever had a fulfillment or rejection handler;
used in unhandled rejection tracking.

AsyncFunction objects are functions that are usually created by evaluating AsyncFunctionDeclarations,
AsyncFunctionExpressions, AsyncMethods, and AsyncArrowFunctions. They may also be created by calling the
%AsyncFunction% intrinsic.

The AsyncFunction constructor:

is the intrinsic object %AsyncFunction%.
is a subclass of Function.
creates and initializes a new AsyncFunction object when called as a function rather than as a constructor. Thus the
function call AsyncFunction(…) is equivalent to the object creation expression new AsyncFunction(…)

25.6.5.5 Promise.prototype [@@toStringTag]

25.6.6 Properties of Promise Instances

25.7 AsyncFunction Objects

25.7.1 The AsyncFunction Constructor

© Ecma International 2019

683

with the same arguments.
is designed to be subclassable. It may be used as the value of an extends clause of a class definition. Subclass
constructors that intend to inherit the specified AsyncFunction behaviour must include a super call to the
AsyncFunction constructor to create and initialize a subclass instance with the internal slots necessary for built-
in async function behaviour.

The last argument specifies the body (executable code) of an async function. Any preceding arguments specify formal
parameters.

When the AsyncFunction function is called with some arguments p1, p2, …, pn, body (where n might be 0, that is,
there are no p arguments, and where body might also not be provided), the following steps are taken:

1. Let C be the active function object.
2. Let args be the argumentsList that was passed to this function by [[Call]] or [[Construct]].
3. Return CreateDynamicFunction(C, NewTarget, "async", args).

NOTE
See NOTE for 19.2.1.1.

The AsyncFunction constructor:

is a standard built-in function object that inherits from the Function constructor.
has a [[Prototype]] internal slot whose value is the intrinsic object %Function%.
has a name property whose value is "AsyncFunction".
has the following properties:

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: true }.

The initial value of AsyncFunction.prototype is the intrinsic object %AsyncFunctionPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The AsyncFunction prototype object:

is an ordinary object.
is not a function object and does not have an [[ECMAScriptCode]] internal slot or any other of the internal slots
listed in Table 27.
is the value of the prototype property of the intrinsic object %AsyncFunction%.

25.7.1.1 AsyncFunction (p1, p2, … , pn, body)

25.7.2 Properties of the AsyncFunction Constructor

25.7.2.1 AsyncFunction.length

25.7.2.2 AsyncFunction.prototype

25.7.3 Properties of the AsyncFunction Prototype Object

684

© Ecma International 2019

684

is the intrinsic object %AsyncFunctionPrototype%.
has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.

The initial value of AsyncFunction.prototype.constructor is the intrinsic object %AsyncFunction%

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

The initial value of the @@toStringTag property is the string value "AsyncFunction".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Every AsyncFunction instance is an ECMAScript function object and has the internal slots listed in Table 27. The value
of the [[FunctionKind]] internal slot for all such instances is "async". AsyncFunction instances are not constructors
and do not have a [[Construct]] internal method. AsyncFunction instances do not have a prototype property as they are
not constructable.

Each AsyncFunction instance has the following own properties:

The specification for the "length" property of Function instances given in 19.2.4.1 also applies to AsyncFunction
instances.

The specification for the name property of Function instances given in 19.2.4.2 also applies to AsyncFunction instances.

1. Let runningContext be the running execution context.
2. Let asyncContext be a copy of runningContext.
3. Set the code evaluation state of asyncContext such that when evaluation is resumed for that execution context the

following steps will be performed:
a. Let result be the result of evaluating asyncFunctionBody.
b. Assert: If we return here, the async function either threw an exception or performed an implicit or explicit

return; all awaiting is done.
c. Remove asyncContext from the execution context stack and restore the execution context that is at the top of

the execution context stack as the running execution context.
d. If result.[[Type]] is normal, then

i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « undefined »).
e. Else if result.[[Type]] is return, then

25.7.3.1 AsyncFunction.prototype.constructor

25.7.3.2 AsyncFunction.prototype [@@toStringTag]

25.7.4 AsyncFunction Instances

25.7.4.1 length

25.7.4.2 name

25.7.5 Async Functions Abstract Operations

25.7.5.1 AsyncFunctionStart (promiseCapability, asyncFunctionBody)

© Ecma International 2019

685

i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « result.[[Value]] »).
f. Else,

i. Assert: result.[[Type]] is throw.
ii. Perform ! Call(promiseCapability.[[Reject]], undefined, « result.[[Value]] »).

g. Return.
4. Push asyncContext onto the execution context stack; asyncContext is now the running execution context.
5. Resume the suspended evaluation of asyncContext. Let result be the value returned by the resumed computation.
6. Assert: When we return here, asyncContext has already been removed from the execution context stack and

runningContext is the currently running execution context.
7. Assert: result is a normal completion with a value of undefined. The possible sources of completion values are

Await or, if the async function doesn't await anything, the step 3.g above.
8. Return.

The Reflect object:

is the intrinsic object %Reflect%.
is the initial value of the Reflect property of the global object.
is an ordinary object.
has a [[Prototype]] internal slot whose value is the intrinsic object %ObjectPrototype%.
is not a function object.
does not have a [[Construct]] internal method; it cannot be used as a constructor with the new operator.
does not have a [[Call]] internal method; it cannot be invoked as a function.

When the apply function is called with arguments target, thisArgument, and argumentsList, the following steps are
taken:

1. If IsCallable(target) is false, throw a TypeError exception.
2. Let args be ? CreateListFromArrayLike(argumentsList).
3. Perform PrepareForTailCall().
4. Return ? Call(target, thisArgument, args).

When the construct function is called with arguments target, argumentsList, and newTarget, the following steps are
taken:

1. If IsConstructor(target) is false, throw a TypeError exception.
2. If newTarget is not present, set newTarget to target.
3. Else if IsConstructor(newTarget) is false, throw a TypeError exception.
4. Let args be ? CreateListFromArrayLike(argumentsList).

26 Reflection

26.1 The Reflect Object

26.1.1 Reflect.apply (target, thisArgument, argumentsList)

26.1.2 Reflect.construct (target, argumentsList [, newTarget])

686

© Ecma International 2019

686

5. Return ? Construct(target, args, newTarget).

When the defineProperty function is called with arguments target, propertyKey, and attributes, the following steps
are taken:

1. If Type(target) is not Object, throw a TypeError exception.
2. Let key be ? ToPropertyKey(propertyKey).
3. Let desc be ? ToPropertyDescriptor(attributes).
4. Return ? target.[[DefineOwnProperty]](key, desc).

When the deleteProperty function is called with arguments target and propertyKey, the following steps are taken:

1. If Type(target) is not Object, throw a TypeError exception.
2. Let key be ? ToPropertyKey(propertyKey).
3. Return ? target.[[Delete]](key).

When the get function is called with arguments target, propertyKey, and receiver, the following steps are taken:

1. If Type(target) is not Object, throw a TypeError exception.
2. Let key be ? ToPropertyKey(propertyKey).
3. If receiver is not present, then

a. Set receiver to target.
4. Return ? target.[[Get]](key, receiver).

When the getOwnPropertyDescriptor function is called with arguments target and propertyKey, the following
steps are taken:

1. If Type(target) is not Object, throw a TypeError exception.
2. Let key be ? ToPropertyKey(propertyKey).
3. Let desc be ? target.[[GetOwnProperty]](key).
4. Return FromPropertyDescriptor(desc).

When the getPrototypeOf function is called with argument target, the following steps are taken:

1. If Type(target) is not Object, throw a TypeError exception.
2. Return ? target.[[GetPrototypeOf]]().

26.1.3 Reflect.defineProperty (target, propertyKey, attributes)

26.1.4 Reflect.deleteProperty (target, propertyKey)

26.1.5 Reflect.get (target, propertyKey [, receiver])

26.1.6 Reflect.getOwnPropertyDescriptor (target, propertyKey)

26.1.7 Reflect.getPrototypeOf (target)

26.1.8 Reflect.has (target, propertyKey)

© Ecma International 2019

687

When the has function is called with arguments target and propertyKey, the following steps are taken:

1. If Type(target) is not Object, throw a TypeError exception.
2. Let key be ? ToPropertyKey(propertyKey).
3. Return ? target.[[HasProperty]](key).

When the isExtensible function is called with argument target, the following steps are taken:

1. If Type(target) is not Object, throw a TypeError exception.
2. Return ? target.[[IsExtensible]]().

When the ownKeys function is called with argument target, the following steps are taken:

1. If Type(target) is not Object, throw a TypeError exception.
2. Let keys be ? target.[[OwnPropertyKeys]]().
3. Return CreateArrayFromList(keys).

When the preventExtensions function is called with argument target, the following steps are taken:

1. If Type(target) is not Object, throw a TypeError exception.
2. Return ? target.[[PreventExtensions]]().

When the set function is called with arguments target, V, propertyKey, and receiver, the following steps are taken:

1. If Type(target) is not Object, throw a TypeError exception.
2. Let key be ? ToPropertyKey(propertyKey).
3. If receiver is not present, then

a. Set receiver to target.
4. Return ? target.[[Set]](key, V, receiver).

When the setPrototypeOf function is called with arguments target and proto, the following steps are taken:

1. If Type(target) is not Object, throw a TypeError exception.
2. If Type(proto) is not Object and proto is not null, throw a TypeError exception.
3. Return ? target.[[SetPrototypeOf]](proto).

26.1.9 Reflect.isExtensible (target)

26.1.10 Reflect.ownKeys (target)

26.1.11 Reflect.preventExtensions (target)

26.1.12 Reflect.set (target, propertyKey, V [, receiver])

26.1.13 Reflect.setPrototypeOf (target, proto)

26.2 Proxy Objects

688

© Ecma International 2019

688

The Proxy constructor:

is the intrinsic object %Proxy%.
is the initial value of the Proxy property of the global object.
creates and initializes a new proxy exotic object when called as a constructor.
is not intended to be called as a function and will throw an exception when called in that manner.

When Proxy is called with arguments target and handler, it performs the following steps:

1. If NewTarget is undefined, throw a TypeError exception.
2. Return ? ProxyCreate(target, handler).

The Proxy constructor:

has a [[Prototype]] internal slot whose value is the intrinsic object %FunctionPrototype%.
does not have a prototype property because proxy exotic objects do not have a [[Prototype]] internal slot that
requires initialization.
has the following properties:

The Proxy.revocable function is used to create a revocable Proxy object. When Proxy.revocable is called
with arguments target and handler, the following steps are taken:

1. Let p be ? ProxyCreate(target, handler).
2. Let steps be the algorithm steps defined in Proxy Revocation Functions.
3. Let revoker be CreateBuiltinFunction(steps, « [[RevocableProxy]] »).
4. Set revoker.[[RevocableProxy]] to p.
5. Let result be ObjectCreate(%ObjectPrototype%).
6. Perform CreateDataProperty(result, "proxy", p).
7. Perform CreateDataProperty(result, "revoke", revoker).
8. Return result.

A Proxy revocation function is an anonymous function that has the ability to invalidate a specific Proxy object.

Each Proxy revocation function has a [[RevocableProxy]] internal slot.

When a Proxy revocation function is called, the following steps are taken:

1. Let F be the active function object.
2. Let p be F.[[RevocableProxy]].
3. If p is null, return undefined.
4. Set F.[[RevocableProxy]] to null.

26.2.1 The Proxy Constructor

26.2.1.1 Proxy (target, handler)

26.2.2 Properties of the Proxy Constructor

26.2.2.1 Proxy.revocable (target, handler)

26.2.2.1.1 Proxy Revocation Functions

© Ecma International 2019

689

5. Assert: p is a Proxy object.
6. Set p.[[ProxyTarget]] to null.
7. Set p.[[ProxyHandler]] to null.
8. Return undefined.

The "length" property of a Proxy revocation function is 0.

A Module Namespace Object is a module namespace exotic object that provides runtime property-based access to a
module's exported bindings. There is no constructor function for Module Namespace Objects. Instead, such an object is
created for each module that is imported by an ImportDeclaration that includes a NameSpaceImport.

In addition to the properties specified in 9.4.6 each Module Namespace Object has the following own property:

The initial value of the @@toStringTag property is the String value "Module".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

The memory consistency model, or memory model, specifies the possible orderings of Shared Data Block events, arising
via accessing TypedArray instances backed by a SharedArrayBuffer and via methods on the Atomics object. When the
program has no data races (defined below), the ordering of events appears as sequentially consistent, i.e., as an
interleaving of actions from each agent. When the program has data races, shared memory operations may appear
sequentially inconsistent. For example, programs may exhibit causality-violating behaviour and other astonishments.
These astonishments arise from compiler transforms and the design of CPUs (e.g., out-of-order execution and
speculation). The memory model defines both the precise conditions under which a program exhibits sequentially
consistent behaviour as well as the possible values read from data races. To wit, there is no undefined behaviour.

The memory model is defined as relational constraints on events introduced by abstract operations on SharedArrayBuffer
or by methods on the Atomics object during an evaluation.

NOTE
This section provides an axiomatic model on events introduced by the abstract operations on SharedArrayBuffers. It
bears stressing that the model is not expressible algorithmically, unlike the rest of this specification. The nondeterministic
introduction of events by abstract operations is the interface between the operational semantics of ECMAScript
evaluation and the axiomatic semantics of the memory model. The semantics of these events is defined by considering
graphs of all events in an evaluation. These are neither Static Semantics nor Runtime Semantics. There is no
demonstrated algorithmic implementation, but instead a set of constraints that determine if a particular event graph is
allowed or disallowed.

26.3 Module Namespace Objects

26.3.1 @@toStringTag

27 Memory Model

27.1 Memory Model Fundamentals

690

© Ecma International 2019

690

Shared memory accesses (reads and writes) are divided into two groups, atomic accesses and data accesses, defined
below. Atomic accesses are sequentially consistent, i.e., there is a strict total ordering of events agreed upon by all agents
in an agent cluster. Non-atomic accesses do not have a strict total ordering agreed upon by all agents, i.e., unordered.

NOTE 1
No orderings weaker than sequentially consistent and stronger than unordered, such as release-acquire, are supported.

A Shared Data Block event is either a ReadSharedMemory, WriteSharedMemory, or ReadModifyWriteSharedMemory
Record.

Table 77: ReadSharedMemory Event Fields

Field Name Value Meaning

[[Order]] "SeqCst" or
"Unordered"

The weakest ordering guaranteed by the memory model for the event.

[[NoTear]] A Boolean Whether this event is allowed to read from multiple write events on equal
range as this event.

[[Block]] A Shared Data Block The block the event operates on.

[[ByteIndex]] A nonnegative integer The byte address of the read in [[Block]].

[[ElementSize]] A nonnegative integer The size of the read.

Table 78: WriteSharedMemory Event Fields

Field Name Value Meaning

[[Order]] "SeqCst",
"Unordered", or "Init"

The weakest ordering guaranteed by the memory model for the
event.

[[NoTear]] A Boolean Whether this event is allowed to be read from multiple read events
with equal range as this event.

[[Block]] A Shared Data Block The block the event operates on.

[[ByteIndex]] A nonnegative integer The byte address of the write in [[Block]].

[[ElementSize]] A nonnegative integer The size of the write.

[[Payload]] A List The List of byte values to be read by other events.

Table 79: ReadModifyWriteSharedMemory Event Fields

Field Name Value Meaning

[[Order]] "SeqCst" Read-modify-write events are always sequentially consistent.

[[NoTear]] true Read-modify-write events cannot tear.

© Ecma International 2019

691

[[Block]] A Shared Data
Block

The block the event operates on.

[[ByteIndex]] A nonnegative
integer

The byte address of the read-modify-write in [[Block]].

[[ElementSize]] A nonnegative
integer

The size of the read-modify-write.

[[Payload]] A List The List of byte values to be passed to [[ModifyOp]].

[[ModifyOp]] A semantic
function

A pure semantic function that returns a modified List of byte values from a read
List of byte values and [[Payload]].

These events are introduced by abstract operations or by methods on the Atomics object.

Some operations may also introduce Synchronize events. A Synchronize event has no fields, and exists purely to directly
constrain the permitted orderings of other events.

In addition to Shared Data Block and Synchronize events, there are host-specific events.

Let the range of a ReadSharedMemory, WriteSharedMemory, or ReadModifyWriteSharedMemory event be the Set of
contiguous integers from its [[ByteIndex]] to [[ByteIndex]] + [[ElementSize]] - 1. Two events' ranges are equal when the
events have the same [[Block]], and the ranges are element-wise equal. Two events' ranges are overlapping when the
events have the same [[Block]], the ranges are not equal and their intersection is non-empty. Two events' ranges are
disjoint when the events do not have the same [[Block]] or their ranges are neither equal nor overlapping.

NOTE 2
Examples of host-specific synchronizing events that should be accounted for are: sending a SharedArrayBuffer from one
agent to another (e.g., by postMessage in a browser), starting and stopping agents, and communicating within the
agent cluster via channels other than shared memory. It is assumed those events are appended to agent-order during
evaluation like the other SharedArrayBuffer events.

Events are ordered within candidate executions by the relations defined below.

An Agent Events Record is a Record with the following fields.

Table 80: Agent Events Record Fields

Field Name Value Meaning

[[AgentSignifier]] A value that admits equality
testing

The agent whose evaluation resulted in this ordering.

[[EventList]] A List of events Events are appended to the list during evaluation.

[[AgentSynchronizesWith]] A List of pairs of Synchronize
events

Synchronize relationships introduced by the operational
semantics.

27.2 Agent Events Records

27.3 Chosen Value Records

692

© Ecma International 2019

692

A Chosen Value Record is a Record with the following fields.

Table 81: Chosen Value Record Fields

Field Name Value Meaning

[[Event]] A Shared Data
Block event

The ReadSharedMemory or ReadModifyWriteSharedMemory event that was
introduced for this chosen value.

[[ChosenValue]] A List of byte
values

The bytes that were nondeterministically chosen during evaluation.

A candidate execution of the evaluation of an agent cluster is a Record with the following fields.

Table 82: Candidate Execution Record Fields

Field Name Value Meaning

[[EventsRecords]] A List of Agent
Events Records.

Maps an agent to Lists of events appended during the evaluation.

[[ChosenValues]] A List of Chosen
Value Records.

Maps ReadSharedMemory or ReadModifyWriteSharedMemory
events to the List of byte values chosen during the evaluation.

[[AgentOrder]] An agent-order
Relation.

Defined below.

[[ReadsBytesFrom]] A reads-bytes-from
semantic function.

Defined below.

[[ReadsFrom]] A reads-from
Relation.

Defined below.

[[HostSynchronizesWith]] A host-
synchronizes-with
Relation.

Defined below.

[[SynchronizesWith]] A synchronizes-
with Relation.

Defined below.

[[HappensBefore]] A happens-before
Relation.

Defined below.

An empty candidate execution is a candidate execution Record whose fields are empty Lists and Relations.

27.3 Chosen Value Records

27.4 Candidate Executions

27.5 Abstract Operations for the Memory Model

© Ecma International 2019

693

The abstract operation EventSet takes one argument, a candidate execution execution. It performs the following steps:

1. Let events be an empty Set.
2. For each Agent Events Record aer in execution.[[EventsRecords]], do

a. For each event E in aer.[[EventList]], do
i. Add E to events.

3. Return events.

The abstract operation SharedDataBlockEventSet takes one argument, a candidate execution execution. It performs the
following steps:

1. Let events be an empty Set.
2. For each event E in EventSet(execution), do

a. If E is a ReadSharedMemory, WriteSharedMemory, or ReadModifyWriteSharedMemory event, add E to
events.

3. Return events.

The abstract operation SynchronizeEventSet takes one argument, a candidate execution execution. It performs the
following steps:

1. Let events be an empty Set.
2. For each event E in EventSet(execution), do

a. If E is a Synchronize event, add E to events.
3. Return events.

The abstract operation HostEventSet takes one argument, a candidate execution execution. It performs the following
steps:

1. Let events be an empty Set.
2. For each event E in EventSet(execution), do

a. If E is not in SharedDataBlockEventSet(execution), add E to events.
3. Return events.

The abstract operation ComposeWriteEventBytes takes four arguments, a candidate execution execution, a nonnegative
integer byteIndex, and a List Ws of WriteSharedMemory or ReadModifyWriteSharedMemory events. It performs the
following steps:

1. Let byteLocation be byteIndex.
2. Let bytesRead be a new empty List.
3. For each element W of Ws in List order, do

27.5.1 EventSet (execution)

27.5.2 SharedDataBlockEventSet (execution)

27.5.3 SynchronizeEventSet (execution)

27.5.4 HostEventSet (execution)

27.5.5 ComposeWriteEventBytes (execution, byteIndex, Ws)

694

© Ecma International 2019

694

a. Assert: W has byteLocation in its range.
b. Let payloadIndex be byteLocation - W.[[ByteIndex]].
c. If W is a WriteSharedMemory event, then

i. Let byte be W.[[Payload]][payloadIndex].
d. Else,

i. Assert: W is a ReadModifyWriteSharedMemory event.
ii. Let bytes be ValueOfReadEvent(execution, W).

iii. Let bytesModified be W.[[ModifyOp]](bytes, W.[[Payload]]).
iv. Let byte be bytesModified[payloadIndex].

e. Append byte to bytesRead.
f. Increment byteLocation by 1.

4. Return bytesRead.

NOTE 1
The semantic function [[ModifyOp]] is given by the function properties on the Atomics object that introduce
ReadModifyWriteSharedMemory events.

NOTE 2
This abstract operation composes a List of write events into a List of byte values. It is used in the event semantics of
ReadSharedMemory and ReadModifyWriteSharedMemory events.

The abstract operation ValueOfReadEvent takes two arguments, a candidate execution execution and a
ReadSharedMemory or ReadModifyWriteSharedMemory event R. It performs the following steps:

1. Assert: R is a ReadSharedMemory or ReadModifyWriteSharedMemory event.
2. Let Ws be execution.[[ReadsBytesFrom]](R).
3. Assert: Ws is a List of WriteSharedMemory or ReadModifyWriteSharedMemory events with length equal to R.

[[ElementSize]].
4. Return ComposeWriteEventBytes(execution, R.[[ByteIndex]], Ws).

For a candidate execution execution, execution.[[AgentOrder]] is a Relation on events that satisfies the following.

For each pair (E, D) in EventSet(execution), (E, D) is in execution.[[AgentOrder]] if there is some Agent Events
Record aer in execution.[[EventsRecords]] such that E and D are in aer.[[EventList]] and E is before D in List
order of aer.[[EventList]].

NOTE
Each agent introduces events in a per-agent strict total order during the evaluation. This is the union of those strict total
orders.

27.5.6 ValueOfReadEvent (execution, R)

27.6 Relations of Candidate Executions

27.6.1 agent-order

© Ecma International 2019

695

For a candidate execution execution, execution.[[ReadsBytesFrom]] is a semantic function from events in
SharedDataBlockEventSet(execution) to Lists of events in SharedDataBlockEventSet(execution) that satisfies the
following conditions.

For each ReadSharedMemory or ReadModifyWriteSharedMemory event R in
SharedDataBlockEventSet(execution), execution.[[ReadsBytesFrom]](R) is a List of length equal to R.
[[ElementSize]] of WriteSharedMemory or ReadModifyWriteSharedMemory events Ws such that all of the
following are true.

Each event W with index i in Ws has R.[[ByteIndex]] + i in its range.
R is not in Ws.

For a candidate execution execution, execution.[[ReadsFrom]] is the least Relation on events that satisfies the following.

For each pair (R, W) in SharedDataBlockEventSet(execution), (R, W) is in execution.[[ReadsFrom]] if W is in
execution.[[ReadsBytesFrom]](R).

For a candidate execution execution, execution.[[HostSynchronizesWith]] is a host-provided strict partial order on host-
specific events that satisfies at least the following.

If (E, D) is in execution.[[HostSynchronizesWith]], E and D are in HostEventSet(execution).
There is no cycle in the union of execution.[[HostSynchronizesWith]] and execution.[[AgentOrder]].

NOTE 1
For two host-specific events E and D, E host-synchronizes-with D implies E happens-before D.

NOTE 2
The host-synchronizes-with relation allows the host to provide additional synchronization mechanisms, such as
postMessage between HTML workers.

For a candidate execution execution, execution.[[SynchronizesWith]] is the least Relation on events that satisfies the
following.

For each pair (R, W) in execution.[[ReadsFrom]], (W, R) is in execution.[[SynchronizesWith]] if all the following
are true.

R.[[Order]] is "SeqCst".
W.[[Order]] is "SeqCst" or "Init".
If W.[[Order]] is "SeqCst", then R and W have equal ranges.
If W.[[Order]] is "Init", then for each event V such that (R, V) is in execution.[[ReadsFrom]], V.[[Order]] is
"Init".

For each element eventsRecord of execution.[[EventsRecords]], the following is true.
For each pair (S, Sw) in eventsRecord.[[AgentSynchronizesWith]], (S, Sw) is in execution.

27.6.2 reads-bytes-from

27.6.3 reads-from

27.6.4 host-synchronizes-with

27.6.5 synchronizes-with

696

© Ecma International 2019

696

[[SynchronizesWith]].
For each pair (E, D) in execution.[[HostSynchronizesWith]], (E, D) is in execution.[[SynchronizesWith]].

NOTE 1
Owing to convention, write events synchronizes-with read events, instead of read events synchronizes-with write events.

NOTE 2
Not all "SeqCst" events related by reads-from are related by synchronizes-with. Only events that also have equal
ranges are related by synchronizes-with.

NOTE 3
For Shared Data Block events R and W such that W synchronizes-with R, R may reads-from other writes than W.

For a candidate execution execution, execution.[[HappensBefore]] is the least Relation on events that satisfies the
following.

For each pair (E, D) in execution.[[AgentOrder]], (E, D) is in execution.[[HappensBefore]].
For each pair (E, D) in execution.[[SynchronizesWith]], (E, D) is in execution.[[HappensBefore]].
For each pair (E, D) in SharedDataBlockEventSet(execution), (E, D) is in execution.[[HappensBefore]] if E.
[[Order]] is "Init" and E and D have overlapping ranges.
For each pair (E, D) in EventSet(execution), (E, D) is in execution.[[HappensBefore]] if there is an event F such
that the pairs (E, F) and (F, D) are in execution.[[HappensBefore]].

NOTE
Because happens-before is a superset of agent-order, candidate executions are consistent with the single-thread evaluation
semantics of ECMAScript.

A candidate execution execution has valid chosen reads if the following abstract operation returns true.

1. For each ReadSharedMemory or ReadModifyWriteSharedMemory event R in
SharedDataBlockEventSet(execution), do

a. Let chosenValueRecord be the element of execution.[[ChosenValues]] whose [[Event]] field is R.
b. Let chosenValue be chosenValueRecord.[[ChosenValue]].
c. Let readValue be ValueOfReadEvent(execution, R).
d. Let chosenLen be the number of elements of chosenValue.
e. Let readLen be the number of elements of readValue.
f. If chosenLen is not equal to readLen, then

i. Return false.
g. If chosenValue[i] is not equal to readValue[i] for any integer value i in the range 0 through chosenLen,

exclusive, then
i. Return false.

2. Return true.

27.6.6 happens-before

27.7 Properties of Valid Executions

27.7.1 Valid Chosen Reads

© Ecma International 2019

697

A candidate execution execution has coherent reads if the following abstract operation returns true.

1. For each ReadSharedMemory or ReadModifyWriteSharedMemory event R in
SharedDataBlockEventSet(execution), do

a. Let Ws be execution.[[ReadsBytesFrom]](R).
b. Let byteLocation be R.[[ByteIndex]].
c. For each element W of Ws in List order, do

i. If (R, W) is in execution.[[HappensBefore]], then
1. Return false.

ii. If there is a WriteSharedMemory or ReadModifyWriteSharedMemory event V that has byteLocation in
its range such that the pairs (W, V) and (V, R) are in execution.[[HappensBefore]], then

1. Return false.
iii. Increment byteLocation by 1.

2. Return true.

A candidate execution execution has tear free reads if the following abstract operation returns true.

1. For each ReadSharedMemory or ReadModifyWriteSharedMemory event R in
SharedDataBlockEventSet(execution), do

a. If R.[[NoTear]] is true, then
i. Assert: The remainder of dividing R.[[ByteIndex]] by R.[[ElementSize]] is 0.

ii. For each event W such that (R, W) is in execution.[[ReadsFrom]] and W.[[NoTear]] is true, do
1. If R and W have equal ranges, and there is an event V such that V and W have equal ranges, V.

[[NoTear]] is true, W is not V, and (R, V) is in execution.[[ReadsFrom]], then
a. Return false.

2. Return true.

NOTE
An event's [[NoTear]] field is true when that event was introduced via accessing an integer TypedArray, and false when
introduced via accessing a floating point TypedArray or DataView.

Intuitively, this requirement says when a memory range is accessed in an aligned fashion via an integer TypedArray, a
single write event on that range must "win" when in a data race with other write events with equal ranges. More
precisely, this requirement says an aligned read event cannot read a value composed of bytes from multiple, different
write events all with equal ranges. It is possible, however, for an aligned read event to read from multiple write events
with overlapping ranges.

For a candidate execution execution, memory-order is a strict total order of all events in EventSet(execution) that satisfies
the following.

For each pair (E, D) in execution.[[HappensBefore]], (E, D) is in memory-order.

For each pair (E, D) in execution.[[SynchronizesWith]], (E, D) is in memory-order if there is no

27.7.2 Coherent Reads

27.7.3 Tear Free Reads

27.7.4 Sequentially Consistent Atomics

698

© Ecma International 2019

698

WriteSharedMemory or ReadModifyWriteSharedMemory event W in SharedDataBlockEventSet(execution) with
equal range as D such that W is not E, and the pairs (E, W) and (W, D) are in memory-order.

NOTE 1
This clause additionally constrains "SeqCst" events on equal ranges.

For each WriteSharedMemory or ReadModifyWriteSharedMemory event W in
SharedDataBlockEventSet(execution), if W.[[Order]] is "SeqCst", then it is not the case that there is an infinite
number of ReadSharedMemory or ReadModifyWriteSharedMemory events in SharedDataBlockEventSet(execution)
with equal range that is memory-order before W.

NOTE 2
This clause together with the forward progress guarantee on agents ensure the liveness condition that "SeqCst"
writes become visible to "SeqCst" reads with equal range in finite time.

A candidate execution has sequentially consistent atomics if a memory-order exists.

NOTE 3
While memory-order includes all events in EventSet(execution), those that are not constrained by happens-before or
synchronizes-with are allowed to occur anywhere in the order.

A candidate execution execution is a valid execution (or simply an execution) if all of the following are true.

The host provides a host-synchronizes-with Relation for execution.[[HostSynchronizesWith]].
execution.[[HappensBefore]] is a strict partial order.
execution has valid chosen reads.
execution has coherent reads.
execution has tear free reads.
execution has sequentially consistent atomics.

All programs have at least one valid execution.

For an execution execution, two events E and D in SharedDataBlockEventSet(execution) are in a race if the following
abstract operation returns true.

1. If E is not D, then
a. If the pairs (E, D) and (D, E) are not in execution.[[HappensBefore]], then

i. If E and D are both WriteSharedMemory or ReadModifyWriteSharedMemory events and E and D do not
have disjoint ranges, then

1. Return true.
ii. If either (E, D) or (D, E) is in execution.[[ReadsFrom]], then

1. Return true.
2. Return false.

27.7.5 Valid Executions

27.8 Races

© Ecma International 2019

699

For an execution execution, two events E and D in SharedDataBlockEventSet(execution) are in a data race if the
following abstract operation returns true.

1. If E and D are in a race in execution, then
a. If E.[[Order]] is not "SeqCst" or D.[[Order]] is not "SeqCst", then

i. Return true.
b. If E and D have overlapping ranges, then

i. Return true.
2. Return false.

An execution execution is data race free if there are no two events in SharedDataBlockEventSet(execution) that are in a
data race.

A program is data race free if all its executions are data race free.

The memory model guarantees sequential consistency of all events for data race free programs.

NOTE 1
The following are guidelines for ECMAScript programmers working with shared memory.

We recommend programs be kept data race free, i.e., make it so that it is impossible for there to be concurrent non-
atomic operations on the same memory location. Data race free programs have interleaving semantics where each step in
the evaluation semantics of each agent are interleaved with each other. For data race free programs, it is not necessary to
understand the details of the memory model. The details are unlikely to build intuition that will help one to better write
ECMAScript.

