S ecma

ECMA-262, 10! edition, June 2019

ECMAScript® 2019
Language Specification

Contributing to this Specification

This specification is developed on GitHub with the help of the ECMAScript community. There are a number of ways

to contribute to the development of this specification:

GitHub Repository: https://github.com/tc39/ecma262
Issues: All Issues, File a New Issue
Pull Requests: All Pull Requests, Create a New Pull Request
Test Suite: Test262
Editors:
o Brian Terlson (@bterlson)
o Bradley Farias (@bradleymeck)
o Jordan Harband (@ljharb)

Community:

o Mailing list: es-discuss
o IRC: #tc39 on freenode

Refer to the colophon for more information on how this document is created.

Introduction

This Ecma Standard defines the ECMAScript 2019 Language. It is the tenth edition of the ECMAScript Language
Specification. Since publication of the first edition in 1997, ECMAScript has grown to be one of the world's most widely
used general-purpose programming languages. It is best known as the language embedded in web browsers but has also

been widely adopted for server and embedded applications.

ECMAScript is based on several originating technologies, the most well-known being JavaScript (Netscape) and JScript
(Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company's Navigator 2.0
browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with

Internet Explorer 3.0.

© Ecma International 2019 1

https://github.com/tc39/ecma262
https://github.com/tc39/ecma262/issues
https://github.com/tc39/ecma262/issues/new
https://github.com/tc39/ecma262/pulls
https://github.com/tc39/ecma262/pulls/new
https://github.com/tc39/test262
mailto:brian.terlson%20at%20microsoft%20dot%20com
https://twitter.com/bterlson
mailto:bradley.meck%20at%20gmail%20dot%20com
https://twitter.com/bradleymeck
mailto:ljharb%20at%20gmail%20dot%20com
https://twitter.com/ljharb
https://esdiscuss.org/
ircs://irc.freenode.net:6667
https://freenode.net/kb/answer/chat

The development of the ECMAScript Language Specification started in November 1996. The first edition of this Ecma
Standard was adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as
international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second
edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are

editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control statements,
try/catch exception handling, tighter definition of errors, formatting for numeric output and minor changes in anticipation
of future language growth. The third edition of the ECMAScript standard was adopted by the Ecma General Assembly of
December 1999 and published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World Wide Web
where it has become the programming language that is supported by essentially all web browsers. Significant work was
done to develop a fourth edition of ECMAScript. However, that work was not completed and not published as the fourth
edition of ECMAScript but some of it was incorporated into the development of the sixth edition.

The fifth edition of ECMAScript (published as ECMA-262 5th edition) codified de facto interpretations of the language
specification that have become common among browser implementations and added support for new features that had
emerged since the publication of the third edition. Such features include accessor properties, reflective creation and
inspection of objects, program control of property attributes, additional array manipulation functions, support for the
JSON object encoding format, and a strict mode that provides enhanced error checking and program security. The fifth
edition was adopted by the Ecma General Assembly of December 2009.

The fifth edition was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as
international standard ISO/IEC 16262:2011. Edition 5.1 of the ECMAScript Standard incorporated minor corrections and
is the same text as ISO/IEC 16262:2011. The 5.1 Edition was adopted by the Ecma General Assembly of June 2011.

Focused development of the sixth edition started in 2009, as the fifth edition was being prepared for publication.
However, this was preceded by significant experimentation and language enhancement design efforts dating to the
publication of the third edition in 1999. In a very real sense, the completion of the sixth edition is the culmination of a
fifteen year effort. The goals for this addition included providing better support for large applications, library creation,
and for use of ECMAScript as a compilation target for other languages. Some of its major enhancements included
modules, class declarations, lexical block scoping, iterators and generators, promises for asynchronous programming,
destructuring patterns, and proper tail calls. The ECMAScript library of built-ins was expanded to support additional data
abstractions including maps, sets, and arrays of binary numeric values as well as additional support for Unicode
supplemental characters in strings and regular expressions. The built-ins were also made extensible via subclassing. The
sixth edition provides the foundation for regular, incremental language and library enhancements. The sixth edition was
adopted by the General Assembly of June 2015.

ECMAScript 2016 was the first ECMAScript edition released under Ecma TC39's new yearly release cadence and open
development process. A plain-text source document was built from the ECMAScript 2015 source document to serve as
the base for further development entirely on GitHub. Over the year of this standard's development, hundreds of pull
requests and issues were filed representing thousands of bug fixes, editorial fixes and other improvements. Additionally,
numerous software tools were developed to aid in this effort including Ecmarkup, Ecmarkdown, and Grammarkdown.
ES2016 also included support for a new exponentiation operator and adds a new method to Array.prototype called

includes.

ECMAScript 2017 introduced Async Functions, Shared Memory, and Atomics along with smaller language and library

enhancements, bug fixes, and editorial updates. Async functions improve the asynchronous programming experience by

2 © Ecma International 2019

providing syntax for promise-returning functions. Shared Memory and Atomics introduce a new memory model that
allows multi-agent programs to communicate using atomic operations that ensure a well-defined execution order even on
parallel CPUs. This specification also includes new static methods on Object: Object.values, Object.entries,

and Object.getOwnPropertyDescriptors.

ECMAScript 2018 introduced support for asynchronous iteration via the Asynclterator protocol and async generators. It
also included four new regular expression features: the dotAll flag, named capture groups, Unicode property escapes, and

look-behind assertions. Lastly it included rest parameter and spread operator support for object properties.

This specification, the 10t

edition, introduces a few new built-in functions: £1at and £1latMap on
Array.prototype for flattening arrays, Object . fromEntries for directly turning the return value of
Object.entries into a new Object, and trimStart and trimEnd on String.prototype as better-named
alternatives to the widely implemented but non-standard String.prototype. trimLeft and trimRight built-
ins. In addition, this specification includes a few minor updates to syntax and semantics. Updated syntax includes
optional catch binding parameters and allowing U+2028 (LINE SEPARATOR) and U+2029 (PARAGRAPH
SEPARATOR) in string literals to align with JSON. Other updates include requiring that Array .prototype.sort
be a stable sort, requiring that JSON.stringify return well-formed UTF-8 regardless of input, and clarifying
Function.prototype. toString by requiring that it either return the corresponding original source text or a

standard placeholder.

Dozens of individuals representing many organizations have made very significant contributions within Ecma TC39 to
the development of this edition and to the prior editions. In addition, a vibrant community has emerged supporting
TC39's ECMAScript efforts. This community has reviewed numerous drafts, filed thousands of bug reports, performed
implementation experiments, contributed test suites, and educated the world-wide developer community about
ECMAScript. Unfortunately, it is impossible to identify and acknowledge every person and organization who has

contributed to this effort.

Allen Wirfs-Brock
ECMA-262, Project Editor, 6 Edition

Brian Terlson

ECMA-262, Project Editor, 7 through 10! Editions

1 Scope

This Standard defines the ECMAScript 2019 general-purpose programming language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties,
functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret source text input in conformance with the latest version of
the Unicode Standard and ISO/IEC 10646.

A conforming implementation of ECMAScript that provides an application programming interface (API) that supports

© Ecma International 2019 3

programs that need to adapt to the linguistic and cultural conventions used by different human languages and countries

must implement the interface defined by the most recent edition of ECMA-402 that is compatible with this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties, and functions
beyond those described in this specification. In particular, a conforming implementation of ECMAScript may provide
properties not described in this specification, and values for those properties, for objects that are described in this

specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not described in this
specification. In particular, a conforming implementation of ECMAScript may support program syntax that makes use of

the “future reserved words” listed in subclause 11.6.2.2 of this specification.

A conforming implementation of ECMAScript must not implement any extension that is listed as a Forbidden Extension
in subclause 16.2.

3 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only
the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

ISO/IEC 10646 Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus Amendment
1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional amendments and corrigenda,

Oor successor

ECMA-402, ECMAScript 2015 Internationalization API Specification.
https://ecma-international.org/publications/standards/Ecma-402.htm

ECMA-404, The JSON Data Interchange Format.
https://ecma-international.org/publications/standards/Ecma-404.htm

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating computational
objects within a host environment. ECMAScript as defined here is not intended to be computationally self-sufficient;
indeed, there are no provisions in this specification for input of external data or output of computed results. Instead, it is
expected that the computational environment of an ECMAScript program will provide not only the objects and other
facilities described in this specification but also certain environment-specific objects, whose description and behaviour
are beyond the scope of this specification except to indicate that they may provide certain properties that can be accessed
and certain functions that can be called from an ECMAScript program.

ECMAScript was originally designed to be used as a scripting language, but has become widely used as a general-
purpose programming language. A scripting language is a programming language that is used to manipulate, customize,
and automate the facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this way, the

existing system is said to provide a host environment of objects and facilities, which completes the capabilities of the

4 © Ecma International 2019

https://ecma-international.org/publications/standards/Ecma-402.htm
https://ecma-international.org/publications/standards/Ecma-404.htm

scripting language. A scripting language is intended for use by both professional and non-professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web pages in
browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript is now used
to provide core scripting capabilities for a variety of host environments. Therefore the core language is specified in this

document apart from any particular host environment.

ECMAScript usage has moved beyond simple scripting and it is now used for the full spectrum of programming tasks in
many different environments and scales. As the usage of ECMAScript has expanded, so has the features and facilities it

provides. ECMAScript is now a fully featured general-purpose programming language.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular C, Java™,

Self, and Scheme as described in:

ISO/IEC 9899:1996, Programming Languages — C.

Gosling, James, Bill Joy and Guy Steele. The Java'" Language Specification. Addison Wesley Publishing Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp. 227-241,
Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance, objects
that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and input/output.
Further, the host environment provides a means to attach scripting code to events such as change of focus, page and
image loading, unloading, error and abort, selection, form submission, and mouse actions. Scripting code appears within
the HTML and the displayed page is a combination of user interface elements and fixed and computed text and images.

The scripting code is reactive to user interaction, and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing requests,
clients, and files; and mechanisms to lock and share data. By using browser-side and server-side scripting together, it is
possible to distribute computation between the client and server while providing a customized user interface for a Web-

based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 ECMAScript Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview is not
part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript program is
a cluster of communicating objects. In ECMAScript, an object is a collection of zero or more properties each with
attributes that determine how each property can be used—for example, when the Writable attribute for a property is set
to false, any attempt by executed ECMAScript code to assign a different value to the property fails. Properties are
containers that hold other objects, primitive values, or functions. A primitive value is a member of one of the following

© Ecma International 2019 5

built-in types: Undefined, Null, Boolean, Number, String, and Symbol; an object is a member of the built-in type
Object; and a function is a callable object. A function that is associated with an object via a property is called a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These built-in
objects include the global object; objects that are fundamental to the runtime semantics of the language including
Object, Function, Boolean, Symbol, and various Error objects; objects that represent and manipulate numeric
values including Math, Number, and Date; the text processing objects String and RegExp; objects that are indexed
collections of values including Array and nine different kinds of Typed Arrays whose elements all have a specific
numeric data representation; keyed collections including Map and Set objects; objects supporting structured data
including the JSON object, ArrayBuffer, SharedArrayBuffer, and DataView; objects supporting control
abstractions including generator functions and Promise objects; and reflection objects including Proxy and
Reflect.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators, binary bitwise
operators, binary logical operators, assignment operators, and the comma operator.

Large ECMAScript programs are supported by modules which allow a program to be divided into multiple sequences of
statements and declarations. Each module explicitly identifies declarations it uses that need to be provided by other
modules and which of its declarations are available for use by other modules.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as an easy-
to-use scripting language. For example, a variable is not required to have its type declared nor are types associated with
properties, and defined functions are not required to have their declarations appear textually before calls to them.

4.2.1 Objects

Even though ECMAScript includes syntax for class definitions, ECMAScript objects are not fundamentally class-based
such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via a literal notation
or via constructors which create objects and then execute code that initializes all or part of them by assigning initial
values to their properties. Each constructor is a function that has a property named "prototype" that is used to
implement prototype-based inheritance and shared properties. Objects are created by using constructors in new
expressions; for example, new Date (2009, 11) creates a new Date object. Invoking a constructor without using
new has consequences that depend on the constructor. For example, Date () produces a string representation of the

current date and time rather than an object.

Every object created by a constructor has an implicit reference (called the object's prototype) to the value of its
constructor's "prototype" property. Furthermore, a prototype may have a non-null implicit reference to its prototype,
and so on; this is called the prototype chain. When a reference is made to a property in an object, that reference is to the
property of that name in the first object in the prototype chain that contains a property of that name. In other words, first
the object mentioned directly is examined for such a property; if that object contains the named property, that is the
property to which the reference refers; if that object does not contain the named property, the prototype for that object is

examined next; and so on.

Figure 1: Object/Prototype Relationships

6 © Ecma International 2019

) b -
"""""" CF implicit prototype link
prototype CFP ______ ..
Pl -
- cFEL explicit prototype property

.........

cf1 cfz cf3 cf.l Cf5
ql ql gl gl gl
qz q2 q2 g2 g2

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by classes, and
inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried by objects, while
structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property and its value.
Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfy, cfy, cfs, cf4, and
cfs5. Each of these objects contains properties named gl and g2. The dashed lines represent the implicit prototype
relationship; so, for example, cf3's prototype is CFp. The constructor, CF, has two properties itself, named P1 and P2,
which are not visible to CFp, cfy, cfy, cf3, cfy, or cfs. The property named CFP1 in CF), is shared by cfy, cfp, cf3, cfy,
and cfs (but not by CF), as are any properties found in CFy's implicit prototype chain that are not named q1, g2, or
CFP1. Notice that there is no implicit prototype link between CF and CFp,

Unlike most class-based object languages, properties can be added to objects dynamically by assigning values to them.
That is, constructors are not required to name or assign values to all or any of the constructed object's properties. In the
above diagram, one could add a new shared property for cfy, cfy, cfs, cfy, and cf5 by assigning a new value to the

property in CFp,.

Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like abstractions based
upon a common pattern of constructor functions, prototype objects, and methods. The ECMAScript built-in objects
themselves follow such a class-like pattern. Beginning with ECMAScript 2015, the ECMAScript language includes
syntactic class definitions that permit programmers to concisely define objects that conform to the same class-like
abstraction pattern used by the built-in objects.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish to restrict their usage of
some features available in the language. They might do so in the interests of security, to avoid what they consider to be
error-prone features, to get enhanced error checking, or for other reasons of their choosing. In support of this possibility,
ECMAScript defines a strict variant of the language. The strict variant of the language excludes some specific syntactic
and semantic features of the regular ECMAScript language and modifies the detailed semantics of some features. The
strict variant also specifies additional error conditions that must be reported by throwing error exceptions in situations

that are not specified as errors by the non-strict form of the language.

© Ecma International 2019 7

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode selection and
use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of individual ECMAScript
source text units. Because strict mode is selected at the level of a syntactic source text unit, strict mode only imposes
restrictions that have local effect within such a source text unit. Strict mode does not restrict or modify any aspect of the
ECMAScript semantics that must operate consistently across multiple source text units. A complete ECMAScript
program may be composed of both strict mode and non-strict mode ECMAScript source text units. In this case, strict

mode only applies when actually executing code that is defined within a strict mode source text unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full unrestricted
ECMAScript language and the strict variant of the ECMAScript language as defined by this specification. In addition, an
implementation must support the combination of unrestricted and strict mode source text units into a single composite

program.

4.3 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

4.3.1 type

set of data values as defined in clause 6 of this specification

4.3.2 primitive value

member of one of the types Undefined, Null, Boolean, Number, Symbol, or String as defined in clause 6

NOTE
A primitive value is a datum that is represented directly at the lowest level of the language implementation.

4.3.3 object

member of the type Object

NOTE

An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4.3.4 constructor

function object that creates and initializes objects

NOTE
The value of a constructor's prototype property is a prototype object that is used to implement inheritance and shared

properties.

4.3.5 prototype

8 © Ecma International 2019

object that provides shared properties for other objects

NOTE
When a constructor creates an object, that object implicitly references the constructor's prototype property for the
purpose of resolving property references. The constructor's prototype property can be referenced by the program
expression constructor.prototype, and properties added to an object's prototype are shared, through inheritance,
by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified prototype by
using the Object. create built-in function.

4.3.6 ordinary object

object that has the default behaviour for the essential internal methods that must be supported by all objects

4.3.7 exotic object

object that does not have the default behaviour for one or more of the essential internal methods

NOTE

Any object that is not an ordinary object is an exotic object.

4.3.8 standard object

object whose semantics are defined by this specification

4.3.9 built-in object

object specified and supplied by an ECMAScript implementation

NOTE
Standard built-in objects are defined in this specification. An ECMAScript implementation may specify and supply
additional kinds of built-in objects. A built-in constructor is a built-in object that is also a constructor.

4.3.10 undefined value

primitive value used when a variable has not been assigned a value

4.3.11 Undefined type

type whose sole value is the undefined value

4.3.12 null value

primitive value that represents the intentional absence of any object value

© Ecma International 2019 9

4.3.13 Null type

type whose sole value is the null value

4.3.14 Boolean value

member of the Boolean type

NOTE
There are only two Boolean values, true and false.

4.3.15 Boolean type

type consisting of the primitive values true and false

4.3.16 Boolean object

member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE
A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean value as an
argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object can be coerced to

a Boolean value.

4.3.17 String value

primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer values

NOTE
A String value is a member of the String type. Each integer value in the sequence usually represents a single 16-bit unit
of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that they

must be 16-bit unsigned integers.

4.3.18 String type

set of all possible String values

4.3.19 String object

member of the Object type that is an instance of the standard built-in String constructor

NOTE
A String object is created by using the String constructor in a new expression, supplying a String value as an
argument. The resulting object has an internal slot whose value is the String value. A String object can be coerced to a

String value by calling the String constructor as a function (21.1.1.1).

10 © Ecma International 2019

4.3.20 Number value

primitive value corresponding to a double-precision 64-bit binary format IEEE 754-2008 value

NOTE
A Number value is a member of the Number type and is a direct representation of a number.

4.3.21 Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and negative

infinity

4.3.22 Number object

member of the Object type that is an instance of the standard built-in Number constructor

NOTE
A Number object is created by using the Number constructor in a new expression, supplying a number value as an
argument. The resulting object has an internal slot whose value is the number value. A Number object can be coerced to

a number value by calling the Number constructor as a function (20.1.1.1).

4.3.23 Infinity

number value that is the positive infinite number value

4.3.24 NaN

number value that is an IEEE 754-2008 “Not-a-Number” value

4.3.25 Symbol value

primitive value that represents a unique, non-String Object property key

4.3.26 Symbol type

set of all possible Symbol values

4.3.27 Symbol object

member of the Object type that is an instance of the standard built-in Symbo1l constructor

4.3.28 function

member of the Object type that may be invoked as a subroutine

NOTE

© Ecma International 2019 11

In addition to its properties, a function contains executable code and state that determine how it behaves when invoked.

A function's code may or may not be written in ECMAScript.

4.3.29 built-in function

built-in object that is a function

NOTE
Examples of built-in functions include parseInt and Math.exp. An implementation may provide implementation-

dependent built-in functions that are not described in this specification.

4.3.30 property

part of an object that associates a key (either a String value or a Symbol value) and a value

NOTE
Depending upon the form of the property the value may be represented either directly as a data value (a primitive value,

an object, or a function object) or indirectly by a pair of accessor functions.

4.3.31 method

function that is the value of a property

NOTE
When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.32 built-in method

method that is a built-in function

NOTE
Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify and provide

other additional built-in methods.

4.3.33 attribute

internal value that defines some characteristic of a property

4.3.34 own property

property that is directly contained by its object

4.3.35 inherited property

12 © Ecma International 2019

property of an object that is not an own property but is a property (either own or inherited) of the object's prototype

4.4 Organization of This Specification

The remainder of this specification is organized as follows:
Clause 5 defines the notational conventions used throughout the specification.
Clauses 6-9 define the execution environment within which ECMA Script programs operate.

Clauses 10-16 define the actual ECMAScript programming language including its syntactic encoding and the execution

semantics of all language features.

Clauses 17-26 define the ECMAScript standard library. They include the definitions of all of the standard objects that are
available for use by ECMAScript programs as they execute.

Clause 27 describes the memory consistency model of accesses on SharedArrayBuffer-backed memory and methods of
the Atomics object.

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its right-hand

side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with zero or

more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given context-free
grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of terminal symbols that can
result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the
nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 11. This grammar has as its terminal symbols Unicode code points
that conform to the rules for SourceCharacter defined in 10.1. It defines a set of productions, starting from the goal
symbol InputElementDiv, InputElementTemplateTail, or InputElementRegExp, or InputElementRegExpOrTemplateTail,
that describe how sequences of such code points are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and

punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens, also become

© Ecma International 2019 13

part of the stream of input elements and guide the process of automatic semicolon insertion (11.9). Simple white space
and single-line comments are discarded and do not appear in the stream of input elements for the syntactic grammar. A
MultiLineComment (that is, a comment of the form /*...*/ regardless of whether it spans more than one line) is
likewise simply discarded if it contains no line terminator; but if a MultiLineComment contains one or more line
terminators, then it is replaced by a single line terminator, which becomes part of the stream of input elements for the

syntactic grammar.

A RegExp grammar for ECMAScript is given in 21.2.1. This grammar also has as its terminal symbols the code points as
defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern, that describe how

sequences of code points are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating punctuation.
The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the lexical
grammar having to do with numeric literals and has as its terminal symbols SourceCharacter. This grammar appears in
7.1.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13, 14, and 15. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting from two
alternative goal symbols Script and Module, that describe how sequences of tokens form syntactically correct

independent components of ECMAScript programs.

When a stream of code points is to be parsed as an ECMAScript Script or Module, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a single
application of the syntactic grammar. The input stream is syntactically in error if the tokens in the stream of input

elements cannot be parsed as a single instance of the goal nonterminal (Script or Module), with no tokens left over.

When a parse is successful, it constructs a parse tree, a rooted tree structure in which each node is a Parse Node. Each
Parse Node is an instance of a symbol in the grammar; it represents a span of the source text that can be derived from
that symbol. The root node of the parse tree, representing the whole of the source text, is an instance of the parse's goal
symbol. When a Parse Node is an instance of a nonterminal, it is also an instance of some production that has that
nonterminal as its left-hand side. Moreover, it has zero or more children, one for each symbol on the production's right-
hand side: each child is a Parse Node that is an instance of the corresponding symbol.

New Parse Nodes are instantiated for each invocation of the parser and never reused between parses even of identical
source text. Parse Nodes are considered the same Parse Node if and only if they represent the same span of source text,

are instances of the same grammar symbol, and resulted from the same parser invocation.

NOTE 1

Parsing the same String multiple times will lead to different Parse Nodes, e.g., as occurs in:
eval (str); eval(str);

NOTE 2

14 © Ecma International 2019

Parse Nodes are specification artefacts, and implementations are not required to use an analogous data structure.

I3

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 12, 13, 14 and 15 is not a complete account of which token sequences are
accepted as a correct ECMAScript Script or Module. Certain additional token sequences are also accepted, namely, those
that would be described by the grammar if only semicolons were added to the sequence in certain places (such as before

line terminator characters). Furthermore, certain token sequences that are described by the grammar are not considered

acceptable if a line terminator character appears in certain “awkward” places.

In certain cases, in order to avoid ambiguities, the syntactic grammar uses generalized productions that permit token
sequences that do not form a valid ECMAScript Script or Module. For example, this technique is used for object literals
and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided that further restricts
the acceptable token sequences. Typically, an early error rule will then define an error condition if "P is not covering an
N", where P is a Parse Node (an instance of the generalized production) and N is a nonterminal from the supplemental
grammar. Here, the sequence of tokens originally matched by P is parsed again using N as the goal symbol. (If N takes
grammatical parameters, then they are set to the same values used when P was originally parsed.) An error occurs if the
sequence of tokens cannot be parsed as a single instance of N, with no tokens left over. Subsequently, algorithms access
the result of the parse using a phrase of the form "the NN that is covered by P". This will always be a Parse Node (an
instance of N, unique for a given P), since any parsing failure would have been detected by an early error rule.

5.1.5 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars are shown in £ixed width font, both in the
productions of the grammars and throughout this specification whenever the text directly refers to such a terminal
symbol. These are to appear in a script exactly as written. All terminal symbol code points specified in this way are to be
understood as the appropriate Unicode code points from the Basic Latin range, as opposed to any similar-looking code

points from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production™) is introduced
by the name of the nonterminal being defined followed by one or more colons. (The number of colons indicates to which
grammar the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on

succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token, followed by
an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of Expression and
Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentEXxpression

ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by a
comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined in terms
of itself. The result is that an ArgumentList may contain any positive number of arguments, separated by commas, where

each argument expression is an AssignmentExpression. Such recursive definitions of nonterminals are common.

© Ecma International 2019 15

The subscripted suffix “,p¢”, which may appear after a terminal or nonterminal, indicates an optional symbol. The
alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional element and

one that includes it. This means that:

VariableDeclaration :

Bindingldentifier Initializer .
is a convenient abbreviation for:

VariableDeclaration :
Bindingldentifier

Bindingldentifier Initializer
and that:

IterationStatement :

for (LexicalDeclaration Expression... ; Expression,) Statement

pt
is a convenient abbreviation for:

IterationStatement :
for (LexicalDeclaration ; Expression...) Statement

for (LexicalDeclaration Expression ; Expression) Statement

opt
which in turn is an abbreviation for:

IterationStatement :
for (LexicalDeclaration ;) Statement
for (LexicalDeclaration ; Expression) Statement
for (LexicalDeclaration Expression ;) Statement

for (LexicalDeclaration Expression ; Expression) Statement
so, in this example, the nonterminal IterationStatement actually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form “[parameters]”> Which may appear as a suffix
to the nonterminal symbol defined by the production. “parameters” may be either a single name or a comma separated list
of names. A parameterized production is shorthand for a set of productions defining all combinations of the parameter
names, preceded by an underscore, appended to the parameterized nonterminal symbol. This means that:

StatementList [pet 1

ReturnStatement
EXxpressionStatement

is a convenient abbreviation for:

StatementList :
ReturnStatement
ExpressionStatement

StatementList_Return :
ReturnStatement

ExpressionStatement

16 © Ecma International 2019

and that:

StatementLiSt (gt yrr, 1n)

ReturnStatement

ExpressionStatement
is an abbreviation for:

StatementList :
ReturnStatement

EXxpressionStatement

StatementList_Return :
ReturnStatement
ExpressionStatement

StatementList_In :
ReturnStatement
EXxpressionStatement

StatementList_Return_In :
ReturnStatement
ExpressionStatement

Multiple parameters produce a combinatory number of productions, not all of which are necessarily referenced in a

complete grammar.
References to nonterminals on the right-hand side of a production can also be parameterized. For example:

StatementList :
ReturnStatement

ExpressionStatement [, 1,
is equivalent to saying:

StatementList :
ReturnStatement
ExpressionStatement_In

and:

StatementList :
ReturnStatement
ExpressionStatement | .1, |

is equivalent to:

StatementList :
ReturnStatement

ExpressionStatement

A nonterminal reference may have both a parameter list and an “,p” suffix. For example:

© Ecma International 2019 17

VariableDeclaration :

Bindingldentifier Initializer .1 opt
is an abbreviation for:

VariableDeclaration :
BindinglIdentifier
Bindingldentifier Initializer_In

«€ »

Prefixing a parameter name with “,” on a right-hand side nonterminal reference makes that parameter value dependent

upon the occurrence of the parameter name on the reference to the current production's left-hand side symbol. For

example:

VariableDeclaration | , |

Bindingldentifier Initializer -,
is an abbreviation for:

VariableDeclaration :
Bindingldentifier Initializer

VariableDeclaration_In :
Bindingldentifier Initializer_In

If a right-hand side alternative is prefixed with “[+parameter]” that alternative is only available if the named parameter
was used in referencing the production's nonterminal symbol. If a right-hand side alternative is prefixed with
“[~parameter]” that alternative is only available if the named parameter was not used in referencing the production's

nonterminal symbol. This means that:

StatementList et

[+Return] ReturnStatement

EXxpressionStatement
is an abbreviation for:

StatementList :

EXxpressionStatement

StatementList_Return :
ReturnStatement
ExpressionStatement

and that:

StatementList [pet] ¢

[~Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ReturnStatement

ExpressionStatement

18 © Ecma International 2019

StatementList_Return :

ExpressionStatement

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal symbols on
the following line or lines is an alternative definition. For example, the lexical grammar for ECMAScript contains the

production:

NonZeroDigit :: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit ::
1

© 00 Jd oo 1 & W DN

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-hand side

contains no terminals or nonterminals.

If the phrase “[lookahead € set]” appears in the right-hand side of a production, it indicates that the production may not
be used if the immediately following input token sequence is a member of the given set. The set can be written as a
comma separated list of one or two element terminal sequences enclosed in curly brackets. For convenience, the set can
also be written as a nonterminal, in which case it represents the set of all terminals to which that nonterminal could

expand. If the set consists of a single terminal the phrase “[lookahead # terminal]” may be used.
For example, given the definitions:

DecimalDigit :: one of
01234567829

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition:

LookaheadExample ::
n [lookahead € {1 ,3 ,5, 7, 9 }] DecimalDigits
DecimalDigit [lookahead € DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit not

followed by another decimal digit.

Similarly, if the phrase “[lookahead € set]” appears in the right-hand side of a production, it indicates that the production

may only be used if the immediately following input token sequence is a member of the given set. If the set consists of a

© Ecma International 2019 19

single terminal the phrase “[lookahead = terminal]” may be used.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the input stream

at the indicated position. For example, the production:

ThrowStatement :

throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw token and the

EXxpression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without affecting the
syntactic acceptability of the script.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a multi-code
point token, it represents the sequence of code points that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase “but not”

and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of code points that could replace IdentifierName

provided that the same sequence of code points could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it would be

impractical to list all the alternatives:

SourceCharacter ::

any Unicode code point

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to precisely
specify the required semantics of ECMAScript language constructs. The algorithms are not intended to imply the use of
any specific implementation technique. In practice, there may be more efficient algorithms available to implement a
given feature.

Algorithms may be explicitly parameterized, in which case the names and usage of the parameters must be provided as
part of the algorithm's definition.

Algorithm steps may be subdivided into sequential substeps. Substeps are indented and may themselves be further
divided into indented substeps. Outline numbering conventions are used to identify substeps with the first level of
substeps labelled with lower case alphabetic characters and the second level of substeps labelled with lower case roman
numerals. If more than three levels are required these rules repeat with the fourth level using numeric labels. For

example:

1. Top-level step
a. Substep.

20 © Ecma International 2019

b. Substep.
i. Subsubstep.
1. Subsubsubstep
a. Subsubsubsubstep
i. Subsubsubsubsubstep

A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the substeps are only
applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is the negation of the

preceding “if” predicate step at the same level.
A step may specify the iterative application of its substeps.

A step that begins with “Assert:” asserts an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic requirements and
hence need not be checked by an implementation. They are used simply to clarify algorithms.

Algorithm steps may declare named aliases for any value using the form “Let x be someValue”. These aliases are
reference-like in that both x and someValue refer to the same underlying data and modifications to either are visible to
both. Algorithm steps that want to avoid this reference-like behaviour should explicitly make a copy of the right-hand
side: “Let x be a copy of someValue” creates a shallow copy of someValue.

Once declared, an alias may be referenced in any subsequent steps and must not be referenced from steps prior to the
alias's declaration. Aliases may be modified using the form “Set x to someOtherValue”.

5.2.1 Abstract Operations

In order to facilitate their use in multiple parts of this specification, some algorithms, called abstract operations, are
named and written in parameterized functional form so that they may be referenced by name from within other
algorithms. Abstract operations are typically referenced using a functional application style such as OperationName(arg1,
arg?). Some abstract operations are treated as polymorphically dispatched methods of class-like specification
abstractions. Such method-like abstract operations are typically referenced using a method application style such as

someValue.OperationName(arg1, arg?2).

5.2.2 Syntax-Directed Operations

A syntax-directed operation is a named operation whose definition consists of algorithms, each of which is associated
with one or more productions from one of the ECMAScript grammars. A production that has multiple alternative
definitions will typically have a distinct algorithm for each alternative. When an algorithm is associated with a grammar
production, it may reference the terminal and nonterminal symbols of the production alternative as if they were
parameters of the algorithm. When used in this manner, nonterminal symbols refer to the actual alternative definition that
is matched when parsing the source text. The source text matched by a grammar production is the portion of the source
text that starts at the beginning of the first terminal that participated in the match and ends at the end of the last terminal
that participated in the match.

When an algorithm is associated with a production alternative, the alternative is typically shown without any “[]”
grammar annotations. Such annotations should only affect the syntactic recognition of the alternative and have no effect

on the associated semantics for the alternative.

Syntax-directed operations are invoked with a parse node and, optionally, other parameters by using the conventions on
steps 1, 3, and 4 in the following algorithm:

© Ecma International 2019 21

Let status be the result of performing SyntaxDirectedOperation of SomeNonTerminal.
Let someParseNode be the parse of some source text.

Perform SyntaxDirectedOperation of someParseNode.

LS

Perform SyntaxDirectedOperation of someParseNode passing "value" as the argument.

Unless explicitly specified otherwise, all chain productions have an implicit definition for every operation that might be
applied to that production's left-hand side nonterminal. The implicit definition simply reapplies the same operation with
the same parameters, if any, to the chain production's sole right-hand side nonterminal and then returns the result. For
example, assume that some algorithm has a step of the form: “Return the result of evaluating Block” and that there is a

production:

Block :
{ StatementList }

but the Evaluation operation does not associate an algorithm with that production. In that case, the Evaluation operation
implicitly includes an association of the form:

Runtime Semantics: Evaluation
Block : { StatementList }

1. Return the result of evaluating StatementList.

5.2.3 Runtime Semantics

Algorithms which specify semantics that must be called at runtime are called runtime semantics. Runtime semantics are

defined by abstract operations or syntax-directed operations. Such algorithms always return a completion record.

5.2.3.1 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[Type]] is normal. Unless it is
otherwise obvious from the context, an algorithm statement that returns a value that is not a Completion Record, such as:

1. Return "Infinity".
means the same thing as:
1. Return NormalCompletion("Infinity").

However, if the value expression of a “return” statement is a Completion Record construction literal, the resulting
Completion Record is returned. If the value expression is a call to an abstract operation, the “return” statement simply
returns the Completion Record produced by the abstract operation.

The abstract operation Completion(completionRecord) is used to emphasize that a previously computed Completion
Record is being returned. The Completion abstract operation takes a single argument, completionRecord, and performs
the following steps:

1. Assert: completionRecord is a Completion Record.

2. Return completionRecord as the Completion Record of this abstract operation.
A “return” statement without a value in an algorithm step means the same thing as:

1. Return NormalCompletion(undefined).

22 © Ecma International 2019

Any reference to a Completion Record value that is in a context that does not explicitly require a complete Completion
Record value is equivalent to an explicit reference to the [[Value]] field of the Completion Record value unless the

Completion Record is an abrupt completion.

5.2.3.2 Throw an Exception

Algorithms steps that say to throw an exception, such as
1. Throw a TypeError exception.
mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

5.2.3.3 ReturnIfAbrupt

Algorithms steps that say or are otherwise equivalent to:
1. ReturnIfAbrupt(argument).
mean the same thing as:

1. If argument is an abrupt completion, return argument.

2. Else if argument is a Completion Record, set argument to argument.[[Value]].
Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).
mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. If hygienicTemp is an abrupt completion, return hygienicTemp.
3. Else if hygienicTemp is a Completion Record, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.
Algorithms steps that say or are otherwise equivalent to:

1. Let result be AbstractOperation(Returnlf Abrupt(argument)).
mean the same thing as:

1. If argument is an abrupt completion, return argument.
2. If argument is a Completion Record, set argument to argument.[[Value]].
3. Let result be AbstractOperation(argument).

5.2.3.4 ReturnIfAbrupt Shorthands

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate that ReturnIfAbrupt

should be applied to the resulting Completion Record. For example, the step:

1. ? OperationName().

© Ecma International 2019 23

is equivalent to the following step:
1. ReturnIfAbrupt(OperationName()).
Similarly, for method application style, the step:
1. ? someValue.OperationName().
is equivalent to:
1. ReturnIfAbrupt(someValue.OperationName()).

Similarly, prefix ! is used to indicate that the following invocation of an abstract or syntax-directed operation will never
return an abrupt completion and that the resulting Completion Record's [[Value]] field should be used in place of the
return value of the operation. For example, the step:

1. Let val be ! OperationName().
is equivalent to the following steps:

1. Let val be OperationName().
2. Assert: val is never an abrupt completion.

3. If val is a Completion Record, set val to val.[[Value]].

Syntax-directed operations for runtime semantics make use of this shorthand by placing ! or ? before the invocation of

the operation:

1. Perform ! SyntaxDirectedOperation of NonTerminal.

5.2.4 Static Semantics

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of input
elements form a valid ECMAScript Script or Module that may be evaluated. In some situations additional rules are
needed that may be expressed using either ECMAScript algorithm conventions or prose requirements. Such rules are

always associated with a production of a grammar and are called the static semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic Rules are
associated with grammar productions and a production that has multiple alternative definitions will typically have for
each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition for a
static semantic rule named Contains which takes an argument named symbol whose value is a terminal or nonterminal of

the grammar that includes the associated production. The default definition of Contains is:

1. For each child node child of this Parse Node, do
a. If child is an instance of symbol, return true.
b. If child is an instance of a nonterminal, then
i. Let contained be the result of child Contains symbol.
ii. If contained is true, return true.

2. Return false.

The above definition is explicitly over-ridden for specific productions.

24 © Ecma International 2019

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see clause
16) that are associated with specific grammar productions. Evaluation of most early error rules are not explicitly invoked
within the algorithms of this specification. A conforming implementation must, prior to the first evaluation of a Script or
Module, validate all of the early error rules of the productions used to parse that Script or Module. If any of the early

error rules are violated the Script or Module is invalid and cannot be evaluated.

5.2.5 Mathematical Operations

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical functions
defined later in this clause should always be understood as computing exact mathematical results on mathematical real
numbers, which unless otherwise noted do not include infinities and do not include a negative zero that is distinguished
from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit steps, where
necessary, to handle infinities and signed zero and to perform rounding. If a mathematical operation or function is
applied to a floating-point number, it should be understood as being applied to the exact mathematical value represented
by that floating-point number; such a floating-point number must be finite, and if it is +0 or -0 then the corresponding
mathematical value is simply 0.

The mathematical function abs(x) produces the absolute value of x, which is -x if x is negative (less than zero) and
otherwise is x itself.

The mathematical function min(x1, x2, ..., xN) produces the mathematically smallest of x1 through xN. The mathematical
function max(x1, x2, ..., xN) produces the mathematically largest of x1 through xN. The domain and range of these

mathematical functions include +o0 and -co.

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or zero) such that
abs(k) < abs(y) and x - k = g x y for some integer q.

The mathematical function floor(x) produces the largest integer (closest to positive infinity) that is not larger than x.

NOTE
floor(x) = x - (x modulo 1).

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible value types are
exactly those defined in this clause. Types are further subclassified into ECMAScript language types and specification

types.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of x” where “type” refers to the
ECMAScript language and specification types defined in this clause. When the term “empty” is used as if it was naming
a value, it is equivalent to saying “no value of any type”.

6.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript programmer using
the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean, String, Symbol, Number,
and Object. An ECMAScript language value is a value that is characterized by an ECMAScript language type.

© Ecma International 2019 25

6.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value has the

value undefined.

6.1.2 The Null Type

The Null type has exactly one value, called null.

6.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

6.1.4 The String Type

The String type is the set of all ordered sequences of zero or more 16-bit unsigned integer values (“elements”) up to a

maximum length of 2°3 - 1 elements. The String type is generally used to represent textual data in a running
ECMAScript program, in which case each element in the String is treated as a UTF-16 code unit value. Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at index 0, the next element (if any) at index 1, and so on. The length of a String is the number of

elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no elements.

ECMAScript operations that do not interpret String contents apply no further semantics. Operations that do interpret
String values treat each element as a single UTF-16 code unit. However, ECMAScript does not restrict the value of or
relationships between these code units, so operations that further interpret String contents as sequences of Unicode code
points encoded in UTF-16 must account for ill-formed subsequences. Such operations apply special treatment to every
code unit with a numeric value in the inclusive range 0xD800 to OxDBFF (defined by the Unicode Standard as a leading
surrogate, or more formally as a high-surrogate code unit) and every code unit with a numeric value in the inclusive
range 0xDCO00 to 0xDFFF (defined as a trailing surrogate, or more formally as a low-surrogate code unit) using the

following rules:

A code unit that is not a leading surrogate and not a trailing surrogate is interpreted as a code point with the same
value.

A sequence of two code units, where the first code unit c1 is a leading surrogate and the second code unit c2 a
trailing surrogate, is a surrogate pair and is interpreted as a code point with the value (c1 - 0xD800) x 0x400 + (c2 -
0xDCO00) + 0x10000. (See 10.1.2)

A code unit that is a leading surrogate or trailing surrogate, but is not part of a surrogate pair, is interpreted as a

code point with the same value.

The function String.prototype.normalize (see 21.1.3.12) can be used to explicitly normalize a String value.
String.prototype.localeCompare (see 21.1.3.10) internally normalizes String values, but no other operations
implicitly normalize the strings upon which they operate. Only operations that are explicitly specified to be language or
locale sensitive produce language-sensitive results.

NOTE
The rationale behind this design was to keep the implementation of Strings as simple and high-performing as possible. If

ECMAScript source text is in Normalized Form C, string literals are guaranteed to also be normalized, as long as they do

26 © Ecma International 2019

not contain any Unicode escape sequences.

In this specification, the phrase "the string-concatenation of A, B, ..." (where each argument is a String value, a code unit,
or a sequence of code units) denotes the String value whose sequence of code units is the concatenation of the code units

(in order) of each of the arguments (in order).

6.1.5 The Symbol Type

The Symbol type is the set of all non-String values that may be used as the key of an Object property (6.1.7).
Each possible Symbol value is unique and immutable.

Each Symbol value immutably holds an associated value called [[Description]] that is either undefined or a String value.

6.1.5.1 Well-Known Symbols

Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this specification. They
are typically used as the keys of properties whose values serve as extension points of a specification algorithm. Unless
otherwise specified, well-known symbols values are shared by all realms (8.2).

Within this specification a well-known symbol is referred to by using a notation of the form @ @name, where “name” is
one of the values listed in Table 1.

Table 1: Well-known Symbols

Specification Name [[Description]] Value and Purpose

@ @asynclterator "Symbol.asyncIterator" A method that returns the default Asynclterator
for an object. Called by the semantics of the

for-await-of statement.

@ @hasInstance "Symbol.hasInstance" A method that determines if a constructor object
recognizes an object as one of the constructor's
instances. Called by the semantics of the

instanceof operator.

@ @isConcatSpreadable "Symbol.isConcatSpreadable" A Boolean valued property that if true indicates
that an object should be flattened to its array
elements by Array.prototype.concat.

@ @iterator "Symbol.iterator" A method that returns the default Iterator for an
object. Called by the semantics of the for-of
statement.

@ @match "Symbol.match" A regular expression method that matches the

regular expression against a string. Called by the

String.prototype.match method.

@ @replace "Symbol.replace" A regular expression method that replaces
matched substrings of a string. Called by the
String.prototype.replace method.

© Ecma International 2019 27

@ @search

@ @species

@ @split

@ @toPrimitive

@ @toStringTag

@ @unscopables

"Symbol.

"Symbol.

"Symbol.

"Symbol.

"Symbol.

"Symbol

6.1.6 The Number Type

search"

species"

split"

toPrimitive"

toStringTag"

.unscopables"

A regular expression method that returns the
index within a string that matches the regular
expression. Called by the
String.prototype. search method.

A function valued property that is the constructor

function that is used to create derived objects.

A regular expression method that splits a string at
the indices that match the regular expression.
Called by the String.prototype.split
method.

A method that converts an object to a
corresponding primitive value. Called by the

ToPrimitive abstract operation.

A String valued property that is used in the
creation of the default string description of an
object. Accessed by the built-in method
Object.prototype. toString.

An object valued property whose own and
inherited property names are property names that
are excluded from the wi th environment

bindings of the associated object.

The Number type has exactly 18437736874454810627 (that is, 264253 4+ 3) values, representing the double-precision
64-bit format IEEE 754-2008 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic, except that
the 9007199254740990 (that is, 223 2) distinct “Not-a-Number” values of the IEEE Standard are represented in
ECMAScript as a single special NaN value. (Note that the NaN value is produced by the program expression NaN.) In
some implementations, external code might be able to detect a difference between various Not-a-Number values, but
such behaviour is implementation-dependent; to ECMAScript code, all NaN values are indistinguishable from each
other.

NOTE
The bit pattern that might be observed in an ArrayBuffer (see 24.1) or a SharedArrayBuffer (see 24.2) after a Number
value has been stored into it is not necessarily the same as the internal representation of that Number value used by the

ECMAScript implementation.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values are also
referred to for expository purposes by the symbols +co and -0, respectively. (Note that these two infinite Number values
are produced by the program expressions +Infinity (or simply Infinity) and -Infinity.)

The other 18437736874454810624 (that is, 264 . 253) values are called the finite numbers. Half of these are positive
numbers and half are negative numbers; for every finite positive Number value there is a corresponding negative value
having the same magnitude.

28 © Ecma International 2019

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for expository
purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number values are produced by the

program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 254 - 2°3 - 2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 254 - 2°%) of them are normalized, having the form
sxmx2°

where s is +1 or -1, m is a positive integer less than 2°3 but not less than 2°2, and ¢ is an integer ranging from -1074 to

971, inclusive.
The remaining 9007199254740990 (that is, 2°3 - 2) values are denormalized, having the form
sxmx2°

where s is +1 or -1, m is a positive integer less than 252, and e is -1074.

253

Note that all the positive and negative integers whose magnitude is no greater than are representable in the Number

type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two forms
shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents an exact real mathematical quantity (which
might even be an irrational number such as m) means a Number value chosen in the following manner. Consider the set

of all finite values of the Number type, with -0 removed and with two additional values added to it that are not

representable in the Number type, namely 21924 (which is +1 x 2°3 x 2971y and -219%24 (which is -1 x 2°3 x 2971),

Choose the member of this set that is closest in value to x. If two values of the set are equally close, then the one with an

21024 1024

even significand is chosen; for this purpose, the two extra values and are considered to have even

if 21024 yyag chosen, replace it with +oo; if 21024 g chosen, replace it with -oo; if +0 was chosen,

significands. Finally,
replace it with -0 if and only if x is less than zero; any other chosen value is used unchanged. The result is the Number
value for x. (This procedure corresponds exactly to the behaviour of the IEEE 754-2008 “round to nearest, ties to even”

mode.)

931 231

Some ECMAScript operators deal only with integers in specific ranges such as through - 1, inclusive, or in the

range 0 through 216 _ 1, inclusive. These operators accept any value of the Number type but first convert each such value
to an integer value in the expected range. See the descriptions of the numeric conversion operations in 7.1.

6.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor property:

A data property associates a key value with an ECMAScript language value and a set of Boolean attributes.
An accessor property associates a key value with one or two accessor functions, and a set of Boolean attributes. The
accessor functions are used to store or retrieve an ECMAScript language value that is associated with the property.

Properties are identified using key values. A property key value is either an ECMAScript String value or a Symbol value.
All String and Symbol values, including the empty string, are valid as property keys. A property name is a property key

© Ecma International 2019 29

that is a String value.

An integer index is a String-valued property key that is a canonical numeric String (see 7.1.16) and whose numeric value
is either +0 or a positive integer < 2°3-1. An array index is an integer index whose numeric value i is in the range +0 < i

<2321,

Property keys are used to access properties and their values. There are two kinds of access for properties: get and set,
corresponding to value retrieval and assignment, respectively. The properties accessible via get and set access includes
both own properties that are a direct part of an object and inherited properties which are provided by another associated
object via a property inheritance relationship. Inherited properties may be either own or inherited properties of the
associated object. Each own property of an object must each have a key value that is distinct from the key values of the

other own properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their semantics for
accessing and manipulating their properties. Ordinary objects are the most common form of objects and have the default
object semantics. An exotic object is any form of object whose property semantics differ in any way from the default

semantics.

6.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. A data property associates a
key value with the attributes listed in Table 2.

Table 2: Attributes of a Data Property

Attribute Value Description
Name Domain
[[Value]] Any The value retrieved by a get access of the property.
ECMAScript
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the property's [[Value]] attribute

using [[Set]] will not succeed.

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in enumeration (see 13.7.5).

Otherwise, the property is said to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the property to be an accessor
property, or change its attributes (other than [[Value]], or changing [[WTritable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 3.

Table 3: Attributes of an Accessor Property

Attribute Value Description
Name Domain
[[Get]] Object | If the value is an Object it must be a function object. The function's [[Call]] internal

Undefined method (Table 6) is called with an empty arguments list to retrieve the property value

each time a get access of the property is performed.

30 © Ecma International 2019

[[Set]] Object | If the value is an Object it must be a function object. The function's [[Call]] internal
Undefined method (Table 6) is called with an arguments list containing the assigned value as its
sole argument each time a set access of the property is performed. The effect of a
property's [[Set]] internal method may, but is not required to, have an effect on the

value returned by subsequent calls to the property's [[Get]] internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in enumeration (see 13.7.5).

Otherwise, the property is said to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the property to be a data property, or
change its attributes will fail.

If the initial values of a property's attributes are not explicitly specified by this specification, the default value defined in
Table 4 is used.

Table 4: Default Attribute Values

Attribute Name Default Value

[[Value]] undefined
[[Getl] undefined
[[Set]] undefined
[[Writable]] false

[[Enumerable]] false

[[Configurable]] false

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms called internal methods. Each object in an
ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour. These internal
methods are not part of the ECMAScript language. They are defined by this specification purely for expository purposes.
However, each object within an implementation of ECMAScript must behave as specified by the internal methods
associated with it. The exact manner in which this is accomplished is determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different algorithms when
a common internal method name is invoked upon them. That actual object upon which an internal method is invoked is
the “target” of the invocation. If, at runtime, the implementation of an algorithm attempts to use an internal method of an
object that the object does not support, a TypeError exception is thrown.

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript specification
algorithms. Internal slots are not object properties and they are not inherited. Depending upon the specific internal slot
specification, such state may consist of values of any ECMAScript language type or of specific ECMAScript
specification type values. Unless explicitly specified otherwise, internal slots are allocated as part of the process of

© Ecma International 2019 31

creating an object and may not be dynamically added to an object. Unless specified otherwise, the initial value of an
internal slot is the value undefined. Various algorithms within this specification create objects that have internal slots.

However, the ECMAScript language provides no direct way to associate internal slots with an object.

Internal methods and internal slots are identified within this specification using names enclosed in double square brackets

(L 1.

Table 5 summarizes the essential internal methods used by this specification that are applicable to all objects created or
manipulated by ECMAScript code. Every object must have algorithms for all of the essential internal methods. However,

all objects do not necessarily use the same algorithms for those methods.

The “Signature” column of Table 5 and other similar tables describes the invocation pattern for each internal method.
The invocation pattern always includes a parenthesized list of descriptive parameter names. If a parameter name is the
same as an ECMAScript type name then the name describes the required type of the parameter value. If an internal
method explicitly returns a value, its parameter list is followed by the symbol “—” and the type name of the returned
value. The type names used in signatures refer to the types defined in clause 6 augmented by the following additional
names. “any” means the value may be any ECMAScript language type. An internal method implicitly returns a
Completion Record. In addition to its parameters, an internal method always has access to the object that is the target of
the method invocation.

Table 5: Essential Internal Methods

Internal Method Signature Description

[[GetPrototypeOf]] () — Object | Null Determine the object that provides inherited properties for this object.
A null value indicates that there are no inherited properties.

[[SetPrototypeOf]] (Object | Null) — Associate this object with another object that provides inherited
Boolean properties. Passing null indicates that there are no inherited properties.
Returns true indicating that the operation was completed successfully

or false indicating that the operation was not successful.

[[IsExtensible]] () — Boolean Determine whether it is permitted to add additional properties to this
object.
[[PreventExtensions]] () — Boolean Control whether new properties may be added to this object. Returns

true if the operation was successful or false if the operation was

unsuccessful.

[[GetOwnProperty]] (propertyKey) — Return a Property Descriptor for the own property of this object whose
Undefined | key is propertyKey, or undefined if no such property exists.

Property Descriptor

[[DefineOwnProperty]] (propertyKey, Create or alter the own property, whose key is propertyKey, to have the
PropertyDescriptor) state described by PropertyDescriptor. Return true if that property was
— Boolean successfully created/updated or false if the property could not be
created or updated.

[[HasProperty]] (propertyKey) — Return a Boolean value indicating whether this object already has
Boolean either an own or inherited property whose key is propertyKey.

32 © Ecma International 2019

[[Get]] (propertyKey, Return the value of the property whose key is propertyKey from this
Receiver) — any object. If any ECMAScript code must be executed to retrieve the
property value, Receiver is used as the this value when evaluating the

code.

[[Set]] (propertyKey, Set the value of the property whose key is propertyKey to value. If any
value, Receiver) — ECMAScript code must be executed to set the property value, Receiver
Boolean is used as the this value when evaluating the code. Returns true if the

property value was set or false if it could not be set.

[[Delete]] (propertyKey) — Remove the own property whose key is propertyKey from this object.
Boolean Return false if the property was not deleted and is still present. Return

true if the property was deleted or is not present.

[[OwnPropertyKeys]] () — List of Return a List whose elements are all of the own property keys for the
propertyKey object.

Table 6 summarizes additional essential internal methods that are supported by objects that may be called as functions. A
function object is an object that supports the [[Call]] internal method. A constructor is an object that supports the
[[Construct]] internal method. Every object that supports [[Construct]] must support [[Call]]; that is, every constructor
must be a function object. Therefore, a constructor may also be referred to as a constructor function or constructor

function object.

Table 6: Additional Essential Internal Methods of Function Objects

Internal Signature Description
Method
[[Call]] (any, a Executes code associated with this object. Invoked via a function call expression. The
List of arguments to the internal method are a this value and a list containing the arguments passed
any) — to the function by a call expression. Objects that implement this internal method are
any callable.

[[Construct]] (a List of Creates an object. Invoked via the new or super operators. The first argument to the
any, internal method is a list containing the arguments of the operator. The second argument is

Object) the object to which the new operator was initially applied. Objects that implement this
— Object internal method are called constructors. A function object is not necessarily a constructor

and such non-constructor function objects do not have a [[Construct]] internal method.

The semantics of the essential internal methods for ordinary objects and standard exotic objects are specified in clause 9.
If any specified use of an internal method of an exotic object is not supported by an implementation, that usage must

throw a TypeError exception when attempted.

6.1.7.3 Invariants of the Essential Internal Methods

The Internal Methods of Objects of an ECMAScript engine must conform to the list of invariants specified below.
Ordinary ECMAScript Objects as well as all standard exotic objects in this specification maintain these invariants.
ECMAScript Proxy objects maintain these invariants by means of runtime checks on the result of traps invoked on the
[[ProxyHandler]] object.

© Ecma International 2019 33

Any implementation provided exotic objects must also maintain these invariants for those objects. Violation of these
invariants may cause ECMAScript code to have unpredictable behaviour and create security issues. However, violation

of these invariants must never compromise the memory safety of an implementation.

An implementation must not allow these invariants to be circumvented in any manner such as by providing alternative

interfaces that implement the functionality of the essential internal methods without enforcing their invariants.
Definitions:

The target of an internal method is the object upon which the internal method is called.

A target is non-extensible if it has been observed to return false from its [[IsExtensible]] internal method, or true
from its [[PreventExtensions]] internal method.

A non-existent property is a property that does not exist as an own property on a non-extensible target.

All references to SameValue are according to the definition of the SameValue algorithm.
[[GetPrototypeOf]] ()

The Type of the return value must be either Object or Null.
If target is non-extensible, and [[GetPrototypeOf]] returns a value V, then any future calls to [[GetPrototypeOf]]
should return the SameValue as V.

NOTE 1
An object's prototype chain should have finite length (that is, starting from any object, recursively applying the
[[GetPrototypeOf]] internal method to its result should eventually lead to the value null). However, this requirement is
not enforceable as an object level invariant if the prototype chain includes any exotic objects that do not use the ordinary
object definition of [[GetPrototypeOf]]. Such a circular prototype chain may result in infinite loops when accessing

object properties.

[[SetPrototypeOf]] (V')

The Type of the return value must be Boolean.
If target is non-extensible, [[SetPrototypeOf]] must return false, unless V is the SameValue as the target's observed
[[GetPrototypeOf]] value.

[[IsExtensible]] ()

The Type of the return value must be Boolean.

If [[IsExtensible]] returns false, all future calls to [[IsExtensible]] on the target must return false.
[[PreventExtensions]] ()

The Type of the return value must be Boolean.
If [[PreventExtensions]] returns true, all future calls to [[IsExtensible]] on the target must return false and the target

is now considered non-extensible.
[[GetOwnPropertyl] (P)

The Type of the return value must be either Property Descriptor or Undefined.

If the Type of the return value is Property Descriptor, the return value must be a complete property descriptor.

If P is described as a non-configurable, non-writable own data property, all future calls to [[GetOwnProperty]] (P)
must return Property Descritor whose [[Value]] is SameValue as P's [[Value]] attribute.

34 © Ecma International 2019

If P's attributes other than [[Writable]] may change over time or if the property might be deleted, then P's
[[Configurable]] attribute must be true.

If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

If the target is non-extensible and P is non-existent, then all future calls to [[GetOwnProperty]] (P) on the target

must describe P as non-existent (i.e. [[GetOwnProperty]] (P) must return undefined).

NOTE 2
As a consequence of the third invariant, if a property is described as a data property and it may return different values
over time, then either or both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to

change the value is exposed via the other internal methods.

[[DefineOwnPropertyl] (P, Desc)

The Type of the return value must be Boolean.
[[DefineOwnProperty]] must return false if P has previously been observed as a non-configurable own property of
the target, unless either:

1. P is a writable data property. A non-configurable writable data property can be changed into a non-

configurable non-writable data property.

2. All attributes of Desc are the SameValue as P's attributes.
[[DefineOwnProperty]] (P, Desc) must return false if target is non-extensible and P is a non-existent own property.
That is, a non-extensible target object cannot be extended with new properties.

[[HasProperty]] (P)

The Type of the return value must be Boolean.
If P was previously observed as a non-configurable own data or accessor property of the target, [[HasProperty]]

must return true.
[[Get]] (P, Receiver)

If P was previously observed as a non-configurable, non-writable own data property of the target with value V, then
[[Get]] must return the SameValue as V.
If P was previously observed as a non-configurable own accessor property of the target whose [[Get]] attribute is

undefined, the [[Get]] operation must return undefined.
[[Set]]l (P, V, Receiver)

The Type of the return value must be Boolean.

If P was previously observed as a non-configurable, non-writable own data property of the target, then [[Set]] must
return false unless V is the SameValue as P's [[Value]] attribute.

If P was previously observed as a non-configurable own accessor property of the target whose [[Set]] attribute is

undefined, the [[Set]] operation must return false.
[[Delete]] (P)

The Type of the return value must be Boolean.
If P was previously observed as a non-configurable own data or accessor property of the target, [[Delete]] must

return false.
[[OwnPropertyKeys]] ()

The return value must be a List.

© Ecma International 2019 35

The returned List must not contain any duplicate entries.

The Type of each element of the returned List is either String or Symbol.

The returned List must contain at least the keys of all non-configurable own properties that have previously been
observed.

If the object is non-extensible, the returned List must contain only the keys of all own properties of the object that
are observable using [[GetOwnProperty]].

[[Construct]] ()

The Type of the return value must be Object.

6.1.7.4 Well-Known Intrinsic Objects

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification and which
usually have realm-specific identities. Unless otherwise specified each intrinsic object actually corresponds to a set of
similar objects, one per realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current realm,
corresponding to the name. Determination of the current realm and its intrinsics is described in 8.3. The well-known

intrinsics are listed in Table 7.

Table 7: Well-Known Intrinsic Objects

Intrinsic Name

%Array%

%ArrayBuffer%

% ArrayBufferPrototype%

%ArraylteratorPrototype%

% ArrayPrototype%

%ArrayProto_entries%

%ArrayProto_forEach%

%ArrayProto_keys%

36

Global Name

Array

ArrayBuffer

ArrayBuffer.prototype

Array.prototype

Array.prototype.entries

Array.prototype. forEach

Array.prototype.keys

ECMAScript Language
Association

The Array constructor (22.1.1)

The ArrayBuffer constructor
(24.1.2)

The initial value of the
prototype data property of
%ArrayBuffer%.

The prototype of Array iterator
objects (22.1.5)

The initial value of the
prototype data property of
%Array% (22.1.3)

The initial value of the entries
data property of %ArrayPrototype%
(22.1.3.4)

The initial value of the forEach
data property of %ArrayPrototype%
(22.1.3.12)

The initial value of the keys data
property of %ArrayPrototype%
(22.1.3.16)

© Ecma International 2019

%ArrayProto_values% Array.prototype.values

%AsyncFromSynclteratorPrototype%

%AsyncFunction%

%AsyncFunctionPrototype%

%AsyncGenerator%

%AsyncGeneratorFunction%

% AsyncGeneratorPrototype%

%AsynclteratorPrototype%

%Atomics% Atomics

%Boolean% Boolean
%BooleanPrototype% Boolean.prototype
%DataView% DataView
%DataViewPrototype% DataView.prototype
%Date% Date

%DatePrototype% Date.prototype
%decodeURI% decodeURI

© Ecma International 2019

The initial value of the values
data property of %ArrayPrototype%
(22.1.3.32)

The prototype of async-from-sync
iterator objects (25.1.4)

The constructor of async function
objects (25.7.1)

The initial value of the
prototype data property of

%AsyncFunction%

The initial value of the
prototype property of

%AsyncGeneratorFunction%

The constructor of async iterator
objects (25.3.1)

The initial value of the
prototype property of

%AsyncGenerator%

An object that all standard built-in
async iterator objects indirectly

inherit from
The Atomics object (24.4)
The Boolean constructor (19.3.1)

The initial value of the
prototype data property of
%Boolean% (19.3.3)

The DataView constructor
(24.3.2)

The initial value of the
prototype data property of
%DataView%

The Date constructor (20.3.2)

The initial value of the
prototype data property of
%Date%.

