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Foreword

Foreword

This specification replaces ECMA-334:2006. Changes from the previous edition include the following:

e Addition of

Anonymous types
Lambda expressions
Expression trees

Extension methods
Query expressions
Optional parameters
Named arguments
Generic variance
Dynamic binding
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Caller-info attributes

e Removal of

o concept of a null type

e Integration of

o nullable value types

o generic types and functions

o iterators

default and hidden options on the #11ne preprocessing directive
Fixed-size buffers in unsafe code

Automatically implemented properties

Implicitly typed local variables and arrays

Object and collection initializers

Improved type inference

Asynchronous functions
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Introduction

This specification is based on a submission from Hewlett-Packard, Intel, and Microsoft, that described a
language called C#, which was developed within Microsoft. The principal inventors of this language were
Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The first widely distributed implementation of C# was
released by Microsoft in July 2000, as part of its .NET Framework initiative.

Ecma Technical Committee 39 (TC39) Task Group 2 (TG2) was formed in September 2000, to produce a
standard for C#. Another Task Group, TG3, was also formed at that time to produce a standard for a library
and execution environment called Common Language Infrastructure (CLI). (CLI is based on a subset of the
.NET Framework.) Although Microsoft’s implementation of C# relies on CLI for library and run-time
support, other implementations of C# need not, provided they support an alternate way of getting at the
minimum CLI features required by this C# standard (see Annex C).

As the definition of C# evolved, the goals used in its design were as follows:

e (C#isintended to be a simple, modern, general-purpose, object-oriented programming language.

e The language, and implementations thereof, should provide support for software engineering
principles such as strong type checking, array bounds checking, detection of attempts to use
uninitialized variables, and automatic garbage collection. Software robustness, durability, and
programmer productivity are important.

e The language is intended for use in developing software components suitable for deployment in
distributed environments.

e Source code portability is very important, as is programmer portability, especially for those
programmers already familiar with C and C++.

e Support for internationalization is very important.

e CHisintended to be suitable for writing applications for both hosted and embedded systems, ranging
from the very large that use sophisticated operating systems, down to the very small having dedicated
functions.

e Although C# applications are intended to be economical with regard to memory and processing power
requirements, the language was not intended to compete directly on performance and size with C or
assembly language.

XX



1 Scope

1. Scope

This specification describes the form and establishes the interpretation of programs written in the
C# programming language. It describes

The representation of C# programs;

The syntax and constraints of the C# language;

The semantic rules for interpreting C# programs;

The restrictions and limits imposed by a conforming implementation of C#.

This specification does not describe

e The mechanism by which C# programs are transformed for use by a data-processing system;

e The mechanism by which C# applications are invoked for use by a data-processing system;

e The mechanism by which input data are transformed for use by a C# application;

e The mechanism by which output data are transformed after being produced by a C# application;

e The size or complexity of a program and its data that will exceed the capacity of any specific data-
processing system or the capacity of a particular processor;

e All minimal requirements of a data-processing system that is capable of supporting a conforming
implementation.






2 Conformance

2. Conformance

Conformance is of interest to the following audiences:

Those designing, implementing, or maintaining C# implementations.
Governmental or commercial entities wishing to procure C# implementations.
Testing organizations wishing to provide a C# conformance test suite.
Programmers wishing to port code from one C# implementation to another.

e Educators wishing to teach Standard CH.

e Authors wanting to write about Standard C#.

As such, conformance is most important, and the bulk of this specification is aimed at specifying the
characteristics that make C# implementations and C# programs conforming ones.

The text in this specification that specifies requirements is considered normative. All other text in this
specification is informative; that is, for information purposes only. Unless stated otherwise, all text is
normative. Normative text is further broken into required and conditional categories. Conditionally
normative text specifies a feature and its requirements where the feature is optional. However, if that
feature is provided, its syntax and semantics shall be exactly as specified.

Undefined behavior is indicated in this specification only by the words “undefined behavior.”

A strictly conforming program shall use only those features of the language specified in this specification
as being required. (This means that a strictly conforming program cannot use any conditionally normative
feature.) It shall not produce output dependent on any unspecified, undefined, or implementation-defined
behavior.

A conforming implementation of C# shall accept any strictly conforming program.

A conforming implementation of C# shall provide and support all the types, values, objects, properties,
methods, and program syntax and semantics described in the normative (but not the conditionally
normative) parts in this specification.

A conforming implementation of C# shall interpret characters in conformance with the Unicode Standard.
Conforming implementations shall accept Unicode source files encoded with the UTF-8 encoding form.

A conforming implementation of C# shall not successfully translate source containing a #error
preprocessing directive unless it is part of a group skipped by conditional compilation.

A conforming implementation of C# shall produce at least one diagnostic message if the source program
violates any rule of syntax, or any negative requirement (defined as a “shall” or “shall not” or “error” or
“warning” requirement), unless that requirement is marked with the words “no diagnostic is required”.

A conforming implementation of C# is permitted to provide additional types, values, objects, properties,
and methods beyond those described in this specification, provided they do not alter the behavior of any
strictly conforming program. Conforming implementations are required to diagnose programs that use
extensions that are ill formed according to this specification. Having done so, however, they can compile
and execute such programs. (The ability to have extensions implies that a conforming implementation
reserves no identifiers other than those explicitly reserved in this specification.)

A conforming implementation of C# shall be accompanied by a document that defines all implementation-
defined characteristics, and all extensions.

A conforming implementation of C# shall support the class library documented in Annex C. This library is
included by reference in this specification.
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A conforming program is one that is acceptable to a conforming implementation. (Such a program is
permitted to contain extensions or conditionally normative features.)



3 Normative references

3. Normative references

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of
these publications do not apply. However, parties to agreements based on this specification are
encouraged to investigate the possibility of applying the most recent editions of the normative documents
indicated below. For undated references, the latest edition of the normative document referred to applies.
Members of ISO and IEC maintain registers of currently valid specifications.

ISO/IEC 23271:2012, Common Language Infrastructure (CLI), Partition IV: Base Class Library (BCL), Extended
Numerics Library, and Extended Array Library.

ISO 31.11:1992, Quantities and units — Part 11: Mathematical signs and symbols for use in the physical
sciences and technology.

ISO/IEC 2382.1:1993, Information technology — Vocabulary — Part 1: Fundamental terms.
ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS).

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated IEC
559:1989). (This standard is widely known by its U.S. national designation, ANSI/IEEE Standard 754-1985,
IEEE Standard for Binary Floating-Point Arithmetic.)

The Unicode Consortium. The Unicode Standard, http://www.unicode.org/standard/standard.html


http://www.unicode.org/standard/standard.html




4 Terms and definitions

4. Terms and definitions

For the purposes of this specification, the following definitions apply. Other terms are defined where they
appear in italic type or on the left side of a syntax rule. Terms explicitly defined in this specification are not
to be presumed to refer implicitly to similar terms defined elsewhere. Terms not defined in this
specification are to be interpreted according to ISO/IEC 2382.1. Mathematical symbols not defined in this
specification are to be interpreted according to ISO 31.11.

4.1
application
assembly with an entry point

4.2
application domain
entity that enables application isolation by acting as a container for application state

4.3

argument

expression in the comma-separated list bounded by the parentheses in a method or instance constructor
call expression or bounded by the square brackets in an element access expression

4.4
assembly
one or more files output by the compiler as a result of program compilation

4.5
behavior
external appearance or action

4.6
behavior, implementation-defined
unspecified behavior where each implementation documents how the choice is made

4.7

behavior, undefined

behavior, upon use of a non-portable or erroneous construct or of erroneous data, for which this
specification imposes no requirements

4.8

behavior, unspecified

behavior where this specification provides two or more possibilities and imposes no further requirements
on which is chosen in any instance

4.9
character (when used without a qualifier)
a) In the context of a non-Unicode encoding — the meaning of character in that encoding; or

b) In the context of a character literal or a value of type char —a Unicode code point in the range U+0000
to U+FFFF (including surrogate code points), that is a UTF-16 code unit; or

c) Otherwise — a Unicode code point
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4.10
class library
assembly that can be used by other assemblies

411
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

4.12
error, compile-time
error reported during program translation

4.13
exception
exceptional condition reported during program execution

4.14

implementation

particular set of software (running in a particular translation environment under particular control options)
that performs translation of programs for, and supports execution of methods in, a particular execution
environment

4.15
namespace
logical organizational system grouping related program elements

4.16

parameter

variable declared as part of a method, instance constructor, operator, or indexer definition, which acquires
a value on entry to that function member

4.17
program
one or more source files that are presented to the compiler

4.18
program, valid
C# program constructed according to the syntax rules and diagnosable semantic rules

4.19
program instantiation
execution of an application

4.20
source file
ordered sequence of Unicode characters

4.21

unsafe code

code that is permitted to perform such lower-level operations as declaring and operating on pointers,
performing conversions between pointers and integral types, and taking the address of variables

4.22

warning, compile-time

informational message reported during program translation, which is intended to identify a potentially
guestionable usage of a program element



5 Acronyms and abbreviations

5. Acronyms and abbreviations

This clause is informative.

The following acronyms and abbreviations are used throughout this specification

BCL — Base Class Library, which provides types to represent the built-in data types of the CLI, simple file
access, custom attributes, security attributes, string manipulation, formatting, streams, and collections.

CLI — Common Language Infrastructure

CLS — Common Language Specification

IEC — the International Electrotechnical Commission

IEEE — the Institute of Electrical and Electronics Engineers

ISO — the International Organization for Standardization

The name C# is pronounced “C Sharp”.

The name C# is written as the LATIN CAPITAL LETTER C (U+0043) followed by the NUMBER SIGN # (U+0023).

The following types appear throughout this specification. The full names of those types, including the
global namespace qualifier are listed below for reference. Throughout this specification, these types will
appear as the fully qualified name, omitting the g1obal namespace qualifier, or as a simple unqualified
type name, omitting the namespace. For example, the type ICol11ection<T>, when used in this
specification, always means the type global: :System.Collections.Generic.ICollection<T>.

global::System.Action
global::System.ArgumentException
global::System.ArithmeticException
global::System.Array
global::System.ArrayTypeMisMatchException
global::System.Attribute
global::System.AttributeTargets
global::System.AttributeUsageAttribute
global::System.Boolean

global::System.Byte

global::System.Char
global::System.Collections.Generic.ICollection<T>
global::System.Collections.Generic.IEnumerable<T>
global::System.Collections.Generic.IEnumerator<T>
global::System.Collections.Generic.IList<T>
global::System.Collections.Generic.IReadonlyCollection<out T>
global::System.Collections.Generic.IReadOnlyList<out T>
global::System.Collections.IColTection
global::System.Collections.IEnumerable
global::Ssystem.Collections.IList
global::System.Collections.IEnumerator
global::System.Decimal
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End of informative text.
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global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:
global:

:System.
:System
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System
:System.
:System.
:System
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System
:System.
:System.
:System.
:System.
:System.
:System.
:System.
:System
:System.
:System.
:System.

Delegate

.Diagnostics.ConditionalAttribute

DivideByzZeroException
Double

Enum

Exception

GC

ICollection
IDisposable

.IEnumerable

IEnumerable<out T>
IList

.IndexoutOfRangeException

Intl6

Int32

Int64

IntPtr
InvalidCastException
InvalidOperationException
Ling.Expressions.Expression<TDelegate>
MemberInfo
NotSupportedException
Nullable<T>
NullReferenceException
Object

ObsoleteAttribute
outofMemoryException
overflowException

.Runtime.CompilerServices.CallerFileAttribute

Runtime.CompilerServices.CallerLineNumberAttribute
Runtime.CompilerServices.CallerMemberNameAttribute
Runtime.CompilerServices.ICriticalNotifyCompletion
Runtime.CompilerServices.IndexerNameAttribute
Runtime.CompilerServices.INotifyCompletion
Runtime.CompilerServices.TaskAwaiter
Runtime.CompilerServices.TaskAwaiter<T>

SByte

Single

StackoverflowException

.String

SystemException
Threading.Monitor
Threading.Tasks.Task
Threading.Tasks.Task<TResult>
Type
TypeInializationException
uIntle

.UInt32

UInt64
UIntPtr
valueType



6 General description

6. General description

This text is informative.

This specification is intended to be used by implementers, academics, and application programmers. As
such, it contains a considerable amount of explanatory material that, strictly speaking, is not necessary in a
formal language specification.

This standard is divided into the following subdivisions:
1. Front matter (clauses 1-6);
2. The language syntax, constraints, and semantics (clauses 7-23);
3. Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to
refer to related clauses. Notes are provided to give advice or guidance to implementers or programmers.
Annexes provide additional information and summarize the information contained in this specification.

Clauses 1-4, part of Clause 6, Clauses 7-22, the beginning of Clause 23, and most of Annex D form a
normative part of this standard. With the exception of the beginning, all of Clause 23 is conditionally
normative. The Foreword, Introduction, Clause 5, part of Clause 6, Annexes A, B, C, part of Annexes D, E,
and F, notes, and examples are informative.

End of informative text.
Informative text is indicated in the following ways:

1. Whole or partial clauses or annexes delimited by “This clause/text is informative”and “End of
informative text”.

2. [Example: The following example ... code fragment, possibly with some narrative ... end example]
3. [Note: narrative ... end note]

All text not marked as being informative is normative.
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7 Lexical structure

7. Lexical structure

7.1 Programs

A C# program consists of one or more source files, known formally as compilation units (§14.2). A source
file is an ordered sequence of Unicode characters. Source files typically have a one-to-one correspondence
with files in a file system, but this correspondence is not required.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into
a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.
3. Syntactic analysis, which translates the stream of tokens into executable code.

Conforming implementations shall accept Unicode source files encoded with the UTF-8 encoding form (as
defined by the Unicode standard), and transform them into a sequence of Unicode characters.
Implementations can choose to accept and transform additional character encoding schemes (such as UTF-
16, UTF-32, or non-Unicode character mappings).

[Note: The handling of the Unicode NULL character (U+0000) is implementation-specific. It is strongly
recommended that developers avoid using this character in their source code, for the sake of both
portability and readability. When the character is required within a character or string literal, the escape
sequences \0 or \ueeee may be used instead. end note]

[Note: It is beyond the scope of this standard to define how a file using a character representation other
than Unicode might be transformed into a sequence of Unicode characters. During such transformation,
however, it is recommended that the usual line-separating character (or sequence) in the other character
set be translated to the two-character sequence consisting of the Unicode carriage-return character
(U+000D) followed by Unicode line-feed character (U+000A). For the most part this transformation will
have no visible effects; however, it will affect the interpretation of verbatim string literal tokens (§7.4.5.6).
The purpose of this recommendation is to allow a verbatim string literal to produce the same character
sequence when its source file is moved between systems that support differing non-Unicode character
sets, in particular, those using differing character sequences for line-separation. end note]

7.2 Grammars

7.2.1 General

This specification presents the syntax of the C# programming language using two grammars. The lexical
grammar (§7.2.2) defines how Unicode characters are combined to form line terminators, white space,
comments, tokens, and pre-processing directives. The syntactic grammar (§7.2.4) defines how the tokens
resulting from the lexical grammar are combined to form C# programs.

7.2.2 Grammar notation

The lexical and syntactic grammars are presented using grammar productions. Each grammar production
defines a non-terminal symbol and the possible expansions of that non-terminal symbol into sequences of
non-terminal or terminal symbols. In grammar productions, non-terminal symbols are shown in italic type,
and terminal symbols are shown in a fixed-width font.

The first line of a grammar production is the name of the non-terminal symbol being defined, followed by
one or two colons. One colon is used for a production in the syntactic grammar, two colons for a

13
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production in the lexical grammar. Each successive indented line contains a possible expansion of the non-
terminal given as a sequence of non-terminal or terminal symbols. [Example: The production:

while-statement:
while ( boolean-expression ) embedded-statement

defines a while-statement to consist of the token whiTe, followed by the token “(”, followed by a boolean-
expression, followed by the token “)”, followed by an embedded-statement. end example]

When there is more than one possible expansion of a non-terminal symbol, the alternatives are listed on
separate lines. [Example: The production:

statement-list:
statement
statement-list statement

defines a statement-list to either consist of a statement or consist of a statement-list followed by a
statement. In other words, the definition is recursive and specifies that a statement list consists of one or
more statements. end example]

A subscripted suffix “opt” is used to indicate an optional symbol. [Example: The production:

block:
{ statement-listop: }

is shorthand for:

block:
{1

{ statement-list }
and defines a block to consist of an optional statement-list enclosed in “{” and “}” tokens. end example]

Alternatives are normally listed on separate lines, though in cases where there are many alternatives, the
phrase “one of” may precede a list of expansions given on a single line. This is simply shorthand for listing
each of the alternatives on a separate line. [Example: The production:

real-type-suffix:: one of
F f D d M m

is shorthand for:

real-type-suffix::

S 200 -+hmT

end example]

All terminal characters are to be understood as the appropriate Unicode character from the range U+0020
to U+007F, as opposed to any similar-looking characters from other Unicode character ranges.
7.2.3 Lexical grammar

The lexical grammar of C# is presented in §7.3, §7.4, and §7.5. The terminal symbols of the lexical grammar
are the characters of the Unicode character set, and the lexical grammar specifies how characters are
combined to form tokens (§7.4), white space (§7.3.4), comments (§7.3.3), and pre-processing directives

(§7.5).