More generally, even if a program is not data race free it may have predictable behaviour, so long as atomic operations
are not involved in any data races and the operations that race all have the same access size. The simplest way to arrange
for atomics not to be involved in races is to ensure that different memory cells are used by atomic and non-atomic
operations and that atomic accesses of different sizes are not used to access the same cells at the same time. Effectively,
the program should treat shared memory as strongly typed as much as possible. One still cannot depend on the ordering
and timing of non-atomic accesses that race, but if memory is treated as strongly typed the racing accesses will not "tear"
(bits of their values will not be mixed).

NOTE 2
The following are guidelines for ECMAScript implementers writing compiler transformations for programs using shared
memory.

It is desirable to allow most program transformations that are valid in a single-agent setting in a multi-agent setting, to
ensure that the performance of each agent in a multi-agent program is as good as it would be in a single-agent setting.
Frequently these transformations are hard to judge. We outline some rules about program transformations that are
intended to be taken as normative (in that they are implied by the memory model or stronger than what the memory
model implies) but which are likely not exhaustive. These rules are intended to apply to program transformations that
precede the introductions of the events that make up the agent-order.

27.9 Data Races

27.10 Data Race Freedom

27.11 Shared Memory Guidelines

700

© Ecma International 2019

700

Let an agent-order slice be the subset of the agent-order pertaining to a single agent.

Let possible read values of a read event be the set of all values of ValueOfReadEvent for that event across all valid
executions.

Any transformation of an agent-order slice that is valid in the absence of shared memory is valid in the presence of
shared memory, with the following exceptions.

Atomics are carved in stone: Program transformations must not cause the "SeqCst" events in an agent-order slice
to be reordered with its "Unordered" operations, nor its "SeqCst" operations to be reordered with each other,
nor may a program transformation remove a "SeqCst" operation from the agent-order.

(In practice, the prohibition on reorderings forces a compiler to assume that every "SeqCst" operation is a
synchronization and included in the final memory-order, which it would usually have to assume anyway in the
absence of inter-agent program analysis. It also forces the compiler to assume that every call where the callee's
effects on the memory-order are unknown may contain "SeqCst" operations.)

Reads must be stable: Any given shared memory read must only observe a single value in an execution.

(For example, if what is semantically a single read in the program is executed multiple times then the program is
subsequently allowed to observe only one of the values read. A transformation known as rematerialization can
violate this rule.)

Writes must be stable: All observable writes to shared memory must follow from program semantics in an
execution.

(For example, a transformation may not introduce certain observable writes, such as by using read-modify-write
operations on a larger location to write a smaller datum, writing a value to memory that the program could not have
written, or writing a just-read value back to the location it was read from, if that location could have been
overwritten by another agent after the read.)

Possible read values must be nonempty: Program transformations cannot cause the possible read values of a shared
memory read to become empty.

(Counterintuitively, this rule in effect restricts transformations on writes, because writes have force in memory
model insofar as to be read by read events. For example, writes may be moved and coalesced and sometimes
reordered between two "SeqCst" operations, but the transformation may not remove every write that updates a
location; some write must be preserved.)

Examples of transformations that remain valid are: merging multiple non-atomic reads from the same location, reordering
non-atomic reads, introducing speculative non-atomic reads, merging multiple non-atomic writes to the same location,
reordering non-atomic writes to different locations, and hoisting non-atomic reads out of loops even if that affects
termination. Note in general that aliased TypedArrays make it hard to prove that locations are different.

NOTE 3
The following are guidelines for ECMAScript implementers generating machine code for shared memory accesses.

For architectures with memory models no weaker than those of ARM or Power, non-atomic stores and loads may be
compiled to bare stores and loads on the target architecture. Atomic stores and loads may be compiled down to
instructions that guarantee sequential consistency. If no such instructions exist, memory barriers are to be employed, such
as placing barriers on both sides of a bare store or load. Read-modify-write operations may be compiled to read-modify-
write instructions on the target architectrue, such as LOCK-prefixed instructions on x86, load-exclusive/store-exclusive
instructions on ARM, and load-link/store-conditional instructions on Power.

© Ecma International 2019

701

Specifically, the memory model is intended to allow code generation as follows.

Every atomic operation in the program is assumed to be necessary.
Atomic operations are never rearranged with each other or with non-atomic operations.
Functions are always assumed to perform atomic operations.
Atomic operations are never implemented as read-modify-write operations on larger data, but as non-lock-free
atomics if the platform does not have atomic operations of the appropriate size. (We already assume that every
platform has normal memory access operations of every interesting size.)

Naive code generation uses these patterns:

Regular loads and stores compile to single load and store instructions.
Lock-free atomic loads and stores compile to a full (sequentially consistent) fence, a regular load or store, and a full
fence.
Lock-free atomic read-modify-write accesses compile to a full fence, an atomic read-modify-write instruction
sequence, and a full fence.
Non-lock-free atomics compile to a spinlock acquire, a full fence, a series of non-atomic load and store instructions,
a full fence, and a spinlock release.

That mapping is correct so long as an atomic operation on an address range does not race with a non-atomic write or with
an atomic operation of different size. However, that is all we need: the memory model effectively demotes the atomic
operations involved in a race to non-atomic status. On the other hand, the naive mapping is quite strong: it allows atomic
operations to be used as sequentially consistent fences, which the memory model does not actually guarantee.

A number of local improvements to those basic patterns are also intended to be legal:

There are obvious platform-dependent improvements that remove redundant fences. For example, on x86 the fences
around lock-free atomic loads and stores can always be omitted except for the fence following a store, and no fence
is needed for lock-free read-modify-write instructions, as these all use LOCK-prefixed instructions. On many
platforms there are fences of several strengths, and weaker fences can be used in certain contexts without
destroying sequential consistency.
Most modern platforms support lock-free atomics for all the data sizes required by ECMAScript atomics. Should
non-lock-free atomics be needed, the fences surrounding the body of the atomic operation can usually be folded
into the lock and unlock steps. The simplest solution for non-lock-free atomics is to have a single lock word per
SharedArrayBuffer.
There are also more complicated platform-dependent local improvements, requiring some code analysis. For
example, two back-to-back fences often have the same effect as a single fence, so if code is generated for two
atomic operations in sequence, only a single fence need separate them. On x86, even a single fence separating
atomic stores can be omitted, as the fence following a store is only needed to separate the store from a subsequent
load.

SourceCharacter ::

A Grammar Summary

A.1 Lexical Grammar

702

© Ecma International 2019

702

any Unicode code point

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
CommonToken
DivPunctuator
RightBracePunctuator

InputElementRegExp ::
WhiteSpace
LineTerminator
Comment
CommonToken
RightBracePunctuator
RegularExpressionLiteral

InputElementRegExpOrTemplateTail ::
WhiteSpace
LineTerminator
Comment
CommonToken
RegularExpressionLiteral
TemplateSubstitutionTail

InputElementTemplateTail ::
WhiteSpace
LineTerminator
Comment
CommonToken
DivPunctuator
TemplateSubstitutionTail

WhiteSpace ::
<TAB>
<VT>
<FF>
<SP>
<NBSP>
<ZWNBSP>
<USP>

LineTerminator ::
<LF>
<CR>
<LS>
<PS>

LineTerminatorSequence ::

© Ecma International 2019

703

<LF>
<CR>[lookahead ≠ <LF>]
<LS>
<PS>
<CR><LF>

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsopt */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsopt
* PostAsteriskCommentCharsopt

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt
* PostAsteriskCommentCharsopt

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or *

SingleLineComment ::
// SingleLineCommentCharsopt

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentCharsopt

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

CommonToken ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral
Template

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
UnicodeIDStart
$
_

704

© Ecma International 2019

704

\ UnicodeEscapeSequence

IdentifierPart ::
UnicodeIDContinue
$
\ UnicodeEscapeSequence
<ZWNJ>
<ZWJ>

UnicodeIDStart ::
any Unicode code point with the Unicode property “ID_Start”

UnicodeIDContinue ::
any Unicode code point with the Unicode property “ID_Continue”

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

Keyword :: one of
await break case catch class const continue debugger default delete do

else export extends finally for function if import in instanceof new
return super switch this throw try typeof var void while with yield

FutureReservedWord ::
enum

The following tokens are also considered to be FutureReservedWords when parsing strict mode code:

implements package protected
interface private public

Punctuator :: one of
{ () [] ; , < > <= >= == != === !== + - * % ** ++ -- << >> >>> & | ^ ! ~

&& || ? : = += -= *= %= **= <<= >>= >>>= &= |= ^= =>

DivPunctuator ::
/
/=

RightBracePunctuator ::
}

NullLiteral ::
null

BooleanLiteral ::
true

© Ecma International 2019

705

false

NumericLiteral ::
DecimalLiteral
BinaryIntegerLiteral
OctalIntegerLiteral
HexIntegerLiteral

DecimalLiteral ::
DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt
. DecimalDigits ExponentPartopt
DecimalIntegerLiteral ExponentPartopt

DecimalIntegerLiteral ::
0
NonZeroDigit DecimalDigitsopt

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
ExponentIndicator SignedInteger

ExponentIndicator :: one of
e E

SignedInteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

BinaryIntegerLiteral ::
0b BinaryDigits
0B BinaryDigits

BinaryDigits ::
BinaryDigit
BinaryDigits BinaryDigit

BinaryDigit :: one of
0 1

OctalIntegerLiteral ::
0o OctalDigits

706

© Ecma International 2019

706

0O OctalDigits

OctalDigits ::
OctalDigit
OctalDigits OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

HexIntegerLiteral ::
0x HexDigits
0X HexDigits

HexDigits ::
HexDigit
HexDigits HexDigit

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

StringLiteral ::
" DoubleStringCharactersopt "
' SingleStringCharactersopt '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersopt

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersopt

DoubleStringCharacter ::
SourceCharacter but not one of " or \ or LineTerminator
<LS>
<PS>
\ EscapeSequence
LineContinuation

SingleStringCharacter ::
SourceCharacter but not one of ' or \ or LineTerminator
<LS>
<PS>
\ EscapeSequence
LineContinuation

LineContinuation ::
\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ∉ DecimalDigit]
HexEscapeSequence

© Ecma International 2019

707

UnicodeEscapeSequence

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b f n r t v

NonEscapeCharacter ::
SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
x
u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u Hex4Digits
u{ CodePoint }

Hex4Digits ::
HexDigit HexDigit HexDigit HexDigit

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::

708

© Ecma International 2019

708

SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of] or \
RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

Template ::
NoSubstitutionTemplate
TemplateHead

NoSubstitutionTemplate ::
` TemplateCharactersopt `

TemplateHead ::
` TemplateCharactersopt ${

TemplateSubstitutionTail ::
TemplateMiddle
TemplateTail

TemplateMiddle ::
} TemplateCharactersopt ${

TemplateTail ::
} TemplateCharactersopt `

TemplateCharacters ::
TemplateCharacter TemplateCharactersopt

TemplateCharacter ::
$ [lookahead ≠ {]
\ EscapeSequence
\ NotEscapeSequence
LineContinuation
LineTerminatorSequence
SourceCharacter but not one of ` or \ or $ or LineTerminator

NotEscapeSequence ::
0 DecimalDigit
DecimalDigit but not 0

© Ecma International 2019

709

x [lookahead ∉ HexDigit]
x HexDigit [lookahead ∉ HexDigit]
u [lookahead ∉ HexDigit] [lookahead ≠ {]
u HexDigit [lookahead ∉ HexDigit]
u HexDigit HexDigit [lookahead ∉ HexDigit]
u HexDigit HexDigit HexDigit [lookahead ∉ HexDigit]
u { [lookahead ∉ HexDigit]
u { NotCodePoint [lookahead ∉ HexDigit]
u { CodePoint [lookahead ∉ HexDigit] [lookahead ≠ }]

NotCodePoint ::
HexDigits but only if MV of HexDigits > 0x10FFFF

CodePoint ::
HexDigits but only if MV of HexDigits ≤ 0x10FFFF

IdentifierReference[Yield, Await] :

Identifier
[~Yield] yield
[~Await] await

BindingIdentifier[Yield, Await] :

Identifier
yield
await

Identifier :
IdentifierName but not ReservedWord

AsyncArrowBindingIdentifier[Yield] :

BindingIdentifier[?Yield, +Await]

LabelIdentifier[Yield, Await] :

Identifier
[~Yield] yield
[~Await] await

PrimaryExpression[Yield, Await] :

this
IdentifierReference[?Yield, ?Await]
Literal
ArrayLiteral[?Yield, ?Await]
ObjectLiteral[?Yield, ?Await]
FunctionExpression
ClassExpression[?Yield, ?Await]
GeneratorExpression

A.2 Expressions

710

© Ecma International 2019

710

AsyncFunctionExpression
AsyncGeneratorExpression
RegularExpressionLiteral
TemplateLiteral[?Yield, ?Await, ~Tagged]
CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]

CoverParenthesizedExpressionAndArrowParameterList[Yield, Await] :

(Expression[+In, ?Yield, ?Await])
(Expression[+In, ?Yield, ?Await] ,)
()
(... BindingIdentifier[?Yield, ?Await])
(... BindingPattern[?Yield, ?Await])
(Expression[+In, ?Yield, ?Await] , ... BindingIdentifier[?Yield, ?Await])
(Expression[+In, ?Yield, ?Await] , ... BindingPattern[?Yield, ?Await])

When processing an instance of the production PrimaryExpression :
CoverParenthesizedExpressionAndArrowParameterList the interpretation of

CoverParenthesizedExpressionAndArrowParameterList is refined using the following grammar:

ParenthesizedExpression[Yield, Await] :

(Expression[+In, ?Yield, ?Await])

Literal :
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

ArrayLiteral[Yield, Await] :

[Elisionopt]
[ElementList[?Yield, ?Await]]
[ElementList[?Yield, ?Await] , Elisionopt]

ElementList[Yield, Await] :

Elisionopt AssignmentExpression[+In, ?Yield, ?Await]
Elisionopt SpreadElement[?Yield, ?Await]
ElementList[?Yield, ?Await] , Elisionopt AssignmentExpression[+In, ?Yield, ?Await]
ElementList[?Yield, ?Await] , Elisionopt SpreadElement[?Yield, ?Await]

Elision :
,
Elision ,

SpreadElement[Yield, Await] :

... AssignmentExpression[+In, ?Yield, ?Await]

ObjectLiteral[Yield, Await] :

© Ecma International 2019

711

{ }
{ PropertyDefinitionList[?Yield, ?Await] }
{ PropertyDefinitionList[?Yield, ?Await] , }

PropertyDefinitionList[Yield, Await] :

PropertyDefinition[?Yield, ?Await]
PropertyDefinitionList[?Yield, ?Await] , PropertyDefinition[?Yield, ?Await]

PropertyDefinition[Yield, Await] :

IdentifierReference[?Yield, ?Await]
CoverInitializedName[?Yield, ?Await]
PropertyName[?Yield, ?Await] : AssignmentExpression[+In, ?Yield, ?Await]
MethodDefinition[?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]

PropertyName[Yield, Await] :

LiteralPropertyName
ComputedPropertyName[?Yield, ?Await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName[Yield, Await] :

[AssignmentExpression[+In, ?Yield, ?Await]]

CoverInitializedName[Yield, Await] :

IdentifierReference[?Yield, ?Await] Initializer[+In, ?Yield, ?Await]

Initializer[In, Yield, Await] :

= AssignmentExpression[?In, ?Yield, ?Await]

TemplateLiteral[Yield, Await, Tagged] :

NoSubstitutionTemplate
SubstitutionTemplate[?Yield, ?Await, ?Tagged]

SubstitutionTemplate[Yield, Await, Tagged] :

TemplateHead Expression[+In, ?Yield, ?Await] TemplateSpans[?Yield, ?Await, ?Tagged]

TemplateSpans[Yield, Await, Tagged] :

TemplateTail
TemplateMiddleList[?Yield, ?Await, ?Tagged] TemplateTail

TemplateMiddleList[Yield, Await, Tagged] :

TemplateMiddle Expression[+In, ?Yield, ?Await]
TemplateMiddleList[?Yield, ?Await, ?Tagged] TemplateMiddle Expression[+In, ?Yield, ?Await]

MemberExpression[Yield, Await] :

712

© Ecma International 2019

712

PrimaryExpression[?Yield, ?Await]
MemberExpression[?Yield, ?Await] [Expression[+In, ?Yield, ?Await]]
MemberExpression[?Yield, ?Await] . IdentifierName

MemberExpression[?Yield, ?Await] TemplateLiteral[?Yield, ?Await, +Tagged]
SuperProperty[?Yield, ?Await]
MetaProperty
new MemberExpression[?Yield, ?Await] Arguments[?Yield, ?Await]

SuperProperty[Yield, Await] :

super [Expression[+In, ?Yield, ?Await]]
super . IdentifierName

MetaProperty :
NewTarget

NewTarget :
new . target

NewExpression[Yield, Await] :

MemberExpression[?Yield, ?Await]
new NewExpression[?Yield, ?Await]

CallExpression[Yield, Await] :

CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await]
SuperCall[?Yield, ?Await]
CallExpression[?Yield, ?Await] Arguments[?Yield, ?Await]
CallExpression[?Yield, ?Await] [Expression[+In, ?Yield, ?Await]]
CallExpression[?Yield, ?Await] . IdentifierName

CallExpression[?Yield, ?Await] TemplateLiteral[?Yield, ?Await, +Tagged]

CoverCallExpressionAndAsyncArrowHead[Yield, Await] :

MemberExpression[?Yield, ?Await] Arguments[?Yield, ?Await]

When processing an instance of the production CallExpression : CoverCallExpressionAndAsyncArrowHead the
interpretation of CoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

CallMemberExpression[Yield, Await] :

MemberExpression[?Yield, ?Await] Arguments[?Yield, ?Await]

SuperCall[Yield, Await] :

super Arguments[?Yield, ?Await]

Arguments[Yield, Await] :

()
(ArgumentList[?Yield, ?Await])
(ArgumentList[?Yield, ?Await] ,)

© Ecma International 2019

713

ArgumentList[Yield, Await] :

AssignmentExpression[+In, ?Yield, ?Await]
... AssignmentExpression[+In, ?Yield, ?Await]
ArgumentList[?Yield, ?Await] , AssignmentExpression[+In, ?Yield, ?Await]
ArgumentList[?Yield, ?Await] , ... AssignmentExpression[+In, ?Yield, ?Await]

LeftHandSideExpression[Yield, Await] :

NewExpression[?Yield, ?Await]
CallExpression[?Yield, ?Await]

UpdateExpression[Yield, Await] :

LeftHandSideExpression[?Yield, ?Await]
LeftHandSideExpression[?Yield, ?Await] [no LineTerminator here] ++
LeftHandSideExpression[?Yield, ?Await] [no LineTerminator here] --
++ UnaryExpression[?Yield, ?Await]
-- UnaryExpression[?Yield, ?Await]

UnaryExpression[Yield, Await] :

UpdateExpression[?Yield, ?Await]
delete UnaryExpression[?Yield, ?Await]
void UnaryExpression[?Yield, ?Await]
typeof UnaryExpression[?Yield, ?Await]
+ UnaryExpression[?Yield, ?Await]
- UnaryExpression[?Yield, ?Await]
~ UnaryExpression[?Yield, ?Await]
! UnaryExpression[?Yield, ?Await]
[+Await] AwaitExpression[?Yield]

ExponentiationExpression[Yield, Await] :

UnaryExpression[?Yield, ?Await]
UpdateExpression[?Yield, ?Await] ** ExponentiationExpression[?Yield, ?Await]

MultiplicativeExpression[Yield, Await] :

ExponentiationExpression[?Yield, ?Await]
MultiplicativeExpression[?Yield, ?Await] MultiplicativeOperator

ExponentiationExpression[?Yield, ?Await]

MultiplicativeOperator : one of
* / %

AdditiveExpression[Yield, Await] :

MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] + MultiplicativeExpression[?Yield, ?Await]
AdditiveExpression[?Yield, ?Await] - MultiplicativeExpression[?Yield, ?Await]

ShiftExpression[Yield, Await] :

714

© Ecma International 2019

714

AdditiveExpression[?Yield, ?Await]
ShiftExpression[?Yield, ?Await] << AdditiveExpression[?Yield, ?Await]
ShiftExpression[?Yield, ?Await] >> AdditiveExpression[?Yield, ?Await]
ShiftExpression[?Yield, ?Await] >>> AdditiveExpression[?Yield, ?Await]

RelationalExpression[In, Yield, Await] :

ShiftExpression[?Yield, ?Await]
RelationalExpression[?In, ?Yield, ?Await] < ShiftExpression[?Yield, ?Await]
RelationalExpression[?In, ?Yield, ?Await] > ShiftExpression[?Yield, ?Await]
RelationalExpression[?In, ?Yield, ?Await] <= ShiftExpression[?Yield, ?Await]
RelationalExpression[?In, ?Yield, ?Await] >= ShiftExpression[?Yield, ?Await]
RelationalExpression[?In, ?Yield, ?Await] instanceof ShiftExpression[?Yield, ?Await]
[+In] RelationalExpression[+In, ?Yield, ?Await] in ShiftExpression[?Yield, ?Await]

EqualityExpression[In, Yield, Await] :

RelationalExpression[?In, ?Yield, ?Await]
EqualityExpression[?In, ?Yield, ?Await] == RelationalExpression[?In, ?Yield, ?Await]
EqualityExpression[?In, ?Yield, ?Await] != RelationalExpression[?In, ?Yield, ?Await]
EqualityExpression[?In, ?Yield, ?Await] === RelationalExpression[?In, ?Yield, ?Await]
EqualityExpression[?In, ?Yield, ?Await] !== RelationalExpression[?In, ?Yield, ?Await]

BitwiseANDExpression[In, Yield, Await] :

EqualityExpression[?In, ?Yield, ?Await]
BitwiseANDExpression[?In, ?Yield, ?Await] & EqualityExpression[?In, ?Yield, ?Await]

BitwiseXORExpression[In, Yield, Await] :

BitwiseANDExpression[?In, ?Yield, ?Await]
BitwiseXORExpression[?In, ?Yield, ?Await] ^ BitwiseANDExpression[?In, ?Yield, ?Await]

BitwiseORExpression[In, Yield, Await] :

BitwiseXORExpression[?In, ?Yield, ?Await]
BitwiseORExpression[?In, ?Yield, ?Await] | BitwiseXORExpression[?In, ?Yield, ?Await]

LogicalANDExpression[In, Yield, Await] :

BitwiseORExpression[?In, ?Yield, ?Await]
LogicalANDExpression[?In, ?Yield, ?Await] && BitwiseORExpression[?In, ?Yield, ?Await]

LogicalORExpression[In, Yield, Await] :

LogicalANDExpression[?In, ?Yield, ?Await]
LogicalORExpression[?In, ?Yield, ?Await] || LogicalANDExpression[?In, ?Yield, ?Await]

ConditionalExpression[In, Yield, Await] :

LogicalORExpression[?In, ?Yield, ?Await]
LogicalORExpression[?In, ?Yield, ?Await] ? AssignmentExpression[+In, ?Yield, ?Await] :

AssignmentExpression[?In, ?Yield, ?Await]

AssignmentExpression[In, Yield, Await] :

© Ecma International 2019

715

ConditionalExpression[?In, ?Yield, ?Await]
[+Yield] YieldExpression[?In, ?Await]
ArrowFunction[?In, ?Yield, ?Await]
AsyncArrowFunction[?In, ?Yield, ?Await]
LeftHandSideExpression[?Yield, ?Await] = AssignmentExpression[?In, ?Yield, ?Await]
LeftHandSideExpression[?Yield, ?Await] AssignmentOperator

AssignmentExpression[?In, ?Yield, ?Await]

In certain circumstances when processing an instance of the production AssignmentExpression :
LeftHandSideExpression = AssignmentExpression the following grammar is used to refine the interpretation of

LeftHandSideExpression:

AssignmentPattern[Yield, Await] :

ObjectAssignmentPattern[?Yield, ?Await]
ArrayAssignmentPattern[?Yield, ?Await]

ObjectAssignmentPattern[Yield, Await] :

{ }
{ AssignmentRestProperty[?Yield, ?Await] }
{ AssignmentPropertyList[?Yield, ?Await] }
{ AssignmentPropertyList[?Yield, ?Await] , AssignmentRestProperty[?Yield, ?Await] opt }

ArrayAssignmentPattern[Yield, Await] :

[Elisionopt AssignmentRestElement[?Yield, ?Await] opt]
[AssignmentElementList[?Yield, ?Await]]
[AssignmentElementList[?Yield, ?Await] , Elisionopt

AssignmentRestElement[?Yield, ?Await] opt]

AssignmentRestProperty[Yield, Await] :

... DestructuringAssignmentTarget[?Yield, ?Await]

AssignmentPropertyList[Yield, Await] :

AssignmentProperty[?Yield, ?Await]
AssignmentPropertyList[?Yield, ?Await] , AssignmentProperty[?Yield, ?Await]

AssignmentElementList[Yield, Await] :

AssignmentElisionElement[?Yield, ?Await]
AssignmentElementList[?Yield, ?Await] , AssignmentElisionElement[?Yield, ?Await]

AssignmentElisionElement[Yield, Await] :

Elisionopt AssignmentElement[?Yield, ?Await]

AssignmentProperty[Yield, Await] :

IdentifierReference[?Yield, ?Await] Initializer[+In, ?Yield, ?Await] opt
PropertyName[?Yield, ?Await] : AssignmentElement[?Yield, ?Await]

AssignmentElement[Yield, Await] :

716

© Ecma International 2019

716

DestructuringAssignmentTarget[?Yield, ?Await] Initializer[+In, ?Yield, ?Await] opt

AssignmentRestElement[Yield, Await] :

... DestructuringAssignmentTarget[?Yield, ?Await]

DestructuringAssignmentTarget[Yield, Await] :

LeftHandSideExpression[?Yield, ?Await]

AssignmentOperator : one of
*= /= %= += -= <<= >>= >>>= &= ^= |= **=

Expression[In, Yield, Await] :

AssignmentExpression[?In, ?Yield, ?Await]
Expression[?In, ?Yield, ?Await] , AssignmentExpression[?In, ?Yield, ?Await]

Statement[Yield, Await, Return] :

BlockStatement[?Yield, ?Await, ?Return]
VariableStatement[?Yield, ?Await]
EmptyStatement
ExpressionStatement[?Yield, ?Await]
IfStatement[?Yield, ?Await, ?Return]
BreakableStatement[?Yield, ?Await, ?Return]
ContinueStatement[?Yield, ?Await]
BreakStatement[?Yield, ?Await]
[+Return] ReturnStatement[?Yield, ?Await]
WithStatement[?Yield, ?Await, ?Return]
LabelledStatement[?Yield, ?Await, ?Return]
ThrowStatement[?Yield, ?Await]
TryStatement[?Yield, ?Await, ?Return]
DebuggerStatement

Declaration[Yield, Await] :

HoistableDeclaration[?Yield, ?Await, ~Default]
ClassDeclaration[?Yield, ?Await, ~Default]
LexicalDeclaration[+In, ?Yield, ?Await]

HoistableDeclaration[Yield, Await, Default] :

FunctionDeclaration[?Yield, ?Await, ?Default]
GeneratorDeclaration[?Yield, ?Await, ?Default]
AsyncFunctionDeclaration[?Yield, ?Await, ?Default]
AsyncGeneratorDeclaration[?Yield, ?Await, ?Default]

A.3 Statements

© Ecma International 2019

717

BreakableStatement[Yield, Await, Return] :

IterationStatement[?Yield, ?Await, ?Return]
SwitchStatement[?Yield, ?Await, ?Return]

BlockStatement[Yield, Await, Return] :

Block[?Yield, ?Await, ?Return]

Block[Yield, Await, Return] :

{ StatementList[?Yield, ?Await, ?Return] opt }

StatementList[Yield, Await, Return] :

StatementListItem[?Yield, ?Await, ?Return]
StatementList[?Yield, ?Await, ?Return] StatementListItem[?Yield, ?Await, ?Return]

StatementListItem[Yield, Await, Return] :

Statement[?Yield, ?Await, ?Return]
Declaration[?Yield, ?Await]

LexicalDeclaration[In, Yield, Await] :

LetOrConst BindingList[?In, ?Yield, ?Await] ;

LetOrConst :
let
const

BindingList[In, Yield, Await] :

LexicalBinding[?In, ?Yield, ?Await]
BindingList[?In, ?Yield, ?Await] , LexicalBinding[?In, ?Yield, ?Await]

LexicalBinding[In, Yield, Await] :

BindingIdentifier[?Yield, ?Await] Initializer[?In, ?Yield, ?Await] opt
BindingPattern[?Yield, ?Await] Initializer[?In, ?Yield, ?Await]

VariableStatement[Yield, Await] :

var VariableDeclarationList[+In, ?Yield, ?Await] ;

VariableDeclarationList[In, Yield, Await] :

VariableDeclaration[?In, ?Yield, ?Await]
VariableDeclarationList[?In, ?Yield, ?Await] , VariableDeclaration[?In, ?Yield, ?Await]

VariableDeclaration[In, Yield, Await] :

BindingIdentifier[?Yield, ?Await] Initializer[?In, ?Yield, ?Await] opt
BindingPattern[?Yield, ?Await] Initializer[?In, ?Yield, ?Await]

BindingPattern[Yield, Await] :

ObjectBindingPattern[?Yield, ?Await]
ArrayBindingPattern[?Yield, ?Await]

ObjectBindingPattern[Yield, Await] :

718

© Ecma International 2019

718

{ }
{ BindingRestProperty[?Yield, ?Await] }
{ BindingPropertyList[?Yield, ?Await] }
{ BindingPropertyList[?Yield, ?Await] , BindingRestProperty[?Yield, ?Await] opt }

ArrayBindingPattern[Yield, Await] :

[Elisionopt BindingRestElement[?Yield, ?Await] opt]
[BindingElementList[?Yield, ?Await]]
[BindingElementList[?Yield, ?Await] , Elisionopt BindingRestElement[?Yield, ?Await] opt]

BindingRestProperty[Yield, Await] :

... BindingIdentifier[?Yield, ?Await]

BindingPropertyList[Yield, Await] :

BindingProperty[?Yield, ?Await]
BindingPropertyList[?Yield, ?Await] , BindingProperty[?Yield, ?Await]

BindingElementList[Yield, Await] :

BindingElisionElement[?Yield, ?Await]
BindingElementList[?Yield, ?Await] , BindingElisionElement[?Yield, ?Await]

BindingElisionElement[Yield, Await] :

Elisionopt BindingElement[?Yield, ?Await]

BindingProperty[Yield, Await] :

SingleNameBinding[?Yield, ?Await]
PropertyName[?Yield, ?Await] : BindingElement[?Yield, ?Await]

BindingElement[Yield, Await] :

SingleNameBinding[?Yield, ?Await]
BindingPattern[?Yield, ?Await] Initializer[+In, ?Yield, ?Await] opt

SingleNameBinding[Yield, Await] :

BindingIdentifier[?Yield, ?Await] Initializer[+In, ?Yield, ?Await] opt

BindingRestElement[Yield, Await] :

... BindingIdentifier[?Yield, ?Await]

... BindingPattern[?Yield, ?Await]

EmptyStatement :
;

ExpressionStatement[Yield, Await] :

[lookahead ∉ { { , function , async [no LineTerminator here] function , class , let [}]
Expression[+In, ?Yield, ?Await] ;

IfStatement[Yield, Await, Return] :

if (Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return] else

© Ecma International 2019

719

Statement[?Yield, ?Await, ?Return]
if (Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

IterationStatement[Yield, Await, Return] :

do Statement[?Yield, ?Await, ?Return] while (Expression[+In, ?Yield, ?Await]) ;
while (Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]
for ([lookahead ∉ { let [}] Expression[~In, ?Yield, ?Await] opt ;

Expression[+In, ?Yield, ?Await] opt ; Expression[+In, ?Yield, ?Await] opt)
Statement[?Yield, ?Await, ?Return]

for (var VariableDeclarationList[~In, ?Yield, ?Await] ;
Expression[+In, ?Yield, ?Await] opt ; Expression[+In, ?Yield, ?Await] opt)
Statement[?Yield, ?Await, ?Return]

for (LexicalDeclaration[~In, ?Yield, ?Await] Expression[+In, ?Yield, ?Await] opt ;
Expression[+In, ?Yield, ?Await] opt) Statement[?Yield, ?Await, ?Return]

for ([lookahead ∉ { let [}] LeftHandSideExpression[?Yield, ?Await] in
Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

for (var ForBinding[?Yield, ?Await] in Expression[+In, ?Yield, ?Await])
Statement[?Yield, ?Await, ?Return]

for (ForDeclaration[?Yield, ?Await] in Expression[+In, ?Yield, ?Await])
Statement[?Yield, ?Await, ?Return]

for ([lookahead ≠ let] LeftHandSideExpression[?Yield, ?Await] of
AssignmentExpression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

for (var ForBinding[?Yield, ?Await] of AssignmentExpression[+In, ?Yield, ?Await])
Statement[?Yield, ?Await, ?Return]

for (ForDeclaration[?Yield, ?Await] of AssignmentExpression[+In, ?Yield, ?Await])
Statement[?Yield, ?Await, ?Return]

