

ECMA-334

5th Edition / December 2017

C# Language
Specification

Patrick
Text Box

ECMA-334
5th Edition / December 2017

C# Language Sp

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 84

ecification

9 6000/01 www.ecma-international.org

.

Table of Contents

iii

Table of Contents

Foreword .. xix

Introduction .. xx

1. Scope ... 1

2. Conformance ... 3

3. Normative references .. 5

4. Terms and definitions... 7

5. Acronyms and abbreviations .. 9

6. General description .. 11

7. Lexical structure ... 13

7.1 Programs ... 13
7.2 Grammars .. 13

7.2.1 General ... 13
7.2.2 Grammar notation ... 13
7.2.3 Lexical grammar ... 14
7.2.4 Syntactic grammar ... 15
7.2.5 Grammar ambiguities .. 15

7.3 Lexical analysis .. 15
7.3.1 General ... 15
7.3.2 Line terminators ... 16
7.3.3 Comments .. 16
7.3.4 White space .. 18

7.4 Tokens ... 18
7.4.1 General ... 18
7.4.2 Unicode character escape sequences .. 19
7.4.3 Identifiers ... 19
7.4.4 Keywords .. 21
7.4.5 Literals .. 22

7.4.5.1 General .. 22
7.4.5.2 Boolean literals .. 22
7.4.5.3 Integer literals ... 22
7.4.5.4 Real literals .. 23
7.4.5.5 Character literals ... 24
7.4.5.6 String literals ... 25
7.4.5.7 The null literal ... 27

7.4.6 Operators and punctuators .. 27
7.5 Pre-processing directives .. 27

7.5.1 General ... 27
7.5.2 Conditional compilation symbols ... 28
7.5.3 Pre-processing expressions .. 29
7.5.4 Definition directives ... 29
7.5.5 Conditional compilation directives .. 30
7.5.6 Diagnostic directives .. 33
7.5.7 Region directives .. 33

ECMA-334

iv

7.5.8 Line directives .. 34
7.5.9 Pragma directives ... 34

8. Basic concepts.. 36

8.1 Application startup .. 36
8.2 Application termination .. 37
8.3 Declarations... 37
8.4 Members ... 40

8.4.1 General ... 40
8.4.2 Namespace members .. 40
8.4.3 Struct members .. 40
8.4.4 Enumeration members .. 40
8.4.5 Class members ... 40
8.4.6 Interface members ... 41
8.4.7 Array members... 41
8.4.8 Delegate members ... 41

8.5 Member access ... 41
8.5.1 General ... 41
8.5.2 Declared accessibility ... 41
8.5.3 Accessibility domains ... 42
8.5.4 Protected access .. 44
8.5.5 Accessibility constraints ... 46

8.6 Signatures and overloading ... 46
8.7 Scopes.. 48

8.7.1 General ... 48
8.7.2 Name hiding ... 50

8.7.2.1 General .. 50
8.7.2.2 Hiding through nesting .. 50
8.7.2.3 Hiding through inheritance ... 51

8.8 Namespace and type names ... 52
8.8.1 General ... 52
8.8.2 Unqualified names ... 54
8.8.3 Fully qualified names ... 54

8.9 Automatic memory management ... 55
8.10 Execution order ... 58

9. Types ... 59

9.1 General .. 59
9.2 Reference types ... 59

9.2.1 General ... 59
9.2.2 Class types .. 60
9.2.3 The object type .. 60
9.2.4 The dynamic type ... 60
9.2.5 The string type ... 61
9.2.6 Interface types ... 61
9.2.7 Array types ... 61
9.2.8 Delegate types ... 61

9.3 Value types .. 61
9.3.1 General ... 61
9.3.2 The System.ValueType type ... 62
9.3.3 Default constructors .. 62
9.3.4 Struct types .. 63

Table of Contents

v

9.3.5 Simple types ... 63
9.3.6 Integral types ... 64
9.3.7 Floating-point types ... 65
9.3.8 The decimal type .. 66
9.3.9 The bool type ... 66
9.3.10 Enumeration types ... 66
9.3.11 Nullable value types ... 67
9.3.12 Boxing and unboxing .. 67

9.4 Constructed types ... 67
9.4.1 General ... 67
9.4.2 Type arguments ... 68
9.4.3 Open and closed types ... 68
9.4.4 Bound and unbound types ... 69
9.4.5 Satisfying constraints ... 69

9.5 Type parameters ... 70
9.6 Expression tree types .. 70
9.7 The dynamic type .. 71

10. Variables .. 73

10.1 General .. 73
10.2 Variable categories .. 73

10.2.1 General ... 73
10.2.2 Static variables ... 73
10.2.3 Instance variables... 73

10.2.3.1 General .. 73
10.2.3.2 Instance variables in classes .. 74
10.2.3.3 Instance variables in structs .. 74

10.2.4 Array elements ... 74
10.2.5 Value parameters ... 74
10.2.6 Reference parameters ... 74
10.2.7 Output parameters .. 75
10.2.8 Local variables .. 75

10.3 Default values .. 76
10.4 Definite assignment .. 76

10.4.1 General ... 76
10.4.2 Initially assigned variables ... 77
10.4.3 Initially unassigned variables ... 77
10.4.4 Precise rules for determining definite assignment .. 77

10.4.4.1 General .. 77
10.4.4.2 General rules for statements .. 78
10.4.4.3 Block statements, checked, and unchecked statements .. 78
10.4.4.4 Expression statements .. 78
10.4.4.5 Declaration statements ... 78
10.4.4.6 If statements ... 79
10.4.4.7 Switch statements ... 79
10.4.4.8 While statements .. 79
10.4.4.9 Do statements ... 79
10.4.4.10 For statements .. 80
10.4.4.11 Break, continue, and goto statements .. 80
10.4.4.12 Throw statements ... 80
10.4.4.13 Return statements .. 80
10.4.4.14 Try-catch statements .. 80

ECMA-334

vi

10.4.4.15 Try-finally statements ... 81
10.4.4.16 Try-catch-finally statements ... 81
10.4.4.17 Foreach statements .. 82
10.4.4.18 Using statements .. 82
10.4.4.19 Lock statements .. 82
10.4.4.20 Yield statements .. 82
10.4.4.21 General rules for constant expressions .. 83
10.4.4.22 General rules for simple expressions .. 83
10.4.4.23 General rules for expressions with embedded expressions ... 83
10.4.4.24 Invocation expressions and object creation expressions ... 84
10.4.4.25 Simple assignment expressions .. 84
10.4.4.26 && expressions ... 85
10.4.4.27 || expressions ... 85
10.4.4.28 ! expressions ... 86
10.4.4.29 ?? expressions ... 86
10.4.4.30 ?: expressions .. 87
10.4.4.31 Anonymous functions ... 87

10.5 Variable references ... 88
10.6 Atomicity of variable references ... 88

11. Conversions ... 89

11.1 General .. 89
11.2 Implicit conversions... 89

11.2.1 General ... 89
11.2.2 Identity conversion .. 90
11.2.3 Implicit numeric conversions ... 90
11.2.4 Implicit enumeration conversions ... 90
11.2.5 Implicit nullable conversions.. 90
11.2.6 Null literal conversions ... 90
11.2.7 Implicit reference conversions ... 90
11.2.8 Boxing conversions... 91
11.2.9 Implicit dynamic conversions ... 93
11.2.10 Implicit constant expression conversions .. 93
11.2.11 Implicit conversions involving type parameters .. 93
11.2.12 User-defined implicit conversions ... 94
11.2.13 Anonymous function conversions and method group conversions .. 94

11.3 Explicit conversions ... 94
11.3.1 General ... 94
11.3.2 Explicit numeric conversions .. 95
11.3.3 Explicit enumeration conversions .. 96
11.3.4 Explicit nullable conversions .. 97
11.3.5 Explicit reference conversions ... 97
11.3.6 Unboxing conversions .. 98
11.3.7 Explicit dynamic conversions ... 98
11.3.8 Explicit conversions involving type parameters ... 99
11.3.9 User-defined explicit conversions .. 100

11.4 Standard conversions .. 100
11.4.1 General ... 100
11.4.2 Standard implicit conversions .. 100
11.4.3 Standard explicit conversions .. 100

11.5 User-defined conversions.. 101
11.5.1 General ... 101

Table of Contents

vii

11.5.2 Permitted user-defined conversions .. 101
11.5.3 Evaluation of user-defined conversions ... 101
11.5.4 User-defined implicit conversions ... 102
11.5.5 User-defined explicit conversions .. 103

11.6 Conversions involving nullable types .. 104
11.6.1 Nullable Conversions.. 104
11.6.2 Lifted conversions .. 104

11.7 Anonymous function conversions ... 105
11.7.1 General ... 105
11.7.2 Evaluation of anonymous function conversions to delegate types ... 107
11.7.3 Evaluation of anonymous function conversions to expression tree types 107

11.8 Method group conversions ... 107

12. Expressions .. 111

12.1 General .. 111
12.2 Expression classifications .. 111

12.2.1 General ... 111
12.2.2 Values of expressions ... 112

12.3 Static and Dynamic Binding ... 112
12.3.1 General ... 112
12.3.2 Binding-time ... 113
12.3.3 Dynamic binding ... 113
12.3.4 Types of subexpressions .. 113

12.4 Operators .. 114
12.4.1 General ... 114
12.4.2 Operator precedence and associativity ... 114
12.4.3 Operator overloading ... 115
12.4.4 Unary operator overload resolution .. 117
12.4.5 Binary operator overload resolution.. 117
12.4.6 Candidate user-defined operators ... 117
12.4.7 Numeric promotions .. 118

12.4.7.1 General .. 118
12.4.7.2 Unary numeric promotions ... 118
12.4.7.3 Binary numeric promotions .. 118

12.4.8 Lifted operators .. 119
12.5 Member lookup ... 120

12.5.1 General ... 120
12.5.2 Base types .. 121

12.6 Function members .. 121
12.6.1 General ... 121
12.6.2 Argument lists .. 124

12.6.2.1 General .. 124
12.6.2.2 Corresponding parameters ... 125
12.6.2.3 Run-time evaluation of argument lists.. 125

12.6.3 Type inference.. 127
12.6.3.1 General .. 127
12.6.3.2 The first phase ... 128
12.6.3.3 The second phase .. 128
12.6.3.4 Input types .. 128
12.6.3.5 Output types ... 129
12.6.3.6 Dependence .. 129
12.6.3.7 Output type inferences ... 129

ECMA-334

viii

12.6.3.8 Explicit parameter type inferences ... 129
12.6.3.9 Exact inferences .. 129
12.6.3.10 Lower-bound inferences ... 129
12.6.3.11 Upper-bound inferences ... 130
12.6.3.12 Fixing ... 130
12.6.3.13 Inferred return type .. 131
12.6.3.14 Type inference for conversion of method groups .. 132
12.6.3.15 Finding the best common type of a set of expressions .. 132

12.6.4 Overload resolution ... 133
12.6.4.1 General .. 133
12.6.4.2 Applicable function member ... 133
12.6.4.3 Better function member ... 134
12.6.4.4 Better conversion from expression ... 135
12.6.4.5 Better conversion from type ... 135
12.6.4.6 Better conversion target ... 135
12.6.4.7 Overloading in generic classes .. 136

12.6.5 Compile-time checking of dynamic member invocation ... 136
12.6.6 Function member invocation ... 137

12.6.6.1 General .. 137
12.6.6.2 Invocations on boxed instances .. 138

12.7 Primary expressions .. 138
12.7.1 General ... 138
12.7.2 Literals .. 139
12.7.3 Simple names ... 139

12.7.3.1 General .. 139
12.7.3.2 Invariant meaning in blocks .. 141

12.7.4 Parenthesized expressions ... 141
12.7.5 Member access .. 142

12.7.5.1 General .. 142
12.7.5.2 Identical simple names and type names ... 143

12.7.6 Invocation expressions ... 144
12.7.6.1 General .. 144
12.7.6.2 Method invocations .. 145
12.7.6.3 Extension method invocations .. 146
12.7.6.4 Delegate invocations ... 148

12.7.7 Element access ... 149
12.7.7.1 General .. 149
12.7.7.2 Array access ... 149
12.7.7.3 Indexer access ... 150

12.7.8 This access .. 150
12.7.9 Base access ... 151
12.7.10 Postfix increment and decrement operators ... 152
12.7.11 The new operator .. 153

12.7.11.1 General .. 153
12.7.11.2 Object creation expressions .. 153
12.7.11.3 Object initializers ... 154
12.7.11.4 Collection initializers ... 156
12.7.11.5 Array creation expressions .. 157
12.7.11.6 Delegate creation expressions .. 159
12.7.11.7 Anonymous object creation expressions .. 161

12.7.12 The typeof operator ... 162

Table of Contents

ix

12.7.13 The sizeof operator .. 164
12.7.14 The checked and unchecked operators ... 164
12.7.15 Default value expressions .. 166
12.7.16 Anonymous method expressions ... 167

12.8 Unary operators .. 167
12.8.1 General ... 167
12.8.2 Unary plus operator ... 167
12.8.3 Unary minus operator .. 168
12.8.4 Logical negation operator .. 168
12.8.5 Bitwise complement operator ... 168
12.8.6 Prefix increment and decrement operators .. 169
12.8.7 Cast expressions ... 170
12.8.8 Await expressions .. 170

12.8.8.1 General .. 170
12.8.8.2 Awaitable expressions ... 171
12.8.8.3 Classification of await expressions .. 171
12.8.8.4 Run-time evaluation of await expressions .. 171

12.9 Arithmetic operators ... 172
12.9.1 General ... 172
12.9.2 Multiplication operator .. 172
12.9.3 Division operator .. 173
12.9.4 Remainder operator ... 174
12.9.5 Addition operator... 175
12.9.6 Subtraction operator .. 177

12.10 Shift operators ... 179
12.11 Relational and type-testing operators .. 180

12.11.1 General ... 180
12.11.2 Integer comparison operators ... 181
12.11.3 Floating-point comparison operators .. 182
12.11.4 Decimal comparison operators .. 182
12.11.5 Boolean equality operators.. 182
12.11.6 Enumeration comparison operators .. 183
12.11.7 Reference type equality operators .. 183
12.11.8 String equality operators ... 185
12.11.9 Delegate equality operators .. 185
12.11.10 Equality operators between nullable value types and the null literal 186
12.11.11 The is operator ... 186
12.11.12 The as operator .. 187

12.12 Logical operators ... 187
12.12.1 General ... 187
12.12.2 Integer logical operators .. 188
12.12.3 Enumeration logical operators... 188
12.12.4 Boolean logical operators .. 189
12.12.5 Nullable Boolean & and | operators .. 189

12.13 Conditional logical operators .. 189
12.13.1 General ... 189
12.13.2 Boolean conditional logical operators ... 190
12.13.3 User-defined conditional logical operators ... 190

12.14 The null coalescing operator ... 191
12.15 Conditional operator ... 192
12.16 Anonymous function expressions ... 192

ECMA-334

x

12.16.1 General ... 192
12.16.2 Anonymous function signatures .. 194
12.16.3 Anonymous function bodies .. 195
12.16.4 Overload resolution ... 195
12.16.5 Anonymous functions and dynamic binding .. 196
12.16.6 Outer variables ... 196

12.16.6.1 General .. 196
12.16.6.2 Captured outer variables .. 196
12.16.6.3 Instantiation of local variables .. 197

12.16.7 Evaluation of anonymous function expressions .. 199
12.16.8 Implementation Exmple ... 199

12.17 Query expressions ... 202
12.17.1 General ... 202
12.17.2 Ambiguities in query expressions .. 203
12.17.3 Query expression translation ... 203

12.17.3.1 General .. 203
12.17.3.2 select and group … by clauses with continuations ... 204
12.17.3.3 Explicit range variable types ... 204
12.17.3.4 Degenerate query expressions.. 205
12.17.3.5 From, let, where, join and orderby clauses .. 205
12.17.3.6 Select clauses .. 208
12.17.3.7 Group clauses .. 209
12.17.3.8 Transparent identifiers .. 209

12.17.4 The query-expression pattern .. 211
12.18 Assignment operators ... 212

12.18.1 General ... 212
12.18.2 Simple assignment ... 212
12.18.3 Compound assignment .. 214
12.18.4 Event assignment ... 215

12.19 Expression ... 215
12.20 Constant expressions .. 216
12.21 Boolean expressions .. 217

13. Statements .. 219

13.1 General .. 219
13.2 End points and reachability ... 219
13.3 Blocks... 221

13.3.1 General ... 221
13.3.2 Statement lists ... 221

13.4 The empty statement .. 222
13.5 Labeled statements ... 222
13.6 Declaration statements ... 223

13.6.1 General ... 223
13.6.2 Local variable declarations ... 223
13.6.3 Local constant declarations ... 224

13.7 Expression statements .. 225
13.8 Selection statements ... 225

13.8.1 General ... 225
13.8.2 The if statement ... 225
13.8.3 The switch statement ... 226

13.9 Iteration statements.. 230
13.9.1 General ... 230

Table of Contents

xi

13.9.2 The while statement .. 230
13.9.3 The do statement ... 230
13.9.4 The for statement .. 231
13.9.5 The foreach statement ... 232

13.10 Jump statements ... 235
13.10.1 General ... 235
13.10.2 The break statement .. 236
13.10.3 The continue statement ... 236
13.10.4 The goto statement .. 237
13.10.5 The return statement ... 238
13.10.6 The throw statement ... 239

13.11 The try statement .. 240
13.12 The checked and unchecked statements .. 242
13.13 The lock statement .. 243
13.14 The using statement .. 243
13.15 The yield statement... 245

14. Namespaces ... 247

14.1 General .. 247
14.2 Compilation units .. 247
14.3 Namespace declarations ... 247
14.4 Extern alias directives .. 249
14.5 Using directives ... 249

14.5.1 General ... 249
14.5.2 Using alias directives .. 250
14.5.3 Using namespace directives ... 254

14.6 Namespace member declarations .. 255
14.7 Type declarations .. 255
14.8 Qualified alias member ... 256

14.8.1 General ... 256
14.8.2 Uniqueness of aliases ... 258

15. Classes ... 259

15.1 General .. 259
15.2 Class declarations .. 259

15.2.1 General ... 259
15.2.2 Class modifiers ... 259

15.2.2.1 General .. 259
15.2.2.2 Abstract classes ... 260
15.2.2.3 Sealed classes .. 260
15.2.2.4 Static classes .. 261

15.2.3 Type parameters .. 261
15.2.4 Class base specification .. 262

15.2.4.1 General .. 262
15.2.4.2 Base classes ... 262
15.2.4.3 Interface implementations.. 264

15.2.5 Type parameter constraints ... 265
15.2.6 Class body... 269
15.2.7 Partial declarations .. 269

15.3 Class members .. 271
15.3.1 General ... 271
15.3.2 The instance type ... 272

ECMA-334

xii

15.3.3 Members of constructed types .. 273
15.3.4 Inheritance ... 274
15.3.5 The new modifier ... 274
15.3.6 Access modifiers... 275
15.3.7 Constituent types ... 275
15.3.8 Static and instance members ... 275
15.3.9 Nested types .. 276

15.3.9.1 General .. 276
15.3.9.2 Fully qualified name .. 276
15.3.9.3 Declared accessibility .. 276
15.3.9.4 Hiding .. 277
15.3.9.5 this access ... 277
15.3.9.6 Access to private and protected members of the containing type 278
15.3.9.7 Nested types in generic classes ... 279

15.3.10 Reserved member names .. 280
15.3.10.1 General .. 280
15.3.10.2 Member names reserved for properties... 280
15.3.10.3 Member names reserved for events ... 281
15.3.10.4 Member names reserved for indexers .. 281
15.3.10.5 Member names reserved for finalizers ... 281

15.4 Constants ... 281
15.5 Fields ... 283

15.5.1 General ... 283
15.5.2 Static and instance fields ... 284
15.5.3 Readonly fields ... 284

15.5.3.1 General .. 284
15.5.3.2 Using static readonly fields for constants ... 284
15.5.3.3 Versioning of constants and static readonly fields ... 285

15.5.4 Volatile fields .. 285
15.5.5 Field initialization ... 286
15.5.6 Variable initializers ... 287

15.5.6.1 General .. 287
15.5.6.2 Static field initialization ... 288
15.5.6.3 Instance field initialization .. 289

15.6 Methods .. 289
15.6.1 General ... 289
15.6.2 Method parameters ... 291

15.6.2.1 General .. 291
15.6.2.2 Value parameters .. 293
15.6.2.3 Reference parameters... 293
15.6.2.4 Output parameters ... 294
15.6.2.5 Parameter arrays ... 295

15.6.3 Static and instance methods .. 297
15.6.4 Virtual methods ... 297
15.6.5 Override methods .. 299
15.6.6 Sealed methods .. 301
15.6.7 Abstract methods ... 302
15.6.8 External methods ... 303
15.6.9 Partial methods .. 304
15.6.10 Extension methods ... 306
15.6.11 Method body.. 307

Table of Contents

xiii

15.7 Properties .. 308
15.7.1 General ... 308
15.7.2 Static and instance properties ... 309
15.7.3 Accessors .. 309
15.7.4 Automatically implemented properties ... 313
15.7.5 Accessibility .. 314
15.7.6 Virtual, sealed, override, and abstract accessors .. 315

15.8 Events .. 317
15.8.1 General ... 317
15.8.2 Field-like events ... 319
15.8.3 Event accessors .. 320
15.8.4 Static and instance events ... 321
15.8.5 Virtual, sealed, override, and abstract accessors .. 321

15.9 Indexers ... 322
15.10 Operators .. 325

15.10.1 General ... 325
15.10.2 Unary operators ... 326
15.10.3 Binary operators... 327
15.10.4 Conversion operators ... 327

15.11 Instance constructors .. 330
15.11.1 General ... 330
15.11.2 Constructor initializers ... 331
15.11.3 Instance variable initializers ... 331
15.11.4 Constructor execution.. 332
15.11.5 Default constructors .. 333

15.12 Static constructors... 334
15.13 Finalizers .. 336
15.14 Iterators ... 337

15.14.1 General ... 337
15.14.2 Enumerator interfaces ... 338
15.14.3 Enumerable interfaces ... 338
15.14.4 Yield type .. 338
15.14.5 Enumerator objects.. 338

15.14.5.1 General .. 338
15.14.5.2 The MoveNext method ... 339
15.14.5.3 The Current property .. 340
15.14.5.4 The Dispose method ... 340

15.14.6 Enumerable objects ... 340
15.14.6.1 General .. 340
15.14.6.2 The GetEnumerator method ... 341

15.15 Async Functions ... 341
15.15.1 General ... 341
15.15.2 Evaluation of a task-returning async function ... 341
15.15.3 Evaluation of a void-returning async function ... 342

16. Structs ... 343

16.1 General .. 343
16.2 Struct declarations .. 343

16.2.1 General ... 343
16.2.2 Struct modifiers .. 343
16.2.3 Partial modifier .. 344
16.2.4 Struct interfaces ... 344

ECMA-334

xiv

16.2.5 Struct body ... 344
16.3 Struct members ... 344
16.4 Class and struct differences .. 344

16.4.1 General ... 344
16.4.2 Value semantics ... 345
16.4.3 Inheritance ... 346
16.4.4 Assignment ... 346
16.4.5 Default values... 346
16.4.6 Boxing and unboxing .. 347
16.4.7 Meaning of this .. 347
16.4.8 Field initializers... 348
16.4.9 Constructors ... 349
16.4.10 Static constructors ... 349
16.4.11 Automatically implemented properties ... 350

17. Arrays .. 351

17.1 General .. 351
17.2 Array types .. 351

17.2.1 General ... 351
17.2.2 The System.Array type ... 351
17.2.3 Arrays and the generic collection interfaces ... 352

17.3 Array creation .. 353
17.4 Array element access .. 353
17.5 Array members .. 353
17.6 Array covariance .. 353
17.7 Array initializers ... 354

18. Interfaces ... 357

18.1 General .. 357
18.2 Interface declarations ... 357

18.2.1 General ... 357
18.2.2 Interface modifiers ... 357
18.2.3 Variant type parameter lists .. 358

18.2.3.1 General .. 358
18.2.3.2 Variance safety .. 358
18.2.3.3 Variance conversion .. 359

18.2.4 Base interfaces ... 359
18.3 Interface body ... 360
18.4 Interface members .. 360

18.4.1 General ... 360
18.4.2 Interface methods .. 361
18.4.3 Interface properties ... 362
18.4.4 Interface events ... 362
18.4.5 Interface indexers .. 362
18.4.6 Interface member access ... 363

18.5 Qualified interface member names .. 364
18.6 Interface implementations .. 365

18.6.1 General ... 365
18.6.2 Explicit interface member implementations ... 366
18.6.3 Uniqueness of implemented interfaces ... 368
18.6.4 Implementation of generic methods ... 369
18.6.5 Interface mapping .. 370

Table of Contents

xv

18.6.6 Interface implementation inheritance ... 372
18.6.7 Interface re-implementation ... 374
18.6.8 Abstract classes and interfaces .. 375

19. Enums .. 377

19.1 General .. 377
19.2 Enum declarations ... 377
19.3 Enum modifiers ... 377
19.4 Enum members ... 378
19.5 The System.Enum type .. 380
19.6 Enum values and operations ... 380

20. Delegates ... 381

20.1 General .. 381
20.2 Delegate declarations.. 381
20.3 Delegate members .. 382
20.4 Delegate compatibility .. 382
20.5 Delegate instantiation ... 383
20.6 Delegate invocation .. 385

21. Exceptions ... 389

21.1 General .. 389
21.2 Causes of exceptions ... 389
21.3 The System.Exception class ... 389
21.4 How exceptions are handled ... 389
21.5 Common exception classes ... 390

22. Attributes .. 391

22.1 General .. 391
22.2 Attribute classes .. 391

22.2.1 General ... 391
22.2.2 Attribute usage .. 391
22.2.3 Positional and named parameters ... 393
22.2.4 Attribute parameter types ... 393

22.3 Attribute specification ... 394
22.4 Attribute instances .. 399

22.4.1 General ... 399
22.4.2 Compilation of an attribute ... 399
22.4.3 Run-time retrieval of an attribute instance ... 400

22.5 Reserved attributes ... 401
22.5.1 General ... 401
22.5.2 The AttributeUsage attribute ... 401
22.5.3 The Conditional attribute ... 401

22.5.3.1 General .. 401
22.5.3.2 Conditional methods ... 401
22.5.3.3 Conditional attribute classes ... 404

22.5.4 The Obsolete attribute ... 405
22.5.5 Caller-info attributes .. 405

22.5.5.1 General .. 405
22.5.5.2 The CallerLineNumber attribute ... 406
22.5.5.3 The CallerFilePath attribute .. 407
22.5.5.4 The CallerMemberName attribute ... 407

22.6 Attributes for interoperation .. 408

ECMA-334

xvi

23. Unsafe code ... 409

23.1 General .. 409
23.2 Unsafe contexts ... 409
23.3 Pointer types ... 411
23.4 Fixed and moveable variables ... 414
23.5 Pointer conversions ... 415

23.5.1 General ... 415
23.5.2 Pointer arrays ... 416

23.6 Pointers in expressions .. 416
23.6.1 General ... 416
23.6.2 Pointer indirection ... 417
23.6.3 Pointer member access .. 417
23.6.4 Pointer element access .. 418
23.6.5 The address-of operator .. 419
23.6.6 Pointer increment and decrement .. 420
23.6.7 Pointer arithmetic .. 420
23.6.8 Pointer comparison .. 421
23.6.9 The sizeof operator .. 421

23.7 The fixed statement .. 421
23.8 Fixed-size buffers... 424

23.8.1 General ... 424
23.8.2 Fixed-size buffer declarations .. 424
23.8.3 Fixed-size buffers in expressions .. 426
23.8.4 Definite assignment checking .. 426

23.9 Stack allocation ... 427

Annex A. Grammar .. 429

A.1 General .. 429
A.2 Lexical grammar .. 429

A.2.1 Comments .. 430
A.2.2 Tokens .. 430
A.2.3 Keywords ... 432
A.2.4 Operators and punctuators ... 434
A.2.5 Pre-processing directives ... 434

A.3 Syntactic grammar .. 436
A.3.1 Basic concepts .. 436
A.3.2 Types .. 436
A.3.3 Variables .. 437
A.3.4 Expressions .. 437
A.3.5 Statements ... 443
A.3.6 Namespaces ... 447
A.3.7 Classes .. 448
A.3.8 Structs .. 454
A.3.9 Arrays ... 454
A.3.10 Interfaces ... 454
A.3.11 Enums .. 455
A.3.12 Delegates ... 456
A.3.13 Attributes ... 456

A.4 Grammar extensions for unsafe code ... 457

Annex B. Portability issues ... 461

B.1 General .. 461

Table of Contents

xvii

B.2 Undefined behavior .. 461
B.3 Implementation-defined behavior .. 461
B.4 Unspecified behavior .. 462
B.5 Other Issues... 462

Annex C. Standard library .. 463

C.1 General .. 463
C.2 Standard Library Types defined in ISO/IEC 23271... 463
C.3 Standard Library Types not defined in ISO/IEC 23271:2012 ... 472

Annex D. Documentation comments .. 475

D.1 General .. 475
D.2 Introduction .. 475
D.3 Recommended tags .. 476

D.3.1 General .. 476
D.3.2 <c>.. 477
D.3.3 <code> ... 477
D.3.4 <example> ... 478
D.3.5 <exception> ... 478
D.3.6 <include> ... 478
D.3.7 <list> .. 479
D.3.8 <para> .. 480
D.3.9 <param> ... 480
D.3.10 <paramref> .. 481
D.3.11 <permission> ... 481
D.3.12 <remarks> .. 482
D.3.13 <returns> ... 482
D.3.14 <see> .. 482
D.3.15 <seealso> ... 483
D.3.16 <summary> .. 483
D.3.17 <typeparam> ... 483
D.3.18 <typeparamref> ... 484
D.3.19 <value> .. 484

D.4 Processing the documentation file ... 484
D.4.1 General .. 484
D.4.2 ID string format .. 484
D.4.3 ID string examples ... 486

D.5 An example ... 489
D.5.1 C# source code ... 489
D.5.2 Resulting XML .. 491

Annex E. Bibliography .. 494

Foreword

xix

Foreword

This specification replaces ECMA-334:2006. Changes from the previous edition include the following:

• Addition of

o default and hidden options on the #line preprocessing directive
o Fixed-size buffers in unsafe code
o Automatically implemented properties
o Implicitly typed local variables and arrays
o Object and collection initializers
o Anonymous types
o Lambda expressions
o Expression trees
o Improved type inference
o Extension methods
o Query expressions
o Optional parameters
o Named arguments
o Generic variance
o Dynamic binding
o Asynchronous functions
o Caller-info attributes

• Removal of

o concept of a null type

• Integration of

o nullable value types
o generic types and functions
o iterators

ECMA-334

xx

Introduction

This specification is based on a submission from Hewlett-Packard, Intel, and Microsoft, that described a
language called C#, which was developed within Microsoft. The principal inventors of this language were
Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The first widely distributed implementation of C# was
released by Microsoft in July 2000, as part of its .NET Framework initiative.

Ecma Technical Committee 39 (TC39) Task Group 2 (TG2) was formed in September 2000, to produce a
standard for C#. Another Task Group, TG3, was also formed at that time to produce a standard for a library
and execution environment called Common Language Infrastructure (CLI). (CLI is based on a subset of the
.NET Framework.) Although Microsoft’s implementation of C# relies on CLI for library and run-time
support, other implementations of C# need not, provided they support an alternate way of getting at the
minimum CLI features required by this C# standard (see Annex C).

As the definition of C# evolved, the goals used in its design were as follows:

• C# is intended to be a simple, modern, general-purpose, object-oriented programming language.

• The language, and implementations thereof, should provide support for software engineering
principles such as strong type checking, array bounds checking, detection of attempts to use
uninitialized variables, and automatic garbage collection. Software robustness, durability, and
programmer productivity are important.

• The language is intended for use in developing software components suitable for deployment in
distributed environments.

• Source code portability is very important, as is programmer portability, especially for those
programmers already familiar with C and C++.

• Support for internationalization is very important.

• C# is intended to be suitable for writing applications for both hosted and embedded systems, ranging
from the very large that use sophisticated operating systems, down to the very small having dedicated
functions.

• Although C# applications are intended to be economical with regard to memory and processing power
requirements, the language was not intended to compete directly on performance and size with C or
assembly language.

1 Scope

1

1. Scope

This specification describes the form and establishes the interpretation of programs written in the
C# programming language. It describes

• The representation of C# programs;

• The syntax and constraints of the C# language;

• The semantic rules for interpreting C# programs;

• The restrictions and limits imposed by a conforming implementation of C#.

This specification does not describe

• The mechanism by which C# programs are transformed for use by a data-processing system;

• The mechanism by which C# applications are invoked for use by a data-processing system;

• The mechanism by which input data are transformed for use by a C# application;

• The mechanism by which output data are transformed after being produced by a C# application;

• The size or complexity of a program and its data that will exceed the capacity of any specific data-
processing system or the capacity of a particular processor;

• All minimal requirements of a data-processing system that is capable of supporting a conforming
implementation.

2 Conformance

3

2. Conformance

Conformance is of interest to the following audiences:

• Those designing, implementing, or maintaining C# implementations.

• Governmental or commercial entities wishing to procure C# implementations.

• Testing organizations wishing to provide a C# conformance test suite.

• Programmers wishing to port code from one C# implementation to another.

• Educators wishing to teach Standard C#.

• Authors wanting to write about Standard C#.

As such, conformance is most important, and the bulk of this specification is aimed at specifying the
characteristics that make C# implementations and C# programs conforming ones.

The text in this specification that specifies requirements is considered normative. All other text in this
specification is informative; that is, for information purposes only. Unless stated otherwise, all text is
normative. Normative text is further broken into required and conditional categories. Conditionally
normative text specifies a feature and its requirements where the feature is optional. However, if that
feature is provided, its syntax and semantics shall be exactly as specified.

Undefined behavior is indicated in this specification only by the words ‘‘undefined behavior.’’

A strictly conforming program shall use only those features of the language specified in this specification
as being required. (This means that a strictly conforming program cannot use any conditionally normative
feature.) It shall not produce output dependent on any unspecified, undefined, or implementation-defined
behavior.

A conforming implementation of C# shall accept any strictly conforming program.

A conforming implementation of C# shall provide and support all the types, values, objects, properties,
methods, and program syntax and semantics described in the normative (but not the conditionally
normative) parts in this specification.

A conforming implementation of C# shall interpret characters in conformance with the Unicode Standard.
Conforming implementations shall accept Unicode source files encoded with the UTF-8 encoding form.

A conforming implementation of C# shall not successfully translate source containing a #error
preprocessing directive unless it is part of a group skipped by conditional compilation.

A conforming implementation of C# shall produce at least one diagnostic message if the source program
violates any rule of syntax, or any negative requirement (defined as a “shall” or “shall not” or “error” or
“warning” requirement), unless that requirement is marked with the words “no diagnostic is required”.

A conforming implementation of C# is permitted to provide additional types, values, objects, properties,
and methods beyond those described in this specification, provided they do not alter the behavior of any
strictly conforming program. Conforming implementations are required to diagnose programs that use
extensions that are ill formed according to this specification. Having done so, however, they can compile
and execute such programs. (The ability to have extensions implies that a conforming implementation
reserves no identifiers other than those explicitly reserved in this specification.)

A conforming implementation of C# shall be accompanied by a document that defines all implementation-
defined characteristics, and all extensions.

A conforming implementation of C# shall support the class library documented in Annex C. This library is
included by reference in this specification.

ECMA-334

4

A conforming program is one that is acceptable to a conforming implementation. (Such a program is
permitted to contain extensions or conditionally normative features.)

3 Normative references

5

3. Normative references

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of
these publications do not apply. However, parties to agreements based on this specification are
encouraged to investigate the possibility of applying the most recent editions of the normative documents
indicated below. For undated references, the latest edition of the normative document referred to applies.
Members of ISO and IEC maintain registers of currently valid specifications.

ISO/IEC 23271:2012, Common Language Infrastructure (CLI), Partition IV: Base Class Library (BCL), Extended
Numerics Library, and Extended Array Library.

ISO 31.11:1992, Quantities and units — Part 11: Mathematical signs and symbols for use in the physical
sciences and technology.

ISO/IEC 2382.1:1993, Information technology — Vocabulary — Part 1: Fundamental terms.

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS).

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated IEC
559:1989). (This standard is widely known by its U.S. national designation, ANSI/IEEE Standard 754-1985,
IEEE Standard for Binary Floating-Point Arithmetic.)

The Unicode Consortium. The Unicode Standard, http://www.unicode.org/standard/standard.html

http://www.unicode.org/standard/standard.html

4 Terms and definitions

7

4. Terms and definitions

For the purposes of this specification, the following definitions apply. Other terms are defined where they
appear in italic type or on the left side of a syntax rule. Terms explicitly defined in this specification are not
to be presumed to refer implicitly to similar terms defined elsewhere. Terms not defined in this
specification are to be interpreted according to ISO/IEC 2382.1. Mathematical symbols not defined in this
specification are to be interpreted according to ISO 31.11.

4.1
application
assembly with an entry point

4.2
application domain
entity that enables application isolation by acting as a container for application state

4.3
argument
expression in the comma-separated list bounded by the parentheses in a method or instance constructor
call expression or bounded by the square brackets in an element access expression

4.4
assembly
one or more files output by the compiler as a result of program compilation

4.5
behavior
external appearance or action

4.6
behavior, implementation-defined
unspecified behavior where each implementation documents how the choice is made

4.7
behavior, undefined
behavior, upon use of a non-portable or erroneous construct or of erroneous data, for which this
specification imposes no requirements

4.8
behavior, unspecified
behavior where this specification provides two or more possibilities and imposes no further requirements
on which is chosen in any instance

4.9
character (when used without a qualifier)
a) In the context of a non-Unicode encoding – the meaning of character in that encoding; or

b) In the context of a character literal or a value of type char – a Unicode code point in the range U+0000
to U+FFFF (including surrogate code points), that is a UTF-16 code unit; or

c) Otherwise – a Unicode code point

ECMA-334

8

4.10
class library
assembly that can be used by other assemblies

4.11
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

4.12
error, compile-time
error reported during program translation

4.13
exception
exceptional condition reported during program execution

4.14
implementation
particular set of software (running in a particular translation environment under particular control options)
that performs translation of programs for, and supports execution of methods in, a particular execution
environment

4.15
namespace
logical organizational system grouping related program elements

4.16
parameter
variable declared as part of a method, instance constructor, operator, or indexer definition, which acquires
a value on entry to that function member

4.17
program
one or more source files that are presented to the compiler

4.18
program, valid
C# program constructed according to the syntax rules and diagnosable semantic rules

4.19
program instantiation
execution of an application

4.20
source file
ordered sequence of Unicode characters

4.21
unsafe code
code that is permitted to perform such lower-level operations as declaring and operating on pointers,
performing conversions between pointers and integral types, and taking the address of variables

4.22
warning, compile-time
informational message reported during program translation, which is intended to identify a potentially
questionable usage of a program element

5 Acronyms and abbreviations

9

5. Acronyms and abbreviations

This clause is informative.

The following acronyms and abbreviations are used throughout this specification:

BCL — Base Class Library, which provides types to represent the built-in data types of the CLI, simple file
access, custom attributes, security attributes, string manipulation, formatting, streams, and collections.

CLI — Common Language Infrastructure

CLS — Common Language Specification

IEC — the International Electrotechnical Commission

IEEE — the Institute of Electrical and Electronics Engineers

ISO — the International Organization for Standardization

The name C# is pronounced “C Sharp”.

The name C# is written as the LATIN CAPITAL LETTER C (U+0043) followed by the NUMBER SIGN # (U+0023).

The following types appear throughout this specification. The full names of those types, including the
global namespace qualifier are listed below for reference. Throughout this specification, these types will
appear as the fully qualified name, omitting the global namespace qualifier, or as a simple unqualified
type name, omitting the namespace. For example, the type ICollection<T>, when used in this
specification, always means the type global::System.Collections.Generic.ICollection<T>.

• global::System.Action
• global::System.ArgumentException
• global::System.ArithmeticException
• global::System.Array
• global::System.ArrayTypeMisMatchException
• global::System.Attribute
• global::System.AttributeTargets
• global::System.AttributeUsageAttribute
• global::System.Boolean
• global::System.Byte
• global::System.Char
• global::System.Collections.Generic.ICollection<T>
• global::System.Collections.Generic.IEnumerable<T>
• global::System.Collections.Generic.IEnumerator<T>
• global::System.Collections.Generic.IList<T>
• global::System.Collections.Generic.IReadonlyCollection<out T>
• global::System.Collections.Generic.IReadOnlyList<out T>
• global::System.Collections.ICollection
• global::System.Collections.IEnumerable
• global::System.Collections.IList
• global::System.Collections.IEnumerator
• global::System.Decimal

ECMA-334

10

• global::System.Delegate
• global::System.Diagnostics.ConditionalAttribute
• global::System.DivideByZeroException
• global::System.Double
• global::System.Enum
• global::System.Exception
• global::System.GC
• global::System.ICollection
• global::System.IDisposable
• global::System.IEnumerable
• global::System.IEnumerable<out T>
• global::System.IList
• global::System.IndexOutOfRangeException
• global::System.Int16
• global::System.Int32
• global::System.Int64
• global::System.IntPtr
• global::System.InvalidCastException
• global::System.InvalidOperationException
• global::System.Linq.Expressions.Expression<TDelegate>
• global::System.MemberInfo
• global::System.NotSupportedException
• global::System.Nullable<T>
• global::System.NullReferenceException
• global::System.Object
• global::System.ObsoleteAttribute
• global::System.OutOfMemoryException
• global::System.OverflowException
• global::System.Runtime.CompilerServices.CallerFileAttribute
• global::System.Runtime.CompilerServices.CallerLineNumberAttribute
• global::System.Runtime.CompilerServices.CallerMemberNameAttribute
• global::System.Runtime.CompilerServices.ICriticalNotifyCompletion
• global::System.Runtime.CompilerServices.IndexerNameAttribute
• global::System.Runtime.CompilerServices.INotifyCompletion
• global::System.Runtime.CompilerServices.TaskAwaiter
• global::System.Runtime.CompilerServices.TaskAwaiter<T>
• global::System.SByte
• global::System.Single
• global::System.StackOverflowException
• global::System.String
• global::System.SystemException
• global::System.Threading.Monitor
• global::System.Threading.Tasks.Task
• global::System.Threading.Tasks.Task<TResult>
• global::System.Type
• global::System.TypeInializationException
• global::System.UInt16
• global::System.UInt32
• global::System.UInt64
• global::System.UIntPtr
• global::System.ValueType

End of informative text.

6 General description

11

6. General description

This text is informative.

This specification is intended to be used by implementers, academics, and application programmers. As
such, it contains a considerable amount of explanatory material that, strictly speaking, is not necessary in a
formal language specification.

This standard is divided into the following subdivisions:

1. Front matter (clauses 1–6);

2. The language syntax, constraints, and semantics (clauses 7–23);

3. Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to
refer to related clauses. Notes are provided to give advice or guidance to implementers or programmers.
Annexes provide additional information and summarize the information contained in this specification.

Clauses 1–4, part of Clause 6, Clauses 7–22, the beginning of Clause 23, and most of Annex D form a
normative part of this standard. With the exception of the beginning, all of Clause 23 is conditionally
normative. The Foreword, Introduction, Clause 5, part of Clause 6, Annexes A, B, C, part of Annexes D, E,
and F, notes, and examples are informative.

End of informative text.

Informative text is indicated in the following ways:

1. Whole or partial clauses or annexes delimited by “This clause/text is informative”and “End of
informative text”.

2. [Example: The following example … code fragment, possibly with some narrative … end example]

3. [Note: narrative … end note]

All text not marked as being informative is normative.

7 Lexical structure

13

7. Lexical structure

7.1 Programs
A C# program consists of one or more source files, known formally as compilation units (§14.2). A source
file is an ordered sequence of Unicode characters. Source files typically have a one-to-one correspondence
with files in a file system, but this correspondence is not required.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into
a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

Conforming implementations shall accept Unicode source files encoded with the UTF-8 encoding form (as
defined by the Unicode standard), and transform them into a sequence of Unicode characters.
Implementations can choose to accept and transform additional character encoding schemes (such as UTF-
16, UTF-32, or non-Unicode character mappings).

[Note: The handling of the Unicode NULL character (U+0000) is implementation-specific. It is strongly
recommended that developers avoid using this character in their source code, for the sake of both
portability and readability. When the character is required within a character or string literal, the escape
sequences \0 or \u0000 may be used instead. end note]

[Note: It is beyond the scope of this standard to define how a file using a character representation other
than Unicode might be transformed into a sequence of Unicode characters. During such transformation,
however, it is recommended that the usual line-separating character (or sequence) in the other character
set be translated to the two-character sequence consisting of the Unicode carriage-return character
(U+000D) followed by Unicode line-feed character (U+000A). For the most part this transformation will
have no visible effects; however, it will affect the interpretation of verbatim string literal tokens (§7.4.5.6).
The purpose of this recommendation is to allow a verbatim string literal to produce the same character
sequence when its source file is moved between systems that support differing non-Unicode character
sets, in particular, those using differing character sequences for line-separation. end note]

7.2 Grammars

7.2.1 General
This specification presents the syntax of the C# programming language using two grammars. The lexical
grammar (§7.2.2) defines how Unicode characters are combined to form line terminators, white space,
comments, tokens, and pre-processing directives. The syntactic grammar (§7.2.4) defines how the tokens
resulting from the lexical grammar are combined to form C# programs.

7.2.2 Grammar notation
The lexical and syntactic grammars are presented using grammar productions. Each grammar production
defines a non-terminal symbol and the possible expansions of that non-terminal symbol into sequences of
non-terminal or terminal symbols. In grammar productions, non-terminal symbols are shown in italic type,
and terminal symbols are shown in a fixed-width font.

The first line of a grammar production is the name of the non-terminal symbol being defined, followed by
one or two colons. One colon is used for a production in the syntactic grammar, two colons for a

ECMA-334

14

production in the lexical grammar. Each successive indented line contains a possible expansion of the non-
terminal given as a sequence of non-terminal or terminal symbols. [Example: The production:

while-statement:
while (boolean-expression) embedded-statement

defines a while-statement to consist of the token while, followed by the token “(”, followed by a boolean-
expression, followed by the token “)”, followed by an embedded-statement. end example]

When there is more than one possible expansion of a non-terminal symbol, the alternatives are listed on
separate lines. [Example: The production:

statement-list:
statement
statement-list statement

defines a statement-list to either consist of a statement or consist of a statement-list followed by a
statement. In other words, the definition is recursive and specifies that a statement list consists of one or
more statements. end example]

A subscripted suffix “opt” is used to indicate an optional symbol. [Example: The production:

block:
{ statement-listopt }

is shorthand for:

block:
{ }
{ statement-list }

and defines a block to consist of an optional statement-list enclosed in “{” and “}” tokens. end example]

Alternatives are normally listed on separate lines, though in cases where there are many alternatives, the
phrase “one of” may precede a list of expansions given on a single line. This is simply shorthand for listing
each of the alternatives on a separate line. [Example: The production:

real-type-suffix:: one of
F f D d M m

is shorthand for:

real-type-suffix::
F

f

D

d

M

m

end example]

All terminal characters are to be understood as the appropriate Unicode character from the range U+0020
to U+007F, as opposed to any similar-looking characters from other Unicode character ranges.

7.2.3 Lexical grammar
The lexical grammar of C# is presented in §7.3, §7.4, and §7.5. The terminal symbols of the lexical grammar
are the characters of the Unicode character set, and the lexical grammar specifies how characters are
combined to form tokens (§7.4), white space (§7.3.4), comments (§7.3.3), and pre-processing directives
(§7.5).

Every source file in a C# program shall conform to the input production of the lexical grammar (§7.3.1).

7 Lexical structure

15

7.2.4 Syntactic grammar
The syntactic grammar of C# is presented in the clauses, subclauses, and annexes that follow this
subclause. The terminal symbols of the syntactic grammar are the tokens defined by the lexical grammar,
and the syntactic grammar specifies how tokens are combined to form C# programs.

Every source file in a C# program shall conform to the compilation-unit production (§14.2) of the syntactic
grammar.

7.2.5 Grammar ambiguities
The productions for simple-name (§12.7.3) and member-access (§12.7.5) can give rise to ambiguities in the
grammar for expressions. [Example: The statement:

F(G<A, B>(7));

could be interpreted as a call to F with two arguments, G < A and B > (7). Alternatively, it could be
interpreted as a call to F with one argument, which is a call to a generic method G with two type
arguments and one regular argument. end example]

If a sequence of tokens can be parsed (in context) as a simple-name (§12.7.3), member-access (§12.7.5), or
pointer-member-access (§23.6.3) ending with a type-argument-list (§9.4.2), the token immediately
following the closing > token is examined. If it is one of

()] : ; , . ? == !=

then the type-argument-list is retained as part of the simple-name, member-access, or pointer-member-
access and any other possible parse of the sequence of tokens is discarded. Otherwise, the type-argument-
list is not considered part of the simple-name, member-access, or pointer-member-access, even if there is
no other possible parse of the sequence of tokens. [Note: These rules are not applied when parsing a type-
argument-list in a namespace-or-type-name (§8.8). end note] [Example: The statement:

F(G<A, B>(7));

will, according to this rule, be interpreted as a call to F with one argument, which is a call to a generic
method G with two type arguments and one regular argument. The statements

F(G<A, B>7);
F(G<A, B>>7);

will each be interpreted as a call to F with two arguments. The statement

x = F<A> + y;

will be interpreted as a less-than operator, greater-than operator and unary-plus operator, as if the
statement had been written x = (F < A) > (+y), instead of as a simple-name with a type-argument-
list followed by a binary-plus operator. In the statement

x = y is C<T> && z;

the tokens C<T> are interpreted as a namespace-or-type-name with a type-argument-list due to being on
the right-hand side of the is operator (§12.11.1). Because C<T> parses as a namespace-or-type-name, not
a simple-name, member-access, or pointer-member-access, the above rule does not apply, and it is
considered to have a type-argument-list regardless of the token that follows. end example]

7.3 Lexical analysis

7.3.1 General
The input production defines the lexical structure of a C# source file. Each source file in a C# program shall
conform to this lexical grammar production.

input::
input-sectionopt

ECMA-334

16

input-section::
input-section-part
input-section input-section-part

input-section-part::
input-elementsopt new-line
pp-directive

input-elements::
input-element
input-elements input-element

input-element::
whitespace
comment
token

Five basic elements make up the lexical structure of a C# source file: Line terminators (§7.3.2), white space
(§7.3.4), comments (§7.3.3), tokens (§7.4), and pre-processing directives (§7.5). Of these basic elements,
only tokens are significant in the syntactic grammar of a C# program (§7.2.4), except in the case of a
> token being combined with another token to form a single operator (§7.4.6).

The lexical processing of a C# source file consists of reducing the file into a sequence of tokens that
becomes the input to the syntactic analysis. Line terminators, white space, and comments can serve to
separate tokens, and pre-processing directives can cause sections of the source file to be skipped, but
otherwise these lexical elements have no impact on the syntactic structure of a C# program.

When several lexical grammar productions match a sequence of characters in a source file, the lexical
processing always forms the longest possible lexical element. [Example: The character sequence // is
processed as the beginning of a single-line comment because that lexical element is longer than a single /
token. end example]

7.3.2 Line terminators
Line terminators divide the characters of a C# source file into lines.

new-line::
Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

For compatibility with source code editing tools that add end-of-file markers, and to enable a source file to
be viewed as a sequence of properly terminated lines, the following transformations are applied, in order,
to every source file in a C# program:

• If the last character of the source file is a Control-Z character (U+001A), this character is deleted.

• A carriage-return character (U+000D) is added to the end of the source file if that source file is non-
empty and if the last character of the source file is not a carriage return (U+000D), a line feed
(U+000A), a next line character (U+0085), a line separator (U+2028), or a paragraph separator
(U+2029). [Note: The additional carriage-return allows a program to end in a pp-directive (§7.5) that
does not have a terminating new-line. end note]

7.3.3 Comments
Two forms of comments are supported: delimited comments and single-line comments.

A delimited comment begins with the characters /* and ends with the characters */. Delimited comments
can occupy a portion of a line, a single line, or multiple lines. [Example: The example

7 Lexical structure

17

/* Hello, world program
 This program writes “hello, world” to the console
*/
class Hello
{
 static void Main() {
 System.Console.WriteLine("hello, world");
 }
}

includes a delimited comment. end example]

A single-line comment begins with the characters // and extends to the end of the line. [Example: The
example

// Hello, world program
// This program writes “hello, world” to the console
//
class Hello // any name will do for this class
{
 static void Main() { // this method must be named "Main"
 System.Console.WriteLine("hello, world");
 }
}

shows several single-line comments. end example]

comment::
single-line-comment
delimited-comment

single-line-comment::
// input-charactersopt

input-characters::
input-character
input-characters input-character

input-character::
Any Unicode character except a new-line-character

new-line-character::
Carriage return character (U+000D)
Line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

delimited-comment::
/* delimited-comment-textopt asterisks /

delimited-comment-text::
delimited-comment-section
delimited-comment-text delimited-comment-section

delimited-comment-section::
/
asterisksopt not-slash-or-asterisk

asterisks::
*
asterisks *

not-slash-or-asterisk::
Any Unicode character except / or *

ECMA-334

18

Comments do not nest. The character sequences /* and */ have no special meaning within a single-line
comment, and the character sequences // and /* have no special meaning within a delimited comment.

Comments are not processed within character and string literals.

[Note: These rules must be interpreted carefully. For instance, in the example below, the delimited
comment that begins before A ends between B and C(). The reason is that

// B */ C();

is not actually a single-line comment, since // has no special meaning within a delimited comment, and so
*/ does have its usual special meaning in that line.

Likewise, the delimited comment starting before D ends before E. The reason is that "D */ " is not
actually a string literal, since it appears inside a delimited comment.

A useful consequence of /* and */ having no special meaning within a single-line comment is that a block
of source code lines can be commented out by putting // at the beginning of each line. In general it does
not work to put /* before those lines and */ after them, as this does not properly encapsulate delimited
comments in the block, and in general may completely change the structure of such delimited comments.

Example code:

static void Main() {

 /* A

 // B */ C();

 Console.WriteLine(/* "D */ "E");

}

end note]

7.3.4 White space
White space is defined as any character with Unicode class Zs (which includes the space character) as well
as the horizontal tab character, the vertical tab character, and the form feed character.

whitespace::
whitespace-character
whitespace whitespace-character

whitespace-character::
Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertical tab character (U+000B)
Form feed character (U+000C)

7.4 Tokens

7.4.1 General
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space
and comments are not tokens, though they act as separators for tokens.

token::
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

7 Lexical structure

19

7.4.2 Unicode character escape sequences
A Unicode escape sequence represents a Unicode code point. Unicode escape sequences are processed in
identifiers (§7.4.3), character literals (§7.4.5.5), and regular string literals (§7.4.5.6). A Unicode escape
sequence is not processed in any other location (for example, to form an operator, punctuator, or
keyword).

unicode-escape-sequence::
\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

A Unicode character escape sequence represents the single Unicode code point formed by the
hexadecimal number following the “\u” or “\U” characters. Since C# uses a 16-bit encoding of Unicode
code points in character and string values, a Unicode code point in the range U+10000 to U+10FFFF is
represented using two Unicode surrogate code units. Unicode code points above U+FFFF are not permitted
in character literals. Unicode code points above U+10FFFF are invalid and are not supported.

Multiple translations are not performed. For instance, the string literal “\u005Cu005C” is equivalent to
“\u005C” rather than “\”. [Note: The Unicode value \u005C is the character “\”. end note]

[Example: The example

class Class1
{
 static void Test(bool \u0066) {
 char c = '\u0066';
 if (\u0066)
 System.Console.WriteLine(c.ToString());
 }
}

shows several uses of \u0066, which is the escape sequence for the letter “f”. The program is equivalent
to

class Class1
{
 static void Test(bool f) {
 char c = 'f';
 if (f)
 System.Console.WriteLine(c.ToString());
 }
}

end example]

7.4.3 Identifiers
The rules for identifiers given in this subclause correspond exactly to those recommended by the Unicode
Standard Annex 15 except that underscore is allowed as an initial character (as is traditional in the
C programming language), Unicode escape sequences are permitted in identifiers, and the “@” character is
allowed as a prefix to enable keywords to be used as identifiers.

identifier::
available-identifier
@ identifier-or-keyword

available-identifier::
An identifier-or-keyword that is not a keyword

identifier-or-keyword::
identifier-start-character identifier-part-charactersopt

identifier-start-character::
letter-character
underscore-character

ECMA-334

20

underscore-character::
_ (the underscore character U+005F)
A unicode-escape-sequence representing the character U+005F

identifier-part-characters::
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character::
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character::
A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character::
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character::
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character::
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

formatting-character::
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

[Note: For information on the Unicode character classes mentioned above, see The Unicode Standard. end
note]

[Example: Examples of valid identifiers include “identifier1”, “_identifier2”, and “@if”. end
example]

An identifier in a conforming program shall be in the canonical format defined by Unicode Normalization
Form C, as defined by Unicode Standard Annex 15. The behavior when encountering an identifier not in
Normalization Form C is implementation-defined; however, a diagnostic is not required.

The prefix “@” enables the use of keywords as identifiers, which is useful when interfacing with other
programming languages. The character @ is not actually part of the identifier, so the identifier might be
seen in other languages as a normal identifier, without the prefix. An identifier with an @ prefix is called a
verbatim identifier. [Note: Use of the @ prefix for identifiers that are not keywords is permitted, but
strongly discouraged as a matter of style. end note]

[Example: The example:

class @class
{
 public static void @static(bool @bool) {
 if (@bool)
 System.Console.WriteLine("true");
 else
 System.Console.WriteLine("false");
 }
}

7 Lexical structure

21

class Class1
{
 static void M() {
 cl\u0061ss.st\u0061tic(true);
 }
}

defines a class named “class” with a static method named “static” that takes a parameter named
“bool”. Note that since Unicode escapes are not permitted in keywords, the token “cl\u0061ss” is an
identifier, and is the same identifier as “@class”. end example]

Two identifiers are considered the same if they are identical after the following transformations are
applied, in order:

• The prefix “@”, if used, is removed.

• Each unicode-escape-sequence is transformed into its corresponding Unicode character.

• Any formatting-characters are removed.

Identifiers containing two consecutive underscore characters (U+005F) are reserved for use by the
implementation; however, no diagnostic is required if such an identifier is defined. [Note: For example, an
implementation might provide extended keywords that begin with two underscores. end note]

7.4.4 Keywords
A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier
except when prefaced by the @ character.

keyword:: one of
abstract as base bool break

byte case catch char checked

class const continue decimal default

delegate do double else enum

event explicit extern false finally

fixed float for foreach goto

if implicit in int interface

internal is lock long namespace

new null object operator out

override params private protected public

readonly ref return sbyte sealed

short sizeof stackalloc static string

struct switch this throw true

try typeof uint ulong unchecked

unsafe ushort using virtual void

volatile while

A contextual keyword is an identifier-like sequence of characters that has special meaning in certain
contexts, but is not reserved, and can be used as an identifier outside of those contexts as well as when
prefaced by the @ character.

contextual-keyword: one of the following identifiers
add alias ascending async await

by descending dynamic equals from

get global group into join

let orderby partial remove select

set value var where yield

In most cases, the syntactic location of contextual keywords is such that they can never be confused with
ordinary identifier usage. For example, within a property declaration, the “get” and “set” identifiers have
special meaning (§15.7.3). An identifier other than get or set is never permitted in these locations, so this
use does not conflict with a use of these words as identifiers.

ECMA-334

22

In certain cases the grammar is not enough to distinguish contextual keyword usage from identifiers. In all
such cases it will be specified how to disambiguate between the two. For example, the contextual keyword
var in implicitly typed local variable declarations (§13.6.2) might conflict with a declared type called var,
in which case the declared name takes precedence over the use of the identifier as a contextual keyword.

Another example such disambiguation is the contextual keyword await (§12.8.8.1), which is considered a
keyword only when inside a method declared async, but can be used as an identifier elsewhere.

Just as with keywords, contextual keywords can be used as ordinary identifiers by prefixing them with the
@ character.

[Note: When used as contextual keywords, these identifiers cannot contain unicode-escape-sequences.
end note].

7.4.5 Literals

7.4.5.1 General
A literal (§12.7.2) is a source code representation of a value.

literal::
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

7.4.5.2 Boolean literals
There are two Boolean literal values: true and false.

boolean-literal::
true

false

The type of a boolean-literal is bool.

7.4.5.3 Integer literals
Integer literals are used to write values of types int, uint, long, and ulong. Integer literals have two
possible forms: decimal and hexadecimal.

integer-literal::
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal::
decimal-digits integer-type-suffixopt

decimal-digits::
decimal-digit
decimal-digits decimal-digit

decimal-digit:: one of
0 1 2 3 4 5 6 7 8 9

integer-type-suffix:: one of
U u L l UL Ul uL ul LU Lu lU lu

hexadecimal-integer-literal::
0x hex-digits integer-type-suffixopt
0X hex-digits integer-type-suffixopt

7 Lexical structure

23

hex-digits::
hex-digit
hex-digits hex-digit

hex-digit:: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

The type of an integer literal is determined as follows:

• If the literal has no suffix, it has the first of these types in which its value can be represented: int,
uint, long, ulong.

• If the literal is suffixed by U or u, it has the first of these types in which its value can be represented:
uint, ulong.

• If the literal is suffixed by L or l, it has the first of these types in which its value can be represented:
long, ulong.

• If the literal is suffixed by UL, Ul, uL, ul, LU, Lu, lU, or lu, it is of type ulong.

If the value represented by an integer literal is outside the range of the ulong type, a compile-time error
occurs.

[Note: As a matter of style, it is suggested that “L” be used instead of “l” when writing literals of type
long, since it is easy to confuse the letter “l” with the digit “1”. end note]

To permit the smallest possible int and long values to be written as integer literals, the following two
rules exist:

• When an integer-literal representing the value 2147483648 (231) and no integer-type-suffix appears as
the token immediately following a unary minus operator token (§12.8.3), the result (of both tokens) is
a constant of type int with the value −2147483648 (−231). In all other situations, such an integer-literal
is of type uint.

• When an integer-literal representing the value 9223372036854775808 (263) and no integer-type-suffix
or the integer-type-suffix L or l appears as the token immediately following a unary minus operator
token (§12.8.3), the result (of both tokens) is a constant of type long with the value
−9223372036854775808 (−263). In all other situations, such an integer-literal is of type ulong.

7.4.5.4 Real literals
Real literals are used to write values of types float, double, and decimal.

real-literal::
decimal-digits . decimal-digits exponent-partopt real-type-suffixopt
. decimal-digits exponent-partopt real-type-suffixopt
decimal-digits exponent-part real-type-suffixopt
decimal-digits real-type-suffix

exponent-part::
e signopt decimal-digits
E signopt decimal-digits

sign:: one of
+ -

real-type-suffix:: one of
F f D d M m

If no real-type-suffix is specified, the type of the real-literal is double. Otherwise, the real-type-suffix
determines the type of the real literal, as follows:

• A real literal suffixed by F or f is of type float. [Example: The literals 1f, 1.5f, 1e10f, and
123.456F are all of type float. end example]

ECMA-334

24

• A real literal suffixed by D or d is of type double. [Example: The literals 1d, 1.5d, 1e10d, and
123.456D are all of type double. end example]

• A real literal suffixed by M or m is of type decimal. [Example: The literals 1m, 1.5m, 1e10m, and
123.456M are all of type decimal. end example] This literal is converted to a decimal value by
taking the exact value, and, if necessary, rounding to the nearest representable value using banker's
rounding (§9.3.8). Any scale apparent in the literal is preserved unless the value is rounded. [Note:
Hence, the literal 2.900m will be parsed to form the decimal with sign 0, coefficient 2900, and
scale 3. end note]

If the magnitude of the specified literal is too large to be represented in the indicated type, a compile-time
error occurs. [Note: In particular, a real-literal will never produce a floating-point infinity. A non-zero real-
literal may, however, be rounded to zero. end note]

The value of a real literal of type float or double is determined by using the IEC 60559 “round to
nearest” mode with ties broken to “even” (a value with the least-significant-bit zero), and all digits
considered significant.

[Note: In a real literal, decimal digits are always required after the decimal point. For example, 1.3F is a
real literal but 1.F is not. end note]

7.4.5.5 Character literals
A character literal represents a single character, and consists of a character in quotes, as in 'a'.

character-literal::
' character '

character::
single-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-character::
 Any character except ' (U+0027), \ (U+005C), and new-line-character

simple-escape-sequence:: one of
\' \" \\ \0 \a \b \f \n \r \t \v

hexadecimal-escape-sequence::
\x hex-digit hex-digitopt hex-digitopt hex-digitopt

[Note: A character that follows a backslash character (\) in a character shall be one of the following
characters: ', ", \, 0, a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time error occurs. end note]

[Note: The use of the \x hexadecimal-escape-sequence production can be error-prone and hard to read
due to the variable number of hexadecimal digits following the \x. For example, in the code:

string good = "\x9Good text";

string bad = "\x9Bad text";

it might appear at first that the leading character is the same (U+0009, a tab character) in both strings. In
fact the second string starts with U+9BAD as all three letters in the word "Bad" are valid hexadecimal digits.
As a matter of style, it is recommended that \x is avoided in favour of either specific escape sequences (\t
in this example) or the fixed-length \u escape sequence. end note]

A hexadecimal escape sequence represents a single Unicode UTF-16 code unit, with the value formed by
the hexadecimal number following “\x”.

If the value represented by a character literal is greater than U+FFFF, a compile-time error occurs.

A Unicode escape sequence (§7.4.2) in a character literal shall be in the range U+0000 to U+FFFF.

7 Lexical structure

25

A simple escape sequence represents a Unicode character, as described in the table below.

Escape
sequence

Character name Unicode code
point

\' Single quote U+0027

\" Double quote U+0022

\\ Backslash U+005C

\0 Null U+0000

\a Alert U+0007

\b Backspace U+0008

\f Form feed U+000C

\n New line U+000A

\r Carriage return U+000D

\t Horizontal tab U+0009

\v Vertical tab U+000B

The type of a character-literal is char.

7.4.5.6 String literals
C# supports two forms of string literals: regular string literals and verbatim string literals. A regular string
literal consists of zero or more characters enclosed in double quotes, as in "hello", and can include both
simple escape sequences (such as \t for the tab character), and hexadecimal and Unicode escape
sequences.

A verbatim string literal consists of an @ character followed by a double-quote character, zero or more
characters, and a closing double-quote character. [Example: A simple example is @"hello". end example]
In a verbatim string literal, the characters between the delimiters are interpreted verbatim, with the only
exception being a quote-escape-sequence, which represents one double-quote character. In particular,
simple escape sequences, and hexadecimal and Unicode escape sequences are not processed in verbatim
string literals. A verbatim string literal may span multiple lines.

string-literal::
regular-string-literal
verbatim-string-literal

regular-string-literal::
" regular-string-literal-charactersopt "

regular-string-literal-characters::
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

regular-string-literal-character::
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-regular-string-literal-character::
Any character except " (U+0022), \ (U+005C), and new-line-character

ECMA-334

26

verbatim-string-literal::
@" verbatim-string-literal-charactersopt "

verbatim-string-literal-characters::
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character::
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character::
Any character except "

quote-escape-sequence::
""

[Example: The example

string a = "Happy birthday, Joel"; // Happy birthday, Joel
string b = @"Happy birthday, Joel"; // Happy birthday, Joel

string c = "hello \t world"; // hello world
string d = @"hello \t world"; // hello \t world

string e = "Joe said \"Hello\" to me"; // Joe said "Hello" to me
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello" to me

string g = "\\\\server\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file.txt"; // \\server\share\file.txt

string i = "one\r\ntwo\r\nthree";
string j = @"one
two
three";

shows a variety of string literals. The last string literal, j, is a verbatim string literal that spans multiple
lines. The characters between the quotation marks, including white space such as new line characters, are
preserved verbatim, and each pair of double-quote characters is replaced by one such character. end
example]

[Note: Any line breaks within verbatim string literals are part of the resulting string. If the exact characters
used to form line breaks are semantically relevant to an application, any tools that translate line breaks in
source code to different formats (between "\n" and "\r\n", for example) will change application behavior.
Developers should be careful in such situations. end note]

[Note: Since a hexadecimal escape sequence can have a variable number of hex digits, the string literal
"\x123" contains a single character with hex value 123. To create a string containing the character with
hex value 12 followed by the character 3, one could write "\x00123" or "\x12" + "3" instead. end
note]

The type of a string-literal is string.

Each string literal does not necessarily result in a new string instance. When two or more string literals that
are equivalent according to the string equality operator (§12.11.8), appear in the same assembly, these
string literals refer to the same string instance. [Example: For instance, the output produced by

class Test
{
 static void Main() {
 object a = "hello";
 object b = "hello";
 System.Console.WriteLine(a == b);
 }
}

is True because the two literals refer to the same string instance. end example]

7 Lexical structure

27

7.4.5.7 The null literal
null-literal::

null

A null-literal represents a null value. It does not have a type, but can be converted to any reference type or
nullable value type through a null literal conversion (§11.2.6)."

7.4.6 Operators and punctuators
There are several kinds of operators and punctuators. Operators are used in expressions to describe
operations involving one or more operands. [Example: The expression a + b uses the + operator to add
the two operands a and b. end example] Punctuators are for grouping and separating.

operator-or-punctuator:: one of
{ } [] () . , : ;

+ - * / % & | ^ ! ~

= < > ? ?? :: ++ -- && ||

-> == != <= >= += -= *= /= %=

&= |= ^= << <<=

right-shift::
> >

right-shift-assignment::
> >=

right-shift is made up of the two tokens > and >. Similarly, right-shift-assignment is made up of the two
tokens > and >=. Unlike other productions in the syntactic grammar, no characters of any kind (not even
whitespace) are allowed between the two tokens in each of these productions. These productions are
treated specially in order to enable the correct handling of type-parameter-lists (§15.2.3). [Note: Prior to
the addition of generics to C#, >> and >>= were both single tokens. However, the syntax for generics uses
the < and > characters to delimit type parameters and type arguments. It is often desirable to use nested
constructed types, such as List<Dictionary<string, int>>. Rather than requiring the programmer
to separate the > and > by a space, the definition of the two operator-or-punctuators was changed. end
note]

7.5 Pre-processing directives

7.5.1 General
The pre-processing directives provide the ability to skip conditionally sections of source files, to report
error and warning conditions, and to delineate distinct regions of source code. [Note: The term “pre-
processing directives” is used only for consistency with the C and C++ programming languages. In C#, there
is no separate pre-processing step; pre-processing directives are processed as part of the lexical analysis
phase. end note]

pp-directive::
pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region
pp-pragma

The following pre-processing directives are available:

• #define and #undef, which are used to define and undefine, respectively, conditional compilation
symbols (§7.5.4).

ECMA-334

28

• #if, #elif, #else, and #endif, which are used to skip conditionally sections of source code (§7.5.5).

• #line, which is used to control line numbers emitted for errors and warnings (§7.5.8).

• #error, which is used to issue errors (§7.5.6).

• #region and #endregion, which are used to explicitly mark sections of source code (§7.5.7).

• #pragma, which is used to specify optional contextual information to a compiler (§7.5.9).

A pre-processing directive always occupies a separate line of source code and always begins with a
character and a pre-processing directive name. White space may occur before the # character and
between the # character and the directive name.

A source line containing a #define, #undef, #if, #elif, #else, #endif, #line, or #endregion
directive can end with a single-line comment. Delimited comments (the /* */ style of comments) are not
permitted on source lines containing pre-processing directives.

Pre-processing directives are not tokens and are not part of the syntactic grammar of C#. However, pre-
processing directives can be used to include or exclude sequences of tokens and can in that way affect the
meaning of a C# program. [Example: When compiled, the program

#define A
#undef B

class C
{
#if A
 void F() {}
#else
 void G() {}
#endif

#if B
 void H() {}
#else
 void I() {}
#endif
}

results in the exact same sequence of tokens as the program

class C
{
 void F() {}
 void I() {}
}

Thus, whereas lexically, the two programs are quite different, syntactically, they are identical. end
example]

7.5.2 Conditional compilation symbols
The conditional compilation functionality provided by the #if, #elif, #else, and #endif directives is
controlled through pre-processing expressions (§7.5.3) and conditional compilation symbols.

conditional-symbol::
Any identifier-or-keyword except true or false

Two conditional compilation symbols are considered the same if they are identical after the following
transformations are applied, in order:

• Each unicode-escape-sequence is transformed into its corresponding Unicode character.

• Any formatting-characters are removed.

A conditional compilation symbol has two possible states: defined or undefined. At the beginning of the
lexical processing of a source file, a conditional compilation symbol is undefined unless it has been
explicitly defined by an external mechanism (such as a command-line compiler option). When a #define
directive is processed, the conditional compilation symbol named in that directive becomes defined in that

7 Lexical structure

29

source file. The symbol remains defined until a #undef directive for that same symbol is processed, or
until the end of the source file is reached. An implication of this is that #define and #undef directives in
one source file have no effect on other source files in the same program.

When referenced in a pre-processing expression (§7.5.3), a defined conditional compilation symbol has the
Boolean value true, and an undefined conditional compilation symbol has the Boolean value false.
There is no requirement that conditional compilation symbols be explicitly declared before they are
referenced in pre-processing expressions. Instead, undeclared symbols are simply undefined and thus have
the value false.

The namespace for conditional compilation symbols is distinct and separate from all other named entities
in a C# program. Conditional compilation symbols can only be referenced in #define and #undef
directives and in pre-processing expressions.

7.5.3 Pre-processing expressions
Pre-processing expressions can occur in #if and #elif directives. The operators !, ==, !=, &&, and || are
permitted in pre-processing expressions, and parentheses may be used for grouping.

pp-expression::
whitespaceopt pp-or-expression whitespaceopt

pp-or-expression::
pp-and-expression
pp-or-expression whitespaceopt || whitespaceopt pp-and-expression

pp-and-expression::
pp-equality-expression
pp-and-expression whitespaceopt && whitespaceopt pp-equality-expression

pp-equality-expression::
pp-unary-expression
pp-equality-expression whitespaceopt == whitespaceopt pp-unary-expression
pp-equality-expression whitespaceopt != whitespaceopt pp-unary-expression

pp-unary-expression::
pp-primary-expression
! whitespaceopt pp-unary-expression

pp-primary-expression::
true
false
conditional-symbol
(whitespaceopt pp-expression whitespaceopt)

When referenced in a pre-processing expression, a defined conditional compilation symbol has the
Boolean value true, and an undefined conditional compilation symbol has the Boolean value false.

Evaluation of a pre-processing expression always yields a Boolean value. The rules of evaluation for a pre-
processing expression are the same as those for a constant expression (§12.20), except that the only user-
defined entities that can be referenced are conditional compilation symbols.

7.5.4 Definition directives
The definition directives are used to define or undefine conditional compilation symbols.

pp-declaration::
whitespaceopt # whitespaceopt define whitespace conditional-symbol pp-new-line
whitespaceopt # whitespaceopt undef whitespace conditional-symbol pp-new-line

pp-new-line::
whitespaceopt single-line-commentopt new-line

ECMA-334

30

The processing of a #define directive causes the given conditional compilation symbol to become
defined, starting with the source line that follows the directive. Likewise, the processing of a #undef
directive causes the given conditional compilation symbol to become undefined, starting with the source
line that follows the directive.

Any #define and #undef directives in a source file shall occur before the first token (§7.4) in the source
file; otherwise a compile-time error occurs. In intuitive terms, #define and #undef directives shall
precede any “real code” in the source file.

[Example: The example:

#define Enterprise

#if Professional || Enterprise
#define Advanced
#endif

namespace Megacorp.Data
{
#if Advanced
 class PivotTable {…}
#endif
}

is valid because the #define directives precede the first token (the namespace keyword) in the source
file.

end example]

[Example: The following example results in a compile-time error because a #define follows real code:

#define A
namespace N
{
#define B
#if B
 class Class1 {}
#endif
}

end example]

A #define may define a conditional compilation symbol that is already defined, without there being any
intervening #undef for that symbol. [Example: The example below defines a conditional compilation
symbol A and then defines it again.

#define A
#define A

For compilers that allow conditional compilation symbols to be defined as compilation options, an
alternative way for such redefinition to occur is to define the symbol as a compiler option as well as in the
source. end example]

A #undef may “undefine” a conditional compilation symbol that is not defined. [Example: The example
below defines a conditional compilation symbol A and then undefines it twice; although the second
#undef has no effect, it is still valid.

#define A
#undef A
#undef A

end example]

7.5.5 Conditional compilation directives
The conditional compilation directives are used to conditionally include or exclude portions of a source file.

7 Lexical structure

31

pp-conditional::
pp-if-section pp-elif-sectionsopt pp-else-sectionopt pp-endif

pp-if-section::
whitespaceopt # whitespaceopt if whitespace pp-expression pp-new-line
 conditional-sectionopt

pp-elif-sections::
pp-elif-section
pp-elif-sections pp-elif-section

pp-elif-section::
whitespaceopt # whitespaceopt elif whitespace pp-expression pp-new-line
 conditional-sectionopt

pp-else-section::
whitespaceopt # whitespaceopt else pp-new-line conditional-sectionopt

pp-endif::
whitespaceopt # whitespaceopt endif pp-new-line

conditional-section::
input-section
skipped-section

skipped-section::
skipped-section-part
skipped-section skipped-section-part

skipped-section-part::
skipped-charactersopt new-line
pp-directive

skipped-characters::
whitespaceopt not-number-sign input-charactersopt

not-number-sign::
Any input-character except #

[Note: As indicated by the syntax, conditional compilation directives shall be written as sets consisting of, in
order, a #if directive, zero or more #elif directives, zero or one #else directive, and a #endif
directive. Between the directives are conditional sections of source code. Each section is controlled by the
immediately preceding directive. A conditional section may itself contain nested conditional compilation
directives provided these directives form complete sets. end note]

A pp-conditional selects at most one of the contained conditional-sections for normal lexical processing:

• The pp-expressions of the #if and #elif directives are evaluated in order until one yields true. If an
expression yields true, the conditional-section of the corresponding directive is selected.

• If all pp-expressions yield false, and if a #else directive is present, the conditional-section of the
#else directive is selected.

• Otherwise, no conditional-section is selected.

The selected conditional-section, if any, is processed as a normal input-section: the source code contained
in the section shall adhere to the lexical grammar; tokens are generated from the source code in the
section; and pre-processing directives in the section have the prescribed effects.

The remaining conditional-sections, if any, are processed as skipped-sections: except for pre-processing
directives, the source code in the section need not adhere to the lexical grammar; no tokens are generated
from the source code in the section; and pre-processing directives in the section shall be lexically correct
but are not otherwise processed. Within a conditional-section that is being processed as a skipped-section,

ECMA-334

32

any nested conditional-sections (contained in nested #if…#endif and #region…#endregion
constructs) are also processed as skipped-sections.

[Example: The following example illustrates how conditional compilation directives can nest:

#define Debug // Debugging on
#undef Trace // Tracing off

class PurchaseTransaction
{
 void Commit() {
#if Debug
 CheckConsistency();
 #if Trace
 WriteToLog(this.ToString());
 #endif
#endif
 CommitHelper();
 }
 …
}

Except for pre-processing directives, skipped source code is not subject to lexical analysis. For example, the
following is valid despite the unterminated comment in the #else section:

#define Debug // Debugging on

class PurchaseTransaction
{
 void Commit() {
#if Debug
 CheckConsistency();
#else
 /* Do something else
#endif
 }
 …
}

Note, however, that pre-processing directives are required to be lexically correct even in skipped sections
of source code.

Pre-processing directives are not processed when they appear inside multi-line input elements. For
example, the program:

class Hello
{
 static void Main() {
 System.Console.WriteLine(@"hello,
#if Debug
 world
#else
 Nebraska
#endif
 ");
 }
}

results in the output:

hello,
#if Debug
 world
#else
 Nebraska
#endif

In peculiar cases, the set of pre-processing directives that is processed might depend on the evaluation of
the pp-expression. The example:

7 Lexical structure

33

#if X
 /*
#else
 /* */ class Q { }
#endif

always produces the same token stream (class Q { }), regardless of whether or not X is defined. If X is
defined, the only processed directives are #if and #endif, due to the multi-line comment. If X is
undefined, then three directives (#if, #else, #endif) are part of the directive set. end example]

7.5.6 Diagnostic directives
The diagnostic directives are used to generate explicitly error and warning messages that are reported in
the same way as other compile-time errors and warnings.

pp-diagnostic::
whitespaceopt # whitespaceopt error pp-message
whitespaceopt # whitespaceopt warning pp-message

pp-message::
new-line
whitespace input-charactersopt new-line

[Example: The example

#if Debug && Retail
 #error A build can't be both debug and retail
#endif

class Test {…}

produces a compile-time error (“A build can’t be both debug and retail”) if the conditional compilation
symbols Debug and Retail are both defined. Note that a pp-message can contain arbitrary text;
specifically, it need not contain well-formed tokens, as shown by the single quote in the word can't. end
example]

7.5.7 Region directives
The region directives are used to mark explicitly regions of source code.

pp-region::
pp-start-region conditional-sectionopt pp-end-region

pp-start-region::
whitespaceopt # whitespaceopt region pp-message

pp-end-region::
whitespaceopt # whitespaceopt endregion pp-message

No semantic meaning is attached to a region; regions are intended for use by the programmer or by
automated tools to mark a section of source code. The message specified in a #region or #endregion
directive likewise has no semantic meaning; it merely serves to identify the region. Matching #region and
#endregion directives may have different pp-messages.

The lexical processing of a region:

#region
…
#endregion

corresponds exactly to the lexical processing of a conditional compilation directive of the form:

#if true
…
#endif

ECMA-334

34

7.5.8 Line directives
Line directives may be used to alter the line numbers and source file names that are reported by the
compiler in output such as warnings and errors. These values are also used by caller-info attributes
(§22.5.5).

[Note: Line directives are most commonly used in meta-programming tools that generate C# source code
from some other text input. end note]

pp-line::
whitespaceopt # whitespaceopt line whitespace line-indicator pp-new-line

line-indicator::
decimal-digits whitespace file-name

decimal-digits

default

hidden

file-name::
" file-name-characters "

file-name-characters::
file-name-character
file-name-characters file-name-character

file-name-character::
Any input-character except " (U+0022), and new-line-character

When no #line directives are present, the compiler reports true line numbers and source file names in its
output. When processing a #line directive that includes a line-indicator that is not default, the compiler
treats the line after the directive as having the given line number (and file name, if specified).

A #line default directive undoes the effect of all preceding #line directives. The compiler reports true
line information for subsequent lines, precisely as if no #line directives had been processed.

A #line hidden directive has no effect on the file and line numbers reported in error messages, or
produced by use of CallerLineNumberAttribute (§22.5.5.2). It is intended to affect source level
debugging tools so that, when debugging, all lines between a #line hidden directive and the subsequent
#line directive (that is not #line hidden) have no line number information, and are skipped entirely
when stepping through code.

[Note: Note that a file-name differs from a regular string literal in that escape characters are not processed;
the ‘\’ character simply designates an ordinary backslash character within a file-name. end note]

7.5.9 Pragma directives
The #pragma preprocessing directive is used to specify contextual information to a compiler. [Note: For
example, a compiler might provide #pragma directives that

• Enable or disable particular warning messages when compiling subsequent code.

• Specify which optimizations to apply to subsequent code.

• Specify information to be used by a debugger.

end note]

pp-pragma::
whitespaceopt # whitespaceopt pragma pp-pragma-text

pp-pragma-text::
new-line
whitespace input-charactersopt new-line

7 Lexical structure

35

The input-characters in the pp-pragma-text are interpreted by the compiler in an implementation-defined
manner. The information supplied in a #pragma directive shall not change program semantics. A #pragma
directive shall only change compiler behavior that is outside the scope of this language specification. If the
compiler cannot interpret the input-characters, the compiler can produce a warning; however, it shall not
produce a compile-time error.

[Note: pp-pragma-text can contain arbitrary text; specifically, it need not contain well-formed tokens. end
note]

ECMA-334

36

8. Basic concepts

8.1 Application startup
A program may be compiled either as a class library to be used as part of other applications, or as an
application that may be started directly. The mechanism for determining this mode of compilation is
implementation-specific and external to this specification.

A program compiled as an application shall contain at least one method qualifying as an entry point by
satisfying the following requirements:

• It shall have the name Main.

• It shall be static.

• It shall not be generic.

• It shall be declared in a non-generic type. If the type declaring the method is a nested type, none of its
enclosing types may be generic.

• It shall not have the async modifier.

• The return type shall be void or int.

• It shall not be a partial method (§15.6.9) without an implementation.

• The formal parameter list shall either be empty, or have a single value parameter of type string[].

If more than one method qualifying as an entry point is declared within a program, an external mechanism
may be used to specify which method is deemed to be the actual entry point for the application. It is a
compile-time error for a program to be compiled as an application without exactly one entry point. A
program compiled as a class library may contain methods that would qualify as application entry points,
but the resulting library has no entry point.

Ordinarily, the declared accessibility (§8.5.2) of a method is determined by the access modifiers (§15.3.6)
specified in its declaration, and similarly the declared accessibility of a type is determined by the access
modifiers specified in its declaration. In order for a given method of a given type to be callable, both the
type and the member shall be accessible. However, the application entry point is a special case.
Specifically, the execution environment can access the application's entry point regardless of its declared
accessibility and regardless of the declared accessibility of its enclosing type declarations.

When an application is run, a new application domain is created. Several different instantiations of an
application may exist on the same machine at the same time, and each has its own application domain.
An application domain enables application isolation by acting as a container for application state. An
application domain acts as a container and boundary for the types defined in the application and the class
libraries it uses. Types loaded into one application domain are distinct from the same types loaded into
another application domain, and instances of objects are not directly shared between application domains.
For instance, each application domain has its own copy of static variables for these types, and a static
constructor for a type is run at most once per application domain. Implementations are free to provide
implementation-specific policy or mechanisms for the creation and destruction of application domains.

Application startup occurs when the execution environment calls the application's entry point. If the entry
point declares a parameter, then during application startup, the implementation shall ensure that the
initial value of parameter is a non-null reference to a string array. This array shall consist of non-null
references to strings, called application parameters, which are given implementation-defined values by the
host environment prior to application startup. The intent is to supply to the application information
determined prior to application startup from elsewhere in the hosted environment. [Note: On systems

8 Basic concepts

37

supporting a command line, application parameters correspond to what are generally known as command-
line arguments. end note]

If the entry point's return type is int rather than void, the return value from the method invocation by
the execution environment is used in application termination (§8.2).

Other than the situations listed above, entry point methods behave like those that are not entry points in
every respect. In particular, if the entry point is invoked at any other point during the application's lifetime,
such as by regular method invocation, there is no special handling of the method: if there is a parameter, it
may have an initial value of null, or a non-null value referring to an array that contains null references.
Likewise, the return value of the entry point has no special significance other than in the invocation from
the execution environment.

8.2 Application termination
Application termination returns control to the execution environment.

If the return type of the application’s entry point method is int, the value returned serves as the
application's termination status code. The purpose of this code is to allow communication of success or
failure to the execution environment.

If the return type of the entry point method is void, reaching the right brace (}) that terminates that
method, or executing a return statement that has no expression, results in a termination status code
of 0. If the entry point method terminates due to an exception (§21.4), the exit code is implementation-
specific. Additionally, the implementation may provide alternative APIs for specifying the exit code.

Prior to an application’s termination, an implementation should make every reasonable effort to call
finalizers (§15.13) for all of its objects that have not yet been garbage collected, unless such cleanup has
been suppressed (by a call to the library method GC.SuppressFinalize, for example). The
implementation should document any conditions under which this behavior cannot be guaranteed.

8.3 Declarations
Declarations in a C# program define the constituent elements of the program. C# programs are organized
using namespaces. These are introduced using namespace declarations (§14), which can contain type
declarations and nested namespace declarations. Type declarations (§14.7) are used to define classes
(§15), structs (§16), interfaces (§18), enums (§19), and delegates (§20). The kinds of members permitted in
a type declaration depend on the form of the type declaration. For instance, class declarations can contain
declarations for constants (§15.4), fields (§15.5), methods (§15.6), properties (§15.7), events (§15.8),
indexers (§15.9), operators (§15.10), instance constructors (§15.11), static constructors (§15.12), finalizers
(§15.13), and nested types (§15.3.9).

A declaration defines a name in the declaration space to which the declaration belongs. It is a compile-
time error to have two or more declarations that introduce members with the same name in a declaration
space, except in the following cases:

• Two or more namespace declarations with the same name are allowed in the same declaration space.
Such namespace declarations are aggregated to form a single logical namespace and share a single
declaration space.

• Declarations in separate programs but in the same namespace declaration space are allowed to share
the same name. [Note: However, these declarations could introduce ambiguities if included in the
same application. end note]

• Two or more methods with the same name but distinct signatures are allowed in the same declaration
space (§8.6).

• Two or more type declarations with the same name but distinct numbers of type parameters are
allowed in the same declaration space (§8.8.2).

ECMA-334

38

• Two or more type declarations with the partial modifier in the same declaration space may share
the same name, same number of type parameters and same classification (class, struct or
interface). In this case, the type declarations contribute to a single type and are themselves
aggregated to form a single declaration space (§15.2.7).

• A namespace declaration and a type declaration in the same declaration space can share the same
name as long as the type declaration has at least one type parameter (§8.8.2).

There are several different types of declaration spaces, as described in the following.

• Within all source files of a program, namespace-member-declarations with no enclosing namespace-
declaration are members of a single combined declaration space called the global declaration space.

• Within all source files of a program, namespace-member-declarations within namespace-declarations
that have the same fully qualified namespace name are members of a single combined declaration
space.

• Each compilation-unit and namespace-body has an alias declaration space. Each extern-alias-directive
and using-alias-directive of the compilation-unit or namespace-body contributes a member to the alias
declaration space (§14.5.2).

• Each non-partial class, struct, or interface declaration creates a new declaration space. Each partial
class, struct, or interface declaration contributes to a declaration space shared by all matching parts in
the same program (§16.2.3).Names are introduced into this declaration space through class-member-
declarations, struct-member-declarations, interface-member-declarations, or type-parameters. Except
for overloaded instance constructor declarations and static constructor declarations, a class or struct
cannot contain a member declaration with the same name as the class or struct. A class, struct, or
interface permits the declaration of overloaded methods and indexers. Furthermore, a class or struct
permits the declaration of overloaded instance constructors and operators. For example, a class,
struct, or interface may contain multiple method declarations with the same name, provided these
method declarations differ in their signature (§8.6). Note that base classes do not contribute to the
declaration space of a class, and base interfaces do not contribute to the declaration space of an
interface. Thus, a derived class or interface is allowed to declare a member with the same name as an
inherited member. Such a member is said to hide the inherited member.

• Each delegate declaration creates a new declaration space. Names are introduced into this declaration
space through formal parameters (fixed-parameters and parameter-arrays) and type-parameters.

• Each enumeration declaration creates a new declaration space. Names are introduced into this
declaration space through enum-member-declarations.

• Each method declaration, property declaration, property accessor declaration, indexer declaration,
indexer accessor declaration, operator declaration, instance constructor declaration and anonymous
function creates a new declaration space called a local variable declaration space. Names are
introduced into this declaration space through formal parameters (fixed-parameters and parameter-
arrays) and type-parameters. The set accessor for a property or an indexer introduces the valuename
as a formal parameter. The body of the function member or anonymous function, if any, is considered
to be nested within the local variable declaration space. It is an error for a local variable declaration
space and a nested local variable declaration space to contain elements with the same name. Thus,
within a nested declaration space it is not possible to declare a local variable or constant with the same
name as a local variable or constant in an enclosing declaration space. It is possible for two declaration
spaces to contain elements with the same name as long as neither declaration space contains the
other.

• Each block or switch-block, as well as a for, foreach, and using statement, creates a local variable
declaration space for local variables and local constants. Names are introduced into this declaration
space through local-variable-declarations and local-constant-declarations. Note that blocks that occur
as or within the body of a function member or anonymous function are nested within the local variable
declaration space declared by those functions for their parameters. Thus, it is an error to have, for
example, a method with a local variable and a parameter of the same name.

8 Basic concepts

39

• Each block or switch-block creates a separate declaration space for labels. Names are introduced into
this declaration space through labeled-statements, and the names are referenced through goto-
statements. The label declaration space of a block includes any nested blocks. Thus, within a nested
block it is not possible to declare a label with the same name as a label in an enclosing block.

The textual order in which names are declared is generally of no significance. In particular, textual order is
not significant for the declaration and use of namespaces, constants, methods, properties, events,
indexers, operators, instance constructors, finalizers, static constructors, and types. Declaration order is
significant in the following ways:

• Declaration order for field declarations determines the order in which their initializers (if any) are
executed (§15.5.6.2, §15.5.6.3).

• Local variables shall be defined before they are used (§8.7).

• Declaration order for enum member declarations (§19.4) is significant when constant-expression values
are omitted.

[Example: The declaration space of a namespace is “open ended”, and two namespace declarations with
the same fully qualified name contribute to the same declaration space. For example

namespace Megacorp.Data
{
 class Customer
 {
 …
 }
}

namespace Megacorp.Data
{
 class Order
 {
 …
 }
}

The two namespace declarations above contribute to the same declaration space, in this case declaring
two classes with the fully qualified names Megacorp.Data.Customer and Megacorp.Data.Order.
Because the two declarations contribute to the same declaration space, it would have caused a compile-
time error if each contained a declaration of a class with the same name. end example]

[Note: As specified above, the declaration space of a block includes any nested blocks. Thus, in the
following example, the F and G methods result in a compile-time error because the name i is declared in
the outer block and cannot be redeclared in the inner block. However, the H and I methods are valid since
the two i’s are declared in separate non-nested blocks.

class A
{
 void F() {
 int i = 0;
 if (true) {
 int i = 1;
 }
 }

 void G() {
 if (true) {
 int i = 0;
 }
 int i = 1;
 }

ECMA-334

40

 void H() {
 if (true) {
 int i = 0;
 }
 if (true) {
 int i = 1;
 }
 }

 void I() {
 for (int i = 0; i < 10; i++)
 H();
 for (int i = 0; i < 10; i++)
 H();
 }
}

end note]

8.4 Members

8.4.1 General
Namespaces and types have members. [Note: The members of an entity are generally available through
the use of a qualified name that starts with a reference to the entity, followed by a “.” token, followed by
the name of the member. end note]

Members of a type are either declared in the type declaration or inherited from the base class of the type.
When a type inherits from a base class, all members of the base class, except instance constructors,
finalizers, and static constructors become members of the derived type. The declared accessibility of a base
class member does not control whether the member is inherited—inheritance extends to any member that
isn’t an instance constructor, static constructor, or finalizer. [Note: However, an inherited member might
not be accessible in a derived type, for example because of its declared accessibility (§8.5.2). end note]

8.4.2 Namespace members
Namespaces and types that have no enclosing namespace are members of the global namespace. This
corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a namespace are members of that namespace. This corresponds
directly to the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal
namespaces, and namespace names are always publicly accessible.

8.4.3 Struct members
The members of a struct are the members declared in the struct and the members inherited from the
struct’s direct base class System.ValueType and the indirect base class object.

The members of a simple type correspond directly to the members of the struct type aliased by the simple
type (§9.3.5).

8.4.4 Enumeration members
The members of an enumeration are the constants declared in the enumeration and the members
inherited from the enumeration’s direct base class System.Enum and the indirect base classes
System.ValueType and object.

8.4.5 Class members
The members of a class are the members declared in the class and the members inherited from the base
class (except for class object which has no base class). The members inherited from the base class include
the constants, fields, methods, properties, events, indexers, operators, and types of the base class, but not

8 Basic concepts

41

the instance constructors, finalizers, and static constructors of the base class. Base class members are
inherited without regard to their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties, events, indexers,
operators, instance constructors, finalizers, static constructors, and types.

The members of object (§9.2.3) and string (§9.2.5) correspond directly to the members of the class
types they alias.

8.4.6 Interface members
The members of an interface are the members declared in the interface and in all base interfaces of the
interface. [Note: The members in class object are not, strictly speaking, members of any interface (§18.4).
However, the members in class object are available via member lookup in any interface type (§12.5). end
note]

8.4.7 Array members
The members of an array are the members inherited from class System.Array.

8.4.8 Delegate members
A delegate inherits members from class System.Delegate. Additionally, it contains a method named
Invoke with the same return type and formal parameter list specified in its declaration (§20.2). An
invocation of this method shall behave identically to a delegate invocation (§20.6) on the same delegate
instance.

An implementation may provide additional members, either through inheritance or directly in the delegate
itself.

8.5 Member access

8.5.1 General
Declarations of members allow control over member access. The accessibility of a member is established
by the declared accessibility (§8.5.2) of the member combined with the accessibility of the immediately
containing type, if any.

When access to a particular member is allowed, the member is said to be accessible. Conversely, when
access to a particular member is disallowed, the member is said to be inaccessible. Access to a member is
permitted when the textual location in which the access takes place is included in the accessibility domain
(§8.5.3) of the member.

8.5.2 Declared accessibility
The declared accessibility of a member can be one of the following:

• Public, which is selected by including a public modifier in the member declaration. The intuitive
meaning of public is “access not limited”.

• Protected, which is selected by including a protected modifier in the member declaration. The
intuitive meaning of protected is “access limited to the containing class or types derived from the
containing class”.

• Internal, which is selected by including an internal modifier in the member declaration. The intuitive
meaning of internal is “access limited to this assembly”.

• Protected internal, which is selected by including both a protected and an internal modifier in the
member declaration. The intuitive meaning of protected internal is “accessible within this
assembly as well as types derived from the containing class”.

• Private, which is selected by including a private modifier in the member declaration. The intuitive
meaning of private is “access limited to the containing type”.

ECMA-334

42

Depending on the context in which a member declaration takes place, only certain types of declared
accessibility are permitted. Furthermore, when a member declaration does not include any access
modifiers, the context in which the declaration takes place determines the default declared accessibility.

• Namespaces implicitly have public declared accessibility. No access modifiers are allowed on
namespace declarations.

• Types declared directly in compilation units or namespaces (as opposed to within other types) can
have public or internal declared accessibility and default to internal declared accessibility.

• Class members can have any of the five kinds of declared accessibility and default to private declared
accessibility. [Note: A type declared as a member of a class can have any of the five kinds of declared
accessibility, whereas a type declared as a member of a namespace can have only public or
internal declared accessibility. end note]

• Struct members can have public, internal, or private declared accessibility and default to
private declared accessibility because structs are implicitly sealed. Struct members introduced in a
struct (that is, not inherited by that struct) cannot have protected or protected internal
declared accessibility. [Note: A type declared as a member of a struct can have public, internal, or
private declared accessibility, whereas a type declared as a member of a namespace can have only
public or internal declared accessibility. end note]

• Interface members implicitly have public declared accessibility. No access modifiers are allowed on
interface member declarations.

• Enumeration members implicitly have public declared accessibility. No access modifiers are allowed
on enumeration member declarations.

8.5.3 Accessibility domains
The accessibility domain of a member consists of the (possibly disjoint) sections of program text in which
access to the member is permitted. For purposes of defining the accessibility domain of a member, a
member is said to be top-level if it is not declared within a type, and a member is said to be nested if it is
declared within another type. Furthermore, the program text of a program is defined as all program text
contained in all source files of the program, and the program text of a type is defined as all program text
contained in the type-declarations of that type (including, possibly, types that are nested within the type).

The accessibility domain of a predefined type (such as object, int, or double) is unlimited.

The accessibility domain of a top-level unbound type T (§9.4.4) that is declared in a program P is defined as
follows:

• If the declared accessibility of T is public, the accessibility domain of T is the program text of P and
any program that references P.

• If the declared accessibility of T is internal, the accessibility domain of T is the program text of P.

[Note: From these definitions, it follows that the accessibility domain of a top-level unbound type is always
at least the program text of the program in which that type is declared. end note]

The accessibility domain for a constructed type T<A1, …,AN> is the intersection of the accessibility
domain of the unbound generic type T and the accessibility domains of the type arguments A1, …,AN.

The accessibility domain of a nested member M declared in a type T within a program P, is defined as
follows (noting that M itself might possibly be a type):

• If the declared accessibility of M is public, the accessibility domain of M is the accessibility domain
of T.

• If the declared accessibility of M is protected internal, let D be the union of the program text of P
and the program text of any type derived from T, which is declared outside P. The accessibility domain
of M is the intersection of the accessibility domain of T with D.

8 Basic concepts

43

• If the declared accessibility of M is protected, let D be the union of the program text of T and the
program text of any type derived from T. The accessibility domain of M is the intersection of the
accessibility domain of T with D.

• If the declared accessibility of M is internal, the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of P.

• If the declared accessibility of M is private, the accessibility domain of M is the program text of T.

[Note: From these definitions it follows that the accessibility domain of a nested member is always at least
the program text of the type in which the member is declared. Furthermore, it follows that the accessibility
domain of a member is never more inclusive than the accessibility domain of the type in which the
member is declared. end note]

[Note: In intuitive terms, when a type or member M is accessed, the following steps are evaluated to ensure
that the access is permitted:

• First, if M is declared within a type (as opposed to a compilation unit or a namespace), a compile-time
error occurs if that type is not accessible.

• Then, if M is public, the access is permitted.

• Otherwise, if M is protected internal, the access is permitted if it occurs within the program in
which M is declared, or if it occurs within a class derived from the class in which M is declared and takes
place through the derived class type (§8.5.4).

• Otherwise, if M is protected, the access is permitted if it occurs within the class in which M is declared,
or if it occurs within a class derived from the class in which M is declared and takes place through the
derived class type (§8.5.4).

• Otherwise, if M is internal, the access is permitted if it occurs within the program in which M is
declared.

• Otherwise, if M is private, the access is permitted if it occurs within the type in which M is declared.

• Otherwise, the type or member is inaccessible, and a compile-time error occurs.

end note]

[Example: In the following code

public class A
{
 public static int X;
 internal static int Y;
 private static int Z;
}

internal class B
{
 public static int X;
 internal static int Y;
 private static int Z;

 public class C
 {
 public static int X;
 internal static int Y;
 private static int Z;
 }

 private class D
 {
 public static int X;
 internal static int Y;
 private static int Z;
 }
}

the classes and members have the following accessibility domains:

ECMA-334

44

• The accessibility domain of A and A.X is unlimited.

• The accessibility domain of A.Y, B, B.X, B.Y, B.C, B.C.X, and B.C.Y is the program text of the
containing program.

• The accessibility domain of A.Z is the program text of A.

• The accessibility domain of B.Z and B.D is the program text of B, including the program text of B.C
and B.D.

• The accessibility domain of B.C.Z is the program text of B.C.

• The accessibility domain of B.D.X and B.D.Y is the program text of B, including the program text of
B.C and B.D.

• The accessibility domain of B.D.Z is the program text of B.D.

As the example illustrates, the accessibility domain of a member is never larger than that of a containing
type. For example, even though all X members have public declared accessibility, all but A.X have
accessibility domains that are constrained by a containing type. end example]

As described in §8.4, all members of a base class, except for instance constructors, finalizers, and static
constructors, are inherited by derived types. This includes even private members of a base class. However,
the accessibility domain of a private member includes only the program text of the type in which the
member is declared. [Example: In the following code

class A
{
 int x;
 static void F(B b) {
 b.x = 1; // Ok
 }
}

class B: A
{
 static void F(B b) {
 b.x = 1; // Error, x not accessible
 }
}

the B class inherits the private member x from the A class. Because the member is private, it is only
accessible within the class-body of A. Thus, the access to b.x succeeds in the A.F method, but fails in the
B.F method. end example]

8.5.4 Protected access
When a protected instance member is accessed outside the program text of the class in which it is
declared, and when a protected internal instance member is accessed outside the program text of the
program in which it is declared, the access shall take place within a class declaration that derives from the
class in which it is declared. Furthermore, the access is required to take place through an instance of that
derived class type or a class type constructed from it. This restriction prevents one derived class from
accessing protected members of other derived classes, even when the members are inherited from the
same base class.

Let B be a base class that declares a protected instance member M, and let D be a class that derives from B.
Within the class-body of D, access to M can take one of the following forms:

• An unqualified type-name or primary-expression of the form M.

• A primary-expression of the form E.M, provided the type of E is T or a class derived from T, where T is
the class D, or a class type constructed from D.

• A primary-expression of the form base.M.

In addition to these forms of access, a derived class can access a protected instance constructor of a base
class in a constructor-initializer (§15.11.2).

[Example: In the following code

8 Basic concepts

45

public class A
{
 protected int x;

 static void F(A a, B b) {
 a.x = 1; // Ok
 b.x = 1; // Ok
 }
}

public class B: A
{
 static void F(A a, B b) {
 a.x = 1; // Error, must access through instance of B
 b.x = 1; // Ok
 }
}

within A, it is possible to access x through instances of both A and B, since in either case the access takes
place through an instance of A or a class derived from A. However, within B, it is not possible to access x
through an instance of A, since A does not derive from B. end example]

[Example:

class C<T>
{
 protected T x;
}

class D<T>: C<T>
{
 static void F() {
 D<T> dt = new D<T>();
 D<int> di = new D<int>();
 D<string> ds = new D<string>();
 dt.x = default(T);
 di.x = 123;
 ds.x = "test";
 }
}

Here, the three assignments to x are permitted because they all take place through instances of class types
constructed from the generic type. end example]

[Note: The accessibility domain (§8.5.3) of a protected member declared in a generic class includes the
program text of all class declarations derived from any type constructed from that generic class. In the
example:

class C<T>

{

 protected static T x;

}

class D: C<string>

{

 static void Main() {

 C<int>.x = 5;

 }

}

the reference to protected member C<int>.x in D is valid even though the class D derives from
C<string>. end note]

ECMA-334

46

8.5.5 Accessibility constraints
Several constructs in the C# language require a type to be at least as accessible as a member or another
type. A type T is said to be at least as accessible as a member or type M if the accessibility domain of T is a
superset of the accessibility domain of M. In other words, T is at least as accessible as M if T is accessible in
all contexts in which M is accessible.

The following accessibility constraints exist:

• The direct base class of a class type shall be at least as accessible as the class type itself.

• The explicit base interfaces of an interface type shall be at least as accessible as the interface type
itself.

• The return type and parameter types of a delegate type shall be at least as accessible as the delegate
type itself.

• The type of a constant shall be at least as accessible as the constant itself.

• The type of a field shall be at least as accessible as the field itself.

• The return type and parameter types of a method shall be at least as accessible as the method itself.

• The type of a property shall be at least as accessible as the property itself.

• The type of an event shall be at least as accessible as the event itself.

• The type and parameter types of an indexer shall be at least as accessible as the indexer itself.

• The return type and parameter types of an operator shall be at least as accessible as the operator
itself.

• The parameter types of an instance constructor shall be at least as accessible as the instance
constructor itself.

[Example: In the following code

class A {…}

public class B: A {…}

the B class results in a compile-time error because A is not at least as accessible as B. end example]

[Example: Likewise, in the following code

class A {…}

public class B
{
 A F() {…}

 internal A G() {…}

 public A H() {…}
}

the H method in B results in a compile-time error because the return type A is not at least as accessible as
the method. end example]

8.6 Signatures and overloading
Methods, instance constructors, indexers, and operators are characterized by their signatures:

• The signature of a method consists of the name of the method, the number of type parameters, and
the type and parameter-passing mode (value, reference, or output) of each of its formal parameters,
considered in the order left to right. For these purposes, any type parameter of the method that occurs
in the type of a formal parameter is identified not by its name, but by its ordinal position in the type
parameter list of the method. The signature of a method specifically does not include the return type,
parameter names, type parameter names, type parameter constraints, the params or this parameter
modifiers, nor whether parameters are required or optional.

• The signature of an instance constructor consists of the type and parameter-passing mode (value,
reference, or output) of each of its formal parameters, considered in the order left to right. The

8 Basic concepts

47

signature of an instance constructor specifically does not include the params modifier that may be
specified for the right-most parameter.

• The signature of an indexer consists of the type of each of its formal parameters, considered in the
order left to right. The signature of an indexer specifically does not include the element type, nor does
it include the params modifier that may be specified for the right-most parameter.

• The signature of an operator consists of the name of the operator and the type of each of its formal
parameters, considered in the order left to right. The signature of an operator specifically does not
include the result type.

• The signature of a conversion operator consists of the source type and the target type. The implicit or
explicit classification of a conversion operator is not part of the signature.

• Two signatures of the same member kind (method, instance constructor, indexer or operator) are
considered to be the same signatures if they have the same name, number of type parameters,
number of parameters, and parameter-passing modes, and an identity conversion exists between the
types of their corresponding parameters (§11.2.2).

Signatures are the enabling mechanism for overloading of members in classes, structs, and interfaces:

• Overloading of methods permits a class, struct, or interface to declare multiple methods with the same
name, provided their signatures are unique within that class, struct, or interface.

• Overloading of instance constructors permits a class or struct to declare multiple instance constructors,
provided their signatures are unique within that class or struct.

• Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided their
signatures are unique within that class, struct, or interface.

• Overloading of operators permits a class or struct to declare multiple operators with the same name,
provided their signatures are unique within that class or struct.

Although out and ref parameter modifiers are considered part of a signature, members declared in a
single type cannot differ in signature solely by ref and out. A compile-time error occurs if two members
are declared in the same type with signatures that would be the same if all parameters in both methods
with out modifiers were changed to ref modifiers. For other purposes of signature matching (e.g., hiding
or overriding), ref and out are considered part of the signature and do not match each other. [Note: This
restriction is to allow C# programs to be easily translated to run on the Common Language Infrastructure
(CLI), which does not provide a way to define methods that differ solely in ref and out. end note]

The types object and dynamic are not distinguished when comparing signatures. Therefore members
declared in a single type whose signatures differ only by replacing object with dynamic are not allowed.

[Example: The following example shows a set of overloaded method declarations along with their
signatures.

interface ITest
{
 void F(); // F()
 void F(int x); // F(int)
 void F(ref int x); // F(ref int)
 void F(out int x); // F(out int) error

 void F(object o); // F(object)
 void F(dynamic d); // error.

 void F(int x, int y); // F(int, int)
 int F(string s); // F(string)
 int F(int x); // F(int) error

 void F(string[] a); // F(string[])
 void F(params string[] a); // F(string[]) error

 void F<S>(S s); // F<`0>(`0)
 void F<T>(T t); // F<`0>(`0) error

ECMA-334

48

 void F<S,T>(S s); // F<`0,`1>(`0)
 void F<T,S>(S s); // F<`0,`1>(`1) ok
}

Note that any ref and out parameter modifiers (§15.6.2) are part of a signature. Thus, F(int), F(ref
int), and F(out int) are all unique signatures. However, F(ref int) and F(out int) cannot be
declared within the same interface because their signatures differ solely by ref and out. Also, note that
the return type and the params modifier are not part of a signature, so it is not possible to overload solely
based on return type or on the inclusion or exclusion of the params modifier. As such, the declarations of
the methods F(int) and F(params string[]) identified above, result in a compile-time error. end
example]

8.7 Scopes

8.7.1 General
The scope of a name is the region of program text within which it is possible to refer to the entity declared
by the name without qualification of the name. Scopes can be nested, and an inner scope may redeclare
the meaning of a name from an outer scope. (This does not, however, remove the restriction imposed by
§8.3 that within a nested block it is not possible to declare a local variable or local constant with the same
name as a local variable or local constant in an enclosing block.) The name from the outer scope is then
said to be hidden in the region of program text covered by the inner scope, and access to the outer name is
only possible by qualifying the name.

• The scope of a namespace member declared by a namespace-member-declaration (§14.6) with no
enclosing namespace-declaration is the entire program text.

• The scope of a namespace member declared by a namespace-member-declaration within a
namespace-declaration whose fully qualified name is N, is the namespace-body of every namespace-
declaration whose fully qualified name is N or starts with N, followed by a period.

• The scope of a name defined by an extern-alias-directive (§14.4) extends over the using-directives,
global-attributes and namespace-member-declarations of its immediately containing compilation-unit
or namespace-body. An extern-alias-directive does not contribute any new members to the underlying
declaration space. In other words, an extern-alias-directive is not transitive, but, rather, affects only the
compilation-unit or namespace-body in which it occurs.

• The scope of a name defined or imported by a using-directive (§14.5) extends over the global-
attributes and namespace-member-declarations of the compilation-unit or namespace-body in which
the using-directive occurs. A using-directive may make zero or more namespace or type names
available within a particular compilation-unit or namespace-body, but does not contribute any new
members to the underlying declaration space. In other words, a using-directive is not transitive but
rather affects only the compilation-unit or namespace-body in which it occurs.

• The scope of a type parameter declared by a type-parameter-list on a class-declaration (§15.2) is the
class-base, type-parameter-constraints-clauses, and class-body of that class-declaration. [Note: Unlike
members of a class, this scope does not extend to derived classes. end note]

• The scope of a type parameter declared by a type-parameter-list on a struct-declaration (§16.2) is the
struct-interfaces, type-parameter-constraints-clauses, and struct-body of that struct-declaration.

• The scope of a type parameter declared by a type-parameter-list on an interface-declaration (§18.2) is
the interface-base, type-parameter-constraints-clauses, and interface-body of that interface-
declaration.

• The scope of a type parameter declared by a type-parameter-list on a delegate-declaration (§20.2) is
the return-type, formal-parameter-list, and type-parameter-constraints-clauses of that delegate-
declaration.

• The scope of a type parameter declared by a type-parameter-list on a method-declaration (§15.6.1) is
the method-declaration.

8 Basic concepts

49

• The scope of a member declared by a class-member-declaration (§15.3.1) is the class-body in which the
declaration occurs. In addition, the scope of a class member extends to the class-body of those derived
classes that are included in the accessibility domain (§8.5.3) of the member.

• The scope of a member declared by a struct-member-declaration (§16.3) is the struct-body in which the
declaration occurs.

• The scope of a member declared by an enum-member-declaration (§19.4) is the enum-body in which
the declaration occurs.

• The scope of a parameter declared in a method-declaration (§15.6) is the method-body of that method-
declaration.

• The scope of a parameter declared in an indexer-declaration (§15.9) is the accessor-declarations of that
indexer-declaration.

• The scope of a parameter declared in an operator-declaration (§15.10) is the block of that operator-
declaration.

• The scope of a parameter declared in a constructor-declaration (§15.11) is the constructor-initializer
and block of that constructor-declaration.

• The scope of a parameter declared in a lambda-expression (§12.16) is the lambda-expression-body of
that lambda-expression.

• The scope of a parameter declared in an anonymous-method-expression (§12.16) is the block of that
anonymous-method-expression.

• The scope of a label declared in a labeled-statement (§13.5) is the block in which the declaration
occurs.

• The scope of a local variable declared in a local-variable-declaration (§13.6.2) is the block in which the
declaration occurs.

• The scope of a local variable declared in a switch-block of a switch statement (§13.8.3) is the switch-
block.

• The scope of a local variable declared in a for-initializer of a for statement (§13.9.4) is the for-
initializer, the for-condition, the for-iterator, and the contained statement of the for statement.

• The scope of a local constant declared in a local-constant-declaration (§13.6.3) is the block in which the
declaration occurs. It is a compile-time error to refer to a local constant in a textual position that
precedes its constant-declarator.

• The scope of a variable declared as part of a foreach-statement, using-statement, lock-statement or
query-expression is determined by the expansion of the given construct.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the
member in a textual position that precedes the declaration of the member. [Example:

class A
{
 void F() {
 i = 1;
 }
 int i = 0;
}

Here, it is valid for F to refer to i before it is declared. end example]

Within the scope of a local variable, it is a compile-time error to refer to the local variable in a textual
position that precedes the local-variable-declarator of the local variable. [Example:

class A
{
 int i = 0;

 void F() {
 i = 1; // Error, use precedes declaration
 int i;
 i = 2;
 }

ECMA-334

50

 void G() {
 int j = (j = 1); // Valid
 }

 void H() {
 int a = 1, b = ++a; // Valid
 }
}

In the F method above, the first assignment to i specifically does not refer to the field declared in the
outer scope. Rather, it refers to the local variable and it results in a compile-time error because it textually
precedes the declaration of the variable. In the G method, the use of j in the initializer for the declaration
of j is valid because the use does not precede the local-variable-declarator. In the H method, a subsequent
local-variable-declarator correctly refers to a local variable declared in an earlier local-variable-declarator
within the same local-variable-declaration. end example]

[Note: The scoping rules for local variables and local constants are designed to guarantee that the meaning
of a name used in an expression context is always the same within a block. If the scope of a local variable
were to extend only from its declaration to the end of the block, then in the example above, the first
assignment would assign to the instance variable and the second assignment would assign to the local
variable, possibly leading to compile-time errors if the statements of the block were later to be
rearranged.)

The meaning of a name within a block may differ based on the context in which the name is used. In the
example

using System;

class A {}

class Test
{
 static void Main() {
 string A = "hello, world";
 string s = A; // expression context

 Type t = typeof(A); // type context

 Console.WriteLine(s); // writes "hello, world"
 Console.WriteLine(t); // writes "A"
 }
}

the name A is used in an expression context to refer to the local variable A and in a type context to refer to
the class A. end note]

8.7.2 Name hiding

8.7.2.1 General
The scope of an entity typically encompasses more program text than the declaration space of the entity.
In particular, the scope of an entity may include declarations that introduce new declaration spaces
containing entities of the same name. Such declarations cause the original entity to become hidden.
Conversely, an entity is said to be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance.
The characteristics of the two types of hiding are described in the following subclauses.

8.7.2.2 Hiding through nesting
Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as a
result of nesting types within classes or structs, and as a result of parameter, local variable, and local
constant declarations. [Example: In the following code

class A
{
 int i = 0;

8 Basic concepts

51

 void F() {
 int i = 1;
 }

 void G() {
 i = 1;
 }
}

within the F method, the instance variable i is hidden by the local variable i, but within the G method, i
still refers to the instance variable. end example]

When a name in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that
name. [Example: In the following code

class Outer
{
 static void F(int i) {}

 static void F(string s) {}

 class Inner
 {
 static void F(long l) {}
 void G() {
 F(1); // Invokes Outer.Inner.F
 F("Hello"); // Error
 }

 }
}

the call F(1) invokes the F declared in Inner because all outer occurrences of F are hidden by the inner
declaration. For the same reason, the call F("Hello") results in a compile-time error. end example]

8.7.2.3 Hiding through inheritance
Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from
base classes. This type of name hiding takes one of the following forms:

• A constant, field, property, event, or type introduced in a class or struct hides all base class members
with the same name.

• A method introduced in a class or struct hides all non-method base class members with the same
name, and all base class methods with the same signature (§8.6).

• An indexer introduced in a class or struct hides all base class indexers with the same signature (§8.6) .

The rules governing operator declarations (§15.10) make it impossible for a derived class to declare an
operator with the same signature as an operator in a base class. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding a visible name from an inherited scope causes a
warning to be reported. [Example: In the following code

class Base
{
 public void F() {}
}

class Derived: Base
{
 public void F() {} // Warning, hiding an inherited name
}

the declaration of F in Derived causes a warning to be reported. Hiding an inherited name is specifically
not an error, since that would preclude separate evolution of base classes. For example, the above
situation might have come about because a later version of Base introduced an F method that wasn’t
present in an earlier version of the class. end example]

ECMA-334

52

The warning caused by hiding an inherited name can be eliminated through use of the new modifier:
[Example:

class Base
{
 public void F() {}
}

class Derived: Base
{
 new public void F() {}
}

The new modifier indicates that the F in Derived is “new”, and that it is indeed intended to hide the
inherited member. end example]

A declaration of a new member hides an inherited member only within the scope of the new member.
[Example:

class Base
{
 public static void F() {}
}

class Derived: Base
{
 new private static void F() {} // Hides Base.F in Derived only
}

class MoreDerived: Derived
{
 static void G() { F(); } // Invokes Base.F
}

In the example above, the declaration of F in Derived hides the F that was inherited from Base, but since
the new F in Derived has private access, its scope does not extend to MoreDerived. Thus, the call F() in
MoreDerived.G is valid and will invoke Base.F. end example]

8.8 Namespace and type names

8.8.1 General
Several contexts in a C# program require a namespace-name or a type-name to be specified.

namespace-name:
namespace-or-type-name

type-name:
namespace-or-type-name

namespace-or-type-name:
identifier type-argument-listopt

namespace-or-type-name . identifier type-argument-listopt
qualified-alias-member

A namespace-name is a namespace-or-type-name that refers to a namespace.

Following resolution as described below, the namespace-or-type-name of a namespace-name shall refer to
a namespace, or otherwise a compile-time error occurs. No type arguments (§9.4.2) can be present in a
namespace-name (only types can have type arguments).

A type-name is a namespace-or-type-name that refers to a type. Following resolution as described below,
the namespace-or-type-name of a type-name shall refer to a type, or otherwise a compile-time error
occurs.

If the namespace-or-type-name is a qualified-alias-member its meaning is as described in §14.8.1.
Otherwise, a namespace-or-type-name has one of four forms:

8 Basic concepts

53

• I
• I<A1, …, AK>

• N.I
• N.I<A1, …, AK>

where I is a single identifier, N is a namespace-or-type-name and <A1, …, AK> is an optional type-
argument-list. When no type-argument-list is specified, consider K to be zero.