The decodeURI function
(18.2.6.2)

37

%decodeURIComponent%

%encodeURI%

%encodeURIComponent%

%Error%

%ErrorPrototype%

%eval%

%EvalError%

%EvalErrorPrototype%

%Float32Array%

%Float32ArrayPrototype%

%Float64Array%

%Float64ArrayPrototype%

%PFunction%

%FunctionPrototype%

%Generator%

%GeneratorFunction%

38

decodeURIComponent

encodeURI

encodeURIComponent

Error

Error.prototype

eval

EvalError

EvalError.prototype

Float32Array

Float32Array.prototype

Float64Array

Float64Array.prototype

Function

Function.prototype

The decodeURIComponent
function (18.2.6.3)

The encodeURI function
(18.2.6.4)

The encodeURIComponent
function (18.2.6.5)

The Exrror constructor (19.5.1)

The initial value of the
prototype data property of

%FError%
The eval function (18.2.1)

The EvalError constructor
(19.5.5.1)

The initial value of the
prototype data property of
%EvalError%

The Float32Array constructor
(22.2)

The initial value of the
prototype data property of
%Float32Array%

The Float64Array constructor
(22.2)

The initial value of the
prototype data property of
%Float64Array%

The Function constructor
(19.2.1)

The initial value of the
prototype data property of

%Function%

The initial value of the
prototype data property of

%GeneratorFunction%

The constructor of generator objects
(25.2.1)

© Ecma International 2019

%GeneratorPrototype%

%Int8Array%

%Int8ArrayPrototype%

%Int16Array%

%Int16ArrayPrototype%

%Int32 Array%

%!Int32 ArrayPrototype%

%isFinite%

%isNaN%

%]lteratorPrototype%

%JSON%

%JSONParse%

%JSONStringify%

%Map%

%MaplteratorPrototype%

%MapPrototype%

%Math%

%Number%

© Ecma International 2019

Int8Array

Int8Array.prototype

Intl6Array

Intl6Array.prototype

Int32Array

Int32Array.prototype

isFinite

isNaN

JSON

JSON.parse

JSON.stringify

Map

Map.prototype

Math

Number

The initial value of the
prototype data property of

%Generator%
The Int8Array constructor (22.2)

The initial value of the
prototype data property of
%Int8Array%

The Intl6Array constructor
(22.2)

The initial value of the
prototype data property of
%Int16Array%

The Int32Array constructor
(22.2)

The initial value of the
prototype data property of
%Int32Array%

The isFinite function (18.2.2)
The isNaN function (18.2.3)

An object that all standard built-in
iterator objects indirectly inherit

from
The JSON object (24.5)

The initial value of the parse data
property of %JSON%

The initial value of the
stringify data property of
%JSON%

The Map constructor (23.1.1)

The prototype of Map iterator
objects (23.1.5)

The initial value of the
prototype data property of
%Map%

The Math object (20.2)

The Number constructor (20.1.1)

39

%NumberPrototype%

%0bject%

%0ObjectPrototype%

%ObjProto_toString%

%0DbjProto_valueOf%

%parseFloat%

%parselnt%
%Promise%

%PromisePrototype%

%PromiseProto_then%

%Promise_all%

%Promise_reject%

%Promise_resolve%

%Proxy%

%RangeError%

%RangeErrorPrototype%

40

Number .prototype

Object

Object.prototype

Object.prototype. toString

Object.prototype.valueOf

parseFloat

parselnt
Promise

Promise.prototype

Promise.prototype. then

Promise.all

Promise.reject

Promise.resolve

Proxy

RangeError

RangeError.prototype

The initial value of the
prototype data property of
%Number%

The Object constructor (19.1.1)

The initial value of the
prototype data property of
%ODbject% (19.1.3)

The initial value of the toString
data property of %0ObjectPrototype%
(19.1.3.6)

The initial value of the valueOf
data property of %0ObjectPrototype%
(19.1.3.7)

The parseFloat function
(18.2.4)

The parseInt function (18.2.5)
The Promise constructor (25.6.3)

The initial value of the
prototype data property of

%Promise%

The initial value of the then data

property of %PromisePrototype%
(25.6.5.4)

The initial value of the all data
property of %Promise% (25.6.4.1)

The initial value of the reject
data property of %Promise%
(25.6.4.4)

The initial value of the resolve
data property of %Promise%
(25.6.4.5)

The Proxy constructor (26.2.1)

The RangeError constructor
(19.5.5.2)

The initial value of the
prototype data property of
%RangeError%

© Ecma International 2019

%ReferenceError%

%ReferenceErrorPrototype%

%Reflect%

%RegExp%

%RegExpPrototype%

%Set%

%SetlteratorPrototype%

%SetPrototype%

%Shared ArrayBuffer%

%Shared ArrayBufferPrototype%

%String%

%StringlteratorPrototype%

%StringPrototype%

%Symbol%

%SymbolPrototype%

%SyntaxError%

%SyntaxErrorPrototype%

© Ecma International 2019

ReferenceError

ReferenceError.prototype

Reflect
RegExp

RegExp.prototype

Set

Set.prototype

SharedArrayBuffer

SharedArrayBuffer.prototype

String

String.prototype

Symbol

Symbol.prototype

SyntaxError

SyntaxError.prototype

The ReferenceError
constructor (19.5.5.3)

The initial value of the
prototype data property of

%ReferenceError%
The Reflect object (26.1)
The RegExp constructor (21.2.3)

The initial value of the
prototype data property of
%RegExp%

The Set constructor (23.2.1)

The prototype of Set iterator objects
(23.2.5)

The initial value of the
prototype data property of
%Set%

The SharedArrayBuffer
constructor (24.2.2)

The initial value of the
prototype data property of
%SharedArrayBuffer%

The String constructor (21.1.1)

The prototype of String iterator
objects (21.1.5)

The initial value of the
prototype data property of
%String%

The Symbol constructor (19.4.1)

The initial value of the
prototype data property of
%Symbol% (19.4.3)

The SyntaxError constructor
(19.5.5.4)

The initial value of the
prototype data property of
%SyntaxError%

41

%ThrowTypeError%

%TypedArray%

%TypedArrayPrototype%

%TypeError%

%TypeErrorPrototype%

%Uint8 Array%

%Uint8 ArrayPrototype%

%Uint8ClampedArray%

%Uint8ClampedArrayPrototype%

%Uint16Array%

%Uint16ArrayPrototype%

%Uint32Array%

%Uint32ArrayPrototype%

%URIError%

%URIErrorPrototype%

42

TypeError

TypeError.prototype

Uint8Array

Uint8Array.prototype

Uint8ClampedArray

Uint8ClampedArray.prototype

Uintl6Array

Uintl6Array.prototype

Uint32Array

Uint32Array.prototype

URIError

URIError.prototype

A function object that
unconditionally throws a new

instance of %TypeError%

The super class of all typed Array
constructors (22.2.1)

The initial value of the
prototype data property of
%TypedArray%

The TypeError constructor
(19.5.5.5)

The initial value of the
prototype data property of
%TypeError%

The Uint8Array constructor
(22.2)

The initial value of the
prototype data property of
%Uint8Array%

The Uint8ClampedArray

constructor (22.2)

The initial value of the
prototype data property of
%Uint8ClampedArray%

The Uintl6Array constructor
(22.2)

The initial value of the
prototype data property of
%Uint16Array%

The Uint32Array constructor
(22.2)

The initial value of the
prototype data property of
%Uint32Array%

The URIError constructor
(19.5.5.6)

The initial value of the
prototype data property of
%URIError%

© Ecma International 2019

%WeakMap% WeakMap The WeakMap constructor (23.3.1)

%WeakMapPrototype% WeakMap.prototype The initial value of the
prototype data property of
%WeakMap%

%WeakSet% WeakSet The WeakSet constructor (23.4.1)

%WeakSetPrototype% WeakSet.prototype The initial value of the

prototype data property of
%WeakSet%

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of ECMAScript
language constructs and ECMAScript language types. The specification types include Reference, List, Completion,
Property Descriptor, Lexical Environment, Environment Record, and Data Block. Specification type values are
specification artefacts that do not necessarily correspond to any specific entity within an ECMAScript implementation.
Specification type values may be used to describe intermediate results of ECMAScript expression evaluation but such
values cannot be stored as properties of objects or values of ECMAScript language variables.

6.2.1 The List and Record Specification Types

The List type is used to explain the evaluation of argument lists (see 12.3.6) in new expressions, in function calls, and in
other algorithms where a simple ordered list of values is needed. Values of the List type are simply ordered sequences of
list elements containing the individual values. These sequences may be of any length. The elements of a list may be

randomly accessed using 0-origin indices. For notational convenience an array-like syntax can be used to access List

elements. For example, arguments[2] is shorthand for saying the 3" element of the List arguments.

For notational convenience within this specification, a literal syntax can be used to express a new List value. For
example, « 1, 2 » defines a List value that has two elements each of which is initialized to a specific value. A new empty

List can be expressed as « ».

The Record type is used to describe data aggregations within the algorithms of this specification. A Record type value
consists of one or more named fields. The value of each field is either an ECMAScript value or an abstract value
represented by a name associated with the Record type. Field names are always enclosed in double brackets, for example
[[Value]].

For notational convenience within this specification, an object literal-like syntax can be used to express a Record value.
For example, { [[Field1]]: 42, [[Field2]]: false, [[Field3]]: empty } defines a Record value that has three fields, each of
which is initialized to a specific value. Field name order is not significant. Any fields that are not explicitly listed are

considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For example,
if R is the record shown in the previous paragraph then R.[[Field2]] is shorthand for “the field of R named [[Field2]]”.

Schema for commonly used Record field combinations may be named, and that name may be used as a prefix to a literal
Record value to identify the specific kind of aggregations that is being described. For example: PropertyDescriptor {
[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true }.

© Ecma International 2019 43

6.2.2 The Set and Relation Specification Types

The Set type is used to explain a collection of unordered elements for use in the memory model. Values of the Set type
are simple collections of elements, where no element appears more than once. Elements may be added to and removed

from Sets. Sets may be unioned, intersected, or subtracted from each other.

The Relation type is used to explain constraints on Sets. Values of the Relation type are Sets of ordered pairs of values
from its value domain. For example, a Relation on events is a set of ordered pairs of events. For a Relation R and two
values a and b in the value domain of R, a R b is shorthand for saying the ordered pair (a, b) is a member of R. A

Relation is least with respect to some conditions when it is the smallest Relation that satisfies those conditions.
A strict partial order is a Relation value R that satisfies the following.
For all a, b, and ¢ in R's domain:

It is not the case that a R a, and
IfaRband bR c, thena R c.

NOTE 1

The two properties above are called, in order, irreflexivity and transitivity.

A strict total order is a Relation value R that satisfies the following.
For all a, b, and ¢ in R's domain:

a is identical to bora R b or b R a, and
It is not the case that a R a, and
IfaRbandb R c, thenaR c.

NOTE 2

The three properties above are called, in order, totality, irreflexivity, and transitivity.

6.2.3 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as the

behaviour of statements (break, continue, return and throw) that perform nonlocal transfers of control.

Values of the Completion type are Record values whose fields are defined as by Table 8. Such values are referred to as

Completion Records.

Table 8: Completion Record Fields

Field Name Value Meaning

[[Typell One of normal, break, continue, return, or throw The type of completion that occurred.
[[Value]] any ECMAScript language value or empty The value that was produced.

[[Target]] any ECMAScript string or empty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[Type]] value other than normal.

44 © Ecma International 2019

6.2.3.1 Await

Algorithm steps that say
1. Let completion be Await(value).
mean the same thing as:

Let asyncContext be the running execution context.

Let promise be ? PromiseResolve(%Promise%, « value »).

Let stepsFulfilled be the algorithm steps defined in Await Fulfilled Functions.
Let onFulfilled be CreateBuiltinFunction(stepsFulfilled, « [[AsyncContext]] »).
Set onFulfilled.[[AsyncContext]] to asyncContext.

Let stepsRejected be the algorithm steps defined in Await Rejected Functions.
Let onRejected be CreateBuiltinFunction(stepsRejected, « [[AsyncContext]] »).
Set onRejected.[[AsyncContext]] to asyncContext.

L e Nk W

Perform ! PerformPromiseThen(promise, onFulfilled, onRejected).

—_
e

Remove asyncContext from the execution context stack and restore the execution context that is at the top of the

execution context stack as the running execution context.

—_
—_

. Set the code evaluation state of asyncContext such that when evaluation is resumed with a Completion completion,
the following steps of the algorithm that invoked Await will be performed, with completion available.

12. Return.

13. NOTE: This returns to the evaluation of the operation that had most previously resumed evaluation of

asyncContext.

where all variables in the above steps, with the exception of completion, are ephemeral and visible only in the steps

pertaining to Await.

NOTE

Await can be combined with the ? and ! prefixes, so that for example
1. Let result be ? Await(value).
means the same thing as:

1. Let result be Await(value).
2. ReturnIfAbrupt(result).

6.2.3.1.1 Await Fulfilled Functions

An Await fulfilled function is an anonymous built-in function that is used as part of the Await specification device to
deliver the promise fulfillment value to the caller as a normal completion. Each Await fulfilled function has an
[[AsyncContext]] internal slot.

When an Await fulfilled function is called with argument value, the following steps are taken:

Let F be the active function object.
Let asyncContext be F.[[AsyncContext]].
Let prevContext be the running execution context.

Suspend prevContext.

ik =

Push asyncContext onto the execution context stack; asyncContext is now the running execution context.

© Ecma International 2019 45

The

. Resume the suspended evaluation of asyncContext using NormalCompletion(value) as the result of the operation

that suspended it.

. Assert: When we reach this step, asyncContext has already been removed from the execution context stack and

prevContext is the currently running execution context.

. Return undefined.

"length" property of an Await fulfilled function is 1.

6.2.3.1.2 Await Rejected Functions

An Await rejected function is an anonymous built-in function that is used as part of the Await specification device to

deliver the promise rejection reason to the caller as an abrupt throw completion. Each Await rejected function has an

[[AsyncContext]] internal slot.

When an Await rejected function is called with argument reason, the following steps are taken:

D Ul A W N

The

. Let F be the active function object.

. Let asyncContext be F.[[AsyncContext]].

. Let prevContext be the running execution context.

. Suspend prevContext.

. Push asyncContext onto the execution context stack; asyncContext is now the running execution context.

. Resume the suspended evaluation of asyncContext using ThrowCompletion(reason) as the result of the operation

that suspended it.

. Assert: When we reach this step, asyncContext has already been removed from the execution context stack and

prevContext is the currently running execution context.

. Return undefined.

"length" property of an Await rejected function is 1.

6.2.3.2 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:

1.

Return NormalCompletion(argument).

Is a shorthand that is defined as follows:

1.

Return Completion { [[Typell: normal, [[Valuel]: argument, [[Target]]: empty }.

6.2.3.3 ThrowCompletion

The abstract operation ThrowCompletion with a single argument, such as:

1.

Return ThrowCompletion(argument).

Is a shorthand that is defined as follows:

1.

Return Completion { [[Typell: throw, [[Valuel]: argument, [[Target]]: empty }.

6.2.3.4 UpdateEmpty (completionRecord, value)

The abstract operation UpdateEmpty with arguments completionRecord and value performs the following steps:

46 © Ecma International 2019

1. Assert: If completionRecord.[[Type]] is either return or throw, then completionRecord.[[Value]] is not empty.

2. If completionRecord.[[Value]] is not empty, return Completion(completionRecord).

3. Return Completion { [[Typell: completionRecord.[[Typell, [[Value]]: value, [[Target]]: completionRecord.
[[Target]] }.

6.2.4 The Reference Specification Type
NOTE

The Reference type is used to explain the behaviour of such operators as delete, typeof£, the assignment operators,
the super keyword and other language features. For example, the left-hand operand of an assignment is expected to

produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three components, the base value
component, the referenced name component, and the Boolean-valued strict reference flag. The base value component is
either undefined, an Object, a Boolean, a String, a Symbol, a Number, or an Environment Record. A base value
component of undefined indicates that the Reference could not be resolved to a binding. The referenced name
component is a String or Symbol value.

A Super Reference is a Reference that is used to represent a name binding that was expressed using the super keyword.
A Super Reference has an additional thisValue component, and its base value component will never be an Environment
Record.

The following abstract operations are used in this specification to operate on references:

6.2.4.1 GetBase (V)

1. Assert: Type(V) is Reference.

2. Return the base value component of V.

6.2.4.2 GetReferencedName (V)

1. Assert: Type(V) is Reference.

2. Return the referenced name component of V.

6.2.4.3 IsStrictReference (V')

1. Assert: Type(V) is Reference.
2. Return the strict reference flag of V.

6.2.4.4 HasPrimitiveBase (V')

1. Assert: Type(V) is Reference.
2. If Type(V's base value component) is Boolean, String, Symbol, or Number, return true; otherwise return false.

6.2.4.5 IsPropertyReference (V)

1. Assert: Type(V) is Reference.
2. If either the base value component of V' is an Object or HasPrimitiveBase(V) is true, return true; otherwise return

false.

© Ecma International 2019 47

6.2.4.6 IsUnresolvableReference (V)

1. Assert: Type(V) is Reference.
2. If the base value component of V is undefined, return true; otherwise return false.

6.2.4.7 IsSuperReference (V')

1. Assert: Type(V) is Reference.
2. If V has a thisValue component, return true; otherwise return false.

6.2.4.8 GetValue (V)

ReturnIfAbrupt(V).

If Type(V) is not Reference, return V.

Let base be GetBase(V).

If IsUnresolvableReference(V) is true, throw a ReferenceError exception.

ik =

If IsPropertyReference(V) is true, then
a. If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be undefined or null.
ii. Set base to ! ToObject(base).
b. Return ? base.[[Get]](GetReferencedName(V), GetThisValue(V)).
6. Else base must be an Environment Record,
a. Return ? base.GetBindingValue(GetReferencedName(V), IsStrictReference(V)) (see 8.1.1).

NOTE
The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and the ordinary

object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

6.2.4.9 PutValue (V, W)

1. ReturnIfAbrupt(V).
2. ReturnlfAbrupt(W).
3. If Type(V) is not Reference, throw a ReferenceError exception.
4. Let base be GetBase(V).
5. If IsUnresolvableReference(V) is true, then
a. If IsStrictReference(V) is true, then
i. Throw a ReferenceError exception.
b. Let globalObj be GetGlobalObject().
c. Return ? Set(globalObj, GetReferencedName(V), W, false).
6. Else if IsPropertyReference(V) is true, then
a. If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be undefined or null.
ii. Set base to ! ToObject(base).
b. Let succeeded be ? base.[[Set]](GetReferencedName(V), W, GetThisValue(V)).
c. If succeeded is false and IsStrictReference(V) is true, throw a TypeError exception.
d. Return.
7. Else base must be an Environment Record,
a. Return ? base.SetMutableBinding(GetReferencedName(V), W, IsStrictReference(V)) (see 8.1.1).

48 © Ecma International 2019

NOTE
The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the ordinary object

[[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

6.2.4.10 GetThisValue (V)

1. Assert: IsPropertyReference(V) is true.
2. If IsSuperReference(V) is true, then

a. Return the value of the thisValue component of the reference V.
3. Return GetBase(V).

6.2.4.11 InitializeReferencedBinding (V, W)

ReturnIf Abrupt(V).

ReturnIf Abrupt(W).

Assert: Type(V) is Reference.

Assert: IsUnresolvableReference(V) is false.

Let base be GetBase(V).

Assert: base is an Environment Record.

Return base.InitializeBinding(GetReferencedName(V), W).

Nk W=

6.2.5 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes. Values of
the Property Descriptor type are Records. Each field's name is an attribute name and its value is a corresponding attribute
value as specified in 6.1.7.1. In addition, any field may be present or absent. The schema name used within this

specification to tag literal descriptions of Property Descriptor records is “PropertyDescriptor”.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property Descriptors
based upon the existence or use of certain fields. A data Property Descriptor is one that includes any fields named either
[[Value]] or [[Writable]]. An accessor Property Descriptor is one that includes any fields named either [[Get]] or [[Set]].
Any Property Descriptor may have fields named [[Enumerable]] and [[Configurable]]. A Property Descriptor value may
not be both a data Property Descriptor and an accessor Property Descriptor; however, it may be neither. A generic
Property Descriptor is a Property Descriptor value that is neither a data Property Descriptor nor an accessor Property
Descriptor. A fully populated Property Descriptor is one that is either an accessor Property Descriptor or a data Property
Descriptor and that has all of the fields that correspond to the property attributes defined in either Table 2 or Table 3.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

6.2.5.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with Property Descriptor Desc, the following steps are taken:

1. If Desc is undefined, return false.
2. If both Desc.[[Get]] and Desc.[[Set]] are absent, return false.
3. Return true.

6.2.5.2 IsDataDescriptor (Desc)

© Ecma International 2019 49

When the abstract operation IsDataDescriptor is called with Property Descriptor Desc, the following steps are taken:

1. If Desc is undefined, return false.
2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, return false.
3. Return true.

6.2.5.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with Property Descriptor Desc, the following steps are taken:

1. If Desc is undefined, return false.
2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, return true.

3. Return false.

6.2.5.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with Property Descriptor Desc, the following steps are
taken:

If Desc is undefined, return undefined.
Let obj be ObjectCreate(%ObjectPrototype%).
Assert: obj is an extensible ordinary object with no own properties.
If Desc has a [[Value]] field, then
a. Perform CreateDataProperty(obj, "value", Desc.[[Valuel]]).
5. If Desc has a [[Writable]] field, then
a. Perform CreateDataProperty(obj, "writable", Desc.[[Writable]]).
6. If Desc has a [[Get]] field, then
a. Perform CreateDataProperty(obj, "get", Desc.[[Get]]).
7. If Desc has a [[Set]] field, then
a. Perform CreateDataProperty(obj, "set", Desc.[[Set]]).
8. If Desc has an [[Enumerable]] field, then
a. Perform CreateDataProperty(obj, "enumerable", Desc.[[Enumerable]]).
9. If Desc has a [[Configurable]] field, then
a. Perform CreateDataProperty(obj, "configurable", Desc.[[Configurable]]).

A

10. Assert: All of the above CreateDataProperty operations return true.
11. Return obj.

6.2.5.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1. If Type(Obj) is not Object, throw a TypeError exception.
2. Let desc be a new Property Descriptor that initially has no fields.
3. Let hasEnumerable be ? HasProperty(Obj, "enumerable").
4. If hasEnumerable is true, then
a. Let enumerable be ToBoolean(? Get(Obj, "enumerable")).
b. Set desc.[[Enumerable]] to enumerable.
5. Let hasConfigurable be ? HasProperty(Obj, "configurable").
6. If hasConfigurable is true, then
a. Let configurable be ToBoolean(? Get(Obj, "configurable")).

50 © Ecma International 2019

b. Set desc.[[Configurable]] to configurable.
7. Let hasValue be ? HasProperty(Obj, "value").
8. If hasValue is true, then
a. Let value be ? Get(Obj, "value").
b. Set desc.[[Value]] to value.
9. Let hasWritable be ? HasProperty(Obj, "writable").
10. If hasWritable is true, then
a. Let writable be ToBoolean(? Get(Obj, "writable")).
b. Set desc.[[Writable]] to writable.
11. Let hasGet be ? HasProperty(Obj, "get").
12. If hasGet is true, then
a. Let getter be ? Get(Obj, "get").
b. If IsCallable(getter) is false and getter is not undefined, throw a TypeError exception.
c. Set desc.[[Get]] to getter.
13. Let hasSet be ? HasProperty(Obj, "set").
14. If hasSet is true, then
a. Let setter be ? Get(Obj, "set").
b. If IsCallable(setter) is false and setter is not undefined, throw a TypeError exception.
c. Set desc.[[Set]] to setter.
15. If desc.[[Get]] is present or desc.[[Set]] is present, then
a. If desc.[[Value]] is present or desc.[[Writable]] is present, throw a TypeError exception.
16. Return desc.

6.2.5.6 CompletePropertyDescriptor (Desc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Desc, the following steps are
taken:

1. Assert: Desc is a Property Descriptor.
2. Let like be Record { [[Value]]: undefined, [[Writable]]: false, [[Get]]: undefined, [[Set]]: undefined,
[[Enumerable]]: false, [[Configurable]]: false }.
3. If IsGenericDescriptor(Desc) is true or IsDataDescriptor(Desc) is true, then
a. If Desc does not have a [[Value]] field, set Desc.[[Value]] to like.[[Value]].
b. If Desc does not have a [[Writable]] field, set Desc.[[WTitable]] to like.[[WTritable]].
4. Else,
a. If Desc does not have a [[Get]] field, set Desc.[[Get]] to like.[[Get]].
b. If Desc does not have a [[Set]] field, set Desc.[[Set]] to like.[[Set]].
5. If Desc does not have an [[Enumerable]] field, set Desc.[[Enumerable]] to /ike.[[Enumerable]].
6. If Desc does not have a [[Configurable]] field, set Desc.[[Configurable]] to like.[[Configurable]].
7. Return Desc.

6.2.6 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution in nested

functions and blocks. These types and the operations upon them are defined in 8.1.

6.2.7 Data Blocks

© Ecma International 2019 51

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8 bit) numeric

values. A Data Block value is created with a fixed number of bytes that each have the initial value 0.

For notational convenience within this specification, an array-like syntax can be used to access the individual bytes of a
Data Block value. This notation presents a Data Block value as a 0-origined integer-indexed sequence of bytes. For

3I‘d

example, if db is a 5 byte Data Block value then db[2] can be used to access its 3'* byte.

A data block that resides in memory that can be referenced from multiple agents concurrently is designated a Shared
Data Block. A Shared Data Block has an identity (for the purposes of equality testing Shared Data Block values) that is
address-free: it is tied not to the virtual addresses the block is mapped to in any process, but to the set of locations in
memory that the block represents. Two data blocks are equal only if the sets of the locations they contain are equal;
otherwise, they are not equal and the intersection of the sets of locations they contain is empty. Finally, Shared Data

Blocks can be distinguished from Data Blocks.

The semantics of Shared Data Blocks is defined using Shared Data Block events by the memory model. Abstract
operations below introduce Shared Data Block events and act as the interface between evaluation semantics and the event
semantics of the memory model. The events form a candidate execution, on which the memory model acts as a filter.

Please consult the memory model for full semantics.
Shared Data Block events are modeled by Records, defined in the memory model.

The following abstract operations are used in this specification to operate upon Data Block values:

6.2.7.1 CreateByteDataBlock (size)

When the abstract operation CreateByteDataBlock is called with integer argument size, the following steps are taken:

1. Assert: size > 0.

2. Let db be a new Data Block value consisting of size bytes. If it is impossible to create such a Data Block, throw a
RangeError exception.

3. Set all of the bytes of db to 0.

4. Return db.

6.2.7.2 CreateSharedByteDataBlock (size)

When the abstract operation CreateSharedByteDataBlock is called with integer argument size, the following steps are
taken:

—_

. Assert: size > 0.

2. Let db be a new Shared Data Block value consisting of size bytes. If it is impossible to create such a Shared Data
Block, throw a RangeError exception.

3. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.

4. Let eventList be the [[EventList]] field of the element in execution.[[EventsRecords]] whose [[AgentSignifier]] is
AgentSignifier().

5. Let zero be « 0 ».

6. For each index i of db, do

a. Append WriteSharedMemory { [[Order]]: "Init", [[NoTear]]: true, [[Block]]: db, [[ByteIndex]]: i,
[[ElementSize]]: 1, [[Payload]]: zero } to eventList.
7. Return db.

52 © Ecma International 2019

6.2.7.3 CopyDataBlockBytes (toBlock, toIndex, fromBlock, fromIndex, count)

When the abstract operation CopyDataBlockBytes is called, the following steps are taken:

Assert: fromBlock and toBlock are distinct Data Block or Shared Data Block values.
Assert: fromIndex, tolndex, and count are integer values > 0.

Let fromSize be the number of bytes in fromBlock.

Assert: fromIndex + count < fromSize.

Let toSize be the number of bytes in toBlock.

Assert: tolndex + count < toSize.

N s wN e

Repeat, while count >0
a. If fromBlock is a Shared Data Block, then
i. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.

ii. Let eventList be the [[EventList]] field of the element in execution.[[EventsRecords]] whose
[[AgentSignifier]] is AgentSignifier().

iii. Let bytes be a List of length 1 that contains a nondeterministically chosen byte value.

iv. NOTE: In implementations, bytes is the result of a non-atomic read instruction on the underlying
hardware. The nondeterminism is a semantic prescription of the memory model to describe observable
behaviour of hardware with weak consistency.

v. Let readEvent be ReadSharedMemory { [[Order]]: "Unordered", [[NoTear]]: true, [[Block]]:
fromBlock, [[ByteIndex]]: fromIndex, [[ElementSize]]: 1 }.

vi. Append readEvent to eventList.

vii. Append Chosen Value Record { [[Event]]: readEvent, [[ChosenValue]]: bytes } to execution.
[[ChosenValues]].
viii. If toBlock is a Shared Data Block, then
1. Append WriteSharedMemory { [[Order]]: "Unordered", [[NoTear]]: true, [[Block]]: toBlock,
[[ByteIndex]]: tolndex, [[ElementSize]]: 1, [[Payload]]: bytes } to eventList.
ix. Else,
1. Set toBlock[toIndex] to bytes[0].
b. Else,
i. Assert: toBlock is not a Shared Data Block.
ii. Set toBlock[toIndex] to fromBlock[fromIndex].
c. Increment tolndex and fromIndex each by 1.
d. Decrement count by 1.

8. Return NormalCompletion(empty).

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the specification of
the semantics of the ECMAScript language. Other, more specialized abstract operations are defined throughout this

specification.

7.1 Type Conversion

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics of certain
constructs it is useful to define a set of conversion abstract operations. The conversion abstract operations are
polymorphic; they can accept a value of any ECMAScript language type. But no other specification types are used with

© Ecma International 2019 53

these operations.

7.1.1 ToPrimitive (input [, PreferredType])

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The abstract
operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of converting to more than
one primitive type, it may use the optional hint PreferredType to favour that type. Conversion occurs according to the
following algorithm:

1. Assert: input is an ECMAScript language value.
2. If Type(input) is Object, then
a. If PreferredType is not present, let hint be "default".
. Else if PreferredType is hint String, let hint be "string".

b
c. Else PreferredType is hint Number, let hint be "number".
d. Let exoticToPrim be ? GetMethod(input, @ @toPrimitive).
e. If exoticToPrim is not undefined, then
i. Let result be ? Call(exoticToPrim, input, « hint »).

ii. If Type(result) is not Object, return result.

iii. Throw a TypeError exception.
f. If hint is "default", set hint to "number".
g. Return ? OrdinaryToPrimitive(input, hint).

3. Return input.

NOTE
When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However, objects may
over-ride this behaviour by defining a @ @toPrimitive method. Of the objects defined in this specification only Date
objects (see 20.3.4.45) and Symbol objects (see 19.4.3.5) over-ride the default ToPrimitive behaviour. Date objects treat
no hint as if the hint were String.

7.1.1.1 OrdinaryToPrimitive (O, hint)

When the abstract operation OrdinaryToPrimitive is called with arguments O and hint, the following steps are taken:

1. Assert: Type(O) is Object.
2. Assert: Type(hint) is String and its value is either "string" or "number".
3. If hint is "string", then
a. Let methodNames be « "toString", "valueOf" ».
4. Else,
a. Let methodNames be « "valueOf", "toString" ».
5. For each name in methodNames in List order, do
a. Let method be ? Get(O, name).
b. If IsCallable(method) is true, then
i. Let result be ? Call(method, O).
ii. If Type(result) is not Object, return result.
6. Throw a TypeError exception.

7.1.2 ToBoolean (argument)

54 © Ecma International 2019

The abstract operation ToBoolean converts argument to a value of type Boolean according to Table 9:

Table 9: ToBoolean Conversions

Argument Type Result

Undefined Return false.

Null Return false.

Boolean Return argument.

Number If argument is +0, -0, or NaN, return false; otherwise return true.

String If argument is the empty String (its length is zero), return false; otherwise return true.
Symbol Return true.

Object Return true.

7.1.3 ToNumber (argument)

The abstract operation ToNumber converts argument to a value of type Number according to Table 10:

Table 10: ToNumber Conversions

Argument Type Result

Undefined Return NaN.

Null Return +0.

Boolean If argument is true, return 1. If argument is false, return +0.
Number Return argument (no conversion).

String See grammar and conversion algorithm below.

Symbol Throw a TypeError exception.

Object Apply the following steps:

1. Let primValue be ? ToPrimitive(argument, hint Number).
2. Return ? ToNumber(primValue).

7.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String interpreted as a sequence of UTF-16
encoded code points (6.1.4). If the grammar cannot interpret the String as an expansion of StringNumericLiteral, then the
result of ToNumber is NaN.

NOTE 1
The terminal symbols of this grammar are all composed of characters in the Unicode Basic Multilingual Plane (BMP).

Therefore, the result of ToNumber will be NaN if the string contains any leading surrogate or trailing surrogate code

© Ecma International 2019 55

units, whether paired or unpaired.

Syntax

StringNumericLiteral :::
StrWhiteSpace.,

StrWhiteSpace.,,. StrNumericLiteral StrWhiteSpace., .

op

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpace., .

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
BinarylntegerLiteral
OctallntegerLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigits, . ExponentPart.
. DecimalDigits ExponentPart,

DecimalDigits ExponentPart,

All grammar symbols not explicitly defined above have the definitions used in the Lexical Grammar for numeric literals
(11.8.3)

NOTE 2

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral:

A StringNumericLiteral may include leading and/or trailing white space and/or line terminators.
A StringNumericLiteral that is decimal may have any number of leading 0 digits.

A StringNumericLiteral that is decimal may include a + or - to indicate its sign.

A StringNumericLiteral that is empty or contains only white space is converted to +0.

Infinity and -Infinity are recognized as a StringNumericLiteral but not as a NumericLiteral.

7.1.3.1.1 Runtime Semantics: MV

The conversion of a String to a Number value is similar overall to the determination of the Number value for a numeric
literal (see 11.8.3), but some of the details are different, so the process for converting a String numeric literal to a value

56 © Ecma International 2019

of Number type is given here. This value is determined in two steps: first, a mathematical value (MV) is derived from the
String numeric literal; second, this mathematical value is rounded as described below. The MV on any grammar symbol,
not provided below, is the MV for that symbol defined in 11.8.3.1.

The MV of StringNumericLiteral ::: [empty] is O.

The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

The MV of StringNumericLiteral ::: StrWhiteSpace StrNumericLiteral StrWhiteSpace is the MV of
StrNumericLiteral, no matter whether white space is present or not.

The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

The MV of StrNumericLiteral ::: BinaryIntegerLiteral is the MV of BinaryIntegerLiteral.

The MV of StrNumericLiteral ::: OctallntegerLiteral is the MV of OctallntegerLiteral.

The MV of StrNumericLiteral ::: HexIntegerLiteral isthe MV of HexIntegerLiteral.

The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a floating-
point +0 or -0 as appropriate.)

The MV of StrUnsignedDecimalLiteral ::: Infinity is 1010000 (a value so large that it will round to +oo).
The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits

plus (the MV of the second DecimalDigits times 10™"), where 1 is the number of code points in the second
DecimalDigits.
The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . ExponentPart isthe MV of DecimalDigits times

10, where ¢ is the MV of ExponentPart.
The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . DecimalDigits ExponentPart is (the MV of the

first DecimalDigits plus (the MV of the second DecimalDigits times 10™")) times 10°, where n is the number of
code points in the second DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral ::: . DecimalDigits is the MV of DecimalDigits times 10™", where n is
the number of code points in DecimalDigits.

The MV of StrUnsignedDecimalLiteral ::: . DecimalDigits ExponentPart is the MV of DecimalDigits times

10° ", where n is the number of code points in DecimalDigits and e is the MV of ExponentPart.
The MV of StrUnsignedDecimalLiteral ::: DecimalDigits is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral ::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10,
where e is the MV of ExponentPart.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the Number type. If
the MV is 0, then the rounded value is +0 unless the first non white space code point in the String numeric literal is "-",
in which case the rounded value is -0. Otherwise, the rounded value must be the Number value for the MV (in the sense
defined in 6.1.6), unless the literal includes a StrUnsignedDecimalLiteral and the literal has more than 20 significant
digits, in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by replacing each
significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A digit is
significant if it is not part of an ExponentPart and

it is not O; or

there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

© Ecma International 2019 57

7.1.4 Tolnteger (argument)

The abstract operation TolInteger converts argument to an integral numeric value. This abstract operation functions as

follows:

ML

Let number be ? ToNumber(argument).
If number is NaN, return +0.
If number is +0, -0, +oo, or -oo, return number.

Return the number value that is the same sign as number and whose magnitude is floor(abs(number)).

7.1.5 TolInt32 (argument)

The abstract operation ToInt32 converts argument to one of 232 integer values in the range 231 through 2311,

inclusive. This abstract operation functions as follows:

o e

Let number be ? ToNumber(argument).
If number is NaN, +0, -0, +oo, or -oo, return +0.
Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

Let int32bit be int modulo 232.

If int32bit > 231, return int32bit - 232; otherwise return int32bit.

NOTE
Given the above definition of ToInt32:

The Tolnt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

ToInt32(ToUint32(x)) is equal to ToInt32(x) for all values of x. (It is to preserve this latter property that +co and -co
are mapped to +0.)

TolInt32 maps -0 to +0.

7.1.6 ToUint32 (argument)

The abstract operation ToUint32 converts argument to one of 232 integer values in the range 0 through 232 -1, inclusive.

This abstract operation functions as follows:

ik whe

Let number be ? ToNumber(argument).
If number is NaN, +0, -0, +co, or -oo, return +0.
Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

Let int32bit be int modulo 232,
Return int32bit.

NOTE
Given the above definition of ToUint32:

Step 5 is the only difference between ToUint32 and ToInt32.

The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

ToUint32(ToInt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +oo and -

58 © Ecma International 2019

oo are mapped to +0.)
ToUint32 maps -0 to +0.

7.1.7 Tolnt16 (argument)

The abstract operation ToInt16 converts argument to one of 216 integer values in the range -32768 through 32767,

inclusive. This abstract operation functions as follows:

Let number be ? ToNumber(argument).
If number is NaN, +0, -0, +oo, or -oo, return +0.

Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

Let int16bit be int modulo 216,

o e

If int16bit > 215, return int16bit - 216; otherwise return int16bit.

7.1.8 ToUint16 (argument)

The abstract operation ToUint16 converts argument to one of 216 integer values in the range 0 through 216 _ 1, inclusive.
This abstract operation functions as follows:

Let number be ? ToNumber(argument).

If number is NaN, +0, -0, +oo, or -oo, return +0.

Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).
Let int16bit be int modulo 216.

Return int16bit.

ok N e

NOTE
Given the above definition of ToUint16:

The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUint16.
ToUint16 maps -0 to +0.

7.1.9 Tolnt8 (argument)

The abstract operation ToInt8 converts argument to one of 28 integer values in the range -128 through 127, inclusive.

This abstract operation functions as follows:

Let number be ? ToNumber(argument).
If number is NaN, +0, -0, +oo, or -oo, return +0.

Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

Let int8bit be int modulo 28,

o & e

If int8bit > 27, return int8bit - 28; otherwise return int8bit.

7.1.10 ToUint8 (argument)

© Ecma International 2019 59

The abstract operation ToUint8 converts argument to one of 28 integer values in the range 0 through 255, inclusive. This

abstract operation functions as follows:

ik N

Let number be ? ToNumber(argument).
If number is NaN, +0, -0, +co, or -oo, return +0.

Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

Let int8bit be int modulo 28,
Return int8bit.

7.1.11 ToUint8Clamp (argument)

The abstract operation ToUint8Clamp converts argument to one of 28 integer values in the range 0 through 255,

inclusive. This abstract operation functions as follows:

L e Nk W

Let number be ? ToNumber(argument).
If number is NaN, return +0.

If number < 0, return +0.

If number > 255, return 255.

Let f be floor(number).

If f+ 0.5 < number, return f + 1.

If number < f+ 0.5, return f.

If [is odd, return [+ 1.

Return f.

NOTE

Unlike the other ECMAScript integer conversion abstract operation, ToUint8Clamp rounds rather than truncates non-

integer values and does not convert +oo to 0. ToUint8Clamp does “round half to even” tie-breaking. This differs from

Math. round which does “round half up” tie-breaking.

7.1.12 ToString (argument)

The abstract operation ToString converts argument to a value of type String according to Table 11:

Table 11: ToString Conversions

Argument Type Result
Undefined Return "undefined".

Null Return "null".

Boolean If argument is true, return "true".

If argument is false, return "false".

Number Return NumberToString(argument).

String Return argument.

60 © Ecma International 2019

Symbol Throw a TypeError exception.

Object Apply the following steps:

1. Let primValue be ? ToPrimitive(argument, hint String).
2. Return ? ToString(primValue).

7.1.12.1 NumberToString (m)

The abstract operation NumberToString converts a Number m to String format as follows:

ik e

10.

If m is NaN, return the String "NaN".
If m is +0 or -0, return the String "0".
If m is less than zero, return the string-concatenation of "~-" and ! NumberToString(-m).

If m is +oo, return the String "Infinity".

Otherwise, let n, k, and s be integers such that k > 1, 10F-1<s< 10k, the Number value for s x 10" " ¥ is m, and k
is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is not divisible
by 10, and that the least significant digit of s is not necessarily uniquely determined by these criteria.
If k < n <21, return the string-concatenation of:
the code units of the k digits of the decimal representation of s (in order, with no leading zeroes)
n - k occurrences of the code unit 0x0030 (DIGIT ZERO)
If 0 < n < 21, return the string-concatenation of:
the code units of the most significant n digits of the decimal representation of s
the code unit 0x002E (FULL STOP)
the code units of the remaining k - n digits of the decimal representation of s
If -6 < n <0, return the string-concatenation of:
the code unit 0x0030 (DIGIT ZERO)
the code unit 0x002E (FULL STOP)
-n occurrences of the code unit 0x0030 (DIGIT ZERO)
the code units of the k digits of the decimal representation of s
Otherwise, if k = 1, return the string-concatenation of:
the code unit of the single digit of s
the code unit 0x0065 (LATIN SMALL LETTER E)
the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS) according to whether n - 1
is positive or negative
the code units of the decimal representation of the integer abs(n - 1) (with no leading zeroes)
Return the string-concatenation of:
the code units of the most significant digit of the decimal representation of s
the code unit 0x002E (FULL STOP)
the code units of the remaining k - 1 digits of the decimal representation of s
the code unit 0x0065 (LATIN SMALL LETTER E)
the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS) according to whether n - 1
is positive or negative
the code units of the decimal representation of the integer abs(n - 1) (with no leading zeroes)

NOTE 1

The following observations may be useful as guidelines for implementations, but are not part of the normative

© Ecma International 2019 61

requirements of this Standard:

If x is any Number value other than -0, then ToNumber(ToString(x)) is exactly the same Number value as x.

The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2
For implementations that provide more accurate conversions than required by the rules above, it is recommended that the

following alternative version of step 5 be used as a guideline:

5. Otherwise, let n, k, and s be integers such that k > 1, 10k-1<s< 10k, the Number value for s x 10"~ K is m, and k

On—k

is as small as possible. If there are multiple possibilities for s, choose the value of s for which s x 1 is closest

in value to m. If there are two such possible values of s, choose the one that is even. Note that k is the number of

digits in the decimal representation of s and that s is not divisible by 10.

NOTE 3
Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal

conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis, Manuscript
90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://ampl.com/REFS/abstracts.html#rounding. Associated code available as

http://netlib.sandia.gov/fp/dtoa.c and as

http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

7.1.13 ToObject (argument)

The abstract operation ToObject converts argument to a value of type Object according to Table 12:

Table 12: ToObject Conversions

Argument Result
Type

Undefined Throw a TypeError exception.
Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]] internal slot is set to argument. See 19.3 for a
description of Boolean objects.

Number Return a new Number object whose [[NumberData]] internal slot is set to argument. See 20.1 for a
description of Number objects.

String Return a new String object whose [[StringData]] internal slot is set to argument. See 21.1 for a
description of String objects.

Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set to argument. See 19.4 for a
description of Symbol objects.

Object Return argument.

62 © Ecma International 2019

http://ampl.com/REFS/abstracts.html#rounding
http://netlib.sandia.gov/fp/dtoa.c
http://netlib.sandia.gov/fp/g_fmt.c

7.1.14 ToPropertyKey (argument)

The abstract operation ToPropertyKey converts argument to a value that can be used as a property key by performing the

following steps:

1. Let key be ? ToPrimitive(argument, hint String).
2. If Type(key) is Symbol, then

a. Return key.
3. Return ! ToString(key).

7.1.15 ToLength (argument)

The abstract operation ToLength converts argument to an integer suitable for use as the length of an array-like object. It

performs the following steps:

1. Let len be ? Tolnteger(argument).
2. If len < +0, return +0.

3. Return min(len, 223 1).

7.1.16 CanonicalNumericIndexString (argument)

The abstract operation CanonicalNumericIndexString returns argument converted to a numeric value if it is a String
representation of a Number that would be produced by ToString, or the string "-0". Otherwise, it returns undefined.

This abstract operation functions as follows:

Assert: Type(argument) is String.

If argument is "-0", return -0.

Let n be ! ToNumber(argument).

If SameValue(! ToString(n), argument) is false, return undefined.

S e

Return n.

A canonical numeric string is any String value for which the CanonicalNumericIndexString abstract operation does not

return undefined.

7.1.17 Tolndex (value)

The abstract operation ToIndex returns value argument converted to a numeric value if it is a valid integer index value.

This abstract operation functions as follows:

1. If value is undefined, then
a. Let index be 0.
2. Else,
a. Let integerindex be ? Tolnteger(value).
b. If integerIindex < 0, throw a RangeError exception.
c. Let index be ! ToLength(integerIndex).
d. If SameValueZero(integerIndex, index) is false, throw a RangeError exception.

3. Return index.

© Ecma International 2019 63

7.2 Testing and Comparison Operations

7.2.1 RequireObjectCoercible (argument)

The abstract operation RequireObjectCoercible throws an error if argument is a value that cannot be converted to an
Object using ToObject. It is defined by Table 13:

Table 13: RequireObjectCoercible Results

Argument Type Result

Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return argument.

Number Return argument.

String Return argument.

Symbol Return argument.

Object Return argument.

7.2.2 IsArray (argument)

The abstract operation IsArray takes one argument argument, and performs the following steps:

—_

If Type(argument) is not Object, return false.

N

If argument is an Array exotic object, return true.

w

If argument is a Proxy exotic object, then
a. If argument.[[ProxyHandler]] is null, throw a TypeError exception.
b. Let target be argument.[[ProxyTarget]].
c. Return ? IsArray(target).

4. Return false.

7.2.3 IsCallable (argument)

The abstract operation IsCallable determines if argument, which must be an ECMAScript language value, is a callable
function with a [[Call]] internal method.

1. If Type(argument) is not Object, return false.
2. If argument has a [[Call]] internal method, return true.
3. Return false.

7.2.4 IsConstructor (argument)

The abstract operation IsConstructor determines if argument, which must be an ECMAScript language value, is a
function object with a [[Construct]] internal method.

1. If Type(argument) is not Object, return false.

64 © Ecma International 2019

2. If argument has a [[Construct]] internal method, return true.
3. Return false.

7.2.5 IsExtensible (O)

The abstract operation IsExtensible is used to determine whether additional properties can be added to the object that is

O. A Boolean value is returned. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Return ? O.[[IsExtensible]]().

7.2.6 IsInteger (argument)

The abstract operation IsInteger determines if argument is a finite integer numeric value.

If Type(argument) is not Number, return false.
If argument is NaN, +oo, or -oo, return false.
If floor(abs(argument)) # abs(argument), return false.

A

Return true.

7.2.7 IsPropertyKey (argument)

The abstract operation IsPropertyKey determines if argument, which must be an ECMAScript language value, is a value

that may be used as a property key.

1. If Type(argument) is String, return true.
2. If Type(argument) is Symbol, return true.
3. Return false.

7.2.8 IsRegExp (argument)

The abstract operation IsRegExp with argument argument performs the following steps:

If Type(argument) is not Object, return false.

Let matcher be ? Get(argument, @@match).

If matcher is not undefined, return ToBoolean(matcher).

If argument has a [[RegExpMatcher]] internal slot, return true.

i e

Return false.

7.2.9 IsStringPrefix (p, q)

The abstract operation IsStringPrefix determines if String p is a prefix of String g.

Assert: Type(p) is String.
Assert: Type(q) is String.
If g can be the string-concatenation of p and some other String r, return true. Otherwise, return false.

A

NOTE: Any String is a prefix of itself, because r may be the empty String.

© Ecma International 2019 65

7.2.10 SameValue (x,)

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values, produces

true or false. Such a comparison is performed as follows:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Number, then
a. If x is NaN and y is NaN, return true.
b. If xis +0 and y is -0, return false.
c. If xis -0 and y is +0, return false.
d. If x is the same Number value as y, return true.
e. Return false.
3. Return SameValueNonNumber(x, y).

NOTE

This algorithm differs from the Strict Equality Comparison Algorithm in its treatment of signed zeroes and NaNs.

7.2.11 SameValueZero (x,y)

The internal comparison abstract operation SameValueZero(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Number, then
a. If x is NaN and y is NaN, return true.
b. If x is +0 and y is -0, return true.
c. If xis -0 and y is +0, return true.
d. If x is the same Number value as y, return true.
e. Return false.

3. Return SameValueNonNumber(x, y).

NOTE

SameValueZero differs from SameValue only in its treatment of +0 and -0.

7.2.12 SameValueNonNumber (x, y)

The internal comparison abstract operation SameValueNonNumber(x, y), where neither x nor y are Number values,

produces true or false. Such a comparison is performed as follows:

Assert: Type(x) is not Number.

Assert: Type(x) is the same as Type(y).
If Type(x) is Undefined, return true.

If Type(x) is Null, return true.

ik =

If Type(x) is String, then
a. If x and y are exactly the same sequence of code units (same length and same code units at corresponding
indices), return true; otherwise, return false.
6. If Type(x) is Boolean, then

a. If x and y are both true or both false, return true; otherwise, return false.

66 © Ecma International 2019

7. If Type(x) is Symbol, then

d.

If x and y are both the same Symbol value, return true; otherwise, return false.

8. If x and y are the same Object value, return true. Otherwise, return false.

7.2.13 Abstract Relational Comparison

The comparison x < y, where x and y are values, produces true, false, or undefined (which indicates that at least one

operand is

NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a parameter. The flag is

used to control the order in which operations with potentially visible side-effects are performed upon x and y. It is

necessary because ECMAScript specifies left to right evaluation of expressions. The default value of LeftFirst is true and

indicates that the x parameter corresponds to an expression that occurs to the left of the y parameter's corresponding

expression. If LeftFirst is false, the reverse is the case and operations must be performed upon y before x. Such a

comparison is performed as follows:

1. If the LeftFirst flag is true, then

a.
b.

Let px be ? ToPrimitive(x, hint Number).
Let py be ? ToPrimitive(y, hint Number).

2. Else the order of evaluation needs to be reversed to preserve left to right evaluation,

a.
b.

Let py be ? ToPrimitive(y, hint Number).
Let px be ? ToPrimitive(x, hint Number).

3. If Type(px) is String and Type(py) is String, then

a.
b.

C.

4. Else,

/e n o

5 0o

—-

8 — 7 —

NOTE 1

If IsStringPrefix(py, px) is true, return false.

If IsStringPrefix(px, py) is true, return true.

Let k be the smallest nonnegative integer such that the code unit at index k within px is different from the code
unit at index k within py. (There must be such a k, for neither String is a prefix of the other.)

Let m be the integer that is the numeric value of the code unit at index k within px.

. Let n be the integer that is the numeric value of the code unit at index k within py.

If m < n, return true. Otherwise, return false.

NOTE: Because px and py are primitive values evaluation order is not important.
Let nx be ? ToNumber(px).

Let ny be ? ToNumber(py).

If nx is NaN, return undefined.

If ny is NaN, return undefined.

If nx and ny are the same Number value, return false.

If nx is +0 and ny is -0, return false.

If nx is -0 and ny is +0, return false.

If nx is +oo, return false.

If ny is +oo, return true.

If ny is -oo, return false.

If nx is -oo, return true.

If the mathematical value of nx is less than the mathematical value of ny—note that these mathematical values
are both finite and not both zero—return true. Otherwise, return false.

Step 3 differs from step 7 in the algorithm for the addition operator + (12.8.3) by using the logical-and operation instead

of the logical-or operation.

NOTE 2

The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no attempt to

© Ecma International 2019 67

use the more complex, semantically oriented definitions of character or string equality and collating order defined in the
Unicode specification. Therefore String values that are canonically equal according to the Unicode standard could test as
unequal. In effect this algorithm assumes that both Strings are already in normalized form. Also, note that for strings
containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from that

on sequences of code point values.

7.2.14 Abstract Equality Comparison

The comparison x == y, where x and y are values, produces true or false. Such a comparison is performed as follows:

1. If Type(x) is the same as Type(y), then
a. Return the result of performing Strict Equality Comparison x === y.
2. If x is null and y is undefined, return true.
3. If x is undefined and y is null, return true.
4. If Type(x) is Number and Type(y) is String, return the result of the comparison x == ! ToNumber(y).
5. If Type(x) is String and Type(y) is Number, return the result of the comparison ! ToNumber(x) == y.
6. If Type(x) is Boolean, return the result of the comparison ! ToNumber(x) == y.
7. If Type(y) is Boolean, return the result of the comparison x == ! ToNumber(y).
8. If Type(x) is either String, Number, or Symbol and Type(y) is Object, return the result of the comparison x ==

ToPrimitive(y).
9. If Type(x) is Object and Type(y) is either String, Number, or Symbol, return the result of the comparison
ToPrimitive(x) == y.
10. Return false.

7.2.15 Strict Equality Comparison

The comparison x === y, where x and y are values, produces true or false. Such a comparison is performed as follows:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Number, then
a. If x is NaN, return false.
If y is NaN, return false.
If x is the same Number value as y, return true.
If x is +0 and y is -0, return true.

T /N o

If x is -0 and y is +0, return true.
f. Return false.
3. Return SameValueNonNumber(x, y).

NOTE

This algorithm differs from the SameValue Algorithm in its treatment of signed zeroes and NaNs.

7.3 Operations on Objects

7.3.1 Get (O, P)

68 © Ecma International 2019

The abstract operation Get is used to retrieve the value of a specific property of an object. The operation is called with
arguments O and P where O is the object and P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return ? O.[[Get]](P, O).

7.3.2 GetV (V, P)

The abstract operation GetV is used to retrieve the value of a specific property of an ECMAScript language value. If the
value is not an object, the property lookup is performed using a wrapper object appropriate for the type of the value. The
operation is called with arguments V and P where V is the value and P is the property key. This abstract operation
performs the following steps:

1. Assert: IsPropertyKey(P) is true.
2. Let O be ? ToObject(V).
3. Return ? O.[[Get]](P, V).

7.3.3 Set (O, P, V, Throw)

The abstract operation Set is used to set the value of a specific property of an object. The operation is called with
arguments O, P, V, and Throw where O is the object, P is the property key, V is the new value for the property and
Throw is a Boolean flag. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Assert: Type(Throw) is Boolean.

Let success be ? O.[[Set]](P, V, O).

If success is false and Throw is true, throw a TypeError exception.

S T e

Return success.

7.3.4 CreateDataProperty (O, P, V)

The abstract operation CreateDataProperty is used to create a new own property of an object. The operation is called with
arguments O, P, and V where O is the object, P is the property key, and V is the value for the property. This abstract
operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true }.

4. Return ? O.[[DefineOwnProperty]](P, newDesc).

NOTE
This abstract operation creates a property whose attributes are set to the same defaults used for properties created by the
ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and is not

configurable or if O is not extensible, [[DefineOwnProperty]] will return false.

© Ecma International 2019 69

7.3.5 CreateMethodProperty (O, P, V')

The abstract operation CreateMethodProperty is used to create a new own property of an object. The operation is called
with arguments O, P, and V where O is the object, P is the property key, and V is the value for the property. This

abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]:
true }.

4. Return ? O.[[DefineOwnProperty]](P, newDesc).

NOTE
This abstract operation creates a property whose attributes are set to the same defaults used for built-in methods and
methods defined using class declaration syntax. Normally, the property will not already exist. If it does exist and is not

configurable or if O is not extensible, [[DefineOwnProperty]] will return false.

7.3.6 CreateDataPropertyOrThrow (O, P, V')

The abstract operation CreateDataPropertyOrThrow is used to create a new own property of an object. It throws a
TypeError exception if the requested property update cannot be performed. The operation is called with arguments O,
P, and V where O is the object, P is the property key, and V is the value for the property. This abstract operation

performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be ? CreateDataProperty(O, P, V).

If success is false, throw a TypeError exception.

ok =

Return success.

NOTE
This abstract operation creates a property whose attributes are set to the same defaults used for properties created by the
ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and is not
configurable or if O is not extensible, [[DefineOwnProperty]] will return false causing this operation to throw a

TypeError exception.

7.3.7 DefinePropertyOrThrow (O, P, desc)

The abstract operation DefinePropertyOrThrow is used to call the [[DefineOwnProperty]] internal method of an object in
a manner that will throw a TypeError exception if the requested property update cannot be performed. The operation is
called with arguments O, P, and desc where O is the object, P is the property key, and desc is the Property Descriptor for
the property. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be ? O.[[DefineOwnProperty]](P, desc).
If success is false, throw a TypeError exception.

ik =

Return success.

70 © Ecma International 2019

7.3.8 DeletePropertyOrThrow (O, P)

The abstract operation DeletePropertyOrThrow is used to remove a specific own property of an object. It throws an
exception if the property is not configurable. The operation is called with arguments O and P where O is the object and P

is the property key. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be ? O.[[Delete]](P).

If success is false, throw a TypeError exception.

ik =

Return success.

7.3.9 GetMethod (V, P)

The abstract operation GetMethod is used to get the value of a specific property of an ECMAScript language value when
the value of the property is expected to be a function. The operation is called with arguments V and P where V is the
ECMAScript language value, P is the property key. This abstract operation performs the following steps:

Assert: IsPropertyKey(P) is true.

Let func be ? GetV(V, P).

If func is either undefined or null, return undefined.

If IsCallable(func) is false, throw a TypeError exception.

ok e

Return func.

7.3.10 HasProperty (O, P)

The abstract operation HasProperty is used to determine whether an object has a property with the specified property key.
The property may be either an own or inherited. A Boolean value is returned. The operation is called with arguments O
and P where O is the object and P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return ? O.[[HasProperty]](P).

7.3.11 HasOwnProperty (O, P)

The abstract operation HasOwnProperty is used to determine whether an object has an own property with the specified
property key. A Boolean value is returned. The operation is called with arguments O and P where O is the object and P

is the property key. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let desc be ? O.[[GetOwnProperty]](P).
If desc is undefined, return false.

ik =

Return true.

7.3.12 Call (F, V[, argumentsList])

The abstract operation Call is used to call the [[Call]] internal method of a function object. The operation is called with

© Ecma International 2019 71

arguments F, V, and optionally argumentsList where F is the function object, V is an ECMAScript language value that is
the this value of the [[Call]], and argumentsList is the value passed to the corresponding argument of the internal
method. If argumentsList is not present, a new empty List is used as its value. This abstract operation performs the

following steps:

1. If argumentsList is not present, set argumentsList to a new empty List.
2. If IsCallable(F) is false, throw a TypeError exception.
3. Return ? F.[[Call]](V, argumentsList).

7.3.13 Construct (F [, argumentsList [, newTarget]])

The abstract operation Construct is used to call the [[Construct]] internal method of a function object. The operation is
called with arguments F, and optionally argumentsList, and newTarget where F is the function object. argumentsList and
newTarget are the values to be passed as the corresponding arguments of the internal method. If argumentsList is not
present, a new empty List is used as its value. If newTarget is not present, F is used as its value. This abstract operation

performs the following steps:

If newTarget is not present, set newTarget to F.

If argumentsList is not present, set argumentsList to a new empty List.
Assert: IsConstructor(F) is true.

Assert: IsConstructor(newTarget) is true.

o e

Return ? F.[[Construct]](argumentsList, newTarget).

NOTE

If newTarget is not present, this operation is equivalent to: new F(...argumentsList)

7.3.14 SetIntegrityLevel (O, level)

The abstract operation SetIntegrityLevel is used to fix the set of own properties of an object. This abstract operation

performs the following steps:

Assert: Type(O) is Object.

Assert: level is either "sealed" or "frozen".
Let status be ? O.[[PreventExtensions]]().

If status is false, return false.

Let keys be ? O.[[OwnPropertyKeys]]().

If level is "sealed", then

ok W

a. For each element k of keys, do
i. Perform ? DefinePropertyOrThrow(O, k, PropertyDescriptor { [[Configurable]]: false }).
7. Else level is "frozen",
a. For each element k of keys, do
i. Let currentDesc be ? O.[[GetOwnProperty]](k).
ii. If currentDesc is not undefined, then
1. If IsAccessorDescriptor(currentDesc) is true, then
a. Let desc be the PropertyDescriptor { [[Configurable]]: false }.
2. Else,
a. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]: false }.
3. Perform ? DefinePropertyOrThrow(O, k, desc).

72 © Ecma International 2019

8. Return true.

7.3.15 TestIntegrityLevel (O, level)

The abstract operation TestIntegrityLevel is used to determine if the set of own properties of an object are fixed. This

abstract operation performs the following steps:

Assert: Type(O) is Object.
Assert: level is either "sealed" or "frozen".
Let status be ? IsExtensible(O).
If status is true, return false.
NOTE: If the object is extensible, none of its properties are examined.
Let keys be ? O.[[OwnPropertyKeys]]().
For each element k of keys, do
a. Let currentDesc be ? O.[[GetOwnProperty]](k).

b. If currentDesc is not undefined, then

N sr W=

i. If currentDesc.[[Configurable]] is true, return false.
ii. If level is "frozen™ and IsDataDescriptor(currentDesc) is true, then
1. If currentDesc.[[Writable]] is true, return false.
8. Return true.

7.3.16 CreateArrayFromList (elements)

The abstract operation CreateArrayFromList is used to create an Array object whose elements are provided by a List.

This abstract operation performs the following steps:

Assert: elements is a List whose elements are all ECMAScript language values.
Let array be ! ArrayCreate(0).
Let n be 0.

For each element e of elements, do

A

a. Let status be CreateDataProperty(array, ! ToString(n), e).
b. Assert: status is true.
c. Increment n by 1.

5. Return array.

7.3.17 CreateListFromArrayLike (obj [, elementTypes])

The abstract operation CreateListFromArrayLike is used to create a List value whose elements are provided by the
indexed properties of an array-like object, obj. The optional argument elementTypes is a List containing the names of
ECMAScript Language Types that are allowed for element values of the List that is created. This abstract operation
performs the following steps:

If elementTypes is not present, set elementTypes to « Undefined, Null, Boolean, String, Symbol, Number, Object ».
If Type(obj) is not Object, throw a TypeError exception.

Let len be ? ToLength(? Get(obj, "l1length™)).

Let list be a new empty List.

Let index be 0.

Repeat, while index < len

o Uk Wi

a. Let indexName be ! ToString(index).

© Ecma International 2019 73

Let next be ? Get(obj, indexName).
If Type(next) is not an element of elementTypes, throw a TypeError exception.

/e 0 o

Append next as the last element of /ist.
e. Increase index by 1.
7. Return list.

7.3.18 Invoke (V, P [, arqumentsList])

The abstract operation Invoke is used to call a method property of an ECMAScript language value. The operation is
called with arguments V, P, and optionally argumentsList where V serves as both the lookup point for the property and
the this value of the call, P is the property key, and argumentsList is the list of arguments values passed to the method. If

argumentsList is not present, a new empty List is used as its value. This abstract operation performs the following steps:

Assert: IsPropertyKey(P) is true.

If argumentsList is not present, set argumentsList to a new empty List.
Let func be ? GetV(V, P).

Return ? Call(func, V, argumentsList).

A

7.3.19 OrdinaryHaslInstance (C, O)

The abstract operation OrdinaryHasInstance implements the default algorithm for determining if an object O inherits
from the instance object inheritance path provided by constructor C. This abstract operation performs the following steps:

—_

If IsCallable(C) is false, return false.

2. If C has a [[BoundTargetFunction]] internal slot, then
a. Let BC be C.[[BoundTargetFunction]].
b. Return ? InstanceofOperator(O, BC).

If Type(O) is not Object, return false.

Let P be ? Get(C, "prototype").

If Type(P) is not Object, throw a TypeError exception.

SR

Repeat,
a. Set O to ? O.[[GetPrototypeOf]]().
b. If O is null, return false.

c. If SameValue(P, O) is true, return true.

7.3.20 SpeciesConstructor (O, defaultConstructor)

The abstract operation SpeciesConstructor is used to retrieve the constructor that should be used to create new objects
that are derived from the argument object O. The defaultConstructor argument is the constructor to use if a constructor

@ @species property cannot be found starting from O. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Let C be ? Get(O, "constructor").

If C is undefined, return defaultConstructor.

If Type(C) is not Object, throw a TypeError exception.
Let S be ? Get(C, @ @species).

If S is either undefined or null, return defaultConstructor.

Nk W=

If IsConstructor(S) is true, return S.

74 © Ecma International 2019

8. Throw a TypeError exception.

7.3.21 EnumerableOwnPropertyNames (O, kind)

When the abstract operation EnumerableOwnPropertyNames is called with Object O and String kind the following steps

are taken:

1. Assert: Type(O) is Object.
2. Let ownKeys be ? O.[[OwnPropertyKeys]]().
3. Let properties be a new empty List.
4. For each element key of ownKeys in List order, do
a. If Type(key) is String, then
i. Let desc be ? O.[[GetOwnProperty]l(key).
ii. If desc is not undefined and desc.[[Enumerable]] is true, then
1. If kind is "key", append key to properties.
2. Else,
a. Let value be ? Get(O, key).
b. If kind is "value", append value to properties.
c. Else,
i. Assert: kind is "key+value".
ii. Let entry be CreateArrayFromList(« key, value »).
iii. Append entry to properties.
5. Order the elements of properties so they are in the same relative order as would be produced by the Iterator that
would be returned if the EnumerateObjectProperties internal method were invoked with O.

6. Return properties.

7.3.22 GetFunctionRealm (obj)

The abstract operation GetFunctionRealm with argument obj performs the following steps:

—_

. Assert: obj is a callable object.

N

If obj has a [[Realm]] internal slot, then
a. Return obj.[[Realm]].

w

If obj is a Bound Function exotic object, then
a. Let target be obj.[[BoundTargetFunction]].
b. Return ? GetFunctionRealm(target).

A

If obj is a Proxy exotic object, then
a. If obj.[[ProxyHandler]] is null, throw a TypeError exception.
b. Let proxyTarget be obj.[[ProxyTarget]].
c. Return ? GetFunctionRealm(proxyTarget).

5. Return the current Realm Record.

NOTE

Step 5 will only be reached if obj is a non-standard function exotic object that does not have a [[Realm]] internal slot.

7.3.23 CopyDataProperties (target, source, excludedItems)
When the abstract operation CopyDataProperties is called with arguments target, source, and excludedItems, the

© Ecma International 2019 75

following steps are taken:

Assert: Type(target) is Object.

Assert: excludedItems is a List of property keys.
If source is undefined or null, return target.
Let from be ! ToObject(source).

Let keys be ? from.[[OwnPropertyKeys]]().

ok W=

For each element nextKey of keys in List order, do
a. Let excluded be false.
b. For each element e of excludedItems in List order, do
i. If SameValue(e, nextKey) is true, then
1. Set excluded to true.
c. If excluded is false, then
i. Let desc be ? from.[[GetOwnProperty]l(nextKey).
ii. If desc is not undefined and desc.[[Enumerable]] is true, then
1. Let propValue be ? Get(from, nextKey).
2. Perform ! CreateDataProperty(target, nextKey, propValue).
7. Return target.

NOTE
The target passed in here is always a newly created object which is not directly accessible in case of an error being

thrown.

7.4 Operations on Iterator Objects

See Common Iteration Interfaces (25.1).

7.4.1 Getlterator (obj[, hint[, method]])

The abstract operation Getlterator with argument obj and optional arguments hint and method performs the following

steps:

1. If hint is not present, set hint to Sync.
2. Assert: hint is either sync or async.
3. If method is not present, then
a. If hint is async, then
i. Set method to ? GetMethod(obj, @ @asynclterator).
ii. If method is undefined, then
1. Let syncMethod be ? GetMethod(obj, @ @iterator).
2. Let synclteratorRecord be ? Getlterator(obj, sync, syncMethod).
3. Return ? CreateAsyncFromSynclterator(synclteratorRecord).
b. Otherwise, set method to ? GetMethod(obj, @ @iterator).
Let iterator be ? Call(method, obj).
If Type(iterator) is not Object, throw a TypeError exception.
Let nextMethod be ? GetV(iterator, "next").
Let iteratorRecord be Record { [[Iterator]]: iterator, [[NextMethod]]: nextMethod, [[Done]]: false }.

Return iteratorRecord.