[+Await] for await ([lookahead ≠ let] LeftHandSideExpression[?Yield, ?Await] of
AssignmentExpression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

[+Await] for await (var ForBinding[?Yield, ?Await] of
AssignmentExpression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

[+Await] for await (ForDeclaration[?Yield, ?Await] of
AssignmentExpression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

ForDeclaration[Yield, Await] :

LetOrConst ForBinding[?Yield, ?Await]

ForBinding[Yield, Await] :

BindingIdentifier[?Yield, ?Await]
BindingPattern[?Yield, ?Await]

ContinueStatement[Yield, Await] :

continue ;
continue [no LineTerminator here] LabelIdentifier[?Yield, ?Await] ;

BreakStatement[Yield, Await] :

720

© Ecma International 2019

720

break ;
break [no LineTerminator here] LabelIdentifier[?Yield, ?Await] ;

ReturnStatement[Yield, Await] :

return ;
return [no LineTerminator here] Expression[+In, ?Yield, ?Await] ;

WithStatement[Yield, Await, Return] :

with (Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

SwitchStatement[Yield, Await, Return] :

switch (Expression[+In, ?Yield, ?Await]) CaseBlock[?Yield, ?Await, ?Return]

CaseBlock[Yield, Await, Return] :

{ CaseClauses[?Yield, ?Await, ?Return] opt }
{ CaseClauses[?Yield, ?Await, ?Return] opt DefaultClause[?Yield, ?Await, ?Return]

CaseClauses[?Yield, ?Await, ?Return] opt }

CaseClauses[Yield, Await, Return] :

CaseClause[?Yield, ?Await, ?Return]
CaseClauses[?Yield, ?Await, ?Return] CaseClause[?Yield, ?Await, ?Return]

CaseClause[Yield, Await, Return] :

case Expression[+In, ?Yield, ?Await] : StatementList[?Yield, ?Await, ?Return] opt

DefaultClause[Yield, Await, Return] :

default : StatementList[?Yield, ?Await, ?Return] opt

LabelledStatement[Yield, Await, Return] :

LabelIdentifier[?Yield, ?Await] : LabelledItem[?Yield, ?Await, ?Return]

LabelledItem[Yield, Await, Return] :

Statement[?Yield, ?Await, ?Return]
FunctionDeclaration[?Yield, ?Await, ~Default]

ThrowStatement[Yield, Await] :

throw [no LineTerminator here] Expression[+In, ?Yield, ?Await] ;

TryStatement[Yield, Await, Return] :

try Block[?Yield, ?Await, ?Return] Catch[?Yield, ?Await, ?Return]
try Block[?Yield, ?Await, ?Return] Finally[?Yield, ?Await, ?Return]
try Block[?Yield, ?Await, ?Return] Catch[?Yield, ?Await, ?Return]

Finally[?Yield, ?Await, ?Return]

Catch[Yield, Await, Return] :

catch (CatchParameter[?Yield, ?Await]) Block[?Yield, ?Await, ?Return]
catch Block[?Yield, ?Await, ?Return]

© Ecma International 2019

721

Finally[Yield, Await, Return] :

finally Block[?Yield, ?Await, ?Return]

CatchParameter[Yield, Await] :

BindingIdentifier[?Yield, ?Await]
BindingPattern[?Yield, ?Await]

DebuggerStatement :
debugger ;

FunctionDeclaration[Yield, Await, Default] :

function BindingIdentifier[?Yield, ?Await] (FormalParameters[~Yield, ~Await]) {
FunctionBody[~Yield, ~Await] }

[+Default] function (FormalParameters[~Yield, ~Await]) { FunctionBody[~Yield, ~Await] }

FunctionExpression :
function BindingIdentifier[~Yield, ~Await] opt (FormalParameters[~Yield, ~Await]) {

FunctionBody[~Yield, ~Await] }

UniqueFormalParameters[Yield, Await] :

FormalParameters[?Yield, ?Await]

FormalParameters[Yield, Await] :

[empty]
FunctionRestParameter[?Yield, ?Await]
FormalParameterList[?Yield, ?Await]
FormalParameterList[?Yield, ?Await] ,
FormalParameterList[?Yield, ?Await] , FunctionRestParameter[?Yield, ?Await]

FormalParameterList[Yield, Await] :

FormalParameter[?Yield, ?Await]
FormalParameterList[?Yield, ?Await] , FormalParameter[?Yield, ?Await]

FunctionRestParameter[Yield, Await] :

BindingRestElement[?Yield, ?Await]

FormalParameter[Yield, Await] :

BindingElement[?Yield, ?Await]

FunctionBody[Yield, Await] :

FunctionStatementList[?Yield, ?Await]

FunctionStatementList[Yield, Await] :

StatementList[?Yield, ?Await, +Return] opt

A.4 Functions and Classes

722

© Ecma International 2019

722

ArrowFunction[In, Yield, Await] :

ArrowParameters[?Yield, ?Await] [no LineTerminator here] => ConciseBody[?In]

ArrowParameters[Yield, Await] :

BindingIdentifier[?Yield, ?Await]
CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]

ConciseBody[In] :

[lookahead ≠ {] AssignmentExpression[?In, ~Yield, ~Await]
{ FunctionBody[~Yield, ~Await] }

When the production ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList is recognized the
following grammar is used to refine the interpretation of CoverParenthesizedExpressionAndArrowParameterList:

ArrowFormalParameters[Yield, Await] :

(UniqueFormalParameters[?Yield, ?Await])

AsyncArrowFunction[In, Yield, Await] :

async [no LineTerminator here] AsyncArrowBindingIdentifier[?Yield] [no LineTerminator here] =>
AsyncConciseBody[?In]

CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await] [no LineTerminator here] =>
AsyncConciseBody[?In]

AsyncConciseBody[In] :

[lookahead ≠ {] AssignmentExpression[?In, ~Yield, +Await]
{ AsyncFunctionBody }

When the production AsyncArrowFunction : CoverCallExpressionAndAsyncArrowHead [no LineTerminator here] =>
AsyncConciseBody is recognized the following grammar is used to refine the interpretation of
CoverParenthesizedExpressionAndArrowParameterList:

AsyncArrowHead :
async [no LineTerminator here] ArrowFormalParameters[~Yield, +Await]

MethodDefinition[Yield, Await] :

PropertyName[?Yield, ?Await] (UniqueFormalParameters[~Yield, ~Await]) {
FunctionBody[~Yield, ~Await] }

GeneratorMethod[?Yield, ?Await]
AsyncMethod[?Yield, ?Await]
AsyncGeneratorMethod[?Yield, ?Await]
get PropertyName[?Yield, ?Await] () { FunctionBody[~Yield, ~Await] }
set PropertyName[?Yield, ?Await] (PropertySetParameterList) {

FunctionBody[~Yield, ~Await] }

PropertySetParameterList :

© Ecma International 2019

723

FormalParameter[~Yield, ~Await]

GeneratorMethod[Yield, Await] :

* PropertyName[?Yield, ?Await] (UniqueFormalParameters[+Yield, ~Await]) {
GeneratorBody }

GeneratorDeclaration[Yield, Await, Default] :

function * BindingIdentifier[?Yield, ?Await] (FormalParameters[+Yield, ~Await]) {
GeneratorBody }

[+Default] function * (FormalParameters[+Yield, ~Await]) { GeneratorBody }

GeneratorExpression :
function * BindingIdentifier[+Yield, ~Await] opt (FormalParameters[+Yield, ~Await]) {

GeneratorBody }

GeneratorBody :
FunctionBody[+Yield, ~Await]

YieldExpression[In, Await] :

yield
yield [no LineTerminator here] AssignmentExpression[?In, +Yield, ?Await]
yield [no LineTerminator here] * AssignmentExpression[?In, +Yield, ?Await]

AsyncGeneratorMethod[Yield, Await] :

async [no LineTerminator here] * PropertyName[?Yield, ?Await] (
UniqueFormalParameters[+Yield, +Await]) { AsyncGeneratorBody }

AsyncGeneratorDeclaration[Yield, Await, Default] :

async [no LineTerminator here] function * BindingIdentifier[?Yield, ?Await] (
FormalParameters[+Yield, +Await]) { AsyncGeneratorBody }

[+Default] async [no LineTerminator here] function * (FormalParameters[+Yield, +Await]) {
AsyncGeneratorBody }

AsyncGeneratorExpression :
async [no LineTerminator here] function * BindingIdentifier[+Yield, +Await] opt (

FormalParameters[+Yield, +Await]) { AsyncGeneratorBody }

AsyncGeneratorBody :
FunctionBody[+Yield, +Await]

AsyncMethod[Yield, Await] :

async [no LineTerminator here] PropertyName[?Yield, ?Await] (
UniqueFormalParameters[~Yield, +Await]) { AsyncFunctionBody }

AsyncFunctionDeclaration[Yield, Await, Default] :

async [no LineTerminator here] function BindingIdentifier[?Yield, ?Await] (
FormalParameters[~Yield, +Await]) { AsyncFunctionBody }

[+Default] async [no LineTerminator here] function (FormalParameters[~Yield, +Await]) {

724

© Ecma International 2019

724

AsyncFunctionBody }

AsyncFunctionExpression :
async [no LineTerminator here] function (FormalParameters[~Yield, +Await]) {

AsyncFunctionBody }
async [no LineTerminator here] function BindingIdentifier[~Yield, +Await] (

FormalParameters[~Yield, +Await]) { AsyncFunctionBody }

AsyncFunctionBody :
FunctionBody[~Yield, +Await]

AwaitExpression[Yield] :

await UnaryExpression[?Yield, +Await]

ClassDeclaration[Yield, Await, Default] :

class BindingIdentifier[?Yield, ?Await] ClassTail[?Yield, ?Await]
[+Default] class ClassTail[?Yield, ?Await]

ClassExpression[Yield, Await] :

class BindingIdentifier[?Yield, ?Await] opt ClassTail[?Yield, ?Await]

ClassTail[Yield, Await] :

ClassHeritage[?Yield, ?Await] opt { ClassBody[?Yield, ?Await] opt }

ClassHeritage[Yield, Await] :

extends LeftHandSideExpression[?Yield, ?Await]

ClassBody[Yield, Await] :

ClassElementList[?Yield, ?Await]

ClassElementList[Yield, Await] :

ClassElement[?Yield, ?Await]
ClassElementList[?Yield, ?Await] ClassElement[?Yield, ?Await]

ClassElement[Yield, Await] :

MethodDefinition[?Yield, ?Await]
static MethodDefinition[?Yield, ?Await]
;

Script :
ScriptBodyopt

ScriptBody :
StatementList[~Yield, ~Await, ~Return]

Module :

A.5 Scripts and Modules

© Ecma International 2019

725

ModuleBodyopt

ModuleBody :
ModuleItemList

ModuleItemList :
ModuleItem
ModuleItemList ModuleItem

ModuleItem :
ImportDeclaration
ExportDeclaration
StatementListItem[~Yield, ~Await, ~Return]

ImportDeclaration :
import ImportClause FromClause ;
import ModuleSpecifier ;

ImportClause :
ImportedDefaultBinding
NameSpaceImport
NamedImports
ImportedDefaultBinding , NameSpaceImport
ImportedDefaultBinding , NamedImports

ImportedDefaultBinding :
ImportedBinding

NameSpaceImport :
* as ImportedBinding

NamedImports :
{ }
{ ImportsList }
{ ImportsList , }

FromClause :
from ModuleSpecifier

ImportsList :
ImportSpecifier
ImportsList , ImportSpecifier

ImportSpecifier :
ImportedBinding
IdentifierName as ImportedBinding

ModuleSpecifier :
StringLiteral

ImportedBinding :
BindingIdentifier[~Yield, ~Await]

726

© Ecma International 2019

726

ExportDeclaration :
export * FromClause ;
export ExportClause FromClause ;
export ExportClause ;
export VariableStatement[~Yield, ~Await]
export Declaration[~Yield, ~Await]
export default HoistableDeclaration[~Yield, ~Await, +Default]
export default ClassDeclaration[~Yield, ~Await, +Default]
export default [lookahead ∉ { function , async [no LineTerminator here] function ,

class }] AssignmentExpression[+In, ~Yield, ~Await] ;

ExportClause :
{ }
{ ExportsList }
{ ExportsList , }

ExportsList :
ExportSpecifier
ExportsList , ExportSpecifier

ExportSpecifier :
IdentifierName
IdentifierName as IdentifierName

StringNumericLiteral :::
StrWhiteSpaceopt
StrWhiteSpaceopt StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
BinaryIntegerLiteral
OctalIntegerLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::

A.6 Number Conversions

© Ecma International 2019

727

Infinity
DecimalDigits . DecimalDigitsopt ExponentPartopt
. DecimalDigits ExponentPartopt
DecimalDigits ExponentPartopt

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

ExponentPart ::
ExponentIndicator SignedInteger

ExponentIndicator :: one of
e E

SignedInteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral ::
0x HexDigits
0X HexDigits

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

All grammar symbols not explicitly defined by the StringNumericLiteral grammar have the definitions used in the
Lexical Grammar for numeric literals.

uri :::
uriCharactersopt

uriCharacters :::
uriCharacter uriCharactersopt

uriCharacter :::
uriReserved
uriUnescaped
uriEscaped

uriReserved ::: one of
; / ? : @ & = + $,

uriUnescaped :::

A.7 Universal Resource Identifier Character Classes

728

© Ecma International 2019

728

uriAlpha
DecimalDigit
uriMark

uriEscaped :::
% HexDigit HexDigit

uriAlpha ::: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z

uriMark ::: one of
- _ . ! ~ * ' ()

Pattern[U, N] ::

Disjunction[?U, ?N]

Disjunction[U, N] ::

Alternative[?U, ?N]
Alternative[?U, ?N] | Disjunction[?U, ?N]

Alternative[U, N] ::

[empty]
Alternative[?U, ?N] Term[?U, ?N]

Term[U, N] ::

Assertion[?U, ?N]
Atom[?U, ?N]
Atom[?U, ?N] Quantifier

Assertion[U, N] ::

^
$
\ b
\ B
(? = Disjunction[?U, ?N])
(? ! Disjunction[?U, ?N])
(? <= Disjunction[?U, ?N])
(? <! Disjunction[?U, ?N])

Quantifier ::
QuantifierPrefix
QuantifierPrefix ?

QuantifierPrefix ::
*

A.8 Regular Expressions

© Ecma International 2019

729

+
?
{ DecimalDigits }
{ DecimalDigits , }
{ DecimalDigits , DecimalDigits }

Atom[U, N] ::

PatternCharacter
.
\ AtomEscape[?U, ?N]
CharacterClass[?U]
(GroupSpecifier[?U] Disjunction[?U, ?N])
(? : Disjunction[?U, ?N])

SyntaxCharacter :: one of
^ $ \ . * + ? () [] { } |

PatternCharacter ::
SourceCharacter but not SyntaxCharacter

AtomEscape[U, N] ::

DecimalEscape
CharacterClassEscape[?U]
CharacterEscape[?U]
[+N] k GroupName[?U]

CharacterEscape[U] ::

ControlEscape
c ControlLetter
0 [lookahead ∉ DecimalDigit]
HexEscapeSequence
RegExpUnicodeEscapeSequence[?U]
IdentityEscape[?U]

ControlEscape :: one of
f n r t v

ControlLetter :: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z

GroupSpecifier[U] ::

[empty]
? GroupName[?U]

GroupName[U] ::

< RegExpIdentifierName[?U] >

RegExpIdentifierName[U] ::

730

© Ecma International 2019

730

RegExpIdentifierStart[?U]
RegExpIdentifierName[?U] RegExpIdentifierPart[?U]

RegExpIdentifierStart[U] ::

UnicodeIDStart
$
_
\ RegExpUnicodeEscapeSequence[?U]

RegExpIdentifierPart[U] ::

UnicodeIDContinue
$
\ RegExpUnicodeEscapeSequence[?U]
<ZWNJ>
<ZWJ>

RegExpUnicodeEscapeSequence[U] ::

[+U] u LeadSurrogate \u TrailSurrogate
[+U] u LeadSurrogate
[+U] u TrailSurrogate
[+U] u NonSurrogate
[~U] u Hex4Digits
[+U] u{ CodePoint }

Each \u TrailSurrogate for which the choice of associated u LeadSurrogate is ambiguous shall be associated with the
nearest possible u LeadSurrogate that would otherwise have no corresponding \u TrailSurrogate.

LeadSurrogate ::
Hex4Digits but only if the SV of Hex4Digits is in the inclusive range 0xD800 to 0xDBFF

TrailSurrogate ::
Hex4Digits but only if the SV of Hex4Digits is in the inclusive range 0xDC00 to 0xDFFF

NonSurrogate ::
Hex4Digits but only if the SV of Hex4Digits is not in the inclusive range 0xD800 to 0xDFFF

IdentityEscape[U] ::

[+U] SyntaxCharacter
[+U] /
[~U] SourceCharacter but not UnicodeIDContinue

DecimalEscape ::
NonZeroDigit DecimalDigitsopt [lookahead ∉ DecimalDigit]

CharacterClassEscape[U] ::

d
D
s

© Ecma International 2019

731

S
w
W
[+U] p{ UnicodePropertyValueExpression }
[+U] P{ UnicodePropertyValueExpression }

UnicodePropertyValueExpression ::
UnicodePropertyName = UnicodePropertyValue
LoneUnicodePropertyNameOrValue

UnicodePropertyName ::
UnicodePropertyNameCharacters

UnicodePropertyNameCharacters ::
UnicodePropertyNameCharacter UnicodePropertyNameCharactersopt

UnicodePropertyValue ::
UnicodePropertyValueCharacters

LoneUnicodePropertyNameOrValue ::
UnicodePropertyValueCharacters

UnicodePropertyValueCharacters ::
UnicodePropertyValueCharacter UnicodePropertyValueCharactersopt

UnicodePropertyValueCharacter ::
UnicodePropertyNameCharacter
0
1
2
3
4
5
6
7
8
9

UnicodePropertyNameCharacter ::
ControlLetter
_

CharacterClass[U] ::

[[lookahead ∉ { ^ }] ClassRanges[?U]]
[^ ClassRanges[?U]]

ClassRanges[U] ::

[empty]
NonemptyClassRanges[?U]

732

© Ecma International 2019

732

NonemptyClassRanges[U] ::

ClassAtom[?U]
ClassAtom[?U] NonemptyClassRangesNoDash[?U]
ClassAtom[?U] - ClassAtom[?U] ClassRanges[?U]

NonemptyClassRangesNoDash[U] ::

ClassAtom[?U]
ClassAtomNoDash[?U] NonemptyClassRangesNoDash[?U]
ClassAtomNoDash[?U] - ClassAtom[?U] ClassRanges[?U]

ClassAtom[U] ::

-
ClassAtomNoDash[?U]

ClassAtomNoDash[U] ::

SourceCharacter but not one of \ or] or -
\ ClassEscape[?U]

ClassEscape[U] ::

b
[+U] -
CharacterClassEscape[?U]
CharacterEscape[?U]

The ECMAScript language syntax and semantics defined in this annex are required when the ECMAScript host is a web
browser. The content of this annex is normative but optional if the ECMAScript host is not a web browser.

NOTE
This annex describes various legacy features and other characteristics of web browser based ECMAScript
implementations. All of the language features and behaviours specified in this annex have one or more undesirable
characteristics and in the absence of legacy usage would be removed from this specification. However, the usage of these
features by large numbers of existing web pages means that web browsers must continue to support them. The
specifications in this annex define the requirements for interoperable implementations of these legacy features.

These features are not considered part of the core ECMAScript language. Programmers should not use or assume the
existence of these features and behaviours when writing new ECMAScript code. ECMAScript implementations are
discouraged from implementing these features unless the implementation is part of a web browser or is required to run
the same legacy ECMAScript code that web browsers encounter.

B Additional ECMAScript Features for Web Browsers

B.1 Additional Syntax

B.1.1 Numeric Literals

© Ecma International 2019

733

The syntax and semantics of 11.8.3 is extended as follows except that this extension is not allowed for strict mode code:

NumericLiteral ::
DecimalLiteral
BinaryIntegerLiteral
OctalIntegerLiteral
HexIntegerLiteral
LegacyOctalIntegerLiteral

LegacyOctalIntegerLiteral ::
0 OctalDigit
LegacyOctalIntegerLiteral OctalDigit

DecimalIntegerLiteral ::
0
NonZeroDigit DecimalDigitsopt
NonOctalDecimalIntegerLiteral

NonOctalDecimalIntegerLiteral ::
0 NonOctalDigit
LegacyOctalLikeDecimalIntegerLiteral NonOctalDigit
NonOctalDecimalIntegerLiteral DecimalDigit

LegacyOctalLikeDecimalIntegerLiteral ::
0 OctalDigit
LegacyOctalLikeDecimalIntegerLiteral OctalDigit

NonOctalDigit :: one of
8 9

The MV of LegacyOctalIntegerLiteral :: 0 OctalDigit is the MV of OctalDigit.
The MV of LegacyOctalIntegerLiteral :: LegacyOctalIntegerLiteral OctalDigit is (the MV of
LegacyOctalIntegerLiteral times 8) plus the MV of OctalDigit.
The MV of DecimalIntegerLiteral :: NonOctalDecimalIntegerLiteral is the MV of
NonOctalDecimalIntegerLiteral.
The MV of NonOctalDecimalIntegerLiteral :: 0 NonOctalDigit is the MV of NonOctalDigit.
The MV of NonOctalDecimalIntegerLiteral :: LegacyOctalLikeDecimalIntegerLiteral NonOctalDigit is (the
MV of LegacyOctalLikeDecimalIntegerLiteral times 10) plus the MV of NonOctalDigit.
The MV of NonOctalDecimalIntegerLiteral :: NonOctalDecimalIntegerLiteral DecimalDigit is (the MV of
NonOctalDecimalIntegerLiteral times 10) plus the MV of DecimalDigit.
The MV of LegacyOctalLikeDecimalIntegerLiteral :: 0 OctalDigit is the MV of OctalDigit.
The MV of LegacyOctalLikeDecimalIntegerLiteral :: LegacyOctalLikeDecimalIntegerLiteral OctalDigit is (the
MV of LegacyOctalLikeDecimalIntegerLiteral times 10) plus the MV of OctalDigit.
The MV of NonOctalDigit :: 8 is 8.
The MV of NonOctalDigit :: 9 is 9.

Syntax

B.1.1.1 Static Semantics

734

© Ecma International 2019

734

The syntax and semantics of 11.8.4 is extended as follows except that this extension is not allowed for strict mode code:

EscapeSequence ::
CharacterEscapeSequence
LegacyOctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

LegacyOctalEscapeSequence ::
OctalDigit [lookahead ∉ OctalDigit]
ZeroToThree OctalDigit [lookahead ∉ OctalDigit]
FourToSeven OctalDigit
ZeroToThree OctalDigit OctalDigit

ZeroToThree :: one of
0 1 2 3

FourToSeven :: one of
4 5 6 7

This definition of EscapeSequence is not used in strict mode or when parsing TemplateCharacter.

The SV of EscapeSequence :: LegacyOctalEscapeSequence is the SV of the LegacyOctalEscapeSequence.
The SV of LegacyOctalEscapeSequence :: OctalDigit is the code unit whose value is the MV of the OctalDigit.
The SV of LegacyOctalEscapeSequence :: ZeroToThree OctalDigit is the code unit whose value is (8 times the
MV of the ZeroToThree) plus the MV of the OctalDigit.
The SV of LegacyOctalEscapeSequence :: FourToSeven OctalDigit is the code unit whose value is (8 times the
MV of the FourToSeven) plus the MV of the OctalDigit.
The SV of LegacyOctalEscapeSequence :: ZeroToThree OctalDigit OctalDigit is the code unit whose value is

(64 (that is, 82) times the MV of the ZeroToThree) plus (8 times the MV of the first OctalDigit) plus the MV of the
second OctalDigit.
The MV of ZeroToThree :: 0 is 0.
The MV of ZeroToThree :: 1 is 1.
The MV of ZeroToThree :: 2 is 2.
The MV of ZeroToThree :: 3 is 3.
The MV of FourToSeven :: 4 is 4.
The MV of FourToSeven :: 5 is 5.
The MV of FourToSeven :: 6 is 6.
The MV of FourToSeven :: 7 is 7.

The syntax and semantics of 11.4 is extended as follows except that this extension is not allowed when parsing source
code using the goal symbol Module:

B.1.2 String Literals

Syntax

B.1.2.1 Static Semantics

B.1.3 HTML-like Comments

© Ecma International 2019

735

Comment ::
MultiLineComment
SingleLineComment
SingleLineHTMLOpenComment
SingleLineHTMLCloseComment
SingleLineDelimitedComment

MultiLineComment ::
/* FirstCommentLineopt LineTerminator MultiLineCommentCharsopt */ HTMLCloseCommentopt

FirstCommentLine ::
SingleLineDelimitedCommentChars

SingleLineHTMLOpenComment ::
<!-- SingleLineCommentCharsopt

SingleLineHTMLCloseComment ::
LineTerminatorSequence HTMLCloseComment

SingleLineDelimitedComment ::
/* SingleLineDelimitedCommentCharsopt */

HTMLCloseComment ::
WhiteSpaceSequenceopt SingleLineDelimitedCommentSequenceopt --> SingleLineCommentCharsopt

SingleLineDelimitedCommentChars ::
SingleLineNotAsteriskChar SingleLineDelimitedCommentCharsopt
* SingleLinePostAsteriskCommentCharsopt

SingleLineNotAsteriskChar ::
SourceCharacter but not one of * or LineTerminator

SingleLinePostAsteriskCommentChars ::
SingleLineNotForwardSlashOrAsteriskChar SingleLineDelimitedCommentCharsopt
* SingleLinePostAsteriskCommentCharsopt

SingleLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or * or LineTerminator

WhiteSpaceSequence ::
WhiteSpace WhiteSpaceSequenceopt

SingleLineDelimitedCommentSequence ::
SingleLineDelimitedComment WhiteSpaceSequenceopt SingleLineDelimitedCommentSequenceopt

Similar to a MultiLineComment that contains a line terminator code point, a SingleLineHTMLCloseComment is
considered to be a LineTerminator for purposes of parsing by the syntactic grammar.

Syntax

B.1.4 Regular Expressions Patterns

736

© Ecma International 2019

736

The syntax of 21.2.1 is modified and extended as follows. These changes introduce ambiguities that are broken by the
ordering of grammar productions and by contextual information. When parsing using the following grammar, each
alternative is considered only if previous production alternatives do not match.

This alternative pattern grammar and semantics only changes the syntax and semantics of BMP patterns. The following
grammar extensions include productions parameterized with the [U] parameter. However, none of these extensions
change the syntax of Unicode patterns recognized when parsing with the [U] parameter present on the goal symbol.

Term[U, N] ::

[+U] Assertion[+U, ?N]
[+U] Atom[+U, ?N]
[+U] Atom[+U, ?N] Quantifier

[~U] QuantifiableAssertion[?N] Quantifier

[~U] Assertion[~U, ?N]
[~U] ExtendedAtom[?N] Quantifier

[~U] ExtendedAtom[?N]

Assertion[U, N] ::

^
$
\ b
\ B
[+U] (? = Disjunction[+U, ?N])
[+U] (? ! Disjunction[+U, ?N])
[~U] QuantifiableAssertion[?N]
(? <= Disjunction[?U, ?N])
(? <! Disjunction[?U, ?N])

QuantifiableAssertion[N] ::

(? = Disjunction[~U, ?N])
(? ! Disjunction[~U, ?N])

ExtendedAtom[N] ::

.
\ AtomEscape[~U, ?N]
\ [lookahead = c]
CharacterClass[~U]
(Disjunction[~U, ?N])
(? : Disjunction[~U, ?N])
InvalidBracedQuantifier
ExtendedPatternCharacter

InvalidBracedQuantifier ::
{ DecimalDigits }
{ DecimalDigits , }

Syntax

© Ecma International 2019

737

{ DecimalDigits , DecimalDigits }

ExtendedPatternCharacter ::
SourceCharacter but not one of ^ $ \ . * + ? () [|

AtomEscape[U, N] ::

[+U] DecimalEscape
[~U] DecimalEscape but only if the CapturingGroupNumber of DecimalEscape is <= _NcapturingParens_
CharacterClassEscape[?U]
CharacterEscape[~U, ?N]
[+N] k GroupName[?U]

CharacterEscape[U, N] ::

ControlEscape
c ControlLetter
0 [lookahead ∉ DecimalDigit]
HexEscapeSequence
RegExpUnicodeEscapeSequence[?U]
[~U] LegacyOctalEscapeSequence
IdentityEscape[?U, ?N]

IdentityEscape[U, N] ::

[+U] SyntaxCharacter
[+U] /
[~U] SourceCharacterIdentityEscape[?N]

SourceCharacterIdentityEscape[N] ::

[~N] SourceCharacter but not c
[+N] SourceCharacter but not one of c or k

ClassAtomNoDash[U, N] ::

SourceCharacter but not one of \ or] or -
\ ClassEscape[?U, ?N]
\ [lookahead = c]

ClassEscape[U, N] ::

b
[+U] -
[~U] c ClassControlLetter
CharacterClassEscape[?U]
CharacterEscape[?U, ?N]

ClassControlLetter ::
DecimalDigit
_

NOTE
When the same left hand sides occurs with both [+U] and [~U] guards it is to control the disambiguation priority.

738

© Ecma International 2019

738

The semantics of 21.2.1.1 is extended as follows:

ExtendedAtom :: InvalidBracedQuantifier

It is a Syntax Error if any source text matches this rule.

NonemptyClassRanges :: ClassAtom - ClassAtom ClassRanges

It is a Syntax Error if IsCharacterClass of the first ClassAtom is true or IsCharacterClass of the second ClassAtom
is true and this production has a [U] parameter.

NonemptyClassRangesNoDash :: ClassAtomNoDash - ClassAtom ClassRanges

It is a Syntax Error if IsCharacterClass of ClassAtomNoDash is true or IsCharacterClass of ClassAtom is true and
this production has a [U] parameter.

The semantics of 21.2.1.3 is extended as follows:

ClassAtomNoDash :: \ [lookahead = c]

1. Return false.

The semantics of 21.2.1.4 is extended as follows:

ClassAtomNoDash :: \ [lookahead = c]

1. Return the code point value of U+005C (REVERSE SOLIDUS).

ClassEscape :: c ClassControlLetter

1. Let ch be the code point matched by ClassControlLetter.
2. Let i be ch's code point value.
3. Return the remainder of dividing i by 32.

CharacterEscape :: LegacyOctalEscapeSequence

1. Evaluate the SV of the LegacyOctalEscapeSequence (see B.1.2) to obtain a code unit cu.
2. Return the numeric value of cu.

The semantics of 21.2.2 is extended as follows:

Within 21.2.2.5 reference to “ Atom :: (GroupSpecifier Disjunction) ” are to be interpreted as meaning “ Atom ::
(GroupSpecifier Disjunction) ” or “ ExtendedAtom :: (Disjunction) ”.

Term (21.2.2.5) includes the following additional evaluation rules:

B.1.4.1 Static Semantics: Early Errors

B.1.4.2 Static Semantics: IsCharacterClass

B.1.4.3 Static Semantics: CharacterValue

B.1.4.4 Pattern Semantics

© Ecma International 2019

739

The production Term :: QuantifiableAssertion Quantifier evaluates the same as the production Term :: Atom
Quantifier but with QuantifiableAssertion substituted for Atom.

The production Term :: ExtendedAtom Quantifier evaluates the same as the production Term :: Atom Quantifier
but with ExtendedAtom substituted for Atom.

The production Term :: ExtendedAtom evaluates the same as the production Term :: Atom but with ExtendedAtom
substituted for Atom.