The meaning of a namespace-or-type-name is determined as follows:

• If the namespace-or-type-name is a qualified-alias-member, the meaning is as specified in §14.8.1.

• Otherwise, if the namespace-or-type-name is of the form I or of the form I<A1, …, AK>:

o If K is zero and the namespace-or-type-name appears within a generic method declaration (§15.6)
but outside the attributes of its method-header, and if that declaration includes a type parameter
(§15.2.3) with name I, then the namespace-or-type-name refers to that type parameter.

o Otherwise, if the namespace-or-type-name appears within a type declaration, then for each
instance type T (§15.3.2), starting with the instance type of that type declaration and continuing
with the instance type of each enclosing class or struct declaration (if any):

• If K is zero and the declaration of T includes a type parameter with name I, then the
namespace-or-type-name refers to that type parameter.

• Otherwise, if the namespace-or-type-name appears within the body of the type declaration,
and T or any of its base types contain a nested accessible type having name I and K type
parameters, then the namespace-or-type-name refers to that type constructed with the given
type arguments. If there is more than one such type, the type declared within the more
derived type is selected. [Note: Non-type members (constants, fields, methods, properties,
indexers, operators, instance constructors, finalizers, and static constructors) and type
members with a different number of type parameters are ignored when determining the
meaning of the namespace-or-type-name. end note]

o Otherwise, for each namespace N, starting with the namespace in which the namespace-or-type-
name occurs, continuing with each enclosing namespace (if any), and ending with the global
namespace, the following steps are evaluated until an entity is located:

• If K is zero and I is the name of a namespace in N, then:

o If the location where the namespace-or-type-name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an extern-alias-directive or
using-alias-directive that associates the name I with a namespace or type, then the
namespace-or-type-name is ambiguous and a compile-time error occurs.

o Otherwise, the namespace-or-type-name refers to the namespace named I in N.

• Otherwise, if N contains an accessible type having name I and K type parameters, then:

o If K is zero and the location where the namespace-or-type-name occurs is enclosed by a
namespace declaration for N and the namespace declaration contains an extern-alias-
directive or using-alias-directive that associates the name I with a namespace or type,
then the namespace-or-type-name is ambiguous and a compile-time error occurs.

o Otherwise, the namespace-or-type-name refers to the type constructed with the given
type arguments.

• Otherwise, if the location where the namespace-or-type-name occurs is enclosed by a
namespace declaration for N:

ECMA-334

54

o If K is zero and the namespace declaration contains an extern-alias-directive or using-alias-
directive that associates the name I with an imported namespace or type, then the
namespace-or-type-name refers to that namespace or type.

o Otherwise, if the namespaces imported by the using-namespace-directives of the
namespace declaration contain exactly one type having name I and K type parameters,
then the namespace-or-type-name refers to that type constructed with the given type
arguments.

o Otherwise, if the namespaces imported by the using-namespace-directives of the
namespace declaration contain more than one type having name I and K type parameters,
then the namespace-or-type-name is ambiguous and an error occurs.

o Otherwise, the namespace-or-type-name is undefined and a compile-time error occurs.

• Otherwise, the namespace-or-type-name is of the form N.I or of the form N.I<A1, …, AK>. N is first
resolved as a namespace-or-type-name. If the resolution of N is not successful, a compile-time error
occurs. Otherwise, N.I or N.I<A1, …, AK> is resolved as follows:

o If K is zero and N refers to a namespace and N contains a nested namespace with name I, then the
namespace-or-type-name refers to that nested namespace.

o Otherwise, if N refers to a namespace and N contains an accessible type having name I and K type
parameters, then the namespace-or-type-name refers to that type constructed with the given type
arguments.

o Otherwise, if N refers to a (possibly constructed) class or struct type and N or any of its base classes
contain a nested accessible type having name I and K type parameters, then the namespace-or-
type-name refers to that type constructed with the given type arguments. If there is more than one
such type, the type declared within the more derived type is selected. [Note: If the meaning of N.I
is being determined as part of resolving the base class specification of N then the direct base class
of N is considered to be object (§15.2.4.2). end note]

o Otherwise, N.I is an invalid namespace-or-type-name, and a compile-time error occurs.

A namespace-or-type-name is permitted to reference a static class (§15.2.2.4) only if

• The namespace-or-type-name is the T in a namespace-or-type-name of the form T.I, or

• The namespace-or-type-name is the T in a typeof-expression (§12.7.12) of the form typeof(T)

8.8.2 Unqualified names
Every namespace declaration and type declaration has an unqualified name determined as follows:

• For a namespace declaration, the unqualified name is the qualified-identifier specified in the
declaration.

• For a type declaration with no type-parameter-list, the unqualified name is the identifier specified in
the declaration.

• For a type declaration with K type parameters, the unqualified name is the identifier specified in the
declaration, followed by the generic-dimension-specifier (§12.7.12) for K type parameters.

8.8.3 Fully qualified names
Every namespace and type declaration has a fully qualified name, which uniquely identifies the namespace
or type declaration amongst all others within the program. The fully qualified name of a namespace or type
declaration with unqualified name N is determined as follows:

• If N is a member of the global namespace, its fully qualified name is N.

• Otherwise, its fully qualified name is S.N, where S is the fully qualified name of the namespace or type
declaration in which N is declared.

8 Basic concepts

55

In other words, the fully qualified name of N is the complete hierarchical path of identifiers and generic-
dimension-specifiers that lead to N, starting from the global namespace. Because every member of a
namespace or type shall have a unique name, it follows that the fully qualified name of a namespace or
type declaration is always unique. It is a compile-time error for the same fully qualified name to refer to
two distinct entities. In particular:

• It is an error for both a namespace declaration and a type declaration to have the same fully qualified
name.

• It is an error for two different kinds of type declarations to have the same fully qualified name (for
example, if both a struct and class declaration have the same fully qualified name).

• It is an error for a type declaration without the partial modifier to have the same fully qualified
name as another type declaration (§15.2.7).

[Example: The example below shows several namespace and type declarations along with their associated
fully qualified names.

class A {} // A

namespace X // X
{
 class B // X.B
 {
 class C {} // X.B.C
 }

 namespace Y // X.Y
 {
 class D {} // X.Y.D
 }
}

namespace X.Y // X.Y
{
 class E {} // X.Y.E

 class G<T> { // X.Y.G<>
 class H {} // X.Y.G<>.H
 }

 class G<S,T> { // X.Y.G<,>
 class H<U> {} // X.Y.G<,>.H<>
 }
}

end example]

8.9 Automatic memory management
C# employs automatic memory management, which frees developers from manually allocating and freeing
the memory occupied by objects. Automatic memory management policies are implemented by a garbage
collector. The memory management life cycle of an object is as follows:

1. When the object is created, memory is allocated for it, the constructor is run, and the object is
considered live.

2. If neither the object nor any of its instance fields can be accessed by any possible continuation of
execution, other than the running of finalizers, the object is considered no longer in use and it
becomes eligible for finalization. [Note: The C# compiler and the garbage collector might choose to
analyze code to determine which references to an object might be used in the future. For instance, if a
local variable that is in scope is the only existing reference to an object, but that local variable is never
referred to in any possible continuation of execution from the current execution point in the
procedure, the garbage collector might (but is not required to) treat the object as no longer in use. end
note]

ECMA-334

56

3. Once the object is eligible for finalization, at some unspecified later time the finalizer (§15.13) (if any)
for the object is run. Under normal circumstances the finalizer for the object is run once only, though
implementation-specific APIs may allow this behavior to be overridden.

4. Once the finalizer for an object is run, if neither the object nor any of its instance fields can be accessed
by any possible continuation of execution, including the running of finalizers, the object is considered
inaccessible and the object becomes eligible for collection. [Note: An object which could previously not
be accessed may become accessible again due to its finalizer. An example of this is provided below. end
note]

5. Finally, at some time after the object becomes eligible for collection, the garbage collector frees the
memory associated with that object.

The garbage collector maintains information about object usage, and uses this information to make
memory management decisions, such as where in memory to locate a newly created object, when to
relocate an object, and when an object is no longer in use or inaccessible.

Like other languages that assume the existence of a garbage collector, C# is designed so that the garbage
collector might implement a wide range of memory management policies. C# requires that finalizers be run
at some time between the time an object is eligible and the time that the application exits, but specifies
neither a time constraint within that span, nor an order in which finalizers are run.

The behavior of the garbage collector can be controlled, to some degree, via static methods on the class
System.GC. This class can be used to request a collection to occur, finalizers to be run (or not run), and so
forth.

[Example: Since the garbage collector is allowed wide latitude in deciding when to collect objects and run
finalizers, a conforming implementation might produce output that differs from that shown by the
following code. The program

using System;

class A
{
 ~A() {
 Console.WriteLine("Finalize instance of A");
 }
}

class B
{
 object Ref;
 public B(object o) {
 Ref = o;
 }
 ~B() {
 Console.WriteLine("Finalize instance of B");
 }
}

class Test
{
 static void Main() {
 B b = new B(new A());
 b = null;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
}

creates an instance of class A and an instance of class B. These objects become eligible for garbage
collection when the variable b is assigned the value null, since after this time it is impossible for any user-
written code to access them. The output could be either

8 Basic concepts

57

Finalize instance of A
Finalize instance of B

or

Finalize instance of B
Finalize instance of A

because the language imposes no constraints on the order in which objects are garbage collected.

In subtle cases, the distinction between “eligible for finalization” and “eligible for collection” can be
important. For example,

using System;

class A
{
 ~A() {
 Console.WriteLine("Finalize instance of A");
 }
 public void F() {
 Console.WriteLine("A.F");
 Test.RefA = this;
 }
}

class B
{
 public A Ref;
 ~B() {
 Console.WriteLine("Finalize instance of B");
 Ref.F();
 }
}

class Test
{
 public static A RefA;
 public static B RefB;
 static void Main() {
 RefB = new B();
 RefA = new A();
 RefB.Ref = RefA;
 RefB = null;
 RefA = null;

 // A and B now eligible for finalization
 GC.Collect();
 GC.WaitForPendingFinalizers();
 // B now eligible for collection, but A is not
 if (RefA != null)
 Console.WriteLine("RefA is not null");
 }
}

In the above program, if the garbage collector chooses to run the finalizer of A before the finalizer of B,
then the output of this program might be:

Finalize instance of A
Finalize instance of B
A.F
RefA is not null

Note that although the instance of A was not in use and A's finalizer was run, it is still possible for methods
of A (in this case, F) to be called from another finalizer. Also, note that running of a finalizer might cause an
object to become usable from the mainline program again. In this case, the running of B's finalizer caused
an instance of A that was previously not in use, to become accessible from the live reference Test.RefA.
After the call to WaitForPendingFinalizers, the instance of B is eligible for collection, but the instance
of A is not, because of the reference Test.RefA. end example]

ECMA-334

58

8.10 Execution order
Execution of a C# program proceeds such that the side effects of each executing thread are preserved at
critical execution points. A side effect is defined as a read or write of a volatile field, a write to a non-
volatile variable, a write to an external resource, and the throwing of an exception. The critical execution
points at which the order of these side effects shall be preserved are references to volatile fields (§15.5.4),
lock statements (§13.13), and thread creation and termination. The execution environment is free to
change the order of execution of a C# program, subject to the following constraints:

• Data dependence is preserved within a thread of execution. That is, the value of each variable is
computed as if all statements in the thread were executed in original program order.

• Initialization ordering rules are preserved (§15.5.5, §15.5.6).

• The ordering of side effects is preserved with respect to volatile reads and writes (§15.5.4).
Additionally, the execution environment need not evaluate part of an expression if it can deduce that
that expression’s value is not used and that no needed side effects are produced (including any caused
by calling a method or accessing a volatile field). When program execution is interrupted by an
asynchronous event (such as an exception thrown by another thread), it is not guaranteed that the
observable side effects are visible in the original program order.

9 Types

59

9. Types

9.1 General
The types of the C# language are divided into two main categories: reference types and value types. Both
value types and reference types may be generic types, which take one or more type parameters. Type
parameters can designate both value types and reference types.

type:
reference-type
value-type
type-parameter

A third category of types, pointers, is available only in unsafe code (§23.3).

Value types differ from reference types in that variables of the value types directly contain their data,
whereas variables of the reference types store references to their data, the latter being known as objects.
With reference types, it is possible for two variables to reference the same object, and thus possible for
operations on one variable to affect the object referenced by the other variable. With value types, the
variables each have their own copy of the data, and it is not possible for operations on one to affect the
other. [Note: When a variable is a ref or out parameter, it does not have its own storage but references
the storage of another variable. In this case, the ref or out variable is effectively an alias for another
variable and not a distinct variable. end note]

C#’s type system is unified such that a value of any type can be treated as an object. Every type in C#
directly or indirectly derives from the object class type, and object is the ultimate base class of all types.
Values of reference types are treated as objects simply by viewing the values as type object. Values of
value types are treated as objects by performing boxing and unboxing operations (§9.3.12).

9.2 Reference types

9.2.1 General
A reference type is a class type, an interface type, an array type, a delegate type, or the dynamic type.

reference-type:
class-type
interface-type
array-type
delegate-type
dynamic

class-type:
type-name
object
string

interface-type:
type-name

array-type:
non-array-type rank-specifiers

ECMA-334

60

non-array-type:
value-type
class-type
interface-type
delegate-type
dynamic

type-parameter

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsopt]

dim-separators:
,
dim-separators ,

delegate-type:
type-name

A reference type value is a reference to an instance of the type, the latter known as an object. The special
value null is compatible with all reference types and indicates the absence of an instance.

9.2.2 Class types
A class type defines a data structure that contains data members (constants and fields), function members
(methods, properties, events, indexers, operators, instance constructors, finalizers, and static
constructors), and nested types. Class types support inheritance, a mechanism whereby derived classes can
extend and specialize base classes. Instances of class types are created using object-creation-expressions
(§12.7.11.2).

Class types are described in §15.

Certain predefined class types have special meaning in the C# language, as described in the table below.

Class type Description

System.Object The ultimate base class of all other types. See §9.2.3.

System.String The string type of the C# language. See §9.2.5.

System.ValueType The base class of all value types. See 9.3.2.

System.Enum The base class of all enum types. See §19.5.

System.Array The base class of all array types. See §17.2.2.

System.Delegate The base class of all delegate types. See §20.1.

System.Exception The base class of all exception types. See §21.3.

9.2.3 The object type
The object class type is the ultimate base class of all other types. Every type in C# directly or indirectly
derives from the object class type.

The keyword object is simply an alias for the predefined class System.Object.

9.2.4 The dynamic type
The dynamic type, like object, can reference any object. When operations are applied to expressions of
type dynamic, their resolution is deferred until the program is run. Thus, if the operation cannot

9 Types

61

legitimately be applied to the referenced object, no error is given during compilation. Instead, an exception
will be thrown when resolution of the operation fails at run-time.

The dynamic type is further described in §9.7, and dynamic binding in §12.3.1.

9.2.5 The string type
The string type is a sealed class type that inherits directly from object. Instances of the string class
represent Unicode character strings.

Values of the string type can be written as string literals (§7.4.5.6).

The keyword string is simply an alias for the predefined class System.String.

9.2.6 Interface types
An interface defines a contract. A class or struct that implements an interface shall adhere to its contract.
An interface may inherit from multiple base interfaces, and a class or struct may implement multiple
interfaces.

Interface types are described in §18.

9.2.7 Array types
An array is a data structure that contains zero or more variables, which are accessed through computed
indices. The variables contained in an array, also called the elements of the array, are all of the same type,
and this type is called the element type of the array.

Array types are described in §17.

9.2.8 Delegate types
A delegate is a data structure that refers to one or more methods. For instance methods, it also refers to
their corresponding object instances.

[Note: The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a function pointer
can only reference static functions, a delegate can reference both static and instance methods. In the latter
case, the delegate stores not only a reference to the method’s entry point, but also a reference to the
object instance on which to invoke the method. end note]

Delegate types are described in §20.

9.3 Value types

9.3.1 General
A value type is either a struct type or an enumeration type. C# provides a set of predefined struct types
called the simple types. The simple types are identified through keywords.

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type
nullable-value-type

simple-type:
numeric-type
bool

ECMA-334

62

numeric-type:
integral-type
floating-point-type
decimal

integral-type:
sbyte

byte

short

ushort

int

uint

long

ulong

char

floating-point-type:
float

double

nullable-type:
non-nullable-value-type ?

non-nullable-value-type:
type

enum-type:
type-name

Unlike a variable of a reference type, a variable of a value type can contain the value null only if the value
type is a nullable value type (§9.3.11). For every non-nullable value type there is a corresponding nullable
value type denoting the same set of values plus the value null.

Assignment to a variable of a value type creates a copy of the value being assigned. This differs from
assignment to a variable of a reference type, which copies the reference but not the object identified by
the reference.

9.3.2 The System.ValueType type
All value types implicitly inherit from the class System.ValueType, which, in turn, inherits from class
object. It is not possible for any type to derive from a value type, and value types are thus implicitly
sealed (§15.2.2.3).

Note that System.ValueType is not itself a value-type. Rather, it is a class-type from which all value-
types are automatically derived.

9.3.3 Default constructors
All value types implicitly declare a public parameterless instance constructor called the default constructor.
The default constructor returns a zero-initialized instance known as the default value for the value type:

• For all simple-types, the default value is the value produced by a bit pattern of all zeros:

o For sbyte, byte, short, ushort, int, uint, long, and ulong, the default value is 0.
o For char, the default value is '\x0000'.
o For float, the default value is 0.0f.
o For double, the default value is 0.0d.
o For decimal, the default value is 0.0m.
o For bool, the default value is false.

• For an enum-type E, the default value is 0, converted to the type E.

9 Types

63

• For a struct-type, the default value is the value produced by setting all value type fields to their default
value and all reference type fields to null.

• For a nullable-value-type the default value is an instance for which the HasValue property is false. The
default value is also known as the null value of the nullable value type. Attempting to read the Value
property of such a value causes an exception of type System.InvalidOperationException to be
thrown (§9.3.11).

Like any other instance constructor, the default constructor of a value type is invoked using the new
operator. [Note: For efficiency reasons, this requirement is not intended to actually have the
implementation generate a constructor call. For value types, the default value expression (§12.7.15)
produces the same result as using the default constructor. end note] [Example: In the code below,
variables i, j and k are all initialized to zero.

class A
{
 void F() {
 int i = 0;
 int j = new int();
 int k = default(int);
 }
}

end example]

Because every value type implicitly has a public parameterless instance constructor, it is not possible for a
struct type to contain an explicit declaration of a parameterless constructor. A struct type is however
permitted to declare parameterized instance constructors (§16.4.9).

9.3.4 Struct types
A struct type is a value type that can declare constants, fields, methods, properties, events, indexers,
operators, instance constructors, static constructors, and nested types. The declaration of struct types is
described in §16.

9.3.5 Simple types
C# provides a set of predefined struct types called the simple types. The simple types are identified
through keywords, but these keywords are simply aliases for predefined struct types in the System
namespace, as described in the table below.

Keyword Aliased type

sbyte System.SByte

byte System.Byte

short System.Int16

ushort System.UInt16

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

char System.Char

float System.Single

double System.Double

bool System.Boolean

decimal System.Decimal

ECMA-334

64

Because a simple type aliases a struct type, every simple type has members. [Example: int has the
members declared in System.Int32 and the members inherited from System.Object, and the
following statements are permitted:

int i = int.MaxValue; // System.Int32.MaxValue constant
string s = i.ToString(); // System.Int32.ToString() instance method
string t = 123.ToString(); // System.Int32.ToString() instance method

end example] [Note: The simple types differ from other struct types in that they permit certain additional
operations:

• Most simple types permit values to be created by writing literals (§7.4.5). [Example: 123 is a literal of
type int and 'a' is a literal of type char. end example] C# makes no provision for literals of struct
types in general.

• When the operands of an expression are all simple type constants, it is possible for the compiler to
evaluate the expression at compile-time. Such an expression is known as a constant-expression
(§12.20). Expressions involving operators defined by other struct types are not considered to be
constant expressions.

• Through const declarations, it is possible to declare constants of the simple types (§15.4). It is not
possible to have constants of other struct types, but a similar effect is provided by static readonly
fields.

• Conversions involving simple types can participate in evaluation of conversion operators defined by
other struct types, but a user-defined conversion operator can never participate in evaluation of
another user-defined conversionoperator (§11.5.3). end note]

9.3.6 Integral types
C# supports nine integral types: sbyte, byte, short, ushort, int, uint, long, ulong, and char. The
integral types have the following sizes and ranges of values:

• The sbyte type represents signed 8-bit integers with values from -128 to 127, inclusive.

• The byte type represents unsigned 8-bit integers with values from 0 to 255, inclusive.

• The short type represents signed 16-bit integers with values from -32768 to 32767, inclusive.

• The ushort type represents unsigned 16-bit integers with values from 0 to 65535, inclusive.

• The int type represents signed 32-bit integers with values from -2147483648 to 2147483647,
inclusive.

• The uint type represents unsigned 32-bit integers with values from 0 to 4294967295, inclusive.

• The long type represents signed 64-bit integers with values from -9223372036854775808 to
9223372036854775807, inclusive.

• The ulong type represents unsigned 64-bit integers with values from 0 to 18446744073709551615,
inclusive.

• The char type represents unsigned 16-bit integers with values from 0 to 65535, inclusive. The set of
possible values for the char type corresponds to the Unicode character set. [Note: Although char has
the same representation as ushort, not all operations permitted on one type are permitted on the
other. end note]

The integral-type unary and binary operators always operate with signed 32-bit precision, unsigned 32-bit
precision, signed 64-bit precision, or unsigned 64-bit precision, as detailed in §12.4.7.

The char type is classified as an integral type, but it differs from the other integral types in two ways:

• There are no predefined implicit conversions from other types to the char type. In particular, even
though the byte and ushort types have ranges of values that are fully representable using the char
type, implicit conversions from sbyte, byte, or ushort to char do not exist.

• Constants of the char type shall be written as character-literals or as integer-literals in combination
with a cast to type char. [Example: (char)10 is the same as '\x000A'. end example]

9 Types

65

The checked and unchecked operators and statements are used to control overflow checking for
integral-type arithmetic operations and conversions (§12.7.14). In a checked context, an overflow
produces a compile-time error or causes a System.OverflowException to be thrown. In an
unchecked context, overflows are ignored and any high-order bits that do not fit in the destination type
are discarded.

9.3.7 Floating-point types
C# supports two floating-point types: float and double. The float and double types are represented
using the 32-bit single-precision and 64-bit double-precision IEC 60559 formats, which provide the
following sets of values:

• Positive zero and negative zero. In most situations, positive zero and negative zero behave identically
as the simple value zero, but certain operations distinguish between the two (§12.9.3).

• Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero
number by zero. [Example: 1.0 / 0.0 yields positive infinity, and –1.0 / 0.0 yields negative infinity.
end example]

• The Not-a-Number value, often abbreviated NaN. NaNs are produced by invalid floating-point
operations, such as dividing zero by zero.

• The finite set of non-zero values of the form s × m × 2e, where s is 1 or −1, and m and e are determined
by the particular floating-point type: For float, 0 < m < 224 and −149 ≤ e ≤ 104, and for double,
0 < m < 253 and −1075 ≤ e ≤ 970. Denormalized floating-point numbers are considered valid non-zero
values. C# neither requires nor forbids that a conforming implementation support denormalized
floating-point numbers.

The float type can represent values ranging from approximately 1.5 × 10−45 to 3.4 × 1038 with a precision
of 7 digits.

The double type can represent values ranging from approximately 5.0 × 10−324 to 1.7 × 10308 with a
precision of 15–16 digits.

If either operand of a binary operator is a floating-point type then standard numeric promotions are
applied, as detailed in §12.4.7, and the operation is performed with float or double precision.

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in
exceptional situations, floating-point operations produce zero, infinity, or NaN, as described below:

• The result of a floating-point operation is rounded to the nearest representable value in the
destination format.

• If the magnitude of the result of a floating-point operation is too small for the destination format, the
result of the operation becomes positive zero or negative zero.

• If the magnitude of the result of a floating-point operation is too large for the destination format, the
result of the operation becomes positive infinity or negative infinity.

• If a floating-point operation is invalid, the result of the operation becomes NaN.

• If one or both operands of a floating-point operation is NaN, the result of the operation becomes NaN.

Floating-point operations may be performed with higher precision than the result type of the operation.
[Example: Some hardware architectures support an “extended” or “long double” floating-point type with
greater range and precision than the double type, and implicitly perform all floating-point operations
using this higher precision type. Only at excessive cost in performance can such hardware architectures be
made to perform floating-point operations with less precision, and rather than require an implementation
to forfeit both performance and precision, C# allows a higher precision type to be used for all floating-point
operations. Other than delivering more precise results, this rarely has any measurable effects. However, in
expressions of the form x * y / z, where the multiplication produces a result that is outside the double
range, but the subsequent division brings the temporary result back into the double range, the fact that
the expression is evaluated in a higher range format can cause a finite result to be produced instead of an

ECMA-334

66

infinity. To force a value of a floating-point type to the exact precision of its type, an explicit cast can be
used. end example]

9.3.8 The decimal type
The decimal type is a 128-bit data type suitable for financial and monetary calculations. The decimal
type can represent values including those in the range at least –7.9 × 10−28 to 7.9 × 1028, with at least 28-
digit precision.

The finite set of values of type decimal are of the form (–1)s × c × 10-e, where the sign s is 0 or 1, the
coefficient c is given by 0 ≤ c < Cmax, and the scale e is such that Emin ≤ e ≤ Emax, where Cmax is at least

1 × 1028, Emin ≤ 0, and Emax ≥ 28. The decimal type does not necessarily support signed zeros, infinities,
or NaN's.

A decimal is represented as an integer scaled by a power of ten. For decimals with an absolute value
less than 1.0m, the value is exact to at least the 28th decimal place. For decimals with an absolute value
greater than or equal to 1.0m, the value is exact to at least 28 digits. Contrary to the float and double
data types, decimal fractional numbers such as 0.1 can be represented exactly in the decimal
representation. In the float and double representations, such numbers often have non-terminating
binary expansions, making those representations more prone to round-off errors.

If either operand of a binary operator is of decimal type then standard numeric promotions are applied,
as detailed in §12.4.7, and the operation is performed with double precision.

The result of an operation on values of type decimal is that which would result from calculating an exact
result (preserving scale, as defined for each operator) and then rounding to fit the representation. Results
are rounded to the nearest representable value, and, when a result is equally close to two representable
values, to the value that has an even number in the least significant digit position (this is known as
“banker’s rounding”). That is, results are exact to at least the 28th decimal place. Note that rounding may
produce a zero value from a non-zero value.

If a decimal arithmetic operation produces a result whose magnitude is too large for the decimal
format, a System.OverflowException is thrown.

The decimal type has greater precision but may have a smaller range than the floating-point types. Thus,
conversions from the floating-point types to decimal might produce overflow exceptions, and
conversions from decimal to the floating-point types might cause loss of precision or overflow exceptions.
For these reasons, no implicit conversions exist between the floating-point types and decimal, and
without explicit casts, a compile-time error occurs when floating-point and decimal operands are directly
mixed in the same expression.

9.3.9 The bool type
The bool type represents Boolean logical quantities. The possible values of type bool are true and
false.

No standard conversions exist between bool and other value types. In particular, the bool type is distinct
and separate from the integral types, a bool value cannot be used in place of an integral value, and vice
versa.

[Note: In the C and C++ languages, a zero integral or floating-point value, or a null pointer can be converted
to the Boolean value false, and a non-zero integral or floating-point value, or a non-null pointer can be
converted to the Boolean value true. In C#, such conversions are accomplished by explicitly comparing an
integral or floating-point value to zero, or by explicitly comparing an object reference to null. end note]

9.3.10 Enumeration types
An enumeration type is a distinct type with named constants. Every enumeration type has an underlying
type, which shall be byte, sbyte, short, ushort, int, uint, long or ulong. The set of values of the

9 Types

67

enumeration type is the same as the set of values of the underlying type. Values of the enumeration type
are not restricted to the values of the named constants. Enumeration types are defined through
enumeration declarations (§19.2).

9.3.11 Nullable value types
A nullable value type can represent all values of its underlying type plus an additional null value. A nullable
value type is written T?, where T is the underlying type. This syntax is shorthand for
System.Nullable<T>, and the two forms can be used interchangeably.

Conversely, a non-nullable value type is any value type other than System.Nullable<T> and its
shorthand T? (for any T), plus any type parameter that is constrained to be a non-nullable value type (that
is, any type parameter with a value type constraint (§15.2.5)). The System.Nullable<T> type specifies
the value type constraint for T, which means that the underlying type of a nullable value type can be any
non-nullable value type. The underlying type of a nullable value type cannot be a nullable value type or a
reference type. For example, int?? and string? are invalid types.

An instance of a nullable value type T? has two public read-only properties:

• A HasValue property of type bool

• A Value property of type T

An instance for which HasValue is true is said to be non-null. A non-null instance contains a known value
and Value returns that value.

An instance for which HasValue is false is said to be null. A null instance has an undefined value.
Attempting to read the Value of a null instance causes a System.InvalidOperationException to be
thrown. The process of accessing the Value property of a nullable instance is referred to as unwrapping.

In addition to the default constructor, every nullable value type T? has a public constructor with a single
parameter of type T. Given a value x of type T, a constructor invocation of the form

new T?(x)

creates a non-null instance of T? for which the Value property is x. The process of creating a non-null
instance of a nullable value type for a given value is referred to as wrapping.

Implicit conversions are available from the null literal to T? (§11.2.6) and from T to T? (§11.2.5).

The nullable type T? implements no interfaces (§18). In particular, this means it does not implement any
interface that the underlying type T does.

9.3.12 Boxing and unboxing
The concept of boxing and unboxing provide a bridge between value-types and reference-types by
permitting any value of a value-type to be converted to and from type object. Boxing and unboxing
enables a unified view of the type system wherein a value of any type can ultimately be treated as an
object.

Boxing is described in more detail in §11.2.8 and unboxing is described in §11.3.6.

9.4 Constructed types

9.4.1 General
A generic type declaration, by itself, denotes an unbound generic type that is used as a “blueprint” to form
many different types, by way of applying type arguments. The type arguments are written within angle
brackets (< and >) immediately following the name of the generic type. A type that includes at least one
type argument is called a constructed type. A constructed type can be used in most places in the language
in which a type name can appear. An unbound generic type can only be used within a typeof-expression
(§12.7.12).

ECMA-334

68

Constructed types can also be used in expressions as simple names (§12.7.3) or when accessing a member
(§12.7.5).

When a namespace-or-type-name is evaluated, only generic types with the correct number of type
parameters are considered. Thus, it is possible to use the same identifier to identify different types, as long
as the types have different numbers of type parameters. This is useful when mixing generic and non-
generic classes in the same program. [Example:

namespace Widgets
{
 class Queue {…}
 class Queue<TElement> {…}
}

namespace MyApplication
{
 using Widgets;

 class X
 {
 Queue q1; // Non-generic Widgets.Queue
 Queue<int> q2; // Generic Widgets.Queue
 }
}

end example]

The detailed rules for name lookup in the namespace-or-type-name productions is described in §8.8. The
resolution of ambiguities in these productions is described in §7.2.5. A type-name might identify a
constructed type even though it doesn’t specify type parameters directly. This can occur where a type is
nested within a generic class declaration, and the instance type of the containing declaration is implicitly
used for name lookup (§15.3.9.7). [Example:

class Outer<T>
{
 public class Inner {…}

 public Inner i; // Type of i is Outer<T>.Inner
}

end example]

A non-enum constructed type shall not be used as an unmanaged-type (§23.3).

9.4.2 Type arguments
Each argument in a type argument list is simply a type.

type-argument-list:
< type-arguments >

type-arguments:
type-argument
type-arguments , type-argument

type-argument:
type

A type-argument shall not be a pointer type (§23). Each type argument shall satisfy any constraints on the
corresponding type parameter (§15.2.5).

9.4.3 Open and closed types
All types can be classified as either open types or closed types. An open type is a type that involves type
parameters. More specifically:

• A type parameter defines an open type.

9 Types

69

• An array type is an open type if and only if its element type is an open type.

• A constructed type is an open type if and only if one or more of its type arguments is an open type. A
constructed nested type is an open type if and only if one or more of its type arguments or the type
arguments of its containing type(s) is an open type.

A closed type is a type that is not an open type.

At run-time, all of the code within a generic type declaration is executed in the context of a closed
constructed type that was created by applying type arguments to the generic declaration. Each type
parameter within the generic type is bound to a particular run-time type. The run-time processing of all
statements and expressions always occurs with closed types, and open types occur only during compile-
time processing.

Each closed constructed type has its own set of static variables, which are not shared with any other closed
constructed types. Since an open type does not exist at run-time, there are no static variables associated
with an open type. Two closed constructed types are the same type if they are constructed from the same
unbound generic type, and their corresponding type arguments are the same type.

9.4.4 Bound and unbound types
The term unbound type refers to a non-generic type or an unbound generic type. The term bound type
refers to a non-generic type or a constructed type.

An unbound type refers to the entity declared by a type declaration. An unbound generic type is not itself a
type, and cannot be used as the type of a variable, argument or return value, or as a base type. The only
construct in which an unbound generic type can be referenced is the typeof expression (§12.7.12).

9.4.5 Satisfying constraints
Whenever a constructed type or generic method is referenced, the supplied type arguments are checked
against the type parameter constraints declared on the generic type or method (§15.2.5). For each where
clause, the type argument A that corresponds to the named type parameter is checked against each
constraint as follows:

• If the constraint is a class type, an interface type, or a type parameter, let C represent that constraint
with the supplied type arguments substituted for any type parameters that appear in the constraint. To
satisfy the constraint, it shall be the case that type A is convertible to type C by one of the following:

o An identity conversion (§11.2.2)
o An implicit reference conversion (§11.2.7)
o A boxing conversion (§11.2.8), provided that type A is a non-nullable value type.
o An implicit reference, boxing or type parameter conversion from a type parameter A to C.

• If the constraint is the reference type constraint (class), the type A shall satisfy one of the following:

o A is an interface type, class type, delegate type, array type or the dynamic type. [Note:
System.ValueType and System.Enum are reference types that satisfy this constraint. end note]

o A is a type parameter that is known to be a reference type (§9.2).

• If the constraint is the value type constraint (struct), the type A shall satisfy one of the following:

o A is a struct type or enum type, but not a nullable value type. [Note: System.ValueType and
System.Enum are reference types that do not satisfy this constraint. end note]

o A is a type parameter having the value type constraint (§15.2.5).

• If the constraint is the constructor constraint new(), the type A shall not be abstract and shall have
a public parameterless constructor. This is satisfied if one of the following is true:

o A is a value type, since all value types have a public default constructor (§9.3.3).
o A is a type parameter having the constructor constraint (§15.2.5).

ECMA-334

70

o A is a type parameter having the value type constraint (§15.2.5).
o A is a class that is not abstract and contains an explicitly declared public constructor with no

parameters.
o A is not abstract and has a default constructor (§15.11.5).

A compile-time error occurs if one or more of a type parameter’s constraints are not satisfied by the given
type arguments.

Since type parameters are not inherited, constraints are never inherited either. [Example: In the following,
D needs to specify the constraint on its type parameter T so that T satisfies the constraint imposed by the
base class B<T>. In contrast, class E need not specify a constraint, because List<T> implements
IEnumerable for any T.

class B<T> where T: IEnumerable {…}

class D<T>: B<T> where T: IEnumerable {…}

class E<T>: B<List<T>> {…}

end example]

9.5 Type parameters
A type parameter is an identifier designating a value type or reference type that the parameter is bound to
at run-time.

type-parameter:
identifier

Since a type parameter can be instantiated with many different type arguments, type parameters have
slightly different operations and restrictions than other types. [Note: These include:

• A type parameter cannot be used directly to declare a base class (§15.2.4.2) or interface (§18.2.4).

• The rules for member lookup on type parameters depend on the constraints, if any, applied to the type
parameter. They are detailed in §12.5.

• The available conversions for a type parameter depend on the constraints, if any, applied to the type
parameter. They are detailed in §11.2.11 and §11.3.8.

• The literal null cannot be converted to a type given by a type parameter, except if the type parameter
is known to be a reference type (§11.2.11). However, a default expression (§12.7.15) can be used
instead. In addition, a value with a type given by a type parameter can be compared with null using
== and != (§12.11.7) unless the type parameter has the value type constraint.

• A new expression (§12.7.11.2) can only be used with a type parameter if the type parameter is
constrained by a constructor-constraint or the value type constraint (§15.2.5).

• A type parameter cannot be used anywhere within an attribute.

• A type parameter cannot be used in a member access (§12.7.5) or type name (§8.8) to identify a static
member or a nested type.

• A type parameter cannot be used as an unmanaged-type (§23.3).

end note]

As a type, type parameters are purely a compile-time construct. At run-time, each type parameter is bound
to a run-time type that was specified by supplying a type argument to the generic type declaration. Thus,
the type of a variable declared with a type parameter will, at run-time, be a closed constructed type
(§9.4.3). The run-time execution of all statements and expressions involving type parameters uses the type
that was supplied as the type argument for that parameter.

9.6 Expression tree types
Expression trees permit lambda expressions to be represented as data structures instead of executable
code. Expression trees are values of expression tree types of the form

9 Types

71

System.Linq.Expressions.Expression<TDelegate>, where TDelegate is any delegate type. For
the remainder of this specification we will refer to these types using the shorthand
Expression<TDelegate>.

If a conversion exists from a lambda expression to a delegate type D, a conversion also exists to the
expression tree type Expression<TDelegate>. Whereas the conversion of a lambda expression to a
delegate type generates a delegate that references executable code for the lambda expression, conversion
to an expression tree type creates an expression tree representation of the lambda expression.

Expression trees are efficient in-memory data representations of lambda expressions and make the
structure of the lambda expression transparent and explicit.

Just like a delegate type D, Expression<TDelegate> is said to have parameter and return types, which
are the same as those of D.

[Example: The following program represents a lambda expression both as executable code and as an
expression tree. Because a conversion exists to Func<int,int>, a conversion also exists to
Expression<Func<int,int>>:

Func<int,int> del = x => x + 1; // Code

Expression<Func<int,int>> exp = x => x + 1; // Data

Following these assignments, the delegate del references a method that returns x + 1, and the
expression tree exp references a data structure that describes the expression x => x + 1. end example]

The exact definition of the generic type Expression<TDelegate> as well as the precise rules for
constructing an expression tree when a lambda expression is converted to an expression tree type, are
implementation dependent.

Two things are important to make explicit:

• Not all lambda expressions can be converted to expression trees. For instance, lambda expressions
with statement bodies, and lambda expressions containing assignment expressions cannot be
represented. In these cases, a conversion still exists, but it will fail at compile-time. These exceptions
are detailed in §11.7.3.

• Expression<TDelegate> offers an instance method Compile which produces a delegate of
type TDelegate:

Func<int,int> del2 = exp.Compile();

Invoking this delegate causes the code represented by the expression tree to be executed. Thus, given
the definitions above, del and del2 are equivalent, and the following two statements will have the
same effect:

int i1 = del(1);
int i2 = del2(1);

After executing this code, i1 and i2 will both have the value 2.

9.7 The dynamic type
The type dynamic has special meaning in C#. Its purpose is to allow dynamic binding, which is described in
detail in §12.3.2.

dynamic is considered identical to object except in the following respects:

• Operations on expressions of type dynamic can be dynamically bound (§12.3.3).

• Type inference (§12.6.3) will prefer dynamic over object if both are candidates.

• dynamic cannot be used as

o the type in an object-creation-expression (§12.7.11.2)
o a predefined-type in a member-access (§12.7.5.1)

ECMA-334

72

o the operand of the typeof operator
o an attribute argument
o a constraint
o an extension method type
o any part of a type argument within struct-interfaces (§16.2.4) or interface-type-list (§15.2.4.1).

Because of this equivalence, the following holds:

• There is an implicit identity conversion between object and dynamic, and between constructed
types that are the same when replacing dynamic with object

• Implicit and explicit conversions to and from object also apply to and from dynamic.

• Signatures that are the same when replacing dynamic with object are considered the same signature

• The type dynamic is indistinguishable from object at run-time.

• An expression of the type dynamic is referred to as a dynamic expression.

10 Variables

73

10. Variables

10.1 General
Variables represent storage locations. Every variable has a type that determines what values can be stored
in the variable. C# is a type-safe language, and the C# compiler guarantees that values stored in variables
are always of the appropriate type. The value of a variable can be changed through assignment or through
use of the ++ and -- operators.

A variable shall be definitely assigned (§10.4) before its value can be obtained.

As described in the following subclauses, variables are either initially assigned or initially unassigned. An
initially assigned variable has a well-defined initial value and is always considered definitely assigned. An
initially unassigned variable has no initial value. For an initially unassigned variable to be considered
definitely assigned at a certain location, an assignment to the variable shall occur in every possible
execution path leading to that location.

10.2 Variable categories

10.2.1 General
C# defines seven categories of variables: static variables, instance variables, array elements, value
parameters, reference parameters, output parameters, and local variables. The subclauses that follow
describe each of these categories.

[Example: In the following code

class A
{
 public static int x;
 int y;

 void F(int[] v, int a, ref int b, out int c) {
 int i = 1;
 c = a + b++;
 }
}

x is a static variable, y is an instance variable, v[0] is an array element, a is a value parameter, b is a
reference parameter, c is an output parameter, and i is a local variable. end example]

10.2.2 Static variables
A field declared with the static modifier is called a static variable. A static variable comes into existence
before execution of the static constructor (§15.12) for its containing type, and ceases to exist when the
associated application domain ceases to exist.

The initial value of a static variable is the default value (§10.3) of the variable’s type.

For the purposes of definite assignment checking, a static variable is considered initially assigned.

10.2.3 Instance variables

10.2.3.1 General
A field declared without the static modifier is called an instance variable.

ECMA-334

74

10.2.3.2 Instance variables in classes
An instance variable of a class comes into existence when a new instance of that class is created, and
ceases to exist when there are no references to that instance and the instance’s finalizer (if any) has
executed.

The initial value of an instance variable of a class is the default value (§10.3) of the variable’s type.

For the purpose of definite assignment checking, an instance variable of a class is considered initially
assigned.

10.2.3.3 Instance variables in structs
An instance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In
other words, when a variable of a struct type comes into existence or ceases to exist, so too do the
instance variables of the struct.

The initial assignment state of an instance variable of a struct is the same as that of the containing struct
variable. In other words, when a struct variable is considered initially assigned, so too are its instance
variables, and when a struct variable is considered initially unassigned, its instance variables are likewise
unassigned.

10.2.4 Array elements
The elements of an array come into existence when an array instance is created, and cease to exist when
there are no references to that array instance.

The initial value of each of the elements of an array is the default value (§10.3) of the type of the array
elements.

For the purpose of definite assignment checking, an array element is considered initially assigned.

10.2.5 Value parameters
A parameter declared without a ref or out modifier is a value parameter.

A value parameter comes into existence upon invocation of the function member (method, instance
constructor, accessor, or operator) or anonymous function to which the parameter belongs, and is
initialized with the value of the argument given in the invocation. A value parameter normally ceases to
exist when execution of the function body completes. However, if the value parameter is captured by an
anonymous function (§12.16.6.2), its lifetime extends at least until the delegate or expression tree created
from that anonymous function is eligible for garbage collection.

For the purpose of definite assignment checking, a value parameter is considered initially assigned.

10.2.6 Reference parameters
A parameter declared with a ref modifier is a reference parameter.

A reference parameter does not create a new storage location. Instead, a reference parameter represents
the same storage location as the variable given as the argument in the function member or anonymous
function invocation. Thus, the value of a reference parameter is always the same as the underlying
variable.

The following definite assignment rules apply to reference parameters. [Note: The rules for output
parameters are different, and are described in §10.2.7. end note]

• A variable shall be definitely assigned (§10.4) before it can be passed as a reference parameter in a
function member or delegate invocation.

• Within a function member or anonymous function, a reference parameter is considered initially
assigned.

10 Variables

75

For a struct type, within an instance method or instance accessor (§12.2.1) or instance constructor with a
constructor initializer, the this keyword behaves exactly as a reference parameter of the struct type
(§12.7.8).

10.2.7 Output parameters
A parameter declared with an out modifier is an output parameter.

An output parameter does not create a new storage location. Instead, an output parameter represents the
same storage location as the variable given as the argument in the function member or delegate
invocation. Thus, the value of an output parameter is always the same as the underlying variable.

The following definite assignment rules apply to output parameters. [Note: The rules for reference
parameters are different, and are described in §10.2.6. end note]

• A variable need not be definitely assigned before it can be passed as an output parameter in a function
member or delegate invocation.

• Following the normal completion of a function member or delegate invocation, each variable that was
passed as an output parameter is considered assigned in that execution path.

• Within a function member or anonymous function, an output parameter is considered initially
unassigned.

• Every output parameter of a function member or anonymous function shall be definitely assigned
(§10.4) before the function member or anonymous function returns normally.

Within an instance constructor of a struct type, the this keyword behaves exactly as an output or
reference parameter of the struct type, depending on whether the constructor declaration includes a
constructor initializer (§12.7.8).

10.2.8 Local variables
A local variable is declared by a local-variable-declaration, foreach-statement, or specific-catch-clause of a
try-statement. For a foreach-statement, the local variable is an iteration variable (§13.9.5). For a specific-
catch-clause, the local variable is an exception variable (§13.11). A local variable declared by a foreach-
statement or specific-catch-clause is considered initially assigned.

A local-variable-declaration can occur in a block, a for-statement, a switch-block, or a using-statement.

The lifetime of a local variable is the portion of program execution during which storage is guaranteed to
be reserved for it. This lifetime extends from entry into the scope with which it is associated, at least until
execution of that scope ends in some way. (Entering an enclosed block, calling a method, or yielding a
value from an iterator block suspends, but does not end, execution of the current scope.) If the local
variable is captured by an anonymous function (§12.16.6.2), its lifetime extends at least until the delegate
or expression tree created from the anonymous function, along with any other objects that come to
reference the captured variable, are eligible for garbage collection. If the parent scope is entered
recursively or iteratively, a new instance of the local variable is created each time, and its local-variable-
initializer, if any, is evaluated each time. [Note: A local variable is instantiated each time its scope is
entered. This behavior is visible to user code containing anonymous methods. end note] [Note: The lifetime
of an iteration variable (§13.9.5) declared by a foreach-statement is a single iteration of that statement.
Each iteration creates a new variable. end note] [Note: The actual lifetime of a local variable is
implementation-dependent. For example, a compiler might statically determine that a local variable in a
block is only used for a small portion of that block. Using this analysis, the compiler could generate code
that results in the variable’s storage having a shorter lifetime than its containing block.

The storage referred to by a local reference variable is reclaimed independently of the lifetime of that local
reference variable (§8.9). end note]

A local variable introduced by a local-variable-declaration is not automatically initialized and thus has no
default value. Such a local variable is considered initially unassigned. [Note: A local-variable-declaration

ECMA-334

76

that includes a local-variable-initializer is still initially unassigned. Execution of the declaration behaves
exactly like an assignment to the variable (§10.4.4.5). It is possible to use a variable without executing its
local-variable-initializer; e.g., within the initializer expression itself or by using a goto-statement to bypass
the initialization:

goto L;

int x = 1; // never executed

L: x += 1; // error: x not definitely assigned

end note]

Within the scope of a local variable, it is a compile-time error to refer to that local variable in a textual
position that precedes its local-variable-declarator.

10.3 Default values
The following categories of variables are automatically initialized to their default values:

• Static variables.

• Instance variables of class instances.

• Array elements.

The default value of a variable depends on the type of the variable and is determined as follows:

• For a variable of a value-type, the default value is the same as the value computed by the value-type’s
default constructor (§9.3.3).

• For a variable of a reference-type, the default value is null.

[Note: Initialization to default values is typically done by having the memory manager or garbage collector
initialize memory to all-bits-zero before it is allocated for use. For this reason, it is convenient to use all-
bits-zero to represent the null reference. end note]

10.4 Definite assignment

10.4.1 General
At a given location in the executable code of a function member or an anonymous function, a variable is
said to be definitely assigned if the compiler can prove, by a particular static flow analysis (§10.4.4), that
the variable has been automatically initialized or has been the target of at least one assignment. [Note:
Informally stated, the rules of definite assignment are:

• An initially assigned variable (§10.4.2) is always considered definitely assigned.

• An initially unassigned variable (§10.4.3) is considered definitely assigned at a given location if all
possible execution paths leading to that location contain at least one of the following:

o A simple assignment (§12.18.2) in which the variable is the left operand.
o An invocation expression (§12.7.6) or object creation expression (§12.7.11.2) that passes the

variable as an output parameter.
o For a local variable, a local variable declaration for the variable (§13.6.2) that includes a variable

initializer.

The formal specification underlying the above informal rules is described in §10.4.2, §10.4.3, and §10.4.4.
end note]

The definite assignment states of instance variables of a struct-type variable are tracked individually as well
as collectively. In additional to the rules above, the following rules apply to struct-type variables and their
instance variables:

• An instance variable is considered definitely assigned if its containing struct-type variable is considered
definitely assigned.

10 Variables

77

• A struct-type variable is considered definitely assigned if each of its instance variables is considered
definitely assigned.

Definite assignment is a requirement in the following contexts:

• A variable shall be definitely assigned at each location where its value is obtained. [Note: This ensures
that undefined values never occur. end note] The occurrence of a variable in an expression is
considered to obtain the value of the variable, except when

o the variable is the left operand of a simple assignment,
o the variable is passed as an output parameter, or
o the variable is a struct-type variable and occurs as the left operand of a member access.

• A variable shall be definitely assigned at each location where it is passed as a reference parameter.
[Note: This ensures that the function member being invoked can consider the reference parameter
initially assigned. end note]

• All output parameters of a function member shall be definitely assigned at each location where the
function member returns (through a return statement or through execution reaching the end of the
function member body). [Note: This ensures that function members do not return undefined values in
output parameters, thus enabling the compiler to consider a function member invocation that takes a
variable as an output parameter equivalent to an assignment to the variable. end note]

• The this variable of a struct-type instance constructor shall be definitely assigned at each location
where that instance constructor returns.

10.4.2 Initially assigned variables
The following categories of variables are classified as initially assigned:

• Static variables.

• Instance variables of class instances.

• Instance variables of initially assigned struct variables.

• Array elements.

• Value parameters.

• Reference parameters.

• Variables declared in a catch clause or a foreach statement.

10.4.3 Initially unassigned variables
The following categories of variables are classified as initially unassigned:

• Instance variables of initially unassigned struct variables.

• Output parameters, including the this variable of struct instance constructors without a constructor
initializer.

• Local variables, except those declared in a catch clause or a foreach statement.

10.4.4 Precise rules for determining definite assignment

10.4.4.1 General
In order to determine that each used variable is definitely assigned, the compiler shall use a process that is
equivalent to the one described in this subclause.

The compiler processes the body of each function member that has one or more initially unassigned
variables. For each initially unassigned variable v, the compiler determines a definite assignment state for
v at each of the following points in the function member:

• At the beginning of each statement

• At the end point (§13.2) of each statement

• On each arc which transfers control to another statement or to the end point of a statement

ECMA-334

78

• At the beginning of each expression

• At the end of each expression

The definite assignment state of v can be either:

• Definitely assigned. This indicates that on all possible control flows to this point, v has been assigned a
value.

• Not definitely assigned. For the state of a variable at the end of an expression of type bool, the state
of a variable that isn’t definitely assigned might (but doesn’t necessarily) fall into one of the following
sub-states:

o Definitely assigned after true expression. This state indicates that v is definitely assigned if the
Boolean expression evaluated as true, but is not necessarily assigned if the Boolean expression
evaluated as false.

o Definitely assigned after false expression. This state indicates that v is definitely assigned if the
Boolean expression evaluated as false, but is not necessarily assigned if the Boolean expression
evaluated as true.

The following rules govern how the state of a variable v is determined at each location.

10.4.4.2 General rules for statements
• v is not definitely assigned at the beginning of a function member body.

• The definite assignment state of v at the beginning of any other statement is determined by checking
the definite assignment state of v on all control flow transfers that target the beginning of that
statement. If (and only if) v is definitely assigned on all such control flow transfers, then v is definitely
assigned at the beginning of the statement. The set of possible control flow transfers is determined in
the same way as for checking statement reachability (§13.2).

• The definite assignment state of v at the end point of a block, checked, unchecked, if, while, do,
for, foreach, lock, using, or switch statement is determined by checking the definite assignment
state of v on all control flow transfers that target the end point of that statement. If v is definitely
assigned on all such control flow transfers, then v is definitely assigned at the end point of the
statement. Otherwise, v is not definitely assigned at the end point of the statement. The set of possible
control flow transfers is determined in the same way as for checking statement reachability (§13.2).

[Note: Because there are no control paths to an unreachable statement, v is definitely assigned at the
beginning of any unreachable statement. end note]

10.4.4.3 Block statements, checked, and unchecked statements
The definite assignment state of v on the control transfer to the first statement of the statement list in the
block (or to the end point of the block, if the statement list is empty) is the same as the definite assignment
statement of v before the block, checked, or unchecked statement.

10.4.4.4 Expression statements
For an expression statement stmt that consists of the expression expr:

• v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

• If v if definitely assigned at the end of expr, it is definitely assigned at the end point of stmt; otherwise,
it is not definitely assigned at the end point of stmt.

10.4.4.5 Declaration statements
• If stmt is a declaration statement without initializers, then v has the same definite assignment state at

the end point of stmt as at the beginning of stmt.

• If stmt is a declaration statement with initializers, then the definite assignment state for v is
determined as if stmt were a statement list, with one assignment statement for each declaration with
an initializer (in the order of declaration).

10 Variables

79

10.4.4.6 If statements
For an if statement stmt of the form:

if (expr) then-stmt else else-stmt

• v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

• If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to
then-stmt and to either else-stmt or to the end-point of stmt if there is no else clause.

• If v has the state “definitely assigned after true expression” at the end of expr, then it is definitely
assigned on the control flow transfer to then-stmt, and not definitely assigned on the control flow
transfer to either else-stmt or to the end-point of stmt if there is no else clause.

• If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to else-stmt, and not definitely assigned on the control flow
transfer to then-stmt. It is definitely assigned at the end-point of stmt if and only if it is definitely
assigned at the end-point of then-stmt.

• Otherwise, v is considered not definitely assigned on the control flow transfer to either the then-stmt
or else-stmt, or to the end-point of stmt if there is no else clause.

10.4.4.7 Switch statements
In a switch statement stmt with a controlling expression expr:

• The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning
of stmt.

• The definite assignment state of v on the control flow transfer to a reachable switch block statement
list is the same as the definite assignment state of v at the end of expr.

10.4.4.8 While statements
For a while statement stmt of the form:

while (expr) while-body

• v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

• If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to
while-body and to the end point of stmt.

• If v has the state “definitely assigned after true expression” at the end of expr, then it is definitely
assigned on the control flow transfer to while-body, but not definitely assigned at the end-point of
stmt.

• If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to the end point of stmt, but not definitely assigned on the
control flow transfer to while-body.

10.4.4.9 Do statements
For a do statement stmt of the form:

do do-body while (expr) ;

• v has the same definite assignment state on the control flow transfer from the beginning of stmt to do-
body as at the beginning of stmt.

• v has the same definite assignment state at the beginning of expr as at the end point of do-body.

• If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to
the end point of stmt.

• If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to the end point of stmt, but not definitely assigned on the
control flow transfer to do-body.

ECMA-334

80

10.4.4.10 For statements
Definite assignment checking for a for statement of the form:

for (for-initializer ; for-condition ; for-iterator) embedded-statement

is done as if the statement were written:

{

 for-initializer ;
 while (for-condition) {
 embedded-statement ;
LLoop: for-iterator ;
 }
}

with continue statements that target the for statement being translated to goto statements targeting
the label LLoop. If the for-condition is omitted from the for statement, then evaluation of definite
assignment proceeds as if for-condition were replaced with true in the above expansion.

10.4.4.11 Break, continue, and goto statements
The definite assignment state of v on the control flow transfer caused by a break, continue, or goto
statement is the same as the definite assignment state of v at the beginning of the statement.

10.4.4.12 Throw statements
For a statement stmt of the form

throw expr ;

the definite assignment state of v at the beginning of expr is the same as the definite assignment state of v
at the beginning of stmt.

10.4.4.13 Return statements
For a statement stmt of the form

return expr ;

• The definite assignment state of v at the beginning of expr is the same as the definite assignment state
of v at the beginning of stmt.

• If v is an output parameter, then it shall be definitely assigned either:

o after expr
o or at the end of the finally block of a try-finally or try-catch-finally that encloses the

return statement.

For a statement stmt of the form:

return ;

• If v is an output parameter, then it shall be definitely assigned either:

o before stmt
o or at the end of the finally block of a try-finally or try-catch-finally that encloses the

return statement.

10.4.4.14 Try-catch statements
For a statement stmt of the form:

try try-block
catch (…) catch-block-1
…

catch (…) catch-block-n

10 Variables

81

• The definite assignment state of v at the beginning of try-block is the same as the definite assignment
state of v at the beginning of stmt.

• The definite assignment state of v at the beginning of catch-block-i (for any i) is the same as the
definite assignment state of v at the beginning of stmt.

• The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) v is
definitely assigned at the end-point of try-block and every catch-block-i (for every i from 1 to n).

10.4.4.15 Try-finally statements
For a try statement stmt of the form:

try try-block finally finally-block

• The definite assignment state of v at the beginning of try-block is the same as the definite assignment
state of v at the beginning of stmt.

• The definite assignment state of v at the beginning of finally-block is the same as the definite
assignment state of v at the beginning of stmt.

• The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) at least
one of the following is true:

o v is definitely assigned at the end-point of try-block
o v is definitely assigned at the end-point of finally-block

If a control flow transfer (such as a goto statement) is made that begins within try-block, and ends outside
of try-block, then v is also considered definitely assigned on that control flow transfer if v is definitely
assigned at the end-point of finally-block. (This is not an only if—if v is definitely assigned for another
reason on this control flow transfer, then it is still considered definitely assigned.)

10.4.4.16 Try-catch-finally statements
Definite assignment analysis for a try-catch-finally statement of the form:

try try-block
catch (…) catch-block-1
…

catch (…) catch-block-n
finally finally-block

is done as if the statement were a try-finally statement enclosing a try-catch statement:

try {

 try try-block
 catch (…) catch-block-1
 …

 catch (…) catch-block-n
}

finally finally-block

[Example: The following example demonstrates how the different blocks of a try statement (§13.11)
affect definite assignment.

class A
{
 static void F() {
 int i, j;
 try {
 goto LABEL;
 // neither i nor j definitely assigned
 i = 1;
 // i definitely assigned
 }

ECMA-334

82

 catch {
 // neither i nor j definitely assigned
 i = 3;
 // i definitely assigned
 }

 finally {
 // neither i nor j definitely assigned
 j = 5;
 // j definitely assigned
 }
 // i and j definitely assigned
 LABEL:;
 // j definitely assigned

 }
}

end example]

10.4.4.17 Foreach statements
For a foreach statement stmt of the form:

foreach (type identifier in expr) embedded-statement

• The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning
of stmt.

• The definite assignment state of v on the control flow transfer to embedded-statement or to the end
point of stmt is the same as the state of v at the end of expr.

10.4.4.18 Using statements
For a using statement stmt of the form:

using (resource-acquisition) embedded-statement

• The definite assignment state of v at the beginning of resource-acquisition is the same as the state of v
at the beginning of stmt.

• The definite assignment state of v on the control flow transfer to embedded-statement is the same as
the state of v at the end of resource-acquisition.

10.4.4.19 Lock statements
For a lock statement stmt of the form:

lock (expr) embedded-statement

• The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning
of stmt.

• The definite assignment state of v on the control flow transfer to embedded-statement is the same as
the state of v at the end of expr.

10.4.4.20 Yield statements
For a yield return statement stmt of the form:

yield return expr ;

• The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning
of stmt.

• The definite assignment state of v at the end of stmt is the same as the state of v at the end of expr.

A yield break statement has no effect on the definite assignment state.

10 Variables

83

10.4.4.21 General rules for constant expressions
The following applies to any constant expression, and takes priority over any rules from the following
sections that might apply:

For a constant expression with value true:

• If v is definitely assigned before the expression, then v is definitely assigned after the expression.

• Otherwise v is “definitely assigned after false expression” after the expression.

[Example:

int x;
if (true) {}
else
{
 Console.WriteLine(x);
}

end example]

For a constant expression with value false:

• If v is definitely assigned before the expression, then v is definitely assigned after the expression.

• Otherwise v is “definitely assigned after true expression” after the expression.

[Example:

int x;
if (false)
{
 Console.WriteLine(x);
}

end example]

For all other constant expressions, the definite assignment state of v after the expression is the same as
the definite assignment state of v before the expression.

10.4.4.22 General rules for simple expressions
The following rule applies to these kinds of expressions: literals (§12.7.2), simple names (§12.7.3), member
access expressions (§12.7.5), non-indexed base access expressions (§12.7.9), typeof expressions
(§12.7.12), and default value expressions (§12.7.15).

• The definite assignment state of v at the end of such an expression is the same as the definite
assignment state of v at the beginning of the expression.

10.4.4.23 General rules for expressions with embedded expressions
The following rules apply to these kinds of expressions: parenthesized expressions (§12.7.4), element
access expressions (§12.7.7), base access expressions with indexing (§12.7.9), increment and decrement
expressions (§12.7.10, §12.8.6), cast expressions (§12.8.7), unary +, -, ~, * expressions, binary +, -, *, /, %,
<<, >>, <, <=, >, >=, ==, !=, is, as, &, |, ^ expressions (§12.9, §12.10, §12.11, §12.12), compound
assignment expressions (§12.18.3), checked and unchecked expressions (§12.7.14), array and delegate
creation expressions (§12.7.11) , and await expressions (§12.8.8).

Each of these expressions has one or more subexpressions that are unconditionally evaluated in a fixed
order. [Example: The binary % operator evaluates the left hand side of the operator, then the right hand
side. An indexing operation evaluates the indexed expression, and then evaluates each of the index
expressions, in order from left to right. end example] For an expression expr, which has subexpressions
expr1, expr2, …, exprn, evaluated in that order:

• The definite assignment state of v at the beginning of expr1 is the same as the definite assignment state
at the beginning of expr.

ECMA-334

84

• The definite assignment state of v at the beginning of expri (i greater than one) is the same as the
definite assignment state at the end of expri-1.

• The definite assignment state of v at the end of expr is the same as the definite assignment state at the
end of exprn.

10.4.4.24 Invocation expressions and object creation expressions
If the method to be invoked is a partial method that has no implementing partial method declaration, or is
a conditional method for which the call is omitted (§22.5.3.2), then the definite assignment state of v after
the invocation is the same as the definite assignment state of v before the invocation. Otherwise the
following rules apply:

For an invocation expression expr of the form:

primary-expression (arg1, arg2, … , argn)

or an object creation expression expr of the form:

new type (arg1, arg2, … , argn)

• For an invocation expression, the definite assignment state of v before primary-expression is the same
as the state of v before expr.

• For an invocation expression, the definite assignment state of v before arg1 is the same as the state of v
after primary-expression.

• For an object creation expression, the definite assignment state of v before arg1 is the same as the
state of v before expr.

• For each argument argi, the definite assignment state of v after argi is determined by the normal
expression rules, ignoring any ref or out modifiers.

• For each argument argi for any i greater than one, the definite assignment state of v before argi is the
same as the state of v after argi-1.

• If the variable v is passed as an out argument (i.e., an argument of the form “out v”) in any of the
arguments, then the state of v after expr is definitely assigned. Otherwise, the state of v after expr is
the same as the state of v after argn.

• For array initializers (§12.7.11.5), object initializers (12.7.11.3), collection initializers (§12.7.11.4) and
anonymous object initializers (§12.7.11.7), the definite assignment state is determined by the
expansion that these constructs are defined in terms of.

10.4.4.25 Simple assignment expressions
For an expression expr of the form w = expr-rhs:

• The definite assignment state of v before w is the same as the definite assignment state of v before
expr.

• The definite assignment state of v before expr-rhs is the same as the definite assignment state of v
after w.

• If w is the same variable as v, then the definite assignment state of v after expr is definitely assigned.
Otherwise, the definite assignment state of v after expr is the same as the definite assignment state
of v after expr-rhs.

[Example: In the following code

class A
{
 static void F(int[] arr) {
 int x;

 arr[x = 1] = x; // ok
 }
}

10 Variables

85

the variable x is considered definitely assigned after arr[x = 1] is evaluated as the left hand side of the
second simple assignment. end example]

10.4.4.26 && expressions
For an expression expr of the form expr-first && expr-second:

• The definite assignment state of v before expr-first is the same as the definite assignment state of v
before expr.

• The definite assignment state of v before expr-second is definitely assigned if and only if the state of v
after expr-first is either definitely assigned or “definitely assigned after true expression”. Otherwise, it
is not definitely assigned.

• The definite assignment state of v after expr is determined by:

o If the state of v after expr-first is definitely assigned, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr-second is definitely assigned, and the state of v after expr-
first is “definitely assigned after false expression”, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr-second is definitely assigned or “definitely assigned after true
expression”, then the state of v after expr is “definitely assigned after true expression”.

o Otherwise, if the state of v after expr-first is “definitely assigned after false expression”, and the
state of v after expr-second is “definitely assigned after false expression”, then the state of v after
expr is “definitely assigned after false expression”.

o Otherwise, the state of v after expr is not definitely assigned.

[Example: In the following code

class A
{
 static void F(int x, int y) {
 int i;
 if (x >= 0 && (i = y) >= 0) {
 // i definitely assigned
 }
 else {
 // i not definitely assigned
 }
 // i not definitely assigned
 }
}

the variable i is considered definitely assigned in one of the embedded statements of an if statement but
not in the other. In the if statement in method F, the variable i is definitely assigned in the first
embedded statement because execution of the expression (i = y) always precedes execution of this
embedded statement. In contrast, the variable i is not definitely assigned in the second embedded
statement, since x >= 0 might have tested false, resulting in the variable i’s being unassigned. end
example]

10.4.4.27 || expressions
For an expression expr of the form expr-first || expr-second:

• The definite assignment state of v before expr-first is the same as the definite assignment state of v
before expr.

• The definite assignment state of v before expr-second is definitely assigned if and only if the state of v
after expr-first is either definitely assigned or “definitely assigned after true expression”. Otherwise, it
is not definitely assigned.

• The definite assignment statement of v after expr is determined by:

ECMA-334

86

o If the state of v after expr-first is definitely assigned, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr-second is definitely assigned, and the state of v after expr-
first is “definitely assigned after true expression”, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr-second is definitely assigned or “definitely assigned after false
expression”, then the state of v after expr is “definitely assigned after false expression”.

o Otherwise, if the state of v after expr-first is “definitely assigned after true expression”, and the
state of v after expr-second is “definitely assigned after true expression”, then the state of v after
expr is “definitely assigned after true expression”.

o Otherwise, the state of v after expr is not definitely assigned.

[Example: In the following code

class A
{
 static void G(int x, int y) {
 int i;
 if (x >= 0 || (i = y) >= 0) {
 // i not definitely assigned
 }
 else {
 // i definitely assigned
 }
 // i not definitely assigned
 }
}

the variable i is considered definitely assigned in one of the embedded statements of an if statement but
not in the other. In the if statement in method G, the variable i is definitely assigned in the second
embedded statement because execution of the expression (i = y) always precedes execution of this
embedded statement. In contrast, the variable i is not definitely assigned in the first embedded
statement, since x >= 0 might have tested true, resulting in the variable i's being unassigned. end
example]

10.4.4.28 ! expressions
For an expression expr of the form ! expr-operand:

• The definite assignment state of v before expr-operand is the same as the definite assignment state
of v before expr.

• The definite assignment state of v after expr is determined by:

o If the state of v after expr-operand is definitely assigned, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr-operand is “definitely assigned after false expression”, then
the state of v after expr is “definitely assigned after true expression”.

o Otherwise, if the state of v after expr-operand is “definitely assigned after true expression”, then
the state of v after expr is “definitely assigned after false expression”.

o Otherwise, the state of v after expr is not definitely assigned.

10.4.4.29 ?? expressions
For an expression expr of the form expr-first ?? expr-second:

• The definite assignment state of v before expr-first is the same as the definite assignment state of v
before expr.

• The definite assignment state of v before expr-second is the same as the definite assignment state of v
after expr-first.

• The definite assignment statement of v after expr is determined by:

10 Variables

87

o If expr-first is a constant expression (§12.20) with value null, then the state of v after expr is the
same as the state of v after expr-second.

o Otherwise, the state of v after expr is the same as the definite assignment state of v after expr-first.

10.4.4.30 ?: expressions
For an expression expr of the form expr-cond ? expr-true : expr-false:

• The definite assignment state of v before expr-cond is the same as the state of v before expr.

• The definite assignment state of v before expr-true is definitely assigned if the state of v after expr-
cond is definitely assigned or “definitely assigned after true expression”.

• The definite assignment state of v before expr-false is definitely assigned if the state of v after expr-
cond is definitely assigned or “definitely assigned after false expression”.

• The definite assignment state of v after expr is determined by:

o If expr-cond is a constant expression (§12.20) with value true then the state of v after expr is the
same as the state of v after expr-true.

o Otherwise, if expr-cond is a constant expression (§12.20) with value false then the state of v after
expr is the same as the state of v after expr-false.

o Otherwise, if the state of v after expr-true is definitely assigned and the state of v after expr-false is
definitely assigned, then the state of v after expr is definitely assigned.

o Otherwise, the state of v after expr is not definitely assigned.

10.4.4.31 Anonymous functions
For a lambda-expression or anonymous-method-expression expr with a body (either block or expression)
body:

• The definite assignment state of a parameter is the same as for a parameter of a named method
(§10.2.6, §10.2.7).

• The definite assignment state of an outer variable v before body is the same as the state of v before
expr. That is, definite assignment state of outer variables is inherited from the context of the
anonymous function.

• The definite assignment state of an outer variable v after expr is the same as the state of v before expr.

[Example: The example

delegate bool Filter(int i);

void F() {
 int max;

 // Error, max is not definitely assigned
 Filter f = (int n) => n < max;

 max = 5;
 DoWork(f);
}

generates a compile-time error since max is not definitely assigned where the anonymous function is
declared. end example] [Example: The example

delegate void D();

void F() {
 int n;
 D d = () => { n = 1; };

 d();

 // Error, n is not definitely assigned
 Console.WriteLine(n);
}

ECMA-334

88

also generates a compile-time error since the assignment to n in the anonymous function has no affect on
the definite assignment state of n outside the anonymous function. end example]

10.5 Variable references
A variable-reference is an expression that is classified as a variable. A variable-reference denotes a storage
location that can be accessed both to fetch the current value and to store a new value.

variable-reference:
expression

[Note: In C and C++, a variable-reference is known as an lvalue. end note]

10.6 Atomicity of variable references
Reads and writes of the following data types shall be atomic: bool, char, byte, sbyte, short, ushort,
uint, int, float, and reference types. In addition, reads and writes of enum types with an underlying
type in the previous list shall also be atomic. Reads and writes of other types, including long, ulong,
double, and decimal, as well as user-defined types, need not be atomic. Aside from the library functions
designed for that purpose, there is no guarantee of atomic read-modify-write, such as in the case of
increment or decrement.

11 Conversions

89

11. Conversions

11.1 General
A conversion causes an expression to be converted to, or treated as being of, a particular type; in the
former case a conversion may involve a change in representation. Conversions can be implicit or explicit,
and this determines whether an explicit cast is required. [Example: For instance, the conversion from type
int to type long is implicit, so expressions of type int can implicitly be treated as type long. The
opposite conversion, from type long to type int, is explicit and so an explicit cast is required.

int a = 123;
long b = a; // implicit conversion from int to long
int c = (int) b; // explicit conversion from long to int

end example] Some conversions are defined by the language. Programs may also define their own
conversions (§11.5).

Some conversions in the language are defined from expressions to types, others from types to types. A
conversion from a type applies to all expressions that have that type. [Example:

enum Color { Red, Blue, Green }

Color c0 = 0; // The expression 0 converts implicitly to enum types
Color c1 = (Color)1; // other int expressions need explicit conversion

String x = null; // Conversion from null expression (no type) to String

Func<int, int> square = x => x * x; // Conversion from lambda expression
to delegate type

end example]

11.2 Implicit conversions

11.2.1 General
The following conversions are classified as implicit conversions:

• Identity conversions

• Implicit numeric conversions

• Implicit enumeration conversions

• Implicit reference conversions

• Boxing conversions

• Implicit dynamic conversions

• Implicit type parameter conversions

• Implicit constant expression conversions

• User-defined implicit conversions

• Anonymous function conversions

• Method group conversions

• Null literal conversions

• Implicit nullable conversions

• Lifted user-defined implicit conversions

Implicit conversions can occur in a variety of situations, including function member invocations (§12.6.6),
cast expressions (§12.8.7), and assignments (§12.18).

The pre-defined implicit conversions always succeed and never cause exceptions to be thrown. [Note:
Properly designed user-defined implicit conversions should exhibit these characteristics as well. end note]

ECMA-334

90

For the purposes of conversion, the types object and dynamic are considered equivalent.

However, dynamic conversions (§11.2.9 and §11.3.7) apply only to expressions of type dynamic (§9.2.4).

11.2.2 Identity conversion
An identity conversion converts from any type to the same type. One reason this conversion exists is so
that a type T or an expression of type T can be said to be convertible to T itself.

Because object and dynamic are considered equivalent there is an identity conversion between object
and dynamic, and between constructed types that are the same when replacing all occurrences of
dynamic with object.

In most cases, an identity conversion has no effect at runtime. However, since floating point operations
may be performed at higher precision than prescribed by their type (§9.3.7), assignment of their results
may result in a loss of precision, and explicit casts are guaranteed to reduce precision to what is prescribed
by the type.

11.2.3 Implicit numeric conversions
The implicit numeric conversions are:

• From sbyte to short, int, long, float, double, or decimal.

• From byte to short, ushort, int, uint, long, ulong, float, double, or decimal.

• From short to int, long, float, double, or decimal.

• From ushort to int, uint, long, ulong, float, double, or decimal.

• From int to long, float, double, or decimal.

• From uint to long, ulong, float, double, or decimal.

• From long to float, double, or decimal.

• From ulong to float, double, or decimal.

• From char to ushort, int, uint, long, ulong, float, double, or decimal.

• From float to double.

Conversions from int, uint, long or ulong to float and from long or ulong to double may cause a
loss of precision, but will never cause a loss of magnitude. The other implicit numeric conversions never
lose any information.

There are no predefined implicit conversions to the char type, so values of the other integral types do not
automatically convert to the char type.

11.2.4 Implicit enumeration conversions
An implicit enumeration conversion permits the decimal-integer-literal 0 (or 0L, etc.) to be converted to
any enum-type and to any nullable-value-type whose underlying type is an enum-type. In the latter case the
conversion is evaluated by converting to the underlying enum-type and wrapping the result (§9.3.11).

11.2.5 Implicit nullable conversions
The implicit nullable conversions are those nullable conversions (§11.6.1) derived from implicit predefined
conversions.

11.2.6 Null literal conversions
An implicit conversion exists from the null literal to any reference type or nullable value type. This
conversion produces a null reference if the target type is a reference type, or the null value (§9.3.11) of the
given nullable value type.

11.2.7 Implicit reference conversions
The implicit reference conversions are:

• From any reference-type to object and dynamic.

11 Conversions

91

• From any class-type S to any class-type T, provided S is derived from T.

• From any class-type S to any interface-type T, provided S implements T.

• From any interface-type S to any interface-type T, provided S is derived from T.

• From an array-type S with an element type SE to an array-type T with an element type TE, provided all
of the following are true:

o S and T differ only in element type. In other words, S and T have the same number of dimensions.
o An implicit reference conversion exists from SE to TE.

• From a single-dimensional array type S[] to System.Collections.Generic.IList<T>,
System.Collections.Generic.IReadOnlyList<T>, and their base interfaces, provided that
there is an implicit identity or reference conversion from S to T.

• From any array-type to System.Array and the interfaces it implements.

• From any delegate-type to System.Delegate and the interfaces it implements.

• From the null literal (§7.4.5.7) to any reference-type.

• From any reference-type to a reference-type T if it has an implicit identity or reference conversion to a
reference-type T0 and T0 has an identity conversion to T.

• From any reference-type to an interface or delegate type T if it has an implicit identity or reference
conversion to an interface or delegate type T0 and T0 is variance-convertible (§18.2.3.3) to T.

• Implicit conversions involving type parameters that are known to be reference types. See §11.2.11 for
more details on implicit conversions involving type parameters.

The implicit reference conversions are those conversions between reference-types that can be proven to
always succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, never change the referential identity of the object being
converted. [Note: In other words, while a reference conversion can change the type of the reference, it
never changes the type or value of the object being referred to. end note]

11.2.8 Boxing conversions
A boxing conversion permits a value-type to be implicitly converted to a reference-type. The following
boxing conversions exist:

• From any value-type to the type object.

• From any value-type to the type System.ValueType.

• From any enum-type to the type System.Enum.

• From any non-nullable-value-type to any interface-type implemented by the non-nullable-value-type.

• From any non-nullable-value-type to any interface-type I such that there is a boxing conversion from
the non-nullable-value-type to another interface-type I0, and I0 has an identity conversion to I.

• From any non-nullable-value-type to any interface-type I such that there is a boxing conversion from
the non-nullable-value-type to another interface-type I0, and I0 is variance-convertible (§18.2.3.3)
to I.

• From any nullable-value-type to any reference-type where there is a boxing conversion from the
underlying type of the nullable-value-type to the reference-type.

• From a type parameter that is not known to be a reference type to any type such that the conversion is
permitted by §11.2.11.

Boxing a value of a non-nullable-value-type consists of allocating an object instance and copying the value
into that instance.

Boxing a value of a nullable-value-type produces a null reference if it is the null value (HasValue is
false), or the result of unwrapping and boxing the underlying value otherwise.

[Note: The process of boxing may be imagined in terms of the existence of a boxing class for every value
type. For example, consider a struct S implementing an interface I, with a boxing class called S_Boxing.

ECMA-334

92

interface I
{
 void M();
}

struct S : I
{
 public void M() { … }
}

sealed class S_Boxing : I
{
 S value;
 public S_Boxing(S value) {
 this.value = value;
 }
 public void M() {
 value.M();
 }
}

Boxing a value v of type S now consists of executing the expression new S_Boxing(v) and returning the
resulting instance as a value of the target type of the conversion. Thus, the statements

S s = new S();
object box = s;

can be thought of as similar to:

S s = new S();
object box = new S_Boxing(s);

The imagined boxing type described above does not actually exist. Instead, a boxed value of type S has the
runtime type S, and a runtime type check using the is operator with a value type as the right operand tests
whether the left operand is a boxed version of the right operand. For example,

int i = 123;
object box = i;
if (box is int) {
 Console.Write("Box contains an int");
}

will output the string “Box contains an int” on the console.

A boxing conversion implies making a copy of the value being boxed. This is different from a conversion of
a reference-type to type object, in which the value continues to reference the same instance and simply is
regarded as the less derived type object. For example, given the declaration

struct Point
{
 public int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

the following statements

Point p = new Point(10, 10);
object box = p;
p.x = 20;
Console.Write(((Point)box).x);

will output the value 10 on the console because the implicit boxing operation that occurs in the assignment
of p to box causes the value of p to be copied. Had Point been declared a class instead, the value 20
would be output because p and box would reference the same instance.

11 Conversions

93

The analogy of a boxing class should not be used as more than a helpful tool for picturing how boxing
works conceptually. There are numerous subtle differences between the behavior described by this
specification and the behavior that would result from boxing being implemented in precisely this manner.
end note]

11.2.9 Implicit dynamic conversions
An implicit dynamic conversion exists from an expression of type dynamic to any type T. The conversion is
dynamically bound (§12.3.3), which means that an implicit conversion will be sought at run-time from the
run-time type of the expression to T. If no conversion is found, a run-time exception is thrown.

This implicit conversion seemingly violates the advice in the beginning of §11.2 that an implicit conversion
should never cause an exception. However, it is not the conversion itself, but the finding of the conversion
that causes the exception. The risk of run-time exceptions is inherent in the use of dynamic binding. If
dynamic binding of the conversion is not desired, the expression can be first converted to object, and
then to the desired type.

[Example: The following illustrates implicit dynamic conversions:

object o = “object”
dynamic d = “dynamic”;

string s1 = o; // Fails at compile-time – no conversion exists
string s2 = d; // Compiles and succeeds at run-time
int i = d; // Compiles but fails at run-time – no conversion exists

The assignments to s2 and i both employ implicit dynamic conversions, where the binding of the
operations is suspended until run-time. At run-time, implicit conversions are sought from the run-time type
of d – string – to the target type. A conversion is found to string but not to int. end example]

11.2.10 Implicit constant expression conversions
An implicit constant expression conversion permits the following conversions:

• A constant-expression (§12.20) of type int can be converted to type sbyte, byte, short, ushort,
uint, or ulong, provided the value of the constant-expression is within the range of the destination
type.

• A constant-expression of type long can be converted to type ulong, provided the value of the
constant-expression is not negative.

11.2.11 Implicit conversions involving type parameters
For a type-parameter T that is known to be a reference type (§15.2.5), the following implicit reference
conversions (11.2.7) exist:

• From T to its effective base class C, from T to any base class of C, and from T to any interface
implemented by C.

• From T to an interface-type I in T’s effective interface set and from T to any base interface of I.

• From T to a type parameter U provided that T depends on U (§15.2.5). [Note: Since T is known to be a
reference type, within the scope of T, the run-time type of U will always be a reference type, even if U
is not known to be a reference type at compile-time. end note]

• From the null literal (§7.4.5.7) to T.

For a type-parameter T that is not known to be a reference type (§15.2.5), the following conversions
involving T are considered to be boxing conversions (11.2.8) at compile-time. At run-time, if T is a value
type, the conversion is executed as a boxing conversion. At run-time, if T is a reference type, the
conversion is executed as an implicit reference conversion or identity conversion.

• From T to its effective base class C, from T to any base class of C, and from T to any interface
implemented by C. [Note: C will be one of the types System.Object, System.ValueType, or
System.Enum (otherwise T would be known to be a reference type). end note]

ECMA-334

94

• From T to an interface-type I in T’s effective interface set and from T to any base interface of I.

For a type-parameter T that is not known to be a reference type, there is an implicit conversion from T to a
type parameter U provided T depends on U. At run-time, if T is a value type and U is a reference type, the
conversion is executed as a boxing conversion. At run-time, if both T and U are value types, then T and U
are necessarily the same type and no conversion is performed. At run-time, if T is a reference type, then U
is necessarily also a reference type and the conversion is executed as an implicit reference conversion or
identity conversion (§15.2.5).

The following further implicit conversions exist for a given type parameter T:

• From T to a reference type S if it has an implicit conversion to a reference type S0 and S0 has an
identity conversion to S. At run-time, the conversion is executed the same way as the conversion to S0.

• From T to an interface type I if it has an implicit conversion to an interface type I0, and I0 is variance-
convertible to I (§18.2.3.3). At run-time, if T is a value type, the conversion is executed as a boxing
conversion. Otherwise, the conversion is executed as an implicit reference conversion or identity
conversion.

In all cases, the rules ensure that a conversion is executed as a boxing conversion if and only if at run-time
the conversion is from a value type to a reference type.

11.2.12 User-defined implicit conversions
A user-defined implicit conversion consists of an optional standard implicit conversion, followed by
execution of a user-defined implicit conversion operator, followed by another optional standard implicit
conversion. The exact rules for evaluating user-defined implicit conversions are described in §11.5.4.

11.2.13 Anonymous function conversions and method group conversions
Anonymous functions and method groups do not have types in and of themselves, but they may be
implicitly converted to delegate types. Additionally, some lambda expressions may be implicitly converted
to expression tree types. Anonymous function conversions are described in more detail in §11.7 and
method group conversions in §11.8.

11.3 Explicit conversions

11.3.1 General
The following conversions are classified as explicit conversions:

• All implicit conversions

• Explicit numeric conversions

• Explicit enumeration conversions

• Explicit nullable conversions.

• Explicit reference conversions

• Explicit interface conversions

• Unboxing conversions

• Explicit type parameter conversions

• Explicit dynamic conversions

Explicit conversions can occur in cast expressions (§12.8.7).

The set of explicit conversions includes all implicit conversions. [Note: This means that redundant cast
expressions are allowed. end note]

The explicit conversions that are not implicit conversions are conversions that cannot be proven always to
succeed, conversions that are known possibly to lose information, and conversions across domains of types
sufficiently different to merit explicit notation.

11 Conversions

95

11.3.2 Explicit numeric conversions
The explicit numeric conversions are the conversions from a numeric-type to another numeric-type for
which an implicit numeric conversion (§11.2.3) does not already exist:

• From sbyte to byte, ushort, uint, ulong, or char.

• From byte to sbyte or char.

• From short to sbyte, byte, ushort, uint, ulong, or char.

• From ushort to sbyte, byte, short, or char.

• From int to sbyte, byte, short, ushort, uint, ulong, or char.

• From uint to sbyte, byte, short, ushort, int, or char.

• From long to sbyte, byte, short, ushort, int, uint, ulong, or char.

• From ulong to sbyte, byte, short, ushort, int, uint, long, or char.

• From char to sbyte, byte, or short.

• From float to sbyte, byte, short, ushort, int, uint, long, ulong, char, or decimal.

• From double to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or decimal.

• From decimal to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or double.

Because the explicit conversions include all implicit and explicit numeric conversions, it is always possible
to convert from any numeric-type to any other numeric-type using a cast expression (§12.8.7).

The explicit numeric conversions possibly lose information or possibly cause exceptions to be thrown. An
explicit numeric conversion is processed as follows:

• For a conversion from an integral type to another integral type, the processing depends on the
overflow checking context (§12.7.14) in which the conversion takes place:

o In a checked context, the conversion succeeds if the value of the source operand is within the
range of the destination type, but throws a System.OverflowException if the value of the
source operand is outside the range of the destination type.

o In an unchecked context, the conversion always succeeds, and proceeds as follows.

• If the source type is larger than the destination type, then the source value is truncated by
discarding its “extra” most significant bits. The result is then treated as a value of the
destination type.

• If the source type is smaller than the destination type, then the source value is either sign-
extended or zero-extended so that it is the same size as the destination type. Sign-extension is
used if the source type is signed; zero-extension is used if the source type is unsigned. The
result is then treated as a value of the destination type.

• If the source type is the same size as the destination type, then the source value is treated as a
value of the destination type

• For a conversion from decimal to an integral type, the source value is rounded towards zero to the
nearest integral value, and this integral value becomes the result of the conversion. If the resulting
integral value is outside the range of the destination type, a System.OverflowException is thrown.

• For a conversion from float or double to an integral type, the processing depends on the overflow-
checking context (§12.7.14) in which the conversion takes place:

o In a checked context, the conversion proceeds as follows:

• If the value of the operand is NaN or infinite, a System.OverflowException is thrown.

• Otherwise, the source operand is rounded towards zero to the nearest integral value. If this
integral value is within the range of the destination type then this value is the result of the
conversion.

ECMA-334

96

• Otherwise, a System.OverflowException is thrown.

o In an unchecked context, the conversion always succeeds, and proceeds as follows.

• If the value of the operand is NaN or infinite, the result of the conversion is an unspecified
value of the destination type.

• Otherwise, the source operand is rounded towards zero to the nearest integral value. If this
integral value is within the range of the destination type then this value is the result of the
conversion.

• Otherwise, the result of the conversion is an unspecified value of the destination type.

• For a conversion from double to float, the double value is rounded to the nearest float value. If
the double value is too small to represent as a float, the result becomes zero with the same sign as
the value. If the magnitude of the double value is too large to represent as a float, the result
becomes infinity with the same sign as the value. If the double value is NaN, the result is also NaN.

• For a conversion from float or double to decimal, the source value is converted to decimal
representation and rounded to the nearest number if required (§9.3.8).

o If the source value is too small to represent as a decimal, the result becomes zero, preserving the
sign of the original value if decimal supports signed zero values.

o If the source value's magnitude is too large to represent as a decimal, or that value is infinity, the
result is infinity preserving the sign of the original value, if the decimal representation supports
infinities; otherwise a System.OverflowException is thrown.

o If the source value is NaN, the result is NaN if the decimal representation supports NaNs; otherwise
a System.OverflowException is thrown.

• For a conversion from decimal to float or double, the decimal value is rounded to the nearest
double or float value. If the source value's magnitude is too large to represent in the target type, or
that value is infinity, the result is infinity preserving the sign of the original value. If the source value is
NaN, the result is NaN. While this conversion may lose precision, it never causes an exception to be
thrown.

[Note: The decimal type is not required to support infinities or NaN values but may do so; its range may
be smaller than the range of float and double, but is not guaranteed to be. For decimal
representations without infinities or NaN values, and with a range smaller than float, the result of a
conversion from decimal to either float or double will never be infinity or NaN. end note]

11.3.3 Explicit enumeration conversions
The explicit enumeration conversions are:

• From sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, or decimal to
any enum-type.

• From any enum-type to sbyte, byte, short, ushort, int, uint, long, ulong, char, float,
double, or decimal.

• From any enum-type to any other enum-type.

An explicit enumeration conversion between two types is processed by treating any participating enum-
type as the underlying type of that enum-type, and then performing an implicit or explicit numeric
conversion between the resulting types. [Example: Given an enum-type E with and underlying type of int,
a conversion from E to byte is processed as an explicit numeric conversion (§11.3.2) from int to byte,
and a conversion from byte to E is processed as an implicit numeric conversion (§11.2.3) from byte to
int. end example]

11 Conversions

97

11.3.4 Explicit nullable conversions
The explicit nullable conversions are those nullable conversions (§11.6.1) derived from explicit and implicit
predefined conversions.

11.3.5 Explicit reference conversions
The explicit reference conversions are:

• From object and dynamic to any other reference-type.

• From any class-type S to any class-type T, provided S is a base class of T.

• From any class-type S to any interface-type T, provided S is not sealed and provided S does not
implement T.

• From any interface-type S to any class-type T, provided T is not sealed or provided T implements S.

• From any interface-type S to any interface-type T, provided S is not derived from T.

• From an array-type S with an element type SE to an array-type T with an element type TE, provided all
of the following are true:

o S and T differ only in element type. In other words, S and T have the same number of dimensions.
o An explicit reference conversion exists from SE to TE.

• From System.Array and the interfaces it implements, to any array-type.

• From a single-dimensional array-type S[] to System.Collections.Generic.IList<T>,
System.Collections.Generic.IReadOnlyList<T>, and its base interfaces, provided that there
is an identity conversion or explicit reference conversion from S to T.

• From System.Collections.Generic.IList<S>,
System.Collections.Generic.IReadOnlyList<S>, and their base interfaces to a single-
dimensional array type T[], provided that there is an identity conversion or explicit reference
conversion from S to T.

• From System.Delegate and the interfaces it implements to any delegate-type.

• From a reference type S to a reference type T if it has an explicit reference conversion from S to a
reference type T0 and T0 and there is an identity conversion from T0 to T.

• From a reference type S to an interface or delegate type T if it there is an explicit reference conversion
from S to an interface or delegate type T0 and either T0 is variance-convertible to T or T is variance-
convertible to T0 (§18.2.3.3).

• From D<S1…Sn> to D<T1…Tn> where D<X1…Xn> is a generic delegate type, D<S1…Sn> is not compatible
with or identical to D<T1…Tn>, and for each type parameter Xi of D the following holds:

o If Xi is invariant, then Si is identical to Ti.
o If Xi is covariant, then there is an identity conversion, implicit reference conversion or explicit

reference conversion from Si to Ti.
o If Xi is contravariant, then Si and Ti are either identical or both reference types.

• Explicit conversions involving type parameters that are known to be reference types. For more details
on explicit conversions involving type parameters, see §11.3.8.

The explicit reference conversions are those conversions between reference-types that require run-time
checks to ensure they are correct.

For an explicit reference conversion to succeed at run-time, the value of the source operand shall be null,
or the type of the object referenced by the source operand shall be a type that can be converted to the
destination type by an implicit reference conversion (§11.2.7). If an explicit reference conversion fails, a
System.InvalidCastException is thrown.

Reference conversions, implicit or explicit, never change the referential identity of the object being
converted. [Note: In other words, while a reference conversion can change the type of the reference, it
never changes the type or value of the object being referred to. end note]

ECMA-334

98

11.3.6 Unboxing conversions
An unboxing conversion permits a reference-type to be explicitly converted to a value-type. The following
unboxing conversions exist:

• From the type object to any value-type.

• From the type System.ValueType to any value-type.

• From the type System.Enum to any enum-type.

• From any interface-type to any non-nullable-value-type that implements the interface-type.

• From any interface-type I to any non-nullable-value-type where there is an unboxing conversion from
an interface-type I0 to the non-nullable-value-type and an identity conversion from I to I0.

• From any interface-type I to any non-nullable-value-type where there is an unboxing conversion from
an interface-type I0 to the non-nullable-value-type and either either I0 is variance-convertible to I or
I is variance-convertible to I0 (§18.2.3.3).

• From any reference-type to any nullable-value-type where there is an unboxing conversion from
reference-type to the underlying non-nullable-value-type of the nullable-value-type.

• From a type parameter which is not known to be a value type to any type such that the conversion is
permitted by §11.3.8.

An unboxing operation to a non-nullable-value-type consists of first checking that the object instance is a
boxed value of the given non-nullable-value-type, and then copying the value out of the instance.

Unboxing to a nullable-value-type produces the null value of the nullable-value-type if the source operand
is null, or the wrapped result of unboxing the object instance to the underlying type of the nullable-value-
type otherwise.

[Note: Referring to the imaginary boxing class described in §11.2.8, an unboxing conversion of an object
box to a value-type S consists of executing the expression ((S_Boxing)box).value. Thus, the
statements

object box = new S();
S s = (S)box;

conceptually correspond to

object box = new S_Boxing(new S());
S s = ((S_Boxing)box).value;

end note]

For an unboxing conversion to a given non-nullable-value-type to succeed at run-time, the value of the
source operand shall be a reference to a boxed value of that non-nullable-value-type. If the source operand
is null a System.NullReferenceException is thrown. If the source operand is a reference to an
incompatible object, a System.InvalidCastException is thrown.

For an unboxing conversion to a given nullable-value-type to succeed at run-time, the value of the source
operand shall be either null or a reference to a boxed value of the underlying non-nullable-value-type of
the nullable-value-type. If the source operand is a reference to an incompatible object, a
System.InvalidCastException is thrown.

11.3.7 Explicit dynamic conversions
An explicit dynamic conversion exists from an expression of type dynamic to any type T. The conversion is
dynamically bound (§12.3.3), which means that an explicit conversion will be sought at run-time from the
run-time type of the expression to T. If no conversion is found, a run-time exception is thrown.

If dynamic binding of the conversion is not desired, the expression can be first converted to object, and
then to the desired type.

[Example: Assume the following class is defined:

11 Conversions

99

class C
{
 int i;

 public C(int i) { this.i = i; }

 public static explicit operator C(string s)
 {
 return new C(int.Parse(s));
 }
}

The following illustrates explicit dynamic conversions:

object o = "1";
dynamic d = "2";

var c1 = (C)o; // Compiles, but explicit reference conversion fails
var c2 = (C)d; // Compiles and user defined conversion succeeds

The best conversion of o to C is found at compile-time to be an explicit reference conversion. This fails at
run-time, because “1” is not in fact a C. The conversion of d to C however, as an explicit dynamic
conversion, is suspended to run-time, where a user defined conversion from the run-time type of d –
string – to C is found, and succeeds. end example]

11.3.8 Explicit conversions involving type parameters
For a type-parameter T that is known to be a reference type (§15.2.5), the following explicit reference
conversions (§11.3.5) exist:

• From the effective base class C of T to T and from any base class of C to T.

• From any interface-type to T.

• From T to any interface-type I provided there isn’t already an implicit reference conversion from T
to I.

• From a type-parameter U to T provided that T depends on U (§15.2.5). [Note: Since T is known to
be a reference type, within the scope of T, the run-time type of U will always be a reference type,
even if U is not known to be a reference type at compile-time. end note]

For a type-parameter T that is not known to be a reference type (§15.2.5), the following conversions
involving T are considered to be unboxing conversions (§11.3.6) at compile-time. At run-time, if T is a value
type, the conversion is executed as an unboxing conversion. At run-time, if T is a reference type, the
conversion is executed as an explicit reference conversion or identity conversion.

• From the effective base class C of T to T and from any base class of C to T. [Note: C will be one of
the types System.Object, System.ValueType, or System.Enum (otherwise T would be known
to be a reference type). end note]

• From any interface-type to T.

For a type-parameter T that is not known to be a reference type (§15.2.5), the following explicit
conversions exist:

• From T to any interface-type I provided there is not already an implicit conversion from T to I.
This conversion consists of an implicit boxing conversion (§11.2.8) from T to object followed by
an explicit reference conversion from object to I. At run-time, if T is a value type, the conversion
is executed as a boxing conversion followed by an explicit reference conversion. At run-time, if T is
a reference type, the conversion is executed as an explicit reference conversion.

• From a type parameter U to T provided that T depends on U (§15.2.5). At run-time, if T is a value
type and U is a reference type, the conversion is executed as an unboxing conversion. At run-time,
if both T and U are value types, then T and U are necessarily the same type and no conversion is
performed. At run-time, if T is a reference type, then U is necessarily also a reference type and the
conversion is executed as an explicit reference conversion or identity conversion.

ECMA-334

100

In all cases, the rules ensure that a conversion is executed as an unboxing conversion if and only if at run-
time the conversion is from a reference type to a value type.

The above rules do not permit a direct explicit conversion from an unconstrained type parameter to a non-
interface type, which might be surprising. The reason for this rule is to prevent confusion and make the
semantics of such conversions clear. [Example: Consider the following declaration:

class X<T>
{
 public static long F(T t) {
 return (long)t; // Error
 }
}

If the direct explicit conversion of t to long were permitted, one might easily expect that X<int>.F(7)
would return 7L. However, it would not, because the standard numeric conversions are only considered
when the types are known to be numeric at binding-time. In order to make the semantics clear, the above
example must instead be written:

class X<T>
{
 public static long F(T t) {
 return (long)(object)t; // Ok, but will only work when T is long
 }
}

This code will now compile but executing X<int>.F(7) would then throw an exception at run-time, since
a boxed int cannot be converted directly to a long. end example]

11.3.9 User-defined explicit conversions
A user-defined explicit conversion consists of an optional standard explicit conversion, followed by
execution of a user-defined implicit or explicit conversion operator, followed by another optional standard
explicit conversion. The exact rules for evaluating user-defined explicit conversions are described in
§11.5.5.

11.4 Standard conversions

11.4.1 General
The standard conversions are those pre-defined conversions that can occur as part of a user-defined
conversion.

11.4.2 Standard implicit conversions
The following implicit conversions are classified as standard implicit conversions:

• Identity conversions (§11.2.2)

• Implicit numeric conversions (§11.2.3)

• Implicit nullable conversions (§11.2.5)

• Null literal conversions (§11.2.6)

• Implicit reference conversions (§11.2.7)

• Boxing conversions (§11.2.8)

• Implicit constant expression conversions (§11.2.10)

• Implicit conversions involving type parameters (§11.2.11)

The standard implicit conversions specifically exclude user-defined implicit conversions.

11.4.3 Standard explicit conversions
The standard explicit conversions are all standard implicit conversions plus the subset of the explicit
conversions for which an opposite standard implicit conversion exists. [Note: In other words, if a standard

11 Conversions

101

implicit conversion exists from a type A to a type B, then a standard explicit conversion exists from type A
to type B and from type B to type A. end note]

11.5 User-defined conversions

11.5.1 General
C# allows the pre-defined implicit and explicit conversions to be augmented by user-defined conversions.
User-defined conversions are introduced by declaring conversion operators (§15.10.4) in class and struct
types.

11.5.2 Permitted user-defined conversions
C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine
an already existing implicit or explicit conversion.

For a given source type S and target type T, if S or T are nullable value types, let S0 and T0 refer to their
underlying types, otherwise S0 and T0 are equal to S and T respectively. A class or struct is permitted to
declare a conversion from a source type S to a target type T only if all of the following are true:

• S0 and T0 are different types.

• Either S0 or T0 is the class or struct type in which the operator declaration takes place.

• Neither S0 nor T0 is an interface-type.

• Excluding user-defined conversions, a conversion does not exist from S to T or from T to S.

The restrictions that apply to user-defined conversions are specified in §15.10.4.

11.5.3 Evaluation of user-defined conversions
A user-defined conversion converts a source expression, which may have a source type, to another type,
called the target type. Evaluation of a user-defined conversion centers on finding the most-specific user-
defined conversion operator for the source expression and target type. This determination is broken into
several steps:

• Finding the set of classes and structs from which user-defined conversion operators will be considered.
This set consists of the source type and its base classes, if the source type exists, along with the target
type and its base classes. For this purpose it is assumed that only classes and structs can declare user-
defined operators, and that non-class types have no base classes. Also, if either the source or target
type is a nullable-value-type, their underlying type is used instead.

• From that set of types, determining which user-defined and lifted conversion operators are applicable.
For a conversion operator to be applicable, it shall be possible to perform a standard conversion
(§11.4) from the source expression to the operand type of the operator, and it shall be possible to
perform a standard conversion from the result type of the operator to the target type.

• From the set of applicable user-defined operators, determining which operator is unambiguously the
most-specific. In general terms, the most-specific operator is the operator whose operand type is
“closest” to the source expression and whose result type is “closest” to the target type. User-defined
conversion operators are preferred over lifted conversion operators. The exact rules for establishing
the most-specific user-defined conversion operator are defined in the following subclauses.

Once a most-specific user-defined conversion operator has been identified, the actual execution of the
user-defined conversion involves up to three steps:

• First, if required, performing a standard conversion from the source expression to the operand type of
the user-defined or lifted conversion operator.

• Next, invoking the user-defined or lifted conversion operator to perform the conversion.

• Finally, if required, performing a standard conversion from the result type of the user-defined
conversion operator to the target type.

ECMA-334

102

Evaluation of a user-defined conversion never involves more than one user-defined or lifted conversion
operator. In other words, a conversion from type S to type T will never first execute a user-defined
conversion from S to X and then execute a user-defined conversion from X to T.

• Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the following
subclauses. The definitions make use of the following terms:

• If a standard implicit conversion (§11.4.2) exists from a type A to a type B, and if neither A nor B are
interface-types, then A is said to be encompassed by B, and B is said to encompass A.

• If a standard implicit conversion (§11.4.2) exists from an expression E to a type B, and if neither B nor
the type of E (if it has one) are interface-types, then E is said to be encompassed by B, and B is said to
encompass E.

• The most-encompassing type in a set of types is the one type that encompasses all other types in the
set. If no single type encompasses all other types, then the set has no most-encompassing type. In
more intuitive terms, the most-encompassing type is the “largest” type in the set—the one type to
which each of the other types can be implicitly converted.

• The most-encompassed type in a set of types is the one type that is encompassed by all other types in
the set. If no single type is encompassed by all other types, then the set has no most-encompassed
type. In more intuitive terms, the most-encompassed type is the “smallest” type in the set—the one
type that can be implicitly converted to each of the other types.

11.5.4 User-defined implicit conversions
A user-defined implicit conversion from an expression E to a type T is processed as follows:

• Determine the types S, S0 and T0.

o If E has a type, let S be that type.

o If S or T are nullable value types, let SU and TU be their underlying types, otherwise let SU and TU
be S and T, respectively.

o If SU or TU are type parameters, let S0 and T0 be their effective base classes, otherwise let S0 and T0
be SU and TU, respectively.

• Find the set of types, D, from which user-defined conversion operators will be considered. This set
consists of S0 (if S0 exists and is a class or struct), the base classes of S0 (if S0 exists and is a class),
and T0 (if T0 is a class or struct). A type is added to the set D only if an identity conversion to another
type already included in the set doesn’t exist.

• Find the set of applicable user-defined and lifted conversion operators, U. This set consists of the user-
defined and lifted implicit conversion operators declared by the classes or structs in D that convert
from a type encompassing E to a type encompassed by T. If U is empty, the conversion is undefined
and a compile-time error occurs.

• Find the most-specific source type, SX, of the operators in U:

o If S exists and any of the operators in U convert from S, then SX is S.
o Otherwise, SX is the most-encompassed type in the combined set of source types of the operators

in U. If exactly one most-encompassed type cannot be found, then the conversion is ambiguous
and a compile-time error occurs.

• Find the most-specific target type, TX, of the operators in U:

o If any of the operators in U convert to T, then TX is T.
o Otherwise, TX is the most-encompassing type in the combined set of target types of the operators

in U. If exactly one most-encompassing type cannot be found, then the conversion is ambiguous
and a compile-time error occurs.

• Find the most-specific conversion operator:

11 Conversions

103

o If U contains exactly one user-defined conversion operator that converts from SX to TX, then this is
the most-specific conversion operator.

o Otherwise, if U contains exactly one lifted conversion operator that converts from SX to TX, then
this is the most-specific conversion operator.

o Otherwise, the conversion is ambiguous and a compile-time error occurs.

• Finally, apply the conversion:

o If E does not already have the type SX, then a standard implicit conversion from E to SX is
performed.

o The most-specific conversion operator is invoked to convert from SX to TX.
o If TX is not T, then a standard implicit conversion from TX to T is performed.

A user-defined implicit conversion from a type S to a type T exists if a user-defined implicit conversion
exists from a variable of type S to T.

11.5.5 User-defined explicit conversions
A user-defined explicit conversion from an expression E to a type T is processed as follows:

• Determine the types S, S0 and T0.

o If E has a type, let S be that type.

o If S or T are nullable value types, let SU and TU be their underlying types, otherwise let SU and TU
be S and T, respectively.

o If SU or TU are type parameters, let S0 and T0 be their effective base classes, otherwise let S0 and T0
be SU and TU, respectively.

• Find the set of types, D, from which user-defined conversion operators will be considered. This set
consists of S0 (if S0 exists and is a class or struct), the base classes of S0 (if S0 exists and is a class), T0 (if
T0 is a class or struct), and the base classes of T0 (if T0 is a class). A type is added to the set D only if an
identity conversion to another type already included in the set doesn’t exist.

• Find the set of applicable user-defined and lifted conversion operators, U. This set consists of the user-
defined and lifted implicit or explicit conversion operators declared by the classes or structs in D that
convert from a type encompassing E or encompassed by S (if it exists) to a type encompassing or
encompassed by T. If U is empty, the conversion is undefined and a compile-time error occurs.

• Find the most-specific source type, SX, of the operators in U:

o If S exists and any of the operators in U convert from S, then SX is S.
o Otherwise, if any of the operators in U convert from types that encompass E, then SX is the most-

encompassed type in the combined set of source types of those operators. If no most-
encompassed type can be found, then the conversion is ambiguous and a compile-time error
occurs.

o Otherwise, SX is the most-encompassing type in the combined set of source types of the operators
in U. If exactly one most-encompassing type cannot be found, then the conversion is ambiguous
and a compile-time error occurs.

• Find the most-specific target type, TX, of the operators in U:

o If any of the operators in U convert to T, then TX is T.
o Otherwise, if any of the operators in U convert to types that are encompassed by T, then TX is the

most-encompassing type in the combined set of target types of those operators. If exactly one
most-encompassing type cannot be found, then the conversion is ambiguous and a compile-time
error occurs.

ECMA-334

104

o Otherwise, TX is the most-encompassed type in the combined set of target types of the operators
in U. If no most-encompassed type can be found, then the conversion is ambiguous and a compile-
time error occurs.

• Find the most-specific conversion operator:

o If U contains exactly one user-defined conversion operator that converts from SX to TX, then this is
the most-specific conversion operator.

o Otherwise, if U contains exactly one lifted conversion operator that converts from SX to TX, then
this is the most-specific conversion operator.

o Otherwise, the conversion is ambiguous and a compile-time error occurs.

• Finally, apply the conversion:

o If E does not already have the type SX, then a standard explicit conversion from E to SX is
performed.

o The most-specific user-defined conversion operator is invoked to convert from SX to TX.
o If TX is not T, then a standard explicit conversion from TX to T is performed.

A user-defined explicit conversion from a type S to a type T exists if a user-defined explicit conversion
exists from a variable of type S to T.

11.6 Conversions involving nullable types

11.6.1 Nullable Conversions
Nullable conversions permit predefined conversions that operate on non-nullable value types to also be
used with nullable forms of those types. For each of the predefined implicit or explicit conversions that
convert from a non-nullable value type S to a non-nullable value type T (§11.2.2, §11.2.3, §11.2.4,
§11.2.10, §11.3.2 and §11.3.3), the following nullable conversions exist:

• An implicit or explicit conversion from S? to T?

• An implicit or explicit conversion from S to T?

• An explicit conversion from S? to T.

A nullable conversion is itself classified as an implicit or explicit conversion.

Certain nullable conversions are classified as standard conversions and can occur as part of a user-defined
conversion. Specifically, all implicit nullable conversions are classified as standard implicit conversions
(§11.4.2), and those explicit nullable conversions that satisfy the requirements of §11.4.3 are classified as
standard explicit conversions.

Evaluation of a nullable conversion based on an underlying conversion from S to T proceeds as follows:

• If the nullable conversion is from S? to T?:

o If the source value is null (HasValue property is false), the result is the null value of type T?.
o Otherwise, the conversion is evaluated as an unwrapping from S? to S, followed by the underlying

conversion from S to T, followed by a wrapping from T to T?.

• If the nullable conversion is from S to T?, the conversion is evaluated as the underlying conversion
from S to T followed by a wrapping from T to T?.

• If the nullable conversion is from S? to T, the conversion is evaluated as an unwrapping from S? to S
followed by the underlying conversion from S to T.

11.6.2 Lifted conversions
Given a user-defined conversion operator that converts from a non-nullable value type S to a non-nullable
value type T, a lifted conversion operator exists that converts from S? to T?. This lifted conversion
operator performs an unwrapping from S? to S followed by the user-defined conversion from S to T

11 Conversions

105

followed by a wrapping from T to T?, except that a null valued S? converts directly to a null valued T?. A
lifted conversion operator has the same implicit or explicit classification as its underlying user-defined
conversion operator.

11.7 Anonymous function conversions

11.7.1 General
An anonymous-method-expression or lambda-expression is classified as an anonymous function (§12.16).
The expression does not have a type, but can be implicitly converted to a compatible delegate type. Some
lambda expressions may also be implicitly converted to a compatible expression-tree type.

For the purpose of brevity, this subclause uses the short form for the task types Task and Task<T>
(§15.15.1).

Specifically, an anonymous function F is compatible with a delegate type D provided:

• If F contains an anonymous-function-signature, then D and F have the same number of parameters.

• If F does not contain an anonymous-function-signature, then D may have zero or more parameters of
any type, as long as no parameter of D has the out parameter modifier.

• If F has an explicitly typed parameter list, each parameter in D has the same type and modifiers as the
corresponding parameter in F.

• If F has an implicitly typed parameter list, D has no ref or out parameters.

• If the body of F is an expression, and either D has a void return type or F is async and D has the return
type Task, then when each parameter of F is given the type of the corresponding parameter in D, the
body of F is a valid expression (w.r.t §12) that would be permitted as a statement-expression (§13.7).

• If the body of F is a statement block, and either D has a void return type or F is async and D has the
return type Task, then when each parameter of F is given the type of the corresponding parameter
in D, the body of F is a valid statement block (w.r.t §13.3) in which no return statement specifies an
expression.

• If the body of F is an expression, and either F is non-async and D has a non-void return type T, or F is
async and D has a return type Task<T>, then when each parameter of F is given the type of the
corresponding parameter in D, the body of F is a valid expression (w.r.t §12) that is implicitly
convertible to T.

• If the body of F is a statement block, and either F is non-async and D has a non-void return type T, or F
is async and D has a return type Task<T>, then when each parameter of F is given the type of the
corresponding parameter in D, the body of F is a valid statement block (w.r.t §13.3) with a non-
reachable end point in which each return statement specifies an expression that is implicitly
convertible to T.

[Example: The following examples illustrate these rules:

delegate void D(int x);

D d1 = delegate { }; // Ok
D d2 = delegate() { }; // Error, signature mismatch
D d3 = delegate(long x) { }; // Error, signature mismatch
D d4 = delegate(int x) { }; // Ok
D d5 = delegate(int x) { return; }; // Ok
D d6 = delegate(int x) { return x; }; // Error, return type mismatch

delegate void E(out int x);

E e1 = delegate { }; // Error, E has an out parameter
E e2 = delegate(out int x) { x = 1; }; // Ok
E e3 = delegate(ref int x) { x = 1; }; // Error, signature mismatch

ECMA-334

106

delegate int P(params int[] a);

P p1 = delegate { }; // Error, end of block reachable
P p2 = delegate { return; }; // Error, return type mismatch
P p3 = delegate { return 1; }; // Ok
P p4 = delegate { return "Hello"; }; // Error, return type mismatch
P p5 = delegate(int[] a) { // Ok
 return a[0];
};
P p6 = delegate(params int[] a) { // Error, params modifier
 return a[0];
};
P p7 = delegate(int[] a) { // Error, return type mismatch
 if (a.Length > 0) return a[0];
 return "Hello";
};

delegate object Q(params int[] a);

Q q1 = delegate(int[] a) { // Ok
 if (a.Length > 0) return a[0];
 return "Hello";
};

end example]

[Example: The examples that follow use a generic delegate type Func<A,R> that represents a function
that takes an argument of type A and returns a value of type R:

delegate R Func<A,R>(A arg);

In the assignments

Func<int,int> f1 = x => x + 1; // Ok

Func<int,double> f2 = x => x + 1; // Ok

Func<double,int> f3 = x => x + 1; // Error

Func<int, Task<int>> f4 = async x => x + 1; // Ok

the parameter and return types of each anonymous function are determined from the type of the variable
to which the anonymous function is assigned.

The first assignment successfully converts the anonymous function to the delegate type Func<int,int>
because, when x is given type int, x + 1 is a valid expression that is implicitly convertible to type int.

Likewise, the second assignment successfully converts the anonymous function to the delegate type
Func<int,double> because the result of x + 1 (of type int) is implicitly convertible to type double.

However, the third assignment is a compile-time error because, when x is given type double, the result of
x + 1 (of type double) is not implicitly convertible to type int.

The fourth assignment successfully converts the anonymous async function to the delegate type
Func<int, Task<int>> because the result of x + 1 (of type int) is implicitly convertible to the effective
return type int of the async lambda, which has a return type Task<int>. end example]

A lambda expression F is compatible with an expression tree type Expression<D> if F is compatible with
the delegate type D. This does not apply to anonymous methods, only lambda expressions.

Certain lambda expressions cannot be converted to expression tree types: Even though the conversion
exists, it fails at compile-time. This is the case if the lambda expression:

• Has a block body

• Contains simple or compound assignment operators

• Contains a dynamically bound expression

• Is async

11 Conversions

107

Anonymous functions may influence overload resolution, and participate in type inference. See §12.6 for
further details.

11.7.2 Evaluation of anonymous function conversions to delegate types
Conversion of an anonymous function to a delegate type produces a delegate instance that references the
anonymous function and the (possibly empty) set of captured outer variables that are active at the time of
the evaluation. When the delegate is invoked, the body of the anonymous function is executed. The code
in the body is executed using the set of captured outer variables referenced by the delegate. A delegate-
creation-expression (§12.7.11.6) can be used as an alternate syntax for converting an anonymous method
to a delegate type.

The invocation list of a delegate produced from an anonymous function contains a single entry. The exact
target object and target method of the delegate are unspecified. In particular, it is unspecified whether the
target object of the delegate is null, the this value of the enclosing function member, or some other
object.

Conversions of semantically identical anonymous functions with the same (possibly empty) set of captured
outer variable instances to the same delegate types are permitted (but not required) to return the same
delegate instance. The term semantically identical is used here to mean that execution of the anonymous
functions will, in all cases, produce the same effects given the same arguments. This rule permits code such
as the following to be optimized.

delegate double Function(double x);

class Test
{
 static double[] Apply(double[] a, Function f) {
 double[] result = new double[a.Length];
 for (int i = 0; i < a.Length; i++) result[i] = f(a[i]);
 return result;
 }

 static void F(double[] a, double[] b) {
 a = Apply(a, (double x) => Math.Sin(x));
 b = Apply(b, (double y) => Math.Sin(y));
 …
 }
}

Since the two anonymous function delegates have the same (empty) set of captured outer variables, and
since the anonymous functions are semantically identical, the compiler is permitted to have the delegates
refer to the same target method. Indeed, the compiler is permitted to return the very same delegate
instance from both anonymous function expressions.

11.7.3 Evaluation of anonymous function conversions to expression tree types
Conversion of an anonymous function to an expression-tree type produces an expression tree (§9.6). More
precisely, evaluation of the anonymous-function conversion produces an object structure that represents
the structure of the anonymous function itself. The precise structure of the expression tree, as well as the
exact process for creating it, are implementation-defined.

11.8 Method group conversions
An implicit conversion exists from a method group (§12.2) to a compatible delegate type (§20.4). If D is a
delegate type, and E is an expression that is classified as a method group, then D is compatible with E if and
only if E contains at least one method that is applicable in its normal form (§12.6.4.2) to any argument list
(§12.6.2) having types and modifiers matching the parameter types and modifiers of D, as described in the
following.

ECMA-334

108

The compile-time application of the conversion from a method group E to a delegate type D is described in
the following. Note that the existence of an implicit conversion from E to D does not guarantee that the
compile-time application of the conversion will succeed without error.

• A single method M is selected corresponding to a method invocation (§12.7.6.2) of the form E(A), with
the following modifications:

o The argument list A is a list of expressions, each classified as a variable and with the type and
modifier (ref or out) of the corresponding parameter in the formal-parameter-list of D –
excepting parameters of type dynamic, where the corresponding expression has the type object
instead of dynamic.

o The candidate methods considered are only those methods that are applicable in their normal
form and do not omit any optional parameters (§12.6.4.2). Thus, candidate methods are ignored if
they are applicable only in their expanded form, or if one or more of their optional parameters do
not have a corresponding parameter in D.

• A conversion is considered to exist if the algorithm of §12.7.6.2 produces a single best method M having
the same number of parameters as D.

• Even if the conversion exists, a compile-time error occurs if the selected method M is not compatible
(§20.4) with the delegate type D.

• If the selected method M is an instance method, the instance expression associated with E determines
the target object of the delegate.

• If the selected method M is an extension method which is denoted by means of a member access on an
instance expression, that instance expression determines the target object of the delegate.

• The result of the conversion is a value of type D, namely a delegate that refers to the selected method
and target object.

[Example: The following demonstrates method group conversions:

delegate string D1(object o);

delegate object D2(string s);

delegate object D3();

delegate string D4(object o, params object[] a);

delegate string D5(int i);

class Test
{
 static string F(object o) {…}

 static void G() {
 D1 d1 = F; // Ok
 D2 d2 = F; // Ok
 D3 d3 = F; // Error – not applicable
 D4 d4 = F; // Error – not applicable in normal form
 D5 d5 = F; // Error – applicable but not compatible

 }
}

The assignment to d1 implicitly converts the method group F to a value of type D1.

The assignment to d2 shows how it is possible to create a delegate to a method that has less derived
(contra-variant) parameter types and a more derived (covariant) return type.

The assignment to d3 shows how no conversion exists if the method is not applicable.

The assignment to d4 shows how the method must be applicable in its normal form.

The assignment to d5 shows how parameter and return types of the delegate and method are allowed to
differ only for reference types.

11 Conversions

109

end example]

As with all other implicit and explicit conversions, the cast operator can be used to explicitly perform a
particular conversion. [Example: Thus, the example

object obj = new EventHandler(myDialog.OkClick);

could instead be written

object obj = (EventHandler)myDialog.OkClick;

end example]

A method group conversion can refer to a generic method, either by explicitly specifying type arguments
within E, or via type inference (§12.6.3). If type inference is used, the parameter types of the delegate are
used as argument types in the inference process. The return type of the delegate is not used for inference.
Whether the type arguments are specified or inferred, they are part of the method group conversion
process; these are the type arguments used to invoke the target method when the resulting delegate is
invoked. [Example:

delegate int D(string s, int i);
delegate int E();

class X
{
 public static T F<T>(string s, T t) {…}
 public static T G<T>() {…}

 static void Main() {
 D d1 = F<int>; // Ok, type argument given explicitly

 D d2 = F; // Ok, int inferred as type argument

 E e1 = G<int>; // Ok, type argument given explicitly

 E e2 = G; // Error, cannot infer from return type
 }
}

end example]

Method groups may influence overload resolution, and participate in type inference. See §12.6 for further
details.

The run-time evaluation of a method group conversion proceeds as follows:

• If the method selected at compile-time is an instance method, or it is an extension method which is
accessed as an instance method, the target object of the delegate is determined from the instance
expression associated with E:

o The instance expression is evaluated. If this evaluation causes an exception, no further steps are
executed.

o If the instance expression is of a reference-type, the value computed by the instance expression
becomes the target object. If the selected method is an instance method and the target object is
null, a System.NullReferenceException is thrown and no further steps are executed.

o If the instance expression is of a value-type, a boxing operation (§11.2.8) is performed to convert
the value to an object, and this object becomes the target object.

• Otherwise, the selected method is part of a static method call, and the target object of the delegate is
null.