® N Uk

76 © Ecma International 2019

7.4.2 IteratorNext (iteratorRecord [, value])

The abstract operation IteratorNext with argument iteratorRecord and optional argument value performs the following

steps:

1. If value is not present, then

a. Let result be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]], « »).
2. Else,

a. Let result be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]], « value »).
3. If Type(result) is not Object, throw a TypeError exception.

4. Return result.

7.4.3 IteratorComplete (iterResult)

The abstract operation IteratorComplete with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Return ToBoolean(? Get(iterResult, "done™)).

7.4.4 IteratorValue (iterResult)

The abstract operation IteratorValue with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Return ? Get(iterResult, "value").

7.4.5 IteratorStep (iteratorRecord)

The abstract operation IteratorStep with argument iteratorRecord requests the next value from iteratorRecord.[[Iterator]]
by calling iteratorRecord.[[NextMethod]] and returns either false indicating that the iterator has reached its end or the

IteratorResult object if a next value is available. IteratorStep performs the following steps:

Let result be ? IteratorNext(iteratorRecord).
Let done be ? IteratorComplete(result).

If done is true, return false.

A

Return result.

7.4.6 IteratorClose (iteratorRecord, completion)

The abstract operation IteratorClose with arguments iteratorRecord and completion is used to notify an iterator that it
should perform any actions it would normally perform when it has reached its completed state:

Assert: Type(iteratorRecord.[[Iterator]]) is Object.
Assert: completion is a Completion Record.

Let iterator be iteratorRecord.[[Iterator]].

Let return be ? GetMethod(iterator, "return").

If return is undefined, return Completion(completion).
Let innerResult be Call(return, iterator, « »).

If completion.[[Type]] is throw, return Completion(completion).

Nk~ W

If innerResult.[[Type]] is throw, return Completion(innerResult).

© Ecma International 2019 77

9.
10.

If Type(innerResult.[[Value]]) is not Object, throw a TypeError exception.

Return Completion(completion).

7.4.7 AsynclteratorClose (iteratorRecord, completion)

The abstract operation AsynclteratorClose with arguments iteratorRecord and completion is used to notify an async

iterator that it should perform any actions it would normally perform when it has reached its completed state:

L e Nk~ W

_ =
= O

Assert: Type(iteratorRecord.[[Iterator]]) is Object.

Assert: completion is a Completion Record.

Let iterator be iteratorRecord.[[Iterator]].

Let return be ? GetMethod(iterator, "return").

If return is undefined, return Completion(completion).

Let innerResult be Call(return, iterator, « »).

If innerResult.[[Type]] is normal, set innerResult to Await(innerResult.[[Value]]).
If completion.[[Type]] is throw, return Completion(completion).

If innerResult.[[Type]] is throw, return Completion(innerResult).

If Type(innerResult.[[Value]]) is not Object, throw a TypeError exception.

Return Completion(completion).

7.4.8 CreatelterResultObject (value, done)

The abstract operation CreatelterResultObject with arguments value and done creates an object that supports the

IteratorResult interface by performing the following steps:

S

Assert: Type(done) is Boolean.

Let obj be ObjectCreate(%ObjectPrototype%).
Perform CreateDataProperty(obj, "wvalue", value).
Perform CreateDataProperty(obj, "done", done).

Return obj.

7.4.9 CreateListIteratorRecord (list)

The abstract operation CreateListlteratorRecord with argument /ist creates an Iterator (25.1.1.2) object record whose next

method returns the successive elements of [ist. It performs the following steps:

SR o

Let iterator be ObjectCreate(%!lteratorPrototype%, « [[IteratedList]], [[ListIteratorNextIndex]] »).
Set iterator.[[IteratedList]] to [ist.

Set iterator.[[ListIteratorNextIndex]] to 0.

Let steps be the algorithm steps defined in Listlterator next (7.4.9.1).

Let next be CreateBuiltinFunction(steps, « »).

Return Record { [[Iterator]]: iterator, [[NextMethod]]: next, [[Done]]: false }.

NOTE

The list iterator object is never directly accessible to ECMAScript code.

7.4.9.1 ListIterator next ()

78 © Ecma International 2019

The Listlterator next method is a standard built-in function object (clause 17) that performs the following steps:

Let O be the this value.

Assert: Type(O) is Object.

Assert: O has an [[IteratedList]] internal slot.
Let /ist be O.[[IteratedList]].

Let index be O.[[ListlteratorNextIndex]].
Let [en be the number of elements of /ist.

If index > len, then

N ok W=

a. Return CreatelterResultObject(undefined, true).
Set O.[[ListIteratorNextIndex]] to index + 1.
9. Return CreatelterResultObject(list[index], false).

®

8 Executable Code and Execution Contexts

8.1 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiers to specific variables and
functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of an
Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical Environment is
associated with some specific syntactic structure of ECMAScript code such as a FunctionDeclaration, a BlockStatement,

or a Catch clause of a TryStatement and a new Lexical Environment is created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated Lexical

Environment. It is referred to as the Lexical Environment's EnvironmentRecord.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The outer reference
of a (inner) Lexical Environment is a reference to the Lexical Environment that logically surrounds the inner Lexical
Environment. An outer Lexical Environment may, of course, have its own outer Lexical Environment. A Lexical
Environment may serve as the outer environment for multiple inner Lexical Environments. For example, if a
FunctionDeclaration contains two nested FunctionDeclarations then the Lexical Environments of each of the nested
functions will have as their outer Lexical Environment the Lexical Environment of the current evaluation of the

surrounding function.

A global environment is a Lexical Environment which does not have an outer environment. The global environment's
outer environment reference is null. A global environment's EnvironmentRecord may be prepopulated with identifier
bindings and includes an associated global object whose properties provide some of the global environment's identifier
bindings. As ECMAScript code is executed, additional properties may be added to the global object and the initial
properties may be modified.

A module environment is a Lexical Environment that contains the bindings for the top level declarations of a Module. It
also contains the bindings that are explicitly imported by the Module. The outer environment of a module environment is

a global environment.

A function environment is a Lexical Environment that corresponds to the invocation of an ECMAScript function object.
A function environment may establish a new this binding. A function environment also captures the state necessary to

support super method invocations.

© Ecma International 2019 79

Lexical Environments and Environment Record values are purely specification mechanisms and need not correspond to
any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript program to directly access

or manipulate such values.

8.1.1 Environment Records

There are two primary kinds of Environment Record values used in this specification: declarative Environment Records
and object Environment Records. Declarative Environment Records are used to define the effect of ECMAScript
language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch clauses that directly
associate identifier bindings with ECMAScript language values. Object Environment Records are used to define the
effect of ECMAScript elements such as WithStatement that associate identifier bindings with the properties of some
object. Global Environment Records and function Environment Records are specializations that are used for specifically

for Script global declarations and for top-level declarations within functions.

For specification purposes Environment Record values are values of the Record specification type and can be thought of
as existing in a simple object-oriented hierarchy where Environment Record is an abstract class with three concrete
subclasses, declarative Environment Record, object Environment Record, and global Environment Record. Function
Environment Records and module Environment Records are subclasses of declarative Environment Record. The abstract
class includes the abstract specification methods defined in Table 14. These abstract methods have distinct concrete
algorithms for each of the concrete subclasses.

Table 14: Abstract Methods of Environment Records

Method Purpose

HasBinding(N) Determine if an Environment Record has a binding for the String value N. Return true if

it does and false if it does not.

CreateMutableBinding(N, Create a new but uninitialized mutable binding in an Environment Record. The String
D) value N is the text of the bound name. If the Boolean argument D is true the binding

may be subsequently deleted.

CreateImmutableBinding(N, Create a new but uninitialized immutable binding in an Environment Record. The String
S) value N is the text of the bound name. If S is true then attempts to set it after it has been
initialized will always throw an exception, regardless of the strict mode setting of

operations that reference that binding.

InitializeBinding(N, V) Set the value of an already existing but uninitialized binding in an Environment Record.
The String value N is the text of the bound name. V is the value for the binding and is a
value of any ECMAScript language type.

SetMutableBinding(N, V, Set the value of an already existing mutable binding in an Environment Record. The

S) String value N is the text of the bound name. V is the value for the binding and may be a
value of any ECMAScript language type. S is a Boolean flag. If S is true and the
binding cannot be set throw a TypeError exception.

GetBindingValue(N, S) Returns the value of an already existing binding from an Environment Record. The
String value N is the text of the bound name. S is used to identify references originating
in strict mode code or that otherwise require strict mode reference semantics. If S is true
and the binding does not exist throw a ReferenceError exception. If the binding exists

but is uninitialized a ReferenceError is thrown, regardless of the value of S.

80 © Ecma International 2019

DeleteBinding(N) Delete a binding from an Environment Record. The String value N is the text of the
bound name. If a binding for IV exists, remove the binding and return true. If the
binding exists but cannot be removed return false. If the binding does not exist return

true.

HasThisBinding() Determine if an Environment Record establishes a this binding. Return true if it does

and false if it does not.

HasSuperBinding() Determine if an Environment Record establishes a super method binding. Return true

if it does and false if it does not.

WithBaseObject() If this Environment Record is associated with a wi th statement, return the with object.

Otherwise, return undefined.

8.1.1.1 Declarative Environment Records

Each declarative Environment Record is associated with an ECMAScript program scope containing variable, constant,
let, class, module, import, and/or function declarations. A declarative Environment Record binds the set of identifiers

defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for declarative Environment Records is defined by the following

algorithms.

8.1.1.1.1 HasBinding (N)

The concrete Environment Record method HasBinding for declarative Environment Records simply determines if the

argument identifier is one of the identifiers bound by the record:

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. If envRec has a binding for the name that is the value of N, return true.

3. Return false.

8.1.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative Environment Records creates a new
mutable binding for the name N that is uninitialized. A binding must not already exist in this Environment Record for N.

If Boolean argument D has the value true the new binding is marked as being subject to deletion.

1. Let envRec be the declarative Environment Record for which the method was invoked.

2. Assert: envRec does not already have a binding for NN.

3. Create a mutable binding in envRec for N and record that it is uninitialized. If D is true, record that the newly
created binding may be deleted by a subsequent DeleteBinding call.

4. Return NormalCompletion(empty).

8.1.1.1.3 CreatelmmutableBinding (N, S)

The concrete Environment Record method CreatelmmutableBinding for declarative Environment Records creates a new
immutable binding for the name N that is uninitialized. A binding must not already exist in this Environment Record for

N. If the Boolean argument S has the value true the new binding is marked as a strict binding.

1. Let envRec be the declarative Environment Record for which the method was invoked.

© Ecma International 2019 81

2. Assert: envRec does not already have a binding for V.

3. Create an immutable binding in envRec for N and record that it is uninitialized. If S is true, record that the newly
created binding is a strict binding.

4. Return NormalCompletion(empty).

8.1.1.1.4 InitializeBinding (N, V')

The concrete Environment Record method InitializeBinding for declarative Environment Records is used to set the bound
value of the current binding of the identifier whose name is the value of the argument N to the value of argument V. An

uninitialized binding for N must already exist.

Let envRec be the declarative Environment Record for which the method was invoked.
Assert: envRec must have an uninitialized binding for V.

Set the bound value for N in envRec to V.

Record that the binding for N in envRec has been initialized.

i ke

Return NormalCompletion(empty).

8.1.1.1.5 SetMutableBinding (N, V, S)

The concrete Environment Record method SetMutableBinding for declarative Environment Records attempts to change
the bound value of the current binding of the identifier whose name is the value of the argument N to the value of
argument V. A binding for N normally already exists, but in rare cases it may not. If the binding is an immutable binding,

a TypeError is thrown if S is true.

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. If envRec does not have a binding for IV, then

a. If Sis true, throw a ReferenceError exception.

b. Perform envRec.CreateMutableBinding(, true).

c. Perform envRec.InitializeBinding(NN, V).

d. Return NormalCompletion(empty).
If the binding for N in envRec is a strict binding, set S to true.
If the binding for N in envRec has not yet been initialized, throw a ReferenceError exception.
Else if the binding for NV in envRec is a mutable binding, change its bound value to V.
Else,

a. Assert: This is an attempt to change the value of an immutable binding.

o Uk~ W

b. If S is true, throw a TypeError exception.
7. Return NormalCompletion(empty).

NOTE
An example of ECMAScript code that results in a missing binding at step 2 is:

function f () {eval ("var x; xXx = (delete x, 0);")}

8.1.1.1.6 GetBindingValue (N, S)

The concrete Environment Record method GetBindingValue for declarative Environment Records simply returns the
value of its bound identifier whose name is the value of the argument N. If the binding exists but is uninitialized a

ReferenceError is thrown, regardless of the value of S.

82 © Ecma International 2019

Let envRec be the declarative Environment Record for which the method was invoked.
Assert: envRec has a binding for N.

If the binding for N in envRec is an uninitialized binding, throw a ReferenceError exception.

L

Return the value currently bound to IV in envRec.

8.1.1.1.7 DeleteBinding (V)

The concrete Environment Record method DeleteBinding for declarative Environment Records can only delete bindings

that have been explicitly designated as being subject to deletion.

Let envRec be the declarative Environment Record for which the method was invoked.
Assert: envRec has a binding for the name that is the value of N.

If the binding for N in envRec cannot be deleted, return false.

Remove the binding for NV from envRec.

i e

Return true.

8.1.1.1.8 HasThisBinding ()

Regular declarative Environment Records do not provide a this binding.

1. Return false.

8.1.1.1.9 HasSuperBinding ()

Regular declarative Environment Records do not provide a super binding.

1. Return false.

8.1.1.1.10 WithBaseObject ()

Declarative Environment Records always return undefined as their WithBaseObject.

1. Return undefined.

8.1.1.2 Object Environment Records

Each object Environment Record is associated with an object called its binding object. An object Environment Record
binds the set of string identifier names that directly correspond to the property names of its binding object. Property keys
that are not strings in the form of an IdentifierName are not included in the set of bound identifiers. Both own and
inherited properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because properties
can be dynamically added and deleted from objects, the set of identifiers bound by an object Environment Record may
potentially change as a side-effect of any operation that adds or deletes properties. Any bindings that are created as a
result of such a side-effect are considered to be a mutable binding even if the Writable attribute of the corresponding
property has the value false. Immutable bindings do not exist for object Environment Records.

Object Environment Records created for with statements (13.11) can provide their binding object as an implicit this
value for use in function calls. The capability is controlled by a withEnvironment Boolean value that is associated with
each object Environment Record. By default, the value of withEnvironment is false for any object Environment Record.

The behaviour of the concrete specification methods for object Environment Records is defined by the following

algorithms.

© Ecma International 2019 83

8.1.1.2.1 HasBinding (N)

The concrete Environment Record method HasBinding for object Environment Records determines if its associated

binding object has a property whose name is the value of the argument N:

Let envRec be the object Environment Record for which the method was invoked.
Let bindings be the binding object for envRec.

Let foundBinding be ? HasProperty(bindings, N).

If foundBinding is false, return false.

If the withEnvironment flag of envRec is false, return true.

Let unscopables be ? Get(bindings, @ @unscopables).

N s wN e

If Type(unscopables) is Object, then
a. Let blocked be ToBoolean(? Get(unscopables, N)).
b. If blocked is true, return false.

8. Return true.

8.1.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object Environment Records creates in an
Environment Record's associated binding object a property whose name is the String value and initializes it to the value
undefined. If Boolean argument D has the value true the new property's [[Configurable]] attribute is set to true;
otherwise it is set to false.

1. Let envRec be the object Environment Record for which the method was invoked.

2. Let bindings be the binding object for envRec.

3. Return ? DefinePropertyOrThrow(bindings, N, PropertyDescriptor { [[Value]]: undefined, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: D }).

NOTE
Normally envRec will not have a binding for N but if it does, the semantics of DefinePropertyOrThrow may result in an

existing binding being replaced or shadowed or cause an abrupt completion to be returned.

8.1.1.2.3 CreateImmutableBinding (N, S)

The concrete Environment Record method CreatelmmutableBinding is never used within this specification in association

with object Environment Records.

8.1.1.2.4 InitializeBinding (N, V')

The concrete Environment Record method InitializeBinding for object Environment Records is used to set the bound
value of the current binding of the identifier whose name is the value of the argument N to the value of argument V. An
uninitialized binding for N must already exist.

Let envRec be the object Environment Record for which the method was invoked.
Assert: envRec must have an uninitialized binding for N.

Record that the binding for N in envRec has been initialized.

Return ? envRec.SetMutableBinding(N, V, false).

A

NOTE

In this specification, all uses of CreateMutableBinding for object Environment Records are immediately followed by a

84 © Ecma International 2019

call to InitializeBinding for the same name. Hence, implementations do not need to explicitly track the initialization state

of individual object Environment Record bindings.

8.1.1.2.5 SetMutableBinding (N, V, S)

The concrete Environment Record method SetMutableBinding for object Environment Records attempts to set the value
of the Environment Record's associated binding object's property whose name is the value of the argument N to the value
of argument V. A property named N normally already exists but if it does not or is not currently writable, error handling

is determined by the value of the Boolean argument S.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return ? Set(bindings, N, V, S).

8.1.1.2.6 GetBindingValue (N, S)

The concrete Environment Record method GetBindingValue for object Environment Records returns the value of its
associated binding object's property whose name is the String value of the argument identifier N. The property should
already exist but if it does not the result depends upon the value of the S argument:

Let envRec be the object Environment Record for which the method was invoked.
Let bindings be the binding object for envRec.
Let value be ? HasProperty(bindings, N).

M

If value is false, then
a. If S is false, return the value undefined; otherwise throw a ReferenceError exception.
Return ? Get(bindings, N).

“u

8.1.1.2.7 DeleteBinding (V)

The concrete Environment Record method DeleteBinding for object Environment Records can only delete bindings that

correspond to properties of the environment object whose [[Configurable]] attribute have the value true.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return ? bindings.[[Delete]](N).

8.1.1.2.8 HasThisBinding ()

Regular object Environment Records do not provide a this binding.

1. Return false.

8.1.1.2.9 HasSuperBinding ()

Regular object Environment Records do not provide a super binding.

1. Return false.

8.1.1.2.10 WithBaseObject ()

Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag is true.

© Ecma International 2019 85

1. Let envRec be the object Environment Record for which the method was invoked.
2. If the withEnvironment flag of envRec is true, return the binding object for envRec.

3. Otherwise, return undefined.

8.1.1.3 Function Environment Records

A function Environment Record is a declarative Environment Record that is used to represent the top-level scope of a
function and, if the function is not an ArrowFunction, provides a this binding. If a function is not an ArrowFunction
function and references super, its function Environment Record also contains the state that is used to perform super

method invocations from within the function.
Function Environment Records have the additional state fields listed in Table 15.

Table 15: Additional Fields of Function Environment Records

Field Name Value Meaning
[[ThisValue]] Any This is the this value used for this invocation of the function.
[[ThisBindingStatus]] "lexical" | If the value is "lexical", this is an ArrowFunction and does not
"initialized" | have alocal this value.
"uninitialized"
[[FunctionObject]] Object The function object whose invocation caused this Environment Record

to be created.

[[HomeObject]] Object | undefined If the associated function has super property accesses and is not an
ArrowFunction, [[HomeObject]] is the object that the function is
bound to as a method. The default value for [[HomeObject]] is

undefined.

[[NewTarget]] Object | undefined If this Environment Record was created by the [[Construct]] internal
method, [[NewTarget]] is the value of the [[Construct]] newTarget

parameter. Otherwise, its value is undefined.

Function Environment Records support all of the declarative Environment Record methods listed in Table 14 and share
the same specifications for all of those methods except for HasThisBinding and HasSuperBinding. In addition, function
Environment Records support the methods listed in Table 16:

Table 16: Additional Methods of Function Environment Records

Method Purpose
BindThisValue(V) Set the [[ThisValue]] and record that it has been initialized.

GetThisBinding() Return the value of this Environment Record's this binding. Throws a ReferenceError if the

this binding has not been initialized.

GetSuperBase() Return the object that is the base for super property accesses bound in this Environment Record.
The object is derived from this Environment Record's [[HomeObject]] field. The value undefined

indicates that super property accesses will produce runtime errors.

86 © Ecma International 2019

The behaviour of the additional concrete specification methods for function Environment Records is defined by the

following algorithms:

8.1.1.3.1 BindThisValue (V)

Let envRec be the function Environment Record for which the method was invoked.

Assert: envRec.[[ThisBindingStatus]] is not "lexical".

If envRec.[[ThisBindingStatus]] is "initialized", throw a ReferenceError exception.
Set envRec.[[ThisValue]] to V.

Set envRec.[[ThisBindingStatus]] to "initialized".

Return V.

SR L T o

8.1.1.3.2 HasThisBinding ()

1. Let envRec be the function Environment Record for which the method was invoked.
2. If envRec.[[ThisBindingStatus]] is "lexical", return false; otherwise, return true.

8.1.1.3.3 HasSuperBinding ()

1. Let envRec be the function Environment Record for which the method was invoked.
2. If envRec.[[ThisBindingStatus]] is "lexical", return false.

3. If envRec.[[HomeObject]] has the value undefined, return false; otherwise, return true.

8.1.1.3.4 GetThisBinding ()

1. Let envRec be the function Environment Record for which the method was invoked.

2. Assert: envRec.[[ThisBindingStatus]] is not "lexical".

3. If envRec.[[ThisBindingStatus]] is "uninitialized", throw a ReferenceError exception.
4. Return envRec.[[ThisValue]].

8.1.1.3.5 GetSuperBase ()

Let envRec be the function Environment Record for which the method was invoked.
Let home be envRec.[[HomeObject]].

If home has the value undefined, return undefined.

Assert: Type(home) is Object.

Return ? home.[[GetPrototypeOf]]().

ik =

8.1.1.4 Global Environment Records

A global Environment Record is used to represent the outer most scope that is shared by all of the ECMAScript Script
elements that are processed in a common realm. A global Environment Record provides the bindings for built-in globals
(clause 18), properties of the global object, and for all top-level declarations (13.2.8, 13.2.10) that occur within a Script.

A global Environment Record is logically a single record but it is specified as a composite encapsulating an object
Environment Record and a declarative Environment Record. The object Environment Record has as its base object the
global object of the associated Realm Record. This global object is the value returned by the global Environment
Record's GetThisBinding concrete method. The object Environment Record component of a global Environment Record
contains the bindings for all built-in globals (clause 18) and all bindings introduced by a FunctionDeclaration,

GeneratorDeclaration, AsyncFunctionDeclaration, AsyncGeneratorDeclaration, or VariableStatement contained in

© Ecma International 2019 87

global code. The bindings for all other ECMAScript declarations in global code are contained in the declarative
Environment Record component of the global Environment Record.

Properties may be created directly on a global object. Hence, the object Environment Record component of a global
Environment Record may contain both bindings created explicitly by FunctionDeclaration, GeneratorDeclaration,
AsyncFunctionDeclaration, AsyncGeneratorDeclaration, or VariableDeclaration declarations and bindings created
implicitly as properties of the global object. In order to identify which bindings were explicitly created using
declarations, a global Environment Record maintains a list of the names bound using its CreateGlobalVarBinding and

CreateGlobalFunctionBinding concrete methods.
Global Environment Records have the additional fields listed in Table 17 and the additional methods listed in Table 18.

Table 17: Additional Fields of Global Environment Records

Field Name Value Meaning

[[ObjectRecord]] Object Binding object is the global object. It contains global built-in bindings as well as
Environment FunctionDeclaration, GeneratorDeclaration, AsyncFunctionDeclaration,
Record AsyncGeneratorDeclaration, and VariableDeclaration bindings in global code
for the associated realm.

[[GlobalThisValue]] Object The value returned by this in global scope. Hosts may provide any
ECMAScript Object value.

[[DeclarativeRecord]] Declarative Contains bindings for all declarations in global code for the associated realm
Environment code except for FunctionDeclaration, GeneratorDeclaration,
Record AsyncFunctionDeclaration, AsyncGeneratorDeclaration, and

VariableDeclaration bindings.

[[VarNames]] List of The string names bound by FunctionDeclaration, GeneratorDeclaration,
String AsyncFunctionDeclaration, AsyncGeneratorDeclaration, and

VariableDeclaration declarations in global code for the associated realm.

Table 18: Additional Methods of Global Environment Records

Method Purpose
GetThisBinding() Return the value of this Environment Record's this binding.
HasVarDeclaration (N) Determines if the argument identifier has a binding in this Environment Record that

was created using a VariableDeclaration, FunctionDeclaration,
GeneratorDeclaration, AsyncFunctionDeclaration, or AsyncGeneratorDeclaration.

HasLexicalDeclaration (N) Determines if the argument identifier has a binding in this Environment Record that
was created using a lexical declaration such as a LexicalDeclaration or a
ClassDeclaration.

HasRestrictedGlobalProperty (N) Determines if the argument is the name of a global object property that may not be
shadowed by a global lexical binding.

CanDeclareGlobalVar (N) Determines if a corresponding CreateGlobalVarBinding call would succeed if called

for the same argument N.

88 © Ecma International 2019

CanDeclareGlobalFunction (N) Determines if a corresponding CreateGlobalFunctionBinding call would succeed if

called for the same argument N.

CreateGlobalVarBinding(N, D) Used to create and initialize to undefined a global var binding in the
[[ObjectRecord]] component of a global Environment Record. The binding will be
a mutable binding. The corresponding global object property will have attribute
values appropriate for a var. The String value N is the bound name. If D is true
the binding may be deleted. Logically equivalent to CreateMutableBinding
followed by a SetMutableBinding but it allows var declarations to receive special

treatment.

CreateGlobalFunctionBinding(N, Create and initialize a global function binding in the [[ObjectRecord]]

V, D) component of a global Environment Record. The binding will be a mutable binding.
The corresponding global object property will have attribute values appropriate for
a function. The String value N is the bound name. V is the initialization value.
If the Boolean argument D is true the binding may be deleted. Logically equivalent
to CreateMutableBinding followed by a SetMutableBinding but it allows function
declarations to receive special treatment.

The behaviour of the concrete specification methods for global Environment Records is defined by the following

algorithms.

8.1.1.4.1 HasBinding (N)

The concrete Environment Record method HasBinding for global Environment Records simply determines if the

argument identifier is one of the identifiers bound by the record:

Let envRec be the global Environment Record for which the method was invoked.
Let DclRec be envRec.[[DeclarativeRecord]].

If DclRec.HasBinding(V) is true, return true.

Let ObjRec be envRec.[[ObjectRecord]].

Return ? ObjRec.HasBinding(IV).

SRS e

8.1.1.4.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for global Environment Records creates a new mutable
binding for the name N that is uninitialized. The binding is created in the associated DeclarativeRecord. A binding for N
must not already exist in the DeclarativeRecord. If Boolean argument D has the value true the new binding is marked as

being subject to deletion.

Let envRec be the global Environment Record for which the method was invoked.
Let DclRec be envRec.[[DeclarativeRecord]].

If DclRec.HasBinding(NV) is true, throw a TypeError exception.

Return DclRec.CreateMutableBinding(lV, D).

ML bh e

8.1.1.4.3 CreatelmmutableBinding (N, S)

The concrete Environment Record method CreatelImmutableBinding for global Environment Records creates a new

immutable binding for the name N that is uninitialized. A binding must not already exist in this Environment Record for

© Ecma International 2019 89

N. If the Boolean argument S has the value true the new binding is marked as a strict binding.

Let envRec be the global Environment Record for which the method was invoked.
Let DclRec be envRec.[[DeclarativeRecord]].

If DclRec.HasBinding(V) is true, throw a TypeError exception.

Return DclRec.CreatelmmutableBinding(N, S).

A w =

8.1.1.4.4 InitializeBinding (N, V')

The concrete Environment Record method InitializeBinding for global Environment Records is used to set the bound
value of the current binding of the identifier whose name is the value of the argument N to the value of argument V. An

uninitialized binding for N must already exist.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(NN) is true, then
a. Return DclRec.InitializeBinding(l, V).
4. Assert: If the binding exists, it must be in the object Environment Record.
5. Let ObjRec be envRec.[[ObjectRecord]].
6. Return ? ObjRec.InitializeBinding(V, V).

8.1.1.4.5 SetMutableBinding (N, V, S)

The concrete Environment Record method SetMutableBinding for global Environment Records attempts to change the
bound value of the current binding of the identifier whose name is the value of the argument N to the value of argument
V. If the binding is an immutable binding, a TypeError is thrown if S is true. A property named N normally already
exists but if it does not or is not currently writable, error handling is determined by the value of the Boolean argument S.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(NN) is true, then
a. Return DclRec.SetMutableBinding(N, V, S).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ? ObjRec.SetMutableBinding(lN, V, S).

8.1.1.4.6 GetBindingValue (N, S)

The concrete Environment Record method GetBindingValue for global Environment Records returns the value of its
bound identifier whose name is the value of the argument V. If the binding is an uninitialized binding throw a
ReferenceError exception. A property named N normally already exists but if it does not or is not currently writable,
error handling is determined by the value of the Boolean argument S.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(NN) is true, then
a. Return DclRec.GetBindingValue(N, S).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ? ObjRec.GetBindingValue(lV, S).

8.1.1.4.7 DeleteBinding (V)

90 © Ecma International 2019

The concrete Environment Record method DeleteBinding for global Environment Records can only delete bindings that

have been explicitly designated as being subject to deletion.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then
a. Return DclRec.DeleteBinding(IV).
Let ObjRec be envRec.[[ObjectRecord]].
Let globalObject be the binding object for ObjRec.
Let existingProp be ? HasOwnProperty(globalObject, N).

N oA

If existingProp is true, then
a. Let status be ? ObjRec.DeleteBinding(V).
b. If status is true, then
i. Let varNames be envRec.[[VarNames]].
ii. If N is an element of varNames, remove that element from the varNames.
c. Return status.

8. Return true.

8.1.1.4.8 HasThisBinding ()

1. Return true.

8.1.1.4.9 HasSuperBinding ()

1. Return false.

8.1.1.4.10 WithBaseObject ()

Global Environment Records always return undefined as their WithBaseObject.

1. Return undefined.

8.1.1.4.11 GetThisBinding ()

1. Let envRec be the global Environment Record for which the method was invoked.
2. Return envRec.[[GlobalThisValuel]].

8.1.1.4.12 HasVarDeclaration (V)

The concrete Environment Record method HasVarDeclaration for global Environment Records determines if the
argument identifier has a binding in this record that was created using a VariableStatement or a FunctionDeclaration:

Let envRec be the global Environment Record for which the method was invoked.
Let varDeclaredNames be envRec.[[VarNames]].

If varDeclaredNames contains N, return true.

A

Return false.

8.1.1.4.13 HasLexicalDeclaration (N)

The concrete Environment Record method HasLexicalDeclaration for global Environment Records determines if the

argument identifier has a binding in this record that was created using a lexical declaration such as a LexicalDeclaration

© Ecma International 2019 91

or a ClassDeclaration:

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. Return DclRec.HasBinding(IV).

8.1.1.4.14 HasRestrictedGlobalProperty (V)

The concrete Environment Record method HasRestrictedGlobalProperty for global Environment Records determines if
the argument identifier is the name of a property of the global object that must not be shadowed by a global lexical

binding:

Let envRec be the global Environment Record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding object for ObjRec.

Let existingProp be ? globalObject.[[GetOwnProperty]](IV).

If existingProp is undefined, return false.

If existingProp.[[Configurable]] is true, return false.

N o s wh e

Return true.

NOTE
Properties may exist upon a global object that were directly created rather than being declared using a var or function
declaration. A global lexical binding may not be created that has the same name as a non-configurable property of the

global object. The global property undefined is an example of such a property.

8.1.1.4.15 CanDeclareGlobalVar (N)

The concrete Environment Record method CanDeclareGlobalVar for global Environment Records determines if a
corresponding CreateGlobalVarBinding call would succeed if called for the same argument N. Redundant var

declarations and var declarations for pre-existing global object properties are allowed.

Let envRec be the global Environment Record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding object for ObjRec.

Let hasProperty be ? HasOwnProperty(globalObject, N).

If hasProperty is true, return true.

Return ? [sExtensible(globalObject).

S T A e

8.1.1.4.16 CanDeclareGlobalFunction (V)

The concrete Environment Record method CanDeclareGlobalFunction for global Environment Records determines if a
corresponding CreateGlobalFunctionBinding call would succeed if called for the same argument NV.

Let envRec be the global Environment Record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding object for ObjRec.

Let existingProp be ? globalObject.[[GetOwnProperty]](V).

If existingProp is undefined, return ? IsExtensible(globalObject).

If existingProp.[[Configurable]] is true, return true.

Nk W=

If IsDataDescriptor(existingProp) is true and existingProp has attribute values { [[Writable]]: true, [[Enumerable]]:

92 © Ecma International 2019

true }, return true.

8. Return false.

8.1.1.4.17 CreateGlobalVarBinding (N, D)

The concrete Environment Record method CreateGlobalVarBinding for global Environment Records creates and
initializes a mutable binding in the associated object Environment Record and records the bound name in the associated

[[VarNames]] List. If a binding already exists, it is reused and assumed to be initialized.

Let envRec be the global Environment Record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].
Let globalObject be the binding object for ObjRec.
Let hasProperty be ? HasOwnProperty(globalObject, N).
Let extensible be ? IsExtensible(globalObject).
If hasProperty is false and extensible is true, then
a. Perform ? ObjRec.CreateMutableBinding(N, D).
b. Perform ? ObjRec.InitializeBinding(V, undefined).

ok W=

7. Let varDeclaredNames be envRec.[[VarNames]].
8. If varDeclaredNames does not contain N, then

a. Append N to varDeclaredNames.
9. Return NormalCompletion(empty).

8.1.1.4.18 CreateGlobalFunctionBinding (N, V, D)

The concrete Environment Record method CreateGlobalFunctionBinding for global Environment Records creates and
initializes a mutable binding in the associated object Environment Record and records the bound name in the associated

[[VarNames]] List. If a binding already exists, it is replaced.

Let envRec be the global Environment Record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].
Let globalObject be the binding object for ObjRec.
Let existingProp be ? globalObject.[[GetOwnProperty]]J(IV).
If existingProp is undefined or existingProp.[[Configurable]] is true, then
a. Let desc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
D }.
6. FElse,
a. Let desc be the PropertyDescriptor { [[Value]]: V }.

ik =

7. Perform ? DefinePropertyOrThrow(globalObject, N, desc).
8. Record that the binding for NV in ObjRec has been initialized.
9. Perform ? Set(globalObject, N, V, false).
10. Let varDeclaredNames be envRec.[[VarNames]].
11. If varDeclaredNames does not contain NN, then
a. Append N to varDeclaredNames.
12. Return NormalCompletion(empty).

NOTE
Global function declarations are always represented as own properties of the global object. If possible, an existing own
property is reconfigured to have a standard set of attribute values. Steps 8-9 are equivalent to what calling the
InitializeBinding concrete method would do and if globalObject is a Proxy will produce the same sequence of Proxy trap

calls.

© Ecma International 2019 93

8.1.1.5 Module Environment Records

A module Environment Record is a declarative Environment Record that is used to represent the outer scope of an
ECMAScript Module. In additional to normal mutable and immutable bindings, module Environment Records also
provide immutable import bindings which are bindings that provide indirect access to a target binding that exists in

another Environment Record.

Module Environment Records support all of the declarative Environment Record methods listed in Table 14 and share
the same specifications for all of those methods except for GetBindingValue, DeleteBinding, HasThisBinding and

GetThisBinding. In addition, module Environment Records support the methods listed in Table 19:

Table 19: Additional Methods of Module Environment Records
Method Purpose
CreatelmportBinding(N, Create an immutable indirect binding in a module Environment Record. The String value V

M, N2) is the text of the bound name. M is a Module Record, and N2 is a binding that exists in M's

module Environment Record.

GetThisBinding() Return the value of this Environment Record's this binding.

The behaviour of the additional concrete specification methods for module Environment Records are defined by the

following algorithms:

8.1.1.5.1 GetBindingValue (N, S)

The concrete Environment Record method GetBindingValue for module Environment Records returns the value of its
bound identifier whose name is the value of the argument N. However, if the binding is an indirect binding the value of

the target binding is returned. If the binding exists but is uninitialized a ReferenceError is thrown.

Assert: S is true.
Let envRec be the module Environment Record for which the method was invoked.

Assert: envRec has a binding for N.

E

If the binding for N is an indirect binding, then
a. Let M and N2 be the indirection values provided when this binding for N was created.
b. Let targetEnv be M.[[Environment]].
c. If targetEnv is undefined, throw a ReferenceError exception.
d. Let targetER be targetEnv's EnvironmentRecord.
e. Return ? targetER.GetBindingValue(lV2, true).
. If the binding for N in envRec is an uninitialized binding, throw a ReferenceError exception.

o ul

Return the value currently bound to IV in envRec.

NOTE

S will always be true because a Module is always strict mode code.

8.1.1.5.2 DeleteBinding (V)

The concrete Environment Record method DeleteBinding for module Environment Records refuses to delete bindings.

94 © Ecma International 2019

1. Assert: This method is never invoked. See 12.5.3.1.

NOTE
Module Environment Records are only used within strict code and an early error rule prevents the delete operator, in

strict code, from being applied to a Reference that would resolve to a module Environment Record binding. See 12.5.3.1.

8.1.1.5.3 HasThisBinding ()

Module Environment Records provide a this binding.

1. Return true.

8.1.1.5.4 GetThisBinding ()

1. Return undefined.

8.1.1.5.5 CreateImportBinding (N, M, N2)

The concrete Environment Record method CreateImportBinding for module Environment Records creates a new
initialized immutable indirect binding for the name N. A binding must not already exist in this Environment Record for
N. M is a Module Record, and N2 is the name of a binding that exists in M's module Environment Record. Accesses to
the value of the new binding will indirectly access the bound value of the target binding.

Let envRec be the module Environment Record for which the method was invoked.
Assert: envRec does not already have a binding for V.

Assert: M is a Module Record.

Assert: When M.[[Environment]] is instantiated it will have a direct binding for N2.

ik =

Create an immutable indirect binding in envRec for N that references M and N2 as its target binding and record that
the binding is initialized.
6. Return NormalCompletion(empty).

8.1.2 Lexical Environment Operations

The following abstract operations are used in this specification to operate upon lexical environments:

8.1.2.1 GetlIdentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name, and a Boolean
flag strict. The value of lex may be null. When called, the following steps are performed:

1. If lex is the value null, then
a. Return a value of type Reference whose base value component is undefined, whose referenced name
component is name, and whose strict reference flag is strict.
2. Let envRec be lex's EnvironmentRecord.
3. Let exists be ? envRec.HasBinding(name).
4. If exists is true, then
a. Return a value of type Reference whose base value component is envRec, whose referenced name component
is name, and whose strict reference flag is strict.
5. Else,

© Ecma International 2019 95

a. Let outer be the value of lex's outer environment reference.

b. Return ? GetldentifierReference(outer, name, strict).

8.1.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with a Lexical Environment as argument E the

following steps are performed:

ik

Let env be a new Lexical Environment.

Let envRec be a new declarative Environment Record containing no bindings.
Set env's EnvironmentRecord to envRec.

Set the outer lexical environment reference of env to E.

Return env.

8.1.2.3 NewObjectEnvironment (O, E)

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical Environment E as

arguments, the following steps are performed:

ik =

Let env be a new Lexical Environment.

Let envRec be a new object Environment Record containing O as the binding object.
Set env's EnvironmentRecord to envRec.

Set the outer lexical environment reference of env to E.

Return env.

8.1.2.4 NewFunctionEnvironment (F, newTarget)

When the abstract operation NewFunctionEnvironment is called with arguments F and newTarget the following steps are

performed:

© Nk W=

e N
w N PO

Assert: F' is an ECMAScript function.

Assert: Type(newTarget) is Undefined or Object.

Let env be a new Lexical Environment.

Let envRec be a new function Environment Record containing no bindings.

Set envRec.[[FunctionObject]] to F.

If F.[[ThisMode]] is lexical, set envRec.[[ThisBindingStatus]] to "lexical".
Else, set envRec.[[ThisBindingStatus]] to "uninitialized".

Let home be F.[[HomeObject]].

Set envRec.[[HomeObject]] to home.

Set envRec.[[NewTarget]] to newTarget.

. Set env's EnvironmentRecord to envRec.

. Set the outer lexical environment reference of env to F.[[Environment]].

Return env.

8.1.2.5 NewGlobalEnvironment (G, thisValue)

When the abstract operation NewGlobalEnvironment is called with arguments G and thisValue, the following steps are

performed:

1.

Let env be a new Lexical Environment.

96 © Ecma International 2019

Let objRec be a new object Environment Record containing G as the binding object.
Let dclRec be a new declarative Environment Record containing no bindings.

Let globalRec be a new global Environment Record.

Set globalRec.[[ObjectRecord]] to objRec.

Set globalRec.[[GlobalThisValue]] to thisValue.

Set globalRec.[[DeclarativeRecord]] to dclRec.

Set globalRec.[[VarNames]] to a new empty List.

L Nk N

Set env's EnvironmentRecord to globalRec.

[
e

Set the outer lexical environment reference of env to null.

—_
—_

. Return env.

8.1.2.6 NewModuleEnvironment (E)

When the abstract operation NewModuleEnvironment is called with a Lexical Environment argument E the following

steps are performed:

Let env be a new Lexical Environment.
Let envRec be a new module Environment Record containing no bindings.
Set env's EnvironmentRecord to envRec.

Set the outer lexical environment reference of env to E.

S e

Return env.

8.2 Realms

Before it is evaluated, all ECMAScript code must be associated with a realm. Conceptually, a realm consists of a set of

intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that is loaded within the scope of that

global environment, and other associated state and resources.
A realm is represented in this specification as a Realm Record with the fields specified in Table 20:
Table 20: Realm Record Fields
Field Name Value Meaning

[[Intrinsics]] Record whose field The intrinsic values used by code associated with this realm
names are intrinsic
keys and whose
values are objects

[[GlobalObject]] Object The global object for this realm
[[GlobalEnv]] Lexical The global environment for this realm
Environment

© Ecma International 2019

97

[[TemplateMap]] A List of Record {

[[Site]]: Parse
Node, [[Array]]:
Object }.

[[HostDefined]] = Any, default value

is undefined.

8.2.1 CreateRealm ()

Template objects are canonicalized separately for each realm using its Realm
Record's [[TemplateMap]]. Each [[Site]] value is a Parse Node that is a
TemplateLiteral. The associated [[Array]] value is the corresponding

template object that is passed to a tag function.

NOTE
Once a Parse Node becomes unreachable, the corresponding [[Array]] is also
unreachable, and it would be unobservable if an implementation removed the

pair from the [[TemplateMap]] list.

Field reserved for use by host environments that need to associate additional

information with a Realm Record.

The abstract operation CreateRealm with no arguments performs the following steps:

SR e

Let realmRec be a new Realm Record.

Perform Createlntrinsics(realmRec).

Set realmRec.[[GlobalObject]] to undefined.
Set realmRec.[[GlobalEnv]] to undefined.
Set realmRec.[[TemplateMap]] to a new empty List.

Return realmRec.

8.2.2 Createlntrinsics (realmRec)

The abstract operation Createlntrinsics with argument realmRec performs the following steps:

L XNk W

T
w N PO

Let intrinsics be a new Record.

Set realmRec.[[Intrinsics]] to intrinsics.

Let objProto be ObjectCreate(null).

Set intrinsics.[[%ObjectPrototype%]] to objProto.

Let throwerSteps be the algorithm steps specified in 9.2.9.1 for the %ThrowTypeError% function.

Let thrower be CreateBuiltinFunction(throwerSteps, « », realmRec, null).

Set intrinsics.[[%ThrowTypeError%]] to thrower.

Let noSteps be an empty sequence of algorithm steps.

Let funcProto be CreateBuiltinFunction(noSteps, « », realmRec, objProto).

Set intrinsics.[[%FunctionPrototype%]] to funcProto.
Call thrower.[[SetPrototypeOf]](funcProto).

. Perform AddRestrictedFunctionProperties(funcProto, realmRec).

Set fields of intrinsics with the values listed in Table 7 that have not already been handled above. The field names

are the names listed in column one of the table. The value of each field is a new object value fully and recursively

populated with property values as defined by the specification of each object in clauses 18-26. All object property

values are newly created object values. All values that are built-in function objects are created by performing

CreateBuiltinFunction(<steps>, <slots>, realmRec, <prototype>) where <steps> is the definition of that function

provided by this specification, <slots> is a list of the names, if any, of the function's specified internal slots, and

<prototype> is the specified value of the function's [[Prototype]] internal slot. The creation of the intrinsics and

98

© Ecma International 2019

their properties must be ordered to avoid any dependencies upon objects that have not yet been created.
14. Return intrinsics.

8.2.3 SetRealmGlobalObject (realmRec, globalObj, thisValue)

The abstract operation SetRealmGlobalObject with arguments realmRec, globalObj, and thisValue performs the
following steps:

1. If globalObj is undefined, then

a. Let intrinsics be realmRec.[[Intrinsics]].

b. Set globalObj to ObjectCreate(intrinsics.[[%ObjectPrototype%]]).
Assert: Type(globalObj) is Object.
If thisValue is undefined, set thisValue to globalObj.
Set realmRec.[[GlobalObject]] to globalObj.
Let newGlobalEnv be NewGlobalEnvironment(globalObj, thisValue).
Set realmRec.[[GlobalEnv]] to newGlobalEnv.

Return realmRec.

N ok W

8.2.4 SetDefaultGlobalBindings (realmRec)

The abstract operation SetDefaultGlobalBindings with argument realmRec performs the following steps:

1. Let global be realmRec.[[GlobalObject]].
2. For each property of the Global Object specified in clause 18, do

a. Let name be the String value of the property name.

b. Let desc be the fully populated data property descriptor for the property containing the specified attributes for
the property. For properties listed in 18.2, 18.3, or 18.4 the value of the [[Value]] attribute is the
corresponding intrinsic object from realmRec.

¢. Perform ? DefinePropertyOrThrow(global, name, desc).

3. Return global.

8.3 Execution Contexts

An execution context is a specification device that is used to track the runtime evaluation of code by an ECMAScript
implementation. At any point in time, there is at most one execution context per agent that is actually executing code.
This is known as the agent's running execution context. All references to the running execution context in this

specification denote the running execution context of the surrounding agent.

The execution context stack is used to track execution contexts. The running execution context is always the top element
of this stack. A new execution context is created whenever control is transferred from the executable code associated
with the currently running execution context to executable code that is not associated with that execution context. The

newly created execution context is pushed onto the stack and becomes the running execution context.

An execution context contains whatever implementation specific state is necessary to track the execution progress of its

associated code. Each execution context has at least the state components listed in Table 21.

Table 21: State Components for All Execution Contexts

Component Purpose

© Ecma International 2019 99

code evaluation Any state needed to perform, suspend, and resume evaluation of the code associated with this

state execution context.

Function If this execution context is evaluating the code of a function object, then the value of this component

is that function object. If the context is evaluating the code of a Script or Module, the value is null.
Realm The Realm Record from which associated code accesses ECMAScript resources.

ScriptOrModule The Module Record or Script Record from which associated code originates. If there is no
originating script or module, as is the case for the original execution context created in

InitializeHostDefinedRealm, the value is null.

Evaluation of code by the running execution context may be suspended at various points defined within this
specification. Once the running execution context has been suspended a different execution context may become the
running execution context and commence evaluating its code. At some later time a suspended execution context may
again become the running execution context and continue evaluating its code at the point where it had previously been
suspended. Transition of the running execution context status among execution contexts usually occurs in stack-like last-
in/first-out manner. However, some ECMAScript features require non-LIFO transitions of the running execution context.

The value of the Realm component of the running execution context is also called the current Realm Record. The value
of the Function component of the running execution context is also called the active function object.

Execution contexts for ECMAScript code have the additional state components listed in Table 22.

Table 22: Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references made by code within

this execution context.

VariableEnvironment Identifies the Lexical Environment whose EnvironmentRecord holds bindings created by

VariableStatements within this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical

Environments.

Execution contexts representing the evaluation of generator objects have the additional state components listed in Table
23.

Table 23: Additional State Components for Generator Execution Contexts

Component Purpose

Generator The GeneratorObject that this execution context is evaluating.

In most situations only the running execution context (the top of the execution context stack) is directly manipulated by
algorithms within this specification. Hence when the terms “LexicalEnvironment”, and “VariableEnvironment” are used

without qualification they are in reference to those components of the running execution context.

100 © Ecma International 2019

An execution context is purely a specification mechanism and need not correspond to any particular artefact of an

ECMAScript implementation. It is impossible for ECMAScript code to directly access or observe an execution context.

8.3.1 GetActiveScriptOrModule ()

The GetActiveScriptOrModule abstract operation is used to determine the running script or module, based on the running

execution context. GetActiveScriptOrModule performs the following steps:

1. If the execution context stack is empty, return null.

2. Let ec be the topmost execution context on the execution context stack whose ScriptOrModule component is not
null.

3. If no such execution context exists, return null. Otherwise, return ec's ScriptOrModule component.

8.3.2 ResolveBinding (name [, env])

The ResolveBinding abstract operation is used to determine the binding of name passed as a String value. The optional
argument env can be used to explicitly provide the Lexical Environment that is to be searched for the binding. During
execution of ECMAScript code, ResolveBinding is performed using the following algorithm:

1. If env is not present or if env is undefined, then
a. Set env to the running execution context's LexicalEnvironment.
2. Assert: env is a Lexical Environment.
3. If the code matching the syntactic production that is being evaluated is contained in strict mode code, let strict be
true, else let strict be false.

4. Return ? GetldentifierReference(env, name, strict).

NOTE
The result of ResolveBinding is always a Reference value with its referenced name component equal to the name

argument.

8.3.3 GetThisEnvironment ()

The abstract operation GetThisEnvironment finds the Environment Record that currently supplies the binding of the

keyword this. GetThisEnvironment performs the following steps:

1. Let lex be the running execution context's LexicalEnvironment.
2. Repeat,
a. Let envRec be lex's EnvironmentRecord.
Let exists be envRec.HasThisBinding().
If exists is true, return envRec.
Let outer be the value of lex's outer environment reference.

Assert: outer is not null.

- ® AN o

Set lex to outer.

NOTE
The loop in step 2 will always terminate because the list of environments always ends with the global environment which

has a this binding.

© Ecma International 2019 101

8.3.4 ResolveThisBinding ()

The abstract operation ResolveThisBinding determines the binding of the keyword this using the LexicalEnvironment

of the running execution context. ResolveThisBinding performs the following steps:

1. Let envRec be GetThisEnvironment().
2. Return ? envRec.GetThisBinding().

8.3.5 GetNewTarget ()

The abstract operation GetNewTarget determines the NewTarget value using the LexicalEnvironment of the running

execution context. GetNewTarget performs the following steps:

1. Let envRec be GetThisEnvironment().
2. Assert: envRec has a [[NewTarget]] field.
3. Return envRec.[[NewTarget]].

8.3.6 GetGlobalObject ()

The abstract operation GetGlobalObject returns the global object used by the currently running execution context.
GetGlobalObject performs the following steps:

1. Let ctx be the running execution context.
2. Let currentRealm be ctx's Realm.
3. Return currentRealm.[[GlobalObject]].

8.4 Jobs and Job Queues

A Job is an abstract operation that initiates an ECMAScript computation when no other ECMAScript computation is

currently in progress. A Job abstract operation may be defined to accept an arbitrary set of job parameters.

Execution of a Job can be initiated only when there is no running execution context and the execution context stack is

empty. A PendingJob is a request for the future execution of a Job. A PendingJob is an internal Record whose fields are
specified in Table 24. Once execution of a Job is initiated, the Job always executes to completion. No other Job may be
initiated until the currently running Job completes. However, the currently running Job or external events may cause the

enqueuing of additional PendingJobs that may be initiated sometime after completion of the currently running Job.

Table 24: PendingJob Record Fields

Field Name Value Meaning
[[Job]] The name of a Job This is the abstract operation that is performed when execution of this
abstract operation PendingJob is initiated.
[[Arguments]] A List The List of argument values that are to be passed to [[Job]] when it is
activated.
[[Realm]] A Realm Record The Realm Record for the initial execution context when this

PendingJob is initiated.

102 © Ecma International 2019

[[ScriptOrModule]] A Script Record or The script or module for the initial execution context when this

Module Record PendingJob is initiated.
[[HostDefined]] Any, default value is Field reserved for use by host environments that need to associate
undefined. additional information with a pending Job.

A Job Queue is a FIFO queue of PendingJob records. Each Job Queue has a name and the full set of available Job
Queues are defined by an ECMAScript implementation. Every ECMAScript implementation has at least the Job Queues
defined in Table 25.

Each agent has its own set of named Job Queues. All references to a named job queue in this specification denote the
named job queue of the surrounding agent.

Table 25: Required Job Queues

Name Purpose
ScriptJobs Jobs that validate and evaluate ECMAScript Script and Module source text. See clauses 10 and 15.

PromiseJobs Jobs that are responses to the settlement of a Promise (see 25.6).

A request for the future execution of a Job is made by enqueueing, on a Job Queue, a PendingJob record that includes a
Job abstract operation name and any necessary argument values. When there is no running execution context and the
execution context stack is empty, the ECMAScript implementation removes the first PendingJob from a Job Queue and
uses the information contained in it to create an execution context and starts execution of the associated Job abstract

operation.

The PendingJob records from a single Job Queue are always initiated in FIFO order. This specification does not define
the order in which multiple Job Queues are serviced. An ECMAScript implementation may interweave the FIFO
evaluation of the PendingJob records of a Job Queue with the evaluation of the PendingJob records of one or more other
Job Queues. An implementation must define what occurs when there are no running execution context and all Job

Queues are empty.

NOTE
Typically an ECMAScript implementation will have its Job Queues pre-initialized with at least one PendingJob and one
of those Jobs will be the first to be executed. An implementation might choose to free all resources and terminate if the
current Job completes and all Job Queues are empty. Alternatively, it might choose to wait for a some implementation

specific agent or mechanism to enqueue new PendingJob requests.

The following abstract operations are used to create and manage Jobs and Job Queues:

8.4.1 EnqueueJob (queueName, job, arguments)

The EnqueueJob abstract operation requires three arguments: queueName, job, and arguments. It performs the following
steps:

1. Assert: Type(queueName) is String and its value is the name of a Job Queue recognized by this implementation.
2. Assert: job is the name of a Job.

© Ecma International 2019 103

N ok~ Ww

Assert: arguments is a List that has the same number of elements as the number of parameters required by job.
Let callerContext be the running execution context.

Let callerRealm be callerContext's Realm.

Let callerScriptOrModule be callerContext's ScriptOrModule.

Let pending be PendingJob { [[Job]]: job, [[Arguments]]: arguments, [[Realm]]: callerRealm, [[ScriptOrModule]]:
callerScriptOrModule, [[HostDefined]]: undefined }.

Perform any implementation or host environment defined processing of pending. This may include modifying the
[[HostDefined]] field or any other field of pending.

. Add pending at the back of the Job Queue named by queueName.
10.

Return NormalCompletion(empty).

8.5 InitializeHostDefinedRealm ()

The abstract operation InitializeHostDefinedRealm performs the following steps:

Nk wh e

10.
11.
12.

Let realm be CreateRealm().

Let newContext be a new execution context.

Set the Function of newContext to null.

Set the Realm of newContext to realm.

Set the ScriptOrModule of newContext to null.

Push newContext onto the execution context stack; newContext is now the running execution context.

If the host requires use of an exotic object to serve as realm's global object, let global be such an object created in
an implementation-defined manner. Otherwise, let global be undefined, indicating that an ordinary object should
be created as the global object.

If the host requires that the this binding in realm's global scope return an object other than the global object, let
thisValue be such an object created in an implementation-defined manner. Otherwise, let thisValue be undefined,
indicating that realm's global this binding should be the global object.

Perform SetRealmGlobalObject(realm, global, thisValue).

Let globalObj be ? SetDefaultGlobalBindings(realm).

Create any implementation-defined global object properties on globalObj.

Return NormalCompletion(empty).

8.6 RunJobs ()

The abstract operation RunJobs performs the following steps:

1. Perform ? InitializeHostDefinedRealm().

In an implementation-dependent manner, obtain the ECMAScript source texts (see clause 10) and any associated
host-defined values for zero or more ECMAScript scripts and/or ECMAScript modules. For each such sourceText
and hostDefined, do
a. If sourceText is the source code of a script, then
i. Perform EnqueueJob("ScriptJobs", ScriptEvaluationJob, « sourceText, hostDefined »).
b. Else sourceText is the source code of a module,
i. Perform EnqueueJob("ScriptJobs", TopLevelModuleEvaluationJob, « sourceText, hostDefined »).
Repeat,
a. Suspend the running execution context and remove it from the execution context stack.

b. Assert: The execution context stack is now empty.

104 © Ecma International 2019

I S

—

Let nextQueue be a non-empty Job Queue chosen in an implementation-defined manner. If all Job Queues are
empty, the result is implementation-defined.

Let nextPending be the PendingJob record at the front of nextQueue. Remove that record from nextQuetue.
Let newContext be a new execution context.

Set newContext's Function to null.

Set newContext's Realm to nextPending.[[Realm]].

Set newContext's ScriptOrModule to nextPending.[[ScriptOrModule]].

Push newContext onto the execution context stack; newContext is now the running execution context.

Perform any implementation or host environment defined job initialization using nextPending.

k. Let result be the result of performing the abstract operation named by nextPending.[[Job]] using the elements

of nextPending.[[Arguments]] as its arguments.
If result is an abrupt completion, perform HostReportErrors(« result.[[Value]] »).

8.7 Agents

An agent comprises a set of ECMAScript execution contexts, an execution context stack, a running execution context, a

set of named job queues, an Agent Record, and an executing thread. Except for the executing thread, the constituents of

an agent belong exclusively to that agent.

An agent's executing thread executes the jobs in the agent's job queues on the agent's execution contexts independently of

other agents, except that an executing thread may be used as the executing thread by multiple agents, provided none of

the agents sharing the thread have an Agent Record whose [[CanBlock]] property is true.

NOTE 1

Some web browsers share a single executing thread across multiple unrelated tabs of a browser window, for example.

While an agent's executing thread executes the jobs in the agent's job queues, the agent is the surrounding agent for the

code in those jobs. The code uses the surrounding agent to access the specification level execution objects held within the

agent: the running execution context, the execution context stack, the named job queues, and the Agent Record's fields.

Table 26: Agent Record Fields

Field Name Value Meaning

[[LittleEndian]] Boolean The default value computed for the isLittleEndian parameter when it is needed by

the algorithms GetValueFromBuffer and SetValueInBuffer. The choice is
implementation-dependent and should be the alternative that is most efficient for

the implementation. Once the value has been observed it cannot change.

[[CanBlock]] Boolean Determines whether the agent can block or not.
[[Signifier]] Any Uniquely identifies the agent within its agent cluster.
globally-
unique
value
[[IsLockFreel]] Boolean true if atomic operations on one-byte values are lock-free, false otherwise.
[[IsLockFree2]] Boolean true if atomic operations on two-byte values are lock-free, false otherwise.

© Ecma International 2019 105

[[CandidateExecution]] A See the memory model.
candidate
execution
Record

Once the values of [[Signifier]], [[IsLockFreel]], and [[IsLockFree2]] have been observed by any agent in the agent
cluster they cannot change.

NOTE 2
The values of [[IsLockFreel]] and [[IsLockFree2]] are not necessarily determined by the hardware, but may also reflect

implementation choices that can vary over time and between ECMAScript implementations.
There is no [[IsLockFree4]] property: 4-byte atomic operations are always lock-free.

In practice, if an atomic operation is implemented with any type of lock the operation is not lock-free. Lock-free does not
imply wait-free: there is no upper bound on how many machine steps may be required to complete a lock-free atomic

operation.

That an atomic access of size n is lock-free does not imply anything about the (perceived) atomicity of non-atomic
accesses of size n, specifically, non-atomic accesses may still be performed as a sequence of several separate memory
accesses. See ReadSharedMemory and WriteSharedMemory for details.

NOTE 3
An agent is a specification mechanism and need not correspond to any particular artefact of an ECMAScript

implementation.

8.7.1 AgentSignifier ()

The abstract operation AgentSignifier takes no arguments. It performs the following steps:

1. Let AR be the Agent Record of the surrounding agent.
2. Return AR.[[Signifier]].

8.7.2 AgentCanSuspend ()

The abstract operation AgentCanSuspend takes no arguments. It performs the following steps:

1. Let AR be the Agent Record of the surrounding agent.
2. Return AR.[[CanBlock]].

NOTE
In some environments it may not be reasonable for a given agent to suspend. For example, in a web browser
environment, it may be reasonable to disallow suspending a document's main event handling thread, while still allowing

workers' event handling threads to suspend.

8.8 Agent Clusters

106 © Ecma International 2019

An agent cluster is a maximal set of agents that can communicate by operating on shared memory.

NOTE 1
Programs within different agents may share memory by unspecified means. At a minimum, the backing memory for

SharedArrayBuffer objects can be shared among the agents in the cluster.

There may be agents that can communicate by message passing that cannot share memory; they are never in the same

agent cluster.

Every agent belongs to exactly one agent cluster.

NOTE 2
The agents in a cluster need not all be alive at some particular point in time. If agent A creates another agent B, after
which A terminates and B creates agent C, the three agents are in the same cluster if A could share some memory with B

and B could share some memory with C.

All agents within a cluster must have the same value for the [[LittleEndian]] property in their respective Agent Records.

NOTE 3
If different agents within an agent cluster have different values of [[LittleEndian]] it becomes hard to use shared memory
for multi-byte data.

All agents within a cluster must have the same values for the [[IsLockFree1]] property in their respective Agent Records;
similarly for the [[IsLockFree2]] property.

All agents within a cluster must have different values for the [[Signifier]] property in their respective Agent Records.

An embedding may deactivate (stop forward progress) or activate (resume forward progress) an agent without the agent's
knowledge or cooperation. If the embedding does so, it must not leave some agents in the cluster active while other
agents in the cluster are deactivated indefinitely.

NOTE 4
The purpose of the preceding restriction is to avoid a situation where an agent deadlocks or starves because another agent
has been deactivated. For example, if an HTML shared worker that has a lifetime independent of documents in any
windows were allowed to share memory with the dedicated worker of such an independent document, and the document
and its dedicated worker were to be deactivated while the dedicated worker holds a lock (say, the document is pushed
into its window's history), and the shared worker then tries to acquire the lock, then the shared worker will be blocked
until the dedicated worker is activated again, if ever. Meanwhile other workers trying to access the shared worker from

other windows will starve.

The implication of the restriction is that it will not be possible to share memory between agents that don't belong to the

same suspend/wake collective within the embedding.

An embedding may terminate an agent without any of the agent's cluster's other agents' prior knowledge or cooperation.
If an agent is terminated not by programmatic action of its own or of another agent in the cluster but by forces external to
the cluster, then the embedding must choose one of two strategies: Either terminate all the agents in the cluster, or
provide reliable APIs that allow the agents in the cluster to coordinate so that at least one remaining member of the
cluster will be able to detect the termination, with the termination data containing enough information to identify the

© Ecma International 2019 107

agent that was terminated.

NOTE 5
Examples of that type of termination are: operating systems or users terminating agents that are running in separate
processes; the embedding itself terminating an agent that is running in-process with the other agents when per-agent

resource accounting indicates that the agent is runaway.

Prior to any evaluation of any ECMAScript code by any agent in a cluster, the [[CandidateExecution]] field of the Agent
Record for all agents in the cluster is set to the initial candidate execution. The initial candidate execution is an empty
candidate execution whose [[EventsRecords]] field is a List containing, for each agent, an Agent Events Record whose
[[AgentSignifier]] field is that agent's signifier, and whose [[EventList]] and [[AgentSynchronizesWith]] fields are empty
Lists.

NOTE 6
All agents in an agent cluster share the same candidate execution in its Agent Record's [[CandidateExecution]] field. The
candidate execution is a specification mechanism used by the memory model.

NOTE 7
An agent cluster is a specification mechanism and need not correspond to any particular artefact of an ECMAScript

implementation.

8.9 Forward Progress

For an agent to make forward progress is for it to perform an evaluation step according to this specification.

An agent becomes blocked when its running execution context waits synchronously and indefinitely for an external
event. Only agents whose Agent Record's [[CanBlock]] property is true can become blocked in this sense. An unblocked

agent is one that is not blocked.
Implementations must ensure that:

every unblocked agent with a dedicated executing thread eventually makes forward progress
in a set of agents that share an executing thread, one agent eventually makes forward progress

an agent does not cause another agent to become blocked except via explicit APIs that provide blocking.

NOTE
This, along with the liveness guarantee in the memory model, ensures that all "SeqCst" writes eventually become

observable to all agents.

9 Ordinary and Exotic Objects Behaviours

9.1 Ordinary Object Internal Methods and Internal Slots

All ordinary objects have an internal slot called [[Prototype]]. The value of this internal slot is either null or an object
and is used for implementing inheritance. Data properties of the [[Prototype]] object are inherited (and visible as

108 © Ecma International 2019

properties of the child object) for the purposes of get access, but not for set access. Accessor properties are inherited for

both get access and set access.

Every ordinary object has a Boolean-valued [[Extensible]] internal slot which is used to fulfill the extensibility-related
internal method invariants specified in 6.1.7.3. Namely, once the value of an object's [[Extensible]] internal slot has been
set to false, it is no longer possible to add properties to the object, to modify the value of the object's [[Prototype]]
internal slot, or to subsequently change the value of [[Extensible]] to true.

In the following algorithm descriptions, assume O is an ordinary object, P is a property key value, V is any ECMAScript

language value, and Desc is a Property Descriptor record.

Each ordinary object internal method delegates to a similarly-named abstract operation. If such an abstract operation
depends on another internal method, then the internal method is invoked on O rather than calling the similarly-named
abstract operation directly. These semantics ensure that exotic objects have their overridden internal methods invoked
when ordinary object internal methods are applied to them.