Every source file in a C# program shall conform to the input production of the lexical grammar (§7.3.1).

14



7 Lexical structure

7.2.4 Syntactic grammar

The syntactic grammar of C# is presented in the clauses, subclauses, and annexes that follow this
subclause. The terminal symbols of the syntactic grammar are the tokens defined by the lexical grammar,
and the syntactic grammar specifies how tokens are combined to form C# programs.

Every source file in a C# program shall conform to the compilation-unit production (§14.2) of the syntactic
grammar.

7.2.5 Grammar ambiguities
The productions for simple-name (§12.7.3) and member-access (§12.7.5) can give rise to ambiguities in the
grammar for expressions. [Example: The statement:
F(G<A, B>(7));
could be interpreted as a call to F with two arguments, G < A and B > (7). Alternatively, it could be

interpreted as a call to F with one argument, which is a call to a generic method G with two type
arguments and one regular argument. end example]

If a sequence of tokens can be parsed (in context) as a simple-name (§12.7.3), member-access (§12.7.5), or
pointer-member-access (§23.6.3) ending with a type-argument-list (§9.4.2), the token immediately
following the closing > token is examined. If it is one of

¢>) 1 = 5 5, . 7 = I=

then the type-argument-list is retained as part of the simple-name, member-access, or pointer-member-
access and any other possible parse of the sequence of tokens is discarded. Otherwise, the type-argument-
list is not considered part of the simple-name, member-access, or pointer-member-access, even if there is
no other possible parse of the sequence of tokens. [Note: These rules are not applied when parsing a type-
argument-list in a namespace-or-type-name (§8.8). end note] [Example: The statement:

F(G<A, B>(7));
will, according to this rule, be interpreted as a call to F with one argument, which is a call to a generic
method G with two type arguments and one regular argument. The statements

F(G<A, B>7);
F(G<A, B>>7);

will each be interpreted as a call to F with two arguments. The statement
X = F<A> + y;

will be interpreted as a less-than operator, greater-than operator and unary-plus operator, as if the
statement had been written x = (F < A) > (+4Y), instead of as a simple-name with a type-argument-
list followed by a binary-plus operator. In the statement

X =Yy is C<T> && z;

the tokens C<T> are interpreted as a namespace-or-type-name with a type-argument-list due to being on
the right-hand side of the is operator (§12.11.1). Because C<T> parses as a hamespace-or-type-name, not
a simple-name, member-access, or pointer-member-access, the above rule does not apply, and it is
considered to have a type-argument-list regardless of the token that follows. end example]

7.3 Lexical analysis
7.3.1 General

The input production defines the lexical structure of a C# source file. Each source file in a C# program shall
conform to this lexical grammar production.

input::
input-sectionopt

15
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input-section::
input-section-part
input-section input-section-part

input-section-part::
input-elements,,: new-line
pp-directive

input-elements::
input-element
input-elements input-element

input-element::
whitespace
comment
token

Five basic elements make up the lexical structure of a C# source file: Line terminators (§7.3.2), white space
(§7.3.4), comments (§7.3.3), tokens (§7.4), and pre-processing directives (§7.5). Of these basic elements,
only tokens are significant in the syntactic grammar of a C# program (§7.2.4), except in the case of a

> token being combined with another token to form a single operator (§7.4.6).

The lexical processing of a C# source file consists of reducing the file into a sequence of tokens that
becomes the input to the syntactic analysis. Line terminators, white space, and comments can serve to
separate tokens, and pre-processing directives can cause sections of the source file to be skipped, but
otherwise these lexical elements have no impact on the syntactic structure of a C# program.

When several lexical grammar productions match a sequence of characters in a source file, the lexical
processing always forms the longest possible lexical element. [Example: The character sequence // is
processed as the beginning of a single-line comment because that lexical element is longer than a single /
token. end example]

7.3.2 Line terminators

Line terminators divide the characters of a C# source file into lines.

new-line::
Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

For compatibility with source code editing tools that add end-of-file markers, and to enable a source file to
be viewed as a sequence of properly terminated lines, the following transformations are applied, in order,
to every source file in a CH# program:

o [f the last character of the source file is a Control-Z character (U+001A), this character is deleted.

e A carriage-return character (U+000D) is added to the end of the source file if that source file is non-
empty and if the last character of the source file is not a carriage return (U+000D), a line feed
(U+000A), a next line character (U+0085), a line separator (U+2028), or a paragraph separator
(U+2029). [Note: The additional carriage-return allows a program to end in a pp-directive (§7.5) that
does not have a terminating new-line. end note]

7.3.3 Comments

Two forms of comments are supported: delimited comments and single-line comments.

A delimited comment begins with the characters /* and ends with the characters */. Delimited comments
can occupy a portion of a line, a single line, or multiple lines. [Example: The example
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/% Hello, world program
This program writes “hello, world” to the console

class Hello

static void Main(Q) { )
System.Console.writeLine("hello, world");

}

includes a delimited comment. end example]

A single-line comment begins with the characters // and extends to the end of the line. [Example: The
example

// Hello, world program
// This program writes “hello, world” to the console

class Hello // any name will do for this class

static void Main() { // this method must be named "Main"
System.Console.writeLine("hello, world");

}

shows several single-line comments. end example]

comment::
single-line-comment
delimited-comment

single-line-comment::
// input-charactersop:

input-characters::
input-character
input-characters input-character

input-character::
Any Unicode character except a new-line-character

new-line-character::
Carriage return character (U+000D)
Line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

delimited-comment::
/% delimited-comment-textop,: asterisks /

delimited-comment-text::
delimited-comment-section
delimited-comment-text delimited-comment-section

delimited-comment-section::

/

asterisksqp: not-slash-or-asterisk

asterisks::

asterisks

not-slash-or-asterisk::
Any Unicode character except / or *
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Comments do not nest. The character sequences /* and */ have no special meaning within a single-line
comment, and the character sequences // and /* have no special meaning within a delimited comment.

Comments are not processed within character and string literals.

[Note: These rules must be interpreted carefully. For instance, in the example below, the delimited
comment that begins before A ends between B and C(). The reason is that

// B */ CQO;

is not actually a single-line comment, since // has no special meaning within a delimited comment, and so
*/ does have its usual special meaning in that line.

Likewise, the delimited comment starting before D ends before E. The reason is that "D */ " is not
actually a string literal, since it appears inside a delimited comment.

A useful consequence of /* and */ having no special meaning within a single-line comment is that a block
of source code lines can be commented out by putting // at the beginning of each line. In general it does
not work to put /* before those lines and */ after them, as this does not properly encapsulate delimited

comments in the block, and in general may completely change the structure of such delimited comments.

Example code:
static void Main(Q) {
/% A
// B */ CQ;
console.writeLine(/* "D */ "E");
3

end note]

7.3.4 White space

White space is defined as any character with Unicode class Zs (which includes the space character) as well
as the horizontal tab character, the vertical tab character, and the form feed character.

whitespace::
whitespace-character
whitespace whitespace-character

whitespace-character::
Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertical tab character (U+000B)
Form feed character (U+000C)

7.4 Tokens
7.4.1 General

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space
and comments are not tokens, though they act as separators for tokens.

token::
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator
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7.4.2 Unicode character escape sequences

A Unicode escape sequence represents a Unicode code point. Unicode escape sequences are processed in
identifiers (§7.4.3), character literals (§7.4.5.5), and regular string literals (§7.4.5.6). A Unicode escape
sequence is not processed in any other location (for example, to form an operator, punctuator, or
keyword).

unicode-escape-sequence::
\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

A Unicode character escape sequence represents the single Unicode code point formed by the
hexadecimal number following the “\u” or “\U” characters. Since C# uses a 16-bit encoding of Unicode
code points in character and string values, a Unicode code point in the range U+10000 to U+10FFFF is
represented using two Unicode surrogate code units. Unicode code points above U+FFFF are not permitted
in character literals. Unicode code points above U+10FFFF are invalid and are not supported.

Multiple translations are not performed. For instance, the string literal “\u005Cu005C” is equivalent to
“\u005c” rather than “\”. [Note: The Unicode value \u005C is the character “\". end note]

[Example: The example

class Classl

static void Test(bool \u0066) {
char ¢ = '"\u0066"';
if (\u0066)
) System.Console.WriteLine(c.ToString());
}

shows several uses of \u0066, which is the escape sequence for the letter “f”. The program is equivalent
to

class Classl

static void Test(bool f) {

char c = 'f'
if (f)
) System.Console.wWriteLine(c.ToString());
3
end example]

7.4.3 |dentifiers

The rules for identifiers given in this subclause correspond exactly to those recommended by the Unicode
Standard Annex 15 except that underscore is allowed as an initial character (as is traditional in the
C programming language), Unicode escape sequences are permitted in identifiers, and the “@” character is
allowed as a prefix to enable keywords to be used as identifiers.
identifier::
available-identifier
@ identifier-or-keyword

available-identifier::

An identifier-or-keyword that is not a keyword
identifier-or-keyword::

identifier-start-character identifier-part-charactersqp:
identifier-start-character::

letter-character
underscore-character
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underscore-character::
_ (the underscore character U+005F)
A unicode-escape-sequence representing the character U+005F

identifier-part-characters::
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character::
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character::
A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or NI
A unicode-escape-sequence representing a character of classes Lu, LI, Lt, Lm, Lo, or NI

combining-character::
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character::
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character::
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

formatting-character::
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

[Note: For information on the Unicode character classes mentioned above, see The Unicode Standard. end
note]

[Example: Examples of valid identifiers include “identifierl”, “_identifier2”, and “@if”. end
example]

An identifier in a conforming program shall be in the canonical format defined by Unicode Normalization
Form C, as defined by Unicode Standard Annex 15. The behavior when encountering an identifier not in
Normalization Form C is implementation-defined; however, a diagnostic is not required.

The prefix “@” enables the use of keywords as identifiers, which is useful when interfacing with other
programming languages. The character @ is not actually part of the identifier, so the identifier might be
seen in other languages as a normal identifier, without the prefix. An identifier with an @ prefix is called a
verbatim identifier. [Note: Use of the @ prefix for identifiers that are not keywords is permitted, but
strongly discouraged as a matter of style. end note]

[Example: The example:

class @class

public static void @static(bool @bool) {
if (@bool)
System.Console.WriteLine("true");
else
System.Console.WriteLine("false");
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class Classl

static void MO {
c1\u0061ss.st\u0061tic(true);

}

7 Lexical structure

defines a class named “cTass” with a static method named “static” that takes a parameter named
“booT”. Note that since Unicode escapes are not permitted in keywords, the token “cT1\u0061ss” is an
identifier, and is the same identifier as “@c1ass”. end example]

Two identifiers are considered the same if they are identical after the following transformations are

applied, in order:

e The prefix “@”, if used, is removed.
e Each unicode-escape-sequence is transformed into its corresponding Unicode character.
e Any formatting-characters are removed.

Identifiers containing two consecutive underscore characters (U+005F) are reserved for use by the
implementation; however, no diagnostic is required if such an identifier is defined. [Note: For example, an
implementation might provide extended keywords that begin with two underscores. end note]

7.4.4 Keywords

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier
except when prefaced by the @ character.

keyword:: one of
abstract
byte
class
delegate
event
fixed
if
internal
new
override
readonly
short
struct
try
unsafe
volatile

as
case
const

do
explicit
float
implicit
is

null
params
ref
sizeof
switch
typeof
ushort
while

base
catch
continue
double
extern
for

in

Tock
object
private
return
stackalloc
this
uint
using

bool
char
decimal
else
false
foreach
int

Tong
operator
protected
shyte
static
throw
ulong
virtual

break
checked
default
enum
finally
goto
interface
namespace
out
pubTic
sealed
string
true
unchecked
void

A contextual keyword is an identifier-like sequence of characters that has special meaning in certain
contexts, but is not reserved, and can be used as an identifier outside of those contexts as well as when

prefaced by the @ character.

contextual-keyword: one of the following identifiers

add
by

get
Tet
set

alias
descending
global
orderby
value

ascending
dynamic
group
partial
var

async
equals
into
remove
where

await
from
join
select
yield

In most cases, the syntactic location of contextual keywords is such that they can never be confused with

ordinary identifier usage. For example, within a property declaration, the “get” and “set” identifiers have
special meaning (§15.7.3). An identifier other than get or set is never permitted in these locations, so this
use does not conflict with a use of these words as identifiers.
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In certain cases the grammar is not enough to distinguish contextual keyword usage from identifiers. In all
such cases it will be specified how to disambiguate between the two. For example, the contextual keyword
var in implicitly typed local variable declarations (§13.6.2) might conflict with a declared type called var,
in which case the declared name takes precedence over the use of the identifier as a contextual keyword.

Another example such disambiguation is the contextual keyword await (§12.8.8.1), which is considered a
keyword only when inside a method declared async, but can be used as an identifier elsewhere.

Just as with keywords, contextual keywords can be used as ordinary identifiers by prefixing them with the

@ character.

[Note: When used as contextual keywords, these identifiers cannot contain unicode-escape-sequences.

end note].
7.4.5 Literals
7.4.5.1 General

A literal (§12.7.2) is a source code representation of a value.

literal::
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

7.4.5.2 Boolean literals
There are two Boolean literal values: true and false.

boolean-literal::
true
false

The type of a boolean-literal is booT.

7.4.5.3 Integer literals

Integer literals are used to write values of types int, uint, Tong, and ulong. Integer literals have two

possible forms: decimal and hexadecimal.

integer-literal::
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal::

decimal-digits integer-type-suffixopt
decimal-digits::

decimal-digit

decimal-digits decimal-digit
decimal-digit:: one of

01 2 3 45 6 7 8 9
integer-type-suffix:: one of

U u L T ur Ul wuL ul Lu
hexadecimal-integer-literal::

Ox hex-digits integer-type-suffixopt

0X hex-digits integer-type-suffixopt
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hex-digits::
hex-digit
hex-digits hex-digit
hex-digit:: one of
0 1 2 3 45 6 7 8 9 A B CDEF ab cde f

The type of an integer literal is determined as follows:

e If the literal has no suffix, it has the first of these types in which its value can be represented: int,
uint, Tong, ulong.

o If the literal is suffixed by U or u, it has the first of these types in which its value can be represented:
uint, ulong.

o If the literal is suffixed by L or 1, it has the first of these types in which its value can be represented:
Tong, ulong.

o [f the literal is suffixed by UL, U1, uL, uT, LU, Lu, TU, or 1u, it is of type ulong.

If the value represented by an integer literal is outside the range of the uTong type, a compile-time error
occurs.

[Note: As a matter of style, it is suggested that “L” be used instead of “1” when writing literals of type
Tong, since it is easy to confuse the letter “1” with the digit “1”. end note]

To permit the smallest possible int and Tong values to be written as integer literals, the following two
rules exist:

e When an integer-literal representing the value 2147483648 (23!) and no integer-type-suffix appears as
the token immediately following a unary minus operator token (§12.8.3), the result (of both tokens) is
a constant of type int with the value —2147483648 (-231). In all other situations, such an integer-literal
is of type uint.

e When an integer-literal representing the value 9223372036854775808 (2%%) and no integer-type-suffix
or the integer-type-suffix L or 1 appears as the token immediately following a unary minus operator
token (§12.8.3), the result (of both tokens) is a constant of type Tong with the value
-9223372036854775808 (-2%%). In all other situations, such an integer-literal is of type ulong.