• A delegate instance of delegate type D is obtained with a reference to the method that was
determined at compile-time and a reference to the target object computed above, as follows:

o The conversion is permitted (but not required) to use an existing delegate instance that already
contains these references.

ECMA-334

110

o If an existing instance was not reused, a new one is created (§20.5). If there is not enough memory
available to allocate the new instance, a System.OutOfMemoryException is thrown. Otherwise
the instance is initialized with the given references.

12 Expressions

111

12. Expressions

12.1 General
An expression is a sequence of operators and operands. This clause defines the syntax, order of evaluation
of operands and operators, and meaning of expressions.

12.2 Expression classifications

12.2.1 General
An expression is classified as one of the following:

• A value. Every value has an associated type.

• A variable. Every variable has an associated type, namely the declared type of the variable.

• A namespace. An expression with this classification can only appear as the left-hand side of a member-
access (§12.7.5). In any other context, an expression classified as a namespace causes a compile-time
error.

• A type. An expression with this classification can only appear as the left-hand side of a member-access
(§12.7.5). In any other context, an expression classified as a type causes a compile-time error.

• A method group, which is a set of overloaded methods resulting from a member lookup (§12.5). A
method group may have an associated instance expression and an associated type argument list. When
an instance method is invoked, the result of evaluating the instance expression becomes the instance
represented by this (§12.7.8). A method group is permitted in an invocation-expression (§12.7.6) or a
delegate-creation-expression (§12.7.11.6), and can be implicitly converted to a compatible delegate
type (§11.8). In any other context, an expression classified as a method group causes a compile-time
error.

• A null literal. An expression with this classification can be implicitly converted to a reference type or
nullable value type

• An anonymous function. An expression with this classification can be implicitly converted to a
compatible delegate type or expression tree type.

• A property access. Every property access has an associated type, namely the type of the property.
Furthermore, a property access may have an associated instance expression. When an accessor (the
get or set block) of an instance property access is invoked, the result of evaluating the instance
expression becomes the instance represented by this (§12.7.8).

• An event access. Every event access has an associated type, namely the type of the event.
Furthermore, an event access may have an associated instance expression. An event access may
appear as the left-hand operand of the += and -= operators (§12.18.4). In any other context, an
expression classified as an event access causes a compile-time error. When an accessor (the add or
remove block) of an instance event access is invoked, the result of evaluating the instance expression
becomes the instance represented by this (§12.7.8).

• An indexer access. Every indexer access has an associated type, namely the element type of the
indexer. Furthermore, an indexer access has an associated instance expression and an associated
argument list. When an accessor (the get or set block) of an indexer access is invoked, the result of
evaluating the instance expression becomes the instance represented by this (§12.7.8), and the result
of evaluating the argument list becomes the parameter list of the invocation.

• Nothing. This occurs when the expression is an invocation of a method with a return type of void. An
expression classified as nothing is only valid in the context of a statement-expression (§13.7).

ECMA-334

112

The final result of an expression is never a namespace, type, method group, or event access. Rather, as
noted above, these categories of expressions are intermediate constructs that are only permitted in certain
contexts.

A property access or indexer access is always reclassified as a value by performing an invocation of the get-
accessor or the set-accessor. The particular accessor is determined by the context of the property or
indexer access: If the access is the target of an assignment, the set-accessor is invoked to assign a new
value (§12.18.2). Otherwise, the get-accessor is invoked to obtain the current value (§12.2.2).

An instance accessor is a property access on an instance, an event access on an instance, or an indexer
access.

12.2.2 Values of expressions
Most of the constructs that involve an expression ultimately require the expression to denote a value. In
such cases, if the actual expression denotes a namespace, a type, a method group, or nothing, a compile-
time error occurs. However, if the expression denotes a property access, an indexer access, or a variable,
the value of the property, indexer, or variable is implicitly substituted:

• The value of a variable is simply the value currently stored in the storage location identified by the
variable. A variable shall be considered definitely assigned (§10.4) before its value can be obtained, or
otherwise a compile-time error occurs.

• The value of a property access expression is obtained by invoking the get-accessor of the property. If
the property has no get-accessor, a compile-time error occurs. Otherwise, a function member
invocation (§12.6.6) is performed, and the result of the invocation becomes the value of the property
access expression.

• The value of an indexer access expression is obtained by invoking the get-accessor of the indexer. If the
indexer has no get-accessor, a compile-time error occurs. Otherwise, a function member invocation
(§12.6.6) is performed with the argument list associated with the indexer access expression, and the
result of the invocation becomes the value of the indexer access expression.

12.3 Static and Dynamic Binding

12.3.1 General
Binding is the process of determining what an operation refers to, based on the type or value of
expressions (arguments, operands, receivers). For instance, the binding of a method call is determined
based on the type of the receiver and arguments. The binding of an operator is determined based on the
type of its operands.

In C# the binding of an operation is usually determined at compile-time, based on the compile-time type of
its subexpressions. Likewise, if an expression contains an error, the error is detected and reported by the
compiler. This approach is known as static binding.

However, if an expression is a dynamic expression (i.e., has the type dynamic) this indicates that any
binding that it participates in should be based on its run-time type rather than the type it has at compile-
time. The binding of such an operation is therefore deferred until the time where the operation is to be
executed during the running of the program. This is referred to as dynamic binding.

When an operation is dynamically bound, little or no checking is performed by the compiler. Instead if the
run-time binding fails, errors are reported as exceptions at run-time.

The following operations in C# are subject to binding:

• Member access: e.M

• Method invocation: e.M(e1,…,en)

• Delegate invocation: e(e1,…,en)

12 Expressions

113

• Element access: e[e1,…,en]

• Object creation: new C(e1,…,en)

• Overloaded unary operators: +, -, !, ~, ++, --, true, false

• Overloaded binary operators: +, -, *, /, %, &, &&, |, ||, ??, ^, <<, >>, ==,!=, >, <, >=, <=

• Assignment operators: =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=

• Implicit and explicit conversions

When no dynamic expressions are involved, C# defaults to static binding, which means that the compile-
time types of subexpressions are used in the selection process. However, when one of the subexpressions
in the operations listed above is a dynamic expression, the operation is instead dynamically bound.

12.3.2 Binding-time
Static binding takes place at compile-time, whereas dynamic binding takes place at run-time. In the
following subclauses, the term binding-time refers to either compile-time or run-time, depending on when
the binding takes place.

[Example: The following illustrates the notions of static and dynamic binding and of binding-time:

object o = 5;
dynamic d = 5;

Console.WriteLine(5); // static binding to Console.WriteLine(int)
Console.WriteLine(o); // static binding to Console.WriteLine(object)
Console.WriteLine(d); // dynamic binding to Console.WriteLine(int)

The first two calls are statically bound: the overload of Console.WriteLine is picked based on the
compile-time type of their argument. Thus, the binding-time is compile-time.

The third call is dynamically bound: the overload of Console.WriteLine is picked based on the run-time
type of its argument. This happens because the argument is a dynamic expression – its compile-time type is
dynamic. Thus, the binding-time for the third call is run-time. end example]

12.3.3 Dynamic binding
This subclause is informative.

Dynamic binding allows C# programs to interact with dynamic objects, i.e., objects that do not follow the
normal rules of the C# type system. Dynamic objects may be objects from other programming languages
with different types systems, or they may be objects that are programmatically setup to implement their
own binding semantics for different operations.

The mechanism by which a dynamic object implements its own semantics is implementation defined. A
given interface – again implementation defined – is implemented by dynamic objects to signal to the
C# run-time that they have special semantics. Thus, whenever operations on a dynamic object are
dynamically bound, their own binding semantics, rather than those of C# as specified in this specification,
take over.

While the purpose of dynamic binding is to allow interoperation with dynamic objects, C# allows dynamic
binding on all objects, whether they are dynamic or not. This allows for a smoother integration of dynamic
objects, as the results of operations on them may not themselves be dynamic objects, but are still of a type
unknown to the programmer at compile-time. Also, dynamic binding can help eliminate error-prone
reflection-based code even when no objects involved are dynamic objects.

12.3.4 Types of subexpressions
When an operation is statically bound, the type of a subexpression (e.g., a receiver, and argument, an
index or an operand) is always considered to be the compile-time type of that expression.

ECMA-334

114

When an operation is dynamically bound, the type of a subexpression is determined in different ways
depending on the compile-time type of the subexpression:

• A subexpression of compile-time type dynamic is considered to have the type of the actual value that
the expression evaluates to at run-time

• A subexpression whose compile-time type is a type parameter is considered to have the type which the
type parameter is bound to at run-time

• Otherwise, the subexpression is considered to have its compile-time type.

12.4 Operators

12.4.1 General
Expressions are constructed from operands and operators. The operators of an expression indicate which
operations to apply to the operands. [Example: Examples of operators include +, -, *, /, and new.
Examples of operands include literals, fields, local variables, and expressions. end example]

There are three kinds of operators:

• Unary operators. The unary operators take one operand and use either prefix notation (such as –x) or
postfix notation (such as x++).

• Binary operators. The binary operators take two operands and all use infix notation (such as x + y).

• Ternary operator. Only one ternary operator, ?:, exists; it takes three operands and uses infix notation
(c ? x : y).

The order of evaluation of operators in an expression is determined by the precedence and associativity of
the operators (§12.4.2).

Operands in an expression are evaluated from left to right. [Example: In F(i) + G(i++) * H(i),
method F is called using the old value of i, then method G is called with the old value of i, and, finally,
method H is called with the new value of i. This is separate from and unrelated to operator precedence.
end example]

Certain operators can be overloaded. Operator overloading (§12.4.3) permits user-defined operator
implementations to be specified for operations where one or both of the operands are of a user-defined
class or struct type.

12.4.2 Operator precedence and associativity
When an expression contains multiple operators, the precedence of the operators controls the order in
which the individual operators are evaluated. [Note: For example, the expression x + y * z is evaluated
as x + (y * z) because the * operator has higher precedence than the binary + operator. end note] The
precedence of an operator is established by the definition of its associated grammar production. [Note: For
example, an additive-expression consists of a sequence of multiplicative-expressions separated by + or
- operators, thus giving the + and - operators lower precedence than the *, /, and % operators. end note]

[Note: The following table summarizes all operators in order of precedence from highest to lowest:

12 Expressions

115

Subclause Category Operators

§12.7 Primary x.y f(x) a[x] x++ x-- new

typeof default checked unchecked delegate

§12.8 Unary + - ! ~ ++x --x (T)x await x

§12.9 Multiplicative * / %

§12.9 Additive + -

§12.10 Shift << >>

§12.11 Relational and
type-testing

< > <= >= is as

§12.11 Equality == !=

§12.12 Logical AND &

§12.12 Logical XOR ^

§12.12 Logical OR |

§12.13 Conditional AND &&

§12.13 Conditional OR ||

§12.14 Null coalescing ??

§12.15 Conditional ?:

§12.18
and
§12.16

Assignment and
lambda
expression

= *= /= %= += -= <<= >>= &= ^= |= =>

end note]

When an operand occurs between two operators with the same precedence, the associativity of the
operators controls the order in which the operations are performed:

• Except for the assignment operators and the null coalescing operator, all binary operators are left-
associative, meaning that operations are performed from left to right. [Example: x + y + z is
evaluated as (x + y) + z. end example]

• The assignment operators, the null coalescing operator and the conditional operator (?:) are right-
associative, meaning that operations are performed from right to left. [Example: x = y = z is
evaluated as x = (y = z). end example]

Precedence and associativity can be controlled using parentheses. [Example: x + y * z first multiplies y
by z and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z.
end example]

12.4.3 Operator overloading
All unary and binary operators have predefined implementations that are automatically available in any
expression. In addition to the predefined implementations, user-defined implementations can be
introduced by including operator declarations (§15.10) in classes and structs. User-defined operator
implementations always take precedence over predefined operator implementations: Only when no
applicable user-defined operators implementations exist will the predefined operator implementations be
considered, as described in §12.4.4 and §12.4.5.

The overloadable unary operators are:

ECMA-334

116

+ - ! ~ ++ -- true false

[Note: Although true and false are not used explicitly in expressions (and therefore are not included in
the precedence table in §12.4.2), they are considered operators because they are invoked in several
expression contexts: Boolean expressions (§12.21) and expressions involving the conditional (§12.15) and
conditional logical operators (§12.13). end note]

The overloadable binary operators are:

+ - * / % & | ^ << >> == != > < >= <=

Only the operators listed above can be overloaded. In particular, it is not possible to overload member
access, method invocation, or the =, &&, ||, ??, ?:, =>, checked, unchecked, new, typeof, default,
as, and is operators.

When a binary operator is overloaded, the corresponding compound assignment operator, if any, is also
implicitly overloaded. [Example: An overload of operator * is also an overload of operator *=. This is
described further in §12.18. end example] The assignment operator itself (=) cannot be overloaded. An
assignment always performs a simple store of a value into a variable(§12.18.2).

Cast operations, such as (T)x, are overloaded by providing user-defined conversions (§11.5). [Note: User-
defined conversions do not affect the behavior of the is or as operators. end note]

Element access, such as a[x], is not considered an overloadable operator. Instead, user-defined indexing
is supported through indexers (§15.9).

In expressions, operators are referenced using operator notation, and in declarations, operators are
referenced using functional notation. The following table shows the relationship between operator and
functional notations for unary and binary operators. In the first entry, op denotes any overloadable unary
prefix operator. In the second entry, op denotes the unary postfix ++ and -- operators. In the third entry,
op denotes any overloadable binary operator. [Note: For an example of overloading the ++ and --
operators see §15.10.2. end note]

Operator notation Functional notation

op x operator op(x)

x op operator op(x)

x op y operator op(x, y)

User-defined operator declarations always require at least one of the parameters to be of the class or
struct type that contains the operator declaration. [Note: Thus, it is not possible for a user-defined
operator to have the same signature as a predefined operator. end note]

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator.
[Example: The / operator is always a binary operator, always has the precedence level specified in §12.4.2,
and is always left-associative. end example]

[Note: While it is possible for a user-defined operator to perform any computation it pleases,
implementations that produce results other than those that are intuitively expected are strongly
discouraged. For example, an implementation of operator == should compare the two operands for
equality and return an appropriate bool result. end note]

The descriptions of individual operators in §12.8 through §12.18 specify the predefined implementations of
the operators and any additional rules that apply to each operator. The descriptions make use of the terms
unary operator overload resolution, binary operator overload resolution, numeric promotion, and lifted
operators definitions of which are found in the following subclauses.

12 Expressions

117

12.4.4 Unary operator overload resolution
An operation of the form op x or x op, where op is an overloadable unary operator, and x is an expression
of type X, is processed as follows:

• The set of candidate user-defined operators provided by X for the operation operator op(x) is
determined using the rules of §12.4.6.

• If the set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otherwise, the predefined binary operator op implementations, including
their lifted forms, become the set of candidate operators for the operation. The predefined
implementations of a given operator are specified in the description of the operator. The predefined
operators provided by an enum or delegate type are only included in this set when the binding-time
type—or the underlying type if it is a nullable type—of either operand is the enum or delegate type.

• The overload resolution rules of §12.6.4 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x), and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, a binding-time error
occurs.

12.4.5 Binary operator overload resolution
An operation of the form x op y, where op is an overloadable binary operator, x is an expression of type X,
and y is an expression of type Y, is processed as follows:

• The set of candidate user-defined operators provided by X and Y for the operation operator op(x,
y) is determined. The set consists of the union of the candidate operators provided by X and the
candidate operators provided by Y, each determined using the rules of §12.4.6. For the combined set,
candidates are merged as follows:

o If X and Y are the same type, or if X and Y are derived from a common base type, then shared
candidate operators only occur in the combined set once.

o If there is an identity conversion between X and Y, an operator opY provided by Y has the same
return type as an opX provided by X and the operand types of opY have an identity conversion to
the corresponding operand types of opX then only opX occurs in the set.

• If the set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otherwise, the predefined binary operator op implementations,
including their lifted forms, become the set of candidate operators for the operation. The predefined
implementations of a given operator are specified in the description of the operator. For predefined
enum and delegate operators, the only operators considered are those provided by an enum or
delegate type that is the binding-time type of one of the operands.

• The overload resolution rules of §12.6.4 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x, y), and this operator becomes the result of the
overload resolution process. If overload resolution fails to select a single best operator, a binding-time
error occurs.

12.4.6 Candidate user-defined operators
Given a type T and an operation operator op(A), where op is an overloadable operator and A is an
argument list, the set of candidate user-defined operators provided by T for operator op(A) is
determined as follows:

• Determine the type T0. If T is a nullable value type, T0 is its underlying type; otherwise, T0 is equal to T.

• For all operator op declarations in T0 and all lifted forms of such operators, if at least one operator is
applicable (§12.6.4.2) with respect to the argument list A, then the set of candidate operators consists
of all such applicable operators in T0.

• Otherwise, if T0 is object, the set of candidate operators is empty.

ECMA-334

118

• Otherwise, the set of candidate operators provided by T0 is the set of candidate operators provided by
the direct base class of T0, or the effective base class of T0 if T0 is a type parameter.

12.4.7 Numeric promotions

12.4.7.1 General
This subclause is informative.

Numeric promotion consists of automatically performing certain implicit conversions of the operands of
the predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but
rather an effect of applying overload resolution to the predefined operators. Numeric promotion
specifically does not affect evaluation of user-defined operators, although user-defined operators can be
implemented to exhibit similar effects.

As an example of numeric promotion, consider the predefined implementations of the binary * operator:

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);
float operator *(float x, float y);
double operator *(double x, double y);
decimal operator *(decimal x, decimal y);

When overload resolution rules (§12.6.4) are applied to this set of operators, the effect is to select the first
of the operators for which implicit conversions exist from the operand types. [Example: For the operation
b * s, where b is a byte and s is a short, overload resolution selects operator *(int, int) as the
best operator. Thus, the effect is that b and s are converted to int, and the type of the result is int.
Likewise, for the operation i * d, where i is an int and d is a double, overload resolution selects
operator *(double, double) as the best operator. end example]

End of informative text.

12.4.7.2 Unary numeric promotions
This subclause is informative.

Unary numeric promotion occurs for the operands of the predefined +, –, and ~ unary operators. Unary
numeric promotion simply consists of converting operands of type sbyte, byte, short, ushort, or char
to type int. Additionally, for the unary – operator, unary numeric promotion converts operands of type
uint to type long.

End of informative text.

12.4.7.3 Binary numeric promotions
This subclause is informative.

Binary numeric promotion occurs for the operands of the predefined +, –, *, /, %, &, |, ^, ==, !=, >, <, >=,
and <= binary operators. Binary numeric promotion implicitly converts both operands to a common type
which, in case of the non-relational operators, also becomes the result type of the operation. Binary
numeric promotion consists of applying the following rules, in the order they appear here:

• If either operand is of type decimal, the other operand is converted to type decimal, or a binding-
time error occurs if the other operand is of type float or double.

• Otherwise, if either operand is of type double, the other operand is converted to type double.

• Otherwise, if either operand is of type float, the other operand is converted to type float.

• Otherwise, if either operand is of type ulong, the other operand is converted to type ulong, or a
binding-time error occurs if the other operand is of type sbyte, short, int, or long.

• Otherwise, if either operand is of type long, the other operand is converted to type long.

12 Expressions

119

• Otherwise, if either operand is of type uint and the other operand is of type sbyte, short, or int,
both operands are converted to type long.

• Otherwise, if either operand is of type uint, the other operand is converted to type uint.

• Otherwise, both operands are converted to type int.

[Note: The first rule disallows any operations that mix the decimal type with the double and float
types. The rule follows from the fact that there are no implicit conversions between the decimal type and
the double and float types. end note]

[Note: Also note that it is not possible for an operand to be of type ulong when the other operand is of a
signed integral type. The reason is that no integral type exists that can represent the full range of ulong as
well as the signed integral types. end note]

In both of the above cases, a cast expression can be used to explicitly convert one operand to a type that is
compatible with the other operand.

[Example: In the following code

decimal AddPercent(decimal x, double percent) {
 return x * (1.0 + percent / 100.0);
}

a binding-time error occurs because a decimal cannot be multiplied by a double. The error is resolved by
explicitly converting the second operand to decimal, as follows:

decimal AddPercent(decimal x, double percent) {
 return x * (decimal)(1.0 + percent / 100.0);
}

end example]

End of informative text.

12.4.8 Lifted operators
Lifted operators permit predefined and user-defined operators that operate on non-nullable value types to
also be used with nullable forms of those types. Lifted operators are constructed from predefined and
user-defined operators that meet certain requirements, as described in the following:

• For the unary operators

+ ++ - -- ! ~

a lifted form of an operator exists if the operand and result types are both non-nullable value types. The
lifted form is constructed by adding a single ? modifier to the operand and result types. The lifted operator
produces a null value if the operand is null. Otherwise, the lifted operator unwraps the operand, applies
the underlying operator, and wraps the result.

• For the binary operators

+ - * / % & | ^ << >>

a lifted form of an operator exists if the operand and result types are all non-nullable value types. The lifted
form is constructed by adding a single ? modifier to each operand and result type. The lifted operator
produces a null value if one or both operands are null (an exception being the & and | operators of the
bool? type, as described in §12.12.5). Otherwise, the lifted operator unwraps the operands, applies the
underlying operator, and wraps the result.

• For the equality operators

== !=

a lifted form of an operator exists if the operand types are both non-nullable value types and if the result
type is bool. The lifted form is constructed by adding a single ? modifier to each operand type. The lifted
operator considers two null values equal, and a null value unequal to any non-null value. If both operands

ECMA-334

120

are non-null, the lifted operator unwraps the operands and applies the underlying operator to produce the
bool result.

• For the relational operators

< > <= >=

a lifted form of an operator exists if the operand types are both non-nullable value types and if the result
type is bool. The lifted form is constructed by adding a single ? modifier to each operand type. The lifted
operator produces the value false if one or both operands are null. Otherwise, the lifted operator
unwraps the operands and applies the underlying operator to produce the bool result.

12.5 Member lookup

12.5.1 General
A member lookup is the process whereby the meaning of a name in the context of a type is determined. A
member lookup can occur as part of evaluating a simple-name (§12.7.3) or a member-access (§12.7.5) in an
expression. If the simple-name or member-access occurs as the primary-expression of an invocation-
expression (§12.7.6.2), the member is said to be invoked.

If a member is a method or event, or if it is a constant, field or property of either a delegate type (§20) or
the type dynamic (§9.2.4), then the member is said to be invocable.

Member lookup considers not only the name of a member but also the number of type parameters the
member has and whether the member is accessible. For the purposes of member lookup, generic methods
and nested generic types have the number of type parameters indicated in their respective declarations
and all other members have zero type parameters.

A member lookup of a name N with K type arguments in a type T is processed as follows:

• First, a set of accessible members named N is determined:

o If T is a type parameter, then the set is the union of the sets of accessible members named N in
each of the types specified as a primary constraint or secondary constraint (§15.2.5) for T, along
with the set of accessible members named N in object.

o Otherwise, the set consists of all accessible (§8.5) members named N in T, including inherited
members and the accessible members named N in object. If T is a constructed type, the set of
members is obtained by substituting type arguments as described in §15.3.3. Members that
include an override modifier are excluded from the set.

• Next, if K is zero, all nested types whose declarations include type parameters are removed. If K is not
zero, all members with a different number of type parameters are removed. When K is zero, methods
having type parameters are not removed, since the type inference process (§12.6.3) might be able to
infer the type arguments.

• Next, if the member is invoked, all non-invocable members are removed from the set.

• Next, members that are hidden by other members are removed from the set. For every member S.M in
the set, where S is the type in which the member M is declared, the following rules are applied:

o If M is a constant, field, property, event, or enumeration member, then all members declared in a
base type of S are removed from the set.

o If M is a type declaration, then all non-types declared in a base type of S are removed from the set,
and all type declarations with the same number of type parameters as M declared in a base type
of S are removed from the set.

o If M is a method, then all non-method members declared in a base type of S are removed from the
set.

• Next, interface members that are hidden by class members are removed from the set. This step only
has an effect if T is a type parameter and T has both an effective base class other than object and a

12 Expressions

121

non-empty effective interface set (§15.2.5). For every member S.M in the set, where S is the type in
which the member M is declared, the following rules are applied if S is a class declaration other than
object:

o If M is a constant, field, property, event, enumeration member, or type declaration, then all
members declared in an interface declaration are removed from the set.

o If M is a method, then all non-method members declared in an interface declaration are removed
from the set, and all methods with the same signature as M declared in an interface declaration are
removed from the set.

• Finally, having removed hidden members, the result of the lookup is determined:

o If the set consists of a single member that is not a method, then this member is the result of the
lookup.

o Otherwise, if the set contains only methods, then this group of methods is the result of the lookup.
o Otherwise, the lookup is ambiguous, and a binding-time error occurs.

For member lookups in types other than type parameters and interfaces, and member lookups in
interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or
one direct base interface), the effect of the lookup rules is simply that derived members hide base
members with the same name or signature. Such single-inheritance lookups are never ambiguous. The
ambiguities that can possibly arise from member lookups in multiple-inheritance interfaces are described
in §18.4.6. [Note: This phase only accounts for one kind of ambiguity. If the member lookup results in a
method group, further uses of method group may fail due to ambiguity, for example as described in
§12.6.4.1 and §12.6.6.2. end note]

12.5.2 Base types
For purposes of member lookup, a type T is considered to have the following base types:

• If T is object or dynamic, then T has no base type.

• If T is an enum-type, the base types of T are the class types System.Enum, System.ValueType, and
object.

• If T is a struct-type, the base types of T are the class types System.ValueType and object. [Note: A
nullable-value-type is a struct-type (§9.3.1). end note]

• If T is a class-type, the base types of T are the base classes of T, including the class type object.

• If T is an interface-type, the base types of T are the base interfaces of T and the class type object.

• If T is an array-type, the base types of T are the class types System.Array and object.

• If T is a delegate-type, the base types of T are the class types System.Delegate and object.

12.6 Function members

12.6.1 General
Function members are members that contain executable statements. Function members are always
members of types and cannot be members of namespaces. C# defines the following categories of function
members:

• Methods

• Properties

• Events

• Indexers

• User-defined operators

• Instance constructors

• Static constructors

• Finalizers

ECMA-334

122

Except for finalizers and static constructors (which cannot be invoked explicitly), the statements contained
in function members are executed through function member invocations. The actual syntax for writing a
function member invocation depends on the particular function member category.

The argument list (§12.6.2) of a function member invocation provides actual values or variable references
for the parameters of the function member.

Invocations of generic methods may employ type inference to determine the set of type arguments to pass
to the method. This process is described in §12.6.3.

Invocations of methods, indexers, operators, and instance constructors employ overload resolution to
determine which of a candidate set of function members to invoke. This process is described in §12.6.4.

Once a particular function member has been identified at binding-time, possibly through overload
resolution, the actual run-time process of invoking the function member is described in §12.6.6.

[Note: The following table summarizes the processing that takes place in constructs involving the six
categories of function members that can be explicitly invoked. In the table, e, x, y, and value indicate
expressions classified as variables or values, T indicates an expression classified as a type, F is the simple
name of a method, and P is the simple name of a property.

Construct Example Description

Method
invocation

F(x, y) Overload resolution is applied to select the best method F in
the containing class or struct. The method is invoked with the
argument list (x, y). If the method is not static, the
instance expression is this.

T.F(x, y) Overload resolution is applied to select the best method F in
the class or struct T. A binding-time error occurs if the method
is not static. The method is invoked with the argument list
(x, y).

e.F(x, y) Overload resolution is applied to select the best method F in
the class, struct, or interface given by the type of e. A binding-
time error occurs if the method is static. The method is
invoked with the instance expression e and the argument list
(x, y).

Property
access

P The get accessor of the property P in the containing class or
struct is invoked. A compile-time error occurs if P is write-only.
If P is not static, the instance expression is this.

P = value The set accessor of the property P in the containing class or
struct is invoked with the argument list (value). A compile-
time error occurs if P is read-only. If P is not static, the
instance expression is this.

T.P The get accessor of the property P in the class or struct T is
invoked. A compile-time error occurs if P is not static or if P
is write-only.

T.P = value The set accessor of the property P in the class or struct T is
invoked with the argument list (value). A compile-time error
occurs if P is not static or if P is read-only.

12 Expressions

123

Construct Example Description

e.P The get accessor of the property P in the class, struct, or
interface given by the type of e is invoked with the instance
expression e. A binding-time error occurs if P is static or if P
is write-only.

e.P = value The set accessor of the property P in the class, struct, or
interface given by the type of e is invoked with the instance
expression e and the argument list (value). A binding-time
error occurs if P is static or if P is read-only.

Event access E += value The add accessor of the event E in the containing class or
struct is invoked. If E is not static, the instance expression is
this.

E -= value The remove accessor of the event E in the containing class or
struct is invoked. If E is not static, the instance expression is
this.

T.E += value The add accessor of the event E in the class or struct T is
invoked. A binding-time error occurs if E is not static.

T.E -= value The remove accessor of the event E in the class or struct T is
invoked. A binding-time error occurs if E is not static.

e.E += value The add accessor of the event E in the class, struct, or
interface given by the type of e is invoked with the instance
expression e. A binding-time error occurs if E is static.

e.E -= value The remove accessor of the event E in the class, struct, or
interface given by the type of e is invoked with the instance
expression e. A binding-time error occurs if E is static.

Indexer
access

e[x, y] Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The get
accessor of the indexer is invoked with the instance expression
e and the argument list (x, y). A binding-time error occurs if
the indexer is write-only.

e[x, y] = value Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The set
accessor of the indexer is invoked with the instance expression
e and the argument list (x, y, value). A binding-time error
occurs if the indexer is read-only.

Operator
invocation

-x Overload resolution is applied to select the best unary
operator in the class or struct given by the type of x. The
selected operator is invoked with the argument list (x).

x + y Overload resolution is applied to select the best binary
operator in the classes or structs given by the types of x and y.
The selected operator is invoked with the argument list
(x, y).

Instance
constructor
invocation

new T(x, y) Overload resolution is applied to select the best instance
constructor in the class or struct T. The instance constructor is
invoked with the argument list (x, y).

ECMA-334

124

end note]

12.6.2 Argument lists

12.6.2.1 General
Every function member and delegate invocation includes an argument list, which provides actual values or
variable references for the parameters of the function member. The syntax for specifying the argument list
of a function member invocation depends on the function member category:

• For instance constructors, methods, indexers and delegates, the arguments are specified as an
argument-list, as described below. For indexers, when invoking the set accessor, the argument list
additionally includes the expression specified as the right operand of the assignment operator. [Note:
This additional argument is not used for overload resolution, just during invocation of the set accessor.
end note]

• For properties, the argument list is empty when invoking the get accessor, and consists of the
expression specified as the right operand of the assignment operator when invoking the set accessor.

• For events, the argument list consists of the expression specified as the right operand of the += or -
= operator.

• For user-defined operators, the argument list consists of the single operand of the unary operator or
the two operands of the binary operator.

The arguments of properties (§15.7), events (§15.8), and user-defined operators (§15.10) are always
passed as value parameters (§15.6.2.2). The arguments of indexers (§15.9) are always passed as value
parameters (§15.6.2.2) or parameter arrays (§15.6.2.5). Reference and output parameters are not
supported for these categories of function members.

The arguments of an instance constructor, method, indexer, or delegate invocation are specified as an
argument-list:

argument-list:
argument
argument-list , argument

argument:
argument-nameopt argument-value

argument-name:
identifier :

argument-value:
expression
ref variable-reference
out variable-reference

An argument-list consists of one or more arguments, separated by commas. Each argument consists of an
optional argument-name followed by an argument-value. An argument with an argument-name is referred
to as a named argument, whereas an argument without an argument-name is a positional argument. It is
an error for a positional argument to appear after a named argument in an argument-list.

The argument-value can take one of the following forms:

• An expression, indicating that the argument is passed as a value parameter (§15.6.2.2).

• The keyword ref followed by a variable-reference (§10.5), indicating that the argument is passed as a
reference parameter (§15.6.2.3). A variable shall be definitely assigned (§10.4) before it can be passed
as a reference parameter.

12 Expressions

125

• The keyword out followed by a variable-reference (§10.5), indicating that the argument is passed as an
output parameter (§15.6.2.4). A variable is considered definitely assigned (§10.4) following a function
member invocation in which the variable is passed as an output parameter.

The form determines the parameter-passing mode of the argument: value, reference, or output,
respectively.

Passing a volatile field (§15.5.4) as a reference parameter or output parameter causes a warning, since the
field may not be treated as volatile by the invoked method.

12.6.2.2 Corresponding parameters
For each argument in an argument list there has to be a corresponding parameter in the function member
or delegate being invoked.

The parameter list used in the following is determined as follows:

• For virtual methods and indexers defined in classes, the parameter list is picked from the first
declaration or override of the function member found when starting with the static type of the
receiver, and searching through its base classes.

• For partial methods, the parameter list of the defining partial method declaration is used.

• For all other function members and delegates there is only a single parameter list, which is the one
used.

The position of an argument or parameter is defined as the number of arguments or parameters preceding
it in the argument list or parameter list.

The corresponding parameters for function member arguments are established as follows:

• Arguments in the argument-list of instance constructors, methods, indexers and delegates:

o A positional argument where a parameter occurs at the same position in the parameter list
corresponds to that parameter, unless the parameter is a parameter array and the function
member is invoked in its expanded form.

o A positional argument of a function member with a parameter array invoked in its expanded form,
which occurs at or after the position of the parameter array in the parameter list, corresponds to
an element in the parameter array.

o A named argument corresponds to the parameter of the same name in the parameter list.
o For indexers, when invoking the set accessor, the expression specified as the right operand of the

assignment operator corresponds to the implicit value parameter of the set accessor
declaration.

• For properties, when invoking the get accessor there are no arguments. When invoking the set
accessor, the expression specified as the right operand of the assignment operator corresponds to the
implicit value parameter of the set accessor declaration.

• For user-defined unary operators (including conversions), the single operand corresponds to the single
parameter of the operator declaration.

• For user-defined binary operators, the left operand corresponds to the first parameter, and the right
operand corresponds to the second parameter of the operator declaration.

12.6.2.3 Run-time evaluation of argument lists
During the run-time processing of a function member invocation (§12.6.6), the expressions or variable
references of an argument list are evaluated in order, from left to right, as follows:

• For a value parameter, the argument expression is evaluated and an implicit conversion (§11.2) to the
corresponding parameter type is performed. The resulting value becomes the initial value of the value
parameter in the function member invocation.

ECMA-334

126

• For a reference or output parameter, the variable reference is evaluated and the resulting storage
location becomes the storage location represented by the parameter in the function member
invocation. If the variable reference given as a reference or output parameter is an array element of a
reference-type, a run-time check is performed to ensure that the element type of the array is identical
to the type of the parameter. If this check fails, a System.ArrayTypeMismatchException is
thrown.

Methods, indexers, and instance constructors may declare their right-most parameter to be a parameter
array (§15.6.2.5). Such function members are invoked either in their normal form or in their expanded
form depending on which is applicable (§12.6.4.2):

• When a function member with a parameter array is invoked in its normal form, the argument given for
the parameter array shall be a single expression that is implicitly convertible (§11.2) to the parameter
array type. In this case, the parameter array acts precisely like a value parameter.

• When a function member with a parameter array is invoked in its expanded form, the invocation shall
specify zero or more positional arguments for the parameter array, where each argument is an
expression that is implicitly convertible (§11.2) to the element type of the parameter array. In this case,
the invocation creates an instance of the parameter array type with a length corresponding to the
number of arguments, initializes the elements of the array instance with the given argument values,
and uses the newly created array instance as the actual argument.

The expressions of an argument list are always evaluated in textual order. [Example: Thus, the example

class Test
{
 static void F(int x, int y = -1, int z = -2) {
 System.Console.WriteLine("x = {0}, y = {1}, z = {2}", x, y, z);
 }

 static void Main() {
 int i = 0;
 F(i++, i++, i++);
 F(z: i++, x: i++);
 }
}

produces the output

x = 0, y = 1, z = 2
x = 4, y = -1, z = 3

end example]

The array co-variance rules (§17.6) permit a value of an array type A[] to be a reference to an instance of
an array type B[], provided an implicit reference conversion exists from B to A. Because of these rules,
when an array element of a reference-type is passed as a reference or output parameter, a run-time check
is required to ensure that the actual element type of the array is identical to that of the parameter.
[Example: In the following code

class Test
{
 static void F(ref object x) {…}

 static void Main() {
 object[] a = new object[10];
 object[] b = new string[10];
 F(ref a[0]); // Ok
 F(ref b[1]); // ArrayTypeMismatchException
 }
}

the second invocation of F causes a System.ArrayTypeMismatchException to be thrown because the
actual element type of b is string and not object. end example]

12 Expressions

127

When a function member with a parameter array is invoked in its expanded form, the invocation is
processed exactly as if an array creation expression with an array initializer (§12.7.11.5) was inserted
around the expanded parameters. [Example: Given the declaration

void F(int x, int y, params object[] args);

the following invocations of the expanded form of the method

F(10, 20);
F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

correspond exactly to

F(10, 20, new object[] {});
F(10, 20, new object[] {30, 40});
F(10, 20, new object[] {1, "hello", 3.0});

In particular, note that an empty array is created when there are zero arguments given for the parameter
array. end example]

When arguments are omitted from a function member with corresponding optional parameters, the
default arguments of the function member declaration are implicitly passed. [Note: Because these are
always constant, their evaluation will not impact the evaluation of the remaining arguments. end note]

12.6.3 Type inference

12.6.3.1 General
When a generic method is called without specifying type arguments, a type inference process attempts to
infer type arguments for the call. The presence of type inference allows a more convenient syntax to be
used for calling a generic method, and allows the programmer to avoid specifying redundant type
information. [Example: Given the method declaration:

class Chooser
{
 static Random rand = new Random();

 public static T Choose<T>(T first, T second) {
 return (rand.Next(2) == 0)? first: second;
 }
}

it is possible to invoke the Choose method without explicitly specifying a type argument:

int i = Chooser.Choose(5, 213); // Calls Choose<int>

string s = Chooser.Choose("foo", "bar"); // Calls Choose<string>

Through type inference, the type arguments int and string are determined from the arguments to the
method. end example]

Type inference occurs as part of the binding-time processing of a method invocation (§12.7.6.2) and takes
place before the overload resolution step of the invocation. When a particular method group is specified in
a method invocation, and no type arguments are specified as part of the method invocation, type inference
is applied to each generic method in the method group. If type inference succeeds, then the inferred type
arguments are used to determine the types of arguments for subsequent overload resolution. If overload
resolution chooses a generic method as the one to invoke, then the inferred type arguments are used as
the type arguments for the invocation. If type inference for a particular method fails, that method does not
participate in overload resolution. The failure of type inference, in and of itself, does not cause a binding-
time error. However, it often leads to a binding-time error when overload resolution then fails to find any
applicable methods.

ECMA-334

128

If each supplied argument does not correspond to exactly one parameter in the method (§12.6.2.2), or
there is a non-optional parameter with no corresponding argument, then inference immediately fails.
Otherwise, assume that the generic method has the following signature:

Tr M<X1…Xn>(T1 p1 … Tm pm)

With a method call of the form M(E1 …Em) the task of type inference is to find unique type arguments
S1…Sn for each of the type parameters X1…Xn so that the call M<S1…Sn>(E1…Em)becomes valid.

The process of type inference is described below as an algorithm. A conformant compiler may be
implemented using an alternative approach, provided it reaches the same result in all cases.

During the process of inference each type parameter Xi is either fixed to a particular type Si or unfixed
with an associated set of bounds. Each of the bounds is some type T. Initially each type variable Xi is
unfixed with an empty set of bounds.

Type inference takes place in phases. Each phase will try to infer type arguments for more type variables
based on the findings of the previous phase. The first phase makes some initial inferences of bounds,
whereas the second phase fixes type variables to specific types and infers further bounds. The second
phase may have to be repeated a number of times.

[Note: Type inference takes place not only when a generic method is called. Type inference for conversion
of method groups is described in §12.6.3.14 and finding the best common type of a set of expressions is
described in §12.6.3.15. end note]

12.6.3.2 The first phase
For each of the method arguments Ei:

• If Ei is an anonymous function, an explicit parameter type inference (§12.6.3.8) is made from Ei
to Ti

• Otherwise, if Ei has a type U and xi is a value parameter (§15.6.2.2) then a lower-bound inference
(§12.6.3.10) is made from U to Ti.

• Otherwise, if Ei has a type U and xi is a reference (§15.6.2.3) or output (§15.6.2.4) parameter then
an exact inference (§12.6.3.9) is made from U to Ti.

• Otherwise, no inference is made for this argument.

12.6.3.3 The second phase
The second phase proceeds as follows:

• All unfixed type variables Xi which do not depend on (§12.6.3.6) any Xj are fixed (§12.6.3.12).

• If no such type variables exist, all unfixed type variables Xi are fixed for which all of the following
hold:

o There is at least one type variable Xj that depends on Xi
o Xi has a non-empty set of bounds

• If no such type variables exist and there are still unfixed type variables, type inference fails.

• Otherwise, if no further unfixed type variables exist, type inference succeeds.

• Otherwise, for all arguments Ei with corresponding parameter type Ti where the output types
(§12.6.3.5) contain unfixed type variables Xj but the input types (§12.6.3.4) do not, an output type
inference (§12.6.3.7) is made from Ei to Ti. Then the second phase is repeated.

12.6.3.4 Input types
If E is a method group or implicitly typed anonymous function and T is a delegate type or expression tree
type then all the parameter types of T are input types of E with type T.

12 Expressions

129

12.6.3.5 Output types
If E is a method group or an anonymous function and T is a delegate type or expression tree type then the
return type of T is an output type of E with type T.

12.6.3.6 Dependence
An unfixed type variable Xi depends directly on an unfixed type variable Xj if for some argument Ek with
type Tk Xj occurs in an input type of Ek with type Tk and Xi occurs in an output type of Ek with type Tk.

Xj depends on Xi if Xj depends directly on Xi or if Xi depends directly on Xk and Xk depends on Xj. Thus
“depends on” is the transitive but not reflexive closure of “depends directly on”.

12.6.3.7 Output type inferences
An output type inference is made from an expression E to a type T in the following way:

• If E is an anonymous function with inferred return type U (§12.6.3.13) and T is a delegate type or
expression tree type with return type Tb, then a lower-bound inference (§12.6.3.10) is made from U
to Tb.

• Otherwise, if E is a method group and T is a delegate type or expression tree type with parameter
types T1…Tk and return type Tb, and overload resolution of E with the types T1…Tk yields a single
method with return type U, then a lower-bound inference is made from U to Tb.

• Otherwise, if E is an expression with type U, then a lower-bound inference is made from U to T.

• Otherwise, no inferences are made.

12.6.3.8 Explicit parameter type inferences
An explicit parameter type inference is made from an expression E to a type T in the following way:

• If E is an explicitly typed anonymous function with parameter types U1…Uk and T is a delegate type or
expression tree type with parameter types V1…Vk then for each Ui an exact inference (§12.6.3.9) is
made from Ui to the corresponding Vi.

12.6.3.9 Exact inferences
An exact inference from a type U to a type V is made as follows:

• If V is one of the unfixed Xi then U is added to the set of exact bounds for Xi.

• Otherwise, sets V1…Vk and U1…Uk are determined by checking if any of the following cases apply:

o V is an array type V1[…] and U is an array type U1[…] of the same rank
o V is the type V1? and U is the type U1?

o V is a constructed type C<V1…Vk> and U is a constructed type C<U1…Uk>

If any of these cases apply then an exact inference is made from each Ui to the corresponding Vi.

• Otherwise, no inferences are made.

12.6.3.10 Lower-bound inferences
A lower-bound inference from a type U to a type V is made as follows:

• If V is one of the unfixed Xi then U is added to the set of lower bounds for Xi.

• Otherwise, if V is the type V1? and U is the type U1? then a lower bound inference is made from U1
to V1.

• Otherwise, sets U1…Uk and V1…Vk are determined by checking if any of the following cases apply:

o V is an array type V1[…]and U is an array type U1[…]of the same rank

ECMA-334

130

o V is one of IEnumerable<V1>, ICollection<V1>, IReadOnlyList<V1>>,
IReadOnlyCollection<V1> or IList<V1> and U is a single-dimensional array type U1[]

o V is a constructed class, struct, interface or delegate type C<V1…Vk> and there is a unique type
C<U1…Uk> such that U (or, if U is a type parameter, its effective base class or any member of its
effective interface set) is identical to, inherits from (directly or indirectly), or implements (directly
or indirectly) C<U1…Uk>.

o (The “uniqueness” restriction means that in the case interface C<T>{} class U: C<X>,
C<Y>{}, then no inference is made when inferring from U to C<T> because U1 could be X or Y.)

If any of these cases apply then an inference is made from each Ui to the corresponding Vi as follows:

o If Ui is not known to be a reference type then an exact inference is made
o Otherwise, if U is an array type then a lower-bound inference is made
o Otherwise, if V is C<V1…Vk> then inference depends on the i-th type parameter of C:

• If it is covariant then a lower-bound inference is made.

• If it is contravariant then an upper-bound inference is made.

• If it is invariant then an exact inference is made.

• Otherwise, no inferences are made.

12.6.3.11 Upper-bound inferences
An upper-bound inference from a type U to a type V is made as follows:

• If V is one of the unfixed Xi then U is added to the set of upper bounds for Xi.

• Otherwise, sets V1…Vk and U1…Uk are determined by checking if any of the following cases apply:

o U is an array type U1[…]and V is an array type V1[…]of the same rank
o U is one of IEnumerable<Ue>, ICollection<Ue>, IReadOnlyList<Ue>,

IReadOnlyCollection<Ue> or IList<Ue> and V is a single-dimensional array type Ve[]
o U is the type U1? and V is the type V1?

o U is constructed class, struct, interface or delegate type C<U1…Uk> and V is a class, struct, interface
or delegate type which is identical to, inherits from (directly or indirectly), or implements (directly
or indirectly) a unique type C<V1…Vk>

o (The “uniqueness” restriction means that if we have interface C<T>{} class V<Z>:
C<X<Z>>, C<Y<Z>>{}, then no inference is made when inferring from C<U1> to V<Q>.
Inferences are not made from U1 to either X<Q> or Y<Q>.)

If any of these cases apply then an inference is made from each Ui to the corresponding Vi as follows:

o If Ui is not known to be a reference type then an exact inference is made
o Otherwise, if V is an array type then an upper-bound inference is made
o Otherwise, if U is C<U1…Uk> then inference depends on the i-th type parameter of C:

• If it is covariant then an upper-bound inference is made.

• If it is contravariant then a lower-bound inference is made.

• If it is invariant then an exact inference is made.

• Otherwise, no inferences are made.

12.6.3.12 Fixing
An unfixed type variable Xi with a set of bounds is fixed as follows:

• The set of candidate types Uj starts out as the set of all types in the set of bounds for Xi.

12 Expressions

131

• We then examine each bound for Xi in turn: For each exact bound U of Xi all types Uj that are not
identical to U are removed from the candidate set. For each lower bound U of Xi all types Uj to which
there is not an implicit conversion from U are removed from the candidate set. For each upper-bound U
of Xi all types Uj from which there is not an implicit conversion to U are removed from the candidate
set.

• If among the remaining candidate types Uj there is a unique type V to which there is an implicit
conversion from all the other candidate types, then Xi is fixed to V.

• Otherwise, type inference fails.

12.6.3.13 Inferred return type
The inferred return type of an anonymous function F is used during type inference and overload
resolution. The inferred return type can only be determined for an anonymous function where all
parameter types are known, either because they are explicitly given, provided through an anonymous
function conversion or inferred during type inference on an enclosing generic method invocation.

The inferred effective return type is determined as follows:

• If the body of F is an expression that has a type, then the inferred effective return type of F is the type
of that expression.

• If the body of F is a block and the set of expressions in the block’s return statements has a best
common type T (§12.6.3.15), then the inferred effective return type of F is T.

• Otherwise, an effective return type cannot be inferred for F.

The inferred return type is determined as follows:

• If F is async and the body of F is either an expression classified as nothing (§12.2), or a statement block
where no return statements have expressions, the inferred return type is
System.Threading.Tasks.Task

• If F is async and has an inferred effective return type T, the inferred return type is
System.Threading.Tasks.Task<T>.

• If F is non-async and has an inferred effective return type T, the inferred return type is T.

• Otherwise, a return type cannot be inferred for F.

[Example: As an example of type inference involving anonymous functions, consider the Select extension
method declared in the System.Linq.Enumerable class:

namespace System.Linq
{
 public static class Enumerable
 {
 public static IEnumerable<TResult> Select<TSource,TResult>(
 this IEnumerable<TSource> source,
 Func<TSource,TResult> selector)
 {
 foreach (TSource element in source) yield return
selector(element);
 }
 }
}

Assuming the System.Linq namespace was imported with a using namespace directive, and given a class
Customer with a Name property of type string, the Select method can be used to select the names of
a list of customers:

List<Customer> customers = GetCustomerList();
IEnumerable<string> names = customers.Select(c => c.Name);

ECMA-334

132

The extension method invocation (§12.7.6.3) of Select is processed by rewriting the invocation to a static
method invocation:

IEnumerable<string> names = Enumerable.Select(customers, c => c.Name);

Since type arguments were not explicitly specified, type inference is used to infer the type arguments. First,
the customers argument is related to the source parameter, inferring TSource to be Customer. Then,
using the anonymous function type inference process described above, c is given type Customer, and the
expression c.Name is related to the return type of the selector parameter, inferring TResult to be
string. Thus, the invocation is equivalent to

Sequence.Select<Customer,string>(customers, (Customer c) => c.Name)

and the result is of type IEnumerable<string>.

The following example demonstrates how anonymous function type inference allows type information to
“flow” between arguments in a generic method invocation. Given the method:

static Z F<X,Y,Z>(X value, Func<X,Y> f1, Func<Y,Z> f2) {
 return f2(f1(value));
}

Type inference for the invocation:

double seconds = F("1:15:30", s => TimeSpan.Parse(s), t =>
t.TotalSeconds);

proceeds as follows: First, the argument "1:15:30" is related to the value parameter, inferring X to be
string. Then, the parameter of the first anonymous function, s, is given the inferred type string, and
the expression TimeSpan.Parse(s) is related to the return type of f1, inferring Y to be
System.TimeSpan. Finally, the parameter of the second anonymous function, t, is given the inferred
type System.TimeSpan, and the expression t.TotalSeconds is related to the return type of f2,
inferring Z to be double. Thus, the result of the invocation is of type double. end example]

12.6.3.14 Type inference for conversion of method groups
Similar to calls of generic methods, type inference shall also be applied when a method group M containing
a generic method is converted to a given delegate type D (§11.8). Given a method

Tr M<X1…Xn>(T1 x1 … Tm xm)

and the method group M being assigned to the delegate type D the task of type inference is to find type
arguments S1…Sn so that the expression:

M<S1…Sn>

becomes compatible (§20.2) with D.

Unlike the type inference algorithm for generic method calls, in this case, there are only argument types,
no argument expressions. In particular, there are no anonymous functions and hence no need for multiple
phases of inference.

Instead, all Xi are considered unfixed, and a lower-bound inference is made from each argument type Uj
of D to the corresponding parameter type Tj of M. If for any of the Xi no bounds were found, type inference
fails. Otherwise, all Xi are fixed to corresponding Si, which are the result of type inference.

12.6.3.15 Finding the best common type of a set of expressions
In some cases, a common type needs to be inferred for a set of expressions. In particular, the element
types of implicitly typed arrays and the return types of anonymous functions with block bodies are found in
this way.

The best common type for a set of expressions E1…Em is determined as follows:

• A new unfixed type variable X is introduced.

12 Expressions

133

• For each expression Ei an output type inference (§12.6.3.7) is performed from it to X.

• X is fixed (§12.6.3.12), if possible, and the resulting type is the best common type.

• Otherwise inference fails.

[Note: Intuitively this inference is equivalent to calling a method

void M<X>(X x1 … X xm)

with the Ei as arguments and inferring X. end note]

12.6.4 Overload resolution

12.6.4.1 General
Overload resolution is a binding-time mechanism for selecting the best function member to invoke given
an argument list and a set of candidate function members. Overload resolution selects the function
member to invoke in the following distinct contexts within C#:

• Invocation of a method named in an invocation-expression (§12.7.6).

• Invocation of an instance constructor named in an object-creation-expression (§12.7.11.2).

• Invocation of an indexer accessor through an element-access (§12.7.7).

• Invocation of a predefined or user-defined operator referenced in an expression (§12.4.4 and §12.4.5).

Each of these contexts defines the set of candidate function members and the list of arguments in its own
unique way. For instance, the set of candidates for a method invocation does not include methods marked
override (§12.5), and methods in a base class are not candidates if any method in a derived class is
applicable (§12.7.6.2).

Once the candidate function members and the argument list have been identified, the selection of the best
function member is the same in all cases:

• First, the set of candidate function members is reduced to those function members that are applicable
with respect to the given argument list (§12.6.4.2). If this reduced set is empty, a compile-time error
occurs.

• Then, the best function member from the set of applicable candidate function members is located. If
the set contains only one function member, then that function member is the best function member.
Otherwise, the best function member is the one function member that is better than all other function
members with respect to the given argument list, provided that each function member is compared to
all other function members using the rules in §12.6.4.3. If there is not exactly one function member
that is better than all other function members, then the function member invocation is ambiguous and
a binding-time error occurs.

The following subclauses define the exact meanings of the terms applicable function member and better
function member.

12.6.4.2 Applicable function member
A function member is said to be an applicable function member with respect to an argument list A when
all of the following are true:

• Each argument in A corresponds to a parameter in the function member declaration as described in
§12.6.2.2, at most one argument corresponds to each parameter, and any parameter to which no
argument corresponds is an optional parameter.

• For each argument in A, the parameter-passing mode of the argument is identical to the parameter-
passing mode of the corresponding parameter, and

o for a value parameter or a parameter array, an implicit conversion (§11.2) exists from the
argument expression to the type of the corresponding parameter, or

ECMA-334

134

o for a ref or out parameter, there is an identity conversion between the type of the argument
expression and the type of the corresponding parameter

For a function member that includes a parameter array, if the function member is applicable by the above
rules, it is said to be applicable in its normal form. If a function member that includes a parameter array is
not applicable in its normal form, the function member might instead be applicable in its expanded form:

• The expanded form is constructed by replacing the parameter array in the function member
declaration with zero or more value parameters of the element type of the parameter array such that
the number of arguments in the argument list A matches the total number of parameters. If A has
fewer arguments than the number of fixed parameters in the function member declaration, the
expanded form of the function member cannot be constructed and is thus not applicable.

• Otherwise, the expanded form is applicable if for each argument in A the parameter-passing mode of
the argument is identical to the parameter-passing mode of the corresponding parameter, and

o for a fixed value parameter or a value parameter created by the expansion, an implicit conversion
(§11.2) exists from the argument expression to the type of the corresponding parameter, or

o for a ref or out parameter, the type of the argument expression is identical to the type of the
corresponding parameter.

12.6.4.3 Better function member
For the purposes of determining the better function member, a stripped-down argument list A is
constructed containing just the argument expressions themselves in the order they appear in the original
argument list.

Parameter lists for each of the candidate function members are constructed in the following way:

• The expanded form is used if the function member was applicable only in the expanded form.

• Optional parameters with no corresponding arguments are removed from the parameter list

• The parameters are reordered so that they occur at the same position as the corresponding argument
in the argument list.

Given an argument list A with a set of argument expressions { E1, E2, …, EN } and two applicable function
members MP and MQ with parameter types { P1, P2, …, PN } and { Q1, Q2, …, QN }, MP is defined to be a better
function member than MQ if

• for each argument, the implicit conversion from EX to QX is not better than the implicit conversion
from EX to PX, and

• for at least one argument, the conversion from EX to PX is better than the conversion from EX to QX.

In case the parameter type sequences {P1, P2, …, PN} and {Q1, Q2, …, QN} are equivalent (i.e., each Pi has
an identity conversion to the corresponding Qi), the following tie-breaking rules are applied, in order, to
determine the better function member.

• If MP is a non-generic method and MQ is a generic method, then MP is better than MQ.

• Otherwise, if MP is applicable in its normal form and MQ has a params array and is applicable only in its
expanded form, then MP is better than MQ.

• Otherwise, if both methods have params arrays and are applicable only in their expanded forms, and if
the params array of MP has fewer elements than the params array of MQ, then MP is better than MQ.

• Otherwise, if MP has more specific parameter types than MQ, then MP is better than MQ. Let {R1, R2, …, RN}
and {S1, S2, …, SN} represent the uninstantiated and unexpanded parameter types of MP and MQ. MP’s
parameter types are more specific than MQ’s if, for each parameter, RX is not less specific than SX, and,
for at least one parameter, RX is more specific than SX:

o A type parameter is less specific than a non-type parameter.

12 Expressions

135

o Recursively, a constructed type is more specific than another constructed type (with the same
number of type arguments) if at least one type argument is more specific and no type argument is
less specific than the corresponding type argument in the other.

o An array type is more specific than another array type (with the same number of dimensions) if the
element type of the first is more specific than the element type of the second.

• Otherwise if one member is a non-lifted operator and the other is a lifted operator, the non-lifted one
is better.

• If neither function member was found to be better, and all parameters of MP have a corresponding
argument whereas default arguments need to be substituted for at least one optional parameter in MQ,
then MP is better than MQ. Otherwise, no function member is better.

12.6.4.4 Better conversion from expression
Given an implicit conversion C1 that converts from an expression E to a type T1, and an implicit
conversion C2 that converts from an expression E to a type T2, C1 is a better conversion than C2 if at least
one of the following holds:

• E has a type S and an identity conversion exists from S to T1 but not from S to T2

• E is not an anonymous function and T1 is a better conversion target than T2 (§12.6.4.6)

• E is an anonymous function, T1 is either a delegate type D1 or an expression tree type
Expression<D1>, T2 is either a delegate type D2 or an expression tree type Expression<D2> and
one of the following holds:

o D1 is a better conversion target than D2

o D1 and D2 have identical parameter lists, and one of the following holds:

• D1 has a return type Y1, and D2 has a return type Y2, an inferred return type X exists for E in the
context of that parameter list (§12.6.3.13), and the conversion from X to Y1 is better than the
conversion from X to Y2

• E is async, D1 has a return type Task<Y1>, and D2 has a return type Task<Y2>, an inferred
return type Task<X> exists for E in the context of that parameter list (§12.6.3.13), and the
conversion from X to Y1 is better than the conversion from X to Y2

• D1 has a return type Y, and D2 is void returning

12.6.4.5 Better conversion from type
Given a conversion C1 that converts from a type S to a type T1, and a conversion C2 that converts from a
type S to a type T2, C1 is a better conversion than C2 if at least one of the following holds:

• An identity conversion exists from S to T1 but not from S to T2

• T1 is a better conversion target than T2 (§12.6.4.6)

12.6.4.6 Better conversion target
Given two different types T1 and T2, T1 is a better conversion target than T2 if at least one of the following
holds:

• An implicit conversion from T1 to T2 exists, and no implicit conversion from T2 to T1 exists

• T1 is a signed integral type and T2 is an unsigned integral type. Specifically:

o T1 is sbyte and T2 is byte, ushort, uint, or ulong

o T1 is short and T2 is ushort, uint, or ulong

ECMA-334

136

o T1 is int and T2 is uint, or ulong

o T1 is long and T2 is ulong

12.6.4.7 Overloading in generic classes
[Note: While signatures as declared shall be unique (§9.6), it is possible that substitution of type arguments
results in identical signatures. In such a situation, overload resolution will pick the most specific (§12.6.4.3)
of the original signatures (before substitution of type arguments), if it exists, and otherwise report an error.
end note]

[Example: The following examples show overloads that are valid and invalid according to this rule:

interface I1<T> {…}

interface I2<T> {…}

class G1<U>
{
 int F1(U u); // Overload resulotion for G<int>.F1
 int F1(int i); // will pick non-generic

 void F2(I1<U> a); // Valid overload
 void F2(I2<U> a);
}

class G2<U,V>
{
 void F3(U u, V v); // Valid, but overload resolution for
 void F3(V v, U u); // G2<int,int>.F3 will fail

 void F4(U u, I1<V> v); // Valid, but overload resolution for
 void F4(I1<V> v, U u); // G2<I1<int>,int>.F4 will fail

 void F5(U u1, I1<V> v2); // Valid overload
 void F5(V v1, U u2);

 void F6(ref U u); // valid overload
 void F6(out V v);
}

end example]

12.6.5 Compile-time checking of dynamic member invocation
Even though overload resolution of a dynamically bound operation takes place at run-time, it is sometimes
possible at compile-time to know the list of function members from which an overload will be chosen:

• For a delegate invocation (§12.7.6.4), the list is a single function member with the same parameter list
as the delegate-type of the invocation

• For a method invocation (§12.7.6.2) on a type, or on a value whose static type is not dynamic, the set
of accessible methods in the method group is known at compile-time.

• For an object creation expression (§12.7.11.2) the set of accessible constructors in the type is known at
compile-time.

• For an indexer access (§12.7.7.3) the set of accessible indexers in the receiver is known at compile-
time.

In these cases a limited compile-time check is performed on each member in the known set of function
members, to see if it can be known for certain never to be invoked at run-time. For each function
member F a modified parameter and argument list are constructed:

• First, if F is a generic method and type arguments were provided, then those are substituted for the
type parameters in the parameter list. However, if type arguments were not provided, no such
substitution happens.

12 Expressions

137

• Then, any parameter whose type is open (i.e., contains a type parameter; see §9.4.3) is elided, along
with its corresponding parameter(s).

For F to pass the check, all of the following shall hold:

• The modified parameter list for F is applicable to the modified argument list in terms of §12.6.4.2.

• All constructed types in the modified parameter list satisfy their constraints (§9.4.5).

• If the type parameters of F were substituted in the step above, their constraints are satisfied.

• If F is a static method, the method group shall not have resulted from a member-access whose receiver
is known at compile-time to be a variable or value.

• If F is an instance method, the method group shall not have resulted from a member-access whose
receiver is known at compile-time to be a type.

If no candidate passes this test, a compile-time error occurs.

12.6.6 Function member invocation

12.6.6.1 General
This subclause describes the process that takes place at run-time to invoke a particular function member. It
is assumed that a binding-time process has already determined the particular member to invoke, possibly
by applying overload resolution to a set of candidate function members.

For purposes of describing the invocation process, function members are divided into two categories:

• Static function members. These are static methods, static property accessors, and user-defined
operators. Static function members are always non-virtual.

• Instance function members. These are instance methods, instance constructors, instance property
accessors, and indexer accessors. Instance function members are either non-virtual or virtual, and are
always invoked on a particular instance. The instance is computed by an instance expression, and it
becomes accessible within the function member as this (§12.7.8). For an instance constructor, the
instance expression is taken to be the newly allocated object.

The run-time processing of a function member invocation consists of the following steps, where M is the
function member and, if M is an instance member, E is the instance expression:

• If M is a static function member:

o The argument list is evaluated as described in §12.6.2.
o M is invoked.

• Otherwise, if the type of E is a value-type V, and M is declared or overridden in V:

o E is evaluated. If this evaluation causes an exception, then no further steps are executed. For an
instance constructor, this evaluation consists of allocating storage (typically from an execution
stack) for the new object. In this case E is classified as a variable.

o If E is not classified as a variable, then a temporary local variable of E’s type is created and the
value of E is assigned to that variable. E is then reclassified as a reference to that temporary local
variable. The temporary variable is accessible as this within M, but not in any other way. Thus,
only when E is a true variable is it possible for the caller to observe the changes that M makes to
this.

o The argument list is evaluated as described in §12.6.2.
o M is invoked. The variable referenced by E becomes the variable referenced by this.

• Otherwise:

o E is evaluated. If this evaluation causes an exception, then no further steps are executed.

ECMA-334

138

o The argument list is evaluated as described in §12.6.2.
o If the type of E is a value-type, a boxing conversion (§11.2.8) is performed to convert E to a class-

type, and E is considered to be of that class-type in the following steps. If the value-type is
an enum-type, the class-type is System.Enum; otherwise, it is System.ValueType.

o The value of E is checked to be valid. If the value of E is null, a
System.NullReferenceException is thrown and no further steps are executed.

o The function member implementation to invoke is determined:

• If the binding-time type of E is an interface, the function member to invoke is the
implementation of M provided by the run-time type of the instance referenced by E. This
function member is determined by applying the interface mapping rules (§18.6.5) to determine
the implementation of M provided by the run-time type of the instance referenced by E.

• Otherwise, if M is a virtual function member, the function member to invoke is the
implementation of M provided by the run-time type of the instance referenced by E. This
function member is determined by applying the rules for determining the most derived
implementation (§15.6.4) of M with respect to the run-time type of the instance referenced
by E.

• Otherwise, M is a non-virtual function member, and the function member to invoke is M itself.

o The function member implementation determined in the step above is invoked. The object
referenced by E becomes the object referenced by this.

The result of the invocation of an instance constructor (§12.7.11.2) is the value created. The result of the
invocation of any other function member is the value, if any, returned (§13.10.5) from its body.

12.6.6.2 Invocations on boxed instances
A function member implemented in a value-type can be invoked through a boxed instance of that value-
type in the following situations:

• When the function member is an override of a method inherited from type class-type and is invoked
through an instance expression of that class-type. [Note: The class-type will always be one
of System.Object, System.ValueType or System.Enum. end note]

• When the function member is an implementation of an interface function member and is invoked
through an instance expression of an interface-type.

• When the function member is invoked through a delegate.

In these situations, the boxed instance is considered to contain a variable of the value-type, and this
variable becomes the variable referenced by this within the function member invocation. [Note: In
particular, this means that when a function member is invoked on a boxed instance, it is possible for the
function member to modify the value contained in the boxed instance. end note]

12.7 Primary expressions

12.7.1 General
Primary expressions include the simplest forms of expressions.

primary-expression:
primary-no-array-creation-expression
array-creation-expression

12 Expressions

139

primary-no-array-creation-expression:
literal
simple-name
parenthesized-expression
member-access
invocation-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
object-creation-expression
delegate-creation-expression
anonymous-object-creation-expression
typeof-expression
sizeof-expression
checked-expression
unchecked-expression
default-value-expression
anonymous-method-expression

Primary expressions are divided between array-creation-expressions and primary-no-array-creation-
expressions. Treating array-creation-expression in this way, rather than listing it along with the other
simple expression forms, enables the grammar to disallow potentially confusing code such as

object o = new int[3][1];

which would otherwise be interpreted as

object o = (new int[3])[1];

12.7.2 Literals
A primary-expression that consists of a literal (§7.4.5) is classified as a value.

12.7.3 Simple names

12.7.3.1 General
A simple-name consists of an identifier, optionally followed by a type argument list:

simple-name:
identifier type-argument-listopt

A simple-name is either of the form I or of the form I<A1, …, AK>, where I is a single identifier and <A1,
…, AK> is an optional type-argument-list. When no type-argument-list is specified, consider K to be zero.
The simple-name is evaluated and classified as follows:

• If K is zero and the simple-name appears within a block and if the block’s (or an enclosing block’s) local
variable declaration space (§8.3) contains a local variable, parameter or constant with name I, then
the simple-name refers to that local variable, parameter or constant and is classified as a variable or
value.

• If K is zero and the simple-name appears within a generic method declaration but outside the
attributes of its method-header, and if that declaration includes a type parameter with name I, then
the simple-name refers to that type parameter.

• Otherwise, for each instance type T (§15.3.2), starting with the instance type of the immediately
enclosing type declaration and continuing with the instance type of each enclosing class or struct
declaration (if any):

ECMA-334

140

o If K is zero and the declaration of T includes a type parameter with name I, then the simple-name
refers to that type parameter.

o Otherwise, if a member lookup (§12.5) of I in T with K type arguments produces a match:

• If T is the instance type of the immediately enclosing class or struct type and the lookup
identifies one or more methods, the result is a method group with an associated instance
expression of this. If a type argument list was specified, it is used in calling a generic method
(§12.7.6.2).

• Otherwise, if T is the instance type of the immediately enclosing class or struct type, if the
lookup identifies an instance member, and if the reference occurs within the block of an
instance constructor, an instance method, or an instance accessor (§12.2.1), the result is the
same as a member access (§12.7.5) of the form this.I. This can only happen when K is zero.

• Otherwise, the result is the same as a member access (§12.7.5) of the form T.I or T.I<A1,
…, AK>. In this case, it is a binding-time error for the simple-name to refer to an instance
member.

• Otherwise, for each namespace N, starting with the namespace in which the simple-name occurs,
continuing with each enclosing namespace (if any), and ending with the global namespace, the
following steps are evaluated until an entity is located:

o If K is zero and I is the name of a namespace in N, then:

• If the location where the simple-name occurs is enclosed by a namespace declaration for N and
the namespace declaration contains an extern-alias-directive or using-alias-directive that
associates the name I with a namespace or type, then the simple-name is ambiguous and a
compile-time error occurs.

• Otherwise, the simple-name refers to the namespace named I in N.

o Otherwise, if N contains an accessible type having name I and K type parameters, then:

• If K is zero and the location where the simple-name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an extern-alias-directive or using-
alias-directive that associates the name I with a namespace or type, then the simple-name is
ambiguous and a compile-time error occurs.

• Otherwise, the namespace-or-type-name refers to the type constructed with the given type
arguments.

o Otherwise, if the location where the simple-name occurs is enclosed by a namespace declaration
for N:

• If K is zero and the namespace declaration contains an extern-alias-directive or using-alias-
directive that associates the name I with an imported namespace or type, then the simple-
name refers to that namespace or type.

• Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type having name I and K type parameters, then the simple-
name refers to that type constructed with the given type arguments.

• Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type having name I and K type parameters, then the
simple-name is ambiguous and a compile-time error occurs.

[Note: This entire step is exactly parallel to the corresponding step in the processing of a namespace-
or-type-name (§8.8). end note]

• Otherwise, the simple-name is undefined and a compile-time error occurs.

12 Expressions

141

12.7.3.2 Invariant meaning in blocks
For each occurrence of a given identifier as a full simple-name (without a type argument list) in an
expression or declarator, within the local variable declaration space (§8.3) immediately enclosing that
occurrence, every other occurrence of the same identifier as a full simple-name in an expression or
declarator shall refer to the same entity. [Note: This rule ensures that the meaning of a name is always the
same within a given block, switch block, for-, foreach- or using-statement, or anonymous function. end
note]

[Example: The example

class Test
{
 double x;

 void F(bool b) {
 x = 1.0;
 if (b) {
 int x;
 x = 1;
 }
 }
}

results in a compile-time error because x refers to different entities within the outer block (the extent of
which includes the nested block in the if statement). In contrast, the example

class Test
{
 double x;

 void F(bool b) {
 if (b) {
 x = 1.0;
 }
 else {
 int x;
 x = 1;
 }
 }
}

is permitted because the name x is never used in the outer block. end example]

[Note: The rule of invariant meaning applies only to simple names. It is perfectly valid for the same
identifier to have one meaning as a simple name and another meaning as right operand of a member
access (§12.7.5). end note] [Example:

struct Point
{
 int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

The example above illustrates a common pattern of using the names of fields as parameter names in an
instance constructor. In the example, the simple names x and y refer to the parameters, but that does not
prevent the member access expressions this.x and this.y from accessing the fields. end example]

12.7.4 Parenthesized expressions
A parenthesized-expression consists of an expression enclosed in parentheses.

parenthesized-expression:
(expression)

ECMA-334

142

A parenthesized-expression is evaluated by evaluating the expression within the parentheses. If the
expression within the parentheses denotes a namespace or type, a compile-time error occurs. Otherwise,
the result of the parenthesized-expression is the result of the evaluation of the contained expression.

12.7.5 Member access

12.7.5.1 General
A member-access consists of a primary-expression, a predefined-type, or a qualified-alias-member,
followed by a “.” token, followed by an identifier, optionally followed by a type-argument-list.

member-access:
primary-expression . identifier type-argument-listopt
predefined-type . identifier type-argument-listopt

qualified-alias-member . identifier type-argument-listopt

predefined-type: one of
bool byte char decimal double float int long

object sbyte short string uint ulong ushort

The qualified-alias-member production is defined in §14.8.

A member-access is either of the form E.I or of the form E.I<A1, …, AK>, where E is a primary-
expression, predefined-type or qualified-alias-member, I is a single identifier, and <A1, …, AK> is an
optional type-argument-list. When no type-argument-list is specified, consider K to be zero.

A member-access with a primary-expression of type dynamic is dynamically bound (§12.3.3). In this case,
the compiler classifies the member access as a property access of type dynamic. The rules below to
determine the meaning of the member-access are then applied at run-time, using the run-time type
instead of the compile-time type of the primary-expression. If this run-time classification leads to a method
group, then the member access shall be the primary-expression of an invocation-expression.

The member-access is evaluated and classified as follows:

• If K is zero and E is a namespace and E contains a nested namespace with name I, then the result is
that namespace.

• Otherwise, if E is a namespace and E contains an accessible type having name I and K type
parameters, then the result is that type constructed with the given type arguments.

• If E is classified as a type, if E is not a type parameter, and if a member lookup (§12.5) of I in E with K
type parameters produces a match, then E.I is evaluated and classified as follows: [Note: When the
result of such a member lookup is a method group and K is zero, the method group can contain
methods having type parameters. This allows such methods to be considered for type argument
inferencing. end note]

o If I identifies a type, then the result is that type constructed with any given type arguments.
o If I identifies one or more methods, then the result is a method group with no associated instance

expression.
o If I identifies a static property, then the result is a property access with no associated instance

expression.
o If I identifies a static field:

• If the field is readonly and the reference occurs outside the static constructor of the class or
struct in which the field is declared, then the result is a value, namely the value of the static
field I in E.

• Otherwise, the result is a variable, namely the static field I in E.

o If I identifies a static event:

12 Expressions

143

• If the reference occurs within the class or struct in which the event is declared, and the event
was declared without event-accessor-declarations (§15.8.1), then E.I is processed exactly as
if I were a static field.

• Otherwise, the result is an event access with no associated instance expression.

o If I identifies a constant, then the result is a value, namely the value of that constant.
o If I identifies an enumeration member, then the result is a value, namely the value of that

enumeration member.
o Otherwise, E.I is an invalid member reference, and a compile-time error occurs.

• If E is a property access, indexer access, variable, or value, the type of which is T, and a member lookup
(§12.5) of I in T with K type arguments produces a match, then E.I is evaluated and classified as
follows:

o First, if E is a property or indexer access, then the value of the property or indexer access is
obtained (§12.2.2) and E is reclassified as a value.

o If I identifies one or more methods, then the result is a method group with an associated instance
expression of E.

o If I identifies an instance property, then the result is a property access with an associated instance
expression of E and an associated type that is the type of the property. If T is a class type, the
associated type is picked from the first declaration or override of the property found when starting
with T, and searching through its base classes.

o If T is a class-type and I identifies an instance field of that class-type:

• If the value of E is null, then a System.NullReferenceException is thrown.

• Otherwise, if the field is readonly and the reference occurs outside an instance constructor
of the class in which the field is declared, then the result is a value, namely the value of the
field I in the object referenced by E.

• Otherwise, the result is a variable, namely the field I in the object referenced by E.

o If T is a struct-type and I identifies an instance field of that struct-type:

• If E is a value, or if the field is readonly and the reference occurs outside an instance
constructor of the struct in which the field is declared, then the result is a value, namely the
value of the field I in the struct instance given by E.

• Otherwise, the result is a variable, namely the field I in the struct instance given by E.

o If I identifies an instance event:

• If the reference occurs within the class or struct in which the event is declared, and the event
was declared without event-accessor-declarations (§15.8.1), and the reference does not occur
as the left-hand side of a += or -= operator, then E.I is processed exactly as if I was an
instance field.

• Otherwise, the result is an event access with an associated instance expression of E.

• Otherwise, an attempt is made to process E.I as an extension method invocation (§12.7.6.3). If this
fails, E.I is an invalid member reference, and a binding-time error occurs.

12.7.5.2 Identical simple names and type names
In a member access of the form E.I, if E is a single identifier, and if the meaning of E as a simple-name
(§12.7.3) is a constant, field, property, local variable, or parameter with the same type as the meaning of E
as a type-name (§8.8.1), then both possible meanings of E are permitted. The member lookup of E.I is
never ambiguous, since I shall necessarily be a member of the type E in both cases. In other words, the

ECMA-334

144

rule simply permits access to the static members and nested types of E where a compile-time error would
otherwise have occurred. [Example:

struct Color
{
 public static readonly Color White = new Color(…);
 public static readonly Color Black = new Color(…);

 public Color Complement() {…}
}

class A
{
 public Color Color; // Field Color of type Color

 void F() {
 Color = Color.Black; // Refs Color.Black static member
 Color = Color.Complement(); // Invokes Complement() on Color fld
 }

 static void G() {
 Color c = Color.White; // Refs Color.White static member
 }
}

Within the A class, those occurrences of the Color identifier that reference the Color type are
underlined, and those that reference the Color field are not underlined. end example]

12.7.6 Invocation expressions

12.7.6.1 General
An invocation-expression is used to invoke a method.

invocation-expression:
primary-expression (argument-listopt)

An invocation-expression is dynamically bound (§12.3.3) if at least one of the following holds:

• The primary-expression has compile-time type dynamic.

• At least one argument of the optional argument-list has compile-time type dynamic.

In this case, the compiler classifies the invocation-expression as a value of type dynamic. The rules below
to determine the meaning of the invocation-expression are then applied at run-time, using the run-time
type instead of the compile-time type of those of the primary-expression and arguments that have the
compile-time type dynamic. If the primary-expression does not have compile-time type dynamic, then
the method invocation undergoes a limited compile-time check as described in §12.6.5.

The primary-expression of an invocation-expression shall be a method group or a value of a delegate-type.
If the primary-expression is a method group, the invocation-expression is a method invocation (§12.7.6.2).
If the primary-expression is a value of a delegate-type, the invocation-expression is a delegate invocation
(§12.7.6.4). If the primary-expression is neither a method group nor a value of a delegate-type, a binding-
time error occurs.

The optional argument-list (§12.6.2) provides values or variable references for the parameters of the
method.

The result of evaluating an invocation-expression is classified as follows:

• If the invocation-expression invokes a method or delegate that returns void, the result is nothing. An
expression that is classified as nothing is permitted only in the context of a statement-expression
(§13.7) or as the body of a lambda-expression (§12.16). Otherwise a binding-time error occurs.

• Otherwise, the result is a value, with an associated type of the return type of the method or delegate.
If the invocation is of an instance method, and the receiver is of a class type T, the associated type is

12 Expressions

145

picked from the first declaration or override of the method found when starting with T and searching
through its base classes.

12.7.6.2 Method invocations
For a method invocation, the primary-expression of the invocation-expression shall be a method group. The
method group identifies the one method to invoke or the set of overloaded methods from which to choose
a specific method to invoke. In the latter case, determination of the specific method to invoke is based on
the context provided by the types of the arguments in the argument-list.

The binding-time processing of a method invocation of the form M(A), where M is a method group
(possibly including a type-argument-list), and A is an optional argument-list, consists of the following steps:

• The set of candidate methods for the method invocation is constructed. For each method F associated
with the method group M:

o If F is non-generic, F is a candidate when:

• M has no type argument list, and

• F is applicable with respect to A (§12.6.4.2).

o If F is generic and M has no type argument list, F is a candidate when:

• Type inference (§12.6.3) succeeds, inferring a list of type arguments for the call, and

• Once the inferred type arguments are substituted for the corresponding method type
parameters, all constructed types in the parameter list of F satisfy their constraints (§9.4.5),
and the parameter list of F is applicable with respect to A (§12.6.4.2)

o If F is generic and M includes a type argument list, F is a candidate when:

• F has the same number of method type parameters as were supplied in the type argument list,
and

• Once the type arguments are substituted for the corresponding method type parameters, all
constructed types in the parameter list of F satisfy their constraints (§9.4.5), and the
parameter list of F is applicable with respect to A (§12.6.4.2).

• The set of candidate methods is reduced to contain only methods from the most derived types: For
each method C.F in the set, where C is the type in which the method F is declared, all methods
declared in a base type of C are removed from the set. Furthermore, if C is a class type other than
object, all methods declared in an interface type are removed from the set. [Note: This latter rule
only has an effect when the method group was the result of a member lookup on a type parameter
having an effective base class other than object and a non-empty effective interface set. end note]

• If the resulting set of candidate methods is empty, then further processing along the following steps
are abandoned, and instead an attempt is made to process the invocation as an extension method
invocation (§12.7.6.3). If this fails, then no applicable methods exist, and a binding-time error occurs.

• The best method of the set of candidate methods is identified using the overload resolution rules of
§12.6.4. If a single best method cannot be identified, the method invocation is ambiguous, and a
binding-time error occurs. When performing overload resolution, the parameters of a generic method
are considered after substituting the type arguments (supplied or inferred) for the corresponding
method type parameters.

• Final validation of the chosen best method is performed:

o The method is validated in the context of the method group: If the best method is a static method,
the method group shall have resulted from a simple-name or a member-access through a type. If
the best method is an instance method, the method group shall have resulted from a simple-name,

ECMA-334

146

a member-access through a variable or value, or a base-access. If neither of these requirements is
true, a binding-time error occurs.

o If the best method is a generic method, the type arguments (supplied or inferred) are checked
against the constraints (§9.4.5) declared on the generic method. If any type argument does not
satisfy the corresponding constraint(s) on the type parameter, a binding-time error occurs.

Once a method has been selected and validated at binding-time by the above steps, the actual run-time
invocation is processed according to the rules of function member invocation described in §12.6.6.

[Note: The intuitive effect of the resolution rules described above is as follows: To locate the particular
method invoked by a method invocation, start with the type indicated by the method invocation and
proceed up the inheritance chain until at least one applicable, accessible, non-override method declaration
is found. Then perform type inference and overload resolution on the set of applicable, accessible, non-
override methods declared in that type and invoke the method thus selected. If no method was found, try
instead to process the invocation as an extension-method invocation.end note]

12.7.6.3 Extension method invocations
In a method invocation (§12.6.6.2) of one of the forms

expr . identifier ()
expr . identifier (args)
expr . identifier < typeargs > ()
expr . identifier < typeargs > (args)

if the normal processing of the invocation finds no applicable methods, an attempt is made to process the
construct as an extension method invocation. If expr or any of the args has compile-time type dynamic,
extension methods will not apply.

The objective is to find the best type-name C, so that the corresponding static method invocation can take
place:

C . identifier (expr)

C . identifier (expr , args)

C . identifier < typeargs > (expr)

C . identifier < typeargs > (expr , args)

An extension method Ci.Mj is eligible if:

• Ci is a non-generic, non-nested class

• The name of Mj is identifier

• Mj is accessible and applicable when applied to the arguments as a static method as shown above

• An implicit identity, reference or boxing conversion exists from expr to the type of the first parameter
of Mj.

The search for C proceeds as follows:

• Starting with the closest enclosing namespace declaration, continuing with each enclosing namespace
declaration, and ending with the containing compilation unit, successive attempts are made to find a
candidate set of extension methods:

o If the given namespace or compilation unit directly contains non-generic type declarations Ci with
eligible extension methods Mj, then the set of those extension methods is the candidate set.

12 Expressions

147

o If namespaces imported by using namespace directives in the given namespace or compilation unit
directly contain non-generic type declarations Ci with eligible extension methods Mj, then the set
of those extension methods is the candidate set.

• If no candidate set is found in any enclosing namespace declaration or compilation unit, a compile-time
error occurs.

• Otherwise, overload resolution is applied to the candidate set as described in §12.6.4. If no single best
method is found, a compile-time error occurs.

• C is the type within which the best method is declared as an extension method.

Using C as a target, the method call is then processed as a static method invocation (§12.6.6). [Note: Unlike
an instance method invocation, no exception is thrown when expr evaluates to a null reference. Instead,
this null value is passed to the extension method as it would be via a regular static method invocation. It is
up to the extension method implementation to decide how to respond to such a call. end note]

The preceding rules mean that instance methods take precedence over extension methods, that extension
methods available in inner namespace declarations take precedence over extension methods available in
outer namespace declarations, and that extension methods declared directly in a namespace take
precedence over extension methods imported into that same namespace with a using namespace
directive. [Example:

public static class E
{
 public static void F(this object obj, int i) { }

 public static void F(this object obj, string s) { }
}

class A { }

class B
{
 public void F(int i) { }
}

class C
{
 public void F(object obj) { }
}

class X
{
 static void Test(A a, B b, C c) {
 a.F(1); // E.F(object, int)
 a.F("hello"); // E.F(object, string)

 b.F(1); // B.F(int)
 b.F("hello"); // E.F(object, string)

 c.F(1); // C.F(object)
 c.F("hello"); // C.F(object)
 }
}

In the example, B’s method takes precedence over the first extension method, and C’s method takes
precedence over both extension methods.

public static class C
{
 public static void F(this int i) { Console.WriteLine("C.F({0})", i); }
 public static void G(this int i) { Console.WriteLine("C.G({0})", i); }
 public static void H(this int i) { Console.WriteLine("C.H({0})", i); }
}

ECMA-334

148

namespace N1
{
 public static class D
 {
 public static void F(this int i) { Console.WriteLine("D.F({0})",
i); }
 public static void G(this int i) { Console.WriteLine("D.G({0})",
i); }
 }
}

namespace N2
{
 using N1;

 public static class E
 {
 public static void F(this int i) { Console.WriteLine("E.F({0})",
i); }
 }

 class Test
 {
 static void Main(string[] args)
 {
 1.F();
 2.G();
 3.H();
 }
 }
}

The output of this example is:

E.F(1)
D.G(2)
C.H(3)

D.G takes precendece over C.G, and E.F takes precedence over both D.F and C.F. end example]

12.7.6.4 Delegate invocations
For a delegate invocation, the primary-expression of the invocation-expression shall be a value of a
delegate-type. Furthermore, considering the delegate-type to be a function member with the same
parameter list as the delegate-type, the delegate-type shall be applicable (§12.6.4.2) with respect to the
argument-list of the invocation-expression.

The run-time processing of a delegate invocation of the form D(A), where D is a primary-expression of a
delegate-type and A is an optional argument-list, consists of the following steps:

• D is evaluated. If this evaluation causes an exception, no further steps are executed.

• The argument list A is evaluated. If this evaluation causes an exception, no further steps are executed.

• The value of D is checked to be valid. If the value of D is null, a System.NullReferenceException
is thrown and no further steps are executed.

• Otherwise, D is a reference to a delegate instance. Function member invocations (§12.6.6) are
performed on each of the callable entities in the invocation list of the delegate. For callable entities
consisting of an instance and instance method, the instance for the invocation is the instance
contained in the callable entity.

See §20.6 for details of multiple invocation lists without parameters.

12 Expressions

149

12.7.7 Element access

12.7.7.1 General
An element-access consists of a primary-no-array-creation-expression, followed by a “[” token, followed by
an argument-list, followed by a “]” token. The argument-list consists of one or more arguments, separated
by commas.

element-access:
primary-no-array-creation-expression [argument-list]

The argument-list of an element-access is not allowed to contain ref or out arguments.

An element-access is dynamically bound (§12.3.3) if at least one of the following holds:

• The primary-no-array-creation-expression has compile-time type dynamic.

• At least one expression of the argument-list has compile-time type dynamic and the primary-no-array-
creation-expression does not have an array type.

In this case, the compiler classifies the element-access as a value of type dynamic. The rules below to
determine the meaning of the element-access are then applied at run-time, using the run-time type instead
of the compile-time type of those of the primary-no-array-creation-expression and argument-list
expressions which have the compile-time type dynamic. If the primary-no-array-creation-expression does
not have compile-time type dynamic, then the element access undergoes a limited compile-time check as
described in §12.6.5.

If the primary-no-array-creation-expression of an element-access is a value of an array-type, the element-
access is an array access (§12.7.7.2). Otherwise, the primary-no-array-creation-expression shall be a
variable or value of a class, struct, or interface type that has one or more indexer members, in which case
the element-access is an indexer access (§12.7.7.3).

12.7.7.2 Array access
For an array access, the primary-no-array-creation-expression of the element-access shall be a value of an
array-type. Furthermore, the argument-list of an array access is not allowed to contain named
arguments.The number of expressions in the argument-list shall be the same as the rank of the array-type,
and each expression shall be of type int, uint, long, ulong, or shall be implicitly convertible to one or
more of these types.

The result of evaluating an array access is a variable of the element type of the array, namely the array
element selected by the value(s) of the expression(s) in the argument-list.

The run-time processing of an array access of the form P[A], where P is a primary-no-array-creation-
expression of an array-type and A is an argument-list, consists of the following steps:

• P is evaluated. If this evaluation causes an exception, no further steps are executed.

• The index expressions of the argument-list are evaluated in order, from left to right. Following
evaluation of each index expression, an implicit conversion (§11.2) to one of the following types is
performed: int, uint, long, ulong. The first type in this list for which an implicit conversion exists is
chosen. For instance, if the index expression is of type short then an implicit conversion to int is
performed, since implicit conversions from short to int and from short to long are possible. If
evaluation of an index expression or the subsequent implicit conversion causes an exception, then no
further index expressions are evaluated and no further steps are executed.

• The value of P is checked to be valid. If the value of P is null, a System.NullReferenceException
is thrown and no further steps are executed.

• The value of each expression in the argument-list is checked against the actual bounds of each
dimension of the array instance referenced by P. If one or more values are out of range, a
System.IndexOutOfRangeException is thrown and no further steps are executed.

ECMA-334

150

• The location of the array element given by the index expression(s) is computed, and this location
becomes the result of the array access.

12.7.7.3 Indexer access
For an indexer access, the primary-no-array-creation-expression of the element-access shall be a variable or
value of a class, struct, or interface type, and this type shall implement one or more indexers that are
applicable with respect to the argument-list of the element-access.

The binding-time processing of an indexer access of the form P[A], where P is a primary-no-array-
creation-expression of a class, struct, or interface type T, and A is an argument-list, consists of the following
steps:

• The set of indexers provided by T is constructed. The set consists of all indexers declared in T or a base
type of T that are not override declarations and are accessible in the current context (§8.5).

• The set is reduced to those indexers that are applicable and not hidden by other indexers. The
following rules are applied to each indexer S.I in the set, where S is the type in which the indexer I is
declared:

o If I is not applicable with respect to A (§12.6.4.2), then I is removed from the set.
o If I is applicable with respect to A (§12.6.4.2), then all indexers declared in a base type of S are

removed from the set.
o If I is applicable with respect to A (§12.6.4.2) and S is a class type other than object, all indexers

declared in an interface are removed from the set.

• If the resulting set of candidate indexers is empty, then no applicable indexers exist, and a binding-time
error occurs.

• The best indexer of the set of candidate indexers is identified using the overload resolution rules of
§12.6.4. If a single best indexer cannot be identified, the indexer access is ambiguous, and a binding-
time error occurs.

• The index expressions of the argument-list are evaluated in order, from left to right. The result of
processing the indexer access is an expression classified as an indexer access. The indexer access
expression references the indexer determined in the step above, and has an associated instance
expression of P and an associated argument list of A, and an associated type that is the type of the
indexer. If T is a class type, the associated type is picked from the first declaration or override of the
indexer found when starting with T and searching through its base classes.

Depending on the context in which it is used, an indexer access causes invocation of either the get-accessor
or the set-accessor of the indexer. If the indexer access is the target of an assignment, the set-accessor is
invoked to assign a new value (§12.18.2). In all other cases, the get-accessor is invoked to obtain the
current value (§12.2.2).

12.7.8 This access
A this-access consists of the keyword this.

this-access:
this

A this-access is permitted only in the block of an instance constructor, an instance method, an instance
accessor (§12.2.1), or a finalizer. It has one of the following meanings:

• When this is used in a primary-expression within an instance constructor of a class, it is classified as a
value. The type of the value is the instance type (§15.3.2) of the class within which the usage occurs,
and the value is a reference to the object being constructed.

• When this is used in a primary-expression within an instance method or instance accessor of a class,
it is classified as a value. The type of the value is the instance type (§15.3.2) of the class within which

12 Expressions

151

the usage occurs, and the value is a reference to the object for which the method or accessor was
invoked.

• When this is used in a primary-expression within an instance constructor of a struct, it is classified as
a variable. The type of the variable is the instance type (§15.3.2) of the struct within which the usage
occurs, and the variable represents the struct being constructed.

o If the constructor declaration has no constructor initializer, the this variable behaves exactly the
same as an out parameter of the struct type. In particular, this means that the variable shall be
definitely assigned in every execution path of the instance constructor.

o Otherwise, the this variable behaves exactly the same as a ref parameter of the struct type. In
particular, this means that the variable is considered initially assigned.

• When this is used in a primary-expression within an instance method or instance accessor of a struct,
it is classified as a variable. The type of the variable is the instance type (§15.3.2) of the struct within
which the usage occurs.

o If the method or accessor is not an iterator (§15.14) or async function (§15.15), the this variable
represents the struct for which the method or accessor was invoked, and behaves exactly the same
as a ref parameter of the struct type.

o If the method or accessor is an iterator or async function, the this variable represents a copy of
the struct for which the method or accessor was invoked, and behaves exactly the same as a value
parameter of the struct type.

Use of this in a primary-expression in a context other than the ones listed above is a compile-time error.
In particular, it is not possible to refer to this in a static method, a static property accessor, or in a
variable-initializer of a field declaration.

12.7.9 Base access
A base-access consists of the keyword base followed by either a “.” token and an identifier and optional
type-argument-list or an argument-list enclosed in square brackets:

base-access:
base . identifier type-argument-listopt
base [argument-list]

A base-access is used to access base class members that are hidden by similarly named members in the
current class or struct. A base-access is permitted only in the block of an instance constructor, an instance
method, an instance accessor (§12.2.1), or a finalizer. When base.I occurs in a class or struct, I shall
denote a member of the base class of that class or struct. Likewise, when base[E] occurs in a class, an
applicable indexer shall exist in the base class.

At binding-time, base-access expressions of the form base.I and base[E] are evaluated exactly as if they
were written ((B)this).I and ((B)this)[E], where B is the base class of the class or struct in which
the construct occurs. Thus, base.I and base[E] correspond to this.I and this[E], except this is
viewed as an instance of the base class.

When a base-access references a virtual function member (a method, property, or indexer), the
determination of which function member to invoke at run-time (§12.6.6) is changed. The function member
that is invoked is determined by finding the most derived implementation (§15.6.4) of the function
member with respect to B (instead of with respect to the run-time type of this, as would be usual in a
non-base access). Thus, within an override of a virtual function member, a base-access can be used to
invoke the inherited implementation of the function member. If the function member referenced by a
base-access is abstract, a binding-time error occurs.

[Note: Unlike this, base is not an expression in itself. It is a keyword only used in the context of a base-
access or a constructor-initializer (§15.11.2). end note]

ECMA-334

152

12.7.10 Postfix increment and decrement operators
post-increment-expression:

primary-expression ++

post-decrement-expression:
primary-expression --

The operand of a postfix increment or decrement operation shall be an expression classified as a variable, a
property access, or an indexer access. The result of the operation is a value of the same type as the
operand.

If the primary-expression has the compile-time type dynamic then the operator is dynamically bound
(§12.3.3), the post-increment-expression or post-decrement-expression has the compile-time type
dynamic and the following rules are applied at run-time using the run-time type of the primary-
expression.

If the operand of a postfix increment or decrement operation is a property or indexer access, the property
or indexer shall have both a get and a set accessor. If this is not the case, a binding-time error occurs.

Unary operator overload resolution (§12.4.4) is applied to select a specific operator implementation.
Predefined ++ and -- operators exist for the following types: sbyte, byte, short, ushort, int, uint,
long, ulong, char, float, double, decimal, and any enum type. The predefined ++ operators return
the value produced by adding 1 to the operand, and the predefined -- operators return the value
produced by subtracting 1 from the operand. In a checked context, if the result of this addition or
subtraction is outside the range of the result type and the result type is an integral type or enum type, a
System.OverflowException is thrown.

There shall be an implicit conversion from the return type of the selected unary operator to the type of the
primary-expression, otherwise a compile-time error occurs.

The run-time processing of a postfix increment or decrement operation of the form x++ or x-- consists of
the following steps:

• If x is classified as a variable:

o x is evaluated to produce the variable.
o The value of x is saved.
o The saved value of x is converted to the operand type of the selected operator and the operator is

invoked with this value as its argument.
o The value returned by the operator is converted to the type of x and stored in the location given by

the earlier evaluation of x.
o The saved value of x becomes the result of the operation.

• If x is classified as a property or indexer access:

o The instance expression (if x is not static) and the argument list (if x is an indexer access)
associated with x are evaluated, and the results are used in the subsequent get and set accessor
invocations.

o The get accessor of x is invoked and the returned value is saved.
o The saved value of x is converted to the operand type of the selected operator and the operator is

invoked with this value as its argument.
o The value returned by the operator is converted to the type of x and the set accessor of x is

invoked with this value as its value argument.
o The saved value of x becomes the result of the operation.

The ++ and -- operators also support prefix notation (§12.8.6). Typically, the result of x++ or x-- is the
value of x before the operation, whereas the result of ++x or --x is the value of x after the operation. In
either case, x itself has the same value after the operation.

12 Expressions

153

An operator ++ or operator -- implementation can be invoked using either postfix or prefix notation.
It is not possible to have separate operator implementations for the two notations.

12.7.11 The new operator

12.7.11.1 General
The new operator is used to create new instances of types.

There are three forms of new expressions:

• Object creation expressions and anonymous object creation expressions are used to create new
instances of class types and value types.

• Array creation expressions are used to create new instances of array types.

• Delegate creation expressions are used to obtain instances of delegate types.

The new operator implies creation of an instance of a type, but does not necessarily imply allocation of
memory. In particular, instances of value types require no additional memory beyond the variables in
which they reside, and no allocations occur when new is used to create instances of value types.

[Note: Delegate creation expressions do not always create new instances. When the expression is
processed in the same way as a method group conversion (§11.8) or an anonymous function conversion
(§11.7) this may result in an existing delegate instance being reused. end note]

12.7.11.2 Object creation expressions
An object-creation-expression is used to create a new instance of a class-type or a value-type.

object-creation-expression:
new type (argument-listopt) object-or-collection-initializeropt
new type object-or-collection-initializer

object-or-collection-initializer:
object-initializer
collection-initializer

The type of an object-creation-expression shall be a class-type, a value-type, or a type-parameter. The type
cannot be an abstract or static class-type.

The optional argument-list (§12.6.2) is permitted only if the type is a class-type or a struct-type.

An object creation expression can omit the constructor argument list and enclosing parentheses provided
it includes an object initializer or collection initializer. Omitting the constructor argument list and enclosing
parentheses is equivalent to specifying an empty argument list.

Processing of an object creation expression that includes an object initializer or collection initializer
consists of first processing the instance constructor and then processing the member or element
initializations specified by the object initializer (§12.7.11.3) or collection initializer (§12.7.11.4).

If any of the arguments in the optional argument-list has the compile-time type dynamic then the object-
creation-expression is dynamically bound (§12.3.3) and the following rules are applied at run-time using
the run-time type of those arguments of the argument-list that have the compile-time type dynamic.
However, the object creation undergoes a limited compile-time check as described in §12.6.5.

The binding-time processing of an object-creation-expression of the form new T(A), where T is a class-
type, or a value-type, and A is an optional argument-list, consists of the following steps:

• If T is a value-type and A is not present:

o The object-creation-expression is a default constructor invocation. The result of the object-
creation-expression is a value of type T, namely the default value for T as defined in §9.3.3.

• Otherwise, if T is a type-parameter and A is not present:

ECMA-334

154

o If no value type constraint or constructor constraint (§15.2.5) has been specified for T, a binding-
time error occurs.

o The result of the object-creation-expression is a value of the run-time type that the type parameter
has been bound to, namely the result of invoking the default constructor of that type. The run-time
type may be a reference type or a value type.

• Otherwise, if T is a class-type or a struct-type:

o If T is an abstract or static class-type, a compile-time error occurs.
o The instance constructor to invoke is determined using the overload resolution rules of §12.6.4.

The set of candidate instance constructors consists of all accessible instance constructors declared
in T, which are applicable with respect to A (§12.6.4.2). If the set of candidate instance
constructors is empty, or if a single best instance constructor cannot be identified, a binding-time
error occurs.

o The result of the object-creation-expression is a value of type T, namely the value produced by
invoking the instance constructor determined in the step above.

o Otherwise, the object-creation-expression is invalid, and a binding-time error occurs.

Even if the object-creation-expression is dynamically bound, the compile-time type is still T.

The run-time processing of an object-creation-expression of the form new T(A), where T is class-type or a
struct-type and A is an optional argument-list, consists of the following steps:

• If T is a class-type:

o A new instance of class T is allocated. If there is not enough memory available to allocate the new
instance, a System.OutOfMemoryException is thrown and no further steps are executed.

o All fields of the new instance are initialized to their default values (§10.3).
o The instance constructor is invoked according to the rules of function member invocation

(§12.6.6). A reference to the newly allocated instance is automatically passed to the instance
constructor and the instance can be accessed from within that constructor as this.

• If T is a struct-type:

o An instance of type T is created by allocating a temporary local variable. Since an instance
constructor of a struct-type is required to definitely assign a value to each field of the instance
being created, no initialization of the temporary variable is necessary.

o The instance constructor is invoked according to the rules of function member invocation
(§12.6.6). A reference to the newly allocated instance is automatically passed to the instance
constructor and the instance can be accessed from within that constructor as this.

12.7.11.3 Object initializers
An object initializer specifies values for zero or more fields or properties of an object.

object-initializer:
{ member-initializer-listopt }
{ member-initializer-list , }

member-initializer-list:
member-initializer
member-initializer-list , member-initializer

member-initializer:
identifier = initializer-value

initializer-value:
expression
object-or-collection-initializer

12 Expressions

155

An object initializer consists of a sequence of member initializers, enclosed by { and } tokens and
separated by commas. Each member initializer shall name an accessible field or property of the object
being initialized, followed by an equals sign and an expression or an object initializer or collection
initializer. It is an error for an object initializer to include more than one member initializer for the same
field or property. It is not possible for the object initializer to refer to the newly created object it is
initializing.

A member initializer that specifies an expression after the equals sign is processed in the same way as an
assignment (§12.18.2) to the field or property.

A member initializer that specifies an object initializer after the equals sign is a nested object initializer,
i.e., an initialization of an embedded object. Instead of assigning a new value to the field or property, the
assignments in the nested object initializer are treated as assignments to members of the field or property.
Nested object initializers cannot be applied to properties with a value type, or to read-only fields with a
value type.

A member initializer that specifies a collection initializer after the equals sign is an initialization of an
embedded collection. Instead of assigning a new collection to the field or property, the elements given in
the initializer are added to the collection referenced by the field or property. The field or property shall be
of a collection type that satisfies the requirements specified in §12.7.11.4.

[Example:The following class represents a point with two coordinates:

public class Point
{
 int x, y;

 public int X { get { return x; } set { x = value; } }
 public int Y { get { return y; } set { y = value; } }
}

An instance of Point can be created and initialized as follows:

Point a = new Point { X = 0, Y = 1 };

which has the same effect as

Point __a = new Point();
__a.X = 0;
__a.Y = 1;
Point a = __a;

where __a is an otherwise invisible and inaccessible temporary variable. The following class represents a
rectangle created from two points:

public class Rectangle
{
 Point p1, p2;

 public Point P1 { get { return p1; } set { p1 = value; } }
 public Point P2 { get { return p2; } set { p2 = value; } }
}

An instance of Rectangle can be created and initialized as follows:

Rectangle r = new Rectangle {
 P1 = new Point { X = 0, Y = 1 },
 P2 = new Point { X = 2, Y = 3 }
};

which has the same effect as

ECMA-334

156

Rectangle __r = new Rectangle();
Point __p1 = new Point();
__p1.X = 0;
__p1.Y = 1;
__r.P1 = __p1;
Point __p2 = new Point();
__p2.X = 2;
__p2.Y = 3;
__r.P2 = __p2;
Rectangle r = __r;

where __r, __p1 and __p2 are temporary variables that are otherwise invisible and inaccessible.

If Rectangle’s constructor allocates the two embedded Point instances

public class Rectangle
{
 Point p1 = new Point();
 Point p2 = new Point();

 public Point P1 { get { return p1; } }
 public Point P2 { get { return p2; } }
}

the following construct can be used to initialize the embedded Point instances instead of assigning new
instances:

Rectangle r = new Rectangle {
 P1 = { X = 0, Y = 1 },
 P2 = { X = 2, Y = 3 }
};

which has the same effect as

Rectangle __r = new Rectangle();
__r.P1.X = 0;
__r.P1.Y = 1;
__r.P2.X = 2;
__r.P2.Y = 3;
Rectangle r = __r;

end example]

12.7.11.4 Collection initializers
A collection initializer specifies the elements of a collection.

collection-initializer:
{ element-initializer-list }
{ element-initializer-list , }

element-initializer-list:
element-initializer
element-initializer-list , element-initializer

element-initializer:
non-assignment-expression
{ expression-list }

expression-list:
expression
expression-list , expression

A collection initializer consists of a sequence of element initializers, enclosed by { and } tokens and
separated by commas. Each element initializer specifies an element to be added to the collection object
being initialized, and consists of a list of expressions enclosed by { and } tokens and separated by commas.
A single-expression element initializer can be written without braces, but cannot then be an assignment

12 Expressions

157

expression, to avoid ambiguity with member initializers. The non-assignment-expression production is
defined in §12.19.

[Example:

The following is an example of an object creation expression that includes a collection initializer:

List<int> digits = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

end example]

The collection object to which a collection initializer is applied shall be of a type that implements
System.Collections.IEnumerable or a compile-time error occurs. For each specified element in
order, the collection initializer invokes an Add method on the target object with the expression list of the
element initializer as argument list, applying normal overload resolution for each invocation. Thus, the
collection object shall contain an applicable Add method for each element initializer.

[Example:The following class represents a contact with a name and a list of phone numbers:

public class Contact
{
 string name;
 List<string> phoneNumbers = new List<string>();

 public string Name { get { return name; } set { name = value; } }

 public List<string> PhoneNumbers { get { return phoneNumbers; } }
}

A List<Contact> can be created and initialized as follows:

var contacts = new List<Contact> {
 new Contact {
 Name = "Chris Smith",
 PhoneNumbers = { "206-555-0101", "425-882-8080" }
 },
 new Contact {
 Name = "Bob Harris",
 PhoneNumbers = { "650-555-0199" }
 }
};

which has the same effect as

var __clist = new List<Contact>();
Contact __c1 = new Contact();
__c1.Name = "Chris Smith";
__c1.PhoneNumbers.Add("206-555-0101");
__c1.PhoneNumbers.Add("425-882-8080");
__clist.Add(__c1);
Contact __c2 = new Contact();
__c2.Name = "Bob Harris";
__c2.PhoneNumbers.Add("650-555-0199");
__clist.Add(__c2);
var contacts = __clist;

where __clist, __c1 and __c2 are temporary variables that are otherwise invisible and inaccessible. end
example]

12.7.11.5 Array creation expressions
An array-creation-expression is used to create a new instance of an array-type.

array-creation-expression:
new non-array-type [expression-list] rank-specifiersopt array-initializeropt
new array-type array-initializer
new rank-specifier array-initializer

ECMA-334

158

An array creation expression of the first form allocates an array instance of the type that results from
deleting each of the individual expressions from the expression list. [Example: The array creation
expression new int[10,20] produces an array instance of type int[,], and the array creation
expression new int[10][,] produces an array instance of type int[][,]. end example] Each expression
in the expression list shall be of type int, uint, long, or ulong, or implicitly convertible to one or more
of these types. The value of each expression determines the length of the corresponding dimension in the
newly allocated array instance. Since the length of an array dimension shall be nonnegative, it is a compile-
time error to have a constant expression with a negative value, in the expression list.

Except in an unsafe context (§23.2), the layout of arrays is unspecified.

If an array creation expression of the first form includes an array initializer, each expression in the
expression list shall be a constant and the rank and dimension lengths specified by the expression list shall
match those of the array initializer.

In an array creation expression of the second or third form, the rank of the specified array type or rank
specifier shall match that of the array initializer. The individual dimension lengths are inferred from the
number of elements in each of the corresponding nesting levels of the array initializer. Thus, the expression

new int[,] {{0, 1}, {2, 3}, {4, 5}}

exactly corresponds to

new int[3, 2] {{0, 1}, {2, 3}, {4, 5}}

An array creation expression of the third form is referred to as an implicitly typed array-creation
expression. It is similar to the second form, except that the element type of the array is not explicitly given,
but determined as the best common type (§12.6.3.15) of the set of expressions in the array initializer. For a
multidimensional array, i.e., one where the rank-specifier contains at least one comma, this set comprises
all expressions found in nested array-initializers.

Array initializers are described further in §17.7.

The result of evaluating an array creation expression is classified as a value, namely a reference to the
newly allocated array instance. The run-time processing of an array creation expression consists of the
following steps:

• The dimension length expressions of the expression-list are evaluated in order, from left to right.
Following evaluation of each expression, an implicit conversion (§11.2) to one of the following types is
performed: int, uint, long, ulong. The first type in this list for which an implicit conversion exists is
chosen. If evaluation of an expression or the subsequent implicit conversion causes an exception, then
no further expressions are evaluated and no further steps are executed.

• The computed values for the dimension lengths are validated, as follows: If one or more of the values
are less than zero, a System.OverflowException is thrown and no further steps are executed.

• An array instance with the given dimension lengths is allocated. If there is not enough memory
available to allocate the new instance, a System.OutOfMemoryException is thrown and no further
steps are executed.

• All elements of the new array instance are initialized to their default values (§10.3).

• If the array creation expression contains an array initializer, then each expression in the array initializer
is evaluated and assigned to its corresponding array element. The evaluations and assignments are
performed in the order the expressions are written in the array initializer—in other words, elements
are initialized in increasing index order, with the rightmost dimension increasing first. If evaluation of a
given expression or the subsequent assignment to the corresponding array element causes an
exception, then no further elements are initialized (and the remaining elements will thus have their
default values).

An array creation expression permits instantiation of an array with elements of an array type, but the
elements of such an array shall be manually initialized. [Example: The statement

12 Expressions

159

int[][] a = new int[100][];

creates a single-dimensional array with 100 elements of type int[]. The initial value of each element is
null. It is not possible for the same array creation expression to also instantiate the sub-arrays, and the
statement

int[][] a = new int[100][5]; // Error

results in a compile-time error. Instantiation of the sub-arrays can instead be performed manually, as in

int[][] a = new int[100][];
for (int i = 0; i < 100; i++) a[i] = new int[5];

end example]

[Note: When an array of arrays has a “rectangular” shape, that is when the sub-arrays are all of the same
length, it is more efficient to use a multi-dimensional array. In the example above, instantiation of the
array of arrays creates 101 objects—one outer array and 100 sub-arrays. In contrast,

int[,] = new int[100, 5];

creates only a single object, a two-dimensional array, and accomplishes the allocation in a single
statement. end note]

[Example: The following are examples of implicitly typed array creation expressions:

var a = new[] { 1, 10, 100, 1000 }; // int[]

var b = new[] { 1, 1.5, 2, 2.5 }; // double[]

var c = new[,] { { "hello", null }, { "world", "!" } }; // string[,]

var d = new[] { 1, "one", 2, "two" }; // Error

The last expression causes a compile-time error because neither int nor string is implicitly convertible
to the other, and so there is no best common type. An explicitly typed array creation expression must be
used in this case, for example specifying the type to be object[]. Alternatively, one of the elements can
be cast to a common base type, which would then become the inferred element type. end example]

Implicitly typed array creation expressions can be combined with anonymous object initializers (§12.7.11.7)
to create anonymously typed data structures. [Example:

var contacts = new[] {
 new {
 Name = "Chris Smith",
 PhoneNumbers = new[] { "206-555-0101", "425-882-8080" }
 },
 new {
 Name = "Bob Harris",
 PhoneNumbers = new[] { "650-555-0199" }
 }
};

end example]

12.7.11.6 Delegate creation expressions
A delegate-creation-expression is used to obtain an instance of a delegate-type.

delegate-creation-expression:
new delegate-type (expression)

The argument of a delegate creation expression shall be a method group, an anonymous function, or a
value of either the compile-time type dynamic or a delegate-type. If the argument is a method group, it
identifies the method and, for an instance method, the object for which to create a delegate. If the
argument is an anonymous function it directly defines the parameters and method body of the delegate
target. If the argument is a value it identifies a delegate instance of which to create a copy.

ECMA-334

160

If the expression has the compile-time type dynamic, the delegate-creation-expression is dynamically
bound (§12.7.11.6), and the rules below are applied at run-time using the run-time type of the expression.
Otherwise, the rules are applied at compile-time.

The binding-time processing of a delegate-creation-expression of the form new D(E), where D is a
delegate-type and E is an expression, consists of the following steps:

• If E is a method group, the delegate creation expression is processed in the same way as a method
group conversion (§11.8) from E to D.

• If E is an anonymous function, the delegate creation expression is processed in the same way as an
anonymous function conversion (§11.7) from E to D.

• If E is a value, E shall be compatible (§20.2) with D, and the result is a reference to a newly created
delegate with a single-entry invocation list that invokes E.

The run-time processing of a delegate-creation-expression of the form new D(E), where D is a delegate-
type and E is an expression, consists of the following steps:

• If E is a method group, the delegate creation expression is evaluated as a method group conversion
(§11.8) from E to D.

• If E is an anonymous function, the delegate creation is evaluated as an anonymous function conversion
from E to D (§11.7).

• If E is a value of a delegate-type:

o E is evaluated. If this evaluation causes an exception, no further steps are executed.
o If the value of E is null, a System.NullReferenceException is thrown and no further steps

are executed.
o A new instance of the delegate type D is allocated. If there is not enough memory available to

allocate the new instance, a System.OutOfMemoryException is thrown and no further steps
are executed.

o The new delegate instance is initialized with a single-entry invocation list that invokes E.

The invocation list of a delegate is determined when the delegate is instantiated and then remains
constant for the entire lifetime of the delegate. In other words, it is not possible to change the target
callable entities of a delegate once it has been created. [Note: Remember, when two delegates are
combined or one is removed from another, a new delegate results; no existing delegate has its content
changed. end note]

It is not possible to create a delegate that refers to a property, indexer, user-defined operator, instance
constructor, finalizer, or static constructor.

[Example: As described above, when a delegate is created from a method group, the formal parameter list
and return type of the delegate determine which of the overloaded methods to select. In the example

delegate double DoubleFunc(double x);

class A
{
 DoubleFunc f = new DoubleFunc(Square);

 static float Square(float x) {
 return x * x;
 }

 static double Square(double x) {
 return x * x;
 }
}

the A.f field is initialized with a delegate that refers to the second Square method because that method
exactly matches the formal parameter list and return type of DoubleFunc. Had the second Square
method not been present, a compile-time error would have occurred. end example]

12 Expressions

161

12.7.11.7 Anonymous object creation expressions
An anonymous-object-creation-expression is used to create an object of an anonymous type.

anonymous-object-creation-expression:
new anonymous-object-initializer

anonymous-object-initializer:
{ member-declarator-listopt }
{ member-declarator-list , }

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
simple-name
member-access
base-access
identifier = expression

An anonymous object initializer declares an anonymous type and returns an instance of that type. An
anonymous type is a nameless class type that inherits directly from object. The members of an
anonymous type are a sequence of read-only properties inferred from the anonymous object initializer
used to create an instance of the type. Specifically, an anonymous object initializer of the form

new { p1 = e1 , p2 = e2 , … pn = en }

declares an anonymous type of the form

class __Anonymous1
{

 private readonly T1 f1 ;

 private readonly T2 f2 ;

 …
 private readonly Tn fn ;

 public __Anonymous1(T1 a1, T2 a2,…, Tn an) {

 f1 = a1 ;

 f2 = a2 ;

 …
 fn = an ;
 }

 public T1 p1 { get { return f1 ; } }

 public T2 p2 { get { return f2 ; } }

 …
 public Tn pn { get { return fn ; } }

 public override bool Equals(object __o) { … }
 public override int GetHashCode() { … }
}

where each Tx is the type of the corresponding expression ex. The expression used in a member-declarator
shall have a type. Thus, it is a compile-time error for an expression in a member-declarator to be null or an
anonymous function. It is also a compile-time error for the expression to have an unsafe type.

The names of an anonymous type and of the parameter to its Equals method are automatically generated
by the compiler and cannot be referenced in program text.

ECMA-334

162

Within the same program, two anonymous object initializers that specify a sequence of properties of the
same names and compile-time types in the same order will produce instances of the same anonymous
type.

[Example: In the example

var p1 = new { Name = "Lawnmower", Price = 495.00 };
var p2 = new { Name = "Shovel", Price = 26.95 };
p1 = p2;

the assignment on the last line is permitted because p1 and p2 are of the same anonymous type. end
example]

The Equals and GetHashcode methods on anonymous types override the methods inherited from
object, and are defined in terms of the Equals and GetHashcode of the properties, so that two
instances of the same anonymous type are equal if and only if all their properties are equal.

A member declarator can be abbreviated to a simple name (§12.7.3), a member access (§12.7.5) or a base
access (§12.7.9). This is called a projection initializer and is shorthand for a declaration of and assignment
to a property with the same name. Specifically, member declarators of the forms

identifier expr . identifier

are precisely equivalent to the following, respectively:

identifer = identifier identifier = expr . identifier

Thus, in a projection initializer the identifier selects both the value and the field or property to which the
value is assigned. Intuitively, a projection initializer projects not just a value, but also the name of the
value.

12.7.12 The typeof operator
The typeof operator is used to obtain the System.Type object for a type.

typeof-expression:
typeof (type)
typeof (unbound-type-name)
typeof (void)

unbound-type-name:
identifier generic-dimension-specifieropt
identifier :: identifier generic-dimension-specifieropt
unbound-type-name . identifier generic-dimension-specifieropt

generic-dimension-specifier:
< commasopt >

commas:
,
commas ,

The first form of typeof-expression consists of a typeof keyword followed by a parenthesized type. The
result of an expression of this form is the System.Type object for the indicated type. There is only one
System.Type object for any given type. This means that for a type T, typeof(T) == typeof(T) is
always true. The type cannot be dynamic.

The second form of typeof-expression consists of a typeof keyword followed by a parenthesized unbound-
type-name. [Note: An unbound-type-name is very similar to a type-name (§8.8) except that an unbound-
type-name contains generic-dimension-specifiers where a type-name contains type-argument-lists. end
note] When the operand of a typeof-expression is a sequence of tokens that satisfies the grammars of both
unbound-type-name and type-name, namely when it contains neither a generic-dimension-specifier nor a

12 Expressions

163

type-argument-list, the sequence of tokens is considered to be a type-name. The meaning of an unbound-
type-name is determined as follows:

• Convert the sequence of tokens to a type-name by replacing each generic-dimension-specifier with a
type-argument-list having the same number of commas and the keyword object as each type-
argument.

• Evaluate the resulting type-name, while ignoring all type parameter constraints.

• The unbound-type-name resolves to the unbound generic type associated with the resulting
constructed type (§9.4).

The result of the typeof-expression is the System.Type object for the resulting unbound generic type.

The third form of typeof-expression consists of a typeof keyword followed by a parenthesized void
keyword. The result of an expression of this form is the System.Type object that represents the absence
of a type. The type object returned by typeof(void) is distinct from the type object returned for any
type. [Note: This special type object is useful in class libraries that allow reflection onto methods in the
language, where those methods wish to have a way to represent the return type of any method, including
void methods, with an instance of System.Type. end note]

The typeof operator can be used on a type parameter. The result is the System.Type object for the run-
time type that was bound to the type parameter. The typeof operator can also be used on a constructed
type or an unbound generic type (§9.4.4). The System.Type object for an unbound generic type is not the
same as the System.Type object of the instance type (§15.3.2). The instance type is always a closed
constructed type at run-time so its System.Type object depends on the run-time type arguments in use.
The unbound generic type, on the other hand, has no type arguments, and yields the
same System.Type object regardless of runtime type arguments.

[Example: The example

using System;

class X<T>
{
 public static void PrintTypes() {
 Type[] t = {
 typeof(int),
 typeof(System.Int32),
 typeof(string),
 typeof(double[]),
 typeof(void),
 typeof(T),
 typeof(X<T>),
 typeof(X<X<T>>),
 typeof(X<>)
 };
 for (int i = 0; i < t.Length; i++) {
 Console.WriteLine(t[i]);
 }
 }
}

class Test
{
 static void Main() {
 X<int>.PrintTypes();
 }
}

produces the following output:

ECMA-334

164

System.Int32
System.Int32
System.String
System.Double[]
System.Void
System.Int32
X`1[System.Int32]
X`1[X`1[System.Int32]]
X`1[T]

Note that int and System.Int32 are the same type.

The result of typeof(X<>) does not depend on the type argument but the result of typeof(X<T>) does.
end example]

12.7.13 The sizeof operator
The sizeof operator returns the number of 8-bit bytes occupied by a variable of a given type. The type
specified as an operand to sizeof shall be an unmanaged-type (§23.3).

For certain predefined types the sizeof operator yields a constant int value as shown in the table below:

Expression Result

sizeof(sbyte) 1

sizeof(byte) 1

sizeof(short) 2

sizeof(ushort) 2

sizeof(int) 4

sizeof(uint) 4

sizeof(long) 8

sizeof(ulong) 8

sizeof(char) 2

sizeof(float) 4

sizeof(double) 8

sizeof(bool) 1

sizeof(decimal) 16

For an enum type T, the result of the expression sizeof(T) is a constant value equal to the size of its
underlying type, as given above. For all other operand types, the sizeof operator is specified in §23.6.9.