Assertion (21.2.2.6) includes the following additional evaluation rule:

The production Assertion :: QuantifiableAssertion evaluates as follows:

1. Evaluate QuantifiableAssertion to obtain a Matcher m.
2. Return m.

Assertion (21.2.2.6) evaluation rules for the Assertion :: (? = Disjunction) and Assertion :: (? ! Disjunction
) productions are also used for the QuantifiableAssertion productions, but with QuantifiableAssertion substituted for
Assertion.

Atom (21.2.2.8) evaluation rules for the Atom productions except for Atom :: PatternCharacter are also used for the
ExtendedAtom productions, but with ExtendedAtom substituted for Atom. The following evaluation rules are also added:

The production ExtendedAtom :: \ [lookahead = c] evaluates as follows:

1. Let A be the CharSet containing the single character \ U+005C (REVERSE SOLIDUS).
2. Call CharacterSetMatcher(A, false) and return its Matcher result.

The production ExtendedAtom :: ExtendedPatternCharacter evaluates as follows:

1. Let ch be the character represented by ExtendedPatternCharacter.
2. Let A be a one-element CharSet containing the character ch.
3. Call CharacterSetMatcher(A, false) and return its Matcher result.

CharacterEscape (21.2.2.10) includes the following additional evaluation rule:

The production CharacterEscape :: LegacyOctalEscapeSequence evaluates as follows:

1. Let cv be the CharacterValue of this CharacterEscape.
2. Return the character whose character value is cv.

NonemptyClassRanges (21.2.2.15) modifies the following evaluation rule:

The production NonemptyClassRanges :: ClassAtom - ClassAtom ClassRanges evaluates as follows:

1. Evaluate the first ClassAtom to obtain a CharSet A.
2. Evaluate the second ClassAtom to obtain a CharSet B.
3. Evaluate ClassRanges to obtain a CharSet C.
4. Call CharacterRangeOrUnion(A, B) and let D be the resulting CharSet.
5. Return the union of CharSets D and C.

NonemptyClassRangesNoDash (21.2.2.16) modifies the following evaluation rule:

The production NonemptyClassRangesNoDash :: ClassAtomNoDash - ClassAtom ClassRanges evaluates as follows:

740

© Ecma International 2019

740

1. Evaluate ClassAtomNoDash to obtain a CharSet A.
2. Evaluate ClassAtom to obtain a CharSet B.
3. Evaluate ClassRanges to obtain a CharSet C.
4. Call CharacterRangeOrUnion(A, B) and let D be the resulting CharSet.
5. Return the union of CharSets D and C.

ClassEscape (21.2.2.19) includes the following additional evaluation rule:

The production ClassEscape :: c ClassControlLetter evaluates as follows:

1. Let cv be the CharacterValue of this ClassEscape.
2. Let c be the character whose character value is cv.
3. Return the CharSet containing the single character c.

ClassAtomNoDash (21.2.2.18) includes the following additional evaluation rule:

The production ClassAtomNoDash :: \ [lookahead = c] evaluates as follows:

1. Return the CharSet containing the single character \ U+005C (REVERSE SOLIDUS).

NOTE
This production can only be reached from the sequence \c within a character class where it is not followed by an
acceptable control character.

The abstract operation CharacterRangeOrUnion takes two CharSet parameters A and B and performs the following steps:

1. If Unicode is false, then
a. If A does not contain exactly one character or B does not contain exactly one character, then

i. Let C be the CharSet containing the single character - U+002D (HYPHEN-MINUS).
ii. Return the union of CharSets A, B and C.

2. Return CharacterRange(A, B).

When the ECMAScript host is a web browser the following additional properties of the standard built-in objects are
defined.

The entries in Table 83 are added to Table 7.

Table 83: Additional Well-known Intrinsic Objects

Intrinsic Name Global Name ECMAScript Language Association

%escape% escape The escape function (B.2.1.1)

%unescape% unescape The unescape function (B.2.1.2)

B.1.4.4.1 Runtime Semantics: CharacterRangeOrUnion (A, B)

B.2 Additional Built-in Properties

B.2.1 Additional Properties of the Global Object

© Ecma International 2019

741

The escape function is a property of the global object. It computes a new version of a String value in which certain
code units have been replaced by a hexadecimal escape sequence.

For those code units being replaced whose value is 0x00FF or less, a two-digit escape sequence of the form %xx is
used. For those characters being replaced whose code unit value is greater than 0x00FF, a four-digit escape sequence of
the form %uxxxx is used.

The escape function is the %escape% intrinsic object. When the escape function is called with one argument string,
the following steps are taken:

1. Set string to ? ToString(string).
2. Let length be the number of code units in string.
3. Let R be the empty string.
4. Let k be 0.
5. Repeat, while k < length,

a. Let char be the code unit (represented as a 16-bit unsigned integer) at index k within string.
b. If char is one of the code units in

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789@*_+-./",
then

i. Let S be the String value containing the single code unit char.
c. Else if char ≥ 256, then

i. Let n be the numeric value of char.
ii. Let S be the string-concatenation of:

"%u"
the String representation of n, formatted as a four-digit uppercase hexadecimal number, padded to
the left with zeroes if necessary

d. Else char < 256,
i. Let n be the numeric value of char.

ii. Let S be the string-concatenation of:
"%"
the String representation of n, formatted as a two-digit uppercase hexadecimal number, padded to
the left with a zero if necessary

e. Set R to the string-concatenation of the previous value of R and S.
f. Increase k by 1.

6. Return R.

NOTE
The encoding is partly based on the encoding described in RFC 1738, but the entire encoding specified in this standard is
described above without regard to the contents of RFC 1738. This encoding does not reflect changes to RFC 1738 made
by RFC 3986.

The unescape function is a property of the global object. It computes a new version of a String value in which each
escape sequence of the sort that might be introduced by the escape function is replaced with the code unit that it
represents.

B.2.1.1 escape (string)

B.2.1.2 unescape (string)

742

© Ecma International 2019

742

The unescape function is the %unescape% intrinsic object. When the unescape function is called with one
argument string, the following steps are taken:

1. Set string to ? ToString(string).
2. Let length be the number of code units in string.
3. Let R be the empty String.
4. Let k be 0.
5. Repeat, while k ≠ length

a. Let c be the code unit at index k within string.
b. If c is the code unit 0x0025 (PERCENT SIGN), then

i. If k ≤ length - 6 and the code unit at index k + 1 within string is the code unit 0x0075 (LATIN SMALL
LETTER U) and the four code units at indices k + 2, k + 3, k + 4, and k + 5 within string are all
hexadecimal digits, then

1. Set c to the code unit whose value is the integer represented by the four hexadecimal digits at
indices k + 2, k + 3, k + 4, and k + 5 within string.

2. Increase k by 5.
ii. Else if k ≤ length - 3 and the two code units at indices k + 1 and k + 2 within string are both hexadecimal

digits, then
1. Set c to the code unit whose value is the integer represented by two zeroes plus the two

hexadecimal digits at indices k + 1 and k + 2 within string.
2. Increase k by 2.

c. Set R to the string-concatenation of the previous value of R and c.
d. Increase k by 1.

6. Return R.

Object.prototype.__proto__ is an accessor property with attributes { [[Enumerable]]: false, [[Configurable]]: true }. The
[[Get]] and [[Set]] attributes are defined as follows:

The value of the [[Get]] attribute is a built-in function that requires no arguments. It performs the following steps:

1. Let O be ? ToObject(this value).
2. Return ? O.[[GetPrototypeOf]]().

The value of the [[Set]] attribute is a built-in function that takes an argument proto. It performs the following steps:

1. Let O be ? RequireObjectCoercible(this value).
2. If Type(proto) is neither Object nor Null, return undefined.
3. If Type(O) is not Object, return undefined.
4. Let status be ? O.[[SetPrototypeOf]](proto).
5. If status is false, throw a TypeError exception.
6. Return undefined.

B.2.2 Additional Properties of the Object.prototype Object

B.2.2.1 Object.prototype.__proto__

B.2.2.1.1 get Object.prototype.__proto__

B.2.2.1.2 set Object.prototype.__proto__

B.2.2.2 Object.prototype.__defineGetter__ (P, getter)

© Ecma International 2019

743

When the __defineGetter__ method is called with arguments P and getter, the following steps are taken:

1. Let O be ? ToObject(this value).
2. If IsCallable(getter) is false, throw a TypeError exception.
3. Let desc be PropertyDescriptor { [[Get]]: getter, [[Enumerable]]: true, [[Configurable]]: true }.
4. Let key be ? ToPropertyKey(P).
5. Perform ? DefinePropertyOrThrow(O, key, desc).
6. Return undefined.

When the __defineSetter__ method is called with arguments P and setter, the following steps are taken:

1. Let O be ? ToObject(this value).
2. If IsCallable(setter) is false, throw a TypeError exception.
3. Let desc be PropertyDescriptor { [[Set]]: setter, [[Enumerable]]: true, [[Configurable]]: true }.
4. Let key be ? ToPropertyKey(P).
5. Perform ? DefinePropertyOrThrow(O, key, desc).
6. Return undefined.

When the __lookupGetter__ method is called with argument P, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let key be ? ToPropertyKey(P).
3. Repeat,

a. Let desc be ? O.[[GetOwnProperty]](key).
b. If desc is not undefined, then

i. If IsAccessorDescriptor(desc) is true, return desc.[[Get]].
ii. Return undefined.

c. Set O to ? O.[[GetPrototypeOf]]().
d. If O is null, return undefined.

When the __lookupSetter__ method is called with argument P, the following steps are taken:

1. Let O be ? ToObject(this value).
2. Let key be ? ToPropertyKey(P).
3. Repeat,

a. Let desc be ? O.[[GetOwnProperty]](key).
b. If desc is not undefined, then

i. If IsAccessorDescriptor(desc) is true, return desc.[[Set]].
ii. Return undefined.

c. Set O to ? O.[[GetPrototypeOf]]().
d. If O is null, return undefined.

B.2.2.2 Object.prototype.__defineGetter__ (P, getter)

B.2.2.3 Object.prototype.__defineSetter__ (P, setter)

B.2.2.4 Object.prototype.__lookupGetter__ (P)

B.2.2.5 Object.prototype.__lookupSetter__ (P)

B.2.3 Additional Properties of the String.prototype Object

744

© Ecma International 2019

744

The substr method takes two arguments, start and length, and returns a substring of the result of converting the this
object to a String, starting from index start and running for length code units (or through the end of the String if length is
undefined). If start is negative, it is treated as sourceLength + start where sourceLength is the length of the String. The
result is a String value, not a String object. The following steps are taken:

1. Let O be ? RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let intStart be ? ToInteger(start).
4. If length is undefined, let end be +∞; otherwise let end be ? ToInteger(length).
5. Let size be the number of code units in S.
6. If intStart < 0, set intStart to max(size + intStart, 0).
7. Let resultLength be min(max(end, 0), size - intStart).
8. If resultLength ≤ 0, return the empty String "".
9. Return the String value containing resultLength consecutive code units from S beginning with the code unit at index

intStart.

NOTE
The substr function is intentionally generic; it does not require that its this value be a String object. Therefore it can
be transferred to other kinds of objects for use as a method.

When the anchor method is called with argument name, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "a", "name", name).

The abstract operation CreateHTML is called with arguments string, tag, attribute, and value. The arguments tag and
attribute must be String values. The following steps are taken:

1. Let str be ? RequireObjectCoercible(string).
2. Let S be ? ToString(str).
3. Let p1 be the string-concatenation of "<" and tag.
4. If attribute is not the empty String, then

a. Let V be ? ToString(value).
b. Let escapedV be the String value that is the same as V except that each occurrence of the code unit 0x0022

(QUOTATION MARK) in V has been replaced with the six code unit sequence """.
c. Set p1 to the string-concatenation of:

p1
the code unit 0x0020 (SPACE)
attribute
the code unit 0x003D (EQUALS SIGN)
the code unit 0x0022 (QUOTATION MARK)

B.2.3 Additional Properties of the String.prototype Object

B.2.3.1 String.prototype.substr (start, length)

B.2.3.2 String.prototype.anchor (name)

B.2.3.2.1 Runtime Semantics: CreateHTML (string, tag, attribute, value)

© Ecma International 2019

745

escapedV
the code unit 0x0022 (QUOTATION MARK)

5. Let p2 be the string-concatenation of p1 and ">".
6. Let p3 be the string-concatenation of p2 and S.
7. Let p4 be the string-concatenation of p3, "</", tag, and ">".
8. Return p4.

When the big method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "big", "", "").

When the blink method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "blink", "", "").

When the bold method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "b", "", "").

When the fixed method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "tt", "", "").

When the fontcolor method is called with argument color, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "font", "color", color).

When the fontsize method is called with argument size, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "font", "size", size).

B.2.3.3 String.prototype.big ()

B.2.3.4 String.prototype.blink ()

B.2.3.5 String.prototype.bold ()

B.2.3.6 String.prototype.fixed ()

B.2.3.7 String.prototype.fontcolor (color)

B.2.3.8 String.prototype.fontsize (size)

B.2.3.9 String.prototype.italics ()

746

© Ecma International 2019

746

When the italics method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "i", "", "").

When the link method is called with argument url, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "a", "href", url).

When the small method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "small", "", "").

When the strike method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "strike", "", "").

When the sub method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "sub", "", "").

When the sup method is called with no arguments, the following steps are taken:

1. Let S be the this value.
2. Return ? CreateHTML(S, "sup", "", "").

NOTE
The property trimStart is preferred. The trimLeft property is provided principally for compatibility with old
code. It is recommended that the trimStart property be used in new ECMAScript code.

The initial value of the trimLeft property is the same function object as the initial value of the
String.prototype.trimStart property.

B.2.3.10 String.prototype.link (url)

B.2.3.11 String.prototype.small ()

B.2.3.12 String.prototype.strike ()

B.2.3.13 String.prototype.sub ()

B.2.3.14 String.prototype.sup ()

B.2.3.15 String.prototype.trimLeft ()

B.2.3.16 String.prototype.trimRight ()

© Ecma International 2019

747

NOTE
The property trimEnd is preferred. The trimRight property is provided principally for compatibility with old code.
It is recommended that the trimEnd property be used in new ECMAScript code.

The initial value of the trimRight property is the same function object as the initial value of the
String.prototype.trimEnd property.

NOTE
The getFullYear method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”

When the getYear method is called with no arguments, the following steps are taken:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, return NaN.
3. Return YearFromTime(LocalTime(t)) - 1900.

NOTE
The setFullYear method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”

When the setYear method is called with one argument year, the following steps are taken:

1. Let t be ? thisTimeValue(this value).
2. If t is NaN, set t to +0; otherwise, set t to LocalTime(t).
3. Let y be ? ToNumber(year).
4. If y is NaN, then

a. Set the [[DateValue]] internal slot of this Date object to NaN.
b. Return NaN.

5. Let yi be ! ToInteger(y).
6. If 0 ≤ yi ≤ 99, let yyyy be yi + 1900.
7. Else, let yyyy be y.
8. Let d be MakeDay(yyyy, MonthFromTime(t), DateFromTime(t)).
9. Let date be UTC(MakeDate(d, TimeWithinDay(t))).

10. Set the [[DateValue]] internal slot of this Date object to TimeClip(date).
11. Return the value of the [[DateValue]] internal slot of this Date object.

NOTE
The property toUTCString is preferred. The toGMTString property is provided principally for compatibility with
old code. It is recommended that the toUTCString property be used in new ECMAScript code.

The function object that is the initial value of Date.prototype.toGMTString is the same function object that is

B.2.4 Additional Properties of the Date.prototype Object

B.2.4.1 Date.prototype.getYear ()

B.2.4.2 Date.prototype.setYear (year)

B.2.4.3 Date.prototype.toGMTString ()

748

© Ecma International 2019

748

https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object

the initial value of Date.prototype.toUTCString.

When the compile method is called with arguments pattern and flags, the following steps are taken:

1. Let O be the this value.
2. If Type(O) is not Object or Type(O) is Object and O does not have a [[RegExpMatcher]] internal slot, then

a. Throw a TypeError exception.
3. If Type(pattern) is Object and pattern has a [[RegExpMatcher]] internal slot, then

a. If flags is not undefined, throw a TypeError exception.
b. Let P be pattern.[[OriginalSource]].
c. Let F be pattern.[[OriginalFlags]].

4. Else,
a. Let P be pattern.
b. Let F be flags.

5. Return ? RegExpInitialize(O, P, F).

NOTE
The compile method completely reinitializes the this object RegExp with a new pattern and flags. An implementation
may interpret use of this method as an assertion that the resulting RegExp object will be used multiple times and hence is
a candidate for extra optimization.

The following Early Error rule is added to those in 12.2.6.1. When ObjectLiteral appears in a context where
ObjectAssignmentPattern is required the Early Error rule is not applied. In addition, it is not applied when initially
parsing a CoverParenthesizedExpressionAndArrowParameterList or a CoverCallExpressionAndAsyncArrowHead.

ObjectLiteral : { PropertyDefinitionList }
ObjectLiteral : { PropertyDefinitionList , }

It is a Syntax Error if PropertyNameList of PropertyDefinitionList contains any duplicate entries for
"__proto__" and at least two of those entries were obtained from productions of the form PropertyDefinition :
PropertyName : AssignmentExpression .

NOTE
The List returned by PropertyNameList does not include string literal property names defined as using a
ComputedPropertyName.

In 12.2.6.8 the PropertyDefinitionEvaluation algorithm for the production
PropertyDefinition : PropertyName : AssignmentExpression

B.2.5 Additional Properties of the RegExp.prototype Object

B.2.5.1 RegExp.prototype.compile (pattern, flags)

B.3 Other Additional Features

B.3.1 __proto__ Property Names in Object Initializers

© Ecma International 2019

749

is replaced with the following definition:

PropertyDefinition : PropertyName : AssignmentExpression

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).
3. If propKey is the String value "__proto__" and if IsComputedPropertyKey(PropertyName) is false, then

a. Let isProtoSetter be true.
4. Else,

a. Let isProtoSetter be false.
5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and isProtoSetter is false, then

a. Let propValue be the result of performing NamedEvaluation for AssignmentExpression with argument
propKey.

6. Else,
a. Let exprValueRef be the result of evaluating AssignmentExpression.
b. Let propValue be ? GetValue(exprValueRef).

7. If isProtoSetter is true, then
a. If Type(propValue) is either Object or Null, then

i. Return object.[[SetPrototypeOf]](propValue).
b. Return NormalCompletion(empty).

8. Assert: enumerable is true.
9. Assert: object is an ordinary, extensible object with no non-configurable properties.

10. Return ! CreateDataPropertyOrThrow(object, propKey, propValue).

Prior to ECMAScript 2015, the specification of LabelledStatement did not allow for the association of a statement label
with a FunctionDeclaration. However, a labelled FunctionDeclaration was an allowable extension for non-strict code
and most browser-hosted ECMAScript implementations supported that extension. In ECMAScript 2015, the grammar
productions for LabelledStatement permits use of FunctionDeclaration as a LabelledItem but 13.13.1 includes an Early
Error rule that produces a Syntax Error if that occurs. For web browser compatibility, that rule is modified with the
addition of the highlighted text:

LabelledItem : FunctionDeclaration

It is a Syntax Error if any strict mode source code matches this rule.

NOTE
The early error rules for WithStatement, IfStatement, and IterationStatement prevent these statements from containing a
labelled FunctionDeclaration in non-strict code.

Prior to ECMAScript 2015, the ECMAScript specification did not define the occurrence of a FunctionDeclaration as an
element of a Block statement's StatementList. However, support for that form of FunctionDeclaration was an allowable
extension and most browser-hosted ECMAScript implementations permitted them. Unfortunately, the semantics of such
declarations differ among those implementations. Because of these semantic differences, existing web ECMAScript code
that uses Block level function declarations is only portable among browser implementation if the usage only depends
upon the semantic intersection of all of the browser implementations for such declarations. The following are the use

B.3.2 Labelled Function Declarations

B.3.3 Block-Level Function Declarations Web Legacy Compatibility Semantics

750

© Ecma International 2019

750

cases that fall within that intersection semantics:

1. A function is declared and only referenced within a single block

One or more FunctionDeclarations whose BindingIdentifier is the name f occur within the function code of an
enclosing function g and that declaration is nested within a Block.
No other declaration of f that is not a var declaration occurs within the function code of g
All occurrences of f as an IdentifierReference are within the StatementList of the Block containing the
declaration of f.

2. A function is declared and possibly used within a single Block but also referenced by an inner function definition
that is not contained within that same Block.

One or more FunctionDeclarations whose BindingIdentifier is the name f occur within the function code of an
enclosing function g and that declaration is nested within a Block.
No other declaration of f that is not a var declaration occurs within the function code of g
There may be occurrences of f as an IdentifierReference within the StatementList of the Block containing the
declaration of f.
There is at least one occurrence of f as an IdentifierReference within another function h that is nested within g
and no other declaration of f shadows the references to f from within h.
All invocations of h occur after the declaration of f has been evaluated.

3. A function is declared and possibly used within a single block but also referenced within subsequent blocks.

One or more FunctionDeclaration whose BindingIdentifier is the name f occur within the function code of an
enclosing function g and that declaration is nested within a Block.
No other declaration of f that is not a var declaration occurs within the function code of g
There may be occurrences of f as an IdentifierReference within the StatementList of the Block containing the
declaration of f.
There is at least one occurrence of f as an IdentifierReference within the function code of g that lexically
follows the Block containing the declaration of f.

The first use case is interoperable with the semantics of Block level function declarations provided by ECMAScript 2015.
Any pre-existing ECMAScript code that employs that use case will operate using the Block level function declarations
semantics defined by clauses 9, 13, and 14 of this specification.

ECMAScript 2015 interoperability for the second and third use cases requires the following extensions to the clause 9,
clause 14, clause 18.2.1 and clause 15.1.11 semantics.

If an ECMAScript implementation has a mechanism for reporting diagnostic warning messages, a warning should be
produced when code contains a FunctionDeclaration for which these compatibility semantics are applied and introduce
observable differences from non-compatibility semantics. For example, if a var binding is not introduced because its
introduction would create an early error, a warning message should not be produced.

During FunctionDeclarationInstantiation the following steps are performed in place of step 28:

1. If strict is false, then
a. For each FunctionDeclaration f that is directly contained in the StatementList of a Block, CaseClause, or

DefaultClause, do

B.3.3.1 Changes to FunctionDeclarationInstantiation

© Ecma International 2019

751

i. Let F be StringValue of the BindingIdentifier of FunctionDeclaration f.
ii. If replacing the FunctionDeclaration f with a VariableStatement that has F as a BindingIdentifier would

not produce any Early Errors for func and F is not an element of parameterNames, then
1. NOTE: A var binding for F is only instantiated here if it is neither a VarDeclaredName, the name

of a formal parameter, or another FunctionDeclaration.
2. If initializedBindings does not contain F and F is not "arguments", then

a. Perform ! varEnvRec.CreateMutableBinding(F, false).
b. Perform varEnvRec.InitializeBinding(F, undefined).
c. Append F to instantiatedVarNames.

3. When the FunctionDeclaration f is evaluated, perform the following steps in place of the
FunctionDeclaration Evaluation algorithm provided in 14.1.22:

a. Let fenv be the running execution context's VariableEnvironment.
b. Let fenvRec be fenv's EnvironmentRecord.
c. Let benv be the running execution context's LexicalEnvironment.
d. Let benvRec be benv's EnvironmentRecord.
e. Let fobj be ! benvRec.GetBindingValue(F, false).
f. Perform ! fenvRec.SetMutableBinding(F, fobj, false).
g. Return NormalCompletion(empty).

During GlobalDeclarationInstantiation the following steps are performed in place of step 14:

1. Let strict be IsStrict of script.
2. If strict is false, then

a. Let declaredFunctionOrVarNames be a new empty List.
b. Append to declaredFunctionOrVarNames the elements of declaredFunctionNames.
c. Append to declaredFunctionOrVarNames the elements of declaredVarNames.
d. For each FunctionDeclaration f that is directly contained in the StatementList of a Block, CaseClause, or

DefaultClause Contained within script, do
i. Let F be StringValue of the BindingIdentifier of FunctionDeclaration f.

ii. If replacing the FunctionDeclaration f with a VariableStatement that has F as a BindingIdentifier would
not produce any Early Errors for script, then

1. If envRec.HasLexicalDeclaration(F) is false, then
a. Let fnDefinable be ? envRec.CanDeclareGlobalVar(F).
b. If fnDefinable is true, then

i. NOTE: A var binding for F is only instantiated here if it is neither a VarDeclaredName
nor the name of another FunctionDeclaration.

ii. If declaredFunctionOrVarNames does not contain F, then
i. Perform ? envRec.CreateGlobalVarBinding(F, false).

ii. Append F to declaredFunctionOrVarNames.
iii. When the FunctionDeclaration f is evaluated, perform the following steps in place of

the FunctionDeclaration Evaluation algorithm provided in 14.1.22:
i. Let genv be the running execution context's VariableEnvironment.

ii. Let genvRec be genv's EnvironmentRecord.
iii. Let benv be the running execution context's LexicalEnvironment.
iv. Let benvRec be benv's EnvironmentRecord.
v. Let fobj be ! benvRec.GetBindingValue(F, false).

vi. Perform ? genvRec.SetMutableBinding(F, fobj, false).

B.3.3.2 Changes to GlobalDeclarationInstantiation

752

© Ecma International 2019

752

vii. Return NormalCompletion(empty).

During EvalDeclarationInstantiation the following steps are performed in place of step 9:

1. If strict is false, then
a. Let declaredFunctionOrVarNames be a new empty List.
b. Append to declaredFunctionOrVarNames the elements of declaredFunctionNames.
c. Append to declaredFunctionOrVarNames the elements of declaredVarNames.
d. For each FunctionDeclaration f that is directly contained in the StatementList of a Block, CaseClause, or

DefaultClause Contained within body, do
i. Let F be StringValue of the BindingIdentifier of FunctionDeclaration f.

ii. If replacing the FunctionDeclaration f with a VariableStatement that has F as a BindingIdentifier would
not produce any Early Errors for body, then

1. Let bindingExists be false.
2. Let thisLex be lexEnv.
3. Assert: The following loop will terminate.
4. Repeat, while thisLex is not the same as varEnv,

a. Let thisEnvRec be thisLex's EnvironmentRecord.
b. If thisEnvRec is not an object Environment Record, then

i. If thisEnvRec.HasBinding(F) is true, then
i. Let bindingExists be true.

c. Set thisLex to thisLex's outer environment reference.
5. If bindingExists is false and varEnvRec is a global Environment Record, then

a. If varEnvRec.HasLexicalDeclaration(F) is false, then
i. Let fnDefinable be ? varEnvRec.CanDeclareGlobalVar(F).

b. Else,
i. Let fnDefinable be false.

6. Else,
a. Let fnDefinable be true.

7. If bindingExists is false and fnDefinable is true, then
a. If declaredFunctionOrVarNames does not contain F, then

i. If varEnvRec is a global Environment Record, then
i. Perform ? varEnvRec.CreateGlobalVarBinding(F, true).

ii. Else,
i. Let bindingExists be varEnvRec.HasBinding(F).

ii. If bindingExists is false, then
i. Perform ! varEnvRec.CreateMutableBinding(F, true).

ii. Perform ! varEnvRec.InitializeBinding(F, undefined).
iii. Append F to declaredFunctionOrVarNames.

b. When the FunctionDeclaration f is evaluated, perform the following steps in place of the
FunctionDeclaration Evaluation algorithm provided in 14.1.22:

i. Let genv be the running execution context's VariableEnvironment.
ii. Let genvRec be genv's EnvironmentRecord.

iii. Let benv be the running execution context's LexicalEnvironment.
iv. Let benvRec be benv's EnvironmentRecord.
v. Let fobj be ! benvRec.GetBindingValue(F, false).

vi. Perform ? genvRec.SetMutableBinding(F, fobj, false).

B.3.3.3 Changes to EvalDeclarationInstantiation

© Ecma International 2019

753

vii. Return NormalCompletion(empty).

For web browser compatibility, that rule is modified with the addition of the highlighted text:

Block : { StatementList }

It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries, unless the
source code matching this production is not strict mode code and the duplicate entries are only bound by
FunctionDeclarations.

For web browser compatibility, that rule is modified with the addition of the highlighted text:

SwitchStatement : switch (Expression) CaseBlock

It is a Syntax Error if the LexicallyDeclaredNames of CaseBlock contains any duplicate entries, unless the source
code matching this production is not strict mode code and the duplicate entries are only bound by
FunctionDeclarations.

During BlockDeclarationInstantiation the following steps are performed in place of step 4.a.ii.1:

1. If envRec.HasBinding(dn) is false, then
a. Perform ! envRec.CreateMutableBinding(dn, false).

During BlockDeclarationInstantiation the following steps are performed in place of step 4.b.iii:

1. If envRec.HasBinding(fn) is false, then
a. Perform envRec.InitializeBinding(fn, fo).

2. Else,
a. Assert: d is a FunctionDeclaration.
b. Perform envRec.SetMutableBinding(fn, fo, false).

The following augments the IfStatement production in 13.6:

IfStatement[Yield, Await, Return] :

if (Expression[+In, ?Yield, ?Await]) FunctionDeclaration[?Yield, ?Await, ~Default]
else Statement[?Yield, ?Await, ?Return]

if (Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return] else
FunctionDeclaration[?Yield, ?Await, ~Default]

if (Expression[+In, ?Yield, ?Await]) FunctionDeclaration[?Yield, ?Await, ~Default]
else FunctionDeclaration[?Yield, ?Await, ~Default]

if (Expression[+In, ?Yield, ?Await]) FunctionDeclaration[?Yield, ?Await, ~Default]

B.3.3.4 Changes to Block Static Semantics: Early Errors

B.3.3.5 Changes to switch Statement Static Semantics: Early Errors

B.3.3.6 Changes to BlockDeclarationInstantiation

B.3.4 FunctionDeclarations in IfStatement Statement Clauses

754

© Ecma International 2019

754

This production only applies when parsing non-strict code. Code matching this production is processed as if each
matching occurrence of FunctionDeclaration[?Yield, ?Await, ~Default] was the sole StatementListItem of a

BlockStatement occupying that position in the source code. The semantics of such a synthetic BlockStatement includes
the web legacy compatibility semantics specified in B.3.3.

The content of subclause 13.15.1 is replaced with the following:

Catch : catch (CatchParameter) Block

It is a Syntax Error if BoundNames of CatchParameter contains any duplicate elements.
It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the
LexicallyDeclaredNames of Block.
It is a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the VarDeclaredNames of
Block unless CatchParameter is CatchParameter : BindingIdentifier .

NOTE
The Block of a Catch clause may contain var declarations that bind a name that is also bound by the CatchParameter.
At runtime, such bindings are instantiated in the VariableDeclarationEnvironment. They do not shadow the same-named
bindings introduced by the CatchParameter and hence the Initializer for such var declarations will assign to the
corresponding catch parameter rather than the var binding.

This modified behaviour also applies to var and function declarations introduced by direct eval calls contained
within the Block of a Catch clause. This change is accomplished by modifying the algorithm of 18.2.1.3 as follows:

Step 5.d.ii.2.a.i is replaced by:

1. If thisEnvRec is not the Environment Record for a Catch clause, throw a SyntaxError exception.

Step 9.d.ii.4.b.i.i is replaced by:

1. If thisEnvRec is not the Environment Record for a Catch clause, let bindingExists be true.

The following augments the IterationStatement production in 13.7:

IterationStatement[Yield, Await, Return] :

for (var BindingIdentifier[?Yield, ?Await] Initializer[~In, ?Yield, ?Await] in
Expression[+In, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

This production only applies when parsing non-strict code.

The static semantics of ContainsDuplicateLabels in 13.7.5.3 are augmented with the following:

IterationStatement : for (var BindingIdentifier Initializer in Expression) Statement

1. Return ContainsDuplicateLabels of Statement with argument labelSet.

The static semantics of ContainsUndefinedBreakTarget in 13.7.5.4 are augmented with the following:

B.3.5 VariableStatements in Catch Blocks

B.3.6 Initializers in ForIn Statement Heads

© Ecma International 2019

755

IterationStatement : for (var BindingIdentifier Initializer in Expression) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

The static semantics of ContainsUndefinedContinueTarget in 13.7.5.5 are augmented with the following:

IterationStatement : for (var BindingIdentifier Initializer in Expression) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

The static semantics of IsDestructuring in 13.7.5.6 are augmented with the following:

BindingIdentifier :
Identifier
yield
await

1. Return false.

The static semantics of VarDeclaredNames in 13.7.5.7 are augmented with the following:

IterationStatement : for (var BindingIdentifier Initializer in Expression) Statement

1. Let names be the BoundNames of BindingIdentifier.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

The static semantics of VarScopedDeclarations in 13.7.5.8 are augmented with the following:

IterationStatement : for (var BindingIdentifier Initializer in Expression) Statement

1. Let declarations be a List containing BindingIdentifier.
2. Append to declarations the elements of the VarScopedDeclarations of Statement.
3. Return declarations.