7.4.5.4 Real literals
Real literals are used to write values of types float, double, and decimal.

real-literal::
decimal-digits . decimal-digits exponent-part.,: real-type-suffixopt
decimal-digits exponent-part.,: real-type-suffixopt
decimal-digits exponent-part real-type-suffixopt
decimal-digits real-type-suffix

exponent-part::
e signop: decimal-digits
E signo: decimal-digits

sign:: one of
+ -—

real-type-suffix:: one of
F f D d M m

If no real-type-suffix is specified, the type of the real-literal is doub1e. Otherwise, the real-type-suffix
determines the type of the real literal, as follows:

e Aveal literal suffixed by F or f is of type float. [Example: The literals 1f, 1.5f, 1e10f, and
123.456F are all of type float. end example]

23



ECMA-334

o Areal literal suffixed by D or d is of type double. [Example: The literals 1d, 1. 5d, 1e10d, and
123.456D are all of type double. end example]

e Areal literal suffixed by M or m is of type decimal. [Example: The literals 1m, 1.5m, 1e10m, and
123.456M are all of type decimal. end example] This literal is converted to a decimal value by
taking the exact value, and, if necessary, rounding to the nearest representable value using banker's
rounding (§9.3.8). Any scale apparent in the literal is preserved unless the value is rounded. [Note:
Hence, the literal 2.900m will be parsed to form the decimal with sign 0, coefficient 2900, and
scale 3. end note]

If the magnitude of the specified literal is too large to be represented in the indicated type, a compile-time
error occurs. [Note: In particular, a real-literal will never produce a floating-point infinity. A non-zero real-
literal may, however, be rounded to zero. end note]

The value of a real literal of type f1oat or double is determined by using the IEC 60559 “round to
nearest” mode with ties broken to “even” (a value with the least-significant-bit zero), and all digits
considered significant.

[Note: In a real literal, decimal digits are always required after the decimal point. For example, 1.3F isa
real literal but 1. F is not. end note]

7.4.5.5 Character literals
A character literal represents a single character, and consists of a character in quotes, asin "a"'.

character-literal.::
' character

character::
single-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-character::
Any character except ' (U+0027), \ (U+005C), and new-line-character

simple-escape-sequence:: one of

AN AN N0 \a \b \f A\n \r \t \v
hexadecimal-escape-sequence::
\X hex-digit hex-digito,,: hex-digito,p: hex-digitop:
[Note: A character that follows a backslash character (\) in a character shall be one of the following
characters: ', ", \,0,a,b, f,n, r, t, u, U, X, v. Otherwise, a compile-time error occurs. end note]
[Note: The use of the \x hexadecimal-escape-sequence production can be error-prone and hard to read
due to the variable number of hexadecimal digits following the \x. For example, in the code:
string good = "\x9Good text";
string bad = "\x9Bad text";

it might appear at first that the leading character is the same (U+0009, a tab character) in both strings. In
fact the second string starts with U+9BAD as all three letters in the word "Bad" are valid hexadecimal digits.
As a matter of style, it is recommended that \x is avoided in favour of either specific escape sequences (\t
in this example) or the fixed-length \u escape sequence. end note]

A hexadecimal escape sequence represents a single Unicode UTF-16 code unit, with the value formed by
the hexadecimal number following “\x”.

If the value represented by a character literal is greater than U+FFFF, a compile-time error occurs.

A Unicode escape sequence (§7.4.2) in a character literal shall be in the range U+0000 to U+FFFF.
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A simple escape sequence represents a Unicode character, as described in the table below.

Escape Character name | Unicode code
sequence point
\' Single quote u+0027
\" Double quote U+0022
\\ Backslash U+005C
\O Null u+0000
\a Alert u+0007
\b Backspace U+0008
\f Form feed U+000C
\n New line u+000A
\r Carriage return | U+000D
\t Horizontal tab u+0009
\v Vertical tab u+0008

The type of a character-literal is char.

7.4.5.6 String literals

C# supports two forms of string literals: regular string literals and verbatim string literals. A regular string
literal consists of zero or more characters enclosed in double quotes, as in "hel10", and can include both

simple escape sequences (such as \t for the tab character), and hexadecimal and Unicode escape

sequences.

A verbatim string literal consists of an @ character followed by a double-quote character, zero or more

characters, and a closing double-quote character. [Example: A simple example is @'hel10". end example]

In a verbatim string literal, the characters between the delimiters are interpreted verbatim, with the only
exception being a quote-escape-sequence, which represents one double-quote character. In particular,

simple escape sequences, and hexadecimal and Unicode escape sequences are not processed in verbatim

string literals. A verbatim string literal may span multiple lines.

string-literal::
regular-string-literal
verbatim-string-literal

regular-string-literal::
" regular-string-literal-characters,p:

regular-string-literal-characters::
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

regular-string-literal-character::
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-regular-string-literal-character::
Any character except "' (U+0022), \ (U+005C), and new-line-character
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verbatim-string-literal::
@" verbatim-string-literal-charactersq,: "

verbatim-string-literal-characters::
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character::
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character::
Any character except "

quote-escape-sequence::

[Example: The example

string a = "Happy birthday, Joel"; // Happy birthday, Joel
string b = @"Happy birthday, Joel"; // Happy birthday, Joel
string c = "hello \t world"; // hello world

string d = @"hello \t world"; // hello \t world

string e = "Joe said \"Hello\" to me"; // Joe said "Hello" to me
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello" to me
string g = "\\\\server\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file.txt"; // \\server\share\file.txt
string i = "one\r\ntwo\r\nthree";

string j = @"one

two

three";

shows a variety of string literals. The last string literal, j, is a verbatim string literal that spans multiple
lines. The characters between the quotation marks, including white space such as new line characters, are
preserved verbatim, and each pair of double-quote characters is replaced by one such character. end
example]

[Note: Any line breaks within verbatim string literals are part of the resulting string. If the exact characters
used to form line breaks are semantically relevant to an application, any tools that translate line breaks in
source code to different formats (between "\n" and "\r\n", for example) will change application behavior.
Developers should be careful in such situations. end note]

[Note: Since a hexadecimal escape sequence can have a variable number of hex digits, the string literal
"\x123" contains a single character with hex value 123. To create a string containing the character with
hex value 12 followed by the character 3, one could write "\x00123" or "\x12" + "3" instead. end
note]

The type of a string-literal is string.

Each string literal does not necessarily result in a new string instance. When two or more string literals that
are equivalent according to the string equality operator (§12.11.8), appear in the same assembly, these
string literals refer to the same string instance. [Example: For instance, the output produced by

class Test
static void Main() {
object a = "hello";

object b = "hello";
System.Console.WriteLine(a == b);

}

is True because the two literals refer to the same string instance. end example]
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7.4.5.7 The null literal

null-literal::
null

A null-literal represents a null value. It does not have a type, but can be converted to any reference type or
nullable value type through a null literal conversion (§11.2.6)."

7.4.6 Operators and punctuators

There are several kinds of operators and punctuators. Operators are used in expressions to describe
operations involving one or more operands. [Example: The expression a + b uses the + operator to add
the two operands a and b. end example] Punctuators are for grouping and separating.

operator-or-punctuator:: one of

{ } L ] ( ) . , : ;

+ - * / % & | A ! ~
= < > ? ?7? - ++ -- && | ]
-> == 1= <= >= += -= *= = %=
&= |= A= << <<=

right-shift::
> >

right-shift-assignment::
> >=

right-shift is made up of the two tokens > and >. Similarly, right-shift-assignment is made up of the two
tokens > and >=. Unlike other productions in the syntactic grammar, no characters of any kind (not even
whitespace) are allowed between the two tokens in each of these productions. These productions are
treated specially in order to enable the correct handling of type-parameter-lists (§15.2.3). [Note: Prior to
the addition of generics to C#, >> and >>= were both single tokens. However, the syntax for generics uses
the < and > characters to delimit type parameters and type arguments. It is often desirable to use nested
constructed types, such as List<Dictionary<string, int>>.Rather than requiring the programmer
to separate the > and > by a space, the definition of the two operator-or-punctuators was changed. end
note]

7.5 Pre-processing directives

7.5.1 General

The pre-processing directives provide the ability to skip conditionally sections of source files, to report
error and warning conditions, and to delineate distinct regions of source code. [Note: The term “pre-
processing directives” is used only for consistency with the C and C++ programming languages. In C#, there
is no separate pre-processing step; pre-processing directives are processed as part of the lexical analysis
phase. end note]

pp-directive::
pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region
pp-pragma

The following pre-processing directives are available:

o #define and #undef, which are used to define and undefine, respectively, conditional compilation
symbols (§7.5.4).
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o #if, #elif, #else, and #endi f, which are used to skip conditionally sections of source code (§7.5.5).
#11ine, which is used to control line numbers emitted for errors and warnings (§7.5.8).

#error, which is used to issue errors (§7.5.6).

e #region and #endregion, which are used to explicitly mark sections of source code (§7.5.7).

e #pragma, which is used to specify optional contextual information to a compiler (§7.5.9).

A pre-processing directive always occupies a separate line of source code and always begins with a
# character and a pre-processing directive name. White space may occur before the # character and
between the # character and the directive name.

A source line containing a #define, #undef, #if, #elif, #else, #endif, #11ine, or #endregion
directive can end with a single-line comment. Delimited comments (the /* */ style of comments) are not
permitted on source lines containing pre-processing directives.

Pre-processing directives are not tokens and are not part of the syntactic grammar of C#. However, pre-
processing directives can be used to include or exclude sequences of tokens and can in that way affect the
meaning of a C# program. [Example: When compiled, the program

#define A
#undef B

class C

#if A

void FO {}
#else

void GO {}
#endif

#if B
void HO {}
#else

void 1) {}
#endif

}

results in the exact same sequence of tokens as the program
class C

Thus, whereas lexically, the two programs are quite different, syntactically, they are identical. end
example]

7.5.2 Conditional compilation symbols

The conditional compilation functionality provided by the #i f, #e11if, #else, and #endi f directives is
controlled through pre-processing expressions (§7.5.3) and conditional compilation symbols.

conditional-symbol.::
Any identifier-or-keyword except true or false

Two conditional compilation symbols are considered the same if they are identical after the following
transformations are applied, in order:

e Each unicode-escape-sequence is transformed into its corresponding Unicode character.
e Any formatting-characters are removed.

A conditional compilation symbol has two possible states: defined or undefined. At the beginning of the
lexical processing of a source file, a conditional compilation symbol is undefined unless it has been
explicitly defined by an external mechanism (such as a command-line compiler option). When a #define
directive is processed, the conditional compilation symbol named in that directive becomes defined in that
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source file. The symbol remains defined until a #undef directive for that same symbol is processed, or
until the end of the source file is reached. An implication of this is that #define and #undef directives in
one source file have no effect on other source files in the same program.

When referenced in a pre-processing expression (§7.5.3), a defined conditional compilation symbol has the
Boolean value true, and an undefined conditional compilation symbol has the Boolean value false.
There is no requirement that conditional compilation symbols be explicitly declared before they are
referenced in pre-processing expressions. Instead, undeclared symbols are simply undefined and thus have
the value false.

The namespace for conditional compilation symbols is distinct and separate from all other named entities
in a C# program. Conditional compilation symbols can only be referenced in #define and #undef
directives and in pre-processing expressions.

7.5.3 Pre-processing expressions

Pre-processing expressions can occur in #1if and #e11 f directives. The operators !, ==, =, &&, and | | are
permitted in pre-processing expressions, and parentheses may be used for grouping.

pp-expression::
whitespaceop: pp-or-expression whitespaceqpt

pp-or-expression::
pp-and-expression
pp-or-expression whitespace.,: || whitespaceo.,: pp-and-expression

pp-and-expression::
pp-equality-expression
pp-and-expression whitespaceo.,r && whitespaceop: pp-equality-expression

pp-equality-expression::
pp-unary-expression
pp-equality-expression whitespaceo.,r == Whitespace.,: pp-unary-expression
pp-equality-expression whitespace.,: = whitespaceo.p: pp-unary-expression

pp-unary-expression::
pp-primary-expression
! whitespaceop: pp-unary-expression

pp-primary-expression::
true
false
conditional-symbol
( whitespaceop: pp-expression whitespaceqp: )

When referenced in a pre-processing expression, a defined conditional compilation symbol has the
Boolean value true, and an undefined conditional compilation symbol has the Boolean value false.

Evaluation of a pre-processing expression always yields a Boolean value. The rules of evaluation for a pre-
processing expression are the same as those for a constant expression (§12.20), except that the only user-
defined entities that can be referenced are conditional compilation symbols.

7.5.4 Definition directives

The definition directives are used to define or undefine conditional compilation symbols.

pp-declaration::
whitespaceo.,: # whitespaceo,: define whitespace conditional-symbol pp-new-line
whitespaceo.,: # whitespaceo,: undef whitespace conditional-symbol pp-new-line
pp-new-line::
whitespaceop: single-line-commentop: new-line
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The processing of a #def1ine directive causes the given conditional compilation symbol to become
defined, starting with the source line that follows the directive. Likewise, the processing of a #undef
directive causes the given conditional compilation symbol to become undefined, starting with the source
line that follows the directive.

Any #define and #undef directives in a source file shall occur before the first token (§7.4) in the source
file; otherwise a compile-time error occurs. In intuitive terms, #define and #undef directives shall
precede any “real code” in the source file.

[Example: The example:

#define Enterprise

#if Professional || Enterprise
#define Advanced
#endif

namespace Megacorp.Data

#if Advanced
class PivotTable {.}
#endif
3
is valid because the #def1ine directives precede the first token (the namespace keyword) in the source
file.

end example)

[Example: The following example results in a compile-time error because a #define follows real code:

#define A
namespace N

{
#define B
#if B
class Classl {}
?endif

end example]

A #def1ine may define a conditional compilation symbol that is already defined, without there being any
intervening #undef for that symbol. [Example: The example below defines a conditional compilation
symbol A and then defines it again.

#define A
#define A

For compilers that allow conditional compilation symbols to be defined as compilation options, an
alternative way for such redefinition to occur is to define the symbol as a compiler option as well as in the
source. end example]

A #undef may “undefine” a conditional compilation symbol that is not defined. [Example: The example
below defines a conditional compilation symbol A and then undefines it twice; although the second
#undef has no effect, it is still valid.

#define A
#undef A
#undef A
end example)
7.5.5 Conditional compilation directives

The conditional compilation directives are used to conditionally include or exclude portions of a source file.
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pp-conditional::
pp-if-section pp-elif-sectionss,: pp-else-section.p,: pp-endif
pp-if-section::
whitespaceo.p,: # whitespaceo,: it whitespace pp-expression pp-new-line
conditional-sectionp:

pp-elif-sections::
pp-elif-section
pp-elif-sections pp-elif-section
pp-elif-section::
whitespaceop: # Whitespaceo,: €11 whitespace pp-expression pp-new-line
conditional-sectionopt

pp-else-section::

whitespaceo.pr # whitespaceq,: else pp-new-line conditional-sectionop:
pp-endif::

whitespaceop,: # whitespaceo,: endif pp-new-line
conditional-section::

input-section

skipped-section

skipped-section::
skipped-section-part
skipped-section skipped-section-part

skipped-section-part::
skipped-characters.,: new-line
pp-directive

skipped-characters::
whitespaceop: not-number-sign input-charactersqp:

not-number-sign::
Any input-character except #

[Note: As indicated by the syntax, conditional compilation directives shall be written as sets consisting of, in
order, a #1f directive, zero or more #e11 f directives, zero or one #e1se directive, and a #endif
directive. Between the directives are conditional sections of source code. Each section is controlled by the
immediately preceding directive. A conditional section may itself contain nested conditional compilation
directives provided these directives form complete sets. end note]

A pp-conditional selects at most one of the contained conditional-sections for normal lexical processing:

e The pp-expressions of the #1f and #e11 f directives are evaluated in order until one yields true. If an
expression yields true, the conditional-section of the corresponding directive is selected.

o If all pp-expressions yield false, and if a #else directive is present, the conditional-section of the
#else directive is selected.

e Otherwise, no conditional-section is selected.

The selected conditional-section, if any, is processed as a normal input-section: the source code contained
in the section shall adhere to the lexical grammar; tokens are generated from the source code in the
section; and pre-processing directives in the section have the prescribed effects.

The remaining conditional-sections, if any, are processed as skipped-sections: except for pre-processing
directives, the source code in the section need not adhere to the lexical grammar; no tokens are generated
from the source code in the section; and pre-processing directives in the section shall be lexically correct
but are not otherwise processed. Within a conditional-section that is being processed as a skipped-section,
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any nested conditional-sections (contained in nested #i f..#endif and #region...#endregion
constructs) are also processed as skipped-sections.