12.7.14 The checked and unchecked operators
The checked and unchecked operators are used to control the overflow-checking context for integral-
type arithmetic operations and conversions.

checked-expression:
checked (expression)

unchecked-expression:
unchecked (expression)

The checked operator evaluates the contained expression in a checked context, and the unchecked
operator evaluates the contained expression in an unchecked context. A checked-expression or unchecked-
expression corresponds exactly to a parenthesized-expression (§12.7.4), except that the contained
expression is evaluated in the given overflow checking context.

12 Expressions

165

The overflow checking context can also be controlled through the checked and unchecked statements
(§13.12).

The following operations are affected by the overflow checking context established by the checked and
unchecked operators and statements:

• The predefined ++ and -- operators (§12.7.10 and §12.8.6), when the operand is of an integral or
enumtype.

• The predefined - unary operator (§12.8.3), when the operand is of an integral type.

• The predefined +, -, *, and / binary operators (§12.9), when both operands are of integral or
enumtypes.

• Explicit numeric conversions (§11.3.2) from one integral or enumtype to another integral or enumtype,
or from float or double to an integral or enumtype.

When one of the above operations produces a result that is too large to represent in the destination type,
the context in which the operation is performed controls the resulting behavior:

• In a checked context, if the operation is a constant expression (§12.20), a compile-time error occurs.
Otherwise, when the operation is performed at run-time, a System.OverflowException is thrown.

• In an unchecked context, the result is truncated by discarding any high-order bits that do not fit in the
destination type.

For non-constant expressions (§12.20) (expressions that are evaluated at run-time) that are not enclosed
by any checked or unchecked operators or statements, the default overflow checking context is
unchecked, unless external factors (such as compiler switches and execution environment configuration)
call for checked evaluation.

For constant expressions (§12.20) (expressions that can be fully evaluated at compile-time), the default
overflow checking context is always checked. Unless a constant expression is explicitly placed in an
unchecked context, overflows that occur during the compile-time evaluation of the expression always
cause compile-time errors.

The body of an anonymous function is not affected by checked or unchecked contexts in which the
anonymous function occurs.

[Example: In the following code

class Test
{
 static readonly int x = 1000000;
 static readonly int y = 1000000;

 static int F() {
 return checked(x * y); // Throws OverflowException
 }

 static int G() {
 return unchecked(x * y); // Returns -727379968
 }

 static int H() {
 return x * y; // Depends on default
 }
}

no compile-time errors are reported since neither of the expressions can be evaluated at compile-time. At
run-time, the F method throws a System.OverflowException, and the G method returns –727379968
(the lower 32 bits of the out-of-range result). The behavior of the H method depends on the default
overflow-checking context for the compilation, but it is either the same as F or the same as G. end
example]

[Example: In the following code

ECMA-334

166

class Test
{
 const int x = 1000000;
 const int y = 1000000;

 static int F() {
 return checked(x * y); // Compile-time error, overflow
 }

 static int G() {
 return unchecked(x * y); // Returns -727379968
 }

 static int H() {
 return x * y; // Compile-time error, overflow
 }
}

the overflows that occur when evaluating the constant expressions in F and H cause compile-time errors to
be reported because the expressions are evaluated in a checked context. An overflow also occurs when
evaluating the constant expression in G, but since the evaluation takes place in an unchecked context, the
overflow is not reported. end example]

The checked and unchecked operators only affect the overflow checking context for those operations
that are textually contained within the “(” and “)” tokens. The operators have no effect on function
members that are invoked as a result of evaluating the contained expression. [Example: In the following
code

class Test
{
 static int Multiply(int x, int y) {
 return x * y;
 }

 static int F() {
 return checked(Multiply(1000000, 1000000));
 }
}

the use of checked in F does not affect the evaluation of x * y in Multiply, so x * y is evaluated in
the default overflow checking context. end example]

The unchecked operator is convenient when writing constants of the signed integral types in hexadecimal
notation. [Example:

class Test
{
 public const int AllBits = unchecked((int)0xFFFFFFFF);

 public const int HighBit = unchecked((int)0x80000000);
}

Both of the hexadecimal constants above are of type uint. Because the constants are outside the int
range, without the unchecked operator, the casts to int would produce compile-time errors. end
example]

[Note: The checked and unchecked operators and statements allow programmers to control certain
aspects of some numeric calculations. However, the behavior of some numeric operators depends on their
operands’ data types. For example, multiplying two decimals always results in an exception on overflow
even within an explicitly unchecked construct. Similarly, multiplying two floats never results in an
exception on overflow even within an explicitly checked construct. In addition, other operators are never
affected by the mode of checking, whether default or explicit. end note]

12.7.15 Default value expressions
A default value expression is used to obtain the default value (§10.3) of a type. Typically a default value
expression is used for type parameters, since it might not be known if the type parameter is a value type or

12 Expressions

167

a reference type. (No conversion exists from the null literal (§7.4.5.7) to a type parameter unless the type
parameter is known to be a reference type (§9.2).)

default-value-expression:
default (type)

If the type in a default-value-expression evaluates at run-time to a reference type, the result is null
converted to that type. If the type in a default-value-expression evaluates at run-time to a value type, the
result is the value-type’s default value (§9.3.3).

A default-value-expression is a constant expression (§12.20) if type is a reference type or a type parameter
that is known to be a reference type (§9.2). In addition, a default-value-expression is a constant expression
if the type is one of the following value types: sbyte, byte, short, ushort, int, uint, long, ulong,
char, float, double, decimal, bool, or any enumeration type.

12.7.16 Anonymous method expressions
An anonymous-method-expression is one of two ways of defining an anonymous function. These are
further described in §12.16.

12.8 Unary operators

12.8.1 General
The +, -, !, ~, ++, --, cast, and await operators are called the unary operators.

unary-expression:
primary-expression
+ unary-expression
- unary-expression
! unary-expression
~ unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression
await-expression

If the operand of a unary-expression has the compile-time type dynamic, it is dynamically bound (§12.3.3).
In this case, the compile-time type of the unary-expression is dynamic, and the resolution described below
will take place at run-time using the run-time type of the operand.

12.8.2 Unary plus operator
For an operation of the form +x, unary operator overload resolution (§12.4.4) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and
the type of the result is the return type of the operator. The predefined unary plus operators are:

int operator +(int x);
uint operator +(uint x);
long operator +(long x);
ulong operator +(ulong x);
float operator +(float x);
double operator +(double x);
decimal operator +(decimal x);

For each of these operators, the result is simply the value of the operand.

Lifted (§12.4.8) forms of the unlifted predefined unary plus operators defined above are also predefined.

ECMA-334

168

12.8.3 Unary minus operator
For an operation of the form –x, unary operator overload resolution (§12.4.4) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and
the type of the result is the return type of the operator. The predefined unary minus operators are:

• Integer negation:

int operator –(int x);
long operator –(long x);

The result is computed by subtracting x from zero. If the value of x is the smallest representable value
of the operand type (−231 for int or −263 for long), then the mathematical negation of x is not
representable within the operand type. If this occurs within a checked context, a
System.OverflowException is thrown; if it occurs within an unchecked context, the result is the
value of the operand and the overflow is not reported.

If the operand of the negation operator is of type uint, it is converted to type long, and the type of
the result is long. An exception is the rule that permits the int value −2147483648 (−231) to be
written as a decimal integer literal (§7.4.5.3).

If the operand of the negation operator is of type ulong, a compile-time error occurs. An exception is
the rule that permits the long value −9223372036854775808 (−263) to be written as a decimal integer
literal (§7.4.5.3)

• Floating-point negation:

float operator –(float x);
double operator –(double x);

The result is the value of x with its sign inverted. If x is NaN, the result is also NaN.

• Decimal negation:

decimal operator –(decimal x);

The result is computed by subtracting x from zero. Decimal negation is equivalent to using the unary
minus operator of type System.Decimal.

Lifted (§12.4.8) forms of the unlifted predefined unary minus operators defined above are also predefined.

12.8.4 Logical negation operator
For an operation of the form !x, unary operator overload resolution (§12.4.4) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and
the type of the result is the return type of the operator. Only one predefined logical negation operator
exists:

bool operator !(bool x);

This operator computes the logical negation of the operand: If the operand is true, the result is false. If
the operand is false, the result is true.

Lifted (§12.4.8) forms of the unlifted predefined logical negation operator defined above are also
predefined.

12.8.5 Bitwise complement operator
For an operation of the form ~x, unary operator overload resolution (§12.4.4) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and
the type of the result is the return type of the operator. The predefined bitwise complement operators are:

int operator ~(int x);
uint operator ~(uint x);
long operator ~(long x);
ulong operator ~(ulong x);

12 Expressions

169

For each of these operators, the result of the operation is the bitwise complement of x.

Every enumeration type E implicitly provides the following bitwise complement operator:

E operator ~(E x);

The result of evaluating ~x, where x is an expression of an enumeration type E with an underlying type U,
is exactly the same as evaluating (E)(~(U)x), except that the conversion to E is always performed as if in
an unchecked context (§12.7.14).

Lifted (§12.4.8) forms of the unlifted predefined bitwise complement operators defined above are also
predefined.

12.8.6 Prefix increment and decrement operators
pre-increment-expression:

++ unary-expression

pre-decrement-expression:
-- unary-expression

The operand of a prefix increment or decrement operation shall be an expression classified as a variable, a
property access, or an indexer access. The result of the operation is a value of the same type as the
operand.

If the operand of a prefix increment or decrement operation is a property or indexer access, the property
or indexer shall have both a get and a set accessor. If this is not the case, a binding-time error occurs.

Unary operator overload resolution (§12.4.4) is applied to select a specific operator implementation.
Predefined ++ and -- operators exist for the following types: sbyte, byte, short, ushort, int, uint,
long, ulong, char, float, double, decimal, and any enum type. The predefined ++ operators return
the value produced by adding 1 to the operand, and the predefined -- operators return the value
produced by subtracting 1 from the operand. In a checked context, if the result of this addition or
subtraction is outside the range of the result type and the result type is an integral type or enum type, a
System.OverflowException is thrown.

There shall be an implicit conversion from the return type of the selected unary operator to the type of the
primary-expression, otherwise a compile-time error occurs.

The run-time processing of a prefix increment or decrement operation of the form ++x or --x consists of
the following steps:

• If x is classified as a variable:

o x is evaluated to produce the variable.
o The value of x is converted to the operand type of the selected operator and the operator is

invoked with this value as its argument.
o The value returned by the operator is converted to the type of x. The resulting value is stored in

the location given by the evaluation of x.
o and becomes the result of the operation.

• If x is classified as a property or indexer access:

o The instance expression (if x is not static) and the argument list (if x is an indexer access)
associated with x are evaluated, and the results are used in the subsequent get and set accessor
invocations.

o The get accessor of x is invoked.
o The value returned by the get accessor is converted to the operand type of the selected operator

and operator is invoked with this value as its argument.
o The value returned by the operator is converted to the type of x. The set accessor of x is invoked

with this value as its value argument.

ECMA-334

170

o This value also becomes the result of the operation.

The ++ and -- operators also support postfix notation (§12.7.10). Typically, the result of x++ or x-- is the
value of x before the operation, whereas the result of ++x or --x is the value of x after the operation. In
either case, x itself has the same value after the operation.

An operator ++ or operator -- implementation can be invoked using either postfix or prefix notation.
It is not possible to have separate operator implementations for the two notations.

Lifted (§12.4.8) forms of the unlifted predefined prefix increment and decrement operators defined above
are also predefined.

12.8.7 Cast expressions
A cast-expression is used to convert explicitly an expression to a given type.

cast-expression:
(type) unary-expression

A cast-expression of the form (T)E, where T is a type and E is a unary-expression, performs an explicit
conversion (§11.3) of the value of E to type T. If no explicit conversion exists from E to T, a binding-time
error occurs. Otherwise, the result is the value produced by the explicit conversion. The result is always
classified as a value, even if E denotes a variable.

The grammar for a cast-expression leads to certain syntactic ambiguities. [Example: The expression (x)–y
could either be interpreted as a cast-expression (a cast of –y to type x) or as an additive-expression
combined with a parenthesized-expression (which computes the value x – y). end example]

To resolve cast-expression ambiguities, the following rule exists: A sequence of one or more tokens (§7.4)
enclosed in parentheses is considered the start of a cast-expression only if at least one of the following are
true:

• The sequence of tokens is correct grammar for a type, but not for an expression.

• The sequence of tokens is correct grammar for a type, and the token immediately following the closing
parentheses is the token “~”, the token “!”, the token “(”, an identifier (§7.4.3), a literal (§7.4.5), or
any keyword (§7.4.4) except as and is.

The term “correct grammar” above means only that the sequence of tokens shall conform to the particular
grammatical production. It specifically does not consider the actual meaning of any constituent identifiers.
[Example: If x and y are identifiers, then x.y is correct grammar for a type, even if x.y doesn’t actually
denote a type. end example]

[Note: From the disambiguation rule, it follows that, if x and y are identifiers, (x)y, (x)(y), and (x)(-y)
are cast-expressions, but (x)-y is not, even if x identifies a type. However, if x is a keyword that identifies
a predefined type (such as int), then all four forms are cast-expressions (because such a keyword could
not possibly be an expression by itself). end note]

12.8.8 Await expressions

12.8.8.1 General
The await operator is used to suspend evaluation of the enclosing async function until the asynchronous
operation represented by the operand has completed.

await-expression:
await unary-expression

An await-expression is only allowed in the body of an async function (§15.15). Within the nearest enclosing
async function, an await-expression shall not occur in these places:

• Inside a nested (non-async) anonymous function

12 Expressions

171

• In a catch or finally block of a try-statement

• Inside the block of a lock-statement

• In an anonymous function conversion to an expression tree type (§11.7.3)

• In an unsafe context

[Note: An await-expression cannot occur in most places within a query-expression, because those are
syntactically transformed to use non-async lambda expressions. end note]

Inside an async function, await shall not be used as an available-identifier although the verbatim identifier
@await may be used. There is therefore no syntactic ambiguity between await-expressions and various
expressions involving identifiers. Outside of async functions, await acts as a normal identifier.

The operand of an await-expression is called the task. It represents an asynchronous operation that may or
may not be complete at the time the await-expression is evaluated. The purpose of the await operator is to
suspend execution of the enclosing async function until the awaited task is complete, and then obtain its
outcome.

12.8.8.2 Awaitable expressions
The task of an await expression is required to be awaitable. An expression t is awaitable if one of the
following holds:

• t is of compile-time type dynamic

• t has an accessible instance or extension method called GetAwaiter with no parameters and no type
parameters, and a return type A for which all of the following hold:

o A implements the interface System.Runtime.CompilerServices.INotifyCompletion
(hereafter known as INotifyCompletion for brevity)

o A has an accessible, readable instance property IsCompleted of type bool
o A has an accessible instance method GetResult with no parameters and no type parameters

The purpose of the GetAwaiter method is to obtain an awaiter for the task. The type A is called the
awaiter type for the await expression.

The purpose of the IsCompleted property is to determine if the task is already complete. If so, there is no
need to suspend evaluation.

The purpose of the INotifyCompletion.OnCompleted method is to sign up a “continuation” to the
task; i.e., a delegate (of type System.Action) that will be invoked once the task is complete.

The purpose of the GetResult method is to obtain the outcome of the task once it is complete. This
outcome may be successful completion, possibly with a result value, or it may be an exception which is
thrown by the GetResult method.

12.8.8.3 Classification of await expressions
The expression await t is classified the same way as the expression
(t).GetAwaiter().GetResult(). Thus, if the return type of GetResult is void, the await-expression
is classified as nothing. If it has a non-void return type T, the await-expression is classified as a value of
type T.

12.8.8.4 Run-time evaluation of await expressions
At run-time, the expression await t is evaluated as follows:

• An awaiter a is obtained by evaluating the expression (t).GetAwaiter().

• A bool b is obtained by evaluating the expression (a).IsCompleted.

ECMA-334

172

• If b is false then evaluation depends on whether a implements the interface
System.Runtime.CompilerServices.ICriticalNotifyCompletion (hereafter known as
ICriticalNotifyCompletion for brevity). This check is done at binding time; i.e., at run-time if a
has the compile-time type dynamic, and at compile-time otherwise. Let r denote the resumption
delegate (§15.15):

o If a does not implement ICriticalNotifyCompletion, then the expression
((a) as INotifyCompletion).OnCompleted(r) is evaluated.

o If a does implement ICriticalNotifyCompletion, then the expression
((a) as ICriticalNotifyCompletion).UnsafeOnCompleted(r) is evaluated.

o Evaluation is then suspended, and control is returned to the current caller of the async function.

• Either immediately after (if b was true), or upon later invocation of the resumption delegate (if b was
false), the expression (a).GetResult() is evaluated. If it returns a value, that value is the result of
the await-expression. Otherwise, the result is nothing.

An awaiter’s implementation of the interface methods INotifyCompletion.OnCompleted and
ICriticalNotifyCompletion.UnsafeOnCompleted should cause the delegate r to be invoked at
most once. Otherwise, the behavior of the enclosing async function is undefined.

12.9 Arithmetic operators

12.9.1 General
The *, /, %, +, and – operators are called the arithmetic operators.

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression – multiplicative-expression

If an operand of an arithmetic operator has the compile-time type dynamic, then the expression is
dynamically bound (§12.3.3). In this case, the compile-time type of the expression is dynamic, and the
resolution described below will take place at run-time using the run-time type of those operands that have
the compile-time type dynamic.

12.9.2 Multiplication operator
For an operation of the form x * y, binary operator overload resolution (§12.4.5) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined multiplication operators are listed below. The operators all compute the product of x
and y.

• Integer multiplication:

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);

12 Expressions

173

In a checked context, if the product is outside the range of the result type, a
System.OverflowException is thrown. In an unchecked context, overflows are not reported and
any significant high-order bits outside the range of the result type are discarded.

• Floating-point multiplication:

float operator *(float x, float y);
double operator *(double x, double y);

The product is computed according to the rules of IEC 60559 arithmetic. The following table lists the
results of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x
and y are positive finite values. z is the result of x * y, rounded to the nearest representable value. If
the magnitude of the result is too large for the destination type, z is infinity. Because of rounding, z
may be zero even though neither x nor y is zero.

 +y –y +0 –0 +∞ –∞ NaN

+x +z –z +0 –0 +∞ –∞ NaN

–x –z +z –0 +0 –∞ +∞ NaN

+0 +0 –0 +0 –0 NaN NaN NaN

–0 –0 +0 –0 +0 NaN NaN NaN

+∞ +∞ –∞ NaN NaN +∞ –∞ NaN

–∞ –∞ +∞ NaN NaN –∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

(Except were otherwise noted, in the floating-point tables in §12.9.2–§12.9.6 the use of “+” means the
value is positive; the use of “-” means the value is negative; and the lack of a sign means the value may be
positive or negative or has no sign (NaN).)

• Decimal multiplication:

decimal operator *(decimal x, decimal y);

If the magnitude of the resulting value is too large to represent in the decimal format, a
System.OverflowException is thrown. Because of rounding, the result may be zero even though
neither operand is zero. The scale of the result, before any rounding, is the sum of the scales of the two
operands.

Decimal multiplication is equivalent to using the multiplication operator of type System.Decimal.

Lifted (§12.4.8) forms of the unlifted predefined multiplication operators defined above are also
predefined.

12.9.3 Division operator
For an operation of the form x / y, binary operator overload resolution (§12.4.5) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined division operators are listed below. The operators all compute the quotient of x and y.

• Integer division:

int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown.

ECMA-334

174

The division rounds the result towards zero. Thus the absolute value of the result is the largest possible
integer that is less than or equal to the absolute value of the quotient of the two operands. The result
is zero or positive when the two operands have the same sign and zero or negative when the two
operands have opposite signs.

If the left operand is the smallest representable int or long value and the right operand is –1, an
overflow occurs. In a checked context, this causes a System.ArithmeticException (or a subclass
thereof) to be thrown. In an unchecked context, it is implementation-defined as to whether a
System.ArithmeticException (or a subclass thereof) is thrown or the overflow goes unreported
with the resulting value being that of the left operand.

• Floating-point division:

float operator /(float x, float y);
double operator /(double x, double y);

The quotient is computed according to the rules of IEC 60559 arithmetic. The following table lists the
results of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x
and y are positive finite values. z is the result of x / y, rounded to the nearest representable value.

 +y –y +0 –0 +∞ –∞ NaN

+x +z –z +∞ –∞ +0 –0 NaN

–x –z +z –∞ +∞ –0 +0 NaN

+0 +0 –0 NaN NaN +0 –0 NaN

–0 –0 +0 NaN NaN –0 +0 NaN

+∞ +∞ –∞ +∞ –∞ NaN NaN NaN

–∞ –∞ +∞ –∞ +∞ NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• Decimal division:

decimal operator /(decimal x, decimal y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown. If the
magnitude of the resulting value is too large to represent in the decimal format, a
System.OverflowException is thrown. Because of rounding, the result may be zero even though
the first operand is not zero. The scale of the result, before any rounding, is the closest scale to the
preferred scale that will preserve a result equal to the exact result. The preferred scale is the scale of x
less the scale of y.

Decimal division is equivalent to using the division operator of type System.Decimal.

Lifted (§12.4.8) forms of the unlifted predefined division operators defined above are also predefined.

12.9.4 Remainder operator
For an operation of the form x % y, binary operator overload resolution (§12.4.5) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined remainder operators are listed below. The operators all compute the remainder of the
division between x and y.

• Integer remainder:

int operator %(int x, int y);
uint operator %(uint x, uint y);
long operator %(long x, long y);
ulong operator %(ulong x, ulong y);

12 Expressions

175

The result of x % y is the value produced by x – (x / y) * y. If y is zero, a
System.DivideByZeroException is thrown.

If the left operand is the smallest int or long value and the right operand is –1, a
System.OverflowException is thrown if and only if x / y would throw an exception.

• Floating-point remainder:

float operator %(float x, float y);
double operator %(double x, double y);

The following table lists the results of all possible combinations of nonzero finite values, zeros,
infinities, and NaN’s. In the table, x and y are positive finite values. z is the result of x % y and is
computed as x – n * y, where n is the largest possible integer that is less than or equal to x / y. This
method of computing the remainder is analogous to that used for integer operands, but differs from
the IEC 60559 definition (in which n is the integer closest to x / y).

 +y –y +0 –0 +∞ –∞ NaN

+x +z +z NaN NaN +x +x NaN

–x –z –z NaN NaN –x –x NaN

+0 +0 +0 NaN NaN +0 +0 NaN

–0 –0 –0 NaN NaN –0 –0 NaN

+∞ NaN NaN NaN NaN NaN NaN NaN

–∞ NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• Decimal remainder:

decimal operator %(decimal x, decimal y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown. It is
implementation-defined when a System.ArithmeticException (or a subclass thereof) is thrown. A
conforming implementation shall not throw an exception for x % y in any case where x / y does not
throw an exception. The scale of the result, before any rounding, is the larger of the scales of the two
operands, and the sign of the result, if non-zero, is the same as that of x.

Decimal remainder is equivalent to using the remainder operator of type System.Decimal.

[Note: These rules ensure that for all types, the result never has the opposite sign of the left operand. end
note]

Lifted (§12.4.8) forms of the unlifted predefined remainder operators defined above are also predefined.

12.9.5 Addition operator
For an operation of the form x + y, binary operator overload resolution (§12.4.5) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined addition operators are listed below. For numeric and enumeration types, the predefined
addition operators compute the sum of the two operands. When one or both operands are of type
string, the predefined addition operators concatenate the string representation of the operands.

• Integer addition:

int operator +(int x, int y);
uint operator +(uint x, uint y);
long operator +(long x, long y);
ulong operator +(ulong x, ulong y

ECMA-334

176

In a checked context, if the sum is outside the range of the result type, a
System.OverflowException is thrown. In an unchecked context, overflows are not reported and
any significant high-order bits outside the range of the result type are discarded.

• Floating-point addition:

float operator +(float x, float y);
double operator +(double x, double y);

The sum is computed according to the rules of IEC 60559 arithmetic. The following table lists the
results of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x
and y are nonzero finite values, and z is the result of x + y,. If x and y have the same magnitude but
opposite signs, z is positive zero. If x + y is too large to represent in the destination type, z is an
infinity with the same sign as x + y.

 y +0 –0 +∞ –∞ NaN

x z x x +∞ –∞ NaN

+0 y +0 +0 +∞ –∞ NaN

–0 y +0 –0 +∞ –∞ NaN

+∞ +∞ +∞ +∞ +∞ NaN NaN

–∞ –∞ –∞ –∞ NaN –∞ NaN

NaN NaN NaN NaN NaN NaN NaN

• Decimal addition:

decimal operator +(decimal x, decimal y);

If the magnitude of the resulting value is too large to represent in the decimal format, a
System.OverflowException is thrown. The scale of the result, before any rounding, is the larger of
the scales of the two operands.

Decimal addition is equivalent to using the addition operator of type System.Decimal.

• Enumeration addition. Every enumeration type implicitly provides the following predefined operators,
where E is the enum type, and U is the underlying type of E:

E operator +(E x, U y);
E operator +(U x, E y);

At run-time these operators are evaluated exactly as (E)((U)x + (U)y).

• String concatenation:

string operator +(string x, string y);
string operator +(string x, object y);
string operator +(object x, string y);

These overloads of the binary + operator perform string concatenation. If an operand of string
concatenation is null, an empty string is substituted. Otherwise, any non-string operand is converted
to its string representation by invoking the virtual ToString method inherited from type object. If
ToString returns null, an empty string is substituted. [Example:

using System;

12 Expressions

177

class Test
{
 static void Main() {
 string s = null;
 Console.WriteLine("s = >" + s + "<"); // displays s = ><
 int i = 1;
 Console.WriteLine("i = " + i); // displays i = 1
 float f = 1.2300E+15F;
 Console.WriteLine("f = " + f); // displays f = 1.23E+15
 decimal d = 2.900m;
 Console.WriteLine("d = " + d); // displays d = 2.900
 }
}

The output shown in the comments is the typical result on a US-English system. The precise output might
depend on the regional settings of the execution environment. The string-concatenation operator itself
behaves the same way in each case, but the ToString methods implicitly called during execution might
be affected by regional settings. end example]

The result of the string concatenation operator is a string that consists of the characters of the left
operand followed by the characters of the right operand. The string concatenation operator never
returns a null value. A System.OutOfMemoryException may be thrown if there is not enough
memory available to allocate the resulting string.

• Delegate combination. Every delegate type implicitly provides the following predefined operator,
where D is the delegate type:

D operator +(D x, D y);

If the first operand is null, the result of the operation is the value of the second operand (even if that
is also null). Otherwise, if the second operand is null, then the result of the operation is the value of
the first operand. Otherwise, the result of the operation is a new delegate instance whose invocation
list consists of the elements in the invocation list of the first operand, followed by the elements in the
invocation list of the second operand. That is, the invocation list of the resulting delegate is the
concatenation of the invocation lists of the two operands. [Note: For examples of delegate
combination, see §12.9.6 and §20.6. Since System.Delegate is not a delegate type, operator + is
not defined for it. end note]

Lifted (§12.4.8) forms of the unlifted predefined addition operators defined above are also predefined.

12.9.6 Subtraction operator
For an operation of the form x – y, binary operator overload resolution (§12.4.5) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined subtraction operators are listed below. The operators all subtract y from x.

• Integer subtraction:

int operator –(int x, int y);
uint operator –(uint x, uint y);
long operator –(long x, long y);
ulong operator –(ulong x, ulong y

In a checked context, if the difference is outside the range of the result type, a
System.OverflowException is thrown. In an unchecked context, overflows are not reported and
any significant high-order bits outside the range of the result type are discarded.

• Floating-point subtraction:

float operator –(float x, float y);
double operator –(double x, double y);

ECMA-334

178

The difference is computed according to the rules of IEC 60559 arithmetic. The following table lists the
results of all possible combinations of nonzero finite values, zeros, infinities, and NaNs. In the table, x
and y are nonzero finite values, and z is the result of x – y. If x and y are equal, z is positive zero.
If x – y is too large to represent in the destination type, z is an infinity with the same sign as x – y.

 y +0 –0 +∞ –∞ NaN

x z x x –∞ +∞ NaN

+0 –y +0 +0 –∞ +∞ NaN

–0 –y –0 +0 –∞ +∞ NaN

+∞ +∞ +∞ +∞ NaN +∞ NaN

–∞ –∞ –∞ –∞ –∞ NaN NaN

NaN NaN NaN NaN NaN NaN NaN

(In the above table the -y entries denote the negation of y, not that the value is negative.)

• Decimal subtraction:

decimal operator –(decimal x, decimal y);

If the magnitude of the resulting value is too large to represent in the decimal format, a
System.OverflowException is thrown. The scale of the result, before any rounding, is the larger of
the scales of the two operands.

Decimal subtraction is equivalent to using the subtraction operator of type System.Decimal.

• Enumeration subtraction. Every enumeration type implicitly provides the following predefined
operator, where E is the enum type, and U is the underlying type of E:

U operator –(E x, E y);

This operator is evaluated exactly as (U)((U)x – (U)y). In other words, the operator computes the
difference between the ordinal values of x and y, and the type of the result is the underlying type of
the enumeration.

E operator –(E x, U y);

This operator is evaluated exactly as (E)((U)x – y). In other words, the operator subtracts a value
from the underlying type of the enumeration, yielding a value of the enumeration.

• Delegate removal. Every delegate type implicitly provides the following predefined operator, where D
is the delegate type:

D operator –(D x, D y);

If the first operand is null, the result of the operation is null. Otherwise, if the second operand is
null, then the result of the operation is the value of the first operand. Otherwise, both operands
represent invocation lists (§20.2) having one or more entries, and the result is a new invocation list
consisting of the first operand’s list with the second operand’s entries removed from it, provided the
second operand’s list is a proper contiguous sublist of the first’s. (To determine sublist equality,
corresponding entries are compared as for the delegate equality operator (§12.11.9).) Otherwise, the
result is the value of the left operand. Neither of the operands’ lists is changed in the process. If the
second operand’s list matches multiple sublists of contiguous entries in the first operand’s list, the
right-most matching sublist of contiguous entries is removed. If removal results in an empty list, the
result is null. [Example:

12 Expressions

179

delegate void D(int x);
class C
{
 public static void M1(int i) { /* … */ }
 public static void M2(int i) { /* … */ }
}

class Test
{
 static void Main() {
 D cd1 = new D(C.M1);
 D cd2 = new D(C.M2);

 D cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd1; // => M1 + M2 + M2

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd1 + cd2; // => M2 + M1

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd2 + cd2; // => M1 + M1

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd2 + cd1; // => M1 + M2

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd1 + cd1; // => M1 + M2 + M2 + M1
 }
}

end example]

Lifted (§12.4.8) forms of the unlifted predefined subtraction operators defined above are also predefined.

12.10 Shift operators
The << and >> operators are used to perform bit-shifting operations.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression right-shift additive-expression

If an operand of a shift-expression has the compile-time type dynamic, then the expression is dynamically
bound (§12.3.3). In this case, the compile-time type of the expression is dynamic, and the resolution
described below will take place at run-time using the run-time type of those operands that have the
compile-time type dynamic.

For an operation of the form x << count or x >> count, binary operator overload resolution (§12.4.5)
is applied to select a specific operator implementation. The operands are converted to the parameter
types of the selected operator, and the type of the result is the return type of the operator.

When declaring an overloaded shift operator, the type of the first operand shall always be the class or
struct containing the operator declaration, and the type of the second operand shall always be int.

The predefined shift operators are listed below.

• Shift left:

int operator <<(int x, int count);
uint operator <<(uint x, int count);
long operator <<(long x, int count);
ulong operator <<(ulong x, int count);

The << operator shifts x left by a number of bits computed as described below.

The high-order bits outside the range of the result type of x are discarded, the remaining bits are
shifted left, and the low-order empty bit positions are set to zero.

ECMA-334

180

• Shift right:

int operator >>(int x, int count);
uint operator >>(uint x, int count);
long operator >>(long x, int count);
ulong operator >>(ulong x, int count);

The >> operator shifts x right by a number of bits computed as described below.

When x is of type int or long, the low-order bits of x are discarded, the remaining bits are shifted
right, and the high-order empty bit positions are set to zero if x is non-negative and set to one if x is
negative.

When x is of type uint or ulong, the low-order bits of x are discarded, the remaining bits are shifted
right, and the high-order empty bit positions are set to zero.

For the predefined operators, the number of bits to shift is computed as follows:

• When the type of x is int or uint, the shift count is given by the low-order five bits of count. In other
words, the shift count is computed from count & 0x1F.

• When the type of x is long or ulong, the shift count is given by the low-order six bits of count. In
other words, the shift count is computed from count & 0x3F.

If the resulting shift count is zero, the shift operators simply return the value of x.

Shift operations never cause overflows and produce the same results in checked and unchecked
contexts.

When the left operand of the >> operator is of a signed integral type, the operator performs an arithmetic
shift right wherein the value of the most significant bit (the sign bit) of the operand is propagated to the
high-order empty bit positions. When the left operand of the >> operator is of an unsigned integral type,
the operator performs a logical shift right wherein high-order empty bit positions are always set to zero. To
perform the opposite operation of that inferred from the operand type, explicit casts can be used.
[Example: If x is a variable of type int, the operation unchecked((int)((uint)x >> y)) performs a
logical shift right of x. end example]

Lifted (§12.4.8) forms of the unlifted predefined shift operators defined above are also predefined.

12.11 Relational and type-testing operators

12.11.1 General
The ==, !=, <, >, <=, >=, is, and as operators are called the relational and type-testing operators.

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is type
relational-expression as type

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

The is operator is described in §12.11.11 and the as operator is described in §12.11.12.

The ==, !=, <, >, <= and >= operators are comparison operators.

12 Expressions

181

If an operand of a comparison operator has the compile-time type dynamic, then the expression is
dynamically bound (§12.3.3). In this case the compile-time type of the expression is dynamic, and the
resolution described below will take place at run-time using the run-time type of those operands that have
the compile-time type dynamic.

For an operation of the form x op y, where op is a comparison operator, overload resolution (§12.4.5) is
applied to select a specific operator implementation. The operands are converted to the parameter types
of the selected operator, and the type of the result is the return type of the operator. If both operands of
an equality-expression are the null literal, then overload resolution is not performed and the expression
evaluates to a constant value of true or false according to whether the operator is == or !=.

The predefined comparison operators are described in the following subclauses. All predefined comparison
operators return a result of type bool, as described in the following table.

Operation Result

x == y true if x is equal to y, false otherwise

x != y true if x is not equal to y, false otherwise

x < y true if x is less than y, false otherwise

x > y true if x is greater than y, false otherwise

x <= y true if x is less than or equal to y, false otherwise

x >= y true if x is greater than or equal to y, false otherwise

12.11.2 Integer comparison operators
The predefined integer comparison operators are:

bool operator ==(int x, int y);
bool operator ==(uint x, uint y);
bool operator ==(long x, long y);
bool operator ==(ulong x, ulong y);

bool operator !=(int x, int y);
bool operator !=(uint x, uint y);
bool operator !=(long x, long y);
bool operator !=(ulong x, ulong y);

bool operator <(int x, int y);
bool operator <(uint x, uint y);
bool operator <(long x, long y);
bool operator <(ulong x, ulong y);

bool operator >(int x, int y);
bool operator >(uint x, uint y);
bool operator >(long x, long y);
bool operator >(ulong x, ulong y);

bool operator <=(int x, int y);
bool operator <=(uint x, uint y);
bool operator <=(long x, long y);
bool operator <=(ulong x, ulong y);

bool operator >=(int x, int y);
bool operator >=(uint x, uint y);
bool operator >=(long x, long y);
bool operator >=(ulong x, ulong y);

Each of these operators compares the numeric values of the two integer operands and returns a bool
value that indicates whether the particular relation is true or false.

ECMA-334

182

Lifted (§12.4.8) forms of the unlifted predefined integer comparison operators defined above are also
predefined.

12.11.3 Floating-point comparison operators
The predefined floating-point comparison operators are:

bool operator ==(float x, float y);
bool operator ==(double x, double y);

bool operator !=(float x, float y);
bool operator !=(double x, double y);

bool operator <(float x, float y);
bool operator <(double x, double y);

bool operator >(float x, float y);
bool operator >(double x, double y);

bool operator <=(float x, float y);
bool operator <=(double x, double y);

bool operator >=(float x, float y);
bool operator >=(double x, double y);

The operators compare the operands according to the rules of the IEC 60559 standard:

If either operand is NaN, the result is false for all operators except !=, for which the result is true. For
any two operands, x != y always produces the same result as !(x == y). However, when one or both
operands are NaN, the <, >, <=, and >= operators do not produce the same results as the logical negation
of the opposite operator. [Example: If either of x and y is NaN, then x < y is false, but !(x >= y) is
true. end example]

• When neither operand is NaN, the operators compare the values of the two floating-point operands
with respect to the ordering

–∞ < –max < … < –min < –0.0 == +0.0 < +min < … < +max < +∞

where min and max are the smallest and largest positive finite values that can be represented in the
given floating-point format. Notable effects of this ordering are:

o Negative and positive zeros are considered equal.
o A negative infinity is considered less than all other values, but equal to another negative infinity.
o A positive infinity is considered greater than all other values, but equal to another positive infinity.

Lifted (§12.4.8) forms of the unlifted predefined floating-point comparison operators defined above are
also predefined.

12.11.4 Decimal comparison operators
The predefined decimal comparison operators are:

bool operator ==(decimal x, decimal y);
bool operator !=(decimal x, decimal y);
bool operator <(decimal x, decimal y);
bool operator >(decimal x, decimal y);
bool operator <=(decimal x, decimal y);
bool operator >=(decimal x, decimal y);

Each of these operators compares the numeric values of the two decimal operands and returns a bool
value that indicates whether the particular relation is true or false. Each decimal comparison is
equivalent to using the corresponding relational or equality operator of type System.Decimal.

Lifted (§12.4.8) forms of the unlifted predefined decimal comparison operators defined above are also
predefined.

12.11.5 Boolean equality operators
The predefined Boolean equality operators are:

12 Expressions

183

bool operator ==(bool x, bool y);
bool operator !=(bool x, bool y);

The result of == is true if both x and y are true or if both x and y are false. Otherwise, the result is
false.

The result of != is false if both x and y are true or if both x and y are false. Otherwise, the result is
true. When the operands are of type bool, the != operator produces the same result as the ^ operator.

Lifted (§12.4.8) forms of the unlifted predefined Boolean equality operators defined above are also
predefined.

12.11.6 Enumeration comparison operators
Every enumeration type implicitly provides the following predefined comparison operators

bool operator ==(E x, E y);
bool operator !=(E x, E y);

bool operator <(E x, E y);
bool operator >(E x, E y);
bool operator <=(E x, E y);
bool operator >=(E x, E y);

The result of evaluating x op y, where x and y are expressions of an enumeration type E with an
underlying type U, and op is one of the comparison operators, is exactly the same as evaluating
((U)x) op ((U)y). In other words, the enumeration type comparison operators simply compare the
underlying integral values of the two operands.

Lifted (§12.4.8) forms of the unlifted predefined enumeration comparison operators defined above are
also predefined.

12.11.7 Reference type equality operators
Every class type C implicitly provides the following predefined reference type equality operators:

bool operator ==(C x, C y);

bool operator !=(C x, C y);

unless predefined equality operators otherwise exist for C (for example, when C is string or
System.Delegate).

The operators return the result of comparing the two references for equality or non-equality. operator ==
returns true if and only if x and y refer to the same instance or are both null, while operator != returns
true if and only if operator == with the same operands would return false.

In addition to normal applicability rules (§12.6.4.2), the predefined reference type equality operators
require one of the following in order to be applicable:

• Both operands are a value of a type known to be a reference-type or the literal null. Furthermore, an
explicit identity or reference conversion (§11.3.5) exists from either operand to the type of the other
operand.

• One operand is the literal null, and the other operand is a value of type T where T is a type-
parameter that is not known to be a value type, and does not have the value type constraint.

o If at runtime T is a non-nullable value type, the result of == is false and the result of != is true.
o If at runtime T is a nullable value type, the result is computed from the HasValue property of the

operand, as described in (§12.11.10).
o If at runtime T is a reference type, the result is true if the operand is null, and false otherwise.

Unless one of these conditions is true, a binding-time error occurs.

[Note: Notable implications of these rules are:

ECMA-334

184

• It is a binding-time error to use the predefined reference type equality operators to compare two
references that are known to be different at binding-time. For example, if the binding-time types of the
operands are two class types, and if neither derives from the other, then it would be impossible for the
two operands to reference the same object. Thus, the operation is considered a binding-time error.

• The predefined reference type equality operators do not permit value type operands to be compared
(except when type parameters are compared to null, which is handled specially).

• Operands of predefined reference type equality operators are never boxed. It would be meaningless to
perform such boxing operations, since references to the newly allocated boxed instances would
necessarily differ from all other references.

For an operation of the form x == y or x != y, if any applicable user-defined operator == or
operator != exists, the operator overload resolution rules (§12.4.5) will select that operator instead of
the predefined reference type equality operator. It is always possible to select the predefined reference
type equality operator by explicitly casting one or both of the operands to type object. end note]

[Example: The following example checks whether an argument of an unconstrained type parameter type is
null.

class C<T>
{
 void F(T x) {
 if (x == null) throw new ArgumentNullException();
 …
 }
}

The x == null construct is permitted even though T could represent a non-nullable value type, and the
result is simply defined to be false when T is a non-nullable value type. end example]

For an operation of the form x == y or x != y, if any applicable operator == or operator != exists,
the operator overload resolution (§12.4.5) rules will select that operator instead of the predefined
reference type equality operator. [Note: It is always possible to select the predefined reference type
equality operator by explicitly casting both of the operands to type object. end note]

[Example: The example

using System;

class Test
{
 static void Main() {
 string s = "Test";
 string t = string.Copy(s);
 Console.WriteLine(s == t);
 Console.WriteLine((object)s == t);
 Console.WriteLine(s == (object)t);
 Console.WriteLine((object)s == (object)t);
 }
}

produces the output

True
False
False
False

The s and t variables refer to two distinct string instances containing the same characters. The first
comparison outputs True because the predefined string equality operator (§12.11.8) is selected when
both operands are of type string. The remaining comparisons all output False because the overload of
operator== in the string type is not applicable when either operand has a binding-time type of
object.

Note that the above technique is not meaningful for value types. The example

12 Expressions

185

class Test
{
 static void Main() {
 int i = 123;
 int j = 123;
 System.Console.WriteLine((object)i == (object)j);
 }
}

outputs False because the casts create references to two separate instances of boxed int values. end
example]

12.11.8 String equality operators
The predefined string equality operators are:

bool operator ==(string x, string y);
bool operator !=(string x, string y);

Two string values are considered equal when one of the following is true:

• Both values are null.

• Both values are non-null references to string instances that have identical lengths and identical
characters in each character position.

The string equality operators compare string values rather than string references. When two separate
string instances contain the exact same sequence of characters, the values of the strings are equal, but the
references are different. [Note: As described in §12.11.7, the reference type equality operators can be used
to compare string references instead of string values. end note]

12.11.9 Delegate equality operators
The predefined delegate equality operators are:

bool operator ==(System.Delegate x, System.Delegate y);

bool operator !=(System.Delegate x, System.Delegate y);

Two delegate instances are considered equal as follows:

• If either of the delegate instances is null, they are equal if and only if both are null.

• If the delegates have different run-time type, they are never equal.

• If both of the delegate instances have an invocation list (§20.2), those instances are equal if and only if
their invocation lists are the same length, and each entry in one’s invocation list is equal (as defined
below) to the corresponding entry, in order, in the other’s invocation list.

The following rules govern the equality of invocation list entries:

• If two invocation list entries both refer to the same static method then the entries are equal.

• If two invocation list entries both refer to the same non-static method on the same target object (as
defined by the reference equality operators) then the entries are equal.

• Invocation list entries produced from evaluation of semantically identical anonymous functions
(§12.16) with the same (possibly empty) set of captured outer variable instances are permitted (but
not required) to be equal.

If operator overload resolution resolves to either delegate equality operator, and the binding-time types of
both operands are delegate types as described in §20 rather than System.Delegate, and there is no
identity conversion between the binding-type operand types, a binding-time error occurs.

[Note: This rule prevents comparisons which can never consider non-null values as equal due to being
references to instances of different types of delegates. end note]

ECMA-334

186

12.11.10 Equality operators between nullable value types and the null literal
The == and != operators permit one operand to be a value of a nullable value type and the other to be the
null literal, even if no predefined or user-defined operator (in unlifted or lifted form) exists for the
operation.

For an operation of one of the forms

x == null null == x x != null null != x

where x is an expression of a nullable value type, if operator overload resolution (§12.4.5) fails to find an
applicable operator, the result is instead computed from the HasValue property of x. Specifically, the first
two forms are translated into !x.HasValue, and the last two forms are translated into x.HasValue.

12.11.11 The is operator
The is operator is used to check if the run-time type of an object is compatible with a given type. The check
is performed at runtime. The result of the operation E is T, where E is an expression and T is a type other
than dynamic, is a Boolean value indicating whether E is non-null and can successfully be converted to
type T by a reference conversion, a boxing conversion, an unboxing conversion, a wrapping conversion, or
an unwrapping conversion.

The operation is evaluated as follows:

1. If E is an anonymous function, a compile-time error occurs

2. If E is a method group or the null literal, of if the value of E is null, the result is false.

3. Otherwise:

4. Let R be the runtime type of E.

5. Let D be derived from R as follows:

6. If R is a nullable value type, D is the underlying type of R.

7. Otherwise, D is R.

8. The result depends on D and T as follows:

9. If T is a reference type, the result is true if:

o D and T are the same type,
o D is a reference type and an implicit reference conversion from D to T exists, or
o Either: D is a value type and a boxing conversion from D to T exists.

Or: D is a value type and T is an interface type implemented by D.

10. If T is a nullable value type, the result is true if D is the underlying type of T.

11. If T is a non-nullable value type, the result is true if D and T are the same type.

12. Otherwise, the result is false.

User defined conversions are not considered by the is operator.

[Note: As the is operator is evaluated at runtime, all type arguments have been substituted and there are
no open types (§9.4.3) to consider. end note]

[Note: The is operator can be understood in terms of compile-time types and conversions as follows,
where C is the compile-time type of E:

• If the compile-time type of e is the same as T, or if an implicit reference conversion (§11.2.7), boxing
conversion (§11.2.8), wrapping conversion (§11.6), or an explicit unwrapping conversion (§11.6) exists
from the compile-time type of E to T:

o If C is of a non-nullable value type, the result of the operation is true.

12 Expressions

187

o Otherwise, the result of the operation is equivalent to evaluating E != null.

• Otherwise, if an explicit reference conversion (§11.3.5) or unboxing conversion (§11.3.6) exists from C
to T, or if C or T is an open type (§9.4.3), then runtime checks as above must be peformed.

• Otherwise, no reference, boxing, wrapping, or unwrapping conversion of E to type T is possible, and
the result of the operation is false.

A compiler may implement optimisations based on the compile-time type. end note]

12.11.12 The as operator
The as operator is used to explicitly convert a value to a given reference type or nullable value type. Unlike
a cast expression (§12.8.7), the as operator never throws an exception. Instead, if the indicated conversion
is not possible, the resulting value is null.

In an operation of the form E as T, E shall be an expression and T shall be a reference type, a type
parameter known to be a reference type, or a nullable value type. Furthermore, at least one of the
following shall be true, or otherwise a compile-time error occurs:

• An identity (§11.2.2), implicit nullable (§11.2.5), implicit reference (§11.2.7), boxing (§11.2.8), explicit
nullable (§11.3.4), explicit reference (§11.3.5), or wrapping (§9.3.11) conversion exists from E to T.

• The type of E or T is an open type.

• E is the null literal.

If the compile-time type of E is not dynamic, the operation E as T produces the same result as

E is T ? (T)(E) : (T)null

except that E is only evaluated once. The compiler can be expected to optimize E as T to perform at most
one runtime type check as opposed to the two runtime type checks implied by the expansion above.

If the compile-time type of E is dynamic, unlike the cast operator the as operator is not dynamically
bound (§12.3.3). Therefore the expansion in this case is:

E is T ? (T)(object)(E) : (T)null

Note that some conversions, such as user defined conversions, are not possible with the as operator and
should instead be performed using cast expressions.

[Example: In the example

class X
{

 public string F(object o) {
 return o as string; // OK, string is a reference type
 }

 public T G<T>(object o) where T: Attribute {
 return o as T; // Ok, T has a class constraint
 }

 public U H<U>(object o) {
 return o as U; // Error, U is unconstrained
 }
}

the type parameter T of G is known to be a reference type, because it has the class constraint. The type
parameter U of H is not however; hence the use of the as operator in H is disallowed. end example]

12.12 Logical operators

12.12.1 General
The &, ^, and | operators are called the logical operators.

ECMA-334

188

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

If an operand of a logical operator has the compile-time type dynamic, then the expression is dynamically
bound (§12.3.3). In this case the compile-time type of the expression is dynamic, and the resolution
described below will take place at run-time using the run-time type of those operands that have the
compile-time type dynamic.

For an operation of the form x op y, where op is one of the logical operators, overload resolution (§12.4.5)
is applied to select a specific operator implementation. The operands are converted to the parameter
types of the selected operator, and the type of the result is the return type of the operator.

The predefined logical operators are described in the following subclauses.

12.12.2 Integer logical operators
The predefined integer logical operators are:

int operator &(int x, int y);
uint operator &(uint x, uint y);
long operator &(long x, long y);
ulong operator &(ulong x, ulong y);

int operator |(int x, int y);
uint operator |(uint x, uint y);
long operator |(long x, long y);
ulong operator |(ulong x, ulong y);

int operator ^(int x, int y);
uint operator ^(uint x, uint y);
long operator ^(long x, long y);
ulong operator ^(ulong x, ulong y);

The & operator computes the bitwise logical AND of the two operands, the | operator computes the
bitwise logical OR of the two operands, and the ^ operator computes the bitwise logical exclusive OR of the
two operands. No overflows are possible from these operations.

Lifted (§12.4.8) forms of the unlifted predefined integer logical operators defined above are also
predefined.

12.12.3 Enumeration logical operators
Every enumeration type E implicitly provides the following predefined logical operators:

E operator &(E x, E y);
E operator |(E x, E y);
E operator ^(E x, E y);

The result of evaluating x op y, where x and y are expressions of an enumeration type E with an
underlying type U, and op is one of the logical operators, is exactly the same as evaluating
(E)((U)x op (U)y). In other words, the enumeration type logical operators simply perform the logical
operation on the underlying type of the two operands.

Lifted (§12.4.8) forms of the unlifted predefined enumeration logical operators defined above are also
predefined.

12 Expressions

189

12.12.4 Boolean logical operators
The predefined Boolean logical operators are:

bool operator &(bool x, bool y);
bool operator |(bool x, bool y);
bool operator ^(bool x, bool y);

The result of x & y is true if both x and y are true. Otherwise, the result is false.

The result of x | y is true if either x or y is true. Otherwise, the result is false.

The result of x ^ y is true if x is true and y is false, or x is false and y is true. Otherwise, the result
is false. When the operands are of type bool, the ^ operator computes the same result as the
!= operator.

12.12.5 Nullable Boolean & and | operators
The nullable Boolean type bool? can represent three values, true, false, and null.

As with the other binary operators, lifted forms of the logical operators & and | (§12.12.4) are also pre-
defined:

bool? operator &(bool? x, bool? y);
bool? operator |(bool? x, bool? y);

The semantics of the lifted & and | operators are defined by the following table:

x y x & y x | y

true true true true

true false false true

true null null true

false true false true

false false false false

false null false null

null true null true

null false false null

null null null null

[Note: The bool? type is conceptually similar to the three-valued type used for Boolean expressions in
SQL. The table above follows the same semantics as SQL, whereas applying the rules of §12.4.8 to the &
and | operators would not. The rules of §12.4.8 already provide SQL-like semantics for the lifted ^
operator. end note]

12.13 Conditional logical operators

12.13.1 General
The && and || operators are called the conditional logical operators. They are also called the “short-
circuiting” logical operators.

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression

conditional-or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

The && and || operators are conditional versions of the & and | operators:

ECMA-334

190

• The operation x && y corresponds to the operation x & y, except that y is evaluated only if x is not
false.

• The operation x || y corresponds to the operation x | y, except that y is evaluated only if x is not
true.

[Note: The reason that short circuiting uses the 'not true' and 'not false' conditions is to enable user-
defined conditional operators to define when short circuiting applies. User-defined types could be in a
state where operator true returns false and operator false returns false. In those cases, neither &&
nor || would short circuit. end note]

If an operand of a conditional logical operator has the compile-time type dynamic, then the expression is
dynamically bound (§12.3.3). In this case the compile-time type of the expression is dynamic, and the
resolution described below will take place at run-time using the run-time type of those operands that have
the compile-time type dynamic.

An operation of the form x && y or x || y is processed by applying overload resolution (§12.4.5) as if
the operation was written x & y or x | y. Then,

• If overload resolution fails to find a single best operator, or if overload resolution selects one of the
predefined integer logical operators or nullable Boolean logical operators (§12.12.5), a binding-time
error occurs.

• Otherwise, if the selected operator is one of the predefined Boolean logical operators (§12.12.4), the
operation is processed as described in §12.13.2.

• Otherwise, the selected operator is a user-defined operator, and the operation is processed as
described in §12.13.3.

It is not possible to directly overload the conditional logical operators. However, because the conditional
logical operators are evaluated in terms of the regular logical operators, overloads of the regular logical
operators are, with certain restrictions, also considered overloads of the conditional logical operators. This
is described further in §12.13.3.

12.13.2 Boolean conditional logical operators
When the operands of && or || are of type bool, or when the operands are of types that do not define an
applicable operator & or operator |, but do define implicit conversions to bool, the operation is
processed as follows:

• The operation x && y is evaluated as x ? y : false. In other words, x is first evaluated and
converted to type bool. Then, if x is true, y is evaluated and converted to type bool, and this
becomes the result of the operation. Otherwise, the result of the operation is false.

• The operation x || y is evaluated as x ? true : y. In other words, x is first evaluated and
converted to type bool. Then, if x is true, the result of the operation is true. Otherwise, y is
evaluated and converted to type bool, and this becomes the result of the operation.

12.13.3 User-defined conditional logical operators
When the operands of && or || are of types that declare an applicable user-defined operator & or
operator |, both of the following shall be true, where T is the type in which the selected operator is
declared:

• The return type and the type of each parameter of the selected operator shall be T. In other words, the
operator shall compute the logical AND or the logical OR of two operands of type T, and shall return a
result of type T.

• T shall contain declarations of operator true and operator false.

A binding-time error occurs if either of these requirements is not satisfied. Otherwise, the && or ||
operation is evaluated by combining the user-defined operator true or operator false with the
selected user-defined operator:

12 Expressions

191

• The operation x && y is evaluated as T.false(x) ? x : T.&(x, y), where T.false(x) is an
invocation of the operator false declared in T, and T.&(x, y) is an invocation of the selected
operator &. In other words, x is first evaluated and operator false is invoked on the result to
determine if x is definitely false. Then, if x is definitely false, the result of the operation is the value
previously computed for x. Otherwise, y is evaluated, and the selected operator & is invoked on the
value previously computed for x and the value computed for y to produce the result of the operation.

• The operation x || y is evaluated as T.true(x) ? x : T.|(x, y), where T.true(x) is an
invocation of the operator true declared in T, and T.|(x, y) is an invocation of the selected
operator |. In other words, x is first evaluated and operator true is invoked on the result to
determine if x is definitely true. Then, if x is definitely true, the result of the operation is the value
previously computed for x. Otherwise, y is evaluated, and the selected operator | is invoked on the
value previously computed for x and the value computed for y to produce the result of the operation.

In either of these operations, the expression given by x is only evaluated once, and the expression given by
y is either not evaluated or evaluated exactly once.

12.14 The null coalescing operator
The ?? operator is called the null coalescing operator.

null-coalescing-expression:
conditional-or-expression
conditional-or-expression ?? null-coalescing-expression

A null coalescing expression of the form a ?? b requires a to be the null literal (§7.4.5.7), or to be of a
nullable value type or reference type. If a is non-null, the result of a ?? b is a; otherwise, the result is b.
The operation evaluates b only if a is null.

The null coalescing operator is right-associative, meaning that operations are grouped from right to left.
[Example: An expression of the form a ?? b ?? c is evaluated as a ?? (b ?? c). In general terms, an
expression of the form E1 ?? E2 ?? … ?? EN returns the first of the operands that is non-null, or null if
all operands are null. end example]

The type of the expression a ?? b depends on which implicit conversions are available on the operands.
In order of preference, the type of a ?? b is A0, A, or B, where A is the type of a (provided that a has a
type), B is the type of b (provided that b has a type), and A0 is the underlying type of A if A is a nullable
value type, or A otherwise. Specifically, a ?? b is processed as follows:

• If A exists and is not a nullable value type or a reference type, a compile-time error occurs.

• If b is a dynamic expression, the result type is dynamic. At run-time, a is first evaluated. If a is not null,
a is converted to dynamic, and this becomes the result. Otherwise, b is evaluated, and this becomes
the result.

• Otherwise, if A exists and is a nullable value type and an implicit conversion exists from b to A0, the
result type is A0. At run-time, a is first evaluated. If a is not null, a is unwrapped to type A0, and this
becomes the result. Otherwise, b is evaluated and converted to type A0, and this becomes the result.

• Otherwise, if A exists and an implicit conversion exists from b to A, the result type is A. At run-time, a is
first evaluated. If a is not null, a becomes the result. Otherwise, b is evaluated and converted to type A,
and this becomes the result.

• Otherwise, if A exists and is a nullable value type, b has a type B and an implicit conversion exists from
A0 to B, the result type is B. At run-time, a is first evaluated. If a is not null, a is unwrapped to type A0
and converted to type B, and this becomes the result. Otherwise, b is evaluated and becomes the
result.

• Otherwise, if b has a type B and an implicit conversion exists from a to B, the result type is B. At run-
time, a is first evaluated. If a is not null, a is converted to type B, and this becomes the result.
Otherwise, b is evaluated and becomes the result.

ECMA-334

192

Otherwise, a and b are incompatible, and a compile-time error occurs.

12.15 Conditional operator
The ?: operator is called the conditional operator. It is at times also called the ternary operator.

conditional-expression:
null-coalescing-expression
null-coalescing-expression ? expression : expression

A conditional expression of the form b ? x : y first evaluates the condition b. Then, if b is true, x is
evaluated and becomes the result of the operation. Otherwise, y is evaluated and becomes the result of
the operation. A conditional expression never evaluates both x and y.

The conditional operator is right-associative, meaning that operations are grouped from right to left.
[Example: An expression of the form a ? b : c ? d : e is evaluated as a ? b : (c ? d : e). end
example]

The first operand of the ?: operator shall be an expression that can be implicitly converted to bool, or an
expression of a type that implements operator true. If neither of these requirements is satisfied, a
compile-time error occurs.

The second and third operands, x and y, of the ?: operator control the type of the conditional expression.

• If x has type X and y has type Y then,

o If X and Y are the same type, then this is the type of the conditional expression.
o Otherwise, if an implicit conversion (§11.2) exists from X to Y, but not from Y to X, then Y is the

type of the conditional expression.
o Otherwise, if an implicit enumeration conversion (§11.2.4) exists from X to Y, then Y is the type of

the conditional expression.
o Otherwise, if an implicit enumeration conversion (§11.2.4) exists from Y to X, then X is the type of

the conditional expression.
o Otherwise, if an implicit conversion (§11.2) exists from Y to X, but not from X to Y, then X is the

type of the conditional expression.
o Otherwise, no expression type can be determined, and a compile-time error occurs.

• If only one of x and y has a type, and both x and y are implicitly convertible to that type, then that is
the type of the conditional expression.

• Otherwise, no expression type can be determined, and a compile-time error occurs.

The run-time processing of a conditional expression of the form b ? x : y consists of the following
steps:

• First, b is evaluated, and the bool value of b is determined:

o If an implicit conversion from the type of b to bool exists, then this implicit conversion is
performed to produce a bool value.

o Otherwise, the operator true defined by the type of b is invoked to produce a bool value.

• If the bool value produced by the step above is true, then x is evaluated and converted to the type of
the conditional expression, and this becomes the result of the conditional expression.

• Otherwise, y is evaluated and converted to the type of the conditional expression, and this becomes
the result of the conditional expression.

12.16 Anonymous function expressions

12.16.1 General
An anonymous function is an expression that represents an “in-line” method definition. An anonymous
function does not have a value or type in and of itself, but is convertible to a compatible delegate or

12 Expressions

193

expression-tree type. The evaluation of an anonymous-function conversion depends on the target type of
the conversion: If it is a delegate type, the conversion evaluates to a delegate value referencing the
method that the anonymous function defines. If it is an expression-tree type, the conversion evaluates to
an expression tree that represents the structure of the method as an object structure.

[Note: For historical reasons, there are two syntactic flavors of anonymous functions, namely lambda-
expressions and anonymous-method-expressions. For almost all purposes, lambda-expressions are more
concise and expressive than anonymous-method-expressions, which remain in the language for backwards
compatibility. end note]

lambda-expression:
asyncopt anonymous-function-signature => anonymous-function-body

anonymous-method-expression:
asyncopt delegate explicit-anonymous-function-signatureopt block

anonymous-function-signature:
explicit-anonymous-function-signature
implicit-anonymous-function-signature

explicit-anonymous-function-signature:
(explicit-anonymous-function-parameter-listopt)

explicit-anonymous-function-parameter-list:
explicit-anonymous-function-parameter
explicit-anonymous-function-parameter-list , explicit-anonymous-function-parameter

explicit-anonymous-function-parameter:
anonymous-function-parameter-modifieropt type identifier

anonymous-function-parameter-modifier:
ref

out

implicit-anonymous-function-signature:
(implicit-anonymous-function-parameter-listopt)
implicit-anonymous-function-parameter

implicit-anonymous-function-parameter-list:
implicit-anonymous-function-parameter
implicit-anonymous-function-parameter-list , implicit-anonymous-function-parameter

implicit-anonymous-function-parameter:
identifier

anonymous-function-body:
expression
block

The => operator has the same precedence as assignment (=) and is right-associative.

An anonymous function with the async modifier is an async function and follows the rules described in
§15.15.

The parameters of an anonymous function in the form of a lambda-expression can be explicitly or implicitly
typed. In an explicitly typed parameter list, the type of each parameter is explicitly stated. In an implicitly
typed parameter list, the types of the parameters are inferred from the context in which the anonymous
function occurs—specifically, when the anonymous function is converted to a compatible delegate type or
expression tree type, that type provides the parameter types (§11.7).

In a lambda-expression with a single, implicitly typed parameter, the parentheses may be omitted from the
parameter list. In other words, an anonymous function of the form

ECMA-334

194

(param) => expr

can be abbreviated to

param => expr

The parameter list of an anonymous function in the form of an anonymous-method-expression is optional.
If given, the parameters shall be explicitly typed. If not, the anonymous function is convertible to a
delegate with any parameter list not containing out parameters.

A block body of an anonymous function is always reachable (§13.2).

[Example: Some examples of anonymous functions follow below:

x => x + 1 // Implicitly typed, expression body

x => { return x + 1; } // Implicitly typed, statement body

(int x) => x + 1 // Explicitly typed, expression body

(int x) => { return x + 1; } // Explicitly typed, statement body

(x, y) => x * y // Multiple parameters

() => Console.WriteLine() // No parameters

async (t1,t2) => await t1 + await t2 // Async

delegate (int x) { return x + 1; } // Anonymous method expression

delegate { return 1 + 1; } // Parameter list omitted

end example]

The behavior of lambda-expressions and anonymous-method-expressions is the same except for the
following points:

• anonymous-method-expressions permit the parameter list to be omitted entirely, yielding
convertibility to delegate types of any list of value parameters.

• lambda-expressions permit parameter types to be omitted and inferred whereas anonymous-
method-expressions require parameter types to be explicitly stated.

• The body of a lambda-expression can be an expression or a statement block whereas the body of
an anonymous-method-expression shall be a statement block.

• Only lambda-expressions have conversions to compatible expression tree types (§9.6).

12.16.2 Anonymous function signatures
The anonymous-function-signature of an anonymous function defines the names and optionally the types
of the formal parameters for the anonymous function. The scope of the parameters of the anonymous
function is the anonymous-function-body (§8.7). Together with the parameter list (if given) the
anonymous-method-body constitutes a declaration space (§8.3). It is thus a compile-time error for the
name of a parameter of the anonymous function to match the name of a local variable, local constant or
parameter whose scope includes the anonymous-method-expression or lambda-expression.

If an anonymous function has an explicit-anonymous-function-signature, then the set of compatible
delegate types and expression tree types is restricted to those that have the same parameter types and
modifiers in the same order (§11.7). In contrast to method group conversions (§11.8), contra-variance of
anonymous function parameter types is not supported. If an anonymous function does not have an
anonymous-function-signature, then the set of compatible delegate types and expression tree types is
restricted to those that have no out parameters.

12 Expressions

195

Note that an anonymous-function-signature cannot include attributes or a parameter array. Nevertheless,
an anonymous-function-signature may be compatible with a delegate type whose parameter list contains a
parameter array.

Note also that conversion to an expression tree type, even if compatible, may still fail at compile-time
(§9.6).

12.16.3 Anonymous function bodies
The body (expression or block) of an anonymous function is subject to the following rules:

• If the anonymous function includes a signature, the parameters specified in the signature are available
in the body. If the anonymous function has no signature it can be converted to a delegate type or
expression type having parameters (§11.7), but the parameters cannot be accessed in the body.

• Except for ref or out parameters specified in the signature (if any) of the nearest enclosing
anonymous function, it is a compile-time error for the body to access a ref or out parameter.

• When the type of this is a struct type, it is a compile-time error for the body to access this. This is
true whether the access is explicit (as in this.x) or implicit (as in x where x is an instance member of
the struct). This rule simply prohibits such access and does not affect whether member lookup results
in a member of the struct.

• The body has access to the outer variables (§12.16.6) of the anonymous function. Access of an outer
variable will reference the instance of the variable that is active at the time the lambda-expression or
anonymous-method-expression is evaluated (§12.16.7).

• It is a compile-time error for the body to contain a goto statement, a break statement, or a
continue statement whose target is outside the body or within the body of a contained anonymous
function.

• A return statement in the body returns control from an invocation of the nearest enclosing
anonymous function, not from the enclosing function member.

It is explicitly unspecified whether there is any way to execute the block of an anonymous function other
than through evaluation and invocation of the lambda-expression or anonymous-method-expression. In
particular, the compiler may choose to implement an anonymous function by synthesizing one or more
named methods or types. The names of any such synthesized elements shall be of a form reserved for
compiler use (§7.4.3).

12.16.4 Overload resolution
Anonymous functions in an argument list participate in type inference and overload resolution. Refer to
§12.6.3 and §12.6.4 for the exact rules.

[Example: The following example illustrates the effect of anonymous functions on overload resolution.

class ItemList<T>: List<T>
{
 public int Sum(Func<T,int> selector) {
 int sum = 0;
 foreach (T item in this) sum += selector(item);
 return sum;
 }

 public double Sum(Func<T,double> selector) {
 double sum = 0;
 foreach (T item in this) sum += selector(item);
 return sum;
 }
}

ECMA-334

196

The ItemList<T> class has two Sum methods. Each takes a selector argument, which extracts the
value to sum over from a list item. The extracted value can be either an int or a double and the resulting
sum is likewise either an int or a double.

The Sum methods could for example be used to compute sums from a list of detail lines in an order.

class Detail
{
 public int UnitCount;
 public double UnitPrice;
 …
}

void ComputeSums() {
 ItemList<Detail> orderDetails = GetOrderDetails(…);
 int totalUnits = orderDetails.Sum(d => d.UnitCount);
 double orderTotal = orderDetails.Sum(d => d.UnitPrice * d.UnitCount);
 …
}

In the first invocation of orderDetails.Sum, both Sum methods are applicable because the anonymous
function d => d.UnitCount is compatible with both Func<Detail,int> and Func<Detail,double>.
However, overload resolution picks the first Sum method because the conversion to Func<Detail,int>
is better than the conversion to Func<Detail,double>.

In the second invocation of orderDetails.Sum, only the second Sum method is applicable because the
anonymous function d => d.UnitPrice * d.UnitCount produces a value of type double. Thus,
overload resolution picks the second Sum method for that invocation. end example]

12.16.5 Anonymous functions and dynamic binding
An anonymous function cannot be a receiver, argument, or operand of a dynamically bound operation.

12.16.6 Outer variables

12.16.6.1 General
Any local variable, value parameter, or parameter array whose scope includes the lambda-expression or
anonymous-method-expression is called an outer variable of the anonymous function. In an instance
function member of a class, the this value is considered a value parameter and is an outer variable of any
anonymous function contained within the function member.

12.16.6.2 Captured outer variables
When an outer variable is referenced by an anonymous function, the outer variable is said to have been
captured by the anonymous function. Ordinarily, the lifetime of a local variable is limited to execution of
the block or statement with which it is associated (§10.2.8). However, the lifetime of a captured outer
variable is extended at least until the delegate or expression tree created from the anonymous function
becomes eligible for garbage collection.

[Example: In the example

using System;

delegate int D();

class Test
{
 static D F() {
 int x = 0;
 D result = () => ++x;
 return result;
 }

12 Expressions

197

 static void Main() {
 D d = F();
 Console.WriteLine(d());
 Console.WriteLine(d());
 Console.WriteLine(d());
 }
}

the local variable x is captured by the anonymous function, and the lifetime of x is extended at least until
the delegate returned from F becomes eligible for garbage collection. Since each invocation of the
anonymous function operates on the same instance of x, the output of the example is:

1
2
3

end example]

When a local variable or a value parameter is captured by an anonymous function, the local variable or
parameter is no longer considered to be a fixed variable (§23.4), but is instead considered to be a
moveable variable. However, captured outer variables cannot be used in a fixed statement (§23.7), so the
address of a captured outer variable cannot be taken.

[Note: Unlike an uncaptured variable, a captured local variable can be simultaneously exposed to multiple
threads of execution. end note]

12.16.6.3 Instantiation of local variables
A local variable is considered to be instantiated when execution enters the scope of the variable.
[Example: For example, when the following method is invoked, the local variable x is instantiated and
initialized three times—once for each iteration of the loop.

static void F() {
 for (int i = 0; i < 3; i++) {
 int x = i * 2 + 1;
 …
 }
}

However, moving the declaration of x outside the loop results in a single instantiation of x:

static void F() {
 int x;
 for (int i = 0; i < 3; i++) {
 x = i * 2 + 1;
 …
 }
}

end example]

When not captured, there is no way to observe exactly how often a local variable is instantiated—because
the lifetimes of the instantiations are disjoint, it is possible for each instantation to simply use the same
storage location. However, when an anonymous function captures a local variable, the effects of
instantiation become apparent.

[Example: The example

using System;

delegate void D();

ECMA-334

198

class Test
{
 static D[] F() {
 D[] result = new D[3];
 for (int i = 0; i < 3; i++) {
 int x = i * 2 + 1;
 result[i] = () => { Console.WriteLine(x); };
 }
 return result;
 }

 static void Main() {
 foreach (D d in F()) d();
 }
}

produces the output:

1
3
5

However, when the declaration of x is moved outside the loop:

static D[] F() {
 D[] result = new D[3];
 int x;
 for (int i = 0; i < 3; i++) {
 x = i * 2 + 1;
 result[i] = () => { Console.WriteLine(x); };
 }
 return result;
}

the output is:

5
5
5

Note that the compiler is permitted (but not required) to optimize the three instantiations into a single
delegate instance (§11.7.2).

end example]

If a for-loop declares an iteration variable, that variable itself is considered to be declared outside of the
loop. [Example: Thus, if the example is changed to capture the iteration variable itself:

static D[] F() {
 D[] result = new D[3];
 for (int i = 0; i < 3; i++) {
 result[i] = () => { Console.WriteLine(i); };
 }
 return result;
}

only one instance of the iteration variable is captured, which produces the output:

3
3
3

end example]

It is possible for anonymous function delegates to share some captured variables yet have separate
instances of others. [Example: For example, if F is changed to

12 Expressions

199

static D[] F() {
 D[] result = new D[3];
 int x = 0;
 for (int i = 0; i < 3; i++) {
 int y = 0;
 result[i] = () => { Console.WriteLine("{0} {1}", ++x, ++y); };
 }
 return result;
}

the three delegates capture the same instance of x but separate instances of y, and the output is:

1 1
2 1
3 1

end example]

Separate anonymous functions can capture the same instance of an outer variable. [Example: In the
example:

using System;

delegate void Setter(int value);

delegate int Getter();

class Test
{
 static void Main() {
 int x = 0;
 Setter s = (int value) => { x = value; };
 Getter g = () => { return x; };
 s(5);
 Console.WriteLine(g());
 s(10);
 Console.WriteLine(g());
 }
}

the two anonymous functions capture the same instance of the local variable x, and they can thus
“communicate” through that variable. The output of the example is:

5
10

end example]

12.16.7 Evaluation of anonymous function expressions
An anonymous function F shall always be converted to a delegate type D or an expression-tree type E,
either directly or through the execution of a delegate creation expression new D(F). This conversion
determines the result of the anonymous function, as described in §11.7.

12.16.8 Implementation Exmple
This subclause is informative.

This subclause describes a possible implementation of anonymous function conversions in terms of other
C# constructs. The implementation described here is based on the same principles used by a commercial
C# compiler, but it is by no means a mandated implementation, nor is it the only one possible. It only
briefly mentions conversions to expression trees, as their exact semantics are outside the scope of this
specification.

The remainder of this subclause gives several examples of code that contains anonymous functions with
different characteristics. For each example, a corresponding translation to code that uses only other
C# constructs is provided. In the examples, the identifier D is assumed by represent the following delegate
type:

ECMA-334

200

public delegate void D();

The simplest form of an anonymous function is one that captures no outer variables:

class Test
{
 static void F() {
 D d = () => { Console.WriteLine("test"); };
 }
}

This can be translated to a delegate instantiation that references a compiler generated static method in
which the code of the anonymous function is placed:

class Test
{
 static void F() {
 D d = new D(__Method1);
 }

 static void __Method1() {
 Console.WriteLine("test");
 }
}

In the following example, the anonymous function references instance members of this:

class Test
{
 int x;

 void F() {
 D d = () => { Console.WriteLine(x); };
 }
}

This can be translated to a compiler generated instance method containing the code of the anonymous
function:

class Test
{
 int x;

 void F() {
 D d = new D(__Method1);
 }

 void __Method1() {
 Console.WriteLine(x);
 }
}

In this example, the anonymous function captures a local variable:

class Test
{
 void F() {
 int y = 123;
 D d = () => { Console.WriteLine(y); };
 }
}

The lifetime of the local variable must now be extended to at least the lifetime of the anonymous function
delegate. This can be achieved by “hoisting” the local variable into a field of a compiler-generated class.
Instantiation of the local variable (§12.16.6.3) then corresponds to creating an instance of the compiler
generated class, and accessing the local variable corresponds to accessing a field in the instance of the
compiler generated class. Furthermore, the anonymous function becomes an instance method of the
compiler-generated class:

12 Expressions

201

class Test
{
 void F() {
 __Locals1 __locals1 = new __Locals1();
 __locals1.y = 123;
 D d = new D(__locals1.__Method1);
 }

 class __Locals1
 {
 public int y;

 public void __Method1() {
 Console.WriteLine(y);
 }
 }
}

Finally, the following anonymous function captures this as well as two local variables with different
lifetimes:

class Test
{
 int x;

 void F() {
 int y = 123;
 for (int i = 0; i < 10; i++) {
 int z = i * 2;
 D d = () => { Console.WriteLine(x + y + z); };
 }
 }
}

Here, a compiler-generated class is created for each statement block in which locals are captured such that
the locals in the different blocks can have independent lifetimes. An instance of __Locals2, the compiler
generated class for the inner statement block, contains the local variable z and a field that references an
instance of __Locals1. An instance of __Locals1, the compiler generated class for the outer statement
block, contains the local variable y and a field that references this of the enclosing function member.
With these data structures, it is possible to reach all captured outer variables through an instance of
__Local2, and the code of the anonymous function can thus be implemented as an instance method of
that class.

class Test
{
 void F() {
 __Locals1 __locals1 = new __Locals1();
 __locals1.__this = this;
 __locals1.y = 123;
 for (int i = 0; i < 10; i++) {
 __Locals2 __locals2 = new __Locals2();
 __locals2.__locals1 = __locals1;
 __locals2.z = i * 2;
 D d = new D(__locals2.__Method1);
 }
 }

 class __Locals1
 {
 public Test __this;
 public int y;
 }

 class __Locals2
 {
 public __Locals1 __locals1;
 public int z;

ECMA-334

202

 public void __Method1() {
 Console.WriteLine(__locals1.__this.x + __locals1.y + z);
 }
 }
}

The same technique applied here to capture local variables can also be used when converting anonymous
functions to expression trees: references to the compiler-generated objects can be stored in the expression
tree, and access to the local variables can be represented as field accesses on these objects. The advantage
of this approach is that it allows the “lifted” local variables to be shared between delegates and expression
trees.

End of informative text.

12.17 Query expressions

12.17.1 General
Query expressions provide a language-integrated syntax for queries that is similar to relational and
hierarchical query languages such as SQL and XQuery.

query-expression:
from-clause query-body

from-clause:
from typeopt identifier in expression

query-body:
query-body-clausesopt select-or-group-clause query-continuationopt

query-body-clauses:
query-body-clause
query-body-clauses query-body-clause

query-body-clause:
from-clause
let-clause
where-clause
join-clause
join-into-clause
orderby-clause

let-clause:
let identifier = expression

where-clause:
where boolean-expression

join-clause:
join typeopt identifier in expression on expression equals expression

join-into-clause:
join typeopt identifier in expression on expression equals expression into
identifier

orderby-clause:
orderby orderings

orderings:
ordering
orderings , ordering

ordering:
expression ordering-directionopt

12 Expressions

203

ordering-direction:
ascending
descending

select-or-group-clause:
select-clause
group-clause

select-clause:
select expression

group-clause:
group expression by expression

query-continuation:
into identifier query-body

A query expression begins with a from clause and ends with either a select or group clause. The initial
from clause may be followed by zero or more from, let, where, join or orderby clauses. Each from
clause is a generator introducing a range variable that ranges over the elements of a sequence. Each let
clause introduces a range variable representing a value computed by means of previous range variables.
Each where clause is a filter that excludes items from the result. Each join clause compares specified keys
of the source sequence with keys of another sequence, yielding matching pairs. Each orderby clause
reorders items according to specified criteria.The final select or group clause specifies the shape of the
result in terms of the range variables. Finally, an into clause can be used to “splice” queries by treating
the results of one query as a generator in a subsequent query.

12.17.2 Ambiguities in query expressions
Query expressions use a number of contextual keywords (§7.4.4): ascending, by, descending, equals,
from, group, into, join, let, on, orderly, select and where.

To avoid ambiguities that could arise from the use of these identifiers both as keywords and simple names
these identifiers are considered keywords anywhere within a query expression, unless they are prefixed
with “@” (§7.4.4) in which case they are considered identifiers. For this purpose, a query expression is any
expression that starts with “from identifier” followed by any token except “;”, “=” or “,”.

12.17.3 Query expression translation

12.17.3.1 General
The C# language does not specify the execution semantics of query expressions. Rather, query expressions
are translated into invocations of methods that adhere to the query-expression pattern (§12.17.4).
Specifically, query expressions are translated into invocations of methods named Where, Select,
SelectMany, Join, GroupJoin, OrderBy, OrderByDescending, ThenBy, ThenByDescending,
GroupBy, and Cast. These methods are expected to have particular signatures and return types, as
described in §12.17.4. These methods may be instance methods of the object being queried or extension
methods that are external to the object. These methods implement the actual execution of the query.

The translation from query expressions to method invocations is a syntactic mapping that occurs before
any type binding or overload resolution has been performed. Following translation of query expressions,
the resulting method invocations are processed as regular method invocations, and this may in turn
uncover compile time errors. These error conditions include, but are not limited to, methods that do not
exist, arguments of the wrong types, and generic methods where type inference fails.

A query expression is processed by repeatedly applying the following translations until no further
reductions are possible. The translations are listed in order of application: each section assumes that the
translations in the preceding sections have been performed exhaustively, and once exhausted, a section
will not later be revisited in the processing of the same query expression.

ECMA-334

204

It is a compile time error for a query expression to include an assignment to a range variable, or the use of
a range variable as an argument for a ref or out parameter.

Certain translations inject range variables with transparent identifiers denoted by *. These are described
further in §12.17.3.8.

12.17.3.2 select and group … by clauses with continuations
A query expression with a group clause using a property Prop of y and a query body Q containing a
continuation in the form:

from y in S group y by y.Prop into x Q

is translated into:

from x in (from y in S group y by y.Prop) Q

The translations in the following sections assume that queries have no into continuations.

[Example: The example:

from c in customers
group c by c.Country into g
select new { Country = g.Key, CustCount = g.Count() }

is translated into:

from g in
 (from c in customers
 group c by c.Country)
select new { Country = g.Key, CustCount = g.Count() }

the final translation of which is:

customers.
GroupBy(c => c.Country).
Select(g => new { Country = g.Key, CustCount = g.Count() })

end example]

12.17.3.3 Explicit range variable types
A from clause that explicitly specifies a range variable type

from T x in e

is translated into

from x in (e) . Cast < T > ()

A join clause that explicitly specifies a range variable type

join T x in e on k1 equals k2

is translated into

join x in (e) . Cast < T > () on k1 equals k2

The translations in the following sections assume that queries have no explicit range variable types.

[Example: The example

from Customer c in customers
where c.City == "London"
select c

is translated into

from c in (customers).Cast<Customer>()
where c.City == "London"
select c

12 Expressions

205

the final translation of which is

customers.
Cast<Customer>().
Where(c => c.City == "London")

end example]

[Note: Explicit range variable types are useful for querying collections that implement the non-generic
IEnumerable interface, but not the generic IEnumerable<T> interface. In the example above, this
would be the case if customers were of type ArrayList. end note]

12.17.3.4 Degenerate query expressions
A query expression of the form

from x in e select x

is translated into

(e) . Select (x => x)

[Example: The example

from c in customers
select c

Is translated into

(customers).Select(c => c)

end example]

A degenerate query expression is one that trivially selects the elements of the source.

[Note: Later phases of the translation (§12.17.3.6 and §12.17.3.7) remove degenerate queries introduced
by other translation steps by replacing them with their source. It is important, however, to ensure that the
result of a query expression is never the source object itself. Otherwise, returning the result of such a
query might inadvertently expose private data (e.g., an element array) to a caller. Therefore this step
protects degenerate queries written directly in source code by explicitly calling Select on the source. It is
then up to the implementers of Select and other query operators to ensure that these methods never
return the source object itself.end note]

12.17.3.5 From, let, where, join and orderby clauses
A query expression with a second from clause followed by a select clause

from x1 in e1

from x2 in e2

select v

is translated into

(e1) . SelectMany(x1 => e2 , (x1 , x2) => v)

[Example: The example

from c in customers
from o in c.Orders
select new { c.Name, o.OrderID, o.Total }

is translated into

(customers).
SelectMany(c => c.Orders,
 (c,o) => new { c.Name, o.OrderID, o.Total }
)

end example]

ECMA-334

206

A query expression with a second from clause followed by a query body Q containing a non-empty set of
query body clauses:

from x1 in e1

from x2 in e2
Q

is translated into

from * in (e1) . SelectMany(x1 => e2 , (x1 , x2) => new { x1 , x2 })
Q

[Example: The example

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

is translated into

from * in (customers).
 SelectMany(c => c.Orders, (c,o) => new { c, o })
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

the final translation of which is

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(x => x.o.Total).
Select(x => new { x.c.Name, x.o.OrderID, x.o.Total })

where x is a compiler generated identifier that is otherwise invisible and inaccessible. end example]

A let expression along with its preceding from clause:

from x in e
let y = f
…

is translated into

from * in (e) . Select (x => new { x , y = f })
…

[Example: The example

from o in orders
let t = o.Details.Sum(d => d.UnitPrice * d.Quantity)
where t >= 1000
select new { o.OrderID, Total = t }

is translated into

from * in (orders).
 Select(o => new { o, t = o.Details.Sum(d => d.UnitPrice * d.Quantity)
})
where t >= 1000
select new { o.OrderID, Total = t }

the final translation of which is

orders.
Select(o => new { o, t = o.Details.Sum(d => d.UnitPrice * d.Quantity) }).
Where(x => x.t >= 1000).
Select(x => new { x.o.OrderID, Total = x.t })

where x is a compiler generated identifier that is otherwise invisible and inaccessible. end example]

A where expression along with its preceding from clause:

12 Expressions

207

from x in e
where f
…

is translated into

from x in (e) . Where (x => f)
…

A join clause immediately followed by a select clause

from x1 in e1

join x2 in e2 on k1 equals k2

select v

is translated into

(e1) . Join(e2 , x1 => k1 , x2 => k2 , (x1 , x2) => v)

[Example: The example

from c in customers
join o in orders on c.CustomerID equals o.CustomerID
select new { c.Name, o.OrderDate, o.Total }

is translated into

(customers).Join(orders, c => c.CustomerID, o => o.CustomerID,
 (c, o) => new { c.Name, o.OrderDate, o.Total })

end example]

A join clause followed by a query body clause:

from x1 in e1

join x2 in e2 on k1 equals k2
…

is translated into

from * in (e1) . Join(

 e2 , x1 => k1 , x2 => k2 , (x1 , x2) => new { x1 , x2 })
…

A join-into clause immediately followed by a select clause

from x1 in e1

join x2 in e2 on k1 equals k2 into g
select v

is translated into

(e1) . GroupJoin(e2 , x1 => k1 , x2 => k2 , (x1 , g) => v)

A join into clause followed by a query body clause

from x1 in e1

join x2 in e2 on k1 equals k2 into g
…

is translated into

from * in (e1) . GroupJoin(

 e2 , x1 => k1 , x2 => k2 , (x1 , g) => new { x1 , g })
…

[Example: The example

ECMA-334

208

from c in customers
join o in orders on c.CustomerID equals o.CustomerID into co
let n = co.Count()
where n >= 10
select new { c.Name, OrderCount = n }

is translated into

from * in (customers).
 GroupJoin(orders, c => c.CustomerID, o => o.CustomerID,
 (c, co) => new { c, co })
let n = co.Count()
where n >= 10
select new { c.Name, OrderCount = n }

the final translation of which is

customers.
GroupJoin(orders, c => c.CustomerID, o => o.CustomerID,
 (c, co) => new { c, co }).
Select(x => new { x, n = x.co.Count() }).
Where(y => y.n >= 10).
Select(y => new { y.x.c.Name, OrderCount = y.n)

where x and y are compiler generated identifiers that are otherwise invisible and inaccessible. end
example]

An orderby clause and its preceding from clause:

from x in e
orderby k1 , k2 , … , kn

…

is translated into

from x in (e) .
OrderBy (x => k1) .

ThenBy (x => k2) .

 … .
ThenBy (x => kn)
…

If an ordering clause specifies a descending direction indicator, an invocation of OrderByDescending
or ThenByDescending is produced instead.

[Example: The example

from o in orders
orderby o.Customer.Name, o.Total descending
select o

has the final translation

(orders).
OrderBy(o => o.Customer.Name).
ThenByDescending(o => o.Total)

end example]

The following translations assume that there are no let, where, join or orderby clauses, and no more
than the one initial from clause in each query expression.

12.17.3.6 Select clauses
A query expression of the form

from x in e select v

is translated into

12 Expressions

209

(e) . Select (x => v)

except when v is the identifier x, the translation is simply

(e)

[Example: The example

from c in customers.Where(c => c.City == “London”)
select c

is simply translated into

(customers).Where(c => c.City == “London”)

end example]

12.17.3.7 Group clauses
A group clause

from x in e group v by k

is translated into

(e) . GroupBy (x => k , x => v)

except when v is the identifier x, the translation is

(e) . GroupBy (x => k)

[Example: The example

from c in customers
group c.Name by c.Country

is translated into

(customers).
GroupBy(c => c.Country, c => c.Name)

end example]

12.17.3.8 Transparent identifiers
Certain translations inject range variables with transparent identifiers denoted by *. Transparent
identifiers exist only as an intermediate step in the query-expression translation process.

When a query translation injects a transparent identifier, further translation steps propagate the
transparent identifier into anonymous functions and anonymous object initializers. In those contexts,
transparent identifiers have the following behavior:

• When a transparent identifier occurs as a parameter in an anonymous function, the members of the
associated anonymous type are automatically in scope in the body of the anonymous function.

• When a member with a transparent identifier is in scope, the members of that member are in scope as
well.

• When a transparent identifier occurs as a member declarator in an anonymous object initializer, it
introduces a member with a transparent identifier.

In the translation steps described above, transparent identifiers are always introduced together with
anonymous types, with the intent of capturing multiple range variables as members of a single object. An
implementation of C# is permitted to use a different mechanism than anonymous types to group together
multiple range variables. The following translation examples assume that anonymous types are used, and
shows one possible translation of transparent identifiers.

[Example: The example

ECMA-334

210

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.Total }

is translated into

from * in (customers).
 SelectMany(c => c.Orders, (c,o) => new { c, o })
orderby o.Total descending
select new { c.Name, o.Total }

which is further translated into

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(* => o.Total).
Select(* => new { c.Name, o.Total })

which, when transparent identifiers are erased, is equivalent to

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(x => x.o.Total).
Select(x => new { x.c.Name, x.o.Total })

where x is a compiler generated identifier that is otherwise invisible and inaccessible.

The example

from c in customers
join o in orders on c.CustomerID equals o.CustomerID
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

is translated into

from * in (customers).
 Join(orders, c => c.CustomerID, o => o.CustomerID,
 (c, o) => new { c, o })
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

which is further reduced to

customers.
Join(orders, c => c.CustomerID, o => o.CustomerID, (c, o) => new { c, o
}).
Join(details, * => o.OrderID, d => d.OrderID, (*, d) => new { *, d }).
Join(products, * => d.ProductID, p => p.ProductID, (*, p) => new { *, p
}).
Select(* => new { c.Name, o.OrderDate, p.ProductName })

the final translation of which is

customers.
Join(orders, c => c.CustomerID, o => o.CustomerID,
 (c, o) => new { c, o }).
Join(details, x => x.o.OrderID, d => d.OrderID,
 (x, d) => new { x, d }).
Join(products, y => y.d.ProductID, p => p.ProductID,
 (y, p) => new { y, p }).
Select(z => new { z.y.x.c.Name, z.y.x.o.OrderDate, z.p.ProductName })

where x, y, and z are compiler-generated identifiers that are otherwise invisible and inaccessible.

end example]

12 Expressions

211

12.17.4 The query-expression pattern
The Query-expression pattern establishes a pattern of methods that types can implement to support query
expressions.

A generic type C<T> supports the query-expression-pattern if its public member methods and the publicly
accessible extension methods could be replaced by the following class definition. The members and
accessible extenson methods is referred to as the "shape" of a generic type C<T>. A generic type is used in
order to illustrate the proper relationships between parameter and return types, but it is possible to
implement the pattern for non-generic types as well.

delegate R Func<T1,R>(T1 arg1);

delegate R Func<T1,T2,R>(T1 arg1, T2 arg2);

class C
{
 public C<T> Cast<T>();
}

class C<T> : C
{
 public C<T> Where(Func<T,bool> predicate);

 public C<U> Select<U>(Func<T,U> selector);

 public C<V> SelectMany<U,V>(Func<T,C<U>> selector,
 Func<T,U,V> resultSelector);

 public C<V> Join<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector, Func<T,U,V> resultSelector);

 public C<V> GroupJoin<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector, Func<T,C<U>,V> resultSelector);

 public O<T> OrderBy<K>(Func<T,K> keySelector);

 public O<T> OrderByDescending<K>(Func<T,K> keySelector);

 public C<G<K,T>> GroupBy<K>(Func<T,K> keySelector);

 public C<G<K,E>> GroupBy<K,E>(Func<T,K> keySelector,
 Func<T,E> elementSelector);
}

class O<T> : C<T>
{
 public O<T> ThenBy<K>(Func<T,K> keySelector);

 public O<T> ThenByDescending<K>(Func<T,K> keySelector);
}

class G<K,T> : C<T>
{
 public K Key { get; }
}

The methods above use the generic delegate types Func<T1, R> and Func<T1, T2, R>, but they could
equally well have used other delegate or expression-tree types with the same relationships in parameter
and return types.

[Note: The recommended relationship between C<T> and O<T> that ensures that the ThenBy and
ThenByDescending methods are available only on the result of an OrderBy or OrderByDescending.
end note]

[Note: The recommended shape of the result of GroupBy—a sequence of sequences, where each inner
sequence has an additional Key property. end note]

[Note: Because query expressions are translated to method invocations by means of a syntactic mapping,
types have considerable flexibility in how they implement any or all of the query-expression pattern. For
example, the methods of the pattern can be implemented as instance methods or as extension methods

ECMA-334

212

because the two have the same invocation syntax, and the methods can request delegates or expression
trees because anonymous functions are convertible to both. Types implementing only some of the query
expression pattern support only query expression translations that map to the methods that type supports.
end note]

[Note: The System.Linq namespace provides an implementation of the query-expression pattern for any
type that implements the System.Collections.Generic.IEnumerable<T> interface. end note]

12.18 Assignment operators

12.18.1 General
The assignment operators assign a new value to a variable, a property, an event, or an indexer element.

assignment:
unary-expression assignment-operator expression

assignment-operator:
=

+=

-=

*=

/=

%=

&=

|=

^=

<<=

right-shift-assignment

The left operand of an assignment shall be an expression classified as a variable, a property access, an
indexer access, or an event access.

The = operator is called the simple assignment operator. It assigns the value of the right operand to the
variable, property, or indexer element given by the left operand. The left operand of the simple assignment
operator shall not be an event access (except as described in §15.8.2). The simple assignment operator is
described in §12.18.2.

The assignment operators other than the = operator are called the compound assignment operators.
These operators perform the indicated operation on the two operands, and then assign the resulting value
to the variable, property, or indexer element given by the left operand. The compound assignment
operators are described in §12.18.3.

The += and -= operators with an event access expression as the left operand are called the event
assignment operators. No other assignment operator is valid with an event access as the left operand. The
event assignment operators are described in §12.18.4.

The assignment operators are right-associative, meaning that operations are grouped from right to left.
[Example: An expression of the form a = b = c is evaluated as a = (b = c). end example]

12.18.2 Simple assignment
The = operator is called the simple assignment operator.

If the left operand of a simple assignment is of the form E.P or E[Ei] where E has the compile-time type
dynamic, then the assignment is dynamically bound (§12.3.3). In this case, the compile-time type of the
assignment expression is dynamic, and the resolution described below will take place at run-time based
on the run-time type of E. If the left operand is of the form E[Ei] where at least one element of Ei has
the compile-time type dynamic, and the compile-time type of E is not an array, the resulting indexer
access is dynamically bound, but with limited compile-time checking (§12.6.5).

12 Expressions

213

In a simple assignment, the right operand shall be an expression that is implicitly convertible to the type of
the left operand. The operation assigns the value of the right operand to the variable, property, or indexer
element given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand. The result has the
same type as the left operand, and is always classified as a value.

If the left operand is a property or indexer access, the property or indexer shall have an accessible set
accessor. If this is not the case, a binding-time error occurs.

The run-time processing of a simple assignment of the form x = y consists of the following steps:

• If x is classified as a variable:

o x is evaluated to produce the variable.
o y is evaluated and, if required, converted to the type of x through an implicit conversion (§11.2).
o If the variable given by x is an array element of a reference-type, a run-time check is performed to

ensure that the value computed for y is compatible with the array instance of which x is an
element. The check succeeds if y is null, or if an implicit reference conversion (§11.2.7) exists
from the -type of the instance referenced by y to the actual element type of the array instance
containing x. Otherwise, a System.ArrayTypeMismatchException is thrown.

o The value resulting from the evaluation and conversion of y is stored into the location given by the
evaluation of x.

• If x is classified as a property or indexer access:

o The instance expression (if x is not static) and the argument list (if x is an indexer access)
associated with x are evaluated, and the results are used in the subsequent set accessor
invocation.

o y is evaluated and, if required, converted to the type of x through an implicit conversion (§11.2).
o The set accessor of x is invoked with the value computed for y as its value argument.

[Note: if the compile time type of x is dynamic and there is an implicit conversion from the compile time
type of y to dynamic, no runtime resolution is required. end note]

[Note: The array co-variance rules (§17.6) permit a value of an array type A[] to be a reference to an
instance of an array type B[], provided an implicit reference conversion exists from B to A. Because of
these rules, assignment to an array element of a reference-type requires a run-time check to ensure that
the value being assigned is compatible with the array instance. In the example

string[] sa = new string[10];
object[] oa = sa;

oa[0] = null; // Ok
oa[1] = "Hello"; // Ok
oa[2] = new ArrayList(); // ArrayTypeMismatchException

the last assignment causes a System.ArrayTypeMismatchException to be thrown because a
reference to an ArrayList cannot be stored in an element of a string[]. end note]

When a property or indexer declared in a struct-type is the target of an assignment, the instance
expression associated with the property or indexer access shall be classified as a variable. If the instance
expression is classified as a value, a binding-time error occurs. [Note: Because of §12.7.5, the same rule
also applies to fields. end note]

[Example: Given the declarations:

struct Point
{
 int x, y;

ECMA-334

214

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public int X {
 get { return x; }
 set { x = value; }
 }

 public int Y {
 get { return y; }
 set { y = value; }
 }
}

struct Rectangle
{
 Point a, b;

 public Rectangle(Point a, Point b) {
 this.a = a;
 this.b = b;
 }

 public Point A {
 get { return a; }
 set { a = value; }
 }

 public Point B {
 get { return b; }
 set { b = value; }
 }
}

in the example

Point p = new Point();
p.X = 100;
p.Y = 100;
Rectangle r = new Rectangle();
r.A = new Point(10, 10);
r.B = p;

the assignments to p.X, p.Y, r.A, and r.B are permitted because p and r are variables. However, in the
example

Rectangle r = new Rectangle();
r.A.X = 10;
r.A.Y = 10;
r.B.X = 100;
r.B.Y = 100;

the assignments are all invalid, since r.A and r.B are not variables. end example]

12.18.3 Compound assignment
If the left operand of a compound assignment is of the form E.P or E[Ei] where E has the compile-time
type dynamic, then the assignment is dynamically bound (§12.3.3). In this case, the compile-time type of
the assignment expression is dynamic, and the resolution described below will take place at run-time
based on the run-time type of E. If the left operand is of the form E[Ei] where at least one element of Ei
has the compile-time type dynamic, and the compile-time type of E is not an array, the resulting indexer
access is dynamically bound, but with limited compile-time checking (§12.6.5).

An operation of the form x op= y is processed by applying binary operator overload resolution (§12.4.5)
as if the operation was written x op y. Then,

• If the return type of the selected operator is implicitly convertible to the type of x, the operation is
evaluated as x = x op y, except that x is evaluated only once.

12 Expressions

215

• Otherwise, if the selected operator is a predefined operator, if the return type of the selected operator
is explicitly convertible to the type of x , and if y is implicitly convertible to the type of x or the
operator is a shift operator, then the operation is evaluated as x = (T)(x op y), where T is the type
of x, except that x is evaluated only once.

• Otherwise, the compound assignment is invalid, and a binding-time error occurs.

The term “evaluated only once” means that in the evaluation of x op y, the results of any constituent
expressions of x are temporarily saved and then reused when performing the assignment to x. [Example:
In the assignment A()[B()] += C(), where A is a method returning int[], and B and C are methods
returning int, the methods are invoked only once, in the order A, B, C. end example]

When the left operand of a compound assignment is a property access or indexer access, the property or
indexer shall have both a get accessor and a set accessor. If this is not the case, a binding-time error
occurs.

The second rule above permits x op= y to be evaluated as x = (T)(x op y) in certain contexts. The
rule exists such that the predefined operators can be used as compound operators when the left operand
is of type sbyte, byte, short, ushort, or char. Even when both arguments are of one of those types,
the predefined operators produce a result of type int, as described in §12.4.7.3. Thus, without a cast it
would not be possible to assign the result to the left operand.

The intuitive effect of the rule for predefined operators is simply that x op= y is permitted if both of
x op y and x = y are permitted. [Example: In the following code

byte b = 0;
char ch = '\0';
int i = 0;

b += 1; // Ok
b += 1000; // Error, b = 1000 not permitted
b += i; // Error, b = i not permitted
b += (byte)i; // Ok

ch += 1; // Error, ch = 1 not permitted
ch += (char)1; // Ok

the intuitive reason for each error is that a corresponding simple assignment would also have been an
error. end example]

[Note: This also means that compound assignment operations support lifted operators. Since a compound
assignment x op= y is evaluated as either x = x op y or x = (T)(x op y), the rules of evaluation
implicitly cover lifted operators. end note]

12.18.4 Event assignment
If the left operand of a += or -= operator is classified as an event access, then the expression is evaluated
as follows:

• The instance expression, if any, of the event access is evaluated.

• The right operand of the += or -= operator is evaluated, and, if required, converted to the type of the
left operand through an implicit conversion (§11.2).

• An event accessor of the event is invoked, with an argument list consisting of the value computed in
the previous step. If the operator was +=, the add accessor is invoked; if the operator was -=, the
remove accessor is invoked.

An event assignment expression does not yield a value. Thus, an event assignment expression is valid only
in the context of a statement-expression (§13.7).

12.19 Expression
An expression is either a non-assignment-expression or an assignment.

ECMA-334

216

expression:
non-assignment-expression
assignment

non-assignment-expression:
conditional-expression
lambda-expression
query-expression

12.20 Constant expressions
A constant expression is an expression that shall be fully evaluated at compile-time.

constant-expression:
expression

A constant expression may be either a value type or a reference type. If a constant expression is a value
type, it must be one of the following types: sbyte, byte, short, ushort, int, uint, long, ulong,
char, float, double, decimal, bool, or any enumeration type. If a constant expression is a reference
type, it must be the string type, a default value expression (§12.7.15) for some reference type, or the
value of the expression must be null.

Only the following constructs are permitted in constant expressions:

• Literals (including the null literal).

• References to const members of class and struct types.

• References to members of enumeration types.

• References to const parameters or local variables

• Parenthesized subexpressions, which are themselves constant expressions.

• Cast expressions.

• checked and unchecked expressions

• The predefined +, –, !, and ~ unary operators.

• The predefined +, –, *, /, %, <<, >>, &, |, ^, &&, ||, ==, !=, <, >, <=, and >= binary operators.

• The ?: conditional operator.

• sizeof expressions, provided the unmanaged-type is one of the types specified in §23.6.9 for which
sizeof returns a constant value.

• Default value expressions, provided the type is one of the types listed above.

The following conversions are permitted in constant expressions:

• Identity conversions

• Numeric conversions

• Enumeration conversions

• Constant expression conversions

• Implicit and explicit reference conversions, provided the source of the conversions is a constant
expression that evaluates to the null value.

[Note: Other conversions including boxing, unboxing, and implicit reference conversions of non-null values
are not permitted in constant expressions. end note]

[Example: In the following code

class C {
 const object i = 5; // error: boxing conversion not permitted
 const object str = “hello”; // error: implicit reference conversion
}

the initialization of i is an error because a boxing conversion is required. The initialization of str is an
error because an implicit reference conversion from a non-null value is required. end example]

12 Expressions

217

Whenever an expression fulfills the requirements listed above, the expression is evaluated at compile-time.
This is true even if the expression is a subexpression of a larger expression that contains non-constant
constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time evaluation of non-
constant expressions, except that where run-time evaluation would have thrown an exception, compile-
time evaluation causes a compile-time error to occur.

Unless a constant expression is explicitly placed in an unchecked context, overflows that occur in integral-
type arithmetic operations and conversions during the compile-time evaluation of the expression always
cause compile-time errors (§12.7.14).

Constant expressions are required in the contexts listed below and this is indicated in the grammar by
using constant-expression. In these contexts, a compile-time error occurs if an expression cannot be fully
evaluated at compile-time.

• Constant declarations (§15.4)

• Enumeration member declarations (§19.4)

• Default arguments of formal parameter lists (§15.6.2)

• case labels of a switch statement (§13.8.3).

• goto case statements (§13.10.4)

• Dimension lengths in an array creation expression (§12.7.11.5) that includes an initializer.

• Attributes (§22)

An implicit constant expression conversion (§11.2.10) permits a constant expression of type int to be
converted to sbyte, byte, short, ushort, uint, or ulong, provided the value of the constant
expression is within the range of the destination type.

12.21 Boolean expressions
A boolean-expression is an expression that yields a result of type bool; either directly or through
application of operator true in certain contexts as specified in the following:

boolean-expression:
expression

The controlling conditional expression of an if-statement (§13.8.2), while-statement (§13.9.2), do-
statement (§13.9.3), or for-statement (§13.9.4) is a boolean-expression. The controlling conditional
expression of the ?: operator (§12.15) follows the same rules as a boolean-expression, but for reasons of
operator precedence is classified as a conditional-or-expression.

A boolean-expression E is required to be able to produce a value of type bool, as follows:

• If E is implicitly convertible to bool then at run-time that implicit conversion is applied.

• Otherwise, unary operator overload resolution (§12.4.4) is used to find a unique best implementation
of operator true on E, and that implementation is applied at run-time.

• If no such operator is found, a binding-time error occurs.

13 Statements

219

13. Statements

13.1 General
C# provides a variety of statements. [Note: Most of these statements will be familiar to developers who
have programmed in C and C++. end note]

statement:
labeled-statement
declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
lock-statement
using-statement
yield-statement

The embedded-statement nonterminal is used for statements that appear within other statements. The use
of embedded-statement rather than statement excludes the use of declaration statements and labeled
statements in these contexts. [Example: The code

void F(bool b) {
 if (b)
 int i = 44;
}

results in a compile-time error because an if statement requires an embedded-statement rather than a
statement for its if branch. If this code were permitted, then the variable i would be declared, but it could
never be used. Note, however, that by placing i’s declaration in a block, the example is valid. end example]

13.2 End points and reachability
Every statement has an end point. In intuitive terms, the end point of a statement is the location that
immediately follows the statement. The execution rules for composite statements (statements that contain
embedded statements) specify the action that is taken when control reaches the end point of an
embedded statement. [Example: When control reaches the end point of a statement in a block, control is
transferred to the next statement in the block. end example]

If a statement can possibly be reached by execution, the statement is said to be reachable. Conversely, if
there is no possibility that a statement will be executed, the statement is said to be unreachable.

[Example: In the following code

ECMA-334

220

void F() {
 Console.WriteLine("reachable");
 goto Label;
 Console.WriteLine("unreachable");
 Label:
 Console.WriteLine("reachable");
}

the second invocation of Console.WriteLine is unreachable because there is no possibility that the
statement will be executed. end example]

A warning is reported if the compiler determines that a statement is unreachable. It is specifically not an
error for a statement to be unreachable.

[Note: To determine whether a particular statement or end point is reachable, the compiler performs flow
analysis according to the reachability rules defined for each statement. The flow analysis takes into account
the values of constant expressions (§12.20) that control the behavior of statements, but the possible
values of non-constant expressions are not considered. In other words, for purposes of control flow
analysis, a non-constant expression of a given type is considered to have any possible value of that type.

In the example

void F() {
 const int i = 1;
 if (i == 2) Console.WriteLine("unreachable");
}

the Boolean expression of the if statement is a constant expression because both operands of the
== operator are constants. As the constant expression is evaluated at compile-time, producing the value
false, the Console.WriteLine invocation is considered unreachable. However, if i is changed to be a
local variable

void F() {
 int i = 1;
 if (i == 2) Console.WriteLine("reachable");
}

the Console.WriteLine invocation is considered reachable, even though, in reality, it will never be
executed. end note]

The block of a function member or an anonymous function is always considered reachable. By successively
evaluating the reachability rules of each statement in a block, the reachability of any given statement can
be determined.

[Example: In the following code

void F(int x) {
 Console.WriteLine("start");
 if (x < 0) Console.WriteLine("negative");
}

the reachability of the second Console.WriteLine is determined as follows:

• The first Console.WriteLine expression statement is reachable because the block of the F method
is reachable (§13.3).

• The end point of the first Console.WriteLine expression statement is reachable because that
statement is reachable (§13.7 and §13.3).

• The if statement is reachable because the end point of the first Console.WriteLine expression
statement is reachable (§13.7 and §13.3).

• The second Console.WriteLine expression statement is reachable because the Boolean expression
of the if statement does not have the constant value false.

end example]

13 Statements

221

There are two situations in which it is a compile-time error for the end point of a statement to be
reachable:

• Because the switch statement does not permit a switch section to “fall through” to the next switch
section, it is a compile-time error for the end point of the statement list of a switch section to be
reachable. If this error occurs, it is typically an indication that a break statement is missing.

• It is a compile-time error for the end point of the block of a function member or an anonymous
function that computes a value to be reachable. If this error occurs, it typically is an indication that a
return statement is missing (§13.10.5).

13.3 Blocks

13.3.1 General
A block permits multiple statements to be written in contexts where a single statement is allowed.

block:
{ statement-listopt }

A block consists of an optional statement-list (§13.3.2), enclosed in braces. If the statement list is omitted,
the block is said to be empty.

A block may contain declaration statements (§13.6). The scope of a local variable or constant declared in a
block is the block.

Within a block, the meaning of a name used in an expression context shall always be the same (§12.7.3.2).

A block is executed as follows:

• If the block is empty, control is transferred to the end point of the block.

• If the block is not empty, control is transferred to the statement list. When and if control reaches the
end point of the statement list, control is transferred to the end point of the block.

The statement list of a block is reachable if the block itself is reachable.

The end point of a block is reachable if the block is empty or if the end point of the statement list is
reachable.

A block that contains one or more yield statements (§13.15) is called an iterator block. Iterator blocks are
used to implement function members as iterators (§15.14). Some additional restrictions apply to iterator
blocks:

• It is a compile-time error for a return statement to appear in an iterator block (but yield return
statements are permitted).

• It is a compile-time error for an iterator block to contain an unsafe context (§23.2). An iterator block
always defines a safe context, even when its declaration is nested in an unsafe context.

13.3.2 Statement lists
A statement list consists of one or more statements written in sequence. Statement lists occur in blocks
(§13.3) and in switch-blocks (§13.8.3).

statement-list:
statement
statement-list statement

A statement list is executed by transferring control to the first statement. When and if control reaches the
end point of a statement, control is transferred to the next statement. When and if control reaches the end
point of the last statement, control is transferred to the end point of the statement list.

A statement in a statement list is reachable if at least one of the following is true:

ECMA-334

222

• The statement is the first statement and the statement list itself is reachable.

• The end point of the preceding statement is reachable.

• The statement is a labeled statement and the label is referenced by a reachable goto statement.

The end point of a statement list is reachable if the end point of the last statement in the list is reachable.

13.4 The empty statement
An empty-statement does nothing.

empty-statement:
;

An empty statement is used when there are no operations to perform in a context where a statement is
required.

Execution of an empty statement simply transfers control to the end point of the statement. Thus, the end
point of an empty statement is reachable if the empty statement is reachable.

[Example: An empty statement can be used when writing a while statement with a null body:

bool ProcessMessage() {…}

void ProcessMessages() {
 while (ProcessMessage())
 ;
}

Also, an empty statement can be used to declare a label just before the closing “}” of a block:

void F() {
 …

 if (done) goto exit;
 …

 exit: ;
}

end example]

13.5 Labeled statements
A labeled-statement permits a statement to be prefixed by a label. Labeled statements are permitted in
blocks, but are not permitted as embedded statements.

labeled-statement:
identifier : statement

A labeled statement declares a label with the name given by the identifier. The scope of a label is the whole
block in which the label is declared, including any nested blocks. It is a compile-time error for two labels
with the same name to have overlapping scopes.

A label can be referenced from goto statements (§13.10.4) within the scope of the label. [Note: This
means that goto statements can transfer control within blocks and out of blocks, but never into blocks.
end note]

Labels have their own declaration space and do not interfere with other identifiers. [Example: The example

int F(int x) {
 if (x >= 0) goto x;
 x = -x;
 x: return x;
}

is valid and uses the name x as both a parameter and a label. end example]

Execution of a labeled statement corresponds exactly to execution of the statement following the label.

13 Statements

223

In addition to the reachability provided by normal flow of control, a labeled statement is reachable if the
label is referenced by a reachable goto statement, unless the goto statement is inside the try block or a
catch block of a try-statement that includes a finally block whose end point is unreachable, and the
labeled statement is outside the try-statement.

13.6 Declaration statements

13.6.1 General
A declaration-statement declares a local variable or constant. Declaration statements are permitted in
blocks, but are not permitted as embedded statements.

declaration-statement:
local-variable-declaration ;
local-constant-declaration ;

13.6.2 Local variable declarations
A local-variable-declaration declares one or more local variables.

local-variable-declaration:
local-variable-type local-variable-declarators

local-variable-type:
type
var

local-variable-declarators:
local-variable-declarator
local-variable-declarators , local-variable-declarator

local-variable-declarator:
identifier
identifier = local-variable-initializer

local-variable-initializer:
expression
array-initializer

The local-variable-type of a local-variable-declaration either directly specifies the type of the variables
introduced by the declaration, or indicates with the identifier var that the type should be inferred based
on an initializer. The type is followed by a list of local-variable-declarators, each of which introduces a new
variable. A local-variable-declarator consists of an identifier that names the variable, optionally followed by
an “=” token and a local-variable-initializer that gives the initial value of the variable.

In the context of a local variable declaration, the identifier var acts as a contextual keyword (§7.4.4).When
the local-variable-type is specified as var and no type named var is in scope, the declaration is an
implicitly typed local variable declaration, whose type is inferred from the type of the associated initializer
expression. Implicitly typed local variable declarations are subject to the following restrictions:

• The local-variable-declaration cannot include multiple local-variable-declarators.

• The local-variable-declarator shall include a local-variable-initializer.

• The local-variable-initializer shall be an expression.

• The initializer expression shall have a compile-time type.

• The initializer expression cannot refer to the declared variable itself

[Example: The following are incorrect implicitly typed local variable declarations:

ECMA-334

224

var x; // Error, no initializer to infer type from
var y = {1, 2, 3}; // Error, array initializer not permitted
var z = null; // Error, null does not have a type
var u = x => x + 1; // Error, anonymous functions do not have a type
var v = v++; // Error, initializer cannot refer to v itself

end example]

The value of a local variable is obtained in an expression using a simple-name (§12.7.3), and the value of a
local variable is modified using an assignment (§12.18). A local variable shall be definitely assigned (§10.4)
at each location where its value is obtained.

The scope of a local variable declared in a local-variable-declaration is the block in which the declaration
occurs. It is an error to refer to a local variable in a textual position that precedes the local-variable-
declarator of the local variable. Within the scope of a local variable, it is a compile-time error to declare
another local variable or constant with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple declarations of single
variables with the same type. Furthermore, a variable initializer in a local variable declaration corresponds
exactly to an assignment statement that is inserted immediately after the declaration.

[Example: The example

void F() {
 int x = 1, y, z = x * 2;
}

corresponds exactly to

void F() {
 int x; x = 1;
 int y;
 int z; z = x * 2;
}

end example]

In an implicitly typed local variable declaration, the type of the local variable being declared is taken to be
the same as the type of the expression used to initialize the variable. [Example:

var i = 5;
var s = "Hello";
var d = 1.0;
var numbers = new int[] {1, 2, 3};
var orders = new Dictionary<int,Order>();

The implicitly typed local variable declarations above are precisely equivalent to the following explicitly
typed declarations:

int i = 5;
string s = "Hello";
double d = 1.0;
int[] numbers = new int[] {1, 2, 3};
Dictionary<int,Order> orders = new Dictionary<int,Order>();

end example]

13.6.3 Local constant declarations
A local-constant-declaration declares one or more local constants.

local-constant-declaration:
const type constant-declarators

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

13 Statements

225

constant-declarator:
identifier = constant-expression

The type of a local-constant-declaration specifies the type of the constants introduced by the declaration.
The type is followed by a list of constant-declarators, each of which introduces a new constant. A constant-
declarator consists of an identifier that names the constant, followed by an “=” token, followed by a
constant-expression (§12.20) that gives the value of the constant.

The type and constant-expression of a local constant declaration shall follow the same rules as those of a
constant member declaration (§15.4).

The value of a local constant is obtained in an expression using a simple-name (§12.7.3).

The scope of a local constant is the block in which the declaration occurs. It is an error to refer to a local
constant in a textual position that precedes the end of its constant-declarator. Within the scope of a local
constant, it is a compile-time error to declare another local variable or constant with the same name.

A local constant declaration that declares multiple constants is equivalent to multiple declarations of single
constants with the same type.

13.7 Expression statements
An expression-statement evaluates a given expression. The value computed by the expression, if any, is
discarded.

expression-statement:
statement-expression ;

statement-expression:
invocation-expression
object-creation-expression
assignment
post-increment-expression
post-decrement-expression
pre-increment-expression
pre-decrement-expression
await-expression

Not all expressions are permitted as statements. [Note: In particular, expressions such as x + y and
x == 1, that merely compute a value (which will be discarded), are not permitted as statements. end
note]

Execution of an expression statement evaluates the contained expression and then transfers control to the
end point of the expression statement. The end point of an expression-statement is reachable if that
expression-statement is reachable.

13.8 Selection statements

13.8.1 General
Selection statements select one of a number of possible statements for execution based on the value of
some expression.

selection-statement:
if-statement
switch-statement

13.8.2 The if statement
The if statement selects a statement for execution based on the value of a Boolean expression.

ECMA-334

226

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

An else part is associated with the lexically nearest preceding if that is allowed by the syntax. [Example:
Thus, an if statement of the form

if (x) if (y) F(); else G();

is equivalent to

if (x) {
 if (y) {
 F();
 }
 else {
 G();
 }
}

end example]

An if statement is executed as follows:

• The boolean-expression (§12.21) is evaluated.

• If the Boolean expression yields true, control is transferred to the first embedded statement. When
and if control reaches the end point of that statement, control is transferred to the end point of the if
statement.

• If the Boolean expression yields false and if an else part is present, control is transferred to the
second embedded statement. When and if control reaches the end point of that statement, control is
transferred to the end point of the if statement.

• If the Boolean expression yields false and if an else part is not present, control is transferred to the
end point of the if statement.

The first embedded statement of an if statement is reachable if the if statement is reachable and the
Boolean expression does not have the constant value false.

The second embedded statement of an if statement, if present, is reachable if the if statement is
reachable and the Boolean expression does not have the constant value true.

The end point of an if statement is reachable if the end point of at least one of its embedded statements
is reachable. In addition, the end point of an if statement with no else part is reachable if the if
statement is reachable and the Boolean expression does not have the constant value true.

13.8.3 The switch statement
The switch statement selects for execution a statement list having an associated switch label that
corresponds to the value of the switch expression.

switch-statement:
switch (expression) switch-block

switch-block:
{ switch-sectionsopt }

switch-sections:
switch-section
switch-sections switch-section

switch-section:
switch-labels statement-list

13 Statements

227

switch-labels:
switch-label
switch-labels switch-label

switch-label:
case constant-expression :
default :

A switch-statement consists of the keyword switch, followed by a parenthesized expression (called the
switch expression), followed by a switch-block. The switch-block consists of zero or more switch-sections,
enclosed in braces. Each switch-section consists of one or more switch-labels followed by a statement-list
(§13.3.2).

The governing type of a switch statement is established by the switch expression.

• If the type of the switch expression is sbyte, byte, short, ushort, int, uint, long, ulong, char, bool,
string, or an enum-type, or if it is the nullable value type corresponding to one of these types, then that
is the governing type of the switch statement.

• Otherwise, exactly one user-defined implicit conversion shall exist from the type of the switch
expression to one of the following possible governing types: sbyte, byte, short, ushort, int, uint, long,
ulong, char, string, or, a nullable value type corresponding to one of those types.

• Otherwise, a compile-time error occurs.

The constant expression of each case label shall denote a value of a type that is implicitly convertible
(§11.2) to the governing type of the switch statement. A compile-time error occurs if two or more case
labels in the same switch statement specify the same constant value.

There can be at most one default label in a switch statement.

A switch statement is executed as follows:

• The switch expression is evaluated and converted to the governing type.

• If one of the constants specified in a case label in the same switch statement is equal to the value of
the switch expression, control is transferred to the statement list following the matched case label.

• If none of the constants specified in case labels in the same switch statement is equal to the value of
the switch expression, and if a default label is present, control is transferred to the statement list
following the default label.

• If none of the constants specified in case labels in the same switch statement is equal to the value of
the switch expression, and if no default label is present, control is transferred to the end point of the
switch statement.