The runtime semantics of LabelledEvaluation in 13.7.5.11 are augmented with the following:

IterationStatement : for (var BindingIdentifier Initializer in Expression) Statement

1. Let bindingId be StringValue of BindingIdentifier.
2. Let lhs be ? ResolveBinding(bindingId).
3. If IsAnonymousFunctionDefinition(Initializer) is true, then

a. Let value be the result of performing NamedEvaluation for Initializer with argument bindingId.
4. Else,

a. Let rhs be the result of evaluating Initializer.
b. Let value be ? GetValue(rhs).

5. Perform ? PutValue(lhs, value).
6. Let keyResult be ? ForIn/OfHeadEvaluation(« », Expression, enumerate).
7. Return ? ForIn/OfBodyEvaluation(BindingIdentifier, Statement, keyResult, enumerate, varBinding, labelSet).

An [[IsHTMLDDA]] internal slot may exist on implementation-defined objects. Objects with an [[IsHTMLDDA]]

B.3.7 The [[IsHTMLDDA]] Internal Slot

756

© Ecma International 2019

756

internal slot behave like undefined in the ToBoolean and Abstract Equality Comparison abstract operations and when
used as an operand for the typeof operator.

NOTE
Objects with an [[IsHTMLDDA]] internal slot are never created by this specification. However, the document.all
object in web browsers is a host-created exotic object with this slot that exists for web compatibility purposes. There are
no other known examples of this type of object and implementations should not create any with the exception of
document.all.

The result column in Table 9 for an argument type of Object is replaced with the following algorithm:

1. If argument has an [[IsHTMLDDA]] internal slot, return false.
2. Return true.

The following steps are inserted after step 3 of the Abstract Equality Comparison algorithm:

1. If Type(x) is Object and x has an [[IsHTMLDDA]] internal slot and y is either null or undefined, return true.
2. If x is either null or undefined and Type(y) is Object and y has an [[IsHTMLDDA]] internal slot, return true.

The following table entry is inserted into Table 35 immediately preceeding the entry for "Object (implements [[Call]])":

Table 84: Additional typeof Operator Results

Type of val Result

Object (has an [[IsHTMLDDA]] internal slot) "undefined"

The strict mode restriction and exceptions

implements, interface, let, package, private, protected, public, static, and yield are
reserved words within strict mode code. (11.6.2).
A conforming implementation, when processing strict mode code, must not extend, as described in B.1.1, the
syntax of NumericLiteral to include LegacyOctalIntegerLiteral, nor extend the syntax of DecimalIntegerLiteral to
include NonOctalDecimalIntegerLiteral.
A conforming implementation, when processing strict mode code, may not extend the syntax of EscapeSequence to
include LegacyOctalEscapeSequence as described in B.1.2.
Assignment to an undeclared identifier or otherwise unresolvable reference does not create a property in the global
object. When a simple assignment occurs within strict mode code, its LeftHandSideExpression must not evaluate to
an unresolvable Reference. If it does a ReferenceError exception is thrown (6.2.4.9). The LeftHandSideExpression
also may not be a reference to a data property with the attribute value { [[Writable]]: false }, to an accessor

B.3.7.1 Changes to ToBoolean

B.3.7.2 Changes to Abstract Equality Comparison

B.3.7.3 Changes to the typeof Operator

C The Strict Mode of ECMAScript

© Ecma International 2019

757

https://html.spec.whatwg.org/multipage/obsolete.html#dom-document-all

property with the attribute value { [[Set]]: undefined }, nor to a non-existent property of an object whose
[[Extensible]] internal slot has the value false. In these cases a TypeError exception is thrown (12.15).
An IdentifierReference with the StringValue "eval" or "arguments" may not appear as the
LeftHandSideExpression of an Assignment operator (12.15) or of an UpdateExpression (12.4) or as the
UnaryExpression operated upon by a Prefix Increment (12.4.6) or a Prefix Decrement (12.4.7) operator.
Arguments objects for strict functions define a non-configurable accessor property "callee" which throws a
TypeError exception on access (9.4.4.6).
Arguments objects for strict functions do not dynamically share their array-indexed property values with the
corresponding formal parameter bindings of their functions. (9.4.4).
For strict functions, if an arguments object is created the binding of the local identifier arguments to the
arguments object is immutable and hence may not be the target of an assignment expression. (9.2.15).
It is a SyntaxError if the StringValue of a BindingIdentifier is "eval" or "arguments" within strict mode
code (12.1.1).
Strict mode eval code cannot instantiate variables or functions in the variable environment of the caller to eval.
Instead, a new variable environment is created and that environment is used for declaration binding instantiation for
the eval code (18.2.1).
If this is evaluated within strict mode code, then the this value is not coerced to an object. A this value of
undefined or null is not converted to the global object and primitive values are not converted to wrapper objects.
The this value passed via a function call (including calls made using Function.prototype.apply and
Function.prototype.call) do not coerce the passed this value to an object (9.2.1.2, 19.2.3.1, 19.2.3.3).
When a delete operator occurs within strict mode code, a SyntaxError is thrown if its UnaryExpression is a
direct reference to a variable, function argument, or function name (12.5.3.1).
When a delete operator occurs within strict mode code, a TypeError is thrown if the property to be deleted has
the attribute { [[Configurable]]: false } (12.5.3.2).
Strict mode code may not include a WithStatement. The occurrence of a WithStatement in such a context is a
SyntaxError (13.11.1).
It is a SyntaxError if a CatchParameter occurs within strict mode code and BoundNames of CatchParameter
contains either eval or arguments (13.15.1).
It is a SyntaxError if the same BindingIdentifier appears more than once in the FormalParameters of a strict
function. An attempt to create such a function using a Function, Generator, or AsyncFunction
constructor is a SyntaxError (14.1.2, 19.2.1.1.1).
An implementation may not extend, beyond that defined in this specification, the meanings within strict functions
of properties named caller or arguments of function instances.

8.1.1.4.15-8.1.1.4.18 Edition 5 and 5.1 used a property existence test to determine whether a global object property
corresponding to a new global declaration already existed. ECMAScript 2015 uses an own property existence test. This
corresponds to what has been most commonly implemented by web browsers.

9.4.2.1: The 5th Edition moved the capture of the current array length prior to the integer conversion of the array index or
new length value. However, the captured length value could become invalid if the conversion process has the side-effect
of changing the array length. ECMAScript 2015 specifies that the current array length must be captured after the possible
occurrence of such side-effects.

D Corrections and Clarifications in ECMAScript 2015
with Possible Compatibility Impact

758

© Ecma International 2019

758

20.3.1.14: Previous editions permitted the TimeClip abstract operation to return either +0 or -0 as the representation of a
0 time value. ECMAScript 2015 specifies that +0 always returned. This means that for ECMAScript 2015 the time value
of a Date object is never observably -0 and methods that return time values never return -0.

20.3.1.15: If a time zone offset is not present, the local time zone is used. Edition 5.1 incorrectly stated that a missing
time zone should be interpreted as "z".

20.3.4.36: If the year cannot be represented using the Date Time String Format specified in 20.3.1.15 a RangeError
exception is thrown. Previous editions did not specify the behaviour for that case.

20.3.4.41: Previous editions did not specify the value returned by Date.prototype.toString when this time value is NaN.
ECMAScript 2015 specifies the result to be the String value is "Invalid Date".

21.2.3.1, 21.2.3.2.4: Any LineTerminator code points in the value of the source property of a RegExp instance must
be expressed using an escape sequence. Edition 5.1 only required the escaping of "/".

21.2.5.7, 21.2.5.9: In previous editions, the specifications for String.prototype.match and
String.prototype.replace was incorrect for cases where the pattern argument was a RegExp value whose
global is flag set. The previous specifications stated that for each attempt to match the pattern, if lastIndex did not
change it should be incremented by 1. The correct behaviour is that lastIndex should be incremented by one only if
the pattern matched the empty string.

22.1.3.27, 22.1.3.27.1: Previous editions did not specify how a NaN value returned by a comparefn was interpreted by
Array.prototype.sort. ECMAScript 2015 specifies that such as value is treated as if +0 was returned from the
comparefn. ECMAScript 2015 also specifies that ToNumber is applied to the result returned by a comparefn. In previous
editions, the effect of a comparefn result that is not a Number value was implementation-dependent. In practice,
implementations call ToNumber.

7.1.3.1: In ECMAScript 2015, ToNumber applied to a String value now recognizes and converts BinaryIntegerLiteral
and OctalIntegerLiteral numeric strings. In previous editions such strings were converted to NaN.

6.2.4: In ECMAScript 2015, Function calls are not allowed to return a Reference value.

11.6: In ECMAScript 2015, the valid code points for an IdentifierName are specified in terms of the Unicode properties
“ID_Start” and “ID_Continue”. In previous editions, the valid IdentifierName or Identifier code points were specified by
enumerating various Unicode code point categories.

11.9.1: In ECMAScript 2015, Automatic Semicolon Insertion adds a semicolon at the end of a do-while statement if the
semicolon is missing. This change aligns the specification with the actual behaviour of most existing implementations.

12.2.6.1: In ECMAScript 2015, it is no longer an early error to have duplicate property names in Object Initializers.

12.15.1: In ECMAScript 2015, strict mode code containing an assignment to an immutable binding such as the function
name of a FunctionExpression does not produce an early error. Instead it produces a runtime error.

13.2: In ECMAScript 2015, a StatementList beginning with the token let followed by the input elements LineTerminator
then Identifier is the start of a LexicalDeclaration. In previous editions, automatic semicolon insertion would always

E Additions and Changes That Introduce
Incompatibilities with Prior Editions

© Ecma International 2019

759

insert a semicolon before the Identifier input element.

13.5: In ECMAScript 2015, a StatementListItem beginning with the token let followed by the token [is the start of a
LexicalDeclaration. In previous editions such a sequence would be the start of an ExpressionStatement.

13.6.7: In ECMAScript 2015, the normal completion value of an IfStatement is never the value empty. If no Statement
part is evaluated or if the evaluated Statement part produces a normal completion whose value is empty, the completion
value of the IfStatement is undefined.

13.7: In ECMAScript 2015, if the (token of a for statement is immediately followed by the token sequence let [then
the let is treated as the start of a LexicalDeclaration. In previous editions such a token sequence would be the start of
an Expression.

13.7: In ECMAScript 2015, if the (token of a for-in statement is immediately followed by the token sequence let [
then the let is treated as the start of a ForDeclaration. In previous editions such a token sequence would be the start of
an LeftHandSideExpression.

13.7: Prior to ECMAScript 2015, an initialization expression could appear as part of the VariableDeclaration that
precedes the in keyword. In ECMAScript 2015, the ForBinding in that same position does not allow the occurrence of
such an initializer. In ECMAScript 2017, such an initializer is permitted only in non-strict code.

13.7: In ECMAScript 2015, the completion value of an IterationStatement is never the value empty. If the Statement part
of an IterationStatement is not evaluated or if the final evaluation of the Statement part produces a completion whose
value is empty, the completion value of the IterationStatement is undefined.

13.11.7: In ECMAScript 2015, the normal completion value of a WithStatement is never the value empty. If evaluation
of the Statement part of a WithStatement produces a normal completion whose value is empty, the completion value of
the WithStatement is undefined.

13.12.11: In ECMAScript 2015, the completion value of a SwitchStatement is never the value empty. If the CaseBlock
part of a SwitchStatement produces a completion whose value is empty, the completion value of the SwitchStatement is
undefined.

13.15: In ECMAScript 2015, it is an early error for a Catch clause to contain a var declaration for the same Identifier
that appears as the Catch clause parameter. In previous editions, such a variable declaration would be instantiated in the
enclosing variable environment but the declaration's Initializer value would be assigned to the Catch parameter.

13.15, 18.2.1.3: In ECMAScript 2015, a runtime SyntaxError is thrown if a Catch clause evaluates a non-strict direct
eval whose eval code includes a var or FunctionDeclaration declaration that binds the same Identifier that
appears as the Catch clause parameter.

13.15.8: In ECMAScript 2015, the completion value of a TryStatement is never the value empty. If the Block part of a
TryStatement evaluates to a normal completion whose value is empty, the completion value of the TryStatement is
undefined. If the Block part of a TryStatement evaluates to a throw completion and it has a Catch part that evaluates to a
normal completion whose value is empty, the completion value of the TryStatement is undefined if there is no Finally
clause or if its Finally clause evalulates to an empty normal completion.

14.3.8 In ECMAScript 2015, the function objects that are created as the values of the [[Get]] or [[Set]] attribute of
accessor properties in an ObjectLiteral are not constructor functions and they do not have a prototype own property.
In the previous edition, they were constructors and had a prototype property.

19.1.2.6: In ECMAScript 2015, if the argument to Object.freeze is not an object it is treated as if it was a non-

760

© Ecma International 2019

760

extensible ordinary object with no own properties. In the previous edition, a non-object argument always causes a
TypeError to be thrown.

19.1.2.8: In ECMAScript 2015, if the argument to Object.getOwnPropertyDescriptor is not an object an
attempt is made to coerce the argument using ToObject. If the coercion is successful the result is used in place of the
original argument value. In the previous edition, a non-object argument always causes a TypeError to be thrown.

19.1.2.10: In ECMAScript 2015, if the argument to Object.getOwnPropertyNames is not an object an attempt is
made to coerce the argument using ToObject. If the coercion is successful the result is used in place of the original
argument value. In the previous edition, a non-object argument always causes a TypeError to be thrown.

19.1.2.12: In ECMAScript 2015, if the argument to Object.getPrototypeOf is not an object an attempt is made
to coerce the argument using ToObject. If the coercion is successful the result is used in place of the original argument
value. In the previous edition, a non-object argument always causes a TypeError to be thrown.

19.1.2.14: In ECMAScript 2015, if the argument to Object.isExtensible is not an object it is treated as if it was
a non-extensible ordinary object with no own properties. In the previous edition, a non-object argument always causes a
TypeError to be thrown.

19.1.2.15: In ECMAScript 2015, if the argument to Object.isFrozen is not an object it is treated as if it was a non-
extensible ordinary object with no own properties. In the previous edition, a non-object argument always causes a
TypeError to be thrown.

19.1.2.16: In ECMAScript 2015, if the argument to Object.isSealed is not an object it is treated as if it was a non-
extensible ordinary object with no own properties. In the previous edition, a non-object argument always causes a
TypeError to be thrown.

19.1.2.17: In ECMAScript 2015, if the argument to Object.keys is not an object an attempt is made to coerce the
argument using ToObject. If the coercion is successful the result is used in place of the original argument value. In the
previous edition, a non-object argument always causes a TypeError to be thrown.

19.1.2.18: In ECMAScript 2015, if the argument to Object.preventExtensions is not an object it is treated as if
it was a non-extensible ordinary object with no own properties. In the previous edition, a non-object argument always
causes a TypeError to be thrown.

19.1.2.20: In ECMAScript 2015, if the argument to Object.seal is not an object it is treated as if it was a non-
extensible ordinary object with no own properties. In the previous edition, a non-object argument always causes a
TypeError to be thrown.

19.2.3.2: In ECMAScript 2015, the [[Prototype]] internal slot of a bound function is set to the [[GetPrototypeOf]] value
of its target function. In the previous edition, [[Prototype]] was always set to %FunctionPrototype%.

19.2.4.1: In ECMAScript 2015, the "length" property of function instances is configurable. In previous editions it
was non-configurable.

19.5.6.2: In ECMAScript 2015, the [[Prototype]] internal slot of a NativeError constructor is the Error constructor. In
previous editions it was the Function prototype object.

20.3.4 In ECMAScript 2015, the Date prototype object is not a Date instance. In previous editions it was a Date instance
whose TimeValue was NaN.

21.1.3.10 In ECMAScript 2015, the String.prototype.localeCompare function must treat Strings that are

© Ecma International 2019

761

canonically equivalent according to the Unicode standard as being identical. In previous editions implementations were
permitted to ignore canonical equivalence and could instead use a bit-wise comparison.

21.1.3.24 and 21.1.3.26 In ECMAScript 2015, lowercase/upper conversion processing operates on code points. In
previous editions such the conversion processing was only applied to individual code units. The only affected code points
are those in the Deseret block of Unicode.

21.1.3.27 In ECMAScript 2015, the String.prototype.trim method is defined to recognize white space code
points that may exists outside of the Unicode BMP. However, as of Unicode 7 no such code points are defined. In
previous editions such code points would not have been recognized as white space.

21.2.3.1 In ECMAScript 2015, If the pattern argument is a RegExp instance and the flags argument is not undefined, a
new RegExp instance is created just like pattern except that pattern's flags are replaced by the argument flags. In
previous editions a TypeError exception was thrown when pattern was a RegExp instance and flags was not undefined.

21.2.5 In ECMAScript 2015, the RegExp prototype object is not a RegExp instance. In previous editions it was a
RegExp instance whose pattern is the empty string.

21.2.5 In ECMAScript 2015, source, global, ignoreCase, and multiline are accessor properties defined on
the RegExp prototype object. In previous editions they were data properties defined on RegExp instances.

This specification is authored on GitHub in a plaintext source format called Ecmarkup. Ecmarkup is an HTML and
Markdown dialect that provides a framework and toolset for authoring ECMAScript specifications in plaintext and
processing the specification into a full-featured HTML rendering that follows the editorial conventions for this document.
Ecmarkup builds on and integrates a number of other formats and technologies including Grammarkdown for defining
syntax and Ecmarkdown for authoring algorithm steps. PDF renderings of this specification are produced by printing the
HTML rendering to a PDF.

Prior editions of this specification were authored using Word—the Ecmarkup source text that formed the basis of this
edition was produced by converting the ECMAScript 2015 Word document to Ecmarkup using an automated conversion
tool.

1. IEEE Std 754-2008: IEEE Standard for Floating-Point Arithmetic. Institute of Electrical and Electronic Engineers,
New York (2008)

2. The Unicode Standard, available at <https://unicode.org/versions/latest>
3. Unicode Technical Note #5: Canonical Equivalence in Applications, available at <https://unicode.org/notes/tn5/>
4. Unicode Technical Standard #10: Unicode Collation Algorithm, available at <https://unicode.org/reports/tr10/>
5. Unicode Standard Annex #15, Unicode Normalization Forms, available at <https://unicode.org/reports/tr15/>
6. Unicode Standard Annex #18: Unicode Regular Expressions, available at <https://unicode.org/reports/tr18/>
7. Unicode Standard Annex #24: Unicode Script Property, available at <https://unicode.org/reports/tr24/>
8. Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, available at

<https://unicode.org/reports/tr31/>
9. Unicode Standard Annex #44: Unicode Character Database, available at <https://unicode.org/reports/tr44/>

F Colophon

G Bibliography

762

© Ecma International 2019

762

https://github.com/tc39/ecma262
https://github.com/bterlson/ecmarkup
https://github.com/rbuckton/grammarkdown
https://github.com/domenic/ecmarkdown
https://unicode.org/versions/latest
https://unicode.org/notes/tn5/
https://unicode.org/reports/tr10/
https://unicode.org/reports/tr15/
https://unicode.org/reports/tr18/
https://unicode.org/reports/tr24/
https://unicode.org/reports/tr31/
https://unicode.org/reports/tr44/

10. Unicode Technical Standard #51: Unicode Emoji, available at <https://unicode.org/reports/tr51/>
11. IANA Time Zone Database, available at <https://www.iana.org/time-zones>
12. ISO 8601:2004(E) Data elements and interchange formats – Information interchange — Representation of dates

and times
13. RFC 1738 “Uniform Resource Locators (URL)”, available at <https://tools.ietf.org/html/rfc1738>
14. RFC 2396 “Uniform Resource Identifiers (URI): Generic Syntax”, available at <https://tools.ietf.org/html/rfc2396>
15. RFC 3629 “UTF-8, a transformation format of ISO 10646”, available at <https://tools.ietf.org/html/rfc3629>

Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web: https://ecma-international.org/

© 2019 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it may be prepared,
copied, published, and distributed, in whole or in part, provided that the above copyright notice and this Copyright
License and Disclaimer are included on all such copies and derivative works. The only derivative works that are
permissible under this Copyright License and Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or explanation
(such as an annotated version of the document),

(ii) works which incorporate all or portion of this document for the purpose of incorporating features that provide
accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g. by copy and paste
wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the copyright
notice or references to Ecma International, except as required to translate it into languages other than English or into a
different format.

The official version of an Ecma International document is the English language version on the Ecma International
website. In the event of discrepancies between a translated version and the official version, the official version shall
govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or its successors or

H Copyright & Software License

Copyright Notice

© Ecma International 2019

763

https://unicode.org/reports/tr51/
https://www.iana.org/time-zones
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc2396
https://tools.ietf.org/html/rfc3629
https://ecma-international.org/

assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA INTERNATIONAL
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

All Software contained in this document ("Software") is protected by copyright and is being made available under the
"BSD License", included below. This Software may be subject to third party rights (rights from parties other than Ecma
International), including patent rights, and no licenses under such third party rights are granted under this license even if
the third party concerned is a member of Ecma International. SEE THE ECMA CODE OF CONDUCT IN PATENT
MATTERS AVAILABLE AT https://ecma-international.org/memento/codeofconduct.htm FOR INFORMATION
REGARDING THE LICENSING OF PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA
INTERNATIONAL STANDARDS.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the authors nor Ecma International may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ECMA
INTERNATIONAL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Software License

764

© Ecma International 2019

764

	ECMA-262, 10th edition, June 2019
	ECMAScript® 2019 Language Specification
	Contributing to this Specification
	Introduction
	1Scope
	2Conformance
	3Normative References
	4Overview
	4.1Web Scripting
	4.2ECMAScript Overview
	4.2.1Objects
	4.2.2The Strict Variant of ECMAScript
	4.3Terms and Definitions
	4.3.1type
	4.3.2primitive value
	4.3.3object
	4.3.4constructor
	4.3.5prototype
	4.3.6ordinary object
	4.3.7exotic object
	4.3.8standard object
	4.3.9built-in object
	4.3.10undefined value
	4.3.11Undefined type
	4.3.12null value
	4.3.13Null type
	4.3.14Boolean value
	4.3.15Boolean type
	4.3.16Boolean object
	4.3.17String value
	4.3.18String type
	4.3.19String object
	4.3.20Number value
	4.3.21Number type
	4.3.22Number object
	4.3.23Infinity
	4.3.24NaN
	4.3.25Symbol value
	4.3.26Symbol type
	4.3.27Symbol object
	4.3.28function
	4.3.29built-in function
	4.3.30property
	4.3.31method
	4.3.32built-in method
	4.3.33attribute
	4.3.34own property
	4.3.35inherited property
	4.4Organization of This Specification
	5Notational Conventions
	5.1Syntactic and Lexical Grammars
	5.1.1Context-Free Grammars
	5.1.2The Lexical and RegExp Grammars
	5.1.3The Numeric String Grammar
	5.1.4The Syntactic Grammar
	5.1.5Grammar Notation
	5.2Algorithm Conventions
	5.2.1Abstract Operations
	5.2.2Syntax-Directed Operations
	5.2.3Runtime Semantics
	5.2.3.1Implicit Completion Values
	5.2.3.2Throw an Exception
	5.2.3.3ReturnIfAbrupt
	5.2.3.4ReturnIfAbrupt Shorthands
	5.2.4Static Semantics
	5.2.5Mathematical Operations
	6ECMAScript Data Types and Values
	6.1ECMAScript Language Types
	6.1.1The Undefined Type
	6.1.2The Null Type
	6.1.3The Boolean Type
	6.1.4The String Type
	6.1.5The Symbol Type
	6.1.5.1Well-Known Symbols
	6.1.6The Number Type
	6.1.7The Object Type
	6.1.7.1Property Attributes
	6.1.7.2Object Internal Methods and Internal Slots
	6.1.7.3Invariants of the Essential Internal Methods
	Definitions:
	[[GetPrototypeOf]] ()
	[[SetPrototypeOf]] (V)
	[[IsExtensible]] ()
	[[PreventExtensions]] ()
	[[GetOwnProperty]] (P)
	[[DefineOwnProperty]] (P, Desc)
	[[HasProperty]] (P)
	[[Get]] (P, Receiver)
	[[Set]] (P, V, Receiver)
	[[Delete]] (P)
	[[OwnPropertyKeys]] ()
	[[Construct]] ()

	6.1.7.4Well-Known Intrinsic Objects
	6.2ECMAScript Specification Types
	6.2.1The List and Record Specification Types
	6.2.2The Set and Relation Specification Types
	6.2.3The Completion Record Specification Type
	6.2.3.1Await
	6.2.3.1.1Await Fulfilled Functions
	6.2.3.1.2Await Rejected Functions
	6.2.3.2NormalCompletion
	6.2.3.3ThrowCompletion
	6.2.3.4UpdateEmpty (completionRecord, value)
	6.2.4The Reference Specification Type
	6.2.4.1GetBase (V)
	6.2.4.2GetReferencedName (V)
	6.2.4.3IsStrictReference (V)
	6.2.4.4HasPrimitiveBase (V)
	6.2.4.5IsPropertyReference (V)
	6.2.4.6IsUnresolvableReference (V)
	6.2.4.7IsSuperReference (V)
	6.2.4.8GetValue (V)
	6.2.4.9PutValue (V, W)
	6.2.4.10GetThisValue (V)
	6.2.4.11InitializeReferencedBinding (V, W)
	6.2.5The Property Descriptor Specification Type
	6.2.5.1IsAccessorDescriptor (Desc)
	6.2.5.2IsDataDescriptor (Desc)
	6.2.5.3IsGenericDescriptor (Desc)
	6.2.5.4FromPropertyDescriptor (Desc)
	6.2.5.5ToPropertyDescriptor (Obj)
	6.2.5.6CompletePropertyDescriptor (Desc)
	6.2.6The Lexical Environment and Environment Record Specification Types
	6.2.7Data Blocks
	6.2.7.1CreateByteDataBlock (size)
	6.2.7.2CreateSharedByteDataBlock (size)
	6.2.7.3CopyDataBlockBytes (toBlock, toIndex, fromBlock, fromIndex, count)
	7Abstract Operations
	7.1Type Conversion
	7.1.1ToPrimitive (input [, PreferredType])
	7.1.1.1OrdinaryToPrimitive (O, hint)
	7.1.2ToBoolean (argument)
	7.1.3ToNumber (argument)
	7.1.3.1ToNumber Applied to the String Type
	Syntax