[Example: The following example illustrates how conditional compilation directives can nest:

#define Debug // Debugging on
#undef Trace // Tracing off
%1ass PurchaseTransaction
void Commit() {
#if Debug
CheckcConsistency();
#if Trace
writeToLog(this.ToSstring());
#endif
#endif
CommitHelper();
3

Except for pre-processing directives, skipped source code is not subject to lexical analysis. For example, the
following is valid despite the unterminated comment in the #else section:

#define Debug // Debugging on
class PurchaseTransaction

void Commit() {
#if Debug
CheckcConsistency();
#else
/* Do something else
#endif
b
3

Note, however, that pre-processing directives are required to be lexically correct even in skipped sections
of source code.

Pre-processing directives are not processed when they appear inside multi-line input elements. For
example, the program:

class Hello

static void Main() {
System.Console.WriteLine(@"hello,
#if Debug
world
#else
Nebraska
#endif

")
3
3

results in the output:

hello,
#if Debug
world
#else
Nebraska
#endif

In peculiar cases, the set of pre-processing directives that is processed might depend on the evaluation of
the pp-expression. The example:
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#if X

#else

/* */ class Q { }
#endif

always produces the same token stream (class Q { }), regardless of whether or not X is defined. If X is
defined, the only processed directives are #1if and #endi f, due to the multi-line comment. If X is
undefined, then three directives (#1f, #else, #endi f) are part of the directive set. end example]

7.5.6 Diagnostic directives
The diagnostic directives are used to generate explicitly error and warning messages that are reported in
the same way as other compile-time errors and warnings.

pp-diagnostic::
whitespaceo,: # whitespace,,: error pp-message
whitespaceo.p: # whitespaceq,: warning pp-message

pp-message::
new-line
whitespace input-charactersqy,: new-line
[Example: The example

#if Debug && Retail
#error A build can't be both debug and retail
#endif

class Test {..}

produces a compile-time error (“A build can’t be both debug and retail”) if the conditional compilation
symbols Debug and Retail are both defined. Note that a pp-message can contain arbitrary text;
specifically, it need not contain well-formed tokens, as shown by the single quote in the word can' t. end
example]
7.5.7 Region directives
The region directives are used to mark explicitly regions of source code.

pp-region::

pp-start-region conditional-section.,: pp-end-region

pp-start-region::
whitespaceo.,r # whitespaceq,: region pp-message

pp-end-region::
whitespaceo.,r # whitespace,,: endregion pp-message

No semantic meaning is attached to a region; regions are intended for use by the programmer or by
automated tools to mark a section of source code. The message specified in a #region or #endregion
directive likewise has no semantic meaning; it merely serves to identify the region. Matching #region and
#endregion directives may have different pp-messages.

The lexical processing of a region:
#region
#endregion

corresponds exactly to the lexical processing of a conditional compilation directive of the form:
#if true

#endif

33



ECMA-334

7.5.8 Line directives

Line directives may be used to alter the line numbers and source file names that are reported by the
compiler in output such as warnings and errors. These values are also used by caller-info attributes
(§22.5.5).

[Note: Line directives are most commonly used in meta-programming tools that generate C# source code
from some other text input. end note]
pp-line::
whitespaceo.p: # whitespaceo,: 1ine whitespace line-indicator pp-new-line
line-indicator::
decimal-digits whitespace file-name
decimal-digits
default
hidden

file-name::
" file-name-characters

file-name-characters::
file-name-character
file-name-characters file-name-character

file-name-character::
Any input-character except "' (U+0022), and new-line-character

When no #11ne directives are present, the compiler reports true line numbers and source file names in its
output. When processing a #11 ne directive that includes a line-indicator that is not default, the compiler
treats the line after the directive as having the given line number (and file name, if specified).

A #T1ine default directive undoes the effect of all preceding #11 ne directives. The compiler reports true
line information for subsequent lines, precisely as if no #11 ne directives had been processed.

A #1ine hidden directive has no effect on the file and line numbers reported in error messages, or
produced by use of CallerLineNumberAttribute (§22.5.5.2). It is intended to affect source level
debugging tools so that, when debugging, all lines between a #1ine hidden directive and the subsequent
#11ine directive (thatis not #1ine hidden) have no line number information, and are skipped entirely
when stepping through code.

[Note: Note that a file-name differs from a regular string literal in that escape characters are not processed;
the “\’ character simply designates an ordinary backslash character within a file-name. end note]
7.5.9 Pragma directives

The #pragma preprocessing directive is used to specify contextual information to a compiler. [Note: For
example, a compiler might provide #pragma directives that

e Enable or disable particular warning messages when compiling subsequent code.
e Specify which optimizations to apply to subsequent code.
e Specify information to be used by a debugger.

end note]

pp-pragma::
whitespaceopt # whitespace.,r pragma pp-pragma-text

pp-pragma-text::
new-line
whitespace input-charactersq,: new-line
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The input-characters in the pp-pragma-text are interpreted by the compiler in an implementation-defined
manner. The information supplied in a #pragma directive shall not change program semantics. A #pragma
directive shall only change compiler behavior that is outside the scope of this language specification. If the

compiler cannot interpret the input-characters, the compiler can produce a warning; however, it shall not
produce a compile-time error.

[Note: pp-pragma-text can contain arbitrary text; specifically, it need not contain well-formed tokens. end
note]
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8. Basic concepts

8.1 Application startup

A program may be compiled either as a class library to be used as part of other applications, or as an
application that may be started directly. The mechanism for determining this mode of compilation is
implementation-specific and external to this specification.

A program compiled as an application shall contain at least one method qualifying as an entry point by
satisfying the following requirements:

e It shall have the name Main.

e It shall be static.

e It shall not be generic.

e |t shall be declared in a non-generic type. If the type declaring the method is a nested type, none of its
enclosing types may be generic.

e It shall not have the async modifier.

e The return type shall be void or int.

e It shall not be a partial method (§15.6.9) without an implementation.

e The formal parameter list shall either be empty, or have a single value parameter of type string[].

If more than one method qualifying as an entry point is declared within a program, an external mechanism
may be used to specify which method is deemed to be the actual entry point for the application. It is a
compile-time error for a program to be compiled as an application without exactly one entry point. A
program compiled as a class library may contain methods that would qualify as application entry points,
but the resulting library has no entry point.

Ordinarily, the declared accessibility (§8.5.2) of a method is determined by the access modifiers (§15.3.6)
specified in its declaration, and similarly the declared accessibility of a type is determined by the access
modifiers specified in its declaration. In order for a given method of a given type to be callable, both the
type and the member shall be accessible. However, the application entry point is a special case.
Specifically, the execution environment can access the application's entry point regardless of its declared
accessibility and regardless of the declared accessibility of its enclosing type declarations.

When an application is run, a new application domain is created. Several different instantiations of an
application may exist on the same machine at the same time, and each has its own application domain.

An application domain enables application isolation by acting as a container for application state. An
application domain acts as a container and boundary for the types defined in the application and the class
libraries it uses. Types loaded into one application domain are distinct from the same types loaded into
another application domain, and instances of objects are not directly shared between application domains.
For instance, each application domain has its own copy of static variables for these types, and a static
constructor for a type is run at most once per application domain. Implementations are free to provide
implementation-specific policy or mechanisms for the creation and destruction of application domains.

Application startup occurs when the execution environment calls the application's entry point. If the entry
point declares a parameter, then during application startup, the implementation shall ensure that the
initial value of parameter is a non-null reference to a string array. This array shall consist of non-null
references to strings, called application parameters, which are given implementation-defined values by the
host environment prior to application startup. The intent is to supply to the application information
determined prior to application startup from elsewhere in the hosted environment. [Note: On systems
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supporting a command line, application parameters correspond to what are generally known as command-
line arguments. end note]

If the entry point's return type is int rather than void, the return value from the method invocation by
the execution environment is used in application termination (§8.2).

Other than the situations listed above, entry point methods behave like those that are not entry points in
every respect. In particular, if the entry point is invoked at any other point during the application's lifetime,
such as by regular method invocation, there is no special handling of the method: if there is a parameter, it
may have an initial value of null, or a non-null value referring to an array that contains null references.
Likewise, the return value of the entry point has no special significance other than in the invocation from
the execution environment.

8.2 Application termination

Application termination returns control to the execution environment.

If the return type of the application’s entry point method is int, the value returned serves as the
application's termination status code. The purpose of this code is to allow communication of success or
failure to the execution environment.

If the return type of the entry point method is void, reaching the right brace (}) that terminates that
method, or executing a return statement that has no expression, results in a termination status code
of 0. If the entry point method terminates due to an exception (§21.4), the exit code is implementation-
specific. Additionally, the implementation may provide alternative APIs for specifying the exit code.

Prior to an application’s termination, an implementation should make every reasonable effort to call
finalizers (§15.13) for all of its objects that have not yet been garbage collected, unless such cleanup has
been suppressed (by a call to the library method GC.SuppressFinalize, for example). The
implementation should document any conditions under which this behavior cannot be guaranteed.

8.3 Declarations

Declarations in a C# program define the constituent elements of the program. C# programs are organized
using namespaces. These are introduced using namespace declarations (§14), which can contain type
declarations and nested namespace declarations. Type declarations (§14.7) are used to define classes
(815), structs (§16), interfaces (§18), enums (§19), and delegates (§20). The kinds of members permitted in
a type declaration depend on the form of the type declaration. For instance, class declarations can contain
declarations for constants (§15.4), fields (§15.5), methods (§15.6), properties (§15.7), events (§15.8),
indexers (§15.9), operators (§15.10), instance constructors (§15.11), static constructors (§15.12), finalizers
(815.13), and nested types (§15.3.9).

A declaration defines a name in the declaration space to which the declaration belongs. It is a compile-
time error to have two or more declarations that introduce members with the same name in a declaration
space, except in the following cases:

e Two or more namespace declarations with the same name are allowed in the same declaration space.
Such namespace declarations are aggregated to form a single logical namespace and share a single
declaration space.

e Declarations in separate programs but in the same namespace declaration space are allowed to share
the same name. [Note: However, these declarations could introduce ambiguities if included in the
same application. end note]

e Two or more methods with the same name but distinct signatures are allowed in the same declaration
space (§8.6).

e Two or more type declarations with the same name but distinct numbers of type parameters are
allowed in the same declaration space (§8.8.2).
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Two or more type declarations with the partial modifier in the same declaration space may share
the same name, same number of type parameters and same classification (class, struct or
interface). In this case, the type declarations contribute to a single type and are themselves
aggregated to form a single declaration space (§15.2.7).

A namespace declaration and a type declaration in the same declaration space can share the same
name as long as the type declaration has at least one type parameter (§8.8.2).

There are several different types of declaration spaces, as described in the following.
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Within all source files of a program, namespace-member-declarations with no enclosing namespace-
declaration are members of a single combined declaration space called the global declaration space.
Within all source files of a program, namespace-member-declarations within namespace-declarations
that have the same fully qualified namespace name are members of a single combined declaration
space.

Each compilation-unit and namespace-body has an alias declaration space. Each extern-alias-directive
and using-alias-directive of the compilation-unit or namespace-body contributes a member to the alias
declaration space (§14.5.2).

Each non-partial class, struct, or interface declaration creates a new declaration space. Each partial
class, struct, or interface declaration contributes to a declaration space shared by all matching parts in
the same program (§16.2.3).Names are introduced into this declaration space through class-member-
declarations, struct-member-declarations, interface-member-declarations, or type-parameters. Except
for overloaded instance constructor declarations and static constructor declarations, a class or struct
cannot contain a member declaration with the same name as the class or struct. A class, struct, or
interface permits the declaration of overloaded methods and indexers. Furthermore, a class or struct
permits the declaration of overloaded instance constructors and operators. For example, a class,
struct, or interface may contain multiple method declarations with the same name, provided these
method declarations differ in their signature (§8.6). Note that base classes do not contribute to the
declaration space of a class, and base interfaces do not contribute to the declaration space of an
interface. Thus, a derived class or interface is allowed to declare a member with the same name as an
inherited member. Such a member is said to hide the inherited member.

Each delegate declaration creates a new declaration space. Names are introduced into this declaration
space through formal parameters (fixed-parameters and parameter-arrays) and type-parameters.
Each enumeration declaration creates a new declaration space. Names are introduced into this
declaration space through enum-member-declarations.

Each method declaration, property declaration, property accessor declaration, indexer declaration,
indexer accessor declaration, operator declaration, instance constructor declaration and anonymous
function creates a new declaration space called a local variable declaration space. Names are
introduced into this declaration space through formal parameters (fixed-parameters and parameter-
arrays) and type-parameters. The set accessor for a property or an indexer introduces the valuename
as a formal parameter. The body of the function member or anonymous function, if any, is considered
to be nested within the local variable declaration space. It is an error for a local variable declaration
space and a nested local variable declaration space to contain elements with the same name. Thus,
within a nested declaration space it is not possible to declare a local variable or constant with the same
name as a local variable or constant in an enclosing declaration space. It is possible for two declaration
spaces to contain elements with the same name as long as neither declaration space contains the
other.

Each block or switch-block, as well as a for, foreach, and using statement, creates a local variable
declaration space for local variables and local constants. Names are introduced into this declaration
space through local-variable-declarations and local-constant-declarations. Note that blocks that occur
as or within the body of a function member or anonymous function are nested within the local variable
declaration space declared by those functions for their parameters. Thus, it is an error to have, for
example, a method with a local variable and a parameter of the same name.
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e Each block or switch-block creates a separate declaration space for labels. Names are introduced into
this declaration space through labeled-statements, and the names are referenced through goto-
statements. The label declaration space of a block includes any nested blocks. Thus, within a nested
block it is not possible to declare a label with the same name as a label in an enclosing block.

The textual order in which names are declared is generally of no significance. In particular, textual order is
not significant for the declaration and use of namespaces, constants, methods, properties, events,
indexers, operators, instance constructors, finalizers, static constructors, and types. Declaration order is
significant in the following ways:

e Declaration order for field declarations determines the order in which their initializers (if any) are
executed (§15.5.6.2, §15.5.6.3).

e Local variables shall be defined before they are used (§8.7).

e Declaration order for enum member declarations (§19.4) is significant when constant-expression values
are omitted.

[Example: The declaration space of a namespace is “open ended”, and two namespace declarations with
the same fully qualified name contribute to the same declaration space. For example

namespace Megacorp.Data

class Customer

}
}

namespace Megacorp.Data

class order

}
}
The two namespace declarations above contribute to the same declaration space, in this case declaring
two classes with the fully qualified names Megacorp.Data.Customer and Megacorp.Data.Order.
Because the two declarations contribute to the same declaration space, it would have caused a compile-
time error if each contained a declaration of a class with the same name. end example]

[Note: As specified above, the declaration space of a block includes any nested blocks. Thus, in the
following example, the F and G methods result in a compile-time error because the name 1 is declared in
the outer block and cannot be redeclared in the inner block. However, the H and I methods are valid since
the two i’s are declared in separate non-nested blocks.

%1ass A
void FQ {
int i = 0;
if (true) {
int i = 1;
b
void GO {
if (true) {
int i = 0;
int i = 1;
b

39



ECMA-334

void HO {
if (true) {
int i = 0;
}
if (true) {
int i = 1;
}
void 1) {
for (int i =0; i < 10; i++)
HO)S . .
for (int i = 0; i < 10; i++)
HO;
}
end note]
8.4 Members
8.4.1 General

Namespaces and types have members. [Note: The members of an entity are generally available through

the use of a qualified name that starts with a reference to the entity, followed by a “.” token, followed by
the name of the member. end note]

Members of a type are either declared in the type declaration or inherited from the base class of the type.
When a type inherits from a base class, all members of the base class, except instance constructors,
finalizers, and static constructors become members of the derived type. The declared accessibility of a base
class member does not control whether the member is inherited—inheritance extends to any member that
isn’t an instance constructor, static constructor, or finalizer. [Note: However, an inherited member might
not be accessible in a derived type, for example because of its declared accessibility (§8.5.2). end note]

8.4.2 Namespace members
Namespaces and types that have no enclosing namespace are members of the global namespace. This

corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a namespace are members of that namespace. This corresponds
directly to the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal
namespaces, and namespace names are always publicly accessible.

8.4.3 Struct members

The members of a struct are the members declared in the struct and the members inherited from the
struct’s direct base class System.VvalueType and the indirect base class object.