If the end point of the statement list of a switch section is reachable, a compile-time error occurs. This is
known as the “no fall through” rule. [Example: The example

switch (i) {
 case 0:
 CaseZero();
 break;
 case 1:
 CaseOne();
 break;
 default:
 CaseOthers();
 break;
}

is valid because no switch section has a reachable end point. Unlike C and C++, execution of a switch
section is not permitted to “fall through” to the next switch section, and the example

ECMA-334

228

switch (i) {
 case 0:
 CaseZero();
 case 1:
 CaseZeroOrOne();
 default:
 CaseAny();
}

results in a compile-time error. When execution of a switch section is to be followed by execution of
another switch section, an explicit goto case or goto default statement shall be used:

switch (i) {
 case 0:
 CaseZero();
 goto case 1;
 case 1:
 CaseZeroOrOne();
 goto default;
 default:
 CaseAny();
 break;
}

end example]

Multiple labels are permitted in a switch-section. [Example: The example

switch (i) {
 case 0:
 CaseZero();
 break;
 case 1:
 CaseOne();
 break;
 case 2:
 default:
 CaseTwo();
 break;
}

is valid. The example does not violate the “no fall through” rule because the labels case 2: and
default: are part of the same switch-section. end example]

[Note: The “no fall through” rule prevents a common class of bugs that occur in C and C++ when break
statements are accidentally omitted. For example, the sections of the switch statement above can be
reversed without affecting the behavior of the statement:

switch (i) {
 default:
 CaseAny();
 break;
 case 1:
 CaseZeroOrOne();
 goto default;
 case 0:
 CaseZero();
 goto case 1;
}

end note]

[Note: The statement list of a switch section typically ends in a break, goto case, or goto default
statement, but any construct that renders the end point of the statement list unreachable is permitted. For
example, a while statement controlled by the Boolean expression true is known to never reach its end
point. Likewise, a throw or return statement always transfers control elsewhere and never reaches its
end point. Thus, the following example is valid:

13 Statements

229

switch (i) {
 case 0:
 while (true) F();
 case 1:
 throw new ArgumentException();
 case 2:
 return;
}

end note]

[Example: The governing type of a switch statement can be the type string. For example:

void DoCommand(string command) {
 switch (command.ToLower()) {
 case "run":
 DoRun();
 break;
 case "save":
 DoSave();
 break;
 case "quit":
 DoQuit();
 break;
 default:
 InvalidCommand(command);
 break;
 }
}

end example]

[Note: Like the string equality operators (§12.11.8), the switch statement is case sensitive and will
execute a given switch section only if the switch expression string exactly matches a case label constant.
end note]

When the governing type of a switch statement is string or a nullable value type, the value null is
permitted as a case label constant.

The statement-lists of a switch-block may contain declaration statements (§13.6). The scope of a local
variable or constant declared in a switch block is the switch block.

Within a switch block, the meaning of a name used in an expression context shall always be the same
(§12.7.3.2).

The statement list of a given switch section is reachable if the switch statement is reachable and at least
one of the following is true:

• The switch expression is a non-constant value.

• The switch expression is a constant value that matches a case label in the switch section.

• The switch expression is a constant value that doesn’t match any case label, and the switch section
contains the default label.

• A switch label of the switch section is referenced by a reachable goto case or goto default
statement.

The end point of a switch statement is reachable if at least one of the following is true:

• The switch statement contains a reachable break statement that exits the switch statement.

• The switch statement is reachable, the switch expression is a non-constant value, and no default
label is present.

• The switch statement is reachable, the switch expression is a constant value that doesn’t match any
case label, and no default label is present.

ECMA-334

230

13.9 Iteration statements

13.9.1 General
Iteration statements repeatedly execute an embedded statement.

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

13.9.2 The while statement
The while statement conditionally executes an embedded statement zero or more times.

while-statement:
while (boolean-expression) embedded-statement

A while statement is executed as follows:

• The boolean-expression (§12.21) is evaluated.

• If the Boolean expression yields true, control is transferred to the embedded statement. When and if
control reaches the end point of the embedded statement (possibly from execution of a continue
statement), control is transferred to the beginning of the while statement.

• If the Boolean expression yields false, control is transferred to the end point of the while statement.

Within the embedded statement of a while statement, a break statement (§13.10.2) may be used to
transfer control to the end point of the while statement (thus ending iteration of the embedded
statement), and a continue statement (§13.10.3) may be used to transfer control to the end point of the
embedded statement (thus performing another iteration of the while statement).

The embedded statement of a while statement is reachable if the while statement is reachable and the
Boolean expression does not have the constant value false.

The end point of a while statement is reachable if at least one of the following is true:

• The while statement contains a reachable break statement that exits the while statement.

• The while statement is reachable and the Boolean expression does not have the constant value true.

13.9.3 The do statement
The do statement conditionally executes an embedded statement one or more times.

do-statement:
do embedded-statement while (boolean-expression) ;

A do statement is executed as follows:

• Control is transferred to the embedded statement.

• When and if control reaches the end point of the embedded statement (possibly from execution of a
continue statement), the boolean-expression (§12.21) is evaluated. If the Boolean expression yields
true, control is transferred to the beginning of the do statement. Otherwise, control is transferred to
the end point of the do statement.

Within the embedded statement of a do statement, a break statement (§13.10.2) may be used to transfer
control to the end point of the do statement (thus ending iteration of the embedded statement), and a
continue statement (§13.10.3) may be used to transfer control to the end point of the embedded
statement (thus performing another iteration of the do statement).

The embedded statement of a do statement is reachable if the do statement is reachable.

The end point of a do statement is reachable if at least one of the following is true:

13 Statements

231

• The do statement contains a reachable break statement that exits the do statement.

• The end point of the embedded statement is reachable and the Boolean expression does not have the
constant value true.

13.9.4 The for statement
The for statement evaluates a sequence of initialization expressions and then, while a condition is true,
repeatedly executes an embedded statement and evaluates a sequence of iteration expressions.

for-statement:
for (for-initializeropt ; for-conditionopt ; for-iteratoropt) embedded-statement

for-initializer:
local-variable-declaration
statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

statement-expression-list:
statement-expression
statement-expression-list , statement-expression

The for-initializer, if present, consists of either a local-variable-declaration (§13.6.2) or a list of statement-
expressions (§13.7) separated by commas. The scope of a local variable declared by a for-initializer starts at
the local-variable-declarator for the variable and extends to the end of the embedded statement. The
scope includes the for-condition and the for-iterator.

The for-condition, if present, shall be a boolean-expression (§12.21).

The for-iterator, if present, consists of a list of statement-expressions (§13.7) separated by commas.

A for statement is executed as follows:

• If a for-initializer is present, the variable initializers or statement expressions are executed in the order
they are written. This step is only performed once.

• If a for-condition is present, it is evaluated.

• If the for-condition is not present or if the evaluation yields true, control is transferred to the
embedded statement. When and if control reaches the end point of the embedded statement (possibly
from execution of a continue statement), the expressions of the for-iterator, if any, are evaluated in
sequence, and then another iteration is performed, starting with evaluation of the for-condition in the
step above.

• If the for-condition is present and the evaluation yields false, control is transferred to the end point
of the for statement.

Within the embedded statement of a for statement, a break statement (§13.10.2) may be used to
transfer control to the end point of the for statement (thus ending iteration of the embedded statement),
and a continue statement (§13.10.3) may be used to transfer control to the end point of the embedded
statement (thus executing the for-iterator and performing another iteration of the for statement, starting
with the for-condition).

The embedded statement of a for statement is reachable if one of the following is true:

• The for statement is reachable and no for-condition is present.

• The for statement is reachable and a for-condition is present and does not have the constant value
false.

The end point of a for statement is reachable if at least one of the following is true:

ECMA-334

232

• The for statement contains a reachable break statement that exits the for statement.

• The for statement is reachable and a for-condition is present and does not have the constant value
true.

13.9.5 The foreach statement
The foreach statement enumerates the elements of a collection, executing an embedded statement for
each element of the collection.

foreach-statement:
foreach (local-variable-type identifier in expression) embedded-statement

The local-variable-type and identifier of a foreach statement declare the iteration variable of the
statement. If the var identifier is given as the local-variable-type, and no type named var is in scope, the
iteration variable is said to be an implicitly typed iteration variable, and its type is taken to be the element
type of the foreach statement, as specified below. The iteration variable corresponds to a read-only local
variable with a scope that extends over the embedded statement. During execution of a foreach
statement, the iteration variable represents the collection element for which an iteration is currently being
performed. A compile-time error occurs if the embedded statement attempts to modify the iteration
variable (via assignment or the ++ and -- operators) or pass the iteration variable as a ref or out
parameter.

In the following, for brevity, IEnumerable, IEnumerator, IEnumerable<T> and IEnumerator<T>
refer to the corresponding types in the namespaces System.Collections and
System.Collections.Generic.

The compile-time processing of a foreach statement first determines the collection type, enumerator type
and element type of the expression. This determination proceeds as follows:

• If the type X of expression is an array type then there is an implicit reference conversion from X to the
IEnumerable interface (since System.Array implements this interface). The collection type is the
IEnumerable interface, the enumerator type is the IEnumerator interface and the element type is
the element type of the array type X.

• If the type X of expression is dynamic then there is an implicit conversion from expression to the
IEnumerable interface (§11.2.9). The collection type is the IEnumerable interface and the
enumerator type is the IEnumerator interface. If the var identifier is given as the local-variable-type
then the element type is dynamic, otherwise it is object.

• Otherwise, determine whether the type X has an appropriate GetEnumerator method:

o Perform member lookup on the type X with identifier GetEnumerator and no type arguments. If
the member lookup does not produce a match, or it produces an ambiguity, or produces a match
that is not a method group, check for an enumerable interface as described below. It is
recommended that a warning be issued if member lookup produces anything except a method
group or no match.

o Perform overload resolution using the resulting method group and an empty argument list. If
overload resolution results in no applicable methods, results in an ambiguity, or results in a single
best method but that method is either static or not public, check for an enumerable interface as
described below. It is recommended that a warning be issued if overload resolution produces
anything except an unambiguous public instance method or no applicable methods.

o If the return type E of the GetEnumerator method is not a class, struct or interface type, an error
is produced and no further steps are taken.

o Member lookup is performed on E with the identifier Current and no type arguments. If the
member lookup produces no match, the result is an error, or the result is anything except a public
instance property that permits reading, an error is produced and no further steps are taken.

13 Statements

233

o Member lookup is performed on E with the identifier MoveNext and no type arguments. If the
member lookup produces no match, the result is an error, or the result is anything except a
method group, an error is produced and no further steps are taken.

o Overload resolution is performed on the method group with an empty argument list. If overload
resolution results in no applicable methods, results in an ambiguity, or results in a single best
method but that method is either static or not public, or its return type is not bool, an error is
produced and no further steps are taken.

o The collection type is X, the enumerator type is E, and the element type is the type of the
Current property.

• Otherwise, check for an enumerable interface:

o If among all the types Ti for which there is an implicit conversion from X to IEnumerable<Ti>,
there is a unique type T such that T is not dynamic and for all the other Ti there is an implicit
conversion from IEnumerable<T> to IEnumerable<Ti>, then the collection type is the
interface IEnumerable<T>, the enumerator type is the interface IEnumerator<T>, and the
element type is T.

o Otherwise, if there is more than one such type T, then an error is produced and no further steps
are taken.

o Otherwise, if there is an implicit conversion from X to the System.Collections.IEnumerable
interface, then the collection type is this interface, the enumerator type is the interface
System.Collections.IEnumerator, and the element type is object.

o Otherwise, an error is produced and no further steps are taken.

The above steps, if successful, unambiguously produce a collection type C, enumerator type E and element
type T. A foreach statement of the form

foreach (V v in x) embedded-statement

is then expanded to:

{
 E e = ((C)(x)).GetEnumerator();
 try {
 while (e.MoveNext()) {
 V v = (V)(T)e.Current;

 embedded-statement
 }
 }
 finally {
 … // Dispose e
 }
}

The variable e is not visible to or accessible to the expression x or the embedded statement or any other
source code of the program. The variable v is read-only in the embedded statement. If there is not an
explicit conversion (§11.2.13) from T (the element type) to V (the local-variable-type in the foreach
statement), an error is produced and no further steps are taken. [Note: If x has the value null, a
System.NullReferenceException is thrown at run-time. end note]

An implementation is permitted to implement a given foreach-statement differently; e.g., for performance
reasons, as long as the behavior is consistent with the above expansion.

The placement of v inside the while loop is important for how it is captured (§12.16.6.2) by any anonymous
function occurring in the embedded-statement.

[Example:

int[] values = { 7, 9, 13 };
Action f = null;

ECMA-334

234

foreach (var value in values)
{
 if (f == null) f = () => Console.WriteLine("First value: " + value);
}

f();

If v in the expanded form were declared outside of the while loop, it would be shared among all iterations,
and its value after the for loop would be the final value, 13, which is what the invocation of f would print.
Instead, because each iteration has its own variable v, the one captured by f in the first iteration will
continue to hold the value 7, which is what will be printed. (Note that earlier versions of C# declared v
outside of the while loop.) end example]

The body of the finally block is constructed according to the following steps:

• If there is an implicit conversion from E to the System.IDisposable interface, then

o If E is a non-nullable value type then the finally clause is expanded to the semantic equivalent of:

finally {
 ((System.IDisposable)e).Dispose();
}

o Otherwise the finally clause is expanded to the semantic equivalent of:

finally {
 System.IDisposable d = e as System.IDisposable;
 if (d != null) d.Dispose();
}

except that if E is a value type, or a type parameter instantiated to a value type, then the conversion of
e to System.IDisposable shall not cause boxing to occur.

• Otherwise, if E is a sealed type, the finally clause is expanded to an empty block:

finally {
}

• Otherwise, the finally clause is expanded to:

finally {
 System.IDisposable d = e as System.IDisposable;
 if (d != null) d.Dispose();
}

The local variable d is not visible to or accessible to any user code. In particular, it does not conflict
with any other variable whose scope includes the finally block.

The order in which foreach traverses the elements of an array, is as follows: For single-dimensional arrays
elements are traversed in increasing index order, starting with index 0 and ending with index
Length – 1. For multi-dimensional arrays, elements are traversed such that the indices of the rightmost
dimension are increased first, then the next left dimension, and so on to the left.

[Example: The following example prints out each value in a two-dimensional array, in element order:

using System;

class Test
{
 static void Main() {
 double[,] values = {
 {1.2, 2.3, 3.4, 4.5},
 {5.6, 6.7, 7.8, 8.9}
 };

 foreach (double elementValue in values)
 Console.Write("{0} ", elementValue);
 Console.WriteLine();
 }
}

13 Statements

235

The output produced is as follows:

1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9

end example]

[Example: In the following example

int[] numbers = { 1, 3, 5, 7, 9 };
foreach (var n in numbers) Console.WriteLine(n);

the type of n is inferred to be int, the element type of numbers.

end example]

13.10 Jump statements

13.10.1 General
Jump statements unconditionally transfer control.

jump-statement:
break-statement
continue-statement
goto-statement
return-statement
throw-statement

The location to which a jump statement transfers control is called the target of the jump statement.

When a jump statement occurs within a block, and the target of that jump statement is outside that block,
the jump statement is said to exit the block. While a jump statement can transfer control out of a block, it
can never transfer control into a block.

Execution of jump statements is complicated by the presence of intervening try statements. In the
absence of such try statements, a jump statement unconditionally transfers control from the jump
statement to its target. In the presence of such intervening try statements, execution is more complex. If
the jump statement exits one or more try blocks with associated finally blocks, control is initially
transferred to the finally block of the innermost try statement. When and if control reaches the end
point of a finally block, control is transferred to the finally block of the next enclosing try
statement. This process is repeated until the finally blocks of all intervening try statements have been
executed.

[Example: In the following code

using System;

class Test
{
 static void Main() {
 while (true) {
 try {
 try {
 Console.WriteLine("Before break");
 break;
 }
 finally {
 Console.WriteLine("Innermost finally block");
 }
 }
 finally {
 Console.WriteLine("Outermost finally block");
 }
 }
 Console.WriteLine("After break");
 }
}

ECMA-334

236

the finally blocks associated with two try statements are executed before control is transferred to the
target of the jump statement.

The output produced is as follows:

Before break
Innermost finally block
Outermost finally block
After break

 end example]

13.10.2 The break statement
The break statement exits the nearest enclosing switch, while, do, for, or foreach statement.

break-statement:
break ;

The target of a break statement is the end point of the nearest enclosing switch, while, do, for, or
foreach statement. If a break statement is not enclosed by a switch, while, do, for, or foreach
statement, a compile-time error occurs.

When multiple switch, while, do, for, or foreach statements are nested within each other, a break
statement applies only to the innermost statement. To transfer control across multiple nesting levels, a
goto statement (§13.10.4) shall be used.

A break statement cannot exit a finally block (§13.11). When a break statement occurs within a
finally block, the target of the break statement shall be within the same finally block; otherwise a
compile-time error occurs.

A break statement is executed as follows:

• If the break statement exits one or more try blocks with associated finally blocks, control is
initially transferred to the finally block of the innermost try statement. When and if control
reaches the end point of a finally block, control is transferred to the finally block of the next
enclosing try statement. This process is repeated until the finally blocks of all intervening try
statements have been executed.

• Control is transferred to the target of the break statement.

Because a break statement unconditionally transfers control elsewhere, the end point of a break
statement is never reachable.

13.10.3 The continue statement
The continue statement starts a new iteration of the nearest enclosing while, do, for, or foreach
statement.

continue-statement:
continue ;

The target of a continue statement is the end point of the embedded statement of the nearest enclosing
while, do, for, or foreach statement. If a continue statement is not enclosed by a while, do, for, or
foreach statement, a compile-time error occurs.

When multiple while, do, for, or foreach statements are nested within each other, a continue
statement applies only to the innermost statement. To transfer control across multiple nesting levels, a
goto statement (§13.10.4) shall be used.

A continue statement cannot exit a finally block (§13.11). When a continue statement occurs within
a finally block, the target of the continue statement shall be within the same finally block;
otherwise a compile-time error occurs.

13 Statements

237

A continue statement is executed as follows:

• If the continue statement exits one or more try blocks with associated finally blocks, control is
initially transferred to the finally block of the innermost try statement. When and if control
reaches the end point of a finally block, control is transferred to the finally block of the next
enclosing try statement. This process is repeated until the finally blocks of all intervening try
statements have been executed.

• Control is transferred to the target of the continue statement.

Because a continue statement unconditionally transfers control elsewhere, the end point of a continue
statement is never reachable.

13.10.4 The goto statement
The goto statement transfers control to a statement that is marked by a label.

goto-statement:
goto identifier ;
goto case constant-expression ;
goto default ;

The target of a goto identifier statement is the labeled statement with the given label. If a label with the
given name does not exist in the current function member, or if the goto statement is not within the
scope of the label, a compile-time error occurs. [Note: This rule permits the use of a goto statement to
transfer control out of a nested scope, but not into a nested scope. In the example

using System;

class Test
{
 static void Main(string[] args) {
 string[,] table = {
 {"Red", "Blue", "Green"},
 {"Monday", "Wednesday", "Friday"}
 };

 foreach (string str in args) {
 int row, colm;
 for (row = 0; row <= 1; ++row)
 for (colm = 0; colm <= 2; ++colm)
 if (str == table[row,colm])
 goto done;

 Console.WriteLine("{0} not found", str);
 continue;
 done:
 Console.WriteLine("Found {0} at [{1}][{2}]", str, row, colm);
 }
 }
}

a goto statement is used to transfer control out of a nested scope. end note]

The target of a goto case statement is the statement list in the immediately enclosing switch statement
(§13.8.3) which contains a case label with the given constant value. If the goto case statement is not
enclosed by a switch statement, if the constant-expression is not implicitly convertible (§11.2) to the
governing type of the nearest enclosing switch statement, or if the nearest enclosing switch statement
does not contain a case label with the given constant value, a compile-time error occurs.

The target of a goto default statement is the statement list in the immediately enclosing switch
statement (§13.8.3), which contains a default label. If the goto default statement is not enclosed by a
switch statement, or if the nearest enclosing switch statement does not contain a default label, a
compile-time error occurs.

ECMA-334

238

A goto statement cannot exit a finally block (§13.11). When a goto statement occurs within a
finally block, the target of the goto statement shall be within the same finally block, or otherwise a
compile-time error occurs.

A goto statement is executed as follows:

• If the goto statement exits one or more try blocks with associated finally blocks, control is initially
transferred to the finally block of the innermost try statement. When and if control reaches the
end point of a finally block, control is transferred to the finally block of the next enclosing try
statement. This process is repeated until the finally blocks of all intervening try statements have
been executed.

• Control is transferred to the target of the goto statement.

Because a goto statement unconditionally transfers control elsewhere, the end point of a goto statement
is never reachable.

13.10.5 The return statement
The return statement returns control to the current caller of the function member in which the return
statement appears.

return-statement:
return expressionopt ;

A function member is said to compute a value if it is a method with a non-void result type (§15.6.11), the
get accessor of a property or indexer, or a user-defined operator. Function members that do not compute
a value are methods with the effective return type void, set accessors of properties and indexers, add
and remove accessors of event, instance constructors, static constructors and finalizers.

Within a function member, a return statement with no expression can only be used if the function
member does not compute a value. Within a function member, a return statement with an expression
can only be used if the function member computes a value. Where the return statement includes an
expression, an implicit conversion (§11.2) shall exist from the type of the expression to the effective return
type of the containing function member.

Return statements can also be used in the body of anonymous function expressions (§12.16), and
participate in determining which conversions exist for those functions (§11.7.1).

It is a compile-time error for a return statement to appear in a finally block (§13.11).

A return statement is executed as follows:

• If the return statement specifies an expression, the expression is evaluated and its value is converted
to the effective return type of the containing function by an implicit conversion. The result of the
conversion becomes the result value produced by the function.

• If the return statement is enclosed by one or more try or catch blocks with associated finally
blocks, control is initially transferred to the finally block of the innermost try statement. When and
if control reaches the end point of a finally block, control is transferred to the finally block of the
next enclosing try statement. This process is repeated until the finally blocks of all enclosing try
statements have been executed.

• If the containing function is not an async function, control is returned to the caller of the containing
function along with the result value, if any.

• If the containing function is an async function, control is returned to the current caller, and the result
value, if any, is recorded in the return task as described in (§15.15.2).

Because a return statement unconditionally transfers control elsewhere, the end point of a return
statement is never reachable.

13 Statements

239

13.10.6 The throw statement
The throw statement throws an exception.

throw-statement:
throw expressionopt ;

A throw statement with an expression throws an exception produced by evaluating the expression. The
expression shall be implicitly convertible to System.Exception, and the result of evaluating the
expression is converted to System.Exception before being thrown. If the result of the conversion is
null, a System.NullReferenceException is thrown instead.

A throw statement with no expression can be used only in a catch block, in which case, that statement
re-throws the exception that is currently being handled by that catch block.

Because a throw statement unconditionally transfers control elsewhere, the end point of a throw
statement is never reachable.

When an exception is thrown, control is transferred to the first catch clause in an enclosing try
statement that can handle the exception. The process that takes place from the point of the exception
being thrown to the point of transferring control to a suitable exception handler is known as exception
propagation. Propagation of an exception consists of repeatedly evaluating the following steps until a
catch clause that matches the exception is found. In this description, the throw point is initially the
location at which the exception is thrown.

• In the current function member, each try statement that encloses the throw point is examined. For
each statement S, starting with the innermost try statement and ending with the outermost try
statement, the following steps are evaluated:

o If the try block of S encloses the throw point and if S has one or more catch clauses, the catch
clauses are examined in order of appearance to locate a suitable handler for the exception. The
first catch clause that specifies an exception type T (or a type parameter that at run-time denotes
an exception type T) such that the run-time type of E derives from T is considered a match. A
general catch (§13.11) clause is considered a match for any exception type. If a matching catch
clause is located, the exception propagation is completed by transferring control to the block of
that catch clause.

o Otherwise, if the try block or a catch block of S encloses the throw point and if S has a finally
block, control is transferred to the finally block. If the finally block throws another
exception, processing of the current exception is terminated. Otherwise, when control reaches the
end point of the finally block, processing of the current exception is continued.

• If an exception handler was not located in the current function invocation, the function invocation is
terminated, and one of the following occurs:

o If the current function is non-async, the steps above are repeated for the caller of the function with
a throw point corresponding to the statement from which the function member was invoked.

o If the current function is async and task-returning, the exception is recorded in the return task,
which is put into a faulted or cancelled state as described in §15.15.2.

o If the current function is async and void-returning, the synchronization context of the current
thread is notified as described in §15.15.3.

• If the exception processing terminates all function member invocations in the current thread,
indicating that the thread has no handler for the exception, then the thread is itself terminated. The
impact of such termination is implementation-defined.

ECMA-334

240

13.11 The try statement
The try statement provides a mechanism for catching exceptions that occur during execution of a block.
Furthermore, the try statement provides the ability to specify a block of code that is always executed
when control leaves the try statement.

try-statement:
try block catch-clauses
try block catch-clausesopt finally-clause

catch-clauses:
specific-catch-clauses
specific-catch-clausesopt general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
catch (type identifieropt) block

general-catch-clause:
catch block

finally-clause:
finally block

There are three possible forms of try statements:

• A try block followed by one or more catch blocks.

• A try block followed by a finally block.

• A try block followed by one or more catch blocks followed by a finally block.

When a catch clause specifies a type, the type shall be System.Exception or a type that derives from
System.Exception. When a catch clause specifies a type-parameter it shall be a type parameter type
whose effective base class is or derives from System.Exception.

When a catch clause specifies both a class-type and an identifier, an exception variable of the given name
and type is declared. The exception variable corresponds to a local variable with a scope that extends over
the catch block. During execution of the catch block, the exception variable represents the exception
currently being handled. For purposes of definite assignment checking, the exception variable is considered
definitely assigned in its entire scope.

Unless a catch clause includes an exception variable name, it is impossible to access the exception object
in the catch block.

A catch clause that specifies neither an exception type nor an exception variable name is called a general
catch clause. A try statement can only have one general catch clause, and, if one is present, it shall be
the last catch clause.

[Note: Some programming languages might support exceptions that are not representable as an object
derived from System.Exception, although such exceptions could never be generated by C# code. A
general catch clause might be used to catch such exceptions. Thus, a general catch clause is semantically
different from one that specifies the type System.Exception, in that the former might also catch
exceptions from other languages. end note]

In order to locate a handler for an exception, catch clauses are examined in lexical order. A compile-time
error occurs if a catch clause specifies a type that is the same as, or is derived from, a type that was
specified in an earlier catch clause for the same try. [Note: Without this restriction, it would be possible
to write unreachable catch clauses. end note]

13 Statements

241

Within a catch block, a throw statement (§13.10.6) with no expression can be used to re-throw the
exception that was caught by the catch block. Assignments to an exception variable do not alter the
exception that is re-thrown.

[Example: In the following code

using System;

class Test
{
 static void F() {
 try {
 G();
 }
 catch (Exception e) {
 Console.WriteLine("Exception in F: " + e.Message);
 e = new Exception("F");
 throw; // re-throw
 }
 }

 static void G() {
 throw new Exception("G");
 }

 static void Main() {
 try {
 F();
 }
 catch (Exception e) {
 Console.WriteLine("Exception in Main: " + e.Message);
 }
 }
}

the method F catches an exception, writes some diagnostic information to the console, alters the
exception variable, and re-throws the exception. The exception that is re-thrown is the original exception,
so the output produced is:

Exception in F: G
Exception in Main: G

If the first catch block had thrown e instead of rethrowing the current exception, the output produced
would be as follows:

Exception in F: G
Exception in Main: F

end example]

It is a compile-time error for a break, continue, or goto statement to transfer control out of a finally
block. When a break, continue, or goto statement occurs in a finally block, the target of the
statement shall be within the same finally block, or otherwise a compile-time error occurs.

It is a compile-time error for a return statement to occur in a finally block.

A try statement is executed as follows:

• Control is transferred to the try block.

• When and if control reaches the end point of the try block:

o If the try statement has a finally block, the finally block is executed.
o Control is transferred to the end point of the try statement.

• If an exception is propagated to the try statement during execution of the try block:

o The catch clauses, if any, are examined in order of appearance to locate a suitable handler for the
exception. The first catch clause that specifies the exception type or a base type of the exception

ECMA-334

242

type is considered a match. A general catch clause is considered a match for any exception type. If
a matching catch clause is located:

• If the matching catch clause declares an exception variable, the exception object is assigned
to the exception variable.

• Control is transferred to the matching catch block.

• When and if control reaches the end point of the catch block:

o If the try statement has a finally block, the finally block is executed.

o Control is transferred to the end point of the try statement.

• If an exception is propagated to the try statement during execution of the catch block:

o If the try statement has a finally block, the finally block is executed.

o The exception is propagated to the next enclosing try statement.

o If the try statement has no catch clauses or if no catch clause matches the exception:

• If the try statement has a finally block, the finally block is executed.

• The exception is propagated to the next enclosing try statement.

The statements of a finally block are always executed when control leaves a try statement. This is true
whether the control transfer occurs as a result of normal execution, as a result of executing a break,
continue, goto, or return statement, or as a result of propagating an exception out of the try
statement.

If an exception is thrown during execution of a finally block, and is not caught within the same finally
block,the exception is propagated to the next enclosing try statement. If another exception was in the
process of being propagated, that exception is lost. The process of propagating an exception is discussed
further in the description of the throw statement (§13.10.6).

The try block of a try statement is reachable if the try statement is reachable.

A catch block of a try statement is reachable if the try statement is reachable.

The finally block of a try statement is reachable if the try statement is reachable.

The end point of a try statement is reachable if both of the following are true:

• The end point of the try block is reachable or the end point of at least one catch block is reachable.

• If a finally block is present, the end point of the finally block is reachable.

13.12 The checked and unchecked statements
The checked and unchecked statements are used to control the overflow-checking context for integral-
type arithmetic operations and conversions.

checked-statement:
checked block

unchecked-statement:
unchecked block

The checked statement causes all expressions in the block to be evaluated in a checked context, and the
unchecked statement causes all expressions in the block to be evaluated in an unchecked context.

The checked and unchecked statements are precisely equivalent to the checked and unchecked
operators (§12.7.14), except that they operate on blocks instead of expressions.

13 Statements

243

13.13 The lock statement
The lock statement obtains the mutual-exclusion lock for a given object, executes a statement, and then
releases the lock.

lock-statement:
lock (expression) embedded-statement

The expression of a lock statement shall denote a value of a type known to be a reference. No implicit
boxing conversion (§11.2.8) is ever performed for the expression of a lock statement, and thus it is a
compile-time error for the expression to denote a value of a value-type.

A lock statement of the form

lock (x) …

where x is an expression of a reference-type, is precisely equivalent to:

bool __lockWasTaken = false;
try {
 System.Threading.Monitor.Enter(x, ref __lockWasTaken); …
}
finally {
 if (__lockWasTaken) System.Threading.Monitor.Exit(x);
}

except that x is only evaluated once.

While a mutual-exclusion lock is held, code executing in the same execution thread can also obtain and
release the lock. However, code executing in other threads is blocked from obtaining the lock until the lock
is released.

13.14 The using statement
The using statement obtains one or more resources, executes a statement, and then disposes of the
resource.

using-statement:
using (resource-acquisition) embedded-statement

resource-acquisition:
local-variable-declaration
expression

A resource is a class or struct that implements the System.IDisposable interface, which includes a
single parameterless method named Dispose. Code that is using a resource can call Dispose to indicate
that the resource is no longer needed.

If the form of resource-acquisition is local-variable-declaration then the type of the local-variable-
declaration shall be either dynamic or a type that can be implicitly converted to System.IDisposable.
If the form of resource-acquisition is expression then this expression shall be implicitly convertible to
System.IDisposable.

Local variables declared in a resource-acquisition are read-only, and shall include an initializer. A compile-
time error occurs if the embedded statement attempts to modify these local variables (via assignment or
the ++ and -- operators), take the address of them, or pass them as ref or out parameters.

A using statement is translated into three parts: acquisition, usage, and disposal. Usage of the resource is
implicitly enclosed in a try statement that includes a finally clause. This finally clause disposes of
the resource. If a null resource is acquired, then no call to Dispose is made, and no exception is thrown.
If the resource is of type dynamic it is dynamically converted through an implicit dynamic conversion
(§11.2.9) to IDisposable during acquisition in order to ensure that the conversion is successful before
the usage and disposal.

ECMA-334

244

A using statement of the form

using (ResourceType resource = expression) statement

corresponds to one of three possible expansions. When ResourceType is a non-nullable value type or a
type parameter with the value type constraint (§15.2.5), the expansion is semantically equivalent to

{
 ResourceType resource = expression;

 try {

 statement;

 }

 finally {

 ((IDisposable)resource).Dispose();

 }
}

except that the cast of resource to System.IDisposable shall not cause boxing to occur.

Otherwise, when ResourceType is dynamic, the expansion is

{
 ResourceType resource = expression;

 IDisposable d = resource;

 try {

 statement;

 }

 finally {

 if (d != null) d.Dispose();

 }
}

Otherwise, the expansion is

{
 ResourceType resource = expression;

 try {

 statement;

 }

 finally {

 IDisposable d = (IDisposable)resource;

 if (d != null) d.Dispose();

 }
}

In any expansion, the resource variable is read-only in the embedded statement, and the d variable is
inaccessible in, and invisible to, the embedded statement.

An implementation is permitted to implement a given using-statement differently, e.g., for performance
reasons, as long as the behavior is consistent with the above expansion.

A using statement of the form:

using (expression) statement

has the same three possible expansions. In this case ResourceType is implicitly the compile-time type of
the expression, if it has one. Otherwise the interface IDisposable itself is used as the ResourceType.
The resource variable is inaccessible in, and invisible to, the embedded statement.

13 Statements

245

When a resource-acquisition takes the form of a local-variable-declaration, it is possible to acquire multiple
resources of a given type. A using statement of the form

using (ResourceType r1 = e1, r2 = e2, …, rN = eN) statement

is precisely equivalent to a sequence of nested using statements:

using (ResourceType r1 = e1)
 using (ResourceType r2 = e2)
 …
 using (ResourceType rN = eN)
 statement

[Example: The example below creates a file named log.txt and writes two lines of text to the file. The
example then opens that same file for reading and copies the contained lines of text to the console.

using System;
using System.IO;

class Test
{
 static void Main() {
 using (TextWriter w = File.CreateText("log.txt")) {
 w.WriteLine("This is line one");
 w.WriteLine("This is line two");
 }

 using (TextReader r = File.OpenText("log.txt")) {
 string s;
 while ((s = r.ReadLine()) != null) {
 Console.WriteLine(s);
 }

 }
 }
}

Since the TextWriter and TextReader classes implement the IDisposable interface, the example can
use using statements to ensure that the underlying file is properly closed following the write or read
operations. end example]

13.15 The yield statement
The yield statement is used in an iterator block (§13.3) to yield a value to the enumerator object
(§15.14.5) or enumerable object (§15.14.6) of an iterator or to signal the end of the iteration.

yield-statement:
yield return expression ;
yield break ;

yield is a contextual keyword (§7.4.4) and has special meaning only when used immediately before a
return or break keyword.

There are several restrictions on where a yield statement can appear, as described in the following.

• It is a compile-time error for a yield statement (of either form) to appear outside a method-body,
operator-body, or accessor-body.

• It is a compile-time error for a yield statement (of either form) to appear inside an anonymous
function.

• It is a compile-time error for a yield statement (of either form) to appear in the finally clause of a
try statement.

• It is a compile-time error for a yield return statement to appear anywhere in a try statement that
contains any catch-clauses.

[Example: The following example shows some valid and invalid uses of yield statements.

delegate IEnumerable<int> D();

ECMA-334

246

IEnumerator<int> GetEnumerator() {
 try {
 yield return 1; // Ok
 yield break; // Ok
 }
 finally {
 yield return 2; // Error, yield in finally
 yield break; // Error, yield in finally
 }

 try {
 yield return 3; // Error, yield return in try/catch
 yield break; // Ok
 }
 catch {
 yield return 4; // Error, yield return in try/catch
 yield break; // Ok
 }

 D d = delegate {
 yield return 5; // Error, yield in an anonymous function
 };
}

int MyMethod() {
 yield return 1; // Error, wrong return type for an
 // iterator block
}

end example]

An implicit conversion (§11.2) shall exist from the type of the expression in the yield return statement
to the yield type (§15.14.4) of the iterator.

A yield return statement is executed as follows:

• The expression given in the statement is evaluated, implicitly converted to the yield type, and assigned
to the Current property of the enumerator object.

• Execution of the iterator block is suspended. If the yield return statement is within one or more
try blocks, the associated finally blocks are not executed at this time.

• The MoveNext method of the enumerator object returns true to its caller, indicating that the
enumerator object successfully advanced to the next item.

The next call to the enumerator object’s MoveNext method resumes execution of the iterator block from
where it was last suspended.

A yield break statement is executed as follows:

• If the yield break statement is enclosed by one or more try blocks with associated finally blocks,
control is initially transferred to the finally block of the innermost try statement. When and if
control reaches the end point of a finally block, control is transferred to the finally block of the
next enclosing try statement. This process is repeated until the finally blocks of all enclosing try
statements have been executed.

• Control is returned to the caller of the iterator block. This is either the MoveNext method or Dispose
method of the enumerator object.

Because a yield break statement unconditionally transfers control elsewhere, the end point of a yield
break statement is never reachable.

14 Namespaces

247

14. Namespaces

14.1 General
C# programs are organized using namespaces. Namespaces are used both as an “internal” organization
system for a program, and as an “external” organization system—a way of presenting program elements
that are exposed to other programs.

Using directives (§14.5) are provided to facilitate the use of namespaces.

14.2 Compilation units
A compilation-unit defines the overall structure of a source file. A compilation unit consists of zero or more
extern-alias-directives followed by zero or more using-directives followed by zero or more global-attributes
followed by zero or more namespace-member-declarations.

compilation-unit:
extern-alias-directivesopt using-directivesopt global-attributesopt
 namespace-member-declarationsopt

A C# program consists of one or more compilation units, each contained in a separate source file. When a
C# program is compiled, all of the compilation units are processed together. Thus, compilation units can
depend on each other, possibly in a circular fashion.

The extern-alias-directives of a compilation unit affect the using-directives, global-attributes and
namespace-member-declarations of that compilation unit, but have no effect on other compilation units.

The using-directives of a compilation unit affect the global-attributes and namespace-member-declarations
of that compilation unit, but have no effect on other compilation units.

The global-attributes (§22.3) of a compilation unit permit the specification of attributes for the target
assembly and module. Assemblies and modules act as physical containers for types. An assembly may
consist of several physically separate modules.

The namespace-member-declarations of each compilation unit of a program contribute members to a
single declaration space called the global namespace. [Example:

File A.cs:

class A {}

File B.cs:

class B {}

The two compilation units contribute to the single global namespace, in this case declaring two classes with
the fully qualified names A and B. Because the two compilation units contribute to the same declaration
space, it would have been an error if each contained a declaration of a member with the same name. end
example]

14.3 Namespace declarations
A namespace-declaration consists of the keyword namespace, followed by a namespace name and body,
optionally followed by a semicolon.

namespace-declaration:
namespace qualified-identifier namespace-body ;opt

ECMA-334

248

qualified-identifier:
identifier
qualified-identifier . identifier

namespace-body:
{ extern-alias-directivesopt using-directivesopt namespace-member-declarationsopt }

A namespace-declaration may occur as a top-level declaration in a compilation-unit or as a member
declaration within another namespace-declaration. When a namespace-declaration occurs as a top-level
declaration in a compilation-unit, the namespace becomes a member of the global namespace. When a
namespace-declaration occurs within another namespace-declaration, the inner namespace becomes a
member of the outer namespace. In either case, the name of a namespace shall be unique within the
containing namespace.

Namespaces are implicitly public and the declaration of a namespace cannot include any access
modifiers.

Within a namespace-body, the optional using-directives import the names of other namespaces and types,
allowing them to be referenced directly instead of through qualified names. The optional namespace-
member-declarations contribute members to the declaration space of the namespace.

The qualified-identifier of a namespace-declaration may be a single identifier or a sequence of identifiers
separated by “.” tokens. The latter form permits a program to define a nested namespace without lexically
nesting several namespace declarations. [Example:

namespace N1.N2
{
 class A {}

 class B {}
}

is semantically equivalent to

namespace N1
{
 namespace N2
 {
 class A {}

 class B {}
 }
}

end example]

Namespaces are open-ended, and two namespace declarations with the same fully qualified name (§8.8.2)
contribute to the same declaration space (§8.3). [Example: In the following code

namespace N1.N2
{
 class A {}
}

namespace N1.N2
{
 class B {}
}

the two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified names N1.N2.A and N1.N2.B. Because the two declarations contribute to
the same declaration space, it would have been an error if each contained a declaration of a member with
the same name. end example]

14 Namespaces

249

14.4 Extern alias directives
An extern-alias-directive introduces an identifier that serves as an alias for a namespace. The specification
of the aliased namespace is external to the source code of the program and applies also to nested
namespaces of the aliased namespace.

extern-alias-directives:
extern-alias-directive
extern-alias-directives extern-alias-directive

extern-alias-directive:
extern alias identifier ;

The scope of an extern-alias-directive extends over the using-directives, global-attributes and namespace-
member-declarations of its immediately containing compilation-unit or namespace-body.

Within a compilation unit or namespace body that contains an extern-alias-directive, the identifier
introduced by the extern-alias-directive can be used to reference the aliased namespace. It is a compile-
time error for the identifier to be the word global.

Within C# source code, a type is declared a member of a single namespace. However, a namespace
hierarchy referenced by an extern alias may contain types that are also members of other namespaces. For
example, if A and B are extern aliases, the names A::X, B::C.Y and global::D.Z may, depending on
the external specification supported by the particular compiler, all refer to the same type.

The alias introduced by an extern-alias-directive is very similar to the alias introduced by a using-alias-
directive. See §14.5.2 for more detailed discussion of extern-alias-directives and using-alias-directives.

alias is a contextual keyword (§7.4.4) and only has special meaning when it immediately follows the
extern keyword in an extern-alias-directive. [Example: In fact an extern alias could use the identifier
alias as its name:

extern alias alias;

end example]

14.5 Using directives

14.5.1 General
Using directives facilitate the use of namespaces and types defined in other namespaces. Using directives
impact the name resolution process of namespace-or-type-names (§8.8) and simple-names (§12.7.3), but
unlike declarations, using-directives do not contribute new members to the underlying declaration spaces
of the compilation units or namespaces within which they are used.

using-directives:
using-directive
using-directives using-directive

using-directive:
using-alias-directive
using-namespace-directive

A using-alias-directive (§14.5.2) introduces an alias for a namespace or type.

A using-namespace-directive (§14.5.3) imports the type members of a namespace.

The scope of a using-directive extends over the namespace-member-declarations of its immediately
containing compilation unit or namespace body. The scope of a using-directive specifically does not include
its peer using-directives. Thus, peer using-directives do not affect each other, and the order in which they
are written is insignificant. In contrast, the scope of an extern-alias-directive includes the using-directives
defined in the same compilation unit or namespace body.

ECMA-334

250

14.5.2 Using alias directives
A using-alias-directive introduces an identifier that serves as an alias for a namespace or type within the
immediately enclosing compilation unit or namespace body.

using-alias-directive:
using identifier = namespace-or-type-name ;

Within global attributes and member declarations in a compilation unit or namespace body that contains a
using-alias-directive, the identifier introduced by the using-alias-directive can be used to reference the
given namespace or type. [Example:

namespace N1.N2
{
 class A {}
}

namespace N3
{
 using A = N1.N2.A;

 class B: A {}
}

Above, within member declarations in the N3 namespace, A is an alias for N1.N2.A, and thus class N3.B
derives from class N1.N2.A. The same effect can be obtained by creating an alias R for N1.N2 and then
referencing R.A:

namespace N3
{
 using R = N1.N2;

 class B: R.A {}
}

end example]

Within using directives, global attributes and member declarations in a compilation unit or namespace
body that contains an extern-alias-directive, the identifier introduced by the extern-alias-directive can be
used to reference the associated namespace. [Example: For example:

namespace N1
{
 extern alias N2;

 class B: N2::A {}
}

Above, within member declarations in the N1 namespace, N2 is an alias for some namespace whose
definition is external to the source code of the program. Class N1.B derives from class N2.A. The same
effect can be obtained by creating an alias A for N2.A and then referencing A:

namespace N1
{
 extern alias N2;
 using A = N2::A;

 class B: A {}
}

end example]

An extern-alias-directive or using-alias-directive makes an alias available within a particular compilation
unit or namespace body, but it does not contribute any new members to the underlying declaration space.
In other words, an alias directive is not transitive, but, rather, affects only the compilation unit or
namespace body in which it occurs. [Example: In the following code

14 Namespaces

251

namespace N3
{
 extern alias R1;
 using R2 = N1.N2;
}

namespace N3
{
 class B: R1::A, R2.I {} // Error, R1 and R2 unknown
}

the scopes of the alias directives that introduce R1 and R2 only extend to member declarations in the
namespace body in which they are contained, so R1 and R2 are unknown in the second namespace
declaration. However, placing the alias directives in the containing compilation unit causes the alias to
become available within both namespace declarations:

extern alias R1;
using R2 = N1.N2;

namespace N3
{
 class B: R1::A, R2.I {}
}

namespace N3
{
 class C: R1::A, R2.I {}
}

end example]

Each extern-alias-directive or using-alias-directive in a compilation-unit or namespace-body contributes a
name to the alias declaration space (§8.3) of the immediately enclosing compilation-unit or namespace-
body. The identifier of the alias directive shall be unique within the corresponding alias declaration space.
The alias identifier need not be unique within the global declaration space or the declaration space of the
corresponding namespace. [Example:

extern alias A;
extern alias B;

using A = N1.N2; // Error: alias A already exists

class B {} // Ok

The using alias named A causes an error since there is already an alias named A in the same compilation
unit. The class named B does not conflict with the extern alias named B since these names are added to
distinct declaration spaces. The former is added to the global declaration space and the latter is added to
the alias declaration space for this compilation unit.

When an alias name matches the name of a member of a namespace, usage of either must be
appropriately qualified:

namespace N1.N2
{
 class B {}
}

namespace N3
{
 class A {}
 class B : A {}
}

namespace N3
{
 using A = N1.N2;
 using B = N1.N2.B;

ECMA-334

252

 class W : B {} // Error: B is ambiguous
 class X : A.B {} // Error: A is ambiguous
 class Y : A::B {} // Ok: uses N1.N2.B
 class Z : N3.B {} // Ok: uses N3.B
}

In the second namespace body for N3, unqualified use of B results in an error, since N3 contains a member
named B and the namespace body that also declares an alias with name B; likewise for A. The class N3.B
can be referenced as N3.B or global::N3.B. The alias A can be used in a qualified-alias-member (§14.8),
such as A::B. The alias B is essentially useless. It cannot be used in a qualified-alias-member since only
namespace aliases can be used in a qualified-alias-member and B aliases a type. end example]

Just like regular members, names introduced by alias-directives are hidden by similarly named members in
nested scopes. [Example: In the following code

using R = N1.N2;

namespace N3
{
 class R {}

 class B: R.A {} // Error, R has no member A
}

the reference to R.A in the declaration of B causes a compile-time error because R refers to N3.R, not
N1.N2. end example]

The order in which extern-alias-directives are written has no significance. Likewise, the order in which
using-alias-directives are written has no significance, but all using-alias-directives must come after all
extern-alias-directives in the same compilation unit or namespace body. Resolution of the namespace-or-
type-name referenced by a using-alias-directive is not affected by the using-alias-directive itself or by other
using-directives in the immediately containing compilation unit or namespace body, but may be affected by
extern-alias-directives in the immediately containing compilation unit or namespace body. In other words,
the namespace-or-type-name of a using-alias-directive is resolved as if the immediately containing
compilation unit or namespace body had no using-directives but has the correct set of extern-alias-
directives. [Example: In the following code

namespace N1.N2 {}

namespace N3
{
 extern alias E;

 using R1 = E::N; // OK

 using R2 = N1; // OK

 using R3 = N1.N2; // OK

 using R4 = R2.N2; // Error, R2 unknown
}

the last using-alias-directive results in a compile-time error because it is not affected by the previous using-
alias-directive. The first using-alias-directive does not result in an error since the scope of the extern alias E
includes the using-alias-directive. end example]

A using-alias-directive can create an alias for any namespace or type, including the namespace within
which it appears and any namespace or type nested within that namespace.

Accessing a namespace or type through an alias yields exactly the same result as accessing that namespace
or type through its declared name. [Example: Given

namespace N1.N2
{
 class A {}
}

14 Namespaces

253

namespace N3
{
 using R1 = N1;
 using R2 = N1.N2;

 class B
 {
 N1.N2.A a; // refers to N1.N2.A
 R1.N2.A b; // refers to N1.N2.A
 R2.A c; // refers to N1.N2.A
 }
}

the names N1.N2.A, R1.N2.A, and R2.A are equivalent and all refer to the class declaration whose fully
qualified name is N1.N2.A. end example]

Although each part of a partial type (§15.2.7) is declared within the same namespace, the parts are
typically written within different namespace declarations. Thus, different extern alias directives and
using directives can be present for each part. When interpreting simple names (§12.7.3) within one part,
only the extern alias directives and using directives of the namespace bodies and compilation unit
enclosing that part are considered. This may result in the same identifier having different meanings in
different parts. [Example:

namespace N
{
 using List = System.Collections.ArrayList;

 partial class A
 {
 List x; // x has type System.Collections.ArrayList
 }
}

namespace N
{
 using List = Widgets.LinkedList;

 partial class A
 {
 List y; // y has type Widgets.LinkedList
 }
}

end example]

Using aliases can name a closed constructed type, but cannot name an unbound generic type declaration
without supplying type arguments. [Example:

namespace N1
{
 class A<T>
 {
 class B {}
 }
}

namespace N2
{
 using W = N1.A; // Error, cannot name unbound generic type

 using X = N1.A.B; // Error, cannot name unbound generic type

 using Y = N1.A<int>; // Ok, can name closed constructed type

 using Z<T> = N1.A<T>; // Error, using alias cannot have type
parameters
}

end example]

ECMA-334

254

14.5.3 Using namespace directives
A using-namespace-directive imports the types contained in a namespace into the immediately enclosing
compilation unit or namespace body, enabling the identifier of each type to be used without qualification.

using-namespace-directive:
using namespace-name ;

Within member declarations in a compilation unit or namespace body that contains a using-namespace-
directive, the types contained in the given namespace can be referenced directly. [Example:

namespace N1.N2
{
 class A {}
}

namespace N3
{
 using N1.N2;

 class B: A {}
}

Above, within member declarations in the N3 namespace, the type members of N1.N2 are directly
available, and thus class N3.B derives from class N1.N2.A. end example]

A using-namespace-directive imports the types contained in the given namespace, but specifically does not
import nested namespaces. [Example: In the following code

namespace N1.N2
{
 class A {}
}

namespace N3
{
 using N1;

 class B: N2.A {} // Error, N2 unknown
}

the using-namespace-directive imports the types contained in N1, but not the namespaces nested in N1.
Thus, the reference to N2.A in the declaration of B results in a compile-time error because no members
named N2 are in scope. end example]

Unlike a using-alias-directive, a using-namespace-directive may import types whose identifiers are already
defined within the enclosing compilation unit or namespace body. In effect, names imported by a using-
namespace-directive are hidden by similarly named members in the enclosing compilation unit or
namespace body. [Example:

namespace N1.N2
{
 class A {}

 class B {}
}

namespace N3
{
 using N1.N2;

 class A {}
}

Here, within member declarations in the N3 namespace, A refers to N3.A rather than N1.N2.A. end
example]

Because names may be ambiguous when more than one imported namespace introduces the same type
name, a using-alias-directive is useful to disambiguate the reference. [Example: In the following code

14 Namespaces

255

namespace N1
{
 class A {}
}

namespace N2
{
 class A {}
}

namespace N3
{
 using N1;

 using N2;

 class B: A {} // Error, A is ambiguous
}

both N1 and N2 contain a member A, and because N3 imports both, referencing A in N3 is a compile-time
error. In this situation, the conflict can be resolved either through qualification of references to A, or by
introducing a using-alias-directive that picks a particular A. For example:

namespace N3
{
 using N1;

 using N2;

 using A = N1.A;

 class B: A {} // A means N1.A
}

end example]

Like a using-alias-directive, a using-namespace-directive does not contribute any new members to the
underlying declaration space of the compilation unit or namespace, but, rather, affects only the
compilation unit or namespace body in which it appears.

The namespace-name referenced by a using-namespace-directive is resolved in the same way as the
namespace-or-type-name referenced by a using-alias-directive. Thus, using-namespace-directives in the
same compilation unit or namespace body do not affect each other and can be written in any order.

14.6 Namespace member declarations
A namespace-member-declaration is either a namespace-declaration (§14.3) or a type-declaration (§14.7).

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member-declaration:
namespace-declaration
type-declaration

A compilation unit or a namespace body can contain namespace-member-declarations, and such
declarations contribute new members to the underlying declaration space of the containing compilation
unit or namespace body.

14.7 Type declarations
A type-declaration is a class-declaration (§15.2), a struct-declaration (§16.2), an interface-declaration
(§18.2), an enum-declaration (§19.2), or a delegate-declaration (§20.2).

ECMA-334

256

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

A type-declaration can occur as a top-level declaration in a compilation unit or as a member declaration
within a namespace, class, or struct.

When a type declaration for a type T occurs as a top-level declaration in a compilation unit, the fully
qualified name (§8.8.2) of the type declaration is the same as the unqualified name of the declaration
(§8.8.2). When a type declaration for a type T occurs within a namespace, class, or struct declaration, the
fully qualified name (§8.8.3) of the type declarationis S.N, where S is the fully qualified name of the
containing namespace, class, or struct declaration, and N is the unqualified name of the declaration.

A type declared within a class or struct is called a nested type (§15.3.9).

The permitted access modifiers and the default access for a type declaration depend on the context in
which the declaration takes place (§8.5.2):

• Types declared in compilation units or namespaces can have public or internal access. The default
is internal access.

• Types declared in classes can have public, protected internal, protected, internal, or
private access. The default is private access.

• Types declared in structs can have public, internal, or private access. The default is private
access.

14.8 Qualified alias member

14.8.1 General
The namespace alias qualifier :: makes it possible to guarantee that type name lookups are unaffected by
the introduction of new types and members. The namespace alias qualifier always appears between two
identifiers referred to as the left-hand and right-hand identifiers. Unlike the regular . qualifier, the left-
hand identifier of the :: qualifier is looked up only as an extern or using alias.

A qualified-alias-member provides explicit access to the global namespace and to extern or using aliases
that are potentially hidden by other entities.

qualified-alias-member:
identifier :: identifier type-argument-listopt

A qualified-alias-member can be used as a namespace-or-type-name (§8.8) or as the left operand in a
member-access (§12.7.5).

A qualified-alias-member consists of two identifiers, referred to as the left-hand and right-hand identifiers,
seperated by the :: token and optionally followed by a type-argument-list. When the left-hand identifier is
global then the global namespace is searched for the right-hand identifier. For any other left-hand
identifier, that identifier is looked up as an extern or using alias (§14.4 and §14.5.2). A compile-time error
occurs if there is no such alias or the alias references a type. If the alias references a namespace then that
namespace is searched for the right-hand identifier.

A qualified-alias-member has one of two forms:

• N::I<A1, …, AK>, where N and I represent identifiers, and <A1, …, AK> is a type argument list. (K is
always at least one.)

• N::I, where N and I represent identifiers. (In this case, K is considered to be zero.)

Using this notation, the meaning of a qualified-alias-member is determined as follows:

14 Namespaces

257

• If N is the identifier global, then the global namespace is searched for I:

o If the global namespace contains a namespace named I and K is zero, then the qualified-alias-
member refers to that namespace.

o Otherwise, if the global namespace contains a non-generic type named I and K is zero, then the
qualified-alias-member refers to that type.

o Otherwise, if the global namespace contains a type named I that has K type parameters, then the
qualified-alias-member refers to that type constructed with the given type arguments.

o Otherwise, the qualified-alias-member is undefined and a compile-time error occurs.

• Otherwise, starting with the namespace declaration (§14.3) immediately containing the qualified-alias-
member (if any), continuing with each enclosing namespace declaration (if any), and ending with the
compilation unit containing the qualified-alias-member, the following steps are evaluated until an
entity is located:

o If the namespace declaration or compilation unit contains a using-alias-directive that associates N
with a type, then the qualified-alias-member is undefined and a compile-time error occurs.

o Otherwise, if the namespace declaration or compilation unit contains an extern-alias-directive or
using-alias-directive that associates N with a namespace, then:

• If the namespace associated with N contains a namespace named I and K is zero, then the
qualified-alias-member refers to that namespace.

• Otherwise, if the namespace associated with N contains a non-generic type named I and K is
zero, then the qualified-alias-member refers to that type.

• Otherwise, if the namespace associated with N contains a type named I that has K type
parameters, then the qualified-alias-member refers to that type constructed with the given
type arguments.

• Otherwise, the qualified-alias-member is undefined and a compile-time error occurs.

• Otherwise, the qualified-alias-member is undefined and a compile-time error occurs.

[Example: In the code:

using S = System.Net.Sockets;

class A {
 public static int x;
}

class C {
 public void F(int A, object S) {
 // Use global::A.x instead of A.x
 global::A.x += A;

 // Use S::Socket instead of S.Socket
 S::Socket s = S as S::Socket;
 }
}

the class A is referenced with global::A and the type System.Net.Sockets.Socket is referenced
with S::Socket. Using A.x and S.Socket instead would have caused compile-time errors because A and
S would have resolved to the parameters. end example]

[Note: The identifier global has special meaning only when used as the left-hand identifier of a qualified-
alias-name. It is not a keyword and it is not itself an alias; it is a contextual keyword (§7.4.4). In the code:

class A { }

class C {
 global.A x; // Error: global is not defined
 global::A y; // Valid: References A in the global namespace
}

ECMA-334

258

using global.A causes a compile-time error since there is no entity named global in scope. If some
entity named global were in scope, then global in global.A would have resolved to that entity.

Using global as the left-hand identifier of a qualified-alias-member always causes a lookup in the global
namespace, even if there is a using alias named global. In the code:

using global = MyGlobalTypes;

class A { }

class C {
 global.A x; // Valid: References MyGlobalTypes.A
 global::A y; // Valid: References A in the global namespace
}

global.A resolves to MyGlobalTypes.A and global::A resolves to class A in the global namespace.
end note]

14.8.2 Uniqueness of aliases
Each compilation unit and namespace body has a separate declaration space for extern aliases and using
aliases. Thus, while the name of an extern alias or using alias shall be unique within the set of extern aliases
and using aliases declared in the immediately containing compilation unit or namespace body, an alias is
permitted to have the same name as a type or namespace as long as it is used only with the :: qualifier.

[Example: In the following:

namespace N
{
 public class A {}

 public class B {}
}

namespace N
{
 using A = System.IO;

 class X
 {
 A.Stream s1; // Error, A is ambiguous

 A::Stream s2; // Ok
 }
}

the name A has two possible meanings in the second namespace body because both the class A and the
using alias A are in scope. For this reason, use of A in the qualified name A.Stream is ambiguous and
causes a compile-time error to occur. However, use of A with the :: qualifier is not an error because A is
looked up only as a namespace alias. end example]

 Chapter 15 Classes

259

15. Classes

15.1 General
A class is a data structure that may contain data members (constants and fields), function members
(methods, properties, events, indexers, operators, instance constructors, finalizers, and static
constructors), and nested types. Class types support inheritance, a mechanism whereby a derived class can
extend and specialize a base class.

15.2 Class declarations

15.2.1 General
A class-declaration is a type-declaration (§14.7) that declares a new class.

class-declaration:
attributesopt class-modifiersopt partialopt class identifier type-parameter-listopt
 class-baseopt type-parameter-constraints-clausesopt class-body ;opt

A class-declaration consists of an optional set of attributes (§22), followed by an optional set of class-
modifiers (§15.2.2), followed by an optional partial modifier (§15.2.7), followed by the keyword class
and an identifier that names the class, followed by an optional type-parameter-list (§15.2.3), followed by
an optional class-base specification (§15.2.4), followed by an optional set of type-parameter-constraints-
clauses (§15.2.5), followed by a class-body (§15.2.6), optionally followed by a semicolon.

A class declaration shall not supply a type-parameter-constraints-clauses unless it also supplies a type-
parameter-list.

A class declaration that supplies a type-parameter-list is a generic class declaration. Additionally, any class
nested inside a generic class declaration or a generic struct declaration is itself a generic class declaration,
since type arguments for the containing type shall be supplied to create a constructed type.

15.2.2 Class modifiers

15.2.2.1 General
A class-declaration may optionally include a sequence of class modifiers:

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
new
public

protected

internal
private
abstract
sealed

static

It is a compile-time error for the same modifier to appear multiple times in a class declaration.

The new modifier is permitted on nested classes. It specifies that the class hides an inherited member by
the same name, as described in §15.3.5. It is a compile-time error for the new modifier to appear on a class
declaration that is not a nested class declaration.

ECMA-334

260

The public, protected, internal, and private modifiers control the accessibility of the class.
Depending on the context in which the class declaration occurs, some of these modifiers might not be
permitted (§8.5.2).

When a partial type declaration (§15.2.7) includes an accessibility specification (via the public,
protected, internal, and private modifiers), that specification shall agree with all other parts that
include an accessibility specification. If no part of a partial type includes an accessibility specification, the
type is given the appropriate default accessibility (§8.5.2).

The abstract, sealed, and static modifiers are discussed in the following subclauses.

15.2.2.2 Abstract classes
The abstract modifier is used to indicate that a class is incomplete and that it is intended to be used only
as a base class. An abstract class differs from a non-abstract class in the following ways:

• An abstract class cannot be instantiated directly, and it is a compile-time error to use the new operator
on an abstract class. While it is possible to have variables and values whose compile-time types are
abstract, such variables and values will necessarily either be null or contain references to instances of
non-abstract classes derived from the abstract types.

• An abstract class is permitted (but not required) to contain abstract members.

• An abstract class cannot be sealed.

When a non-abstract class is derived from an abstract class, the non-abstract class shall include actual
implementations of all inherited abstract members, thereby overriding those abstract members. [Example:
In the following code

abstract class A
{
 public abstract void F();
}

abstract class B: A
{
 public void G() {}
}

class C: B
{
 public override void F() {
 // actual implementation of F
 }
}

the abstract class A introduces an abstract method F. Class B introduces an additional method G, but since
it doesn’t provide an implementation of F, B shall also be declared abstract. Class C overrides F and
provides an actual implementation. Since there are no abstract members in C, C is permitted (but not
required) to be non-abstract. end example]

If one or more parts of a partial type declaration (§15.2.7) of a class include the abstract modifier, the
class is abstract. Otherwise, the class is non-abstract.

15.2.2.3 Sealed classes
The sealed modifier is used to prevent derivation from a class. A compile-time error occurs if a sealed
class is specified as the base class of another class.

A sealed class cannot also be an abstract class.

[Note: The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain
run-time optimizations. In particular, because a sealed class is known to never have any derived classes, it
is possible to transform virtual function member invocations on sealed class instances into non-virtual
invocations. end note]

 Chapter 15 Classes

261

If one or more parts of a partial type declaration (§15.2.7) of a class include the sealed modifier, the class
is sealed. Otherwise, the class is unsealed.

15.2.2.4 Static classes

15.2.2.4.1 General
The static modifier is used to mark the class being declared as a static class. A static class shall not be
instantiated, shall not be used as a type and shall contain only static members. Only a static class can
contain declarations of extension methods (§15.6.10).

A static class declaration is subject to the following restrictions:

• A static class shall not include a sealed or abstract modifier. (However, since a static class cannot
be instantiated or derived from, it behaves as if it was both sealed and abstract.)

• A static class shall not include a class-base specification (§15.2.4) and cannot explicitly specify a base
class or a list of implemented interfaces. A static class implicitly inherits from type object.

• A static class shall only contain static members (§15.3.8). [Note: All constants and nested types are
classified as static members. end note]

• A static class shall not have members with protected or protected internal declared
accessibility.

It is a compile-time error to violate any of these restrictions.

A static class has no instance constructors. It is not possible to declare an instance constructor in a static
class, and no default instance constructor (§15.11.5) is provided for a static class.

The members of a static class are not automatically static, and the member declarations shall explicitly
include a static modifier (except for constants and nested types). When a class is nested within a static
outer class, the nested class is not a static class unless it explicitly includes a static modifier.

If one or more parts of a partial type declaration (§15.2.7) of a class include the static modifier, the class
is static. Otherwise, the class is not static.

15.2.2.4.2 Referencing static class types
A namespace-or-type-name (§8.8) is permitted to reference a static class if

• The namespace-or-type-name is the T in a namespace-or-type-name of the form T.I, or

• The namespace-or-type-name is the T in a typeof-expression (§12.7.12) of the form typeof(T).

A primary-expression (§12.7) is permitted to reference a static class if

• The primary-expression is the E in a member-access (§12.7.5) of the form E.I.

In any other context, it is a compile-time error to reference a static class. [Note: For example, it is an error
for a static class to be used as a base class, a constituent type (§15.3.7) of a member, a generic type
argument, or a type parameter constraint. Likewise, a static class cannot be used in an array type, a pointer
type, a new expression, a cast expression, an is expression, an as expression, a sizeof expression, or a
default value expression. end note]

15.2.3 Type parameters
A type parameter is a simple identifier that denotes a placeholder for a type argument supplied to create a
constructed type. By constrast, a type argument (§9.4.2) is the type that is substituted for the type
parameter when a constructed type is created.

type-parameter-list:
< type-parameters >

ECMA-334

262

type-parameters:
attributesopt type-parameter
type-parameters , attributesopt type-parameter

type-parameter is defined in §9.5.

Each type parameter in a class declaration defines a name in the declaration space (§8.3) of that class.
Thus, it cannot have the same name as another type parameter of that class or a member declared in that
class. A type parameter cannot have the same name as the type itself.

Two partial generic type declarations (in the same program) contribute to the same unbound generic type
if they have the same fully qualified name (which includes a generic-dimension-specifier (§12.7.12) for the
number of type parameters) (§8.8.3). Two such partial type declarations shall specify the same name for
each type parameter, in order.

15.2.4 Class base specification

15.2.4.1 General
A class declaration may include a class-base specification, which defines the direct base class of the class
and the interfaces (§18) directly implemented by the class.

class-base:
: class-type
: interface-type-list
: class-type , interface-type-list

interface-type-list:
interface-type
interface-type-list , interface-type

15.2.4.2 Base classes
When a class-type is included in the class-base, it specifies the direct base class of the class being declared.
If a non-partial class declaration has no class-base, or if the class-base lists only interface types, the direct
base class is assumed to be object. When a partial class declaration includes a base class specification,
that base class specification shall reference the same type as all other parts of that partial type that include
a base class specification. If no part of a partial class includes a base class specification, the base class is
object. A class inherits members from its direct base class, as described in §15.3.4.

[Example: In the following code

class A {}

class B: A {}

class A is said to be the direct base class of B, and B is said to be derived from A. Since A does not explicitly
specify a direct base class, its direct base class is implicitly object. end example]

For a constructed class type, including a nested type declared within a generic type declaration (§16.3.9.7),
if a base class is specified in the generic class declaration, the base class of the constructed type is obtained
by substituting, for each type-parameter in the base class declaration, the corresponding type-argument of
the constructed type. [Example: Given the generic class declarations

class B<U,V> {…}

class G<T>: B<string,T[]> {…}

the base class of the constructed type G<int> would be B<string,int[]>. end example]

The base class specified in a class declaration can be a constructed class type (§9.4). A base class cannot be
a type parameter on its own (§9.5), though it can involve the type parameters that are in scope. [Example:

class Base<T> {}

 Chapter 15 Classes

263

 class Extend : Base<int> // Valid, non-constructed class with
 // constructed base class

 class Extend<V>: V {} // Error, type parameter used as base class

 class Extend<V> : Base<V> {} // Valid, type parameter used as type
 // argument for base class

end example]

The direct base class of a class type shall be at least as accessible as the class type itself (§8.5.5). For
example, it is a compile-time error for a public class to derive from a private or internal class.

The direct base class of a class type shall not be any of the following types: System.Array,
System.Delegate, System.Enum, or System.ValueType. Furthermore, a generic class declaration
shall not use System.Attribute as a direct or indirect base class (§22.2.1).

In determining the meaning of the direct base class specification A of a class B, the direct base class of B is
temporarily assumed to be object, which ensures that the meaning of a base class specification cannot
recursively depend on itself. [Example: The following

class X<T> {

 public class Y{}

}

class Z : X<Z.Y> {}

Is in error since in the base class specification X<Z.Y> the direct base class of Z is considered to be
object, and hence (by the rules of §8.8) Z is not considered to have a member Y. end example]

The base classes of a class are the direct base class and its base classes. In other words, the set of base
classes is the transitive closure of the direct base class relationship. [Example: In the following:

class A {…}

class B<T>: A {…}

class C<T>: B<IComparable<T>> {…}

class D<T>: C<T[]> {…}

the base classes of D<int> are C<int[]>, B<IComparable<int[]>>, A, and object.

end example]

Except for class object, every class has exactly one direct base class. The object class has no direct base
class and is the ultimate base class of all other classes.

It is a compile-time error for a class to depend on itself. For the purpose of this rule, a class directly
depends on its direct base class (if any) and directly depends on the nearest enclosing class within which it
is nested (if any). Given this definition, the complete set of classes upon which a class depends is the
transitive closure of the directly depends on relationship.

[Example: The example

class A: A {}

Is erroneous because the class depends on itself. Likewise, the example

class A: B {}

class B: C {}

class C: A {}

is in error because the classes circularly depend on themselves. Finally, the example

class A: B.C {}

ECMA-334

264

class B: A
{
 public class C {}
}

results in a compile-time error because A depends on B.C (its direct base class), which depends on B (its
immediately enclosing class), which circularly depends on A. end example]

A class does not depend on the classes that are nested within it. [Example: In the following code

class A
{
 class B: A {}
}

B depends on A (because A is both its direct base class and its immediately enclosing class), but A does not
depend on B (since B is neither a base class nor an enclosing class of A). Thus, the example is valid. end
example]

It is not possible to derive from a sealed class. [Example: In the following code

sealed class A {}

class B: A {} // Error, cannot derive from a sealed class

class B is in error because it attempts to derive from the sealed class A. end example]

15.2.4.3 Interface implementations
A class-base specification may include a list of interface types, in which case the class is said to implement
the given interface types. For a constructed class type, including a nested type declared within a generic
type declaration (§15.3.9.7), each implemented interface type is obtained by substituting, for each type-
parameter in the given interface, the corresponding type-argument of the constructed type.

The set of interfaces for a type declared in multiple parts (§15.2.7) is the union of the interfaces specified
on each part. A particular interface can only be named once on each part, but multiple parts can name the
same base interface(s). There shall only be one implementation of each member of any given interface.
[Example: In the following:

partial class C: IA, IB {…}

partial class C: IC {…}

partial class C: IA, IB {…}

the set of base interfaces for class C is IA, IB, and IC. end example]

Typically, each part provides an implementation of the interface(s) declared on that part; however, this is
not a requirement. A part can provide the implementation for an interface declared on a different part.
[Example:

partial class X
{
 int IComparable.CompareTo(object o) {…}
}

partial class X: IComparable
{
 …
}

end example]

The base interfaces specified in a class declaration can be constructed interface types (§9.4, §18.2). A base
interface cannot be a type parameter on its own, though it can involve the type parameters that are in
scope. [Example: The following code illustrates how a class can implement and extend constructed types:

class C<U, V> {}

interface I1<V> {}

 Chapter 15 Classes

265

class D: C<string, int>, I1<string> {}

class E<T>: C<int, T>, I1<T> {}

end example]

Interface implementations are discussed further in §18.6.

15.2.5 Type parameter constraints
Generic type and method declarations can optionally specify type parameter constraints by including type-
parameter-constraints-clauses.

type-parameter-constraints-clauses:
type-parameter-constraints-clause
type-parameter-constraints-clauses type-parameter-constraints-clause

type-parameter-constraints-clause:
where type-parameter : type-parameter-constraints

type-parameter-constraints:
primary-constraint
secondary-constraints
constructor-constraint
primary-constraint , secondary-constraints
primary-constraint , constructor-constraint
secondary-constraints , constructor-constraint
primary-constraint , secondary-constraints , constructor-constraint

primary-constraint:
class-type
class
struct

secondary-constraints:
interface-type
type-parameter
secondary-constraints , interface-type
secondary-constraints , type-parameter

constructor-constraint:
new ()

Each type-parameter-constraints-clause consists of the token where, followed by the name of a type
parameter, followed by a colon and the list of constraints for that type parameter. There can be at most
one where clause for each type parameter, and the where clauses can be listed in any order. Like the get
and set tokens in a property accessor, the where token is not a keyword.

The list of constraints given in a where clause can include any of the following components, in this order: a
single primary constraint, one or more secondary constraints, and the constructor constraint, new().

A primary constraint can be a class type or the reference type constraint class or the value type
constraint struct. A secondary constraint can be a type-parameter or interface-type.

The reference type constraint specifies that a type argument used for the type parameter shall be a
reference type. All class types, interface types, delegate types, array types, and type parameters known to
be a reference type (as defined below) satisfy this constraint.

The value type constraint specifies that a type argument used for the type parameter shall be a non-
nullable value type. All non-nullable struct types, enum types, and type parameters having the value type
constraint satisfy this constraint. Note that although classified as a value type, a nullable value type
(§9.3.11) does not satisfy the value type constraint. A type parameter having the value type constraint shall
not also have the constructor-constraint, although it may be used as a type argument for another type

ECMA-334

266

parameter with a constructor-constraint. [Note: The System.Nullable<T> type specifies the non-
nullable value type constraint for T. Thus, recursively constructed types of the forms T?? and
Nullable<Nullable<T>> are prohibited. end note]

Pointer types are never allowed to be type arguments and are not considered to satisfy either the
reference type or value type constraints.

If a constraint is a class type, an interface type, or a type parameter, that type specifies a minimal “base
type” that every type argument used for that type parameter shall support. Whenever a constructed type
or generic method is used, the type argument is checked against the constraints on the type parameter at
compile-time. The type argument supplied shall satisfy the conditions described in §9.4.5.

A class-type constraint shall satisfy the following rules:

• The type shall be a class type.

• The type shall not be sealed.

• The type shall not be one of the following types: System.Array, System.Delegate, System.Enum,
or System.ValueType.

• The type shall not be object.

• At most one constraint for a given type parameter may be a class type.

A type specified as an interface-type constraint shall satisfy the following rules:

• The type shall be an interface type.

• A type shall not be specified more than once in a given where clause.

In either case, the constraint may involve any of the type parameters of the associated type or method
declaration as part of a constructed type, and may involve the type being declared.

Any class or interface type specified as a type parameter constraint shall be at least as accessible (§8.5.5)
as the generic type or method being declared.

A type specified as a type-parameter constraint shall satisfy the following rules:

• The type shall be a type parameter.

• A type shall not be specified more than once in a given where clause.

In addition there shall be no cycles in the dependency graph of type parameters, where dependency is a
transitive relation defined by:

• If a type parameter T is used as a constraint for type parameter S then S depends on T.

• If a type parameter S depends on a type parameter T and T depends on a type parameter U then S
depends on U.

Given this relation, it is a compile-time error for a type parameter to depend on itself (directly or
indirectly).

Any constraints shall be consistent among dependent type parameters. If type parameter S depends on
type parameter T then:

• T shall not have the value type constraint. Otherwise, T is effectively sealed so S would be forced to be
the same type as T, eliminating the need for two type parameters.

• If S has the value type constraint then T shall not have a class-type constraint.

• If S has a class-type constraint A and T has a class-type constraint B then there shall be an identity
conversion or implicit reference conversion from A to B or an implicit reference conversion from B to A.

 Chapter 15 Classes

267

• If S also depends on type parameter U and U has a class-type constraint A and T has a class-type
constraint B then there shall be an identity conversion or implicit reference conversion from A to B or
an implicit reference conversion from B to A.

It is valid for S to have the value type constraint and T to have the reference type constraint. Effectively
this limits T to the types System.Object, System.ValueType, System.Enum, and any interface type.

If the where clause for a type parameter includes a constructor constraint (which has the form new()), it is
possible to use the new operator to create instances of the type (§12.7.11.2). Any type argument used for a
type parameter with a constructor constraint shall be a value type, a non-abstract class having a public
parameterless constructor, or a type parameter having the value type constraint or constructor constraint.

[Example: The following are examples of constraints:

interface IPrintable
{
 void Print();
}

interface IComparable<T>
{
 int CompareTo(T value);
}

interface IKeyProvider<T>
{

 T GetKey();
}

class Printer<T> where T: IPrintable {…}

class SortedList<T> where T: IComparable<T> {…}

class Dictionary<K,V>
 where K: IComparable<K>
 where V: IPrintable, IKeyProvider<K>, new()
{
 …
}

The following example is in error because it causes a circularity in the dependency graph of the type
parameters:

class Circular<S,T>
 where S: T
 where T: S // Error, circularity in dependency graph
{
 …
}

The following examples illustrate additional invalid situations:

class Sealed<S,T>
 where S: T
 where T: struct // Error, T is sealed
{
 …
}

class A {…}

class B {…}

class Incompat<S,T>
 where S: A, T
 where T: B // Error, incompatible class-type constraints
{
 …
}

ECMA-334

268

class StructWithClass<S,T,U>
 where S: struct, T
 where T: U
 where U: A // Error, A incompatible with struct
{
 …
}

end example]

The dynamic erasure of a type C is type Co constructed as follows:

• If C is a nested type Outer.Inner then Co is a nested type Outero.Innero.

• If C is a constructed type G<A1, …, An> with type arguments A1, …, An then Co is the constructed type
G<A1o, …, Ano>.

• If C is an array type E[] then Co is the array type Eo[].

• If C is a pointer type E* then Co is the pointer type Eo*.

• If C is dynamic then Co is object.

• Otherwise, Co is C.

The effective base class of a type parameter T is defined as follows:

Let R be a set of types such that:

• For each constraint of T that is a type-parameter, R contains its effective base class.

• For each constraint of T that is a struct-type, R contains System.ValueType.

• For each constraint of T that is an enumeration type, R contains System.Enum.

• For each constraint of T that is a delegate type, R contains its dynamic erasure.

• For each constraint of T that is an array type, R contains System.Array.

• For each constraint of T that is a class-type, R contains its dynamic erasure.

Then

• If T has the value type constraint, its effective base class is System.ValueType.

• Otherwise, if R is empty then the effective base class is object.

• Otherwise, the effective base class of T is the most-encompassed type (§11.5.3) of set R. If the set has
no encompassed type, the effective base class of T is object. The consistency rules ensure that the
most-encompassed type exists.

If the type parameter is a method type parameter whose constraints are inherited from the base method
the effective base class is calculated after type substitution.

These rules ensure that the effective base class is always a class-type.

The effective interface set of a type parameter T is defined as follows:

• If T has no secondary-constraints, its effective interface set is empty.

• If T has interface-type constraints but no type-parameter constraints, its effective interface set is the
set of dynamic erasures of its interface-type constraints.

• If T has no interface-type constraints but has type-parameter constraints, its effective interface set is
the union of the effective interface sets of its type-parameter constraints.

 Chapter 15 Classes

269

• If T has both interface-type constraints and type-parameter constraints, its effective interface set is the
union of the set of dynamic erasures of its interface-type constraints and the effective interface sets of
its type-parameter constraints.

A type parameter is known to be a reference type if it has the reference type constraint or its effective
base class is not object or System.ValueType.

Values of a constrained type parameter type can be used to access the instance members implied by the
constraints. [Example: In the following:

interface IPrintable
{
 void Print();
}

class Printer<T> where T: IPrintable
{
 void PrintOne(T x) {
 x.Print();
 }
}

the methods of IPrintable can be invoked directly on x because T is constrained to always implement
IPrintable. end example]

When a partial generic type declaration includes constraints, the constraints shall agree with all other parts
that include constraints. Specifically, each part that includes constraints shall have constraints for the same
set of type parameters, and for each type parameter, the sets of primary, secondary, and constructor
constraints shall be equivalent. Two sets of constraints are equivalent if they contain the same members. If
no part of a partial generic type specifies type parameter constraints, the type parameters are considered
unconstrained. [Example:

partial class Map<K,V>
 where K: IComparable<K>
 where V: IKeyProvider<K>, new()
{
 …
}

partial class Map<K,V>
 where V: IKeyProvider<K>, new()
 where K: IComparable<K>
{
 …
}

partial class Map<K,V>
{
 …
}

is correct because those parts that include constraints (the first two) effectively specify the same set of
primary, secondary, and constructor constraints for the same set of type parameters, respectively. end
example]

15.2.6 Class body
The class-body of a class defines the members of that class.

class-body:
{ class-member-declarationsopt }

15.2.7 Partial declarations
The modifier partial is used when defining a class, struct, or interface type in multiple parts. The
partial modifier is a contextual keyword (§7.4.4) and only has special meaning immediately before one
of the keywords class, struct, or interface.

ECMA-334

270

Each part of a partial type declaration shall include a partial modifier and shall be declared in the same
namespace or containing type as the other parts. The partial modifier indicates that additional parts of
the type declaration might exist elsewhere, but the existence of such additional parts is not a requirement;
it is valid for the only declaration of a type to include the partial modifier.

All parts of a partial type shall be compiled together such that the parts can be merged at compile-time.
Partial types specifically do not allow already compiled types to be extended.

Nested types can be declared in multiple parts by using the partial modifier. Typically, the containing
type is declared using partial as well, and each part of the nested type is declared in a different part of
the containing type.

[Example: The following partial class is implemented in two parts, which reside in different source files. The
first part is machine generated by a database-mapping tool while the second part is manually authored:

public partial class Customer
{
 private int id;
 private string name;
 private string address;
 private List<Order> orders;

public Customer() {
 …
 }
}

public partial class Customer
{
 public void SubmitOrder(Order orderSubmitted) {
 orders.Add(orderSubmitted);
 }

 public bool HasOutstandingOrders() {
 return orders.Count > 0;
 }
}

When the two parts above are compiled together, the resulting code behaves as if the class had been
written as a single unit, as follows:

public class Customer
{
 private int id;
 private string name;
 private string address;
 private List<Order> orders;

 public Customer() {
 …
 }

 public void SubmitOrder(Order orderSubmitted) {
 orders.Add(orderSubmitted);
 }

 public bool HasOutstandingOrders() {
 return orders.Count > 0;
 }
}

end example]

The handling of attributes specified on the type or type parameters of different parts of a partial
declaration is discussed in §22.3.

 Chapter 15 Classes

271

15.3 Class members

15.3.1 General
The members of a class consist of the members introduced by its class-member-declarations and the
members inherited from the direct base class.

class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
finalizer-declaration
static-constructor-declaration
type-declaration

The members of a class are divided into the following categories:

• Constants, which represent constant values associated with the class (§15.4).

• Fields, which are the variables of the class (§15.5).

• Methods, which implement the computations and actions that can be performed by the class (§15.6).

• Properties, which define named characteristics and the actions associated with reading and writing
those characteristics (§15.7).

• Events, which define notifications that can be generated by the class (§15.8).

• Indexers, which permit instances of the class to be indexed in the same way (syntactically) as arrays
(§15.9).

• Operators, which define the expression operators that can be applied to instances of the class (§15.10).

• Instance constructors, which implement the actions required to initialize instances of the class (§15.11)

• Finalizers, which implement the actions to be performed before instances of the class are permanently
discarded (§15.13).

• Static constructors, which implement the actions required to initialize the class itself (§15.12).

• Types, which represent the types that are local to the class (§14.7).

Members that can contain executable code are collectively known as the function members of the class.
The function members of a class are the methods, properties, events, indexers, operators, instance
constructors, finalizers, and static constructors of that class.

A class-declaration creates a new declaration space (§8.3), and the type-parametersand the class-member-
declarations immediately contained by the class-declaration introduce new members into this declaration
space. The following rules apply to class-member-declarations:

• Instance constructors, finalizers, and static constructors shall have the same name as the immediately
enclosing class. All other members shall have names that differ from the name of the immediately
enclosing class.

• The name of a type parameter in the type-parameter-list of a class declaration shall differ from the
names of all other type parameters in the same type-parameter-list and shall differ from the name of
the class and the names of all members of the class.

• The name of a type shall differ from the names of all non-type members declared in the same class. If
two or more type declarations share the same fully qualified name, the declarations shall have the

ECMA-334

272

partial modifier (§15.2.7) and these declarations combine to define a single type. [Note: Since the fully
qualified name of a type declaration encodes the number of type parameters, two distinct types may
share the same name as long as they have different number of type parameters. end note]

• The name of a constant, field, property, or event shall differ from the names of all other members
declared inthe same class.

• The name of a method shall differ from the names of all other non-methods declared in the same class.
In addition, the signature (§8.6) of a method shall differ from the signatures of all other methods
declared in the same class, and two methods declared in the same class shall not have signatures that
differ solely by ref and out.

• The signature of an instance constructor shall differ from the signatures of all other instance
constructors declared in the same class, and two constructors declared in the same class shall not have
signatures that differ solely by ref and out.

• The signature of an indexer shall differ from the signatures of all other indexers declared in the same
class.

• The signature of an operator shall differ from the signatures of all other operators declared in the same
class.

The inherited members of a class (§15.3.4) are not part of the declaration space of a class. [Note: Thus, a
derived class is allowed to declare a member with the same name or signature as an inherited member
(which in effect hides the inherited member). end note]

The set of members of a type declared in multiple parts (§15.2.7) is the union of the members declared in
each part. The bodies of all parts of the type declaration share the same declaration space (§8.3), and the
scope of each member (§8.7) extends to the bodies of all the parts. The accessibility domain of any
member always includes all the parts of the enclosing type; a private member declared in one part is
freely accessible from another part. It is a compile-time error to declare the same member in more than
one part of the type, unless that member is a type having the partial modifier. [Example:

partial class A
{
 int x; // Error, cannot declare x more than once

 partial class Inner // Ok, Inner is a partial type
 {
 int y;
 }
}

partial class A
{
 int x; // Error, cannot declare x more than once

 partial class Inner // Ok, Inner is a partial type
 {
 int z;
 }
}

end example]

Field initialization order can be significant within C# code, and some guarantees are provided, as defined in
§15.5.6.1. Otherwise, the ordering of members within a type is rarely significant, but may be significant
when interfacing with other languages and environments. In these cases, the ordering of members within a
type declared in multiple parts is undefined.

15.3.2 The instance type
Each class declaration has an associated instance type. For a generic class declaration, the instance type is
formed by creating a constructed type (§9.4) from the type declaration, with each of the supplied type
arguments being the corresponding type parameter. Since the instance type uses the type parameters, it
can only be used where the type parameters are in scope; that is, inside the class declaration. The instance

 Chapter 15 Classes

273

type is the type of this for code written inside the class declaration. For non-generic classes, the instance
type is simply the declared class. [Example: The following shows several class declarations along with their
instance types:

class A<T> // instance type: A<T>
{
 class B {} // instance type: A<T>.B

 class C<U> {} // instance type: A<T>.C<U>
}

class D {} // instance type: D

end example]

15.3.3 Members of constructed types
The non-inherited members of a constructed type are obtained by substituting, for each type-parameter in
the member declaration, the corresponding type-argument of the constructed type. The substitution
process is based on the semantic meaning of type declarations, and is not simply textual substitution.

[Example: Given the generic class declaration

class Gen<T,U>
{
 public T[,] a;

 public void G(int i, T t, Gen<U,T> gt) {…}

 public U Prop { get {…} set {…} }

 public int H(double d) {…}
}

the constructed type Gen<int[],IComparable<string>> has the following members:

public int[,][] a;

public void G(int i, int[] t, Gen<IComparable<string>,int[]> gt) {…}

public IComparable<string> Prop { get {…} set {…} }

public int H(double d) {…}

The type of the member a in the generic class declaration Gen is “two-dimensional array of T”, so the type
of the member a in the constructed type above is “two-dimensional array of single-dimensional array of
int”, or int[,][]. end example]

Within instance function members, the type of this is the instance type (§15.3.2) of the containing
declaration.

All members of a generic class can use type parameters from any enclosing class, either directly or as part
of a constructed type. When a particular closed constructed type (§9.4.3) is used at run-time, each use of a
type parameter is replaced with the type argument supplied to the constructed type. [Example:

class C<V>
{
 public V f1;
 public C<V> f2 = null;

 public C(V x) {
 this.f1 = x;
 this.f2 = this;
 }
}

class Application
{
 static void Main() {
 C<int> x1 = new C<int>(1);
 Console.WriteLine(x1.f1); // Prints 1

ECMA-334

274

 C<double> x2 = new C<double>(3.1415);
 Console.WriteLine(x2.f1); // Prints 3.1415
 }
}

end example]

15.3.4 Inheritance
A class inherits the members of its direct base class. Inheritance means that a class implicitly contains all
members of its direct base class, except for the instance constructors, finalizers, and static constructors of
the base class. Some important aspects of inheritance are:

• Inheritance is transitive. If C is derived from B, and B is derived from A, then C inherits the members
declared in B as well as the members declared in A.

• A derived class extends its direct base class. A derived class can add new members to those it inherits,
but it cannot remove the definition of an inherited member.

• Instance constructors, finalizers, and static constructors are not inherited, but all other members are,
regardless of their declared accessibility (§8.5). However, depending on their declared accessibility,
inherited members might not be accessible in a derived class.

• A derived class can hide (§8.7.2.3) inherited members by declaring new members with the same name
or signature. However, hiding an inherited member does not remove that member—it merely makes
that member inaccessible directly through the derived class.

• An instance of a class contains a set of all instance fields declared in the class and its base classes, and
an implicit conversion (§11.2.7) exists from a derived class type to any of its base class types. Thus, a
reference to an instance of some derived class can be treated as a reference to an instance of any of its
base classes.

• A class can declare virtual methods, properties, indexers, and events, and derived classes can override
the implementation of these function members. This enables classes to exhibit polymorphic behavior
wherein the actions performed by a function member invocation vary depending on the run-time type
of the instance through which that function member is invoked.

The inherited members of a constructed class type are the members of the immediate base class type
(§15.2.4.2), which is found by substituting the type arguments of the constructed type for each occurrence
of the corresponding type parameters in the base-class-specification. These members, in turn, are
transformed by substituting, for each type-parameter in the member declaration, the corresponding type-
argument of the base-class-specification. [Example:

class B<U>
{
 public U F(long index) {…}
}

class D<T>: B<T[]>
{
 public T G(string s) {…}
}

In the code above, the constructed type D<int> has a non-inherited member public int G(string s)
obtained by substituting the type argument int for the type parameter T. D<int> also has an inherited
member from the class declaration B. This inherited member is determined by first determining the base
class type B<int[]> of D<int> by substituting int for T in the base class specification B<T[]>. Then, as
a type argument to B, int[] is substituted for U in public U F(long index), yielding the inherited
member public int[] F(long index). end example]

15.3.5 The new modifier
A class-member-declaration is permitted to declare a member with the same name or signature as an
inherited member. When this occurs, the derived class member is said to hide the base class member. See
§8.7.2.3 for a precise specification of when a member hides an inherited member.

 Chapter 15 Classes

275

An inherited member M is considered to be available if M is accessible and there is no other inherited
accessible member N that already hides M. Implicitly hiding an inherited member is not considered an error,
but it does cause the compiler to issue a warning unless the declaration of the derived class member
includes a new modifier to explicitly indicate that the derived member is intended to hide the base
member. If one or more parts of a partial declaration (§15.2.7) of a nested type include the new modifier,
no warning is issued if the nested type hides an available inherited member.

If a new modifier is included in a declaration that doesn’t hide an available inherited member, a warning to
that effect is issued.

15.3.6 Access modifiers
A class-member-declaration can have any one of the five possible kinds of declared accessibility (§8.5.2):
public, protected internal, protected, internal, or private. Except for the protected
internal combination, it is a compile-time error to specify more than one access modifier. When a class-
member-declaration does not include any access modifiers, private is assumed.

15.3.7 Constituent types
Types that are used in the declaration of a member are called the constituent types of that member.
Possible constituent types are the type of a constant, field, property, event, or indexer, the return type of a
method or operator, and the parameter types of a method, indexer, operator, or instance constructor. The
constituent types of a member shall be at least as accessible as that member itself (§8.5.5).

15.3.8 Static and instance members
Members of a class are either static members or instance members. [Note: Generally speaking, it is useful
to think of static members as belonging to classes and instance members as belonging to objects (instances
of classes). end note]

When a field, method, property, event, operator, or constructor declaration includes a static modifier, it
declares a static member. In addition, a constant or type declaration implicitly declares a static member.
Static members have the following characteristics:

• When a static member M is referenced in a member-access (§12.7.5) of the form E.M, E shall denote a
type that has a member M. It is a compile-time error for E to denote an instance.

• A static field in a non-generic class identifies exactly one storage location. No matter how many
instances of a non-generic class are created, there is only ever one copy of a static field. Each distinct
closed constructed type (§9.4.3) has its own set of static fields, regardless of the number of instances
of the closed constructed type.

• A static function member (method, property, event, operator, or constructor) does not operate on a
specific instance, and it is a compile-time error to refer to this in such a function member.

When a field, method, property, event, indexer, constructor, or finalizer declaration does not include a
static modifier, it declares an instance member. (An instance member is sometimes called a non-static
member.) Instance members have the following characteristics:

• When an instance member M is referenced in a member-access (§12.7.5) of the form E.M, E shall
denote an instance of a type that has a member M. It is a binding-time error for E to denote a type.

• Every instance of a class contains a separate set of all instance fields of the class.

• An instance function member (method, property, indexer, instance constructor, or finalizer) operates
on a given instance of the class, and this instance can be accessed as this (§12.7.8).

[Example: The following example illustrates the rules for accessing static and instance members:

class Test
{
 int x;
 static int y;

ECMA-334

276

 void F() {
 x = 1; // Ok, same as this.x = 1
 y = 1; // Ok, same as Test.y = 1
 }

 static void G() {
 x = 1; // Error, cannot access this.x
 y = 1; // Ok, same as Test.y = 1
 }

 static void Main() {
 Test t = new Test();
 t.x = 1; // Ok
 t.y = 1; // Error, cannot access static member through instance
 Test.x = 1; // Error, cannot access instance member through type
 Test.y = 1; // Ok
 }
}

The F method shows that in an instance function member, a simple-name (§12.7.3) can be used to access
both instance members and static members. The G method shows that in a static function member, it is a
compile-time error to access an instance member through a simple-name. The Main method shows that in
a member-access (§12.7.5), instance members shall be accessed through instances, and static members
shall be accessed through types. end example]

15.3.9 Nested types

15.3.9.1 General
A type declared within a class or struct is called a nested type. A type that is declared within a compilation
unit or namespace is called a non-nested type. [Example: In the following example:

using System;

class A
{
 class B
 {
 static void F() {
 Console.WriteLine("A.B.F");
 }
 }
}

class B is a nested type because it is declared within class A, and class A is a non-nested type because it is
declared within a compilation unit. end example]

15.3.9.2 Fully qualified name
The fully qualified name (§8.8.3) for a nested type declarationis S.N where S is the fully qualified name of
the type declarationin which type N is declared and N is the unqualified name (§8.8.2) of the nested type
declaration (including any generic-dimension-specifier (§12.7.12)).

15.3.9.3 Declared accessibility
Non-nested types can have public or internal declared accessibility and have internal declared accessibility
by default. Nested types can have these forms of declared accessibility too, plus one or more additional
forms of declared accessibility, depending on whether the containing type is a class or struct:

• A nested type that is declared in a class can have any of five forms of declared accessibility (public,
protected internal, protected, internal, or private) and, like other class members, defaults to private
declared accessibility.

• A nested type that is declared in a struct can have any of three forms of declared accessibility (public,
internal, or private) and, like other struct members, defaults to private declared accessibility.

[Example: The example

 Chapter 15 Classes

277

public class List
{
 // Private data structure
 private class Node
 {
 public object Data;
 public Node Next;
 public Node(object data, Node next) {
 this.Data = data;
 this.Next = next;
 }
 }

 private Node first = null;
 private Node last = null;

 // Public interface
 public void AddToFront(object o) {…}
 public void AddToBack(object o) {…}
 public object RemoveFromFront() {…}
 public object RemoveFromBack() {…}
 public int Count { get {…} }
}

declares a private nested class Node. end example]

15.3.9.4 Hiding
A nested type may hide (§8.7.2.2) a base member. The new modifier (§15.3.5) is permitted on nested type
declarations so that hiding can be expressed explicitly. [Example: The example

using System;

class Base
{
 public static void M() {
 Console.WriteLine("Base.M");
 }
}

class Derived: Base
{
 new public class M
 {
 public static void F() {
 Console.WriteLine("Derived.M.F");
 }
 }
}

class Test
{
 static void Main() {
 Derived.M.F();
 }
}

shows a nested class M that hides the method M defined in Base. end example]

15.3.9.5 this access
A nested type and its containing type do not have a special relationship with regard to this-access
(§12.7.8). Specifically, this within a nested type cannot be used to refer to instance members of the
containing type. In cases where a nested type needs access to the instance members of its containing type,
access can be provided by providing the this for the instance of the containing type as a constructor
argument for the nested type. [Example: The following example

using System;

ECMA-334

278

class C
{
 int i = 123;
 public void F() {
 Nested n = new Nested(this);
 n.G();
 }

 public class Nested
 {
 C this_c;
 public Nested(C c) {
 this_c = c;
 }
 public void G() {
 Console.WriteLine(this_c.i);
 }
 }
}

class Test
{
 static void Main() {
 C c = new C();
 c.F();
 }
}

shows this technique. An instance of C creates an instance of Nested, and passes its own this to
Nested's constructor in order to provide subsequent access to C's instance members. end example]

15.3.9.6 Access to private and protected members of the containing type
A nested type has access to all of the members that are accessible to its containing type, including
members of the containing type that have private and protected declared accessibility. [Example: The
example

using System;

class C
{
 private static void F() {
 Console.WriteLine("C.F");
 }
 public class Nested
 {
 public static void G() {
 F();
 }
 }
}

class Test
{
 static void Main() {
 C.Nested.G();
 }
}

shows a class C that contains a nested class Nested. Within Nested, the method G calls the static
method F defined in C, and F has private declared accessibility. end example]

A nested type also may access protected members defined in a base type of its containing type. [Example:
In the following code

using System;

 Chapter 15 Classes

279

class Base
{
 protected void F() {
 Console.WriteLine("Base.F");
 }
}

class Derived: Base
{
 public class Nested
 {
 public void G() {
 Derived d = new Derived();
 d.F(); // ok
 }
 }
}

class Test
{
 static void Main() {
 Derived.Nested n = new Derived.Nested();
 n.G();
 }
}

the nested class Derived.Nested accesses the protected method F defined in Derived's base class,
Base, by calling through an instance of Derived. end example]

15.3.9.7 Nested types in generic classes
A generic class declaration may contain nested type declarations. The type parameters of the enclosing
class may be used within the nested types. A nested type declaration may contain additional type
parameters that apply only to the nested type.

Every type declaration contained within a generic class declaration is implicitly a generic type declaration.
When writing a reference to a type nested within a generic type, the containing constructed type, including
its type arguments, shall be named. However, from within the outer class, the nested type may be used
without qualification; the instance type of the outer class may be implicitly used when constructing the
nested type. [Example: The following shows three different correct ways to refer to a constructed type
created from Inner; the first two are equivalent:

class Outer<T>
{
 class Inner<U>
 {
 public static void F(T t, U u) {…}
 }

 static void F(T t) {
 Outer<T>.Inner<string>.F(t, "abc"); // These two statements have
 Inner<string>.F(t, "abc"); // the same effect

 Outer<int>.Inner<string>.F(3, "abc"); // This type is different

 Outer.Inner<string>.F(t, "abc"); // Error, Outer needs type
arg
 }
}

end example]

Although it is bad programming style, a type parameter in a nested type can hide a member or type
parameter declared in the outer type. [Example:

ECMA-334

280

class Outer<T>
{
 class Inner<T> // Valid, hides Outer’s T
 {
 public T t; // Refers to Inner’s T
 }
}

end example]

15.3.10 Reserved member names

15.3.10.1 General
To facilitate the underlying C# run-time implementation, for each source member declaration that is a
property, event, or indexer, the implementation shall reserve two method signatures based on the kind of
the member declaration, its name, and its type (§15.3.10.2, §15.3.10.3, §15.3.10.4). It is a compile-time
error for a program to declare a member whose signature matches a signature reserved by a member
declared in the same scope, even if the underlying run-time implementation does not make use of these
reservations.

The reserved names do not introduce declarations, thus they do not participate in member lookup.
However, a declaration’s associated reserved method signatures do participate in inheritance (§15.3.4),
and can be hidden with the new modifier (§15.3.5).

[Note: The reservation of these names serves three purposes:

1. To allow the underlying implementation to use an ordinary identifier as a method name for get or set
access to the C# language feature.

2. To allow other languages to interoperate using an ordinary identifier as a method name for get or set
access to the C# language feature.

3. To help ensure that the source accepted by one conforming compiler is accepted by another, by
making the specifics of reserved member names consistent across all C# implementations.

end note]

The declaration of a finalizer (§15.13) also causes a signature to be reserved (§15.3.10.5).

15.3.10.2 Member names reserved for properties
For a property P (§15.7) of type T, the following signatures are reserved:

T get_P();
void set_P(T value);

Both signatures are reserved, even if the property is read-only or write-only.

[Example: In the following code

using System;

class A
{
 public int P {
 get { return 123; }
 }
}

class B: A
{
 new public int get_P() {
 return 456;
 }
 new public void set_P(int value) {
 }
}

 Chapter 15 Classes

281

class Test
{
 static void Main() {
 B b = new B();
 A a = b;
 Console.WriteLine(a.P);
 Console.WriteLine(b.P);
 Console.WriteLine(b.get_P());
 }
}

a class A defines a read-only property P, thus reserving signatures for get_P and set_P methods. A class B
derives from A and hides both of these reserved signatures. The example produces the output:

123
123
456

 end example]

15.3.10.3 Member names reserved for events
For an event E (§15.8) of delegate type T, the following signatures are reserved:

void add_E(T handler);
void remove_E(T handler);

15.3.10.4 Member names reserved for indexers
For an indexer (§15.9) of type T with parameter-list L, the following signatures are reserved:

T get_Item(L);
void set_Item(L, T value);

Both signatures are reserved, even if the indexer is read-only or write-only.

Furthermore the member name Item is reserved.

15.3.10.5 Member names reserved for finalizers
For a class containing a finalizer (§15.13), the following signature is reserved:

void Finalize();

15.4 Constants
A constant is a class member that represents a constant value: a value that can be computed at compile-
time. A constant-declaration introduces one or more constants of a given type.

constant-declaration:
attributesopt constant-modifiersopt const type constant-declarators ;

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

constant-modifier:
new
public
protected

internal
private

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

ECMA-334

282

A constant-declaration may include a set of attributes (§22), a new modifier (§15.3.5), and a valid
combination of the four access modifiers (§15.3.6). The attributes and modifiers apply to all of the
members declared by the constant-declaration. Even though constants are considered static members, a
constant-declaration neither requires nor allows a static modifier. It is an error for the same modifier to
appear multiple times in a constant declaration.

The type of a constant-declaration specifies the type of the members introduced by the declaration. The
type is followed by a list of constant-declarators, each of which introduces a new member. A constant-
declarator consists of an identifier that names the member, followed by an “=” token, followed by a
constant-expression (§12.20) that gives the value of the member.

The type specified in a constant declaration shall be sbyte, byte, short, ushort, int, uint, long,
ulong, char, float, double, decimal, bool, string, an enum-type, or a reference-type. Each
constant-expression shall yield a value of the target type or of a type that can be converted to the target
type by an implicit conversion (§11.2).

The type of a constant shall be at least as accessible as the constant itself (§8.5.5).

The value of a constant is obtained in an expression using a simple-name (§12.7.3) or a member-access
(§12.7.5).

A constant can itself participate in a constant-expression. Thus, a constant may be used in any construct
that requires a constant-expression. [Note: Examples of such constructs include case labels, goto case
statements, enum member declarations, attributes, and other constant declarations. end note]

[Note: As described in §12.20, a constant-expression is an expression that can be fully evaluated at
compile-time. Since the only way to create a non-null value of a reference-type other than string is to
apply the new operator, and since the new operator is not permitted in a constant-expression, the only
possible value for constants of reference-types other than string is null. end note]

When a symbolic name for a constant value is desired, but when the type of that value is not permitted in
a constant declaration, or when the value cannot be computed at compile-time by a constant-expression, a
readonly field (§15.5.3) may be used instead. [Note: The versioning semantics of const and readonly
differ (§15.5.3.3). end-note]

A constant declaration that declares multiple constants is equivalent to multiple declarations of single
constants with the same attributes, modifiers, and type. [Example:

class A
{
 public const double X = 1.0, Y = 2.0, Z = 3.0;
}

is equivalent to

class A
{
 public const double X = 1.0;
 public const double Y = 2.0;
 public const double Z = 3.0;
}

end example]

Constants are permitted to depend on other constants within the same program as long as the
dependencies are not of a circular nature. The compiler automatically arranges to evaluate the constant
declarations in the appropriate order. [Example: In the following code

class A
{
 public const int X = B.Z + 1;
 public const int Y = 10;
}

 Chapter 15 Classes

283

class B
{
 public const int Z = A.Y + 1;
}

the compiler first evaluates A.Y, then evaluates B.Z, and finally evaluates A.X, producing the values 10,
11, and 12. end example] Constant declarations may depend on constants from other programs, but such
dependencies are only possible in one direction. [Example: Referring to the example above, if A and B were
declared in separate programs, it would be possible for A.X to depend on B.Z, but B.Z could then not
simultaneously depend on A.Y. end example]

15.5 Fields

15.5.1 General
A field is a member that represents a variable associated with an object or class. A field-declaration
introduces one or more fields of a given type.

field-declaration:
attributesopt field-modifiersopt type variable-declarators ;

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected

internal
private

static

readonly

volatile

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializer

A field-declaration may include a set of attributes (§22), a new modifier (§15.3.5), a valid combination of
the four access modifiers (§15.3.6), and a static modifier (§15.5.2). In addition, a field-declaration may
include a readonly modifier (§15.5.3) or a volatile modifier (§15.5.4), but not both. The attributes and
modifiers apply to all of the members declared by the field-declaration. It is an error for the same modifier
to appear multiple times in a field declaration.

The type of a field-declaration specifies the type of the members introduced by the declaration. The type is
followed by a list of variable-declarators, each of which introduces a new member. A variable-declarator
consists of an identifier that names that member, optionally followed by an “=” token and a variable-
initializer (§15.5.6) that gives the initial value of that member.

The type of a field shall be at least as accessible as the field itself (§8.5.5).

The value of a field is obtained in an expression using a simple-name (§12.7.3), a member-access (§12.7.5)
or a base-access (§12.7.9). The value of a non-readonly field is modified using an assignment (§12.18). The

ECMA-334

284

value of a non-readonly field can be both obtained and modified using postfix increment and decrement
operators (§12.7.10) and prefix increment and decrement operators (§12.8.6).

A field declaration that declares multiple fields is equivalent to multiple declarations of single fields with
the same attributes, modifiers, and type. [Example:

class A
{
 public static int X = 1, Y, Z = 100;
}

is equivalent to

class A
{
 public static int X = 1;
 public static int Y;
 public static int Z = 100;
}

end example]

15.5.2 Static and instance fields
When a field declaration includes a static modifier, the fields introduced by the declaration are static
fields. When no static modifier is present, the fields introduced by the declaration are instance fields.
Static fields and instance fields are two of the several kinds of variables (§10) supported by C#, and at times
they are referred to as static variables and instance variables, respectively.

As explained in §15.3.8, each instance of a class contains a complete set of the instance fields of the class,
while there is only one set of static fields for each non-generic class or closed constructed type, regardless
of the number of instances of the class or closed constructed type.

15.5.3 Readonly fields

15.5.3.1 General
When a field-declaration includes a readonly modifier, the fields introduced by the declaration are
readonly fields. Direct assignments to readonly fields can only occur as part of that declaration or in an
instance constructor or static constructor in the same class. (A readonly field can be assigned to multiple
times in these contexts.) Specifically, direct assignments to a readonly field are permitted only in the
following contexts:

• In the variable-declarator that introduces the field (by including a variable-initializer in the declaration).

• For an instance field, in the instance constructors of the class that contains the field declaration; for a
static field, in the static constructor of the class that contains the field declaration. These are also the
only contexts in which it is valid to pass a readonly field as an out or ref parameter.

Attempting to assign to a readonly field or pass it as an out or ref parameter in any other context is a
compile-time error.

15.5.3.2 Using static readonly fields for constants
A static readonly field is useful when a symbolic name for a constant value is desired, but when the
type of the value is not permitted in a const declaration, or when the value cannot be computed at
compile-time. [Example: In the following code

public class Color
{
 public static readonly Color Black = new Color(0, 0, 0);
 public static readonly Color White = new Color(255, 255, 255);
 public static readonly Color Red = new Color(255, 0, 0);
 public static readonly Color Green = new Color(0, 255, 0);
 public static readonly Color Blue = new Color(0, 0, 255);

 Chapter 15 Classes

285

 private byte red, green, blue;

 public Color(byte r, byte g, byte b) {
 red = r;
 green = g;
 blue = b;
 }
}

the Black, White, Red, Green, and Blue members cannot be declared as const members because their
values cannot be computed at compile-time. However, declaring them static readonly instead has
much the same effect. end example]

15.5.3.3 Versioning of constants and static readonly fields
Constants and readonly fields have different binary versioning semantics. When an expression references a
constant, the value of the constant is obtained at compile-time, but when an expression references a
readonly field, the value of the field is not obtained until run-time. [Example: Consider an application that
consists of two separate programs:

namespace Program1
{
 public class Utils
 {
 public static readonly int X = 1;
 }
}

and

using System;

namespace Program2
{
 class Test
 {
 static void Main() {
 Console.WriteLine(Program1.Utils.X);
 }
 }
}

The Program1 and Program2 namespaces denote two programs that are compiled separately. Because
Program1.Utils.X is declared as a static readonly field, the value output by the Console.WriteLine
statement is not known at compile-time, but rather is obtained at run-time. Thus, if the value of X is
changed and Program1 is recompiled, the Console.WriteLine statement will output the new value
even if Program2 isn’t recompiled. However, had X been a constant, the value of X would have been
obtained at the time Program2 was compiled, and would remain unaffected by changes in Program1
until Program2 is recompiled. end example]

15.5.4 Volatile fields
When a field-declaration includes a volatile modifier, the fields introduced by that declaration are
volatile fields. For non-volatile fields, optimization techniques that reorder instructions can lead to
unexpected and unpredictable results in multi-threaded programs that access fields without
synchronization such as that provided by the lock-statement (§13.13). These optimizations can be
performed by the compiler, by the run-time system, or by hardware. For volatile fields, such reordering
optimizations are restricted:

• A read of a volatile field is called a volatile read. A volatile read has “acquire semantics”; that is, it is
guaranteed to occur prior to any references to memory that occur after it in the instruction sequence.

• A write of a volatile field is called a volatile write. A volatile write has “release semantics”; that is, it is
guaranteed to happen after any memory references prior to the write instruction in the instruction
sequence.

ECMA-334

286

These restrictions ensure that all threads will observe volatile writes performed by any other thread in the
order in which they were performed. A conforming implementation is not required to provide a single total
ordering of volatile writes as seen from all threads of execution. The type of a volatile field shall be one of
the following:

• A reference-type.

• A type-parameter that is known to be a reference type (§15.2.5).

• The type byte, sbyte, short, ushort, int, uint, char, float, bool, System.IntPtr, or
System.UIntPtr.

• An enum-type having an enum base type of byte, sbyte, short, ushort, int, or uint.

[Example: The example

using System;
using System.Threading;

class Test
{
 public static int result;
 public static volatile bool finished;

 static void Thread2() {
 result = 143;
 finished = true;
 }

 static void Main() {
 finished = false;
 // Run Thread2() in a new thread
 new Thread(new ThreadStart(Thread2)).Start();
 // Wait for Thread2 to signal that it has a result by setting
 // finished to true.
 for (;;) {
 if (finished) {
 Console.WriteLine("result = {0}", result);
 return;
 }
 }
 }
}

produces the output:

result = 143

In this example, the method Main starts a new thread that runs the method Thread2. This method stores
a value into a non-volatile field called result, then stores true in the volatile field finished. The main
thread waits for the field finished to be set to true, then reads the field result. Since finished has
been declared volatile, the main thread shall read the value 143 from the field result. If the field
finished had not been declared volatile, then it would be permissible for the store to result to be
visible to the main thread after the store to finished, and hence for the main thread to read the value 0
from the field result. Declaring finished as a volatile field prevents any such inconsistency. end
example]

15.5.5 Field initialization
The initial value of a field, whether it be a static field or an instance field, is the default value (§10.3) of the
field’s type. It is not possible to observe the value of a field before this default initialization has occurred,
and a field is thus never “uninitialized”. [Example: The example

using System;

class Test
{
 static bool b;
 int i;

 Chapter 15 Classes

287

 static void Main() {
 Test t = new Test();
 Console.WriteLine("b = {0}, i = {1}", b, t.i);
 }
}

produces the output

b = False, i = 0

because b and i are both automatically initialized to default values. end example]

15.5.6 Variable initializers

15.5.6.1 General
Field declarations may include variable-initializers. For static fields, variable initializers correspond to
assignment statements that are executed during class initialization. For instance fields, variable initializers
correspond to assignment statements that are executed when an instance of the class is created.

[Example: The example

using System;

class Test
{
 static double x = Math.Sqrt(2.0);
 int i = 100;
 string s = "Hello";

 static void Main() {
 Test a = new Test();
 Console.WriteLine("x = {0}, i = {1}, s = {2}", x, a.i, a.s);
 }
}

produces the output

x = 1.4142135623731, i = 100, s = Hello

because an assignment to x occurs when static field initializers execute and assignments to i and s occur
when the instance field initializers execute. end example]

The default value initialization described in §15.5.5 occurs for all fields, including fields that have variable
initializers. Thus, when a class is initialized, all static fields in that class are first initialized to their default
values, and then the static field initializers are executed in textual order. Likewise, when an instance of a
class is created, all instance fields in that instance are first initialized to their default values, and then the
instance field initializers are executed in textual order. When there are field declarations in multiple partial
type declarations for the same type, the order of the parts is unspecified. However, within each part the
field initializers are executed in order.

It is possible for static fields with variable initializers to be observed in their default value state. [Example:
However, this is strongly discouraged as a matter of style. The example

using System;

class Test
{
 static int a = b + 1;
 static int b = a + 1;

 static void Main() {
 Console.WriteLine("a = {0}, b = {1}", a, b);
 }
}

exhibits this behavior. Despite the circular definitions of a and b, the program is valid. It results in the
output

a = 1, b = 2

ECMA-334

288

because the static fields a and b are initialized to 0 (the default value for int) before their initializers are
executed. When the initializer for a runs, the value of b is zero, and so a is initialized to 1. When the
initializer for b runs, the value of a is already 1, and so b is initialized to 2. end example]

15.5.6.2 Static field initialization
The static field variable initializers of a class correspond to a sequence of assignments that are executed in
the textual order in which they appear in the class declaration (§15.5.6.1). Within a partial class, the
meaning of "textual order" is specified by §15.5.6.1. If a static constructor (§15.12) exists in the class,
execution of the static field initializers occurs immediately prior to executing that static constructor.
Otherwise, the static field initializers are executed at an implementation-dependent time prior to the first
use of a static field of that class. [Example: The example

using System;

class Test
{
 static void Main() {
 Console.WriteLine("{0} {1}", B.Y, A.X);
 }
 public static int F(string s) {
 Console.WriteLine(s);
 return 1;
 }
}

class A
{
 public static int X = Test.F("Init A");
}

class B
{
 public static int Y = Test.F("Init B");
}

might produce either the output:

Init A
Init B
1 1

or the output:

Init B
Init A
1 1

because the execution of X's initializer and Y's initializer could occur in either order; they are only
constrained to occur before the references to those fields. However, in the example:

using System;

class Test
{
 static void Main() {
 Console.WriteLine("{0} {1}", B.Y, A.X);
 }
 public static int F(string s) {
 Console.WriteLine(s);
 return 1;
 }
}

class A
{
 static A() {}
 public static int X = Test.F("Init A");
}

 Chapter 15 Classes

289

class B
{
 static B() {}
 public static int Y = Test.F("Init B");
}

the output shall be:

Init B
Init A
1 1

because the rules for when static constructors execute (as defined in §15.12) provide that B's static
constructor (and hence B's static field initializers) shall run before A's static constructor and field
initializers. end example]

15.5.6.3 Instance field initialization
The instance field variable initializers of a class correspond to a sequence of assignments that are executed
immediately upon entry to any one of the instance constructors (§15.11.3) of that class. Within a partial
class, the meaning of "textual order" is specified by §15.5.6.1. The variable initializers are executed in the
textual order in which they appear in the class declaration (§15.5.6.1). The class instance creation and
initialization process is described further in §15.11.

A variable initializer for an instance field cannot reference the instance being created. Thus, it is a compile-
time error to reference this in a variable initializer, as it is a compile-time error for a variable initializer to
reference any instance member through a simple-name. [Example: In the following code

class A
{
 int x = 1;
 int y = x + 1; // Error, reference to instance member of this
}

the variable initializer for y results in a compile-time error because it references a member of the instance
being created. end example]

15.6 Methods

15.6.1 General
A method is a member that implements a computation or action that can be performed by an object or
class. Methods are declared using method-declarations:

method-declaration:
method-header method-body

method-header:
attributesopt method-modifiersopt partialopt return-type member-name
 type-parameter-listopt

 (formal-parameter-listopt) type-parameter-constraints-clausesopt

method-modifiers:
method-modifier
method-modifiers method-modifier

ECMA-334

290

method-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

async

return-type:
type
void

member-name:
identifier
interface-type . identifier

method-body:
block
;

A method-declaration may include a set of attributes (§22) and a valid combination of the four access
modifiers (§15.3.6), the new (§15.3.5), static (§15.6.3), virtual (§15.6.4), override (§15.6.5), sealed
(§15.6.6), abstract (§15.6.7), extern (§15.6.8) and async (§15.15) modifiers.

A declaration has a valid combination of modifiers if all of the following are true:

• The declaration includes a valid combination of access modifiers (§15.3.6).

• The declaration does not include the same modifier multiple times.

• The declaration includes at most one of the following modifiers: static, virtual, and override.

• The declaration includes at most one of the following modifiers: new and override.

• If the declaration includes the abstract modifier, then the declaration does not include any of the
following modifiers: static, virtual, sealed, or extern.

• If the declaration includes the private modifier, then the declaration does not include any of the
following modifiers: virtual, override, or abstract.

• If the declaration includes the sealed modifier, then the declaration also includes the override
modifier.

• If the declaration includes the partial modifier, then it does not include any of the following
modifiers: new, public, protected, internal, private, virtual, sealed, override,
abstract, or extern.

The return-type of a method declaration specifies the type of the value computed and returned by the
method. The return-type is void if the method does not return a value. If the declaration includes the
partial modifier, then the return type shall be void.

A generic method is a method whose declaration includes a type-parameter-list. This specifies the type
parameters for the method. The optional type-parameter-constraints-clauses specify the constraints for
the type parameters. A method-declaration shall not have type-parameter-constraints-clauses unless it also
has a type-parameter-list. A method-declaration for an explicit interface member implementation shall not
have any type-parameter-constraints-clauses. A generic method-declaration for an explicit interface
member implementation inherits any constraints from the constraints on the interface method. Similarly, a
method declaration with the override modifier shall not have any type-parameter-constraints-clauses

 Chapter 15 Classes

291

and the constraints of the method’s type parameters are inherited from the virtual method being
overridden.The member-name specifies the name of the method. Unless the method is an explicit interface
member implementation (§18.6.2), the member-name is simply an identifier. For an explicit interface
member implementation, the member-name consists of an interface-type followed by a “.” and an
identifier. In this case, the declaration shall include no modifiers other than (possibly) extern or async.

The optional formal-parameter-list specifies the parameters of the method (§15.6.2).

The return-type and each of the types referenced in the formal-parameter-list of a method shall be at least
as accessible as the method itself (§8.5.5).

For abstract and extern methods, the method-body consists simply of a semicolon. For partial
methods the method-body may consist of either a semicolon or a block. For all other methods, the method-
body consists of a block, which specifies the statements to execute when the method is invoked.

If the method-body consists of a semicolon, the declaration shall not include the async modifier.

The name, the number of type parameters, and the formal parameter list of a method define the signature
(§8.6) of the method. Specifically, the signature of a method consists of its name, the number of its type
parameters, and the number, parameter-mode-modifiers (§15.6.2.1), and types of its formal parameters.
The return type is not part of a method’s signature, nor are the names of the formal parameters, the
names of the type parameters, or the constraints. When a formal parameter type references a type
parameter of the method, the ordinal position of the type parameter (not the name of the type parameter)
is used for type equivalence.

The name of a method shall differ from the names of all other non-methods declared in the same class. In
addition, the signature of a method shall differ from the signatures of all other methods declared in the
same class, and two methods declared in the same class may not have signatures that differ solely by ref
and out.

The method’s type-parameters are in scope throughout the method-declaration, and can be used to form
types throughout that scope in return-type, method-body, and type-parameter-constraints-clauses but not
in attributes.

All formal parameters and type parameters shall have different names.

15.6.2 Method parameters

15.6.2.1 General
The parameters of a method, if any, are declared by the method’s formal-parameter-list.

formal-parameter-list:
fixed-parameters
fixed-parameters , parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters , fixed-parameter

fixed-parameter:
attributesopt parameter-modifieropt type identifier default-argumentopt

default-argument:
= expression

parameter-modifier:
parameter-mode-modifier
this

ECMA-334

292

parameter-mode-modifier:
ref

out

parameter-array:
attributesopt params array-type identifier

The formal parameter list consists of one or more comma-separated parameters of which only the last may
be a parameter-array.