9.1.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of O is called, the following steps are taken:

1. Return ! OrdinaryGetPrototypeOf(O).

9.1.1.1 OrdinaryGetPrototypeOf (O)

When the abstract operation OrdinaryGetPrototypeOf is called with Object O, the following steps are taken:

1. Return O.[[Prototype]].

9.1.2 [[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of O is called with argument V, the following steps are taken:

1. Return ! OrdinarySetPrototypeOf(O, V).

9.1.2.1 OrdinarySetPrototypeOf (O, V)

When the abstract operation OrdinarySetPrototypeOf is called with Object O and value V, the following steps are taken:

Assert: Either Type(V) is Object or Type(V) is Null.
Let extensible be O.[[Extensible]].

Let current be O.[[Prototype]].

If SameValue(V, current) is true, return true.

If extensible is false, return false.

Let p be V.

Let done be false.

© Nk~ W

Repeat, while done is false,
a. If p is null, set done to true.
b. Else if SameValue(p, O) is true, return false.
c. Else,
i. If p.[[GetPrototypeOf]] is not the ordinary object internal method defined in 9.1.1, set done to true.
ii. Else, set p to p.[[Prototype]].

© Ecma International 2019 109

9. Set O.[[Prototype]] to V.
10. Return true.

NOTE
The loop in step 8 guarantees that there will be no circularities in any prototype chain that only includes objects that use
the ordinary object definitions for [[GetPrototypeOf]] and [[SetPrototypeOf]].

9.1.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of O is called, the following steps are taken:

1. Return ! OrdinarylsExtensible(O).

9.1.3.1 OrdinarylIsExtensible (O)

When the abstract operation OrdinarylsExtensible is called with Object O, the following steps are taken:

1. Return O.[[Extensible]].

9.1.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of O is called, the following steps are taken:

1. Return ! OrdinaryPreventExtensions(O).

9.1.4.1 OrdinaryPreventExtensions (O)

When the abstract operation OrdinaryPreventExtensions is called with Object O, the following steps are taken:

1. Set O.[[Extensible]] to false.

2. Return true.

9.1.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Return ! OrdinaryGetOwnProperty(O, P).

9.1.5.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty is called with Object O and with property key P, the following
steps are taken:

Assert: IsPropertyKey(P) is true.

If O does not have an own property with key P, return undefined.
Let D be a newly created Property Descriptor with no fields.

Let X be O's own property whose key is P.

S

If X is a data property, then
a. Set D.[[Value]] to the value of X's [[Value]] attribute.
b. Set D.[[Writable]] to the value of X's [[Writable]] attribute.

110 © Ecma International 2019

6. Else X is an accessor property,

a. Set D.[[Get]] to the value of X's [[Get]] attribute.

b. Set D.[[Set]] to the value of X's [[Set]] attribute.
7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
9. Return D.

9.1.6 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of O is called with property key P and Property Descriptor Desc, the

following steps are taken:

1. Return ? OrdinaryDefineOwnProperty(O, P, Desc).

9.1.6.1 OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnProperty is called with Object O, property key P, and Property
Descriptor Desc, the following steps are taken:

1. Let current be ? O.[[GetOwnProperty]](P).
2. Let extensible be ? IsExtensible(O).
3. Return ValidateAndApplyPropertyDescriptor(O, P, extensible, Desc, current).

9.1.6.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDescriptor is called with Boolean value Extensible, and Property

Descriptors Desc, and Current, the following steps are taken:

1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined, Extensible, Desc, Current).

9.1.6.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptor is called with Object O, property key P, Boolean
value extensible, and Property Descriptors Desc, and current, the following steps are taken:

NOTE
If undefined is passed as O, only validation is performed and no object updates are performed.

1. Assert: If O is not undefined, then IsPropertyKey(P) is true.
2. If current is undefined, then
a. If extensible is false, return false.
b. Assert: extensible is true.
c. If IsGenericDescriptor(Desc) is true or IsDataDescriptor(Desc) is true, then
i. If O is not undefined, create an own data property named P of object O whose [[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of an attribute
field of Desc is absent, the attribute of the newly created property is set to its default value.
d. Else Desc must be an accessor Property Descriptor,
i. If O is not undefined, create an own accessor property named P of object O whose [[Get]], [[Set]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of an attribute

© Ecma International 2019 111

field of Desc is absent, the attribute of the newly created property is set to its default value.
e. Return true.

If every field in Desc is absent, return true.

. If current.[[Configurable]] is false, then

a. If Desc.[[Configurable]] is present and its value is true, return false.
b. If Desc.[[Enumerable]] is present and the [[Enumerable]] fields of current and Desc are the Boolean negation

of each other, return false.

5. If IsGenericDescriptor(Desc) is true, no further validation is required.

6. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then

10.

a. If current.[[Configurable]] is false, return false.
b. If IsDataDescriptor(current) is true, then

i. If O is not undefined, convert the property named P of object O from a data property to an accessor
property. Preserve the existing values of the converted property's [[Configurable]] and [[Enumerable]]
attributes and set the rest of the property's attributes to their default values.

c. Else,

i. If O is not undefined, convert the property named P of object O from an accessor property to a data
property. Preserve the existing values of the converted property's [[Configurable]] and [[Enumerable]]
attributes and set the rest of the property's attributes to their default values.

Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. If current.[[Configurable]] is false and current.[[Writable]] is false, then
i. If Desc.[[Writable]] is present and Desc.[[Writable]] is true, return false.
ii. If Desc.[[Value]] is present and SameValue(Desc.[[Value]l, current.[[Value]]) is false, return false.
iii. Return true.
Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true,
a. If current.[[Configurable]] is false, then
i. If Desc.[[Set]] is present and SameValue(Desc.[[Set]], current.[[Set]]) is false, return false.
ii. If Desc.[[Get]] is present and SameValue(Desc.[[Get]], current.[[Get]]) is false, return false.
iii. Return true.
If O is not undefined, then
a. For each field of Desc that is present, set the corresponding attribute of the property named P of object O to
the value of the field.

Return true.

9.1.7 [[HasProperty]] (P)

When the [[HasProperty]] internal method of O is called with property key P, the following steps are taken:

1.

Return ? OrdinaryHasProperty(O, P).

9.1.7.1 OrdinaryHasProperty (O, P)

When the abstract operation OrdinaryHasProperty is called with Object O and with property key P, the following steps

are taken:

ik =

Assert: IsPropertyKey(P) is true.

Let hasOwn be ? O.[[GetOwnProperty]](P).
If hasOwn is not undefined, return true.
Let parent be ? O.[[GetPrototypeOf]]().

If parent is not null, then

112 © Ecma International 2019

a. Return ? parent.[[HasProperty]](P).

6. Return false.

9.1.8 [[Get]] (P, Receiver)

When the [[Get]] internal method of O is called with property key P and ECMAScript language value Receiver, the
following steps are taken:

1. Return ? OrdinaryGet(O, P, Receiver).

9.1.8.1 OrdinaryGet (O, P, Receiver)

When the abstract operation OrdinaryGet is called with Object O, property key P, and ECMAScript language value
Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let desc be ? O.[[GetOwnProperty]](P).
3. If desc is undefined, then
a. Let parent be ? O.[[GetPrototypeOf]]().
b. If parent is null, return undefined.
c. Return ? parent.[[Get]](P, Receiver).
If IsDataDescriptor(desc) is true, return desc.[[Value]].
Assert: IsAccessorDescriptor(desc) is true.
Let getter be desc.[[Get]].
If getter is undefined, return undefined.

N ok

Return ? Call(getter, Receiver).

9.1.9 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of O is called with property key P, value V, and ECMAScript language value Receiver,
the following steps are taken:

1. Return ? OrdinarySet(O, P, V, Receiver).

9.1.9.1 OrdinarySet (O, P, V, Receiver)

When the abstract operation OrdinarySet is called with Object O, property key P, value V, and ECMAScript language
value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Let ownDesc be ? O.[[GetOwnProperty]l(P).
3. Return OrdinarySetWithOwnDescriptor(O, P, V, Receiver, ownDesc).

9.1.9.2 OrdinarySetWithOwnDescriptor (O, P, V, Receiver, ownDesc)

When the abstract operation OrdinarySetWithOwnDescriptor is called with Object O, property key P, value V,
ECMAScript language value Receiver, and Property Descriptor (or undefined) ownDesc, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.

2. If ownDesc is undefined, then

© Ecma International 2019 113

a. Let parent be ? O.[[GetPrototypeOf]]().
b. If parent is not null, then
i. Return ? parent.[[Set]](P, V, Receiver).
c. Else,
i. Set ownDesc to the PropertyDescriptor { [[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true }.
3. If IsDataDescriptor(ownDesc) is true, then
a. If ownDesc.[[Writable]] is false, return false.
b. If Type(Receiver) is not Object, return false.
c. Let existingDescriptor be ? Receiver.[[GetOwnProperty]](P).
d. If existingDescriptor is not undefined, then
i. If IsAccessorDescriptor(existingDescriptor) is true, return false.
ii. If existingDescriptor.[[Writable]] is false, return false.
iii. Let valueDesc be the PropertyDescriptor { [[Value]]: V }.
iv. Return ? Receiver.[[DefineOwnProperty]](P, valueDesc).
e. Else Receiver does not currently have a property P,
i. Return ? CreateDataProperty(Receiver, P, V).
Assert: IsAccessorDescriptor(ownDesc) is true.
Let setter be ownDesc.[[Set]].
If setter is undefined, return false.
Perform ? Call(setter, Receiver, « V »).

® N A

Return true.

9.1.10 [[Delete]] (P)

When the [[Delete]] internal method of O is called with property key P, the following steps are taken:

1. Return ? OrdinaryDelete(O, P).

9.1.10.1 OrdinaryDelete (O, P)

When the abstract operation OrdinaryDelete is called with Object O and property key P, the following steps are taken:

Assert: IsPropertyKey(P) is true.
Let desc be ? O.[[GetOwnProperty]](P).

If desc is undefined, return true.

A e

If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.

5. Return false.

9.1.11 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of O is called, the following steps are taken:

1. Return ! OrdinaryOwnPropertyKeys(O).
9.1.11.1 OrdinaryOwnPropertyKeys (O)

114 © Ecma International 2019

When the abstract operation OrdinaryOwnPropertyKeys is called with Object O, the following steps are taken:

—_

Let keys be a new empty List.

2. For each own property key P of O that is an array index, in ascending numeric index order, do
a. Add P as the last element of keys.

3. For each own property key P of O that is a String but is not an array index, in ascending chronological order of

property creation, do

a. Add P as the last element of keys.

4. For each own property key P of O that is a Symbol, in ascending chronological order of property creation, do
a. Add P as the last element of keys.

5. Return keys.

9.1.12 ObjectCreate (proto [, internalSlotsList])

The abstract operation ObjectCreate with argument proto (an object or null) is used to specify the runtime creation of
new ordinary objects. The optional argument internalSlotsList is a List of the names of additional internal slots that must
be defined as part of the object. If the list is not provided, a new empty List is used. This abstract operation performs the

following steps:

If internalSlotsList is not present, set internalSlotsList to a new empty List.

Let obj be a newly created object with an internal slot for each name in internalSlotsList.
Set obj's essential internal methods to the default ordinary object definitions specified in 9.1.
Set obj.[[Prototype]] to proto.

Set obj.[[Extensible]] to true.

o Uk W=

Return obj.

9.1.13 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto [,
internalSlotsList])

The abstract operation OrdinaryCreateFromConstructor creates an ordinary object whose [[Prototype]] value is retrieved
from a constructor's prototype property, if it exists. Otherwise the intrinsic named by intrinsicDefaultProto is used
for [[Prototype]]. The optional internalSlotsList is a List of the names of additional internal slots that must be defined as
part of the object. If the list is not provided, a new empty List is used. This abstract operation performs the following

steps:

1. Assert: intrinsicDefaultProto is a String value that is this specification’s name of an intrinsic object. The
corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.

2. Let proto be ? GetPrototypeFromConstructor(constructor, intrinsicDefaultProto).

3. Return ObjectCreate(proto, internalSlotsList).

9.1.14 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)

The abstract operation GetPrototypeFromConstructor determines the [[Prototype]] value that should be used to create an
object corresponding to a specific constructor. The value is retrieved from the constructor's prototype property, if it
exists. Otherwise the intrinsic named by intrinsicDefaultProto is used for [[Prototype]]. This abstract operation performs
the following steps:

1. Assert: intrinsicDefaultProto is a String value that is this specification's name of an intrinsic object. The

corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.

© Ecma International 2019 115

2. Assert: IsCallable(constructor) is true.
3. Let proto be ? Get(constructor, "prototype").
4. If Type(proto) is not Object, then
a. Let realm be ? GetFunctionRealm(constructor).
b. Set proto to realm's intrinsic object named intrinsicDefaultProto.

5. Return proto.

NOTE
If constructor does not supply a [[Prototype]] value, the default value that is used is obtained from the realm of the

constructor function rather than from the running execution context.

9.2 ECMAScript Function Objects

ECMAScript function objects encapsulate parameterized ECMAScript code closed over a lexical environment and
support the dynamic evaluation of that code. An ECMAScript function object is an ordinary object and has the same
internal slots and the same internal methods as other ordinary objects. The code of an ECMAScript function object may
be either strict mode code (10.2.1) or non-strict code. An ECMAScript function object whose code is strict mode code is
called a strict function. One whose code is not strict mode code is called a non-strict function.

ECMAScript function objects have the additional internal slots listed in Table 27.

Table 27: Internal Slots of ECMAScript Function Objects

Internal Slot Type Description

[[Environment]] Lexical The Lexical Environment that the function was closed over. Used as the outer

Environment environment when evaluating the code of the function.

[[FormalParameters]] Parse Node The root parse node of the source text that defines the function's formal

parameter list.

[[FunctionKind]] String Either "normal", "classConstructor", "generator", "async", or

"async generator".

[[ECMAScriptCode]] Parse Node The root parse node of the source text that defines the function's body.

[[ConstructorKind]] String Either "base" or "derived".

[[Realm]] Realm The realm in which the function was created and which provides any intrinsic
Record objects that are accessed when evaluating the function.

[[ScriptOrModule]] Script The script or module in which the function was created.
Record or
Module
Record

[[ThisMode]] (lexical, Defines how this references are interpreted within the formal parameters and
strict, code body of the function. lexical means that this refers to the this value of a
global) lexically enclosing function. strict means that the this value is used exactly as

provided by an invocation of the function. global means that a this value of

undefined is interpreted as a reference to the global object.

116 © Ecma International 2019

[[Strict]] Boolean true if this is a strict function, false if this is a non-strict function.

[[HomeObject]] Object If the function uses super, this is the object whose [[GetPrototypeOf]]

provides the object where super property lookups begin.

[[SourceText]] String The source text that defines the function.

All ECMAScript function objects have the [[Call]] internal method defined here. ECMAScript functions that are also

constructors in addition have the [[Construct]] internal method.

9.2.1 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for an ECMAScript function object F is called with parameters thisArgument and

argumentsList, a List of ECMAScript language values. The following steps are taken:

L e N AN

=
= O

Assert: F'is an ECMAScript function object.

If F.[[FunctionKind]] is "classConstructor", throw a TypeError exception.

Let callerContext be the running execution context.

Let calleeContext be PrepareForOrdinaryCall(F, undefined).

Assert: calleeContext is now the running execution context.

Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).

Let result be OrdinaryCallEvaluateBody(F, argumentsList).

Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
If result.[[Type]] is return, return NormalCompletion(result.[[Value]]).

ReturnIf Abrupt(result).

. Return NormalCompletion(undefined).

NOTE

When calleeContext is removed from the execution context stack in step 8 it must not be destroyed if it is suspended and

retained for later resumption by an accessible generator object.

9.2.1.1 PrepareForOrdinaryCall (F, newTarget)

When the abstract operation PrepareForOrdinaryCall is called with function object F and ECMAScript language value

newTarget, the following steps are taken:

L e Nk W

=
= O

Assert: Type(newTarget) is Undefined or Object.

Let callerContext be the running execution context.

Let calleeContext be a new ECMAScript code execution context.
Set the Function of calleeContext to F.

Let calleeRealm be F.[[Realm]].

Set the Realm of calleeContext to calleeRealm.

Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]].
Let localEnv be NewFunctionEnvironment(F, newTarget).

Set the LexicalEnvironment of calleeContext to localEnv.

Set the VariableEnvironment of calleeContext to localEnv.

. If callerContext is not already suspended, suspend callerContext.

© Ecma International 2019 117

12. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
13. NOTE: Any exception objects produced after this point are associated with calleeRealm.

14. Return calleeContext.

9.2.1.2 OrdinaryCallBindThis (F, calleeContext, thisArgument)

When the abstract operation OrdinaryCallBindThis is called with function object F, execution context calleeContext, and

ECMAScript value thisArgument, the following steps are taken:

Let thisMode be F.[[ThisMode]].
If thisMode is lexical, return NormalCompletion(undefined).
Let calleeRealm be F.[[Realm]].
Let localEnv be the LexicalEnvironment of calleeContext.
If thisMode is strict, let thisValue be thisArgument.
Else,
a. If thisArgument is undefined or null, then
i. Let globalEnv be calleeRealm.[[GlobalEnv]].
ii. Let globalEnvRec be globalEnv's EnvironmentRecord.

o Uk W=

iii. Assert: globalEnvRec is a global Environment Record.
iv. Let thisValue be globalEnvRec.[[GlobalThisValue]].
b. Else,
i. Let thisValue be ! ToObject(thisArgument).

ii. NOTE: ToObject produces wrapper objects using calleeRealm.
7. Let envRec be localEnv's EnvironmentRecord.
8. Assert: envRec is a function Environment Record.
9. Assert: The next step never returns an abrupt completion because envRec.[[ThisBindingStatus]] is not

"initialized".
10. Return envRec.BindThisValue(thisValue).

9.2.1.3 OrdinaryCallEvaluateBody (F, argumentsList)

When the abstract operation OrdinaryCallEvaluateBody is called with function object F' and List argumentsList, the

following steps are taken:

1. Return the result of EvaluateBody of the parsed code that is F.[[ECMAScriptCode]] passing F and argumentsList
as the arguments.

9.2.2 [[Construct]] (argumentsList, newTarget)

The [[Construct]] internal method for an ECMAScript function object F is called with parameters argumentsList and
newTarget. argumentsList is a possibly empty List of ECMAScript language values. The following steps are taken:

Assert: F' is an ECMAScript function object.
Assert: Type(newTarget) is Object.

Let callerContext be the running execution context.
Let kind be F.[[ConstructorKind]].

If kind is "base", then

ik =

a. Let thisArgument be ? OrdinaryCreateFromConstructor(newTarget, "$ObjectPrototype%").
6. Let calleeContext be PrepareForOrdinaryCall(F, newTarget).

118 © Ecma International 2019

7. Assert: calleeContext is now the running execution context.

8. If kind is "base", perform OrdinaryCallBindThis(F, calleeContext, thisArgument).

9. Let constructorEnv be the LexicalEnvironment of calleeContext.

10.
11.
12.
13.

14.
15.

Let envRec be constructorEnv's EnvironmentRecord.
Let result be OrdinaryCallEvaluateBody(F, argumentsList).
Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
If result.[[Type]] is return, then
a. If Type(result.[[Value]]) is Object, return NormalCompletion(result.[[Value]]).
b. If kind is "base", return NormalCompletion(thisArgument).
c. If result.[[Value]] is not undefined, throw a TypeError exception.
Else, ReturnIfAbrupt(result).
Return ? envRec.GetThisBinding().

9.2.3 FunctionAllocate (functionPrototype, strict, functionKind)

The abstract operation FunctionAllocate requires the three arguments functionPrototype, strict and functionKind.

FunctionAllocate performs the following steps:

1. Assert: Type(functionPrototype) is Object.

N

R

Assert: functionKind is either "normal", "non-constructor", "generator", "async", or

"async generator".

If functionKind is "normal", let needsConstruct be true.

Else, let needsConstruct be false.

If functionKind is "non-constructor", set functionKind to "normal".

Let F be a newly created ECMAScript function object with the internal slots listed in Table 27. All of those internal

slots are initialized to undefined.

7. Set F's essential internal methods to the default ordinary object definitions specified in 9.1.
8. Set F.[[Call]] to the definition specified in 9.2.1.
9. If needsConstruct is true, then

10.
11.
12.
13.
14.
15.

a. Set F.[[Construct]] to the definition specified in 9.2.2.
b. Set F.[[ConstructorKind]] to "base".

Set F.[[Strict]] to strict.

Set F.[[FunctionKind]] to functionKind.

Set F.[[Prototype]] to functionPrototype.

Set F.[[Extensible]] to true.

Set F.[[Realm]] to the current Realm Record.

Return F.

9.2.4 Functionlnitialize (F, kind, ParameterList, Body, Scope)

The abstract operation FunctionInitialize requires the arguments: a function object F, kind which is one of (Normal,

Method, Arrow), a parameter list Parse Node specified by ParameterList, a body Parse Node specified by Body, a

Lexical Environment specified by Scope. FunctionInitialize performs the following steps:

A

Let len be the ExpectedArgumentCount of ParameterList.
Perform ! SetFunctionLength(F, len).

Let Strict be F.[[Strict]].

Set F.[[Environment]] to Scope.

© Ecma International 2019 119

Set F.[[FormalParameters]] to ParameterList.

Set F.[[ECMAScriptCode]] to Body.

Set F.[[ScriptOrModule]] to GetActiveScriptOrModule().
If kind is Arrow, set F.[[ThisMode]] to lexical.

Else if Strict is true, set F.[[ThisMode]] to strict.

10. Else, set F.[[ThisMode]] to global.

11. Return F.

© ® N oW

9.2.5 FunctionCreate (kind, ParameterList, Body, Scope, Strict [, prototype])

The abstract operation FunctionCreate requires the arguments: kind which is one of (Normal, Method, Arrow), a
parameter list Parse Node specified by ParameterList, a body Parse Node specified by Body, a Lexical Environment
specified by Scope, a Boolean flag Strict, and optionally, an object prototype. FunctionCreate performs the following

steps:

—_

If prototype is not present, then

a. Set prototype to the intrinsic object %FunctionPrototype%.
If kind is not Normal, let allocKind be "non-constructor".
Else, let allocKind be "normal".
Let F be FunctionAllocate(prototype, Strict, allocKind).

AR

Return Functionlnitialize(F, kind, ParameterList, Body, Scope).

9.2.6 GeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)

The abstract operation GeneratorFunctionCreate requires the arguments: kind which is one of (Normal, Method), a
parameter list Parse Node specified by ParameterList, a body Parse Node specified by Body, a Lexical Environment

specified by Scope, and a Boolean flag Strict. GeneratorFunctionCreate performs the following steps:

1. Let functionPrototype be the intrinsic object %Generator%.
2. Let F be FunctionAllocate(functionPrototype, Strict, "generator™).
3. Return Functionlnitialize(F, kind, ParameterList, Body, Scope).

9.2.7 AsyncGeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)

The abstract operation AsyncGeneratorFunctionCreate requires the arguments: kind which is one of (Normal, Method),
a parameter list Parse Node specified by ParameterList, a body Parse Node specified by Body, a Lexical Environment
specified by Scope, and a Boolean flag Strict. AsyncGeneratorFunctionCreate performs the following steps:

1. Let functionPrototype be the intrinsic object %AsyncGenerator%.
2. Let F be ! FunctionAllocate(functionPrototype, Strict, "generator").
3. Return ! Functionlnitialize(F, kind, ParameterList, Body, Scope).

9.2.8 AsyncFunctionCreate (kind, parameters, body, Scope, Strict)

The abstract operation AsyncFunctionCreate requires the arguments: kind which is one of (Normal, Method, Arrow), a
parameter list Parse Node specified by parameters, a body Parse Node specified by body, a Lexical Environment

specified by Scope, and a Boolean flag Strict. AsyncFunctionCreate performs the following steps:

1. Let functionPrototype be the intrinsic object % AsyncFunctionPrototype%.

120 © Ecma International 2019

2. Let F be ! FunctionAllocate(functionPrototype, Strict, "asyne").

3. Return ! Functionlnitialize(F, kind, parameters, body, Scope).

9.2.9 AddRestrictedFunctionProperties (F, realm)

The abstract operation AddRestrictedFunctionProperties is called with a function object F and Realm Record realm as its

argument. It performs the following steps:

1. Assert: realm.[[Intrinsics]].[[%ThrowTypeError%]] exists and has been initialized.

2. Let thrower be realm.[[Intrinsics]].[[%ThrowTypeError%]].

3. Perform ! DefinePropertyOrThrow(F, "caller", PropertyDescriptor { [[Get]]: thrower, [[Set]]: thrower,
[[Enumerable]]: false, [[Configurable]]: true }).

4. Return ! DefinePropertyOrThrow(F, "arguments", PropertyDescriptor { [[Get]]: thrower, [[Set]]: thrower,
[[Enumerable]]: false, [[Configurable]]: true }).

9.2.9.1 %ThrowTypeError% ()

The %ThrowTypeError% intrinsic is an anonymous built-in function object that is defined once for each realm. When
%ThrowTypeError% is called it performs the following steps:

1. Throw a TypeError exception.
The value of the [[Extensible]] internal slot of a % ThrowTypeError% function is false.

The "length" property of a %ThrowTypeError% function has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

9.2.10 MakeConstructor (F [, writablePrototype [, prototype] 1)

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean writablePrototype and
an object prototype. If prototype is provided it is assumed to already contain, if needed, a "constructor" property

whose value is F. This operation converts F into a constructor by performing the following steps:

Assert: F'is an ECMAScript function object.
Assert: IsConstructor(F) is true.
Assert: F' is an extensible object that does not have a prototype own property.

If writablePrototype is not present, set writablePrototype to true.

S

If prototype is not present, then
a. Set prototype to ObjectCreate(%ODbjectPrototype%).
b. Perform ! DefinePropertyOrThrow(prototype, "constructor", PropertyDescriptor { [[Value]]: F,
[[Writable]]: writablePrototype, [[Enumerable]]: false, [[Configurable]]: true }).
6. Perform ! DefinePropertyOrThrow(F, "prototype", PropertyDescriptor { [[Value]l: prototype, [[Writable]]:
writablePrototype, [[Enumerable]]: false, [[Configurable]]: false }).
7. Return NormalCompletion(undefined).

9.2.11 MakeClassConstructor (F')

The abstract operation MakeClassConstructor with argument F performs the following steps:

1. Assert: F is an ECMAScript function object.

© Ecma International 2019 121

2. Assert: F.[[FunctionKind]] is "normal".
3. Set F.[[FunctionKind]] to "elassConstructor".

4. Return NormalCompletion(undefined).

9.2.12 MakeMethod (F, homeObject)

The abstract operation MakeMethod with arguments F and homeObject configures F' as a method by performing the

following steps:

Assert: F'is an ECMAScript function object.
Assert: Type(homeObject) is Object.

Set F.[[HomeObject]] to homeObject.
Return NormalCompletion(undefined).

M w =

9.2.13 SetFunctionName (F, name [, prefix])

The abstract operation SetFunctionName requires a Function argument F, a String or Symbol argument name and
optionally a String argument prefix. This operation adds a name property to F by performing the following steps:

Assert: F'is an extensible object that does not have a name own property.
Assert: Type(name) is either Symbol or String.
Assert: If prefix is present, then Type(prefix) is String.

AN

If Type(name) is Symbol, then

a. Let description be name's [[Description]] value.

b. If description is undefined, set name to the empty String.

c. Else, set name to the string-concatenation of " [", description, and "]1".
5. If prefix is present, then

a. Set name to the string-concatenation of prefix, the code unit 0x0020 (SPACE), and name.

6. Return ! DefinePropertyOrThrow(F, "name", PropertyDescriptor { [[Value]]: name, [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: true }).

9.2.14 SetFunctionLength (F, length)

The abstract operation SetFunctionLength requires a Function argument F and a Number argument /ength. This operation
adds a "length" property to F by performing the following steps:

Assert: F is an extensible object that does not have a "length" own property.

Assert: Type(length) is Number.

Assert: length > 0 and ! Tolnteger(length) is equal to length.

Return ! DefinePropertyOrThrow(F, "length", PropertyDescriptor { [[Value]]: length, [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: true }).

ML=

9.2.15 FunctionDeclarationInstantiation (func, argumentsList)
NOTE 1

When an execution context is established for evaluating an ECMAScript function a new function Environment Record is
created and bindings for each formal parameter are instantiated in that Environment Record. Each declaration in the
function body is also instantiated. If the function's formal parameters do not include any default value initializers then the

body declarations are instantiated in the same Environment Record as the parameters. If default value parameter

122 © Ecma International 2019

initializers exist, a second Environment Record is created for the body declarations. Formal parameters and functions are

initialized as part of FunctionDeclarationInstantiation. All other bindings are initialized during evaluation of the function
body.

FunctionDeclarationInstantiation is performed as follows using arguments func and argumentsList. func is the function

object for which the execution context is being established.

o S e S S e T
O U A WN RO

17.
18.

19.

20.

21.

© Nk e

Let calleeContext be the running execution context.

Let env be the LexicalEnvironment of calleeContext.

Let envRec be env's EnvironmentRecord.

Let code be func.[[ECMAScriptCode]].

Let strict be func.[[Strict]].

Let formals be func.[[FormalParameters]].

Let parameterNames be the BoundNames of formals.

If parameterNames has any duplicate entries, let hasDuplicates be true. Otherwise, let hasDuplicates be false.
Let simpleParameterList be IsSimpleParameterList of formals.

Let hasParameterExpressions be ContainsExpression of formals.

. Let varNames be the VarDeclaredNames of code.
. Let varDeclarations be the VarScopedDeclarations of code.
. Let lexicalNames be the LexicallyDeclaredNames of code.

Let functionNames be a new empty List.

. Let functionsTolnitialize be a new empty List.

For each d in varDeclarations, in reverse list order, do
a. If d is neither a VariableDeclaration nor a ForBinding nor a Bindingldentifier, then
i. Assert: d is either a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an
AsyncGeneratorDeclaration.
ii. Let /n be the sole element of the BoundNames of d.
iii. If fn is not an element of functionNames, then
1. Insert fn as the first element of functionNames.
2. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
3. Insert d as the first element of functionsTolnitialize.
Let argumentsObjectNeeded be true.
If func.[[ThisMode]] is lexical, then
a. NOTE: Arrow functions never have an arguments objects.
b. Set argumentsObjectNeeded to false.
Else if "arguments" is an element of parameterNames, then
a. Set argumentsObjectNeeded to false.
Else if hasParameterExpressions is false, then
a. If "arguments" is an element of functionNames or if "arguments" is an element of lexicalNames, then
i. Set argumentsObjectNeeded to false.
For each String paramName in parameterNames, do
a. Let alreadyDeclared be envRec.HasBinding(paramName).
b. NOTE: Early errors ensure that duplicate parameter names can only occur in non-strict functions that do not
have parameter default values or rest parameters.
c. If alreadyDeclared is false, then
i. Perform ! envRec.CreateMutableBinding(paramName, false).
ii. If hasDuplicates is true, then

1. Perform ! envRec.InitializeBinding(paramName, undefined).

© Ecma International 2019 123

22. If argumentsObjectNeeded is true, then

23.

24.
25.

26.

27.

d

b

e.
f.

. If strict is true or if simpleParameterList is false, then
i. Let ao be CreateUnmappedArgumentsObject(argumentsList).
. Else,
i. NOTE: mapped argument object is only provided for non-strict functions that don't have a rest
parameter, any parameter default value initializers, or any destructured parameters.
ii. Let ao be CreateMappedArgumentsObject(func, formals, argumentsList, envRec).
If strict is true, then
i. Perform ! envRec.CreateImmutableBinding("arguments", false).
Else,
i. Perform ! envRec.CreateMutableBinding("arguments", false).
Call envRec.InitializeBinding("arguments", ao).

Let parameterBindings be a new List of parameterNames with "arguments" appended.

Else,

a
Let
If h

a

. Let parameterBindings be parameterNames.
iteratorRecord be CreateListlteratorRecord(argumentsList).

asDuplicates is true, then

. Perform ? IteratorBindingInitialization for formals with iteratorRecord and undefined as arguments.

Else,

a
Ifth

a.
b.
c.

d.
e.

. Perform ? IteratorBindingInitialization for formals with iteratorRecord and env as arguments.

asParameterExpressions is false, then
NOTE: Only a single lexical environment is needed for the parameters and top-level vars.
Let instantiatedVarNames be a copy of the List parameterBindings.
For each n in varNames, do
i. If n is not an element of instantiatedVarNames, then
1. Append n to instantiatedVarNames.
2. Perform ! envRec.CreateMutableBinding(n, false).
3. Call envRec.InitializeBinding(n, undefined).
Let varEnv be env.

Let varEnvRec be envRec.

28. Else,

a. NOTE: A separate Environment Record is needed to ensure that closures created by expressions in the formal

parameter list do not have visibility of declarations in the function body.
Let varEnv be NewDeclarativeEnvironment(env).
Let varEnvRec be varEnv's EnvironmentRecord.
Set the VariableEnvironment of calleeContext to varEnv.
Let instantiatedVarNames be a new empty List.
For each n in varNames, do
i. If n is not an element of instantiatedVarNames, then
1. Append n to instantiatedVarNames.
2. Perform ! varEnvRec.CreateMutableBinding(n, false).
3. If n is not an element of parameterBindings or if n is an element of functionNames, let initial Value
be undefined.
4. Else,
a. Let initialValue be ! envRec.GetBindingValue(n, false).
5. Call varEnvRec.InitializeBinding(n, initialValue).
6. NOTE: vars whose names are the same as a formal parameter, initially have the same value as the

corresponding initialized parameter.

124 © Ecma International 2019

29. NOTE: Annex B.3.3.1 adds additional steps at this point.
30. If strict is false, then

a. Let lexEnv be NewDeclarativeEnvironment(varEnv).

b. NOTE: Non-strict functions use a separate lexical Environment Record for top-level lexical declarations so
that a direct eval can determine whether any var scoped declarations introduced by the eval code conflict with
pre-existing top-level lexically scoped declarations. This is not needed for strict functions because a strict
direct eval always places all declarations into a new Environment Record.

31. Else, let lexEnv be varEnv.

32. Let lexEnvRec be lexEnv's EnvironmentRecord.

33. Set the LexicalEnvironment of calleeContext to lexEnv.

34. Let lexDeclarations be the LexicallyScopedDeclarations of code.
35. For each element d in lexDeclarations, do

a. NOTE: A lexically declared name cannot be the same as a function/generator declaration, formal parameter,
or a var name. Lexically declared names are only instantiated here but not initialized.

b. For each element dn of the BoundNames of d, do

i. If IsConstantDeclaration of d is true, then
1. Perform ! lexEnvRec.CreatelmmutableBinding(dn, true).
ii. Else,
1. Perform ! lexEnvRec.CreateMutableBinding(dn, false).
36. For each Parse Node f in functionsTolnitialize, do

a. Let fn be the sole element of the BoundNames of f.

b. Let fo be the result of performing InstantiateFunctionObject for [with argument /exEnv.

c. Perform ! varEnvRec.SetMutableBinding(fn, fo, false).

37. Return NormalCompletion(empty).

NOTE 2
B.3.3 provides an extension to the above algorithm that is necessary for backwards compatibility with web browser
implementations of ECMAScript that predate ECMAScript 2015.

NOTE 3
Parameter Initializers may contain direct eval expressions. Any top level declarations of such evals are only visible to the

eval code (10.2). The creation of the environment for such declarations is described in 14.1.19.

9.3 Built-in Function Objects

The built-in function objects defined in this specification may be implemented as either ECMAScript function objects
(9.2) whose behaviour is provided using ECMAScript code or as implementation provided function exotic objects whose
behaviour is provided in some other manner. In either case, the effect of calling such functions must conform to their
specifications. An implementation may also provide additional built-in function objects that are not defined in this
specification.

If a built-in function object is implemented as an exotic object it must have the ordinary object behaviour specified in
9.1. All such function exotic objects also have [[Prototype]], [[Extensible]], [[Realm]], and [[ScriptOrModule]] internal
slots.

Unless otherwise specified every built-in function object has the %FunctionPrototype% object as the initial value of its
[[Prototype]] internal slot.

The behaviour specified for each built-in function via algorithm steps or other means is the specification of the function

© Ecma International 2019 125

body behaviour for both [[Call]] and [[Construct]] invocations of the function. However, [[Construct]] invocation is not
supported by all built-in functions. For each built-in function, when invoked with [[Call]], the [[Call]] thisArgument
provides the this value, the [[Call]] argumentsList provides the named parameters, and the NewTarget value is
undefined. When invoked with [[Construct]], the this value is uninitialized, the [[Construct]] argumentsList provides the
named parameters, and the [[Construct]] newTarget parameter provides the NewTarget value. If the built-in function is
implemented as an ECMAScript function object then this specified behaviour must be implemented by the ECMAScript
code that is the body of the function. Built-in functions that are ECMAScript function objects must be strict functions. If
a built-in constructor has any [[Call]] behaviour other than throwing a TypeError exception, an ECMAScript
implementation of the function must be done in a manner that does not cause the function's [[FunctionKind]] internal slot

to have the value "classConstructor".

Built-in function objects that are not identified as constructors do not implement the [[Construct]] internal method unless
otherwise specified in the description of a particular function. When a built-in constructor is called as part of a new
expression the argumentsList parameter of the invoked [[Construct]] internal method provides the values for the built-in

constructor's named parameters.

Built-in functions that are not constructors do not have a prototype property unless otherwise specified in the

description of a particular function.

If a built-in function object is not implemented as an ECMAScript function it must provide [[Call]] and [[Construct]]
internal methods that conform to the following definitions:

9.3.1 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for a built-in function object F' is called with parameters thisArgument and argumentsList, a

List of ECMAScript language values. The following steps are taken:

Let callerContext be the running execution context.

If callerContext is not already suspended, suspend callerContext.
Let calleeContext be a new ECMAScript code execution context.
Set the Function of calleeContext to F.

Let calleeRealm be F.[[Realm]].

Set the Realm of calleeContext to calleeRealm.

Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]].

Perform any necessary implementation-defined initialization of calleeContext.

© Nk W

Push calleeContext onto the execution context stack; calleeContext is now the running execution context.

—_
e

Let result be the Completion Record that is the result of evaluating F' in an implementation-defined manner that
conforms to the specification of F. thisArgument is the this value, argumentsList provides the named parameters,
and the NewTarget value is undefined.

11. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.

12. Return result.

NOTE
When calleeContext is removed from the execution context stack it must not be destroyed if it has been suspended and

retained by an accessible generator object for later resumption.

9.3.2 [[Construct]] (argumentsList, newTarget)

126 © Ecma International 2019

The [[Construct]] internal method for built-in function object F is called with parameters argumentsList and newTarget.
The steps performed are the same as [[Call]] (see 9.3.1) except that step 10 is replaced by:

10. Let result be the Completion Record that is the result of evaluating F' in an implementation-defined manner that
conforms to the specification of F. The this value is uninitialized, argumentsList provides the named parameters,

and newTarget provides the NewTarget value.

9.3.3 CreateBuiltinFunction (steps, internalSlotsList [, realm [, prototype]])

The abstract operation CreateBuiltinFunction takes arguments steps, internalSlotsList, realm, and prototype. The
argument internalSlotsList is a List of the names of additional internal slots that must be defined as part of the object.

CreateBuiltinFunction returns a built-in function object created by the following steps:

1. Assert: steps is either a set of algorithm steps or other definition of a function's behaviour provided in this
specification.

If realm is not present, set realm to the current Realm Record.

Assert: realm is a Realm Record.

If prototype is not present, set prototype to realm.[[Intrinsics]].[[%FunctionPrototype%]].

i WD

Let func be a new built-in function object that when called performs the action described by steps. The new
function object has internal slots whose names are the elements of internalSlotsList. The initial value of each of
those internal slots is undefined.

Set func.[[Realm]] to realm.

Set func.[[Prototype]] to prototype.

Set func.[[Extensible]] to true.

Set func.[[ScriptOrModule]] to null.

10. Return func.

L e N o

Each built-in function defined in this specification is created by calling the CreateBuiltinFunction abstract operation.

9.4 Built-in Exotic Object Internal Methods and Slots

This specification defines several kinds of built-in exotic objects. These objects generally behave similar to ordinary
objects except for a few specific situations. The following exotic objects use the ordinary object internal methods except

where it is explicitly specified otherwise below:

9.4.1 Bound Function Exotic Objects

A bound function is an exotic object that wraps another function object. A bound function is callable (it has a [[Call]]
internal method and may have a [[Construct]] internal method). Calling a bound function generally results in a call of its
wrapped function.

Bound function objects do not have the internal slots of ECMAScript function objects defined in Table 27. Instead they
have the internal slots defined in Table 28.

Table 28: Internal Slots of Bound Function Exotic Objects

Internal Slot Type Description

© Ecma International 2019 127

[[BoundTargetFunction]] Callable The wrapped function object.

Object
[[BoundThis]] Any The value that is always passed as the this value when calling the wrapped
function.
[[BoundArguments]] List of Any A list of values whose elements are used as the first arguments to any call to

the wrapped function.

Bound function objects provide all of the essential internal methods as specified in 9.1. However, they use the following

definitions for the essential internal methods of function objects.

9.4.1.1 [[Call]] (thisArgument, argumentsList)

When the [[Call]] internal method of a bound function exotic object, F, which was created using the bind function is

called with parameters thisArgument and argumentsList, a List of ECMAScript language values, the following steps are

taken:

A

Let target be F.[[BoundTargetFunction]].

Let boundThis be F.[[BoundThis]].

Let boundArgs be F.[[BoundArguments]].

Let args be a new list containing the same values as the list boundArgs in the same order followed by the same
values as the list argumentsList in the same order.

Return ? Call(target, boundThis, args).

9.4.1.2 [[Construct]] (argumentsList, newTarget)

When the [[Construct]] internal method of a bound function exotic object, F that was created using the bind function is

called with a list of arguments argumentsList and newTarget, the following steps are taken:

A w e

Let target be F.[[BoundTargetFunction]].

Assert: IsConstructor(target) is true.

Let boundArgs be F.[[BoundArguments]].

Let args be a new list containing the same values as the list boundArgs in the same order followed by the same

values as the list argumentsList in the same order.

5. If SameValue(F, newTarget) is true, set newTarget to target.

6. Return ? Construct(target, args, newTarget).

9.4.1.3 BoundFunctionCreate (targetFunction, boundThis, boundArgs)

The abstract operation BoundFunctionCreate with arguments targetFunction, boundThis and boundArgs is used to

specify the creation of new Bound Function exotic objects. It performs the following steps:

ok W

Assert: Type(targetFunction) is Object.

Let proto be ? targetFunction.[[GetPrototypeOf]]().

Let obj be a newly created object.

Set obj's essential internal methods to the default ordinary object definitions specified in 9.1.
Set obj.[[Call]] as described in 9.4.1.1.

If IsConstructor(targetFunction) is true, then

128 © Ecma International 2019

a. Set obj.[[Construct]] as described in 9.4.1.2.
7. Set obj.[[Prototype]] to proto.
8. Set obj.[[Extensible]] to true.
9. Set obj.[[BoundTargetFunction]] to targetFunction.
10. Set obj.[[BoundThis]] to boundThis.
11. Set obj.[[BoundArguments]] to boundArgs.
12. Return obj.

9.4.2 Array Exotic Objects

An Array object is an exotic object that gives special treatment to array index property keys (see 6.1.7). A property
whose property name is an array index is also called an element. Every Array object has a non-configurable "length"

property whose value is always a nonnegative integer less than 232

. The value of the "1length" property is numerically
greater than the name of every own property whose name is an array index; whenever an own property of an Array
object is created or changed, other properties are adjusted as necessary to maintain this invariant. Specifically, whenever
an own property is added whose name is an array index, the value of the "1ength" property is changed, if necessary,
to be one more than the numeric value of that array index; and whenever the value of the "1length" property is
changed, every own property whose name is an array index whose value is not smaller than the new length is deleted.
This constraint applies only to own properties of an Array object and is unaffected by "length" or array index

properties that may be inherited from its prototypes.

NOTE
A String property name P is an array index if and only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not

equal to 232 .1,

Array exotic objects provide an alternative definition for the [[DefineOwnProperty]] internal method. Except for that

internal method, Array exotic objects provide all of the other essential internal methods as specified in 9.1.

9.4.2.1 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an Array exotic object A is called with property key P, and Property

Descriptor Desc, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Pis "length", then
a. Return ? ArraySetLength(A, Desc).
3. Else if P is an array index, then
a. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
b. Assert: oldLenDesc will never be undefined or an accessor descriptor because Array objects are created with
a length data property that cannot be deleted or reconfigured.
Let oldLen be oldLenDesc.[[Value]].
Let index be ! ToUint32(P).
If index > oldLen and oldLenDesc.[[Writable]] is false, return false.
Let succeeded be ! OrdinaryDefineOwnProperty(A, P, Desc).
If succeeded is false, return false.
If index > oldLen, then
i. Set oldLenDesc.[[Value]] to index + 1.
ii. Let succeeded be OrdinaryDefineOwnProperty(A, "length", oldLenDesc).

R e

© Ecma International 2019 129

iii. Assert: succeeded is true.
i. Return true.

4. Return OrdinaryDefineOwnProperty(A, P, Desc).

9.4.2.2 ArrayCreate (length [, proto])

The abstract operation ArrayCreate with argument length (either 0 or a positive integer) and optional argument proto is

used to specify the creation of new Array exotic objects. It performs the following steps:

. Assert: length is an integer Number > 0.
. If length is -0, set length to +0.

. If length > 232 -1, throw a RangeError exception.

1
2
3
4. If proto is not present, set proto to the intrinsic object %ArrayPrototype%.
5. Let A be a newly created Array exotic object.
6. Set A's essential internal methods except for [[DefineOwnProperty]] to the default ordinary object definitions
specified in 9.1.
7. Set A.[[DefineOwnProperty]] as specified in 9.4.2.1.
8. Set A.[[Prototype]] to proto.
9. Set A.[[Extensible]] to true.
10. Perform ! OrdinaryDefineOwnProperty(A, "length", PropertyDescriptor { [[Value]]: length, [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: false }).

11. Return A.

9.4.2.3 ArraySpeciesCreate (originalArray, length)

The abstract operation ArraySpeciesCreate with arguments originalArray and length is used to specify the creation of a

new Array object using a constructor function that is derived from originalArray. It performs the following steps:

Assert: length is an integer Number > 0.

If length is -0, set length to +0.

Let isArray be ? IsArray(originalArray).

If isArray is false, return ? ArrayCreate(length).
Let C be ? Get(originalArray, "constructor").

SR o

If IsConstructor(C) is true, then
a. Let thisRealm be the current Realm Record.
b. Let realmC be ? GetFunctionRealm(C).
c. If thisRealm and realmC are not the same Realm Record, then
i. If SameValue(C, realmC.[[Intrinsics]].[[%Array%]]) is true, set C to undefined.
7. If Type(C) is Object, then
a. Set Cto ? Get(C, @@species).
b. If C is null, set C to undefined.
8. If C is undefined, return ? ArrayCreate(length).
9. If IsConstructor(C) is false, throw a TypeError exception.
10. Return ? Construct(C, « length »).

NOTE
If originalArray was created using the standard built-in Array constructor for a realm that is not the realm of the running
execution context, then a new Array is created using the realm of the running execution context. This maintains

compatibility with Web browsers that have historically had that behaviour for the Array.prototype methods that now are

130 © Ecma International 2019

defined using ArraySpeciesCreate.

9.4.2.4 ArraySetLength (A, Desc)

When the abstract operation ArraySetLength is called with an Array exotic object A, and Property Descriptor Desc, the
following steps are taken:

1. If Desc.[[Value]] is absent, then
a. Return OrdinaryDefineOwnProperty(4, "length", Desc).
Let newLenDesc be a copy of Desc.
Let newLen be ? ToUint32(Desc.[[Valuel]]).
Let numberLen be ? ToNumber(Desc.[[Value]]).
If newLen # numberLen, throw a RangeError exception.
Set newLenDesc.[[Value]] to newLen.
Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").

SR R o

Assert: oldLenDesc will never be undefined or an accessor descriptor because Array objects are created with a
length data property that cannot be deleted or reconfigured.
9. Let oldLen be oldLenDesc.[[Value]].
10. If newLen > oldLen, then
a. Return OrdinaryDefineOwnProperty(A, "length", newLenDesc).
11. If oldLenDesc.[[Writable]] is false, return false.
12. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
13. Else,
a. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
b. Let newWritable be false.
c. Set newLenDesc.[[Writable]] to true.
14. Let succeeded be ! OrdinaryDefineOwnProperty(A, "length", newlLenDesc).
15. If succeeded is false, return false.
16. Repeat, while newLen < oldLen,
a. Decrease oldLen by 1.
b. Let deleteSucceeded be ! A.[[Delete]](! ToString(oldLen)).
c. If deleteSucceeded is false, then
i. Set newLenDesc.[[Value]] to oldLen + 1.
ii. If newWritable is false, set newLenDesc.[[Writable]] to false.
iii. Perform ! OrdinaryDefineOwnProperty(A, "length", newLenDesc).
iv. Return false.
17. If newWritable is false, then
a. Return OrdinaryDefineOwnProperty(A, "length", PropertyDescriptor { [[Writable]]: false }). This call will
always return true.

18. Return true.

NOTE
In steps 3 and 4, if Desc.[[Value]] is an object then its valueO£ method is called twice. This is legacy behaviour that

2I1d

was specified with this effect starting with the Edition of this specification.

9.4.3 String Exotic Objects

© Ecma International 2019 131

A String object is an exotic object that encapsulates a String value and exposes virtual integer-indexed data properties
corresponding to the individual code unit elements of the String value. String exotic objects always have a data property
named "length" whose value is the number of code unit elements in the encapsulated String value. Both the code unit

data properties and the "1length" property are non-writable and non-configurable.
String exotic objects have the same internal slots as ordinary objects. They also have a [[StringData]] internal slot.

String exotic objects provide alternative definitions for the following internal methods. All of the other String exotic

object essential internal methods that are not defined below are as specified in 9.1.

9.4.3.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of a String exotic object S is called with property key P, the following
steps are taken:

Assert: IsPropertyKey(P) is true.

Let desc be OrdinaryGetOwnProperty(S, P).
If desc is not undefined, return desc.
Return ! StringGetOwnProperty(S, P).

A

9.4.3.2 [[DefineOwnPropertyl] (P, Desc)

When the [[DefineOwnProperty]] internal method of a String exotic object S is called with property key P, and Property
Descriptor Desc, the following steps are taken:

—_

. Assert: IsPropertyKey(P) is true.

N

Let stringDesc be ! StringGetOwnProperty(S, P).

w

If stringDesc is not undefined, then

a. Let extensible be S.[[Extensible]].

b. Return ! IsCompatiblePropertyDescriptor(extensible, Desc, stringDesc).
4. Return ! OrdinaryDefineOwnProperty(S, P, Desc).

9.4.3.3 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of a String exotic object O is called, the following steps are taken:

Let keys be a new empty List.

Let str be O.[[StringData]].

Assert: Type(str) is String.

Let len be the length of str.

For each integer i starting with 0 such that i < [en, in ascending order, do

ik =

a. Add ! ToString(i) as the last element of keys.
6. For each own property key P of O such that P is an array index and ToInteger(P) > len, in ascending numeric index
order, do
a. Add P as the last element of keys.
7. For each own property key P of O such that Type(P) is String and P is not an array index, in ascending
chronological order of property creation, do
a. Add P as the last element of keys.
8. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property

creation, do

132 © Ecma International 2019

9.

a. Add P as the last element of keys.
Return keys.

9.4.3.4 StringCreate (value, prototype)

The abstract operation StringCreate with arguments value and prototype is used to specify the creation of new String

exotic objects. It performs the following steps:

=
= O

12.

© XNk W

Assert: Type(value) is String.

Let S be a newly created String exotic object.

Set S.[[StringData]] to value.

Set S's essential internal methods to the default ordinary object definitions specified in 9.1.
Set S.[[GetOwnProperty]] as specified in 9.4.3.1.

Set S.[[DefineOwnProperty]] as specified in 9.4.3.2.

Set S.[[OwnPropertyKeys]] as specified in 9.4.3.3.

Set S.[[Prototypel] to prototype.

Set S.[[Extensible]] to true.

Let [ength be the number of code unit elements in value.

Perform ! DefinePropertyOrThrow(S, "length", PropertyDescriptor { [[Value]]: length, [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }).

Return S.

9.4.3.5 StringGetOwnProperty (S, P)

The abstract operation StringGetOwnProperty called with arguments S and P performs the following steps:

_ = =
A

—_
w

© ®° Nk W

Assert: S is an Object that has a [[StringData]] internal slot.
Assert: IsPropertyKey(P) is true.

If Type(P) is not String, return undefined.

Let index be ! CanonicalNumericIndexString(P).

If index is undefined, return undefined.

If IsInteger(index) is false, return undefined.

If index = -0, return undefined.

Let str be S.[[StringData]].

Assert: Type(str) is String.

Let len be the length of str.

If index < 0 or len < index, return undefined.

. Let resultStr be the String value of length 1, containing one code unit from str, specifically the code unit at index

index.
Return a PropertyDescriptor { [[Value]]: resultStr, [[Writable]]: false, [[Enumerable]]: true, [[Configurable]]: false
}.

9.4.4 Arguments Exotic Objects

Most ECMAScript functions make an arguments object available to their code. Depending upon the characteristics of the

function definition, its arguments object is either an ordinary object or an arguments exotic object. An arguments exotic

object is an exotic object whose array index properties map to the formal parameters bindings of an invocation of its

associated ECMAScript function.

© Ecma International 2019 133

Arguments exotic objects have the same internal slots as ordinary objects. They also have a [[ParameterMap]] internal
slot. Ordinary arguments objects also have a [[ParameterMap]] internal slot whose value is always undefined. For
ordinary argument objects the [[ParameterMap]] internal slot is only used by Object.prototype.toString
(19.1.3.6) to identify them as such.

Arguments exotic objects provide alternative definitions for the following internal methods. All of the other arguments
exotic object essential internal methods that are not defined below are as specified in 9.1

NOTE 1
The integer-indexed data properties of an arguments exotic object whose numeric name values are less than the number
of formal parameters of the corresponding function object initially share their values with the corresponding argument
bindings in the function's execution context. This means that changing the property changes the corresponding value of
the argument binding and vice-versa. This correspondence is broken if such a property is deleted and then redefined or if
the property is changed into an accessor property. If the arguments object is an ordinary object, the values of its
properties are simply a copy of the arguments passed to the function and there is no dynamic linkage between the
property values and the formal parameter values.

NOTE 2
The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are
not directly observable from ECMAScript code. An ECMAScript implementation does not need to actually create or use
such objects to implement the specified semantics.

NOTE 3
Ordinary arguments objects define a non-configurable accessor property named "callee" which throws a TypeError
exception on access. The "callee" property has a more specific meaning for arguments exotic objects, which are
created only for some class of non-strict functions. The definition of this property in the ordinary variant exists to ensure
that it is not defined in any other manner by conforming ECMAScript implementations.

NOTE 4
ECMAScript implementations of arguments exotic objects have historically contained an accessor property named
"caller". Prior to ECMAScript 2017, this specification included the definition of a throwing "callexr" property on
ordinary arguments objects. Since implementations do not contain this extension any longer, ECMAScript 2017 dropped

the requirement for a throwing "caller" accessor.

9.4.4.1 [[GetOwnProperty]] (P)

The [[GetOwnProperty]] internal method of an arguments exotic object when called with a property key P performs the
following steps:

Let args be the arguments object.

Let desc be OrdinaryGetOwnProperty(args, P).
If desc is undefined, return desc.

Let map be args.[[ParameterMap]].

Let isMapped be ! HasOwnProperty(map, P).

S T e

If isMapped is true, then
a. Set desc.[[Value]] to Get(map, P).
7. Return desc.

9.4.4.2 [[DefineOwnPropertyl] (P, Desc)

134 © Ecma International 2019

The [[DefineOwnProperty]] internal method of an arguments exotic object when called with a property key P and

Property Descriptor Desc performs the following steps:

Let args be the arguments object.

Let map be args.[[ParameterMap]].

Let isMapped be HasOwnProperty(map, P).
Let newArgDesc be Desc.

A

If isMapped is true and IsDataDescriptor(Desc) is true, then
a. If Desc.[[Value]] is not present and Desc.[[WTritable]] is present and its value is false, then
i. Set newArgDesc to a copy of Desc.
ii. Set newArgDesc.[[Value]] to Get(map, P).
6. Let allowed be ? OrdinaryDefineOwnProperty(args, P, newArgDesc).
7. If allowed is false, return false.
8. If isMapped is true, then
a. If IsAccessorDescriptor(Desc) is true, then
i. Call map.[[Delete]](P).
b. Else,
i. If Desc.[[Value]] is present, then
1. Let setStatus be Set(map, P, Desc.[[Value]], false).
2. Assert: setStatus is true because formal parameters mapped by argument objects are always
writable.
ii. If Desc.[[Writable]] is present and its value is false, then
1. Call map.[[Delete]](P).

9. Return true.

9.4.4.3 [[Get]] (P, Receiver)

The [[Get]] internal method of an arguments exotic object when called with a property key P and ECMAScript language

value Receiver performs the following steps:

Let args be the arguments object.
Let map be args.[[ParameterMap]].
Let isMapped be ! HasOwnProperty(map, P).

L

If isMapped is false, then

a. Return ? OrdinaryGet(args, P, Receiver).
5. Else map contains a formal parameter mapping for P,
a. Return Get(map, P).

9.4.4.4 [[Set]] (P, V, Receiver)

The [[Set]] internal method of an arguments exotic object when called with property key P, value V, and ECMA Script
language value Receiver performs the following steps:

1. Let args be the arguments object.
2. If SameValue(args, Receiver) is false, then
a. Let isMapped be false.
3. Else,
a. Let map be args.[[ParameterMap]].
b. Let isMapped be ! HasOwnProperty(map, P).

© Ecma International 2019 135

4.

5.

If isMapped is true, then

a. Let setStatus be Set(map, P, V, false).

b. Assert: setStatus is true because formal parameters mapped by argument objects are always writable.
Return ? OrdinarySet(args, P, V, Receiver).

9.4.4.5 [[Delete]] (P)

The [[Delete]] internal method of an arguments exotic object when called with a property key P performs the following

steps:

i e

o

Let args be the arguments object.

Let map be args.[[ParameterMap]].

Let isMapped be ! HasOwnProperty(map, P).

Let result be ? OrdinaryDelete(args, P).

If result is true and isMapped is true, then
a. Call map.[[Delete]](P).

Return result.

9.4.4.6 CreateUnmappedArgumentsObject (argumentsList)

The abstract operation CreateUnmappedArgumentsObject called with an argument argumentsList performs the following

steps:

Ll

Let len be the number of elements in argumentsList.

Let obj be ObjectCreate(%ObjectPrototype%, « [[ParameterMap]] »).

Set obj.[[ParameterMap]] to undefined.

Perform DefinePropertyOrThrow(obj, "l1ength", PropertyDescriptor { [[Value]]: len, [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: true }).

5. Let index be 0.

6. Repeat, while index < len,

a. Let val be argumentsList[index].

b. Perform CreateDataProperty(obj, ! ToString(index), val).

c. Increase index by 1.
Perform ! DefinePropertyOrThrow(obj, @ @iterator, PropertyDescriptor { [[Value]]: %ArrayProto_values%,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }).
Perform ! DefinePropertyOrThrow(obj, "callee", PropertyDescriptor { [[Get]]: %ThrowTypeError%, [[Set]]:
%ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]: false }).
Return obj.

9.4.4.7 CreateMappedArgumentsObject (func, formals, argumentsList, env)

The abstract operation CreateMappedArgumentsObject is called with object func, Parse Node formals, List

argumentsList, and Environment Record env. The following steps are performed:

1.

S

Assert: formals does not contain a rest parameter, any binding patterns, or any initializers. It may contain duplicate
identifiers.

Let len be the number of elements in argumentsList.

Let obj be a newly created arguments exotic object with a [[ParameterMap]] internal slot.

Set obj.[[GetOwnProperty]] as specified in 9.4.4.1.

Set obj.[[DefineOwnProperty]] as specified in 9.4.4.2.

136 © Ecma International 2019

S

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.

20.
21.

22.

23.

24.

Set obj.[[Get]] as specified in 9.4.4.3.
Set obj.[[Set]] as specified in 9.4.4.4.
Set obj.[[Delete]] as specified in 9.4.4.5.
Set the remainder of obj's essential internal methods to the default ordinary object definitions specified in 9.1.
Set obj.[[Prototype]] to %ObjectPrototype%.
Set obj.[[Extensible]] to true.
Let map be ObjectCreate(null).
Set obj.[[ParameterMap]] to map.
Let parameterNames be the BoundNames of formals.
Let numberOfParameters be the number of elements in parameterNames.
Let index be 0.
Repeat, while index < len,
a. Let val be argumentsList[index].
b. Perform CreateDataProperty(obj, ! ToString(index), val).
c. Increase index by 1.
Perform DefinePropertyOrThrow(obj, "length", PropertyDescriptor { [[Value]]: len, [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: true }).
Let mappedNames be a new empty List.
Let index be numberOfParameters - 1.
Repeat, while index > 0,
a. Let name be parameterNames[index].
b. If name is not an element of mappedNames, then
i. Add name as an element of the list mappedNames.
ii. If index < len, then
1. Let g be MakeArgGetter(name, env).
2. Let p be MakeArgSetter(name, env).
3. Perform map.[[DefineOwnProperty]](! ToString(index), PropertyDescriptor { [[Set]]: p, [[Get]]: g,
[[Enumerable]]: false, [[Configurable]]: true }).
c. Decrease index by 1.
Perform ! DefinePropertyOrThrow(obj, @ @iterator, PropertyDescriptor { [[Value]]: %ArrayProto_values%,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }).
Perform ! DefinePropertyOrThrow(obj, "callee", PropertyDescriptor { [[Value]l: func, [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: true }).
Return obj.

9.4.4.7.1 MakeArgGetter (name, env)

The abstract operation MakeArgGetter called with String name and Environment Record env creates a built-in function

object that when executed returns the value bound for name in env. It performs the following steps:

ik =

Let steps be the steps of an ArgGetter function as specified below.
Let getter be CreateBuiltinFunction(steps, « [[Name]], [[Env]] »).
Set getter.[[Name]] to name.

Set getter.[[Env]] to env.

Return getter.

An ArgGetter function is an anonymous built-in function with [[Name]] and [[Env]] internal slots. When an ArgGetter

function that expects no arguments is called it performs the following steps:

© Ecma International 2019 137

Let f be the active function object.
Let name be f.[[Name]].
Let env be f.[[Env]].

Return env.GetBindingValue(name, false).

L

NOTE

ArgGetter functions are never directly accessible to ECMAScript code.

9.4.4.7.2 MakeArgSetter (name, env)

The abstract operation MakeArgSetter called with String name and Environment Record env creates a built-in function

object that when executed sets the value bound for name in env. It performs the following steps:

Let steps be the steps of an ArgSetter function as specified below.
Let setter be CreateBuiltinFunction(steps, « [[Name]], [[Env]] »).
Set setter.[[Name]] to name.

Set setter.[[Env]] to env.

ik =

Return setter.

An ArgSetter function is an anonymous built-in function with [[Name]] and [[Env]] internal slots. When an ArgSetter
function is called with argument value it performs the following steps:

Let f be the active function object.

Let name be f.[[Name]].

Let env be f.[[Env]].

Return env.SetMutableBinding(name, value, false).

A bhe

NOTE

ArgSetter functions are never directly accessible to ECMAScript code.

9.4.5 Integer-Indexed Exotic Objects

An Integer-Indexed exotic object is an exotic object that performs special handling of integer index property keys.

Integer-Indexed exotic objects have the same internal slots as ordinary objects and additionally [[ViewedArrayBuffer]],
[[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]] internal slots.

Integer-Indexed exotic objects provide alternative definitions for the following internal methods. All of the other Integer-
Indexed exotic object essential internal methods that are not defined below are as specified in 9.1.

9.4.5.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an Integer-Indexed exotic object O is called with property key P, the
following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then

a. Let numericIndex be ! CanonicalNumericIndexString(P).

138 © Ecma International 2019

b. If numericindex is not undefined, then
i. Let value be ? IntegerIndexedElementGet(O, numericIndex).
ii. If value is undefined, return undefined.
iii. Return a PropertyDescriptor { [[Value]]: value, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: false }.
4. Return OrdinaryGetOwnProperty(O, P).

9.4.5.2 [[HasProperty]] (P)

When the [[HasProperty]] internal method of an Integer-Indexed exotic object O is called with property key P, the

following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then
a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericIndex is not undefined, then
i. Let buffer be O.[[ViewedArrayBuffer]].
ii. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
iii. If IsInteger(numericIndex) is false, return false.
iv. If numericIndex = -0, return false.
v. If numericIndex < 0, return false.
vi. If numericindex > O.[[ArrayLength]], return false.
vii. Return true.
4. Return ? OrdinaryHasProperty(O, P).

9.4.5.3 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an Integer-Indexed exotic object O is called with property key P,

and Property Descriptor Desc, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then
a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericIndex is not undefined, then
i. If IsInteger(numericindex) is false, return false.
ii. If numericIndex = -0, return false.
iii. If numericindex < 0, return false.
iv. Let length be O.[[ArrayLength]].
v. If numericIndex > length, return false.
vi. If IsAccessorDescriptor(Desc) is true, return false.
vii. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is true, return false.
viii. If Desc has an [[Enumerable]] field and if Desc.[[Enumerable]] is false, return false.
ix. If Desc has a [[Writable]] field and if Desc.[[Writable]] is false, return false.
x. If Desc has a [[Value]] field, then
1. Let value be Desc.[[Value]].
2. Return ? IntegerIndexedElementSet(O, numericlndex, value).

xi. Return true.