	7.1.3.1.1Runtime Semantics: MV
	7.1.4ToInteger (argument)
	7.1.5ToInt32 (argument)
	7.1.6ToUint32 (argument)
	7.1.7ToInt16 (argument)
	7.1.8ToUint16 (argument)
	7.1.9ToInt8 (argument)
	7.1.10ToUint8 (argument)
	7.1.11ToUint8Clamp (argument)
	7.1.12ToString (argument)
	7.1.12.1NumberToString (m)
	7.1.13ToObject (argument)
	7.1.14ToPropertyKey (argument)
	7.1.15ToLength (argument)
	7.1.16CanonicalNumericIndexString (argument)
	7.1.17ToIndex (value)
	7.2Testing and Comparison Operations
	7.2.1RequireObjectCoercible (argument)
	7.2.2IsArray (argument)
	7.2.3IsCallable (argument)
	7.2.4IsConstructor (argument)
	7.2.5IsExtensible (O)
	7.2.6IsInteger (argument)
	7.2.7IsPropertyKey (argument)
	7.2.8IsRegExp (argument)
	7.2.9IsStringPrefix (p, q)
	7.2.10SameValue (x, y)
	7.2.11SameValueZero (x, y)
	7.2.12SameValueNonNumber (x, y)
	7.2.13Abstract Relational Comparison
	7.2.14Abstract Equality Comparison
	7.2.15Strict Equality Comparison
	7.3Operations on Objects
	7.3.1Get (O, P)
	7.3.2GetV (V, P)
	7.3.3Set (O, P, V, Throw)
	7.3.4CreateDataProperty (O, P, V)
	7.3.5CreateMethodProperty (O, P, V)
	7.3.6CreateDataPropertyOrThrow (O, P, V)
	7.3.7DefinePropertyOrThrow (O, P, desc)
	7.3.8DeletePropertyOrThrow (O, P)
	7.3.9GetMethod (V, P)
	7.3.10HasProperty (O, P)
	7.3.11HasOwnProperty (O, P)
	7.3.12Call (F, V [, argumentsList])
	7.3.13Construct (F [, argumentsList [, newTarget]])
	7.3.14SetIntegrityLevel (O, level)
	7.3.15TestIntegrityLevel (O, level)
	7.3.16CreateArrayFromList (elements)
	7.3.17CreateListFromArrayLike (obj [, elementTypes])
	7.3.18Invoke (V, P [, argumentsList])
	7.3.19OrdinaryHasInstance (C, O)
	7.3.20SpeciesConstructor (O, defaultConstructor)
	7.3.21EnumerableOwnPropertyNames (O, kind)
	7.3.22GetFunctionRealm (obj)
	7.3.23CopyDataProperties (target, source, excludedItems)
	7.4Operations on Iterator Objects
	7.4.1GetIterator (obj [, hint [, method]])
	7.4.2IteratorNext (iteratorRecord [, value])
	7.4.3IteratorComplete (iterResult)
	7.4.4IteratorValue (iterResult)
	7.4.5IteratorStep (iteratorRecord)
	7.4.6IteratorClose (iteratorRecord, completion)
	7.4.7AsyncIteratorClose (iteratorRecord, completion)
	7.4.8CreateIterResultObject (value, done)
	7.4.9CreateListIteratorRecord (list)
	7.4.9.1ListIterator next ()
	8Executable Code and Execution Contexts
	8.1Lexical Environments
	8.1.1Environment Records
	8.1.1.1Declarative Environment Records
	8.1.1.1.1HasBinding (N)
	8.1.1.1.2CreateMutableBinding (N, D)
	8.1.1.1.3CreateImmutableBinding (N, S)
	8.1.1.1.4InitializeBinding (N, V)
	8.1.1.1.5SetMutableBinding (N, V, S)
	8.1.1.1.6GetBindingValue (N, S)
	8.1.1.1.7DeleteBinding (N)
	8.1.1.1.8HasThisBinding ()
	8.1.1.1.9HasSuperBinding ()
	8.1.1.1.10WithBaseObject ()
	8.1.1.2Object Environment Records
	8.1.1.2.1HasBinding (N)
	8.1.1.2.2CreateMutableBinding (N, D)
	8.1.1.2.3CreateImmutableBinding (N, S)
	8.1.1.2.4InitializeBinding (N, V)
	8.1.1.2.5SetMutableBinding (N, V, S)
	8.1.1.2.6GetBindingValue (N, S)
	8.1.1.2.7DeleteBinding (N)
	8.1.1.2.8HasThisBinding ()
	8.1.1.2.9HasSuperBinding ()
	8.1.1.2.10WithBaseObject ()
	8.1.1.3Function Environment Records
	8.1.1.3.1BindThisValue (V)
	8.1.1.3.2HasThisBinding ()
	8.1.1.3.3HasSuperBinding ()
	8.1.1.3.4GetThisBinding ()
	8.1.1.3.5GetSuperBase ()
	8.1.1.4Global Environment Records
	8.1.1.4.1HasBinding (N)
	8.1.1.4.2CreateMutableBinding (N, D)
	8.1.1.4.3CreateImmutableBinding (N, S)
	8.1.1.4.4InitializeBinding (N, V)
	8.1.1.4.5SetMutableBinding (N, V, S)
	8.1.1.4.6GetBindingValue (N, S)
	8.1.1.4.7DeleteBinding (N)
	8.1.1.4.8HasThisBinding ()
	8.1.1.4.9HasSuperBinding ()
	8.1.1.4.10WithBaseObject ()
	8.1.1.4.11GetThisBinding ()
	8.1.1.4.12HasVarDeclaration (N)
	8.1.1.4.13HasLexicalDeclaration (N)
	8.1.1.4.14HasRestrictedGlobalProperty (N)
	8.1.1.4.15CanDeclareGlobalVar (N)
	8.1.1.4.16CanDeclareGlobalFunction (N)
	8.1.1.4.17CreateGlobalVarBinding (N, D)
	8.1.1.4.18CreateGlobalFunctionBinding (N, V, D)
	8.1.1.5Module Environment Records
	8.1.1.5.1GetBindingValue (N, S)
	8.1.1.5.2DeleteBinding (N)
	8.1.1.5.3HasThisBinding ()
	8.1.1.5.4GetThisBinding ()
	8.1.1.5.5CreateImportBinding (N, M, N2)
	8.1.2Lexical Environment Operations
	8.1.2.1GetIdentifierReference (lex, name, strict)
	8.1.2.2NewDeclarativeEnvironment (E)
	8.1.2.3NewObjectEnvironment (O, E)
	8.1.2.4NewFunctionEnvironment (F, newTarget)
	8.1.2.5NewGlobalEnvironment (G, thisValue)
	8.1.2.6NewModuleEnvironment (E)
	8.2Realms
	8.2.1CreateRealm ()
	8.2.2CreateIntrinsics (realmRec)
	8.2.3SetRealmGlobalObject (realmRec, globalObj, thisValue)
	8.2.4SetDefaultGlobalBindings (realmRec)
	8.3Execution Contexts
	8.3.1GetActiveScriptOrModule ()
	8.3.2ResolveBinding (name [, env])
	8.3.3GetThisEnvironment ()
	8.3.4ResolveThisBinding ()
	8.3.5GetNewTarget ()
	8.3.6GetGlobalObject ()
	8.4Jobs and Job Queues
	8.4.1EnqueueJob (queueName, job, arguments)
	8.5InitializeHostDefinedRealm ()
	8.6RunJobs ()
	8.7Agents
	8.7.1AgentSignifier ()
	8.7.2AgentCanSuspend ()
	8.8Agent Clusters
	8.9Forward Progress
	9Ordinary and Exotic Objects Behaviours
	9.1Ordinary Object Internal Methods and Internal Slots
	9.1.1[[GetPrototypeOf]] ()
	9.1.1.1OrdinaryGetPrototypeOf (O)
	9.1.2[[SetPrototypeOf]] (V)
	9.1.2.1OrdinarySetPrototypeOf (O, V)
	9.1.3[[IsExtensible]] ()
	9.1.3.1OrdinaryIsExtensible (O)
	9.1.4[[PreventExtensions]] ()
	9.1.4.1OrdinaryPreventExtensions (O)
	9.1.5[[GetOwnProperty]] (P)
	9.1.5.1OrdinaryGetOwnProperty (O, P)
	9.1.6[[DefineOwnProperty]] (P, Desc)
	9.1.6.1OrdinaryDefineOwnProperty (O, P, Desc)
	9.1.6.2IsCompatiblePropertyDescriptor (Extensible, Desc, Current)
	9.1.6.3ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)
	9.1.7[[HasProperty]] (P)
	9.1.7.1OrdinaryHasProperty (O, P)
	9.1.8[[Get]] (P, Receiver)
	9.1.8.1OrdinaryGet (O, P, Receiver)
	9.1.9[[Set]] (P, V, Receiver)
	9.1.9.1OrdinarySet (O, P, V, Receiver)
	9.1.9.2OrdinarySetWithOwnDescriptor (O, P, V, Receiver, ownDesc)
	9.1.10[[Delete]] (P)
	9.1.10.1OrdinaryDelete (O, P)
	9.1.11[[OwnPropertyKeys]] ()
	9.1.11.1OrdinaryOwnPropertyKeys (O)
	9.1.12ObjectCreate (proto [, internalSlotsList])
	9.1.13OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto [, internalSlotsList])
	9.1.14GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)
	9.2ECMAScript Function Objects
	9.2.1[[Call]] (thisArgument, argumentsList)
	9.2.1.1PrepareForOrdinaryCall (F, newTarget)
	9.2.1.2OrdinaryCallBindThis (F, calleeContext, thisArgument)
	9.2.1.3OrdinaryCallEvaluateBody (F, argumentsList)
	9.2.2[[Construct]] (argumentsList, newTarget)
	9.2.3FunctionAllocate (functionPrototype, strict, functionKind)
	9.2.4FunctionInitialize (F, kind, ParameterList, Body, Scope)
	9.2.5FunctionCreate (kind, ParameterList, Body, Scope, Strict [, prototype])
	9.2.6GeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)
	9.2.7AsyncGeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)
	9.2.8AsyncFunctionCreate (kind, parameters, body, Scope, Strict)
	9.2.9AddRestrictedFunctionProperties (F, realm)
	9.2.9.1%ThrowTypeError% ()
	9.2.10MakeConstructor (F [, writablePrototype [, prototype]])
	9.2.11MakeClassConstructor (F)
	9.2.12MakeMethod (F, homeObject)
	9.2.13SetFunctionName (F, name [, prefix])
	9.2.14SetFunctionLength (F, length)
	9.2.15FunctionDeclarationInstantiation (func, argumentsList)
	9.3Built-in Function Objects
	9.3.1[[Call]] (thisArgument, argumentsList)
	9.3.2[[Construct]] (argumentsList, newTarget)
	9.3.3CreateBuiltinFunction (steps, internalSlotsList [, realm [, prototype]])
	9.4Built-in Exotic Object Internal Methods and Slots
	9.4.1Bound Function Exotic Objects
	9.4.1.1[[Call]] (thisArgument, argumentsList)
	9.4.1.2[[Construct]] (argumentsList, newTarget)
	9.4.1.3BoundFunctionCreate (targetFunction, boundThis, boundArgs)
	9.4.2Array Exotic Objects
	9.4.2.1[[DefineOwnProperty]] (P, Desc)
	9.4.2.2ArrayCreate (length [, proto])
	9.4.2.3ArraySpeciesCreate (originalArray, length)
	9.4.2.4ArraySetLength (A, Desc)
	9.4.3String Exotic Objects
	9.4.3.1[[GetOwnProperty]] (P)
	9.4.3.2[[DefineOwnProperty]] (P, Desc)
	9.4.3.3[[OwnPropertyKeys]] ()
	9.4.3.4StringCreate (value, prototype)
	9.4.3.5StringGetOwnProperty (S, P)
	9.4.4Arguments Exotic Objects
	9.4.4.1[[GetOwnProperty]] (P)
	9.4.4.2[[DefineOwnProperty]] (P, Desc)
	9.4.4.3[[Get]] (P, Receiver)
	9.4.4.4[[Set]] (P, V, Receiver)
	9.4.4.5[[Delete]] (P)
	9.4.4.6CreateUnmappedArgumentsObject (argumentsList)
	9.4.4.7CreateMappedArgumentsObject (func, formals, argumentsList, env)
	9.4.4.7.1MakeArgGetter (name, env)
	9.4.4.7.2MakeArgSetter (name, env)
	9.4.5Integer-Indexed Exotic Objects
	9.4.5.1[[GetOwnProperty]] (P)
	9.4.5.2[[HasProperty]] (P)
	9.4.5.3[[DefineOwnProperty]] (P, Desc)
	9.4.5.4[[Get]] (P, Receiver)
	9.4.5.5[[Set]] (P, V, Receiver)
	9.4.5.6[[OwnPropertyKeys]] ()
	9.4.5.7IntegerIndexedObjectCreate (prototype, internalSlotsList)
	9.4.5.8IntegerIndexedElementGet (O, index)
	9.4.5.9IntegerIndexedElementSet (O, index, value)
	9.4.6Module Namespace Exotic Objects
	9.4.6.1[[SetPrototypeOf]] (V)
	9.4.6.2[[IsExtensible]] ()
	9.4.6.3[[PreventExtensions]] ()
	9.4.6.4[[GetOwnProperty]] (P)
	9.4.6.5[[DefineOwnProperty]] (P, Desc)
	9.4.6.6[[HasProperty]] (P)
	9.4.6.7[[Get]] (P, Receiver)
	9.4.6.8[[Set]] (P, V, Receiver)
	9.4.6.9[[Delete]] (P)
	9.4.6.10[[OwnPropertyKeys]] ()
	9.4.6.11ModuleNamespaceCreate (module, exports)
	9.4.7Immutable Prototype Exotic Objects
	9.4.7.1[[SetPrototypeOf]] (V)
	9.4.7.2SetImmutablePrototype (O, V)
	9.5Proxy Object Internal Methods and Internal Slots
	9.5.1[[GetPrototypeOf]] ()
	9.5.2[[SetPrototypeOf]] (V)
	9.5.3[[IsExtensible]] ()
	9.5.4[[PreventExtensions]] ()
	9.5.5[[GetOwnProperty]] (P)
	9.5.6[[DefineOwnProperty]] (P, Desc)
	9.5.7[[HasProperty]] (P)
	9.5.8[[Get]] (P, Receiver)
	9.5.9[[Set]] (P, V, Receiver)
	9.5.10[[Delete]] (P)
	9.5.11[[OwnPropertyKeys]] ()
	9.5.12[[Call]] (thisArgument, argumentsList)
	9.5.13[[Construct]] (argumentsList, newTarget)
	9.5.14ProxyCreate (target, handler)
	10ECMAScript Language: Source Code
	10.1Source Text
	Syntax

	10.1.1Static Semantics: UTF16Encoding (cp)
	10.1.2Static Semantics: UTF16Decode (lead, trail)
	10.2Types of Source Code
	10.2.1Strict Mode Code
	10.2.2Non-ECMAScript Functions
	11ECMAScript Language: Lexical Grammar
	Syntax

	11.1Unicode Format-Control Characters
	11.2White Space
	Syntax

	11.3Line Terminators
	Syntax

	11.4Comments
	Syntax

	11.5Tokens
	Syntax

	11.6Names and Keywords
	Syntax

	11.6.1Identifier Names
	11.6.1.1Static Semantics: Early Errors
	11.6.1.2Static Semantics: StringValue
	11.6.2Reserved Words
	Syntax

	11.6.2.1Keywords
	Syntax

	11.6.2.2Future Reserved Words
	Syntax

	11.7Punctuators
	Syntax

	11.8Literals
	11.8.1Null Literals
	Syntax

	11.8.2Boolean Literals
	Syntax

	11.8.3Numeric Literals
	Syntax

	11.8.3.1Static Semantics: MV
	11.8.4String Literals
	Syntax

	11.8.4.1Static Semantics: StringValue
	11.8.4.2Static Semantics: SV
	11.8.5Regular Expression Literals
	Syntax

	11.8.5.1Static Semantics: Early Errors
	11.8.5.2Static Semantics: BodyText
	11.8.5.3Static Semantics: FlagText
	11.8.6Template Literal Lexical Components
	Syntax

	11.8.6.1Static Semantics: TV and TRV
	11.9Automatic Semicolon Insertion
	11.9.1Rules of Automatic Semicolon Insertion
	11.9.2Examples of Automatic Semicolon Insertion
	12ECMAScript Language: Expressions
	12.1Identifiers
	Syntax

	12.1.1Static Semantics: Early Errors
	12.1.2Static Semantics: BoundNames
	12.1.3Static Semantics: AssignmentTargetType
	12.1.4Static Semantics: StringValue
	12.1.5Runtime Semantics: BindingInitialization
	12.1.5.1Runtime Semantics: InitializeBoundName (name, value, environment)
	12.1.6Runtime Semantics: Evaluation
	12.2Primary Expression
	Syntax
	Supplemental Syntax

	12.2.1Semantics
	12.2.1.1Static Semantics: CoveredParenthesizedExpression
	12.2.1.2Static Semantics: HasName
	12.2.1.3Static Semantics: IsFunctionDefinition
	12.2.1.4Static Semantics: IsIdentifierRef
	12.2.1.5Static Semantics: AssignmentTargetType
	12.2.2The this Keyword
	12.2.2.1Runtime Semantics: Evaluation
	12.2.3Identifier Reference
	12.2.4Literals
	Syntax

	12.2.4.1Runtime Semantics: Evaluation
	12.2.5Array Initializer
	Syntax

	12.2.5.1Static Semantics: ElisionWidth
	12.2.5.2Runtime Semantics: ArrayAccumulation
	12.2.5.3Runtime Semantics: Evaluation
	12.2.6Object Initializer
	Syntax

	12.2.6.1Static Semantics: Early Errors
	12.2.6.2Static Semantics: ComputedPropertyContains
	12.2.6.3Static Semantics: Contains
	12.2.6.4Static Semantics: IsComputedPropertyKey
	12.2.6.5Static Semantics: PropName
	12.2.6.6Static Semantics: PropertyNameList
	12.2.6.7Runtime Semantics: Evaluation
	12.2.6.8Runtime Semantics: PropertyDefinitionEvaluation
	12.2.7Function Defining Expressions
	12.2.8Regular Expression Literals
	Syntax

	12.2.8.1Static Semantics: Early Errors
	12.2.8.2Runtime Semantics: Evaluation
	12.2.9Template Literals
	Syntax

	12.2.9.1Static Semantics: Early Errors
	12.2.9.2Static Semantics: TemplateStrings
	12.2.9.3Runtime Semantics: ArgumentListEvaluation
	12.2.9.4Runtime Semantics: GetTemplateObject (templateLiteral)
	12.2.9.5Runtime Semantics: SubstitutionEvaluation
	12.2.9.6Runtime Semantics: Evaluation
	12.2.10The Grouping Operator
	12.2.10.1Static Semantics: Early Errors
	12.2.10.2Static Semantics: IsFunctionDefinition
	12.2.10.3Static Semantics: AssignmentTargetType
	12.2.10.4Runtime Semantics: NamedEvaluation
	12.2.10.5Runtime Semantics: Evaluation
	12.3Left-Hand-Side Expressions
	Syntax
	Supplemental Syntax

	12.3.1Static Semantics
	12.3.1.1Static Semantics: CoveredCallExpression
	12.3.1.2Static Semantics: Contains
	12.3.1.3Static Semantics: IsFunctionDefinition
	12.3.1.4Static Semantics: IsDestructuring
	12.3.1.5Static Semantics: IsIdentifierRef
	12.3.1.6Static Semantics: AssignmentTargetType
	12.3.2Property Accessors
	12.3.2.1Runtime Semantics: Evaluation
	12.3.3The new Operator
	12.3.3.1Runtime Semantics: Evaluation
	12.3.3.1.1Runtime Semantics: EvaluateNew (constructExpr, arguments)
	12.3.4Function Calls
	12.3.4.1Runtime Semantics: Evaluation
	12.3.4.2Runtime Semantics: EvaluateCall (func, ref, arguments, tailPosition)
	12.3.5The super Keyword
	12.3.5.1Runtime Semantics: Evaluation
	12.3.5.2Runtime Semantics: GetSuperConstructor ()
	12.3.5.3Runtime Semantics: MakeSuperPropertyReference (actualThis, propertyKey, strict)
	12.3.6Argument Lists
	12.3.6.1Runtime Semantics: ArgumentListEvaluation
	12.3.7Tagged Templates
	12.3.7.1Runtime Semantics: Evaluation
	12.3.8Meta Properties
	12.3.8.1Runtime Semantics: Evaluation
	12.4Update Expressions
	Syntax

	12.4.1Static Semantics: Early Errors
	12.4.2Static Semantics: IsFunctionDefinition
	12.4.3Static Semantics: AssignmentTargetType
	12.4.4Postfix Increment Operator
	12.4.4.1Runtime Semantics: Evaluation
	12.4.5Postfix Decrement Operator
	12.4.5.1Runtime Semantics: Evaluation
	12.4.6Prefix Increment Operator
	12.4.6.1Runtime Semantics: Evaluation
	12.4.7Prefix Decrement Operator
	12.4.7.1Runtime Semantics: Evaluation
	12.5Unary Operators
	Syntax

	12.5.1Static Semantics: IsFunctionDefinition
	12.5.2Static Semantics: AssignmentTargetType
	12.5.3The delete Operator
	12.5.3.1Static Semantics: Early Errors
	12.5.3.2Runtime Semantics: Evaluation
	12.5.4The void Operator
	12.5.4.1Runtime Semantics: Evaluation
	12.5.5The typeof Operator
	12.5.5.1Runtime Semantics: Evaluation
	12.5.6Unary + Operator
	12.5.6.1Runtime Semantics: Evaluation
	12.5.7Unary - Operator
	12.5.7.1Runtime Semantics: Evaluation
	12.5.8Bitwise NOT Operator (~)
	12.5.8.1Runtime Semantics: Evaluation
	12.5.9Logical NOT Operator (!)
	12.5.9.1Runtime Semantics: Evaluation
	12.6Exponentiation Operator
	Syntax

	12.6.1Static Semantics: IsFunctionDefinition
	12.6.2Static Semantics: AssignmentTargetType
	12.6.3Runtime Semantics: Evaluation
	12.6.4Applying the ** Operator
	12.7Multiplicative Operators
	Syntax

	12.7.1Static Semantics: IsFunctionDefinition
	12.7.2Static Semantics: AssignmentTargetType
	12.7.3Runtime Semantics: Evaluation
	12.7.3.1Applying the * Operator
	12.7.3.2Applying the / Operator
	12.7.3.3Applying the % Operator
	12.8Additive Operators
	Syntax

	12.8.1Static Semantics: IsFunctionDefinition
	12.8.2Static Semantics: AssignmentTargetType
	12.8.3The Addition Operator (+)
	12.8.3.1Runtime Semantics: Evaluation
	12.8.4The Subtraction Operator (-)
	12.8.4.1Runtime Semantics: Evaluation
	12.8.5Applying the Additive Operators to Numbers
	12.9Bitwise Shift Operators
	Syntax

	12.9.1Static Semantics: IsFunctionDefinition
	12.9.2Static Semantics: AssignmentTargetType
	12.9.3The Left Shift Operator (<<)
	12.9.3.1Runtime Semantics: Evaluation
	12.9.4The Signed Right Shift Operator (>>)
	12.9.4.1Runtime Semantics: Evaluation
	12.9.5The Unsigned Right Shift Operator (>>>)
	12.9.5.1Runtime Semantics: Evaluation
	12.10Relational Operators
	Syntax

	12.10.1Static Semantics: IsFunctionDefinition
	12.10.2Static Semantics: AssignmentTargetType
	12.10.3Runtime Semantics: Evaluation
	12.10.4Runtime Semantics: InstanceofOperator (V, target)
	12.11Equality Operators
	Syntax

	12.11.1Static Semantics: IsFunctionDefinition
	12.11.2Static Semantics: AssignmentTargetType
	12.11.3Runtime Semantics: Evaluation
	12.12Binary Bitwise Operators
	Syntax

	12.12.1Static Semantics: IsFunctionDefinition
	12.12.2Static Semantics: AssignmentTargetType
	12.12.3Runtime Semantics: Evaluation
	12.13Binary Logical Operators
	Syntax

	12.13.1Static Semantics: IsFunctionDefinition
	12.13.2Static Semantics: AssignmentTargetType
	12.13.3Runtime Semantics: Evaluation
	12.14Conditional Operator (? :)
	Syntax

	12.14.1Static Semantics: IsFunctionDefinition
	12.14.2Static Semantics: AssignmentTargetType
	12.14.3Runtime Semantics: Evaluation
	12.15Assignment Operators
	Syntax

	12.15.1Static Semantics: Early Errors
	12.15.2Static Semantics: IsFunctionDefinition
	12.15.3Static Semantics: AssignmentTargetType
	12.15.4Runtime Semantics: Evaluation
	12.15.5Destructuring Assignment
	Supplemental Syntax

	12.15.5.1Static Semantics: Early Errors
	12.15.5.2Runtime Semantics: DestructuringAssignmentEvaluation
	12.15.5.3Runtime Semantics: PropertyDestructuringAssignmentEvaluation
	12.15.5.4Runtime Semantics: RestDestructuringAssignmentEvaluation
	12.15.5.5Runtime Semantics: IteratorDestructuringAssignmentEvaluation
	12.15.5.6Runtime Semantics: KeyedDestructuringAssignmentEvaluation
	12.16Comma Operator (,)
	Syntax

	12.16.1Static Semantics: IsFunctionDefinition
	12.16.2Static Semantics: AssignmentTargetType
	12.16.3Runtime Semantics: Evaluation
	13ECMAScript Language: Statements and Declarations
	Syntax

	13.1Statement Semantics
	13.1.1Static Semantics: ContainsDuplicateLabels
	13.1.2Static Semantics: ContainsUndefinedBreakTarget
	13.1.3Static Semantics: ContainsUndefinedContinueTarget
	13.1.4Static Semantics: DeclarationPart
	13.1.5Static Semantics: VarDeclaredNames
	13.1.6Static Semantics: VarScopedDeclarations
	13.1.7Runtime Semantics: LabelledEvaluation
	13.1.8Runtime Semantics: Evaluation
	13.2Block
	Syntax

	13.2.1Static Semantics: Early Errors
	13.2.2Static Semantics: ContainsDuplicateLabels
	13.2.3Static Semantics: ContainsUndefinedBreakTarget
	13.2.4Static Semantics: ContainsUndefinedContinueTarget
	13.2.5Static Semantics: LexicallyDeclaredNames
	13.2.6Static Semantics: LexicallyScopedDeclarations
	13.2.7Static Semantics: TopLevelLexicallyDeclaredNames
	13.2.8Static Semantics: TopLevelLexicallyScopedDeclarations
	13.2.9Static Semantics: TopLevelVarDeclaredNames
	13.2.10Static Semantics: TopLevelVarScopedDeclarations
	13.2.11Static Semantics: VarDeclaredNames
	13.2.12Static Semantics: VarScopedDeclarations
	13.2.13Runtime Semantics: Evaluation
	13.2.14Runtime Semantics: BlockDeclarationInstantiation (code, env)
	13.3Declarations and the Variable Statement
	13.3.1Let and Const Declarations
	Syntax

	13.3.1.1Static Semantics: Early Errors
	13.3.1.2Static Semantics: BoundNames
	13.3.1.3Static Semantics: IsConstantDeclaration
	13.3.1.4Runtime Semantics: Evaluation
	13.3.2Variable Statement
	Syntax

	13.3.2.1Static Semantics: BoundNames
	13.3.2.2Static Semantics: VarDeclaredNames
	13.3.2.3Static Semantics: VarScopedDeclarations
	13.3.2.4Runtime Semantics: Evaluation
	13.3.3Destructuring Binding Patterns
	Syntax

	13.3.3.1Static Semantics: BoundNames
	13.3.3.2Static Semantics: ContainsExpression
	13.3.3.3Static Semantics: HasInitializer
	13.3.3.4Static Semantics: IsSimpleParameterList
	13.3.3.5Runtime Semantics: BindingInitialization
	13.3.3.6Runtime Semantics: PropertyBindingInitialization
	13.3.3.7Runtime Semantics: RestBindingInitialization
	13.3.3.8Runtime Semantics: IteratorBindingInitialization
	13.3.3.9Runtime Semantics: KeyedBindingInitialization
	13.4Empty Statement
	Syntax

	13.4.1Runtime Semantics: Evaluation
	13.5Expression Statement
	Syntax

	13.5.1Runtime Semantics: Evaluation
	13.6The if Statement
	Syntax

	13.6.1Static Semantics: Early Errors
	13.6.2Static Semantics: ContainsDuplicateLabels
	13.6.3Static Semantics: ContainsUndefinedBreakTarget
	13.6.4Static Semantics: ContainsUndefinedContinueTarget
	13.6.5Static Semantics: VarDeclaredNames
	13.6.6Static Semantics: VarScopedDeclarations
	13.6.7Runtime Semantics: Evaluation
	13.7Iteration Statements
	Syntax

	13.7.1Semantics
	13.7.1.1Static Semantics: Early Errors
	13.7.1.2Runtime Semantics: LoopContinues (completion, labelSet)
	13.7.2The do-while Statement
	13.7.2.1Static Semantics: ContainsDuplicateLabels
	13.7.2.2Static Semantics: ContainsUndefinedBreakTarget
	13.7.2.3Static Semantics: ContainsUndefinedContinueTarget
	13.7.2.4Static Semantics: VarDeclaredNames
	13.7.2.5Static Semantics: VarScopedDeclarations
	13.7.2.6Runtime Semantics: LabelledEvaluation
	13.7.3The while Statement
	13.7.3.1Static Semantics: ContainsDuplicateLabels
	13.7.3.2Static Semantics: ContainsUndefinedBreakTarget
	13.7.3.3Static Semantics: ContainsUndefinedContinueTarget
	13.7.3.4Static Semantics: VarDeclaredNames
	13.7.3.5Static Semantics: VarScopedDeclarations
	13.7.3.6Runtime Semantics: LabelledEvaluation
	13.7.4The for Statement
	13.7.4.1Static Semantics: Early Errors
	13.7.4.2Static Semantics: ContainsDuplicateLabels
	13.7.4.3Static Semantics: ContainsUndefinedBreakTarget
	13.7.4.4Static Semantics: ContainsUndefinedContinueTarget
	13.7.4.5Static Semantics: VarDeclaredNames
	13.7.4.6Static Semantics: VarScopedDeclarations
	13.7.4.7Runtime Semantics: LabelledEvaluation
	13.7.4.8Runtime Semantics: ForBodyEvaluation (test, increment, stmt, perIterationBindings, labelSet)
	13.7.4.9Runtime Semantics: CreatePerIterationEnvironment (perIterationBindings)
	13.7.5The for-in, for-of, and for-await-of Statements
	13.7.5.1Static Semantics: Early Errors
	13.7.5.2Static Semantics: BoundNames
	13.7.5.3Static Semantics: ContainsDuplicateLabels
	13.7.5.4Static Semantics: ContainsUndefinedBreakTarget
	13.7.5.5Static Semantics: ContainsUndefinedContinueTarget
	13.7.5.6Static Semantics: IsDestructuring
	13.7.5.7Static Semantics: VarDeclaredNames
	13.7.5.8Static Semantics: VarScopedDeclarations
	13.7.5.9Runtime Semantics: BindingInitialization
	13.7.5.10Runtime Semantics: BindingInstantiation
	13.7.5.11Runtime Semantics: LabelledEvaluation
	13.7.5.12Runtime Semantics: ForIn/OfHeadEvaluation (TDZnames, expr, iterationKind)
	13.7.5.13Runtime Semantics: ForIn/OfBodyEvaluation (lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [, iteratorKind])
	13.7.5.14Runtime Semantics: Evaluation
	13.7.5.15EnumerateObjectProperties (O)
	13.8The continue Statement
	Syntax

	13.8.1Static Semantics: Early Errors
	13.8.2Static Semantics: ContainsUndefinedContinueTarget
	13.8.3Runtime Semantics: Evaluation
	13.9The break Statement
	Syntax

	13.9.1Static Semantics: Early Errors
	13.9.2Static Semantics: ContainsUndefinedBreakTarget
	13.9.3Runtime Semantics: Evaluation
	13.10The return Statement
	Syntax

	13.10.1Runtime Semantics: Evaluation
	13.11The with Statement
	Syntax

	13.11.1Static Semantics: Early Errors
	13.11.2Static Semantics: ContainsDuplicateLabels
	13.11.3Static Semantics: ContainsUndefinedBreakTarget
	13.11.4Static Semantics: ContainsUndefinedContinueTarget
	13.11.5Static Semantics: VarDeclaredNames
	13.11.6Static Semantics: VarScopedDeclarations
	13.11.7Runtime Semantics: Evaluation
	13.12The switch Statement
	Syntax

	13.12.1Static Semantics: Early Errors
	13.12.2Static Semantics: ContainsDuplicateLabels
	13.12.3Static Semantics: ContainsUndefinedBreakTarget
	13.12.4Static Semantics: ContainsUndefinedContinueTarget
	13.12.5Static Semantics: LexicallyDeclaredNames
	13.12.6Static Semantics: LexicallyScopedDeclarations
	13.12.7Static Semantics: VarDeclaredNames
	13.12.8Static Semantics: VarScopedDeclarations
	13.12.9Runtime Semantics: CaseBlockEvaluation
	13.12.10Runtime Semantics: CaseClauseIsSelected (C, input)
	13.12.11Runtime Semantics: Evaluation
	13.13Labelled Statements
	Syntax

	13.13.1Static Semantics: Early Errors
	13.13.2Static Semantics: ContainsDuplicateLabels
	13.13.3Static Semantics: ContainsUndefinedBreakTarget
	13.13.4Static Semantics: ContainsUndefinedContinueTarget
	13.13.5Static Semantics: IsLabelledFunction (stmt)
	13.13.6Static Semantics: LexicallyDeclaredNames
	13.13.7Static Semantics: LexicallyScopedDeclarations
	13.13.8Static Semantics: TopLevelLexicallyDeclaredNames
	13.13.9Static Semantics: TopLevelLexicallyScopedDeclarations
	13.13.10Static Semantics: TopLevelVarDeclaredNames
	13.13.11Static Semantics: TopLevelVarScopedDeclarations
	13.13.12Static Semantics: VarDeclaredNames
	13.13.13Static Semantics: VarScopedDeclarations
	13.13.14Runtime Semantics: LabelledEvaluation
	13.13.15Runtime Semantics: Evaluation
	13.14The throw Statement
	Syntax

	13.14.1Runtime Semantics: Evaluation
	13.15The try Statement
	Syntax

	13.15.1Static Semantics: Early Errors
	13.15.2Static Semantics: ContainsDuplicateLabels
	13.15.3Static Semantics: ContainsUndefinedBreakTarget
	13.15.4Static Semantics: ContainsUndefinedContinueTarget
	13.15.5Static Semantics: VarDeclaredNames
	13.15.6Static Semantics: VarScopedDeclarations
	13.15.7Runtime Semantics: CatchClauseEvaluation
	13.15.8Runtime Semantics: Evaluation
	13.16The debugger Statement
	Syntax

	13.16.1Runtime Semantics: Evaluation
	14ECMAScript Language: Functions and Classes
	14.1Function Definitions
	Syntax

	14.1.1Directive Prologues and the Use Strict Directive
	14.1.2Static Semantics: Early Errors
	14.1.3Static Semantics: BoundNames
	14.1.4Static Semantics: Contains
	14.1.5Static Semantics: ContainsExpression
	14.1.6Static Semantics: ContainsUseStrict
	14.1.7Static Semantics: ExpectedArgumentCount
	14.1.8Static Semantics: HasInitializer
	14.1.9Static Semantics: HasName
	14.1.10Static Semantics: IsAnonymousFunctionDefinition (expr)
	14.1.11Static Semantics: IsConstantDeclaration
	14.1.12Static Semantics: IsFunctionDefinition
	14.1.13Static Semantics: IsSimpleParameterList
	14.1.14Static Semantics: LexicallyDeclaredNames
	14.1.15Static Semantics: LexicallyScopedDeclarations
	14.1.16Static Semantics: VarDeclaredNames
	14.1.17Static Semantics: VarScopedDeclarations
	14.1.18Runtime Semantics: EvaluateBody
	14.1.19Runtime Semantics: IteratorBindingInitialization
	14.1.20Runtime Semantics: InstantiateFunctionObject
	14.1.21Runtime Semantics: NamedEvaluation
	14.1.22Runtime Semantics: Evaluation
	14.2Arrow Function Definitions
	Syntax
	Supplemental Syntax

	14.2.1Static Semantics: Early Errors
	14.2.2Static Semantics: BoundNames
	14.2.3Static Semantics: Contains
	14.2.4Static Semantics: ContainsExpression
	14.2.5Static Semantics: ContainsUseStrict
	14.2.6Static Semantics: ExpectedArgumentCount
	14.2.7Static Semantics: HasName
	14.2.8Static Semantics: IsSimpleParameterList
	14.2.9Static Semantics: CoveredFormalsList
	14.2.10Static Semantics: LexicallyDeclaredNames
	14.2.11Static Semantics: LexicallyScopedDeclarations
	14.2.12Static Semantics: VarDeclaredNames
	14.2.13Static Semantics: VarScopedDeclarations
	14.2.14Runtime Semantics: IteratorBindingInitialization
	14.2.15Runtime Semantics: EvaluateBody
	14.2.16Runtime Semantics: NamedEvaluation
	14.2.17Runtime Semantics: Evaluation
	14.3Method Definitions
	Syntax

	14.3.1Static Semantics: Early Errors
	14.3.2Static Semantics: ComputedPropertyContains
	14.3.3Static Semantics: ExpectedArgumentCount
	14.3.4Static Semantics: HasDirectSuper
	14.3.5Static Semantics: PropName
	14.3.6Static Semantics: SpecialMethod
	14.3.7Runtime Semantics: DefineMethod
	14.3.8Runtime Semantics: PropertyDefinitionEvaluation
	14.4Generator Function Definitions
	Syntax