The members of a simple type correspond directly to the members of the struct type aliased by the simple
type (§9.3.5).
8.4.4 Enumeration members

The members of an enumeration are the constants declared in the enumeration and the members
inherited from the enumeration’s direct base class System. Enum and the indirect base classes
System.ValueType and object.

8.4.5 Class members

The members of a class are the members declared in the class and the members inherited from the base
class (except for class object which has no base class). The members inherited from the base class include
the constants, fields, methods, properties, events, indexers, operators, and types of the base class, but not
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the instance constructors, finalizers, and static constructors of the base class. Base class members are
inherited without regard to their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties, events, indexers,
operators, instance constructors, finalizers, static constructors, and types.

The members of object (§9.2.3) and string (§9.2.5) correspond directly to the members of the class
types they alias.

8.4.6 Interface members

The members of an interface are the members declared in the interface and in all base interfaces of the
interface. [Note: The members in class object are not, strictly speaking, members of any interface (§18.4).
However, the members in class object are available via member lookup in any interface type (§12.5). end
note]

8.4.7 Array members
The members of an array are the members inherited from class System.Array.

8.4.8 Delegate members

A delegate inherits members from class System.Delegate. Additionally, it contains a method named
Invoke with the same return type and formal parameter list specified in its declaration (§20.2). An
invocation of this method shall behave identically to a delegate invocation (§20.6) on the same delegate
instance.

An implementation may provide additional members, either through inheritance or directly in the delegate
itself.

8.5 Member access
8.5.1 General

Declarations of members allow control over member access. The accessibility of a member is established
by the declared accessibility (§8.5.2) of the member combined with the accessibility of the immediately
containing type, if any.

When access to a particular member is allowed, the member is said to be accessible. Conversely, when
access to a particular member is disallowed, the member is said to be inaccessible. Access to a member is
permitted when the textual location in which the access takes place is included in the accessibility domain
(§8.5.3) of the member.

8.5.2 Declared accessibility

The declared accessibility of a member can be one of the following:

e Public, which is selected by including a pub1ic modifier in the member declaration. The intuitive
meaning of public is “access not limited”.

e Protected, which is selected by including a protected modifier in the member declaration. The
intuitive meaning of protected is “access limited to the containing class or types derived from the
containing class”.

e Internal, which is selected by including an internal modifier in the member declaration. The intuitive
meaning of internal is “access limited to this assembly”.

e Protected internal, which is selected by including both a protected and an internal modifier in the
member declaration. The intuitive meaning of protected internal is “accessible within this
assembly as well as types derived from the containing class”.

e Private, which is selected by including a private modifier in the member declaration. The intuitive
meaning of private is “access limited to the containing type”.
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Depending on the context in which a member declaration takes place, only certain types of declared
accessibility are permitted. Furthermore, when a member declaration does not include any access
modifiers, the context in which the declaration takes place determines the default declared accessibility.

e Namespaces implicitly have pub1ic declared accessibility. No access modifiers are allowed on
namespace declarations.

e Types declared directly in compilation units or namespaces (as opposed to within other types) can
have pub1ic or internal declared accessibility and default to internal declared accessibility.

e (Class members can have any of the five kinds of declared accessibility and default to private declared
accessibility. [Note: A type declared as a member of a class can have any of the five kinds of declared
accessibility, whereas a type declared as a member of a namespace can have only pubTic or
internal declared accessibility. end note]

e Struct members can have public, internal, or private declared accessibility and default to
private declared accessibility because structs are implicitly sealed. Struct members introduced in a
struct (that is, not inherited by that struct) cannot have protected or protected internal
declared accessibility. [Note: A type declared as a member of a struct can have public, internal, or
private declared accessibility, whereas a type declared as a member of a namespace can have only
publicorinternal declared accessibility. end note]

e Interface members implicitly have pub1ic declared accessibility. No access modifiers are allowed on
interface member declarations.

e Enumeration members implicitly have pub1i c declared accessibility. No access modifiers are allowed
on enumeration member declarations.

8.5.3 Accessibility domains

The accessibility domain of a member consists of the (possibly disjoint) sections of program text in which
access to the member is permitted. For purposes of defining the accessibility domain of a member, a
member is said to be top-level if it is not declared within a type, and a member is said to be nested if it is
declared within another type. Furthermore, the program text of a program is defined as all program text
contained in all source files of the program, and the program text of a type is defined as all program text
contained in the type-declarations of that type (including, possibly, types that are nested within the type).

The accessibility domain of a predefined type (such as object, int, or double) is unlimited.

The accessibility domain of a top-level unbound type T (§9.4.4) that is declared in a program P is defined as
follows:

e If the declared accessibility of T is pubT11 ¢, the accessibility domain of T is the program text of P and
any program that references P.
e If the declared accessibility of T is internal, the accessibility domain of T is the program text of P.

[Note: From these definitions, it follows that the accessibility domain of a top-level unbound type is always
at least the program text of the program in which that type is declared. end note]

The accessibility domain for a constructed type T<A1, ..., Ax> is the intersection of the accessibility
domain of the unbound generic type T and the accessibility domains of the type arguments A1, ..., Ax.

The accessibility domain of a nested member M declared in a type T within a program P, is defined as
follows (noting that M itself might possibly be a type):

e [f the declared accessibility of M is pubT1 ¢, the accessibility domain of M is the accessibility domain
of T.

e If the declared accessibility of Mis protected internal, let D be the union of the program text of P
and the program text of any type derived from T, which is declared outside P. The accessibility domain
of M is the intersection of the accessibility domain of T with D.
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If the declared accessibility of Mis protected, let D be the union of the program text of T and the
program text of any type derived from T. The accessibility domain of M is the intersection of the
accessibility domain of T with D.

If the declared accessibility of Mis internal, the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of P.

If the declared accessibility of Mis private, the accessibility domain of M is the program text of T.

[Note: From these definitions it follows that the accessibility domain of a nested member is always at least
the program text of the type in which the member is declared. Furthermore, it follows that the accessibility
domain of a member is never more inclusive than the accessibility domain of the type in which the
member is declared. end note]

[Note: In intuitive terms, when a type or member M is accessed, the following steps are evaluated to ensure
that the access is permitted:

First, if M is declared within a type (as opposed to a compilation unit or a namespace), a compile-time
error occurs if that type is not accessible.

Then, if Mis pub1ic, the access is permitted.

Otherwise, if Mis protected internal, the access is permitted if it occurs within the program in
which M is declared, or if it occurs within a class derived from the class in which M is declared and takes
place through the derived class type (§8.5.4).

Otherwise, if Mis protected, the access is permitted if it occurs within the class in which M is declared,
or if it occurs within a class derived from the class in which M is declared and takes place through the
derived class type (§8.5.4).

Otherwise, if Mis internal, the access is permitted if it occurs within the program in which M is
declared.

Otherwise, if Mis private, the access is permitted if it occurs within the type in which M is declared.
Otherwise, the type or member is inaccessible, and a compile-time error occurs.

end note]

[Example: In the following code

public class A

public static int X;
internal static int Y;
private static int Zz;

internal class B

{
public static int X;
internal static int Y;
private static int Zz;

pubTlic class C

public static int X;
internal static int Y;
private static int Z;

private class D

public static int X;
internal static int Y;
private static int Z;

}

the classes and members have the following accessibility domains:

43



ECMA-334

e The accessibility domain of A and A. X is unlimited.

e The accessibility domainof A.Y, B, B.X,B.Y,B.C,B.C.X,and B.C.Y is the program text of the
containing program.

e The accessibility domain of A. Z is the program text of A.

o The accessibility domain of B.Z and B. D is the program text of B, including the program text of B.C
and B.D.

e The accessibility domain of B.C.Z is the program text of B. C.

e The accessibility domain of B.D.X and B.D.Y is the program text of B, including the program text of
B.CandB.D.

e The accessibility domain of B.D.Z is the program text of B.D.

As the example illustrates, the accessibility domain of a member is never larger than that of a containing
type. For example, even though all X members have public declared accessibility, all but A.X have
accessibility domains that are constrained by a containing type. end example]

As described in §8.4, all members of a base class, except for instance constructors, finalizers, and static
constructors, are inherited by derived types. This includes even private members of a base class. However,
the accessibility domain of a private member includes only the program text of the type in which the
member is declared. [Example: In the following code

class A

{
int Xx;
static void F(B b) {
; b.x = 1; // Ok

}

class B: A

static void F(B b) {
) b.x = 1; // Error, x not accessible

}

the B class inherits the private member x from the A class. Because the member is private, it is only
accessible within the class-body of A. Thus, the access to b. x succeeds in the A. F method, but fails in the
B.F method. end example]

8.5.4 Protected access

When a protected instance member is accessed outside the program text of the class in which it is
declared, and when a protected internal instance member is accessed outside the program text of the
program in which it is declared, the access shall take place within a class declaration that derives from the
class in which it is declared. Furthermore, the access is required to take place through an instance of that
derived class type or a class type constructed from it. This restriction prevents one derived class from
accessing protected members of other derived classes, even when the members are inherited from the
same base class.

Let B be a base class that declares a protected instance member M, and let D be a class that derives from B.
Within the class-body of D, access to M can take one of the following forms:

e Anunqualified type-name or primary-expression of the form M.

o A primary-expression of the form E .M, provided the type of E is T or a class derived from T, where T is
the class D, or a class type constructed from D.

e A primary-expression of the form base .M.

In addition to these forms of access, a derived class can access a protected instance constructor of a base
class in a constructor-initializer (§15.11.2).

[Example: In the following code
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public class A

protected int x;

static void F(A a, B b) {
a.x = 1; // 0ok
) b.x = 1; // ok
b

pubTlic class B: A
static void F(A a, B b) {

a.x = 1; // Error, must access through instance of B
b.x 1; // Ok

}
3

within A, it is possible to access x through instances of both A and B, since in either case the access takes
place through an instance of A or a class derived from A. However, within B, it is not possible to access x
through an instance of A, since A does not derive from B. end example]
[Example:

class C<T>

protected T x;

class D<T>: C<T>

static void FO {
D<T> dt = new D<T>(Q);
D<int> di = new D<int>();
D<string> ds = new D<string>(Q);

dt.x = default(T);
di.x = 123;
ds.x = "test";

}
3

Here, the three assignments to x are permitted because they all take place through instances of class types
constructed from the generic type. end example]

[Note: The accessibility domain (§8.5.3) of a protected member declared in a generic class includes the
program text of all class declarations derived from any type constructed from that generic class. In the
example:

class C<T>

{
protected static T x;
}
class D: C<string>
{
static void Main() {
C<int>.x = 5;
}
}

the reference to protected member C<int>.x in D is valid even though the class D derives from
C<string>. end note]
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8.5.5 Accessibility constraints

Several constructs in the C# language require a type to be at least as accessible as a member or another
type. A type T is said to be at least as accessible as a member or type M if the accessibility domain of Tis a
superset of the accessibility domain of M. In other words, T is at least as accessible as M if T is accessible in
all contexts in which M is accessible.

The following accessibility constraints exist:

e The direct base class of a class type shall be at least as accessible as the class type itself.

o The explicit base interfaces of an interface type shall be at least as accessible as the interface type
itself.

e The return type and parameter types of a delegate type shall be at least as accessible as the delegate
type itself.

e The type of a constant shall be at least as accessible as the constant itself.

e The type of a field shall be at least as accessible as the field itself.

e The return type and parameter types of a method shall be at least as accessible as the method itself.

e The type of a property shall be at least as accessible as the property itself.

e The type of an event shall be at least as accessible as the event itself.

e The type and parameter types of an indexer shall be at least as accessible as the indexer itself.

e The return type and parameter types of an operator shall be at least as accessible as the operator
itself.

e The parameter types of an instance constructor shall be at least as accessible as the instance
constructor itself.

[Example: In the following code

class A {.}
pubTlic class B: A {.}

the B class results in a compile-time error because A is not at least as accessible as B. end example]

[Example: Likewise, in the following code
class A {..}
public class B

AFQO {.}
internal A cQO) {..}

public A HO {..}

the H method in B results in a compile-time error because the return type A is not at least as accessible as
the method. end example]

8.6 Signatures and overloading

Methods, instance constructors, indexers, and operators are characterized by their signatures:

e The signature of a method consists of the name of the method, the number of type parameters, and
the type and parameter-passing mode (value, reference, or output) of each of its formal parameters,
considered in the order left to right. For these purposes, any type parameter of the method that occurs
in the type of a formal parameter is identified not by its name, but by its ordinal position in the type
parameter list of the method. The signature of a method specifically does not include the return type,
parameter names, type parameter names, type parameter constraints, the params or this parameter
modifiers, nor whether parameters are required or optional.

e The signature of an instance constructor consists of the type and parameter-passing mode (value,
reference, or output) of each of its formal parameters, considered in the order left to right. The
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signature of an instance constructor specifically does not include the params modifier that may be
specified for the right-most parameter.

e The signature of an indexer consists of the type of each of its formal parameters, considered in the
order left to right. The signature of an indexer specifically does not include the element type, nor does
it include the params modifier that may be specified for the right-most parameter.

e The signature of an operator consists of the name of the operator and the type of each of its formal
parameters, considered in the order left to right. The signature of an operator specifically does not
include the result type.

e The signature of a conversion operator consists of the source type and the target type. The implicit or
explicit classification of a conversion operator is not part of the signature.

e Two signatures of the same member kind (method, instance constructor, indexer or operator) are
considered to be the same signatures if they have the same name, number of type parameters,
number of parameters, and parameter-passing modes, and an identity conversion exists between the
types of their corresponding parameters (§11.2.2).

Signatures are the enabling mechanism for overloading of members in classes, structs, and interfaces:

e Overloading of methods permits a class, struct, or interface to declare multiple methods with the same
name, provided their signatures are unique within that class, struct, or interface.

e Overloading of instance constructors permits a class or struct to declare multiple instance constructors,
provided their signatures are unique within that class or struct.

e Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided their
signatures are unique within that class, struct, or interface.

e Overloading of operators permits a class or struct to declare multiple operators with the same name,
provided their signatures are unique within that class or struct.

Although out and ref parameter modifiers are considered part of a signature, members declared in a
single type cannot differ in signature solely by ref and out. A compile-time error occurs if two members
are declared in the same type with signatures that would be the same if all parameters in both methods
with out modifiers were changed to ref modifiers. For other purposes of signature matching (e.g., hiding
or overriding), ref and out are considered part of the signature and do not match each other. [Note: This
restriction is to allow C# programs to be easily translated to run on the Common Language Infrastructure
(CLI), which does not provide a way to define methods that differ solely in ref and out. end note]

The types object and dynami c are not distinguished when comparing signatures. Therefore members
declared in a single type whose signatures differ only by replacing object with dynamic are not allowed.