© Ecma International 2019 139

4. Return ! OrdinaryDefineOwnProperty(O, P, Desc).

9.4.5.4 [[Get]] (P, Receiver)

When the [[Get]] internal method of an Integer-Indexed exotic object O is called with property key P and ECMAScript
language value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is String, then
a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericIndex is not undefined, then
i. Return ? IntegerIndexedElementGet(O, numericlndex).
3. Return ? OrdinaryGet(O, P, Receiver).

9.4.5.5 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of an Integer-Indexed exotic object O is called with property key P, value V, and
ECMAScript language value Receiver, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is String, then
a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericindex is not undefined, then
i. Return ? IntegerIndexedElementSet(O, numericlndex, V).
3. Return ? OrdinarySet(O, P, V, Receiver).

9.4.5.6 [[OwnPropertyKeysl]] ()

When the [[OwnPropertyKeys]] internal method of an Integer-Indexed exotic object O is called, the following steps are

taken:

1. Let keys be a new empty List.
2. Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]]
internal slots.
3. Let len be O.[[ArrayLength]].
4. For each integer i starting with 0 such that i < len, in ascending order, do
a. Add ! ToString(i) as the last element of keys.
5. For each own property key P of O such that Type(P) is String and P is not an integer index, in ascending
chronological order of property creation, do
a. Add P as the last element of keys.
6. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property
creation, do
a. Add P as the last element of keys.
7. Return keys.

9.4.5.7 IntegerIndexedObjectCreate (prototype, internalSlotsList)

The abstract operation IntegerIndexedObjectCreate with arguments prototype and internalSlotsList is used to specify the
creation of new Integer-Indexed exotic objects. The argument internalSlotsList is a List of the names of additional

internal slots that must be defined as part of the object. IntegerIndexedObjectCreate performs the following steps:

140 © Ecma International 2019

L Nk W

== =
N o~ O

Assert: internalSlotsList contains the names [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayNamel]].

Let A be a newly created object with an internal slot for each name in internalSlotsList.
Set A's essential internal methods to the default ordinary object definitions specified in 9.1.
Set A.[[GetOwnProperty]] as specified in 9.4.5.1.

Set A.[[HasProperty]] as specified in 9.4.5.2.

Set A.[[DefineOwnProperty]] as specified in 9.4.5.3.

Set A.[[Get]] as specified in 9.4.5.4.

Set A.[[Set]] as specified in 9.4.5.5.

Set A.[[OwnPropertyKeys]] as specified in 9.4.5.6.

Set A.[[Prototype]] to prototype.

. Set A.[[Extensible]] to true.
. Return A.

9.4.5.8 IntegerIndexedElementGet (O, index)

The abstract operation IntegerindexedElementGet with arguments O and index performs the following steps:

1. Assert: Type(index) is Number.

N

L XN kW

10.
11.
12.
13.
14.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]]
internal slots.

Let buffer be O.[[ViewedArrayBuffer]].

If IsDetachedBuffer(buffer) is true, throw a TypeError exception.

If IsInteger(index) is false, return undefined.

If index = -0, return undefined.

Let length be O.[[ArrayLength]].

If index < 0 or index > length, return undefined.

Let offset be O.[[ByteOffset]].

Let arrayTypeName be the String value of O.[[TypedArrayName]].

Let elementSize be the Number value of the Element Size value specified in Table 59 for arrayTypeName.
Let indexedPosition be (index x elementSize) + offset.

Let elementType be the String value of the Element Type value in Table 59 for arrayTypeName.

Return GetValueFromBuffer(buffer, indexedPosition, elementType, true, "Unordered").

9.4.5.9 IntegerIndexedElementSet (O, index, value)

The abstract operation IntegerIndexedElementSet with arguments O, index, and value performs the following steps:

1. Assert: Type(index) is Number.

N

L N kW

10.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]]
internal slots.

Let numValue be ? ToNumber(value).

Let buffer be O.[[ViewedArrayBuffer]].

If IsDetachedBuffer(buffer) is true, throw a TypeError exception.

If IsInteger(index) is false, return false.

If index = -0, return false.

Let length be O.[[ArrayLength]].

If index < 0 or index > length, return false.

Let offset be O.[[ByteOffset]].

© Ecma International 2019 141

11. Let arrayTypeName be the String value of O.[[TypedArrayName]].

12. Let elementSize be the Number value of the Element Size value specified in Table 59 for arrayTypeName.
13. Let indexedPosition be (index x elementSize) + offset.

14. Let elementType be the String value of the Element Type value in Table 59 for arrayTypeName.

15. Perform SetValuelnBuffer(buffer, indexedPosition, elementType, numValue, true, "Unordered").

16. Return true.

9.4.6 Module Namespace Exotic Objects

A module namespace object is an exotic object that exposes the bindings exported from an ECMAScript Module (See
15.2.3). There is a one-to-one correspondence between the String-keyed own properties of a module namespace exotic
object and the binding names exported by the Module. The exported bindings include any bindings that are indirectly
exported using export * export items. Each String-valued own property key is the StringValue of the corresponding
exported binding name. These are the only String-keyed properties of a module namespace exotic object. Each such
property has the attributes { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: false }. Module namespace
objects are not extensible.

Module namespace objects have the internal slots defined in Table 29.

Table 29: Internal Slots of Module Namespace Exotic Objects

Internal Type Description
Slot

[[Module]] Module The Module Record whose exports this namespace exposes.
Record

[[Exports]] List of A List containing the String values of the exported names exposed as own properties of this
String object. The list is ordered as if an Array of those String values had been sorted using

Array.prototype. sort using undefined as comparefn.

[[Prototype]] Null This slot always contains the value null (see 9.4.6.1).

Module namespace exotic objects provide alternative definitions for all of the internal methods except
[[GetPrototypeOf]], which behaves as defined in 9.1.1.

9.4.6.1 [[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of a module namespace exotic object O is called with argument V, the
following steps are taken:

1. Return ? SetlmmutablePrototype(O, V).

9.4.6.2 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of a module namespace exotic object O is called, the following steps are
taken:

1. Return false.

142 © Ecma International 2019

9.4.6.3 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of a module namespace exotic object O is called, the following steps are

taken:

1.

Return true.

9.4.6.4 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of a module namespace exotic object O is called with property key P, the

following steps are taken:

ik =

If Type(P) is Symbol, return OrdinaryGetOwnProperty(O, P).

Let exports be O.[[Exports]].

If P is not an element of exports, return undefined.

Let value be ? O.[[Get]](P, O).

Return PropertyDescriptor { [[Value]]: value, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: false }.

9.4.6.5 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of a module namespace exotic object O is called with property key P

and Property Descriptor Desc, the following steps are taken:

L Nk W

If Type(P) is Symbol, return OrdinaryDefineOwnProperty(O, P, Desc).

Let current be ? O.[[GetOwnProperty]](P).

If current is undefined, return false.

If IsAccessorDescriptor(Desc) is true, return false.

If Desc.[[Writable]] is present and has value false, return false.

If Desc.[[Enumerable]] is present and has value false, return false.

If Desc.[[Configurable]] is present and has value true, return false.

If Desc.[[Value]] is present, return SameValue(Desc.[[Value]], current.[[Value]]).

Return true.

9.4.6.6 [[HasProperty]] (P)

When the [[HasProperty]] internal method of a module namespace exotic object O is called with property key P, the

following steps are taken:

A=

If Type(P) is Symbol, return OrdinaryHasProperty(O, P).
Let exports be O.[[Exports]].

If P is an element of exports, return true.

Return false.

9.4.6.7 [[Get]] (P, Receiver)

When the [[Get]] internal method of a module namespace exotic object O is called with property key P and ECMA Script

language value Receiver, the following steps are taken:

1.
2.

Assert: IsPropertyKey(P) is true.
If Type(P) is Symbol, then
a. Return ? OrdinaryGet(O, P, Receiver).

© Ecma International 2019 143

Let exports be O.[[Exports]].

If P is not an element of exports, return undefined.
Let m be O.[[Module]].

Let binding be ! m.ResolveExport(P, « »).

Assert: binding is a ResolvedBinding Record.

Let targetModule be binding.[[Module]].

Assert: targetModule is not undefined.

L XN kW

10. Let targetEnv be targetModule.[[Environment]].

11. If targetEnv is undefined, throw a ReferenceError exception.

12. Let targetEnvRec be targetEnv's EnvironmentRecord.

13. Return ? targetEnvRec.GetBindingValue(binding.[[BindingName]], true).

NOTE
ResolveExport is idempotent and side-effect free. An implementation might choose to pre-compute or cache the

ResolveExport results for the [[Exports]] of each module namespace exotic object.

9.4.6.8 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of a module namespace exotic object O is called with property key P, value V, and
ECMAScript language value Receiver, the following steps are taken:

1. Return false.

9.4.6.9 [[Delete]] (P)

When the [[Delete]] internal method of a module namespace exotic object O is called with property key P, the following
steps are taken:

—_

. Assert: IsPropertyKey(P) is true.
If Type(P) is Symbol, then

a. Return ? OrdinaryDelete(O, P).
. Let exports be O.[[Exports]].

If P is an element of exports, return false.

N

Uos W

. Return true.

9.4.6.10 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of a module namespace exotic object O is called, the following steps are
taken:

Let exports be a copy of O.[[Exports]].
Let symbolKeys be ! OrdinaryOwnPropertyKeys(O).
Append all the entries of symbolKeys to the end of exports.

A

Return exports.

9.4.6.11 ModuleNamespaceCreate (module, exports)

The abstract operation ModuleNamespaceCreate with arguments module, and exports is used to specify the creation of

new module namespace exotic objects. It performs the following steps:

144 © Ecma International 2019

Assert: module is a Module Record.

Assert: module.[[Namespace]] is undefined.

Assert: exports is a List of String values.

Let M be a newly created object.

Set M's essential internal methods to the definitions specified in 9.4.6.

Set M.[[Module]] to module.

Let sortedExports be a new List containing the same values as the list exports where the values are ordered as if an

Nk wNh e

Array of the same values had been sorted using Array . prototype. sort using undefined as comparefn.
8. Set M.[[Exports]] to sortedExports.
9. Create own properties of M corresponding to the definitions in 26.3.
10. Set module.[[Namespace]] to M.
11. Return M.

9.4.7 Immutable Prototype Exotic Objects
An immutable prototype exotic object is an exotic object that has a [[Prototype]] internal slot that will not change once it
is initialized.

Immutable prototype exotic objects have the same internal slots as ordinary objects. They are exotic only in the following
internal methods. All other internal methods of immutable prototype exotic objects that are not explicitly defined below

are instead defined as in ordinary objects.

9.4.7.1 [[SetPrototypeOf]] (V')

When the [[SetPrototypeOf]] internal method of an immutable prototype exotic object O is called with argument V, the

following steps are taken:

1. Return ? SetImmutablePrototype(O, V).

9.4.7.2 SetimmutablePrototype (O, V)

When the SetlmmutablePrototype abstract operation is called with arguments O and V, the following steps are taken:

Assert: Either Type(V) is Object or Type(V) is Null.
Let current be ? O.[[GetPrototypeOf]]().

If SameValue(V, current) is true, return true.

M w =

Return false.

9.5 Proxy Object Internal Methods and Internal Slots

A proxy object is an exotic object whose essential internal methods are partially implemented using ECMAScript code.
Every proxy object has an internal slot called [[ProxyHandler]]. The value of [[ProxyHandler]] is an object, called the
proxy's handler object, or null. Methods (see Table 30) of a handler object may be used to augment the implementation
for one or more of the proxy object's internal methods. Every proxy object also has an internal slot called [[ProxyTarget]]
whose value is either an object or the null value. This object is called the proxy's target object.

Table 30: Proxy Handler Methods
Internal Method Handler Method

© Ecma International 2019 145

[[GetPrototypeOf]] getPrototypeOf
[[SetPrototypeOf]] setPrototypeOf
[[IsExtensible]] isExtensible
[[PreventExtensions]] preventExtensions
[[GetOwnProperty]] getOwnPropertyDescriptor

[[DefineOwnProperty]] defineProperty

[[HasProperty]] has
[[Getl] get
[[Setl] set
[[Delete]] deleteProperty

[[OwnPropertyKeys]] ownKeys

[[Call]] apply

[[Construct]] construct

When a handler method is called to provide the implementation of a proxy object internal method, the handler method is
passed the proxy's target object as a parameter. A proxy's handler object does not necessarily have a method
corresponding to every essential internal method. Invoking an internal method on the proxy results in the invocation of
the corresponding internal method on the proxy's target object if the handler object does not have a method

corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal slots of a proxy object are always initialized when the object is
created and typically may not be modified. Some proxy objects are created in a manner that permits them to be
subsequently revoked. When a proxy is revoked, its [[ProxyHandler]] and [[ProxyTarget]] internal slots are set to null

causing subsequent invocations of internal methods on that proxy object to throw a TypeError exception.

Because proxy objects permit the implementation of internal methods to be provided by arbitrary ECMAScript code, it is
possible to define a proxy object whose handler methods violates the invariants defined in 6.1.7.3. Some of the internal
method invariants defined in 6.1.7.3 are essential integrity invariants. These invariants are explicitly enforced by the
proxy object internal methods specified in this section. An ECMAScript implementation must be robust in the presence
of all possible invariant violations.

In the following algorithm descriptions, assume O is an ECMAScript proxy object, P is a property key value, V is any
ECMAScript language value and Desc is a Property Descriptor record.

9.5.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of a Proxy exotic object O is called, the following steps are taken:

1. Let handler be O.[[ProxyHandler]].
2. If handler is null, throw a TypeError exception.
3. Assert: Type(handler) is Object.

146 © Ecma International 2019

4. Let target be O.[[ProxyTarget]].
5. Let trap be ? GetMethod(handler, "getPrototypeOf").

6. If trap is undefined, then

a. Return ? target.[[GetPrototypeOf]]().
Let handlerProto be ? Call(trap, handler, « target »).

. If Type(handlerProto) is neither Object nor Null, throw a TypeError exception.

9.
10.
11.
12.
13.

Let extensibleTarget be ? IsExtensible(target).

If extensibleTarget is true, return handlerProto.

Let targetProto be ? target.[[GetPrototypeOf]]().

If SameValue(handlerProto, targetProto) is false, throw a TypeError exception.
Return handlerProto.

NOTE
[[GetPrototypeOf]] for proxy objects enforces the following invariants:

The result of [[GetPrototypeOf]] must be either an Object or null.
If the target object is not extensible, [[GetPrototypeOf]] applied to the proxy object must return the same value as
[[GetPrototypeOf]] applied to the proxy object's target object.

9.5.2 [[SetPrototypeOf]] (V')

When the [[SetPrototypeOf]] internal method of a Proxy exotic object O is called with argument V, the following steps

are taken:

Nk W=

Assert: Either Type(V) is Object or Type(V) is Null.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod(handler, "setPrototypeOf").
If trap is undefined, then
a. Return ? target.[[SetPrototypeOf]](V).

8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target, V »)).

9.
10.
11.
12.
13.
14.

If booleanTrapResult is false, return false.

Let extensibleTarget be ? IsExtensible(target).

If extensibleTarget is true, return true.

Let targetProto be ? target.[[GetPrototypeOf]]().

If SameValue(V, targetProto) is false, throw a TypeError exception.
Return true.

NOTE
[[SetPrototypeOf]] for proxy objects enforces the following invariants:

The result of [[SetPrototypeOf]] is a Boolean value.
If the target object is not extensible, the argument value must be the same as the result of [[GetPrototypeOf]]
applied to target object.

© Ecma International 2019 147

9.5.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of a Proxy exotic object O is called, the following steps are taken:

Let handler be O.[[ProxyHandler]].

If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be O.[[ProxyTarget]].

Let trap be ? GetMethod(handler, "isExtensible").

S o

If trap is undefined, then
a. Return ? target.[[IsExtensible]]().
7. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target »)).
8. Let targetResult be ? target.[[IsExtensible]]().
9. If SameValue(booleanTrapResult, targetResult) is false, throw a TypeError exception.
10. Return booleanTrapResult.

NOTE

[[IsExtensible]] for proxy objects enforces the following invariants:

The result of [[IsExtensible]] is a Boolean value.
[[IsExtensible]] applied to the proxy object must return the same value as [[IsExtensible]] applied to the proxy

object's target object with the same argument.

9.5.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of a Proxy exotic object O is called, the following steps are taken:

Let handler be O.[[ProxyHandler]].

If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be O.[[ProxyTarget]].

Let trap be ? GetMethod(handler, "preventExtensions").

SR o

If trap is undefined, then
a. Return ? target.[[PreventExtensions]]().
7. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target »)).
8. If booleanTrapResult is true, then
a. Let targetlsExtensible be ? target.[[IsExtensible]]().
b. If targetIsExtensible is true, throw a TypeError exception.
9. Return booleanTrapResult.

NOTE
[[PreventExtensions]] for proxy objects enforces the following invariants:

The result of [[PreventExtensions]] is a Boolean value.
[[PreventExtensions]] applied to the proxy object only returns true if [[IsExtensible]] applied to the proxy object's

target object is false.

148 © Ecma International 2019

9.5.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of a Proxy exotic object O is called with property key P, the following

steps are taken:

N ok W=

Assert: IsPropertyKey(P) is true.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod(handler, "getOwnPropertyDescriptor").
If trap is undefined, then
a. Return ? target.[[GetOwnProperty]](P).

8. Let trapResultObj be ? Call(trap, handler, « target, P »).
9. If Type(trapResultObj) is neither Object nor Undefined, throw a TypeError exception.

10.
11.

12.
13.
14.
15.
16.
17.

18.

Let targetDesc be ? target.[[GetOwnProperty]]1(P).
If trapResultObj is undefined, then
a. If targetDesc is undefined, return undefined.
b. If targetDesc.[[Configurable]] is false, throw a TypeError exception.
c. Let extensibleTarget be ? IsExtensible(target).
d. If extensibleTarget is false, throw a TypeError exception.
e. Return undefined.
Let extensibleTarget be ? IsExtensible(target).
Let resultDesc be ? ToPropertyDescriptor(trapResultObj).
Call CompletePropertyDescriptor(resultDesc).
Let valid be IsCompatiblePropertyDescriptor(extensibleTarget, resultDesc, targetDesc).
If valid is false, throw a TypeError exception.
If resultDesc.[[Configurable]] is false, then
a. If targetDesc is undefined or targetDesc.[[Configurable]] is true, then
i. Throw a TypeError exception.

Return resultDesc.

NOTE

[[GetOwnProperty]] for proxy objects enforces the following invariants:

The result of [[GetOwnProperty]] must be either an Object or undefined.

A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.

A property cannot be reported as non-existent, if it exists as an own property of the target object and the target
object is not extensible.

A property cannot be reported as existent, if it does not exist as an own property of the target object and the target
object is not extensible.

A property cannot be reported as non-configurable, if it does not exist as an own property of the target object or if it

exists as a configurable own property of the target object.

9.5.6 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of a Proxy exotic object O is called with property key P and Property

Descriptor Desc, the following steps are taken:

© Ecma International 2019 149

N o kb=

Assert: IsPropertyKey(P) is true.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod(handler, "defineProperty").
If trap is undefined, then
a. Return ? target.[[DefineOwnProperty]](P, Desc).

8. Let descObj be FromPropertyDescriptor(Desc).

9. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target, P, descObj »)).

10.
11.
12.
13.

14.

15.

16.

17.

If booleanTrapResult is false, return false.
Let targetDesc be ? target.[[GetOwnProperty]](P).
Let extensibleTarget be ? IsExtensible(target).
If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is false, then
a. Let settingConfigFalse be true.
Else, let settingConfigFalse be false.
If targetDesc is undefined, then
a. If extensibleTarget is false, throw a TypeError exception.
b. If settingConfigFalse is true, throw a TypeError exception.
Else targetDesc is not undefined,
a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc, targetDesc) is false, throw a TypeError
exception.
b. If settingConfigFalse is true and targetDesc.[[Configurable]] is true, throw a TypeError exception.
Return true.

NOTE

[[DefineOwnProperty]] for proxy objects enforces the following invariants:

The result of [[DefineOwnProperty]] is a Boolean value.

A property cannot be added, if the target object is not extensible.

A property cannot be non-configurable, unless there exists a corresponding non-configurable own property of the
target object.

If a property has a corresponding target object property then applying the Property Descriptor of the property to the

target object using [[DefineOwnProperty]] will not throw an exception.

9.5.7 [[HasProperty]] (P)

When the [[HasProperty]] internal method of a Proxy exotic object O is called with property key P, the following steps

are taken:

N ok W=

Assert: IsPropertyKey(P) is true.

Let handler be O.[[ProxyHandler]].

If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.

Let target be O.[[ProxyTarget]].

Let trap be ? GetMethod(handler, "has™).

If trap is undefined, then

150 © Ecma International 2019

8.
9.

10.

a. Return ? target.[[HasProperty]](P).
Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target, P »)).
If booleanTrapResult is false, then
a. Let targetDesc be ? target.[[GetOwnProperty]](P).
b. If targetDesc is not undefined, then
i. If targetDesc.[[Configurable]] is false, throw a TypeError exception.
ii. Let extensibleTarget be ? IsExtensible(target).
iii. If extensibleTarget is false, throw a TypeError exception.
Return booleanTrapResult.

NOTE
[[HasProperty]] for proxy objects enforces the following invariants:

The result of [[HasProperty]] is a Boolean value.
A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
A property cannot be reported as non-existent, if it exists as an own property of the target object and the target

object is not extensible.

9.5.8 [[Get]] (P, Receiver)

When the [[Get]] internal method of a Proxy exotic object O is called with property key P and ECMAScript language

value Receiver, the following steps are taken:

N ok W=

Assert: IsPropertyKey(P) is true.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod(handler, "get").
If trap is undefined, then
a. Return ? target.[[Get]](P, Receiver).

8. Let trapResult be ? Call(trap, handler, « target, P, Receiver »).

10.

11.

Let targetDesc be ? target.[[GetOwnProperty]](P).
If targetDesc is not undefined and targetDesc.[[Configurable]] is false, then
a. If IsDataDescriptor(targetDesc) is true and targetDesc.[[Writable]] is false, then
i. If SameValue(trapResult, targetDesc.[[Value]]) is false, throw a TypeError exception.
b. If IsAccessorDescriptor(targetDesc) is true and targetDesc.[[Get]] is undefined, then
i. If trapResult is not undefined, throw a TypeError exception.

Return trapResult.

NOTE
[[Get]] for proxy objects enforces the following invariants:

The value reported for a property must be the same as the value of the corresponding target object property if the
target object property is a non-writable, non-configurable own data property.
The value reported for a property must be undefined if the corresponding target object property is a non-

configurable own accessor property that has undefined as its [[Get]] attribute.

© Ecma International 2019 151

9.5.9 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of a Proxy exotic object O is called with property key P, value V, and ECMAScript

language value Receiver, the following steps are taken:

Assert: IsPropertyKey(P) is true.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod(handler, "set™).
If trap is undefined, then
a. Return ? target.[[Set]](P, V, Receiver).
Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target, P, V, Receiver »)).

N ok W=

© @

. If booleanTrapResult is false, return false.
10. Let targetDesc be ? target.[[GetOwnProperty]](P).
11. If targetDesc is not undefined and targetDesc.[[Configurable]] is false, then
a. If IsDataDescriptor(targetDesc) is true and targetDesc.[[Writable]] is false, then
i. If SameValue(V, targetDesc.[[Value]]) is false, throw a TypeError exception.
b. If IsAccessorDescriptor(targetDesc) is true, then
i. If targetDesc.[[Set]] is undefined, throw a TypeError exception.
12. Return true.

NOTE

[[Set]] for proxy objects enforces the following invariants:

The result of [[Set]] is a Boolean value.

Cannot change the value of a property to be different from the value of the corresponding target object property if
the corresponding target object property is a non-writable, non-configurable own data property.

Cannot set the value of a property if the corresponding target object property is a non-configurable own accessor
property that has undefined as its [[Set]] attribute.

9.5.10 [[Delete]] (P)

When the [[Delete]] internal method of a Proxy exotic object O is called with property key P, the following steps are
taken:

Assert: IsPropertyKey(P) is true.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod(handler, "deleteProperty").
If trap is undefined, then
a. Return ? target.[[Delete]](P).

N ok W=

152 © Ecma International 2019

8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, « target, P »)).
9. If booleanTrapResult is false, return false.

10. Let targetDesc be ? target.[[GetOwnProperty]](P).

11. If targetDesc is undefined, return true.

12. If targetDesc.[[Configurable]] is false, throw a TypeError exception.

13. Return true.

NOTE

[[Delete]] for proxy objects enforces the following invariants:

The result of [[Delete]] is a Boolean value.

A property cannot be reported as deleted, if it exists as a non-configurable own property of the target object.

9.5.11 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of a Proxy exotic object O is called, the following steps are taken:

Let handler be O.[[ProxyHandler]].

If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.

Let target be O.[[ProxyTarget]].

Let trap be ? GetMethod(handler, "ownKeys").

SR o

If trap is undefined, then
a. Return ? target.[[OwnPropertyKeys]]().
7. Let trapResultArray be ? Call(trap, handler, « target »).
8. Let trapResult be ? CreateListFromArrayLike(trapResultArray, « String, Symbol »).
9. If trapResult contains any duplicate entries, throw a TypeError exception.
10. Let extensibleTarget be ? IsExtensible(target).
11. Let targetKeys be ? target.[[OwnPropertyKeys]]().
12. Assert: targetKeys is a List containing only String and Symbol values.
13. Assert: targetKeys contains no duplicate entries.
14. Let targetConfigurableKeys be a new empty List.
15. Let targetNonconfigurableKeys be a new empty List.
16. For each element key of targetKeys, do
a. Let desc be ? target.[[GetOwnProperty]](key).
b. If desc is not undefined and desc.[[Configurable]] is false, then
i. Append key as an element of targetNonconfigurableKeys.
c. Else,
i. Append key as an element of targetConfigurableKeys.
17. If extensibleTarget is true and targetNonconfigurableKeys is empty, then
a. Return trapResult.
18. Let uncheckedResultKeys be a new List which is a copy of trapResult.
19. For each key that is an element of targetNonconfigurableKeys, do
a. If key is not an element of uncheckedResultKeys, throw a TypeError exception.
b. Remove key from uncheckedResultKeys.
20. If extensibleTarget is true, return trapResult.
21. For each key that is an element of targetConfigurableKeys, do

© Ecma International 2019 153

22.
23.

a. If key is not an element of uncheckedResultKeys, throw a TypeError exception.
b. Remove key from uncheckedResultKeys.

If uncheckedResultKeys is not empty, throw a TypeError exception.

Return trapResult.

NOTE

[[OwnPropertyKeys]] for proxy objects enforces the following invariants:

The result of [[OwnPropertyKeys]] is a List.

The returned List contains no duplicate entries.

The Type of each result List element is either String or Symbol.

The result List must contain the keys of all non-configurable own properties of the target object.

If the target object is not extensible, then the result List must contain all the keys of the own properties of the target

object and no other values.

9.5.12 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method of a Proxy exotic object O is called with parameters thisArgument and argumentsList, a List

of ECMAScript language values. The following steps are taken:

SR

Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod(handler, "apply").
If trap is undefined, then
a. Return ? Call(target, thisArgument, argumentsList).

7. Let argArray be CreateArrayFromList(argumentsList).

Return ? Call(trap, handler, « target, thisArgument, argArray »).

NOTE
A Proxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]] internal slot is an
object that has a [[Call]] internal method.

9.5.13 [[Construct]] (argumentsList, newTarget)

The [[Construct]] internal method of a Proxy exotic object O is called with parameters argumentsList which is a possibly

empty List of ECMAScript language values and newTarget. The following steps are taken:

N ok W=

Let handler be O.[[ProxyHandler]].

If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.

Let target be O.[[ProxyTarget]].

Assert: IsConstructor(target) is true.

Let trap be ? GetMethod(handler, "construct").
If trap is undefined, then

a. Return ? Construct(target, argumentsList, newTarget).

154 © Ecma International 2019

8. Let argArray be CreateArrayFromList(argumentsList).

9. Let newObj be ? Call(trap, handler, « target, argArray, newTarget »).
10. If Type(newObj) is not Object, throw a TypeError exception.
11. Return newObj.

NOTE 1
A Proxy exotic object only has a [[Construct]] internal method if the initial value of its [[ProxyTarget]] internal slot is an
object that has a [[Construct]] internal method.

NOTE 2
[[Construct]] for proxy objects enforces the following invariants:

The result of [[Construct]] must be an Object.

9.5.14 ProxyCreate (target, handler)

The abstract operation ProxyCreate with arguments target and handler is used to specify the creation of new Proxy
exotic objects. It performs the following steps:

If Type(target) is not Object, throw a TypeError exception.
If target is a Proxy exotic object and target.[[ProxyHandler]] is null, throw a TypeError exception.
If Type(handler) is not Object, throw a TypeError exception.
If handler is a Proxy exotic object and handler.[[ProxyHandler]] is null, throw a TypeError exception.
Let P be a newly created object.
Set P's essential internal methods (except for [[Call]] and [[Construct]]) to the definitions specified in 9.5.
If IsCallable(target) is true, then
a. Set P.[[Call]] as specified in 9.5.12.
b. If IsConstructor(target) is true, then
i. Set P.[[Construct]] as specified in 9.5.13.
8. Set P.[[ProxyTarget]] to target.
9. Set P.[[ProxyHandler]] to handler.
10. Return P.

Nk W=

10 ECMAScript Language: Source Code

10.1 Source Text
Syntax

SourceCharacter ::
any Unicode code point

ECMAScript code is expressed using Unicode. ECMAScript source text is a sequence of code points. All Unicode code
point values from U+0000 to U+10FFFF, including surrogate code points, may occur in source text where permitted by
the ECMAScript grammars. The actual encodings used to store and interchange ECMAScript source text is not relevant

to this specification. Regardless of the external source text encoding, a conforming ECMAScript implementation

© Ecma International 2019 155

processes the source text as if it was an equivalent sequence of SourceCharacter values, each SourceCharacter being a
Unicode code point. Conforming ECMAScript implementations are not required to perform any normalization of source

text, or behave as though they were performing normalization of source text.

The components of a combining character sequence are treated as individual Unicode code points even though a user

might think of the whole sequence as a single character.

NOTE
In string literals, regular expression literals, template literals and identifiers, any Unicode code point may also be
expressed using Unicode escape sequences that explicitly express a code point's numeric value. Within a comment, such

an escape sequence is effectively ignored as part of the comment.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a Java
program, if the Unicode escape sequence \u0O0OA, for example, occurs within a single-line comment, it is interpreted as
a line terminator (Unicode code point U+000A is LINE FEED (LF)) and therefore the next code point is not part of the
comment. Similarly, if the Unicode escape sequence \uO0OA occurs within a string literal in a Java program, it is
likewise interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of
\u0O0O0A to cause a LINE FEED (LF) to be part of the String value of a string literal. In an ECMAScript program, a
Unicode escape sequence occurring within a comment is never interpreted and therefore cannot contribute to termination
of the comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript program
always contributes to the literal and is never interpreted as a line terminator or as a code point that might terminate the

string literal.

10.1.1 Static Semantics: UTF16Encoding (cp)

The UTF16Encoding of a numeric code point value, cp, is determined as follows:

Assert: 0 < cp < 0x10FFFF.

If cp < OxFFFF, return cp.

Let cul be floor((cp - 0x10000) / 0x400) + 0xD800.
Let cu2 be ((cp - 0x10000) modulo 0x400) + 0xDCO00.

Return the code unit sequence consisting of cul followed by cuZ.

ik =

10.1.2 Static Semantics: UTF16Decode (lead, trail)

Two code units, lead and trail, that form a UTF-16 surrogate pair are converted to a code point by performing the
following steps:

1. Assert: lead is a leading surrogate and trail is a trailing surrogate.
2. Let cp be (lead - 0xD800) x 0x400 + (trail - 0xDCO00) + 0x10000.
3. Return the code point cp.

10.2 Types of Source Code

There are four types of ECMAScript code:

Global code is source text that is treated as an ECMAScript Script. The global code of a particular Script does not
include any source text that is parsed as part of a FunctionDeclaration, FunctionExpression, GeneratorDeclaration,

156 © Ecma International 2019

GeneratorExpression, AsyncFunctionDeclaration, AsyncFunctionExpression, AsyncGeneratorDeclaration,
AsyncGeneratorExpression, MethodDefinition, ArrowFunction, AsyncArrowFunction, ClassDeclaration, or
ClassExpression.

Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter to the built-in
eval function is a String, it is treated as an ECMAScript Script. The eval code for a particular invocation of eval
is the global code portion of that Script.

Function code is source text that is parsed to supply the value of the [[ECMAScriptCode]] and
[[FormalParameters]] internal slots (see 9.2) of an ECMAScript function object. The function code of a particular
ECMAScript function does not include any source text that is parsed as the function code of a nested
FunctionDeclaration, FunctionExpression, GeneratorDeclaration, GeneratorExpression,
AsyncFunctionDeclaration, AsyncFunctionExpression, AsyncGeneratorDeclaration, AsyncGeneratorExpression,
MethodDefinition, ArrowFunction, AsyncArrowFunction, ClassDeclaration, or ClassExpression.

Module code is source text that is code that is provided as a ModuleBody. It is the code that is directly evaluated
when a module is initialized. The module code of a particular module does not include any source text that is
parsed as part of a nested FunctionDeclaration, FunctionExpression, GeneratorDeclaration, GeneratorExpression,
AsyncFunctionDeclaration, AsyncFunctionExpression, AsyncGeneratorDeclaration, AsyncGeneratorExpression,
MethodDefinition, ArrowFunction, AsyncArrowFunction, ClassDeclaration, or ClassExpression.

NOTE
Function code is generally provided as the bodies of Function Definitions (14.1), Arrow Function Definitions (14.2),
Method Definitions (14.3), Generator Function Definitions (14.4), Async Function Definitions (14.7), Async Generator
Function Definitions (14.5), and Async Arrow Functions (14.8). Function code is also derived from the arguments to the

Function constructor (19.2.1.1), the GeneratorFunction constructor (25.2.1.1), and the AsyncFunction

constructor (25.7.1.1).

10.2.1 Strict Mode Code

An ECMAScript Script syntactic unit may be processed using either unrestricted or strict mode syntax and semantics.

Code is interpreted as strict mode code in the following situations:

Global code is strict mode code if it begins with a Directive Prologue that contains a Use Strict Directive.

Module code is always strict mode code.

All parts of a ClassDeclaration or a ClassExpression are strict mode code.

Eval code is strict mode code if it begins with a Directive Prologue that contains a Use Strict Directive or if the call
to eval is a direct eval that is contained in strict mode code.

Function code is strict mode code if the associated FunctionDeclaration, FunctionExpression,
GeneratorDeclaration, GeneratorExpression, AsyncFunctionDeclaration, AsyncFunctionExpression,
AsyncGeneratorDeclaration, AsyncGeneratorExpression, MethodDefinition, ArrowFunction, or
AsyncArrowFunction is contained in strict mode code or if the code that produces the value of the function's
[[ECMAScriptCode]] internal slot begins with a Directive Prologue that contains a Use Strict Directive.

Function code that is supplied as the arguments to the built-in Function, Generator, AsyncFunction, and
AsyncGenerator constructors is strict mode code if the last argument is a String that when processed is a

FunctionBody that begins with a Directive Prologue that contains a Use Strict Directive.

ECMAScript code that is not strict mode code is called non-strict code.

10.2.2 Non-ECMAScript Functions

© Ecma International 2019 157

An ECMAScript implementation may support the evaluation of function exotic objects whose evaluative behaviour is
expressed in some implementation-defined form of executable code other than via ECMAScript code. Whether a function
object is an ECMAScript code function or a non-ECMAScript function is not semantically observable from the
perspective of an ECMAScript code function that calls or is called by such a non-ECMAScript function.

11 ECMAScript Language: Lexical Grammar

The source text of an ECMAScript Script or Module is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking the

longest possible sequence of code points as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic grammar
context that is consuming the input elements. This requires multiple goal symbols for the lexical grammar. The
InputElementRegExpOrTemplateTail goal is used in syntactic grammar contexts where a RegularExpressionLiteral, a
TemplateMiddle, or a TemplateTail is permitted. The InputElementRegExp goal symbol is used in all syntactic grammar
contexts where a RegularExpressionLiteral is permitted but neither a TemplateMiddle, nor a TemplateTail is permitted.
The InputElementTemplateTail goal is used in all syntactic grammar contexts where a TemplateMiddle or a TemplateTail
is permitted but a RegularExpressionLiteral is not permitted. In all other contexts, InputElementDiv is used as the lexical
goal symbol.

NOTE
The use of multiple lexical goals ensures that there are no lexical ambiguities that would affect automatic semicolon
insertion. For example, there are no syntactic grammar contexts where both a leading division or division-assignment,
and a leading RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see 11.9); in examples

such as the following:

a =>b
/hi/g.exec (c) .map (d) ;

where the first non-whitespace, non-comment code point after a LineTerminator is U+002F (SOLIDUS) and the syntactic
context allows division or division-assignment, no semicolon is inserted at the LineTerminator. That is, the above

example is interpreted in the same way as:

a=D>b / hi / g.exec(c).map(d);

Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
CommonToken
DivPunctuator
RightBracePunctuator

InputElementRegExp ::

158 © Ecma International 2019

WhiteSpace
LineTerminator
Comment
CommonToken
RightBracePunctuator

RegularExpressionLiteral

InputElementRegExpOrTemplateTail ::
WhiteSpace
LineTerminator
Comment
CommonToken
RegularExpressionLiteral

TemplateSubstitutionTail

InputElementTemplateTail ::
WhiteSpace
LineTerminator
Comment
CommonToken
DivPunctuator

TemplateSubstitutionTail

11.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf” in the Unicode Character Database such as
LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the formatting of a range of

text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control characters

may be used within comments, and within string literals, template literals, and regular expression literals.

U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER) are format-control characters that are
used to make necessary distinctions when forming words or phrases in certain languages. In ECMAScript source text

these code points may also be used in an IdentifierName after the first character.

U+FEFF (ZERO WIDTH NO-BREAK SPACE) is a format-control character used primarily at the start of a text to mark
it as Unicode and to allow detection of the text's encoding and byte order. <ZWNBSP> characters intended for this
purpose can sometimes also appear after the start of a text, for example as a result of concatenating files. In ECMAScript
source text <ZWNBSP> code points are treated as white space characters (see 11.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular expression

literals is summarized in Table 31.

Table 31: Format-Control Code Point Usage

Code Point Name Abbreviation Usage
U+200C ZERO WIDTH NON-JOINER <ZWNJ> IdentifierPart
U+200D ZERO WIDTH JOINER <ZWJ> IdentifierPart

© Ecma International 2019 159

U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP> WhiteSpace

11.2 White Space

White space code points are used to improve source text readability and to separate tokens (indivisible lexical units) from
each other, but are otherwise insignificant. White space code points may occur between any two tokens and at the start or
end of input. White space code points may occur within a StringLiteral, a RegularExpressionLiteral, a Template, or a

TemplateSubstitutionTail where they are considered significant code points forming part of a literal value. They may also

occur within a Comment, but cannot appear within any other kind of token.
The ECMAScript white space code points are listed in Table 32.

Table 32: White Space Code Points

Code Point Name Abbreviation
U+0009 CHARACTER TABULATION <TAB>
U+000B LINE TABULATION <VT>
Uu+000C FORM FEED (FF) <FF>
U+0020 SPACE <SP>
U+00A0 NO-BREAK SPACE <NBSP>
U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP>

Other category “Zs” Any other Unicode “Space_Separator” code point <USP>

ECMAScript implementations must recognize as WhiteSpace code points listed in the “Space_Separator” (“Zs”)

category.

NOTE
Other than for the code points listed in Table 32, ECMAScript WhiteSpace intentionally excludes all code points that

have the Unicode “White_Space” property but which are not classified in category “Space_Separator” (“Zs”).

Syntax

WhiteSpace ::
<TAB>
<\V/T>
<FF>
<SP>
<NBSP>
<ZWNBSP>
<UsP>

160 © Ecma International 2019

11.3 Line Terminators

Like white space code points, line terminator code points are used to improve source text readability and to separate
tokens (indivisible lexical units) from each other. However, unlike white space code points, line terminators have some
influence over the behaviour of the syntactic grammar. In general, line terminators may occur between any two tokens,
but there are a few places where they are forbidden by the syntactic grammar. Line terminators also affect the process of
automatic semicolon insertion (11.9). A line terminator cannot occur within any token except a StringLiteral, Template,
or TemplateSubstitutionTail. <LF> and <CR> line terminators cannot occur within a StringLiteral token except as part of

a LineContinuation.
A line terminator can occur within a MultiLineComment but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space code points that are matched by the \s class in regular

expressions.
The ECMAScript line terminator code points are listed in Table 33.

Table 33: Line Terminator Code Points

Code Point Unicode Name Abbreviation
U+000A LINE FEED (LF) <LF>
U+000D CARRIAGE RETURN (CR) <CR>
U+2028 LINE SEPARATOR <LS>

U+2029 PARAGRAPH SEPARATOR <PS>

Only the Unicode code points in Table 33 are treated as line terminators. Other new line or line breaking Unicode code
points are not treated as line terminators but are treated as white space if they meet the requirements listed in Table 32.
The sequence <CR><LF> is commonly used as a line terminator. It should be considered a single SourceCharacter for

the purpose of reporting line numbers.

Syntax

LineTerminator ::
<LF>
<CR>
<S>
<PS>

LineTerminatorSequence ::
<LF>
<CR>[lookahead # <LF>]
<S>
<PS>
<CR><LF>

11.4 Comments

© Ecma International 2019 161

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode code point except a LineTerminator code point, and because of
the general rule that a token is always as long as possible, a single-line comment always consists of all code points from
the // marker to the end of the line. However, the LineTerminator at the end of the line is not considered to be part of
the single-line comment; it is recognized separately by the lexical grammar and becomes part of the stream of input
elements for the syntactic grammar. This point is very important, because it implies that the presence or absence of

single-line comments does not affect the process of automatic semicolon insertion (see 11.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line terminator code

point, then the entire comment is considered to be a LineTerminator for purposes of parsing by the syntactic grammar.

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentChars. */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentChars,,

* PostAsteriskCommentChars, -

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars .«

* PostAsteriskCommentChars .

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::

SourceCharacter but not one of / or *

SingleLineComment ::

// SingleLineCommentChars,

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentChars.,

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

11.5 Tokens
Syntax

CommonToken ::

IdentifierName

162 © Ecma International 2019

Punctuator
NumericLiteral
StringLiteral
Template

NOTE
The DivPunctuator, RegularExpressionLiteral, RightBracePunctuator, and TemplateSubstitutionTail productions derive

additional tokens that are not included in the CommonToken production.

11.6 Names and Keywords

IdentifierName and ReservedWord are tokens that are interpreted according to the Default Identifier Syntax given in
Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications. ReservedWord is an
enumerated subset of IdentifierName. The syntactic grammar defines Identifier as an IdentifierName that is not a
ReservedWord. The Unicode identifier grammar is based on character properties specified by the Unicode Standard. The
Unicode code points in the specified categories in the latest version of the Unicode standard must be treated as in those
categories by all conforming ECMAScript implementations. ECMAScript implementations may recognize identifier code
points defined in later editions of the Unicode Standard.

NOTE 1
This standard specifies specific code point additions: U+0024 (DOLLAR SIGN) and U+005F (LOW LINE) are permitted
anywhere in an IdentifierName, and the code points U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO
WIDTH JOINER) are permitted anywhere after the first code point of an IdentifierName.

Unicode escape sequences are permitted in an IdentifierName, where they contribute a single Unicode code point to the
IdentifierName. The code point is expressed by the CodePoint of the UnicodeEscapeSequence (see 11.8.4). The \
preceding the UnicodeEscapeSequence and the u and { } code units, if they appear, do not contribute code points to the
IdentifierName. A UnicodeEscapeSequence cannot be used to put a code point into an IdentifierName that would
otherwise be illegal. In other words, if a \ UnicodeEscapeSequence sequence were replaced by the SourceCharacter it
contributes, the result must still be a valid IdentifierName that has the exact same sequence of SourceCharacter elements
as the original IdentifierName. All interpretations of IdentifierName within this specification are based upon their actual

code points regardless of whether or not an escape sequence was used to contribute any particular code point.

Two IdentifierNames that are canonically equivalent according to the Unicode standard are not equal unless, after

replacement of each UnicodeEscapeSequence, they are represented by the exact same sequence of code points.

Syntax
IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart
IdentifierStart ::
UnicodelDStart
$

\ UnicodeEscapeSequence

© Ecma International 2019 163

IdentifierPart ::
UnicodeIDContinue
$

\ UnicodeEscapeSequence
<ZWNJ>
<ZWJ>

UnicodelDStart ::
any Unicode code point with the Unicode property “ID_Start”

UnicodelDContinue ::
any Unicode code point with the Unicode property “ID_Continue”

The definitions of the nonterminal UnicodeEscapeSequence is given in 11.8.4.

NOTE 2
The nonterminal IdentifierPart derives _ via UnicodeIDContinue.

NOTE 3
The sets of code points with Unicode properties “ID_Start” and “ID_Continue” include, respectively, the code points
with Unicode properties “Other_ID_Start” and “Other_ID_Continue”.

11.6.1 Identifier Names

11.6.1.1 Static Semantics: Early Errors
IdentifierStart :: \ UnicodeEscapeSequence

It is a Syntax Error if SV(UnicodeEscapeSequence) is none of "$", or "_", or the UTF16Encoding of a code point

matched by the UnicodelDStart lexical grammar production.
IdentifierPart :: \ UnicodeEscapeSequence

It is a Syntax Error if SV(UnicodeEscapeSequence) is none of "$", or "_", or the UTF16Encoding of either
<ZWNJ> or <ZWJ>, or the UTF16Encoding of a Unicode code point that would be matched by the
UnicodelIDContinue lexical grammar production.

11.6.1.2 Static Semantics: StringValue

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

1. Return the String value consisting of the sequence of code units corresponding to IdentifierName. In determining
the sequence any occurrences of \ UnicodeEscapeSequence are first replaced with the code point represented by
the UnicodeEscapeSequence and then the code points of the entire IdentifierName are converted to code units by
UTF16Encoding each code point.

11.6.2 Reserved Words

A reserved word is an IdentifierName that cannot be used as an Identifier.

164 © Ecma International 2019

Syntax

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanlLiteral

NOTE
The ReservedWord definitions are specified as literal sequences of specific SourceCharacter elements. A code point in a

ReservedWord cannot be expressed by a \ UnicodeEscapeSequence.

11.6.2.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiers in ECMAScript programs.
Syntax

Keyword :: one of
await break case catch class const continue debugger default delete do
else export extends finally for function if import in instanceof new

return super switch this throw try typeof var void while with yield

NOTE
In some contexts yield and await are given the semantics of an Identifier. See 12.1.1. In strict mode code, 1et and
static are treated as reserved words through static semantic restrictions (see 12.1.1, 13.3.1.1, 13.7.5.1, and 14.6.1)

rather than the lexical grammar.

11.6.2.2 Future Reserved Words

The following tokens are reserved for use as keywords in future language extensions.
Syntax

FutureReservedWord ::

enum

NOTE
Use of the following tokens within strict mode code is also reserved. That usage is restricted using static semantic

restrictions (see 12.1.1) rather than the lexical grammar:

implements package protected

interface private public

11.7 Punctuators

© Ecma International 2019 165

Syntax

Punctuator :: one of
{()I[]1; ,<>%L=>==l=z===l==+ - % § **% 44 —= LI D>>>>> & | * ! ~
&& || ? 1 = 4= -= *= §= *¥= <= >>= >>>= &= |= A= =>

DivPunctuator ::
/
/=

RightBracePunctuator ::
}

11.8 Literals

11.8.1 Null Literals

Syntax

NullLiteral ::
null

11.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true

false

11.8.3 Numeric Literals

Syntax

NumericLiteral ::
DecimalLiteral
BinarylIntegerLiteral
OctallntegerLiteral
HexIntegerLiteral

DecimalLiteral ::

DecimallntegerLiteral . DecimalDigits.. ExponentPart,
. DecimalDigits ExponentPart,

DecimallntegerLiteral ExponentPart, .

DecimallntegerLiteral ::
0
NonZeroDigit DecimalDigits..

166 © Ecma International 2019

DecimalDigits ::
DecimalDigit

DecimalDigits DecimalDigit

DecimalDigit :: one of
0123456789

NonZeroDigit :: one of
123456789

ExponentPart ::

ExponentIndicator SignedInteger

ExponentIndicator :: one of
e E

SignedInteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

BinarylIntegerLiteral ::
Ob BinaryDigits
OB BinaryDigits

BinaryDigits ::
BinaryDigit

BinaryDigits BinaryDigit

BinaryDigit :: one of
01

OctallntegerLiteral ::
0o OctalDigits
00 OctalDigits

OctalDigits ::
OctalDigit
OctalDigits OctalDigit

OctalDigit :: one of
01234567

HexIntegerLiteral ::
0x HexDigits
0X HexDigits

HexDigits ::
HexDigit
HexDigits HexDigit

HexDigit :: one of

© Ecma International 2019

167

0123456789abcdefABCDETF
The SourceCharacter immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.

NOTE

For example: 3in is an error and not the two input elements 3 and in.

A conforming implementation, when processing strict mode code, must not extend, as described in B.1.1, the syntax of
NumericLiteral to include LegacyOctallntegerLiteral, nor extend the syntax of DecimallntegerLiteral to include

NonOctalDecimallntegerLiteral.

11.8.3.1 Static Semantics: MV

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a mathematical
value (MV) is derived from the literal; second, this mathematical value is rounded as described below.

The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

The MV of NumericLiteral :: BinaryIntegerLiteral isthe MV of BinaryIntegerLiteral.

The MV of NumericLiteral :: OctallntegerLiteral is the MV of OctallntegerLiteral.

The MV of NumericLiteral :: HexIntegerLiteral isthe MV of HexIntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral . isthe MV of DecimallntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of DecimallntegerLiteral plus
(the MV of DecimalDigits x 10™"), where n is the number of code points in DecimalDigits.

The MV of DecimalLiteral :: DecimallntegerLiteral . ExponentPart is the MV of DecimallntegerLiteral x 10°,
where e is the MV of ExponentPart.

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimallntegerLiteral plus (the MV of DecimalDigits x 10™")) x 10°, where n is the number of code points in
DecimalDigits and e is the MV of ExponentPart.

The MV of DecimalLiteral :: . DecimalDigits is the MV of DecimalDigits x 10™", where n is the number of
code points in DecimalDigits.

The MV of DecimalLiteral :: . DecimalDigits ExponentPart is the MV of DecimalDigits x 10", where n is
the number of code points in DecimalDigits and e is the MV of ExponentPart.

The MV of DecimalLiteral :: DecimallntegerLiteral is the MV of DecimallntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimallntegerLiteral x 10°,
where e is the MV of ExponentPart.

The MV of DecimallntegerLiteral :: 0 is 0.

The MV of DecimallntegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

The MV of DecimallntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit x 10™) plus the
MYV of DecimalDigits, where n is the number of code points in DecimalDigits.

The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits x 10) plus the MV of
DecimalDigit.

The MV of ExponentPart :: ExponentIndicator SignedInteger is the MV of SignedInteger.

The MV of Signedinteger :: DecimalDigits is the MV of DecimalDigits.

The MV of Signedinteger :: + DecimalDigits is the MV of DecimalDigits.

The MV of Signedinteger :: - DecimalDigits is the negative of the MV of DecimalDigits.

The MV of DecimalDigit :: 0 or of HexDigit :: 0 or of OctalDigit :: 0 or of BinaryDigit :: 0 isO.

168 © Ecma International 2019

The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 orof HexDigit :: 1 orof OctalDigit :: 1 or of
BinaryDigit :: 1 1is 1.

The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 orof HexDigit :: 2 orof OctalDigit :: 2 is 2.
The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 orof HexDigit :: 3 orof OctalDigit :: 3 is 3.
The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 orof HexDigit :: 4 orof OctalDigit :: 4 is 4.
The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 orof HexDigit :: 5 orof OctalDigit :: 5 is 5.
The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 orof OctalDigit :: 6 is 6.
The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 orof HexDigit :: 7 orof OctalDigit :: 7 is7.
The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 orof HexDigit :: 8 is 8.

The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 orof HexDigit :: 9 is9.

The MV of HexDigit :: a or of HexDigit :: A is 10.

The MV of HexDigit :: b or of HexDigit :: B is 11.

The MV of HexDigit :: ¢ or of HexDigit :: C is 12.

The MV of HexDigit :: d or of HexDigit :: D is 13.

The MV of HexDigit :: e or of HexDigit :: E is 14.

The MV of HexDigit :: £ or of HexDigit :: F is 15.

The MV of
The MV of
The MV of
The MV of

BinaryDigit.

The MV of
The MV of
The MV of
The MV of
The MV of
The MV of
The MV of
The MV of

BinarylntegerLiteral :: 0b BinaryDigits is the MV of BinaryDigits.

BinaryIntegerLiteral :: OB BinaryDigits is the MV of BinaryDigits.

BinaryDigits :: BinaryDigit is the MV of BinaryDigit.

BinaryDigits :: BinaryDigits BinaryDigit is (the MV of BinaryDigits x 2) plus the MV of

OctallntegerLiteral :: 0o OctalDigits is the MV of OctalDigits.

OctallntegerLiteral :: 00 OctalDigits is the MV of OctalDigits.

OctalDigits :: OctalDigit is the MV of OctalDigit.

OctalDigits :: OctalDigits OctalDigit is (the MV of OctalDigits x 8) plus the MV of OctalDigit.
HexIntegerLiteral :: 0x HexDigits is the MV of HexDigits.

HexIntegerLiteral :: 0X HexDigits is the MV of HexDigits.

HexDigits :: HexDigit is the MV of HexDigit.

HexDigits :: HexDigits HexDigit is (the MV of HexDigits % 16) plus the MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type. If the
MYV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the MV (as specified
in 6.1.6), unless the literal is a DecimalLiteral and the literal has more than 20 significant digits, in which case the
Number value may be either the Number value for the MV of a literal produced by replacing each significant digit after
the 20th with a 0 digit or the Number value for the MV of a literal produced by replacing each significant digit after the
20th with a 0 digit and then incrementing the literal at the 20th significant digit position. A digit is significant if it is not

part of an ExponentPart and

it is not 0; or

there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

11.8.4 String Literals
NOTE 1

A string literal is zero or more Unicode code points enclosed in single or double quotes. Unicode code points may also
be represented by an escape sequence. All code points may appear literally in a string literal except for the closing quote
code points, U+005C (REVERSE SOLIDUS), U+000D (CARRIAGE RETURN), and U+000A (LINE FEED). Any code
points may appear in the form of an escape sequence. String literals evaluate to ECMAScript String values. When

© Ecma International 2019 169

generating these String values Unicode code points are UTF-16 encoded as defined in 10.1.1. Code points belonging to
the Basic Multilingual Plane are encoded as a single code unit element of the string. All other code points are encoded as
two code unit elements of the string.

Syntax

StringLiteral ::
" DoubleStringCharacters,,

' SingleStringCharacters,

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharacters .«

SingleStringCharacters ::
SingleStringCharacter SingleStringCharacters,, .

DoubleStringCharacter ::
SourceCharacter but not one of " or \ or LineTerminator
<LS>
<PS>
\ EscapeSequence

LineContinuation

SingleStringCharacter ::
SourceCharacter but not one of ' or \ or LineTerminator
<LS>
<pPS>
\ EscapeSequence

LineContinuation

LineContinuation ::

\ LineTerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ¢ DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

A conforming implementation, when processing strict mode code, must not extend the syntax of EscapeSequence to
include LegacyOctalEscapeSequence as described in B.1.2.

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
'""\bfnrtvwv

NonEscapeCharacter ::

170 © Ecma International 2019

SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
x

u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u Hex4Digits
u{ CodePoint }

Hex4Digits ::
HexDigit HexDigit HexDigit HexDigit

The definition of the nonterminal HexDigit is given in 11.8.3. SourceCharacter is defined in 10.1.

NOTE 2
<LF> and <CR> cannot appear in a string literal, except as part of a LineContinuation to produce the empty code points
sequence. The proper way to include either in the String value of a string literal is to use an escape sequence such as \n
or \uOOOA.

11.8.4.1 Static Semantics: StringValue

StringLiteral ::
" DoubleStringCharacters . "

' SingleStringCharacters,,,

1. Return the String value whose code units are the SV of this StringLiteral.

11.8.4.2 Static Semantics: SV

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of code unit
values contributed by the various parts of the string literal. As part of this process, some Unicode code points within the

string literal are interpreted as having a mathematical value (MV), as described below or in 11.8.3.

The SV of StringLiteral :: ™ " is the empty code unit sequence.

The SV of StringLiteral :: ' ' is the empty code unit sequence.

The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of up to two code units that is the
SV of DoubleStringCharacter.

The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters 1is a sequence of up to
two code units that is the SV of DoubleStringCharacter followed by the code units of the SV of
DoubleStringCharacters in order.

The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of up to two code units that is the SV

© Ecma International 2019 171

of SingleStringCharacter.

The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of up to two
code units that is the SV of SingleStringCharacter followed by the code units of the SV of SingleStringCharacters
in order.

The SV of DoubleStringCharacter :: SourceCharacter but not one of " or \ or LineTerminator is the
UTF16Encoding of the code point value of SourceCharacter.

The SV of DoubleStringCharacter :: <LS> is the code unit 0x2028 (LINE SEPARATOR).

The SV of DoubleStringCharacter :: <PS> is the code unit 0x2029 (PARAGRAPH SEPARATOR).

The SV of DoubleStringCharacter :: \ EscapeSequence is the SV of the EscapeSequence.

The SV of DoubleStringCharacter :: LineContinuation is the empty code unit sequence.

The SV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the
UTF16Encoding of the code point value of SourceCharacter.

The SV of SingleStringCharacter :: <LS> is the code unit 0x2028 (LINE SEPARATOR).

The SV of SingleStringCharacter :: <PS> is the code unit 0x2029 (PARAGRAPH SEPARATOR).

The SV of SingleStringCharacter :: \ EscapeSequence is the SV of the EscapeSequence.

The SV of SingleStringCharacter :: LineContinuation is the empty code unit sequence.

The SV of EscapeSequence :: CharacterEscapeSequence is the SV of the CharacterEscapeSequence.

The SV of EscapeSequence :: 0 is the code unit 0x0000 (NULL).

The SV of EscapeSequence :: HexEscapeSequence is the SV of the HexEscapeSequence.

The SV of EscapeSequence :: UnicodeEscapeSequence is the SV of the UnicodeEscapeSequence.

The SV of CharacterEscapeSequence :: SingleEscapeCharacter is the code unit whose value is determined by
the SingleEscapeCharacter according to Table 34.

Table 34: String Single Character Escape Sequences

Escape Sequence Code Unit Value Unicode Character Name Symbol

\b 0x0008 BACKSPACE <BS>
\t 0x0009 CHARACTER TABULATION <HT>
\n 0x0002A LINE FEED (LF) <LF>
\v 0x000B LINE TABULATION <VT>
\f 0x000C FORM FEED (FF) <FF>
\r 0x000D CARRIAGE RETURN (CR) <CR>
\" 0x0022 QUOTATION MARK "
\' 0x0027 APOSTROPHE '
\\ 0x005C REVERSE SOLIDUS \

The SV of CharacterEscapeSequence :: NonEscapeCharacter is the SV of the NonEscapeCharacter.

The SV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the
UTF16Encoding of the code point value of SourceCharacter.

The SV of HexEscapeSequence :: x HexDigit HexDigit is the code unit whose value is (16 times the MV of the
first HexDigit) plus the MV of the second HexDigit.

The SV of UnicodeEscapeSequence :: u Hex4Digits is the SV of Hex4Digits.

172 © Ecma International 2019

The SV of Hex4Digits :: HexDigit HexDigit HexDigit HexDigit is the code unit whose value is (0x1000 times
the MV of the first HexDigit) plus (0x100 times the MV of the second HexDigit) plus (0x10 times the MV of the
third HexDigit) plus the MV of the fourth HexDigit.

The SV of UnicodeEscapeSequence :: u{ CodePoint } isthe UTF16Encoding of the MV of CodePoint.

11.8.5 Regular Expression Literals
NOTE 1

A regular expression literal is an input element that is converted to a RegExp object (see 21.2) each time the literal is
evaluated. Two regular expression literals in a program evaluate to regular expression objects that never compare as ===
to each other even if the two literals' contents are identical. A RegExp object may also be created at runtime by

new RegExp or calling the RegExp constructor as a function (see 21.2.3).

The productions below describe the syntax for a regular expression literal and are used by the input element scanner to
find the end of the regular expression literal. The source text comprising the RegularExpressionBody and the
RegularExpressionFlags are subsequently parsed again using the more stringent ECMAScript Regular Expression
grammar (21.2.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 21.2.1, but it must not extend
the RegularExpressionBody and RegularExpressionFlags productions defined below or the productions used by these
productions.

Syntax

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or/ or [
RegularExpressionBackslashSequence

RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::

SourceCharacter but not LineTerminator
RegularExpressionClass ::

© Ecma International 2019 173

[RegularExpressionClassChars 1]

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of] or \

RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

NOTE 2
Regular expression literals may not be empty; instead of representing an empty regular expression literal, the code unit

sequence // starts a single-line comment. To specify an empty regular expression, use: / (?:) /.

11.8.5.1 Static Semantics: Early Errors
RegularExpressionFlags :: RegularExpressionFlags IdentifierPart

It is a Syntax Error if IdentifierPart contains a Unicode escape sequence.

11.8.5.2 Static Semantics: BodyText
RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source text that was recognized as RegularExpressionBody.

11.8.5.3 Static Semantics: FlagText
RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source text that was recognized as RegularExpressionFlags.

11.8.6 Template Literal Lexical Components

Syntax

Template ::
NoSubstitutionTemplate
TemplateHead

NoSubstitutionTemplate ::
" TemplateCharacters .

TemplateHead ::

~

TemplateCharacters, . ${

TemplateSubstitutionTail ::
TemplateMiddle
TemplateTail

174 © Ecma International 2019

TemplateMiddle ::
} TemplateCharacters . ${

TemplateTail ::
} TemplateCharacters,,

TemplateCharacters ::

TemplateCharacter TemplateCharacters., .

TemplateCharacter ::
$ [lookahead # {]
\ EscapeSequence
\ NotEscapeSequence
LineContinuation
LineTerminatorSequence
SourceCharacter but not one of © or \ or $ or LineTerminator

NotEscapeSequence ::
0 DecimalDigit
DecimalDigit but not 0
x [lookahead ¢ HexDigit]
x HexDigit [lookahead ¢ HexDigit]
u [lookahead ¢ HexDigit] [lookahead # {]
u HexDigit [lookahead ¢ HexDigit]
u HexDigit HexDigit [lookahead ¢ HexDigit]
u HexDigit HexDigit HexDigit [lookahead & HexDigit]
u { [lookahead ¢ HexDigit]
u { NotCodePoint [lookahead ¢ HexDigit]
u { CodePoint [lookahead ¢ HexDigit] [lookahead # }]

NotCodePoint ::
HexDigits but only if MV of HexDigits > 0x10FFFF

CodePoint ::
HexDigits but only if MV of HexDigits < 0x10FFFF

A conforming implementation must not use the extended definition of EscapeSequence described in B.1.2 when parsing

a TemplateCharacter.

NOTE
TemplateSubstitutionTail is used by the InputElementTemplateTail alternative lexical goal.

11.8.6.1 Static Semantics: TV and TRV

A template literal component is interpreted as a sequence of Unicode code points. The Template Value (TV) of a literal
component is described in terms of code unit values (SV, 11.8.4) contributed by the various parts of the template literal
component. As part of this process, some Unicode code points within the template component are interpreted as having a
mathematical value (MV, 11.8.3). In determining a TV, escape sequences are replaced by the UTF-16 code unit(s) of the
Unicode code point represented by the escape sequence. The Template Raw Value (TRV) is similar to a Template Value

© Ecma International 2019 175

with the differenc

The TV and
The TV and
The TV and
The TV and
The TV of
The TV of
The TV of
The TV of
The TV of
The TV of

e that in TRVs escape sequences are interpreted literally.

TRV of NoSubstitutionTemplate ::
TRV of TemplateHead :: * ${
TRV of TemplateMiddle :: } ${
TRV of TemplateTail :: }
NoSubstitutionTemplate ::

is the empty code unit sequence.
is the empty code unit sequence.
is the empty code unit sequence.
is the empty code unit sequence.
* TemplateCharacters " is the TV of TemplateCharacters.

TemplateHead :: ° TemplateCharacters ${ isthe TV of TemplateCharacters.

TemplateMiddle :: } TemplateCharacters ${ is the TV of TemplateCharacters.
TemplateTail :: } TemplateCharacters " is the TV of TemplateCharacters.
TemplateCharacters :: TemplateCharacter is the TV of TemplateCharacter.

TemplateCharacters :: TemplateCharacter TemplateCharacters is undefined if either the TV of

TemplateCharacter is undefined or the TV of TemplateCharacters is undefined. Otherwise, it is a sequence

consisting of the code units of the TV of TemplateCharacter followed by the code units of the TV of

TemplateCharacters.

The TV of TemplateCharacter :: SourceCharacter but not one of * or \ or $ or LineTerminator is the
UTF16Encoding of the code point value of SourceCharacter.

The TV of TemplateCharacter :: $ is the code unit 0x0024 (DOLLAR SIGN).

The TV of TemplateCharacter :: \ EscapeSequence is the SV of EscapeSequence.

The TV of TemplateCharacter :: \ NotEscapeSequence is undefined.

The TV of TemplateCharacter :: LineContinuation is the TV of LineContinuation.

The TV of TemplateCharacter :: LineTerminatorSequence is the TRV of LineTerminatorSequence.