A fixed-parameter consists of an optional set of attributes (§22); an optional ref, out, or this modifier; a
type; an identifier; and an optional default-argument. Each fixed-parameter declares a parameter of the
given type with the given name. The this modifier designates the method as an extension method and is
only allowed on the first parameter of a static method in a non-generic, non-nested static class. Extension
methods are further described in §15.6.10. A fixed-parameter with a default-argument is known as an
optional parameter, whereas a fixed-parameter without a default-argument is a required parameter. A
required parameter may not appear after an optional parameter in a formal-parameter-list.

A parameter with a ref, out or this modifier cannot have a default-argument. The expression in a
default-argument shall be one of the following:

• a constant-expression

• an expression of the form new S() where S is a value type

• an expression of the form default(S) where S is a value type

The expression shall be implicitly convertible by an identity or nullable conversion to the type of the
parameter.

If optional parameters occur in an implementing partial method declaration (§15.6.9), an explicit interface
member implementation (§18.6.2), a single-parameter indexer declaration (§15.9), or in an operator
declaration (§15.10.1) the compiler should give a warning, since these members can never be invoked in a
way that permits arguments to be omitted.

A parameter-array consists of an optional set of attributes (§22), a params modifier, an array-type, and an
identifier. A parameter array declares a single parameter of the given array type with the given name. The
array-type of a parameter array shall be a single-dimensional array type (§17.2). In a method invocation, a
parameter array permits either a single argument of the given array type to be specified, or it permits zero
or more arguments of the array element type to be specified. Parameter arrays are described further in
§15.6.2.5.

A parameter-array may occur after an optional parameter, but cannot have a default value – the omission
of arguments for a parameter-array would instead result in the creation of an empty array.

[Example: The following illustrates different kinds of parameters:

public void M(
 ref int i,
 decimal d,
 bool b = false,
 bool? n = false,
 string s = "Hello",
 object o = null,
 T t = default(T),
 params int[] a
) { }

In the formal-parameter-list for M, i is a required ref parameter, d is a required value parameter, b, s, o
and t are optional value parameters and a is a parameter array. end example]

A method declaration creates a separate declaration space (§8.3) for parameters and type parameters.
Names are introduced into this declaration space by the type parameter list and the formal parameter list

 Chapter 15 Classes

293

of the method. The body of the method, if any, is considered to be nested within this declaration space. It
is an error for two members of a method declaration space to have the same name. It is an error for the
method declaration space and the local variable declaration space of a nested declaration space to contain
elements with the same name.

A method invocation (§12.7.6.2) creates a copy, specific to that invocation, of the formal parameters and
local variables of the method, and the argument list of the invocation assigns values or variable references
to the newly created formal parameters. Within the block of a method, formal parameters can be
referenced by their identifiers in simple-name expressions (§12.7.3).

There are four kinds of formal parameters:

• Value parameters, which are declared without any modifiers.

• Reference parameters, which are declared with the ref modifier.

• Output parameters, which are declared with the out modifier.

• Parameter arrays, which are declared with the params modifier.

[Note: As described in §8.6, the ref and out modifiers are part of a method’s signature, but the params
modifier is not. end note]

15.6.2.2 Value parameters
A parameter declared with no modifiers is a value parameter. A value parameter corresponds to a local
variable that gets its initial value from the corresponding argument supplied in the method invocation.

When a formal parameter is a value parameter, the corresponding argument in a method invocation shall
be an expression that is implicitly convertible (§11.2) to the formal parameter type.

A method is permitted to assign new values to a value parameter. Such assignments only affect the local
storage location represented by the value parameter—they have no effect on the actual argument given in
the method invocation.

15.6.2.3 Reference parameters
A parameter declared with a ref modifier is a reference parameter. Unlike a value parameter, a reference
parameter does not create a new storage location. Instead, a reference parameter represents the same
storage location as the variable given as the argument in the method invocation.

When a formal parameter is a reference parameter, the corresponding argument in a method invocation
shall consist of the keyword ref followed by a variable-reference (§10.5) of the same type as the formal
parameter. A variable shall be definitely assigned before it can be passed as a reference parameter.

Within a method, a reference parameter is always considered definitely assigned.

A method declared as an iterator (§15.14) may not have reference parameters.

[Example: The example

using System;

class Test
{
 static void Swap(ref int x, ref int y) {
 int temp = x;
 x = y;
 y = temp;
 }

 static void Main() {
 int i = 1, j = 2;
 Swap(ref i, ref j);
 Console.WriteLine("i = {0}, j = {1}", i, j);
 }
}

ECMA-334

294

produces the output

i = 2, j = 1

For the invocation of Swap in Main, x represents i and y represents j. Thus, the invocation has the effect
of swapping the values of i and j. end example]

In a method that takes reference parameters, it is possible for multiple names to represent the same
storage location. [Example: In the following code

class A
{
 string s;

 void F(ref string a, ref string b) {
 s = "One";
 a = "Two";
 b = "Three";
 }

 void G() {
 F(ref s, ref s);
 }
}

the invocation of F in G passes a reference to s for both a and b. Thus, for that invocation, the names s, a,
and b all refer to the same storage location, and the three assignments all modify the instance field s. end
example]

15.6.2.4 Output parameters
A parameter declared with an out modifier is an output parameter. Similar to a reference parameter, an
output parameter does not create a new storage location. Instead, an output parameter represents the
same storage location as the variable given as the argument in the method invocation.

When a formal parameter is an output parameter, the corresponding argument in a method invocation
shall consist of the keyword out followed by a variable-reference (§10.5) of the same type as the formal
parameter. A variable need not be definitely assigned before it can be passed as an output parameter, but
following an invocation where a variable was passed as an output parameter, the variable is considered
definitely assigned.

Within a method, just like a local variable, an output parameter is initially considered unassigned and shall
be definitely assigned before its value is used.

Every output parameter of a method shall be definitely assigned before the method returns.

A method declared as a partial method (§15.6.9) or an iterator (§15.14) may not have output parameters.

Output parameters are typically used in methods that produce multiple return values. [Example:

using System;

class Test
{
 static void SplitPath(string path, out string dir, out string name) {
 int i = path.Length;
 while (i > 0) {
 char ch = path[i – 1];
 if (ch == '\\' || ch == '/' || ch == ':') break;
 i--;
 }
 dir = path.Substring(0, i);
 name = path.Substring(i);
 }

 Chapter 15 Classes

295

 static void Main() {
 string dir, name;
 SplitPath("c:\\Windows\\System\\hello.txt", out dir, out name);
 Console.WriteLine(dir);
 Console.WriteLine(name);
 }
}

The example produces the output:

c:\Windows\System\
hello.txt

Note that the dir and name variables can be unassigned before they are passed to SplitPath, and that
they are considered definitely assigned following the call. end example]

15.6.2.5 Parameter arrays
A parameter declared with a params modifier is a parameter array. If a formal parameter list includes a
parameter array, it shall be the last parameter in the list and it shall be of a single-dimensional array type.
[Example: The types string[] and string[][] can be used as the type of a parameter array, but the
type string[,] can not. end example] It is not possible to combine the params modifier with the
modifiers ref and out.

A parameter array permits arguments to be specified in one of two ways in a method invocation:

• The argument given for a parameter array can be a single expression that is implicitly convertible
(§11.2) to the parameter array type. In this case, the parameter array acts precisely like a value
parameter.

• Alternatively, the invocation can specify zero or more arguments for the parameter array, where each
argument is an expression that is implicitly convertible (§11.2) to the element type of the parameter
array. In this case, the invocation creates an instance of the parameter array type with a length
corresponding to the number of arguments, initializes the elements of the array instance with the
given argument values, and uses the newly created array instance as the actual argument.

Except for allowing a variable number of arguments in an invocation, a parameter array is precisely
equivalent to a value parameter (§15.6.2.2) of the same type.

[Example: The example

using System;

class Test
{
 static void F(params int[] args) {
 Console.Write("Array contains {0} elements:", args.Length);
 foreach (int i in args)
 Console.Write(" {0}", i);
 Console.WriteLine();
 }

 static void Main() {
 int[] arr = {1, 2, 3};
 F(arr);
 F(10, 20, 30, 40);
 F();
 }
}

produces the output

Array contains 3 elements: 1 2 3
Array contains 4 elements: 10 20 30 40
Array contains 0 elements:

The first invocation of F simply passes the array arr as a value parameter. The second invocation of F
automatically creates a four-element int[] with the given element values and passes that array instance

ECMA-334

296

as a value parameter. Likewise, the third invocation of F creates a zero-element int[] and passes that
instance as a value parameter. The second and third invocations are precisely equivalent to writing:

F(new int[] {10, 20, 30, 40});
F(new int[] {});

end example]

When performing overload resolution, a method with a parameter array might be applicable, either in its
normal form or in its expanded form (§12.6.4.2). The expanded form of a method is available only if the
normal form of the method is not applicable and only if an applicable method with the same signature as
the expanded form is not already declared in the same type.

[Example: The example

using System;

class Test
{
 static void F(params object[] a) {
 Console.WriteLine("F(object[])");
 }

 static void F() {
 Console.WriteLine("F()");
 }

 static void F(object a0, object a1) {
 Console.WriteLine("F(object,object)");
 }

 static void Main() {
 F();
 F(1);
 F(1, 2);
 F(1, 2, 3);
 F(1, 2, 3, 4);
 }
}

produces the output

F();
F(object[]);
F(object,object);
F(object[]);
F(object[]);

In the example, two of the possible expanded forms of the method with a parameter array are already
included in the class as regular methods. These expanded forms are therefore not considered when
performing overload resolution, and the first and third method invocations thus select the regular
methods. When a class declares a method with a parameter array, it is not uncommon to also include
some of the expanded forms as regular methods. By doing so, it is possible to avoid the allocation of an
array instance that occurs when an expanded form of a method with a parameter array is invoked. end
example]

When the type of a parameter array is object[], a potential ambiguity arises between the normal form of
the method and the expanded form for a single object parameter. The reason for the ambiguity is that an
object[] is itself implicitly convertible to type object. The ambiguity presents no problem, however,
since it can be resolved by inserting a cast if needed.

[Example: The example

using System;

 Chapter 15 Classes

297

class Test
{
 static void F(params object[] args) {
 foreach (object o in args) {
 Console.Write(o.GetType().FullName);
 Console.Write(" ");
 }
 Console.WriteLine();
 }

 static void Main() {
 object[] a = {1, "Hello", 123.456};
 object o = a;
 F(a);
 F((object)a);
 F(o);
 F((object[])o);
 }
}

produces the output

System.Int32 System.String System.Double
System.Object[]
System.Object[]
System.Int32 System.String System.Double

In the first and last invocations of F, the normal form of F is applicable because an implicit conversion exists
from the argument type to the parameter type (both are of type object[]). Thus, overload resolution
selects the normal form of F, and the argument is passed as a regular value parameter. In the second and
third invocations, the normal form of F is not applicable because no implicit conversion exists from the
argument type to the parameter type (type object cannot be implicitly converted to type object[]).
However, the expanded form of F is applicable, so it is selected by overload resolution. As a result, a one-
element object[] is created by the invocation, and the single element of the array is initialized with the
given argument value (which itself is a reference to an object[]). end example]

15.6.3 Static and instance methods
When a method declaration includes a static modifier, that method is said to be a static method. When
no static modifier is present, the method is said to be an instance method.

A static method does not operate on a specific instance, and it is a compile-time error to refer to this in a
static method.

An instance method operates on a given instance of a class, and that instance can be accessed as this
(§12.7.8).

The differences between static and instance members are discussed further in §15.3.8.

15.6.4 Virtual methods
When an instance method declaration includes a virtual modifier, that method is said to be a virtual
method. When no virtual modifier is present, the method is said to be a non-virtual method.

The implementation of a non-virtual method is invariant: The implementation is the same whether the
method is invoked on an instance of the class in which it is declared or an instance of a derived class. In
contrast, the implementation of a virtual method can be superseded by derived classes. The process of
superseding the implementation of an inherited virtual method is known as overriding that method
(§15.6.5).

In a virtual method invocation, the run-time type of the instance for which that invocation takes place
determines the actual method implementation to invoke. In a non-virtual method invocation, the compile-
time type of the instance is the determining factor. In precise terms, when a method named N is invoked

ECMA-334

298

with an argument list A on an instance with a compile-time type C and a run-time type R (where R is either
C or a class derived from C), the invocation is processed as follows:

• At binding-time, overload resolution is applied to C, N, and A, to select a specific method M from the set
of methods declared in and inherited by C. This is described in §12.7.6.2.

• Then at run-time:

o If M is a non-virtual method, M is invoked.
o Otherwise, M is a virtual method, and the most derived implementation of M with respect to R is

invoked.

For every virtual method declared in or inherited by a class, there exists a most derived implementation of
the method with respect to that class. The most derived implementation of a virtual method M with respect
to a class R is determined as follows:

• If R contains the introducing virtual declaration of M, then this is the most derived implementation
of M with respect to R.

• Otherwise, if R contains an override of M, then this is the most derived implementation of M with
respect to R.

• Otherwise, the most derived implementation of M with respect to R is the same as the most derived
implementation of M with respect to the direct base class of R.

[Example: The following example illustrates the differences between virtual and non-virtual methods:

using System;

class A
{
 public void F() { Console.WriteLine("A.F"); }
 public virtual void G() { Console.WriteLine("A.G"); }
}

class B: A
{
 new public void F() { Console.WriteLine("B.F"); }
 public override void G() { Console.WriteLine("B.G"); }
}

class Test
{
 static void Main() {
 B b = new B();
 A a = b;
 a.F();
 b.F();
 a.G();
 b.G();
 }
}

In the example, A introduces a non-virtual method F and a virtual method G. The class B introduces a new
non-virtual method F, thus hiding the inherited F, and also overrides the inherited method G. The example
produces the output:

A.F
B.F
B.G
B.G

Notice that the statement a.G() invokes B.G, not A.G. This is because the run-time type of the instance
(which is B), not the compile-time type of the instance (which is A), determines the actual method
implementation to invoke. end example]

 Chapter 15 Classes

299

Because methods are allowed to hide inherited methods, it is possible for a class to contain several virtual
methods with the same signature. This does not present an ambiguity problem, since all but the most
derived method are hidden. [Example: In the following code

using System;

class A
{
 public virtual void F() { Console.WriteLine("A.F"); }
}

class B: A
{
 public override void F() { Console.WriteLine("B.F"); }
}

class C: B
{
 new public virtual void F() { Console.WriteLine("C.F"); }
}

class D: C
{
 public override void F() { Console.WriteLine("D.F"); }
}

class Test
{
 static void Main() {
 D d = new D();
 A a = d;
 B b = d;
 C c = d;
 a.F();
 b.F();
 c.F();
 d.F();
 }
}

the C and D classes contain two virtual methods with the same signature: The one introduced by A and the
one introduced by C. The method introduced by C hides the method inherited from A. Thus, the override
declaration in D overrides the method introduced by C, and it is not possible for D to override the method
introduced by A. The example produces the output:

B.F
B.F
D.F
D.F

Note that it is possible to invoke the hidden virtual method by accessing an instance of D through a less
derived type in which the method is not hidden. end example]

15.6.5 Override methods
When an instance method declaration includes an override modifier, the method is said to be an
override method. An override method overrides an inherited virtual method with the same signature.
Whereas a virtual method declaration introduces a new method, an override method declaration
specializes an existing inherited virtual method by providing a new implementation of that method.

The method overridden by an override declaration is known as the overridden base method For an
override method M declared in a class C, the overridden base method is determined by examining each
base class of C, starting with the direct base class of C and continuing with each successive direct base
class, until in a given base class type at least one accessible method is located which has the same
signature as M after substitution of type arguments. For the purposes of locating the overridden base
method, a method is considered accessible if it is public, if it is protected, if it is protected
internal, or if it is internal and declared in the same program as C.

ECMA-334

300

A compile-time error occurs unless all of the following are true for an override declaration:

• An overridden base method can be located as described above.

• There is exactly one such overridden base method. This restriction has effect only if the base class type
is a constructed type where the substitution of type arguments makes the signature of two methods
the same.

• The overridden base method is a virtual, abstract, or override method. In other words, the overridden
base method cannot be static or non-virtual.

• The overridden base method is not a sealed method.

• There is an identity conversion between the return type of the overridden base method and the
override method.

• The override declaration and the overridden base method have the same declared accessibility. In
other words, an override declaration cannot change the accessibility of the virtual method. However, if
the overridden base method is protected internal and it is declared in a different assembly than the
assembly containing the override declaration then the override declaration’s declared accessibility
shall be protected.

• The override declaration does not specify type-parameter-constraints-clauses. Instead, the constraints
are inherited from the overridden base method. Constraints that are type parameters in the
overridden method may be replaced by type arguments in the inherited constraint. This can lead to
constraints that are not valid when explicitly specified, such as value types or sealed types.

[Example: The following demonstrates how the overriding rules work for generic classes:

abstract class C<T>
{
 public virtual T F() {…}

 public virtual C<T> G() {…}

 public virtual void H(C<T> x) {…}
}

class D: C<string>
{
 public override string F() {…} // Ok

 public override C<string> G() {…} // Ok

 public override void H(C<T> x) {…} // Error, should be C<string>
}

class E<T,U>: C<U>
{
 public override U F() {…} // Ok

 public override C<U> G() {…} // Ok

 public override void H(C<T> x) {…} // Error, should be C<U>
}

end example]

An override declaration can access the overridden base method using a base-access (§12.7.9). [Example: In
the following code

class A
{
 int x;

 public virtual void PrintFields() {
 Console.WriteLine("x = {0}", x);
 }
}

class B: A
{
 int y;

 Chapter 15 Classes

301

 public override void PrintFields() {
 base.PrintFields();
 Console.WriteLine("y = {0}", y);
 }
}

the base.PrintFields() invocation in B invokes the PrintFields method declared in A. A base-
access disables the virtual invocation mechanism and simply treats the base method as a non-virtual
method. Had the invocation in B been written ((A)this).PrintFields(), it would recursively invoke
the PrintFields method declared in B, not the one declared in A, since PrintFields is virtual and the
run-time type of ((A)this) is B. end example]

Only by including an override modifier can a method override another method. In all other cases, a
method with the same signature as an inherited method simply hides the inherited method. [Example: In
the following code

class A
{
 public virtual void F() {}
}

class B: A
{
 public virtual void F() {} // Warning, hiding inherited F()
}

the F method in B does not include an override modifier and therefore does not override the F method
in A. Rather, the F method in B hides the method in A, and a warning is reported because the declaration
does not include a new modifier. end example]

[Example: In the following code

class A
{
 public virtual void F() {}
}

class B: A
{
 new private void F() {} // Hides A.F within body of B
}

class C: B
{
 public override void F() {} // Ok, overrides A.F
}

the F method in B hides the virtual F method inherited from A. Since the new F in B has private access, its
scope only includes the class body of B and does not extend to C. Therefore, the declaration of F in C is
permitted to override the F inherited from A. end example]

15.6.6 Sealed methods
When an instance method declaration includes a sealed modifier, that method is said to be a sealed
method. A sealed method overrides an inherited virtual method with the same signature. A sealed method
shall also be marked with the override modifier. Use of the sealed modifier prevents a derived class
from further overriding the method.

[Example: The example

using System;

class A
{
 public virtual void F() {
 Console.WriteLine("A.F");
 }

ECMA-334

302

 public virtual void G() {
 Console.WriteLine("A.G");
 }
}

class B: A
{
 public sealed override void F() {
 Console.WriteLine("B.F");
 }

 public override void G() {
 Console.WriteLine("B.G");
 }
}

class C: B
{
 public override void G() {
 Console.WriteLine("C.G");
 }
}

the class B provides two override methods: an F method that has the sealed modifier and a G method
that does not. B’s use of the sealed modifier prevents C from further overriding F. end example]

15.6.7 Abstract methods
When an instance method declaration includes an abstract modifier, that method is said to be an
abstract method. Although an abstract method is implicitly also a virtual method, it cannot have the
modifier virtual.

An abstract method declaration introduces a new virtual method but does not provide an implementation
of that method. Instead, non-abstract derived classes are required to provide their own implementation by
overriding that method. Because an abstract method provides no actual implementation, the method-body
of an abstract method simply consists of a semicolon.

Abstract method declarations are only permitted in abstract classes (§15.2.2.2).

 [Example: In the following code

public abstract class Shape
{
 public abstract void Paint(Graphics g, Rectangle r);
}

public class Ellipse: Shape
{
 public override void Paint(Graphics g, Rectangle r) {
 g.DrawEllipse(r);
 }
}

public class Box: Shape
{
 public override void Paint(Graphics g, Rectangle r) {
 g.DrawRect(r);
 }
}

the Shape class defines the abstract notion of a geometrical shape object that can paint itself. The Paint
method is abstract because there is no meaningful default implementation. The Ellipse and Box classes
are concrete Shape implementations. Because these classes are non-abstract, they are required to
override the Paint method and provide an actual implementation. end example]

It is a compile-time error for a base-access (§12.7.9) to reference an abstract method. [Example: In the
following code

 Chapter 15 Classes

303

abstract class A
{
 public abstract void F();
}

class B: A
{
 public override void F() {
 base.F(); // Error, base.F is abstract
 }
}

a compile-time error is reported for the base.F() invocation because it references an abstract method.
end example]

An abstract method declaration is permitted to override a virtual method. This allows an abstract class to
force re-implementation of the method in derived classes, and makes the original implementation of the
method unavailable. [Example: In the following code

using System;

class A
{
 public virtual void F() {
 Console.WriteLine("A.F");
 }
}

abstract class B: A
{
 public abstract override void F();
}

class C: B
{
 public override void F() {
 Console.WriteLine("C.F");
 }
}

class A declares a virtual method, class B overrides this method with an abstract method, and class C
overrides the abstract method to provide its own implementation. end example]

15.6.8 External methods
When a method declaration includes an extern modifier, the method is said to be an external method.
External methods are implemented externally, typically using a language other than C#. Because an
external method declaration provides no actual implementation, the method-body of an external method
simply consists of a semicolon. An external method shall not be generic.

The mechanism by which linkage to an external method is achieved, is implementation-defined.

[Example: The following example demonstrates the use of the extern modifier and the DllImport
attribute:

using System.Text;
using System.Security.Permissions;
using System.Runtime.InteropServices;

class Path
{
 [DllImport("kernel32", SetLastError=true)]
 static extern bool CreateDirectory(string name, SecurityAttribute sa);

 [DllImport("kernel32", SetLastError=true)]
 static extern bool RemoveDirectory(string name);

 [DllImport("kernel32", SetLastError=true)]
 static extern int GetCurrentDirectory(int bufSize, StringBuilder buf);

ECMA-334

304

 [DllImport("kernel32", SetLastError=true)]
 static extern bool SetCurrentDirectory(string name);
}

end example]

15.6.9 Partial methods
When a method declaration includes a partial modifier, that method is said to be a partial method.
Partial methods may only be declared as members of partial types (§15.2.7), and are subject to a number
of restrictions.

Partial methods may be defined in one part of a type declaration and implemented in another. The
implementation is optional; if no part implements the partial method, the partial method declaration and
all calls to it are removed from the type declaration resulting from the combination of the parts.

Partial methods shall not define access modifiers; they are implicitly private. Their return type shall be
void, and their parameters shall not have the out modifier. The identifier partial is recognized as a
contextual keyword (§7.4.4) in a method declaration only if it appears immediately before the void
keyword. A partial method cannot explicitly implement interface methods.

There are two kinds of partial method declarations: If the body of the method declaration is a semicolon,
the declaration is said to be a defining partial method declaration. If the body is given as a block, the
declaration is said to be an implementing partial method declaration. Across the parts of a type
declaration, there may be only one defining partial method declaration with a given signature, and there
may be only one implementing partial method declaration with a given signature. If an implementing
partial method declaration is given, a corresponding defining partial method declaration shall exist, and the
declarations shall match as specified in the following:

• The declarations shall have the same modifiers (although not necessarily in the same order), method
name, number of type parameters and number of parameters.

• Corresponding parameters in the declarations shall have the same modifiers (although not necessarily
in the same order) and the same types (modulo differences in type parameter names).

• Corresponding type parameters in the declarations shall have the same constraints (modulo
differences in type parameter names).

An implementing partial method declaration can appear in the same part as the corresponding defining
partial method declaration.

Only a defining partial method participates in overload resolution. Thus, whether or not an implementing
declaration is given, invocation expressions may resolve to invocations of the partial method. Because a
partial method always returns void, such invocation expressions will always be expression statements.
Furthermore, because a partial method is implicitly private, such statements will always occur within one
of the parts of the type declaration within which the partial method is declared.

If no part of a partial type declaration contains an implementing declaration for a given partial method, any
expression statement invoking it is simply removed from the combined type declaration. Thus the
invocation expression, including any subexpressions, has no effect at run-time. The partial method itself is
also removed and will not be a member of the combined type declaration.

If an implementing declaration exists for a given partial method, the invocations of the partial methods are
retained. The partial method gives rise to a method declaration similar to the implementing partial method
declaration except for the following:

• The partial modifier is not included

• The attributes in the resulting method declaration are the combined attributes of the defining and the
implementing partial method declaration in unspecified order. Duplicates are not removed.

 Chapter 15 Classes

305

• The attributes on the parameters of the resulting method declaration are the combined attributes of
the corresponding parameters of the defining and the implementing partial method declaration in
unspecified order. Duplicates are not removed.

If a defining declaration but not an implementing declaration is given for a partial method M, the following
restrictions apply:

• It is a compile-time error to create a delegate from M (§12.7.11.6).

• It is a compile-time error to refer to M inside an anonymous function that is converted to an expression
tree type (§9.6).

• Expressions occurring as part of an invocation of M do not affect the definite assignment state (§10.4),
which can potentially lead to compile-time errors.

• M cannot be the entry point for an application (§8.1).

Partial methods are useful for allowing one part of a type declaration to customize the behavior of another
part, e.g., one that is generated by a tool. Consider the following partial class declaration:

partial class Customer
{
 string name;

 public string Name {

 get { return name; }

 set {
 OnNameChanging(value);
 name = value;
 OnNameChanged();
 }

 }

 partial void OnNameChanging(string newName);

 partial void OnNameChanged();
}

If this class is compiled without any other parts, the defining partial method declarations and their
invocations will be removed, and the resulting combined class declaration will be equivalent to the
following:

class Customer
{
 string name;

 public string Name {

 get { return name; }

 set { name = value; }
 }
}

Assume that another part is given, however, which provides implementing declarations of the partial
methods:

partial class Customer
{
 partial void OnNameChanging(string newName)
 {
 Console.WriteLine(“Changing “ + name + “ to “ + newName);
 }

 partial void OnNameChanged()
 {
 Console.WriteLine(“Changed to “ + name);
 }
}

ECMA-334

306

Then the resulting combined class declaration will be equivalent to the following:

class Customer
{
 string name;

 public string Name {

 get { return name; }

 set {
 OnNameChanging(value);
 name = value;
 OnNameChanged();
 }

 }

 void OnNameChanging(string newName)
 {
 Console.WriteLine(“Changing “ + name + “ to “ + newName);
 }

 void OnNameChanged()
 {
 Console.WriteLine(“Changed to “ + name);
 }
}

15.6.10 Extension methods
When the first parameter of a method includes the this modifier, that method is said to be an extension
method. Extension methods shall only be declared in non-generic, non-nested static classes. The first
parameter of an extension method may have no modifiers other than this, and the parameter type may
not be a pointer type.

[Example: The following is an example of a static class that declares two extension methods:

public static class Extensions
{
 public static int ToInt32(this string s) {
 return Int32.Parse(s);
 }

 public static T[] Slice<T>(this T[] source, int index, int count) {
 if (index < 0 || count < 0 || source.Length – index < count)
 throw new ArgumentException();
 T[] result = new T[count];
 Array.Copy(source, index, result, 0, count);
 return result;
 }
}

end example]

An extension method is a regular static method. In addition, where its enclosing static class is in scope, an
extension method may be invoked using instance method invocation syntax (§12.7.6.3), using the receiver
expression as the first argument.

[Example: The following program uses the extension methods declared above:

static class Program
{
 static void Main() {
 string[] strings = { "1", "22", "333", "4444" };
 foreach (string s in strings.Slice(1, 2)) {
 Console.WriteLine(s.ToInt32());
 }
 }
}

 Chapter 15 Classes

307

The Slice method is available on the string[], and the ToInt32 method is available on string, because
they have been declared as extension methods. The meaning of the program is the same as the following,
using ordinary static method calls:

static class Program
{
 static void Main() {
 string[] strings = { "1", "22", "333", "4444" };
 foreach (string s in Extensions.Slice(strings, 1, 2)) {
 Console.WriteLine(Extensions.ToInt32(s));
 }
 }
}

end example]

15.6.11 Method body
The method-body of a method declaration consists of either a block or a semicolon.

Abstract and external method declarations do not provide a method implementation, so their method
bodies simply consist of a semicolon. For any other method, the method body is a block (§13.3) that
contains the statements to execute when that method is invoked.

The effective return type of a method is void if the return type is void, or if the method is async and the
return type is System.Threading.Tasks.Task. Otherwise, the effective return type of a non-async
method is its return type, and the effective return type of an async method with return type
System.Threading.Tasks.Task<T> is T.

When the effective return type of a method is void, return statements (§13.10.5) in that method’s body
are not permitted to specify an expression. If execution of the method body of a void method completes
normally (that is, control flows off the end of the method body), that method simply returns to its caller.

When the effective return type of a method is not void, each return statement in that method's body
shall specify an expression that is implicitly convertible to the effective return type. The endpoint of the
method body of a value-returning method shall not be reachable. In other words, in a value-returning
method, control is not permitted to flow off the end of the method body.

[Example: In the following code

class A
{
 public int F() {} // Error, return value required

 public int G() {
 return 1;
 }

 public int H(bool b) {
 if (b) {
 return 1;
 }
 else {
 return 0;
 }
 }
}

the value-returning F method results in a compile-time error because control can flow off the end of the
method body. The G and H methods are correct because all possible execution paths end in a return
statement that specifies a return value. end example]

ECMA-334

308

15.7 Properties

15.7.1 General
A property is a member that provides access to a characteristic of an object or a class. Examples of
properties include the length of a string, the size of a font, the caption of a window, the name of a
customer, and so on. Properties are a natural extension of fields—both are named members with
associated types, and the syntax for accessing fields and properties is the same. However, unlike fields,
properties do not denote storage locations. Instead, properties have accessors that specify the statements
to be executed when their values are read or written. Properties thus provide a mechanism for associating
actions with the reading and writing of an object’s characteristics; furthermore, they permit such
characteristics to be computed.

Properties are declared using property-declarations:

property-declaration:
attributesopt property-modifiersopt type member-name { accessor-declarations }

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

A property-declaration may include a set of attributes (§22) and a valid combination of the four access
modifiers (§15.3.6), the new (§15.3.5), static (§15.7.2), virtual (§15.6.4, §15.7.6), override (§15.6.5,
§15.7.6), sealed (§15.6.6), abstract (§15.6.7, §15.7.6), and extern (§15.6.8) modifiers.

Property declarations are subject to the same rules as method declarations (§15.6) with regard to valid
combinations of modifiers.

The type of a property declaration specifies the type of the property introduced by the declaration, and the
member-name (§15.6.1) specifies the name of the property. Unless the property is an explicit interface
member implementation, the member-name is simply an identifier. For an explicit interface member
implementation (§18.6.2), the member-name consists of an interface-type followed by a “.” and an
identifier.

The type of a property shall be at least as accessible as the property itself (§8.5.5).

The accessor-declarations, which shall be enclosed in “{” and “}” tokens, declare the accessors (§15.7.3) of
the property. The accessors specify the executable statements associated with reading and writing the
property.

Even though the syntax for accessing a property is the same as that for a field, a property is not classified as
a variable. Thus, it is not possible to pass a property as a ref or out argument.

When a property declaration includes an extern modifier, the property is said to be an external property.
Because an external property declaration provides no actual implementation, each of its accessor-
declarations consists of a semicolon.

 Chapter 15 Classes

309

15.7.2 Static and instance properties
When a property declaration includes a static modifier, the property is said to be a static property.
When no static modifier is present, the property is said to be an instance property.

A static property is not associated with a specific instance, and it is a compile-time error to refer to this in
the accessors of a static property.

An instance property is associated with a given instance of a class, and that instance can be accessed as
this (§12.7.8) in the accessors of that property.

The differences between static and instance members are discussed further in §15.3.8.

15.7.3 Accessors
The accessor-declarations of a property specify the executable statements associated with reading and
writing that property.

accessor-declarations:
get-accessor-declaration set-accessor-declarationopt
set-accessor-declaration get-accessor-declarationopt

get-accessor-declaration:
attributesopt accessor-modifieropt get accessor-body

set-accessor-declaration:
attributesopt accessor-modifieropt set accessor-body

accessor-modifier:
protected

internal

private

protected internal
internal protected

accessor-body:
block
;

The accessor declarations consist of a get-accessor-declaration, a set-accessor-declaration, or both. Each
accessor declaration consists of optional attributes, an optional accessor-modifier, the token get or set,
followed by an accessor-body.

The use of accessor-modifiers is governed by the following restrictions:

• An accessor-modifier shall not be used in an interface or in an explicit interface member
implementation.

• For a property or indexer that has no override modifier, an accessor-modifier is permitted only if the
property or indexer has both a get and set accessor, and then is permitted only on one of those
accessors.

• For a property or indexer that includes an override modifier, an accessor shall match the accessor-
modifier, if any, of the accessor being overridden.

• The accessor-modifier shall declare an accessibility that is strictly more restrictive than the declared
accessibility of the property or indexer itself. To be precise:

o If the property or indexer has a declared accessibility of public, the accessor-modifier may be
either protected internal, internal, protected, or private.

o If the property or indexer has a declared accessibility of protected internal, the accessor-
modifier may be either internal, protected, or private.

o If the property or indexer has a declared accessibility of internal or protected, the accessor-
modifier shall be private.

ECMA-334

310

o If the property or indexer has a declared accessibility of private, no accessor-modifier may be
used.

For abstract and extern properties, the accessor-body for each accessor specified is simply a semicolon.
A non-abstract, non-extern property may be an automatically implemented property, in which case both
get and set accessors shall be given, both with a semicolon body (§15.7.4). For the accessors of any other
non-abstract, non-extern property, the accessor-body is a block that specifies the statements to be
executed when the corresponding accessor is invoked.

A get accessor corresponds to a parameterless method with a return value of the property type. Except as
the target of an assignment, when a property is referenced in an expression, the get accessor of the
property is invoked to compute the value of the property (§12.2.2). The body of a get accessor shall
conform to the rules for value-returning methods described in §15.6.11. In particular, all return
statements in the body of a get accessor shall specify an expression that is implicitly convertible to the
property type. Furthermore, the endpoint of a get accessor shall not be reachable.

A set accessor corresponds to a method with a single value parameter of the property type and a void
return type. The implicit parameter of a set accessor is always named value. When a property is
referenced as the target of an assignment (§12.18), or as the operand of ++ or –- (§12.7.10, 12.8.6), the
set accessor is invoked with an argument that provides the new value (§12.18.2). The body of a set
accessor shall conform to the rules for void methods described in §15.6.11. In particular, return
statements in the set accessor body are not permitted to specify an expression. Since a set accessor
implicitly has a parameter named value, it is a compile-time error for a local variable or constant
declaration in a set accessor to have that name.

Based on the presence or absence of the get and set accessors, a property is classified as follows:

• A property that includes both a get accessor and a set accessor is said to be a read-write property.

• A property that has only a get accessor is said to be a read-only property. It is a compile-time error for
a read-only property to be the target of an assignment.

• A property that has only a set accessor is said to be a write-only property. Except as the target of an
assignment, it is a compile-time error to reference a write-only property in an expression. [Note: The
pre- and postfix ++ and -- operators and compound assignment operators cannot be applied to write-
only properties, since these operators read the old value of their operand before they write the new
one. end note]

[Example: In the following code

public class Button: Control
{
 private string caption;

 public string Caption {
 get {
 return caption;
 }
 set {
 if (caption != value) {
 caption = value;
 Repaint();
 }
 }
 }

 public override void Paint(Graphics g, Rectangle r) {
 // Painting code goes here
 }
}

the Button control declares a public Caption property. The get accessor of the Caption property
returns the string stored in the private caption field. The set accessor checks if the new value is different

 Chapter 15 Classes

311

from the current value, and if so, it stores the new value and repaints the control. Properties often follow
the pattern shown above: The get accessor simply returns a value stored in a private field, and the set
accessor modifies that private field and then performs any additional actions required to update fully the
state of the object.

Given the Button class above, the following is an example of use of the Caption property:

Button okButton = new Button();
okButton.Caption = "OK"; // Invokes set accessor
string s = okButton.Caption; // Invokes get accessor

Here, the set accessor is invoked by assigning a value to the property, and the get accessor is invoked by
referencing the property in an expression. end example]

The get and set accessors of a property are not distinct members, and it is not possible to declare the
accessors of a property separately. [Example: The example

class A
{
 private string name;

 public string Name { // Error, duplicate member name
 get { return name; }
 }

 public string Name { // Error, duplicate member name
 set { name = value; }
 }
}

does not declare a single read-write property. Rather, it declares two properties with the same name, one
read-only and one write-only. Since two members declared in the same class cannot have the same name,
the example causes a compile-time error to occur. end example]

When a derived class declares a property by the same name as an inherited property, the derived property
hides the inherited property with respect to both reading and writing. [Example: In the following code

class A
{
 public int P {
 set {…}
 }
}

class B: A
{
 new public int P {
 get {…}
 }
}

the P property in B hides the P property in A with respect to both reading and writing. Thus, in the
statements

B b = new B();
b.P = 1; // Error, B.P is read-only
((A)b).P = 1; // Ok, reference to A.P

the assignment to b.P causes a compile-time error to be reported, since the read-only P property in B
hides the write-only P property in A. Note, however, that a cast can be used to access the hidden
P property. end example]

Unlike public fields, properties provide a separation between an object’s internal state and its public
interface. [Example: Consider the following code, which uses a Point struct to represent a location:

class Label
{
 private int x, y;
 private string caption;

ECMA-334

312

 public Label(int x, int y, string caption) {
 this.x = x;
 this.y = y;
 this.caption = caption;
 }

 public int X {
 get { return x; }
 }

 public int Y {
 get { return y; }
 }

 public Point Location {
 get { return new Point(x, y); }
 }

 public string Caption {
 get { return caption; }
 }
}

Here, the Label class uses two int fields, x and y, to store its location. The location is publicly exposed
both as an X and a Y property and as a Location property of type Point. If, in a future version of Label,
it becomes more convenient to store the location as a Point internally, the change can be made without
affecting the public interface of the class:

class Label
{
 private Point location;
 private string caption;

 public Label(int x, int y, string caption) {
 this.location = new Point(x, y);
 this.caption = caption;
 }

 public int X {
 get { return location.x; }
 }

 public int Y {
 get { return location.y; }
 }

 public Point Location {
 get { return location; }
 }

 public string Caption {
 get { return caption; }
 }
}

Had x and y instead been public readonly fields, it would have been impossible to make such a change
to the Label class. end example]

[Note: Exposing state through properties is not necessarily any less efficient than exposing fields directly. In
particular, when a property is non-virtual and contains only a small amount of code, the execution
environment might replace calls to accessors with the actual code of the accessors. This process is known
as inlining, and it makes property access as efficient as field access, yet preserves the increased flexibility
of properties. end note]

[Example: Since invoking a get accessor is conceptually equivalent to reading the value of a field, it is
considered bad programming style for get accessors to have observable side-effects. In the example

class Counter
{
 private int next;

 Chapter 15 Classes

313

 public int Next {
 get { return next++; }
 }
}

the value of the Next property depends on the number of times the property has previously been
accessed. Thus, accessing the property produces an observable side effect, and the property should be
implemented as a method instead.

The “no side-effects” convention for get accessors doesn’t mean that get accessors should always be
written simply to return values stored in fields. Indeed, get accessors often compute the value of a
property by accessing multiple fields or invoking methods. However, a properly designed get accessor
performs no actions that cause observable changes in the state of the object. end example]

Properties can be used to delay initialization of a resource until the moment it is first referenced. [Example:

using System.IO;

public class Console
{
 private static TextReader reader;
 private static TextWriter writer;
 private static TextWriter error;

 public static TextReader In {
 get {
 if (reader == null) {
 reader = new StreamReader(Console.OpenStandardInput());
 }
 return reader;
 }
 }

 public static TextWriter Out {
 get {
 if (writer == null) {
 writer = new StreamWriter(Console.OpenStandardOutput());
 }
 return writer;
 }
 }

 public static TextWriter Error {
 get {
 if (error == null) {
 error = new StreamWriter(Console.OpenStandardError());
 }
 return error;
 }
 }
 …
}

The Console class contains three properties, In, Out, and Error, that represent the standard input,
output, and error devices, respectively. By exposing these members as properties, the Console class can
delay their initialization until they are actually used. For example, upon first referencing the Out property,
as in

Console.Out.WriteLine("hello, world");

the underlying TextWriter for the output device is created. However, if the application makes no
reference to the In and Error properties, then no objects are created for those devices. end example]

15.7.4 Automatically implemented properties
When a property is specified as an automatically implemented property, a hidden backing field is
automatically available for the property, and the accessors are implemented to read from and write to that

ECMA-334

314

backing field. The hidden backing field is inaccessible, it can be read and written only through the
automatically implemented property accessors, even within the containing type.

[Example:

 public class Point {
 public int X { get; set; } // automatically implemented
 public int Y { get; set; } // automatically implemented
}

is equivalent to the following declaration:

public class Point {
 private int x;
 private int y;
 public int X { get { return x; } set { x = value; } }
 public int Y { get { return y; } set { y = value; } }
}

end example]

Because the backing field is inaccessible, automatically implemented read-only or write-only properties do
not make sense, and are disallowed. It is however possible to set the access level of each accessor
differently. Thus, the effect of a read-only property with a private backing field can be mimicked like this:

public class ReadOnlyPoint {
 public int X { get; private set; }
 public int Y { get; private set; }
 public ReadOnlyPoint(int x, int y) { X = x; Y = y; }
}

15.7.5 Accessibility
If an accessor has an accessor-modifier, the accessibility domain (§8.5.3) of the accessor is determined
using the declared accessibility of the accessor-modifier. If an accessor does not have an accessor-modifier,
the accessibility domain of the accessor is determined from the declared accessibility of the property or
indexer.

The presence of an accessor-modifier never affects member lookup (§12.5) or overload resolution
(§12.6.4). The modifiers on the property or indexer always determine which property or indexer is bound
to, regardless of the context of the access.

Once a particular property or indexer has been selected, the accessibility domains of the specific accessors
involved are used to determine if that usage is valid:

• If the usage is as a value (§12.2.2), the get accessor shall exist and be accessible.

• If the usage is as the target of a simple assignment (§12.18.2), the set accessor shall exist and be
accessible.

• If the usage is as the target of compound assignment (§12.18.3), or as the target of the ++ or --
operators (§12.7.10, §12.8.6), both the get accessors and the set accessor shall exist and be
accessible.

[Example: In the following example, the property A.Text is hidden by the property B.Text, even in
contexts where only the set accessor is called. In contrast, the property B.Count is not accessible to class
M, so the accessible property A.Count is used instead.

class A
{
 public string Text {
 get { return "hello"; }
 set { }
 }

 Chapter 15 Classes

315

 public int Count {
 get { return 5; }
 set { }
 }
}

class B: A
{
 private string text = "goodbye";
 private int count = 0;

 new public string Text {
 get { return text; }
 protected set { text = value; }
 }

 new protected int Count {
 get { return count; }
 set { count = value; }
 }
}

class M
{
 static void Main() {
 B b = new B();
 b.Count = 12; // Calls A.Count set accessor
 int i = b.Count; // Calls A.Count get accessor
 b.Text = "howdy"; // Error, B.Text set accessor not accessible
 string s = b.Text; // Calls B.Text get accessor
 }
}

end example]

An accessor that is used to implement an interface shall not have an accessor-modifier. If only one accessor
is used to implement an interface, the other accessor may be declared with an accessor-modifier:
[Example:

public interface I
{
 string Prop { get; }
}

public class C: I
{
 public Prop {
 get { return "April"; } // Must not have a modifier here
 internal set {…} // Ok, because I.Prop has no set accessor
 }
}

end example]

15.7.6 Virtual, sealed, override, and abstract accessors
A virtual property declaration specifies that the accessors of the property are virtual. The virtual
modifier applies to all non-private accessors of a property. When an accessor of a virtual property has
the private accessor-modifier, the private accessor is implicitly not virtual.

An abstract property declaration specifies that the accessors of the property are virtual, but does not
provide an actual implementation of the accessors. Instead, non-abstract derived classes are required to
provide their own implementation for the accessors by overriding the property. Because an accessor for an
abstract property declaration provides no actual implementation, its accessor-body simply consists of a
semicolon. An abstract property shall not have a private accessor.

A property declaration that includes both the abstract and override modifiers specifies that the
property is abstract and overrides a base property. The accessors of such a property are also abstract.

ECMA-334

316

Abstract property declarations are only permitted in abstract classes (§15.2.2.2). The accessors of an
inherited virtual property can be overridden in a derived class by including a property declaration that
specifies an override directive. This is known as an overriding property declaration. An overriding
property declaration does not declare a new property. Instead, it simply specializes the implementations of
the accessors of an existing virtual property.

An overriding property declaration shall specify the exact same accessibility modifiers and name as the
inherited property, and there shall be an identity conversion between the type of the overriding and the
inherited property. If the inherited property has only a single accessor (i.e., if the inherited property is
read-only or write-only), the overriding property shall include only that accessor. If the inherited property
includes both accessors (i.e., if the inherited property is read-write), the overriding property can include
either a single accessor or both accessors.

An overriding property declaration may include the sealed modifier. Use of this modifier prevents a
derived class from further overriding the property. The accessors of a sealed property are also sealed.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors
behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in
§15.6.4, §15.6.5, §15.6.6, and §15.6.7 apply as if accessors were methods of a corresponding form:

• A get accessor corresponds to a parameterless method with a return value of the property type and
the same modifiers as the containing property.

• A set accessor corresponds to a method with a single value parameter of the property type, a void
return type, and the same modifiers as the containing property.

[Example: In the following code

abstract class A
{
 int y;

 public virtual int X {
 get { return 0; }
 }

 public virtual int Y {
 get { return y; }
 set { y = value; }
 }

 public abstract int Z { get; set; }
}

X is a virtual read-only property, Y is a virtual read-write property, and Z is an abstract read-write property.
Because Z is abstract, the containing class A shall also be declared abstract.

A class that derives from A is show below:

class B: A
{
 int z;

 public override int X {
 get { return base.X + 1; }
 }

 public override int Y {
 set { base.Y = value < 0? 0: value; }
 }

 public override int Z {
 get { return z; }
 set { z = value; }
 }
}

 Chapter 15 Classes

317

Here, the declarations of X, Y, and Z are overriding property declarations. Each property declaration
exactly matches the accessibility modifiers, type, and name of the corresponding inherited property. The
get accessor of X and the set accessor of Y use the base keyword to access the inherited accessors. The
declaration of Z overrides both abstract accessors—thus, there are no outstanding abstract function
members in B, and B is permitted to be a non-abstract class. end example]

When a property is declared as an override, any overridden accessors shall be accessible to the
overriding code. In addition, the declared accessibility of both the property or indexer itself, and of the
accessors, shall match that of the overridden member and accessors. [Example:

public class B
{
 public virtual int P {
 protected set {…}
 get {…}
 }
}

public class D: B
{
 public override int P {
 protected set {…} // Must specify protected here
 get {…} // Must not have a modifier here
 }
}

end example]

15.8 Events

15.8.1 General
An event is a member that enables an object or class to provide notifications. Clients can attach executable
code for events by supplying event handlers.

Events are declared using event-declarations:

event-declaration:
attributesopt event-modifiersopt event type variable-declarators ;
attributesopt event-modifiersopt event type member-name
 { event-accessor-declarations }

event-modifiers:
event-modifier
event-modifiers event-modifier

event-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

event-accessor-declarations:
add-accessor-declaration remove-accessor-declaration
remove-accessor-declaration add-accessor-declaration

ECMA-334

318

add-accessor-declaration:
attributesopt add block

remove-accessor-declaration:
attributesopt remove block

An event-declaration may include a set of attributes (§22) and a valid combination of the four access
modifiers (§15.3.6), the new (§15.3.5), static (§15.6.3, §15.8.4), virtual (§15.6.4, §15.8.5), override
(§15.6.5, §15.8.5), sealed (§15.6.6), abstract (§15.6.7, §15.8.5), and extern (§15.6.8) modifiers.

Event declarations are subject to the same rules as method declarations (§15.6) with regard to valid
combinations of modifiers.

The type of an event declaration shall be a delegate-type (§9.2.8), and that delegate-type shall be at least
as accessible as the event itself (§8.5.5).

An event declaration can include event-accessor-declarations. However, if it does not, for non-extern, non-
abstract events, the compiler shall supply them automatically (§15.8.2); for extern events, the accessors
are provided externally.

An event declaration that omits event-accessor-declarations defines one or more events—one for each of
the variable-declarators. The attributes and modifiers apply to all of the members declared by such an
event-declaration.

It is a compile-time error for an event-declaration to include both the abstract modifier and event-
accessor-declarations.

When an event declaration includes an extern modifier, the event is said to be an external event.
Because an external event declaration provides no actual implementation, it is an error for it to include
both the extern modifier and event-accessor-declarations.

It is a compile-time error for a variable-declarator of an event declaration with an abstract or external
modifier to include a variable-initializer.

An event can be used as the left-hand operand of the += and -= operators. These operators are used,
respectively, to attach event handlers to, or to remove event handlers from an event, and the access
modifiers of the event control the contexts in which such operations are permitted.

The only operations that are permitted on an event by code that is outside the type in which that event is
declared, are += and -=. Therefore, while such code can add and remove handlers for an event, it cannot
directly obtain or modify the underlying list of event handlers.

In an operation of the form x += y or x –= y, when x is an event the result of the operation has type
void (§12.18.4) (as opposed to having the type of x, with the value of x after the assignment, as for other
the += and -= operators defined on non-event types). This prevents external code from indirectly
examining the underlying delegate of an event.

[Example: The following example shows how event handlers are attached to instances of the Button class:

public delegate void EventHandler(object sender, EventArgs e);

public class Button: Control
{
 public event EventHandler Click;
}

public class LoginDialog: Form
{
 Button okButton;
 Button cancelButton;

 Chapter 15 Classes

319

 public LoginDialog() {
 okButton = new Button(…);
 okButton.Click += new EventHandler(OkButtonClick);
 cancelButton = new Button(…);
 cancelButton.Click += new EventHandler(CancelButtonClick);
 }

 void OkButtonClick(object sender, EventArgs e) {
 // Handle okButton.Click event
 }

 void CancelButtonClick(object sender, EventArgs e) {
 // Handle cancelButton.Click event
 }
}

Here, the LoginDialog instance constructor creates two Button instances and attaches event handlers
to the Click events. end example]

15.8.2 Field-like events
Within the program text of the class or struct that contains the declaration of an event, certain events can
be used like fields. To be used in this way, an event shall not be abstract or extern, and shall not
explicitly include event-accessor-declarations. Such an event can be used in any context that permits a
field. The field contains a delegate (§20), which refers to the list of event handlers that have been added to
the event. If no event handlers have been added, the field contains null.

[Example: In the following code

public delegate void EventHandler(object sender, EventArgs e);

public class Button: Control
{
 public event EventHandler Click;

 protected void OnClick(EventArgs e) {
 EventHandler handler = Click;
 if (handler != null)
 handler(this, e);
 }

 public void Reset() {
 Click = null;
 }
}

Click is used as a field within the Button class. As the example demonstrates, the field can be examined,
modified, and used in delegate invocation expressions. The OnClick method in the Button class “raises”
the Click event. The notion of raising an event is precisely equivalent to invoking the delegate
represented by the event—thus, there are no special language constructs for raising events. Note that the
delegate invocation is preceded by a check that ensures the delegate is non-null and that the check is
made on a local copy to ensure thread safety.

Outside the declaration of the Button class, the Click member can only be used on the left-hand side of
the += and –= operators, as in

b.Click += new EventHandler(…);

which appends a delegate to the invocation list of the Click event, and

b.Click –= new EventHandler(…);

which removes a delegate from the invocation list of the Click event. end example]

When compiling a field-like event, the compiler automatically creates storage to hold the delegate, and
creates accessors for the event that add or remove event handlers to the delegate field. The addition and
removal operations are thread safe, and may (but are not required to) be done while holding the lock

ECMA-334

320

(§10.4.4.19) on the containing object for an instance event, or the type object (§12.7.11.7) for a static
event.

[Note: Thus, an instance event declaration of the form:

class X
{
 public event D Ev;
}

shall be compiled to something equivalent to:

class X
{
 private D __Ev; // field to hold the delegate

 public event D Ev {
 add {
 /* add the delegate in a thread safe way */
 }

 remove {
 /* remove the delegate in a thread safe way */
 }
 }
}

Within the class X, references to Ev on the left-hand side of the += and –= operators cause the add and
remove accessors to be invoked. All other references to Ev are compiled to reference the hidden field
__Ev instead (§12.7.5). The name “__Ev” is arbitrary; the hidden field could have any name or no name at
all. end note]

15.8.3 Event accessors
[Note: Event declarations typically omit event-accessor-declarations, as in the Button example above. For
example, they might be included if the storage cost of one field per event is not acceptable. In such cases, a
class can include event-accessor-declarations and use a private mechanism for storing the list of event
handlers. end note]

The event-accessor-declarations of an event specify the executable statements associated with adding and
removing event handlers.

The accessor declarations consist of an add-accessor-declaration and a remove-accessor-declaration. Each
accessor declaration consists of the token add or remove followed by a block. The block associated with an
add-accessor-declaration specifies the statements to execute when an event handler is added, and the
block associated with a remove-accessor-declaration specifies the statements to execute when an event
handler is removed.

Each add-accessor-declaration and remove-accessor-declaration corresponds to a method with a single
value parameter of the event type, and a void return type. The implicit parameter of an event accessor is
named value. When an event is used in an event assignment, the appropriate event accessor is used.
Specifically, if the assignment operator is += then the add accessor is used, and if the assignment operator
is –= then the remove accessor is used. In either case, the right-hand operand of the assignment operator
is used as the argument to the event accessor. The block of an add-accessor-declaration or a remove-
accessor-declaration shall conform to the rules for void methods described in §15.6.9. In particular,
return statements in such a block are not permitted to specify an expression.

Since an event accessor implicitly has a parameter named value, it is a compile-time error for a local
variable or constant declared in an event accessor to have that name.

[Example: In the following code

 Chapter 15 Classes

321

class Control: Component
{
 // Unique keys for events
 static readonly object mouseDownEventKey = new object();
 static readonly object mouseUpEventKey = new object();

 // Return event handler associated with key
 protected Delegate GetEventHandler(object key) {…}

 // Add event handler associated with key
 protected void AddEventHandler(object key, Delegate handler) {…}

 // Remove event handler associated with key
 protected void RemoveEventHandler(object key, Delegate handler) {…}

 // MouseDown event
 public event MouseEventHandler MouseDown {
 add { AddEventHandler(mouseDownEventKey, value); }
 remove { RemoveEventHandler(mouseDownEventKey, value); }
 }

 // MouseUp event
 public event MouseEventHandler MouseUp {
 add { AddEventHandler(mouseUpEventKey, value); }
 remove { RemoveEventHandler(mouseUpEventKey, value); }
 }

 // Invoke the MouseUp event
 protected void OnMouseUp(MouseEventArgs args) {
 MouseEventHandler handler;
 handler = (MouseEventHandler)GetEventHandler(mouseUpEventKey);
 if (handler != null)
 handler(this, args);
 }
}

the Control class implements an internal storage mechanism for events. The AddEventHandler method
associates a delegate value with a key, the GetEventHandler method returns the delegate currently
associated with a key, and the RemoveEventHandler method removes a delegate as an event handler for
the specified event. Presumably, the underlying storage mechanism is designed such that there is no cost
for associating a null delegate value with a key, and thus unhandled events consume no storage. end
example]

15.8.4 Static and instance events
When an event declaration includes a static modifier, the event is said to be a static event. When no
static modifier is present, the event is said to be an instance event.

A static event is not associated with a specific instance, and it is a compile-time error to refer to this in
the accessors of a static event.

An instance event is associated with a given instance of a class, and this instance can be accessed as this
(§12.7.8) in the accessors of that event.

The differences between static and instance members are discussed further in §15.3.8.

15.8.5 Virtual, sealed, override, and abstract accessors
A virtual event declaration specifies that the accessors of that event are virtual. The virtual modifier
applies to both accessors of an event.

An abstract event declaration specifies that the accessors of the event are virtual, but does not provide
an actual implementation of the accessors. Instead, non-abstract derived classes are required to provide
their own implementation for the accessors by overriding the event. Because an accessor for an abstract
event declaration provides no actual implementation, it shall not provide event-accessor-declarations.

An event declaration that includes both the abstract and override modifiers specifies that the event is
abstract and overrides a base event. The accessors of such an event are also abstract.

ECMA-334

322

Abstract event declarations are only permitted in abstract classes (§15.2.2.2).

The accessors of an inherited virtual event can be overridden in a derived class by including an event
declaration that specifies an override modifier. This is known as an overriding event declaration. An
overriding event declaration does not declare a new event. Instead, it simply specializes the
implementations of the accessors of an existing virtual event.

An overriding event declaration shall specify the exact same accessibility modifiers and name as the
overridden event, there shall be an identity conversion between the type of the overriding and the
overridden event, and both the add and remove accessors shall be specified within the declaration.

An overriding event declaration can include the sealed modifier. Use of this modifier prevents a derived
class from further overriding the event. The accessors of a sealed event are also sealed.

It is a compile-time error for an overriding event declaration to include a new modifier.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors
behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in
§15.6.4, §15.6.5, §15.6.6, and §15.6.7 apply as if accessors were methods of a corresponding form. Each
accessor corresponds to a method with a single value parameter of the event type, a void return type, and
the same modifiers as the containing event.

15.9 Indexers
An indexer is a member that enables an object to be indexed in the same way as an array. Indexers are
declared using indexer-declarations:

indexer-declaration:
attributesopt indexer-modifiersopt indexer-declarator { accessor-declarations }

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
new

public

protected

internal

private

virtual

sealed

override

abstract

extern

indexer-declarator:
type this [formal-parameter-list]
type interface-type . this [formal-parameter-list]

An indexer-declaration may include a set of attributes (§22) and a valid combination of the four access
modifiers (§15.3.6), the new (§15.3.5), virtual (§15.6.4), override (§15.6.5), sealed (§15.6.6),
abstract (§15.6.7), and extern (§15.6.8) modifiers.

Indexer declarations are subject to the same rules as method declarations (§15.6) with regard to valid
combinations of modifiers, with the one exception being that the static modifier is not permitted on an
indexer declaration.

The modifiers virtual, override, and abstract are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract indexer can override a
virtual one.

 Chapter 15 Classes

323

The type of an indexer declaration specifies the element type of the indexer introduced by the declaration.
Unless the indexer is an explicit interface member implementation, the type is followed by the keyword
this. For an explicit interface member implementation, the type is followed by an interface-type, a “.”,
and the keyword this. Unlike other members, indexers do not have user-defined names.

The formal-parameter-list specifies the parameters of the indexer. The formal parameter list of an indexer
corresponds to that of a method (§15.6.2), except that at least one parameter shall be specified, and that
the this, ref, and out parameter modifiers are not permitted.

The type of an indexer and each of the types referenced in the formal-parameter-list shall be at least as
accessible as the indexer itself (§8.5.5).

The accessor-declarations (§15.7.3), which shall be enclosed in “{” and “}” tokens, declare the accessors of
the indexer. The accessors specify the executable statements associated with reading and writing indexer
elements.

Even though the syntax for accessing an indexer element is the same as that for an array element, an
indexer element is not classified as a variable. Thus, it is not possible to pass an indexer element as a ref
or out argument.

The formal-parameter-list of an indexer defines the signature (§8.6) of the indexer. Specifically, the
signature of an indexer consists of the number and types of its formal parameters. The element type and
names of the formal parameters are not part of an indexer’s signature.

The signature of an indexer shall differ from the signatures of all other indexers declared in the same class.

Indexers and properties are very similar in concept, but differ in the following ways:

• A property is identified by its name, whereas an indexer is identified by its signature.

• A property is accessed through a simple-name (§12.7.3) or a member-access (§12.7.5), whereas an
indexer element is accessed through an element-access (§12.7.7.3).

• A property can be a static member, whereas an indexer is always an instance member.

• A get accessor of a property corresponds to a method with no parameters, whereas a get accessor of
an indexer corresponds to a method with the same formal parameter list as the indexer.

• A set accessor of a property corresponds to a method with a single parameter named value, whereas
a set accessor of an indexer corresponds to a method with the same formal parameter list as the
indexer, plus an additional parameter named value.

• It is a compile-time error for an indexer accessor to declare a local variable or local constant with the
same name as an indexer parameter.

• In an overriding property declaration, the inherited property is accessed using the syntax base.P,
where P is the property name. In an overriding indexer declaration, the inherited indexer is accessed
using the syntax base[E], where E is a comma-separated list of expressions.

Aside from these differences, all rules defined in §15.7.3 and §15.7.6 apply to indexer accessors as well as
to property accessors.

When an indexer declaration includes an extern modifier, the indexer is said to be an external indexer.
Because an external indexer declaration provides no actual implementation, each of its accessor-
declarations consists of a semicolon.

[Example: The example below declares a BitArray class that implements an indexer for accessing the
individual bits in the bit array.

using System;

class BitArray
{
 int[] bits;
 int length;

ECMA-334

324

 public BitArray(int length) {
 if (length < 0) throw new ArgumentException();
 bits = new int[((length - 1) >> 5) + 1];
 this.length = length;
 }

 public int Length {
 get { return length; }
 }

 public bool this[int index] {
 get {
 if (index < 0 || index >= length) {
 throw new IndexOutOfRangeException();
 }
 return (bits[index >> 5] & 1 << index) != 0;
 }
 set {
 if (index < 0 || index >= length) {
 throw new IndexOutOfRangeException();
 }
 if (value) {
 bits[index >> 5] |= 1 << index;
 }
 else {
 bits[index >> 5] &= ~(1 << index);
 }
 }
 }
}

An instance of the BitArray class consumes substantially less memory than a corresponding bool[]
(since each value of the former occupies only one bit instead of the latter’s one byte), but it permits the
same operations as a bool[].

The following CountPrimes class uses a BitArray and the classical “sieve” algorithm to compute the
number of primes between2 and a given maximum:

class CountPrimes
{
 static int Count(int max) {
 BitArray flags = new BitArray(max + 1);
 int count = 0;
 for (int i = 2; i <= max; i++) {
 if (!flags[i]) {
 for (int j = i * 2; j <= max; j += i) flags[j] = true;
 count++;
 }
 }
 return count;
 }

 static void Main(string[] args) {
 int max = int.Parse(args[0]);
 int count = Count(max);
 Console.WriteLine(
 "Found {0} primes between 2 and {1}", count, max);
 }
}

Note that the syntax for accessing elements of the BitArray is precisely the same as for a bool[]. end
example]

[Example: The following example shows a 2610 grid class that has an indexer with two parameters. The
first parameter is required to be an upper- or lowercase letter in the range A–Z, and the second is required
to be an integer in the range 0–9.

using System;

 Chapter 15 Classes

325

class Grid
{
 const int NumRows = 26;
 const int NumCols = 10;
 int[,] cells = new int[NumRows, NumCols];

 public int this[char row, int col]
 {
 get {
 row = Char.ToUpper(row);
 if (row < 'A' || row > 'Z') {
 throw new ArgumentOutOfRangeException("row");
 }
 if (col < 0 || col >= NumCols) {
 throw new ArgumentOutOfRangeException ("col");
 }
 return cells[row - 'A', col];
 }

 set {
 row = Char.ToUpper(row);
 if (row < 'A' || row > 'Z') {
 throw new ArgumentOutOfRangeException ("row");
 }
 if (col < 0 || col >= NumCols) {
 throw new ArgumentOutOfRangeException ("col");
 }
 cells[row - 'A', col] = value;
 }
 }
}

end example]

15.10 Operators

15.10.1 General
An operator is a member that defines the meaning of an expression operator that can be applied to
instances of the class. Operators are declared using operator-declarations:

operator-declaration:
attributesopt operator-modifiers operator-declarator operator-body

operator-modifiers:
operator-modifier
operator-modifiers operator-modifier

operator-modifier:
public

static

extern

operator-declarator:
unary-operator-declarator
binary-operator-declarator
conversion-operator-declarator

unary-operator-declarator:
type operator overloadable-unary-operator (fixed-parameter)

overloadable-unary-operator: one of
+ - ! ~ ++ -- true false

binary-operator-declarator:
type operator overloadable-binary-operator (fixed-parameter , fixed-parameter)

ECMA-334

326

overloadable-binary-operator: one of
+ - * / % & | ^ << right-shift
== != > < >= <=

conversion-operator-declarator:
implicit operator type (fixed-parameter)
explicit operator type (fixed-parameter)

operator-body:
block
;

There are three categories of overloadable operators: Unary operators (§15.10.2), binary operators
(§15.10.3), and conversion operators (§15.10.4).

When an operator declaration includes an extern modifier, the operator is said to be an external
operator. Because an external operator provides no actual implementation, its operator-body consists of a
semi-colon. For all other operators, the operator-body consists of a block, which specifies the statements
to execute when the operator is invoked. The block of an operator shall conform to the rules for value-
returning methods described in §15.6.11.

The following rules apply to all operator declarations:

• An operator declaration shall include both a public and a static modifier.

• The parameter(s) of an operator shall have no modifiers.

• The signature of an operator (§15.10.2, §15.10.3, §15.10.4) shall differ from the signatures of all other
operators declared in the same class.

• All types referenced in an operator declaration shall be at least as accessible as the operator itself
(§8.5.5).

• It is an error for the same modifier to appear multiple times in an operator declaration.

Each operator category imposes additional restrictions, as described in the following subclauses.

Like other members, operators declared in a base class are inherited by derived classes. Because operator
declarations always require the class or struct in which the operator is declared to participate in the
signature of the operator, it is not possible for an operator declared in a derived class to hide an operator
declared in a base class. Thus, the new modifier is never required, and therefore never permitted, in an
operator declaration.

Additional information on unary and binary operators can be found in §12.4.

Additional information on conversion operators can be found in §11.5.

15.10.2 Unary operators
The following rules apply to unary operator declarations, where T denotes the instance type of the class or
struct that contains the operator declaration:

• A unary +, -, !, or ~ operator shall take a single parameter of type T or T? and can return any type.

• A unary ++ or -- operator shall take a single parameter of type T or T? and shall return that same type
or a type derived from it.

• A unary true or false operator shall take a single parameter of type T or T? and shall return type
bool.

The signature of a unary operator consists of the operator token (+, -, !, ~, ++, --, true, or false) and
the type of the single formal parameter. The return type is not part of a unary operator’s signature, nor is
the name of the formal parameter.

 Chapter 15 Classes

327

The true and false unary operators require pair-wise declaration. A compile-time error occurs if a class
declares one of these operators without also declaring the other. The true and false operators are
described further in §12.21.

[Example: The following example shows an implementation and subsequent usage of operator++ for an
integer vector class:

public class IntVector
{
 public IntVector(int length) {…}

 public int Length { … } // read-only property
 public int this[int index] { … } // read-write indexer

 public static IntVector operator++(IntVector iv) {
 IntVector temp = new IntVector(iv.Length);
 for (int i = 0; i < iv.Length; i++)
 temp[i] = iv[i] + 1;
 return temp;
 }
}

class Test
{
 static void Main() {
 IntVector iv1 = new IntVector(4); // vector of 4 x 0
 IntVector iv2;

 iv2 = iv1++; // iv2 contains 4 x 0, iv1 contains 4 x 1
 iv2 = ++iv1; // iv2 contains 4 x 2, iv1 contains 4 x 2
 }
}

Note how the operator method returns the value produced by adding 1 to the operand, just like the postfix
increment and decrement operators (§12.7.10), and the prefix increment and decrement operators
(§12.8.6). Unlike in C++, this method should not modify the value of its operand directly as this would
violate the standard semantics of the postfix increment operator (§12.8.6). end example]

15.10.3 Binary operators
The following rules apply to binary operator declarations, where T denotes the instance type of the class or
struct that contains the operator declaration:

• A binary non-shift operator shall take two parameters, at least one of which shall have type T or T?,
and can return any type.

• A binary << or >> operator (§12.10) shall take two parameters, the first of which shall have type T or
T? and the second of which shall have type int or int?, and can return any type.

The signature of a binary operator consists of the operator token (+, -, *, /, %, &, |, ^, <<, >>,, ==, !=, >, <,
>=, or <=) and the types of the two formal parameters. The return type and the names of the formal
parameters are not part of a binary operator’s signature.

Certain binary operators require pair-wise declaration. For every declaration of either operator of a pair,
there shall be a matching declaration of the other operator of the pair. Two operator declarations match if
identity conversions exist between their return types and their corresponding parameter types. The
following operators require pair-wise declaration:

• operator == and operator !=

• operator > and operator <

• operator >= and operator <=

15.10.4 Conversion operators
A conversion operator declaration introduces a user-defined conversion (§11.5), which augments the pre-
defined implicit and explicit conversions.

ECMA-334

328

A conversion operator declaration that includes the implicit keyword introduces a user-defined implicit
conversion. Implicit conversions can occur in a variety of situations, including function member
invocations, cast expressions, and assignments. This is described further in §11.2.

A conversion operator declaration that includes the explicit keyword introduces a user-defined explicit
conversion. Explicit conversions can occur in cast expressions, and are described further in §11.3.

A conversion operator converts from a source type, indicated by the parameter type of the conversion
operator, to a target type, indicated by the return type of the conversion operator.

For a given source type S and target type T, if S or T are nullable value types, let S0 and T0 refer to their
underlying types; otherwise, S0 and T0 are equal to S and T respectively. A class or struct is permitted to
declare a conversion from a source type S to a target type T only if all of the following are true:

• S0 and T0 are different types.

• Either S0 or T0 is the instance type of the class or struct that contains the operator declaration.

• Neither S0 nor T0 is an interface-type.

• Excluding user-defined conversions, a conversion does not exist from S to T or from T to S.

For the purposes of these rules, any type parameters associated with S or T are considered to be unique
types that have no inheritance relationship with other types, and any constraints on those type parameters
are ignored.

[Example: In the following:

class C<T> {…}

class D<T>: C<T>
{
 public static implicit operator C<int>(D<T> value) {…} // Ok

 public static implicit operator C<string>(D<T> value) {…} // Ok

 public static implicit operator C<T>(D<T> value) {…} // Error
}

the first two operator declarations are permitted because T and int and string, respectively are
considered unique types with no relationship. However, the third operator is an error because C<T> is the
base class of D<T>. end example]

From the second rule, it follows that a conversion operator shall convert either to or from the class or
struct type in which the operator is declared. [Example: It is possible for a class or struct type C to define a
conversion from C to int and from int to C, but not from int to bool. end example]

It is not possible to directly redefine a pre-defined conversion. Thus, conversion operators are not allowed
to convert from or to object because implicit and explicit conversions already exist between object and
all other types. Likewise, neither the source nor the target types of a conversion can be a base type of the
other, since a conversion would then already exist. However, it is possible to declare operators on generic
types that, for particular type arguments, specify conversions that already exist as pre-defined conversions.
[Example:

struct Convertible<T>
{
 public static implicit operator Convertible<T>(T value) {…}

 public static explicit operator T(Convertible<T> value) {…}
}

when type object is specified as a type argument for T, the second operator declares a conversion that
already exists (an implicit, and therefore also an explicit, conversion exists from any type to type object).
end example]

In cases where a pre-defined conversion exists between two types, any user-defined conversions between
those types are ignored. Specifically:

 Chapter 15 Classes

329

• If a pre-defined implicit conversion (§11.2) exists from type S to type T, all user-defined conversions
(implicit or explicit) from S to T are ignored.

• If a pre-defined explicit conversion (§11.3) exists from type S to type T, any user-defined explicit
conversions from S to T are ignored. Furthermore:

o If either S or T is an interface type, user-defined implicit conversions from S to T are ignored.
o Otherwise, user-defined implicit conversions from S to T are still considered.

For all types but object, the operators declared by the Convertible<T> type above do not conflict with
pre-defined conversions. [Example:

void F(int i, Convertible<int> n) {
 i = n; // Error
 i = (int)n; // User-defined explicit conversion
 n = i; // User-defined implicit conversion
 n = (Convertible<int>)i; // User-defined implicit conversion
}

However, for type object, pre-defined conversions hide the user-defined conversions in all cases but one:

void F(object o, Convertible<object> n) {
 o = n; // Pre-defined boxing conversion
 o = (object)n; // Pre-defined boxing conversion
 n = o; // User-defined implicit conversion
 n = (Convertible<object>)o; // Pre-defined unboxing conversion
}

end example]

User-defined conversions are not allowed to convert from or to interface-types. In particular, this
restriction ensures that no user-defined transformations occur when converting to an interface-type, and
that a conversion to an interface-type succeeds only if the object being converted actually implements the
specified interface-type.

The signature of a conversion operator consists of the source type and the target type. (This is the only
form of member for which the return type participates in the signature.) The implicit or explicit
classification of a conversion operator is not part of the operator’s signature. Thus, a class or struct cannot
declare both an implicit and an explicit conversion operator with the same source and target types.

[Note: In general, user-defined implicit conversions should be designed to never throw exceptions and
never lose information. If a user-defined conversion can give rise to exceptions (for example, because the
source argument is out of range) or loss of information (such as discarding high-order bits), then that
conversion should be defined as an explicit conversion. end note]

[Example: In the following code

using System;

public struct Digit
{
 byte value;

 public Digit(byte value) {
 if (value < 0 || value > 9) throw new ArgumentException();
 this.value = value;
 }

 public static implicit operator byte(Digit d) {
 return d.value;
 }

 public static explicit operator Digit(byte b) {
 return new Digit(b);
 }
}

ECMA-334

330

the conversion from Digit to byte is implicit because it never throws exceptions or loses information, but
the conversion from byte to Digit is explicit since Digit can only represent a subset of the possible
values of a byte. end example]

15.11 Instance constructors

15.11.1 General
An instance constructor is a member that implements the actions required to initialize an instance of a
class. Instance constructors are declared using constructor-declarations:

constructor-declaration:
attributesopt constructor-modifiersopt constructor-declarator constructor-body

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
public
protected

internal
private

extern

constructor-declarator:
identifier (formal-parameter-listopt) constructor-initializeropt

constructor-initializer:
: base (argument-listopt)
: this (argument-listopt)

constructor-body:
block
;

A constructor-declaration may include a set of attributes (§22), a valid combination of the four access
modifiers (§15.3.6), and an extern (§15.6.8) modifier. A constructor declaration is not permitted to
include the same modifier multiple times.

The identifier of a constructor-declarator shall name the class in which the instance constructor is declared.
If any other name is specified, a compile-time error occurs.

The optional formal-parameter-list of an instance constructor is subject to the same rules as the formal-
parameter-list of a method (§15.6). As the this modifier for parameters only applies to extension
methods (§15.6.10), no parameter in a constructor's formal-parameter-list shall contain the this modifier.
The formal parameter list defines the signature (§8.6) of an instance constructor and governs the process
whereby overload resolution (§12.6.4) selects a particular instance constructor in an invocation.

Each of the types referenced in the formal-parameter-list of an instance constructor shall be at least as
accessible as the constructor itself (§8.5.5).

The optional constructor-initializer specifies another instance constructor to invoke before executing the
statements given in the constructor-body of this instance constructor. This is described further in §15.11.2.

When a constructor declaration includes an extern modifier, the constructor is said to be an external
constructor. Because an external constructor declaration provides no actual implementation, its
constructor-body consists of a semicolon. For all other constructors, the constructor-body consists of a
block, which specifies the statements to initialize a new instance of the class. This corresponds exactly to
the block of an instance method with a void return type (§15.6.11).

 Chapter 15 Classes

331

Instance constructors are not inherited. Thus, a class has no instance constructors other than those
actually declared in the class, with the exception that if a class contains no instance constructor
declarations, a default instance constructor is automatically provided (§15.11.5).

Instance constructors are invoked by object-creation-expressions (§12.7.11.2) and through constructor-
initializers.

15.11.2 Constructor initializers
All instance constructors (except those for class object) implicitly include an invocation of another
instance constructor immediately before the constructor-body. The constructor to implicitly invoke is
determined by the constructor-initializer:

• An instance constructor initializer of the form base(argument-listopt) causes an instance constructor
from the direct base class to be invoked. That constructor is selected using argument-list and the
overload resolution rules of §12.6.4. The set of candidate instance constructors consists of all the
accessible instance constructors of the direct base class. If this set is empty, or if a single best instance
constructor cannot be identified, a compile-time error occurs.

• An instance constructor initializer of the form this(argument-listopt) invokes another instance
constructor from the same class. The constructor is selected using argument-list and the overload
resolution rules of §12.6.4. The set of candidate instance constructors consists of all instance
constructors declared in the class itself. If the resulting set of applicable instance constructors is empty,
or if a single best instance constructor cannot be identified, a compile-time error occurs. If an instance
constructor declaration invokes itself through a chain of one or more constructor initializers, a compile-
time error occurs.

If an instance constructor has no constructor initializer, a constructor initializer of the form base()is
implicitly provided. [Note: Thus, an instance constructor declaration of the form

C(…) {…}

is exactly equivalent to

C(…): base() {…}

end note]

The scope of the parameters given by the formal-parameter-list of an instance constructor declaration
includes the constructor initializer of that declaration. Thus, a constructor initializer is permitted to access
the parameters of the constructor. [Example:

class A
{
 public A(int x, int y) {}
}

class B: A
{
 public B(int x, int y): base(x + y, x - y) {}
}

end example]

An instance constructor initializer cannot access the instance being created. Therefore it is a compile-time
error to reference this in an argument expression of the constructor initializer, as it is a compile-time
error for an argument expression to reference any instance member through a simple-name.

15.11.3 Instance variable initializers
When an instance constructor has no constructor initializer, or it has a constructor initializer of the form
base(…), that constructor implicitly performs the initializations specified by the variable-initializers of the
instance fields declared in its class. This corresponds to a sequence of assignments that are executed
immediately upon entry to the constructor and before the implicit invocation of the direct base class

ECMA-334

332

constructor. The variable initializers are executed in the textual order in which they appear in the class
declaration (§15.5.6).

15.11.4 Constructor execution
Variable initializers are transformed into assignment statements, and these assignment statements are
executed before the invocation of the base class instance constructor. This ordering ensures that all
instance fields are initialized by their variable initializers before any statements that have access to that
instance are executed. [Example: Given the following:

using System;

class A
{
 public A() {
 PrintFields();
 }

 public virtual void PrintFields() {}
}

class B: A
{
 int x = 1;
 int y;

 public B() {
 y = -1;
 }

 public override void PrintFields() {
 Console.WriteLine("x = {0}, y = {1}", x, y);
 }
}

when new B() is used to create an instance of B, the following output is produced:

x = 1, y = 0

The value of x is 1 because the variable initializer is executed before the base class instance constructor is
invoked. However, the value of y is 0 (the default value of an int) because the assignment to y is not
executed until after the base class constructor returns.

It is useful to think of instance variable initializers and constructor initializers as statements that are
automatically inserted before the constructor-body. The example

using System;
using System.Collections;

class A
{
 int x = 1, y = -1, count;

 public A() {
 count = 0;
 }

 public A(int n) {
 count = n;
 }
}

class B: A
{
 double sqrt2 = Math.Sqrt(2.0);
 ArrayList items = new ArrayList(100);
 int max;

 public B(): this(100) {
 items.Add("default");
 }

 Chapter 15 Classes

333

 public B(int n): base(n – 1) {
 max = n;
 }
}

contains several variable initializers; it also contains constructor initializers of both forms (base and this).
The example corresponds to the code shown below, where each comment indicates an automatically
inserted statement (the syntax used for the automatically inserted constructor invocations isn’t valid, but
merely serves to illustrate the mechanism).

using System.Collections;

class A
{
 int x, y, count;

 public A() {
 x = 1; // Variable initializer
 y = -1; // Variable initializer
 object(); // Invoke object() constructor
 count = 0;
 }

 public A(int n) {
 x = 1; // Variable initializer
 y = -1; // Variable initializer
 object(); // Invoke object() constructor
 count = n;
 }
}

class B: A
{
 double sqrt2;
 ArrayList items;
 int max;

 public B(): this(100) {
 B(100); // Invoke B(int) constructor
 items.Add("default");
 }

 public B(int n): base(n – 1) {
 sqrt2 = Math.Sqrt(2.0); // Variable initializer
 items = new ArrayList(100); // Variable initializer
 A(n – 1); // Invoke A(int) constructor
 max = n;
 }
}

end example]

15.11.5 Default constructors
If a class contains no instance constructor declarations, a default instance constructor is automatically
provided. That default constructor simply invokes a constructor of the direct base class, as if it had a
constructor initializer of the form base(). If the class is abstract then the declared accessibility for the
default constructor is protected. Otherwise, the declared accessibility for the default constructor is public.
[Note: Thus, the default constructor is always of the form

protected C(): base() {}

or

public C(): base() {}

where C is the name of the class. end note]

If overload resolution is unable to determine a unique best candidate for the base-class constructor
initializer then a compile-time error occurs.

ECMA-334

334

[Example: In the following code

class Message
{
 object sender;
 string text;
}

a default constructor is provided because the class contains no instance constructor declarations. Thus, the
example is precisely equivalent to

class Message
{
 object sender;
 string text;

 public Message(): base() {}
}

end example]

15.12 Static constructors
A static constructor is a member that implements the actions required to initialize a closed class. Static
constructors are declared using static-constructor-declarations:

static-constructor-declaration:
attributesopt static-constructor-modifiers identifier () static-constructor-body

static-constructor-modifiers:
externopt static
static externopt

static-constructor-body:
block
;

A static-constructor-declaration may include a set of attributes (§22) and an extern modifier (§15.6.8).

The identifier of a static-constructor-declaration shall name the class in which the static constructor is
declared. If any other name is specified, a compile-time error occurs.

When a static constructor declaration includes an extern modifier, the static constructor is said to be an
external static constructor. Because an external static constructor declaration provides no actual
implementation, its static-constructor-body consists of a semicolon. For all other static constructor
declarations, the static-constructor-body consists of a block, which specifies the statements to execute in
order to initialize the class. This corresponds exactly to the method-body of a static method with a void
return type (§15.6.11).

Static constructors are not inherited, and cannot be called directly.

The static constructor for a closed class executes at most once in a given application domain. The execution
of a static constructor is triggered by the first of the following events to occur within an application
domain:

• An instance of the class is created.

• Any of the static members of the class are referenced.

If a class contains the Main method (§8.1) in which execution begins, the static constructor for that class
executes before the Main method is called.

To initialize a new closed class type, first a new set of static fields (§15.5.2) for that particular closed type is
created. Each of the static fields is initialized to its default value (§15.5.5). Next, the static field initializers
(§15.5.6.2) are executed for those static fields. Finally, the static constructor is executed.[Example: The
example

 Chapter 15 Classes

335

using System;

class Test
{
 static void Main() {
 A.F();
 B.F();
 }
}

class A
{
 static A() {
 Console.WriteLine("Init A");
 }
 public static void F() {
 Console.WriteLine("A.F");
 }
}

class B
{
 static B() {
 Console.WriteLine("Init B");
 }
 public static void F() {
 Console.WriteLine("B.F");
 }
}

must produce the output:

Init A
A.F
Init B
B.F

because the execution of A's static constructor is triggered by the call to A.F, and the execution of
B's static constructor is triggered by the call to B.F. end example]

It is possible to construct circular dependencies that allow static fields with variable initializers to be
observed in their default value state.

[Example: The example

using System;

class A
{
 public static int X;
 static A() {
 X = B.Y + 1;
 }
}

class B
{
 public static int Y = A.X + 1;
 static B() {}
 static void Main() {
 Console.WriteLine("X = {0}, Y = {1}", A.X, B.Y);
 }
}

produces the output

X = 1, Y = 2

To execute the Main method, the system first runs the initializer for B.Y, prior to class B's static
constructor. Y's initializer causes A's static constructor to be run because the value of A.X is referenced.
The static constructor of A in turn proceeds to compute the value of X, and in doing so fetches the default

ECMA-334

336

value of Y, which is zero. A.X is thus initialized to 1. The process of running A's static field initializers and
static constructor then completes, returning to the calculation of the initial value of Y, the result of which
becomes 2. end example]

Because the static constructor is executed exactly once for each closed constructed class type, it is a
convenient place to enforce run-time checks on the type parameter that cannot be checked at compile-
time via constraints (§15.2.5). [Example: The following type uses a static constructor to enforce that the
type argument is an enum:

class Gen<T> where T: struct
{
 static Gen() {
 if (!typeof(T).IsEnum) {
 throw new ArgumentException("T must be an enum");
 }
 }
}

end example]

15.13 Finalizers
[Note: In an earlier version of this standard, what is now referred to as a "finalizer" was called a
"destructor". Experience has shown that the term "destructor" caused confusion and often resulted to
incorrect expectations, especially to programmers knowing C++. In C++, a destructor is called in a
determinate manner, whereas, in C#, a finalizer is not. To get determinate behavior from C#, one should
use Dispose. end note]

A finalizer is a member that implements the actions required to finalize an instance of a class. A finalizer is
declared using a finalizer-declaration:

finalizer-declaration:
attributesopt externopt ~ identifier () finalizer-body

finalizer-body:
block
;

A finalizer-declaration may include a set of attributes (§22).

The identifier of a finalizer-declarator shall name the class in which the finalizer is declared. If any other
name is specified, a compile-time error occurs.

When a finalizer declaration includes an extern modifier, the finalizer is said to be an external finalizer.
Because an external finalizer declaration provides no actual implementation, its finalizer-body consists of a
semicolon. For all other finalizers, the finalizer-body consists of a block, which specifies the statements to
execute in order to finalize an instance of the class. A finalizer-body corresponds exactly to the method-
body of an instance method with a void return type (§15.6.11).

Finalizers are not inherited. Thus, a class has no finalizers other than the one that may be declared in that
class.

[Note: Since a finalizer is required to have no parameters, it cannot be overloaded, so a class can have, at
most, one finalizer. end note]

Finalizers are invoked automatically, and cannot be invoked explicitly. An instance becomes eligible for
finalization when it is no longer possible for any code to use that instance. Execution of the finalizer for the
instance may occur at any time after the instance becomes eligible for finalization (§8.9). When an instance
is finalized, the finalizers in that instance’s inheritance chain are called, in order, from most derived to least
derived. A finalizer may be executed on any thread. For further discussion of the rules that govern when
and how a finalizer is executed, see §8.9.

 Chapter 15 Classes

337

[Example: The output of the example

using System;

class A
{
 ~A() {
 Console.WriteLine("A's finalizer");
 }
}

class B: A
{
 ~B() {
 Console.WriteLine("B's finalizer");
 }
}

class Test
{
 static void Main() {
 B b = new B();
 b = null;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
}

is

B’s finalizer
A’s finalizer

since finalizers in an inheritance chain are called in order, from most derived to least derived. end example]

Finalizers are implemented by overriding the virtual method Finalize on System.Object. C# programs
are not permitted to override this method or call it (or overrides of it) directly. [Example: For instance, the
program

class A
{
 override protected void Finalize() {} // error
 public void F() {
 this.Finalize(); // error
 }
}

contains two errors. end example]

The compiler behaves as if this method, and overrides of it, do not exist at all. [Example: Thus, this
program:

class A
{
 void Finalize() {} // permitted
}

is valid and the method shown hides System.Object's Finalize method. end example]

For a discussion of the behavior when an exception is thrown from a finalizer, see §21.4.

15.14 Iterators

15.14.1 General
A function member (§12.6) implemented using an iterator block (§13.3) is called an iterator.

An iterator block may be used as the body of a function member as long as the return type of the
corresponding function member is one of the enumerator interfaces (§15.14.2) or one of the enumerable

ECMA-334

338

interfaces (§15.14.3). It may occur as a method-body, operator-body or accessor-body, whereas events,
instance constructors, static constructors and finalizers may not be implemented as iterators.

When a function member is implemented using an iterator block, it is a compile-time error for the formal
parameter list of the function member to specify any ref or out parameters.

15.14.2 Enumerator interfaces
The enumerator interfaces are the non-generic interface System.Collections.IEnumerator and all
instantiations of the generic interface System.Collections.Generic.IEnumerator<T>. For the sake
of brevity, in this subclause and its siblings these interfaces are referenced as IEnumerator and
IEnumerator<T>, respectively.

15.14.3 Enumerable interfaces
The enumerable interfaces are the non-generic interface System.Collections.IEnumerable and all
instantiations of the generic interface System.Collections.Generic.IEnumerable<T>. For the sake
of brevity, in this subclause and its siblings these interfaces are referenced as IEnumerable and
IEnumerable<T>, respectively.

15.14.4 Yield type
An iterator produces a sequence of values, all of the same type. This type is called the yield type of the
iterator.

• The yield type of an iterator that returns IEnumerator or IEnumerable is object.

• The yield type of an iterator that returns IEnumerator<T> or IEnumerable<T> is T.

15.14.5 Enumerator objects

15.14.5.1 General
When a function member returning an enumerator interface type is implemented using an iterator block,
invoking the function member does not immediately execute the code in the iterator block. Instead, an
enumerator object is created and returned. This object encapsulates the code specified in the iterator
block, and execution of the code in the iterator block occurs when the enumerator object’s MoveNext
method is invoked. An enumerator object has the following characteristics:

• It implements IEnumerator and IEnumerator<T>, where T is the yield type of the iterator.

• It implements System.IDisposable.

• It is initialized with a copy of the argument values (if any) and instance value passed to the function
member.

• It has four potential states, before, running, suspended, and after, and is initially in the before state.

An enumerator object is typically an instance of a compiler-generated enumerator class that encapsulates
the code in the iterator block and implements the enumerator interfaces, but other methods of
implementation are possible. If an enumerator class is generated by the compiler, that class will be nested,
directly or indirectly, in the class containing the function member, it will have private accessibility, and it
will have a name reserved for compiler use (§7.4.3).

An enumerator object may implement more interfaces than those specified above.

The following subclauses describe the required behavior of the MoveNext, Current, and Dispose
members of the IEnumerator and IEnumerator<T> interface implementations provided by an
enumerator object.

Enumerator objects do not support the IEnumerator.Reset method. Invoking this method causes a
System.NotSupportedException to be thrown.

 Chapter 15 Classes

339

15.14.5.2 The MoveNext method
The MoveNext method of an enumerator object encapsulates the code of an iterator block. Invoking the
MoveNext method executes code in the iterator block and sets the Current property of the enumerator
object as appropriate. The precise action performed by MoveNext depends on the state of the enumerator
object when MoveNext is invoked:

• If the state of the enumerator object is before, invoking MoveNext:

o Changes the state to running.

o Initializes the parameters (including this) of the iterator block to the argument values and
instance value saved when the enumerator object was initialized.

o Executes the iterator block from the beginning until execution is interrupted (as described below).

• If the state of the enumerator object is running, the result of invoking MoveNext is unspecified.

• If the state of the enumerator object is suspended, invoking MoveNext:

o Changes the state to running.

o Restores the values of all local variables and parameters (including this) to the values saved when
execution of the iterator block was last suspended. [Note: The contents of any objects referenced
by these variables may have changed since the previous call to MoveNext. end note]

o Resumes execution of the iterator block immediately following the yield return statement that
caused the suspension of execution and continues until execution is interrupted (as described
below).

• If the state of the enumerator object is after, invoking MoveNext returns false.

When MoveNext executes the iterator block, execution can be interrupted in four ways: By a yield
return statement, by a yield break statement, by encountering the end of the iterator block, and by an
exception being thrown and propagated out of the iterator block.

• When a yield return statement is encountered (§10.4.4.20):

o The expression given in the statement is evaluated, implicitly converted to the yield type, and
assigned to the Current property of the enumerator object.

o Execution of the iterator body is suspended. The values of all local variables and parameters
(including this) are saved, as is the location of this yield return statement. If the yield
return statement is within one or more try blocks, the associated finally blocks are not
executed at this time.

o The state of the enumerator object is changed to suspended.

o The MoveNext method returns true to its caller, indicating that the iteration successfully
advanced to the next value.

• When a yield break statement is encountered (§10.4.4.20):

o If the yield break statement is within one or more try blocks, the associated finally blocks
are executed.

o The state of the enumerator object is changed to after.

o The MoveNext method returns false to its caller, indicating that the iteration is complete.

• When the end of the iterator body is encountered:

o The state of the enumerator object is changed to after.

o The MoveNext method returns false to its caller, indicating that the iteration is complete.

ECMA-334

340

• When an exception is thrown and propagated out of the iterator block:

o Appropriate finally blocks in the iterator body will have been executed by the exception
propagation.

o The state of the enumerator object is changed to after.

o The exception propagation continues to the caller of the MoveNext method.

15.14.5.3 The Current property
An enumerator object’s Current property is affected by yield return statements in the iterator block.

When an enumerator object is in the suspended state, the value of Current is the value set by the
previous call to MoveNext. When an enumerator object is in the before, running, or after states, the result
of accessing Current is unspecified.

For an iterator with a yield type other than object, the result of accessing Current through the
enumerator object’s IEnumerable implementation corresponds to accessing Current through the
enumerator object’s IEnumerator<T> implementation and casting the result to object.

15.14.5.4 The Dispose method
The Dispose method is used to clean up the iteration by bringing the enumerator object to the after
state.

• If the state of the enumerator object is before, invoking Dispose changes the state to after.

• If the state of the enumerator object is running, the result of invoking Dispose is unspecified.

• If the state of the enumerator object is suspended, invoking Dispose:

o Changes the state to running.

o Executes any finally blocks as if the last executed yield return statement were a yield break
statement. If this causes an exception to be thrown and propagated out of the iterator body, the
state of the enumerator object is set to after and the exception is propagated to the caller of the
Dispose method.

o Changes the state to after.

• If the state of the enumerator object is after, invoking Dispose has no affect.

15.14.6 Enumerable objects

15.14.6.1 General
When a function member returning an enumerable interface type is implemented using an iterator block,
invoking the function member does not immediately execute the code in the iterator block. Instead, an
enumerable object is created and returned. The enumerable object’s GetEnumerator method returns an
enumerator object that encapsulates the code specified in the iterator block, and execution of the code in
the iterator block occurs when the enumerator object’s MoveNext method is invoked. An enumerable
object has the following characteristics:

• It implements IEnumerable and IEnumerable<T>, where T is the yield type of the iterator.

• It is initialized with a copy of the argument values (if any) and instance value passed to the function
member.

An enumerable object is typically an instance of a compiler-generated enumerable class that encapsulates
the code in the iterator block and implements the enumerable interfaces, but other methods of
implementation are possible. If an enumerable class is generated by the compiler, that class will be nested,

 Chapter 15 Classes

341

directly or indirectly, in the class containing the function member, it will have private accessibility, and it
will have a name reserved for compiler use (§7.4.3).

An enumerable object may implement more interfaces than those specified above. [Note: For example, an
enumerable object may also implement IEnumerator and IEnumerator<T>, enabling it to serve as
both an enumerable and an enumerator. Typically, such an implementation would return its own instance
(to save allocations) from the first call to GetEnumerator. Subsequent invocations of GetEnumerator, if
any, would return a new class instance, typically of the same class, so that calls to different enumerator
instances will not affect each other. It cannot return the same instance even if the previous enumerator
has already enumerated past the end of the sequence, since all future calls to an exhausted enumerator
must throw exceptions. end note]

15.14.6.2 The GetEnumerator method
An enumerable object provides an implementation of the GetEnumerator methods of the IEnumerable
and IEnumerable<T> interfaces. The two GetEnumerator methods share a common implementation
that acquires and returns an available enumerator object. The enumerator object is initialized with the
argument values and instance value saved when the enumerable object was initialized, but otherwise the
enumerator object functions as described in §15.14.5.

15.15 Async Functions

15.15.1 General
A method (§15.6) or anonymous function (§12.16) with the async modifier is called an async function. In
general, the term async is used to describe any kind of function that has the async modifier.

It is a compile-time error for the formal parameter list of an async function to specify any ref or out
parameters.

The return-type of an async method shall be either void or a task type. The task types are
System.Threading.Tasks.Task and types constructed from System.Threading.Tasks.Task<T>.
For the sake of brevity, in this chapter these types are referenced as Task and Task<T>, respectively. An
async method returning a task type is said to be task-returning.

The exact definition of the task types is implementation-defined, but from the language’s point of view, a
task type is in one of the states incomplete, succeeded or faulted. A faulted task records a pertinent
exception. A succeeded Task<T> records a result of type T. Task types are awaitable, and tasks can
therefore be the operands of await expressions (§12.8.8).

An async function has the ability to suspend evaluation by means of await expressions (§12.8.8) in its body.
Evaluation may later be resumed at the point of the suspending await expression by means of a
resumption delegate. The resumption delegate is of type System.Action, and when it is invoked,
evaluation of the async function invocation will resume from the await expression where it left off. The
current caller of an async function invocation is the original caller if the function invocation has never been
suspended or the most recent caller of the resumption delegate otherwise.

15.15.2 Evaluation of a task-returning async function
Invocation of a task-returning async function causes an instance of the returned task type to be generated.
This is called the return task of the async function. The task is initially in an incomplete state.

The async function body is then evaluated until it is either suspended (by reaching an await expression) or
terminates, at which point control is returned to the caller, along with the return task.

When the body of the async function terminates, the return task is moved out of the incomplete state:

• If the function body terminates as the result of reaching a return statement or the end of the body, any
result value is recorded in the return task, which is put into a succeeded state.

ECMA-334

342

• If the function body terminates as the result of an uncaught exception (§13.10.6) the exception is
recorded in the return task which is put into a faulted state.

15.15.3 Evaluation of a void-returning async function
If the return type of the async function is void, evaluation differs from the above in the following way:
Because no task is returned, the function instead communicates completion and exceptions to the current
thread’s synchronization context. The exact definition of synchronization context is implementation-
dependent, but is a representation of “where” the current thread is running. The synchronization context is
notified when evaluation of a void-returning async function commences, completes successfully, or causes
an uncaught exception to be thrown.

This allows the context to keep track of how many void-returning async functions are running under it, and
to decide how to propagate exceptions coming out of them.

 Chapter 16 Structs

343

16. Structs

16.1 General
Structs are similar to classes in that they represent data structures that can contain data members and
function members. However, unlike classes, structs are value types and do not require heap allocation. A
variable of a struct type directly contains the data of the struct, whereas a variable of a class type contains
a reference to the data, the latter known as an object.

[Note: Structs are particularly useful for small data structures that have value semantics. Complex
numbers, points in a coordinate system, or key-value pairs in a dictionary are all good examples of structs.
Key to these data structures is that they have few data members, that they do not require use of
inheritance or referential identity, and that they can be conveniently implemented using value semantics
where assignment copies the value instead of the reference. end note]

As described in §9.3.5, the simple types provided by C#, such as int, double, and bool, are, in fact, all
struct types.

16.2 Struct declarations

16.2.1 General
A struct-declaration is a type-declaration (§14.7) that declares a new struct:

struct-declaration:
attributesopt struct-modifiersopt partialopt struct identifier type-parameter-listopt

 struct-interfacesopt type-parameter-constraints-clausesopt struct-body ;opt

A struct-declaration consists of an optional set of attributes (§22), followed by an optional set of struct-
modifiers (§16.2.2), followed by an optional partial modifier (§15.2.7), followed by the keyword struct
and an identifier that names the struct, followed by an optional type-parameter-list specification (§15.2.3),
followed by an optional struct-interfaces specification (§16.2.4), followed by an optional type-parameter-
constraints-clauses specification (§15.2.5), followed by a struct-body (§16.2.5), optionally followed by a
semicolon.

A struct declaration shall not supply a type-parameter-constraints-clauses unless it also supplies a type-
parameter-list.

A struct declaration that supplies a type-parameter-list is a generic struct declaration.

16.2.2 Struct modifiers
A struct-declaration may optionally include a sequence of struct modifiers:

struct-modifiers:
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
new
public

protected

internal
private

It is a compile-time error for the same modifier to appear multiple times in a struct declaration.

ECMA-334

344

The modifiers of a struct declaration have the same meaning as those of a class declaration (§15.2.2).

16.2.3 Partial modifier
The partial modifier indicates that this struct-declaration is a partial type declaration. Multiple partial
struct declarations with the same name within an enclosing namespace or type declaration combine to
form one struct declaration, following the rules specified in §15.2.7.

16.2.4 Struct interfaces
A struct declaration may include a struct-interfaces specification, in which case the struct is said to directly
implement the given interface types. For a constructed struct type, including a nested type declared within
a generic type declaration (§15.3.9.7), each implemented interface type is obtained by substituting, for
each type-parameter in the given interface, the corresponding type-argument of the constructed type.

struct-interfaces:
: interface-type-list

The handling of interfaces on multiple parts of a partial struct declaration (§15.2.7) are discussed further
in §15.2.4.3.

Interface implementations are discussed further in §18.6.

16.2.5 Struct body
The struct-body of a struct defines the members of the struct.

struct-body:
{ struct-member-declarationsopt }

16.3 Struct members
The members of a struct consist of the members introduced by its struct-member-declarations and the
members inherited from the type System.ValueType.

struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
static-constructor-declaration
type-declaration

[Note: All kinds of class-member-declarations except finalizer-declaration are also struct-member-
declarations. end note] Except for the differences noted in §16.4, the descriptions of class members
provided in §15.3 through §15.12 apply to struct members as well.

16.4 Class and struct differences

16.4.1 General
Structs differ from classes in several important ways:

• Structs are value types (§16.4.2).

• All struct types implicitly inherit from the class System.ValueType (§16.4.3).

 Chapter 16 Structs

345

• Assignment to a variable of a struct type creates a copy of the value being assigned (§16.4.4).

• The default value of a struct is the value produced by setting all fields to their default value (§16.4.5).

• Boxing and unboxing operations are used to convert between a struct type and certain reference types
(§16.4.6).

• The meaning of this is different within struct members (§16.4.7).

• Instance field declarations for a struct are not permitted to include variable initializers (§16.4.8).

• A struct is not permitted to declare a parameterless instance constructor (§16.4.9).

• A struct is not permitted to declare a finalizer.

16.4.2 Value semantics
Structs are value types (§9.3) and are said to have value semantics. Classes, on the other hand, are
reference types (§9.2) and are said to have reference semantics.

A variable of a struct type directly contains the data of the struct, whereas a variable of a class type
contains a reference to an object that contains the data. When a struct B contains an instance field of
type A and A is a struct type, it is a compile-time error for A to depend on B or a type constructed from B. A
struct X directly depends on a struct Y if X contains an instance field of type Y. Given this definition, the
complete set of structs upon which a struct depends is the transitive closure of the directly depends on
relationship. [Example:

struct Node
{
 int data;

 Node next; // error, Node directly depends on itself

}

is an error because Node contains an instance field of its own type. Another example

struct A { B b; }

struct B { C c; }

struct C { A a; }

is an error because each of the types A, B, and C depend on each other. end example]

With classes, it is possible for two variables to reference the same object, and thus possible for operations
on one variable to affect the object referenced by the other variable. With structs, the variables each have
their own copy of the data (except in the case of ref and out parameter variables), and it is not possible
for operations on one to affect the other. Furthermore, except when explicitly nullable (§9.3.11), it is not
possible for values of a struct type to be null. [Note: If a struct contains a field of reference type then the
contents of the object referenced can be altered by other operations. However the value of the field itself,
i.e., which object it references, cannot be changed through a mutation of a different struct value. end note]

[Example: Given the declaration

struct Point
{
 public int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

the code fragment

Point a = new Point(10, 10);
Point b = a;
a.x = 100;
System.Console.WriteLine(b.x);

ECMA-334

346

outputs the value 10. The assignment of a to b creates a copy of the value, and b is thus unaffected by the
assignment to a.x. Had Point instead been declared as a class, the output would be 100 because a and b
would reference the same object. end example]

16.4.3 Inheritance
All struct types implicitly inherit from the class System.ValueType, which, in turn, inherits from class
object. A struct declaration may specify a list of implemented interfaces, but it is not possible for a struct
declaration to specify a base class.

Struct types are never abstract and are always implicitly sealed. The abstract and sealed modifiers are
therefore not permitted in a struct declaration.

Since inheritance isn’t supported for structs, the declared accessibility of a struct member cannot be
protected or protected internal.

Function members in a struct cannot be abstract or virtual, and the override modifier is allowed
only to override methods inherited from System.ValueType.

16.4.4 Assignment
Assignment to a variable of a struct type creates a copy of the value being assigned. This differs from
assignment to a variable of a class type, which copies the reference but not the object identified by the
reference.

Similar to an assignment, when a struct is passed as a value parameter or returned as the result of a
function member, a copy of the struct is created. A struct may be passed by reference to a function
member using a ref or out parameter.

When a property or indexer of a struct is the target of an assignment, the instance expression associated
with the property or indexer access shall be classified as a variable. If the instance expression is classified as
a value, a compile-time error occurs. This is described in further detail in §12.18.2.

16.4.5 Default values
As described in §10.3, several kinds of variables are automatically initialized to their default value when
they are created. For variables of class types and other reference types, this default value is null.
However, since structs are value types that cannot be null, the default value of a struct is the value
produced by setting all value type fields to their default value and all reference type fields to null.

[Example: Referring to the Point struct declared above, the example

Point[] a = new Point[100];

initializes each Point in the array to the value produced by setting the x and y fields to zero. end example]

The default value of a struct corresponds to the value returned by the default constructor of the struct
(§9.3.3). Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead,
every struct implicitly has a parameterless instance constructor, which always returns the value that results
from setting all fields to their default values.

[Note: Structs should be designed to consider the default initialization state a valid state. In the example

using System;

struct KeyValuePair
{
 string key;
 string value;

 Chapter 16 Structs

347

 public KeyValuePair(string key, string value) {
 if (key == null || value == null) throw new ArgumentException();
 this.key = key;
 this.value = value;
 }
}

the user-defined instance constructor protects against null values only where it is explicitly called. In cases
where a KeyValuePair variable is subject to default value initialization, the key and value fields will be
null, and the struct should be prepared to handle this state. end note]

16.4.6 Boxing and unboxing
A value of a class type can be converted to type object or to an interface type that is implemented by the
class simply by treating the reference as another type at compile-time. Likewise, a value of type object or
a value of an interface type can be converted back to a class type without changing the reference (but, of
course, a run-time type check is required in this case).

Since structs are not reference types, these operations are implemented differently for struct types. When
a value of a struct type is converted to certain reference types (as defined in §11.2.8), a boxing operation
takes place. Likewise, when a value of certain reference types (as defined in §11.3.6) is converted back to a
struct type, an unboxing operation takes place. A key difference from the same operations on class types is
that boxing and unboxing copies the struct value either into or out of the boxed instance. [Note: Thus,
following a boxing or unboxing operation, changes made to the unboxed struct are not reflected in the
boxed struct. end note]

For further details on boxing and unboxing, see §11.2.8 and §11.3.6.

16.4.7 Meaning of this
The meaning of this in a struct differs from the meaning of this in a class, as described in §12.7.8.When
a struct type overrides a virtual method inherited from System.ValueType (such as Equals,
GetHashCode, or ToString), invocation of the virtual method through an instance of the struct type
does not cause boxing to occur. This is true even when the struct is used as a type parameter and the
invocation occurs through an instance of the type parameter type. [Example:

using System;

struct Counter
{
 int value;

 public override string ToString() {
 value++;
 return value.ToString();
 }
}

class Program
{
 static void Test<T>() where T: new() {
 T x = new T();
 Console.WriteLine(x.ToString());
 Console.WriteLine(x.ToString());
 Console.WriteLine(x.ToString());
 }

 static void Main() {
 Test<Counter>();
 }
}

The output of the program is:

1
2
3

ECMA-334

348

Although it is bad style for ToString to have side effects, the example demonstrates that no boxing
occurred for the three invocations of x.ToString(). end example]

Similarly, boxing never implicitly occurs when accessing a member on a constrained type parameter when
the member is implemented within the value type. For example, suppose an interface ICounter contains
a method Increment, which can be used to modify a value. If ICounter is used as a constraint, the
implementation of the Increment method is called with a reference to the variable that Increment was
called on, never a boxed copy. [Example:

using System;

interface ICounter
{
 void Increment();
}

struct Counter: ICounter
{
 int value;

 public override string ToString() {
 return value.ToString();
 }

 void ICounter.Increment() {
 value++;
 }
}

class Program
{
 static void Test<T>() where T: ICounter, new() {
 T x = new T();
 Console.WriteLine(x);
 x.Increment(); // Modify x
 Console.WriteLine(x);
 ((ICounter)x).Increment(); // Modify boxed copy of x
 Console.WriteLine(x);
 }

 static void Main() {
 Test<Counter>();
 }
}

The first call to Increment modifies the value in the variable x. This is not equivalent to the second call to
Increment, which modifies the value in a boxed copy of x. Thus, the output of the program is:

0
1
1

end example]

16.4.8 Field initializers
As described in §16.4.5, the default value of a struct consists of the value that results from setting all value
type fields to their default value and all reference type fields to null. For this reason, a struct does not
permit instance field declarations to include variable initializers. This restriction applies only to instance
fields. Static fields of a struct are permitted to include variable initializers. [Example: The following

struct Point
{
 public int x = 1; // Error, initializer not permitted
 public int y = 1; // Error, initializer not permitted
}

is in error because the instance field declarations include variable initializers. end example]

 Chapter 16 Structs

349

16.4.9 Constructors
Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead, every
struct implicitly has a parameterless instance constructor, which always returns the value that results from
setting all value type fields to their default value and all reference type fields to null (§9.3.3). A struct can
declare instance constructors having parameters. [Example:

struct Point
{
 int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

Given the above declaration, the statements

Point p1 = new Point();
Point p2 = new Point(0, 0);

both create a Point with x and y initialized to zero. end example]

A struct instance constructor is not permitted to include a constructor initializer of the form
base(argument-listopt).

The this parameter of a struct instance constructor corresponds to an out parameter of the struct type.
As such, this shall be definitely assigned (§10.4) at every location where the constructor returns. Similarly,
it cannot be read (even implicitly) in the constructor body before being definitely assigned.

If the struct instance constructor specifies a constructor initializer, that initializer is considered a definite
assignment to this that occurs prior to the body of the constructor. Therefore, the body itself has no
initialization requirements. [Example: Consider the instance constructor implementation below:

struct Point
{
 int x, y;

 public int X {
 set { x = value; }
 }

 public int Y {
 set { y = value; }
 }

 public Point(int x, int y) {
 X = x; // error, this is not yet definitely assigned
 Y = y; // error, this is not yet definitely assigned
 }
}

No instance function member (including the set accessors for the properties X and Y) can be called until all
fields of the struct being constructed have been definitely assigned. Note, however, that if Point were a
class instead of a struct, the instance constructor implementation would be permitted.

end example]

16.4.10 Static constructors
Static constructors for structs follow most of the same rules as for classes. The execution of a static
constructor for a struct type is triggered by the first of the following events to occur within an application
domain:

• A static member of the struct type is referenced.

• An explicitly declared constructor of the struct type is called.

ECMA-334

350

[Note: The creation of default values (§16.4.5) of struct types does not trigger the static constructor. (An
example of this is the initial value of elements in an array.) end note]

16.4.11 Automatically implemented properties
Automatically implemented properties (§15.7.4) use hidden backing fields, which are only accessible to the
property accessors. [Note: This access restriction means that constructors in structs containing
automatically implemented properties often need an explicit constructor initializer where they would not
otherwise need one, to satisfy the requirement of all fields being definitely assigned before any function
member is invoked or the constructor returns. end note]

 Chapter 17 Arrays

351

17. Arrays

17.1 General
An array is a data structure that contains a number of variables that are accessed through computed
indices. The variables contained in an array, also called the elements of the array, are all of the same type,
and this type is called the element type of the array.

An array has a rank that determines the number of indices associated with each array element. The rank of
an array is also referred to as the dimensions of the array. An array with a rank of one is called a single-
dimensional array. An array with a rank greater than one is called a multi-dimensional array. Specific sized
multi-dimensional arrays are often referred to as two-dimensional arrays, three-dimensional arrays, and so
on. Each dimension of an array has an associated length that is an integral number greater than or equal to
zero. The dimension lengths are not part of the type of the array, but rather are established when an
instance of the array type is created at run-time. The length of a dimension determines the valid range of
indices for that dimension: For a dimension of length N, indices can range from 0 to N – 1 inclusive. The
total number of elements in an array is the product of the lengths of each dimension in the array. If one or
more of the dimensions of an array have a length of zero, the array is said to be empty.

Every array type is a reference type (§9.2). The element type of an array can be any type, including value
types and array types.

17.2 Array types

17.2.1 General
The grammar productions for array types are provided in §9.2.1.

An array type is written as a non-array-type followed by one or more rank-specifiers.

A non-array-type is any type that is not itself an array-type.

The rank of an array type is given by the leftmost rank-specifier in the array-type: A rank-specifier indicates
that the array is an array with a rank of one plus the number of “,” tokens in the rank-specifier.

The element type of an array type is the type that results from deleting the leftmost rank-specifier:

• An array type of the form T[R] is an array with rank R and a non-array element type T.

• An array type of the form T[R][R1]…[RN] is an array with rank R and an element type T[R1]…[RN].

In effect, the rank-specifiers are read from left to right before the final non-array element type. [Example:
The type int[][,,][,] is a single-dimensional array of three-dimensional arrays of two-dimensional
arrays of int. end example]

At run-time, a value of an array type can be null or a reference to an instance of that array type. [Note:
Following the rules of §17.6, the value may also be a reference to a covariant array type. end note]

17.2.2 The System.Array type
The type System.Array is the abstract base type of all array types. An implicit reference conversion
(§11.2.7) exists from any array type to System.Array and to any interface type implemented by
System.Array. An explicit reference conversion (§11.3.5) exists from System.Array and any interface
type implemented by System.Array to any array type. System.Array is not itself an array-type. Rather,
it is a class-type from which all array-types are derived.

At run-time, a value of type System.Array can be null or a reference to an instance of any array type.

ECMA-334

352

17.2.3 Arrays and the generic collection interfaces
A single-dimensional array T[] implements the interface System.Collections.Generic.IList<T>
(IList<T> for short) and its base interfaces. Accordingly, there is an implicit conversion from T[] to
IList<T> and its base interfaces. In addition, if there is an implicit reference conversion from S to T then
S[] implements IList<T> and there is an implicit reference conversion from S[] to IList<T> and its
base interfaces (§11.2.7). If there is an explicit reference conversion from S to T then there is an explicit
reference conversion from S[] to IList<T> and its base interfaces (§11.3.5).

Similarly, a single-dimensional array T[] also implements the interface
System.Collections.Generic.IReadOnlyList<T> (IReadOnlyList<T> for short) and its base
interfaces. Accordingly, there is an implicit conversion from T[] to IReadOnlyList<T> and its base
interfaces. In addition, if there is an implicit reference conversion from S to T then S[] implements
IReadOnlyList<T> and there is an implicit reference conversion from S[] to IReadOnlyList<T> and
its base interfaces (§11.2.7). If there is an explicit reference conversion from S to T then there is an explicit
reference conversion from S[] to IReadOnlyList<T> and its base interfaces (§11.3.5).

[Example: For example:

using System.Collections.Generic;

class Test

{

 static void Main()

 {

 string[] sa = new string[5];

 object[] oa1 = new object[5];

 object[] oa2 = sa;

 IList<string> lst1 = sa; // Ok

 IList<string> lst2 = oa1; // Error, cast needed

 IList<object> lst3 = sa; // Ok

 IList<object> lst4 = oa1; // Ok

 IList<string> lst5 = (IList<string>)oa1; // Exception

 IList<string> lst6 = (IList<string>)oa2; // Ok

 IReadOnlyList<string> lst7 = sa; // Ok

 IReadOnlyList<string> lst8 = oa1; // Error, cast needed

 IReadOnlyList<object> lst9 = sa; // Ok

 IReadOnlyList<object> lst10 = oa1; // Ok

 IReadOnlyList<string> lst11 = (IReadOnlyList<string>)oa1;
 // Exception

 IReadOnlyList<string> lst12 = (IReadOnlyList<string>)oa2; // Ok

 }

}

The assignment lst2 = oa1 generates a compile-time error since the conversion from object[] to
IList<string> is an explicit conversion, not implicit. The cast (IList<string>)oa1 will cause an
exception to be thrown at run-time since oa1 references an object[] and not a string[]. However the
cast (IList<string>)oa2 will not cause an exception to be thrown since oa2 references a string[].
end example]

 Chapter 17 Arrays

353

Whenever there is an implicit or explicit reference conversion from S[] to IList<T>, there is also an
explicit reference conversion from IList<T> and its base interfaces to S[] (§11.3.5).

When an array type S[] implements IList<T>, some of the members of the implemented interface may
throw exceptions. The precise behavior of the implementation of the interface is beyond the scope of this
specification.

17.3 Array creation
Array instances are created by array-creation-expressions (§12.7.11.5) or by field or local variable
declarations that include an array-initializer (§17.7). Array instances can also be created implicitly as part of
evaluating an argument list involving a parameter array (§15.6.2.5).

When an array instance is created, the rank and length of each dimension are established and then remain
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an
existing array instance, nor is it possible to resize its dimensions.

An array instance is always of an array type. The System.Array type is an abstract type that cannot be
instantiated.

Elements of arrays created by array-creation-expressions are always initialized to their default value
(§10.3).

17.4 Array element access
Array elements are accessed using element-access expressions (§12.7.7.2) of the form A[I1, I2, …, IN],
where A is an expression of an array type and each IX is an expression of type int, uint, long, ulong, or
can be implicitly converted to one or more of these types. The result of an array element access is a
variable, namely the array element selected by the indices.

The elements of an array can be enumerated using a foreach statement (§13.9.5).

17.5 Array members
Every array type inherits the members declared by the System.Array type.

17.6 Array covariance
For any two reference-types A and B, if an implicit reference conversion (§11.2.7) or explicit reference
conversion (§11.3.4) exists from A to B, then the same reference conversion also exists from the array type
A[R] to the array type B[R], where R is any given rank-specifier (but the same for both array types). This
relationship is known as array covariance. Array covariance, in particular, means that a value of an array
type A[R] might actually be a reference to an instance of an array type B[R], provided an implicit
reference conversion exists from B to A.

Because of array covariance, assignments to elements of reference type arrays include a run-time check
which ensures that the value being assigned to the array element is actually of a permitted type (§12.18.2).
[Example:

class Test
{
 static void Fill(object[] array, int index, int count, object value) {
 for (int i = index; i < index + count; i++) array[i] = value;
 }

 static void Main() {
 string[] strings = new string[100];
 Fill(strings, 0, 100, "Undefined");
 Fill(strings, 0, 10, null);
 Fill(strings, 90, 10, 0);
 }
}

ECMA-334

354

The assignment to array[i] in the Fill method implicitly includes a run-time check, which ensures that
value is either a null reference or a reference to an object of a type that is compatible with the actual
element type of array. In Main, the first two invocations of Fill succeed, but the third invocation causes
a System.ArrayTypeMismatchException to be thrown upon executing the first assignment to
array[i]. The exception occurs because a boxed int cannot be stored in a string array. end example]

Array covariance specifically does not extend to arrays of value-types. For example, no conversion exists
that permits an int[] to be treated as an object[].

17.7 Array initializers
Array initializers may be specified in field declarations (§15.5), local variable declarations (§13.6.2), and
array creation expressions (§12.7.11.5):

array-initializer:
{ variable-initializer-listopt }
{ variable-initializer-list , }

variable-initializer-list:
variable-initializer
variable-initializer-list , variable-initializer

variable-initializer:
expression
array-initializer

An array initializer consists of a sequence of variable initializers, enclosed by “{”and “}” tokens and
separated by “,” tokens. Each variable initializer is an expression or, in the case of a multi-dimensional
array, a nested array initializer.