[Example: The following example shows a set of overloaded method declarations along with their
signatures.

interface ITest

void FQ; // FQ

void F(int x); // F(int)

void F(ref int x); // F(ref int)

void F(out int x); // F(out int) error
void F(object 0); // F(object)

void F(dynamic d); // error.

void F(int x, int y); // F(int, int)

int F(string s); // F(string)

int F(int x); // FE(int) error
void F(string[] a); // F(string[])

void F(params string[] a); // F(string[]) error
void F<S>(S s); // F< 0>(C0)

void F<T>(T t); // F< 0>(C 0) error
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void F<S,T>(S s); // F< 0, 1>(C0)
void F<T,S>(S s); // F< 0, 1>('1) ok

Note that any ref and out parameter modifiers (§15.6.2) are part of a signature. Thus, F(int), F(ref
int), and F(Cout int) are all unique signatures. However, F(ref int) and F(out int) cannot be
declared within the same interface because their signatures differ solely by ref and out. Also, note that
the return type and the params modifier are not part of a signature, so it is not possible to overload solely
based on return type or on the inclusion or exclusion of the params modifier. As such, the declarations of
the methods F(int) and F(params string[]) identified above, result in a compile-time error. end
example]

8.7 Scopes

8.7.1 General

The scope of a name is the region of program text within which it is possible to refer to the entity declared
by the name without qualification of the name. Scopes can be nested, and an inner scope may redeclare
the meaning of a name from an outer scope. (This does not, however, remove the restriction imposed by
§8.3 that within a nested block it is not possible to declare a local variable or local constant with the same
name as a local variable or local constant in an enclosing block.) The name from the outer scope is then
said to be hidden in the region of program text covered by the inner scope, and access to the outer name is
only possible by qualifying the name.

e The scope of a namespace member declared by a namespace-member-declaration (§14.6) with no
enclosing namespace-declaration is the entire program text.

e The scope of a namespace member declared by a namespace-member-declaration within a
namespace-declaration whose fully qualified name is N, is the namespace-body of every namespace-
declaration whose fully qualified name is N or starts with N, followed by a period.

e The scope of a name defined by an extern-alias-directive (§14.4) extends over the using-directives,
global-attributes and namespace-member-declarations of its immediately containing compilation-unit
or namespace-body. An extern-alias-directive does not contribute any new members to the underlying
declaration space. In other words, an extern-alias-directive is not transitive, but, rather, affects only the
compilation-unit or namespace-body in which it occurs.

e The scope of a name defined or imported by a using-directive (§14.5) extends over the global-
attributes and namespace-member-declarations of the compilation-unit or namespace-body in which
the using-directive occurs. A using-directive may make zero or more namespace or type names
available within a particular compilation-unit or namespace-body, but does not contribute any new
members to the underlying declaration space. In other words, a using-directive is not transitive but
rather affects only the compilation-unit or namespace-body in which it occurs.

e The scope of a type parameter declared by a type-parameter-list on a class-declaration (§15.2) is the
class-base, type-parameter-constraints-clauses, and class-body of that class-declaration. [Note: Unlike
members of a class, this scope does not extend to derived classes. end note]

e The scope of a type parameter declared by a type-parameter-list on a struct-declaration (§16.2) is the
struct-interfaces, type-parameter-constraints-clauses, and struct-body of that struct-declaration.

e The scope of a type parameter declared by a type-parameter-list on an interface-declaration (§18.2) is
the interface-base, type-parameter-constraints-clauses, and interface-body of that interface-
declaration.

e The scope of a type parameter declared by a type-parameter-list on a delegate-declaration (§20.2) is
the return-type, formal-parameter-list, and type-parameter-constraints-clauses of that delegate-
declaration.

e The scope of a type parameter declared by a type-parameter-list on a method-declaration (§15.6.1) is
the method-declaration.
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e The scope of a member declared by a class-member-declaration (§15.3.1) is the class-body in which the
declaration occurs. In addition, the scope of a class member extends to the class-body of those derived
classes that are included in the accessibility domain (§8.5.3) of the member.

e The scope of a member declared by a struct-member-declaration (§16.3) is the struct-body in which the
declaration occurs.

e The scope of a member declared by an enum-member-declaration (§19.4) is the enum-body in which
the declaration occurs.

e The scope of a parameter declared in a method-declaration (§15.6) is the method-body of that method-
declaration.

e The scope of a parameter declared in an indexer-declaration (§15.9) is the accessor-declarations of that
indexer-declaration.

e The scope of a parameter declared in an operator-declaration (§15.10) is the block of that operator-
declaration.

e The scope of a parameter declared in a constructor-declaration (§15.11) is the constructor-initializer
and block of that constructor-declaration.

e The scope of a parameter declared in a lambda-expression (§12.16) is the lambda-expression-body of
that lambda-expression.

e The scope of a parameter declared in an anonymous-method-expression (§12.16) is the block of that
anonymous-method-expression.

e The scope of a label declared in a labeled-statement (§13.5) is the block in which the declaration
occurs.

e The scope of a local variable declared in a local-variable-declaration (§13.6.2) is the block in which the
declaration occurs.

e The scope of a local variable declared in a switch-block of a switch statement (§13.8.3) is the switch-
block.

e The scope of a local variable declared in a for-initializer of a for statement (§13.9.4) is the for-
initializer, the for-condition, the for-iterator, and the contained statement of the for statement.

e The scope of a local constant declared in a local-constant-declaration (§13.6.3) is the block in which the
declaration occurs. It is a compile-time error to refer to a local constant in a textual position that
precedes its constant-declarator.

e The scope of a variable declared as part of a foreach-statement, using-statement, lock-statement or
query-expression is determined by the expansion of the given construct.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the
member in a textual position that precedes the declaration of the member. [Example:

class A
void FQO {
i=1;
int i = 0;
}

Here, it is valid for F to refer to i before it is declared. end example]

Within the scope of a local variable, it is a compile-time error to refer to the local variable in a textual
position that precedes the local-variable-declarator of the local variable. [Example:

class A
int 1 = 0;
void FQ {
i=1; // Error, use precedes declaration
int 1i;
i=2;
3
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void GO {

int j = (G =1; // valid
void HO {

inta=1, b = ++a; // valid

}

In the F method above, the first assignment to i specifically does not refer to the field declared in the
outer scope. Rather, it refers to the local variable and it results in a compile-time error because it textually
precedes the declaration of the variable. In the G method, the use of j in the initializer for the declaration
of j is valid because the use does not precede the local-variable-declarator. In the H method, a subsequent
local-variable-declarator correctly refers to a local variable declared in an earlier local-variable-declarator
within the same local-variable-declaration. end example]

[Note: The scoping rules for local variables and local constants are designed to guarantee that the meaning
of a name used in an expression context is always the same within a block. If the scope of a local variable
were to extend only from its declaration to the end of the block, then in the example above, the first
assignment would assign to the instance variable and the second assignment would assign to the local
variable, possibly leading to compile-time errors if the statements of the block were later to be
rearranged.)

The meaning of a name within a block may differ based on the context in which the name is used. In the
example

using System;

class A {}

class Test

static void Main() {

string A = "hello, world"; )

string s = A; // expression context
Type t = typeof(A); // type context
console.writeLine(s); // writes "hello, world"
console.writeLine(t); // writes "A"

}
}

the name A is used in an expression context to refer to the local variable A and in a type context to refer to
the class A. end note]

8.7.2 Name hiding

8.7.2.1 General

The scope of an entity typically encompasses more program text than the declaration space of the entity.
In particular, the scope of an entity may include declarations that introduce new declaration spaces
containing entities of the same name. Such declarations cause the original entity to become hidden.
Conversely, an entity is said to be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance.
The characteristics of the two types of hiding are described in the following subclauses.
8.7.2.2 Hiding through nesting

Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as a
result of nesting types within classes or structs, and as a result of parameter, local variable, and local
constant declarations. [Example: In the following code

class A

int i = 0;
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void FQ
int i = 1;

~

void GO {
i=1;
}

}

within the F method, the instance variable i is hidden by the local variable 1, but within the G method, i
still refers to the instance variable. end example]

When a name in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that
name. [Example: In the following code
class oOuter
static void F(int i) {}

static void F(string s) {}
class Inner

{
static void F(long 1) {}
void GO
F(1); // Invokes Outer.Inner.F
F("Hello"); // Error
b

}

the call F(1) invokes the F declared in Inner because all outer occurrences of F are hidden by the inner
declaration. For the same reason, the call F("HeT10™) results in a compile-time error. end example]
8.7.2.3 Hiding through inheritance

Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from
base classes. This type of name hiding takes one of the following forms:

e A constant, field, property, event, or type introduced in a class or struct hides all base class members
with the same name.

e A method introduced in a class or struct hides all non-method base class members with the same
name, and all base class methods with the same signature (§8.6).

e Anindexer introduced in a class or struct hides all base class indexers with the same signature (§8.6) .

The rules governing operator declarations (§15.10) make it impossible for a derived class to declare an
operator with the same signature as an operator in a base class. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding a visible name from an inherited scope causes a
warning to be reported. [Example: In the following code

class Base

public void FO {}

class Derived: Base
public void FO {} // warning, hiding an inherited name
the declaration of F in Derived causes a warning to be reported. Hiding an inherited name is specifically
not an error, since that would preclude separate evolution of base classes. For example, the above

situation might have come about because a later version of Base introduced an F method that wasn’t
present in an earlier version of the class. end example]
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The warning caused by hiding an inherited name can be eliminated through use of the new modifier:
[Example:

class Base

pubTlic void FQ {3}

class Derived: Base

new public void FQ {}

The new modifier indicates that the F in Derived is “new”, and that it is indeed intended to hide the
inherited member. end example]

A declaration of a new member hides an inherited member only within the scope of the new member.
[Example:

class Base

pubTlic static void FO {}

class Derived: Base

{

new private static void F() {} // Hides Base.F in Derived only

class MoreDerived: Derived

static void GO { FO; } // Invokes Base.F

In the example above, the declaration of F in Derived hides the F that was inherited from Base, but since
the new F in Derived has private access, its scope does not extend to MoreDerived. Thus, the call F() in
MoreDerived.G is valid and will invoke Base. F. end example]

8.8 Namespace and type names

8.8.1 General
Several contexts in a C# program require a namespace-name or a type-name to be specified.

namespace-name:
namespace-or-type-name

type-name:
namespace-or-type-name

namespace-or-type-name:
identifier type-argument-listp:
namespace-or-type-name . identifier type-argument-listop:
qualified-alias-member

A namespace-name is a namespace-or-type-name that refers to a namespace.

Following resolution as described below, the namespace-or-type-name of a namespace-name shall refer to
a namespace, or otherwise a compile-time error occurs. No type arguments (§9.4.2) can be presentin a
namespace-name (only types can have type arguments).

A type-name is a namespace-or-type-name that refers to a type. Following resolution as described below,
the namespace-or-type-name of a type-name shall refer to a type, or otherwise a compile-time error
occurs.

If the namespace-or-type-name is a qualified-alias-member its meaning is as described in §14.8.1.
Otherwise, a namespace-or-type-name has one of four forms:
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e T

o TI<Ai1, .., A

e N.T

e N.I<A1, .., A

where I is a single identifier, N is a namespace-or-type-name and <A1, ..., Ac> is an optional type-

argument-list. When no type-argument-list is specified, consider K to be zero.

The meaning of a namespace-or-type-name is determined as follows:

o If the namespace-or-type-name is a qualified-alias-member, the meaning is as specified in §14.8.1.
e Otherwise, if the namespace-or-type-name is of the form I or of the form I<A1, ..., Ax>:

O

If K is zero and the namespace-or-type-name appears within a generic method declaration (§15.6)
but outside the attributes of its method-header, and if that declaration includes a type parameter
(§15.2.3) with name I, then the namespace-or-type-name refers to that type parameter.
Otherwise, if the namespace-or-type-name appears within a type declaration, then for each
instance type T (§15.3.2), starting with the instance type of that type declaration and continuing
with the instance type of each enclosing class or struct declaration (if any):

If K is zero and the declaration of T includes a type parameter with name I, then the
namespace-or-type-name refers to that type parameter.

Otherwise, if the namespace-or-type-name appears within the body of the type declaration,
and T or any of its base types contain a nested accessible type having name I and K type
parameters, then the namespace-or-type-name refers to that type constructed with the given
type arguments. If there is more than one such type, the type declared within the more
derived type is selected. [Note: Non-type members (constants, fields, methods, properties,
indexers, operators, instance constructors, finalizers, and static constructors) and type
members with a different number of type parameters are ignored when determining the
meaning of the namespace-or-type-name. end note]

Otherwise, for each namespace N, starting with the namespace in which the namespace-or-type-
name occurs, continuing with each enclosing namespace (if any), and ending with the global
namespace, the following steps are evaluated until an entity is located:

If K is zero and I is the name of a namespace in N, then:

o If the location where the namespace-or-type-name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an extern-alias-directive or
using-alias-directive that associates the name I with a namespace or type, then the
namespace-or-type-name is ambiguous and a compile-time error occurs.

o Otherwise, the namespace-or-type-name refers to the namespace named I in N.
Otherwise, if N contains an accessible type having name I and K type parameters, then:

o IfKis zero and the location where the namespace-or-type-name occurs is enclosed by a
namespace declaration for N and the namespace declaration contains an extern-alias-
directive or using-alias-directive that associates the name I with a namespace or type,
then the namespace-or-type-name is ambiguous and a compile-time error occurs.

o Otherwise, the namespace-or-type-name refers to the type constructed with the given
type arguments.

Otherwise, if the location where the namespace-or-type-name occurs is enclosed by a
namespace declaration for N:
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o IfKis zero and the namespace declaration contains an extern-alias-directive or using-alias-
directive that associates the name I with an imported namespace or type, then the
namespace-or-type-name refers to that namespace or type.

o Otherwise, if the namespaces imported by the using-namespace-directives of the
namespace declaration contain exactly one type having name I and K type parameters,
then the namespace-or-type-name refers to that type constructed with the given type
arguments.

o Otherwise, if the namespaces imported by the using-namespace-directives of the
namespace declaration contain more than one type having name I and K type parameters,
then the namespace-or-type-name is ambiguous and an error occurs.

o Otherwise, the namespace-or-type-name is undefined and a compile-time error occurs.

Otherwise, the namespace-or-type-name is of the form N. I or of the form N.I<Az1, ..., Ax>. Nis first
resolved as a namespace-or-type-name. If the resolution of N is not successful, a compile-time error
occurs. Otherwise, N.I or N.I<A1, ..., Ac> is resolved as follows:

o IfKis zero and N refers to a namespace and N contains a nested namespace with name I, then the
namespace-or-type-name refers to that nested namespace.

o Otherwise, if N refers to a namespace and N contains an accessible type having name I and K type
parameters, then the namespace-or-type-name refers to that type constructed with the given type
arguments.

o Otherwise, if N refers to a (possibly constructed) class or struct type and N or any of its base classes
contain a nested accessible type having name I and K type parameters, then the namespace-or-
type-name refers to that type constructed with the given type arguments. If there is more than one
such type, the type declared within the more derived type is selected. [Note: If the meaning of N. I
is being determined as part of resolving the base class specification of N then the direct base class
of N is considered to be object (§15.2.4.2). end note]

o Otherwise, N. I is an invalid namespace-or-type-name, and a compile-time error occurs.

A namespace-or-type-name is permitted to reference a static class (§15.2.2.4) only if

The namespace-or-type-name is the T in a namespace-or-type-name of the form T. I, or
The namespace-or-type-name is the T in a typeof-expression (§12.7.12) of the form typeof (T)

8.8.2 Unqualified names

Every namespace declaration and type declaration has an unqualified name determined as follows:

For a namespace declaration, the unqualified name is the qualified-identifier specified in the
declaration.

For a type declaration with no type-parameter-list, the unqualified name is the identifier specified in
the declaration.

For a type declaration with K type parameters, the unqualified name is the identifier specified in the
declaration, followed by the generic-dimension-specifier (§12.7.12) for K type parameters.

8.8.3 Fully qualified names

Every namespace and type declaration has a fully qualified name, which uniquely identifies the namespace
or type declaration amongst all others within the program. The fully qualified name of a namespace or type
declaration with unqualified name N is determined as follows:
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In other words, the fully qualified name of N is the complete hierarchical path of identifiers and generic-
dimension-specifiers that lead to N, starting from the global namespace. Because every member of a
namespace or type shall have a unique name, it follows that the fully qualified name of a namespace or
type declaration is always unique. It is a compile-time error for the same fully qualified name to refer to
two distinct entities. In particular:

e Itisan error for both a namespace declaration and a type declaration to have the same fully qualified
name.

e Itisan error for two different kinds of type declarations to have the same fully qualified name (for
example, if both a struct and class declaration have the same fully qualified name).

e ltisan error for a type declaration without the partial modifier to have the same fully qualified
name as another type declaration (§15.2.7).

[Example: The example below shows several namespace and type declarations along with their associated
fully qualified names.

class A {} // A
hamespace X // X
class B // X.B
class C {} // X.B.C
nhamespace Y // X.Y
class D {} // X.Y.D
3
namespace X.Y // X.Y
class E {} // X.Y.E
class G<T> { // X.Y.G<>
class H {} // X.Y.G<>.H
class G<S,T> { // X.Y.G<,>
class H<U> {} // X.Y.G<,>.H<>
b
end example)

8.9 Automatic memory management

C# employs automatic memory management, which frees developers from manually allocating and freeing
the memory occupied by objects. Automatic memory management policies are implemented by a garbage
collector. The memory management life cycle of an object is as follows:

1. When the object is created, memory is allocated for it, the constructor is run, and the object is
considered live.

2. If neither the object nor any of its instance fields can be accessed by any possible continuation of
execution, other than the running of finalizers, the object is considered no longer in use and it
becomes eligible for finalization. [Note: The C# compiler and the garbage collector might choose to
analyze code to determine which references to an object might be used in the future. For instance, if a
local variable that is in scope is the only existing reference to an object, but that local variable is never
referred to in any possible continuation of execution from the current execution point in the
procedure, the garbage collector might (but is not required to) treat the object as no longer in use. end
note]
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3. Once the object is eligible for finalization, at some unspecified later time the finalizer (§15.13) (if any)
for the object is run. Under normal circumstances the finalizer for the object is run once only, though
implementation-specific APls may allow this behavior to be overridden.