The TV of LineContinuation :: \ LineTerminatorSequence is the empty code unit sequence.

The TRV of
The TRV of
The TRV of
The TRV of
The TRV of
The TRV of

NoSubstitutionTemplate :: * TemplateCharacters ~ is the TRV of TemplateCharacters.
TemplateHead :: ° is the TRV of TemplateCharacters.
TemplateMiddle :: } TemplateCharacters ${ 1isthe TRV of TemplateCharacters.

is the TRV of TemplateCharacters.

TemplateCharacters $ {

TemplateTail :: } TemplateCharacters *
TemplateCharacters :: TemplateCharacter is the TRV of TemplateCharacter.
TemplateCharacters :: TemplateCharacter TemplateCharacters is a sequence consisting of the

code units of the TRV of TemplateCharacter followed by the code units of the TRV of TemplateCharacters.

The TRV of
UTF16Enco
The TRV of
The TRV of
(REVERSE
The TRV of
(REVERSE
The TRV of
The TRV of
The TRV of
The TRV of
The TRV of
The TRV of
The TRV of

TemplateCharacter :: SourceCharacter but not one of © or \ or $ or LineTerminator is the
ding of the code point value of SourceCharacter.

TemplateCharacter :: $ is the code unit 0x0024 (DOLLAR SIGN).

TemplateCharacter :: \ EscapeSequence is the sequence consisting of the code unit 0x005C
SOLIDUS) followed by the code units of TRV of EscapeSequence.

TemplateCharacter :: \ NotEscapeSequence is the sequence consisting of the code unit 0x005C
SOLIDUS) followed by the code units of TRV of NotEscapeSequence.

TemplateCharacter :: LineContinuation is the TRV of LineContinuation.

TemplateCharacter :: LineTerminatorSequence is the TRV of LineTerminatorSequence.

EscapeSequence :: CharacterEscapeSequence is the TRV of the CharacterEscapeSequence.
0 is the code unit 0x0030 (DIGIT ZERO).

HexEscapeSequence is the TRV of the HexEscapeSequence.

EscapeSequence ::
EscapeSequence ::
EscapeSequence :: UnicodeEscapeSequence is the TRV of the UnicodeEscapeSequence.

NotEscapeSequence :: 0 DecimalDigit is the sequence consisting of the code unit 0x0030 (DIGIT

ZERO) followed by the code units of the TRV of DecimalDigit.

The TRV of

NotEscapeSequence :: x [lookahead € HexDigit] is the code unit 0x0078 (LATIN SMALL

LETTER X).

176

© Ecma International 2019

The TRV of NotEscapeSequence :: x HexDigit [lookahead € HexDigit] is the sequence consisting of the code
unit 0x0078 (LATIN SMALL LETTER X) followed by the code units of the TRV of HexDigit.

The TRV of NotEscapeSequence :: u [lookahead € HexDigit] [lookahead # {] is the code unit 0x0075 (LATIN
SMALL LETTER U).

The TRV of NotEscapeSequence :: u HexDigit [lookahead € HexDigit] is the sequence consisting of the code
unit 0x0075 (LATIN SMALL LETTER U) followed by the code units of the TRV of HexDigit.

The TRV of NotEscapeSequence :: u HexDigit HexDigit [lookahead & HexDigit] is the sequence consisting of
the code unit 0x0075 (LATIN SMALL LETTER U) followed by the code units of the TRV of the first HexDigit
followed by the code units of the TRV of the second HexDigit.

The TRV of NotEscapeSequence :: u HexDigit HexDigit HexDigit [lookahead € HexDigit] is the sequence
consisting of the code unit 0x0075 (LATIN SMALL LETTER U) followed by the code units of the TRV of the first
HexDigit followed by the code units of the TRV of the second HexDigit followed by the code units of the TRV of
the third HexDigit.

The TRV of NotEscapeSequence :: u { [lookahead ¢ HexDigit] is the sequence consisting of the code unit
0x0075 (LATIN SMALL LETTER U) followed by the code unit 0x007B (LEFT CURLY BRACKET).

The TRV of NotEscapeSequence :: u { NotCodePoint [lookahead € HexDigit] is the sequence consisting of
the code unit 0x0075 (LATIN SMALL LETTER U) followed by the code unit 0x007B (LEFT CURLY
BRACKET) followed by the code units of the TRV of NotCodePoint.

The TRV of NotEscapeSequence :: u { CodePoint [lookahead ¢ HexDigit] [lookahead # }] is the sequence
consisting of the code unit 0x0075 (LATIN SMALL LETTER U) followed by the code unit 0x007B (LEFT
CURLY BRACKET) followed by the code units of the TRV of CodePoint.

The TRV of DecimalDigit :: oneof 0 1 2 3 4 5 6 7 8 9 isthe SV of the SourceCharacter that is that
single code point.

The TRV of CharacterEscapeSequence :: SingleEscapeCharacter is the TRV of the SingleEscapeCharacter.
The TRV of CharacterEscapeSequence :: NonEscapeCharacter is the SV of the NonEscapeCharacter.

The TRV of SingleEscapeCharacter :: oneof ' " \ b £ n r t v isthe SV of the SourceCharacter that is
that single code point.

The TRV of HexEscapeSequence :: x HexDigit HexDigit is the sequence consisting of the code unit 0x0078
(LATIN SMALL LETTER X)) followed by TRV of the first HexDigit followed by the TRV of the second HexDigit.
The TRV of UnicodeEscapeSequence :: u Hex4Digits is the sequence consisting of the code unit 0x0075
(LATIN SMALL LETTER U) followed by TRV of Hex4Digits.

The TRV of UnicodeEscapeSequence :: u{ CodePoint } is the sequence consisting of the code unit 0x0075
(LATIN SMALL LETTER U) followed by the code unit 0x007B (LEFT CURLY BRACKET) followed by TRV of
CodePoint followed by the code unit 0x007D (RIGHT CURLY BRACKET).

The TRV of Hex4Digits :: HexDigit HexDigit HexDigit HexDigit is the sequence consisting of the TRV of the
first HexDigit followed by the TRV of the second HexDigit followed by the TRV of the third HexDigit followed by
the TRV of the fourth HexDigit.

The TRV of HexDigits :: HexDigit is the TRV of HexDigit.

The TRV of HexDigits :: HexDigits HexDigit is the sequence consisting of TRV of HexDigits followed by TRV
of HexDigit.

The TRV of a HexDigit is the SV of the SourceCharacter that is that HexDigit.

The TRV of LineContinuation :: \ LineTerminatorSequence is the sequence consisting of the code unit 0x005C
(REVERSE SOLIDUS) followed by the code units of TRV of LineTerminatorSequence.

The TRV of LineTerminatorSequence :: <LF> is the code unit 0x000A (LINE FEED).

The TRV of LineTerminatorSequence :: <CR> is the code unit 0x000A (LINE FEED).

The TRV of LineTerminatorSequence :: <LS> is the code unit 0x2028 (LINE SEPARATOR).

The TRV of LineTerminatorSequence :: <PS> is the code unit 0x2029 (PARAGRAPH SEPARATOR).

© Ecma International 2019 177

The TRV of LineTerminatorSequence :: <CR><LF> is the sequence consisting of the code unit 0x000A (LINE
FEED).

NOTE
TV excludes the code units of LineContinuation while TRV includes them. <CR><LF> and <CR>
LineTerminatorSequences are normalized to <LF> for both TV and TRV. An explicit EscapeSequence is needed to

include a <CR> or <CR><LF> sequence.

11.9 Automatic Semicolon Insertion

Most ECMAScript statements and declarations must be terminated with a semicolon. Such semicolons may always
appear explicitly in the source text. For convenience, however, such semicolons may be omitted from the source text in
certain situations. These situations are described by saying that semicolons are automatically inserted into the source
code token stream in those situations.

11.9.1 Rules of Automatic Semicolon Insertion

In the following rules, “token” means the actual recognized lexical token determined using the current lexical goal

symbol as described in clause 11.
There are three basic rules of semicolon insertion:

1. When, as the source text is parsed from left to right, a token (called the offending token) is encountered that is not
allowed by any production of the grammar, then a semicolon is automatically inserted before the offending token if

one or more of the following conditions is true:

The offending token is separated from the previous token by at least one LineTerminator.

The offending token is }.

The previous token is) and the inserted semicolon would then be parsed as the terminating semicolon of a
do-while statement (13.7.2).

2. When, as the source text is parsed from left to right, the end of the input stream of tokens is encountered and the
parser is unable to parse the input token stream as a single instance of the goal nonterminal, then a semicolon is
automatically inserted at the end of the input stream.

3. When, as the source text is parsed from left to right, a token is encountered that is allowed by some production of
the grammar, but the production is a restricted production and the token would be the first token for a terminal or
nonterminal immediately following the annotation “[no LineTerminator here]” within the restricted production (and
therefore such a token is called a restricted token), and the restricted token is separated from the previous token by

at least one LineTerminator, then a semicolon is automatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted automatically
if the semicolon would then be parsed as an empty statement or if that semicolon would become one of the two
semicolons in the header of a £or statement (see 13.7.4).

NOTE

The following are the only restricted productions in the grammar:

UpdateEXpression ;v .14, await]

LeftHandSideExpression,yic14, »await] [n0 LineTerminator here] ++

178 © Ecma International 2019

LeftHandSideExpression [yic14, 2await] [0 LineTerminator here] --

ContinueStatement (v 14, await]
continue ;

continue [no LineTerminator here] Labelldentifier >v;ic14, 2nwaic] 7

BreakStatement (v o1, ayait]
break ;

break [no LineTerminator here] Labelldentifier ,yic14, 2await] 7

ReturnStatement (v .14, await]
return ;

return [no LineTerminator here] Expression., ovield, 2await] -/

ThrowStatementv; .15, await]

throw [no LineTerminator here] Expression(i, ovieid, 2await] #

ArrowFunction 1, vicid, await]

ArrowParameters;vi.14, »ayait] [no LineTerminator here] => ConciseBody -1

YieldExpression 1, ayait]
yield [no LineTerminator here] AssignmentEXpression >, iviecld, 2await]

yield [no LineTerminator here] * AssignmentExpression;.i, .vield, 2await]
The practical effect of these restricted productions is as follows:

When a ++ or -~ token is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminator occurred between the preceding token and the ++ or —- token, then a semicolon is automatically
inserted before the ++ or —- token.

When a continue, break, return, throw, or yield token is encountered and a LineTerminator is
encountered before the next token, a semicolon is automatically inserted after the continue, break, return,

throw, or yield token.
The resulting practical advice to ECMAScript programmers is:

A postfix ++ or -- operator should appear on the same line as its operand.

An Expression in a return or throw statement or an AssignmentExpression in a yield expression should start
on the same line as the return, throw, or yield token.

A Labelldentifier in a break or continue statement should be on the same line as the break or continue

token.

11.9.2 Examples of Automatic Semicolon Insertion

The source
{121} 3

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In contrast, the

© Ecma International 2019 179

source

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the following:

P2) 3
which is a valid ECMAScript sentence.
The source

for (a; b
)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the semicolon is needed
for the header of a for statement. Automatic semicolon insertion never inserts one of the two semicolons in the header

of a for statement.
The source

return

a + b
is transformed by automatic semicolon insertion into the following:

return;

a + b;

NOTE 1
The expression a + b is not treated as a value to be returned by the return statement, because a LineTerminator

separates it from the token return.

The source

a=>
++c

is transformed by automatic semicolon insertion into the following:

a = b;
++c;

NOTE 2
The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator occurs between b

and ++.

The source

if (a > b)

180 © Ecma International 2019

else ¢ = d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token, even
though no production of the grammar applies at that point, because an automatically inserted semicolon would then be

parsed as an empty statement.
The source

a =Db + c
(d + e) .print ()

is not transformed by automatic semicolon insertion, because the parenthesized expression that begins the second line can

be interpreted as an argument list for a function call:
a=>b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the programmer
to provide an explicit semicolon at the end of the preceding statement rather than to rely on automatic semicolon

insertion.

12 ECMAScript Language: Expressions

12.1 Identifiers
Syntax

IdentifierReference (v .14, nyait]
Identifier
[~Yield] yield

[~Await] await

Bindingldentifier v; .14, await]
Identifier
yield

await

Labelldentifier vic14, await]
Identifier
[~Yield] yield

[~Await] awalit

Identifier :
IdentifierName but not ReservedWord

NOTE
yield and await are permitted as Bindingldentifier in the grammar, and prohibited with static semantics below, to
prohibit automatic semicolon insertion in cases such as

let

© Ecma International 2019 181

await O;

12.1.1 Static Semantics: Early Errors
Bindingldentifier : Identifier

It is a Syntax Error if the code matched by this production is contained in strict mode code and the StringValue of

Identifier is "arguments" or "eval".

IdentifierReference : yield
Bindingldentifier : yield
Labelldentifier : yield

It is a Syntax Error if the code matched by this production is contained in strict mode code.

IdentifierReference : await
Bindingldentifier : await

Labelldentifier : await

It is a Syntax Error if the goal symbol of the syntactic grammar is Module.
Bindingldentifier : yield

It is a Syntax Error if this production has a [yie]q) parameter.
Bindingldentifier : await

It is a Syntax Error if this production has an 4,,i;] parameter.

IdentifierReference : Identifier
Bindingldentifier : Identifier
Labelldentifier : Identifier

It is a Syntax Error if this production has a [yije]q] parameter and StringValue of Identifier is "yield".

It is a Syntax Error if this production has an 4 yai;] parameter and StringValue of Identifier is "await".

Identifier : IdentifierName but not ReservedWord

It is a Syntax Error if this phrase is contained in strict mode code and the StringValue of IdentifierName is:
"implements", "interface", "let", "package", "private", "protected", "public",
"static", or "yield".

It is a Syntax Error if the goal symbol of the syntactic grammar is Module and the StringValue of IdentifierName is
"await".

It is a Syntax Error if StringValue of IdentifierName is the same String value as the StringValue of any

ReservedWord except for yield or await.

NOTE
StringValue of IdentifierName normalizes any Unicode escape sequences in IdentifierName hence such escapes cannot be

used to write an Identifier whose code point sequence is the same as a ReservedWord.

182 © Ecma International 2019

12.1.2 Static Semantics: BoundNames
Bindingldentifier : Identifier

1. Return a new List containing the StringValue of Identifier.
Bindingldentifier : yield

1. Return a new List containing "yield".
Bindingldentifier : await

1. Return a new List containing "await".

12.1.3 Static Semantics: AssignmentTargetType
IdentifierReference : Identifier

1. If this IdentifierReference is contained in strict mode code and StringValue of Identifier is "eval" or
"arguments", return strict.

2. Return simple.
IdentifierReference : yield

1. Return simple.
IdentifierReference : await

1. Return simple.

12.1.4 Static Semantics: StringValue
IdentifierReference : yield

Bindingldentifier : yield
Labelldentifier : yield

1. Return "yield".

IdentifierReference : await
Bindingldentifier : await

Labelldentifier : await
1. Return "await".
Identifier : IdentifierName but not ReservedWord

1. Return the StringValue of IdentifierName.

12.1.5 Runtime Semantics: BindingInitialization

With parameters value and environment.

NOTE
undefined is passed for environment to indicate that a PutValue operation should be used to assign the initialization

value. This is the case for var statements and formal parameter lists of some non-strict functions (See 9.2.15). In those

© Ecma International 2019 183

cases a lexical binding is hoisted and preinitialized prior to evaluation of its initializer.

Bindingldentifier : Identifier

1. Let name be StringValue of Identifier.

2. Return ? InitializeBoundName(name, value, environment).
Bindingldentifier : yield

1. Return ? InitializeBoundName("yield", value, environment).
Bindingldentifier : await

1. Return ? InitializeBoundName("await", value, environment).

12.1.5.1 Runtime Semantics: InitializeBoundName (name, value, environment)

1. Assert: Type(name) is String.
2. If environment is not undefined, then
a. Let env be the EnvironmentRecord component of environment.
b. Perform env.InitializeBinding(name, value).
c. Return NormalCompletion(undefined).
3. Else,
a. Let [hs be ResolveBinding(name).
b. Return ? PutValue(/hs, value).

12.1.6 Runtime Semantics: Evaluation
IdentifierReference : Identifier

1. Return ? ResolveBinding(StringValue of Identifier).
IdentifierReference : yield

1. Return ? ResolveBinding("yield").
IdentifierReference : await

1. Return ? ResolveBinding("await").

NOTE 1
The result of evaluating an IdentifierReference is always a value of type Reference.

NOTE 2
In non-strict code, the keyword yield may be used as an identifier. Evaluating the IdentifierReference resolves the
binding of yield as if it was an Identifier. Early Error restriction ensures that such an evaluation only can occur for

non-strict code.

12.2 Primary Expression

Syntax

184 © Ecma International 2019

PrimaryEXpression (yi.14, ayait]
this
IdentifierReference [>vic14, 2await]
Literal
ArrayLiteral | 5yic14, 2nwait]
ObjectLiteral (>yic1a, 2await]

FunctionExpression

ClassExpression [5yic1d, 2await]

GeneratorExpression
AsyncFunctionExpression
AsyncGeneratorExpression
RegularExpressionLiteral

TemplateLiteral [>v;ic14, 2await, ~Tagged]

CoverParenthesizedExpressionAndArrowParameterList [-vic1d, 2ayait]

CoverParenthesizedExpressionAndArrowParameterList (v .14, await] *
(Expression(.t,, »vield, 2await])
(Expression(.tn, »vield, 22wait] r)
()
(... Bindingldentifier,v;.14, 7await])
(... BindingPattern,v;.14, »await])
(Expression.i,, »vield, 2await] o+ - .. Bindingldentifier;-yvic14, 2awaic])

(Expression(1, oyvield, 2await] r --. BindingPattern vi.iq, opyaic])

Supplemental Syntax

When processing an instance of the production
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

the interpretation of CoverParenthesizedExpressionAndArrowParameterList is refined using the following grammar:

ParenthesizedEXpression (v .14, await]

(Expression(.t,, »vield, 2await])

12.2.1 Semantics

12.2.1.1 Static Semantics: CoveredParenthesizedExpression
CoverParenthesizedExpressionAndArrowParameterList : (Expression)

1. Return the ParenthesizedExpression that is covered by CoverParenthesizedExpressionAndArrowParameterList.

12.2.1.2 Static Semantics: HasName
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. If IsFunctionDefinition of expr is false, return false.

3. Return HasName of expr.

© Ecma International 2019 185

12.2.1.3 Static Semantics: IsFunctionDefinition

PrimaryExpression :
this
IdentifierReference
Literal
ArrayLiteral
ObjectLiteral
RegularExpressionLiteral

TemplateLiteral

1. Return false.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.

2. Return IsFunctionDefinition of expr.

12.2.1.4 Static Semantics: IsIdentifierRef
PrimaryExpression : IdentifierReference

1. Return true.

PrimaryExpression :
this
Literal
ArraylLiteral
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
AsyncFunctionExpression
AsyncGeneratorExpression
RegularExpressionLiteral

TemplateLiteral

CoverParenthesizedExpressionAndArrowParameterList

1. Return false.

12.2.1.5 Static Semantics: AssignmentTargetType

PrimaryExpression :
this
Literal
ArrayLiteral
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression

AsyncFunctionExpression

186

© Ecma International 2019

AsyncGeneratorExpression
RegularExpressionLiteral

TemplateLiteral
1. Return invalid.

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.

2. Return AssignmentTargetType of expr.

12.2.2 The this Keyword

12.2.2.1 Runtime Semantics: Evaluation
PrimaryExpression : this

1. Return ? ResolveThisBinding().

12.2.3 Identifier Reference

See 12.1 for IdentifierReference.

12.2.4 Literals

Syntax

Literal :
NullLiteral
BooleanlLiteral
NumericLiteral
StringLiteral

12.2.4.1 Runtime Semantics: Evaluation
Literal : NullLiteral

1. Return null.
Literal : BooleanLiteral

1. If BooleanLiteral is the token £alse, return false.

2. If BooleanLiteral is the token true, return true.

Literal : NumericLiteral

1. Return the number whose value is MV of NumericLiteral as defined in 11.8.3.

Literal : StringLiteral

1. Return the StringValue of StringLiteral as defined in 11.8.4.1.

© Ecma International 2019

187

12.2.5 Array Initializer
NOTE

An ArrayLiteral is an expression describing the initialization of an Array object, using a list, of zero or more expressions

each of which represents an array element, enclosed in square brackets. The elements need not be literals; they are

evaluated each time the array initializer is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element list

is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another comma), the missing array

element contributes to the length of the Array and increases the index of subsequent elements. Elided array elements are

not defined. If an element is elided at the end of an array, that element does not contribute to the length of the Array.

Syntax

ArrayLiteral vi o154, ayait] *
[Elision,]
[ElementList;>vic14, oawait] 1

[ElementLiSt[?Yield, ?Await] r Elisjonopr_ 1

ElementList [vi.14, await] ¢
Elision . AssignmentEXpression . ovicid, 2await]
Elision, . SpreadElement -vic14, 2await]
ElementList [>yic14, 2await] - Elision,. AssignmentEXpression .t ovield, 2await]

ElementList [>y:ic14, 2awaic] o Elision . SpreadElement -vic14, 2await]

Elision :
4

Elision ,

SpreadElement (v .14, awaic] ¢

. . . AssignmentExpression |, ovield, 2Await]

12.2.5.1 Static Semantics: ElisionWidth
Elision : ,

1. Return the numeric value 1.
Elision : Elision ,
1. Let preceding be the ElisionWidth of Elision.

2. Return preceding + 1.

12.2.5.2 Runtime Semantics: ArrayAccumulation

With parameters array and nextIndex.
ElementList : Elision AssignmentExpression

1. Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.

2. Let initResult be the result of evaluating AssignmentExpression.

188 © Ecma International 2019

SRR

Let initValue be ? GetValue(initResult).

Let created be CreateDataProperty(array, ToString(ToUint32(nextIndex + padding)), initValue).
Assert: created is true.

Return nextIndex + padding + 1.

ElementList : Elision SpreadElement

1.
2.

Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
Return the result of performing ArrayAccumulation for SpreadElement with arguments array and nextIndex +
padding.

ElementList : ElementList , Elision AssignmentExpression

N~ W

Let postindex be the result of performing ArrayAccumulation for ElementList with arguments array and nextindex.
ReturnIfAbrupt(postindex).

Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.

Let initResult be the result of evaluating AssignmentExpression.

Let initValue be ? GetValue(initResult).

Let created be CreateDataProperty(array, ToString(ToUint32(postindex + padding)), initValue).

Assert: created is true.

Return postindex + padding + 1.

ElementList : ElementList , Elision SpreadElement

1. Let postindex be the result of performing ArrayAccumulation for ElementList with arguments array and nextIndex.
2. ReturnlfAbrupt(postindex).

3.
4

. Return the result of performing ArrayAccumulation for SpreadElement with arguments array and postindex +

Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.

padding.

SpreadElement : ... AssignmentExpression

M w =

Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadObj be ? GetValue(spreadRef).
Let iteratorRecord be ? Getlterator(spreadObyj).
Repeat,
a. Let next be ? IteratorStep(iteratorRecord).
If next is false, return nextindex.
Let nextValue be ? IteratorValue(next).
Let status be CreateDataProperty(array, ToString(ToUint32(nextIndex)), nextValue).

Assert: status is true.

- o AN o

Increase nextindex by 1.

NOTE

CreateDataProperty is used to ensure that own properties are defined for the array even if the standard built-in Array

prototype object has been modified in a manner that would preclude the creation of new own properties using [[Set]].

12.2.5.3 Runtime Semantics: Evaluation
ArrayLiteral : [Elision]

© Ecma International 2019 189

Let array be ! ArrayCreate(0).

Let pad be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
Perform Set(array, "length", ToUint32(pad), false).

NOTE: The above Set cannot fail because of the nature of the object returned by ArrayCreate.

S

Return array.
ArrayLiteral : [ElementList]

Let array be ! ArrayCreate(0).

Let /en be the result of performing ArrayAccumulation for ElementList with arguments array and 0.
ReturnIf Abrupt(len).

Perform Set(array, "length", ToUint32(len), false).

NOTE: The above Set cannot fail because of the nature of the object returned by ArrayCreate.

o Uk wh e

Return array.
ArrayLiteral : [ElementList , Elision]

Let array be ! ArrayCreate(0).

Let len be the result of performing ArrayAccumulation for ElementList with arguments array and 0.
ReturnIfAbrupt(len).

Let padding be the ElisionWidth of Elision; if Elision is not present, use the numeric value zero.
Perform Set(array, "length", ToUint32(padding + len), false).

NOTE: The above Set cannot fail because of the nature of the object returned by ArrayCreate.

N ok b=

Return array.

12.2.6 Object Initializer
NOTE 1

An object initializer is an expression describing the initialization of an Object, written in a form resembling a literal. It is
a list of zero or more pairs of property keys and associated values, enclosed in curly brackets. The values need not be

literals; they are evaluated each time the object initializer is evaluated.

Syntax

ObjeCtLiteral[Yield, Await]
{1}
{ PropertyDefinitionList [>v;c14, 2awaic] }

{ PropertyDefinitionList(>vic14, 2nwait] + }

PropertyDefinitionList (v 14, await]

PropertyDefinition >vic14, 2nwait]

PropertyDefinitionList[?Yield, 2Await] 7 PropertyDeﬁnition[?Yield, PAwait]

PropertyDefinition y; .14, await]
IdentifierReference >vic14, 2await]
CoverlnitializedName [>y 14, 2ayait]
PropertyName ;yiciq, 2await] - AssignmentEXpression|.i,, ovield, 2Await]
MethodDefinition [yic14, 2await]

. . . AssignmentEXpression(1, ovield, 2Await]

190 © Ecma International 2019

PropertyName [vic14, await]
LiteralPropertyName

ComputedPropertyName >y ic1d, 2await]

LiteralPropertyName :
IdentifierName
StringLiteral
NumericLiteral

ComputedPropertyName vic14, await]

[ASSignmentEXpreSSionHIn, ?Yield, ?Await] 1

CoverlnitializedName v c14, await]

IdentifierReference(>vic14, 2nwaic) Initializer;it,, ovieid, 2await]

Initializer |1, vic1d, Await]

= AssignmentExpression .1, >vicld, 2Await]

NOTE 2
MethodDefinition is defined in 14.3.

NOTE 3
In certain contexts, ObjectLiteral is used as a cover grammar for a more restricted secondary grammar. The
CoverlInitializedName production is necessary to fully cover these secondary grammars. However, use of this production

results in an early Syntax Error in normal contexts where an actual ObjectLiteral is expected.

12.2.6.1 Static Semantics: Early Errors
PropertyDefinition : MethodDefinition

It is a Syntax Error if HasDirectSuper of MethodDefinition is true.

In addition to describing an actual object initializer the ObjectLiteral productions are also used as a cover grammar for
ObjectAssignmentPattern and may be recognized as part of a CoverParenthesizedExpressionAndArrowParameterList.
When ObjectLiteral appears in a context where ObjectAssignmentPattern is required the following Early Error rules are
not applied. In addition, they are not applied when initially parsing a

CoverParenthesizedExpressionAndArrowParameterList or CoverCallExpressionAndAsyncArrowHead.
PropertyDefinition : CoverlnitializedName
Always throw a Syntax Error if code matches this production.

NOTE
This production exists so that ObjectLiteral can serve as a cover grammar for ObjectAssignmentPattern. It cannot occur

in an actual object initializer.

12.2.6.2 Static Semantics: ComputedPropertyContains

With parameter symbol.
PropertyName : LiteralPropertyName

© Ecma International 2019 191

1. Return false.
PropertyName : ComputedPropertyName

1. Return the result of ComputedPropertyName Contains symbol.

12.2.6.3 Static Semantics: Contains

With parameter symbol.
PropertyDefinition : MethodDefinition

1. If symbol is MethodDefinition, return true.
2. Return the result of ComputedPropertyContains for MethodDefinition with argument symbol.

NOTE

Static semantic rules that depend upon substructure generally do not look into function definitions.

LiteralPropertyName : IdentifierName

1. If symbol is a ReservedWord, return false.
2. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return
true.

3. Return false.

12.2.6.4 Static Semantics: IsComputedPropertyKey
PropertyName : LiteralPropertyName

1. Return false.
PropertyName : ComputedPropertyName

1. Return true.

12.2.6.5 Static Semantics: PropName
PropertyDefinition : IdentifierReference

1. Return StringValue of IdentifierReference.
PropertyDefinition : ... AssignmentExpression
1. Return empty.
PropertyDefinition : PropertyName : AssignmentExpression
1. Return PropName of PropertyName.
LiteralPropertyName : IdentifierName
1. Return StringValue of IdentifierName.
LiteralPropertyName : StringLiteral
1. Return the String value whose code units are the SV of the StringLiteral.

192 © Ecma International 2019

LiteralPropertyName : NumericLiteral

1. Let nbr be the result of forming the value of the NumericLiteral.
2. Return ! ToString(nbr).

ComputedPropertyName : [AssignmentExpression]

1. Return empty.

12.2.6.6 Static Semantics: PropertyNameList
PropertyDefinitionList : PropertyDefinition

1. If PropName of PropertyDefinition is empty, return a new empty List.
2. Return a new List containing PropName of PropertyDefinition.

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

Let list be PropertyNameList of PropertyDefinitionList.
If PropName of PropertyDefinition is empty, return [ist.
Append PropName of PropertyDefinition to the end of list.

A w e

Return /ist.

12.2.6.7 Runtime Semantics: Evaluation
ObjectLiteral : { }

1. Return ObjectCreate(%ObjectPrototype%).

ObjectLiteral :
{ PropertyDefinitionList }
{ PropertyDefinitionList , }

1. Let obj be ObjectCreate(%ObjectPrototype%).
2. Perform ? PropertyDefinitionEvaluation of PropertyDefinitionList with arguments obj and true.

3. Return obj.
LiteralPropertyName : IdentifierName

1. Return StringValue of IdentifierName.
LiteralPropertyName : StringLiteral

1. Return the String value whose code units are the SV of the StringLiteral.
LiteralPropertyName : NumericLiteral

1. Let nbr be the result of forming the value of the NumericLiteral.
2. Return ! ToString(nbr).

ComputedPropertyName : [AssignmentExpression]

1. Let exprValue be the result of evaluating AssignmentExpression.
2. Let propName be ? GetValue(exprValue).
3. Return ? ToPropertyKey(propName).

© Ecma International 2019

193

12.2.6.8 Runtime Semantics: PropertyDefinitionEvaluation
With parameters object and enumerable.
PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1. Perform ? PropertyDefinitionEvaluation of PropertyDefinitionList with arguments object and enumerable.
2. Return the result of performing PropertyDefinitionEvaluation of PropertyDefinition with arguments object and

enumerable.
PropertyDefinition : ... AssignmentExpression

Let exprValue be the result of evaluating AssignmentExpression.
Let fromValue be ? GetValue(exprValue).
Let excludedNames be a new empty List.

AL

Return ? CopyDataProperties(object, fromValue, excludedNames).
PropertyDefinition : IdentifierReference

Let propName be StringValue of IdentifierReference.

Let exprValue be the result of evaluating IdentifierReference.
Let propValue be ? GetValue(exprValue).

Assert: enumerable is true.

Assert: object is an ordinary, extensible object with no non-configurable properties.

ok W=

Return ! CreateDataPropertyOrThrow(object, propName, propValue).
PropertyDefinition : PropertyName : AssignmentExpression

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).
3. If IsAnonymousFunctionDefinition(AssignmentExpression) is true, then
a. Let propValue be the result of performing NamedEvaluation for AssignmentExpression with argument
propKey.
4. Else,
a. Let exprValueRef be the result of evaluating AssignmentExpression.
b. Let propValue be ? GetValue(exprValueRef).
5. Assert: enumerable is true.
6. Assert: object is an ordinary, extensible object with no non-configurable properties.
7. Return ! CreateDataPropertyOrThrow(object, propKey, propValue).

NOTE
An alternative semantics for this production is given in B.3.1.

12.2.7 Function Defining Expressions

See 14.1 for PrimaryExpression : FunctionExpression
See 14.4 for PrimaryExpression : GeneratorExpression

See 14.6 for PrimaryExpression : ClassExpression .

194 © Ecma International 2019

See 14.7 for PrimaryExpression : AsyncFunctionExpression .

See 14.5 for PrimaryExpression : AsyncGeneratorExpression

12.2.8 Regular Expression Literals

Syntax

See 11.8.5.

12.2.8.1 Static Semantics: Early Errors
PrimaryExpression : RegularExpressionLiteral

It is a Syntax Error if BodyText of RegularExpressionLiteral cannot be recognized using the goal symbol Pattern
of the ECMAScript RegExp grammar specified in 21.2.1.
It is a Syntax Error if FlagText of RegularExpressionLiteral contains any code points other than "g", "i", "m",

"s", "u", or "y", orif it contains the same code point more than once.

12.2.8.2 Runtime Semantics: Evaluation
PrimaryExpression : RegularExpressionLiteral

1. Let pattern be the String value consisting of the UTF16Encoding of each code point of BodyText of
RegularExpressionLiteral.

2. Let flags be the String value consisting of the UTF16Encoding of each code point of FlagText of
RegularExpressionLiteral.

3. Return RegExpCreate(pattern, flags).

12.2.9 Template Literals

Syntax

TemplateLiteral [Yield, Await, Tagged]
NoSubstitutionTemplate

SubstitutionTemplate [>vic14, >nyait, ?Tagged]

SubstitutionTemplate v .14, await, Tagged]

TemplateHead Expression; i, ovicid, 2awaic] lemplateSpans -viciq, »nwait, 2Tagged]

TemplatespanS[Yield, Await, Tagged]
TemplateTail
TemplateMiddleList [>vic14, 2nwait, 2Taggea) lemplateTail

TemplateMiddleList[Yield, Await, Tagged]
TemplateMiddle Expression,r, ovield, 2await]

TemplateMiddleList [>vic14, 2nwait, 2Tagged) lemplateMiddle Expression; i, ovield, 2await]

12.2.9.1 Static Semantics: Early Errors
TemplateLiteral : NoSubstitutionTemplate

© Ecma International 2019 195

It is a Syntax Error if the number of elements in the result of TemplateStrings of TemplateLiteral with argument

false is greater than 2321,
It is a Syntax Error if the [Taggeq) parameter was not set and NoSubstitutionTemplate Contains NotEscapeSequence.

SubstitutionTemplate : TemplateHead Expression TemplateSpans

It is a Syntax Error if the [Taggeq) parameter was not set and TemplateHead Contains NotEscapeSequence.

TemplateSpans : TemplateTail

It is a Syntax Error if the [Taggeq] parameter was not set and TemplateTail Contains NotEscapeSequence.

TemplateMiddleList[Yield, Await, Tagged]
TemplateMiddle Expression i, ovield, 2await]

TemplateMiddleList [>vic14, 2nwait, 2Tagged) lemplateMiddle Expression; i, -vield, 2await]

It is a Syntax Error if the [Taggeq) Parameter was not set and TemplateMiddle Contains NotEscapeSequence.

12.2.9.2 Static Semantics: TemplateStrings

With parameter raw.
TemplateLiteral : NoSubstitutionTemplate

1. If raw is false, then

a. Let string be the TV of NoSubstitutionTemplate.
2. Else,

a. Let string be the TRV of NoSubstitutionTemplate.

3. Return a List containing the single element, string.
SubstitutionTemplate : TemplateHead Expression TemplateSpans

1. If raw is false, then
a. Let head be the TV of TemplateHead.
2. Else,
a. Let head be the TRV of TemplateHead.
3. Let tail be TemplateStrings of TemplateSpans with argument raw.
4. Return a List containing head followed by the elements, in order, of tail.

TemplateSpans : TemplateTail

1. If raw is false, then
a. Let tail be the TV of TemplateTail.
2. Else,
a. Let tail be the TRV of TemplateTail.
3. Return a List containing the single element, tail.

TemplateSpans : TemplateMiddleList TemplateTail

1. Let middle be TemplateStrings of TemplateMiddleList with argument raw.
2. If raw is false, then
a. Let tail be the TV of TemplateTail.

196 © Ecma International 2019

3. Else,
a. Let tail be the TRV of TemplateTail.
4. Return a List containing the elements, in order, of middle followed by tail.

TemplateMiddleList : TemplateMiddle Expression

1. If raw is false, then
a. Let string be the TV of TemplateMiddle.
2. Else,
a. Let string be the TRV of TemplateMiddle.
3. Return a List containing the single element, string.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

—_

. Let front be TemplateStrings of TemplateMiddleList with argument raw.

N

If raw is false, then
a. Let last be the TV of TemplateMiddle.
3. Else,
a. Let last be the TRV of TemplateMiddle.
. Append [ast as the last element of the List front.

[S2

Return front.

12.2.9.3 Runtime Semantics: ArgumentListEvaluation
TemplateLiteral : NoSubstitutionTemplate

1. Let templateLiteral be this TemplateLiteral.
2. Let siteObj be GetTemplateObject(templateLiteral).

3. Return a List containing the one element which is siteObj.
SubstitutionTemplate : TemplateHead Expression TemplateSpans

Let templateLiteral be this TemplateLiteral.

Let siteObj be GetTemplateObject(templateLiteral).

Let firstSubRef be the result of evaluating Expression.
Let firstSub be ? GetValue(firstSubRef).

Let restSub be SubstitutionEvaluation of TemplateSpans.
ReturnIf Abrupt(restSub).

Assert: restSub is a List.

©® Nk~ W

Return a List whose first element is siteObj, whose second elements is firstSub, and whose subsequent elements are

the elements of restSub, in order. restSub may contain no elements.

12.2.9.4 Runtime Semantics: GetTemplateObject (templateLiteral)

The abstract operation GetTemplateObject is called with a Parse Node, templateLiteral, as an argument. It performs the
following steps:

Let rawStrings be TemplateStrings of templateLiteral with argument true.
Let realm be the current Realm Record.
Let templateRegistry be realm.[[TemplateMap]].

M b

For each element e of templateRegistry, do

a. If e.[[Site]] is the same Parse Node as templateLiteral, then

© Ecma International 2019 197

L o N ow

10.
11.

12.
13.

14.
15.
16.

i. Return e.[[Array]].
Let cookedStrings be TemplateStrings of templateLiteral with argument false.
Let count be the number of elements in the List cookedStrings.

Assert: count < 232 - 1.
Let template be ! ArrayCreate(count).
Let rawObj be ! ArrayCreate(count).
Let index be 0.
Repeat, while index < count
a. Let prop be ! ToString(index).
b. Let cookedValue be the String value cookedStrings[index].
c. Call template.[[DefineOwnProperty]]l(prop, PropertyDescriptor { [[Value]l: cookedValue, [[Writable]]: false,
[[Enumerable]]: true, [[Configurable]]: false }).
d. Let rawValue be the String value rawStrings[index].
e. Call rawObj.[[DefineOwnProperty]l(prop, PropertyDescriptor { [[Value]]: rawValue, [[Writable]]: false,
[[Enumerable]]: true, [[Configurable]]: false }).
f. Increase index by 1.
Perform SetntegrityLevel(rawObj, "frozen™).
Call template.[[DefineOwnProperty]](" raw", PropertyDescriptor { [[Value]]: rawObj, [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }).
Perform SetIntegrityLevel(template, "frozen™).
Append the Record { [[Site]]: templateLiteral, [[Array]]: template } to templateRegistry.
Return template.

NOTE 1
The creation of a template object cannot result in an abrupt completion.
NOTE 2

Each TemplateLiteral in the program code of a realm is associated with a unique template object that is used in the

evaluation of tagged Templates (12.2.9.6). The template objects are frozen and the same template object is used each

time a specific tagged Template is evaluated. Whether template objects are created lazily upon first evaluation of the

TemplateLiteral or eagerly prior to first evaluation is an implementation choice that is not observable to ECMAScript

code.

NOTE 3

Future editions of this specification may define additional non-enumerable properties of template objects.

12.2.9.5 Runtime Semantics: SubstitutionEvaluation
TemplateSpans : TemplateTail

1.

Return a new empty List.

TemplateSpans : TemplateMiddleList TemplateTail

1.

Return the result of SubstitutionEvaluation of TemplateMiddleList.

TemplateMiddleList : TemplateMiddle Expression

1.
2.
3.

Let subRef be the result of evaluating Expression.
Let sub be ? GetValue(subRef).
Return a List containing only sub.

198 © Ecma International 2019

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

Let preceding be the result of SubstitutionEvaluation of TemplateMiddleList.
ReturnIf Abrupt(preceding).

Let nextRef be the result of evaluating Expression.

Let next be ? GetValue(nextRef).

Append next as the last element of the List preceding.

o Uk W=

Return preceding.

12.2.9.6 Runtime Semantics: Evaluation
TemplateLiteral : NoSubstitutionTemplate

1. Return the String value whose code units are the elements of the TV of NoSubstitutionTemplate as defined in
11.8.6.

SubstitutionTemplate : TemplateHead Expression TemplateSpans

Let head be the TV of TemplateHead as defined in 11.8.6.
Let subRef be the result of evaluating Expression.

Let sub be ? GetValue(subRef).

Let middle be ? ToString(sub).

Let tail be the result of evaluating TemplateSpans.
ReturnIf Abrupt(tail).

Return the string-concatenation of head, middle, and tail.

Nk wh e

NOTE 1
The string conversion semantics applied to the Expression value are like String.prototype.concat rather than

the + operator.

TemplateSpans : TemplateTail

1. Let tail be the TV of TemplateTail as defined in 11.8.6.

2. Return the String value consisting of the code units of tail.
TemplateSpans : TemplateMiddleList TemplateTail

Let head be the result of evaluating TemplateMiddleList.
ReturnIf Abrupt(head).

Let tail be the TV of TemplateTail as defined in 11.8.6.
Return the string-concatenation of head and tail.

A

TemplateMiddleList : TemplateMiddle Expression

Let head be the TV of TemplateMiddle as defined in 11.8.6.

Let subRef be the result of evaluating Expression.

Let sub be ? GetValue(subRef).

Let middle be ? ToString(sub).

Return the sequence of code units consisting of the code units of head followed by the elements of middle.

;i ke

NOTE 2

The string conversion semantics applied to the Expression value are like String.prototype. concat rather than

© Ecma International 2019 199

the + operator.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

Let rest be the result of evaluating TemplateMiddleList.
ReturnIf Abrupt(rest).

Let middle be the TV of TemplateMiddle as defined in 11.8.6.
Let subRef be the result of evaluating Expression.

Let sub be ? GetValue(subRef).

Let last be ? ToString(sub).

Return the sequence of code units consisting of the elements of rest followed by the code units of middle followed

N o s wN e

by the elements of last.

NOTE 3
The string conversion semantics applied to the Expression value are like String.prototype. concat rather than

the + operator.

12.2.10 The Grouping Operator

12.2.10.1 Static Semantics: Early Errors
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

It is a Syntax Error if CoverParenthesizedExpressionAndArrowParameterList is not covering a
ParenthesizedExpression.

All Early Error rules for ParenthesizedExpression and its derived productions also apply to
CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.

12.2.10.2 Static Semantics: IsFunctionDefinition
ParenthesizedExpression : (Expression)

1. Return IsFunctionDefinition of Expression.

12.2.10.3 Static Semantics: AssignmentTargetType
ParenthesizedExpression : (Expression)

1. Return AssignmentTargetType of Expression.

12.2.10.4 Runtime Semantics: NamedEvaluation

With parameter name.
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the result of performing NamedEvaluation for expr with argument name.

ParenthesizedExpression : (Expression)

1. Assert: IsAnonymousFunctionDefinition(Expression) is true.

200 © Ecma International 2019

2. Return the result of performing NamedEvaluation for Expression with argument name.

12.2.10.5 Runtime Semantics: Evaluation
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.

2. Return the result of evaluating expr.
ParenthesizedExpression : (Expression)
1. Return the result of evaluating Expression. This may be of type Reference.

NOTE
This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this is so that

operators such as delete and typeof may be applied to parenthesized expressions.

12.3 Left-Hand-Side Expressions
Syntax

MemberEXpression (vi.id, await]
PrimaryEXxpression»yic14, 2await]
MemberExpression yic1d, 2await] [EXpression(ir,, ovieid, 2await]]
MemberExpression,vi.14, »ayait] - IdentifierName
MemberEXpreSSion[?Yield, ?Await] TemplateLiteral[?Yield, ?Await, +Tagged]
SuperProperty yvicia, 2await]
MetaProperty

new MemberEXpressionoyicid, cawaic] ArgUMents oyiciy, oawait]

SuperProperty (vic1d, await]
super [Expression|.t,, ovieid, 2await] 1

super . IdentifierName

MetaProperty :
NewTarget

NewTarget :
new . target

NewEXxpressionvi.14, await]
MemberEXpression [>vicid, oawait]

new NewExpression [?Yield, ?Await]

CallExpression [Yield, Await]

CoverCallExpressionAndAsyncArrowHead [v 14, 2await]

SuperCall (>vic14, 2nwait]

CallExpression (yici1d, 2awaic] Arguments oyicid, 2await]

© Ecma International 2019 201

CallExpression [>vic14, 2nwait] [EXpression;,r, ovieid, 2await] I
CallExpression>yic14, »await) - ldentifierName

CallExpression [>vic14, 2nwait] lemplateLiteral>v:ciq, 2nwait, +Tagged]

SuperCall [vic14, await)

super Arguments;.vicid, 2await]

Arguments (vicid, await]

()

(ArgumentList(>vic14, 2nwait])

(ArgumentList(>vic1d, 2await] r)

ArgumentLiSt (v .14, Await]
AssignmentEXpression 1., >viecld, 2await]
. . . AssignmentEXpression(1, ovield, 2Await]
ArgumentList >vic1q, 2nwait] - ASSIgNMeNtEXpression ., ovield, 2await]

ArgumentList [>vic14, 2await] ¢ - - - AssignmentEXpression.i. ovield, 2await]

LeftHandSideEXxpression v .14, await]
NewEXpression | ;vicid, 2await]

CallExpression | ?Yield, ?Await]

Supplemental Syntax

When processing an instance of the production CallExpression : CoverCallExpressionAndAsyncArrowHead the
interpretation of CoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

CallMemberExpression v .14, await]

MemberExpression >yic14, sawait] ArguUMentS(.vicid, 2await]

12.3.1 Static Semantics

12.3.1.1 Static Semantics: CoveredCallExpression
CallExpression : CoverCallExpressionAndAsyncArrowHead

1. Return the CallMemberExpression that is covered by CoverCallExpressionAndAsyncArrowHead.

12.3.1.2 Static Semantics: Contains

With parameter symbol.
MemberExpression : MemberExpression . IdentifierName

1. If MemberExpression Contains symbol is true, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return
true.

4. Return false.

202 © Ecma International 2019

SuperProperty : super . IdentifierName

1. If symbol is the ReservedWord super, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return
true.

4. Return false.
CallExpression : CallExpression . IdentifierName

1. If CallExpression Contains symbol is true, return true.

2. If symbol is a ReservedWord, return false.

3. If symbol is an Identifier and StringValue of symbol is the same value as the StringValue of IdentifierName, return
true.

4. Return false.

12.3.1.3 Static Semantics: IsFunctionDefinition

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
SuperProperty
MetaProperty

new MemberExpression Arguments

NewExpression :

new NewExpression

LeftHandSideExpression :
CallExpression

1. Return false.

12.3.1.4 Static Semantics: IsDestructuring
MemberExpression : PrimaryExpression

1. If PrimaryExpression is either an ObjectLiteral or an ArrayLiteral, return true.
2. Return false.

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
SuperProperty
MetaProperty

new MemberExpression Arguments

NewExpression :

new NewExpression

© Ecma International 2019 203

LeftHandSideExpression :

CallExpression

1. Return false.

12.3.1.5 Static Semantics: IsIdentifierRef

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
SuperProperty
MetaProperty
new MemberExpression Arguments

NewEXxpression :

new NewExpression

LeftHandSideExpression :
CallExpression

1. Return false.

12.3.1.6 Static Semantics: AssignmentTargetType

CallExpression :
CallExpression [Expression]

CallExpression . IdentifierName

MemberExpression :
MemberExpression [Expression]
MemberExpression . IdentifierName

SuperProperty
1. Return simple.

CallExpression :
CoverCallExpressionAndAsyncArrowHead
SuperCall
CallExpression Arguments
CallExpression TemplateLiteral

NewEXxpression :

new NewExpression

MemberExpression :
MemberExpression TemplateLiteral

new MemberExpression Arguments

NewTarget :

new . target

204

© Ecma International 2019

1.

Return invalid.

12.3.2 Property Accessors
NOTE

Properties are accessed by name, using either the dot notation:

MemberExpression . IdentifierName

CallExpression . IdentifierName

or the bracket notation:

MemberExpression [Expression]

CallExpression [Expression]

The dot notation is explained by the following syntactic conversion:

MemberExpression . IdentifierName

is identical in its behaviour to

MemberExpression [<identifier-name-string>]

and similarly

CallExpression . IdentifierName

is identical in its behaviour to

CallExpression [<identifier-name-string>]

where <identifier-name-string> is the result of evaluating StringValue of IdentifierName.

12.3.2.1 Runtime Semantics: Evaluation
MemberExpression : MemberExpression [Expression]

N~ W

Let baseReference be the result of evaluating MemberExpression.

Let baseValue be ? GetValue(baseReference).

Let propertyNameReference be the result of evaluating Expression.

Let propertyNameValue be ? GetValue(propertyNameReference).

Let bv be ? RequireObjectCoercible(baseValue).

Let propertyKey be ? ToPropertyKey(propertyNameValue).

If the code matched by this MemberExpression is strict mode code, let strict be true, else let strict be false.
Return a value of type Reference whose base value component is bv, whose referenced name component is
propertyKey, and whose strict reference flag is strict.

MemberExpression : MemberExpression . IdentifierName

Ll

Let baseReference be the result of evaluating MemberExpression.
Let baseValue be ? GetValue(baseReference).

Let bv be ? RequireObjectCoercible(baseValue).

Let propertyNameString be StringValue of IdentifierName.

© Ecma International 2019 205

5. If the code matched by this MemberExpression is strict mode code, let strict be true, else let strict be false.
6. Return a value of type Reference whose base value component is bv, whose referenced name component is

propertyNameString, and whose strict reference flag is strict.
CallExpression : CallExpression [Expression]

Is evaluated in exactly the same manner as MemberExpression : MemberExpression [Expression] except that the

contained CallExpression is evaluated in step 1.
CallExpression : CallExpression . IdentifierName

Is evaluated in exactly the same manner as MemberExpression : MemberExpression . IdentifierName except that the

contained CallExpression is evaluated in step 1.

12.3.3 The new Operator

12.3.3.1 Runtime Semantics: Evaluation
NewExpression : new NewExpression

1. Return ? EvaluateNew(NewExpression, empty).
MemberExpression : new MemberExpression Arguments

1. Return ? EvaluateNew(MemberExpression, Arguments).

12.3.3.1.1 Runtime Semantics: EvaluateNew (constructExpr, arguments)

The abstract operation EvaluateNew with arguments constructExpr, and arguments performs the following steps:

Assert: constructExpr is either a NewExpression or a MemberExpression.
Assert: arguments is either empty or an Arguments.
Let ref be the result of evaluating constructExpr.
Let constructor be ? GetValue(ref).
If arguments is empty, let argList be a new empty List.
Else,
a. Let argList be ArgumentListEvaluation of arguments.
b. ReturnIfAbrupt(argList).
7. If IsConstructor(constructor) is false, throw a TypeError exception.

S T A e

8. Return ? Construct(constructor, argList).

12.3.4 Function Calls

12.3.4.1 Runtime Semantics: Evaluation
CallExpression : CoverCallExpressionAndAsyncArrowHead

Let expr be CoveredCallExpression of CoverCallExpressionAndAsyncArrowHead.
Let memberExpr be the MemberExpression of expr.

Let arguments be the Arguments of expr.

Let ref be the result of evaluating memberExpr.

Let func be ? GetValue(ref).

ok =

206 © Ecma International 2019

6. If Type(ref) is Reference and IsPropertyReference(ref) is false and GetReferencedName(ref) is "eval", then
a. If SameValue(func, %eval%) is true, then
i. Let argList be ? ArgumentListEvaluation of arguments.
ii. If argList has no elements, return undefined.
iii. Let evalText be the first element of argList.
iv. If the source code matching this CallExpression is strict mode code, let strictCaller be true. Otherwise
let strictCaller be false.
v. Let evalRealm be the current Realm Record.
vi. Perform ? HostEnsureCanCompileStrings(evalRealm, evalRealm).
vii. Return ? PerformEval(evalText, evalRealm, strictCaller, true).
7. Let thisCall be this CallExpression.
8. Let tailCall be IsInTailPosition(thisCall).
9. Return ? EvaluateCall(func, ref, arguments, tailCall).

A CallExpression evaluation that executes step 6.a.vii is a direct eval.
CallExpression : CallExpression Arguments

Let ref be the result of evaluating CallExpression.
Let func be ? GetValue(ref).

Let thisCall be this CallExpression.

Let tailCall be IsInTailPosition(thisCall).

Return ? EvaluateCall(func, ref, Arguments, tailCall).

S e

12.3.4.2 Runtime Semantics: EvaluateCall (func, ref, arguments, tail Position)

The abstract operation EvaluateCall takes as arguments a value func, a value ref, a Parse Node arguments, and a Boolean

argument tailPosition. It performs the following steps:

1. If Type(ref) is Reference, then
a. If IsPropertyReference(ref) is true, then
i. Let thisValue be GetThisValue(ref).
b. Else the base of refis an Environment Record,
i. Let refEnv be GetBase(ref).
ii. Let thisValue be refEnv.WithBaseObject().
2. Else Type(ref) is not Reference,
a. Let thisValue be undefined.
Let argList be ArgumentListEvaluation of arguments.
ReturnIfAbrupt(argList).
If Type(func) is not Object, throw a TypeError exception.
If IsCallable(func) is false, throw a TypeError exception.
If tailPosition is true, perform PrepareForTailCall().
Let result be Call(func, thisValue, argList).

L e N AW

Assert: If tailPosition is true, the above call will not return here, but instead evaluation will continue as if the
following return has already occurred.
10. Assert: If result is not an abrupt completion, then Type(result) is an ECMAScript language type.

11. Return result.

12.3.5 The super Keyword

© Ecma International 2019 207

12.3.5.1 Runtime Semantics: Evaluation
SuperProperty : super [Expression]

Let env be GetThisEnvironment().

Let actualThis be ? env.GetThisBinding().

Let propertyNameReference be the result of evaluating Expression.
Let propertyNameValue be ? GetValue(propertyNameReference).
Let propertyKey be ? ToPropertyKey(propertyNameValue).

If the code matched by this SuperProperty is strict mode code, let strict be true, else let strict be false.

N ok W

Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
SuperProperty : super . IdentifierName

Let env be GetThisEnvironment().

Let actualThis be ? env.GetThisBinding().

Let propertyKey be StringValue of IdentifierName.

If the code matched by this SuperProperty is strict mode code, let strict be true, else let strict be false.

Ao e

Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
SuperCall : super Arguments

Let newTarget be GetNewTarget().

Assert: Type(newTarget) is Object.

Let func be ? GetSuperConstructor().

Let argList be ArgumentListEvaluation of Arguments.
ReturnIf Abrupt(argList).

Let result be ? Construct(func, argList, newTarget).
Let thisER be GetThisEnvironment().

Return ? thisER.BindThisValue(result).

N~ W

12.3.5.2 Runtime Semantics: GetSuperConstructor ()

The abstract operation GetSuperConstructor performs the following steps:

Let envRec be GetThisEnvironment().

Assert: envRec is a function Environment Record.

Let activeFunction be envRec.[[FunctionObject]].

Assert: activeFunction is an ECMAScript function object.

Let superConstructor be ! activeFunction.[[GetPrototypeOf]]().

If IsConstructor(superConstructor) is false, throw a TypeError exception.

N ks W=

Return superConstructor.

12.3.5.3 Runtime Semantics: MakeSuperPropertyReference (actual This, propertyKey, strict)

The abstract operation MakeSuperPropertyReference with arguments actualThis, propertyKey, and strict performs the
following steps:

Let env be GetThisEnvironment().

Assert: env.HasSuperBinding() is true.

Let baseValue be ? env.GetSuperBase().

Let bv be ? RequireObjectCoercible(baseValue).

L

208 © Ecma International 2019

5. Return a value of type Reference that is a Super Reference whose base value component is bv, whose referenced

name component is propertyKey, whose thisValue component is actualThis, and whose strict reference flag is strict.

12.3.6 Argument Lists
NOTE

The evaluation of an argument list produces a List of values.

12.3.6.1 Runtime Semantics: ArgumentListEvaluation
Arguments : ()

1. Return a new empty List.
ArgumentList : AssignmentExpression

1. Let ref be the result of evaluating AssignmentExpression.
2. Let arg be ? GetValue(ref).
3. Return a List whose sole item is arg.

ArgumentList : ... AssignmentExpression

Let list be a new empty List.

Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadObj be ? GetValue(spreadRef).

Let iteratorRecord be ? Getlterator(spreadObyj).

ik =

Repeat,
a. Let next be ? IteratorStep(iteratorRecord).
b. If next is false, return list.
c. Let nextArg be ? IteratorValue(next).
d. Append nextArg as the last element of ist.

ArgumentList : ArgumentList , AssignmentExpression

Let precedingArgs be ArgumentListEvaluation of ArgumentList.
ReturnIf Abrupt(precedingArgs).

Let ref be the result of evaluating AssignmentExpression.

Let arg be ? GetValue(ref).

Append arg to the end of precedingArgs.

ok W=

Return precedingArgs.
ArgumentList : ArgumentList , ... AssignmentExpression

Let precedingArgs be ArgumentListEvaluation of ArgumentList.
ReturnIf Abrupt(precedingArgs).

Let spreadRef be the result of evaluating AssignmentExpression.
Let iteratorRecord be ? Getlterator(? GetValue(spreadRef)).

ik =

Repeat,
a. Let next be ? IteratorStep(iteratorRecord).
b. If next is false, return precedingArgs.
c. Let nextArg be ? IteratorValue(next).

© Ecma International 2019 209

d. Append nextArg as the last element of precedingArgs.

12.3.7 Tagged Templates
NOTE

A tagged template is a function call where the arguments of the call are derived from a TemplateLiteral (12.2.9). The
actual arguments include a template object (12.2.9.4) and the values produced by evaluating the expressions embedded

within the TemplateLiteral.

12.3.7.1 Runtime Semantics: Evaluation
MemberExpression : MemberExpression TemplateLiteral

Let tagRef be the result of evaluating MemberExpression.

Let tagFunc be ? GetValue(tagRef).

Let thisCall be this MemberExpression.

Let tailCall be IsInTailPosition(thisCall).

Return ? EvaluateCall(tagFunc, tagRef, TemplateLiteral, tailCall).

i e

CallExpression : CallExpression TemplateLiteral

Let tagRef be the result of evaluating CallExpression.

Let tagFunc be ? GetValue(tagRef).

Let thisCall be this CallExpression.

Let tailCall be IsInTailPosition(thisCall).

Return ? EvaluateCall(tagFunc, tagRef, TemplateLiteral, tailCall).

S e

12.3.8 Meta Properties

12.3.8.1 Runtime Semantics: Evaluation
NewTarget : new . target

1. Return GetNewTarget().

12.4 Update Expressions
Syntax

UpdateExpression y; .14, await]
LeftHandSideExpression [>y c14, 2await]
LeftHandSideExpression »y:.14, »await] (N0 LineTerminator here] ++
LeftHandSideExpression >y .14, »await] L[N0 LineTerminator here] --
++ UnaryExpression -vic1d, 2await]

== UnaryExpression ,vicid, 2await]
12.4.1 Static Semantics: Early Errors

210 © Ecma International 2019

UpdateExpression :
LeftHandSideExpression ++
LeftHandSideExpression --

It is an early Reference Error if AssignmentTargetType of LeftHandSideExpression is invalid.
It is an early Syntax Error if AssignmentTargetType of LeftHandSideExpression is strict.

UpdateExpression :
++ UnaryEXxpression

-- UnaryExpression

It is an early Reference Error if AssignmentTargetType of UnaryExpression is invalid.
It is an early Syntax Error if AssignmentTargetType of UnaryExpression is strict.

12.4.2 Static Semantics: IsFunctionDefinition

UpdateExpression :
LeftHandSideExpression ++
LeftHandSideExpression —-
++ UnaryEXxpression

—-— UnaryExpression

1. Return false.

12.4.3 Static Semantics: AssignmentTargetType

UpdateExpression :
LeftHandSideExpression ++
LeftHandSideExpression —-
++ UnaryEXxpression

-- UnaryExpression

1. Return invalid.

12.4.4 Postfix Increment Operator

12.4.4.1 Runtime Semantics: Evaluation
UpdateExpression : LeftHandSideExpression ++

1. Let [hs be the result of evaluating LeftHandSideExpression.

2. Let oldValue be ? ToNumber(? GetValue(/hs)).

3. Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see
12.8.5).

4. Perform ? PutValue(lhs, newValue).

5. Return oldValue.

12.4.5 Postfix Decrement Operator

© Ecma International 2019 211

12.4.5.1 Runtime Semantics: Evaluation
UpdateExpression : LeftHandSideExpression —-

1. Let [hs be the result of evaluating LeftHandSideExpression.

2. Let oldValue be ? ToNumber(? GetValue(/hs)).

3. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the — operator (see
12.8.5).

4. Perform ? PutValue(lhs, newValue).

5. Return oldValue.

12.4.6 Prefix Increment Operator

12.4.6.1 Runtime Semantics: Evaluation
UpdateExpression : ++ UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ? ToNumber(? GetValue(expr)).
3. Let newValue be the result of adding the value 1 to oldValue, using the same rules as for the + operator (see

12.8.5).
4. Perform ? PutValue(expr, newValue).

5. Return newValue.

12.4.7 Prefix Decrement Operator

12.4.7.1 Runtime Semantics: Evaluation
UpdateExpression : —— UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.

2. Let oldValue be ? ToNumber(? GetValue(expr)).

3. Let newValue be the result of subtracting the value 1 from oldValue, using the same rules as for the - operator (see
12.8.5).

4. Perform ? PutValue(expr, newValue).

5. Return newValue.

12.5 Unary Operators
Syntax

UnaryEXpression (yic14, await]
UpdateEXpression|>yic1d, 2nawait]
delete UnaryExpression -vic1d, 2await]
void UnaryExpression -vic14, 2await]
typeof UnaryExpressionyi.14, »await]
+ UnaryEXpression [-yic1a, »nuait
~ UnaryEXpression 5y .14, nuait]

~ UnaryEXpression ;yic1d, 2await]

212 © Ecma International 2019

! UnaryExpression (oyic1d, 2await]

[+Await] AWaitEXpression |-y ; .14

12.5.1 Static Semantics: IsFunctionDefinition

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
+ UnaryEXxpression

- UnaryExpression

?

UnaryExpression
! UnaryExpression

AwaitExpression

1. Return false.

12.5.2 Static Semantics: AssignmentTargetType

UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
+ UnaryExpression

- UnaryExpression

b4

UnaryExpression
! UnaryEXxpression

AwaitExpression

1. Return invalid.

12.5.3 The delete Operator

12.5.3.1 Static Semantics: Early Errors
UnaryExpression : delete UnaryExpression

It is a Syntax Error if the UnaryExpression is contained in strict mode code and the derived UnaryExpression is

PrimaryExpression : IdentifierReference .

It is a Syntax Error if the derived UnaryExpression is

PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList
and CoverParenthesizedExpressionAndArrowParameterList ultimately derives a phrase that, if used in place of
UnaryExpression, would produce a Syntax Error according to these rules. This rule is recursively applied.

NOTE
The last rule means that expressions such as delete (((£foo))) produce early errors because of recursive

application of the first rule.

© Ecma International 2019 213

12.5.3.2 Runtime Semantics: Evaluation
UnaryExpression : delete UnaryExpression

Let ref be the result of evaluating UnaryExpression.
ReturnIfAbrupt(ref).
If Type(ref) is not Reference, return true.

A w =

If IsUnresolvableReference(ref) is true, then
a. Assert: IsStrictReference(ref) is false.
b. Return true.
5. If IsPropertyReference(ref) is true, then
a. If IsSuperReference(ref) is true, throw a ReferenceError exception.
b. Let baseObj be ! ToObject(GetBase(ref)).
c. Let deleteStatus be ? baseObj.[[Delete]](GetReferencedName(ref)).
d. If deleteStatus is false and IsStrictReference(ref) is true, throw a TypeError exception.
e. Return deleteStatus.
6. Else refis a Reference to an Environment Record binding,
a. Let bindings be GetBase(ref).
b. Return ? bindings.DeleteBinding(GetReferencedName(ref)).

NOTE
When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its UnaryExpression is
a direct reference to a variable, function argument, or function name. In addition, if a delete operator occurs within

strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError exception is
thrown.

12.5.4 The void Operator

12.5.4.1 Runtime Semantics: Evaluation
UnaryExpression : void UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Perform ? GetValue(expr).
3. Return undefined.

NOTE

GetValue must be called even though its value is not used because it may have observable side-effects.

12.5.5 The typeof Operator

12.5.5.1 Runtime Semantics: Evaluation
UnaryExpression : typeof UnaryExpression

1. Let val be the result of evaluating UnaryExpression.
2. If Type(val) is Reference, then

a. If IsUnresolvableReference(val) is true, return "undefined".
3. Set val to ? GetValue(val).

214 © Ecma International 2019

4. Return a String according to Table 35.

Table 35: typeof Operator Results

Type of val Result

Undefined "undefined"

Null "object"

Boolean "boolean"

Number "number"

String "string"

Symbol "symbol"

Object (ordinary and does not "object"

implement [[Call]])

Object (standard exotic and does not "object"
implement [[Call]])

Object (implements [[Call]]) "function"

Object (non-standard exotic and does Implementation-defined. Must not be "undefined", "boolean",

not implement [[Call]]) "function", "number", "symbol", or "string".