The context in which an array initializer is used determines the type of the array being initialized. In an
array creation expression, the array type immediately precedes the initializer, or is inferred from the
expressions in the array initializer. In a field or variable declaration, the array type is the type of the field or
variable being declared. When an array initializer is used in a field or variable declaration, [Example:

int[] a = {0, 2, 4, 6, 8};

end example] it is simply shorthand for an equivalent array creation expression: [Example:

int[] a = new int[] {0, 2, 4, 6, 8};

end example]

For a single-dimensional array, the array initializer shall consist of a sequence of expressions, each having
an implicit conversion to the element type of the array (§11.2). The expressions initialize array elements in
increasing order, starting with the element at index zero. The number of expressions in the array initializer
determines the length of the array instance being created. [Example: The array initializer above creates an
int[] instance of length 5 and then initializes the instance with the following values:

a[0] = 0; a[1] = 2; a[2] = 4; a[3] = 6; a[4] = 8;

end example]

For a multi-dimensional array, the array initializer shall have as many levels of nesting as there are
dimensions in the array. The outermost nesting level corresponds to the leftmost dimension and the
innermost nesting level corresponds to the rightmost dimension. The length of each dimension of the array
is determined by the number of elements at the corresponding nesting level in the array initializer. For
each nested array initializer, the number of elements shall be the same as the other array initializers at the
same level. [Example: The example:

int[,] b = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}};

 Chapter 17 Arrays

355

creates a two-dimensional array with a length of five for the leftmost dimension and a length of two for the
rightmost dimension:

int[,] b = new int[5, 2];

and then initializes the array instance with the following values:

b[0, 0] = 0; b[0, 1] = 1;
b[1, 0] = 2; b[1, 1] = 3;
b[2, 0] = 4; b[2, 1] = 5;
b[3, 0] = 6; b[3, 1] = 7;
b[4, 0] = 8; b[4, 1] = 9;

end example]

If a dimension other than the rightmost is given with length zero, the subsequent dimensions are assumed
to also have length zero. [Example:

int[,] c = {};

creates a two-dimensional array with a length of zero for both the leftmost and the rightmost dimension:

int[,] c = new int[0, 0];

end example]

When an array creation expression includes both explicit dimension lengths and an array initializer, the
lengths shall be constant expressions and the number of elements at each nesting level shall match the
corresponding dimension length. [Example: Here are some examples:

int i = 3;
int[] x = new int[3] {0, 1, 2}; // OK
int[] y = new int[i] {0, 1, 2}; // Error, i not a constant
int[] z = new int[3] {0, 1, 2, 3}; // Error, length/initializer mismatch

Here, the initializer for y results in a compile-time error because the dimension length expression is not a
constant, and the initializer for z results in a compile-time error because the length and the number of
elements in the initializer do not agree. end example]

[Note: C# allows a trailing comma at the end of an array-initializer. This syntax provides flexibility in adding
or deleting members from such a list, and simplifies machine generation of such lists. end note]

 Chapter 18 Interfaces

357

18. Interfaces

18.1 General
An interface defines a contract. A class or struct that implements an interface shall adhere to its contract.
An interface may inherit from multiple base interfaces, and a class or struct may implement multiple
interfaces.

Interfaces can contain methods, properties, events, and indexers. The interface itself does not provide
implementations for the members that it declares. The interface merely specifies the members that shall
be supplied by classes or structs that implement the interface.

18.2 Interface declarations

18.2.1 General
An interface-declaration is a type-declaration (§14.7) that declares a new interface type.

interface-declaration:
attributesopt interface-modifiersopt partialopt interface
 identifier variant-type-parameter-listopt

 interface-baseopt type-parameter-constraints-clausesopt interface-body ;opt

An interface-declaration consists of an optional set of attributes (§22), followed by an optional set of
interface-modifiers (§18.2.2), followed by an optional partial modifier (§15.2.7), followed by the
keyword interface and an identifier that names the interface, followed by an optional variant-type-
parameter-list specification (§18.2.3), followed by an optional interface-base specification (§18.2.4),
followed by an optional type-parameter-constraints-clauses specification (§15.2.5), followed by an
interface-body (§18.3), optionally followed by a semicolon.

An interface declaration shall not supply a type-parameter-constraints-clauses unless it also supplies a
type-parameter-list.

An interface declaration that supplies a type-parameter-list is a generic interface declaration.

18.2.2 Interface modifiers
An interface-declaration may optionally include a sequence of interface modifiers:

interface-modifiers:
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
new
public

protected

internal
private

It is a compile-time error for the same modifier to appear multiple times in an interface declaration.

The new modifier is only permitted on interfaces defined within a class. It specifies that the interface hides
an inherited member by the same name, as described in §15.3.5.

The public, protected, internal, and private modifiers control the accessibility of the interface.
Depending on the context in which the interface declaration occurs, only some of these modifiers might be

ECMA-334

358

permitted (§8.5.2). When a partial type declaration (§15.2.7) includes an accessibility specification (via the
public, protected, internal, and private modifiers), the rules in §15.2.2 apply.

18.2.3 Variant type parameter lists

18.2.3.1 General
Variant type parameter lists can only occur on interface and delegate types. The difference from ordinary
type-parameter-lists is the optional variance-annotation on each type parameter.

variant-type-parameter-list:
< variant-type-parameters >

variant-type-parameters:
attributesopt variance-annotationopt type-parameter
variant-type-parameters , attributesopt variance-annotationopt type-parameter

variance-annotation:
in
out

If the variance annotation is out, the type parameter is said to be covariant. If the variance annotation is
in, the type parameter is said to be contravariant. If there is no variance annotation, the type parameter
is said to be invariant.

[Example: In the following:

interface C<out X, in Y, Z>
{
 X M(Y y);

 Z P { get; set; }
}

X is covariant, Y is contravariant and Z is invariant. end example]

If a generic interface is declared in multiple parts (§15.2.3), each partial declaration shall specify the same
variance for each type parameter.

18.2.3.2 Variance safety
The occurrence of variance annotations in the type parameter list of a type restricts the places where types
can occur within the type declaration.

A type T is output-unsafe if one of the following holds:

• T is a contravariant type parameter

• T is an array type with an output-unsafe element type

• T is an interface or delegate type S<A1,… AK> constructed from a generic type S<X1, … XK> where
for at least one Ai one of the following holds:

o Xi is covariant or invariant and Ai is output-unsafe.

o Xi is contravariant or invariant and Ai is input-unsafe.

A type T is input-unsafe if one of the following holds:

• T is a covariant type parameter

• T is an array type with an input-unsafe element type

• T is an interface or delegate type S<A1,… AK> constructed from a generic type S<X1, … XK> where
for at least one Ai one of the following holds:

o Xi is covariant or invariant and Ai is input-unsafe.

 Chapter 18 Interfaces

359

o Xi is contravariant or invariant and Ai is output-unsafe.

Intuitively, an output-unsafe type is prohibited in an output position, and an input-unsafe type is
prohibited in an input position.
A type is output-safe if it is not output-unsafe, and input-safe if it is not input-unsafe.

18.2.3.3 Variance conversion
The purpose of variance annotations is to provide for more lenient (but still type safe) conversions to
interface and delegate types. To this end the definitions of implicit (§11.2) and explicit conversions (§11.3)
make use of the notion of variance-convertibility, which is defined as follows:

A type T<A1, …, An> is variance-convertible to a type T<B1, …, Bn> if T is either an interface or a
delegate type declared with the variant type parameters T<X1, …, Xn>, and for each variant type
parameter Xi one of the following holds:

• Xi is covariant and an implicit reference or identity conversion exists from Ai to Bi

• Xi is contravariant and an implicit reference or identity conversion exists from Bi to Ai

• Xi is invariant and an identity conversion exists from Ai to Bi

18.2.4 Base interfaces
An interface can inherit from zero or more interface types, which are called the explicit base interfaces of
the interface. When an interface has one or more explicit base interfaces, then in the declaration of that
interface, the interface identifier is followed by a colon and a comma-separated list of base interface types.

interface-base:
: interface-type-list

The explicit base interfaces can be constructed interface types (§9.4, §18.2). A base interface cannot be a
type parameter on its own, though it can involve the type parameters that are in scope.

For a constructed interface type, the explicit base interfaces are formed by taking the explicit base
interface declarations on the generic type declaration, and substituting, for each type-parameter in the
base interface declaration, the corresponding type-argument of the constructed type.

The explicit base interfaces of an interface shall be at least as accessible as the interface itself (§8.5.5).
[Note: For example, it is a compile-time error to specify a private or internal interface in the interface-
base of a public interface. end note]

It is a compile-time error for an interface to directly or indirectly inherit from itself.

The base interfaces of an interface are the explicit base interfaces and their base interfaces. In other
words, the set of base interfaces is the complete transitive closure of the explicit base interfaces, their
explicit base interfaces, and so on. An interface inherits all members of its base interfaces. [Example: In the
following code

interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

interface IListBox: IControl
{
 void SetItems(string[] items);
}

interface IComboBox: ITextBox, IListBox {}

ECMA-334

360

the base interfaces of IComboBox are IControl, ITextBox, and IListBox. In other words, the
IComboBox interface above inherits members SetText and SetItems as well as Paint. end example]

Members inherited from a constructed generic type are inherited after type substitution. That is, any
constituent types in the member have the base class declaration’s type parameters replaced with the
corresponding type arguments used in the class-base specification. [Example: In the following code

interface IBase<T>
{
 T[] Combine(T a, T b);
}

interface IDerived : IBase<string[,]>
{
 // Inherited: string[][,] Combine(string[,] a, string[,] b);
}

the interface IDerived inherits the Combine method after the type parameter T is replaced with
string[,]. end example]

A class or struct that implements an interface also implicitly implements all of the interface’s base
interfaces.

The handling of interfaces on multiple parts of a partial interface declaration (§15.2.7) are discussed
further in §15.2.4.3.

Every base interface of an interface shall be output-safe (§18.2.3.2).

18.3 Interface body
The interface-body of an interface defines the members of the interface.

interface-body:
{ interface-member-declarationsopt }

18.4 Interface members

18.4.1 General
The members of an interface are the members inherited from the base interfaces and the members
declared by the interface itself.

interface-member-declarations:
interface-member-declaration
interface-member-declarations interface-member-declaration

interface-member-declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

An interface declaration declares zero or more members. The members of an interface shall be methods,
properties, events, or indexers. An interface cannot contain constants, fields, operators, instance
constructors, finalizers, or types, nor can an interface contain static members of any kind.

All interface members implicitly have public access. It is a compile-time error for interface member
declarations to include any modifiers.

An interface-declaration creates a new declaration space (§8.3), and the type parameters and interface-
member-declarations immediately contained by the interface-declaration introduce new members into this
declaration space. The following rules apply to interface-member-declarations:

 Chapter 18 Interfaces

361

• The name of a type parameter in the type-parameter-list of an interface declaration shall differ from
the names of all other type parameters in the same type-parameter-list and shall differ from the names
of all members of the interface.

• The name of a method shall differ from the names of all properties and events declared in the same
interface. In addition, the signature (§8.6) of a method shall differ from the signatures of all other
methods declared in the same interface, and two methods declared in the same interface may not
have signatures that differ solely by ref and out.

• The name of a property or event shall differ from the names of all other members declared in the same
interface.

• The signature of an indexer shall differ from the signatures of all other indexers declared in the same
interface.

The inherited members of an interface are specifically not part of the declaration space of the interface.
Thus, an interface is allowed to declare a member with the same name or signature as an inherited
member. When this occurs, the derived interface member is said to hide the base interface member.
Hiding an inherited member is not considered an error, but it does cause the compiler to issue a warning.
To suppress the warning, the declaration of the derived interface member shall include a new modifier to
indicate that the derived member is intended to hide the base member. This topic is discussed further in
§8.7.2.3.

If a new modifier is included in a declaration that doesn’t hide an inherited member, a warning is issued to
that effect. This warning is suppressed by removing the new modifier.

[Note: The members in class object are not, strictly speaking, members of any interface (§18.4). However,
the members in class object are available via member lookup in any interface type (§12.5). end note]

The set of members of an interface declared in multiple parts (§15.2.7) is the union of the members
declared in each part. The bodies of all parts of the interface declaration share the same declaration space
(§8.3), and the scope of each member (§8.7) extends to the bodies of all the parts.

18.4.2 Interface methods
Interface methods are declared using interface-method-declarations:

interface-method-declaration:
attributesopt newopt return-type identifier type-parameter-listopt
 (formal-parameter-listopt) type-parameter-constraints-clausesopt ;

The attributes, return-type, identifier, and formal-parameter-list of an interface method declaration have
the same meaning as those of a method declaration in a class (§15.6). An interface method declaration is
not permitted to specify a method body, and the declaration therefore always ends with a semicolon. An
interface-method-declaration shall not have type-parameter-constraints-clauses unless it also has a type-
parameter-list.

Each formal parameter type of an interface method shall be input-safe (§18.2.3.2), and the return type
shall be either void or output-safe. In addition, any out or ref formal parameter types shall also be
output-safe. [Note: Even out parameters are required to be input-safe, due to common implementation
restrictions. end note] Furthermore, each class type constraint, interface type constraint and type
parameter constraint on any type parameter of the method shall be input-safe.

These rules ensure that any covariant or contravariant usage of the interface remains typesafe. [Example:

interface I<out T> { void M<U>() where U : T; }

is ill-formed because the usage of T as a type parameter constraint on U is not input-safe.

Were this restriction not in place it would be possible to violate type safety in the following manner:

ECMA-334

362

class B {}
class D : B {}
class E : B {}
class C : I<D> { public void M<U>() {…} }
…
I b = new C();
b.M<E>();

This is actually a call to C.M<E>. But that call requires that E derive from D, so type safety would be
violated here. end example]

18.4.3 Interface properties
Interface properties are declared using interface-property-declarations:

interface-property-declaration:
attributesopt newopt type identifier { interface-accessors }

interface-accessors:
attributesopt get ;
attributesopt set ;
attributesopt get ; attributesopt set ;
attributesopt set ; attributesopt get ;

The attributes, type, and identifier of an interface property declaration have the same meaning as those of
a property declaration in a class (§15.7).

The accessors of an interface property declaration correspond to the accessors of a class property
declaration (§15.7.3), except that the accessor body shall always be a semicolon. Thus, the accessors
simply indicate whether the property is read-write, read-only, or write-only.

The type of an interface property shall be output-safe if there is a get accessor, and shall be input-safe if
there is a set accessor.

18.4.4 Interface events
Interface events are declared using interface-event-declarations:

interface-event-declaration:
attributesopt newopt event type identifier ;

The attributes, type, and identifier of an interface event declaration have the same meaning as those of an
event declaration in a class (§15.8).

The type of an interface event shall be input-safe.

18.4.5 Interface indexers
Interface indexers are declared using interface-indexer-declarations:

interface-indexer-declaration:
attributesopt newopt type this [formal-parameter-list] { interface-accessors }

The attributes, type, and formal-parameter-list of an interface indexer declaration have the same meaning
as those of an indexer declaration in a class (§15.9).

The accessors of an interface indexer declaration correspond to the accessors of a class indexer declaration
(§15.9), except that the accessor body shall always be a semicolon. Thus, the accessors simply indicate
whether the indexer is read-write, read-only, or write-only.

All the formal parameter types of an interface indexer shall be input-safe. In addition, any out or ref
formal parameter types shall also be output-safe. [Note: Even out parameters are required to be input-
safe, due to common implementation restrictions. end note]

 Chapter 18 Interfaces

363

The type of an interface indexer shall be output-safe if there is a get accessor, and shall be input-safe if
there is a set accessor.

18.4.6 Interface member access
Interface members are accessed through member access (§12.7.5) and indexer access (§12.7.7.3)
expressions of the form I.M and I[A], where I is an interface type, M is a method, property, or event of
that interface type, and A is an indexer argument list.

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or
one direct base interface), the effects of the member lookup (§12.5), method invocation (§12.7.6.2), and
indexer access (§12.7.7.3) rules are exactly the same as for classes and structs: More derived members
hide less derived members with the same name or signature. However, for multiple-inheritance interfaces,
ambiguities can occur when two or more unrelated base interfaces declare members with the same name
or signature. This subclause shows several examples, some of which lead to ambiguities and others which
don't. In all cases, explicit casts can be used to resolve the ambiguities.

[Example: In the following code

interface IList
{
 int Count { get; set; }
}

interface ICounter
{
 void Count(int i);
}

interface IListCounter: IList, ICounter {}

class C
{
 void Test(IListCounter x) {
 x.Count(1); // Error
 x.Count = 1; // Error
 ((IList)x).Count = 1; // Ok, invokes IList.Count.set
 ((ICounter)x).Count(1); // Ok, invokes ICounter.Count
 }
}

the first two statements cause compile-time errors because the member lookup (§12.5) of Count in
IListCounter is ambiguous. As illustrated by the example, the ambiguity is resolved by casting x to the
appropriate base interface type. Such casts have no run-time costs—they merely consist of viewing the
instance as a less derived type at compile-time. end example]

[Example: In the following code

interface IInteger
{
 void Add(int i);
}

interface IDouble
{
 void Add(double d);
}

interface INumber: IInteger, IDouble {}

ECMA-334

364

class C
{
 void Test(INumber n) {
 n.Add(1); // Invokes IInteger.Add
 n.Add(1.0); // Only IDouble.Add is applicable
 ((IInteger)n).Add(1); // Only IInteger.Add is a candidate
 ((IDouble)n).Add(1); // Only IDouble.Add is a candidate
 }
}

the invocation n.Add(1) selects IInteger.Add by applying overload resolution rules of §12.6.4.
Similarly, the invocation n.Add(1.0) selects IDouble.Add. When explicit casts are inserted, there is only
one candidate method, and thus no ambiguity. end example]

[Example: In the following code

interface IBase
{
 void F(int i);
}

interface ILeft: IBase
{
 new void F(int i);
}

interface IRight: IBase
{
 void G();
}

interface IDerived: ILeft, IRight {}

class A
{
 void Test(IDerived d) {
 d.F(1); // Invokes ILeft.F
 ((IBase)d).F(1); // Invokes IBase.F
 ((ILeft)d).F(1); // Invokes ILeft.F
 ((IRight)d).F(1); // Invokes IBase.F
 }
}

the IBase.F member is hidden by the ILeft.F member. The invocation d.F(1) thus selects ILeft.F,
even though IBase.F appears to not be hidden in the access path that leads through IRight.

The intuitive rule for hiding in multiple-inheritance interfaces is simply this: If a member is hidden in any
access path, it is hidden in all access paths. Because the access path from IDerived to ILeft to IBase
hides IBase.F, the member is also hidden in the access path from IDerived to IRight to IBase. end
example]

18.5 Qualified interface member names
An interface member is sometimes referred to by its qualified interface member name. The qualified name
of an interface member consists of the name of the interface in which the member is declared, followed by
a dot, followed by the name of the member. The qualified name of a member references the interface in
which the member is declared. [Example: Given the declarations

interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

 Chapter 18 Interfaces

365

the qualified name of Paint is IControl.Paint and the qualified name of SetText is
ITextBox.SetText. In the example above, it is not possible to refer to Paint as ITextBox.Paint. end
example]

When an interface is part of a namespace, a qualified interface member name can include the namespace
name. [Example:

namespace System
{
 public interface ICloneable
 {
 object Clone();
 }
}

Within the System namespace, both ICloneable.Clone and System.ICloneable.Clone are
qualified interface member names for the Clone method. end example]

18.6 Interface implementations

18.6.1 General
Interfaces may be implemented by classes and structs. To indicate that a class or struct directly implements
an interface, the interface is included in the base class list of the class or struct. [Example:

interface ICloneable
{
 object Clone();
}

interface IComparable
{
 int CompareTo(object other);
}

class ListEntry: ICloneable, IComparable
{
 public object Clone() {…}

 public int CompareTo(object other) {…}
}

end example]

A class or struct that directly implements an interface also implicitly implements all of the interface’s base
interfaces. This is true even if the class or struct doesn’t explicitly list all base interfaces in the base class
list. [Example:

interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

class TextBox: ITextBox
{
 public void Paint() {…}

 public void SetText(string text) {…}
}

Here, class TextBox implements both IControl and ITextBox. end example]

When a class C directly implements an interface, all classes derived from C also implement the interface
implicitly.

ECMA-334

366

The base interfaces specified in a class declaration can be constructed interface types (§9.4, §18.2).
[Example: The following code illustrates how a class can implement constructed interface types:

class C<U,V> {}

interface I1<V> {}

class D: C<string,int>, I1<string> {}

class E<T>: C<int,T>, I1<T> {}

end example]

The base interfaces of a generic class declaration shall satisfy the uniqueness rule described in §18.6.3.

18.6.2 Explicit interface member implementations
For purposes of implementing interfaces, a class or struct may declare explicit interface member
implementations. An explicit interface member implementation is a method, property, event, or indexer
declaration that references a qualified interface member name. [Example:

interface IList<T>
{
 T[] GetElements();
}

interface IDictionary<K,V>
{
 V this[K key];

 void Add(K key, V value);
}

class List<T>: IList<T>, IDictionary<int,T>
{
 public T[] GetElements() {…}

 T IDictionary<int,T>.this[int index] {…}

 void IDictionary<int,T>.Add(int index, T value) {…}
}

Here IDictionary<int,T>.this and IDictionary<int,T>.Add are explicit interface member
implementations. end example]

[Example: In some cases, the name of an interface member might not be appropriate for the implementing
class, in which case, the interface member may be implemented using explicit interface member
implementation. A class implementing a file abstraction, for example, would likely implement a Close
member function that has the effect of releasing the file resource, and implement the Dispose method of
the IDisposable interface using explicit interface member implementation:

interface IDisposable
{
 void Dispose();
}

class MyFile: IDisposable
{
 void IDisposable.Dispose()
 {
 Close();
 }

 public void Close()
 {
 // Do what's necessary to close the file
 System.GC.SuppressFinalize(this);
 }
}

 Chapter 18 Interfaces

367

end example]

It is not possible to access an explicit interface member implementation through its qualified interface
member name in a method invocation, property access, event access, or indexer access. An explicit
interface member implementation can only be accessed through an interface instance, and is in that case
referenced simply by its member name.

It is a compile-time error for an explicit interface member implementation to include any modifiers (§15.6)
other than extern or async.

It is a compile-time error for an explicit interface method implementation to include type-parameter-
constraints-clauses. The constraints for a generic explicit interface method implementation are inherited
from the interface method.[Note: Explicit interface member implementations have different accessibility
characteristics than other members. Because explicit interface member implementations are never
accessible through a qualified interface member name in a method invocation or a property access, they
are in a sense private. However, since they can be accessed through the interface, they are in a sense also
as public as the interface in which they are declared.

Explicit interface member implementations serve two primary purposes:

• Because explicit interface member implementations are not accessible through class or struct
instances, they allow interface implementations to be excluded from the public interface of a class or
struct. This is particularly useful when a class or struct implements an internal interface that is of no
interest to a consumer of that class or struct.

• Explicit interface member implementations allow disambiguation of interface members with the same
signature. Without explicit interface member implementations it would be impossible for a class or
struct to have different implementations of interface members with the same signature and return
type, as would it be impossible for a class or struct to have any implementation at all of interface
members with the same signature but with different return types.

end note]

For an explicit interface member implementation to be valid, the class or struct shall name an interface in
its base class list that contains a member whose qualified interface member name, type, number of type
parameters, and parameter types exactly match those of the explicit interface member implementation. If
an interface function member has a parameter array, the corresponding parameter of an associated
explicit interface member implementation is allowed, but not required, to have the params modifier. If the
interface function member does not have a parameter array then an associated explicit interface member
implementation shall not have a parameter array. [Example: Thus, in the following class

class Shape: ICloneable
{
 object ICloneable.Clone() {…}

 int IComparable.CompareTo(object other) {…} // invalid
}

the declaration of IComparable.CompareTo results in a compile-time error because IComparable is
not listed in the base class list of Shape and is not a base interface of ICloneable. Likewise, in the
declarations

class Shape: ICloneable
{
 object ICloneable.Clone() {…}
}

class Ellipse: Shape
{
 object ICloneable.Clone() {…} // invalid
}

ECMA-334

368

the declaration of ICloneable.Clone in Ellipse results in a compile-time error because ICloneable
is not explicitly listed in the base class list of Ellipse. end example]

The qualified interface member name of an explicit interface member implementation shall reference the
interface in which the member was declared. [Example: Thus, in the declarations

interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

class TextBox: ITextBox
{
 void IControl.Paint() {…}

 void ITextBox.SetText(string text) {…}
}

the explicit interface member implementation of Paint must be written as IControl.Paint, not
ITextBox.Paint. end example]

18.6.3 Uniqueness of implemented interfaces
The interfaces implemented by a generic type declaration shall remain unique for all possible constructed
types. Without this rule, it would be impossible to determine the correct method to call for certain
constructed types. [Example: Suppose a generic class declaration were permitted to be written as follows:

interface I<T>
{
 void F();
}

class X<U,V>: I<U>, I<V> // Error: I<U> and I<V> conflict
{
 void I<U>.F() {…}
 void I<V>.F() {…}
}

Were this permitted, it would be impossible to determine which code to execute in the following case:

I<int> x = new X<int,int>();
x.F();

end example]

To determine if the interface list of a generic type declaration is valid, the following steps are performed:

• Let L be the list of interfaces directly specified in a generic class, struct, or interface declaration C.

• Add to L any base interfaces of the interfaces already in L.

• Remove any duplicates from L.

• If any possible constructed type created from C would, after type arguments are substituted into L,
cause two interfaces in L to be identical, then the declaration of C is invalid. Constraint declarations are
not considered when determining all possible constructed types.

[Note: In the class declaration X above, the interface list L consists of I<U> and I<V>. The declaration is
invalid because any constructed type with U and V being the same type would cause these two interfaces
to be identical types. end note]

It is possible for interfaces specified at different inheritance levels to unify:

 Chapter 18 Interfaces

369

interface I<T>
{
 void F();
}

class Base<U>: I<U>
{
 void I<U>.F() {…}
}

class Derived<U,V>: Base<U>, I<V> // Ok
{
 void I<V>.F() {…}
}

This code is valid even though Derived<U,V> implements both I<U> and I<V>. The code

I<int> x = new Derived<int,int>();
x.F();

invokes the method in Derived, since Derived<int,int> effectively re-implements I<int> (§18.6.7).

18.6.4 Implementation of generic methods
When a generic method implicitly implements an interface method, the constraints given for each method
type parameter shall be equivalent in both declarations (after any interface type parameters are replaced
with the appropriate type arguments), where method type parameters are identified by ordinal positions,
left to right. [Example: In the following code:

interface I<X, Y, Z>
{
 void F<T>(T t) where T: X;
 void G<T>(T t) where T: Y;
 void H<T>(T t) where T: Z;
}

class C: I<object,C,string>
{
 public void F<T>(T t) {…} // Ok
 public void G<T>(T t) where T: C {…} // Ok
 public void H<T>(T t) where T: string {…} // Error
}

the method C.F<T> implicitly implements I<object,C,string>.F<T>. In this case, C.F<T> is not
required (nor permitted) to specify the constraint T: object since object is an implicit constraint on all
type parameters. The method C.G<T> implicitly implements I<object,C,string>.G<T> because the
constraints match those in the interface, after the interface type parameters are replaced with the
corresponding type arguments. The constraint for method C.H<T> is an error because sealed types
(string in this case) cannot be used as constraints. Omitting the constraint would also be an error since
constraints of implicit interface method implementations are required to match. Thus, it is impossible to
implicitly implement I<object,C,string>.H<T>. This interface method can only be implemented using
an explicit interface member implementation:

class C: I<object,C,string>
{
 …

 public void H<U>(U u) where U: class {…}

 void I<object,C,string>.H<T>(T t) {
 string s = t; // Ok
 H<T>(t);
 }
}

In this case, the explicit interface member implementation invokes a public method having strictly weaker
constraints. The assignment from t to s is valid since T inherits a constraint of T: string, even though
this constraint is not expressible in source code. end example]

ECMA-334

370

[Note: When a generic method explicitly implements an interface method no constraints are allowed on
the implementing method (§15.7.1, §18.6.2) end note].

18.6.5 Interface mapping
A class or struct shall provide implementations of all members of the interfaces that are listed in the base
class list of the class or struct. The process of locating implementations of interface members in an
implementing class or struct is known as interface mapping.

Interface mapping for a class or struct C locates an implementation for each member of each interface
specified in the base class list of C. The implementation of a particular interface member I.M, where I is
the interface in which the member M is declared, is determined by examining each class or struct S, starting
with C and repeating for each successive base class of C, until a match is located:

• If S contains a declaration of an explicit interface member implementation that matches I and M, then
this member is the implementation of I.M.

• Otherwise, if S contains a declaration of a non-static public member that matches M, then this member
is the implementation of I.M. If more than one member matches, it is unspecified which member is
the implementation of I.M. This situation can only occur if S is a constructed type where the two
members as declared in the generic type have different signatures, but the type arguments make their
signatures identical.

A compile-time error occurs if implementations cannot be located for all members of all interfaces
specified in the base class list of C. The members of an interface include those members that are inherited
from base interfaces.

Members of a constructed interface type are considered to have any type parameters replaced with the
corresponding type arguments as specified in §15.3.3. [Example: For example, given the generic interface
declaration:

interface I<T>
{
 T F(int x, T[,] y);
 T this[int y] { get; }
}

the constructed interface I<string[]> has the members:

string[] F(int x, string[,][] y);
string[] this[int y] { get; }

end example]

For purposes of interface mapping, a class or struct member A matches an interface member B when:

• A and B are methods, and the name, type, and formal parameter lists of A and B are identical.

• A and B are properties, the name and type of A and B are identical, and A has the same accessors as B
(A is permitted to have additional accessors if it is not an explicit interface member implementation).

• A and B are events, and the name and type of A and B are identical.

• A and B are indexers, the type and formal parameter lists of A and B are identical, and A has the same
accessors as B (A is permitted to have additional accessors if it is not an explicit interface member
implementation).

Notable implications of the interface-mapping algorithm are:

• Explicit interface member implementations take precedence over other members in the same class or
struct when determining the class or struct member that implements an interface member.

• Neither non-public nor static members participate in interface mapping.

[Example: In the following code

 Chapter 18 Interfaces

371

interface ICloneable
{
 object Clone();
}

class C: ICloneable
{
 object ICloneable.Clone() {…}

 public object Clone() {…}
}

the ICloneable.Clone member of C becomes the implementation of Clone in ICloneable because
explicit interface member implementations take precedence over other members. end example]

If a class or struct implements two or more interfaces containing a member with the same name, type, and
parameter types, it is possible to map each of those interface members onto a single class or struct
member. [Example:

interface IControl
{
 void Paint();
}

interface IForm
{
 void Paint();
}

class Page: IControl, IForm
{
 public void Paint() {…}
}

Here, the Paint methods of both IControl and IForm are mapped onto the Paint method in Page. It
is of course also possible to have separate explicit interface member implementations for the two
methods. end example]

If a class or struct implements an interface that contains hidden members, then some members may need
to be implemented through explicit interface member implementations. [Example:

interface IBase
{
 int P { get; }
}

interface IDerived: IBase
{
 new int P();
}

An implementation of this interface would require at least one explicit interface member implementation,
and would take one of the following forms

class C: IDerived
{
 int IBase.P { get {…} }

 int IDerived.P() {…}
}

class C: IDerived
{
 public int P { get {…} }

 int IDerived.P() {…}
}

class C: IDerived
{
 int IBase.P { get {…} }

ECMA-334

372

 public int P() {…}
}

end example]

When a class implements multiple interfaces that have the same base interface, there can be only one
implementation of the base interface. [Example: In the following code

interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

interface IListBox: IControl
{
 void SetItems(string[] items);
}

class ComboBox: IControl, ITextBox, IListBox
{
 void IControl.Paint() {…}

 void ITextBox.SetText(string text) {…}

 void IListBox.SetItems(string[] items) {…}
}

it is not possible to have separate implementations for the IControl named in the base class list, the
IControl inherited by ITextBox, and the IControl inherited by IListBox. Indeed, there is no notion
of a separate identity for these interfaces. Rather, the implementations of ITextBox and IListBox share
the same implementation of IControl, and ComboBox is simply considered to implement three
interfaces, IControl, ITextBox, and IListBox. end example]

The members of a base class participate in interface mapping. [Example: In the following code

interface Interface1
{
 void F();
}

class Class1
{
 public void F() {}

 public void G() {}
}

class Class2: Class1, Interface1
{
 new public void G() {}
}

the method F in Class1 is used in Class2's implementation of Interface1. end example]

18.6.6 Interface implementation inheritance
A class inherits all interface implementations provided by its base classes.

Without explicitly re-implementing an interface, a derived class cannot in any way alter the interface
mappings it inherits from its base classes. [Example: In the declarations

interface IControl
{
 void Paint();
}

 Chapter 18 Interfaces

373

class Control: IControl
{
 public void Paint() {…}
}

class TextBox: Control
{
 new public void Paint() {…}
}

the Paint method in TextBox hides the Paint method in Control, but it does not alter the mapping of
Control.Paint onto IControl.Paint, and calls to Paint through class instances and interface
instances will have the following effects

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // invokes Control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes Control.Paint();

end example]

However, when an interface method is mapped onto a virtual method in a class, it is possible for derived
classes to override the virtual method and alter the implementation of the interface. [Example: Rewriting
the declarations above to

interface IControl
{
 void Paint();
}

class Control: IControl
{
 public virtual void Paint() {…}
}

class TextBox: Control
{
 public override void Paint() {…}
}

the following effects will now be observed

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // invokes Control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes TextBox.Paint();

end example]

Since explicit interface member implementations cannot be declared virtual, it is not possible to override
an explicit interface member implementation. However, it is perfectly valid for an explicit interface
member implementation to call another method, and that other method can be declared virtual to allow
derived classes to override it. [Example:

interface IControl
{
 void Paint();
}

class Control: IControl
{
 void IControl.Paint() { PaintControl(); }

ECMA-334

374

 protected virtual void PaintControl() {…}
}

class TextBox: Control
{
 protected override void PaintControl() {…}
}

Here, classes derived from Control can specialize the implementation of IControl.Paint by overriding
the PaintControl method. end example]

18.6.7 Interface re-implementation
A class that inherits an interface implementation is permitted to re-implement the interface by including it
in the base class list.

A re-implementation of an interface follows exactly the same interface mapping rules as an initial
implementation of an interface. Thus, the inherited interface mapping has no effect whatsoever on the
interface mapping established for the re-implementation of the interface. [Example: In the declarations

interface IControl
{
 void Paint();
}

class Control: IControl
{
 void IControl.Paint() {…}
}

class MyControl: Control, IControl
{
 public void Paint() {}
}

the fact that Control maps IControl.Paint onto Control.IControl.Paint doesn’t affect the re-
implementation in MyControl, which maps IControl.Paint onto MyControl.Paint. end example]

Inherited public member declarations and inherited explicit interface member declarations participate in
the interface mapping process for re-implemented interfaces. [Example:

interface IMethods
{
 void F();
 void G();
 void H();
 void I();
}

class Base: IMethods
{
 void IMethods.F() {}
 void IMethods.G() {}
 public void H() {}
 public void I() {}
}

class Derived: Base, IMethods
{
 public void F() {}
 void IMethods.H() {}
}

Here, the implementation of IMethods in Derived maps the interface methods onto Derived.F,
Base.IMethods.G, Derived.IMethods.H, and Base.I. end example]

When a class implements an interface, it implicitly also implements all that interface’s base interfaces.
Likewise, a re-implementation of an interface is also implicitly a re-implementation of all of the interface’s
base interfaces. [Example:

 Chapter 18 Interfaces

375

interface IBase
{
 void F();
}

interface IDerived: IBase
{
 void G();
}

class C: IDerived
{
 void IBase.F() {…}

 void IDerived.G() {…}
}

class D: C, IDerived
{
 public void F() {…}

 public void G() {…}
}

Here, the re-implementation of IDerived also re-implements IBase, mapping IBase.F onto D.F. end
example]

18.6.8 Abstract classes and interfaces
Like a non-abstract class, an abstract class shall provide implementations of all members of the interfaces
that are listed in the base class list of the class. However, an abstract class is permitted to map interface
methods onto abstract methods. [Example:

interface IMethods
{
 void F();
 void G();
}

abstract class C: IMethods
{
 public abstract void F();
 public abstract void G();
}

Here, the implementation of IMethods maps F and G onto abstract methods, which shall be overridden in
non-abstract classes that derive from C. end example]

Explicit interface member implementations cannot be abstract, but explicit interface member
implementations are of course permitted to call abstract methods. [Example:

interface IMethods
{
 void F();
 void G();
}

abstract class C: IMethods
{
 void IMethods.F() { FF(); }
 void IMethods.G() { GG(); }
 protected abstract void FF();
 protected abstract void GG();
}

Here, non-abstract classes that derive from C would be required to override FF and GG, thus providing the
actual implementation of IMethods. end example]

 Chapter 19 Enums

377

19. Enums

19.1 General
An enum type is a distinct value type (§9.2) that declares a set of named constants. [Example: The example

enum Color
{
 Red,
 Green,
 Blue
}

declares an enum type named Color with members Red, Green, and Blue. end example]

19.2 Enum declarations
An enum declaration declares a new enum type. An enum declaration begins with the keyword enum, and
defines the name, accessibility, underlying type, and members of the enum.

enum-declaration:
attributesopt enum-modifiersopt enum identifier enum-baseopt enum-body ;opt

enum-base:
: integral-type

enum-body:
{ enum-member-declarationsopt }
{ enum-member-declarations , }

Each enum type has a corresponding integral type called the underlying type of the enum type. This
underlying type shall be able to represent all the enumerator values defined in the enumeration. An enum
declaration may explicitly declare an underlying type of byte, sbyte, short, ushort, int, uint, long or
ulong. [Note: char cannot be used as an underlying type. end note] An enum declaration that does not
explicitly declare an underlying type has an underlying type of int.

[Example: The example

enum Color: long
{
 Red,
 Green,
 Blue
}

declares an enum with an underlying type of long. end example] [Note: A developer might choose to use
an underlying type of long, as in the example, to enable the use of values that are in the range of long
but not in the range of int, or to preserve this option for the future. end note]

[Note: C# allows a trailing comma in an enum-body, just like it allows one in an array-initializer (§17.7). end
note]

19.3 Enum modifiers
An enum-declaration may optionally include a sequence of enum modifiers:

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

ECMA-334

378

enum-modifier:
new
public

protected

internal
private

It is a compile-time error for the same modifier to appear multiple times in an enum declaration.

The modifiers of an enum declaration have the same meaning as those of a class declaration (§15.2.2).
However, the abstract, and sealed, and static modifiers are not permitted in an enum declaration.
Enums cannot be abstract and do not permit derivation.

19.4 Enum members
The body of an enum type declaration defines zero or more enum members, which are the named
constants of the enum type. No two enum members can have the same name.

enum-member-declarations:
enum-member-declaration
enum-member-declarations , enum-member-declaration

enum-member-declaration:
attributesopt identifier
attributesopt identifier = constant-expression

Each enum member has an associated constant value. The type of this value is the underlying type for the
containing enum. The constant value for each enum member shall be in the range of the underlying type
for the enum. [Example: The example

enum Color: uint
{
 Red = -1,
 Green = -2,
 Blue = -3
}

results in a compile-time error because the constant values -1, -2, and –3 are not in the range of the
underlying integral type uint. end example]

Multiple enum members may share the same associated value. [Example: The example

enum Color
{
 Red,
 Green,
 Blue,

 Max = Blue
}

shows an enum in which two enum members—Blue and Max—have the same associated value. end
example]

The associated value of an enum member is assigned either implicitly or explicitly. If the declaration of the
enum member has a constant-expression initializer, the value of that constant expression, implicitly
converted to the underlying type of the enum, is the associated value of the enum member. If the
declaration of the enum member has no initializer, its associated value is set implicitly, as follows:

• If the enum member is the first enum member declared in the enum type, its associated value is zero.

• Otherwise, the associated value of the enum member is obtained by increasing the associated value of
the textually preceding enum member by one. This increased value shall be within the range of values
that can be represented by the underlying type, otherwise a compile-time error occurs.

 Chapter 19 Enums

379

[Example: The example

using System;

enum Color
{
 Red,
 Green = 10,
 Blue
}

class Test
{
 static void Main() {
 Console.WriteLine(StringFromColor(Color.Red));
 Console.WriteLine(StringFromColor(Color.Green));
 Console.WriteLine(StringFromColor(Color.Blue));
 }

 static string StringFromColor(Color c) {
 switch (c) {
 case Color.Red:
 return String.Format("Red = {0}", (int) c);

 case Color.Green:
 return String.Format("Green = {0}", (int) c);

 case Color.Blue:
 return String.Format("Blue = {0}", (int) c);

 default:
 return "Invalid color";
 }
 }
}

prints out the enum member names and their associated values. The output is:

Red = 0
Green = 10
Blue = 11

for the following reasons:

• the enum member Red is automatically assigned the value zero (since it has no initializer and is the
first enum member);

• the enum member Green is explicitly given the value 10;

• and the enum member Blue is automatically assigned the value one greater than the member that
textually precedes it.

end example]

The associated value of an enum member may not, directly or indirectly, use the value of its own
associated enum member. Other than this circularity restriction, enum member initializers may freely refer
to other enum member initializers, regardless of their textual position. Within an enum member initializer,
values of other enum members are always treated as having the type of their underlying type, so that casts
are not necessary when referring to other enum members.

[Example: The example

enum Circular
{
 A = B,
 B
}

results in a compile-time error because the declarations of A and B are circular. A depends on B explicitly,
and B depends on A implicitly. end example]

ECMA-334

380

Enum members are named and scoped in a manner exactly analogous to fields within classes. The scope of
an enum member is the body of its containing enum type. Within that scope, enum members can be
referred to by their simple name. From all other code, the name of an enum member shall be qualified
with the name of its enum type. Enum members do not have any declared accessibility—an enum member
is accessible if its containing enum type is accessible.

19.5 The System.Enum type
The type System.Enum is the abstract base class of all enum types (this is distinct and different from the
underlying type of the enum type), and the members inherited from System.Enum are available in any
enum type. A boxing conversion (§11.2.8) exists from any enum type to System.Enum, and an unboxing
conversion (§11.3.6) exists from System.Enum to any enum type.

Note that System.Enum is not itself an enum-type. Rather, it is a class-type from which all enum-types are
derived. The type System.Enum inherits from the type System.ValueType (§9.3.2), which, in turn,
inherits from type object. At run-time, a value of type System.Enum can be null or a reference to a
boxed value of any enum type.

19.6 Enum values and operations
Each enum type defines a distinct type; an explicit enumeration conversion (§11.3.3) is required to convert
between an enum type and an integral type, or between two enum types. The set of values of the enum
type is the same as the set of values of the underlying type and is not restricted to the values of the named
constants. Any value of the underlying type of an enum can be cast to the enum type, and is a distinct valid
value of that enum type.

Enum members have the type of their containing enum type (except within other enum member
initializers: see §19.4). The value of an enum member declared in enum type E with associated value v is
(E)v.

The following operators can be used on values of enum types:

• ==, !=, <, >, <=, >= (§12.11.6)

• binary + (§12.9.5)

• binary - (§12.9.6)

• ^, &, | (§12.12.3)

• ~ (§12.8.5)

• ++, -- (§12.7.10 and §12.8.6)

• sizeof (§23.6.9)

Every enum type automatically derives from the class System.Enum (which, in turn, derives from
System.ValueType and object). Thus, inherited methods and properties of this class can be used on
values of an enum type.

 Chapter 20 Delegates

381

20. Delegates

20.1 General
A delegate declaration defines a class that is derived from the class System.Delegate. A delegate
instance encapsulates an invocation list, which is a list of one or more methods, each of which is referred
to as a callable entity. For instance methods, a callable entity consists of an instance and a method on that
instance. For static methods, a callable entity consists of just a method. Invoking a delegate instance with
an appropriate set of arguments causes each of the delegate’s callable entities to be invoked with the
given set of arguments.

[Note: An interesting and useful property of a delegate instance is that it does not know or care about the
classes of the methods it encapsulates; all that matters is that those methods be compatible (§20.4) with
the delegate’s type. This makes delegates perfectly suited for “anonymous” invocation. end note]

20.2 Delegate declarations
A delegate-declaration is a type-declaration (§14.7) that declares a new delegate type.

delegate-declaration:
attributesopt delegate-modifiersopt delegate return-type
 identifier variant-type-parameter-listopt

 (formal-parameter-listopt) type-parameter-constraints-clausesopt ;

delegate-modifiers:
delegate-modifier
delegate-modifiers delegate-modifier

delegate-modifier:
new
public

protected

internal
private

It is a compile-time error for the same modifier to appear multiple times in a delegate declaration.

A delegate declaration shall not supply a type-parameter-constraints-clauses unless it also supplies a
variant-type-parameter-list.

A delegate declaration that supplies a variant-type-parameter-list is a generic delegate declaration.

The new modifier is only permitted on delegates declared within another type, in which case it specifies
that such a delegate hides an inherited member by the same name, as described in §15.3.5.

The public, protected, internal, and private modifiers control the accessibility of the delegate
type. Depending on the context in which the delegate declaration occurs, some of these modifiers might
not be permitted (§8.5.2).

The delegate’s type name is identifier.

The optional formal-parameter-list specifies the parameters of the delegate, and return-type indicates the
return type of the delegate.

The optional variant-type-parameter-list (§18.2.3) specifies the type parameters to the delegate itself.

The return type of a delegate type shall be either void, or output-safe (§18.2.3.2).

ECMA-334

382

All the formal parameter types of a delegate type shall be input-safe. In addition, any out or ref parameter
types shall also be output-safe. [Note: Even out parameters are required to be input-safe, due to common
implementation restrictions. end note]

Delegate types in C# are name equivalent, not structurally equivalent.

[Example:

delegate int D1(int i, double d);
delegate int D2(int c, double d);

The delegate types D1 and D2 are two different types, so they are not interchangeable, despite their
identical signatures. end example]

Like other generic type declarations, type arguments shall be given to create a constructed delegate type.
The parameter types and return type of a constructed delegate type are created by substituting, for each
type parameter in the delegate declaration, the corresponding type argument of the constructed delegate
type.

The only way to declare a delegate type is via a delegate-declaration. Every delegate type is a reference
type that is derived from System.Delegate. The members required for every delegate type are detailed
in §20.3. Delegate types are implicitly sealed, so it is not permissible to derive any type from a delegate
type. It is also not permissible to declare a non-delegate class type deriving from System.Delegate.
System.Delegate is not itself a delegate type; it is a class type from which all delegate types are derived.

20.3 Delegate members
Every delegate type inherits members from the Delegate class as described in §15.3.4. In addition, every
delegate type must provide a non-generic Invoke method whose parameter list matches the formal-
parameter-list in the delegate declaration, and whose return type matches the return-type in the delegate
declaration. The Invoke method shall be at least as accessible as the containing delegate type. Calling the
Invoke method on a delegate type is semantically equivalent to using the delegate invocation syntax
(§20.6) .

Implementations may define additional members in the delegate type.

Except for instantiation, any operation that can be applied to a class or class instance can also be applied to
a delegate class or instance, respectively. In particular, it is possible to access members of the
System.Delegate type via the usual member access syntax.

20.4 Delegate compatibility
A method or delegate type M is compatible with a delegate type D if all of the following are true:

• D and M have the same number of parameters, and each parameter in D has the same ref or out
modifiers as the corresponding parameter in M.

• For each value parameter (a parameter with no ref or out modifier), an identity conversion (§11.2.2)
or implicit reference conversion (§11.2.7) exists from the parameter type in D to the corresponding
parameter type in M.

• For each ref or out parameter, the parameter type in D is the same as the parameter type in M.

• An identity or implicit reference conversion exists from the return type of M to the return type of D.

This definition of consistency allows covariance in return type and contravariance in parameter types.

[Example:

delegate int D1(int i, double d);
delegate int D2(int c, double d);
delegate object D3(string s);

 Chapter 20 Delegates

383

class A
{
 public static int M1(int a, double b) {…}
}

class B
{
 public static int M1(int f, double g) {…}
 public static void M2(int k, double l) {…}
 public static int M3(int g) {…}
 public static void M4(int g) {…}
 public static object M5(string s) {…}
 public static int[] M6(object o) {…}

}

The methods A.M1 and B.M1 are compatible with both the delegate types D1 and D2, since they have the
same return type and parameter list. The methods B.M2, B.M3, and B.M4 are incompatible with the
delegate types D1 and D2, since they have different return types or parameter lists. The methods B.M5 and
B.M6 are both compatible with delegate type D3. end example]

[Example:

delegate bool Predicate<T>(T value);

class X
{
 static bool F(int i) {…}

 static bool G(string s) {…}
}

The method X.F is compatible with the delegate type Predicate<int> and the method X.G is
compatible with the delegate type Predicate<string>. end example]

[Note: The intuitive meaning of delegate compatibility is that a method is compatible with a delegate type
if every invocation of the delegate could be replaced with an invocation of the method without violating
type safety, treating optional parameters and parameter arrays as explicit parameters. For example, in the
following code:

delegate void Action<T>(T arg);

class Test {

 static void Print(object value) {

 Console.WriteLine(value);

 }

 static void Main() {

 Action<string> log = Print;

 log("text");

 }

}

The Print method is compatible with the Action<string> delegate type because any invocation of an
Action<string> delegate would also be a valid invocation of the Print method.

If the signature of the Print method above were changed to Print(object value, bool
prependTimestamp = false) for example, the Print method would no longer be compatible with
Action<string> by the rules of this clause. end note]

20.5 Delegate instantiation
An instance of a delegate is created by a delegate-creation-expression (§12.7.11.6), a conversion to a
delegate type, delegate combination or delegate removal. The newly created delegate instance then refers
to one or more of:

ECMA-334

384

• The static method referenced in the delegate-creation-expression, or

• The target object (which cannot be null) and instance method referenced in the delegate-creation-
expression, or

• Another delegate (§12.7.11.6).

[Example:

delegate void D(int x);
class C
{
 public static void M1(int i) {…}
 public void M2(int i) {…}
}

class Test
{
 static void Main() {
 D cd1 = new D(C.M1); // static method
 C t = new C();
 D cd2 = new D(t.M2); // instance method
 D cd3 = new D(cd2); // another delegate
 }
}

end example]

The set of methods encapsulated by a delegate instance is called an invocation list. When a delegate
instance is created from a single method, it encapsulates that method, and its invocation list contains only
one entry. However, when two non-null delegate instances are combined, their invocation lists are
concatenated—in the order left operand then right operand—to form a new invocation list, which contains
two or more entries.

When a new delegate is created from a single delegate the resultant invocation list has just one entry,
which is the source delegate (§12.7.11.6).

Delegates are combined using the binary + (§12.9.5) and += operators (§12.18.3). A delegate can be
removed from a combination of delegates, using the binary - (§12.9.6) and -= operators (§12.18.3).
Delegates can be compared for equality (§12.11.9).

[Example: The following example shows the instantiation of a number of delegates, and their
corresponding invocation lists:

delegate void D(int x);
class C
{
 public static void M1(int i) {…}
 public static void M2(int i) {…}
}

class Test
{
 static void Main() {
 D cd1 = new D(C.M1); // M1 - one entry in invocation list

 D cd2 = new D(C.M2); // M2 - one entry

 D cd3 = cd1 + cd2; // M1 + M2 - two entries

 D cd4 = cd3 + cd1; // M1 + M2 + M1 - three entries

 D cd5 = cd4 + cd3; // M1 + M2 + M1 + M1 + M2 - five entries

 D td3 = new D(cd3); // [M1 + M2] - ONE entry in invocation

 // list, which is itself a list of two methods.

 D td4 = td3 + cd1; // [M1 + M2] + M1 - two entries

 D cd6 = cd4 - cd2; // M1 + M1 - two entries in invocation list

 D td6 = td4 - cd2; // [M1 + M2] + M1 - two entries in

 Chapter 20 Delegates

385

 // invocation list, but still three methods called, M2 not removed.
 }
}

When cd1 and cd2 are instantiated, they each encapsulate one method. When cd3 is instantiated, it has
an invocation list of two methods, M1 and M2, in that order. cd4’s invocation list contains M1, M2, and M1, in
that order. For cd5, the invocation list contains M1, M2, M1, M1, and M2, in that order.

When cd1 and cd2 are instantiated, they each encapsulate one method. When cd3 is instantiated, it has an
invocation list of two methods, M1 and M2, in that order. cd4’s invocation list contains M1, M2, and M1, in
that order. For cd5 the invocation list contains M1, M2, M1, M1, and M2, in that order.

When creating a delegate from another delegate with a delegate-creation-expression the result has an
invocation list with a different structure from the original, but which results in the same methods being
invoked in the same order. When td3 is created from cd3 its invocation list has just one member, but that
member is a list of the methods M1 and M2 and those methods are invoked by td3 in the same order as
they are invoked by cd3. Similarly when td4 is instantiated its invocation list has just two entries but it
invokes the three methods M1, M2, and M1, in that order just as cd4 does.

The structure of the invocation list affects delegate subtraction. Delegate cd6, created by subtracting cd2
(which invokes M2) from cd4 (which invokes M1, M2, and M1) invokes M1 and M1. However delegate td6,
created by subtracting cd2 (which invokes M2) from td4 (which invokes M1, M2, and M1) still invokes M1, M2
and M1, in that order, as M2 is not a single entry in the list but a member of a nested list.

For more examples of combining (as well as removing) delegates, see §20.6. end example]

Once instantiated, a delegate instance always refers to the same invocation list. [Note: Remember, when
two delegates are combined, or one is removed from another, a new delegate results with its own
invocation list; the invocation lists of the delegates combined or removed remain unchanged. end note]

20.6 Delegate invocation
C# provides special syntax for invoking a delegate. When a non-null delegate instance whose invocation
list contains one entry, is invoked, it invokes the one method with the same arguments it was given, and
returns the same value as the referred to method. (See §12.7.6.4 for detailed information on delegate
invocation.) If an exception occurs during the invocation of such a delegate, and that exception is not
caught within the method that was invoked, the search for an exception catch clause continues in the
method that called the delegate, as if that method had directly called the method to which that delegate
referred.

Invocation of a delegate instance whose invocation list contains multiple entries, proceeds by invoking
each of the methods in the invocation list, synchronously, in order. Each method so called is passed the
same set of arguments as was given to the delegate instance. If such a delegate invocation includes
reference parameters (§15.6.2.3), each method invocation will occur with a reference to the same variable;
changes to that variable by one method in the invocation list will be visible to methods further down the
invocation list. If the delegate invocation includes output parameters or a return value, their final value will
come from the invocation of the last delegate in the list. If an exception occurs during processing of the
invocation of such a delegate, and that exception is not caught within the method that was invoked, the
search for an exception catch clause continues in the method that called the delegate, and any methods
further down the invocation list are not invoked.

Attempting to invoke a delegate instance whose value is null results in an exception of type
System.NullReferenceException.

[Example: The following example shows how to instantiate, combine, remove, and invoke delegates:

using System;

ECMA-334

386

delegate void D(int x);
class C
{
 public static void M1(int i) {
 Console.WriteLine("C.M1: " + i);
 }

 public static void M2(int i) {
 Console.WriteLine("C.M2: " + i);
 }

 public void M3(int i) {
 Console.WriteLine("C.M3: " + i);
 }
}

class Test
{
 static void Main() {
 D cd1 = new D(C.M1);
 cd1(-1); // call M1

 D cd2 = new D(C.M2);
 cd2(-2); // call M2

 D cd3 = cd1 + cd2;
 cd3(10); // call M1 then M2

 cd3 += cd1;
 cd3(20); // call M1, M2, then M1

 C c = new C();
 D cd4 = new D(c.M3);
 cd3 += cd4;
 cd3(30); // call M1, M2, M1, then M3

 cd3 -= cd1; // remove last M1
 cd3(40); // call M1, M2, then M3

 cd3 -= cd4;
 cd3(50); // call M1 then M2

 cd3 -= cd2;
 cd3(60); // call M1
 cd3 -= cd2; // impossible removal is benign
 cd3(60); // call M1

 cd3 -= cd1; // invocation list is empty so cd3 is null
// cd3(70); // System.NullReferenceException thrown
 cd3 -= cd1; // impossible removal is benign
 }
}

As shown in the statement cd3 += cd1;, a delegate can be present in an invocation list multiple times. In
this case, it is simply invoked once per occurrence. In an invocation list such as this, when that delegate is
removed, the last occurrence in the invocation list is the one actually removed.

Immediately prior to the execution of the final statement, cd3 -= cd1;, the delegate cd3 refers to an
empty invocation list. Attempting to remove a delegate from an empty list (or to remove a non-existent
delegate from a non-empty list) is not an error.

The output produced is:

C.M1: -1
C.M2: -2

C.M1: 10
C.M2: 10

C.M1: 20
C.M2: 20
C.M1: 20

 Chapter 20 Delegates

387

C.M1: 30
C.M2: 30
C.M1: 30
C.M3: 30

C.M1: 40
c.M2: 40
C.M3: 40

C.M1: 50
C.M2: 50

C.M1: 60
C.M1: 60

end example]

 Chapter 21 Exceptions

389

21. Exceptions

21.1 General
Exceptions in C# provide a structured, uniform, and type-safe way of handling both system level and
application-level error conditions.

21.2 Causes of exceptions
Exception can be thrown in two different ways.

• A throw statement (§13.10.6) throws an exception immediately and unconditionally. Control never
reaches the statement immediately following the throw.

• Certain exceptional conditions that arise during the processing of C# statements and expression cause
an exception in certain circumstances when the operation cannot be completed normally. [Example:
An integer division operation (§12.9.3) throws a System.DivideByZeroException if the
denominator is zero. end example] See §21.5 for a list of the various exceptions that can occur in this
way.

21.3 The System.Exception class
The System.Exception class is the base type of all exceptions. This class has a few notable properties
that all exceptions share:

• Message is a read-only property of type string that contains a human-readable description of the
reason for the exception.

• InnerException is a read-only property of type Exception. If its value is non-null, it refers to the
exception that caused the current exception. (That is, the current exception was raised in a catch block
handling the InnerException.) Otherwise, its value is null, indicating that this exception was not
caused by another exception. The number of exception objects chained together in this manner can be
arbitrary.

The value of these properties can be specified in calls to the instance constructor for System.Exception.

21.4 How exceptions are handled
Exceptions are handled by a try statement (§13.11).

When an exception occurs, the system searches for the nearest catch clause that can handle the
exception, as determined by the run-time type of the exception. First, the current method is searched for a
lexically enclosing try statement, and the associated catch clauses of the try statement are considered
in order. If that fails, the method that called the current method is searched for a lexically enclosing try
statement that encloses the point of the call to the current method. This search continues until a catch
clause is found that can handle the current exception, by naming an exception class that is of the same
class, or a base class, of the run-time type of the exception being thrown. A catch clause that doesn’t
name an exception class can handle any exception.

Once a matching catch clause is found, the system prepares to transfer control to the first statement of
the catch clause. Before execution of the catch clause begins, the system first executes, in order, any
finally clauses that were associated with try statements more nested that than the one that caught the
exception.

ECMA-334

390

If no matching catch clause is found:

• If the search for a matching catch clause reaches a static constructor (§15.12) or static field initializer,
then a System.TypeInitializationException is thrown at the point that triggered the
invocation of the static constructor. The inner exception of the
System.TypeInitializationException contains the exception that was originally thrown.

• Otherwise, if an exception occurs during finalizer execution, and that exception is not caught, then the
behavior is unspecified.

• Otherwise, if the search for matching catch clauses reaches the code that initially started the thread,
then execution of the thread is terminated. The impact of such termination is implementation-defined.

21.5 Common exception classes
The following exceptions are thrown by certain C# operations.

System.ArithmeticException A base class for exceptions that occur during
arithmetic operations, such as
System.DivideByZeroException and
System.OverflowException.

System.ArrayTypeMismatchException Thrown when a store into an array fails because
the type of the stored element is incompatible
with the type of the array.

System.DivideByZeroException Thrown when an attempt to divide an integral
value by zero occurs.

System.IndexOutOfRangeException Thrown when an attempt to index an array via an
index that is less than zero or outside the bounds
of the array.

System.InvalidCastException Thrown when an explicit conversion from a base
type or interface to a derived type fails at run-
time.

System.NullReferenceException Thrown when a null reference is used in a way
that causes the referenced object to be required.

System.OutOfMemoryException Thrown when an attempt to allocate memory (via
new) fails.

System.OverflowException Thrown when an arithmetic operation in a
checked context overflows.

System.StackOverflowException Thrown when the execution stack is exhausted by
having too many pending calls; typically indicative
of very deep or unbounded recursion.

System.TypeInitializationException Thrown when a static constructor or static field
initializer throws an exception, and no catch
clause exists to catch it.

 Chapter 22 Attributes

391

22. Attributes

22.1 General
Much of the C# language enables the programmer to specify declarative information about the entities
defined in the program. For example, the accessibility of a method in a class is specified by decorating it with
the method-modifiers public, protected, internal, and private.

C# enables programmers to invent new kinds of declarative information, called attributes. Programmers can
then attach attributes to various program entities, and retrieve attribute information in a run-time
environment. [Note: For instance, a framework might define a HelpAttribute attribute that can be placed
on certain program elements (such as classes and methods) to provide a mapping from those program
elements to their documentation. end note]

Attributes are defined through the declaration of attribute classes (§22.2), which can have positional and
named parameters (§22.2.3). Attributes are attached to entities in a C# program using attribute specifications
(§22.3), and can be retrieved at run-time as attribute instances (§22.4).

22.2 Attribute classes

22.2.1 General
A class that derives from the abstract class System.Attribute, whether directly or indirectly, is an attribute
class. The declaration of an attribute class defines a new kind of attribute that can be placed on program
entities. By convention, attribute classes are named with a suffix of Attribute. Uses of an attribute may
either include or omit this suffix.

A generic class declaration shall not use System.Attribute as a direct or indirect base class. [Example:

using System;

public class B : Attribute {}

public class C<T> : B {} // Error – generic cannot be an attribute

end example]

22.2.2 Attribute usage
The attribute AttributeUsage (§22.5.2) is used to describe how an attribute class can be used.

AttributeUsage has a positional parameter (§22.2.3) that enables an attribute class to specify the kinds of
program entities on which it can be used. [Example: The example

using System;

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class SimpleAttribute: Attribute
{ … }

defines an attribute class named SimpleAttribute that can be placed on class-declarations and interface-
declarations only. The example

[Simple] class Class1 {…}

[Simple] interface Interface1 {…}

ECMA-334

392

shows several uses of the Simple attribute. Although this attribute is defined with the name
SimpleAttribute, when this attribute is used, the Attribute suffix may be omitted, resulting in the short
name Simple. Thus, the example above is semantically equivalent to the following

[SimpleAttribute] class Class1 {…}

[SimpleAttribute] interface Interface1 {…}

end example]

AttributeUsage has a named parameter (§22.2.3), called AllowMultiple, which indicates whether the
attribute can be specified more than once for a given entity. If AllowMultiple for an attribute class is true,
then that attribute class is a multi-use attribute class, and can be specified more than once on an entity. If
AllowMultiple for an attribute class is false or it is unspecified, then that attribute class is a single-use
attribute class, and can be specified at most once on an entity.

[Example: The example

using System;

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
public class AuthorAttribute: Attribute
{
 private string name;

 public AuthorAttribute(string name) {
 this.name = name;
 }

 public string Name {
 get { return name; }
 }
}

defines a multi-use attribute class named AuthorAttribute. The example

[Author("Brian Kernighan"), Author("Dennis Ritchie")]
class Class1 {…}

shows a class declaration with two uses of the Author attribute. end example]

AttributeUsage has another named parameter (§22.2.3), called Inherited, which indicates whether the
attribute, when specified on a base class, is also inherited by classes that derive from that base class. If
Inherited for an attribute class is true, then that attribute is inherited. If Inherited for an attribute class is
false then that attribute is not inherited. If it is unspecified, its default value is true.

An attribute class X not having an AttributeUsage attribute attached to it, as in

using System;

class X: Attribute { … }

is equivalent to the following:

using System;

[AttributeUsage(
 AttributeTargets.All,
 AllowMultiple = false,
 Inherited = true)
]
class X: Attribute { … }

 Chapter 22 Attributes

393

22.2.3 Positional and named parameters
Attribute classes can have positional parameters and named parameters. Each public instance constructor for
an attribute class defines a valid sequence of positional parameters for that attribute class. Each non-static
public read-write field and property for an attribute class defines a named parameter for the attribute class.
Both accessors of a property need to be public for the property to define a named parameter.

[Example: The example

using System;

[AttributeUsage(AttributeTargets.Class)]
public class HelpAttribute: Attribute
{

 public HelpAttribute(string url) { // url is a positional parameter
 …
 }

 public string Topic { // Topic is a named parameter
 get {…}
 set {…}
 }

 public string Url { get {…} }
}

defines an attribute class named HelpAttribute that has one positional parameter, url, and one named
parameter, Topic. Although it is non-static and public, the property Url does not define a named parameter,
since it is not read-write.

This attribute class might be used as follows:

[Help("http://www.mycompany.com/…/Class1.htm")]
class Class1
{
}

[Help("http://www.mycompany.com/…/Misc.htm", Topic ="Class2")]
class Class2
{
}

end example]

22.2.4 Attribute parameter types
The types of positional and named parameters for an attribute class are limited to the attribute parameter
types, which are:

• One of the following types: bool, byte, char, double, float, int, long, sbyte, short, string, uint,
ulong, ushort.

• The type object.

• The type System.Type.

• Enum types.

• Single-dimensional arrays of the above types.

A constructor argument or public field that does not have one of these types, shall not be used as a positional
or named parameter in an attribute specification.

ECMA-334

394

22.3 Attribute specification
Attribute specification is the application of a previously defined attribute to a program entity. An attribute is a
piece of additional declarative information that is specified for a program entity. Attributes can be specified at
global scope (to specify attributes on the containing assembly or module) and for type-declarations (§14.7),
class-member-declarations (§15.3), interface-member-declarations (§18.4), struct-member-declarations
(§16.3), enum-member-declarations (§19.2), accessor-declarations (§15.7.3), event-accessor-declarations
(§15.8), elements of formal-parameter-lists (§15.6.2), and elements of type-parameter-lists (§15.2.3).

Attributes are specified in attribute sections. An attribute section consists of a pair of square brackets, which
surround a comma-separated list of one or more attributes. The order in which attributes are specified in such
a list, and the order in which sections attached to the same program entity are arranged, is not significant. For
instance, the attribute specifications [A][B], [B][A], [A, B], and [B, A] are equivalent.

global-attributes:
global-attribute-sections

global-attribute-sections:
global-attribute-section
global-attribute-sections global-attribute-section

global-attribute-section:
[global-attribute-target-specifier attribute-list]
[global-attribute-target-specifier attribute-list ,]

global-attribute-target-specifier:
global-attribute-target :

global-attribute-target:
identifier equal to assembly or module

attributes:
attribute-sections

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-target-specifieropt attribute-list]
[attribute-target-specifieropt attribute-list ,]

attribute-target-specifier:
attribute-target :

attribute-target:
identifier not equal to assembly or module
keyword

attribute-list:
attribute
attribute-list , attribute

attribute:
attribute-name attribute-argumentsopt

attribute-name:
type-name

 Chapter 22 Attributes

395

attribute-arguments:
(positional-argument-listopt)
(positional-argument-list , named-argument-list)
(named-argument-list)

positional-argument-list:
positional-argument
positional-argument-list , positional-argument

positional-argument:
argument-nameopt attribute-argument-expression

named-argument-list:
named-argument
named-argument-list , named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
expression

For the above productions global-attribute-target and attribute-target, and in the text below, the referenced
equality is that defined in §7.4.3.

An attribute consists of an attribute-name and an optional list of positional and named arguments. The
positional arguments (if any) precede the named arguments. A positional argument consists of an attribute-
argument-expression; a named argument consists of a name, followed by an equal sign, followed by an
attribute-argument-expression, which, together, are constrained by the same rules as simple assignment. The
order of named arguments is not significant.

[Note: For convenience, a trailing comma is allowed in a global-attribute-section and an attribute-section, just
as one is allowed in an array-initializer (§17.7). end note]

The attribute-name identifies an attribute class.

When an attribute is placed at the global level, a global-attribute-target-specifier is required. When the global-
attribute-target is equal to:

• assembly – the target is the containing assembly

• module – the target is the containing module

No other values for global-attribute-target are allowed.

The standardized attribute-target names are event, field, method, param, property, return, type, and
typevar. These target names shall only be used in the following contexts:

• event — an event.

• field — a field. A field-like event (i.e., one without accessors) can also have an attribute with this target.

• method — a constructor, finalizer, method, operator, property get and set accessors, indexer get and set
accessors, and event add and remove accessors. A field-like event (i.e., one without accessors) can also
have an attribute with this target.

• param — a property set accessor, an indexer set accessor, event add and remove accessors, and a
parameter in a constructor, method, and operator.

• property — a property and an indexer.

• return — a delegate, method, operator, property get accessor, and indexer get accessor.

ECMA-334

396

• type — a delegate, class, struct, enum, and interface.

• typevar — a type parameter.

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly
specify the target by including an attribute-target-specifier. Without an attribute-target-specifier a default is
applied, but an attribute-target-specifier can be used to affirm or override the default. The contexts are
resolved as follows:

• For an attribute on a delegate declaration the default target is the delegate. Otherwise when the attribute-
target is equal to:

o type — the target is the delegate
o return — the target is the return value

• For an attribute on a method declaration the default target is the method. Otherwise when the attribute-
target is equal to:

o method — the target is the method
o return — the target is the return value

• For an attribute on an operator declaration the default target is the operator. Otherwise when the
attribute-target is equal to:

o method — the target is the operator
o return — the target is the return value

• For an attribute on a get accessor declaration for a property or indexer declaration the default target is the
associated method. Otherwise when the attribute-target is equal to:

o method — the target is the associated method
o return — the target is the return value

• For an attribute specified on a set accessor for a property or indexer declaration the default target is the
associated method. Otherwise when the attribute-target is equal to:

o method — the target is the associated method
o param — the target is the lone implicit parameter

• For an attribute specified on an event declaration that omits event-accessor-declarations the default
target is the event declaration. Otherwise when the attribute-target is equal to:

o event — the target is the event declaration
o field — the target is the field
o method — the targets are the methods

• In the case of an event declaration that does not omit event-accessor-declarations the default target is the
method.

o method — the target is the associated method
o param — the target is the lone parameter

In all other contexts, inclusion of an attribute-target-specifier is permitted but unnecessary. [Example: a class
declaration may either include or omit the specifier type:

 Chapter 22 Attributes

397

[type: Author("Brian Kernighan")]
class Class1 {}

[Author("Dennis Ritchie")]
class Class2 {}

end example.]

An implementation can accept other attribute-targets, the purposes of which are implementation defined. An
implementation that does not recognize such an attribute-target shall issue a warning and ignore the
containing attribute-section.

By convention, attribute classes are named with a suffix of Attribute. An attribute-name can either include
or omit this suffix. Specifically, an attribute-name is resolved as follows:

• If the right-most identifier of the attribute-name is a verbatim identifier (§7.4.3), then the attribute-name
is resolved as a type-name (§8.8). If the result is not a type derived from System.Attribute, a compile-
time error occurs.

• Otherwise,

o The attribute-name is resolved as a type-name (§8.8) except any errors are suppressed. If this
resolution is successful and results in a type derived from System.Attribute then the type is the
result of this step.

o The characters Attribute are appended to the right-most identifier in the attribute-name and the
resulting string of tokens is resolved as a type-name (§8.8) except any errors are suppressed. If this
resolution is successful and results in a type derived from System.Attribute then the type is the
result of this step.

If exactly one of the two steps above results in a type derived from System.Attribute, then that type is
the result of the attribute-name. Otherwise a compile-time error occurs.

[Example: If an attribute class is found both with and without this suffix, an ambiguity is present, and a
compile-time error results. If the attribute-name is spelled such that its right-most identifier is a verbatim
identifier (§7.4.3), then only an attribute without a suffix is matched, thus enabling such an ambiguity to be
resolved. The example

using System;

[AttributeUsage(AttributeTargets.All)]
public class Example: Attribute
{}

[AttributeUsage(AttributeTargets.All)]
public class ExampleAttribute: Attribute
{}

[Example] // Error: ambiguity
class Class1 {}

[ExampleAttribute] // Refers to ExampleAttribute
class Class2 {}

[@Example] // Refers to Example
class Class3 {}

[@ExampleAttribute] // Refers to ExampleAttribute
class Class4 {}

shows two attribute classes named Example and ExampleAttribute. The attribute [Example] is
ambiguous, since it could refer to either Example or ExampleAttribute. Using a verbatim identifier allows
the exact intent to be specified in such rare cases. The attribute [ExampleAttribute] is not ambiguous

ECMA-334

398

(although it would be if there was an attribute class named ExampleAttributeAttribute!). If the
declaration for class Example is removed, then both attributes refer to the attribute class named
ExampleAttribute, as follows:

using System;

[AttributeUsage(AttributeTargets.All)]
public class ExampleAttribute: Attribute
{}

[Example] // Refers to ExampleAttribute
class Class1 {}

[ExampleAttribute] // Refers to ExampleAttribute
class Class2 {}

[@Example] // Error: no attribute named “Example”
class Class3 {}

end example]

It is a compile-time error to use a single-use attribute class more than once on the same entity. [Example: The
example

using System;

[AttributeUsage(AttributeTargets.Class)]
public class HelpStringAttribute: Attribute
{
 string value;

 public HelpStringAttribute(string value) {
 this.value = value;
 }

 public string Value { get {…} }
}

[HelpString("Description of Class1")]
[HelpString("Another description of Class1")]
public class Class1 {}

results in a compile-time error because it attempts to use HelpString, which is a single-use attribute class,
more than once on the declaration of Class1. end example]

An expression E is an attribute-argument-expression if all of the following statements are true:

• The type of E is an attribute parameter type (§22.2.4).

• At compile-time, the value of E can be resolved to one of the following:

o A constant value.
o A System.Type object obtained using a typeof-expression (§12.7.12) specifying a non-generic type, a

closed constructed type (§9.4.3), or an unbound generic type (§9.4.4), but not an open type (§9.4.3).
o A single-dimensional array of attribute-argument-expressions.

[Example:

using System;

[AttributeUsage(AttributeTargets.Class)]
public class TestAttribute: Attribute
{
 public int P1 {
 get {…}
 set {…}
 }

 Chapter 22 Attributes

399

 public Type P2 {
 get {…}
 set {…}
 }

 public object P3 {
 get {…}
 set {…}
 }
}

[Test(P1 = 1234, P3 = new int[]{1, 3, 5}, P2 = typeof(float))]
class MyClass {}

class C<T> {
 [My(P2 = typeof(T))] // Error – T not a closed type.
 int x1;

 [My(P2 = typeof(C<T>))] // Error – C<T> not a closed type.
 int x2;

 [My(P2 = typeof(C<int>))] // Ok
 int x3;

 [My(P2 = typeof(C<>))] // Ok
 int x4;
}

end example]

The attributes of a type declared in multiple parts are determined by combining, in an unspecified order, the
attributes of each of its parts. If the same attribute is placed on multiple parts, it is equivalent to specifying
that attribute multiple times on the type. [Example: The two parts:

[Attr1, Attr2("hello")]
partial class A {}

[Attr3, Attr2("goodbye")]
partial class A {}

are equivalent to the following single declaration:

[Attr1, Attr2("hello"), Attr3, Attr2("goodbye")]
class A {}

end example]

Attributes on type parameters combine in the same way.

22.4 Attribute instances

22.4.1 General
An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an
attribute class, positional arguments, and named arguments. An attribute instance is an instance of the
attribute class that is initialized with the positional and named arguments.

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the
following subclauses.

22.4.2 Compilation of an attribute
The compilation of an attribute with attribute class T, positional-argument-list P, named-argument-list N, and
specified on a program entity E is compiled into an assembly A viathe following steps:

ECMA-334

400

• Follow the compile-time processing steps for compiling an object-creation-expression of the form
new T(P). These steps either result in a compile-time error, or determine an instance constructor C on T
that can be invoked at run-time.

• If C does not have public accessibility, then a compile-time error occurs.

• For each named-argument Arg in N:

o Let Name be the identifier of the named-argument Arg.
o Name shall identify a non-static read-write public field or property on T. If T has no such field or

property, then a compile-time error occurs.

• If any of the values within positional-argument-list P or one of the values within named-argument-list N is
of type System.String and the value is not well-formed as defined by the Unicode Standard, it is
implementation-defined whether the value compiled is equal to the run-time value retrieved (§22.4.3).
[Note: As an example, a string which contains a high surrogate UTF-16 code unit which isn't immediately
followed by a low surrogate code unit is not well-formed. end note]

• Store the following information (for run-time instantiation of the attribute) in the assembly output by the
compiler as a result of compiling the program containing the attribute: the attribute class T, the instance
constructor C on T, the positional-argument-list P, the named-argument-list N, and the associated program
entity E, with the values resolved completely at compile-time.

22.4.3 Run-time retrieval of an attribute instance
The attribute instance represented by T, C, P, and N, and associated with E can be retrieved at run-time from
the assembly A using the following steps:

• Follow the run-time processing steps for executing an object-creation-expression of the form new T(P),
using the instance constructor C and values as determined at compile-time. These steps either result in an
exception, or produce an instance O of T.

• For each named-argument Arg in N, in order:

o Let Name be the identifier of the named-argument Arg. If Name does not identify a non-static public
read-write field or property on O, then an exception is thrown.

o Let Value be the result of evaluating the attribute-argument-expression of Arg.
o If Name identifies a field on O, then set this field to Value.
o Otherwise, Name identifies a property on O. Set this property to Value.
o The result is O, an instance of the attribute class T that has been initialized with the positional-

argument-list P and the named-argument-list N.

[Note: The format for storing T, C, P, N (and associating it with E) in A and the mechanism to specify E and
retrieve T, C, P, N from A (and hence how an attribute instance is obtained at runtime) is beyond the scope of
this standard. end note]

[Example: In an implementation of the CLI, the Help attribute instances in the assembly created by compiling
the example program in §22.2.3 can be retrieved with the following program:

 Chapter 22 Attributes

401

using System;
using System.Reflection;

public sealed class InterrogateHelpUrls
{
 public static void Main(string[] args) {
 Type helpType = typeof(HelpAttribute);
 string assemblyName = args[0];
 foreach (Type t in Assembly.Load(assemblyName).GetTypes()) {
 Console.WriteLine("Type : {0}", t.ToString());
 HelpAttribute[] helpers =
 (HelpAttribute[])t.GetCustomAttributes(helpType, false);
 for (int at = 0; at != helpers.Length; at++) {
 Console.WriteLine("\tUrl : {0}", helpers[at].Url);
 }
 }
 }
}

end example]

22.5 Reserved attributes

22.5.1 General
A small number of attributes affect the language in some way. These attributes include:

• System.AttributeUsageAttribute (§22.5.2), which is used to describe the ways in which an
attribute class can be used.

• System.Diagnostics.ConditionalAttribute (§22.5.3), is a multi-use attribute class which is used
to define conditional methods and conditional attribute classes. This attribute indicates a condition by
testing a conditional compilation symbol.

• System.ObsoleteAttribute (§22.5.4), which is used to mark a member as obsolete.

• System.Runtime.CompilerServices.CallerLineNumberAttribute (§22.5.5.2),
System.Runtime.CompilerServices.CallerFilePathAttribute (§22.5.5.3), and
System.Runtime.CompilerServices.CallerMemberNameAttribute (§22.5.5.4), which are used
to supply information about the calling context to optional parameters.

An execution environment may provide additional implementation-specific attributes that affect the execution
of a C# program.

22.5.2 The AttributeUsage attribute
The attribute AttributeUsage is used to describe the manner in which the attribute class can be used.

A class that is decorated with the AttributeUsage attribute shall derive from System.Attribute, either
directly or indirectly. Otherwise, a compile-time error occurs.

[Note: For an example of using this attribute, see §22.2.2. end note]

22.5.3 The Conditional attribute

22.5.3.1 General
The attribute Conditional enables the definition of conditional methods and conditional attribute classes.

22.5.3.2 Conditional methods
A method decorated with the Conditional attribute is a conditional method. Each conditional method is
thus associated with the conditional compilation symbols declared in its Conditional attributes. [Example:

ECMA-334

402

using System.Diagnostics;
class Eg
{
 [Conditional("ALPHA")]
 [Conditional("BETA")]
 public static void M() {
 //…
 }
}

declares Eg.M as a conditional method associated with the two conditional compilation symbols ALPHA and
BETA. end example]

A call to a conditional method is included if one or more of its associated conditional compilation symbols is
defined at the point of call, otherwise the call is omitted.

A conditional method is subject to the following restrictions:

• The conditional method shall be a method in a class-declaration or struct-declaration. A compile-time error
occurs if the Conditional attribute is specified on a method in an interface declaration.

• The conditional method shall have a return type of void.

• The conditional method shall not be marked with the override modifier. A conditional method can be
marked with the virtual modifier, however. Overrides of such a method are implicitly conditional, and
shall not be explicitly marked with a Conditional attribute.

• The conditional method shall not be an implementation of an interface method. Otherwise, a compile-time
error occurs.

• The parameters of the conditional method shall not have the out modifier.

In addition, a compile-time error occurs if a delegate is created from a conditional method.

[Example: The example

#define DEBUG

using System;
using System.Diagnostics;

class Class1
{
 [Conditional("DEBUG")]
 public static void M() {
 Console.WriteLine("Executed Class1.M");
 }
}

class Class2
{
 public static void Test() {
 Class1.M();
 }
}

declares Class1.M as a conditional method. Class2's Test method calls this method. Since the conditional
compilation symbol DEBUG is defined, if Class2.Test is called, it will call M. If the symbol DEBUG had not
been defined, then Class2.Test would not call Class1.M. end example]

It is important to understand that the inclusion or exclusion of a call to a conditional method is controlled by
the conditional compilation symbols at the point of the call. [Example: In the following code

// File class1.cs

using System.Diagnostics;

 Chapter 22 Attributes

403

class Class1
{
 [Conditional("DEBUG")]
 public static void F() {
 Console.WriteLine("Executed Class1.F");
 }
}

// File class2.cs

#define DEBUG

class Class2
{
 public static void G() {
 Class1.F(); // F is called
 }
}

// File class3.cs

#undef DEBUG

class Class3
{
 public static void H() {
 Class1.F(); // F is not called
 }
}

the classes Class2 and Class3 each contain calls to the conditional method Class1.F, which is conditional
based on whether or not DEBUG is defined. Since this symbol is defined in the context of Class2 but not
Class3, the call to F in Class2 is included, while the call to F in Class3 is omitted. end example]

The use of conditional methods in an inheritance chain can be confusing. Calls made to a conditional method
through base, of the form base.M, are subject to the normal conditional method call rules. [Example: In the
following code

// File class1.cs

using System;
using System.Diagnostics;

class Class1
{
 [Conditional("DEBUG")]
 public virtual void M() {
 Console.WriteLine("Class1.M executed");
 }
}

// File class2.cs

using System;

class Class2: Class1{
 public override void M() {
 Console.WriteLine("Class2.M executed");
 base.M(); // base.M is not called!
 }
}

ECMA-334

404

// File class3.cs

#define DEBUG

using System;

class Class3
{
 public static void Test() {
 Class2 c = new Class2();
 c.M(); // M is called
 }
}

Class2 includes a call to the M defined in its base class. This call is omitted because the base method is
conditional based on the presence of the symbol DEBUG, which is undefined. Thus, the method writes to the
console “Class2.M executed” only. Judicious use of pp-declarations can eliminate such problems. end
example]

22.5.3.3 Conditional attribute classes
An attribute class (§22.2) decorated with one or more Conditional attributes is a conditional attribute
class. A conditional attribute class is thus associated with the conditional compilation symbols declared in its
Conditional attributes.

[Example:

using System;
using System.Diagnostics;
[Conditional("ALPHA")]
[Conditional("BETA")]
public class TestAttribute : Attribute {}

declares TestAttribute as a conditional attribute class associated with the conditional compilations
symbols ALPHA and BETA. end example]

Attribute specifications (§22.3) of a conditional attribute are included if one or more of its associated
conditional compilation symbols is defined at the point of specification, otherwise the attribute specification is
omitted.

It is important to note that the inclusion or exclusion of an attribute specification of a conditional attribute
class is controlled by the conditional compilation symbols at the point of the specification. [Example: In the
example

File test.cs:

using System;
using System.Diagnostics;

[Conditional(“DEBUG”)]

public class TestAttribute : Attribute {}

File class1.cs:

#define DEBUG

[Test] // TestAttribute is specified

class Class1 {}

File class2.cs:

#undef DEBUG

[Test] // TestAttribute is not specified

 Chapter 22 Attributes

405

class Class2 {}

the classes Class1 and Class2 are each decorated with attribute Test, which is conditional based on
whether or not DEBUG is defined. Since this symbol is defined in the context of Class1 but not Class2, the
specification of the Test attribute on Class1 is included, while the specification of the Test attribute on
Class2 is omitted. end example]

22.5.4 The Obsolete attribute
The attribute Obsolete is used to mark types and members of types that should no longer be used.

If a program uses a type or member that is decorated with the Obsolete attribute, the compiler shall issue a
warning or an error. Specifically, the compiler shall issue a warning if no error parameter is provided, or if the
error parameter is provided and has the value false. The compiler shall issue an error if the error parameter is
specified and has the value true.

[Example: In the following code

[Obsolete("This class is obsolete; use class B instead")]
class A
{
 public void F() {}
}

class B
{
 public void F() {}
}

class Test
{
 static void Main() {
 A a = new A(); // Warning
 a.F();
 }
}

the class A is decorated with the Obsolete attribute. Each use of A in Main results in a warning that includes
the specified message, “This class is obsolete; use class B instead.” end example]

22.5.5 Caller-info attributes

22.5.5.1 General
For purposes such as logging and reporting, it is sometimes useful for a function member to obtain certain
compile-time information about the calling code. The caller-info attributes provide a way to pass such
information transparently.

When an optional parameter is annotated with one of the caller-info attributes, omitting the corresponding
argument in a call does not necessarily cause the default parameter value to be substituted. Instead, if the
specified information about the calling context is available, that information will be passed as the argument
value.

[Example:

using System.Runtime.CompilerServices

…

ECMA-334

406

public void Log(
 [CallerLineNumber] int line = -1,
 [CallerFilePath] string path = null,
 [CallerMemberName] string name = null
)
{
 Console.WriteLine((line < 0) ? "No line" : "Line "+ line);
 Console.WriteLine((path == null) ? "No file path" : path);
 Console.WriteLine((name == null) ? "No member name" : name);
}

A call to Log() with no arguments would print the line number and file path of the call, as well as the name of
the member within which the call occurred. end example]

Caller-info attributes can occur on optional parameters anywhere, including in delegate declarations. However,
the specific caller-info attributes have restrictions on the types of the parameters they can attribute, so that
there will always be an implicit conversion from a substituted value to the parameter type.

It is an error to have the same caller-info attribute on a parameter of both the defining and implementing part
of a partial method declaration. Only caller-info attributes in the defining part are applied, whereas caller-info
attributes occurring only in the implementing part are ignored.

Caller information does not affect overload resolution. As the attributed optional parameters are still omitted
from the source code of the caller, overload resolution ignores those parameters in the same way it ignores
other omitted optional parameters (§12.6.4).

Caller information is only substituted when a function is explicitly invoked in source code. Implicit invocations
such as implicit parent constructor calls do not have a source location and will not substitute caller
information. Also, calls that are dynamically bound will not substitute caller information. When a caller-info
attributed parameter is omitted in such cases, the specified default value of the parameter is used instead.

One exception is query expressions. These are considered syntactic expansions, and if the calls they expand to
omit optional parameters with caller-info attributes, caller information will be substituted. The location used is
the location of the query clause which the call was generated from.

If more than one caller-info attribute is specified on a given parameter, they are preferred in the following
order: CallerLineNumber, CallerFilePath, CallerMemberName.

22.5.5.2 The CallerLineNumber attribute
The System.Runtime.CompilerServices.CallerLineNumberAttribute is allowed on optional
parameters when there is a standard implicit conversion (§11.2.2) from the constant value int.MaxValue to
the parameter’s type. This ensures that any non-negative line number up to that value can be passed without
error.

namespace System.Runtime.CompilerServices
{
 [AttributeUsageAttribute(AttributeTargets.Parameter, Inherited = false)]
 public sealed class CallerLineNumberAttribute : Attribute

 {
 public CallerLineNumberAttribute() {…}

 }
}

If a function invocation from a location in source code omits an optional parameter with the
CallerLineNumberAttribute, then a numeric literal representing that location's line number is used as an
argument to the invocation instead of the default parameter value.

 Chapter 22 Attributes

407

If the invocation spans multiple lines, the line chosen is implementation-dependent.

The line number may be affected by #line directives (§7.5.8).

22.5.5.3 The CallerFilePath attribute
The System.Runtime.CompilerServices.CallerFilePathAttribute is allowed on optional
parameters when there is a standard implicit conversion (§11.2.2) from string to the parameter’s type.

namespace System.Runtime.CompilerServices
{
 [AttributeUsageAttribute(AttributeTargets.Parameter, Inherited = false)]
 public sealed class CallerFilePathAttribute : Attribute

 {
 public CallerFilePathAttribute() {…}

 }
}

If a function invocation from a location in source code omits an optional parameter with the
CallerFilePathAttribute, then a string literal representing that location's file path is used as an
argument to the invocation instead of the default parameter value.

The format of the file path is implementation-dependent.

The file path may be affected by #line directives (§7.5.8).

22.5.5.4 The CallerMemberName attribute
The System.Runtime.CompilerServices.CallerMemberNameAttribute is allowed on optional
parameters when there is a standard implicit conversion (§11.2.2) from string to the parameter’s type.

namespace System.Runtime.CompilerServices
{
 [AttributeUsageAttribute(AttributeTargets.Parameter, Inherited = false)]
 public sealed class CallerMemberNameAttribute : Attribute

 {
 public CallerMemberNameAttribute() {…}

 }
}

If a function invocation from a location within the body of a function member or within an attribute applied to
the function member itself or its return type, parameters or type parameters in source code omits an optional
parameter with the CallerMemberNameAttribute, then a string literal representing the name of that
member is used as an argument to the invocation instead of the default parameter value.

For invocations that occur within generic methods, only the method name itself is used, without the type
parameter list.

For invocations that occur within explicit interface member implementations, only the method name itself is
used, without the preceding interface qualification.

For invocations that occur within property or event accessors, the member name used is that of the property
or event itself.

For invocations that occur within indexer accessors, the member name used is that supplied by an
IndexerNameAttribute (§) on the indexer member, if present, or the default name Item otherwise.

For invocations that occur within field or event initializers, the member name used is the name of the field or
event being initialized.

ECMA-334

408

For invocations that occur within declarations of instance constructors, static constructors, finalizers and
operators the member name used is implementation-dependent.

22.6 Attributes for interoperation
For interoperation with other languages, an indexer may be implemented using indexed properties. If no
IndexerName attribute is present for an indexer, then the name Item is used by default. The IndexerName
attribute enables a developer to override this default and specify a different name.

namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Property)]
 public class IndexerNameAttribute: Attribute
 {
 public IndexerNameAttribute(string indexerName) {…}

 public string Value { get {…} }
 }
}

 Chapter 23 Unsafe code

409

23. Unsafe code

23.1 General
An implementation that does not support unsafe code is required to diagnose any usage of the keyword
unsafe.

The remainder of this clause, including all of its subclauses, is conditionally normative.

[Note: The core C# language, as defined in the preceding clauses, differs notably from C and C++ in its
omission of pointers as a data type. Instead, C# provides references and the ability to create objects that
are managed by a garbage collector. This design, coupled with other features, makes C# a much safer
language than C or C++. In the core C# language, it is simply not possible to have an uninitialized variable, a
“dangling” pointer, or an expression that indexes an array beyond its bounds. Whole categories of bugs
that routinely plague C and C++ programs are thus eliminated.

While practically every pointer type construct in C or C++ has a reference type counterpart in C#,
nonetheless, there are situations where access to pointer types becomes a necessity. For example,
interfacing with the underlying operating system, accessing a memory-mapped device, or implementing a
time-critical algorithm might not be possible or practical without access to pointers. To address this need,
C# provides the ability to write unsafe code.

In unsafe code, it is possible to declare and operate on pointers, to perform conversions between pointers
and integral types, to take the address of variables, and so forth. In a sense, writing unsafe code is much
like writing C code within a C# program.

Unsafe code is in fact a “safe” feature from the perspective of both developers and users. Unsafe code
shall be clearly marked with the modifier unsafe, so developers can’t possibly use unsafe features
accidentally, and the execution engine works to ensure that unsafe code cannot be executed in an
untrusted environment. end note]

23.2 Unsafe contexts
The unsafe features of C# are available only in unsafe contexts. An unsafe context is introduced by
including an unsafe modifier in the declaration of a type or member, or by employing an unsafe-
statement:

• A declaration of a class, struct, interface, or delegate may include an unsafe modifier, in which case,
the entire textual extent of that type declaration (including the body of the class, struct, or interface) is
considered an unsafe context. [Note: If the type-declaration is partial, only that part is an unsafe
context. end note]

• A declaration of a field, method, property, event, indexer, operator, instance constructor, finalizer, or
static constructor may include an unsafe modifier, in which case, the entire textual extent of that
member declaration is considered an unsafe context.

• An unsafe-statement enables the use of an unsafe context within a block. The entire textual extent of
the associated block is considered an unsafe context.

The associated grammar extensions are shown below. For brevity, ellipses (…) are used to represent
productions that appear in preceding clauses.

class-modifier:
…
unsafe

ECMA-334

410

struct-modifier:
…
unsafe

interface-modifier:
…
unsafe

delegate-modifier:
…
unsafe

field-modifier:
…
unsafe

method-modifier:
…
unsafe

property-modifier:
…
unsafe

event-modifier:
…
unsafe

indexer-modifier:
…
unsafe

operator-modifier:
…
unsafe

constructor-modifier:
…
unsafe

finalizer-declaration:
attributesopt externopt unsafeopt ~ identifier () finalizer-body
attributesopt unsafeopt externopt ~ identifier () finalizer-body

static-constructor-modifiers:
externopt unsafeopt static
unsafeopt externopt static
externopt static unsafeopt
unsafeopt static externopt
static externopt unsafeopt
static unsafeopt externopt

embedded-statement:
…
unsafe-statement

unsafe-statement:
unsafe block

[Example: In the following code

 Chapter 23 Unsafe code

411

public unsafe struct Node
{
 public int Value;
 public Node* Left;
 public Node* Right;
}

the unsafe modifier specified in the struct declaration causes the entire textual extent of the struct
declaration to become an unsafe context. Thus, it is possible to declare the Left and Right fields to be of
a pointer type. The example above could also be written

public struct Node
{
 public int Value;
 public unsafe Node* Left;
 public unsafe Node* Right;
}

Here, the unsafe modifiers in the field declarations cause those declarations to be considered unsafe
contexts. end example]

Other than establishing an unsafe context, thus permitting the use of pointer types, the unsafe modifier
has no effect on a type or a member. [Example: In the following code

public class A
{
 public unsafe virtual void F() {
 char* p;
 …
 }
}

public class B: A
{
 public override void F() {
 base.F();
 …
 }
}

the unsafe modifier on the F method in A simply causes the textual extent of F to become an unsafe
context in which the unsafe features of the language can be used. In the override of F in B, there is no need
to re-specify the unsafe modifier—unless, of course, the F method in B itself needs access to unsafe
features.

The situation is slightly different when a pointer type is part of the method’s signature

public unsafe class A
{
 public virtual void F(char* p) {…}
}

public class B: A
{
 public unsafe override void F(char* p) {…}
}

Here, because F’s signature includes a pointer type, it can only be written in an unsafe context. However,
the unsafe context can be introduced by either making the entire class unsafe, as is the case in A, or by
including an unsafe modifier in the method declaration, as is the case in B. end example]

When the unsafe modifier is used on a partial type declaration (§15.2.7), only that particular part is
considered an unsafe context.

23.3 Pointer types
In an unsafe context, a type (§9) can be a pointer-type as well as a value-type, a reference-type, or a type-
parameter. In an unsafe context a pointer-type may also be the element type of an array (§17). A pointer-

ECMA-334

412

type may also be used in a typeof expression (§12.7.12) outside of an unsafe context (as such usage is not
unsafe).

type:
…
pointer-type

non-array-type:
…
pointer-type

A pointer-type is written as an unmanaged-type or the keyword void, followed by a * token:

pointer-type:
unmanaged-type *
void *

unmanaged-type:
type

The type specified before the * in a pointer type is called the referent type of the pointer type. It
represents the type of the variable to which a value of the pointer type points.

A pointer-type may only be used in an array-type in an unsafe context (§23.2). A non-array-type is any type
that is not itself an array-type.

The type specified before the * in a pointer type is called the referent type of the pointer type. It
represents the type of the variable to which a value of the pointer type points.

Unlike references (values of reference types), pointers are not tracked by the garbage collector—the
garbage collector has no knowledge of pointers and the data to which they point. For this reason a pointer
is not permitted to point to a reference or to a struct that contains references, and the referent type of a
pointer shall be an unmanaged-type.

An unmanaged-type is any type that isn’t a reference-type, a type-parameter, or a constructed type, and
contains no fields whose type is not an unmanaged-type. In other words, an unmanaged-type is one of the
following:

• sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, or bool.

• Any enum-type.

• Any pointer-type.

• Any user-defined struct-type that is not a constructed type and contains fields of unmanaged-types
only.

The intuitive rule for mixing of pointers and references is that referents of references (objects) are
permitted to contain pointers, but referents of pointers are not permitted to contain references.

[Example: Some examples of pointer types are given in the table below:

Example Description

byte* Pointer to byte

char* Pointer to char

int** Pointer to pointer to int

int*[] Single-dimensional array of pointers to int

void* Pointer to unknown type

end example]

 Chapter 23 Unsafe code

413

For a given implementation, all pointer types shall have the same size and representation.

[Note: Unlike C and C++, when multiple pointers are declared in the same declaration, in C# the * is written
along with the underlying type only, not as a prefix punctuator on each pointer name. For example:

 int* pi, pj; // NOT as int *pi, *pj;

end note]

The value of a pointer having type T* represents the address of a variable of type T. The pointer indirection
operator * (§23.6.2) can be used to access this variable. [Example: Given a variable P of type int*, the
expression *P denotes the int variable found at the address contained in P. end example]

Like an object reference, a pointer may be null. Applying the indirection operator to a null pointer results
in implementation-defined behavior (§23.6.2). A pointer with value null is represented by all-bits-zero.

The void* type represents a pointer to an unknown type. Because the referent type is unknown, the
indirection operator cannot be applied to a pointer of type void*, nor can any arithmetic be performed on
such a pointer. However, a pointer of type void* can be cast to any other pointer type (and vice versa)
and compared to values of other pointer types (§23.6.8).

Pointer types are a separate category of types. Unlike reference types and value types, pointer types do
not inherit from object and no conversions exist between pointer types and object. In particular, boxing
and unboxing (§9.3.12) are not supported for pointers. However, conversions are permitted between
different pointer types and between pointer types and the integral types. This is described in §23.5.

A pointer-type cannot be used as a type argument (§9.4), and type inference (§12.6.3) fails on generic
method calls that would have inferred a type argument to be a pointer type.

A pointer-type cannot be used as a type of a subexpression of a dynamically bound operation (§12.3.3).

A pointer-type may be used as the type of a volatile field (§15.5.4).

[Note: Although pointers can be passed as ref or out parameters, doing so can cause undefined behavior,
since the pointer might well be set to point to a local variable that no longer exists when the called method
returns, or the fixed object to which it used to point, is no longer fixed. For example:

using System;

class Test
{
 static int value = 20;

 unsafe static void F(out int* pi1, ref int* pi2) {
 int i = 10;
 pi1 = &i;
 fixed (int* pj = &value) {
 // …
 pi2 = pj;
 }
 }

 static void Main() {
 int i = 10;
 unsafe {
 int* px1;
 int* px2 = &i;
 F(out px1, ref px2);

 Console.WriteLine("*px1 = {0}, *px2 = {1}",
 *px1, *px2); // undefined behavior
 }
 }
}

end note]

ECMA-334

414

A method can return a value of some type, and that type can be a pointer. [Example: When given a pointer
to a contiguous sequence of ints, that sequence's element count, and some other int value, the
following method returns the address of that value in that sequence, if a match occurs; otherwise it returns
null:

unsafe static int* Find(int* pi, int size, int value) {
 for (int i = 0; i < size; ++i) {
 if (*pi == value)
 return pi;
 ++pi;
 }
 return null;
}

end example]

In an unsafe context, several constructs are available for operating on pointers:

• The unary * operator may be used to perform pointer indirection (§23.6.2).

• The -> operator may be used to access a member of a struct through a pointer (§23.6.3).

• The [] operator may be used to index a pointer (§23.6.4).

• The unary & operator may be used to obtain the address of a variable (§23.6.5).

• The ++ and -- operators may be used to increment and decrement pointers (§23.6.6).

• The binary + and - operators may be used to perform pointer arithmetic (§23.6.7).

• The ==, !=, <, >, <=, and >= operators may be used to compare pointers (§23.6.8).

• The stackalloc operator may be used to allocate memory from the call stack (§23.9).

• The fixed statement may be used to temporarily fix a variable so its address can be obtained (§23.7).

23.4 Fixed and moveable variables
The address-of operator (§23.6.5) and the fixed statement (§23.7) divide variables into two categories:
Fixed variables and moveable variables.

Fixed variables reside in storage locations that are unaffected by operation of the garbage collector.
(Examples of fixed variables include local variables, value parameters, and variables created by
dereferencing pointers.) On the other hand, moveable variables reside in storage locations that are subject
to relocation or disposal by the garbage collector. (Examples of moveable variables include fields in objects
and elements of arrays.)

The & operator (§23.6.5) permits the address of a fixed variable to be obtained without restrictions.
However, because a moveable variable is subject to relocation or disposal by the garbage collector, the
address of a moveable variable can only be obtained using a fixed statement (§23.7), and that address
remains valid only for the duration of that fixed statement.

In precise terms, a fixed variable is one of the following:

• A variable resulting from a simple-name (§12.7.3) that refers to a local variable, value parameter, or
parameter array, unless the variable is captured by an anonymous function (§12.16.6.2).

• A variable resulting from a member-access (§12.7.5) of the form V.I, where V is a fixed variable of a
struct-type.

• A variable resulting from a pointer-indirection-expression (§23.6.2) of the form *P, a pointer-member-
access (§23.6.3) of the form P->I, or a pointer-element-access (§23.6.4) of the form P[E].

All other variables are classified as moveable variables.

A static field is classified as a moveable variable. Also, a ref or out parameter is classified as a moveable
variable, even if the argument given for the parameter is a fixed variable. Finally, a variable produced by
dereferencing a pointer is always classified as a fixed variable.

 Chapter 23 Unsafe code

415

23.5 Pointer conversions

23.5.1 General
In an unsafe context, the set of available implicit conversions (§11.2) is extended to include the following
implicit pointer conversions:

• From any pointer-type to the type void*.

• From the null literal (§7.4.5.7) to any pointer-type.

Additionally, in an unsafe context, the set of available explicit conversions (§11.3) is extended to include
the following explicit pointer conversions:

• From any pointer-type to any other pointer-type.

• From sbyte, byte, short, ushort, int, uint, long, or ulong to any pointer-type.

• From any pointer-type to sbyte, byte, short, ushort, int, uint, long, or ulong.

Finally, in an unsafe context, the set of standard implicit conversions (§11.4.2) includes the following
pointer conversions:

• From any pointer-type to the type void*.

• From the null literal to any pointer-type.

Conversions between two pointer types never change the actual pointer value. In other words, a
conversion from one pointer type to another has no effect on the underlying address given by the pointer.

When one pointer type is converted to another, if the resulting pointer is not correctly aligned for the
pointed-to type, the behavior is undefined if the result is dereferenced. In general, the concept “correctly
aligned” is transitive: if a pointer to type A is correctly aligned for a pointer to type B, which, in turn, is
correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.
[Example: Consider the following case in which a variable having one type is accessed via a pointer to a
different type:

char c = 'A';
char* pc = &c;
void* pv = pc;
int* pi = (int*)pv;
int i = *pi; // undefined
*pi = 123456; // undefined

end example]

When a pointer type is converted to a pointer to byte, the result points to the lowest addressed byte of
the variable. Successive increments of the result, up to the size of the variable, yield pointers to the
remaining bytes of that variable. [Example: The following method displays each of the eight bytes in a
double as a hexadecimal value:

using System;

class Test
{
 static void Main() {
 double d = 123.456e23;
 unsafe {
 byte* pb = (byte*)&d;
 for (int i = 0; i < sizeof(double); ++i)
 Console.Write("{0:X2} ", *pb++);
 Console.WriteLine();
 }
 }
}

Of course, the output produced depends on endianness. end example]

ECMA-334

416

Mappings between pointers and integers are implementation-defined. [Note: However, on 32- and 64-bit
CPU architectures with a linear address space, conversions of pointers to or from integral types typically
behave exactly like conversions of uint or ulong values, respectively, to or from those integral types. end
note]

23.5.2 Pointer arrays
Arrays of pointers can be constructed using array-creation-expression (§12.7.11.5) in an usafe context.
Only some of the conversions that apply to other array types are allowed on pointer arrays:

• The implicit reference conversion (§11.2.5) from any array-type to System.Array and the interfaces
it implements also applies to pointer arrays. However, any attempt to access the array elements
through System.Array or the interfaces it implements may result in an exception at run-time, as
pointer types are not convertible to object.

• The implicit and explicit reference conversions (§11.2.5, §11.3.4) from a single-dimensional array type
S[] to System.Collections.Generic.IList<T> and its generic base interfaces never apply to
pointer arrays.

• The explicit reference conversion (§11.3.4) from System.Array and the interfaces it implements to
any array-type applies to pointer arrays.

• The explicit reference conversions (§11.3.4) from System.Collections.Generic.IList<S> and
its base interfaces to a single-dimensional array type T[] never applies to pointer arrays, since pointer
types cannot be used as type arguments, and there are no conversions from pointer types to non-
pointer types.

These restrictions mean that the expansion for the foreach statement over arrays described in §10.4.4.17
cannot be applied to pointer arrays. Instead, a foreach statement of the form

foreach (V v in x) embedded-statement

where the type of x is an array type of the form T[,,…,], n is the number of dimensions minus 1 and T
or V is a pointer type, is expanded using nested for-loops as follows:

{
 T[,,…,] a = x; for (int i0 = a.GetLowerBound(0); i0 <=
a.GetUpperBound(0); i0++)
 for (int i1 = a.GetLowerBound(1); i1 <= a.GetUpperBound(1); i1++)
 …

 for (int in = a.GetLowerBound(n); in <= a.GetUpperBound(n); in++) {
 V v = (V)a[i0,i1,…,in];

 embedded-statement
 }
}

The variables a, i0, i1, … in are not visible to or accessible to x or the embedded-statement or any other
source code of the program. The variable v is read-only in the embedded statement. If there is not an
explicit conversion (§23.5) from T (the element type) to V, an error is produced and no further steps are
taken. If x has the value null, a System.NullReferenceException is thrown at run-time.

[Note: Although pointer types are not permitted as type arguments, pointer arrays may be used as type
arguments. end note]

23.6 Pointers in expressions

23.6.1 General
In an unsafe context, an expression may yield a result of a pointer type, but outside an unsafe context, it is
a compile-time error for an expression to be of a pointer type. In precise terms, outside an unsafe context
a compile-time error occurs if any simple-name (§12.7.3), member-access (§12.7.5), invocation-expression
(§12.7.6), or element-access (§12.7.7) is of a pointer type.

 Chapter 23 Unsafe code

417

In an unsafe context, the primary-no-array-creation-expression (§12.7) and unary-expression (§12.8)
productions permit the following additional constructs:

primary-no-array-creation-expression:
…
pointer-member-access
pointer-element-access

unary-expression:
…
pointer-indirection-expression
addressof-expression

These constructs are described in the following subclauses.

[Note: The precedence and associativity of the unsafe operators is implied by the grammar. end note]

23.6.2 Pointer indirection
A pointer-indirection-expression consists of an asterisk (*)followed by a unary-expression.

pointer-indirection-expression:
* unary-expression

The unary * operator denotes pointer indirection and is used to obtain the variable to which a pointer
points. The result of evaluating *P, where P is an expression of a pointer type T*, is a variable of type T. It
is a compile-time error to apply the unary * operator to an expression of type void* or to an expression
that isn’t of a pointer type.

The effect of applying the unary * operator to a null pointer is implementation-defined. In particular,
there is no guarantee that this operation throws a System.NullReferenceException.

If an invalid value has been assigned to the pointer, the behavior of the unary * operator is undefined.
[Note: Among the invalid values for dereferencing a pointer by the unary * operator are an address
inappropriately aligned for the type pointed to (see example in §23.5), and the address of a variable after
the end of its lifetime. end note]

For purposes of definite assignment analysis, a variable produced by evaluating an expression of the form
*P is considered initially assigned (§10.4.2).

23.6.3 Pointer member access
A pointer-member-access consists of a primary-expression, followed by a “->” token, followed by an
identifier and an optional type-argument-list.

pointer-member-access:
primary-expression -> identifier type-argument-listopt

In a pointer member access of the form P->I, P shall be an expression of a pointer type, and I shall
denote an accessible member of the type to which P points.

A pointer member access of the form P->I is evaluated exactly as (*P).I. For a description of the pointer
indirection operator (*), see §23.6.2. For a description of the member access operator (.), see §12.7.5.

[Example: In the following code

using System;

struct Point
{
 public int x;
 public int y;

ECMA-334

418

 public override string ToString() {
 return "(" + x + "," + y + ")";
 }
}

class Test
{
 static void Main() {
 Point point;
 unsafe {
 Point* p = &point;
 p->x = 10;
 p->y = 20;
 Console.WriteLine(p->ToString());
 }
 }
}

the -> operator is used to access fields and invoke a method of a struct through a pointer. Because the
operation P->I is precisely equivalent to (*P).I, the Main method could equally well have been written:

class Test
{
 static void Main() {
 Point point;
 unsafe {
 Point* p = &point;
 (*p).x = 10;
 (*p).y = 20;
 Console.WriteLine((*p).ToString());
 }
 }
}

end example]

23.6.4 Pointer element access
A pointer-element-access consists of a primary-no-array-creation-expression followed by an expression
enclosed in “[” and “]”.

pointer-element-access:
primary-no-array-creation-expression [expression]

In a pointer element access of the form P[E], P shall be an expression of a pointer type other than void*,
and E shall be an expression that can be implicitly converted to int, uint, long, or ulong.

A pointer element access of the form P[E] is evaluated exactly as *(P + E). For a description of the
pointer indirection operator (*), see §23.6.2. For a description of the pointer addition operator (+), see
§23.6.7.

[Example: In the following code

class Test
{
 static void Main() {
 unsafe {
 char* p = stackalloc char[256];
 for (int i = 0; i < 256; i++) p[i] = (char)i;
 }
 }
}

a pointer element access is used to initialize the character buffer in a for loop. Because the operation
P[E] is precisely equivalent to *(P + E), the example could equally well have been written:

 Chapter 23 Unsafe code

419

class Test
{
 static void Main() {
 unsafe {
 char* p = stackalloc char[256];
 for (int i = 0; i < 256; i++) *(p + i) = (char)i;
 }
 }
}

end example]

The pointer element access operator does not check for out-of-bounds errors and the behavior when
accessing an out-of-bounds element is undefined. [Note: This is the same as C and C++. end note]

23.6.5 The address-of operator
An addressof-expression consists of an ampersand (&) followed by a unary-expression.

addressof-expression:
& unary-expression

Given an expression E which is of a type T and is classified as a fixed variable (§23.4), the construct &E
computes the address of the variable given by E. The type of the result is T* and is classified as a value. A
compile-time error occurs if E is not classified as a variable, if E is classified as a read-only local variable, or
if E denotes a moveable variable. In the last case, a fixed statement (§23.7) can be used to temporarily “fix”
the variable before obtaining its address. [Note: As stated in §12.7.5, outside an instance constructor or
static constructor for a struct or class that defines a readonly field, that field is considered a value, not a
variable. As such, its address cannot be taken. Similarly, the address of a constant cannot be taken. end
note]

The & operator does not require its argument to be definitely assigned, but following an & operation, the
variable to which the operator is applied is considered definitely assigned in the execution path in which
the operation occurs. It is the responsibility of the programmer to ensure that correct initialization of the
variable actually does take place in this situation.

[Example: In the following code

using System;

class Test
{
 static void Main() {
 int i;
 unsafe {
 int* p = &i;
 *p = 123;
 }
 Console.WriteLine(i);
 }
}

i is considered definitely assigned following the &i operation used to initialize p. The assignment to *p in
effect initializes i, but the inclusion of this initialization is the responsibility of the programmer, and no
compile-time error would occur if the assignment was removed. end example]

[Note: The rules of definite assignment for the & operator exist such that redundant initialization of local
variables can be avoided. For example, many external APIs take a pointer to a structure which is filled in by
the API. Calls to such APIs typically pass the address of a local struct variable, and without the rule,
redundant initialization of the struct variable would be required. end note]

[Note: When a local variable, value parameter, or parameter array is captured by an anonymous function
(§12.7.16), that local variable, parameter, or parameter array is no longer considered to be a fixed variable
(§23.7), but is instead considered to be a moveable variable. Thus it is an error for any unsafe code to

ECMA-334

420

take the address of a local variable, value parameter, or parameter array that has been captured by an
anonymous function. end note]

23.6.6 Pointer increment and decrement
In an unsafe context, the ++ and -- operators (§12.7.10 and §12.8.6) can be applied to pointer variables of
all types except void*. Thus, for every pointer type T*, the following operators are implicitly defined:

T* operator ++(T* x);

T* operator --(T* x);

The operators produce the same results as x+1 and x-1, respectively (§23.6.7). In other words, for a
pointer variable of type T*, the ++ operator adds sizeof(T) to the address contained in the variable,
and the -- operator subtracts sizeof(T) from the address contained in the variable.

If a pointer increment or decrement operation overflows the domain of the pointer type, the result is
implementation-defined, but no exceptions are produced.

23.6.7 Pointer arithmetic
In an unsafe context, the + operator (§12.9.5) and – operator (§12.9.6) can be applied to values of all
pointer types except void*. Thus, for every pointer type T*, the following operators are implicitly defined:

T* operator +(T* x, int y);
T* operator +(T* x, uint y);
T* operator +(T* x, long y);
T* operator +(T* x, ulong y);

T* operator +(int x, T* y);
T* operator +(uint x, T* y);
T* operator +(long x, T* y);
T* operator +(ulong x, T* y);

T* operator –(T* x, int y);
T* operator –(T* x, uint y);
T* operator –(T* x, long y);
T* operator –(T* x, ulong y);

long operator –(T* x, T* y);

Given an expression P of a pointer type T* and an expression N of type int, uint, long, or ulong, the
expressions P + N and N + P compute the pointer value of type T* that results from adding
N * sizeof(T) to the address given by P. Likewise, the expression P – N computes the pointer value of
type T* that results from subtracting N * sizeof(T) from the address given by P.

Given two expressions, P and Q, of a pointer type T*, the expression P – Q computes the difference
between the addresses given by P and Q and then divides that difference by sizeof(T). The type of the
result is always long. In effect, P - Q is computed as ((long)(P) - (long)(Q)) / sizeof(T).
[Example:

using System;

class Test
{
 static void Main() {
 unsafe {
 int* values = stackalloc int[20];

 int* p = &values[1];
 int* q = &values[15];

 Console.WriteLine("p - q = {0}", p - q);
 Console.WriteLine("q - p = {0}", q - p);
 }
 }
}

which produces the output:

 Chapter 23 Unsafe code

421

p - q = -14
q - p = 14

end example]

If a pointer arithmetic operation overflows the domain of the pointer type, the result is truncated in an
implementation-defined fashion, but no exceptions are produced.

23.6.8 Pointer comparison
In an unsafe context, the ==, !=, <, >, <=, and >= operators (§12.11) can be applied to values of all pointer
types. The pointer comparison operators are:

bool operator ==(void* x, void* y);
bool operator !=(void* x, void* y);

bool operator <(void* x, void* y);
bool operator >(void* x, void* y);
bool operator <=(void* x, void* y);
bool operator >=(void* x, void* y);

Because an implicit conversion exists from any pointer type to the void* type, operands of any pointer
type can be compared using these operators. The comparison operators compare the addresses given by
the two operands as if they were unsigned integers.

23.6.9 The sizeof operator
For certain predefined types (§12.7.13), the sizeof operator yields a constant int value. For all other
types, the result of the sizeof operator is implementation-defined and is classified as a value, not a
constant.

The order in which members are packed into a struct is unspecified.

For alignment purposes, there may be unnamed padding at the beginning of a struct, within a struct, and
at the end of the struct. The contents of the bits used as padding are indeterminate.

When applied to an operand that has struct type, the result is the total number of bytes in a variable of
that type, including any padding.

23.7 The fixed statement
In an unsafe context, the embedded-statement (§13.1) production permits an additional construct, the
fixed statement, which is used to “fix” a moveable variable such that its address remains constant for the
duration of the statement.

embedded-statement:
…
fixed-statement

fixed-statement:
fixed (pointer-type fixed-pointer-declarators) embedded-statement

fixed-pointer-declarators:
fixed-pointer-declarator
fixed-pointer-declarators , fixed-pointer-declarator

fixed-pointer-declarator:
identifier = fixed-pointer-initializer

fixed-pointer-initializer:
& variable-reference
expression

Each fixed-pointer-declarator declares a local variable of the given pointer-type and initializes that local
variable with the address computed by the corresponding fixed-pointer-initializer. A local variable declared
in a fixed statement is accessible in any fixed-pointer-initializers occurring to the right of that variable’s

ECMA-334

422

declaration, and in the embedded-statement of the fixed statement. A local variable declared by a fixed
statement is considered read-only. A compile-time error occurs if the embedded statement attempts to
modify this local variable (via assignment or the ++ and -- operators) or pass it as a ref or out parameter.

It is an error to use a captured local variable (§12.16.6.2), value parameter, or parameter array in a fixed-
pointer-initializer.A fixed-pointer-initializer can be one of the following:

• The token “&” followed by a variable-reference (§10.5) to a moveable variable (§23.4) of an
unmanaged type T, provided the type T* is implicitly convertible to the pointer type given in the
fixed statement. In this case, the initializer computes the address of the given variable, and the
variable is guaranteed to remain at a fixed address for the duration of the fixed statement.

• An expression of an array-type with elements of an unmanaged type T, provided the type T* is
implicitly convertible to the pointer type given in the fixed statement. In this case, the initializer
computes the address of the first element in the array, and the entire array is guaranteed to remain at
a fixed address for the duration of the fixed statement. The behavior of the fixed statement is
implementation-defined if the array expression is null or if the array has zero elements.

• An expression of type string, provided the type char* is implicitly convertible to the pointer type
given in the fixed statement. In this case, the initializer computes the address of the first character in
the string, and the entire string is guaranteed to remain at a fixed address for the duration of the
fixed statement. The behavior of the fixed statement is implementation-defined if the string
expression is null.

• A simple-name or member-access that references a fixed-size buffer member of a moveable variable,
provided the type of the fixed-size buffer member is implicitly convertible to the pointer type given in
the fixed statement. In this case, the initializer computes a pointer to the first element of the fixed-
size buffer (§23.8.3), and the fixed-size buffer is guaranteed to remain at a fixed address for the
duration of the fixed statement.

For each address computed by a fixed-pointer-initializer the fixed statement ensures that the variable
referenced by the address is not subject to relocation or disposal by the garbage collector for the duration
of the fixed statement. [Example: If the address computed by a fixed-pointer-initializer references a field
of an object or an element of an array instance, the fixed statement guarantees that the containing
object instance is not relocated or disposed of during the lifetime of the statement. end example]

It is the programmer's responsibility to ensure that pointers created by fixed statements do not survive
beyond execution of those statements. [Example: When pointers created by fixed statements are passed
to external APIs, it is the programmer’s responsibility to ensure that the APIs retain no memory of these
pointers. end example]

Fixed objects can cause fragmentation of the heap (because they can’t be moved). For that reason, objects
should be fixed only when absolutely necessary and then only for the shortest amount of time possible.
[Example: The example

class Test
{
 static int x;
 int y;

 unsafe static void F(int* p) {
 *p = 1;
 }

 Chapter 23 Unsafe code

423

 static void Main() {
 Test t = new Test();
 int[] a = new int[10];
 unsafe {
 fixed (int* p = &x) F(p);
 fixed (int* p = &t.y) F(p);
 fixed (int* p = &a[0]) F(p);
 fixed (int* p = a) F(p);
 }
 }
}

demonstrates several uses of the fixed statement. The first statement fixes and obtains the address of a
static field, the second statement fixes and obtains the address of an instance field, and the third
statement fixes and obtains the address of an array element. In each case, it would have been an error to
use the regular & operator since the variables are all classified as moveable variables.

The third and fourth fixed statements in the example above produce identical results. In general, for an
array instance a, specifying &a[0] in a fixed statement is the same as simply specifying a.Here’s another
example of the fixed statement, this time using string:

class Test
{
 static string name = "xx";

 unsafe static void F(char* p) {
 for (int i = 0; p[i] != '\0'; ++i)
 Console.WriteLine(p[i]);
 }

 static void Main() {
 unsafe {
 fixed (char* p = name) F(p);
 fixed (char* p = "xx") F(p);
 }
 }
}

end example]

In an unsafe context, array elements of single-dimensional arrays are stored in increasing index order,
starting with index 0 and ending with index Length – 1. For multi-dimensional arrays, array elements are
stored such that the indices of the rightmost dimension are increased first, then the next left dimension,
and so on to the left.