4. Once the finalizer for an object is run, if neither the object nor any of its instance fields can be accessed
by any possible continuation of execution, including the running of finalizers, the object is considered
inaccessible and the object becomes eligible for collection. [Note: An object which could previously not
be accessed may become accessible again due to its finalizer. An example of this is provided below. end
note]

5. Finally, at some time after the object becomes eligible for collection, the garbage collector frees the
memory associated with that object.

The garbage collector maintains information about object usage, and uses this information to make
memory management decisions, such as where in memory to locate a newly created object, when to
relocate an object, and when an object is no longer in use or inaccessible.

Like other languages that assume the existence of a garbage collector, C# is designed so that the garbage
collector might implement a wide range of memory management policies. C# requires that finalizers be run
at some time between the time an object is eligible and the time that the application exits, but specifies
neither a time constraint within that span, nor an order in which finalizers are run.

The behavior of the garbage collector can be controlled, to some degree, via static methods on the class
System.GC. This class can be used to request a collection to occur, finalizers to be run (or not run), and so
forth.

[Example: Since the garbage collector is allowed wide latitude in deciding when to collect objects and run
finalizers, a conforming implementation might produce output that differs from that shown by the
following code. The program

using System;

class A
~AQ { . .
console.writeLine("Finalize instance of A");
3
class B
object Ref;
pubTlic B(object o) {
Ref = o;
3
~BO { . .
console.writeLine("Finalize instance of B");
b

class Test

static void Main() {
B b =new B(hew AQ));
b = null;
GC.collect();
GC.waitForPendingFinalizers();

}
}
creates an instance of class A and an instance of class B. These objects become eligible for garbage
collection when the variable b is assigned the value nul1T, since after this time it is impossible for any user-
written code to access them. The output could be either
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Finalize instance of A
Finalize instance of B

or

Finalize instance of B
Finalize instance of A

because the language imposes no constraints on the order in which objects are garbage collected.
In subtle cases, the distinction between “eligible for finalization” and “eligible for collection” can be
important. For example,

using System;

class A

~AQ {

console.writeLine("Finalize instance of A");

b

pubTlic void FQ {
console.writeLine("A.F");
Test.RefA = this;

b
3
class B
public A Ref;
~BO { . .
console.writeLine("Finalize instance of B");
Ref.F(Q);
b

class Test

public static A RefA;

public static B RefB;

static void Main() {
RefB = new B();

RefA = new AQ);
RefB.Ref = RefA;
RefB = null;
RefA = null;

// A and B now eligible for finalization
GC.Collect();
GC.waitForPendingFinalizers();
// B now eligible for collection, but A is not
if (RefA != null)

console.writeLine("RefA is not null™);

3

}
In the above program, if the garbage collector chooses to run the finalizer of A before the finalizer of B,
then the output of this program might be:

Finalize instance of A

Finalize instance of B

A.F

RefA is not null
Note that although the instance of A was not in use and A's finalizer was run, it is still possible for methods
of A (in this case, F) to be called from another finalizer. Also, note that running of a finalizer might cause an
object to become usable from the mainline program again. In this case, the running of B's finalizer caused
an instance of A that was previously not in use, to become accessible from the live reference Test.RefA.
After the call to waitForPendingFinalizers, the instance of B is eligible for collection, but the instance
of A is not, because of the reference Test.RefA. end example]
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8.10 Execution order

Execution of a C# program proceeds such that the side effects of each executing thread are preserved at
critical execution points. A side effect is defined as a read or write of a volatile field, a write to a non-
volatile variable, a write to an external resource, and the throwing of an exception. The critical execution
points at which the order of these side effects shall be preserved are references to volatile fields (§15.5.4),
Tock statements (§13.13), and thread creation and termination. The execution environment is free to
change the order of execution of a C# program, subject to the following constraints:

e Data dependence is preserved within a thread of execution. That is, the value of each variable is
computed as if all statements in the thread were executed in original program order.

e Initialization ordering rules are preserved (§15.5.5, §15.5.6).

e The ordering of side effects is preserved with respect to volatile reads and writes (§15.5.4).
Additionally, the execution environment need not evaluate part of an expression if it can deduce that
that expression’s value is not used and that no needed side effects are produced (including any caused
by calling a method or accessing a volatile field). When program execution is interrupted by an
asynchronous event (such as an exception thrown by another thread), it is not guaranteed that the
observable side effects are visible in the original program order.
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9. Types

9.1 General

The types of the C# language are divided into two main categories: reference types and value types. Both
value types and reference types may be generic types, which take one or more type parameters. Type
parameters can designate both value types and reference types.

type:
reference-type
value-type
type-parameter

A third category of types, pointers, is available only in unsafe code (§23.3).

Value types differ from reference types in that variables of the value types directly contain their data,
whereas variables of the reference types store references to their data, the latter being known as objects.
With reference types, it is possible for two variables to reference the same object, and thus possible for
operations on one variable to affect the object referenced by the other variable. With value types, the
variables each have their own copy of the data, and it is not possible for operations on one to affect the
other. [Note: When a variable is a ref or out parameter, it does not have its own storage but references
the storage of another variable. In this case, the ref or out variable is effectively an alias for another
variable and not a distinct variable. end note]

C#’s type system is unified such that a value of any type can be treated as an object. Every type in C#
directly or indirectly derives from the object class type, and object is the ultimate base class of all types.
Values of reference types are treated as objects simply by viewing the values as type object. Values of
value types are treated as objects by performing boxing and unboxing operations (§9.3.12).

9.2 Reference types

9.2.1 General
A reference type is a class type, an interface type, an array type, a delegate type, or the dynamic type.

reference-type:
class-type
interface-type
array-type
delegate-type
dynamic

class-type:
type-name
object
string

interface-type:
type-name

array-type:
non-array-type rank-specifiers
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non-array-type:
value-type
class-type
interface-type
delegate-type
dynamic
type-parameter
rank-specifiers:
rank-specifier
rank-specifiers rank-specifier
rank-specifier:
[ dim-separatorse,: ]
dim-separators:

dim-separators

delegate-type:
type-name

A reference type value is a reference to an instance of the type, the latter known as an object. The special
value nul1 is compatible with all reference types and indicates the absence of an instance.
9.2.2 Class types

A class type defines a data structure that contains data members (constants and fields), function members
(methods, properties, events, indexers, operators, instance constructors, finalizers, and static
constructors), and nested types. Class types support inheritance, a mechanism whereby derived classes can
extend and specialize base classes. Instances of class types are created using object-creation-expressions
(812.7.11.2).

Class types are described in §15.

Certain predefined class types have special meaning in the C# language, as described in the table below.

Class type Description
System.Object The ultimate base class of all other types. See §9.2.3.
System.String The string type of the C# language. See §9.2.5.

System.valueType | The base class of all value types. See 9.3.2.

System.Enum The base class of all enum types. See §19.5.

System.Array The base class of all array types. See §17.2.2.

System.Delegate The base class of all delegate types. See §20.1.

System.Exception | The base class of all exception types. See §21.3.

9.2.3 The object type

The object class type is the ultimate base class of all other types. Every type in C# directly or indirectly
derives from the object class type.

The keyword object is simply an alias for the predefined class System.0Object.

9.2.4 The dynamic type

The dynamic type, like object, can reference any object. When operations are applied to expressions of
type dynamic, their resolution is deferred until the program is run. Thus, if the operation cannot
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legitimately be applied to the referenced object, no error is given during compilation. Instead, an exception
will be thrown when resolution of the operation fails at run-time.

The dynami c type is further described in §9.7, and dynamic binding in §12.3.1.

9.2.5 The string type

The string type is a sealed class type that inherits directly from object. Instances of the string class
represent Unicode character strings.

Values of the string type can be written as string literals (§7.4.5.6).

The keyword string is simply an alias for the predefined class System.String.

9.2.6 Interface types

An interface defines a contract. A class or struct that implements an interface shall adhere to its contract.
An interface may inherit from multiple base interfaces, and a class or struct may implement multiple
interfaces.

Interface types are described in §18.

9.2.7 Array types

An array is a data structure that contains zero or more variables, which are accessed through computed
indices. The variables contained in an array, also called the elements of the array, are all of the same type,
and this type is called the element type of the array.

Array types are described in §17.
9.2.8 Delegate types

A delegate is a data structure that refers to one or more methods. For instance methods, it also refers to
their corresponding object instances.

[Note: The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a function pointer
can only reference static functions, a delegate can reference both static and instance methods. In the latter
case, the delegate stores not only a reference to the method’s entry point, but also a reference to the
object instance on which to invoke the method. end note]

Delegate types are described in §20.

9.3 Value types
9.3.1 General

A value type is either a struct type or an enumeration type. C# provides a set of predefined struct types
called the simple types. The simple types are identified through keywords.

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type
nullable-value-type

simple-type:
numeric-type
bool
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numeric-type:
integral-type
floating-point-type
decimal

integral-type:
sbyte
byte
short
ushort
int
uint
Tong
ulong
char

floating-point-type:
float
double

nullable-type:
non-nullable-value-type 7?

non-nullable-value-type:
type

enum-type:
type-name

Unlike a variable of a reference type, a variable of a value type can contain the value nul1 only if the value
type is a nullable value type (§9.3.11). For every non-nullable value type there is a corresponding nullable
value type denoting the same set of values plus the value nul1T.

Assignment to a variable of a value type creates a copy of the value being assigned. This differs from
assignment to a variable of a reference type, which copies the reference but not the object identified by
the reference.

9.3.2 The System.ValueType type

All value types implicitly inherit from the class System.valueType, which, in turn, inherits from class
object. It is not possible for any type to derive from a value type, and value types are thus implicitly
sealed (§15.2.2.3).

Note that System.valueType is not itself a value-type. Rather, it is a class-type from which all value-
types are automatically derived.

9.3.3 Default constructors

All value types implicitly declare a public parameterless instance constructor called the default constructor.
The default constructor returns a zero-initialized instance known as the default value for the value type:

e Forall simple-types, the default value is the value produced by a bit pattern of all zeros:

For sbyte, byte, short, ushort, int, uint, Tong, and ulong, the default value is 0.
For char, the default value is '\x0000"'.

For f1oat, the default value is 0. 0f.

For doubTe, the default value is 0. 0d.

For decimal, the default value is 0.0m.

For booT, the default value is false.

O O O O O O

e For an enum-type E, the default value is 0, converted to the type E.
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e For astruct-type, the default value is the value produced by setting all value type fields to their default
value and all reference type fields to nu1T.

e For a nullable-value-type the default value is an instance for which the Hasvalue property is false. The
default value is also known as the null value of the nullable value type. Attempting to read the value
property of such a value causes an exception of type System.InvalidOperationException to be
thrown (§9.3.11).

Like any other instance constructor, the default constructor of a value type is invoked using the new
operator. [Note: For efficiency reasons, this requirement is not intended to actually have the
implementation generate a constructor call. For value types, the default value expression (§12.7.15)
produces the same result as using the default constructor. end note] [Example: In the code below,
variables 1, j and k are all initialized to zero.

class A
void FQO {
int i = 0;
int j = new int();
) int k = default(int);
3
end example]

Because every value type implicitly has a public parameterless instance constructor, it is not possible for a
struct type to contain an explicit declaration of a parameterless constructor. A struct type is however
permitted to declare parameterized instance constructors (§16.4.9).

9.3.4 Struct types

A struct type is a value type that can declare constants, fields, methods, properties, events, indexers,
operators, instance constructors, static constructors, and nested types. The declaration of struct types is
described in §16.

9.3.5 Simple types

C# provides a set of predefined struct types called the simple types. The simple types are identified
through keywords, but these keywords are simply aliases for predefined struct types in the System
namespace, as described in the table below.

Keyword Aliased type
sbyte System.SByte
byte System.Byte
short System.Intl6
ushort System.UIntl6
int System.Int32
uint System.UInt32
Tong System.Int64
ulong System.UInt64
char System.Char
float System.Single
double System.Double
bool System.Boolean
decimal System.Decimal
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Because a simple type aliases a struct type, every simple type has members. [Example: int has the
members declared in System.Int32 and the members inherited from System.Object, and the
following statements are permitted:

int i = int.Maxvalue; // System.Int32.MaxValue constant

string s i.Tostring(Q); // System.Int32.ToString() instance method
string t = 123.ToString(); // System.Int32.ToString() instance method

end example] [Note: The simple types differ from other struct types in that they permit certain additional
operations:

e Most simple types permit values to be created by writing literals (§7.4.5). [Example: 123 is a literal of
type intand 'a' is a literal of type char. end example] C# makes no provision for literals of struct
types in general.

e When the operands of an expression are all simple type constants, it is possible for the compiler to
evaluate the expression at compile-time. Such an expression is known as a constant-expression
(§12.20). Expressions involving operators defined by other struct types are not considered to be
constant expressions.

e Through const declarations, it is possible to declare constants of the simple types (§15.4). It is not
possible to have constants of other struct types, but a similar effect is provided by static readonly
fields.

e Conversions involving simple types can participate in evaluation of conversion operators defined by
other struct types, but a user-defined conversion operator can never participate in evaluation of
another user-defined conversionoperator (§11.5.3). end note]

9.3.6 Integral types

C# supports nine integral types: sbyte, byte, short, ushort, int, uint, Tong, ulong, and char. The
integral types have the following sizes and ranges of values:

e The shyte type represents signed 8-bit integers with values from -128 to 127, inclusive.

e The byte type represents unsigned 8-bit integers with values from 0 to 255, inclusive.

e The short type represents signed 16-bit integers with values from -32768 to 32767, inclusive.

e The ushort type represents unsigned 16-bit integers with values from 0 to 65535, inclusive.

e The int type represents signed 32-bit integers with values from -2147483648 to 2147483647,
inclusive.

e The uint type represents unsigned 32-bit integers with values from 0 to 4294967295, inclusive.

e The long type represents signed 64-bit integers with values from -9223372036854775808 to
9223372036854775807, inclusive.

e The ulong type represents unsigned 64-bit integers with values from 0 to 18446744073709551615,
inclusive.

e The char type represents unsigned 16-bit integers with values from 0 to 65535, inclusive. The set of
possible values for the char type corresponds to the Unicode character set. [Note: Although char has
the same representation as ushort, not all operations permitted on one type are permitted on the
other. end note]

The integral-type unary and binary operators always operate with signed 32-bit precision, unsigned 32-bit
precision, signed 64-bit precision, or unsigned 64-bit precision, as detailed in §12.4.7.

The char type is classified as an integral type, but it differs from the other integral types in two ways:

e There are no predefined implicit conversions from other types to the char type. In particular, even
though the byte and ushort types have ranges of values that are fully representable using the char
type, implicit conversions from sbyte, byte, or ushort to char do not exist.

e Constants of the char type shall be written as character-literals or as integer-literals in combination
with a cast to type char. [Example: (char)10 is the same as '\x000A"'. end example]
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The checked and unchecked operators and statements are used to control overflow checking for
integral-type arithmetic operations and conversions (§12.7.14). In a checked context, an overflow
produces a compile-time error or causes a System.OverflowException to be thrown. In an
unchecked context, overflows are ignored and any high-order bits that do not fit in the destination type
are discarded.

9.3.7 Floating-point types

C# supports two floating-point types: float and doubTe. The float and double types are represented
using the 32-bit single-precision and 64-bit double-precision IEC 60559 formats, which provide the
following sets of values:

e Positive zero and negative zero. In most situations, positive zero and negative zero behave identically
as the simple value zero, but certain operations distinguish between the two (§12.9.3).

e Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero
number by zero. [Example: 1.0 / 0.0 yields positive infinity, and -1.0 / 0.0 yields negative infinity.
end example]

e The Not-a-Number value, often abbreviated NaN. NaNs are produced by invalid floating-point
operations, such as dividing zero by zero.

e The finite set of non-zero values of the form s x m x 2¢, where sis 1 or -1, and m and e are determined
by the particular floating-point type: For f1oat, 0 < m < 22 and —149 < e < 104, and for doubTe,

0 <m< 2% and -1075 < e £ 970. Denormalized floating-point numbers are considered valid non-zero
values. C# neither requires nor forbids that a conforming implementation support denormalized
floating-point numbers.

The float type can represent values ranging from approximately 1.5 x 107 to 3.4 x 10°® with a precision
of 7 digits.