NOTE
Implementations are discouraged from defining new typeof result values for non-standard exotic objects. If possible

"object" should be used for such objects.

12.5.6 Unary + Operator
NOTE

The unary + operator converts its operand to Number type.

12.5.6.1 Runtime Semantics: Evaluation
UnaryExpression : + UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Return ? ToNumber(? GetValue(expr)).

12.5.7 Unary - Operator
NOTE

The unary - operator converts its operand to Number type and then negates it. Negating +0 produces -0, and negating -0

produces +0.

© Ecma International 2019 215

12.5.7.1 Runtime Semantics: Evaluation
UnaryExpression : — UnaryExpression

Let expr be the result of evaluating UnaryExpression.
Let oldValue be ? ToNumber(? GetValue(expr)).
If oldValue is NaN, return NaN.

Return the result of negating oldValue; that is, compute a Number with the same magnitude but opposite sign.

A w =

12.5.8 Bitwise NOT Operator (~)

12.5.8.1 Runtime Semantics: Evaluation
UnaryExpression : ~ UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ? ToInt32(? GetValue(expr)).
3. Return the result of applying bitwise complement to oldValue. The result is a signed 32-bit integer.

12.5.9 Logical NOT Operator (!)

12.5.9.1 Runtime Semantics: Evaluation
UnaryExpression : ' UnaryExpression

Let expr be the result of evaluating UnaryExpression.
Let oldValue be ToBoolean(? GetValue(expr)).
If oldValue is true, return false.

Eal A

Return true.

12.6 Exponentiation Operator
Syntax

ExponentiationEXpression v; .14, await]
UnaryEXpression (oyicid, 2await]

UpdateExpression [2vield, 2await] ** ExponentiationEXpression -vici4, 2await]

12.6.1 Static Semantics: IsFunctionDefinition

ExponentiationExpression :

UpdateExpression ** ExponentiationExpression

1. Return false.

12.6.2 Static Semantics: AssignmentTargetType

ExponentiationExpression :

UpdateExpression ** ExponentiationExpression

216 © Ecma International 2019

1. Return invalid.

12.6.3 Runtime Semantics: Evaluation
ExponentiationExpression : UpdateExpression ** ExponentiationExpression

Let left be the result of evaluating UpdateExpression.

Let leftValue be ? GetValue(left).

Let right be the result of evaluating ExponentiationExpression.
Let rightValue be ? GetValue(right).

Let base be ? ToNumber(leftValue).

Let exponent be ? ToNumber(rightValue).

Nk W=

Return the result of Applying the ** operator with base and exponent as specified in 12.6.4.

12.6.4 Applying the ** Operator

Returns an implementation-dependent approximation of the result of raising base to the power exponent.

If exponent is NaN, the result is NaN.

If exponent is +0, the result is 1, even if base is NaN.

If exponent is -0, the result is 1, even if base is NaN.

If base is NaN and exponent is nonzero, the result is NaN.

If abs(base) > 1 and exponent is +oo, the result is +oo,

If abs(base) > 1 and exponent is -oo, the result is +0.

If abs(base) is 1 and exponent is +oo, the result is NaN.

If abs(base) is 1 and exponent is -co, the result is NaN.

If abs(base) < 1 and exponent is +oo, the result is +0.

If abs(base) < 1 and exponent is -co, the result is +oo.

If base is +oo0 and exponent > 0, the result is +oo,

If base is +oo and exponent < 0, the result is +0.

If base is -0 and exponent > 0 and exponent is an odd integer, the result is -co.

If base is -0 and exponent > 0 and exponent is not an odd integer, the result is +oo.
If base is -0 and exponent < 0 and exponent is an odd integer, the result is -0.

If base is -0 and exponent < 0 and exponent is not an odd integer, the result is +0.
If base is +0 and exponent > 0, the result is +0.

If base is +0 and exponent < 0, the result is +oo,

If base is -0 and exponent > 0 and exponent is an odd integer, the result is -0.

If base is -0 and exponent > 0 and exponent is not an odd integer, the result is +0.

If base is -0 and exponent < 0 and exponent is an odd integer, the result is -oo.

If base is -0 and exponent < 0 and exponent is not an odd integer, the result is +co,

If base < 0 and base is finite and exponent is finite and exponent is not an integer, the result is NaN.

NOTE
The result of base ** exponent when base is 1 or -1 and exponent is +Infinity or -Infinity differs from IEEE 754-2008.
The first edition of ECMAScript specified a result of NaN for this operation, whereas later versions of IEEE 754-2008

specified 1. The historical ECMAScript behaviour is preserved for compatibility reasons.

17 7 NAsmsltzinlzantivia Mnamntnamc

© Ecma International 2019 217

Lo/ 1v1u1uluu.auvc UPCI. awvild

Syntax

MultiplicativeEXpression [vi <14, await]
ExponentiationExpression -v;c14, >await]
MultiplicativeExpression >y .14, »await] MultiplicativeOperator

ExponentiationEXpression (>vic14, 2await]

MultiplicativeOperator : one of
*x /%

12.7.1 Static Semantics: IsFunctionDefinition
MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator ExponentiationExpression

1.

Return false.

12.7.2 Static Semantics: AssignmentTargetType
MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator ExponentiationExpression

1.

Return invalid.

12.7.3 Runtime Semantics: Evaluation
MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator ExponentiationExpression

S A O o

Let left be the result of evaluating MultiplicativeExpression.

Let leftValue be ? GetValue(left).

Let right be the result of evaluating ExponentiationExpression.

Let rightValue be ? GetValue(right).

Let Inum be ? ToNumber(leftValue).

Let rnum be ? ToNumber(rightValue).

Return the result of applying the MultiplicativeOperator (*, /, or %) to [num and rnum as specified in 12.7.3.1,
12.7.3.2, or 12.7.3.3.

12.7.3.1 Applying the * Operator

The * MultiplicativeOperator performs multiplication, producing the product of its operands. Multiplication is

commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754-2008 binary double-precision

arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have different signs.
Multiplication of an infinity by a zero results in NaN.

Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule already stated
above.

Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is determined by the rule

already stated above.

218 © Ecma International 2019

In the remaining cases, where neither an infinity nor NaN is involved, the product is computed and rounded to the
nearest representable value using IEEE 754-2008 round to nearest, ties to even mode. If the magnitude is too large
to represent, the result is then an infinity of appropriate sign. If the magnitude is too small to represent, the result is
then a zero of appropriate sign. The ECMAScript language requires support of gradual underflow as defined by
IEEE 754-2008.

12.7.3.2 Applying the / Operator

The / MultiplicativeOperator performs division, producing the quotient of its operands. The left operand is the dividend
and the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the specification
of IEEE 754-2008 arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have different signs.
Division of an infinity by an infinity results in NaN.

Division of an infinity by a zero results in an infinity. The sign is determined by the rule already stated above.
Division of an infinity by a nonzero finite value results in a signed infinity. The sign is determined by the rule
already stated above.

Division of a finite value by an infinity results in zero. The sign is determined by the rule already stated above.
Division of a zero by a zero results in NaN; division of zero by any other finite value results in zero, with the sign
determined by the rule already stated above.

Division of a nonzero finite value by a zero results in a signed infinity. The sign is determined by the rule already
stated above.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is computed and
rounded to the nearest representable value using IEEE 754-2008 round to nearest, ties to even mode. If the
magnitude is too large to represent, the operation overflows; the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, the operation underflows and the result is a zero of the appropriate sign. The

ECMAScript language requires support of gradual underflow as defined by IEEE 754-2008.

12.7.3.3 Applying the % Operator

The % MultiplicativeOperator yields the remainder of its operands from an implied division; the left operand is the

dividend and the right operand is the divisor.

NOTE
In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-point

operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the “remainder”
operation defined by IEEE 754-2008. The IEEE 754-2008 “remainder” operation computes the remainder from a
rounding division, not a truncating division, and so its behaviour is not analogous to that of the usual integer remainder
operator. Instead the ECMAScript language defines % on floating-point operations to behave in a manner analogous to

that of the Java integer remainder operator; this may be compared with the C library function fmod.
The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:

If either operand is NaN, the result is NaN.
The sign of the result equals the sign of the dividend.

© Ecma International 2019 219

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is nonzero and finite, the result is the same as the dividend.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r

from a dividend n and a divisor d is defined by the mathematical relation r = n - (d x q) where q is an integer that is

negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as possible

without exceeding the magnitude of the true mathematical quotient of n and d. r is computed and rounded to the

nearest representable value using IEEE 754-2008 round to nearest, ties to even mode.

12.8 Additive Operators
Syntax

AdditiveEXpression [yic14, await]
MultiplicativeEXpression >y 14, 2await]
4

AdditiveExpression »yic14, »await] + MultiplicativeExpression ,yicig

AdditiveExpression [»yic14, »await] -~ MultiplicativeExpression ,yicig

’

12.8.1 Static Semantics: IsFunctionDefinition

AdditiveExpression :
AdditiveExpression + MultiplicativeExpression

AdditiveExpression — MultiplicativeExpression

1. Return false.

12.8.2 Static Semantics: AssignmentTargetType

AdditiveExpression :
AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression

1. Return invalid.

12.8.3 The Addition Operator (+)
NOTE

The addition operator either performs string concatenation or numeric addition.

12.8.3.1 Runtime Semantics: Evaluation
AdditiveExpression : AdditiveExpression + MultiplicativeExpression

Let Iref be the result of evaluating AdditiveExpression.

Let Ival be ? GetValue(lref).

Let rref be the result of evaluating MultiplicativeExpression.
Let rval be ? GetValue(rref).

Let Iprim be ? ToPrimitive(lval).

ik =

220

?Await]

?Await}

© Ecma International 2019

6. Let rprim be ? ToPrimitive(rval).
7. If Type(lprim) is String or Type(rprim) is String, then
a. Let Istr be ? ToString(Iprim).
b. Let rstr be ? ToString(rprim).
c. Return the string-concatenation of [str and rstr.
8. Let Inum be ? ToNumber(/prim).
9. Let rnum be ? ToNumber(rprim).

10. Return the result of applying the addition operation to /[num and rnum. See the Note below 12.8.5.

NOTE 1
No hint is provided in the calls to ToPrimitive in steps 5 and 6. All standard objects except Date objects handle the
absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the hint String were
given. Exotic objects may handle the absence of a hint in some other manner.

NOTE 2
Step 7 differs from step 3 of the Abstract Relational Comparison algorithm, by using the logical-or operation instead of

the logical-and operation.

12.8.4 The Subtraction Operator (-)

12.8.4.1 Runtime Semantics: Evaluation
AdditiveExpression : AdditiveExpression - MultiplicativeExpression

Let Iref be the result of evaluating AdditiveExpression.

Let Ival be ? GetValue(Iref).

Let rref be the result of evaluating MultiplicativeExpression.
Let rval be ? GetValue(rref).

Let Inum be ? ToNumber(lval).

Let rnum be ? ToNumber(rval).

N o s W

Return the result of applying the subtraction operation to [num and rnum. See the note below 12.8.5.

12.8.5 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of the operands. The

- operator performs subtraction, producing the difference of two numeric operands.
Addition is a commutative operation, but not always associative.
The result of an addition is determined using the rules of IEEE 754-2008 binary double-precision arithmetic:

If either operand is NaN, the result is NaN.

The sum of two infinities of opposite sign is NaN.

The sum of two infinities of the same sign is the infinity of that sign.

The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two negative zeroes is -0. The sum of two positive zeroes, or of two zeroes of opposite sign, is +0.
The sum of a zero and a nonzero finite value is equal to the nonzero operand.

The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands have the same
sign or have different magnitudes, the sum is computed and rounded to the nearest representable value using IEEE

© Ecma International 2019 221

754-2008 round to nearest, ties to even mode. If the magnitude is too large to represent, the operation overflows

and the result is then an infinity of appropriate sign. The ECMAScript language requires support of gradual
underflow as defined by IEEE 754-2008.

NOTE

The - operator performs subtraction when applied to two operands of numeric type, producing the difference of its
operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric operands a and b, it is

always the case that a - b produces the same result asa + (-b).

12.9 Bitwise Shift Operators
Syntax

ShiftExpressiony;.14, await]
AdditiveEXpression [oyic14, 2await]
ShiftExpression-v;ic14, sawait] << AdditiveEXpressiony;.i4, sawait]
ShiftExpression [-v;c14, sawait] >> AdditiveEXpressiony;ci4, sawait]

ShiftExpression [ovic14, 2await] >>> AdditiveEXpression,yici4, »await]

12.9.1 Static Semantics: IsFunctionDefinition

ShiftExpression :
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

1. Return false.

12.9.2 Static Semantics: AssignmentTargetType

ShiftExpression :
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

1. Return invalid.

12.9.3 The Left Shift Operator (<<)
NOTE

Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

12.9.3.1 Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression << AdditiveExpression

1. Let Iref be the result of evaluating ShiftExpression.

222 © Ecma International 2019

Let Ival be ? GetValue(Iref).

Let rref be the result of evaluating AdditiveExpression.

Let rval be ? GetValue(rref).

Let Inum be ? Tolnt32(lval).

Let rnum be ? ToUint32(rval).

Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum &
0x1F.

8. Return the result of left shifting /num by shiftCount bits. The result is a signed 32-bit integer.

N ook~ W

12.9.4 The Signed Right Shift Operator (>>)
NOTE

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right operand.

12.9.4.1 Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >> AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let Ival be ? GetValue(Iref).

Let rref be the result of evaluating AdditiveExpression.

Let rval be ? GetValue(rref).

Let [num be ? ToInt32(lval).

Let rnum be ? ToUint32(rval).

Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum &
0x1F.

8. Return the result of performing a sign-extending right shift of Inum by shiftCount bits. The most significant bit is

Nk W=

propagated. The result is a signed 32-bit integer.

12.9.5 The Unsigned Right Shift Operator (>>>)
NOTE

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right operand.

12.9.5.1 Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >>> AdditiveExpression

Let Iref be the result of evaluating ShiftExpression.

Let Ival be ? GetValue(Iref).

Let rref be the result of evaluating AdditiveExpression.

Let rval be ? GetValue(rref).

Let Inum be ? ToUint32(Ival).

Let rnum be ? ToUint32(rval).

Let shiftCount be the result of masking out all but the least significant 5 bits of rnum, that is, compute rnum &
Ox1F.

8. Return the result of performing a zero-filling right shift of [num by shiftCount bits. Vacated bits are filled with zero.

N ks wh e

The result is an unsigned 32-bit integer.

© Ecma International 2019 223

12.10 Relational Operators

NOTE 1

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship named by the

operator holds between its two operands.

Syntax

RelationalExpression 1,

NOTE 2

The [1,) grammar parameter is needed to avoid confusing the in operator in a relational expression with the in operator

Yield, Await]

ShiftEXpression [>vici4, 2await]

RelationalExpression ;1 ovic1d, 2await] < ShIftEXpression.viciq, 2nyait]

RelationalExpression ;1 ovie1d, 2await] > ShIftEXpression.vicidq, 2nyait]

RelationalExpression ;1 ovie1d, 2awaic] <= ShIftEXpression,viciq, oayait]

RelationalExpression ;1 ovicid, 2awaic] >= ShiftEXpression,viciq, >ayait]

RelationalExpression ;1 ovic1d, awaic] instanceof ShiftEXpressionviciq, >ayait]

[+In] RelationalExpression(1, >vield, 2await]

in a for statement.

12.10.1 Static Semantics: IsFunctionDefinition

Relational Expression :

1. Return

12.10.2 Static Semantics: AssignmentTargetType

Relational Expression
Relational Expression
Relational Expression
Relational Expression
Relational Expression

Relational Expression

false.

RelationalExpression :

1. Return

Relational Expression
Relational Expression
Relational Expression
Relational Expression
Relational Expression

Relational Expression

invalid.

< ShiftExpression

> ShiftExpression

<= ShiftExpression

>= ShiftExpression
instanceof ShiftExpression

in ShiftExpression

< ShiftExpression

> ShiftExpression

<= ShiftExpression

>= ShiftExpression
instanceof ShiftExpression

in ShiftExpression

12.10.3 Runtime Semantics: Evaluation

224

in ShiftExpression;,yvicid, 2await]

© Ecma International 2019

RelationalExpression : RelationalExpression < ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be ? GetValue(lref).

Let rref be the result of evaluating ShiftExpression.

Let rval be ? GetValue(rref).

Let r be the result of performing Abstract Relational Comparison Ival < rval.
ReturnIfAbrupt(r).

If r is undefined, return false. Otherwise, return r.

I A S O o

RelationalExpression : RelationalExpression > ShiftExpression

Let Iref be the result of evaluating Relational Expression.

Let Ival be ? GetValue(lref).

Let rref be the result of evaluating ShiftExpression.

Let rval be ? GetValue(rref).

Let r be the result of performing Abstract Relational Comparison rval < Ival with LeftFirst equal to false.
ReturnIf Abrupt(r).

If r is undefined, return false. Otherwise, return r.

N o s wh e

Relational Expression : RelationalExpression <= ShiftExpression

Let Iref be the result of evaluating Relational Expression.

Let Ival be ? GetValue(Iref).

Let rref be the result of evaluating ShiftExpression.

Let rval be ? GetValue(rref).

Let r be the result of performing Abstract Relational Comparison rval < Ival with LeftFirst equal to false.
ReturnIf Abrupt(r).

If r is true or undefined, return false. Otherwise, return true.

N oo s W

RelationalExpression : RelationalExpression >= ShiftExpression

Let Iref be the result of evaluating RelationalExpression.

Let Ival be ? GetValue(lref).

Let rref be the result of evaluating ShiftExpression.

Let rval be ? GetValue(rref).

Let r be the result of performing Abstract Relational Comparison Ival < rval.
ReturnIfAbrupt(r).

If r is true or undefined, return false. Otherwise, return true.

Nk W=

RelationalExpression : RelationalExpression instanceof ShiftExpression

Let [ref be the result of evaluating Relational Expression.
Let Ival be ? GetValue(Iref).

Let rref be the result of evaluating ShiftExpression.

Let rval be ? GetValue(rref).

Return ? InstanceofOperator(lval, rval).

ik =

RelationalExpression : RelationalExpression in ShiftExpression

1. Let Iref be the result of evaluating Relational Expression.
2. Let Ival be ? GetValue(lref).

© Ecma International 2019 225

Let rref be the result of evaluating ShiftExpression.
Let rval be ? GetValue(rref).
If Type(rval) is not Object, throw a TypeError exception.

o Uk~ W

Return ? HasProperty(rval, ToPropertyKey(lval)).

12.10.4 Runtime Semantics: Instanceof Operator (V, target)

The abstract operation InstanceofOperator(V, target) implements the generic algorithm for determining if ECMAScript
value V is an instance of object target either by consulting target's @ @hasinstance method or, if absent, determining

whether the value of target's prototype property is present in V's prototype chain. This abstract operation performs

the following steps:

1. If Type(target) is not Object, throw a TypeError exception.
2. Let instOfHandler be ? GetMethod(target, @ @hasInstance).
3. If instOfHandler is not undefined, then

a. Return ToBoolean(? Call(instOfHandler, target, « V »)).
4. If IsCallable(target) is false, throw a TypeError exception.
5. Return ? OrdinaryHasInstance(target, V).

NOTE
Steps 4 and 5 provide compatibility with previous editions of ECMAScript that did not use a @ @hasInstance method to
define the instanceof operator semantics. If an object does not define or inherit @ @haslInstance it uses the default

instanceof semantics.

12.11 Equality Operators
NOTE
The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship named by the

operator holds between its two operands.

Syntax

EqualityExpression 1, vicid, await]

RelationalExpression 1y, ovield, 72await]

EqualityExpression | >1,, 2vield, 2await] == RelationalExpression >1., ovield, 2await]
EqualityExpression[?In, ?Yield, ?Await] '= RelationalExpression[?In, ?Yield, ?Await]
EqualityExpression[?In, Pvield, 2Await] === RelationalExpression[?In, ?Yield, ?Await]
EqualityExpression[?In, ?Yield, ?Await] !== RelationalExpression[?In, ?Yield, ?Await]

12.11.1 Static Semantics: IsFunctionDefinition

EqualityExpression :
EqualityExpression == Relational Expression
EqualityExpression '= Relational Expression
EqualityExpression === RelationalExpression

EqualityExpression == RelationalExpression

226 © Ecma International 2019

1. Return false.

12.11.2 Static Semantics: AssignmentTargetType

EqualityExpression :
EqualityExpression == Relational Expression
EqualityExpression '= Relational Expression
EqualityExpression === RelationalExpression

EqualityExpression '== RelationalExpression

1. Return invalid.

12.11.3 Runtime Semantics: Evaluation
EqualityExpression : EqualityExpression == Relational Expression

Let [ref be the result of evaluating EqualityExpression.

Let Ival be ? GetValue(Iref).

Let rref be the result of evaluating Relational Expression.

Let rval be ? GetValue(rref).

Return the result of performing Abstract Equality Comparison rval == Ival.

ik =

EqualityExpression : EqualityExpression '= RelationalExpression

Let Iref be the result of evaluating EqualityExpression.
Let Ival be ? GetValue(Iref).

Let rref be the result of evaluating RelationalExpression.
Let rval be ? GetValue(rref).

Let r be the result of performing Abstract Equality Comparison rval == lval.

R T o e

If r is true, return false. Otherwise, return true.
EqualityExpression : EqualityExpression === RelationalExpression

Let Iref be the result of evaluating EqualityExpression.

Let Ival be ? GetValue(lref).

Let rref be the result of evaluating Relational Expression.

Let rval be ? GetValue(rref).

Return the result of performing Strict Equality Comparison rval === Ival.

ik =

EqualityExpression : EqualityExpression '== RelationalExpression

1. Let Iref be the result of evaluating EqualityExpression.

2. Let Ival be ? GetValue(lref).

3. Let rref be the result of evaluating Relational Expression.

4. Let rval be ? GetValue(rref).

5. Let r be the result of performing Strict Equality Comparison rval === Ival.
6. If r is true, return false. Otherwise, return true.

NOTE 1

Given the above definition of equality:

© Ecma International 2019 227

String comparison can be forced by: "" + a == "" + b.

Numeric comparison can be forced by: +a == +b.
Boolean comparison can be forced by: 'a == !b.
NOTE 2

The equality operators maintain the following invariants:

A !'= Bisequivalentto ! (A == B).
A == Bisequivalentto B == A, except in the order of evaluation of A and B.
NOTE 3

The equality operator is not always transitive. For example, there might be two distinct String objects, each representing
the same String value; each String object would be considered equal to the String value by the == operator, but the two

String objects would not be equal to each other. For example:

new String("a") == "a" and "a" == new String("a") are both true.
new String("a") == new String("a") is false.
NOTE 4

Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to use the more
complex, semantically oriented definitions of character or string equality and collating order defined in the Unicode
specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as

unequal. In effect this algorithm assumes that both Strings are already in normalized form.

12.12 Binary Bitwise Operators
Syntax

BitwiseANDEXpression 1., vicid, await]

EqualityExpression -1y, >vicid, 2await]

BitwiseANDEXpression 1., ovield, 2await] & EqualityExpression;-;, ovieid, 2await]

BitwiseXOREXpressiont, vicid, aAwait]
BitwiseANDEXpression (-1, >vicld, 2Await]

BitwiseXOREXxpression >, >vicid, 2await] ~ BitwisSeANDEXpression .t ovield, 2await]

BitwiseOREXxpression 1y, viecid, await]
BitwiseXOREXpression >, »vield, 2Await]

BitwiseOREXpression -1y, »vicid, 2await] | BitwiseXOREXpression -1, oviecld, 2await]

12.12.1 Static Semantics: IsFunctionDefinition
BitwiseANDEXxpression : BitwiseANDEXxpression & EqualityExpression

BitwiseXORExpression : BitwiseXORExpression ~ BitwiseANDEXxpression
BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression

1. Return false.

228 © Ecma International 2019

12.12.2 Static Semantics: AssignmentTargetType
BitwiseANDEXxpression : BitwiseANDEXxpression & EqualityExpression

BitwiseXORExpression : BitwiseXORExpression * BitwiseANDEXxpression
BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression

1. Return invalid.

12.12.3 Runtime Semantics: Evaluation

The production A : A @ B , where @ is one of the bitwise operators in the productions above, is evaluated as follows:

Let Iref be the result of evaluating A.

Let Ival be ? GetValue(Iref).

Let rref be the result of evaluating B.

Let rval be ? GetValue(rref).

Let [num be ? TolInt32(lval).

Let rnum be ? Tolnt32(rval).

Return the result of applying the bitwise operator @ to Inum and rnum. The result is a signed 32-bit integer.

Nk W=

12.13 Binary Logical Operators
Syntax

LogicalANDExpression[In, Yield, Await]
BitwiseOREXpreSSion[?In, ?Yield, ?Await]

LogicalANDEXpression 1., oyiecld, 2await] && BitwiseOREXpression -1, ovield, 2await]

Logical ORExpression 1, vield, Await]
LogicalANDEXpression 1., 2yield, 2Await]

LogicalORExpression 1y, 2vield, 2await] || LogicalANDEXxpression 1y, ovield, 2await]

NOTE
The value produced by a && or | | operator is not necessarily of type Boolean. The value produced will always be the

value of one of the two operand expressions.

12.13.1 Static Semantics: IsFunctionDefinition
LogicalANDEXxpression : Logical ANDExpression && BitwiseORExpression

Logical ORExpression : Logical ORExpression || Logical ANDEXxpression
1. Return false.

12.13.2 Static Semantics: AssignmentTargetType
LogicalANDEXxpression : Logical ANDExpression && BitwiseOREXxpression

Logical ORExpression : Logical ORExpression || Logical ANDEXxpression

1. Return invalid.

© Ecma International 2019 229

12.13.3 Runtime Semantics: Evaluation
Logical ANDEXxpression : LogicalANDEXxpression && BitwiseOREXpression

Let Iref be the result of evaluating Logical ANDEXxpression.
Let Ival be ? GetValue(Iref).

Let Ibool be ToBoolean(lval).

If [bool is false, return [val.

Let rref be the result of evaluating BitwiseOREXxpression.
Return ? GetValue(rref).

S O o e

Logical ORExpression : Logical ORExpression || Logical ANDEXxpression

Let Iref be the result of evaluating Logical ORExpression.
Let Ival be ? GetValue(Iref).

Let Ibool be ToBoolean(lval).

If Ibool is true, return [val.

Let rref be the result of evaluating Logical ANDEXxpression.
Return ? GetValue(rref).

S T e

12.14 Conditional Operator (? :)
Syntax

ConditionalExpression 1, vie1d, await]

Logical ORExpression | , In, ?Yield, ?Await]

LogicalORExpression[?In, 2vield, 2Await] ? AssignmentEXpression(.i. ovield, 2Await]

AssignmentExpression[?In, ?Yield, ?Await]

NOTE

The grammar for a ConditionalExpression in ECMAScript is slightly different from that in C and Java, which each allow

the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression. The

motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a

conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

12.14.1 Static Semantics: IsFunctionDefinition

Conditional Expression : Logical ORExpression ? AssignmentExpression : AssignmentExpression

1. Return false.

12.14.2 Static Semantics: AssignmentTargetType

Conditional Expression : Logical ORExpression ? AssignmentExpression : AssignmentExpression

1. Return invalid.

12.14.3 Runtime Semantics: Evaluation

Conditional Expression : Logical ORExpression ? AssignmentExpression : AssignmentExpression

230

© Ecma International 2019

1. Let Iref be the result of evaluating LogicalORExpression.
2. Let Ival be ToBoolean(? GetValue(lref)).
3. If Ival is true, then
a. Let trueRef be the result of evaluating the first AssignmentExpression.
b. Return ? GetValue(trueRef).
4. Else,
a. Let falseRef be the result of evaluating the second AssignmentExpression.
b. Return ? GetValue(falseRef).

12.15 Assignment Operators
Syntax

AssignmentEXpression 1., vicid, await]
ConditionalExpression -1, 2vield, 2await]
[+Yield] YieldEXpression -1, opyait]
ArrowFunction 21y, ovield, 2await]
AsyncArrowFunction 1., -vield, 2await]
LeftHandSideExpression [»yic14, »await] = AssignmentExpression i, ovieid,
LeftHandSideExpression ,vi.14, »await] AssignmentOperator

AssignmentExpression -1, ovicld, 2Await]
AssignmentOperator : one of

*= /= = += == <<= DO= DOD>= &= = |= **=

12.15.1 Static Semantics: Early Errors
AssignmentExpression : LeftHandSideExpression = AssignmentExpression

It is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and

LeftHandSideExpression is not covering an AssignmentPattern.

?Await]

It is an early Reference Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and

AssignmentTargetType of LeftHandSideExpression is invalid.

It is an early Syntax Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and

AssignmentTargetType of LeftHandSideExpression is strict.
AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

It is an early Reference Error if AssignmentTargetType of LeftHandSideExpression is invalid.
It is an early Syntax Error if AssignmentTargetType of LeftHandSideExpression is strict.

12.15.2 Static Semantics: IsFunctionDefinition

AssignmentExpression :
ArrowFunction
AsyncArrowFunction

1. Return true.

© Ecma International 2019

231

AssignmentExpression :
YieldExpression
LeftHandSideExpression = AssignmentExpression

LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Return false.

12.15.3 Static Semantics: AssignmentTargetType

AssignmentExpression :
YieldExpression
ArrowFunction
AsyncArrowFunction
LeftHandSideExpression = AssignmentExpression

LeftHandSideExpression AssignmentOperator AssignmentExpression

1. Return invalid.

12.15.4 Runtime Semantics: Evaluation
AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let Iref be the result of evaluating LeftHandSideExpression.
b. ReturnIfAbrupt(Iref).
c. If IsAnonymousFunctionDefinition(AssignmentExpression) and IsldentifierRef of LeftHandSideExpression are
both true, then
i. Let rval be the result of performing NamedEvaluation for AssignmentExpression with argument
GetReferencedName(Iref).
d. FElse,
i. Let rref be the result of evaluating AssignmentExpression.
ii. Let rval be ? GetValue(rref).
e. Perform ? PutValue(lref, rval).
f. Return rval.
Let assignmentPattern be the AssignmentPattern that is covered by LeftHandSideExpression.
Let rref be the result of evaluating AssignmentExpression.
Let rval be ? GetValue(rref).
Perform ? DestructuringAssignmentEvaluation of assignmentPattern using rval as the argument.

S

Return rval.
AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

Let [ref be the result of evaluating LeftHandSideExpression.

Let Ival be ? GetValue(lref).

Let rref be the result of evaluating AssignmentExpression.

Let rval be ? GetValue(rref).

Let op be the @ where AssignmentOperator is @=.

Let r be the result of applying op to Ival and rval as if evaluating the expression Ival op rval.
Perform ? PutValue(lref, r).

Return r.

® Nk W

232 © Ecma International 2019

NOTE
When an assignment occurs within strict mode code, it is a runtime error if Iref in step 1.f of the first algorithm or step 7
of the second algorithm it is an unresolvable reference. If it is, a ReferenceError exception is thrown. The
LeftHandSideExpression also may not be a reference to a data property with the attribute value { [[Writable]]: false }, to
an accessor property with the attribute value { [[Set]]: undefined }, nor to a non-existent property of an object for which

the IsExtensible predicate returns the value false. In these cases a TypeError exception is thrown.

12.15.5 Destructuring Assignment

Supplemental Syntax

In certain circumstances when processing an instance of the production AssignmentExpression :
LeftHandSideExpression = AssignmentExpression the following grammar is used to refine the interpretation of
LeftHandSideExpression.

AssignmentPattern v .14, await] °
ObjectAssignmentPattern»vi.14, >ayait]

ArrayAssignmentPattern -y .14, 2await]

ObjectAssignmentPatternv;i.i4, ayait] *

{1

{AssignmentRestProperty[?Yield, 2Await] }
{ AssignmentPropertyList|>vic14, >await] }

{ AssignmentPropertyList|>vic14, 2await] r AssignmentRestProperty.vicid, »await] opt }

ArrayAssignmentPattern v .14, await] °
[Elision,,. AssignmentRestElementvic14, 2await] opt 1
[AssignmentElementList [>y;ic14, oawaic] 1
[AssignmentElementList(>vic14, 2awaic) o Elisiong .

AssignmentRestElement [>vic14, 2nawait] opt]

AssignmentRestProperty (vici4, await] ¢

. . . DestructuringAssignmentTarget [>vic14, 2await)

AssignmentPropertyList (v c14, await] °
AssignmentProperty >vicid, 2await]

AssignmentPropertyList ;yic14, 2await] » AssignmentProperty oyvicid, cawait]

AssignmentElementList(v; o114, await] °
AssignmentElisionElement [>y 14, 2await]

AssignmentElementList[>yvic14, »await] o AssignmentElisionElement,vi.14, 2nyait]

AssignmentElisionElement ;v 14, awaic] ¢

Elision,. AssignmentElementv;ic14, >await]

AssignmentProperty[Yield, Await] °

IdentifierReference (>vic1q, 2awaic) Initializer;.ry, ovieiqd, 2await] opt

© Ecma International 2019 233

PropertyName [>vic14, 2awaic] : AssignmentElement;.vic15, 2await]

AssignmentElement (v 14, ayait]

DestructuringAssignmentTarget >vic14, »awaic) Initializer i, ovicia, 2await] opt

AssignmentRestElementv; .14, ayait]

. . . DestructuringAssignmentTarget [>vic14, 2await]

DestructuringAssignmentTarget (v c14, nwait]

LeftHandSideExpression [>y c14, 2await]

12.15.5.1 Static Semantics: Early Errors
AssignmentProperty : IdentifierReference Initializer

It is a Syntax Error if AssignmentTargetType of IdentifierReference is not simple.
AssignmentRestProperty : ... DestructuringAssignmentTarget

It is a Syntax Error if DestructuringAssignmentTarget is an ArrayLiteral or an ObjectLiteral.
DestructuringAssignmentTarget : LeftHandSideExpression

It is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if
LeftHandSideExpression is not covering an AssignmentPattern.
It is a Syntax Error if LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral and

AssignmentTargetType(LeftHandSideExpression) is not simple.

12.15.5.2 Runtime Semantics: DestructuringAssignmentEvaluation

With parameter value.
ObjectAssignmentPattern : { }

1. Perform ? RequireObjectCoercible(value).
2. Return NormalCompletion(empty).

ObjectAssignmentPattern :
{ AssignmentPropertyList }
{ AssignmentPropertyList , }

1. Perform ? RequireObjectCoercible(value).
2. Perform ? PropertyDestructuringAssignmentEvaluation for AssignmentPropertyList using value as the argument.
3. Return NormalCompletion(empty).

ArrayAssignmentPattern : []

1. Let iteratorRecord be ? Getlterator(value).
2. Return ? IteratorClose(iteratorRecord, NormalCompletion(empty)).

ArrayAssignmentPattern : [Elision]

1. Let iteratorRecord be ? Getlterator(value).

234 © Ecma International 2019

2. Let result be the result of performing IteratorDestructuring AssignmentEvaluation of Elision with iteratorRecord as
the argument.
3. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, result).

4. Return result.
ArrayAssignmentPattern : [Elision AssignmentRestElement]

1. Let iteratorRecord be ? Getlterator(value).
2. If Elision is present, then
a. Let status be the result of performing IteratorDestructuringAssignmentEvaluation of Elision with
iteratorRecord as the argument.
b. If status is an abrupt completion, then
i. Assert: iteratorRecord.[[Done]] is true.
ii. Return Completion(status).
3. Let result be the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentRestElement with
iteratorRecord as the argument.
4. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, result).

5. Return result.
ArrayAssignmentPattern : [AssignmentElementList]

1. Let iteratorRecord be ? Getlterator(value).

2. Let result be the result of performing IteratorDestructuring AssignmentEvaluation of AssignmentElementList using
iteratorRecord as the argument.

3. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, result).

4. Return result.
ArrayAssignmentPattern : [AssignmentElementList , Elision AssignmentRestElement]

1. Let iteratorRecord be ? Getlterator(value).
2. Let status be the result of performing IteratorDestructuring AssignmentEvaluation of AssignmentElementList using
iteratorRecord as the argument.
3. If status is an abrupt completion, then
a. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, status).
b. Return Completion(status).
4. 1If Elision is present, then
a. Set status to the result of performing IteratorDestructuring AssignmentEvaluation of Elision with
iteratorRecord as the argument.
b. If status is an abrupt completion, then
i. Assert: iteratorRecord.[[Done]] is true.
ii. Return Completion(status).
5. If AssignmentRestElement is present, then
a. Set status to the result of performing IteratorDestructuring AssignmentEvaluation of AssignmentRestElement
with iteratorRecord as the argument.
6. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, status).
7. Return Completion(status).

ObjectAssignmentPattern : { AssignmentRestProperty }

1. Perform ? RequireObjectCoercible(value).
2. Let excludedNames be a new empty List.

© Ecma International 2019 235

3. Return the result of performing RestDestructuring AssignmentEvaluation of AssignmentRestProperty with value and

excludedNames as the arguments.
ObjectAssignmentPattern : { AssignmentPropertyList , AssignmentRestProperty }

1. Perform ? RequireObjectCoercible(value).

2. Let excludedNames be the result of performing ? PropertyDestructuring AssignmentEvaluation for
AssignmentPropertyList using value as the argument.

3. Return the result of performing RestDestructuring AssignmentEvaluation of AssignmentRestProperty with value and

excludedNames as the arguments.

12.15.5.3 Runtime Semantics: PropertyDestructuringAssignmentEvaluation

With parameter value.

NOTE

The following operations collect a list of all destructured property names.

AssignmentPropertyList : AssignmentPropertyList , AssignmentProperty

1. Let propertyNames be the result of performing ? PropertyDestructuring AssignmentEvaluation for
AssignmentPropertyList using value as the argument.

2. Let nextNames be the result of performing ? PropertyDestructuring AssignmentEvaluation for AssignmentProperty
using value as the argument.

3. Append each item in nextNames to the end of propertyNames.

4. Return propertyNames.
AssignmentProperty : IdentifierReference Initializer

Let P be StringValue of IdentifierReference.
Let Iref be ? ResolveBinding(P).
Let v be ? GetV(value, P).

If Initializer . is present and v is undefined, then

A w =

a. If IsAnonymousFunctionDefinition(Initializer) is true, then
i. Set v to the result of performing NamedEvaluation for Initializer with argument P.
b. Else,
i. Let defaultValue be the result of evaluating Initializer.
ii. Setvto ? GetValue(defaultValue).
. Perform ? PutValue(lref, v).

Return a new List containing P.

o v

AssignmentProperty : PropertyName : AssignmentElement

Let name be the result of evaluating PropertyName.
ReturnIfAbrupt(name).
Perform ? KeyedDestructuringAssignmentEvaluation of AssignmentElement with value and name as the arguments.

AL

Return a new List containing name.

12.15.5.4 Runtime Semantics: RestDestructuringAssignmentEvaluation

With parameters value and excludedNames.

236 © Ecma International 2019

AssignmentRestProperty : ... DestructuringAssignmentTarget

Let Iref be the result of evaluating DestructuringAssignmentTarget.
ReturnIfAbrupt(lref).

Let restObj be ObjectCreate(%ObjectPrototype%).

Perform ? CopyDataProperties(restObj, value, excludedNames).
Return PutValue(Iref, restObj).

ik e

12.15.5.5 Runtime Semantics: IteratorDestructuringAssignmentEvaluation

With parameter iteratorRecord.
AssignmentElementList : AssignmentElisionElement

1. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElisionElement using

iteratorRecord as the argument.
AssignmentElementList : AssignmentElementList , AssignmentElisionElement

1. Perform ? IteratorDestructuringAssignmentEvaluation of AssignmentElementList using iteratorRecord as the
argument.
2. Return the result of performing IteratorDestructuring AssignmentEvaluation of AssignmentElisionElement using

iteratorRecord as the argument.
AssignmentElisionElement : AssignmentElement

1. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElement with

iteratorRecord as the argument.
AssignmentElisionElement : Elision AssignmentElement

1. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
2. Return the result of performing IteratorDestructuring AssignmentEvaluation of AssignmentElement with

iteratorRecord as the argument.
Elision : ,

1. If iteratorRecord.[[Done]] is false, then
a. Let next be IteratorStep(iteratorRecord).
b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(next).
d. If next is false, set iteratorRecord.[[Done]] to true.
2. Return NormalCompletion(empty).

Elision : Elision ,

1. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
2. If iteratorRecord.[[Done]] is false, then

a. Let next be IteratorStep(iteratorRecord).

b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(next).
d

. If next is false, set iteratorRecord.[[Done]] to true.

© Ecma International 2019 237

3. Return NormalCompletion(empty).
AssignmentElement : DestructuringAssignmentTarget Initializer

1. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let [ref be the result of evaluating DestructuringAssignmentTarget.
b. ReturnIfAbrupt(Iref).

2. If iteratorRecord.[[Done]] is false, then
a. Let next be IteratorStep(iteratorRecord).

If next is an abrupt completion, set iteratorRecord.[[Done]] to true.

ReturnIf Abrupt(next).

If next is false, set iteratorRecord.[[Done]] to true.

Else,

i. Let value be IteratorValue(next).

T /N o

ii. If value is an abrupt completion, set iteratorRecord.[[Done]] to true.
iii. ReturnIfAbrupt(value).
3. If iteratorRecord.[[Done]] is true, let value be undefined.
4. If Initializer is present and value is undefined, then
a. If IsAnonymousFunctionDefinition(Initializer) and IsIdentifierRef of DestructuringAssignmentTarget are both
true, then
i. Let v be the result of performing NamedEvaluation for Initializer with argument
GetReferencedName(Iref).
b. Else,
i. Let defaultValue be the result of evaluating Initializer.
ii. Letv be ? GetValue(defaultValue).
5. Else, let v be value.
6. If DestructuringAssignmentTarget is an ObjectLiteral or an ArrayLiteral, then
a. Let nestedAssignmentPattern be the AssignmentPattern that is covered by DestructuringAssignmentTarget.
b. Return the result of performing DestructuringAssignmentEvaluation of nestedAssignmentPattern with v as the
argument.
7. Return ? PutValue(lref, v).

NOTE
Left to right evaluation order is maintained by evaluating a DestructuringAssignmentTarget that is not a destructuring

pattern prior to accessing the iterator or evaluating the Initializer.

AssignmentRestElement : ... DestructuringAssignmentTarget

1. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let [ref be the result of evaluating DestructuringAssignmentTarget.
b. ReturnIfAbrupt(Iref).

2. Let A be ! ArrayCreate(0).

3. Letn be 0.

4. Repeat, while iteratorRecord.[[Done]] is false,
a. Let next be IteratorStep(iteratorRecord).

b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.

c. ReturnIfAbrupt(next).

d. If next is false, set iteratorRecord.[[Done]] to true.

e. Else,

238 © Ecma International 2019

i. Let nextValue be IteratorValue(next).

ii. If nextValue is an abrupt completion, set iteratorRecord.[[Done]] to true.

iii. ReturnlfAbrupt(nextValue).

iv. Let status be CreateDataProperty(A, ! ToString(n), nextValue).

v. Assert: status is true.

vi. Increment n by 1.
5. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then

a. Return ? PutValue(lref, A).

6. Let nestedAssignmentPattern be the AssignmentPattern that is covered by DestructuringAssignmentTarget.
7. Return the result of performing DestructuringAssignmentEvaluation of nestedAssignmentPattern with A as the

argument.

12.15.5.6 Runtime Semantics: KeyedDestructuringAssignmentEvaluation

With parameters value and propertyName.
AssignmentElement : DestructuringAssignmentTarget Initializer

1. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let Iref be the result of evaluating DestructuringAssignmentTarget.
b. ReturnIfAbrupt(Iref).
2. Let v be ? GetV(value, propertyName).
3. If Initializer is present and v is undefined, then
a. If IsAnonymousFunctionDefinition(Initializer) and IsIdentifierRef of DestructuringAssignmentTarget are both
true, then
i. Let rhsValue be the result of performing NamedEvaluation for Initializer with argument
GetReferencedName(Iref).
b. Else,
i. Let defaultValue be the result of evaluating Initializer.
ii. Let rhsValue be ? GetValue(defaultValue).
4. Else, let rhsValue be v.
5. If DestructuringAssignmentTarget is an ObjectLiteral or an ArrayLiteral, then
a. Let assignmentPattern be the AssignmentPattern that is covered by DestructuringAssignmentTarget.
b. Return the result of performing DestructuringAssignmentEvaluation of assignmentPattern with rhsValue as
the argument.
6. Return ? PutValue(lref, rhsValue).

12.16 Comma Operator (,)
Syntax

EXpT‘E'SSlOH[In, Yield, Await]
AssignmentEXpression (-1, 2vield, 2Await]

Expression o1, ovield, cawait] o ASSignmentEXpression.r, o ovield, 2Await]

12.16.1 Static Semantics: IsFunctionDefinition
EXxpression : Expression , AssignmentExpression

© Ecma International 2019 239

1. Return false.

12.16.2 Static Semantics: AssignmentTargetType
EXxpression : Expression , AssignmentExpression

1. Return invalid.

12.16.3 Runtime Semantics: Evaluation
Expression : Expression , AssignmentExpression

Let Iref be the result of evaluating Expression.

Perform ? GetValue(lref).

Let rref be the result of evaluating AssignmentExpression.
Return ? GetValue(rref).

A=

NOTE

GetValue must be called even though its value is not used because it may have observable side-effects.

13 ECMAScript Language: Statements and Declarations
Syntax

Statementvic14, Await, Return]
BlockStatement [>y 14, 2nwait, 2Return]
VariableStatement [>y c14, opwait]
EmptyStatement
ExpressionStatement (> c14, 2await]
IfStatement[?Yield, ?Await, ?Return]
Breakablesmtement[?Yield, ?Await, ?Return]
ContinueStatement [>y c14, 2await]
BreakStatement[?Yield, 2Await]

[+Return] ReturnStatement[>yvici4, »await]
Withstatement[?‘field, ?Await, ?Return]
LabelledStatement [> <14, 2nwait, 2Return]
ThrowStatement [>y c14, 2await]

TryStatement | >v:c14, 2await, 2Return]

DebuggerStatement

Declarationv; .14, await]
HoistableDeclaration [,y .14, 7await, ~Default]
ClaSSDeCIaration[?Yield, ?Await, ~Default]

LexicalDeclaration 1, >yic1d, 2await]

240 © Ecma International 2019

HoistableDeclarationv; .14, ayait, Default]
FunctionDeclaration>vic1q4, 2awvait, 2pefault]
GeneratorDeclaration ;vic1q, 2await, ?befault]
AsyncFunctionDeclaration [y 14, 2await, 2befault]

AsyncGeneratorDeclarationv; .14, 2ayait, 2Default]

BreakableStatement ;v 14, ayait, Return]
IterationStatement [y c14, 2await, ?Return]

SwitchStatement [>y i c14, 2await, 2Return]

13.1 Statement Semantics

13.1.1 Static Semantics: ContainsDuplicateLabels

With parameter [abelSet.

Statement :
VariableStatement
EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return false.

13.1.2 Static Semantics: ContainsUndefinedBreakTarget

With parameter [abelSet.

Statement :
VariableStatement
EmptyStatement
EXxpressionStatement
ContinueStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return false.

13.1.3 Static Semantics: ContainsUndefinedContinueTarget

With parameters iterationSet and labelSet.

Statement :

© Ecma International 2019 241

VariableStatement
EmptyStatement
ExpressionStatement
BreakStatement
ReturnStatement
ThrowStatement

DebuggerStatement
1. Return false.

BreakableStatement : IterationStatement

1. Let newlterationSet be a copy of iterationSet with all the elements of /abelSet appended.

2. Return ContainsUndefinedContinueTarget of IterationStatement with arguments newlterationSet and « ».

13.1.4 Static Semantics: DeclarationPart

HoistableDeclaration : FunctionDeclaration
1. Return FunctionDeclaration.
HoistableDeclaration : GeneratorDeclaration
1. Return GeneratorDeclaration.
HoistableDeclaration : AsyncFunctionDeclaration
1. Return AsyncFunctionDeclaration.
HoistableDeclaration : AsyncGeneratorDeclaration
1. Return AsyncGeneratorDeclaration.
Declaration : ClassDeclaration
1. Return ClassDeclaration.
Declaration : LexicalDeclaration

1. Return LexicalDeclaration.

13.1.5 Static Semantics: VarDeclaredNames

Statement :
EmptyStatement
EXxpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement

DebuggerStatement

1. Return a new empty List.

242

© Ecma International 2019

13.1.6 Static Semantics: VarScopedDeclarations

Statement :
EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

1. Return a new empty List.

13.1.7 Runtime Semantics: LabelledEvaluation

With parameter [abelSet.

BreakableStatement : IterationStatement

1. Let stmtResult be the result of performing LabelledEvaluation of IterationStatement with argument [abelSet.
2. If stmtResult.[[Type]] is break, then

a. If stmtResult.[[Target]] is empty, then

i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).
ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
3. Return Completion(stmtResult).

BreakableStatement : SwitchStatement

1. Let stmtResult be the result of evaluating SwitchStatement.
2. If stmtResult.[[Typel]] is break, then
a. If stmtResult.[[Target]] is empty, then

i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).
ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
3. Return Completion(stmtResult).

NOTE

A BreakableStatement is one that can be exited via an unlabelled BreakStatement.

13.1.8 Runtime Semantics: Evaluation

HoistableDeclaration :
GeneratorDeclaration
AsyncFunctionDeclaration
AsyncGeneratorDeclaration

1. Return NormalCompletion(empty).
HoistableDeclaration : FunctionDeclaration

1. Return the result of evaluating FunctionDeclaration.

© Ecma International 2019 243

BreakableStatement :
IterationStatement

SwitchStatement

1. Let newLabelSet be a new empty List.
2. Return the result of performing LabelledEvaluation of this BreakableStatement with argument newLabelSet.

13.2 Block
Syntax

BlockStatement [Yield, Await, Return]

Block [?Yield, ?Await, ?Return]

BlOCk[yield, Await, Return]

{StatemeniiSt[?Yield, ?Await, ?Return] opt }

StatementLiSt[vic14, rwait, Return]
StatementListltem >y ic14, 2ayait, ?Return]

StatementList[>vic14, 2await, 2Return] OStatementListltem(-vic.14, 2await, ?2Return]

StatementListltem i .15, ayait, Return]

Statement|[,yic1d, ?await, ?Return]

Declaration»v;c14, 2await]

13.2.1 Static Semantics: Early Errors
Block : { StatementList }

It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the

VarDeclaredNames of StatementList.

13.2.2 Static Semantics: ContainsDuplicateLabels

With parameter [abelSet.
Block : { }
1. Return false.
StatementList : StatementList StatementListltem

1. Let hasDuplicates be ContainsDuplicateLabels of StatementList with argument [abelSet.
2. If hasDuplicates is true, return true.
3. Return ContainsDuplicateLabels of StatementListItem with argument [abelSet.

StatementListltem : Declaration

1. Return false.

244 © Ecma International 2019

13.2.3 Static Semantics: ContainsUndefinedBreakTarget

With parameter [abelSet.
Block : { }
1. Return false.
StatementList : StatementList StatementListItem

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of StatementList with argument labelSet.
2. If hasUndefinedLabels is true, return true.

3. Return ContainsUndefinedBreakTarget of StatementListItem with argument labelSet.
StatementListltem : Declaration

1. Return false.

13.2.4 Static Semantics: ContainsUndefinedContinueTarget

With parameters iterationSet and labelSet.
Block : { }

1. Return false.
StatementList : StatementList StatementListItem

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of StatementList with arguments iterationSet and «
».
2. If hasUndefinedLabels is true, return true.

3. Return ContainsUndefinedContinueTarget of StatementListIltem with arguments iterationSet and « ».
StatementListltem : Declaration

1. Return false.

13.2.5 Static Semantics: LexicallyDeclaredNames
Block : { }

1. Return a new empty List.
StatementList : StatementList StatementListltem

1. Let names be LexicallyDeclaredNames of StatementList.
2. Append to names the elements of the LexicallyDeclaredNames of StatementListItem.

3. Return names.
StatementListltem : Statement

1. If Statement is Statement : LabelledStatement , return LexicallyDeclaredNames of LabelledStatement.

2. Return a new empty List.

StatementListltem : Declaration

© Ecma International 2019 245

1. Return the BoundNames of Declaration.

13.2.6 Static Semantics: LexicallyScopedDeclarations
StatementList : StatementList StatementListItem

1. Let declarations be LexicallyScopedDeclarations of StatementList.
2. Append to declarations the elements of the LexicallyScopedDeclarations of StatementListltem.

3. Return declarations.
StatementListltem : Statement

1. If Statement is Statement : LabelledStatement , return LexicallyScopedDeclarations of LabelledStatement.

2. Return a new empty List.
StatementListltem : Declaration

1. Return a new List containing DeclarationPart of Declaration.

13.2.7 Static Semantics: TopLevelLexicallyDeclaredNames
StatementList : StatementList StatementListltem

1. Let names be TopLevelLexicallyDeclaredNames of StatementList.
2. Append to names the elements of the TopLevelLexicallyDeclaredNames of StatementListItem.

3. Return names.
StatementListltem : Statement

1. Return a new empty List.
StatementListltem : Declaration

1. If Declaration is Declaration : HoistableDeclaration , then
a. Return « ».

2. Return the BoundNames of Declaration.

NOTE
At the top level of a function, or script, function declarations are treated like var declarations rather than like lexical

declarations.

13.2.8 Static Semantics: TopLevelLexicallyScopedDeclarations
Block : { }

1. Return a new empty List.
StatementList : StatementList StatementListltem

1. Let declarations be TopLevelLexicallyScopedDeclarations of StatementList.
2. Append to declarations the elements of the TopLevelLexicallyScopedDeclarations of StatementListItem.

3. Return declarations.

246 © Ecma International 2019

StatementListltem : Statement
1. Return a new empty List.
StatementListltem : Declaration

1. If Declaration is Declaration : HoistableDeclaration , then
a. Return « ».

2. Return a new List containing Declaration.

13.2.9 Static Semantics: TopLevelVarDeclaredNames
Block : { }

1. Return a new empty List.
StatementList : StatementList StatementListltem

1. Let names be TopLevelVarDeclaredNames of StatementList.
2. Append to names the elements of the TopLevelVarDeclaredNames of StatementListItem.

3. Return names.
StatementListltem : Declaration

1. If Declaration is Declaration : HoistableDeclaration , then
a. Return the BoundNames of HoistableDeclaration.
2. Return a new empty List.

StatementListltem : Statement

1. If Statement is Statement : LabelledStatement , return TopLevelVarDeclaredNames of Statement.

2. Return VarDeclaredNames of Statement.

NOTE

At the top level of a function or script, inner function declarations are treated like var declarations.

13.2.10 Static Semantics: TopLevelVarScopedDeclarations
Block : { }

1. Return a new empty List.
StatementList : StatementList StatementListltem

1. Let declarations be TopLevelVarScopedDeclarations of StatementList.
2. Append to declarations the elements of the TopLevelVarScopedDeclarations of StatementListItem.

3. Return declarations.
StatementListltem : Statement

1. If Statement is Statement : LabelledStatement , return TopLevelVarScopedDeclarations of Statement.
2. Return VarScopedDeclarations of Statement.

StatementListltem : Declaration

© Ecma International 2019 247

1. If Declaration is Declaration : HoistableDeclaration , then
a. Let declaration be DeclarationPart of HoistableDeclaration.
b. Return « declaration ».

2. Return a new empty List.

13.2.11 Static Semantics: VarDeclaredNames
Block : { }

1. Return a new empty List.
StatementList : StatementList StatementListltem

1. Let names be VarDeclaredNames of StatementList.
2. Append to names the elements of the VarDeclaredNames of StatementListItem.

3. Return names.
StatementListltem : Declaration

1. Return a new empty List.

13.2.12 Static Semantics: VarScopedDeclarations
Block : { }

1. Return a new empty List.
StatementList : StatementList StatementListltem

1. Let declarations be VarScopedDeclarations of StatementList.
2. Append to declarations the elements of the VarScopedDeclarations of StatementListItem.

3. Return declarations.
StatementListltem : Declaration

1. Return a new empty List.

13.2.13 Runtime Semantics: Evaluation
Block : { }

1. Return NormalCompletion(empty).
Block : { StatementList }

Let oldEnv be the running execution context's LexicalEnvironment.
Let blockEnv be NewDeclarativeEnvironment(oldEnv).

Perform BlockDeclarationInstantiation(StatementList, blockEnv).

Set the running execution context's LexicalEnvironment to blockEnv.
Let blockValue be the result of evaluating StatementList.

Set the running execution context's LexicalEnvironment to oldEnv.
Return blockValue.

Nk wh e

NOTE 1

248 © Ecma International 2019

No matter how control leaves the Block the LexicalEnvironment is always restored to its former state.

StatementList : StatementList StatementListltem

Let s/ be the result of evaluating StatementList.
ReturnIf Abrupt(sl).

Let s be the result of evaluating StatementListItem.

M

Return Completion(UpdateEmpty(s, sl)).

NOTE 2
The value of a StatementList is the value of the last value-producing item in the StatementList. For example, the

following calls to the eval function all return the value 1:

eval ("1;{}")

eval ("1;var a;")

13.2.14 Runtime Semantics: BlockDeclarationInstantiation (code, env)
NOTE

When a Block or CaseBlock is evaluated a new declarative Environment Record is created and bindings for each block

scoped variable, constant, function, or class declared in the block are instantiated in the Environment Record.

BlockDeclarationInstantiation is performed as follows using arguments code and env. code is the Parse Node
corresponding to the body of the block. env is the Lexical Environment in which bindings are to be created.

Let envRec be env's EnvironmentRecord.
Assert: envRec is a declarative Environment Record.

Let declarations be the LexicallyScopedDeclarations of code.

A

For each element d in declarations, do
a. For each element dn of the BoundNames of d, do
i. If IsConstantDeclaration of d is true, then
1. Perform ! envRec.CreateImmutableBinding(dn, true).
ii. Else,
1. Perform ! envRec.CreateMutableBinding(dn, false).
b. If d is a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an
AsyncGeneratorDeclaration, then
i. Let fn be the sole element of the BoundNames of d.
ii. Let fo be the result of performing InstantiateFunctionObject for d with argument env.
iii. Perform envRec.InitializeBinding(fn, fo).

13.3 Declarations and the Variable Statement

13.3.1 Let and Const Declarations
NOTE

let and const declarations define variables that are scoped to the running execution context's LexicalEnvironment.

© Ecma International 2019 249

The variables are created when their containing Lexical Environment is instantiated but may not be accessed in any way
until the variable's LexicalBinding is evaluated. A variable defined by a LexicalBinding with an Initializer is assigned the
value of its Initializer's AssignmentExpression when the LexicalBinding is evaluated, not when the variable is created. If
a LexicalBinding in a 1et declaration does not have an Initializer the variable is assigned the value undefined when the

LexicalBinding is evaluated.

Syntax

LexicalDeclaration 1, vici1d, await]

LetOrConst BindingList[>1,,, >yield, 2await] 7

LetOrConst :
let

const

BindingList| 1, vield, Await]
LexicalBinding (1., >vield, 2await]

BindingList[>, 2vield, 2await] . LexicalBinding .1, ovield, 2await]

LexicalBinding [In, Yield, Await]

Bindingldentifier >y .14, sawaic] Initializer .1, ovicid, sawait] opt

BindingPattern >vic14, 2ayait) Initializer; o1y, ovicid, 2await)
13.3.1.1 Static Semantics: Early Errors
LexicalDeclaration : LetOrConst BindingList ;

It is a Syntax Error if the BoundNames of BindingList contains "let".

It is a Syntax Error if the BoundNames of BindingList contains any duplicate entries.
LexicalBinding : Bindingldentifier Initializer
It is a Syntax Error if Initializer is not present and IsConstantDeclaration of the LexicalDeclaration containing this

LexicalBinding is true.

13.3.1.2 Static Semantics: BoundNames
LexicalDeclaration : LetOrConst BindingList ;

1. Return the BoundNames of BindingList.
BindingList : BindingList , LexicalBinding

1. Let names be the BoundNames of BindingList.
2. Append to names the elements of the BoundNames of LexicalBinding.

3. Return names.
LexicalBinding : Bindingldentifier Initializer
1. Return the BoundNames of Bindingldentifier.

LexicalBinding : BindingPattern Initializer

250 © Ecma International 2019

1. Return the BoundNames of BindingPattern.

13.3.1.3 Static Semantics: IsConstantDeclaration
LexicalDeclaration : LetOrConst BindingList ;

1. Return IsConstantDeclaration of LetOrConst.
LetOrConst : let

1. Return false.
LetOrConst : const

1. Return true.

13.3.1.4 Runtime Semantics: Evaluation
LexicalDeclaration : LetOrConst BindingList ;

1. Let next be the result of evaluating BindingList.
2. ReturnlfAbrupt(next).
3. Return NormalCompletion(empty).

BindingList : BindingList , LexicalBinding

1. Let next be the result of evaluating BindingList.
2. ReturnIfAbrupt(next).
3. Return the result of evaluating LexicalBinding.

LexicalBinding : Bindingldentifier

1. Let [hs be ResolveBinding(StringValue of Bindingldentifier).
2. Return InitializeReferencedBinding(/hs, undefined).

NOTE
A static semantics rule ensures that this form of LexicalBinding never occurs in a const declaration.

LexicalBinding : Bindingldentifier Initializer

1. Let bindingld be StringValue of Bindingldentifier.
2. Let lhs be ResolveBinding(bindingId).

3. If IsAnonymousFunctionDefinition(Initializer) is true, then

a. Let value be the result of performing NamedEvaluation for Initializer with argument bindingld.

4. Else,
a. Let rhs be the result of evaluating Initializer.
b. Let value be ? GetValue(rhs).

5. Return InitializeReferencedBinding(lhs, value).

LexicalBinding : BindingPattern Initializer

1. Let rhs be the result of evaluating Initializer.
2. Let value be ? GetValue(rhs).

3. Let env be the running execution context's LexicalEnvironment.

© Ecma International 2019

251

4. Return the result of performing Bindinglnitialization for BindingPattern using value and env as the arguments.

13.3.2 Variable Statement
NOTE

A var statement declares variables that are scoped to the running execution context's VariableEnvironment. Var
variables are created when their containing Lexical Environment is instantiated and are initialized to undefined when
created. Within the scope of any VariableEnvironment a common Bindingldentifier may appear in more than one
VariableDeclaration but those declarations collectively define only one variable. A variable defined by a
VariableDeclaration with an Initializer is assigned the value of its Initializer's AssignmentExpression when the

VariableDeclaration is executed, not when the variable is created.

Syntax

VariableStatement (v .14, awaic] ¢

var VariableDeclarationList| 1, 7vield, 2await] 7

VariableDeclarationList 1., vicid, await] *
VariableDeclaration 1, >vieid, 2await]

VariableDeclarationList 1., 5vie1d, »await] » VariableDeclaration,, ovici1d, 2await]

VariableDeclaration 1, vicid, await]

Bindingldentifier (>vic14, »awaic) Initializer -1, 2vicia, 2await] opt

BindingPattern >vic14, »await) Initializer o1, ovieid, 2await)

13.3.2.1 Static Semantics: BoundNames
VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of BoundNames of VariableDeclaration.

3. Return names.
VariableDeclaration : Bindingldentifier Initializer
1. Return the BoundNames of Bindingldentifier.
VariableDeclaration : BindingPattern Initializer

1. Return the BoundNames of BindingPattern.

13.3.2.2 Static Semantics: VarDeclaredNames
VariableStatement : var VariableDeclarationList ;

1. Return BoundNames of VariableDeclarationList.

13.3.2.3 Static Semantics: VarScopedDeclarations
VariableDeclarationList : VariableDeclaration

1. Return a new List containing VariableDeclaration.

252 © Ecma International 2019

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let declarations be VarScopedDeclarations of VariableDeclarationList.
2. Append VariableDeclaration to declarations.

3. Return declarations.

13.3.2.4 Runtime Semantics: Evaluation
VariableStatement : var VariableDeclarationList ;

1. Let next be the result of evaluating VariableDeclarationList.
2. ReturnIfAbrupt(next).
3. Return NormalCompletion(empty).

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let next be the result of evaluating VariableDeclarationList.
2. ReturnIfAbrupt(next).
3. Return the result of evaluating VariableDeclaration.

VariableDeclaration : Bindingldentifier
1. Return NormalCompletion(empty).
VariableDeclaration : Bindingldentifier Initializer

1. Let bindingld be StringValue of Bindingldentifier.
2. Let lhs be ? ResolveBinding(bindingId).
3. If IsAnonymousFunctionDefinition(Initializer) is true, then
a. Let value be the result of performing NamedEvaluation for Initializer with argument bindingld.
4. Else,
a. Let rhs be the result of evaluating Initializer.
b. Let value be ? GetValue(rhs).
5. Return ? PutValue(lhs, value).

NOTE
If a VariableDeclaration is nested within a with statement and the Bindingldentifier in the VariableDeclaration is the
same as a property name of the binding object of the with statement's object Environment Record, then step 6 will assign

value to the property instead of assigning to the VariableEnvironment binding of the Identifier.