Within a fixed statement that obtains a pointer p to an array instance a, the pointer values ranging from
p to p + a.Length - 1 represent addresses of the elements in the array. Likewise, the variables ranging
from p[0] to p[a.Length - 1] represent the actual array elements. Given the way in which arrays are
stored, we can treat an array of any dimension as though it were linear. [Example:

using System;

class Test
{
 static void Main() {
 int[,,] a = new int[2,3,4];

 unsafe {
 fixed (int* p = a) {
 for (int i = 0; i < a.Length; ++i) // treat as linear
 p[i] = i;
 }
 }

ECMA-334

424

 for (int i = 0; i < 2; ++i)
 for (int j = 0; j < 3; ++j) {
 for (int k = 0; k < 4; ++k)
 Console.Write("[{0},{1},{2}] = {3,2} ", i, j, k,
 a[i,j,k]);
 Console.WriteLine();
 }
 }
}

which produces the output:

[0,0,0] = 0 [0,0,1] = 1 [0,0,2] = 2 [0,0,3] = 3
[0,1,0] = 4 [0,1,1] = 5 [0,1,2] = 6 [0,1,3] = 7
[0,2,0] = 8 [0,2,1] = 9 [0,2,2] = 10 [0,2,3] = 11
[1,0,0] = 12 [1,0,1] = 13 [1,0,2] = 14 [1,0,3] = 15
[1,1,0] = 16 [1,1,1] = 17 [1,1,2] = 18 [1,1,3] = 19
[1,2,0] = 20 [1,2,1] = 21 [1,2,2] = 22 [1,2,3] = 23

end example]

[Example: In the following code

class Test
{
 unsafe static void Fill(int* p, int count, int value) {
 for (; count != 0; count--) *p++ = value;
 }

 static void Main() {
 int[] a = new int[100];
 unsafe {
 fixed (int* p = a) Fill(p, 100, -1);
 }
 }
}

a fixed statement is used to fix an array so its address can be passed to a method that takes a pointer.
end example]

A char* value produced by fixing a string instance always points to a null-terminated string. Within a fixed
statement that obtains a pointer p to a string instance s, the pointer values ranging from p to
p + s.Length - 1 represent addresses of the characters in the string, and the pointer value
p + s.Length always points to a null character (the character with value '\0').

Modifying objects of managed type through fixed pointers can result in undefined behavior. [Note: For
example, because strings are immutable, it is the programmer’s responsibility to ensure that the characters
referenced by a pointer to a fixed string are not modified. end note]

[Note: The automatic null-termination of strings is particularly convenient when calling external APIs that
expect “C-style” strings. Note, however, that a string instance is permitted to contain null characters. If
such null characters are present, the string will appear truncated when treated as a null-terminated char*.
end note]

23.8 Fixed-size buffers

23.8.1 General
Fixed-size buffers are used to declare “C-style” in-line arrays as members of structs, and are primarily
useful for interfacing with unmanaged APIs.

23.8.2 Fixed-size buffer declarations
A fixed-size buffer is a member that represents storage for a fixed-length buffer of variables of a given
type. A fixed-size buffer declaration introduces one or more fixed-size buffers of a given element type.
Fixed-size buffers are only permitted in struct declarations and may only occur in unsafe contexts (§23.2).

 Chapter 23 Unsafe code

425

struct-member-declaration:
…
fixed-size-buffer-declaration

fixed-size-buffer-declaration:
attributesopt fixed-size-buffer-modifiersopt fixed buffer-element-type
 fixed-size-buffer-declarators ;

fixed-size-buffer-modifiers:
fixed-size-buffer-modifier
fixed-size-buffer-modifier fixed-size-buffer-modifiers

fixed-size-buffer-modifier:
new
public
protected

internal
private

unsafe

buffer-element-type:
type

fixed-size-buffer-declarators:
fixed-size-buffer-declarator
fixed-size-buffer-declarator , fixed-size-buffer-declarators

fixed-size-buffer-declarator:
identifier [constant-expression]

A fixed-size buffer declaration may include a set of attributes (§22), a new modifier (§15.3.5), a valid
combination of the four access modifiers (§15.3.6) and an unsafe modifier (§23.2). The attributes and
modifiers apply to all of the members declared by the fixed-size buffer declaration. It is an error for the
same modifier to appear multiple times in a fixed-size buffer declaration.

A fixed-size buffer declaration is not permitted to include the static modifier.

The buffer element type of a fixed-size buffer declaration specifies the element type of the buffer(s)
introduced by the declaration. The buffer element type shall be one of the predefined types sbyte, byte,
short, ushort, int, uint, long, ulong, char, float, double, or bool.

The buffer element type is followed by a list of fixed-size buffer declarators, each of which introduces a
new member. A fixed-size buffer declarator consists of an identifier that names the member, followed by a
constant expression enclosed in [and] tokens. The constant expression denotes the number of elements
in the member introduced by that fixed-size buffer declarator. The type of the constant expression shall be
implicitly convertible to type int, and the value shall be a non-zero positive integer.

The elements of a fixed-size buffer shall be laid out sequentially in memory.

A fixed-size buffer declaration that declares multiple fixed-size buffers is equivalent to multiple
declarations of a single fixed-size buffer declation with the same attributes, and element types. [Example:

unsafe struct A
{
 public fixed int x[5], y[10], z[100];
}

is equivalent to

ECMA-334

426

unsafe struct A
{
 public fixed int x[5];
 public fixed int y[10];
 public fixed int z[100];
}

end example]

23.8.3 Fixed-size buffers in expressions
Member lookup (§12.5) of a fixed-size buffer member proceeds exactly like member lookup of a field.

A fixed-size buffer can be referenced in an expression using a simple-name (§12.6.3) or a member-access
(§12.6.5).

When a fixed-size buffer member is referenced as a simple name, the effect is the same as a member
access of the form this.I, where I is the fixed-size buffer member.

In a member access of the form E.I, if E is of a struct type and a member lookup of I in that struct type
identifies a fixed-size member, then E.I is evaluated an classified as follows:

• If the expression E.I does not occur in an unsafe context, a compile-time error occurs.

• If E is classified as a value, a compile-time error occurs.

• Otherwise, if E is a moveable variable (§23.4) and the expression E.I is not a fixed-pointer-initializer
(§23.7), a compile-time error occurs.

• Otherwise, E references a fixed variable and the result of the expression is a pointer to the first
element of the fixed-size buffer member I in E. The result is of type S*, where S is the element type
of I, and is classified as a value.

The subsequent elements of the fixed-size buffer can be accessed using pointer operations from the first
element. Unlike access to arrays, access to the elements of a fixed-size buffer is an unsafe operation and is
not range checked.

[Example: The following declares and uses a struct with a fixed-size buffer member.

unsafe struct Font
{
 public int size;
 public fixed char name[32];
}

class Test
{
 unsafe static void PutString(string s, char* buffer, int bufSize) {
 int len = s.Length;
 if (len > bufSize) len = bufSize;
 for (int i = 0; i < len; i++) buffer[i] = s[i];
 for (int i = len; i < bufSize; i++) buffer[i] = (char)0;
 }

 unsafe static void Main()
 {
 Font f;
 f.size = 10;
 PutString("Times New Roman", f.name, 32);
 }
}

end example]

23.8.4 Definite assignment checking
Fixed-size buffers are not subject to definite assignment-checking (§10.4), and fixed-size buffer members
are ignored for purposes of definite-assignment checking of struct type variables.

 Chapter 23 Unsafe code

427

When the outermost containing struct variable of a fixed-size buffer member is a static variable, an
instance variable of a class instance, or an array element, the elements of the fixed-size buffer are
automatically initialized to their default values (§10.3). In all other cases, the initial content of a fixed-size
buffer is undefined.

23.9 Stack allocation
In an unsafe context, a local variable declaration (§13.6.2) may include a stack allocation initializer, which
allocates memory from the call stack.

local-variable-initializer:
…
stackalloc-initializer

stackalloc-initializer:
stackalloc unmanaged-type [expression]

The unmanaged-type indicates the type of the items that will be stored in the newly allocated location, and
the expression indicates the number of these items. Taken together, these specify the required allocation
size. Since the size of a stack allocation cannot be negative, it is a compile-time error to specify the number
of items as a constant-expression that evaluates to a negative value.

A stack allocation initializer of the form stackalloc T[E] requires T to be an unmanaged type (§23.3)
and E to be an expression implicitly convertible to type int. The construct allocates E * sizeof(T)
bytes from the call stack and returns a pointer, of type T*, to the newly allocated block. If E is a negative
value, then the behavior is undefined. If E is zero, then no allocation is made, and the pointer returned is
implementation-defined. If there is not enough memory available to allocate a block of the given size, a
System.StackOverflowException is thrown.

The content of the newly allocated memory is undefined.

Stack allocation initializers are not permitted in catch or finally blocks (§13.11).

[Note: There is no way to explicitly free memory allocated using stackalloc. end note] All stack-allocated
memory blocks created during the execution of a function member are automatically discarded when that
function member returns. [Note: This corresponds to the alloca function, an extension commonly found
in C and C++ implementations. end note]

[Example: In the following code

using System;

class Test
{
 static string IntToString(int value) {
 int n = value >= 0 ? value : -value;
 unsafe {
 char* buffer = stackalloc char[16];
 char* p = buffer + 16;
 do {
 *--p = (char)(n % 10 + '0');
 n /= 10;
 } while (n != 0);
 if (value < 0) *--p = '-';
 return new string(p, 0, (int)(buffer + 16 - p));
 }
 }

 static void Main() {
 Console.WriteLine(IntToString(12345));
 Console.WriteLine(IntToString(-999));
 }
}

ECMA-334

428

a stackalloc initializer is used in the IntToString method to allocate a buffer of 16 characters on the
stack. The buffer is automatically discarded when the method returns. end example]

Except for the stackalloc operator, C# provides no predefined constructs for managing non-garbage
collected memory. Such services are typically provided by supporting class libraries or imported directly
from the underlying operating system.

End of conditionally normative text.

Annex A Grammar

429

Annex A. Grammar

This clause is informative.

A.1 General
This annex contains summaries of the lexical and syntactic grammars found in the main document, and of
the grammar extensions for unsafe code. Grammar productions appear here in the same order that they
appear in the main document.

A.2 Lexical grammar
input::

input-sectionopt

input-section::
input-section-part
input-section input-section-part

input-section-part::
input-elementsopt new-line
pp-directive

input-elements::
input-element
input-elements input-element

input-element::
whitespace
comment
token

Line terminators

new-line::
Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

White space

whitespace::
whitespace-character
whitespace whitespace-character

whitespace-character::
Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertical tab character (U+000B)
Form feed character (U+000C)

ECMA-334

430

A.2.1 Comments
comment::

single-line-comment
delimited-comment

single-line-comment::
// input-charactersopt

input-characters::
input-character
input-characters input-character

input-character::
Any Unicode character except a new-line-character

new-line-character::
Carriage return character (U+000D)
Line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

delimited-comment::
/* delimited-comment-textopt asterisks /

delimited-comment-text::
delimited-comment-section
delimited-comment-text delimited-comment-section

delimited-comment-section::
/
asterisksopt not-slash-or-asterisk

asterisks::
*
asterisks *

not-slash-or-asterisk::
Any Unicode character except / or *

A.2.2 Tokens
token::

identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

Unicode character escape sequences

unicode-escape-sequence::
\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

Identifiers

Annex A Grammar

431

identifier::
available-identifier
@ identifier-or-keyword

available-identifier::
An identifier-or-keyword that is not a keyword

identifier-or-keyword::
identifier-start-character identifier-part-charactersopt

identifier-start-character::
letter-character
underscore-character

underscore-character::
_ (the underscore character U+005F)
A unicode-escape-sequence representing the character U+005F

identifier-part-characters::
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character::
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character::
A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character::
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character::
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character::
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

formatting-character::
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

ECMA-334

432

A.2.3 Keywords
keyword:: one of

abstract as base bool break

byte case catch char checked

class const continue decimal default

delegate do double else enum

event explicit extern false finally

fixed float for foreach goto

if implicit in int interface

internal is lock long namespace

new null object operator out

override params private protected public

readonly ref return sbyte sealed

short sizeof stackalloc static string

struct switch this throw true

try typeof uint ulong unchecked

unsafe ushort using virtual void

volatile while

Literals

literal::
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

boolean-literal::
true

false

integer-literal::
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal::
decimal-digits integer-type-suffixopt

decimal-digits::
decimal-digit
decimal-digits decimal-digit

decimal-digit:: one of
0 1 2 3 4 5 6 7 8 9

integer-type-suffix:: one of
U u L l UL Ul uL ul LU Lu lU lu

hexadecimal-integer-literal::
0x hex-digits integer-type-suffixopt
0X hex-digits integer-type-suffixopt

hex-digits::
hex-digit
hex-digits hex-digit

hex-digit:: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

Annex A Grammar

433

real-literal::
decimal-digits . decimal-digits exponent-partopt real-type-suffixopt
. decimal-digits exponent-partopt real-type-suffixopt
decimal-digits exponent-part real-type-suffixopt
decimal-digits real-type-suffix

exponent-part::
e signopt decimal-digits
E signopt decimal-digits

sign:: one of
+ -

real-type-suffix:: one of
F f D d M m

character-literal::
' character '

character::
single-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-character::
 Any character except ' (U+0027), \ (U+005C), and new-line-character

simple-escape-sequence:: one of
\' \" \\ \0 \a \b \f \n \r \t \v

hexadecimal-escape-sequence::
\x hex-digit hex-digitopt hex-digitopt hex-digitopt

string-literal::
regular-string-literal
verbatim-string-literal

regular-string-literal::
" regular-string-literal-charactersopt "

regular-string-literal-characters::
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

regular-string-literal-character::
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-regular-string-literal-character::
Any character except " (U+0022), \ (U+005C), and new-line-character

verbatim-string-literal::
@" verbatim-string-literal-charactersopt "

verbatim-string-literal-characters::
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character::
single-verbatim-string-literal-character
quote-escape-sequence

ECMA-334

434

single-verbatim-string-literal-character::
Any character except "

quote-escape-sequence::
""

null-literal::
null

A.2.4 Operators and punctuators
operator-or-punctuator:: one of

{ } [] () . , : ;

+ - * / % & | ^ ! ~

= < > ? ?? :: ++ -- && ||

-> == != <= >= += -= *= /= %=

&= |= ^= << <<=

right-shift::
> >

right-shift-assignment::
> >=

A.2.5 Pre-processing directives
pp-directive::

pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region
pp-pragma

conditional-symbol::
Any identifier-or-keyword except true or false

pp-expression::
whitespaceopt pp-or-expression whitespaceopt

pp-or-expression::
pp-and-expression
pp-or-expression whitespaceopt || whitespaceopt pp-and-expression

pp-and-expression::
pp-equality-expression
pp-and-expression whitespaceopt && whitespaceopt pp-equality-expression

pp-equality-expression::
pp-unary-expression
pp-equality-expression whitespaceopt == whitespaceopt pp-unary-expression
pp-equality-expression whitespaceopt != whitespaceopt pp-unary-expression

pp-unary-expression::
pp-primary-expression
! whitespaceopt pp-unary-expression

pp-primary-expression::
true
false
conditional-symbol
(whitespaceopt pp-expression whitespaceopt)

Annex A Grammar

435

pp-declaration::
whitespaceopt # whitespaceopt define whitespace conditional-symbol pp-new-line
whitespaceopt # whitespaceopt undef whitespace conditional-symbol pp-new-line

pp-new-line::
whitespaceopt single-line-commentopt new-line

pp-conditional::
pp-if-section pp-elif-sectionsopt pp-else-sectionopt pp-endif

pp-if-section::
whitespaceopt # whitespaceopt if whitespace pp-expression pp-new-line
 conditional-sectionopt

pp-elif-sections::
pp-elif-section
pp-elif-sections pp-elif-section

pp-elif-section::
whitespaceopt # whitespaceopt elif whitespace pp-expression pp-new-line
 conditional-sectionopt

pp-else-section::
whitespaceopt # whitespaceopt else pp-new-line conditional-sectionopt

pp-endif::
whitespaceopt # whitespaceopt endif pp-new-line

conditional-section::
input-section
skipped-section

skipped-section::
skipped-section-part
skipped-section skipped-section-part

skipped-section-part::
skipped-charactersopt new-line
pp-directive

skipped-characters::
whitespaceopt not-number-sign input-charactersopt

not-number-sign::
Any input-character except #

pp-line::
whitespaceopt # whitespaceopt line whitespace line-indicator pp-new-line

line-indicator::
decimal-digits whitespace file-name

decimal-digits

default

hidden

file-name::
" file-name-characters "

file-name-characters::
file-name-character
file-name-characters file-name-character

file-name-character::
Any input-character except " (U+0022), and new-line-character

ECMA-334

436

pp-diagnostic::
whitespaceopt # whitespaceopt error pp-message
whitespaceopt # whitespaceopt warning pp-message

pp-message::
new-line
whitespace input-charactersopt new-line

pp-region::
pp-start-region conditional-sectionopt pp-end-region

pp-start-region::
whitespaceopt # whitespaceopt region pp-message

pp-end-region::
whitespaceopt # whitespaceopt endregion pp-message

pp-pragma::
whitespaceopt # whitespaceopt pragma pp-pragma-text

pp-pragma-text::
new-line
whitespace input-charactersopt new-line

A.3 Syntactic grammar

A.3.1 Basic concepts
namespace-name:

namespace-or-type-name

type-name:
namespace-or-type-name

namespace-or-type-name:
identifier type-argument-listopt

namespace-or-type-name . identifier type-argument-listopt
qualified-alias-member

A.3.2 Types
type:

reference-type
value-type
type-parameter

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type
nullable-value-type

simple-type:
numeric-type
bool

Annex A Grammar

437

numeric-type:
integral-type
floating-point-type
decimal

integral-type:
sbyte

byte

short

ushort

int

uint

long

ulong

char

nullable-type:
non-nullable-value-type ?

non-nullable-value-type:
type

floating-point-type:
float

double

enum-type:
type-name

type-argument-list:
< type-arguments >

type-arguments:
type-argument
type-arguments , type-argument

type-argument:
type

type-parameter:
identifier

A.3.3 Variables
variable-reference:

expression

A.3.4 Expressions
argument-list:

argument
argument-list , argument

argument:
argument-nameopt argument-value

argument-name:
identifier :

argument-value:
expression
ref variable-reference
out variable-reference

ECMA-334

438

primary-expression:
primary-no-array-creation-expression
array-creation-expression

primary-no-array-creation-expression:
literal
simple-name
parenthesized-expression
member-access
invocation-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
object-creation-expression
delegate-creation-expression
anonymous-object-creation-expression
typeof-expression
sizeof-expression
checked-expression
unchecked-expression
default-value-expression
anonymous-method-expression

simple-name:
identifier type-argument-listopt

parenthesized-expression:
(expression)

member-access:
primary-expression . identifier type-argument-listopt
predefined-type . identifier type-argument-listopt

qualified-alias-member . identifier type-argument-listopt

predefined-type: one of
bool byte char decimal double float int long

object sbyte short string uint ulong ushort

invocation-expression:
primary-expression (argument-listopt)

element-access:
primary-no-array-creation-expression [argument-list]

expression-list:
expression
expression-list , expression

this-access:
this

base-access:
base . identifier type-argument-listopt
base [argument-list]

post-increment-expression:
primary-expression ++

post-decrement-expression:
primary-expression --

Annex A Grammar

439

object-creation-expression:
new type (argument-listopt) object-or-collection-initializeropt
new type object-or-collection-initializer

object-or-collection-initializer:
object-initializer
collection-initializer

object-initializer:
{ member-initializer-listopt }
{ member-initializer-list , }

member-initializer-list:
member-initializer
member-initializer-list , member-initializer

member-initializer:
identifier = initializer-value

initializer-value:
expression
object-or-collection-initializer

collection-initializer:
{ element-initializer-list }
{ element-initializer-list , }

element-initializer-list:
element-initializer
element-initializer-list , element-initializer

element-initializer:
non-assignment-expression
{ expression-list }

array-creation-expression:
new non-array-type [expression-list] rank-specifiersopt array-initializeropt
new array-type array-initializer
new rank-specifier array-initializer

delegate-creation-expression:
new delegate-type (expression)

anonymous-object-creation-expression:
new anonymous-object-initializer

anonymous-object-initializer:
{ member-declarator-listopt }
{ member-declarator-list , }

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
simple-name
member-access
base-access
identifier = expression

ECMA-334

440

typeof-expression:
typeof (type)
typeof (unbound-type-name)
typeof (void)

unbound-type-name:
identifier generic-dimension-specifieropt
identifier :: identifier generic-dimension-specifieropt
unbound-type-name . identifier generic-dimension-specifieropt

generic-dimension-specifier:
< commasopt >

commas:
,
commas ,

checked-expression:
checked (expression)

unchecked-expression:
unchecked (expression)

default-value-expression:
default (type)

unary-expression:
primary-expression
+ unary-expression
- unary-expression
! unary-expression
~ unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression
await-expression

pre-increment-expression:
++ unary-expression

pre-decrement-expression:
-- unary-expression

cast-expression:
(type) unary-expression

await-expression:
await unary-expression

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression – multiplicative-expression

Annex A Grammar

441

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression right-shift additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is type
relational-expression as type

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression

conditional-or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

null-coalescing-expression:
conditional-or-expression
conditional-or-expression ?? null-coalescing-expression

conditional-expression:
null-coalescing-expression
null-coalescing-expression ? expression : expression

lambda-expression:
asyncopt anonymous-function-signature => anonymous-function-body

anonymous-method-expression:
asyncopt delegate explicit-anonymous-function-signatureopt block

anonymous-function-signature:
explicit-anonymous-function-signature
implicit-anonymous-function-signature

explicit-anonymous-function-signature:
(explicit-anonymous-function-parameter-listopt)

explicit-anonymous-function-parameter-list:
explicit-anonymous-function-parameter
explicit-anonymous-function-parameter-list , explicit-anonymous-function-parameter

ECMA-334

442

explicit-anonymous-function-parameter:
anonymous-function-parameter-modifieropt type identifier

anonymous-function-parameter-modifier:
ref

out

implicit-anonymous-function-signature:
(implicit-anonymous-function-parameter-listopt)
implicit-anonymous-function-parameter

implicit-anonymous-function-parameter-list:
implicit-anonymous-function-parameter
implicit-anonymous-function-parameter-list , implicit-anonymous-function-parameter

implicit-anonymous-function-parameter:
identifier

anonymous-function-body:
expression
block

query-expression:
from-clause query-body

from-clause:
from typeopt identifier in expression

query-body:
query-body-clausesopt select-or-group-clause query-continuationopt

query-body-clauses:
query-body-clause
query-body-clauses query-body-clause

query-body-clause:
from-clause
let-clause
where-clause
join-clause
join-into-clause
orderby-clause

let-clause:
let identifier = expression

where-clause:
where boolean-expression

join-clause:
join typeopt identifier in expression on expression equals expression

join-into-clause:
join typeopt identifier in expression on expression equals expression into
identifier

orderby-clause:
orderby orderings

orderings:
ordering
orderings , ordering

Annex A Grammar

443

ordering:
expression ordering-directionopt

ordering-direction:
ascending
descending

select-or-group-clause:
select-clause
group-clause

select-clause:
select expression

group-clause:
group expression by expression

query-continuation:
into identifier query-body

assignment:
unary-expression assignment-operator expression

assignment-operator:
=

+=

-=

*=

/=

%=

&=

|=

^=

<<=

right-shift-assignment

expression:
non-assignment-expression
assignment

non-assignment-expression:
conditional-expression
lambda-expression
query-expression

constant-expression:
expression

boolean-expression:
expression

A.3.5 Statements
statement:

labeled-statement
declaration-statement
embedded-statement

ECMA-334

444

embedded-statement:
block
empty-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
lock-statement
using-statement
yield-statement

block:
{ statement-listopt }

statement-list:
statement
statement-list statement

empty-statement:
;

labeled-statement:
identifier : statement

declaration-statement:
local-variable-declaration ;
local-constant-declaration ;

local-variable-declaration:
local-variable-type local-variable-declarators

local-variable-type:
type
var

local-variable-declarators:
local-variable-declarator
local-variable-declarators , local-variable-declarator

local-variable-declarator:
identifier
identifier = local-variable-initializer

local-variable-initializer:
expression
array-initializer

local-constant-declaration:
const type constant-declarators

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

expression-statement:
statement-expression ;

Annex A Grammar

445

statement-expression:
invocation-expression
object-creation-expression
assignment
post-increment-expression
post-decrement-expression
pre-increment-expression
pre-decrement-expression
await-expression

selection-statement:
if-statement
switch-statement

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

switch-statement:
switch (expression) switch-block

switch-block:
{ switch-sectionsopt }

switch-sections:
switch-section
switch-sections switch-section

switch-section:
switch-labels statement-list

switch-labels:
switch-label
switch-labels switch-label

switch-label:
case constant-expression :
default :

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

while-statement:
while (boolean-expression) embedded-statement

do-statement:
do embedded-statement while (boolean-expression) ;

for-statement:
for (for-initializeropt ; for-conditionopt ; for-iteratoropt) embedded-statement

for-initializer:
local-variable-declaration
statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

ECMA-334

446

statement-expression-list:
statement-expression
statement-expression-list , statement-expression

foreach-statement:
foreach (local-variable-type identifier in expression) embedded-statement

jump-statement:
break-statement
continue-statement
goto-statement
return-statement
throw-statement

break-statement:
break ;

continue-statement:
continue ;

goto-statement:
goto identifier ;
goto case constant-expression ;
goto default ;

return-statement:
return expressionopt ;

throw-statement:
throw expressionopt ;

try-statement:
try block catch-clauses
try block catch-clausesopt finally-clause

catch-clauses:
specific-catch-clauses
specific-catch-clausesopt general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
catch (type identifieropt) block

general-catch-clause:
catch block

finally-clause:
finally block

checked-statement:
checked block

unchecked-statement:
unchecked block

lock-statement:
lock (expression) embedded-statement

using-statement:
using (resource-acquisition) embedded-statement

Annex A Grammar

447

resource-acquisition:
local-variable-declaration
expression

yield-statement:
yield return expression ;
yield break ;

A.3.6 Namespaces
compilation-unit:

extern-alias-directivesopt using-directivesopt global-attributesopt
 namespace-member-declarationsopt

namespace-declaration:
namespace qualified-identifier namespace-body ;opt

qualified-identifier:
identifier
qualified-identifier . identifier

namespace-body:
{ extern-alias-directivesopt using-directivesopt namespace-member-declarationsopt }

extern-alias-directives:
extern-alias-directive
extern-alias-directives extern-alias-directive

extern-alias-directive:
extern alias identifier ;

using-directives:
using-directive
using-directives using-directive

using-directive:
using-alias-directive
using-namespace-directive

using-alias-directive:
using identifier = namespace-or-type-name ;

using-namespace-directive:
using namespace-name ;

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member-declaration:
namespace-declaration
type-declaration

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

qualified-alias-member:
identifier :: identifier type-argument-listopt

ECMA-334

448

A.3.7 Classes
class-declaration:

attributesopt class-modifiersopt partialopt class identifier type-parameter-listopt
 class-baseopt type-parameter-constraints-clausesopt class-body ;opt

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
new
public

protected

internal
private
abstract
sealed

static

type-parameter-list:
< type-parameters >

type-parameters:
attributesopt type-parameter
type-parameters , attributesopt type-parameter

class-base:
: class-type
: interface-type-list
: class-type , interface-type-list

interface-type-list:
interface-type
interface-type-list , interface-type

type-parameter-constraints-clauses:
type-parameter-constraints-clause
type-parameter-constraints-clauses type-parameter-constraints-clause

type-parameter-constraints-clause:
where type-parameter : type-parameter-constraints

type-parameter-constraints:
primary-constraint
secondary-constraints
constructor-constraint
primary-constraint , secondary-constraints
primary-constraint , constructor-constraint
secondary-constraints , constructor-constraint
primary-constraint , secondary-constraints , constructor-constraint

primary-constraint:
class-type
class
struct

secondary-constraints:
interface-type
type-parameter
secondary-constraints , interface-type
secondary-constraints , type-parameter

Annex A Grammar

449

constructor-constraint:
new ()

class-body:
{ class-member-declarationsopt }

class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
finalizer-declaration
static-constructor-declaration
type-declaration

constant-declaration:
attributesopt constant-modifiersopt const type constant-declarators ;

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

constant-modifier:
new
public
protected

internal
private

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

field-declaration:
attributesopt field-modifiersopt type variable-declarators ;

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected

internal
private

static

readonly

volatile

ECMA-334

450

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializermethod-declaration:
method-header method-body

method-header:
attributesopt method-modifiersopt partialopt return-type member-name
 type-parameter-listopt

 (formal-parameter-listopt) type-parameter-constraints-clausesopt

method-modifiers:
method-modifier
method-modifiers method-modifier

method-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

async

return-type:
type
void

method-body:
block
;

formal-parameter-list:
fixed-parameters
fixed-parameters , parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters , fixed-parameter

fixed-parameter:
attributesopt parameter-modifieropt type identifier default-argumentopt

default-argument:
= expression

Annex A Grammar

451

parameter-modifier:
parameter-mode-modifier
this

parameter-mode-modifier:
ref

out

parameter-array:
attributesopt params array-type identifier

property-declaration:
attributesopt property-modifiersopt type member-name { accessor-declarations }

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

accessor-declarations:
get-accessor-declaration set-accessor-declarationopt
set-accessor-declaration get-accessor-declarationopt

get-accessor-declaration:
attributesopt accessor-modifieropt get accessor-body

set-accessor-declaration:
attributesopt accessor-modifieropt set accessor-body

accessor-modifier:
protected

internal

private

protected internal
internal protected

accessor-body:
block
;

event-declaration:
attributesopt event-modifiersopt event type variable-declarators ;
attributesopt event-modifiersopt event type member-name
 { event-accessor-declarations }

event-modifiers:
event-modifier
event-modifiers event-modifier

ECMA-334

452

event-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

event-accessor-declarations:
add-accessor-declaration remove-accessor-declaration
remove-accessor-declaration add-accessor-declaration

add-accessor-declaration:
attributesopt add block

remove-accessor-declaration:
attributesopt remove block

indexer-declaration:
attributesopt indexer-modifiersopt indexer-declarator { accessor-declarations }

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
new

public

protected

internal

private

virtual

sealed

override

abstract

extern

indexer-declarator:
type this [formal-parameter-list]
type interface-type . this [formal-parameter-list]

operator-declaration:
attributesopt operator-modifiers operator-declarator operator-body

operator-modifiers:
operator-modifier
operator-modifiers operator-modifier

operator-modifier:
public

static

extern

Annex A Grammar

453

operator-declarator:
unary-operator-declarator
binary-operator-declarator
conversion-operator-declarator

unary-operator-declarator:
type operator overloadable-unary-operator (fixed-parameter)

overloadable-unary-operator: one of
+ - ! ~ ++ -- true false

binary-operator-declarator:
type operator overloadable-binary-operator (fixed-parameter , fixed-parameter)

overloadable-binary-operator: one of
+ - * / % & | ^ << right-shift
== != > < >= <=

conversion-operator-declarator:
implicit operator type (fixed-parameter)
explicit operator type (fixed-parameter)

operator-body:
block
;

constructor-declaration:
attributesopt constructor-modifiersopt constructor-declarator constructor-body

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
public
protected

internal
private

extern

constructor-declarator:
identifier (formal-parameter-listopt) constructor-initializeropt

constructor-initializer:
: base (argument-listopt)
: this (argument-listopt)

constructor-body:
block
;

static-constructor-declaration:
attributesopt static-constructor-modifiers identifier () static-constructor-body

static-constructor-modifiers:
externopt static
static externopt

static-constructor-body:
block
;

ECMA-334

454

finalizer-declaration:
attributesopt externopt ~ identifier () finalizer-body

finalizer-body:
block
;

A.3.8 Structs
struct-declaration:

attributesopt struct-modifiersopt partialopt struct identifier type-parameter-listopt

 struct-interfacesopt type-parameter-constraints-clausesopt struct-body ;opt

struct-modifiers:
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
new
public

protected

internal
private

struct-interfaces:
: interface-type-list

struct-body:
{ struct-member-declarationsopt }

struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
…
fixed-size-buffer-declaration

A.3.9 Arrays
array-initializer:

{ variable-initializer-listopt }
{ variable-initializer-list , }

variable-initializer-list:
variable-initializer
variable-initializer-list , variable-initializer

variable-initializer:
expression
array-initializer

A.3.10 Interfaces
interface-declaration:

attributesopt interface-modifiersopt partialopt interface
 identifier variant-type-parameter-listopt

 interface-baseopt type-parameter-constraints-clausesopt interface-body ;opt

interface-modifiers:
interface-modifier
interface-modifiers interface-modifier

Annex A Grammar

455

interface-modifier:
new
public

protected

internal
private

variant-type-parameter-list:
< variant-type-parameters >

variant-type-parameters:
attributesopt variance-annotationopt type-parameter
variant-type-parameters , attributesopt variance-annotationopt type-parameter

variance-annotation:
in
out

interface-base:
: interface-type-list

interface-body:
{ interface-member-declarationsopt }

interface-member-declarations:
interface-member-declaration
interface-member-declarations interface-member-declaration

interface-member-declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

interface-method-declaration:
attributesopt newopt return-type identifier type-parameter-listopt
 (formal-parameter-listopt) type-parameter-constraints-clausesopt ;

interface-property-declaration:
attributesopt newopt type identifier { interface-accessors }

interface-accessors:
attributesopt get ;
attributesopt set ;
attributesopt get ; attributesopt set ;
attributesopt set ; attributesopt get ;

interface-event-declaration:
attributesopt newopt event type identifier ;

interface-indexer-declaration:
attributesopt newopt type this [formal-parameter-list] { interface-accessors }

A.3.11 Enums
enum-declaration:

attributesopt enum-modifiersopt enum identifier enum-baseopt enum-body ;opt

enum-base:
: integral-type

enum-body:
{ enum-member-declarationsopt }
{ enum-member-declarations , }

ECMA-334

456

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

enum-modifier:
new
public

protected

internal
private

enum-member-declarations:
enum-member-declaration
enum-member-declarations , enum-member-declaration

enum-member-declaration:
attributesopt identifier
attributesopt identifier = constant-expression

A.3.12 Delegates
delegate-declaration:

attributesopt delegate-modifiersopt delegate return-type
 identifier variant-type-parameter-listopt

 (formal-parameter-listopt) type-parameter-constraints-clausesopt ;

delegate-modifiers:
delegate-modifier
delegate-modifiers delegate-modifier

delegate-modifier:
new
public

protected

internal
private

A.3.13 Attributes
global-attributes:

global-attribute-sections

global-attribute-sections:
global-attribute-section
global-attribute-sections global-attribute-section

global-attribute-section:
[global-attribute-target-specifier attribute-list]
[global-attribute-target-specifier attribute-list ,]

global-attribute-target-specifier:
global-attribute-target :

global-attribute-target:
identifier equal to assembly or module

attributes:
attribute-sections

attribute-sections:
attribute-section
attribute-sections attribute-section

Annex A Grammar

457

attribute-section:
[attribute-target-specifieropt attribute-list]
[attribute-target-specifieropt attribute-list ,]

attribute-target-specifier:
attribute-target :

attribute-target:
identifier not equal to assembly or module
keyword

attribute-list:
attribute
attribute-list , attribute

attribute:
attribute-name attribute-argumentsopt

attribute-name:
type-name

attribute-arguments:
(positional-argument-listopt)
(positional-argument-list , named-argument-list)
(named-argument-list)

positional-argument-list:
positional-argument
positional-argument-list , positional-argument

positional-argument:
argument-nameopt attribute-argument-expression

named-argument-list:
named-argument
named-argument-list , named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
expression

A.4 Grammar extensions for unsafe code
class-modifier:

…
unsafe

struct-modifier:
…
unsafe

interface-modifier:
…
unsafe

delegate-modifier:
…
unsafe

field-modifier:
…
unsafe

ECMA-334

458

method-modifier:
…
unsafe

property-modifier:
…
unsafe

event-modifier:
…
unsafe

indexer-modifier:
…
unsafe

operator-modifier:
…
unsafe

constructor-modifier:
…
unsafe

finalizer-declaration:
attributesopt externopt unsafeopt ~ identifier () finalizer-body
attributesopt unsafeopt externopt ~ identifier () finalizer-body

static-constructor-modifiers:
externopt unsafeopt static
unsafeopt externopt static
externopt static unsafeopt
unsafeopt static externopt
static externopt unsafeopt
static unsafeopt externopt

embedded-statement:
…
unsafe-statement

unsafe-statement:
unsafe block

type:
…
pointer-type

non-array-type:
…
pointer-type

pointer-type:
unmanaged-type *
void *

unmanaged-type:
type

primary-no-array-creation-expression:
…
pointer-member-access
pointer-element-access

Annex A Grammar

459

unary-expression:
…
pointer-indirection-expression
addressof-expression

pointer-indirection-expression:
* unary-expression

pointer-member-access:
primary-expression -> identifier type-argument-listopt

pointer-element-access:
primary-no-array-creation-expression [expression]

addressof-expression:
& unary-expression

embedded-statement:
…
fixed-statement

fixed-statement:
fixed (pointer-type fixed-pointer-declarators) embedded-statement

fixed-pointer-declarators:
fixed-pointer-declarator
fixed-pointer-declarators , fixed-pointer-declarator

fixed-pointer-declarator:
identifier = fixed-pointer-initializer

fixed-pointer-initializer:
& variable-reference
expression

struct-member-declaration:
…
fixed-size-buffer-declaration

fixed-size-buffer-declaration:
attributesopt fixed-size-buffer-modifiersopt fixed buffer-element-type
 fixed-size-buffer-declarators ;

fixed-size-buffer-modifiers:
fixed-size-buffer-modifier
fixed-size-buffer-modifier fixed-size-buffer-modifiers

fixed-size-buffer-modifier:
new
public
protected

internal
private

unsafe

buffer-element-type:
type

fixed-size-buffer-declarators:
fixed-size-buffer-declarator
fixed-size-buffer-declarator , fixed-size-buffer-declarators

fixed-size-buffer-declarator:
identifier [constant-expression]

ECMA-334

460

local-variable-initializer:
…
stackalloc-initializer

stackalloc-initializer:
stackalloc unmanaged-type [expression]

End of informative text.

Annex B Portability issues

461

Annex B. Portability issues

This clause is informative.

B.1 General
This annex collects some information about portability that appears in this specification.

B.2 Undefined behavior
The behavior is undefined in the following circumstances:

1. The behavior of the enclosing async function when an awaiter’s implementation of the interface
methods INotifyCompletion.OnCompleted and
ICriticalNotifyCompletion.UnsafeOnCompleted does not cause the resumption delegate to
be invoked at most once (§12.8.8.4).

2. Passing pointers as ref or out parameters (§23.3).

3. When dereferencing the result of converting one pointer type to another and the resulting pointer is
not correctly aligned for the pointed-to type. (§23.5.1)

4. When the unary * operator is applied to a pointer containing an invalid value (§23.6.2).

5. When a pointer is subscripted to access an out-of-bounds element (§23.6.4).

6. Modifying objects of managed type through fixed pointers (§23.7)

7. The content of memory newly allocated by stackalloc (§23.9).

8. Attempting to allocate a negative number of items using stackalloc (§23.9).

B.3 Implementation-defined behavior
A conforming implementation is required to document its choice of behavior in each of the areas listed in
this subclause. The following are implementation-defined:

1. The behavior when an identifier not in Normalization Form C is encountered (§7.4.3).

2. The interpretation of the input-characters in the pp-pragma-text of a #pragma directive (§7.5.9).

3. The values of any application parameters passed to Main by the host environment prior to application
startup (§8.1).

4. The precise structure of the expression tree, as well as the exact process for creating it, when an
anonymous function is converted to an expression-tree (§11.7.3).

5. Whether a System.ArithmeticException (or a subclass thereof) is thrown or the overflow goes
unreported with the resulting value being that of the left operand, when in an unchecked context
and the left operand of an integer division is the maximum negative int or long value and the right
operand is –1 (§12.9.3).

6. When a System.ArithmeticException (or a subclass thereof) is thrown when performing a
decimal remainder operation (§12.9.4).

7. The impact of thread termination when a thread has no handler for an exception, and the thread is
itself terminated (§13.10.6).

8. The impact of thread termination when no matching catch clause is found for an exception and the
code that initially started that thread is reached. (§21.4)

ECMA-334

462

9. The mappings between pointers and integers (§23.5.1).

10. The effect of applying the unary * operator to a null pointer (§23.6.2).

11. The behavior when pointer arithmetic overflows the domain of the pointer type (§23.6.6, §23.6.7).

12. The result of the sizeof operator for non-pre-defined value types (§23.6.9).

13. The behavior of the fixed statement if the array expression is null or if the array has zero
elements (§23.7).

14. The behavior of the fixed statement if the string expression is null (§23.7).

15. The value returned when a stack allocation of size zero is made (§23.9).

B.4 Unspecified behavior
1. The time at which the finalizer (if any) for an object is run, once that object has become eligible for

finalization (§8.9).

2. The value of the result when converting out-of-range values from float or double values to an
integral type in an unchecked context (§11.3.2).

3. The exact target object and target method of the delegate produced from an anonymous-method-
expression contains (§11.7.2).

4. The layout of arrays, except in an unsafe context (§12.7.11.5).

5. Whether there is any way to execute the block of an anonymous function other than through
evaluation and invocation of the lambda-expression or anonymous-method-expression (§12.16.3).

6. The exact timing of static field initialization (§15.5.6.2).

7. The result of invoking MoveNext when an enumerator object is running (§15.14.5.2).

8. The result of accessing Current when an enumerator object is in the before, running, or after states
(§15.14.5.3).

9. The result of invoking Dispose when an enumerator object is in the running state (§15.14.5.4).

10. The attributes of a type declared in multiple parts are determined by combining, in an unspecified
order, the attributes of each of its parts (§22.3).

11. The order in which members are packed into a struct (§23.6.9).

12. An exception occurs during finalizer execution, and that execution is not caught (§21.4).

13. If more than one member matches, which member is the implementation of I.M.(§18.6.5)

B.5 Other Issues
1. The exact results of floating-point expression evaluation can vary from one implementation to

another, because an implementation is permitted to evaluate such expressions using a greater range
and/or precision than is required. (§9.3.7)

2. The CLI reserves certain signatures for compatibility with other programming languages. (§15.3.9.7)

End of informative text.

Annex C Standard library

463

Annex C. Standard library

C.1 General
A conforming C# implementation shall provide a minimum set of types having specific semantics. These
types and their members are listed here, in alphabetical order by namespace and type. For a formal
definition of these types and their members, refer to ISO/IEC 23271:2012 Common Language
Infrastructure (CLI), Partition IV; Base Class Library (BCL), Extended Numerics Library, and Extended Array
Library, which are included by reference in this specification.

This text is informative.

The standard library is intended to be the minimum set of types and members required by a conforming
C# implementation. As such, it contains only those members that are explicitly required by the C# language
specification.

It is expected that a conforming C# implementation will supply a significantly more extensive library that
enables useful programs to be written. For example, a conforming implementation might extend this
library by

• Adding namespaces.

• Adding types.

• Adding members to non-interface types.

• Adding intervening base classes or interfaces.

• Having struct and class types implement additional interfaces.

• Adding attributes (other than the ConditionalAttribute) to existing types and members.

End of informative text.

C.2 Standard Library Types defined in ISO/IEC 23271
namespace System
{
 public class ArgumentException : SystemException
 {
 public ArgumentException();
 public ArgumentException(string message);
 public ArgumentException(string message, Exception innerException);
 }
}
namespace System
{
 public delegate void Action();
}

namespace System
{
 public class ArithmeticException : Exception
 {
 public ArithmeticException();
 public ArithmeticException(string message);
 public ArithmeticException(string message, Exception innerException);
 }
}

ECMA-334

464

namespace System
{
 public abstract class Array : IList, ICollection, IEnumerable
 {
 public int Length { get; }
 public int Rank { get; }
 public int GetLength(int dimension);
 }
}

namespace System
{
 public class ArrayTypeMismatchException : Exception
 {
 public ArrayTypeMismatchException();
 public ArrayTypeMismatchException(string message);
 public ArrayTypeMismatchException(string message,
 Exception innerException);
 }
}

namespace System
{
 [AttributeUsageAttribute(AttributeTargets.All, Inherited = true,
 AllowMultiple = false)]
 public abstract class Attribute
 {
 protected Attribute();
 }
}

namespace System
{
 public enum AttributeTargets
 {
 Assembly = 0x1,
 Module = 0x2,
 Class = 0x4,
 Struct = 0x8,
 Enum = 0x10,
 Constructor = 0x20,
 Method = 0x40,
 Property = 0x80,
 Field = 0x100,
 Event = 0x200,
 Interface = 0x400,
 Parameter = 0x800,
 Delegate = 0x1000,
 ReturnValue = 0x2000,
 GenericParameter = 0x4000,
 All = 0x7FFF
 }
}

namespace System
{
 [AttributeUsageAttribute(AttributeTargets.Class, Inherited = true)]
 public sealed class AttributeUsageAttribute : Attribute
 {
 public AttributeUsageAttribute(AttributeTargets validOn);
 public bool AllowMultiple { get; set; }
 public bool Inherited { get; set; }
 public AttributeTargets ValidOn { get; }
 }
}

Annex C Standard library

465

namespace System
{
 public struct Boolean
 {
 }
}

namespace System
{
 public struct Byte
 {
 }
}

namespace System
{
 public struct Char
 {
 }
}

namespace System
{
 public struct Decimal
 {
 }
}

namespace System
{
 public abstract class Delegate
 {
 }
}

namespace System
{
 public class DivideByZeroException : ArithmeticException
 {
 public DivideByZeroException();
 public DivideByZeroException(string message);
 public DivideByZeroException(string message, Exception innerException);
 }
}

namespace System
{
 public struct Double
 {
 }
}

namespace System
{
 public abstract class Enum : ValueType
 {
 protected Enum();
 }
}

ECMA-334

466

namespace System
{
 public class Exception
 {
 public Exception();
 public Exception(string message);
 public Exception(string message, Exception innerException);
 public sealed Exception InnerException { get; }
 public virtual string Message { get; }
 }
}

namespace System
{
 public class GC
 {
 }
}

namespace System
{
 public interface IDisposable
 {
 public void Dispose();
 }
}

namespace System
{
 public sealed class IndexOutOfRangeException : Exception
 {
 public IndexOutOfRangeException();
 public IndexOutOfRangeException(string message);
 public IndexOutOfRangeException(string message,
 Exception innerException);
 }
}

namespace System
{
 public struct Int16
 {
 }
}

namespace System
{
 public struct Int32
 {
 }
}

namespace System
{
 public struct Int64
 {
 }
}

namespace System
{
 public struct IntPtr
 {
 }
}

Annex C Standard library

467

namespace System.Runtime.CompilerServices
{
 public sealed class IndexerNameAttribute: Attribute
 {
 public IndexerNameAttribute(String indexerName);
 }
}

namespace System.Collections.Generic
{
 public interface IReadOnlyCollection<out T> : IEnumerable<T>
 {
 int Count { get; }
 }
}

namespace System.Collections.Generic
{
 public interface IReadOnlyList<out T> : IReadOnlyCollection<T>
 {
 T this[int index] { get; }
 }
}

namespace System
{
 public class InvalidCastException : Exception
 {
 public InvalidCastException();
 public InvalidCastException(string message);
 public InvalidCastException(string message, Exception innerException);
 }
}

namespace System
{
 public class InvalidOperationException : Exception
 {
 public InvalidOperationException();
 public InvalidOperationException(string message);
 public InvalidOperationException(string message,
 Exception innerException);
 }
}

namespace System.Reflection
{
 public abstract class MemberInfo
 {
 protected MemberInfo();
 }
}

namespace System
{
 public class NotSupportedException : Exception
 {
 public NotSupportedException();
 public NotSupportedException(string message);
 public NotSupportedException(string message, Exception innerException);
 }
}

ECMA-334

468

namespace System
{
 public struct Nullable<T>
 {
 public bool HasValue { get; }
 public T Value { get; }
 }
}

namespace System
{
 public class NullReferenceException : Exception
 {
 public NullReferenceException();
 public NullReferenceException(string message);
 public NullReferenceException(string message, Exception innerException);
 }
}

namespace System
{
 public class Object
 {
 public Object();
 ~Object();
 public virtual bool Equals(object obj);
 public virtual int GetHashCode();
 public Type GetType();
 public virtual string ToString();
 }
}

namespace System
{
 [AttributeUsageAttribute(AttributeTargets.Class
 | AttributeTargets.Struct
 | AttributeTargets.Enum | AttributeTargets.Interface
 | AttributeTargets.Constructor | AttributeTargets.Method
 | AttributeTargets.Property | AttributeTargets.Field
 | AttributeTargets.Event | AttributeTargets.Delegate,
 Inherited = false)]
 public sealed class ObsoleteAttribute : Attribute
 {
 public ObsoleteAttribute();
 public ObsoleteAttribute(string message);
 public ObsoleteAttribute(string message, bool error);
 public bool IsError { get; }
 public string Message { get; }
 }
}

namespace System
{
 public class OutOfMemoryException : Exception
 {
 public OutOfMemoryException();
 public OutOfMemoryException(string message);
 public OutOfMemoryException(string message, Exception innerException);
 }
}

Annex C Standard library

469

namespace System
{
 public class OverflowException : ArithmeticException
 {
 public OverflowException();
 public OverflowException(string message);
 public OverflowException(string message, Exception innerException);
 }
}

namespace System
{
 public struct SByte
 {
 }
}

namespace System
{
 public struct Single
 {
 }
}

namespace System
{
 public sealed class StackOverflowException : Exception
 {
 public StackOverflowException();
 public StackOverflowException(string message);
 public StackOverflowException(string message, Exception innerException);
 }
}

namespace System
{
 public sealed class String : IEnumerable<Char>, IEnumerable
 {
 public int Length { get; }
 public char this[int index] { get; }
 }
}

namespace System
{
 public abstract class Type : MemberInfo
 {
 }
}

namespace System
{
 public sealed class TypeInitializationException : Exception
 {
 public TypeInitializationException(string fullTypeName,
 Exception innerException);
 }
}

namespace System
{
 public struct UInt16
 {
 }
}

ECMA-334

470

namespace System
{
 public struct UInt32
 {
 }
}

namespace System
{
 public struct UInt64
 {
 }
}

namespace System
{
 public struct UIntPtr
 {
 }
}

namespace System
{
 public abstract class ValueType
 {
 protected ValueType();
 }
}

namespace System.Collections
{
 public interface ICollection : IEnumerable
 {
 public int Count { get; }
 public bool IsSynchronized { get; }
 public object SyncRoot { get; }
 public void CopyTo(Array array, int index);
 }
}

namespace System.Collections
{
 public interface IEnumerable
 {
 public IEnumerator GetEnumerator();
 }
}

namespace System.Collections

{
 public interface IEnumerator
 {
 public object Current { get; }
 public bool MoveNext();
 public void Reset();
 }
}

namespace System.Collections
{
 public interface IList : ICollection, IEnumerable
 {
 public bool IsFixedSize { get; }
 public bool IsReadOnly { get; }
 public object this[int index] { get; set; }
 public int Add(object value);
 public void Clear();
 public bool Contains(object value);

Annex C Standard library

471

 public int IndexOf(object value);
 public void Insert(int index, object value);
 public void Remove(object value);
 public void RemoveAt(int index);
 }
}

namespace System.Collections.Generic
{
 public interface ICollection<T> : IEnumerable<T>
 {
 public int Count { get; }
 public bool IsReadOnly { get; }
 public void Add(T item);
 public void Clear();
 public bool Contains(T item);
 public void CopyTo(T[] array, int arrayIndex);
 public bool Remove(T item);
 }
}

namespace System.Collections.Generic
{
 public interface IEnumerable<T> : IEnumerable
 {
 public IEnumerator<T> GetEnumerator();
 }
}

namespace System.Collections.Generic
{
 public interface IEnumerator<T> : IDisposable, IEnumerator
 {
 public T Current { get; }
 }
}

namespace System.Collections.Generic
{
 public interface IList<T> : ICollection<T>
 {
 public T this[int index] { get; set; }
 public int IndexOf(T item);
 public void Insert(int index, T item);
 public void RemoveAt(int index);
 }
}

namespace System.Diagnostics
{
 [AttributeUsageAttribute(AttributeTargets.Method
 | AttributeTargets.Class, AllowMultiple = true)]
 public sealed class ConditionalAttribute : Attribute
 {
 public ConditionalAttribute(string conditionString);
 public string ConditionString { get; }
 }
}

namespace System.Threading
{
 public static class Monitor
 {
 public static void Enter(object obj);
 public static void Exit(object obj);
 }
}

ECMA-334

472

C.3 Standard Library Types not defined in ISO/IEC 23271:2012
The following types, including the members listed, must be defined in a conforming standard library.
(These types might be defined in a future edition of ISO/IEC 23271.) It is expected that many of these types
will have more members available than are listed.

A conforming implementation may provide Task.GetAwaiter() and Task<T>.GetAwaiter() as
extension methods.

namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Parameter, Inherited = false)]

 public sealed class CallerFilePathAttribute : Attribute

 {

 public CallerFilePathAttribute() {}

 }
}

namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Parameter, Inherited = false)]

 public sealed class CallerLineNumberAttribute : Attribute

 {

 public CallerLineNumberAttribute() {}

 }
}

namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Parameter, Inherited = false)]

 public sealed class CallerMemberNameAttribute : Attribute

 {

 public CallerMemberNameAttribute() {}

 }
}

namespace System.Linq.Expressions
{
 public sealed class Expression<TDelegate>

 {

 // See Section 12.7.3 for details on what

 // Delegate types (TDelegate) must be supported,

 // and which may be omitted.

 public TDelegate Compile();

 }
}

namespace System.Runtime.CompilerServices
{
 public interface INotifyCompletion

 {

 void OnCompleted(Action continuation);

 }
}

namespace System.Runtime.CompilerServices
{
 public interface ICriticalNotifyCompletion : INotifyCompletion

Annex C Standard library

473

 {

 void UnsafeOnCompleted(Action continuation);

 }
}

namespace System.Threading.Tasks
{
 public class Task

 {

 public System.Runtime.CompilerServices.TaskAwaiter GetAwaiter();

 }
}

namespace System.Threading.Tasks
{
 public class Task<TResult> : System.Threading.Tasks.Task

 {

 public new System.Runtime.CompilerServices.TaskAwaiter<T>
 GetAwaiter();

 }
}

namespace System.Runtime.CompilerServices
{
 public struct TaskAwaiter : ICriticalNotifyCompletion,
 INotifyCompletion

 {

 public bool IsCompleted { get; }

 public void GetResult();

 }
}

namespace System.Runtime.CompilerServices
{
 public struct TaskAwaiter<T> : ICriticalNotifyCompletion,
 INotifyCompletion

 {

 public bool IsCompleted { get; }

 public T GetResult();

 }
}

Annex D Documentation comments

475

Annex D. Documentation comments

This annex is informative.

D.1 General
C# provides a mechanism for programmers to document their code using a special comment syntax that
contains XML text. In source code files, comments having a certain form can be used to direct a tool to
produce XML from those comments and the source code elements, which they precede. Comments using
such syntax are called documentation comments. They must immediately precede a user-defined type
(such as a class, delegate, or interface) or a member (such as a field, event, property, or method). The XML
generation tool is called the documentation generator. (This generator could be, but need not be, the
C# compiler itself.) The output produced by the documentation generator is called the documentation file.
A documentation file is used as input to a documentation viewer; a tool intended to produce some sort of
visual display of type information and its associated documentation.

A conforming C# compiler is not required to check the syntax of documentation comments; such
comments are simply ordinary comments. A conforming compiler is permitted to do such checking,
however.

This specification suggests a set of standard tags to be used in documentation comments, but use of these
tags is not required, and other tags may be used if desired, as long the rules of well-formed XML are
followed. For C# implementations targeting the CLI, it also provides information about the documentation
generator and the format of the documentation file. No information is provided about the documentation
viewer.

D.2 Introduction
Comments having a special form can be used to direct a tool to produce XML from those comments and
the source code elements, which they precede. Such comments are single-line comments that start with
three slashes (///), or delimited comments that start with a slash and two stars (/**). They must
immediately precede a user-defined type (such as a class, delegate, or interface) or a member (such as a
field, event, property, or method) that they annotate. Attribute sections (§22.3) are considered part of
declarations, so documentation comments must precede attributes applied to a type or member.

Syntax:

single-line-doc-comment::
/// input-charactersopt

delimited-doc-comment::
/** delimited-comment-textopt */

In a single-line-doc-comment, if there is a whitespace character following the /// characters on each of the
single-line-doc-comments adjacent to the current single-line-doc-comment, then that whitespace character
is not included in the XML output.

In a delimited-doc-comment, if the first non-whitespace character on the second line is an asterisk and the
same pattern of optional whitespace characters and an asterisk character is repeated at the beginning of
each of the lines within the delimited-doc-comment, then the characters of the repeated pattern are not
included in the XML output. The pattern can include whitespace characters after, as well as before, the
asterisk character.

Example:

ECMA-334

476

/// <summary>Class <c>Point</c> models a point in a two-dimensional
/// plane.</summary>
///
public class Point
{
 /// <summary>method <c>draw</c> renders the point.</summary>
 void draw() {…}
}

The text within documentation comments must be well formed according to the rules of XML
(http://www.w3.org/TR/REC-xml). If the XML is ill formed, a warning is generated and the documentation
file will contain a comment saying that an error was encountered.

Although developers are free to create their own set of tags, a recommended set is defined in §D.3. Some
of the recommended tags have special meanings:

• The <param> tag is used to describe parameters. If such a tag is used, the documentation generator
must verify that the specified parameter exists and that all parameters are described in documentation
comments. If such verification fails, the documentation generator issues a warning.

• The cref attribute can be attached to any tag to provide a reference to a code element. The
documentation generator must verify that this code element exists. If the verification fails, the
documentation generator issues a warning. When looking for a name described in a cref attribute,
the documentation generator must respect namespace visibility according to using statements
appearing within the source code. For code elements that are generic, the normal generic syntax (e.g.;
“List<T>”) cannot be used because it produces invalid XML. Braces can be used instead of brackets
(e.g.; “List{T}”), or the XML escape syntax can be used (e.g.; “List<T>”).

• The <summary> tag is intended to be used by a documentation viewer to display additional
information about a type or member.

• The <include> tag includes information from an external XML file.

Note carefully that the documentation file does not provide full information about the type and members
(for example, it does not contain any type information). To get such information about a type or member,
the documentation file must be used in conjunction with reflection on the type or member.

D.3 Recommended tags

D.3.1 General
The documentation generator must accept and process any tag that is valid according to the rules of XML.
The following tags provide commonly used functionality in user documentation. (Of course, other tags are
possible.)

Annex D Documentation comments

477

Tag Reference Purpose

<c> §D.3.2 Set text in a code-like font

<code> §D.3.3 Set one or more lines of source code or program
output

<example> §D.3.4 Indicate an example

<exception> §D.3.5 Identifies the exceptions a method can throw

<list> §D.3.6 Create a list or table

<include> §D.3.6 Includes XML from an external file

<para> §D.3.8 Permit structure to be added to text

<param> §D.3.9 Describe a parameter for a method or constructor

<paramref> §D.3.10 Identify that a word is a parameter name

<permission> §D.3.11 Document the security accessibility of a member

<remarks> §D.3.12 Describe additional information about a type

<returns> §D.3.13 Describe the return value of a method

<see> §D.3.14 Specify a link

<seealso> §D.3.15 Generate a See Also entry

<summary> §D.3.16 Describe a type or a member of a type

<typeparam> §D.3.17 Describe a type parameter for a generic type or
method

<typeparamref> §D.3.18 Identify that a word is a type parameter name

<value> §D.3.17 Describe a property

D.3.2 <c>
This tag provides a mechanism to indicate that a fragment of text within a description should be set in a
special font such as that used for a block of code. For lines of actual code, use <code> (§D.3.3).

Syntax:

<c>text</c>

Example:

/// <summary>Class <c>Point</c> models a point in a two-dimensional
/// plane.</summary>

public class Point
{
 // …
}

D.3.3 <code>
This tag is used to set one or more lines of source code or program output in some special font. For small
code fragments in narrative, use <c> (§D.3.2).

Syntax:

<code>source code or program output</code>

ECMA-334

478

Example:

/// <summary>This method changes the point's location by
/// the given x- and y-offsets.
/// <example>For example:
/// <code>
/// Point p = new Point(3,5);
/// p.Translate(-1,3);
/// </code>
/// results in <c>p</c>'s having the value (2,8).
/// </example>
/// </summary>

public void Translate(int xor, int yor) {
 X += xor;
 Y += yor;
}

D.3.4 <example>
This tag allows example code within a comment, to specify how a method or other library member might
be used. Ordinarily, this would also involve use of the tag <code> (§D.3.3) as well.

Syntax:

<example>description</example>

Example:

See <code> (§D.3.3) for an example.

D.3.5 <exception>
This tag provides a way to document the exceptions a method can throw.

Syntax:

<exception cref="member">description</exception>

where

cref="member"

The name of a member. The documentation generator checks that the given member exists and
translates member to the canonical element name in the documentation file.

description

A description of the circumstances in which the exception is thrown.

Example:

public class DataBaseOperations
{
 /// <exception cref="MasterFileFormatCorruptException"></exception>
 /// <exception cref="MasterFileLockedOpenException"></exception>
 public static void ReadRecord(int flag) {
 if (flag == 1)
 throw new MasterFileFormatCorruptException();
 else if (flag == 2)
 throw new MasterFileLockedOpenException();
 // …
 }
}

D.3.6 <include>
This tag allows including information from an XML document that is external to the source code file. The
external file must be a well-formed XML document, and an XPath expression is applied to that document to
specify what XML from that document to include. The <include> tag is then replaced with the selected
XML from the external document.

Annex D Documentation comments

479

Syntax:

<include file="filename" path="xpath" />

where

file="filename"

The file name of an external XML file. The file name is interpreted relative to the file that contains
the include tag.

path="xpath"

An XPath expression that selects some of the XML in the external XML file.

Example:

If the source code contained a declaration like:

/// <include file="docs.xml" path='extradoc/class[@name="IntList"]/*' />
public class IntList { … }

and the external file “docs.xml” had the following contents:

<?xml version="1.0"?>
<extradoc>
 <class name="IntList">
 <summary>
 Contains a list of integers.
 </summary>
 </class>
 <class name="StringList">
 <summary>
 Contains a list of integers.
 </summary>
 </class>
</extradoc>

then the same documentation is output as if the source code contained:

/// <summary>
/// Contains a list of integers.
/// </summary>
public class IntList { … }

D.3.7 <list>
This tag is used to create a list or table of items. It can contain a <listheader> block to define the
heading row of either a table or definition list. (When defining a table, only an entry for term in the
heading need be supplied.)

Each item in the list is specified with an <item> block. When creating a definition list, both term and
description must be specified. However, for a table, bulleted list, or numbered list, only description
need be specified.

Syntax:

<list type="bullet" | "number" | "table">
 <listheader>
 <term>term</term>
 <description>description</description>
 </listheader>

 <item>
 <term>term</term>
 <description>description</description>
 </item>

 …

ECMA-334

480

 <item>
 <term>term</term>
 <description>description</description>
 </item>
</list>

where

term

The term to define, whose definition is in description.

description

Either an item in a bullet or numbered list, or the definition of a term.

Example:

public class MyClass
{
 /// <summary>Here is an example of a bulleted list:
 /// <list type="bullet">
 /// <item>
 /// <description>Item 1.</description>
 /// </item>
 /// <item>
 /// <description>Item 2.</description>
 /// </item>
 /// </list>
 /// </summary>
 public static void Main () {
 // …
 }
}

D.3.8 <para>
This tag is for use inside other tags, such as <summary> (§D.3.16) or <returns> (§D.3.13), and permits
structure to be added to text.

Syntax:

<para>content</para>

where

content

The text of the paragraph.

Example:

/// <summary>This is the entry point of the Point class testing program.
/// <para>This program tests each method and operator, and
/// is intended to be run after any non-trvial maintenance has
/// been performed on the Point class.</para></summary>
public static void Main() {
 // …
}

D.3.9 <param>
This tag is used to describe a parameter for a method, constructor, or indexer.

Syntax:

<param name="name">description</param>

where

name

The name of the parameter.

Annex D Documentation comments

481

description

A description of the parameter.

Example:

/// <summary>This method changes the point's location to
/// the given coordinates.</summary>
/// <param name="xor">the new x-coordinate.</param>
/// <param name="yor">the new y-coordinate.</param>
public void Move(int xor, int yor) {
 X = xor;
 Y = yor;
}

D.3.10 <paramref>
This tag is used to indicate that a word is a parameter. The documentation file can be processed to format
this parameter in some distinct way.

Syntax:

<paramref name="name"/>

where

name

The name of the parameter.

Example:

/// <summary>This constructor initializes the new Point to
/// (<paramref name="xor"/>,<paramref name="yor"/>).</summary>
/// <param name="xor">the new Point's x-coordinate.</param>
/// <param name="yor">the new Point's y-coordinate.</param>

public Point(int xor, int yor) {
 X = xor;
 Y = yor;
}

D.3.11 <permission>
This tag allows the security accessibility of a member to be documented.

Syntax:

<permission cref="member">description</permission>

where

member

The name of a member. The documentation generator checks that the given code element exists
and translates member to the canonical element name in the documentation file.

description

A description of the access to the member.

Example:

/// <permission cref="System.Security.PermissionSet">Everyone can
/// access this method.</permission>

public static void Test() {
 // …
}

ECMA-334

482

D.3.12 <remarks>
This tag is used to specify extra information about a type. Use <summary> (§D.3.16) to describe the type
itself and the members of a type.

Syntax:

<remarks>description</remarks>

where

description

The text of the remark.

Example:

/// <summary>Class <c>Point</c> models a point in a
/// two-dimensional plane.</summary>
/// <remarks>Uses polar coordinates</remarks>
public class Point
{
 // …
}

D.3.13 <returns>
This tag is used to describe the return value of a method.

Syntax:

<returns>description</returns>

where

description

A description of the return value.

Example:

/// <summary>Report a point's location as a string.</summary>
/// <returns>A string representing a point's location, in the form (x,y),
/// without any leading, trailing, or embedded whitespace.</returns>
public override string ToString() {
 return "(" + X + "," + Y + ")";
}

D.3.14 <see>
This tag allows a link to be specified within text. Use <seealso> (§D.3.15) to indicate text that is to appear
in a See Also subclause.

Syntax:

<see cref="member"/>

where

member

The name of a member. The documentation generator checks that the given code element exists
and changes member to the element name in the generated documentation file.

Example:

/// <summary>This method changes the point's location to
/// the given coordinates. <see cref="Translate"/></summary>

public void Move(int xor, int yor) {
 X = xor;
 Y = yor;
}

Annex D Documentation comments

483

/// <summary>This method changes the point's location by
/// the given x- and y-offsets. <see cref="Move"/>
/// </summary>
public void Translate(int xor, int yor) {
 X += xor;
 Y += yor;
}

D.3.15 <seealso>
This tag allows an entry to be generated for the See Also subclause. Use <see> (§D.3.14) to specify a link
from within text.

Syntax:

<seealso cref="member"/>

where

member

The name of a member. The documentation generator checks that the given code element exists
and changes member to the element name in the generated documentation file.

Example:

/// <summary>This method determines whether two Points have the same
/// location.</summary>
/// <seealso cref="operator=="/>
/// <seealso cref="operator!="/>
public override bool Equals(object o) {
 // …
}

D.3.16 <summary>
This tag can be used to describe a type or a member of a type. Use <remarks> (§D.3.12) to describe the
type itself.

Syntax:

<summary>description</summary>

where

description

A summary of the type or member.

Example:

/// <summary>This constructor initializes the new Point to
(0,0).</summary>
public Point() : this(0,0) {
}

D.3.17 <typeparam>
This tag is used to describe a type parameter for a generic type or method.

Syntax:

<typeparam name="name">description</typeparam>

where

name

The name of the type parameter.

description

A description of the typeparameter.

ECMA-334

484

Example:

/// <summary>A generic list class.</summary>
/// <typeparam name="T">The type stored by the list.</typeparam>
public class MyList<T> {
 …
}

D.3.18 <typeparamref>
This tag is used to indicate that a word is a type parameter. The documentation file can be processed to
format this type parameter in some distinct way.

Syntax:

<typeparamref name="name"/>

where

name

The name of the type parameter.

Example:

/// <summary>This method fetches data and returns a list of <typeparamref
name=”T”> ”/>”> .</summary>
/// <param name="string">query to execute</param>

public List<T> FetchData<T>(string query) {
 …
}

D.3.19 <value>
This tag allows a property to be described.

Syntax:

<value>property description</value>

where

property description

A description for the property.

Example:

/// <value>Property <c>X</c> represents the point's x-coordinate.</value>
public int X
{
 get { return x; }
 set { x = value; }
}

D.4 Processing the documentation file

D.4.1 General
The following information is intended for C# implementations targeting the CLI.

The documentation generator generates an ID string for each element in the source code that is tagged
with a documentation comment. This ID string uniquely identifies a source element. A documentation
viewer can use an ID string to identify the corresponding item to which the documentation applies.

The documentation file is not a hierarchical representation of the source code; rather, it is a flat list with a
generated ID string for each element.

D.4.2 ID string format
The documentation generator observes the following rules when it generates the ID strings:

Annex D Documentation comments

485

• No white space is placed in the string.

• The first part of the string identifies the kind of member being documented, via a single character
followed by a colon. The following kinds of members are defined:

Character Description

E Event

F Field

M Method (including constructors, finalizers, and operators)

N Namespace

P Property (including indexers)

T Type (such as class, delegate, enum, interface, and struct)

! Error string; the rest of the string provides information about the
error. For example, the documentation generator generates
error information for links that cannot be resolved.

• The second part of the string is the fully qualified name of the element, starting at the root of the

namespace. The name of the element, its enclosing type(s), and namespace are separated by periods.
If the name of the item itself has periods, they are replaced by # (U+0023) characters. (It is assumed
that no element has this character in its name.)

• For methods and properties with arguments, the argument list follows, enclosed in parentheses. For
those without arguments, the parentheses are omitted. The arguments are separated by commas. The
encoding of each argument is the same as a CLI signature, as follows:

o Arguments are represented by their documentation name, which is based on their fully qualified
name, modified as follows:

• Arguments that represent generic types have an appended “’” character followed by the
number of type parameters

• Arguments having the out or ref modifier have an @ following their type name. Arguments
passed by value or via params have no special notation.

• Arguments that are arrays are represented as [lowerbound : size , … , lowerbound : size]
where the number of commas is the rank less one, and the lower bounds and size of each
dimension, if known, are represented in decimal. If a lower bound or size is not specified, it is
omitted. If the lower bound and size for a particular dimension are omitted, the “:” is omitted
as well. Jagged arrays are represented by one “[]” per level.

• Arguments that have pointer types other than void are represented using a * following the
type name. A void pointer is represented using a type name of System.Void.

• Arguments that refer to generic type parameters defined on types are encoded using the “`”
character followed by the zero-based index of the type parameter.

• Arguments that use generic type parameters defined in methods use a double-backtick “``”
instead of the “`” used for types.

• Arguments that refer to constructed generic types are encoded using the generic type,
followed by “{“, followed by a comma-separated list of type arguments, followed by “}”.

ECMA-334

486

D.4.3 ID string examples
The following examples each show a fragment of C# code, along with the ID string produced from each
source element capable of having a documentation comment:

• Types are represented using their fully qualified name, augmented with generic information:

enum Color { Red, Blue, Green }

namespace Acme
{
 interface IProcess { … }

 struct ValueType { … }

 class Widget: IProcess
 {
 public class NestedClass { … }

 public interface IMenuItem { … }

 public delegate void Del(int i);

 public enum Direction { North, South, East, West }
 }

 class MyList<T>
 {
 class Helper<U,V>{ … }
 }
}

"T:Color"
"T:Acme.IProcess"
"T:Acme.ValueType"
"T:Acme.Widget"
"T:Acme.Widget.NestedClass"
"T:Acme.Widget.IMenuItem"
"T:Acme.Widget.Del"
"T:Acme.Widget.Direction"
"T:Acme.MyList`1"
"T:Acme.MyList`1.Helper`2"

• Fields are represented by their fully qualified name.

namespace Acme
{
 struct ValueType
 {
 private int total;
 }

 class Widget: IProcess
 {
 public class NestedClass
 {
 private int value;
 }

 private string message;
 private static Color defaultColor;
 private const double PI = 3.14159;
 protected readonly double monthlyAverage;
 private long[] array1;
 private Widget[,] array2;
 private unsafe int *pCount;
 private unsafe float **ppValues;
 }
}

Annex D Documentation comments

487

"F:Acme.ValueType.total"
"F:Acme.Widget.NestedClass.value"
"F:Acme.Widget.message"
"F:Acme.Widget.defaultColor"
"F:Acme.Widget.PI"
"F:Acme.Widget.monthlyAverage"
"F:Acme.Widget.array1"
"F:Acme.Widget.array2"
"F:Acme.Widget.pCount"
"F:Acme.Widget.ppValues"

• Constructors.

namespace Acme
{
 class Widget: IProcess
 {
 static Widget() { … }

 public Widget() { … }

 public Widget(string s) { … }
 }
}

"M:Acme.Widget.#cctor"
"M:Acme.Widget.#ctor"
"M:Acme.Widget.#ctor(System.String)"

• Finalizers.

namespace Acme
{
 class Widget: IProcess
 {
 ~Widget() { … }
 }
}

"M:Acme.Widget.Finalize"

• Methods.

namespace Acme
{
 struct ValueType
 {
 public void M(int i) { … }
 }

 class Widget: IProcess
 {
 public class NestedClass
 {
 public void M(int i) { … }
 }

 public static void M0() { … }
 public void M1(char c, out float f, ref ValueType v) { … }
 public void M2(short[] x1, int[,] x2, long[][] x3) { … }
 public void M3(long[][] x3, Widget[][,,] x4) { … }
 public unsafe void M4(char *pc, Color **pf) { … }
 public unsafe void M5(void *pv, double *[][,] pd) { … }
 public void M6(int i, params object[] args) { … }
 }
 class MyList<T>
 {
 public void Test(T t) { … }
 }

ECMA-334

488

 class UseList
 {
 public void Process(MyList<int> list) { … }
 public MyList<T> GetValues<T>(T value) { … } }
}

"M:Acme.ValueType.M(System.Int32)"
"M:Acme.Widget.NestedClass.M(System.Int32)"
"M:Acme.Widget.M0"
"M:Acme.Widget.M1(System.Char,System.Single@,Acme.ValueType@)"
"M:Acme.Widget.M2(System.Int16[],System.Int32[0:,0:],System.Int64[][])"
"M:Acme.Widget.M3(System.Int64[][],Acme.Widget[0:,0:,0:][])"
"M:Acme.Widget.M4(System.Char*,Color**)"
"M:Acme.Widget.M5(System.Void*,System.Double*[0:,0:][])"
"M:Acme.Widget.M6(System.Int32,System.Object[])"
"M:Acme.MyList`1.Test(`0)"
"M:Acme.UseList.Process(Acme.MyList{System.Int32})"
"M:Acme.UseList.GetValues``1(``0)"

• Properties and indexers.

namespace Acme
{
 class Widget: IProcess
 {
 public int Width {get { … } set { … }}
 public int this[int i] {get { … } set { … }}
 public int this[string s, int i] {get { … } set { … }}
 }
}

"P:Acme.Widget.Width"
"P:Acme.Widget.Item(System.Int32)"
"P:Acme.Widget.Item(System.String,System.Int32)"

• Events

namespace Acme
{
 class Widget: IProcess
 {
 public event Del AnEvent;
 }
}

"E:Acme.Widget.AnEvent"

• Unary operators.

namespace Acme
{
 class Widget: IProcess
 {
 public static Widget operator+(Widget x) { … }
 }
}

"M:Acme.Widget.op_UnaryPlus(Acme.Widget)"

The complete set of unary operator function names used is as follows: op_UnaryPlus,
op_UnaryNegation, op_LogicalNot, op_OnesComplement, op_Increment,
op_Decrement, op_True, and op_False.

• Binary operators.

namespace Acme
{
 class Widget: IProcess
 {
 public static Widget operator+(Widget x1, Widget x2) { … }
 }
}

Annex D Documentation comments

489

"M:Acme.Widget.op_Addition(Acme.Widget,Acme.Widget)"

The complete set of binary operator function names used is as follows: op_Addition,
op_Subtraction, op_Multiply, op_Division, op_Modulus, op_BitwiseAnd,
op_BitwiseOr, op_ExclusiveOr, op_LeftShift, op_RightShift, op_Equality,
op_Inequality, op_LessThan, op_LessThanOrEqual, op_GreaterThan, and
op_GreaterThanOrEqual.

• Conversion operators have a trailing “~” followed by the return type.

namespace Acme
{
 class Widget: IProcess
 {
 public static explicit operator int(Widget x) { … }
 public static implicit operator long(Widget x) { … }
 }
}

"M:Acme.Widget.op_Explicit(Acme.Widget)~System.Int32"
"M:Acme.Widget.op_Implicit(Acme.Widget)~System.Int64"

D.5 An example

D.5.1 C# source code
The following example shows the source code of a Point class:

namespace Graphics
{

/// <summary>Class <c>Point</c> models a point in a two-dimensional
plane.
/// </summary>
public class Point
{

 /// <summary>Instance variable <c>x</c> represents the point's
 /// x-coordinate.</summary>
 private int x;

 /// <summary>Instance variable <c>y</c> represents the point's
 /// y-coordinate.</summary>
 private int y;

 /// <value>Property <c>X</c> represents the point's x-
coordinate.</value>
 public int X
 {
 get { return x; }
 set { x = value; }
 }

 /// <value>Property <c>Y</c> represents the point's y-
coordinate.</value>
 public int Y
 {
 get { return y; }
 set { y = value; }
 }

 /// <summary>This constructor initializes the new Point to
 /// (0,0).</summary>
 public Point() : this(0,0) {}

ECMA-334

490

 /// <summary>This constructor initializes the new Point to
 /// (<paramref name="xor"/>,<paramref name="yor"/>).</summary>
 /// <param><c>xor</c> is the new Point's x-coordinate.</param>
 /// <param><c>yor</c> is the new Point's y-coordinate.</param>
 public Point(int xor, int yor) {
 X = xor;
 Y = yor;
 }

 /// <summary>This method changes the point's location to
 /// the given coordinates. <see cref="Translate"/></summary>
 /// <param><c>xor</c> is the new x-coordinate.</param>
 /// <param><c>yor</c> is the new y-coordinate.</param>

 public void Move(int xor, int yor) {
 X = xor;
 Y = yor;
 }

 /// <summary>This method changes the point's location by
 /// the given x- and y-offsets.
 /// <example>For example:
 /// <code>
 /// Point p = new Point(3,5);
 /// p.Translate(-1,3);
 /// </code>
 /// results in <c>p</c>'s having the value (2,8).
 /// <see cref="Move"/></example>
 /// </summary>
 /// <param><c>xor</c> is the relative x-offset.</param>
 /// <param><c>yor</c> is the relative y-offset.</param>

 public void Translate(int xor, int yor) {
 X += xor;
 Y += yor;
 }

 /// <summary>This method determines whether two Points have the same
 /// location.</summary>
 /// <param><c>o</c> is the object to be compared to the current
object.
 /// </param>
 /// <returns>True if the Points have the same location and they have
 /// the exact same type; otherwise, false.</returns>
 /// <seealso cref="operator=="/>
 /// <seealso cref="operator!="/>
 public override bool Equals(object o) {
 if (o == null) {
 return false;
 }

 if (this == o) {
 return true;
 }

 if (GetType() == o.GetType()) {
 Point p = (Point)o;
 return (X == p.X) && (Y == p.Y);
 }
 return false;
 }

 /// <summary>Report a point's location as a string.</summary>
 /// <returns>A string representing a point's location, in the form
(x,y),
 /// without any leading, training, or embedded whitespace.</returns>
 public override string ToString() {
 return "(" + X + "," + Y + ")";
 }

Annex D Documentation comments

491

 /// <summary>This operator determines whether two Points have the same
 /// location.</summary>
 /// <param><c>p1</c> is the first Point to be compared.</param>
 /// <param><c>p2</c> is the second Point to be compared.</param>
 /// <returns>True if the Points have the same location and they have
 /// the exact same type; otherwise, false.</returns>
 /// <seealso cref="Equals"/>
 /// <seealso cref="operator!="/>
 public static bool operator==(Point p1, Point p2) {
 if ((object)p1 == null || (object)p2 == null) {
 return false;
 }

 if (p1.GetType() == p2.GetType()) {
 return (p1.X == p2.X) && (p1.Y == p2.Y);
 }

 return false;
 }

 /// <summary>This operator determines whether two Points have the same
 /// location.</summary>
 /// <param><c>p1</c> is the first Point to be compared.</param>
 /// <param><c>p2</c> is the second Point to be compared.</param>
 /// <returns>True if the Points do not have the same location and the
 /// exact same type; otherwise, false.</returns>
 /// <seealso cref="Equals"/>
 /// <seealso cref="operator=="/>
 public static bool operator!=(Point p1, Point p2) {
 return !(p1 == p2);
 }

}
}

D.5.2 Resulting XML
Here is the output produced by one documentation generator when given the source code for class Point,
shown above:

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>Point</name>
 </assembly>
 <members>
 <member name="T:Graphics.Point">
 <summary>Class <c>Point</c> models a point in a two-
dimensional
 plane.
 </summary>
 </member>

 <member name="F:Graphics.Point.x">
 <summary>Instance variable <c>x</c> represents the point's
 x-coordinate.</summary>
 </member>

 <member name="F:Graphics.Point.y">
 <summary>Instance variable <c>y</c> represents the point's
 y-coordinate.</summary>
 </member>

 <member name="M:Graphics.Point.#ctor">
 <summary>This constructor initializes the new Point to
 (0,0).</summary>
 </member>

ECMA-334

492

 <member name="M:Graphics.Point.#ctor(System.Int32,System.Int32)">
 <summary>This constructor initializes the new Point to
 (<paramref name="xor"/>,<paramref name="yor"/>).</summary>
 <param><c>xor</c> is the new Point's x-coordinate.</param>
 <param><c>yor</c> is the new Point's y-coordinate.</param>
 </member>

 <member name="M:Graphics.Point.Move(System.Int32,System.Int32)">
 <summary>This method changes the point's location to
 the given coordinates. <see
cref="M:Graphics.Point.Translate(System.Int32,System.Int32)"/></summary>
 <param><c>xor</c> is the new x-coordinate.</param>
 <param><c>yor</c> is the new y-coordinate.</param>

 </member>

 <member
 name="M:Graphics.Point.Translate(System.Int32,System.Int32)">
 <summary>This method changes the point's location by
 the given x- and y-offsets.
 <example>For example:
 <code>
 Point p = new Point(3,5);
 p.Translate(-1,3);
 </code>
 results in <c>p</c>'s having the value (2,8).
 </example>
 <see
cref="M:Graphics.Point.Move(System.Int32,System.Int32)"/></summary>
 <param><c>xor</c> is the relative x-offset.</param>
 <param><c>yor</c> is the relative y-offset.</param>

 </member>

 <member name="M:Graphics.Point.Equals(System.Object)">
 <summary>This method determines whether two Points have the
same
 location.</summary>
 <param><c>o</c> is the object to be compared to the current
 object.
 </param>
 <returns>True if the Points have the same location and they
have
 the exact same type; otherwise, false.</returns>
 <seealso

cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/>
 <seealso

cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
 </member>

 <member name="M:Graphics.Point.ToString">
 <summary>Report a point's location as a string.</summary>
 <returns>A string representing a point's location, in the
form
 (x,y),
 without any leading, training, or embedded
whitespace.</returns>
 </member>

Annex D Documentation comments

493

 <member

name="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)">
 <summary>This operator determines whether two Points have the
 same
 location.</summary>
 <param><c>p1</c> is the first Point to be compared.</param>
 <param><c>p2</c> is the second Point to be compared.</param>
 <returns>True if the Points have the same location and they
have
 the exact same type; otherwise, false.</returns>
 <seealso cref="M:Graphics.Point.Equals(System.Object)"/>
 <seealso

cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
 </member>

 <member

name="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)">
 <summary>This operator determines whether two Points have the
 same
 location.</summary>
 <param><c>p1</c> is the first Point to be compared.</param>
 <param><c>p2</c> is the second Point to be compared.</param>
 <returns>True if the Points do not have the same location and
 the
 exact same type; otherwise, false.</returns>
 <seealso cref="M:Graphics.Point.Equals(System.Object)"/>
 <seealso

cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/>
 </member>

 <member name="M:Graphics.Point.Main">
 <summary>This is the entry point of the Point class testing
 program.
 <para>This program tests each method and operator, and
 is intended to be run after any non-trvial maintenance has
 been performed on the Point class.</para></summary>
 </member>

 <member name="P:Graphics.Point.X">
 <value>Property <c>X</c> represents the point's
 x-coordinate.</value>
 </member>

 <member name="P:Graphics.Point.Y">
 <value>Property <c>Y</c> represents the point's
 y-coordinate.</value>
 </member>
 </members>
</doc>

End of informative text.

ECMA-334

494

Annex E. Bibliography

This annex is informative.

ANSI X3.274-1996, Programming Language REXX. (This document is useful in understanding floating-point
decimal arithmetic rules.)

ISO 31-0:1992, Annex B (informative), Guide to the rounding of numbers (This document defines “banker’s
rounding.”)

ISO/IEC 9075-1:2011, Information technology — Database languages — SQL — Part 1: Framework
(SQL/Framework)

ISO/IEC 9899:2011, Programming languages — C.

ISO/IEC 14882:2011 Programming languages — C++

End of informative text.

	ECMA-334 4th edition.pdf
	C# Language Specification
	Table of Contents
	Foreword
	Introduction
	1. Scope
	2. Conformance
	3. Normative references
	4. Definitions
	5. Notational conventions
	6. Acronyms and abbreviations
	7. General description
	8. Language overview
	8.1 Getting started
	8.2 Types
	8.2.1 Predefined types
	8.2.2 Conversions
	8.2.3 Array types
	8.2.4 Type system unification

	8.3 Variables and parameters
	8.4 utomatic memory management
	8.5 Expressions
	8.6 Statements
	8.7 Classes
	8.7.1 Constants
	8.7.2 Fields
	8.7.3 Methods
	8.7.4 Properties
	8.7.5 Events
	8.7.6 Operators
	8.7.7 Indexers
	8.7.8 Instance constructors
	8.7.9 Finalizers
	8.7.10 Static constructors
	8.7.11 Inheritance
	8.7.12 Static classes
	8.7.13 Partial type declarations

	8.8 Structs
	8.9 Interfaces
	8.10 Delegates
	8.11 Enums
	8.12 Namespaces and assemblies
	8.13 Versioning
	8.14 Extern aliases
	8.15 Attributes
	8.16 Generics
	8.16.1 Why generics?
	8.16.2 Creating and consuming generics
	8.16.3 Multiple type parameters
	8.16.4 Constraints
	8.16.5 Generic methods

	8.17 Anonymous methods
	8.18 Iterators
	8.19 Nullable types

	9. Lexical structure
	9.1 Programs
	9.2 Grammars
	9.2.1 Lexical grammar
	9.2.2 Syntactic grammar
	9.2.3 Grammar ambiguities

	9.3 Lexical analysis
	9.3.1 Line terminators
	9.3.2 Comments
	9.3.3 White space

	9.4 Tokens
	9.4.1 Unicode escape sequences
	9.4.2 Identifiers
	9.4.3 Keywords
	9.4.4 Literals
	9.4.5 Operators and punctuators

	9.5 Pre-processing directives
	9.5.1 Conditional compilation symbols
	9.5.2 Pre-processing expressions
	9.5.3 Declaration directives
	9.5.4 Conditional compilation directives
	9.5.5 Diagnostic directives
	9.5.6 Region control
	9.5.7 Line directives
	9.5.8 Pragma directives

	10. Basic concepts
	10.1 Application startup
	10.2 Application termination
	10.3 Declarations
	10.4 Members
	10.4.1 Namespace members
	10.4.2 Struct members
	10.4.3 Enumeration members
	10.4.4 Class members
	10.4.5 Interface members
	10.4.6 Array members
	10.4.7 Delegate members

	10.5 Member access
	10.5.1 Declared accessibility
	10.5.2 Accessibility domains
	10.5.3 Protected access for instance members
	10.5.4 Accessibility constraints

	10.6 Signatures and overloading
	10.7 Scopes
	10.7.1 Name hiding

	10.8 Namespace and type names
	10.8.1 Unqualified name
	10.8.2 Fully qualified names

	10.9 Automatic memory management
	10.10 Execution order

	11. Types
	11.1 Value types
	11.1.1 The System.ValueType type
	11.1.2 Default constructors
	11.1.3 Struct types
	11.1.4 Simple types
	11.1.5 Integral types
	11.1.6 Floating point types
	11.1.7 The decimal type
	11.1.8 The bool type
	11.1.9 Enumeration types

	11.2 Reference types
	11.2.1 Class types
	11.2.2 The object type
	11.2.3 The string type
	11.2.4 Interface types
	11.2.5 Array types
	11.2.6 Delegate types
	11.2.7 The null type

	11.3 Boxing and unboxing
	11.3.1 Boxing conversions
	11.3.2 Unboxing conversions

	11.4 Nullable types
	11.4.1 Members
	11.4.2 Implemented interfaces

	12. Variables
	12.1 Variable categories
	12.1.1 Static variables
	12.1.2 Instance variables
	12.1.3 Array elements
	12.1.4 Value parameters
	12.1.5 Reference parameters
	12.1.6 Output parameters
	12.1.7 Local variables

	12.2 Default values
	12.3 Definite assignment
	12.3.1 Initially assigned variables
	12.3.2 Initially unassigned variables
	12.3.3 Precise rules for determining definite assignment

	12.4 Variable references
	12.5 Atomicity of variable references

	13. Conversions
	13.1 Implicit conversions
	13.1.1 Identity conversion
	13.1.2 Implicit numeric conversions
	13.1.3 Implicit enumeration conversions
	13.1.4 Implicit reference conversions
	13.1.5 Boxing conversions
	13.1.6 Implicit type parameter conversions
	13.1.7 Implicit constant expression conversions
	13.1.8 User-defined implicit conversions

	13.2 Explicit conversions
	13.2.1 Explicit numeric conversions
	13.2.2 Explicit enumeration conversions
	13.2.3 Explicit reference conversions
	13.2.4 Unboxing conversions
	13.2.5 Explicit type parameter conversions
	13.2.6 User-defined explicit conversions

	13.3 Standard conversions
	13.3.1 Standard implicit conversions
	13.3.2 Standard explicit conversions

	13.4 User-defined conversions
	13.4.1 Permitted user-defined conversions
	13.4.2 Evaluation of user-defined conversions
	13.4.3 User-defined implicit conversions
	13.4.4 User-defined explicit conversions

	13.5 Anonymous method conversions
	13.6 Method group conversions
	13.7 Conversions involving nullable types
	13.7.1 Null type conversions
	13.7.2 Nullable conversions
	13.7.3 Lifted conversions

	14. Expressions
	14.1 Expression classifications
	14.1.1 Values of expressions

	14.2 Operators
	14.2.1 Operator precedence and associativity
	14.2.2 Operator overloading
	14.2.3 Unary operator overload resolution
	14.2.4 Binary operator overload resolution
	14.2.5 Candidate user-defined operators
	14.2.6 Numeric promotions
	14.2.7 Lifted operators

	14.3 Member lookup
	14.3.1 Base types

	14.4 Function members
	14.4.1 Argument lists
	14.4.2 Overload resolution
	14.4.3 Function member invocation

	14.5 Primary expressions
	14.5.1 Literals
	14.5.2 Simple names
	14.5.3 Parenthesized expressions
	14.5.4 Member access
	14.5.5 Invocation expressions
	14.5.6 Element access
	14.5.7 This access
	14.5.8 Base access
	14.5.9 Postfix increment and decrement operators
	14.5.10 The new operator
	14.5.11 The typeof operator
	14.5.12 The sizeof operator
	14.5.13 The checked and unchecked operators
	14.5.14 Default value expression
	14.5.15 Anonymous methods

	14.6 Unary expressions
	14.6.1 Unary plus operator
	14.6.2 Unary minus operator
	14.6.3 Logical negation operator
	14.6.4 Bitwise complement operator
	14.6.5 Prefix increment and decrement operators
	14.6.6 Cast expressions

	14.7 Arithmetic operators
	14.7.1 Multiplication operator
	14.7.2 Division operator
	14.7.3 Remainder operator
	14.7.4 Addition operator
	14.7.5 Subtraction operator

	14.8 Shift operators
	14.9 Relational and type-testing operators
	14.9.1 Integer comparison operators
	14.9.2 Floating-point comparison operators
	14.9.3 Decimal comparison operators
	14.9.4 Boolean equality operators
	14.9.5 Enumeration comparison operators
	14.9.6 Reference type equality operators
	14.9.7 String equality operators
	14.9.8 Delegate equality operators
	14.9.9.Equality operators and null
	14.9.10 is operator
	14.9.11 as operator

	14.10 Logical operators
	14.10.1 Integer logical operators
	14.10.2 Enumeration logical operators
	14.10.3 Boolean logical operators
	14.10.4 The bool? logical operators

	14.11 Conditional logical operators
	14.11.1 Boolean conditional logical operators
	14.11.2 User-defined conditional logical operators

	14.12 The null coalescing operator
	14.13 Conditional operator
	14.14 Assignment operators
	14.14.1 Simple assignment
	14.14.2 Compound assignment
	14.14.3 Event assignment

	14.15 Expression
	14.16 Constant expressions
	14.17 Boolean expressions

	15. Statements
	15.1 End points and reachability
	15.2 Blocks
	15.2.1 Statement lists

	15.3 The empty statement
	15.4 Labeled statements
	15.5 Declaration statements
	15.5.1 Local variable declarations
	15.5.2 Local constant declarations

	15.6 Expression statements
	15.7 Selection statements
	15.7.1 The if statement
	15.7.2 The switch statement

	15.8 Iteration statements
	15.8.1 The while statement
	15.8.2 The do statement
	15.8.3 The for statement
	15.8.4 The foreach statement

	15.9 Jump statements
	15.9.1 The break statement
	15.9.2 The continue statement
	15.9.3 The goto statement
	15.9.4 The return statement
	15.9.5 The throw statement

	15.10 The try statement
	15.11 The checked and unchecked statements
	15.12 The lock statement
	15.13 The using statement
	15.14 The yield statement

	16. Namespaces
	16.1 Compilation units
	16.2 Namespace declarations
	16.3 Extern alias directives
	16.4 Using directives
	16.4.1 Using alias directives
	16.4.2 Using namespace directives

	16.5 Namespace members
	16.6 Type declarations
	16.7 Qualified alias member

	17. Classes
	17.1 Class declarations
	17.1.1 Class modifiers
	17.1.2 Class base specification
	17.1.3 Class body
	17.1.4 Partial declarations

	17.2 Class members
	17.2.1 Inheritance
	17.2.2 The new modifier
	17.2.3 Access modifiers
	17.2.4 Constituent types
	17.2.5 Static and instance members
	17.2.6 Nested types
	17.2.7 Reserved member names

	17.3 Constants
	17.4 Fields
	17.4.1 Static and instance fields
	17.4.2 Readonly fields
	17.4.3 Volatile fields
	17.4.4 Field initialization
	17.4.5 Variable initializers

	17.5 Methods
	17.5.1 Method parameters
	17.5.2 Static and instance methods
	17.5.3 Virtual methods
	17.5.4 Override methods
	17.5.5 Sealed methods
	17.5.6 Abstract methods
	17.5.7 External methods
	17.5.8 Method body
	17.5.9 Method overloading

	17.6 Properties
	17.6.1 Static and instance properties
	17.6.2 Accessors
	17.6.3 Virtual, sealed, override, and abstract accessors

	17.7 Events
	17.7.1 Field-like events
	17.7.2 Event accessors
	17.7.3 Static and instance events
	17.7.4 Virtual, sealed, override, and abstract accessors

	17.8 Indexers
	17.8.1 Indexer overloading

	17.9 Operators
	17.9.1 Unary operators
	17.9.2 Binary operators
	17.9.3 Conversion operators

	17.10 Instance constructors
	17.10.1 Constructor initializers
	17.10.2 Instance variable initializers
	17.10.3 Constructor execution
	17.10.4 Default constructors
	17.10.5 Private constructors
	17.10.6 Optional instance constructor parameters

	17.11 Static constructors
	17.12 Finalizers

	18. Structs
	18.1 Struct declarations
	18.1.1 Struct modifiers
	18.1.2 Struct interfaces
	18.1.3 Struct body

	18.2 Struct members
	18.3 Class and struct differences
	18.3.1 Value semantics
	18.3.2 Inheritance
	18.3.3 Assignment
	18.3.4 Default values
	18.3.5 Boxing and unboxing
	18.3.6 Meaning of this
	18.3.7 Field initializers
	18.3.8 Constructors
	18.3.9 Finalizers
	18.3.10 Static constructors

	19. Arrays
	19.1 Array types
	19.1.1 The System.Array type

	19.2 Array creation
	19.3 Array element access
	19.4 Array members
	19.5 Array covariance
	19.6 Arrays and the generic IList interface
	19.7 Array initializers

	20. Interfaces
	20.1 Interface declarations
	20.1.1 Interface modifiers
	20.1.2 Base interfaces
	20.1.3 Interface body

	20.2 Interface members
	20.2.1 Interface methods
	20.2.2 Interface properties
	20.2.3 Interface events
	20.2.4 Interface indexers
	20.2.5 Interface member access

	20.3 Fully qualified interface member names
	20.4 Interface implementations
	20.4.1 Explicit interface member implementations
	20.4.2 Interface mapping
	20.4.3 Interface implementation inheritance
	20.4.4 Interface re-implementation
	20.4.5 Abstract classes and interfaces

	21. Enums
	21.1 Enum declarations
	21.2 Enum modifiers
	21.3 Enum members
	21.4 The System.Enum type
	21.5 Enum values and operations

	22. Delegates
	22.1 Delegate declarations
	22.2 Delegate instantiation
	22.3 Delegate invocation

	23. Exceptions
	23.1 Causes of exceptions
	23.2 The System.Exception class
	23.3 How exceptions are handled
	23.4 Common exception classes

	24. Attributes
	24.1 Attribute classes
	24.1.1 Attribute usage
	24.1.2 Positional and named parameters
	24.1.3 Attribute parameter types

	24.2 Attribute specification
	24.3 Attribute instances
	24.3.1 Compilation of an attribute
	24.3.2 Run-time retrieval of an attribute instance

	24.4 Reserved attributes
	24.4.1 The AttributeUsage attribute
	24.4.2 The Conditional attribute
	24.4.3 The Obsolete attribute

	25. Generics
	25.1 Generic class declarations
	25.1.1 Type parameters
	25.1.2 The instance type
	25.1.3 Members of generic classes
	25.1.4 Static fields in generic classes
	25.1.5 Static constructors in generic classes
	25.1.6 Accessing protected members
	25.1.7 Overloading in generic classes
	25.1.8 Parameter array methods and type parameters
	25.1.9 Overriding and generic classes
	25.1.10 Operators in generic classes
	25.1.11 Nested types in generic classes

	25.2 Generic struct declarations
	25.3 Generic interface declarations
	25.3.1 Uniqueness of implemented interfaces
	25.3.2 Explicit interface member implementations

	25.4 Generic delegate declarations
	25.5 Constructed types
	25.5.1 Type arguments
	25.5.2 Open and closed types
	25.5.3 Base classes and interfaces of a constructed type
	25.5.4 Members of a constructed type
	25.5.5 Accessibility of a constructed type
	25.5.6 Conversions
	25.5.7 Using alias directives

	25.6 Generic methods
	25.6.1 Generic method signatures
	25.6.2 Virtual generic methods
	25.6.3 Calling generic methods
	25.6.4 Inference of type arguments
	25.6.5 Using a generic method with a delegate
	25.6.6 No generic properties, events, indexers, operators, construc

	25.7 Constraints
	25.7.1 Satisfying constraints
	25.7.2 Member lookup on type parameters
	25.7.3 Type parameters and boxing
	25.7.4 Conversions involving type parameters

	26. Iterators
	26.1 Iterator blocks
	26.1 1 Enumerator interfaces
	26.1.2 Enumerable interfaces
	26.1.3 Yield type
	26.1.4 This access

	26.2 Enumerator objects
	26.2.1 The MoveNext method
	26.2.2 The Current property
	26.2.3 The Dispose method

	26.3 Enumerable objects
	26.3.1 The GetEnumerator method

	26.4 Implementation example

	27. Unsafe code
	27.1 Unsafe contexts
	27.2 Pointer types
	27.3 Fixed and moveable variables
	27.4 Pointer conversions
	27.5 Pointers in expressions
	27.5.1 Pointer indirection
	27.5.2 Pointer member access
	27.5.3 Pointer element access
	27.5.4 The address-of operator
	27.5.5 Pointer increment and decrement
	27.5.6 Pointer arithmetic
	27.5.7 Pointer comparison
	27.5.8 The sizeof operator

	27.6 The fixed statement
	27.7 Stack allocation
	27.8 Dynamic memory allocation

	A. Grammar
	A.1 Lexical grammar
	A.1.1 Line terminators
	A.1.2 White space
	A.1.3 Comments
	A.1.4 Tokens
	A.1.5 Unicode escape sequences
	A.1.6 Identifiers
	A.1.7 Keywords
	A.1.8 Literals
	A.1.9 Operators and punctuators
	A.1.10 Pre-processing directives

	A.2 Syntactic grammar
	A.2.1 Basic concepts
	A.2.2 Types
	A.2.3 Variables
	A.2.4 Expressions
	A.2.5 Statements
	A.2.6 Classes
	A.2.7 Structs
	A.2.8 Arrays
	A.2.9 Interfaces
	A.2.10 Enums
	A.2.11 Delegates
	A.2.12 Attributes
	A.2.13 Generics

	A.3 Grammar extensions for unsafe code

	B. Portability issues
	B.1 Undefined behavior
	B.2 Implementation-defined behavior
	B.3 Unspecified behavior
	B.4 Other Issues

	C. Naming guidelines
	D. Standard Library
	E. Documentation Comments
	E.1 Introduction
	E.2 Recommended tags
	E.2.1 <c>
	E.2.2 <code>
	E.2.3 <example>
	E.2.4 <exception>
	E.2.5 <list>
	E.2.6 <para>
	E.2.7 <param>
	E.2.8 <paramref>
	E.2.9 <permission>
	E.2.10 <remarks>
	E.2.11 <returns>
	E.2.12 <see>
	E.2.13 <seealso>
	E.2.14 <summary>
	E.2.15 <typeparam>
	E.2.16 <typeparamref>
	E.2.17 <value>

	E.3 Processing the documentation file
	E.3.1 ID string format
	E.3.2 ID string examples

	E.4 An example
	E.4.1 C# source code
	E.4.2 Resulting XML

	F. Bibliography
	G. Index

	ECMA-334 ok.pdf
	Foreword
	Introduction
	1. Scope
	2. Conformance
	3. Normative references
	4. Definitions
	5. Notational conventions
	6. Acronyms and abbreviations
	7. General description
	8. Language overview
	8.1 Getting started
	8.2 Types
	8.2.1 Predefined types
	8.2.2 Conversions
	8.2.3 Array types
	8.2.4 Type system unification

	8.3 Variables and parameters
	8.4 Automatic memory management
	8.5 Expressions
	8.6 Statements
	8.7 Classes
	8.7.1 Constants
	8.7.2 Fields
	8.7.3 Methods
	8.7.4 Properties
	8.7.5 Events
	8.7.6 Operators
	8.7.7 Indexers
	8.7.8 Instance constructors
	8.7.9 Finalizers
	8.7.10 Static constructors
	8.7.11 Inheritance
	8.7.12 Static classes
	8.7.13 Partial type declarations

	8.8 Structs
	8.9 Interfaces
	8.10 Delegates
	8.11 Enums
	8.12 Namespaces and assemblies
	8.13 Versioning
	8.14 Extern aliases
	8.15 Attributes
	8.16 Generics
	8.16.1 Why generics?
	8.16.2 Creating and consuming generics
	8.16.3 Multiple type parameters
	8.16.4 Constraints
	8.16.5 Generic methods

	8.17 Anonymous methods
	8.18 Iterators
	8.19 Nullable types

	9. Lexical structure
	9.1 Programs
	9.2 Grammars
	9.2.1 Lexical grammar
	9.2.2 Syntactic grammar
	9.2.3 Grammar ambiguities

	9.3 Lexical analysis
	9.3.1 Line terminators
	9.3.2 Comments
	9.3.3 White space

	9.4 Tokens
	9.4.1 Unicode escape sequences
	9.4.2 Identifiers
	9.4.3 Keywords
	9.4.4 Literals
	9.4.4.1 Boolean literals
	9.4.4.2 Integer literals
	9.4.4.3 Real literals
	9.4.4.4 Character literals
	9.4.4.5 String literals
	9.4.4.6 The null literal

	9.4.5 Operators and punctuators

	9.5 Pre-processing directives
	9.5.1 Conditional compilation symbols
	9.5.2 Pre-processing expressions
	9.5.3 Declaration directives
	9.5.4 Conditional compilation directives
	9.5.5 Diagnostic directives
	9.5.6 Region control
	9.5.7 Line directives
	9.5.8 Pragma directives

	10. Basic concepts
	10.1 Application startup
	10.2 Application termination
	10.3 Declarations
	10.4 Members
	10.4.1 Namespace members
	10.4.2 Struct members
	10.4.3 Enumeration members
	10.4.4 Class members
	10.4.5 Interface members
	10.4.6 Array members
	10.4.7 Delegate members

	10.5 Member access
	10.5.1 Declared accessibility
	10.5.2 Accessibility domains
	10.5.3 Protected access for instance members
	10.5.4 Accessibility constraints

	10.6 Signatures and overloading
	10.7 Scopes
	10.7.1 Name hiding
	10.7.1.1 Hiding through nesting
	10.7.1.2 Hiding through inheritance

	10.8 Namespace and type names
	10.8.1 Unqualified name
	10.8.2 Fully qualified names

	10.9 Automatic memory management
	10.10 Execution order

	11. Types
	11.1 Value types
	11.1.1 The System.ValueType type
	11.1.2 Default constructors
	11.1.3 Struct types
	11.1.4 Simple types
	11.1.5 Integral types
	11.1.6 Floating point types
	11.1.7 The decimal type
	11.1.8 The bool type
	11.1.9 Enumeration types

	11.2 Reference types
	11.2.1 Class types
	11.2.2 The object type
	11.2.3 The string type
	11.2.4 Interface types
	11.2.5 Array types
	11.2.6 Delegate types
	11.2.7 The null type

	11.3 Boxing and unboxing
	11.3.1 Boxing conversions
	11.3.2 Unboxing conversions

	11.4 Nullable types
	11.4.1 Members
	11.4.2 Implemented interfaces

	12. Variables
	12.1 Variable categories
	12.1.1 Static variables
	12.1.2 Instance variables
	12.1.2.1 Instance variables in classes
	12.1.2.2 Instance variables in structs

	12.1.3 Array elements
	12.1.4 Value parameters
	12.1.5 Reference parameters
	12.1.6 Output parameters
	12.1.7 Local variables

	12.2 Default values
	12.3 Definite assignment
	12.3.1 Initially assigned variables
	12.3.2 Initially unassigned variables
	12.3.3 Precise rules for determining definite assignment
	12.3.3.1 General rules for statements
	12.3.3.2 Block statements, checked, and unchecked statements
	12.3.3.3 Expression statements
	12.3.3.4 Declaration statements
	12.3.3.5 If statements
	12.3.3.6 Switch statements
	12.3.3.7 While statements
	12.3.3.8 Do statements
	12.3.3.9 For statements
	12.3.3.10 Break, continue, and goto statements
	12.3.3.11 Throw statements
	12.3.3.12 Return statements
	12.3.3.13 Try-catch statements
	12.3.3.14 Try-finally statements
	12.3.3.15 Try-catch-finally statements
	12.3.3.16 Foreach statements
	12.3.3.17 Using statements
	12.3.3.18 Lock statements
	12.3.3.19 General rules for simple expressions
	12.3.3.20 General rules for expressions with embedded expressions
	12.3.3.21 Invocation expressions and object creation expressions
	12.3.3.22 Simple assignment expressions
	12.3.3.23 && expressions
	12.3.3.24 || expressions
	12.3.3.25 ! expressions
	12.3.3.26 ?: expressions
	12.3.3.27 Anonymous method expressions
	12.3.3.28 Yield statements
	12.3.3.29 ?? expressions

	12.4 Variable references
	12.5 Atomicity of variable references

	13. Conversions
	13.1 Implicit conversions
	13.1.1 Identity conversion
	13.1.2 Implicit numeric conversions
	13.1.3 Implicit enumeration conversions
	13.1.4 Implicit reference conversions
	13.1.5 Boxing conversions
	13.1.6 Implicit type parameter conversions
	13.1.7 Implicit constant expression conversions
	13.1.8 User-defined implicit conversions

	13.2 Explicit conversions
	13.2.1 Explicit numeric conversions
	13.2.2 Explicit enumeration conversions
	13.2.3 Explicit reference conversions
	13.2.4 Unboxing conversions
	13.2.5 Explicit type parameter conversions
	13.2.6 User-defined explicit conversions

	13.3 Standard conversions
	13.3.1 Standard implicit conversions
	13.3.2 Standard explicit conversions

	13.4 User-defined conversions
	13.4.1 Permitted user-defined conversions
	13.4.2 Evaluation of user-defined conversions
	13.4.3 User-defined implicit conversions
	13.4.4 User-defined explicit conversions

	13.5 Anonymous method conversions
	13.6 Method group conversions
	13.7 Conversions involving nullable types
	13.7.1 Null type conversions
	13.7.2 Nullable conversions
	13.7.3 Lifted conversions

	14. Expressions
	14.1 Expression classifications
	14.1.1 Values of expressions

	14.2 Operators
	14.2.1 Operator precedence and associativity
	14.2.2 Operator overloading
	14.2.3 Unary operator overload resolution
	14.2.4 Binary operator overload resolution
	14.2.5 Candidate user-defined operators
	14.2.6 Numeric promotions
	14.2.6.1 Unary numeric promotions
	14.2.6.2 Binary numeric promotions

	14.2.7 Lifted operators

	14.3 Member lookup
	14.3.1 Base types

	14.4 Function members
	14.4.1 Argument lists
	14.4.2 Overload resolution
	14.4.2.1 Applicable function member
	14.4.2.2 Better function member
	14.4.2.3 Better conversion

	14.4.3 Function member invocation
	14.4.3.1 Invocations on boxed instances

	14.5 Primary expressions
	14.5.1 Literals
	14.5.2 Simple names
	14.5.2.1 Invariant meaning in blocks

	14.5.3 Parenthesized expressions
	14.5.4 Member access
	14.5.4.1 Identical simple names and type names

	14.5.5 Invocation expressions
	14.5.5.1 Method invocations
	14.5.5.2 Delegate invocations

	14.5.6 Element access
	14.5.6.1 Array access
	14.5.6.2 Indexer access

	14.5.7 This access
	14.5.8 Base access
	14.5.9 Postfix increment and decrement operators
	14.5.10 The new operator
	14.5.10.1 Object creation expressions
	14.5.10.2 Array creation expressions
	14.5.10.3 Delegate creation expressions

	14.5.11 The typeof operator
	14.5.12 The sizeof operator
	14.5.13 The checked and unchecked operators
	14.5.14 Default value expression
	14.5.15 Anonymous methods
	14.5.15.1 Anonymous method signatures
	14.5.15.2 Anonymous method blocks
	14.5.15.3 Outer variables
	14.5.15.3.1 Captured outer variables
	14.5.15.3.2 Instantiation of local variables

	14.5.15.4 Anonymous method evaluation
	14.5.15.5 Implementation example

	14.6 Unary expressions
	14.6.1 Unary plus operator
	14.6.2 Unary minus operator
	14.6.3 Logical negation operator
	14.6.4 Bitwise complement operator
	14.6.5 Prefix increment and decrement operators
	14.6.6 Cast expressions

	14.7 Arithmetic operators
	14.7.1 Multiplication operator
	14.7.2 Division operator
	14.7.3 Remainder operator
	14.7.4 Addition operator
	14.7.5 Subtraction operator

	14.8 Shift operators
	14.9 Relational and type-testing operators
	14.9.1 Integer comparison operators
	14.9.2 Floating-point comparison operators
	14.9.3 Decimal comparison operators
	14.9.4 Boolean equality operators
	14.9.5 Enumeration comparison operators
	14.9.6 Reference type equality operators
	14.9.7 String equality operators
	14.9.8 Delegate equality operators
	14.9.9 Equality operators and null
	14.9.10 is operator
	14.9.11 as operator

	14.10 Logical operators
	14.10.1 Integer logical operators
	14.10.2 Enumeration logical operators
	14.10.3 Boolean logical operators
	14.10.4 The bool? logical operators

	14.11 Conditional logical operators
	14.11.1 Boolean conditional logical operators
	14.11.2 User-defined conditional logical operators

	14.12 The null coalescing operator
	14.13 Conditional operator
	14.14 Assignment operators
	14.14.1 Simple assignment
	14.14.2 Compound assignment
	14.14.3 Event assignment

	14.15 Expression
	14.16 Constant expressions
	14.17 Boolean expressions

	15. Statements
	15.1 End points and reachability
	15.2 Blocks
	15.2.1 Statement lists

	15.3 The empty statement
	15.4 Labeled statements
	15.5 Declaration statements
	15.5.1 Local variable declarations
	15.5.2 Local constant declarations

	15.6 Expression statements
	15.7 Selection statements
	15.7.1 The if statement
	15.7.2 The switch statement

	15.8 Iteration statements
	15.8.1 The while statement
	15.8.2 The do statement
	15.8.3 The for statement
	15.8.4 The foreach statement

	15.9 Jump statements
	15.9.1 The break statement
	15.9.2 The continue statement
	15.9.3 The goto statement
	15.9.4 The return statement
	15.9.5 The throw statement

	15.10 The try statement
	15.11 The checked and unchecked statements
	15.12 The lock statement
	15.13 The using statement
	15.14 The yield statement

	16. Namespaces
	16.1 Compilation units
	16.2 Namespace declarations
	16.3 Extern alias directives
	16.4 Using directives
	16.4.1 Using alias directives
	16.4.2 Using namespace directives

	16.5 Namespace members
	16.6 Type declarations
	16.7 Qualified alias member

	17. Classes
	17.1 Class declarations
	17.1.1 Class modifiers
	17.1.1.1 Abstract classes
	17.1.1.2 Sealed classes
	17.1.1.3 Static classes

	17.1.2 Class base specification
	17.1.2.1 Base classes
	17.1.2.2 Interface implementations

	17.1.3 Class body
	17.1.4 Partial declarations

	17.2 Class members
	17.2.1 Inheritance
	17.2.2 The new modifier
	17.2.3 Access modifiers
	17.2.4 Constituent types
	17.2.5 Static and instance members
	17.2.6 Nested types
	17.2.6.1 Fully qualified name
	17.2.6.2 Declared accessibility
	17.2.6.3 Hiding
	17.2.6.4 this access
	17.2.6.5 Access to private and protected members of the containing type

	17.2.7 Reserved member names
	17.2.7.1 Member names reserved for properties
	17.2.7.2 Member names reserved for events
	17.2.7.3 Member names reserved for indexers
	17.2.7.4 Member names reserved for finalizers

	17.3 Constants
	17.4 Fields
	17.4.1 Static and instance fields
	17.4.2 Readonly fields
	17.4.2.1 Using static readonly fields for constants
	17.4.2.2 Versioning of constants and static readonly fields

	17.4.3 Volatile fields
	17.4.4 Field initialization
	17.4.5 Variable initializers
	17.4.5.1 Static field initialization
	17.4.5.2 Instance field initialization

	17.5 Methods
	17.5.1 Method parameters
	17.5.1.1 Value parameters
	17.5.1.2 Reference parameters
	17.5.1.3 Output parameters
	17.5.1.4 Parameter arrays

	17.5.2 Static and instance methods
	17.5.3 Virtual methods
	17.5.4 Override methods
	17.5.5 Sealed methods
	17.5.6 Abstract methods
	17.5.7 External methods
	17.5.8 Method body
	17.5.9 Method overloading

	17.6 Properties
	17.6.1 Static and instance properties
	17.6.2 Accessors
	17.6.3 Virtual, sealed, override, and abstract accessors

	17.7 Events
	17.7.1 Field-like events
	17.7.2 Event accessors
	17.7.3 Static and instance events
	17.7.4 Virtual, sealed, override, and abstract accessors

	17.8 Indexers
	17.8.1 Indexer overloading

	17.9 Operators
	17.9.1 Unary operators
	17.9.2 Binary operators
	17.9.3 Conversion operators

	17.10 Instance constructors
	17.10.1 Constructor initializers
	17.10.2 Instance variable initializers
	17.10.3 Constructor execution
	17.10.4 Default constructors
	17.10.5 Private constructors
	17.10.6 Optional instance constructor parameters

	17.11 Static constructors
	17.12 Finalizers

	18. Structs
	18.1 Struct declarations
	18.1.1 Struct modifiers
	18.1.2 Struct interfaces
	18.1.3 Struct body

	18.2 Struct members
	18.3 Class and struct differences
	18.3.1 Value semantics
	18.3.2 Inheritance
	18.3.3 Assignment
	18.3.4 Default values
	18.3.5 Boxing and unboxing
	18.3.6 Meaning of this
	18.3.7 Field initializers
	18.3.8 Constructors
	18.3.9 Finalizers
	18.3.10 Static constructors

	19. Arrays
	19.1 Array types
	19.1.1 The System.Array type

	19.2 Array creation
	19.3 Array element access
	19.4 Array members
	19.5 Array covariance
	19.6 Arrays and the generic IList interface
	19.7 Array initializers

	20. Interfaces
	20.1 Interface declarations
	20.1.1 Interface modifiers
	20.1.2 Base interfaces
	20.1.3 Interface body

	20.2 Interface members
	20.2.1 Interface methods
	20.2.2 Interface properties
	20.2.3 Interface events
	20.2.4 Interface indexers
	20.2.5 Interface member access

	20.3 Fully qualified interface member names
	20.4 Interface implementations
	20.4.1 Explicit interface member implementations
	20.4.2 Interface mapping
	20.4.3 Interface implementation inheritance
	20.4.4 Interface re-implementation
	20.4.5 Abstract classes and interfaces

	21. Enums
	21.1 Enum declarations
	21.2 Enum modifiers
	21.3 Enum members
	21.4 The System.Enum type
	21.5 Enum values and operations

	22. Delegates
	22.1 Delegate declarations
	22.2 Delegate instantiation
	22.3 Delegate invocation

	23. Exceptions
	23.1 Causes of exceptions
	23.2 The System.Exception class
	23.3 How exceptions are handled
	23.4 Common exception classes

	24. Attributes
	24.1 Attribute classes
	24.1.1 Attribute usage
	24.1.2 Positional and named parameters
	24.1.3 Attribute parameter types

	24.2 Attribute specification
	24.3 Attribute instances
	24.3.1 Compilation of an attribute
	24.3.2 Run-time retrieval of an attribute instance

	24.4 Reserved attributes
	24.4.1 The AttributeUsage attribute
	24.4.2 The Conditional attribute
	24.4.2.1 Conditional methods
	24.4.2.2 Conditional attribute classes

	24.4.3 The Obsolete attribute

	25. Generics
	25.1 Generic class declarations
	25.1.1 Type parameters
	25.1.2 The instance type
	25.1.3 Members of generic classes
	25.1.4 Static fields in generic classes
	25.1.5 Static constructors in generic classes
	25.1.6 Accessing protected members
	25.1.7 Overloading in generic classes
	25.1.8 Parameter array methods and type parameters
	25.1.9 Overriding and generic classes
	25.1.10 Operators in generic classes
	25.1.11 Nested types in generic classes

	25.2 Generic struct declarations
	25.3 Generic interface declarations
	25.3.1 Uniqueness of implemented interfaces
	25.3.2 Explicit interface member implementations

	25.4 Generic delegate declarations
	25.5 Constructed types
	25.5.1 Type arguments
	25.5.2 Open and closed types
	25.5.3 Base classes and interfaces of a constructed type
	25.5.4 Members of a constructed type
	25.5.5 Accessibility of a constructed type
	25.5.6 Conversions
	25.5.7 Using alias directives

	25.6 Generic methods
	25.6.1 Generic method signatures
	25.6.2 Virtual generic methods
	25.6.3 Calling generic methods
	25.6.4 Inference of type arguments
	25.6.5 Using a generic method with a delegate
	25.6.6 No generic properties, events, indexers, operators, constructors, or finalizers

	25.7 Constraints
	25.7.1 Satisfying constraints
	25.7.2 Member lookup on type parameters
	25.7.3 Type parameters and boxing
	25.7.4 Conversions involving type parameters

	26. Iterators
	26.1 Iterator blocks
	26.1.1 Enumerator interfaces
	26.1.2 Enumerable interfaces
	26.1.3 Yield type
	26.1.4 This access

	26.2 Enumerator objects
	26.2.1 The MoveNext method
	26.2.2 The Current property
	26.2.3 The Dispose method

	26.3 Enumerable objects
	26.3.1 The GetEnumerator method

	26.4 Implementation example

	27. Unsafe code
	27.1 Unsafe contexts
	27.2 Pointer types
	27.3 Fixed and moveable variables
	27.4 Pointer conversions
	27.5 Pointers in expressions
	27.5.1 Pointer indirection
	27.5.2 Pointer member access
	27.5.3 Pointer element access
	27.5.4 The address-of operator
	27.5.5 Pointer increment and decrement
	27.5.6 Pointer arithmetic
	27.5.7 Pointer comparison
	27.5.8 The sizeof operator

	27.6 The fixed statement
	27.7 Stack allocation
	27.8 Dynamic memory allocation