The double type can represent values ranging from approximately 5.0 x 10732 to 1.7 x 103% with a
precision of 15-16 digits.

If either operand of a binary operator is a floating-point type then standard numeric promotions are
applied, as detailed in §12.4.7, and the operation is performed with f1oat or doub1e precision.

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in
exceptional situations, floating-point operations produce zero, infinity, or NaN, as described below:

e The result of a floating-point operation is rounded to the nearest representable value in the
destination format.

o If the magnitude of the result of a floating-point operation is too small for the destination format, the
result of the operation becomes positive zero or negative zero.

e If the magnitude of the result of a floating-point operation is too large for the destination format, the
result of the operation becomes positive infinity or negative infinity.

e If a floating-point operation is invalid, the result of the operation becomes NaN.

e If one or both operands of a floating-point operation is NaN, the result of the operation becomes NaN.

Floating-point operations may be performed with higher precision than the result type of the operation.
[Example: Some hardware architectures support an “extended” or “long double” floating-point type with
greater range and precision than the doubTe type, and implicitly perform all floating-point operations
using this higher precision type. Only at excessive cost in performance can such hardware architectures be
made to perform floating-point operations with less precision, and rather than require an implementation
to forfeit both performance and precision, C# allows a higher precision type to be used for all floating-point
operations. Other than delivering more precise results, this rarely has any measurable effects. However, in
expressions of the form x * y / z, where the multiplication produces a result that is outside the doubTe
range, but the subsequent division brings the temporary result back into the doub1e range, the fact that
the expression is evaluated in a higher range format can cause a finite result to be produced instead of an
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infinity. To force a value of a floating-point type to the exact precision of its type, an explicit cast can be
used. end example]

9.3.8 The decimal type

The decimal type is a 128-bit data type suitable for financial and monetary calculations. The decimal
type can represent values including those in the range at least =7.9 x 1072 to 7.9 x 10%, with at least 28-
digit precision.

The finite set of values of type decimal are of the form (—1)°*x ¢ x 10°¢, where the sign sis 0 or 1, the
coefficient cis given by 0 < ¢ < Cmax, and the scale e is such that Emin < e < Emax, where Cmax is at least

1 x 10?8, Emin <0, and Emax > 28. The decimal type does not necessarily support signed zeros, infinities,
or NaN's.

A decimal is represented as an integer scaled by a power of ten. For decimals with an absolute value
less than 1.0m, the value is exact to at least the 28" decimal place. For decimals with an absolute value
greater than or equal to 1.0m, the value is exact to at least 28 digits. Contrary to the f1oat and double
data types, decimal fractional numbers such as 0.1 can be represented exactly in the decimal
representation. In the f1oat and double representations, such numbers often have non-terminating
binary expansions, making those representations more prone to round-off errors.

If either operand of a binary operator is of decimal type then standard numeric promotions are applied,
as detailed in §12.4.7, and the operation is performed with doubTe precision.

The result of an operation on values of type decimal is that which would result from calculating an exact
result (preserving scale, as defined for each operator) and then rounding to fit the representation. Results
are rounded to the nearest representable value, and, when a result is equally close to two representable
values, to the value that has an even number in the least significant digit position (this is known as
“banker’s rounding”). That is, results are exact to at least the 28" decimal place. Note that rounding may
produce a zero value from a non-zero value.

If a decimal arithmetic operation produces a result whose magnitude is too large for the decimal
format, a System.overflowException is thrown.

The decimal type has greater precision but may have a smaller range than the floating-point types. Thus,
conversions from the floating-point types to decimal might produce overflow exceptions, and
conversions from decimal to the floating-point types might cause loss of precision or overflow exceptions.
For these reasons, no implicit conversions exist between the floating-point types and decimal, and
without explicit casts, a compile-time error occurs when floating-point and decimal operands are directly
mixed in the same expression.

9.3.9 The bool type

The booT type represents Boolean logical quantities. The possible values of type bool are true and
false.

No standard conversions exist between bool1 and other value types. In particular, the boo1 type is distinct
and separate from the integral types, a booT value cannot be used in place of an integral value, and vice
versa.

[Note: In the C and C++ languages, a zero integral or floating-point value, or a null pointer can be converted
to the Boolean value false, and a non-zero integral or floating-point value, or a non-null pointer can be
converted to the Boolean value true. In C#, such conversions are accomplished by explicitly comparing an
integral or floating-point value to zero, or by explicitly comparing an object reference to nul1. end note]

9.3.10 Enumeration types

An enumeration type is a distinct type with named constants. Every enumeration type has an underlying
type, which shall be byte, sbyte, short, ushort, int, uint, Tong or ulong. The set of values of the
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enumeration type is the same as the set of values of the underlying type. Values of the enumeration type
are not restricted to the values of the named constants. Enumeration types are defined through
enumeration declarations (§19.2).

9.3.11 Nullable value types

A nullable value type can represent all values of its underlying type plus an additional null value. A nullable
value type is written T?, where T is the underlying type. This syntax is shorthand for
System.Nullable<T>, and the two forms can be used interchangeably.

Conversely, a non-nullable value type is any value type other than System.Nullable<T> and its
shorthand T? (for any T), plus any type parameter that is constrained to be a non-nullable value type (that
is, any type parameter with a value type constraint (§15.2.5)). The System.Nullable<T> type specifies
the value type constraint for T, which means that the underlying type of a nullable value type can be any
non-nullable value type. The underlying type of a nullable value type cannot be a nullable value type or a
reference type. For example, int?? and string? are invalid types.

An instance of a nullable value type T? has two public read-only properties:

e A HasVvalue property of type bool
e Avalue property of type T

An instance for which Hasvalue is true is said to be non-null. A non-null instance contains a known value
and Value returns that value.

An instance for which Hasvalue is false is said to be null. A null instance has an undefined value.
Attempting to read the Value of a null instance causes a System.InvalidOperationException to be
thrown. The process of accessing the vaTlue property of a nullable instance is referred to as unwrapping.

In addition to the default constructor, every nullable value type T? has a public constructor with a single
parameter of type T. Given a value x of type T, a constructor invocation of the form

new T7(x)
creates a non-null instance of T? for which the vaTlue property is x. The process of creating a non-null
instance of a nullable value type for a given value is referred to as wrapping.

Implicit conversions are available from the nul1 literal to T? (§11.2.6) and from T to T? (§11.2.5).

The nullable type T? implements no interfaces (§18). In particular, this means it does not implement any
interface that the underlying type T does.

9.3.12 Boxing and unboxing

The concept of boxing and unboxing provide a bridge between value-types and reference-types by
permitting any value of a value-type to be converted to and from type object. Boxing and unboxing
enables a unified view of the type system wherein a value of any type can ultimately be treated as an
object.

Boxing is described in more detail in §11.2.8 and unboxing is described in §11.3.6.

9.4 Constructed types
9.4.1 General

A generic type declaration, by itself, denotes an unbound generic type that is used as a “blueprint” to form
many different types, by way of applying type arguments. The type arguments are written within angle
brackets (< and >) immediately following the name of the generic type. A type that includes at least one
type argument is called a constructed type. A constructed type can be used in most places in the language
in which a type name can appear. An unbound generic type can only be used within a typeof-expression
(§12.7.12).
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Constructed types can also be used in expressions as simple names (§12.7.3) or when accessing a member
(§12.7.5).

When a namespace-or-type-name is evaluated, only generic types with the correct number of type
parameters are considered. Thus, it is possible to use the same identifier to identify different types, as long
as the types have different numbers of type parameters. This is useful when mixing generic and non-
generic classes in the same program. [Example:

namespace Widgets

{
class Queue {..}
class Queue<TElement> {..}

nhamespace MyApplication

using widgets;

class X
Queue ql; // Non-generic Wwidgets.Queue
Queue<int> q2; // Generic widgets.Queue
b
end example)

The detailed rules for name lookup in the namespace-or-type-name productions is described in §8.8. The
resolution of ambiguities in these productions is described in §7.2.5. A type-name might identify a
constructed type even though it doesn’t specify type parameters directly. This can occur where a type is
nested within a generic class declaration, and the instance type of the containing declaration is implicitly
used for name lookup (§15.3.9.7). [Example:

class outer<T>

public class Inner {..}
public Inner i; // Type of i is oOuter<T>.Inner

end example)

A non-enum constructed type shall not be used as an unmanaged-type (§23.3).
9.4.2 Type arguments

Each argument in a type argument list is simply a type.

type-argument-list:
< type-arguments >

type-arguments:
type-argument
type-arguments , type-argument

type-argument:
type

A type-argument shall not be a pointer type (§23). Each type argument shall satisfy any constraints on the
corresponding type parameter (§15.2.5).

9.4.3 Open and closed types

All types can be classified as either open types or closed types. An open type is a type that involves type
parameters. More specifically:

e Atype parameter defines an open type.
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e Anarray type is an open type if and only if its element type is an open type.

e A constructed type is an open type if and only if one or more of its type arguments is an open type. A
constructed nested type is an open type if and only if one or more of its type arguments or the type
arguments of its containing type(s) is an open type.

A closed type is a type that is not an open type.

At run-time, all of the code within a generic type declaration is executed in the context of a closed
constructed type that was created by applying type arguments to the generic declaration. Each type
parameter within the generic type is bound to a particular run-time type. The run-time processing of all
statements and expressions always occurs with closed types, and open types occur only during compile-
time processing.

Each closed constructed type has its own set of static variables, which are not shared with any other closed
constructed types. Since an open type does not exist at run-time, there are no static variables associated
with an open type. Two closed constructed types are the same type if they are constructed from the same
unbound generic type, and their corresponding type arguments are the same type.

9.4.4 Bound and unbound types

The term unbound type refers to a non-generic type or an unbound generic type. The term bound type
refers to a non-generic type or a constructed type.

An unbound type refers to the entity declared by a type declaration. An unbound generic type is not itself a
type, and cannot be used as the type of a variable, argument or return value, or as a base type. The only
construct in which an unbound generic type can be referenced is the typeof expression (§12.7.12).

9.4.5 Satisfying constraints

Whenever a constructed type or generic method is referenced, the supplied type arguments are checked
against the type parameter constraints declared on the generic type or method (§15.2.5). For each where
clause, the type argument A that corresponds to the named type parameter is checked against each
constraint as follows:

o If the constraint is a class type, an interface type, or a type parameter, let C represent that constraint
with the supplied type arguments substituted for any type parameters that appear in the constraint. To
satisfy the constraint, it shall be the case that type A is convertible to type C by one of the following:

o Anidentity conversion (§11.2.2)

o Animplicit reference conversion (§11.2.7)

o Aboxing conversion (§11.2.8), provided that type A is a non-nullable value type.

o Animplicit reference, boxing or type parameter conversion from a type parameter A to C.

e [f the constraint is the reference type constraint (class), the type A shall satisfy one of the following:

o Aisaninterface type, class type, delegate type, array type or the dynami c type. [Note:
System.ValueType and System. Enum are reference types that satisfy this constraint. end note]
o Alis atype parameter that is known to be a reference type (§9.2).

e If the constraint is the value type constraint (struct), the type A shall satisfy one of the following:

o Aisa struct type or enum type, but not a nullable value type. [Note: System.valueType and
System.Enum are reference types that do not satisfy this constraint. end note]
o Ais atype parameter having the value type constraint (§15.2.5).

e If the constraint is the constructor constraint new(), the type A shall not be abstract and shall have
a public parameterless constructor. This is satisfied if one of the following is true:

o Aisavalue type, since all value types have a public default constructor (§9.3.3).
o Ais atype parameter having the constructor constraint (§15.2.5).
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o Ais atype parameter having the value type constraint (§15.2.5).

o Aisaclassthatis not abstract and contains an explicitly declared pub1c constructor with no
parameters.

o Aisnotabstract and has a default constructor (§15.11.5).

A compile-time error occurs if one or more of a type parameter’s constraints are not satisfied by the given
type arguments.

Since type parameters are not inherited, constraints are never inherited either. [Example: In the following,
D needs to specify the constraint on its type parameter T so that T satisfies the constraint imposed by the
base class B<T>. In contrast, class E need not specify a constraint, because List<T> implements
IEnumerable forany T.

class B<T> where T: IEnumerable {..}
class D<T>: B<T> where T: IEnumerable {.}
class E<T>: B<List<T>> {..}

end example]

9.5 Type parameters

A type parameter is an identifier designating a value type or reference type that the parameter is bound to
at run-time.

type-parameter:
identifier
Since a type parameter can be instantiated with many different type arguments, type parameters have
slightly different operations and restrictions than other types. [Note: These include:

e Atype parameter cannot be used directly to declare a base class (§15.2.4.2) or interface (§18.2.4).

e The rules for member lookup on type parameters depend on the constraints, if any, applied to the type
parameter. They are detailed in §12.5.

e The available conversions for a type parameter depend on the constraints, if any, applied to the type
parameter. They are detailed in §11.2.11 and §11.3.8.

e Theliteral nu11 cannot be converted to a type given by a type parameter, except if the type parameter
is known to be a reference type (§11.2.11). However, a default expression (§12.7.15) can be used
instead. In addition, a value with a type given by a type parameter can be compared with nul1 using
==and !=(§12.11.7) unless the type parameter has the value type constraint.

e A new expression (§12.7.11.2) can only be used with a type parameter if the type parameter is
constrained by a constructor-constraint or the value type constraint (§15.2.5).

e Atype parameter cannot be used anywhere within an attribute.

e Atype parameter cannot be used in a member access (§12.7.5) or type name (§8.8) to identify a static
member or a nested type.

e Atype parameter cannot be used as an unmanaged-type (§23.3).

end note]

As a type, type parameters are purely a compile-time construct. At run-time, each type parameter is bound
to a run-time type that was specified by supplying a type argument to the generic type declaration. Thus,
the type of a variable declared with a type parameter will, at run-time, be a closed constructed type
(89.4.3). The run-time execution of all statements and expressions involving type parameters uses the type
that was supplied as the type argument for that parameter.

9.6 Expression tree types

Expression trees permit lambda expressions to be represented as data structures instead of executable
code. Expression trees are values of expression tree types of the form
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System.Ling.Expressions.Expression<TDelegate>, where TDelegate is any delegate type. For
the remainder of this specification we will refer to these types using the shorthand
Expression<TDelegate>.

If a conversion exists from a lambda expression to a delegate type D, a conversion also exists to the
expression tree type Expression<TDelegate>. Whereas the conversion of a lambda expression to a
delegate type generates a delegate that references executable code for the lambda expression, conversion
to an expression tree type creates an expression tree representation of the lambda expression.

Expression trees are efficient in-memory data representations of lambda expressions and make the
structure of the lambda expression transparent and explicit.

Just like a delegate type D, Expression<TDelegate> is said to have parameter and return types, which
are the same as those of D.

[Example: The following program represents a lambda expression both as executable code and as an
expression tree. Because a conversion exists to Func<int,int>, a conversion also exists to
Expression<Func<int,int>>:
Func<int,int> del = x => x + 1; // Code
Expression<Func<int,int>> exp = x => X + 1; // Data

Following these assignments, the delegate del references a method that returns x + 1, and the
expression tree exp references a data structure that describes the expression x => x + 1. end example]

The exact definition of the generic type Expression<TDelegate> as well as the precise rules for
constructing an expression tree when a lambda expression is converted to an expression tree type, are
implementation dependent.

Two things are important to make explicit:

e Not all lambda expressions can be converted to expression trees. For instance, lambda expressions
with statement bodies, and lambda expressions containing assignment expressions cannot be
represented. In these cases, a conversion still exists, but it will fail at compile-time. These exceptions
are detailed in §11.7.3.

e EXxpression<TDelegate> offers an instance method Compi e which produces a delegate of
type TDelegate:

Func<int,int> del2 = exp.Compile();

Invoking this delegate causes the code represented by the expression tree to be executed. Thus, given
the definitions above, de1 and del2 are equivalent, and the following two statements will have the
same effect:

int il = del(1);
int i2 = del2(1);

After executing this code, i1 and i2 will both have the value 2.

9.7 The dynamic type

The type dynami c has special meaning in C#. Its purpose is to allow dynamic binding, which is described in
detail in §12.3.2.

dynami c is considered identical to object except in the following respects:

e QOperations on expressions of type dynamic can be dynamically bound (§12.3.3).
e Type inference (§12.6.3) will prefer dynamic over object if both are candidates.
e dynamic cannot be used as

o the type in an object-c