VariableDeclaration : BindingPattern Initializer

1. Let rhs be the result of evaluating Initializer.
2. Let rval be ? GetValue(rhs).

3. Return the result of performing Bindinglnitialization for BindingPattern passing rval and undefined as arguments.

13.3.3 Destructuring Binding Patterns

Syntax

BindingPattern [Yield, Await]

ObjeCtBindingPattern [?Yield, ?Await]

© Ecma International 2019 253

ArrayBindingPattern yic14, await]

ObjectBindingPattern v; .14, await]
{1}
{BindingRestProperty[?Yield, 2Await] }
{ BindingPropertyList >vic14, 2nwait] }

{ BindingPropertyList|>yic14, 2nwait] . BindingRestProperty -yicid, 2await] opt }

ArrayBindingPattern yv; .14, await]
[Elision,,. BindingRestElement >vic14, 2await] opt 1
[BindingElementList|>yic14, 2await]]

[BindingElementList(>vic14, »await) o« Elision,,. BindingRestElement .vic14, 2await] opt)

BindingRestProperty vic14, await]

. Bindingldentifier >vic14, 2await]

BindingPropertyList[yi .14, await]
BindingProperty »vici1d, 2await]

BindingPropertyList; >yic14, »await] » BindingProperty .vicid, 2auait]

BindingElementList [v;ic1d, ayait]
BindingElisionElement [>y ic14, 2await]

BindingElementList [>vic14, await] BindingElisionElement;ov;ic14, 2await]

BindingElisionElement ;v;c14, await]

Elision . BindingElement|v;ic14, 2await]

BindingProperty vic1q, await]
SingleNameBinding [>vic14, 2await]

PropertyName [>vic14, 2await] ¢ BindingElement;ovi.15, 2await]

BindingElement [Yield, Await]
SingleNameBinding [>vic14, 2await]

Bindingpattern[?‘field, ?Await] InitializerHIn, ?Yield, ?Await] opt

SingleNameBinding (v .14, await]

Bindingldentifier | ;yvic14, 2awaic] Initializer(.r, ovicid, 2await] opt

BindingRestElement[Yield, Await]
. Bindingldentifier >v; .14, 2await]

. BindingPattern [?Yield, ?Await]

13.3.3.1 Static Semantics: BoundNames
ObjectBindingPattern : { }

1. Return a new empty List.

ArrayBindingPattern : [Elision]

254 © Ecma International 2019

1. Return a new empty List.
ArrayBindingPattern : [Elision BindingRestElement]
1. Return the BoundNames of BindingRestElement.
ArrayBindingPattern : [BindingElementList , Elision]
1. Return the BoundNames of BindingElementList.
ArrayBindingPattern : [BindingElementList , Elision BindingRestElement]

1. Let names be BoundNames of BindingElementList.
2. Append to names the elements of BoundNames of BindingRestElement.

3. Return names.
BindingPropertyList : BindingPropertyList , BindingProperty

1. Let names be BoundNames of BindingPropertyList.
2. Append to names the elements of BoundNames of BindingProperty.

3. Return names.
BindingElementList : BindingElementList , BindingElisionElement

1. Let names be BoundNames of BindingElementList.
2. Append to names the elements of BoundNames of BindingElisionElement.

3. Return names.
BindingElisionElement : Elision BindingElement

1. Return BoundNames of BindingElement.
BindingProperty : PropertyName : BindingElement

1. Return the BoundNames of BindingElement.
SingleNameBinding : Bindingldentifier Initializer

1. Return the BoundNames of Bindingldentifier.
BindingElement : BindingPattern Initializer

1. Return the BoundNames of BindingPattern.

13.3.3.2 Static Semantics: ContainsExpression
ObjectBindingPattern : { }

1. Return false.
ArrayBindingPattern : [Elision]
1. Return false.

ArrayBindingPattern : [Elision BindingRestElement]

© Ecma International 2019 255

1. Return ContainsExpression of BindingRestElement.
ArrayBindingPattern : [BindingElementList , Elision]
1. Return ContainsExpression of BindingElementList.
ArrayBindingPattern : [BindingElementList , Elision BindingRestElement]

1. Let has be ContainsExpression of BindingElementList.
2. If has is true, return true.

3. Return ContainsExpression of BindingRestElement.
BindingPropertyList : BindingPropertyList , BindingProperty

1. Let has be ContainsExpression of BindingPropertyList.
2. If has is true, return true.
3. Return ContainsExpression of BindingProperty.

BindingElementList : BindingElementList , BindingElisionElement

1. Let has be ContainsExpression of BindingElementList.
2. If has is true, return true.

3. Return ContainsExpression of BindingElisionElement.
BindingElisionElement : Elision BindingElement

1. Return ContainsExpression of BindingElement.
BindingProperty : PropertyName : BindingElement

1. Let has be IsComputedPropertyKey of PropertyName.
2. If has is true, return true.

3. Return ContainsExpression of BindingElement.
BindingElement : BindingPattern Initializer
1. Return true.
SingleNameBinding : Bindingldentifier
1. Return false.
SingleNameBinding : Bindingldentifier Initializer
1. Return true.
BindingRestElement : . .. Bindingldentifier
1. Return false.
BindingRestElement : ... BindingPattern

1. Return ContainsExpression of BindingPattern.

13.3.3.3 Static Semantics: HasInitializer

256 © Ecma International 2019

BindingElement : BindingPattern
1. Return false.
BindingElement : BindingPattern Initializer
1. Return true.
SingleNameBinding : Bindingldentifier
1. Return false.
SingleNameBinding : Bindingldentifier Initializer

1. Return true.

13.3.3.4 Static Semantics: IsSimpleParameterList
BindingElement : BindingPattern

1. Return false.
BindingElement : BindingPattern Initializer
1. Return false.
SingleNameBinding : Bindingldentifier
1. Return true.
SingleNameBinding : Bindingldentifier Initializer

1. Return false.

13.3.3.5 Runtime Semantics: BindingInitialization

With parameters value and environment.

NOTE
When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter

bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

BindingPattern : ObjectBindingPattern

1. Perform ? RequireObjectCoercible(value).
2. Return the result of performing BindingInitialization for ObjectBindingPattern using value and environment as
arguments.

BindingPattern : ArrayBindingPattern

1. Let iteratorRecord be ? Getlterator(value).

2. Let result be IteratorBindingInitialization for ArrayBindingPattern using iteratorRecord and environment as
arguments.

3. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, result).

© Ecma International 2019 257

4. Return result.
ObjectBindingPattern : { }
1. Return NormalCompletion(empty).

ObjectBindingPattern :
{ BindingPropertyList }
{ BindingPropertyList , }

1. Perform ? PropertyBindinglInitialization for BindingPropertyList using value and environment as the arguments.

2. Return NormalCompletion(empty).
ObjectBindingPattern : { BindingRestProperty }

1. Let excludedNames be a new empty List.
2. Return the result of performing RestBindingInitialization of BindingRestProperty with value, environment, and

excludedNames as the arguments.
ObjectBindingPattern : { BindingPropertyList , BindingRestProperty }

1. Let excludedNames be the result of performing ? PropertyBindingInitialization of BindingPropertyList using value
and environment as arguments.
2. Return the result of performing RestBindinglnitialization of BindingRestProperty with value, environment, and

excludedNames as the arguments.

13.3.3.6 Runtime Semantics: PropertyBindingInitialization

With parameters value and environment.

NOTE

These collect a list of all bound property names rather than just empty completion.

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let boundNames be the result of performing ? PropertyBindingInitialization for BindingPropertyList using value
and environment as arguments.

2. Let nextNames be the result of performing ? PropertyBindingInitialization for BindingProperty using value and
environment as arguments.

3. Append each item in nextNames to the end of boundNames.

4. Return boundNames.
BindingProperty : SingleNameBinding

1. Let name be the string that is the only element of BoundNames of SingleNameBinding.
2. Perform ? KeyedBindingInitialization for SingleNameBinding using value, environment, and name as the
arguments.

3. Return a new List containing name.
BindingProperty : PropertyName : BindingElement

1. Let P be the result of evaluating PropertyName.
2. ReturnlfAbrupt(P).

258 © Ecma International 2019

3. Perform ? KeyedBindinglnitialization of BindingElement with value, environment, and P as the arguments.

4. Return a new List containing P.

13.3.3.7 Runtime Semantics: RestBindinglnitialization

With parameters value, environment, and excludedNames.
BindingRestProperty : ... Bindingldentifier

Let /hs be ? ResolveBinding(StringValue of Bindingldentifier, environment).
Let restObj be ObjectCreate(%ObjectPrototype%).

Perform ? CopyDataProperties(restObj, value, excludedNames).

If environment is undefined, return PutValue(lhs, restObj).

ik =

Return InitializeReferencedBinding(lhs, restObyj).

13.3.3.8 Runtime Semantics: IteratorBindingInitialization

With parameters iteratorRecord and environment.

NOTE
When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter

bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

ArrayBindingPattern : []
1. Return NormalCompletion(empty).
ArrayBindingPattern : [Elision]

1. Return the result of performing IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the

argument.
ArrayBindingPattern : [Elision BindingRestElement]

1. If Elision is present, then
a. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
2. Return the result of performing IteratorBindingInitialization for BindingRestElement with iteratorRecord and

environment as arguments.
ArrayBindingPattern : [BindingElementList 1]

1. Return the result of performing IteratorBindingInitialization for BindingElementList with iteratorRecord and

environment as arguments.
ArrayBindingPattern : [BindingElementList ,]

1. Return the result of performing IteratorBindingInitialization for BindingElementList with iteratorRecord and

environment as arguments.
ArrayBindingPattern : [BindingElementList , Elision]
1. Perform ? IteratorBindinglnitialization for BindingElementList with iteratorRecord and environment as arguments.

© Ecma International 2019 259

2. Return the result of performing IteratorDestructuring AssignmentEvaluation of Elision with iteratorRecord as the

argument.
ArrayBindingPattern : [BindingElementList , Elision BindingRestElement]

1. Perform ? IteratorBindinglnitialization for BindingElementList with iteratorRecord and environment as arguments.
2. If Elision is present, then

a. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
3. Return the result of performing IteratorBindinglnitialization for BindingRestElement with iteratorRecord and

environment as arguments.
BindingElementList : BindingElisionElement

1. Return the result of performing IteratorBindingInitialization for BindingElisionElement with iteratorRecord and

environment as arguments.
BindingElementList : BindingElementList , BindingElisionElement

1. Perform ? IteratorBindingInitialization for BindingElementList with iteratorRecord and environment as arguments.
2. Return the result of performing IteratorBindingInitialization for BindingElisionElement using iteratorRecord and

environment as arguments.
BindingElisionElement : BindingElement

1. Return the result of performing IteratorBindinglnitialization of BindingElement with iteratorRecord and

environment as the arguments.
BindingElisionElement : Elision BindingElement

1. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
2. Return the result of performing IteratorBindingInitialization of BindingElement with iteratorRecord and

environment as the arguments.
BindingElement : SingleNameBinding

1. Return the result of performing IteratorBindingInitialization for SingleNameBinding with iteratorRecord and

environment as the arguments.
SingleNameBinding : Bindingldentifier Initializer

1. Let bindingld be StringValue of Bindingldentifier.
2. Let lhs be ? ResolveBinding(bindingld, environment).
3. If iteratorRecord.[[Done]] is false, then
a. Let next be IteratorStep(iteratorRecord).
. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.

. If next is false, set iteratorRecord.[[Done]] to true.
. Else,
i. Let v be IteratorValue(next).

b
c. ReturnIfAbrupt(next).
d
e

ii. If v is an abrupt completion, set iteratorRecord.[[Done]] to true.
iii. ReturnIfAbrupt(v).
4, If iteratorRecord.[[Done]] is true, let v be undefined.

5. If Initializer is present and v is undefined, then

260 © Ecma International 2019

a. If IsAnonymousFunctionDefinition(Initializer) is true, then
i. Set v to the result of performing NamedEvaluation for Initializer with argument bindingld.
b. Else,
i. Let defaultValue be the result of evaluating Initializer.
ii. Setv to ? GetValue(defaultValue).
6. If environment is undefined, return ? PutValue(/hs, v).

7. Return InitializeReferencedBinding(lhs, v).
BindingElement : BindingPattern Initializer

1. If iteratorRecord.[[Done]] is false, then
a. Let next be IteratorStep(iteratorRecord).
b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
¢. ReturnIfAbrupt(next).
d. If next is false, set iteratorRecord.[[Done]] to true.
e. Else,
i. Let v be IteratorValue(next).
ii. If v is an abrupt completion, set iteratorRecord.[[Done]] to true.
iii. ReturnIfAbrupt(v).
2. If iteratorRecord.[[Done]] is true, let v be undefined.
3. If Initializer is present and v is undefined, then
a. Let defaultValue be the result of evaluating Initializer.
b. Set v to ? GetValue(defaultValue).

4. Return the result of performing Bindinglnitialization of BindingPattern with v and environment as the arguments.
BindingRestElement : . .. Bindingldentifier

Let lhs be ? ResolveBinding(StringValue of Bindingldentifier, environment).
Let A be ! ArrayCreate(0).

Let n be 0.

Repeat,

A

a. If iteratorRecord.[[Done]] is false, then
i. Let next be IteratorStep(iteratorRecord).
ii. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
iii. ReturnIfAbrupt(next).
iv. If next is false, set iteratorRecord.[[Done]] to true.
b. If iteratorRecord.[[Done]] is true, then
i. If environment is undefined, return ? PutValue(/hs, A).
ii. Return InitializeReferencedBinding(lhs, A).
Let nextValue be IteratorValue(next).
If nextValue is an abrupt completion, set iteratorRecord.[[Done]] to true.
ReturnIfAbrupt(nextValue).
Let status be CreateDataProperty(A, ! ToString(n), nextValue).

Assert: status is true.

R S

Increment n by 1.
BindingRestElement : . .. BindingPattern

1. Let A be ! ArrayCreate(0).
2. LetnbeO.

© Ecma International 2019 261

3. Repeat,
a. If iteratorRecord.[[Done]] is false, then
i. Let next be IteratorStep(iteratorRecord).
ii. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
iii. ReturnIfAbrupt(next).
iv. If next is false, set iteratorRecord.[[Done]] to true.
b. If iteratorRecord.[[Donel]] is true, then
i. Return the result of performing BindinglInitialization of BindingPattern with A and environment as the
arguments.
Let nextValue be IteratorValue(next).
If nextValue is an abrupt completion, set iteratorRecord.[[Done]] to true.
ReturnIfAbrupt(nextValue).
Let status be CreateDataProperty(A, ! ToString(n), nextValue).

Assert: status is true.

R S

Increment 1 by 1.

13.3.3.9 Runtime Semantics: KeyedBindingInitialization

With parameters value, environment, and propertyName.

NOTE
When undefined is passed for environment it indicates that a PutValue operation should be used to assign the
initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter

bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

BindingElement : BindingPattern Initializer

1. Let v be ? GetV(value, propertyName).

2. If Initializer is present and v is undefined, then
a. Let defaultValue be the result of evaluating Initializer.
b. Set v to ? GetValue(defaultValue).

3. Return the result of performing Bindinglnitialization for BindingPattern passing v and environment as arguments.
SingleNameBinding : Bindingldentifier Initializer

Let bindingld be StringValue of Bindingldentifier.
Let lhs be ? ResolveBinding(bindingld, environment).
Let v be ? GetV(value, propertyName).

A

If Initializer is present and v is undefined, then
a. If IsAnonymousFunctionDefinition(Initializer) is true, then
i. Set v to the result of performing NamedEvaluation for Initializer with argument bindingld.
b. Else,
i. Let defaultValue be the result of evaluating Initializer.
ii. Setvto ? GetValue(defaultValue).
5. If environment is undefined, return ? PutValue(/hs, v).
6. Return InitializeReferencedBinding(/hs, v).

13.4 Empty Statement

262 © Ecma International 2019

Syntax

EmptyStatement :

4

13.4.1 Runtime Semantics: Evaluation
EmptyStatement : ;

1. Return NormalCompletion(empty).

13.5 Expression Statement
Syntax

ExpressionStatement v; .15, ayait]
[lookahead € { { , function , async [no LineTerminator here] function , class , let [}]

Expression(.1, ovield, 2await] 7

NOTE
An ExpressionStatement cannot start with a U+007B (LEFT CURLY BRACKET) because that might make it ambiguous
with a Block. An ExpressionStatement cannot start with the function or class keywords because that would make it
ambiguous with a FunctionDeclaration, a GeneratorDeclaration, or a ClassDeclaration. An ExpressionStatement cannot
start with async function because that would make it ambiguous with an AsyncFunctionDeclaration or a
AsyncGeneratorDeclaration. An ExpressionStatement cannot start with the two token sequence 1et [because that

would make it ambiguous with a 1et LexicalDeclaration whose first LexicalBinding was an ArrayBindingPattern.

13.5.1 Runtime Semantics: Evaluation
ExpressionStatement : Expression ;

1. Let exprRef be the result of evaluating Expression.
2. Return ? GetValue(exprRef).

13.6 The if Statement
Syntax

IfStatement [Yield, Await, Return]

if (EXpreSSIOnHIn, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return] else
Statement[?Yield, ?Await, ?Return]

if (Expression| i, -vield, 2await]) Statementioyi.i4, 2await, 2Return]

Each else for which the choice of associated i £ is ambiguous shall be associated with the nearest possible i f that

would otherwise have no corresponding else.

© Ecma International 2019 263

13.6.1 Static Semantics: Early Errors

IfStatement :
if (Expression) Statement else Statement

if (Expression) Statement
It is a Syntax Error if IsLabelledFunction(Statement) is true.

NOTE

It is only necessary to apply this rule if the extension specified in B.3.2 is implemented.

13.6.2 Static Semantics: ContainsDuplicateLabels

With parameter [abelSet.
IfStatement : if (Expression) Statement else Statement

1. Let hasDuplicate be ContainsDuplicateLabels of the first Statement with argument [abelSet.
2. If hasDuplicate is true, return true.
3. Return ContainsDuplicateLabels of the second Statement with argument /abelSet.

IfStatement : i£ (Expression) Statement

1. Return ContainsDuplicateLabels of Statement with argument /abelSet.

13.6.3 Static Semantics: ContainsUndefinedBreakTarget

With parameter [abelSet.
IfStatement : 1€ (Expression) Statement else Statement

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of the first Statement with argument labelSet.
2. If hasUndefinedLabels is true, return true.

3. Return ContainsUndefinedBreakTarget of the second Statement with argument /abelSet.
IfStatement : i£ (Expression) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument /abelSet.

13.6.4 Static Semantics: ContainsUndefinedContinueTarget

With parameters iterationSet and labelSet.
IfStatement : i€ (Expression) Statement else Statement

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of the first Statement with arguments iterationSet
and « ».

2. If hasUndefinedLabels is true, return true.

3. Return ContainsUndefinedContinueTarget of the second Statement with arguments iterationSet and « ».

IfStatement : i£ (Expression) Statement

264 © Ecma International 2019

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

13.6.5 Static Semantics: VarDeclaredNames
IfStatement : 1€ (Expression) Statement else Statement

1. Let names be VarDeclaredNames of the first Statement.
2. Append to names the elements of the VarDeclaredNames of the second Statement.

3. Return names.
IfStatement : i£ (Expression) Statement

1. Return the VarDeclaredNames of Statement.
13.6.6 Static Semantics: VarScopedDeclarations
IfStatement : i€ (Expression) Statement else Statement

1. Let declarations be VarScopedDeclarations of the first Statement.

2. Append to declarations the elements of the VarScopedDeclarations of the second Statement.

3. Return declarations.
IfStatement : i£ (Expression) Statement

1. Return the VarScopedDeclarations of Statement.

13.6.7 Runtime Semantics: Evaluation
IfStatement : if (Expression) Statement else Statement

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be ToBoolean(? GetValue(exprRef)).
3. If exprValue is true, then
a. Let stmtCompletion be the result of evaluating the first Statement.
4. Else,
a. Let stmtCompletion be the result of evaluating the second Statement.
5. Return Completion(UpdateEmpty(stmtCompletion, undefined)).

IfStatement : i€ (Expression) Statement

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be ToBoolean(? GetValue(exprRef)).
3. If exprValue is false, then
a. Return NormalCompletion(undefined).
4. Else,
a. Let stmtCompletion be the result of evaluating Statement.
b. Return Completion(UpdateEmpty(stmtCompletion, undefined)).

13.7 Iteration Statements

Syntax

© Ecma International 2019

265

IterationStatement (v .14, rwait, Return] °

do Statement|viciq, 2await, ?Return] While (EXpression|.r,, ovieid, cawait]) 7

while (Expression|.r., ovield, cawait)) Statement(,viciq, 2await, ?Return]

for ([lookahead & { let [}] Expression . i, ovicid, cawait] opt 7
Expression(.t 2vield, 2await] opt ; EXpression;.tn ovieid, 2await] opt)
Statement [oyic14, 2Await, ?Return]

for (var VariableDeclarationList| .1, vield, 2await] #
Expression(., 2vield, 2await] opt -+ EXpression;.i. ovieid, 2await] opt)
Statement 5yje1d, ?await, ?Return]

for (LexicalDeclaration(. i, ovicid, 2await] EXPression,i. ovicid, 2await] opt 7
Expression .t ovield, 2await] opt) Statementioyvicid, cawait, 2Return]

for ([lookahead ¢ { let [}] LeftHandSideExpression.y:ci4, opyaic] in
Expression|.t,, 7vield, 2await]) Statementcyiciq, 2await, ?Return]

for (var ForBinding ,viciq, 2await) in Expression(.ri, ovicid, 2await])
Statement[oyic14, 2Await, ?Return]

for (ForDeclaration;yic14, »await] in EXpressioni.in, ovieid, zawaic])
Statement [5yje1d, ?Await, ?Return]

for ([lookahead # let] LeftHandSideExpression ,yic14, 7nuyaic] ©f
AssignmentEXpression | .1, ovield, 2await)) Statement(oyiciq, oawait, ?Return]

for (var ForBinding ,vic14, +nyait] OF AssignmentExpression|.r, ovield, 2await])
Statement[?Yield, ?Await, ?Return]

for (ForDeclaration;,yic14, »nyaic] OFf AssignmentExpression;.r, ovieid, 2await])
Statement[?Yield, ?Await, ?Return]

[+Await] for await ([lookahead # let] LeftHandSideExpression ,yic14, oawaic] ©F
ASSignmentEXpreSSionHIn, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

[+Await] for await (var ForBinding(,yic14, »awaic] ©Ff
ASSignmentEXpreSSionHIn, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

[+Await] for await (ForDeclaration;,v;.14, >nyair] ©Ff

ASSIgnmentEXpreSSlonHIn, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

ForDeclarationv; .14, ayait] °*

LetOrConst ForBinding(>yic1d, 2await]

ForBinding vic14, await] °
Bindingldentifier >v; 14, 2await]

BindingPattern >vici4, 2nwait]

NOTE
This section is extended by Annex B.3.6.

13.7.1 Semantics
13.7.1.1 Static Semantics: Early Errors

266 © Ecma International 2019

IterationStatement :

do Statement while (Expression) ;

while (Expression) Statement

for
for
for
for
for
for
for
for
for
for
for

for

(Expression.. ; Expression... ; Expression,..) Statement

(var VariableDeclarationList ; Expression ; Expression. ..) Statement

opt
(LexicalDeclaration Expression.. ; Expression...) Statement

(LeftHandSideExpression in Expression) Statement

(var ForBinding in Expression) Statement

(ForDeclaration in Expression) Statement

(LeftHandSideExpression of AssignmentExpression) Statement

(var ForBinding of AssignmentExpression) Statement

(ForDeclaration of AssignmentExpression) Statement

await (LeftHandSideExpression of AssignmentExpression) Statement
await (var ForBinding of AssignmentExpression) Statement

await (ForDeclaration of AssignmentExpression) Statement

It is a Syntax Error if IsLabelledFunction(Statement) is true.

NOTE

It is only necessary to apply this rule if the extension specified in B.3.2 is implemented.

13.7.1.2 Runtime Semantics: LoopContinues (completion, labelSet)

The abstract operation LoopContinues with arguments completion and labelSet is defined by the following steps:

ik =

NOTE

If completion.[[Type]] is normal, return true.

If completion.[[Type]] is not continue, return false.

If completion.[[Target]] is empty, return true.

If completion.[[Target]] is an element of labelSet, return true.

Return false.

Within the Statement part of an IterationStatement a ContinueStatement may be used to begin a new iteration.

13.7.2 The do-while Statement

13.7.2.1 Static Semantics: ContainsDuplicateLabels

With parameter [abelSet.

IterationStatement : do Statement while (Expression) ;

1. Return ContainsDuplicateLabels of Statement with argument /abelSet.

13.7.2.2 Static Semantics: ContainsUndefinedBreakTarget

With parameter [abelSet.

© Ecma International 2019 267

IterationStatement : do Statement while (Expression) ;

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

13.7.2.3 Static Semantics: ContainsUndefinedContinueTarget

With parameters iterationSet and labelSet.
IterationStatement : do Statement while (Expression) ;

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

13.7.2.4 Static Semantics: VarDeclaredNames
IterationStatement : do Statement while (Expression) ;

1. Return the VarDeclaredNames of Statement.

13.7.2.5 Static Semantics: VarScopedDeclarations
IterationStatement : do Statement while (Expression) ;

1. Return the VarScopedDeclarations of Statement.

13.7.2.6 Runtime Semantics: LabelledEvaluation

With parameter [abelSet.
IterationStatement : do Statement while (Expression) ;

1. Let V be undefined.
2. Repeat,
a. Let stmtResult be the result of evaluating Statement.
b. If LoopContinues(stmtResult, labelSet) is false, return Completion(UpdateEmpty(stmtResult, V)).
c. If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].
d. Let exprRef be the result of evaluating Expression.
e. Let exprValue be ? GetValue(exprRef).
f. If ToBoolean(exprValue) is false, return NormalCompletion(V).

13.7.3 The while Statement

13.7.3.1 Static Semantics: ContainsDuplicateLabels

With parameter [abelSet.
IterationStatement : while (Expression) Statement

1. Return ContainsDuplicateLabels of Statement with argument /abelSet.

13.7.3.2 Static Semantics: ContainsUndefinedBreakTarget

With parameter labelSet.

268 © Ecma International 2019

IterationStatement : while (Expression) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument /abelSet.

13.7.3.3 Static Semantics: ContainsUndefinedContinueTarget

With parameters iterationSet and labelSet.
IterationStatement : while (Expression) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

13.7.3.4 Static Semantics: VarDeclaredNames
IterationStatement : while (Expression) Statement

1. Return the VarDeclaredNames of Statement.

13.7.3.5 Static Semantics: VarScopedDeclarations
IterationStatement : while (Expression) Statement

1. Return the VarScopedDeclarations of Statement.

13.7.3.6 Runtime Semantics: LabelledEvaluation

With parameter [abelSet.
IterationStatement : while (Expression) Statement

1. Let V be undefined.
2. Repeat,
a. Let exprRef be the result of evaluating Expression.
b. Let exprValue be ? GetValue(exprRef).
c. If ToBoolean(exprValue) is false, return NormalCompletion(V).
d. Let stmtResult be the result of evaluating Statement.
e. If LoopContinues(stmtResult, labelSet) is false, return Completion(UpdateEmpty(stmtResult, V)).
f. If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].

13.7.4 The for Statement

13.7.4.1 Static Semantics: Early Errors
IterationStatement : for (LexicalDeclaration Expression ; Expression) Statement

It is a Syntax Error if any element of the BoundNames of LexicalDeclaration also occurs in the VarDeclaredNames
of Statement.

13.7.4.2 Static Semantics: ContainsDuplicateLabels

With parameter [abelSet.

IterationStatement :

© Ecma International 2019 269

for (Expression... ; Expression,,. ; Expression...) Statement
for (var VariableDeclarationList ; Expression... ; Expression...) Statement

for (LexicalDeclaration Expression.. ; Expression...) Statement

1. Return ContainsDuplicateLabels of Statement with argument /abelSet.

13.7.4.3 Static Semantics: ContainsUndefinedBreakTarget

With parameter [abelSet.

IterationStatement :
for (Expression... ; Expression,,. ; Expression...) Statement

for (wvar VariableDeclarationList ; Expression ; Expression, ..) Statement

opt
for (LexicalDeclaration Expression.. ; Expression...) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument /abelSet.

13.7.4.4 Static Semantics: ContainsUndefinedContinueTarget

With parameters iterationSet and labelSet.

IterationStatement :
for (Expression... ; Expression,,. ; Expression.,.) Statement

for (var VariableDeclarationList ; Expression ; Expression. .) Statement

opt
for (LexicalDeclaration Expression... ; Expression...) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

13.7.4.5 Static Semantics: VarDeclaredNames
IterationStatement : for (Expression ; Expression ; Expression) Statement

1. Return the VarDeclaredNames of Statement.
IterationStatement : for (var VariableDeclarationList ; Expression ; Expression) Statement

1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of the VarDeclaredNames of Statement.

3. Return names.
IterationStatement : for (LexicalDeclaration Expression ; Expression) Statement

1. Return the VarDeclaredNames of Statement.

13.7.4.6 Static Semantics: VarScopedDeclarations
IterationStatement : for (Expression ; Expression ; Expression) Statement

1. Return the VarScopedDeclarations of Statement.
IterationStatement : for (var VariableDeclarationList ; Expression ; Expression) Statement

1. Let declarations be VarScopedDeclarations of VariableDeclarationList.

270 © Ecma International 2019

2. Append to declarations the elements of the VarScopedDeclarations of Statement.

3. Return declarations.
IterationStatement : for (LexicalDeclaration Expression ; Expression) Statement

1. Return the VarScopedDeclarations of Statement.

13.7.4.7 Runtime Semantics: LabelledEvaluation

With parameter /abelSet.
IterationStatement : for (Expression ; Expression ; Expression) Statement

1. If the first Expression is present, then
a. Let exprRef be the result of evaluating the first Expression.
b. Perform ? GetValue(exprRef).
2. Return ? ForBodyEvaluation(the second Expression, the third Expression, Statement, « », labelSet).

IterationStatement : for (var VariableDeclarationList ; Expression ; Expression) Statement

1. Let varDcl be the result of evaluating VariableDeclarationList.
2. ReturnlfAbrupt(varDcl).

3. Return ? ForBodyEvaluation(the first Expression, the second Expression, Statement, « », labelSet).
IterationStatement : for (LexicalDeclaration Expression ; Expression) Statement

Let oldEnv be the running execution context's LexicalEnvironment.

Let loopEnv be NewDeclarativeEnvironment(oldEnv).

Let loopEnvRec be loopEnv's EnvironmentRecord.

Let isConst be the result of performing IsConstantDeclaration of LexicalDeclaration.

Let boundNames be the BoundNames of LexicalDeclaration.

S O o e

For each element dn of boundNames, do
a. If isConst is true, then
i. Perform ! loopEnvRec.CreatelmmutableBinding(dn, true).
b. Else,
i. Perform ! loopEnvRec.CreateMutableBinding(dn, false).
7. Set the running execution context's LexicalEnvironment to loopEnv.
8. Let forDcl be the result of evaluating LexicalDeclaration.
9. If forDcl is an abrupt completion, then
a. Set the running execution context's LexicalEnvironment to oldEnv.
b. Return Completion(forDcl).
10. If isConst is false, let perlterationLets be boundNames; otherwise let perlterationLets be « ».
11. Let bodyResult be ForBodyEvaluation(the first Expression, the second Expression, Statement, perlterationLets,
labelSet).
12. Set the running execution context's LexicalEnvironment to oldEnyv.
13. Return Completion(bodyResult).

13.7.4.8 Runtime Semantics: ForBodyEvaluation (test, increment, stmt, perIterationBindings, labelSet)

The abstract operation ForBodyEvaluation with arguments test, increment, stmt, perlterationBindings, and labelSet is

performed as follows:

© Ecma International 2019 271

1. Let V be undefined.
2. Perform ? CreatePerIterationEnvironment(perlterationBindings).
3. Repeat,
a. If test is not [empty], then
i. Let testRef be the result of evaluating test.

ii. Let testValue be ? GetValue(testRef).

iii. If ToBoolean(testValue) is false, return NormalCompletion(V).
Let result be the result of evaluating stmt.
If LoopContinues(result, labelSet) is false, return Completion(UpdateEmpty(result, V)).
If result.[[Value]] is not empty, set V to result.[[Value]].
Perform ? CreatePerlterationEnvironment(periterationBindings).

- o AN o

If increment is not [empty], then
i. Let incRef be the result of evaluating increment.
ii. Perform ? GetValue(incRef).

13.7.4.9 Runtime Semantics: CreatePerIterationEnvironment (perlterationBindings)

The abstract operation CreatePerlterationEnvironment with argument periterationBindings is performed as follows:

1. If perlterationBindings has any elements, then
a. Let lastlterationEnv be the running execution context's LexicalEnvironment.
Let lastlterationEnvRec be lastlterationEnv's EnvironmentRecord.
Let outer be lastIterationEnv's outer environment reference.
Assert: outer is not null.
Let thislterationEnv be NewDeclarativeEnvironment(outer).

Let thisIterationEnvRec be thislterationEnv's EnvironmentRecord.

@ - ©® &N T

For each element bn of perlterationBindings, do
i. Perform ! thislterationEnvRec.CreateMutableBinding(bn, false).
ii. Let lastValue be ? lastlterationEnvRec.GetBindingValue(bn, true).
iii. Perform thislterationEnvRec.InitializeBinding(bn, lastValue).
h. Set the running execution context's LexicalEnvironment to thislterationEnv.

2. Return undefined.

13.7.5 The for-in, for-of, and for-await-of Statements

13.7.5.1 Static Semantics: Early Errors

IterationStatement :
for (LeftHandSideExpression in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement

for await (LeftHandSideExpression of AssignmentExpression) Statement

It is a Syntax Error if LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if
LeftHandSideExpression is not covering an AssignmentPattern.

If LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral and if LeftHandSideExpression is covering an
AssignmentPattern then the following rules are not applied. Instead, the Early Error rules for AssignmentPattern are
used.

272 © Ecma International 2019

It is a Syntax Error if AssignmentTargetType of LeftHandSideExpression is not simple.
It is a Syntax Error if the LeftHandSideExpression is CoverParenthesizedExpressionAndArrowParameterList : (
Expression) and Expression derives a phrase that would produce a Syntax Error according to these rules if that

phrase were substituted for LeftHandSideExpression. This rule is recursively applied.

NOTE

The last rule means that the other rules are applied even if parentheses surround Expression.

IterationStatement :
for (ForDeclaration in Expression) Statement
for (ForDeclaration of AssignmentExpression) Statement

for await (ForDeclaration of AssignmentExpression) Statement

It is a Syntax Error if the BoundNames of ForDeclaration contains "let".

It is a Syntax Error if any element of the BoundNames of ForDeclaration also occurs in the VarDeclaredNames of
Statement.

It is a Syntax Error if the BoundNames of ForDeclaration contains any duplicate entries.

13.7.5.2 Static Semantics: BoundNames
ForDeclaration : LetOrConst ForBinding

1. Return the BoundNames of ForBinding.

13.7.5.3 Static Semantics: ContainsDuplicateLabels

With parameter [abelSet.

IterationStatement :
for (LeftHandSideExpression in Expression) Statement
for (var ForBinding in Expression) Statement
for (ForDeclaration in Expression) Statement
for (LeftHandSideExpression of AssignmentExpression) Statement
for (var ForBinding of AssignmentExpression) Statement
for (ForDeclaration of AssignmentExpression) Statement
for await (LeftHandSideExpression of AssignmentExpression) Statement
for await (var ForBinding of AssignmentExpression) Statement

for await (ForDeclaration of AssignmentExpression) Statement
1. Return ContainsDuplicateLabels of Statement with argument labelSet.

NOTE
This section is extended by Annex B.3.6.

13.7.5.4 Static Semantics: ContainsUndefinedBreakTarget

With parameter [abelSet.

IterationStatement :

© Ecma International 2019 273

for
for
for
for
for
for
for
for

for

(LeftHandSideExpression in Expression) Statement

(var ForBinding in Expression) Statement

(ForDeclaration in Expression) Statement

(LeftHandSideExpression of AssignmentExpression) Statement
(var ForBinding of AssignmentExpression) Statement

(ForDeclaration of AssignmentExpression) Statement

await (LeftHandSideExpression of AssignmentExpression) Statement

await (var ForBinding of AssignmentExpression) Statement

await (ForDeclaration of AssignmentExpression) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

NOTE

This section is extended by Annex B.3.6.

13.7.5.5 Static Semantics: ContainsUndefinedContinueTarget

With parameters iterationSet and labelSet.

IterationStatement :

for
for
for
for
for
for
for
for

for

(LeftHandSideExpression in Expression) Statement

(var ForBinding in Expression) Statement

(ForDeclaration in Expression) Statement

(LeftHandSideExpression of AssignmentExpression) Statement
(var ForBinding of AssignmentExpression) Statement

(ForDeclaration of AssignmentExpression) Statement

await (LeftHandSideExpression of AssignmentExpression) Statement

await (var ForBinding of AssignmentExpression) Statement

await (ForDeclaration of AssignmentExpression) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

NOTE

This section is extended by Annex B.3.6.

13.7.5.6 Static Semantics: IsDestructuring
ForDeclaration : LetOrConst ForBinding

1. Return IsDestructuring of ForBinding.

ForBinding : Bindingldentifier

1. Return false.

ForBinding : BindingPattern

1. Return true.

NOTE

274

© Ecma International 2019

This section is extended by Annex B.3.6.

13.7.5.7 Static Semantics: VarDeclaredNames
IterationStatement : for (LeftHandSideExpression in Expression) Statement

1. Return the VarDeclaredNames of Statement.
IterationStatement : for (var ForBinding in Expression) Statement

1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames of Statement.

3. Return names.
IterationStatement : for (ForDeclaration in Expression) Statement
1. Return the VarDeclaredNames of Statement.

IterationStatement :
for (LeftHandSideExpression of AssignmentExpression) Statement

for await (LeftHandSideExpression of AssignmentExpression) Statement
1. Return the VarDeclaredNames of Statement.

IterationStatement :
for (var ForBinding of AssignmentExpression) Statement

for await (var ForBinding of AssignmentExpression) Statement

1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames of Statement.

3. Return names.

IterationStatement :
for (ForDeclaration of AssignmentExpression) Statement

for await (ForDeclaration of AssignmentExpression) Statement
1. Return the VarDeclaredNames of Statement.

NOTE
This section is extended by Annex B.3.6.

13.7.5.8 Static Semantics: VarScopedDeclarations
IterationStatement : for (LeftHandSideExpression in Expression) Statement

1. Return the VarScopedDeclarations of Statement.
IterationStatement : for (var ForBinding in Expression) Statement

1. Let declarations be a List containing ForBinding.
2. Append to declarations the elements of the VarScopedDeclarations of Statement.

3. Return declarations.

© Ecma International 2019

275

IterationStatement :
for (ForDeclaration in Expression) Statement

for await (LeftHandSideExpression of AssignmentExpression) Statement
1. Return the VarScopedDeclarations of Statement.

IterationStatement :
for (LeftHandSideExpression of AssignmentExpression) Statement

for await (var ForBinding of AssignmentExpression) Statement
1. Return the VarScopedDeclarations of Statement.

IterationStatement :
for (var ForBinding of AssignmentExpression) Statement

for await (var ForBinding of AssignmentExpression) Statement

1. Let declarations be a List containing ForBinding.
2. Append to declarations the elements of the VarScopedDeclarations of Statement.

3. Return declarations.

IterationStatement :
for (ForDeclaration of AssignmentExpression) Statement

for await (ForDeclaration of AssignmentExpression) Statement
1. Return the VarScopedDeclarations of Statement.

NOTE
This section is extended by Annex B.3.6.

13.7.5.9 Runtime Semantics: BindinglInitialization

With parameters value and environment.

NOTE
undefined is passed for environment to indicate that a PutValue operation should be used to assign the initialization
value. This is the case for var statements and the formal parameter lists of some non-strict functions (see 9.2.15). In

those cases a lexical binding is hoisted and preinitialized prior to evaluation of its initializer.

ForDeclaration : LetOrConst ForBinding
1. Return the result of performing Bindinglnitialization for ForBinding passing value and environment as the

arguments.

13.7.5.10 Runtime Semantics: BindingInstantiation

With parameter environment.
ForDeclaration : LetOrConst ForBinding

1. Let envRec be environment's EnvironmentRecord.

2. Assert: envRec is a declarative Environment Record.

276 © Ecma International 2019

3. For each element name of the BoundNames of ForBinding, do
a. If IsConstantDeclaration of LetOrConst is true, then
i. Perform ! envRec.CreateImmutableBinding(name, true).
b. Else,
i. Perform ! envRec.CreateMutableBinding(name, false).

13.7.5.11 Runtime Semantics: LabelledEvaluation

With parameter /abelSet.
IterationStatement : for (LeftHandSideExpression in Expression) Statement

1. Let keyResult be ? Forln/OfHeadEvaluation(« », Expression, enumerate).
2. Return ? Forln/OfBodyEvaluation(LeftHandSideExpression, Statement, keyResult, enumerate, assignment,
labelSet).

IterationStatement : for (var ForBinding in Expression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », Expression, enumerate).
2. Return ? ForIn/OfBodyEvaluation(ForBinding, Statement, keyResult, enumerate, varBinding, labelSet).

IterationStatement : for (ForDeclaration in Expression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(BoundNames of ForDeclaration, Expression, enumerate).
2. Return ? ForIn/OfBodyEvaluation(ForDeclaration, Statement, keyResult, enumerate, lexicalBinding, labelSet).

IterationStatement : for (LeftHandSideExpression of AssignmentExpression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, iterate).
2. Return ? ForIn/OfBodyEvaluation(LeftHandSideExpression, Statement, keyResult, iterate, assignment, labelSet).

IterationStatement : for (var ForBinding of AssignmentExpression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, iterate).
2. Return ? ForIn/OfBodyEvaluation(ForBinding, Statement, keyResult, iterate, varBinding, labelSet).

IterationStatement : for (ForDeclaration of AssignmentExpression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(BoundNames of ForDeclaration, AssignmentExpression, iterate).
2. Return ? Forln/OfBodyEvaluation(ForDeclaration, Statement, keyResult, iterate, lexicalBinding, labelSet).

IterationStatement : for await (LeftHandSideExpression of AssignmentExpression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, async-iterate).
2. Return ? Forln/OfBodyEvaluation(LeftHandSideExpression, Statement, keyResult, iterate, assignment, labelSet,
async).

IterationStatement : for await (var ForBinding of AssignmentExpression) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, async-iterate).
2. Return ? Forln/OfBodyEvaluation(ForBinding, Statement, keyResult, iterate, varBinding, labelSet, async).

IterationStatement : for await (ForDeclaration of AssignmentExpression) Statement

© Ecma International 2019 277

1. Let keyResult be ? Forln/OfHeadEvaluation(BoundNames of ForDeclaration, AssignmentExpression, async-
iterate).
2. Return ? ForIn/OfBodyEvaluation(ForDeclaration, Statement, keyResult, iterate, lexicalBinding, labelSet, async).

NOTE
This section is extended by Annex B.3.6.

13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation (TDZnames, expr, iterationKind)

The abstract operation ForIn/OfHeadEvaluation is called with arguments TDZnames, expr, and iterationKind. The value
of iterationKind is either enumerate, iterate, or async-iterate.

1. Let oldEnv be the running execution context's LexicalEnvironment.
2. If TDZnames is not an empty List, then

a. Assert: TDZnames has no duplicate entries.

b. Let TDZ be NewDeclarativeEnvironment(oldEnv).

c. Let TDZEnvRec be TDZ's EnvironmentRecord.

d. For each string name in TDZnames, do

i. Perform ! TDZEnvRec.CreateMutableBinding(name, false).

e. Set the running execution context's LexicalEnvironment to TDZ.
Let exprRef be the result of evaluating expr.
Set the running execution context's LexicalEnvironment to oldEnv.
Let exprValue be ? GetValue(exprRef).
If iterationKind is enumerate, then

o Uk~ w

a. If exprValue is undefined or null, then
i. Return Completion { [[Typell: break, [[Value]]: empty, [[Target]]: empty }.

b. Let obj be ! ToObject(exprValue).

c. Return ? EnumerateObjectProperties(obj).
7. Else,

a. Assert: iterationKind is iterate.

b. If iterationKind is async-iterate, let iteratorHint be async.
c. Else, let iteratorHint be sync.
d

. Return ? Getlterator(exprValue, iteratorHint).

13.7.5.13 Runtime Semantics: ForIn/OfBodyEvaluation (/hs, stmt, iteratorRecord, iterationKind,
lhsKind, labelSet [, iteratorKind])

The abstract operation ForIn/OfBodyEvaluation is called with arguments lhs, stmt, iteratorRecord, iterationKind,
IhsKind, labelSet, and optional argument iteratorKind. The value of [hsKind is either assignment, varBinding or
lexicalBinding. The value of iteratorKind is either sync or async.

If iteratorKind is not present, set iteratorKind to sync.

Let oldEnv be the running execution context's LexicalEnvironment.
Let V be undefined.

Let destructuring be IsDestructuring of /hs.

A

If destructuring is true and if [hsKind is assignment, then
a. Assert: lhs is a LeftHandSideExpression.
b. Let assignmentPattern be the AssignmentPattern that is covered by lhs.

6. Repeat,

278 © Ecma International 2019

a. Let nextResult be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]], « »).
b. If iteratorKind is async, then set nextResult to ? Await(nextResult).
c. If Type(nextResult) is not Object, throw a TypeError exception.
d. Let done be ? IteratorComplete(nextResult).
e. If done is true, return NormalCompletion(V).
f. Let nextValue be ? IteratorValue(nextResult).
g. If [hsKind is either assignment or varBinding, then

i. If destructuring is false, then

1. Let [hsRef be the result of evaluating /hs. (It may be evaluated repeatedly.)

h. Else,
i. Assert: [hsKind is lexicalBinding.
ii. Assert: [hs is a ForDeclaration.
iii. Let iterationEnv be NewDeclarativeEnvironment(oldEnv).
iv. Perform BindinglInstantiation for /hs passing iterationEnv as the argument.
v. Set the running execution context's LexicalEnvironment to iterationEnv.
vi. If destructuring is false, then
1. Assert: [hs binds a single name.
2. Let [hsName be the sole element of BoundNames of /hs.
3. Let [hsRef be ! ResolveBinding(lhsName).
i. If destructuring is false, then
i. If [hsRef is an abrupt completion, then
1. Let status be lhsRef.
ii. Else if lhsKind is lexicalBinding, then
1. Let status be InitializeReferencedBinding(lhsRef, nextValue).
iii. Else,
1. Let status be PutValue(lhsRef, nextValue).
j. Else,
i. If lhsKind is assignment, then
1. Let status be the result of performing Destructuring AssignmentEvaluation of assignmentPattern
using nextValue as the argument.
ii. Else if lhsKind is varBinding, then
1. Assert: lhs is a ForBinding.
2. Let status be the result of performing BindingInitialization for /hs passing nextValue and
undefined as the arguments.
iii. FElse,
1. Assert: [hsKind is lexicalBinding.
2. Assert: lhs is a ForDeclaration.
3. Let status be the result of performing BindingInitialization for /hs passing nextValue and
iterationEnv as arguments.
k. If status is an abrupt completion, then
i. Set the running execution context's LexicalEnvironment to oldEnv.
ii. If iteratorKind is async, return ? AsynclteratorClose(iteratorRecord, status).
iii. If iterationKind is enumerate, then
1. Return status.
iv. Else,
1. Assert: iterationKind is iterate.
2. Return ? IteratorClose(iteratorRecord, status).

1. Let result be the result of evaluating stmit.

© Ecma International 2019 279

m. Set the running execution context's LexicalEnvironment to oldEnv.
n. If LoopContinues(result, labelSet) is false, then
i. If iterationKind is enumerate, then
1. Return Completion(UpdateEmpty(result, V)).
ii. Else,
1. Assert: iterationKind is iterate.
2. Set status to UpdateEmpty(result, V).
3. If iteratorKind is async, return ? AsynclteratorClose(iteratorRecord, status).
4. Return ? IteratorClose(iteratorRecord, status).
o. If result.[[Value]] is not empty, set V to result.[[Value]].

13.7.5.14 Runtime Semantics: Evaluation
ForBinding : Bindingldentifier

1. Let bindingld be StringValue of Bindingldentifier.
2. Return ? ResolveBinding(bindingld).

13.7.5.15 EnumerateObjectProperties (O)

When the abstract operation EnumerateObjectProperties is called with argument O, the following steps are taken:

1. Assert: Type(O) is Object.
2. Return an Iterator object (25.1.1.2) whose next method iterates over all the String-valued keys of enumerable
properties of O. The iterator object is never directly accessible to ECMAScript code. The mechanics and order of

enumerating the properties is not specified but must conform to the rules specified below.

The iterator's throw and return methods are null and are never invoked. The iterator's next method processes
object properties to determine whether the property key should be returned as an iterator value. Returned property keys
do not include keys that are Symbols. Properties of the target object may be deleted during enumeration. A property that
is deleted before it is processed by the iterator's next method is ignored. If new properties are added to the target object
during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration. A property

name will be returned by the iterator's next method at most once in any enumeration.

Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the
prototype, and so on, recursively; but a property of a prototype is not processed if it has the same name as a property that
has already been processed by the iterator's next method. The values of [[Enumerable]] attributes are not considered
when determining if a property of a prototype object has already been processed. The enumerable property names of
prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument.
EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]]
internal method. Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal
method.

NOTE

The following is an informative definition of an ECMAScript generator function that conforms to these rules:

function* EnumerateObjectProperties (obj) {
const visited = new Set();
for (const key of Reflect.ownKeys (obj)) {
if (typeof key === "symbol") continue;
const desc = Reflect.getOwnPropertyDescriptor (obj, key);

280 © Ecma International 2019

if (desc) {
visited.add (key) ;

if (desc.enumerable) yield key;

}
const proto = Reflect.getPrototypeOf (ocbj);

if (proto === null) return;
for (const protoKey of EnumerateObjectProperties (proto)) {

if (!visited.has (protoKey)) yield protoKey;

13.8 The continue Statement

Syntax

ContinueStatement (v o1, await]
continue ;

continue [no LineTerminator here] Labelldentifier vic1q, +nyaic) 7

13.8.1 Static Semantics: Early Errors
ContinueStatement : continue ;

ContinueStatement : continue Labelldentifier ;

It is a Syntax Error if this ContinueStatement is not nested, directly or indirectly (but not crossing function

boundaries), within an IterationStatement.

13.8.2 Static Semantics: ContainsUndefinedContinueTarget

With parameters iterationSet and labelSet.
ContinueStatement : continue ;

1. Return false.
ContinueStatement : continue Labelldentifier ;

1. If the StringValue of Labelldentifier is not an element of iterationSet, return true.

2. Return false.

13.8.3 Runtime Semantics: Evaluation
ContinueStatement : continue ;

1. Return Completion { [[Type]]: continue, [[Value]]: empty, [[Target]]: empty }.

ContinueStatement : continue Labelldentifier ;

© Ecma International 2019 281

1. Let label be the StringValue of Labelldentifier.

2. Return Completion { [[Type]]: continue, [[Value]]: empty, [[Target]]: label }.

13.9 The break Statement

Syntax

BreakStatement i 14, await]
break ;

break [no LineTerminator here] Labelldentifier ,yv:c14, 2await]

13.9.1 Static Semantics: Early Errors
BreakStatement : break ;

It is a Syntax Error if this BreakStatement is not nested, directly or indirectly (but not crossing function

boundaries), within an IterationStatement or a SwitchStatement.

13.9.2 Static Semantics: ContainsUndefinedBreakTarget

With parameter [abelSet.
BreakStatement : break ;
1. Return false.

BreakStatement : break Labelldentifier ;

1. If the StringValue of Labelldentifier is not an element of labelSet, return true.

2. Return false.

13.9.3 Runtime Semantics: Evaluation
BreakStatement : break ;

1. Return Completion { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.

BreakStatement : break Labelldentifier ;

1. Let [abel be the StringValue of Labelldentifier.
2. Return Completion { [[Type]l: break, [[Value]l: empty, [[Target]]: label }.

13.10 The return Statement

Syntax

ReturnStatement (v o14, await]

return ;

return [no LineTerminator here] Expression(., ovield, 2await]

282

4

© Ecma International 2019

NOTE
A return statement causes a function to cease execution and, in most cases, returns a value to the caller. If Expression
is omitted, the return value is undefined. Otherwise, the return value is the value of Expression. A return statement
may not actually return a value to the caller depending on surrounding context. For example, in a try block, a return

statement's completion record may be replaced with another completion record during evaluation of the £inally block.

13.10.1 Runtime Semantics: Evaluation
ReturnStatement : return ;

1. Return Completion { [[Type]]: return, [[Value]]: undefined, [[Target]]: empty }.
ReturnStatement : return Expression ;

Let exprRef be the result of evaluating Expression.
Let exprValue be ? GetValue(exprRef).
If ! GetGeneratorKind() is async, set exprValue to ? Await(exprValue).

ML=

Return Completion { [[Typell: return, [[Valuel]: exprValue, [[Target]]: empty }.

13.11 The with Statement

Syntax

WithStatement [Yield, Await, Return]

with (EXpT'@SSiOHHIn, ?Yield, ?Await]) Statement[?Yield, ?Await, ?Return]

NOTE
The with statement adds an object Environment Record for a computed object to the lexical environment of the running
execution context. It then executes a statement using this augmented lexical environment. Finally, it restores the original

lexical environment.

13.11.1 Static Semantics: Early Errors
WithStatement : with (Expression) Statement

It is a Syntax Error if the code that matches this production is contained in strict mode code.

It is a Syntax Error if IsLabelledFunction(Statement) is true.

NOTE

It is only necessary to apply the second rule if the extension specified in B.3.2 is implemented.

13.11.2 Static Semantics: ContainsDuplicateLabels

With parameter [abelSet.

WithStatement : with (Expression) Statement

© Ecma International 2019 283

1. Return ContainsDuplicateLabels of Statement with argument /abelSet.

13.11.3 Static Semantics: ContainsUndefinedBreakTarget

With parameter [abelSet.
WithStatement : with (Expression) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

13.11.4 Static Semantics: ContainsUndefinedContinueTarget

With parameters iterationSet and labelSet.
WithStatement : with (Expression) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

13.11.5 Static Semantics: VarDeclaredNames
WithStatement : with (Expression) Statement

1. Return the VarDeclaredNames of Statement.

13.11.6 Static Semantics: VarScopedDeclarations
WithStatement : with (Expression) Statement

1. Return the VarScopedDeclarations of Statement.

13.11.7 Runtime Semantics: Evaluation
WithStatement : with (Expression) Statement

Let val be the result of evaluating Expression.

Let obj be ? ToObject(? GetValue(val)).

Let oldEnv be the running execution context's LexicalEnvironment.
Let newEnv be NewObjectEnvironment(obj, oldEnv).

Set the withEnvironment flag of newEnv's EnvironmentRecord to true.
Set the running execution context's LexicalEnvironment to newEnv.
Let C be the result of evaluating Statement.

Set the running execution context's LexicalEnvironment to oldEnv.

© Nk~ W

Return Completion(UpdateEmpty(C, undefined)).

NOTE
No matter how control leaves the embedded Statement, whether normally or by some form of abrupt completion or

exception, the LexicalEnvironment is always restored to its former state.

13.12 The switch Statement

284 © Ecma International 2019

Syntax

SwitchStatement [Yield, Await, Return]

switch (Expression.i,, ovield, 2await]) CaseBlock oyvici14, 2await, 2return]

CaseBlOCk[Yield, Await, Return]
{ CaseClauses-vic1d, 2await, ?Return] opt }
{ CaseClauses-vic1d, 2await, 2return] opt DefaultClause >vic14, 2nwait, 2rReturn]

CaseClauses [>yic1d, 2await, ?Return] opt }

CaseCIauses[Yield, Await, Return]
CaseClause [;vic1d, 2await, ?Return]

CaseClauses [vic1d, 2nwait, 2return] CaseClause[,vic.14, 2await, 2Return]

CaseClause [Yield, Await, Return]

case Expressionir,, ovield, 2await] ° StatementList;>vici1dq, 2await, 2Return] opt

DefaultClause [Yield, Await, Return]

default : StatementList>yic14, 2await, ?Return] opt

13.12.1 Static Semantics: Early Errors
SwitchStatement : switch (Expression) CaseBlock

It is a Syntax Error if the LexicallyDeclaredNames of CaseBlock contains any duplicate entries.
It is a Syntax Error if any element of the LexicallyDeclaredNames of CaseBlock also occurs in the
VarDeclaredNames of CaseBlock.

13.12.2 Static Semantics: ContainsDuplicateLabels

With parameter /abelSet.
SwitchStatement : switch (Expression) CaseBlock
1. Return ContainsDuplicateLabels of CaseBlock with argument labelSet.
CaseBlock : { }
1. Return false.
CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, then
a. Let hasDuplicates be ContainsDuplicateLabels of the first CaseClauses with argument labelSet.
b. If hasDuplicates is true, return true.

Let hasDuplicates be ContainsDuplicateLabels of DefaultClause with argument labelSet.

If hasDuplicates is true, return true.

If the second CaseClauses is not present, return false.

AR

Return ContainsDuplicateLabels of the second CaseClauses with argument labelSet.
CaseClauses : CaseClauses CaseClause

© Ecma International 2019 285

1. Let hasDuplicates be ContainsDuplicateLabels of CaseClauses with argument /abelSet.
2. If hasDuplicates is true, return true.

3. Return ContainsDuplicateLabels of CaseClause with argument /abelSet.
CaseClause : case Expression : StatementList

1. If the StatementList is present, return ContainsDuplicateLabels of StatementList with argument labelSet.

2. Return false.
DefaultClause : default : StatementList

1. If the StatementList is present, return ContainsDuplicateLabels of StatementList with argument labelSet.

2. Return false.

13.12.3 Static Semantics: ContainsUndefinedBreakTarget

With parameter [abelSet.
SwitchStatement : switch (Expression) CaseBlock
1. Return ContainsUndefinedBreakTarget of CaseBlock with argument labelSet.
CaseBlock : { }
1. Return false.
CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, then
a. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of the first CaseClauses with argument labelSet.
b. If hasUndefinedLabels is true, return true.

Let hasUndefinedLabels be ContainsUndefinedBreakTarget of DefaultClause with argument /abelSet.

If hasUndefinedLabels is true, return true.

If the second CaseClauses is not present, return false.

AR

Return ContainsUndefinedBreakTarget of the second CaseClauses with argument labelSet.
CaseClauses : CaseClauses CaseClause

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of CaseClauses with argument [abelSet.
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedBreakTarget of CaseClause with argument labelSet.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return ContainsUndefinedBreakTarget of StatementList with argument labelSet.
2. Return false.

DefaultClause : default : StatementList

1. If the StatementList is present, return ContainsUndefinedBreakTarget of StatementList with argument /abelSet.
2. Return false.

286 © Ecma International 2019

13.12.4 Static Semantics: ContainsUndefinedContinueTarget

With parameters iterationSet and labelSet.
SwitchStatement : switch (Expression) CaseBlock
1. Return ContainsUndefinedContinueTarget of CaseBlock with arguments iterationSet and « ».
CaseBlock : { }
1. Return false.
CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, then
a. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of the first CaseClauses with arguments
iterationSet and « ».
b. If hasUndefinedLabels is true, return true.
2. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of DefaultClause with arguments iterationSet and «
».
3. If hasUndefinedLabels is true, return true.
4. If the second CaseClauses is not present, return false.
5. Return ContainsUndefinedContinueTarget of the second CaseClauses with arguments iterationSet and « ».

CaseClauses : CaseClauses CaseClause

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of CaseClauses with arguments iterationSet and « ».
2. If hasUndefinedLabels is true, return true.

3. Return ContainsUndefinedContinueTarget of CaseClause with arguments iterationSet and « ».
CaseClause : case Expression : StatementList

1. If the StatementList is present, return ContainsUndefinedContinueTarget of StatementList with arguments
iterationSet and « ».

2. Return false.
DefaultClause : default : StatementList

1. If the StatementList is present, return ContainsUndefinedContinueTarget of StatementList with arguments
iterationSet and « ».

2. Return false.

13.12.5 Static Semantics: LexicallyDeclaredNames
CaseBlock : { }

1. Return a new empty List.
CaseBlock : { CaseClauses DefaultClause CaseClauses }

If the first CaseClauses is present, let names be the LexicallyDeclaredNames of the first CaseClauses.
Else, let names be a new empty List.

Append to names the elements of the LexicallyDeclaredNames of the DefaultClause.

AL

If the second CaseClauses is not present, return names.

© Ecma International 2019 287

5. Return the result of appending to names the elements of the LexicallyDeclaredNames of the second CaseClauses.
CaseClauses : CaseClauses CaseClause

1. Let names be LexicallyDeclaredNames of CaseClauses.
2. Append to names the elements of the LexicallyDeclaredNames of CaseClause.

3. Return names.
CaseClause : case Expression : StatementList

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.

2. Return a new empty List.
DefaultClause : default : StatementList

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.

2. Return a new empty List.

13.12.6 Static Semantics: LexicallyScopedDeclarations
CaseBlock : { }

1. Return a new empty List.
CaseBlock : { CaseClauses DefaultClause CaseClauses }

If the first CaseClauses is present, let declarations be the LexicallyScopedDeclarations of the first CaseClauses.
Else, let declarations be a new empty List.
Append to declarations the elements of the LexicallyScopedDeclarations of the DefaultClause.

If the second CaseClauses is not present, return declarations.

ik

Return the result of appending to declarations the elements of the LexicallyScopedDeclarations of the second

CaseClauses.
CaseClauses : CaseClauses CaseClause

1. Let declarations be LexicallyScopedDeclarations of CaseClauses.
2. Append to declarations the elements of the LexicallyScopedDeclarations of CaseClause.

3. Return declarations.
CaseClause : case Expression : StatementList

1. If the StatementList is present, return the LexicallyScopedDeclarations of StatementList.

2. Return a new empty List.
DefaultClause : default : StatementList

1. If the StatementList is present, return the LexicallyScopedDeclarations of StatementList.

2. Return a new empty List.

13.12.7 Static Semantics: VarDeclaredNames
SwitchStatement : switch (Expression) CaseBlock

1. Return the VarDeclaredNames of CaseBlock.

288 © Ecma International 2019

CaseBlock : { }
1. Return a new empty List.
CaseBlock : { CaseClauses DefaultClause CaseClauses }

If the first CaseClauses is present, let names be the VarDeclaredNames of the first CaseClauses.
Else, let names be a new empty List.
Append to names the elements of the VarDeclaredNames of the DefaultClause.

If the second CaseClauses is not present, return names.

ik =

Return the result of appending to names the elements of the VarDeclaredNames of the second CaseClauses.
CaseClauses : CaseClauses CaseClause

1. Let names be VarDeclaredNames of CaseClauses.
2. Append to names the elements of the VarDeclaredNames of CaseClause.

3. Return names.
CaseClause : case Expression : StatementList

1. If the StatementList is present, return the VarDeclaredNames of StatementList.

2. Return a new empty List.
DefaultClause : default : StatementList

1. If the StatementList is present, return the VarDeclaredNames of StatementList.

2. Return a new empty List.

13.12.8 Static Semantics: VarScopedDeclarations
SwitchStatement : switch (Expression) CaseBlock

1. Return the VarScopedDeclarations of CaseBlock.
CaseBlock : { }

1. Return a new empty List.
CaseBlock : { CaseClauses DefaultClause CaseClauses }

If the first CaseClauses is present, let declarations be the VarScopedDeclarations of the first CaseClauses.
Else, let declarations be a new empty List.

Append to declarations the elements of the VarScopedDeclarations of the DefaultClause.

If the second CaseClauses is not present, return declarations.

i ke

Return the result of appending to declarations the elements of the VarScopedDeclarations of the second

CaseClauses.
CaseClauses : CaseClauses CaseClause

1. Let declarations be VarScopedDeclarations of CaseClauses.
2. Append to declarations the elements of the VarScopedDeclarations of CaseClause.

3. Return declarations.

CaseClause : case Expression : StatementList

© Ecma International 2019 289

1. If the StatementList is present, return the VarScopedDeclarations of StatementList.

2. Return a new empty List.
DefaultClause : default : StatementList

1. If the StatementList is present, return the VarScopedDeclarations of StatementList.

2. Return a new empty List.

13.12.9 Runtime Semantics: CaseBlockEvaluation

With parameter input.
CaseBlock : { }

1. Return NormalCompletion(undefined).
CaseBlock : { CaseClauses }

Let V be undefined.

Let A be the List of CaseClause items in CaseClauses, in source text order.
Let found be false.

For each CaseClause C in A, do

A

a. If found is false, then
i. Set found to ? CaseClauselsSelected(C, input).
b. If found is true, then
i. Let R be the result of evaluating C.
ii. If R.[[Value]] is not empty, set V to R.[[Value]].
iii. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
5. Return NormalCompletion(V).

CaseBlock : { CaseClauses DefaultClause CaseClauses }

—_

. Let V be undefined.
2. If the first CaseClauses is present, then
a. Let A be the List of CaseClause items in the first CaseClauses, in source text order.
3. FElse,
a. Let A be « ».
4. Let found be false.
5. For each CaseClause C in A, do
a. If found is false, then
i. Set found to ? CaseClauselsSelected(C, input).
b. If found is true, then
i. Let R be the result of evaluating C.
ii. If R.[[Value]] is not empty, set V to R.[[Value]].
iii. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
6. Let foundInB be false.
7. If the second CaseClauses is present, then
a. Let B be the List of CaseClause items in the second CaseClauses, in source text order.
8. FElse,
a. Let B be «».

290 © Ecma International 2019

9.

10.
11.
12.
13.
14.

15.

If found is false, then
a. For each CaseClause C in B, do
i. If foundInB is false, then
1. Set foundInB to ? CaseClauselsSelected(C, input).
ii. If foundInB is true, then
1. Let R be the result of evaluating CaseClause C.
2. If R.[[Value]] is not empty, set V to R.[[Value]].
3. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
If foundInB is true, return NormalCompletion(V).
Let R be the result of evaluating DefaultClause.
If R.[[Value]] is not empty, set V to R.[[Value]].
If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
For each CaseClause C in B (NOTE: this is another complete iteration of the second CaseClauses), do
a. Let R be the result of evaluating C