	14.4.1Static Semantics: Early Errors
	14.4.2Static Semantics: BoundNames
	14.4.3Static Semantics: ComputedPropertyContains
	14.4.4Static Semantics: Contains
	14.4.5Static Semantics: HasDirectSuper
	14.4.6Static Semantics: HasName
	14.4.7Static Semantics: IsConstantDeclaration
	14.4.8Static Semantics: IsFunctionDefinition
	14.4.9Static Semantics: PropName
	14.4.10Runtime Semantics: EvaluateBody
	14.4.11Runtime Semantics: InstantiateFunctionObject
	14.4.12Runtime Semantics: PropertyDefinitionEvaluation
	14.4.13Runtime Semantics: NamedEvaluation
	14.4.14Runtime Semantics: Evaluation
	14.5Async Generator Function Definitions
	Syntax

	14.5.1Static Semantics: Early Errors
	14.5.2Static Semantics: BoundNames
	14.5.3Static Semantics: ComputedPropertyContains
	14.5.4Static Semantics: Contains
	14.5.5Static Semantics: HasDirectSuper
	14.5.6Static Semantics: HasName
	14.5.7Static Semantics: IsConstantDeclaration
	14.5.8Static Semantics: IsFunctionDefinition
	14.5.9Static Semantics: PropName
	14.5.10Runtime Semantics: EvaluateBody
	14.5.11Runtime Semantics: InstantiateFunctionObject
	14.5.12Runtime Semantics: PropertyDefinitionEvaluation
	14.5.13Runtime Semantics: NamedEvaluation
	14.5.14Runtime Semantics: Evaluation
	14.6Class Definitions
	Syntax

	14.6.1Static Semantics: Early Errors
	14.6.2Static Semantics: BoundNames
	14.6.3Static Semantics: ConstructorMethod
	14.6.4Static Semantics: Contains
	14.6.5Static Semantics: ComputedPropertyContains
	14.6.6Static Semantics: HasName
	14.6.7Static Semantics: IsConstantDeclaration
	14.6.8Static Semantics: IsFunctionDefinition
	14.6.9Static Semantics: IsStatic
	14.6.10Static Semantics: NonConstructorMethodDefinitions
	14.6.11Static Semantics: PrototypePropertyNameList
	14.6.12Static Semantics: PropName
	14.6.13Runtime Semantics: ClassDefinitionEvaluation
	14.6.14Runtime Semantics: BindingClassDeclarationEvaluation
	14.6.15Runtime Semantics: NamedEvaluation
	14.6.16Runtime Semantics: Evaluation
	14.7Async Function Definitions
	Syntax

	14.7.1Static Semantics: Early Errors
	14.7.2Static Semantics: BoundNames
	14.7.3Static Semantics: ComputedPropertyContains
	14.7.4Static Semantics: Contains
	14.7.5Static Semantics: HasDirectSuper
	14.7.6Static Semantics: HasName
	14.7.7Static Semantics: IsConstantDeclaration
	14.7.8Static Semantics: IsFunctionDefinition
	14.7.9Static Semantics: PropName
	14.7.10Runtime Semantics: InstantiateFunctionObject
	14.7.11Runtime Semantics: EvaluateBody
	14.7.12Runtime Semantics: PropertyDefinitionEvaluation
	14.7.13Runtime Semantics: NamedEvaluation
	14.7.14Runtime Semantics: Evaluation
	14.8Async Arrow Function Definitions
	Syntax
	Supplemental Syntax

	14.8.1Static Semantics: Early Errors
	14.8.2Static Semantics: CoveredAsyncArrowHead
	14.8.3Static Semantics: BoundNames
	14.8.4Static Semantics: Contains
	14.8.5Static Semantics: ContainsExpression
	14.8.6Static Semantics: ExpectedArgumentCount
	14.8.7Static Semantics: HasName
	14.8.8Static Semantics: IsSimpleParameterList
	14.8.9Static Semantics: LexicallyDeclaredNames
	14.8.10Static Semantics: LexicallyScopedDeclarations
	14.8.11Static Semantics: VarDeclaredNames
	14.8.12Static Semantics: VarScopedDeclarations
	14.8.13Runtime Semantics: IteratorBindingInitialization
	14.8.14Runtime Semantics: EvaluateBody
	14.8.15Runtime Semantics: NamedEvaluation
	14.8.16Runtime Semantics: Evaluation
	14.9Tail Position Calls
	14.9.1Static Semantics: IsInTailPosition (call)
	14.9.2Static Semantics: HasCallInTailPosition
	14.9.2.1Statement Rules
	14.9.2.2Expression Rules
	14.9.3Runtime Semantics: PrepareForTailCall ()
	15ECMAScript Language: Scripts and Modules
	15.1Scripts
	Syntax

	15.1.1Static Semantics: Early Errors
	15.1.2Static Semantics: IsStrict
	15.1.3Static Semantics: LexicallyDeclaredNames
	15.1.4Static Semantics: LexicallyScopedDeclarations
	15.1.5Static Semantics: VarDeclaredNames
	15.1.6Static Semantics: VarScopedDeclarations
	15.1.7Runtime Semantics: Evaluation
	15.1.8Script Records
	15.1.9ParseScript (sourceText, realm, hostDefined)
	15.1.10ScriptEvaluation (scriptRecord)
	15.1.11Runtime Semantics: GlobalDeclarationInstantiation (script, env)
	15.1.12Runtime Semantics: ScriptEvaluationJob (sourceText, hostDefined)
	15.2Modules
	Syntax

	15.2.1Module Semantics
	15.2.1.1Static Semantics: Early Errors
	15.2.1.2Static Semantics: ContainsDuplicateLabels
	15.2.1.3Static Semantics: ContainsUndefinedBreakTarget
	15.2.1.4Static Semantics: ContainsUndefinedContinueTarget
	15.2.1.5Static Semantics: ExportedBindings
	15.2.1.6Static Semantics: ExportedNames
	15.2.1.7Static Semantics: ExportEntries
	15.2.1.8Static Semantics: ImportEntries
	15.2.1.9Static Semantics: ImportedLocalNames (importEntries)
	15.2.1.10Static Semantics: ModuleRequests
	15.2.1.11Static Semantics: LexicallyDeclaredNames
	15.2.1.12Static Semantics: LexicallyScopedDeclarations
	15.2.1.13Static Semantics: VarDeclaredNames
	15.2.1.14Static Semantics: VarScopedDeclarations
	15.2.1.15Abstract Module Records
	15.2.1.16Cyclic Module Records
	15.2.1.16.1Instantiate () Concrete Method
	15.2.1.16.1.1InnerModuleInstantiation (module, stack, index)
	15.2.1.16.2Evaluate () Concrete Method
	15.2.1.16.2.1InnerModuleEvaluation (module, stack, index)
	15.2.1.16.3Example Cyclic Module Record Graphs
	15.2.1.17Source Text Module Records
	15.2.1.17.1ParseModule (sourceText, realm, hostDefined)
	15.2.1.17.2GetExportedNames (exportStarSet) Concrete Method
	15.2.1.17.3ResolveExport (exportName, resolveSet) Concrete Method
	15.2.1.17.4InitializeEnvironment () Concrete Method
	15.2.1.17.5ExecuteModule () Concrete Method
	15.2.1.18Runtime Semantics: HostResolveImportedModule (referencingModule, specifier)
	15.2.1.19Runtime Semantics: GetModuleNamespace (module)
	15.2.1.20Runtime Semantics: TopLevelModuleEvaluationJob (sourceText, hostDefined)
	15.2.1.21Runtime Semantics: Evaluation
	15.2.2Imports
	Syntax

	15.2.2.1Static Semantics: Early Errors
	15.2.2.2Static Semantics: BoundNames
	15.2.2.3Static Semantics: ImportEntries
	15.2.2.4Static Semantics: ImportEntriesForModule
	15.2.2.5Static Semantics: ModuleRequests
	15.2.3Exports
	Syntax

	15.2.3.1Static Semantics: Early Errors
	15.2.3.2Static Semantics: BoundNames
	15.2.3.3Static Semantics: ExportedBindings
	15.2.3.4Static Semantics: ExportedNames
	15.2.3.5Static Semantics: ExportEntries
	15.2.3.6Static Semantics: ExportEntriesForModule
	15.2.3.7Static Semantics: IsConstantDeclaration
	15.2.3.8Static Semantics: LexicallyScopedDeclarations
	15.2.3.9Static Semantics: ModuleRequests
	15.2.3.10Static Semantics: ReferencedBindings
	15.2.3.11Runtime Semantics: Evaluation
	16Error Handling and Language Extensions
	16.1HostReportErrors (errorList)
	16.2Forbidden Extensions
	17ECMAScript Standard Built-in Objects
	18The Global Object
	18.1Value Properties of the Global Object
	18.1.1Infinity
	18.1.2NaN
	18.1.3undefined
	18.2Function Properties of the Global Object
	18.2.1eval (x)
	18.2.1.1Runtime Semantics: PerformEval (x, evalRealm, strictCaller, direct)
	18.2.1.1.1Additional Early Error Rules for Eval Outside Functions
	18.2.1.1.2Additional Early Error Rules for Eval Outside Methods
	18.2.1.1.3Additional Early Error Rules for Eval Outside Constructor Methods
	18.2.1.2HostEnsureCanCompileStrings (callerRealm, calleeRealm)
	18.2.1.3Runtime Semantics: EvalDeclarationInstantiation (body, varEnv, lexEnv, strict)
	18.2.2isFinite (number)
	18.2.3isNaN (number)
	18.2.4parseFloat (string)
	18.2.5parseInt (string, radix)
	18.2.6URI Handling Functions
	18.2.6.1URI Syntax and Semantics
	Syntax
	Runtime Semantics

	18.2.6.1.1Runtime Semantics: Encode (string, unescapedSet)
	18.2.6.1.2Runtime Semantics: Decode (string, reservedSet)
	18.2.6.2decodeURI (encodedURI)
	18.2.6.3decodeURIComponent (encodedURIComponent)
	18.2.6.4encodeURI (uri)
	18.2.6.5encodeURIComponent (uriComponent)
	18.3Constructor Properties of the Global Object
	18.3.1Array (. . .)
	18.3.2ArrayBuffer (. . .)
	18.3.3Boolean (. . .)
	18.3.4DataView (. . .)
	18.3.5Date (. . .)
	18.3.6Error (. . .)
	18.3.7EvalError (. . .)
	18.3.8Float32Array (. . .)
	18.3.9Float64Array (. . .)
	18.3.10Function (. . .)
	18.3.11Int8Array (. . .)
	18.3.12Int16Array (. . .)
	18.3.13Int32Array (. . .)
	18.3.14Map (. . .)
	18.3.15Number (. . .)
	18.3.16Object (. . .)
	18.3.17Promise (. . .)
	18.3.18Proxy (. . .)
	18.3.19RangeError (. . .)
	18.3.20ReferenceError (. . .)
	18.3.21RegExp (. . .)
	18.3.22Set (. . .)
	18.3.23SharedArrayBuffer (. . .)
	18.3.24String (. . .)
	18.3.25Symbol (. . .)
	18.3.26SyntaxError (. . .)
	18.3.27TypeError (. . .)
	18.3.28Uint8Array (. . .)
	18.3.29Uint8ClampedArray (. . .)
	18.3.30Uint16Array (. . .)
	18.3.31Uint32Array (. . .)
	18.3.32URIError (. . .)
	18.3.33WeakMap (. . .)
	18.3.34WeakSet (. . .)
	18.4Other Properties of the Global Object
	18.4.1Atomics
	18.4.2JSON
	18.4.3Math
	18.4.4Reflect
	19Fundamental Objects
	19.1Object Objects
	19.1.1The Object Constructor
	19.1.1.1Object ([value])
	19.1.2Properties of the Object Constructor
	19.1.2.1Object.assign (target, ...sources)
	19.1.2.2Object.create (O, Properties)
	19.1.2.3Object.defineProperties (O, Properties)
	19.1.2.3.1Runtime Semantics: ObjectDefineProperties (O, Properties)
	19.1.2.4Object.defineProperty (O, P, Attributes)
	19.1.2.5Object.entries (O)
	19.1.2.6Object.freeze (O)
	19.1.2.7Object.fromEntries (iterable)
	19.1.2.7.1CreateDataPropertyOnObject Functions
	19.1.2.8Object.getOwnPropertyDescriptor (O, P)
	19.1.2.9Object.getOwnPropertyDescriptors (O)
	19.1.2.10Object.getOwnPropertyNames (O)
	19.1.2.11Object.getOwnPropertySymbols (O)
	19.1.2.11.1Runtime Semantics: GetOwnPropertyKeys (O, type)
	19.1.2.12Object.getPrototypeOf (O)
	19.1.2.13Object.is (value1, value2)
	19.1.2.14Object.isExtensible (O)
	19.1.2.15Object.isFrozen (O)
	19.1.2.16Object.isSealed (O)
	19.1.2.17Object.keys (O)
	19.1.2.18Object.preventExtensions (O)
	19.1.2.19Object.prototype
	19.1.2.20Object.seal (O)
	19.1.2.21Object.setPrototypeOf (O, proto)
	19.1.2.22Object.values (O)
	19.1.3Properties of the Object Prototype Object
	19.1.3.1Object.prototype.constructor
	19.1.3.2Object.prototype.hasOwnProperty (V)
	19.1.3.3Object.prototype.isPrototypeOf (V)
	19.1.3.4Object.prototype.propertyIsEnumerable (V)
	19.1.3.5Object.prototype.toLocaleString ([reserved1 [, reserved2]])
	19.1.3.6Object.prototype.toString ()
	19.1.3.7Object.prototype.valueOf ()
	19.1.4Properties of Object Instances
	19.2Function Objects
	19.2.1The Function Constructor
	19.2.1.1Function (p1, p2, … , pn, body)
	19.2.1.1.1Runtime Semantics: CreateDynamicFunction (constructor, newTarget, kind, args)
	19.2.2Properties of the Function Constructor
	19.2.2.1Function.length
	19.2.2.2Function.prototype
	19.2.3Properties of the Function Prototype Object
	19.2.3.1Function.prototype.apply (thisArg, argArray)
	19.2.3.2Function.prototype.bind (thisArg, ...args)
	19.2.3.3Function.prototype.call (thisArg, ...args)
	19.2.3.4Function.prototype.constructor
	19.2.3.5Function.prototype.toString ()
	19.2.3.6Function.prototype [@@hasInstance] (V)
	19.2.4Function Instances
	19.2.4.1length
	19.2.4.2name
	19.2.4.3prototype
	19.2.5HostHasSourceTextAvailable (func)
	19.3Boolean Objects
	19.3.1The Boolean Constructor
	19.3.1.1Boolean (value)
	19.3.2Properties of the Boolean Constructor
	19.3.2.1Boolean.prototype
	19.3.3Properties of the Boolean Prototype Object
	19.3.3.1Boolean.prototype.constructor
	19.3.3.2Boolean.prototype.toString ()
	19.3.3.3Boolean.prototype.valueOf ()
	19.3.4Properties of Boolean Instances
	19.4Symbol Objects
	19.4.1The Symbol Constructor
	19.4.1.1Symbol ([description])
	19.4.2Properties of the Symbol Constructor
	19.4.2.1Symbol.asyncIterator
	19.4.2.2Symbol.for (key)
	19.4.2.3Symbol.hasInstance
	19.4.2.4Symbol.isConcatSpreadable
	19.4.2.5Symbol.iterator
	19.4.2.6Symbol.keyFor (sym)
	19.4.2.7Symbol.match
	19.4.2.8Symbol.prototype
	19.4.2.9Symbol.replace
	19.4.2.10Symbol.search
	19.4.2.11Symbol.species
	19.4.2.12Symbol.split
	19.4.2.13Symbol.toPrimitive
	19.4.2.14Symbol.toStringTag
	19.4.2.15Symbol.unscopables
	19.4.3Properties of the Symbol Prototype Object
	19.4.3.1Symbol.prototype.constructor
	19.4.3.2get Symbol.prototype.description
	19.4.3.3Symbol.prototype.toString ()
	19.4.3.3.1Runtime Semantics: SymbolDescriptiveString (sym)
	19.4.3.4Symbol.prototype.valueOf ()
	19.4.3.5Symbol.prototype [@@toPrimitive] (hint)
	19.4.3.6Symbol.prototype [@@toStringTag]
	19.4.4Properties of Symbol Instances
	19.5Error Objects
	19.5.1The Error Constructor
	19.5.1.1Error (message)
	19.5.2Properties of the Error Constructor
	19.5.2.1Error.prototype
	19.5.3Properties of the Error Prototype Object
	19.5.3.1Error.prototype.constructor
	19.5.3.2Error.prototype.message
	19.5.3.3Error.prototype.name
	19.5.3.4Error.prototype.toString ()
	19.5.4Properties of Error Instances
	19.5.5Native Error Types Used in This Standard
	19.5.5.1EvalError
	19.5.5.2RangeError
	19.5.5.3ReferenceError
	19.5.5.4SyntaxError
	19.5.5.5TypeError
	19.5.5.6URIError
	19.5.6NativeError Object Structure
	19.5.6.1The NativeError Constructors
	19.5.6.1.1NativeError (message)
	19.5.6.2Properties of the NativeError Constructors
	19.5.6.2.1NativeError.prototype
	19.5.6.3Properties of the NativeError Prototype Objects
	19.5.6.3.1NativeError.prototype.constructor
	19.5.6.3.2NativeError.prototype.message
	19.5.6.3.3NativeError.prototype.name
	19.5.6.4Properties of NativeError Instances
	20Numbers and Dates
	20.1Number Objects
	20.1.1The Number Constructor
	20.1.1.1Number (value)
	20.1.2Properties of the Number Constructor
	20.1.2.1Number.EPSILON
	20.1.2.2Number.isFinite (number)
	20.1.2.3Number.isInteger (number)
	20.1.2.4Number.isNaN (number)
	20.1.2.5Number.isSafeInteger (number)
	20.1.2.6Number.MAX_SAFE_INTEGER
	20.1.2.7Number.MAX_VALUE
	20.1.2.8Number.MIN_SAFE_INTEGER
	20.1.2.9Number.MIN_VALUE
	20.1.2.10Number.NaN
	20.1.2.11Number.NEGATIVE_INFINITY
	20.1.2.12Number.parseFloat (string)
	20.1.2.13Number.parseInt (string, radix)
	20.1.2.14Number.POSITIVE_INFINITY
	20.1.2.15Number.prototype
	20.1.3Properties of the Number Prototype Object
	20.1.3.1Number.prototype.constructor
	20.1.3.2Number.prototype.toExponential (fractionDigits)
	20.1.3.3Number.prototype.toFixed (fractionDigits)
	20.1.3.4Number.prototype.toLocaleString ([reserved1 [, reserved2]])
	20.1.3.5Number.prototype.toPrecision (precision)
	20.1.3.6Number.prototype.toString ([radix])
	20.1.3.7Number.prototype.valueOf ()
	20.1.4Properties of Number Instances
	20.2The Math Object
	20.2.1Value Properties of the Math Object
	20.2.1.1Math.E
	20.2.1.2Math.LN10
	20.2.1.3Math.LN2
	20.2.1.4Math.LOG10E
	20.2.1.5Math.LOG2E
	20.2.1.6Math.PI
	20.2.1.7Math.SQRT1_2
	20.2.1.8Math.SQRT2
	20.2.1.9Math [@@toStringTag]
	20.2.2Function Properties of the Math Object
	20.2.2.1Math.abs (x)
	20.2.2.2Math.acos (x)
	20.2.2.3Math.acosh (x)
	20.2.2.4Math.asin (x)
	20.2.2.5Math.asinh (x)
	20.2.2.6Math.atan (x)
	20.2.2.7Math.atanh (x)
	20.2.2.8Math.atan2 (y, x)
	20.2.2.9Math.cbrt (x)
	20.2.2.10Math.ceil (x)
	20.2.2.11Math.clz32 (x)
	20.2.2.12Math.cos (x)
	20.2.2.13Math.cosh (x)
	20.2.2.14Math.exp (x)
	20.2.2.15Math.expm1 (x)
	20.2.2.16Math.floor (x)
	20.2.2.17Math.fround (x)
	20.2.2.18Math.hypot (value1, value2, ...values)
	20.2.2.19Math.imul (x, y)
	20.2.2.20Math.log (x)
	20.2.2.21Math.log1p (x)
	20.2.2.22Math.log10 (x)
	20.2.2.23Math.log2 (x)
	20.2.2.24Math.max (value1, value2, ...values)
	20.2.2.25Math.min (value1, value2, ...values)
	20.2.2.26Math.pow (base, exponent)
	20.2.2.27Math.random ()
	20.2.2.28Math.round (x)
	20.2.2.29Math.sign (x)
	20.2.2.30Math.sin (x)
	20.2.2.31Math.sinh (x)
	20.2.2.32Math.sqrt (x)
	20.2.2.33Math.tan (x)
	20.2.2.34Math.tanh (x)
	20.2.2.35Math.trunc (x)
	20.3Date Objects
	20.3.1Overview of Date Objects and Definitions of Abstract Operations
	20.3.1.1Time Values and Time Range
	20.3.1.2Day Number and Time within Day
	20.3.1.3Year Number
	20.3.1.4Month Number
	20.3.1.5Date Number
	20.3.1.6Week Day
	20.3.1.7LocalTZA (t, isUTC)
	20.3.1.8LocalTime (t)
	20.3.1.9UTC (t)
	20.3.1.10Hours, Minutes, Second, and Milliseconds
	20.3.1.11MakeTime (hour, min, sec, ms)
	20.3.1.12MakeDay (year, month, date)
	20.3.1.13MakeDate (day, time)
	20.3.1.14TimeClip (time)
	20.3.1.15Date Time String Format
	20.3.1.15.1Expanded Years
	20.3.2The Date Constructor
	20.3.2.1Date (year, month [, date [, hours [, minutes [, seconds [, ms]]]]])
	20.3.2.2Date (value)
	20.3.2.3Date ()
	20.3.3Properties of the Date Constructor
	20.3.3.1Date.now ()
	20.3.3.2Date.parse (string)
	20.3.3.3Date.prototype
	20.3.3.4Date.UTC (year [, month [, date [, hours [, minutes [, seconds [, ms]]]]]])
	20.3.4Properties of the Date Prototype Object
	20.3.4.1Date.prototype.constructor
	20.3.4.2Date.prototype.getDate ()
	20.3.4.3Date.prototype.getDay ()
	20.3.4.4Date.prototype.getFullYear ()
	20.3.4.5Date.prototype.getHours ()
	20.3.4.6Date.prototype.getMilliseconds ()
	20.3.4.7Date.prototype.getMinutes ()
	20.3.4.8Date.prototype.getMonth ()
	20.3.4.9Date.prototype.getSeconds ()
	20.3.4.10Date.prototype.getTime ()
	20.3.4.11Date.prototype.getTimezoneOffset ()
	20.3.4.12Date.prototype.getUTCDate ()
	20.3.4.13Date.prototype.getUTCDay ()
	20.3.4.14Date.prototype.getUTCFullYear ()
	20.3.4.15Date.prototype.getUTCHours ()
	20.3.4.16Date.prototype.getUTCMilliseconds ()
	20.3.4.17Date.prototype.getUTCMinutes ()
	20.3.4.18Date.prototype.getUTCMonth ()
	20.3.4.19Date.prototype.getUTCSeconds ()
	20.3.4.20Date.prototype.setDate (date)
	20.3.4.21Date.prototype.setFullYear (year [, month [, date]])
	20.3.4.22Date.prototype.setHours (hour [, min [, sec [, ms]]])
	20.3.4.23Date.prototype.setMilliseconds (ms)
	20.3.4.24Date.prototype.setMinutes (min [, sec [, ms]])
	20.3.4.25Date.prototype.setMonth (month [, date])
	20.3.4.26Date.prototype.setSeconds (sec [, ms])
	20.3.4.27Date.prototype.setTime (time)
	20.3.4.28Date.prototype.setUTCDate (date)
	20.3.4.29Date.prototype.setUTCFullYear (year [, month [, date]])
	20.3.4.30Date.prototype.setUTCHours (hour [, min [, sec [, ms]]])
	20.3.4.31Date.prototype.setUTCMilliseconds (ms)
	20.3.4.32Date.prototype.setUTCMinutes (min [, sec [, ms]])
	20.3.4.33Date.prototype.setUTCMonth (month [, date])
	20.3.4.34Date.prototype.setUTCSeconds (sec [, ms])
	20.3.4.35Date.prototype.toDateString ()
	20.3.4.36Date.prototype.toISOString ()
	20.3.4.37Date.prototype.toJSON (key)
	20.3.4.38Date.prototype.toLocaleDateString ([reserved1 [, reserved2]])
	20.3.4.39Date.prototype.toLocaleString ([reserved1 [, reserved2]])
	20.3.4.40Date.prototype.toLocaleTimeString ([reserved1 [, reserved2]])
	20.3.4.41Date.prototype.toString ()
	20.3.4.41.1Runtime Semantics: TimeString (tv)
	20.3.4.41.2Runtime Semantics: DateString (tv)
	20.3.4.41.3Runtime Semantics: TimeZoneString (tv)
	20.3.4.41.4Runtime Semantics: ToDateString (tv)
	20.3.4.42Date.prototype.toTimeString ()
	20.3.4.43Date.prototype.toUTCString ()
	20.3.4.44Date.prototype.valueOf ()
	20.3.4.45Date.prototype [@@toPrimitive] (hint)
	20.3.5Properties of Date Instances
	21Text Processing
	21.1String Objects
	21.1.1The String Constructor
	21.1.1.1String (value)
	21.1.2Properties of the String Constructor
	21.1.2.1String.fromCharCode (...codeUnits)
	21.1.2.2String.fromCodePoint (...codePoints)
	21.1.2.3String.prototype
	21.1.2.4String.raw (template, ...substitutions)
	21.1.3Properties of the String Prototype Object
	21.1.3.1String.prototype.charAt (pos)
	21.1.3.2String.prototype.charCodeAt (pos)
	21.1.3.3String.prototype.codePointAt (pos)
	21.1.3.4String.prototype.concat (...args)
	21.1.3.5String.prototype.constructor
	21.1.3.6String.prototype.endsWith (searchString [, endPosition])
	21.1.3.7String.prototype.includes (searchString [, position])
	21.1.3.8String.prototype.indexOf (searchString [, position])
	21.1.3.9String.prototype.lastIndexOf (searchString [, position])
	21.1.3.10String.prototype.localeCompare (that [, reserved1 [, reserved2]])
	21.1.3.11String.prototype.match (regexp)
	21.1.3.12String.prototype.normalize ([form])
	21.1.3.13String.prototype.padEnd (maxLength [, fillString])
	21.1.3.14String.prototype.padStart (maxLength [, fillString])
	21.1.3.15String.prototype.repeat (count)
	21.1.3.16String.prototype.replace (searchValue, replaceValue)
	21.1.3.16.1Runtime Semantics: GetSubstitution (matched, str, position, captures, namedCaptures, replacement)
	21.1.3.17String.prototype.search (regexp)
	21.1.3.18String.prototype.slice (start, end)
	21.1.3.19String.prototype.split (separator, limit)
	21.1.3.19.1Runtime Semantics: SplitMatch (S, q, R)
	21.1.3.20String.prototype.startsWith (searchString [, position])
	21.1.3.21String.prototype.substring (start, end)
	21.1.3.22String.prototype.toLocaleLowerCase ([reserved1 [, reserved2]])
	21.1.3.23String.prototype.toLocaleUpperCase ([reserved1 [, reserved2]])
	21.1.3.24String.prototype.toLowerCase ()
	21.1.3.25String.prototype.toString ()
	21.1.3.26String.prototype.toUpperCase ()
	21.1.3.27String.prototype.trim ()
	21.1.3.27.1Runtime Semantics: TrimString (string, where)
	21.1.3.28String.prototype.trimEnd ()
	21.1.3.29String.prototype.trimStart ()
	21.1.3.30String.prototype.valueOf ()
	21.1.3.31String.prototype [@@iterator] ()
	21.1.4Properties of String Instances
	21.1.4.1length
	21.1.5String Iterator Objects
	21.1.5.1CreateStringIterator (string)
	21.1.5.2The %StringIteratorPrototype% Object
	21.1.5.2.1%StringIteratorPrototype%.next ()
	21.1.5.2.2%StringIteratorPrototype% [@@toStringTag]
	21.1.5.3Properties of String Iterator Instances
	21.2RegExp (Regular Expression) Objects
	21.2.1Patterns
	Syntax

	21.2.1.1Static Semantics: Early Errors
	21.2.1.2Static Semantics: CapturingGroupNumber
	21.2.1.3Static Semantics: IsCharacterClass
	21.2.1.4Static Semantics: CharacterValue
	21.2.1.5Static Semantics: SourceText
	21.2.1.6Static Semantics: StringValue
	21.2.2Pattern Semantics
	21.2.2.1Notation
	21.2.2.2Pattern
	21.2.2.3Disjunction
	21.2.2.4Alternative
	21.2.2.5Term
	21.2.2.5.1Runtime Semantics: RepeatMatcher (m, min, max, greedy, x, c, parenIndex, parenCount)
	21.2.2.6Assertion
	21.2.2.6.1Runtime Semantics: WordCharacters ()
	21.2.2.6.2Runtime Semantics: IsWordChar (e)
	21.2.2.7Quantifier
	21.2.2.8Atom
	21.2.2.8.1Runtime Semantics: CharacterSetMatcher (A, invert, direction)
	21.2.2.8.2Runtime Semantics: Canonicalize (ch)
	21.2.2.8.3Runtime Semantics: UnicodeMatchProperty (p)
	21.2.2.8.4Runtime Semantics: UnicodeMatchPropertyValue (p, v)
	21.2.2.9AtomEscape
	21.2.2.9.1Runtime Semantics: BackreferenceMatcher (n, direction)
	21.2.2.10CharacterEscape
	21.2.2.11DecimalEscape
	21.2.2.12CharacterClassEscape
	21.2.2.13CharacterClass
	21.2.2.14ClassRanges
	21.2.2.15NonemptyClassRanges
	21.2.2.15.1Runtime Semantics: CharacterRange (A, B)
	21.2.2.16NonemptyClassRangesNoDash
	21.2.2.17ClassAtom
	21.2.2.18ClassAtomNoDash
	21.2.2.19ClassEscape
	21.2.3The RegExp Constructor
	21.2.3.1RegExp (pattern, flags)
	21.2.3.2Abstract Operations for the RegExp Constructor
	21.2.3.2.1Runtime Semantics: RegExpAlloc (newTarget)
	21.2.3.2.2Runtime Semantics: RegExpInitialize (obj, pattern, flags)
	21.2.3.2.3Runtime Semantics: RegExpCreate (P, F)
	21.2.3.2.4Runtime Semantics: EscapeRegExpPattern (P, F)
	21.2.4Properties of the RegExp Constructor
	21.2.4.1RegExp.prototype
	21.2.4.2get RegExp [@@species]
	21.2.5Properties of the RegExp Prototype Object
	21.2.5.1RegExp.prototype.constructor
	21.2.5.2RegExp.prototype.exec (string)
	21.2.5.2.1Runtime Semantics: RegExpExec (R, S)
	21.2.5.2.2Runtime Semantics: RegExpBuiltinExec (R, S)
	21.2.5.2.3AdvanceStringIndex (S, index, unicode)
	21.2.5.3get RegExp.prototype.dotAll
	21.2.5.4get RegExp.prototype.flags
	21.2.5.5get RegExp.prototype.global
	21.2.5.6get RegExp.prototype.ignoreCase
	21.2.5.7RegExp.prototype [@@match] (string)
	21.2.5.8get RegExp.prototype.multiline
	21.2.5.9RegExp.prototype [@@replace] (string, replaceValue)
	21.2.5.10RegExp.prototype [@@search] (string)
	21.2.5.11get RegExp.prototype.source
	21.2.5.12RegExp.prototype [@@split] (string, limit)
	21.2.5.13get RegExp.prototype.sticky
	21.2.5.14RegExp.prototype.test (S)
	21.2.5.15RegExp.prototype.toString ()
	21.2.5.16get RegExp.prototype.unicode
	21.2.6Properties of RegExp Instances
	21.2.6.1lastIndex
	22Indexed Collections
	22.1Array Objects
	22.1.1The Array Constructor
	22.1.1.1Array ()
	22.1.1.2Array (len)
	22.1.1.3Array (...items)
	22.1.2Properties of the Array Constructor
	22.1.2.1Array.from (items [, mapfn [, thisArg]])
	22.1.2.2Array.isArray (arg)
	22.1.2.3Array.of (...items)
	22.1.2.4Array.prototype
	22.1.2.5get Array [@@species]
	22.1.3Properties of the Array Prototype Object
	22.1.3.1Array.prototype.concat (...arguments)
	22.1.3.1.1Runtime Semantics: IsConcatSpreadable (O)
	22.1.3.2Array.prototype.constructor
	22.1.3.3Array.prototype.copyWithin (target, start [, end])
	22.1.3.4Array.prototype.entries ()
	22.1.3.5Array.prototype.every (callbackfn [, thisArg])
	22.1.3.6Array.prototype.fill (value [, start [, end]])
	22.1.3.7Array.prototype.filter (callbackfn [, thisArg])
	22.1.3.8Array.prototype.find (predicate [, thisArg])
	22.1.3.9Array.prototype.findIndex (predicate [, thisArg])
	22.1.3.10Array.prototype.flat([depth])
	22.1.3.10.1FlattenIntoArray(target, source, sourceLen, start, depth [, mapperFunction, thisArg])
	22.1.3.11Array.prototype.flatMap (mapperFunction [, thisArg])
	22.1.3.12Array.prototype.forEach (callbackfn [, thisArg])
	22.1.3.13Array.prototype.includes (searchElement [, fromIndex])
	22.1.3.14Array.prototype.indexOf (searchElement [, fromIndex])
	22.1.3.15Array.prototype.join (separator)
	22.1.3.16Array.prototype.keys ()
	22.1.3.17Array.prototype.lastIndexOf (searchElement [, fromIndex])
	22.1.3.18Array.prototype.map (callbackfn [, thisArg])
	22.1.3.19Array.prototype.pop ()
	22.1.3.20Array.prototype.push (...items)
	22.1.3.21Array.prototype.reduce (callbackfn [, initialValue])
	22.1.3.22Array.prototype.reduceRight (callbackfn [, initialValue])
	22.1.3.23Array.prototype.reverse ()
	22.1.3.24Array.prototype.shift ()
	22.1.3.25Array.prototype.slice (start, end)
	22.1.3.26Array.prototype.some (callbackfn [, thisArg])
	22.1.3.27Array.prototype.sort (comparefn)
	22.1.3.27.1Runtime Semantics: SortCompare (x, y)
	22.1.3.28Array.prototype.splice (start, deleteCount, ...items)
	22.1.3.29Array.prototype.toLocaleString ([reserved1 [, reserved2]])
	22.1.3.30Array.prototype.toString ()
	22.1.3.31Array.prototype.unshift (...items)
	22.1.3.32Array.prototype.values ()
	22.1.3.33Array.prototype [@@iterator] ()
	22.1.3.34Array.prototype [@@unscopables]
	22.1.4Properties of Array Instances
	22.1.4.1length
	22.1.5Array Iterator Objects
	22.1.5.1CreateArrayIterator (array, kind)
	22.1.5.2The %ArrayIteratorPrototype% Object
	22.1.5.2.1%ArrayIteratorPrototype%.next ()
	22.1.5.2.2%ArrayIteratorPrototype% [@@toStringTag]
	22.1.5.3Properties of Array Iterator Instances
	22.2TypedArray Objects
	22.2.1The %TypedArray% Intrinsic Object
	22.2.1.1%TypedArray% ()
	22.2.2Properties of the %TypedArray% Intrinsic Object
	22.2.2.1%TypedArray%.from (source [, mapfn [, thisArg]])
	22.2.2.1.1Runtime Semantics: IterableToList (items, method)
	22.2.2.2%TypedArray%.of (...items)
	22.2.2.3%TypedArray%.prototype
	22.2.2.4get %TypedArray% [@@species]
	22.2.3Properties of the %TypedArrayPrototype% Object
	22.2.3.1get %TypedArray%.prototype.buffer
	22.2.3.2get %TypedArray%.prototype.byteLength
	22.2.3.3get %TypedArray%.prototype.byteOffset
	22.2.3.4%TypedArray%.prototype.constructor
	22.2.3.5%TypedArray%.prototype.copyWithin (target, start [, end])
	22.2.3.5.1Runtime Semantics: ValidateTypedArray (O)
	22.2.3.6%TypedArray%.prototype.entries ()
	22.2.3.7%TypedArray%.prototype.every (callbackfn [, thisArg])
	22.2.3.8%TypedArray%.prototype.fill (value [, start [, end]])
	22.2.3.9%TypedArray%.prototype.filter (callbackfn [, thisArg])
	22.2.3.10%TypedArray%.prototype.find (predicate [, thisArg])
	22.2.3.11%TypedArray%.prototype.findIndex (predicate [, thisArg])
	22.2.3.12%TypedArray%.prototype.forEach (callbackfn [, thisArg])
	22.2.3.13%TypedArray%.prototype.includes (searchElement [, fromIndex])
	22.2.3.14%TypedArray%.prototype.indexOf (searchElement [, fromIndex])
	22.2.3.15%TypedArray%.prototype.join (separator)
	22.2.3.16%TypedArray%.prototype.keys ()
	22.2.3.17%TypedArray%.prototype.lastIndexOf (searchElement [, fromIndex])
	22.2.3.18get %TypedArray%.prototype.length
	22.2.3.19%TypedArray%.prototype.map (callbackfn [, thisArg])
	22.2.3.20%TypedArray%.prototype.reduce (callbackfn [, initialValue])
	22.2.3.21%TypedArray%.prototype.reduceRight (callbackfn [, initialValue])
	22.2.3.22%TypedArray%.prototype.reverse ()
	22.2.3.23%TypedArray%.prototype.set (overloaded [, offset])
	22.2.3.23.1%TypedArray%.prototype.set (array [, offset])
	22.2.3.23.2%TypedArray%.prototype.set (typedArray [, offset])
	22.2.3.24%TypedArray%.prototype.slice (start, end)
	22.2.3.25%TypedArray%.prototype.some (callbackfn [, thisArg])
	22.2.3.26%TypedArray%.prototype.sort (comparefn)
	22.2.3.27%TypedArray%.prototype.subarray (begin, end)
	22.2.3.28%TypedArray%.prototype.toLocaleString ([reserved1 [, reserved2]])
	22.2.3.29%TypedArray%.prototype.toString ()
	22.2.3.30%TypedArray%.prototype.values ()
	22.2.3.31%TypedArray%.prototype [@@iterator] ()
	22.2.3.32get %TypedArray%.prototype [@@toStringTag]
	22.2.4The TypedArray Constructors
	22.2.4.1TypedArray ()
	22.2.4.2TypedArray (length)
	22.2.4.2.1Runtime Semantics: AllocateTypedArray (constructorName, newTarget, defaultProto [, length])
	22.2.4.2.2Runtime Semantics: AllocateTypedArrayBuffer (O, length)
	22.2.4.3TypedArray (typedArray)
	22.2.4.4TypedArray (object)
	22.2.4.5TypedArray (buffer [, byteOffset [, length]])
	22.2.4.6TypedArrayCreate (constructor, argumentList)
	22.2.4.7TypedArraySpeciesCreate (exemplar, argumentList)
	22.2.5Properties of the TypedArray Constructors
	22.2.5.1TypedArray.BYTES_PER_ELEMENT
	22.2.5.2TypedArray.prototype
	22.2.6Properties of the TypedArray Prototype Objects
	22.2.6.1TypedArray.prototype.BYTES_PER_ELEMENT
	22.2.6.2TypedArray.prototype.constructor
	22.2.7Properties of TypedArray Instances
	23Keyed Collections
	23.1Map Objects
	23.1.1The Map Constructor
	23.1.1.1Map ([iterable])
	23.1.1.2AddEntriesFromIterable (target, iterable, adder)
	23.1.2Properties of the Map Constructor
	23.1.2.1Map.prototype
	23.1.2.2get Map [@@species]
	23.1.3Properties of the Map Prototype Object
	23.1.3.1Map.prototype.clear ()
	23.1.3.2Map.prototype.constructor
	23.1.3.3Map.prototype.delete (key)
	23.1.3.4Map.prototype.entries ()
	23.1.3.5Map.prototype.forEach (callbackfn [, thisArg])
	23.1.3.6Map.prototype.get (key)
	23.1.3.7Map.prototype.has (key)
	23.1.3.8Map.prototype.keys ()
	23.1.3.9Map.prototype.set (key, value)
	23.1.3.10get Map.prototype.size
	23.1.3.11Map.prototype.values ()
	23.1.3.12Map.prototype [@@iterator] ()
	23.1.3.13Map.prototype [@@toStringTag]
	23.1.4Properties of Map Instances
	23.1.5Map Iterator Objects
	23.1.5.1CreateMapIterator (map, kind)
	23.1.5.2The %MapIteratorPrototype% Object
	23.1.5.2.1%MapIteratorPrototype%.next ()
	23.1.5.2.2%MapIteratorPrototype% [@@toStringTag]
	23.1.5.3Properties of Map Iterator Instances
	23.2Set Objects
	23.2.1The Set Constructor
	23.2.1.1Set ([iterable])
	23.2.2Properties of the Set Constructor
	23.2.2.1Set.prototype
	23.2.2.2get Set [@@species]
	23.2.3Properties of the Set Prototype Object
	23.2.3.1Set.prototype.add (value)
	23.2.3.2Set.prototype.clear ()
	23.2.3.3Set.prototype.constructor
	23.2.3.4Set.prototype.delete (value)
	23.2.3.5Set.prototype.entries ()
	23.2.3.6Set.prototype.forEach (callbackfn [, thisArg])
	23.2.3.7Set.prototype.has (value)
	23.2.3.8Set.prototype.keys ()
	23.2.3.9get Set.prototype.size
	23.2.3.10Set.prototype.values ()
	23.2.3.11Set.prototype [@@iterator] ()
	23.2.3.12Set.prototype [@@toStringTag]
	23.2.4Properties of Set Instances
	23.2.5Set Iterator Objects
	23.2.5.1CreateSetIterator (set, kind)
	23.2.5.2The %SetIteratorPrototype% Object
	23.2.5.2.1%SetIteratorPrototype%.next ()
	23.2.5.2.2%SetIteratorPrototype% [@@toStringTag]
	23.2.5.3Properties of Set Iterator Instances
	23.3WeakMap Objects
	23.3.1The WeakMap Constructor
	23.3.1.1WeakMap ([iterable])
	23.3.2Properties of the WeakMap Constructor
	23.3.2.1WeakMap.prototype
	23.3.3Properties of the WeakMap Prototype Object
	23.3.3.1WeakMap.prototype.constructor
	23.3.3.2WeakMap.prototype.delete (key)
	23.3.3.3WeakMap.prototype.get (key)
	23.3.3.4WeakMap.prototype.has (key)
	23.3.3.5WeakMap.prototype.set (key, value)
	23.3.3.6WeakMap.prototype [@@toStringTag]
	23.3.4Properties of WeakMap Instances
	23.4WeakSet Objects
	23.4.1The WeakSet Constructor
	23.4.1.1WeakSet ([iterable])
	23.4.2Properties of the WeakSet Constructor
	23.4.2.1WeakSet.prototype
	23.4.3Properties of the WeakSet Prototype Object
	23.4.3.1WeakSet.prototype.add (value)
	23.4.3.2WeakSet.prototype.constructor
	23.4.3.3WeakSet.prototype.delete (value)
	23.4.3.4WeakSet.prototype.has (value)
	23.4.3.5WeakSet.prototype [@@toStringTag]
	23.4.4Properties of WeakSet Instances
	24Structured Data
	24.1ArrayBuffer Objects
	24.1.1Abstract Operations For ArrayBuffer Objects
	24.1.1.1AllocateArrayBuffer (constructor, byteLength)
	24.1.1.2IsDetachedBuffer (arrayBuffer)
	24.1.1.3DetachArrayBuffer (arrayBuffer [, key])
	24.1.1.4CloneArrayBuffer (srcBuffer, srcByteOffset, srcLength, cloneConstructor)
	24.1.1.5RawBytesToNumber (type, rawBytes, isLittleEndian)
	24.1.1.6GetValueFromBuffer (arrayBuffer, byteIndex, type, isTypedArray, order [, isLittleEndian])
	24.1.1.7NumberToRawBytes (type, value, isLittleEndian)
	24.1.1.8SetValueInBuffer (arrayBuffer, byteIndex, type, value, isTypedArray, order [, isLittleEndian])
	24.1.1.9GetModifySetValueInBuffer (arrayBuffer, byteIndex, type, value, op [, isLittleEndian])
	24.1.2The ArrayBuffer Constructor
	24.1.2.1ArrayBuffer (length)
	24.1.3Properties of the ArrayBuffer Constructor
	24.1.3.1ArrayBuffer.isView (arg)
	24.1.3.2ArrayBuffer.prototype
	24.1.3.3get ArrayBuffer [@@species]
	24.1.4Properties of the ArrayBuffer Prototype Object
	24.1.4.1get ArrayBuffer.prototype.byteLength
	24.1.4.2ArrayBuffer.prototype.constructor
	24.1.4.3ArrayBuffer.prototype.slice (start, end)
	24.1.4.4ArrayBuffer.prototype [@@toStringTag]
	24.1.5Properties of ArrayBuffer Instances
	24.2SharedArrayBuffer Objects
	24.2.1Abstract Operations for SharedArrayBuffer Objects
	24.2.1.1AllocateSharedArrayBuffer (constructor, byteLength)
	24.2.1.2IsSharedArrayBuffer (obj)
	24.2.2The SharedArrayBuffer Constructor
	24.2.2.1SharedArrayBuffer ([length])
	24.2.3Properties of the SharedArrayBuffer Constructor
	24.2.3.1SharedArrayBuffer.prototype
	24.2.3.2get SharedArrayBuffer [@@species]
	24.2.4Properties of the SharedArrayBuffer Prototype Object
	24.2.4.1get SharedArrayBuffer.prototype.byteLength
	24.2.4.2SharedArrayBuffer.prototype.constructor
	24.2.4.3SharedArrayBuffer.prototype.slice (start, end)
	24.2.4.4SharedArrayBuffer.prototype [@@toStringTag]
	24.2.5Properties of SharedArrayBuffer Instances
	24.3DataView Objects
	24.3.1Abstract Operations For DataView Objects
	24.3.1.1GetViewValue (view, requestIndex, isLittleEndian, type)
	24.3.1.2SetViewValue (view, requestIndex, isLittleEndian, type, value)
	24.3.2The DataView Constructor
	24.3.2.1DataView (buffer [, byteOffset [, byteLength]])
	24.3.3Properties of the DataView Constructor
	24.3.3.1DataView.prototype
	24.3.4Properties of the DataView Prototype Object
	24.3.4.1get DataView.prototype.buffer
	24.3.4.2get DataView.prototype.byteLength
	24.3.4.3get DataView.prototype.byteOffset
	24.3.4.4DataView.prototype.constructor
	24.3.4.5DataView.prototype.getFloat32 (byteOffset [, littleEndian])
	24.3.4.6DataView.prototype.getFloat64 (byteOffset [, littleEndian])
	24.3.4.7DataView.prototype.getInt8 (byteOffset)
	24.3.4.8DataView.prototype.getInt16 (byteOffset [, littleEndian])
	24.3.4.9DataView.prototype.getInt32 (byteOffset [, littleEndian])
	24.3.4.10DataView.prototype.getUint8 (byteOffset)
	24.3.4.11DataView.prototype.getUint16 (byteOffset [, littleEndian])
	24.3.4.12DataView.prototype.getUint32 (byteOffset [, littleEndian])
	24.3.4.13DataView.prototype.setFloat32 (byteOffset, value [, littleEndian])
	24.3.4.14DataView.prototype.setFloat64 (byteOffset, value [, littleEndian])
	24.3.4.15DataView.prototype.setInt8 (byteOffset, value)
	24.3.4.16DataView.prototype.setInt16 (byteOffset, value [, littleEndian])
	24.3.4.17DataView.prototype.setInt32 (byteOffset, value [, littleEndian])
	24.3.4.18DataView.prototype.setUint8 (byteOffset, value)
	24.3.4.19DataView.prototype.setUint16 (byteOffset, value [, littleEndian])
	24.3.4.20DataView.prototype.setUint32 (byteOffset, value [, littleEndian])
	24.3.4.21DataView.prototype [@@toStringTag]
	24.3.5Properties of DataView Instances
	24.4The Atomics Object
	24.4.1Abstract Operations for Atomics
	24.4.1.1ValidateSharedIntegerTypedArray (typedArray [, onlyInt32])
	24.4.1.2ValidateAtomicAccess (typedArray, requestIndex)
	24.4.1.3GetWaiterList (block, i)
	24.4.1.4EnterCriticalSection (WL)
	24.4.1.5LeaveCriticalSection (WL)
	24.4.1.6AddWaiter (WL, W)
	24.4.1.7RemoveWaiter (WL, W)
	24.4.1.8RemoveWaiters (WL, c)
	24.4.1.9Suspend (WL, W, timeout)
	24.4.1.10NotifyWaiter (WL, W)
	24.4.1.11AtomicReadModifyWrite (typedArray, index, value, op)
	24.4.1.12AtomicLoad (typedArray, index)
	24.4.2Atomics.add (typedArray, index, value)
	24.4.3Atomics.and (typedArray, index, value)
	24.4.4Atomics.compareExchange (typedArray, index, expectedValue, replacementValue)
	24.4.5Atomics.exchange (typedArray, index, value)
	24.4.6Atomics.isLockFree (size)
	24.4.7Atomics.load (typedArray, index)
	24.4.8Atomics.or (typedArray, index, value)
	24.4.9Atomics.store (typedArray, index, value)
	24.4.10Atomics.sub (typedArray, index, value)
	24.4.11Atomics.wait (typedArray, index, value, timeout)
	24.4.12Atomics.notify (typedArray, index, count)
	24.4.13Atomics.xor (typedArray, index, value)
	24.4.14Atomics [@@toStringTag]
	24.5The JSON Object
	24.5.1JSON.parse (text [, reviver])
	24.5.1.1Runtime Semantics: InternalizeJSONProperty (holder, name)
	24.5.2JSON.stringify (value [, replacer [, space]])
	24.5.2.1Runtime Semantics: SerializeJSONProperty (key, holder)
	24.5.2.2Runtime Semantics: QuoteJSONString (value)
	24.5.2.3Runtime Semantics: UnicodeEscape (C)
	24.5.2.4Runtime Semantics: SerializeJSONObject (value)
	24.5.2.5Runtime Semantics: SerializeJSONArray (value)
	24.5.3JSON [@@toStringTag]
	25Control Abstraction Objects
	25.1Iteration
	25.1.1Common Iteration Interfaces
	25.1.1.1The Iterable Interface
	25.1.1.2The Iterator Interface
	25.1.1.3The AsyncIterable Interface
	25.1.1.4The AsyncIterator Interface
	25.1.1.5The IteratorResult Interface
	25.1.2The %IteratorPrototype% Object
	25.1.2.1%IteratorPrototype% [@@iterator] ()
	25.1.3The %AsyncIteratorPrototype% Object
	25.1.3.1%AsyncIteratorPrototype% [@@asyncIterator] ()
	25.1.4Async-from-Sync Iterator Objects
	25.1.4.1CreateAsyncFromSyncIterator (syncIteratorRecord)
	25.1.4.2The %AsyncFromSyncIteratorPrototype% Object
	25.1.4.2.1%AsyncFromSyncIteratorPrototype%.next (value)
	25.1.4.2.2%AsyncFromSyncIteratorPrototype%.return (value)
	25.1.4.2.3%AsyncFromSyncIteratorPrototype%.throw (value)
	25.1.4.2.4%AsyncFromSyncIteratorPrototype% [@@toStringTag]
	25.1.4.2.5Async-from-Sync Iterator Value Unwrap Functions
	25.1.4.3Properties of Async-from-Sync Iterator Instances
	25.1.4.4AsyncFromSyncIteratorContinuation (result, promiseCapability)
	25.2GeneratorFunction Objects
	25.2.1The GeneratorFunction Constructor
	25.2.1.1GeneratorFunction (p1, p2, … , pn, body)
	25.2.2Properties of the GeneratorFunction Constructor
	25.2.2.1GeneratorFunction.length
	25.2.2.2GeneratorFunction.prototype
	25.2.3Properties of the GeneratorFunction Prototype Object
	25.2.3.1GeneratorFunction.prototype.constructor
	25.2.3.2GeneratorFunction.prototype.prototype
	25.2.3.3GeneratorFunction.prototype [@@toStringTag]
	25.2.4GeneratorFunction Instances
	25.2.4.1length
	25.2.4.2name
	25.2.4.3prototype
	25.3AsyncGeneratorFunction Objects
	25.3.1The AsyncGeneratorFunction Constructor
	25.3.1.1AsyncGeneratorFunction (p1, p2, ..., pn, body)
	25.3.2Properties of the AsyncGeneratorFunction Constructor
	25.3.2.1AsyncGeneratorFunction.length
	25.3.2.2AsyncGeneratorFunction.prototype
	25.3.3Properties of the AsyncGeneratorFunction Prototype Object
	25.3.3.1AsyncGeneratorFunction.prototype.constructor
	25.3.3.2AsyncGeneratorFunction.prototype.prototype
	25.3.3.3AsyncGeneratorFunction.prototype [@@toStringTag]
	25.3.4AsyncGeneratorFunction Instances
	25.3.4.1length
	25.3.4.2name
	25.3.4.3prototype
	25.4Generator Objects
	25.4.1Properties of the Generator Prototype Object
	25.4.1.1Generator.prototype.constructor
	25.4.1.2Generator.prototype.next (value)
	25.4.1.3Generator.prototype.return (value)
	25.4.1.4Generator.prototype.throw (exception)
	25.4.1.5Generator.prototype [@@toStringTag]
	25.4.2Properties of Generator Instances
	25.4.3Generator Abstract Operations
	25.4.3.1GeneratorStart (generator, generatorBody)
	25.4.3.2GeneratorValidate (generator)
	25.4.3.3GeneratorResume (generator, value)
	25.4.3.4GeneratorResumeAbrupt (generator, abruptCompletion)
	25.4.3.5GetGeneratorKind ()
	25.4.3.6GeneratorYield (iterNextObj)
	25.5AsyncGenerator Objects
	25.5.1Properties of the AsyncGenerator Prototype Object
	25.5.1.1AsyncGenerator.prototype.constructor
	25.5.1.2AsyncGenerator.prototype.next (value)
	25.5.1.3AsyncGenerator.prototype.return (value)
	25.5.1.4AsyncGenerator.prototype.throw (exception)
	25.5.1.5AsyncGenerator.prototype [@@toStringTag]
	25.5.2Properties of AsyncGenerator Instances
	25.5.3AsyncGenerator Abstract Operations
	25.5.3.1AsyncGeneratorRequest Records
	25.5.3.2AsyncGeneratorStart (generator, generatorBody)
	25.5.3.3AsyncGeneratorResolve (generator, value, done)
	25.5.3.4AsyncGeneratorReject (generator, exception)
	25.5.3.5AsyncGeneratorResumeNext (generator)
	25.5.3.5.1AsyncGeneratorResumeNext Return Processor Fulfilled Functions
	25.5.3.5.2AsyncGeneratorResumeNext Return Processor Rejected Functions
	25.5.3.6AsyncGeneratorEnqueue (generator, completion)
	25.5.3.7AsyncGeneratorYield (value)
	25.6Promise Objects
	25.6.1Promise Abstract Operations
	25.6.1.1PromiseCapability Records
	25.6.1.1.1IfAbruptRejectPromise (value, capability)
	25.6.1.2PromiseReaction Records
	25.6.1.3CreateResolvingFunctions (promise)
	25.6.1.3.1Promise Reject Functions
	25.6.1.3.2Promise Resolve Functions
	25.6.1.4FulfillPromise (promise, value)
	25.6.1.5NewPromiseCapability (C)
	25.6.1.5.1GetCapabilitiesExecutor Functions
	25.6.1.6IsPromise (x)
	25.6.1.7RejectPromise (promise, reason)
	25.6.1.8TriggerPromiseReactions (reactions, argument)
	25.6.1.9HostPromiseRejectionTracker (promise, operation)
	25.6.2Promise Jobs
	25.6.2.1PromiseReactionJob (reaction, argument)
	25.6.2.2PromiseResolveThenableJob (promiseToResolve, thenable, then)
	25.6.3The Promise Constructor
	25.6.3.1Promise (executor)
	25.6.4Properties of the Promise Constructor
	25.6.4.1Promise.all (iterable)
	25.6.4.1.1Runtime Semantics: PerformPromiseAll (iteratorRecord, constructor, resultCapability)
	25.6.4.1.2Promise.all Resolve Element Functions
	25.6.4.2Promise.prototype
	25.6.4.3Promise.race (iterable)
	25.6.4.3.1Runtime Semantics: PerformPromiseRace (iteratorRecord, constructor, resultCapability)
	25.6.4.4Promise.reject (r)
	25.6.4.5Promise.resolve (x)
	25.6.4.5.1PromiseResolve (C, x)
	25.6.4.6get Promise [@@species]
	25.6.5Properties of the Promise Prototype Object
	25.6.5.1Promise.prototype.catch (onRejected)
	25.6.5.2Promise.prototype.constructor
	25.6.5.3Promise.prototype.finally (onFinally)
	25.6.5.3.1Then Finally Functions
	25.6.5.3.2Catch Finally Functions
	25.6.5.4Promise.prototype.then (onFulfilled, onRejected)
	25.6.5.4.1PerformPromiseThen (promise, onFulfilled, onRejected [, resultCapability])
	25.6.5.5Promise.prototype [@@toStringTag]
	25.6.6Properties of Promise Instances
	25.7AsyncFunction Objects
	25.7.1The AsyncFunction Constructor
	25.7.1.1AsyncFunction (p1, p2, … , pn, body)
	25.7.2Properties of the AsyncFunction Constructor
	25.7.2.1AsyncFunction.length
	25.7.2.2AsyncFunction.prototype
	25.7.3Properties of the AsyncFunction Prototype Object
	25.7.3.1AsyncFunction.prototype.constructor
	25.7.3.2AsyncFunction.prototype [@@toStringTag]
	25.7.4AsyncFunction Instances
	25.7.4.1length
	25.7.4.2name
	25.7.5Async Functions Abstract Operations
	25.7.5.1AsyncFunctionStart (promiseCapability, asyncFunctionBody)
	26Reflection
	26.1The Reflect Object
	26.1.1Reflect.apply (target, thisArgument, argumentsList)
	26.1.2Reflect.construct (target, argumentsList [, newTarget])
	26.1.3Reflect.defineProperty (target, propertyKey, attributes)
	26.1.4Reflect.deleteProperty (target, propertyKey)
	26.1.5Reflect.get (target, propertyKey [, receiver])
	26.1.6Reflect.getOwnPropertyDescriptor (target, propertyKey)
	26.1.7Reflect.getPrototypeOf (target)
	26.1.8Reflect.has (target, propertyKey)
	26.1.9Reflect.isExtensible (target)
	26.1.10Reflect.ownKeys (target)
	26.1.11Reflect.preventExtensions (target)
	26.1.12Reflect.set (target, propertyKey, V [, receiver])
	26.1.13Reflect.setPrototypeOf (target, proto)
	26.2Proxy Objects
	26.2.1The Proxy Constructor
	26.2.1.1Proxy (target, handler)
	26.2.2Properties of the Proxy Constructor
	26.2.2.1Proxy.revocable (target, handler)
	26.2.2.1.1Proxy Revocation Functions
	26.3Module Namespace Objects
	26.3.1@@toStringTag
	27Memory Model
	27.1Memory Model Fundamentals
	27.2Agent Events Records
	27.3Chosen Value Records
	27.4Candidate Executions
	27.5Abstract Operations for the Memory Model
	27.5.1EventSet (execution)
	27.5.2SharedDataBlockEventSet (execution)
	27.5.3SynchronizeEventSet (execution)
	27.5.4HostEventSet (execution)
	27.5.5ComposeWriteEventBytes (execution, byteIndex, Ws)
	27.5.6ValueOfReadEvent (execution, R)
	27.6Relations of Candidate Executions
	27.6.1agent-order
	27.6.2reads-bytes-from
	27.6.3reads-from
	27.6.4host-synchronizes-with
	27.6.5synchronizes-with
	27.6.6happens-before
	27.7Properties of Valid Executions
	27.7.1Valid Chosen Reads
	27.7.2Coherent Reads
	27.7.3Tear Free Reads
	27.7.4Sequentially Consistent Atomics
	27.7.5Valid Executions
	27.8Races
	27.9Data Races
	27.10Data Race Freedom
	27.11Shared Memory Guidelines
	AGrammar Summary
	A.1Lexical Grammar
	A.2Expressions
	A.3Statements
	A.4Functions and Classes
	A.5Scripts and Modules
	A.6Number Conversions
	A.7Universal Resource Identifier Character Classes
	A.8Regular Expressions
	BAdditional ECMAScript Features for Web Browsers
	B.1Additional Syntax
	B.1.1Numeric Literals
	Syntax

	B.1.1.1Static Semantics
	B.1.2String Literals
	Syntax

	B.1.2.1Static Semantics
	B.1.3HTML-like Comments
	Syntax

	B.1.4Regular Expressions Patterns
	Syntax

	B.1.4.1Static Semantics: Early Errors
	B.1.4.2Static Semantics: IsCharacterClass
	B.1.4.3Static Semantics: CharacterValue
	B.1.4.4Pattern Semantics
	B.1.4.4.1Runtime Semantics: CharacterRangeOrUnion (A, B)
	B.2Additional Built-in Properties
	B.2.1Additional Properties of the Global Object
	B.2.1.1escape (string)
	B.2.1.2unescape (string)
	B.2.2Additional Properties of the Object.prototype Object
	B.2.2.1Object.prototype.__proto__
	B.2.2.1.1get Object.prototype.__proto__
	B.2.2.1.2set Object.prototype.__proto__
	B.2.2.2Object.prototype.__defineGetter__ (P, getter)
	B.2.2.3Object.prototype.__defineSetter__ (P, setter)
	B.2.2.4Object.prototype.__lookupGetter__ (P)
	B.2.2.5Object.prototype.__lookupSetter__ (P)
	B.2.3Additional Properties of the String.prototype Object
	B.2.3.1String.prototype.substr (start, length)
	B.2.3.2String.prototype.anchor (name)
	B.2.3.2.1Runtime Semantics: CreateHTML (string, tag, attribute, value)
	B.2.3.3String.prototype.big ()
	B.2.3.4String.prototype.blink ()
	B.2.3.5String.prototype.bold ()
	B.2.3.6String.prototype.fixed ()
	B.2.3.7String.prototype.fontcolor (color)
	B.2.3.8String.prototype.fontsize (size)
	B.2.3.9String.prototype.italics ()
	B.2.3.10String.prototype.link (url)
	B.2.3.11String.prototype.small ()
	B.2.3.12String.prototype.strike ()
	B.2.3.13String.prototype.sub ()
	B.2.3.14String.prototype.sup ()
	B.2.3.15String.prototype.trimLeft ()
	B.2.3.16String.prototype.trimRight ()
	B.2.4Additional Properties of the Date.prototype Object
	B.2.4.1Date.prototype.getYear ()
	B.2.4.2Date.prototype.setYear (year)
	B.2.4.3Date.prototype.toGMTString ()
	B.2.5Additional Properties of the RegExp.prototype Object
	B.2.5.1RegExp.prototype.compile (pattern, flags)
	B.3Other Additional Features
	B.3.1__proto__ Property Names in Object Initializers
	B.3.2Labelled Function Declarations
	B.3.3Block-Level Function Declarations Web Legacy Compatibility Semantics
	B.3.3.1Changes to FunctionDeclarationInstantiation
	B.3.3.2Changes to GlobalDeclarationInstantiation
	B.3.3.3Changes to EvalDeclarationInstantiation
	B.3.3.4Changes to Block Static Semantics: Early Errors
	B.3.3.5Changes to switch Statement Static Semantics: Early Errors
	B.3.3.6Changes to BlockDeclarationInstantiation
	B.3.4FunctionDeclarations in IfStatement Statement Clauses
	B.3.5VariableStatements in Catch Blocks
	B.3.6Initializers in ForIn Statement Heads
	B.3.7The [[IsHTMLDDA]] Internal Slot
	B.3.7.1Changes to ToBoolean
	B.3.7.2Changes to Abstract Equality Comparison
	B.3.7.3Changes to the typeof Operator
	CThe Strict Mode of ECMAScript
	DCorrections and Clarifications in ECMAScript 2015 with Possible Compatibility Impact
	EAdditions and Changes That Introduce Incompatibilities with Prior Editions
	FColophon
	GBibliography
	HCopyright & Software License
	Copyright Notice
	Software License

